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1 SUMMARY AND CONCLUSIONS  

A methodology has been developed to characterize the reliability of new product programs dur-
ing their development phase. This approach has been found to be effective in evaluating systems 
ranging from automotive to national defense. Just as estimates of cost and program timing are 
critical factors to be known and monitored during program development, product reliability also 
needs to be addressed. The reliability estimate and the uncertainty of that estimate are an excel-
lent way to provide this characterization. The methodology involves combining information that 
ranges from qualitative, such as expert judgment, to quantitative, such as test data. It is possible 
to develop realistic reliability estimates at the beginning of a new product program, even though 
hardware is not available, because a considerable amount of knowledge exists in the experience 
base of engineers.  This knowledge is elicited in the form of expert judgment. The process of es-
timating the reliability characterization proceeds during the entire development program, incor-
porating information from any available source  (i.e.  supplier, customer), about any level of the 
product  (i.e. subsystem, component). The approach allows the reliability of the new product to 
be characterized early, before hardware exists, and to be updated as the design evolves. This al-
lows the project team to  “keep score”  as they work through the program to design in reliability. 
The results may also be used to provide steerage to the project team with regard to how to drive 
reliability higher and / or reduce the uncertainty in reliability. 
 

ABSTRACT: Delphi Automotive Systems and the Los Alamos National Laboratory 
worked together to develop a methodology to characterize the reliability of a new prod-
uct during its development program. One of the traditional techniques utilized in this re-
gard is Reliability Growth Testing  (RGT). This paper outlines a more timely and effi-
cient approach to achieving and maintaining the reliability perspective. Rather than 
conducting testing after hardware has been built, and developing statistical confidence 
bands around the results, this updating approach starts with an early reliability estimate 
characterized by large uncertainty, and then proceeds to reduce the uncertainty by fold-
ing in fresh information in a Bayesian framework. A considerable amount of knowledge 
is available at the beginning of a program in the form of expert judgment which helps to 
provide the initial estimate. This estimate is then continually updated as substantial and 
varied information becomes available during the course of the development program. 



The challenge has been to develop a framework for this reliability characterization which 
is physically, logically, and mathematically sound, but which is flexible enough to accommodate 
all of the diverse information that becomes available, and responsive enough to provide timely 
results which support the development process. The information updating approaches  (such as 
those based on Bayes Theorem)  are suggested as key methods directly applicable to this prob-
lem. This paper describes an  approach to reliability modeling that encompasses the impact of 
both product and manufacturing process design on the distribution of reliability over time. Such 
a distribution represents the uncertainty associated with the reliability at any given time. This 
work builds on methods previously published by the same authors (Kerscher et al. 1998). The 
approach in both papers describes the elicitation and analysis of expert judgment which is used 
to quantify the initial reliability estimate, including uncertainty. The approach also describes 
Bayesian updating which is applicable throughout the development program, and which accom-
modates a wide variety of possible new information sources. Although the model is rigorous in 
its execution, some user friendly approximations are also described which may be useful to the 
product development team for purposes of test and validation planning. The whole idea is to al-
low new project development teams to address the reliability issue with the same focus that they 
traditionally have on cost and timing. 

 
 

2 INTRODUCTION 

Over the years many advancing techniques in the area of reliability engineering have surfaced. 
One of these techniques in the military sphere of influence is Reliability Growth Testing  (RGT). 
Private industry has reviewed RGT as part of the solution to their reliability concerns, but many 
practical considerations have slowed its implementation. It’s objective is to demonstrate the reli-
ability requirement of a new product with a specified confidence. This paper speaks directly to 
that objective but discusses a somewhat different approach to achieving it. Rather than conduct-
ing testing as a continuum and developing statistical confidence bands around the results, this 
approach starts with a reliability estimate characterized by combining all available information 
and data sources at the time. Because this initially results in revealing large uncertainties, it then 
proceeds to reduce the uncertainties by folding in fresh information. 
 

In the traditional military context a product would be developed  (or an existing product 
modified), and then the product would be put on test. The typically long-term test was designed 
to statistically demonstrate a reliability requirement at a specified confidence. This product was 
then delivered to the military services with demonstrated reliability as part of the deliverables 
package. The fact that the test involved additional time, cost and resources was deemed to be ac-
ceptable. In the industrial setting, however, these drawbacks can become acute, and in many 
cases deter the use of this traditional approach. Also, although not planned, it is possible for the 
end of a development program to approach the scheduled start of volume production. RGT at this 
point is seen not only as an additional amount of time and expense in the development program, 
but also as a holding item before production may begin. 

 
Probably the most significant negative factor, however, has nothing to do with timing and 

resources, but rather the organizational environment that design engineers are asked to work 
within. Not atypically, the reliability growth test may be the first large-scale organized develop-
ment test to be conducted on the new product design. In some applications such as nuclear 
weapons, such large-scale tests are prohibited by treaty. The results typically identify several 
weak spots / failures in the design, which should be expected. The reliability growth test, how-



ever, has been organized to demonstrate the desired reliability, and do it efficiently, by organiz-
ing the test around an anticipated few or no failures. The result is a triple blow to the design pro-
gram. First, it demonstrates that the desired reliability has not been achieved. Second, it demon-
strates it with statistical confidence, and finally, it may produce this result near to the scheduled 
start of volume production, which dictates the choice of shipping defective product or delaying 
the start of production. Perceptive program managers who recognize the deficiency of their 
product in the area of reliability naturally tend to resist demonstrating the fact without sufficient 
time to respond. All of these factors tend to work against the implementation of traditional RGT 
in an industrial setting. 

 
There is a definite need, however, for an understanding of the reliability perspective of a 

new product during its development program. Identifying the uncertainty in the reliability esti-
mates, which typically drives the unreliability, and doing it early enough in the development cy-
cle for corrective action to be organized by the development team, has been found to be a cultur-
ally acceptable way to approach the reliability issue, and can therefore be a powerful factor in the 
drive for high reliability. The information combination and updating approach is a methodology 
which is directly applicable to this problem. 

 
The following notations are used : 
 

Ri reliability characterization of a system , estimated at time step, i. 
f(Ri) probability distribution function of Ri, representing the uncertainty in system reliability. 
λ failure rate for a component, subsystem or system (e.g., failures per vehicle per scaled 
 unit of time) and scale parameter of the Weibull distribution. 
t time. 
β slope or shape parameter of the Weibull distribution. 
R(t) reliability from a two-parameter Weibull distribution. 
Γ(n) gamma function, which is the ∫x(n-1) e-x dx from 0 to 1. 
θ parameter of interest. 
(a,b) two parameters of the beta distribution, sometimes referred to as the pseudo successes 

and pseudo failures, respectively. 
p probability of success of a trial. 
n number of tests. 
(α, η) two parameters of the gamma distribution, sometimes referred to as the pseudo failures 

and pseudo total transformed test time, respectively. 
s failures. 
τ total transformed test time (t1β + t2β + …) 
 
 
3 OVERVIEW OF RELIABILITY UPDATING METHODOLOGY 

The reliability of the product  (including the manufacturing process)  at any given point in time 
or at any given step in the overall product / process design assurance program is what has been 
referred to by the term reliability characterization. “Reliability characterization” includes both 
the functional calculation of the reliability  (point estimate value)  and the uncertainty  (usually 
represented by a distribution function)  that accompanies the reliability value.  Reliability values 
can be calculated from formulas or models, which integrate the structure of the system.  For pur-
poses here, the system structure is represented by a reliability block diagram. 
 



Either the reliability calculation and / or its uncertainty distribution can change due to 
various changes in the development program (Hulting et al. 1994). Examples include the devel-
opment of expert judgment from changes in the existing state of knowledge, the determination of 
requirements, the availability of test data or supplier information, the implementation of correc-
tive actions, etc. New components or failure modes may be added, or existing elements deleted, 
as the design evolves. Changes can occur in both the product design as well as the manufacturing 
process which can affect the reliability value and / or its associated uncertainty. 

 
Once a change occurs anywhere in the development process, a new step  (i)  is designated 

and a new reliability, Ri, is calculated along with a new uncertainty distribution, f(Ri).  The track-
ing of these reliability snapshots over time is one method of monitoring how the changes in reli-
ability are approaching the target value, as part of the validation effort. 

 
At each reliability snapshot, gaps in the current state of knowledge become apparent, 

providing the project team with a rational basis for a strategy for deciding where to devote future 
testing and analysis resources  (i.e. a reliability growth plan). In a proactive sense, “what if” 
analyses allow the project team to develop the optimal test / analysis and validation plan given 
existing constraints of hardware, facilities, timing, etc. The power of these “what if” approxima-
tions lies in gaining understanding about the potential impact of the test / analysis, and allowing 
the project team to judge the usefulness of the effort before it is started. The existence of the reli-
ability characterization also allows the customer to participate in a constructive way, if desired, 
and also provides an avenue for suppliers to contribute, if appropriate. This methodology was 
evaluated on a program in the automotive industry, the results of which are the subject of this 
paper and the previous paper discussed earlier (Kerscher et al. 1998). 

 
 

4 FRAMEWORK  

One of the first activities of an organized reliability program is the construction of a reliability 
logic flow diagram  (e.g. reliability block diagram, success tree) representing the structure of the 
product under development. The framework of the reliability characterization involves selecting 
a mathematical model following the logic flow in that diagram, making an initial estimate of the 
parameters identified in the model, and organizing a methodology for updating the model as new 
information becomes available. Section 5 describes the Weibull functions selected to model the 
product reliability. Section 6 describes the elicitation of expert judgment which is used to de-
velop the initial  (or prior information-based) estimate of the model parameters. Section 7 de-
scribes the use of Bayes Theorem to update the model. Also, Section 8 describes some useful ap-
proximations that may be used for planning purposes. 
 
 
5 DESCRIPTION OF WEIBULL MODELS  

The concept of the hazard function of a manufactured product being made up of definable por-
tions such as infant mortality, useful life, and wearout, has long been utilized  (Kerscher 1989). It 
is further suggested here that the “infant mortality” is mainly due to the latent defect sub-
population generated during the manufacturing process, and the “useful life” portion is primarily 
due to latent design defects which manifest themselves over the life of the product. “Wearout” is 
the third sub-population of parts which fail due to failure modes associated with operating the 
product beyond its useful life. Good engineering practice has long held that wearout failure 



modes should be identified during the development process, and that those failure modes that 
cannot be designed out should at least be designed to occur beyond the useful life of the product. 
For the purposes of this paper any wearout failure modes are assumed to occur beyond useful 
life, and are not, therefore discussed here. The approach to identifying and addressing the latent 
defects in the first two sub-populations is not as well established, although that is in fact the ob-
jective of a comprehensive design assurance program  (Kerscher 1993). A first helpful step in 
identifying those latent defects is the establishment of a reliability model. Figure 1 shows a por-
tion of the reliability logic flow diagram used in the automotive program. The section shown is 
in the form of a success tree diagram. The two parameter Weibull may be used to model both the 
defect subpopulation due to the manufacturing process, as well as the defect sub-population due 
to the product design  (Kerscher 1989). The total distribution is the combination of the two sub-
populations. 
 

 
Figure 1. Reliability Success Tree Diagram 

 
 

The two-parameter Weibull expression for reliability is given in equation (1). 
 
 

R(t)  =  exp (- λ ( t ) β )  (1) 
 

This version of the Weibull separates the two parameters and often simplifies the algebra and the 
subsequent Bayesian manipulations  (Martz et al. 1982). The challenge is to identify the two pa-
rameters; β   (the slope)  and λ  (the failure rate per scaled unit of time)  (Martz et al. 1982). Sec-
tion 6 describes the elicitation of expert judgment to provide initial estimates of these parame-
ters. The approach for this specific example is detailed at length in Kerscher et al. (1998). Table 
1 lists the two parameters, β  and λ, of both the manufacturing and design defect sub-populations, 
for the components in the example: A, B, and C. No information was elicited for the subsystem 
D, whose reliability is defined by the logic flow diagram  (Fig. 1) and the reliabilities of compo-
nents A, B, and C. 
 

Once the individual distributions for the latent design and manufacturing defects have 
been identified, they may be combined to produce the distribution representative of the whole 
component or subsystem. All of the individual distributions of the individual elements may then 
be combined according to the reliability logic flow diagram to form the distribution representa-
tive of the entire product. Estimates of reliability  (including uncertainty) can then be calculated 
using eq (1) at various points in time for predicting the long term performance. 

 
As part of the logic diagram, how the blocks interact / connect is specified as are any lev-

els within the blocks  (e.g., component, subsystem and system). These interrelations of the 

A C

D

B



blocks will determine how the reliability is to be calculated at various levels. For instance, if the 
components within a block  (A, B, and C in the example in Fig. 1) are all in series, the block  
(subsystem D) reliability is the product of the reliabilities of the components. 

 
 

Table 1.  Weibull Parameters for Design and Manufacturing Models 
and 

Initial Reliability Estimates at 12 Months and 100,000 Miles  
             
       Parameters       Reliability   R0   
           Design   Manufacturing                 12 Month             100,000 Miles 
   5 50 95 5 50 95 
  β  λ β  λ,         Percentiles   
Component A   0.75 0.00001 0.14 5.17  0.9996 0.9999 1 0.9993 0.9999 1 
Component B  0.75 0.00002 0.43 9.94  0.9989 1 1 0.9986 0.9999 1 
Component C  0.75 0.001 0.42 4.18  0.976 0.9989 0.9999 0.8829 0.9952 0.9997 
Subsystem D   ~ ~ ~ ~  0.9723 0.9985 0.9998 0.8794 0.9944 0.9994 

 

 
 
6 ELICITATION OF EXPERT JUDGMENT AND INITIAL RELIABILITY 

CHARACTERIZATION  

To obtain an initial overall reliability estimate, R0, of the entire logic flow diagram, estimates of 
component and subsystem reliability’s  (with uncertainties) were elicited from teams of subject 
matter experts.  The experts had been previously selected by their managers and peers as being 
knowledgeable of their subsystem or component.  The elicitations were first conducted with 
those working on the product design and then with those working on the manufacturing process. 
 

The  experts were not asked to estimate reliabilities, per se, but allowed to provide their 
estimates about component, subsystem and system performance in terms familiar to them. (This 
approach and its benefits are described in further detail in Meyer et al. (1991)).  For example, the 
experts in the design process gave their estimates as incidents per thousand vehicles  (IPTV), 
while those familiar with the manufacturing process gave their estimates as parts per million  
(PPM).  As part of their estimates, the experts were asked to give a very brief explanation of their 
reasoning.  In addition, the experts provided ranges on their estimates, which were used to repre-
sent the uncertainty and ultimately formulate f(Ri). 
 

It should be noted that information about failure modes of various blocks, and their ap-
portionment, can also be elicited during the initial characterization. This may become important 
later when tests are planned or performed on a subset of failure modes. 
 

The results from the design elicitations were presented to all of the participating experts 
for their review and reconciliation across the entire system. This information was then used to 
calculate the β  and λ parameters for design and manufacturing as given in Section 5. The uncer-
tainty expressed in the expert elicitations was transformed into distributional information in the 
mathematical model. 
 



Reliabilities were then calculated using eq (1), with subsystem and system estimates be-
ing calculated using the reliability logic flow diagram and numerical sampling techniques. The 
results included reliabilities in distributional form  (reflecting the uncertainty)  for components, 
subsystems and the system at various times. The results for the initial reliability characterization, 
R0, at 12 months and 100,000 miles are summarized in Table 1. For instance, the median reliabil-
ity of subsystem D at 12 months was estimated to be 0.9985, with the 5 th and 95 th percentile re-
liability estimated at 0.9723 and 0.9998 respectively. 

 
Subsequent information, including new test data, is reflected in subsequent values of Ri 

and f(Ri) as described in Section 7. In this way reliability may be monitored over time  (reliabil-
ity growth), and plans formulated accordingly. 

 
 

7 DESCRIPTION OF UPDATING METHODOLOGY  

Pooling data from different sources or of different types  (e.g. tests, process capability studies, 
engineering judgment)  is usually done with methods that combine the distribution functions as-
sociated with the various information sources. Bayes Theorem offers one mechanism for such 
combination. Bayesian pooling combines information with the following structure: the existing 
information  (data)  forms a distribution, called the likelihood. That likelihood distribution is 
formed from the data / information symbolized by the random variable, x, and it has characteris-
tics  (i.e. parameters), such as a mean. That parameter(s) is not considered a fixed quantity but 
instead, has its own probability distribution, called the prior. The prior is combined with the like-
lihood using Bayes Theorem to form the resulting or posterior distribution. Bayes Theorem is 
used to calculate the posterior distribution, g(θ |x), from the likelihood distribution, f(x|θ ) as: 
 

g(θ |x)  =  [f(x|θ ) g(θ )] / ∫ f(x|θ ) g(θ ) dθ    (2) 
 
where g(θ ) is the prior distribution on the parameter of interest, θ. Bayesian combination is often 
referred to as an updating process, where new information is combined with existing informa-
tion. 
 

Simulation methods are often used to combine or propagate uncertainties  (represented as 
distribution functions)  through the logic flow diagram, as well as accomplishing the Bayesian 
combination itself. This is the approach taken with this project. The range and nominal estimates 
provided through the expert elicitation are used to form empirical distribution functions for reli-
ability  (initial reliability characterization)  for each item in the logic flow diagram.  Monte Carlo 
simulation is used to propagate reliability characterizations through the various levels of the dia-
gram, with the accuracy being dependent on the number of simulations.  The posterior distribu-
tions resulting from the simulation are empirical in form, meaning they are not fit to any particu-
lar distribution  (e.g., a beta)  or distribution family. It is not necessary to develop prior 
information for subsystems above the component level. These are available by combining the re-
liability characterizations from the levels below. However, if there is information on these sub-
systems, the reliability characterization from that information can be combined with the distribu-
tion from levels below using methods in Martz et al. (1997, 1990, 1988). More importantly, test 
data and other new information can also be added to the existing reliability characterization at 
any level and / or block  (e.g. system, subsystem, component). This data may be applicable to the 
entire block, or only to a single failure mode within the block. This process is presented in detail 
in Martz et al. (1988) for series systems and in Martz et al. (1990) for series / parallel systems. 



 
In general, the initial reliability characterization R0, is developed from expert judgment 

and is referred to as the native prior distribution. During the course of the development program 
data may be developed regarding each element  (e.g. system, subsystem, component)  and this 
would be used to form data  (or likelihood)  distributions. All of the distribution information in 
the items at the various levels must be combined up through the logic flow diagram, to produce a 
final estimate of the reliability and its uncertainty at the top, or system, level. Three different 
combination methods are used: 

• For each prior distribution that needs combining with a data distribution  (in a block), 
Bayes Theorem is used and a posterior distribution results. 

• Posterior distributions within a given level are combined according to the logic of the 
logic flow diagram to form the induced prior distribution of the next higher level. 

• Induced prior and native prior distributions at the higher levels are combined within 
the same item using a method in Martz et al. (1988) to form the combined prior  (for that block)  
which is then merged with the data  (for that block)  via method 1. This approach is continued up 
the diagram until a posterior distribution is developed at the system level. 
 

As more data becomes available and incorporated into the reliability characterization 
through the Bayesian updating process, this data will tend to dominate over the effects of the ini-
tial estimate developed through expert judgment.  In other words, Ri  formulated from many test 
results will look less and less like R0 from expert estimates. It should be noted that updating can 
be done by combination methods other than Bayes Theorem (Meyer et al. 1991). 

 
A single update from our example will be helpful to illustrate. Figure 2 shows the prob-

ability distributions of reliability at 12 months for the components and subsystem in the example 
at a certain point during the development program. Note that there is considerable uncertainty 
around component C which is reflected in subsystem D  (note also the difference in x-axis 
scales). In our example, 60 samples of component C were tested for 12 months with no observed 
failures, and this was treated as an update event. 
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Figure 2.  Reliability Prior Distributions @ 12 Months  



Figure 3 shows this data and the resulting posterior distribution of component C after the 
Bayesian update. Note how the additional data works to reduce the uncertainty around the esti-
mate. Figure 3 also shows how this additional testing is reflected as reduced uncertainty at the 
subsystem level D. A numerical summary of the Bayesian update is shown in Table 2. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
This methodology was used throughout the activity to provide estimates of reliability 

with uncertainty for all components, subsystems, and the system at various operating times. The 
median system reliability and lower 90 % confidence limit were also plotted against calendar 
time  (as update events occurred) to track progress and demonstrate reliability growth as shown 
in Figure 4. The individual data points correspond to the initial reliability characterization R0 and 
the events associated with the updates Ri. This plot captures the results of the design teams’ early 
efforts to improve reliability, but the power of the approach is the roadmap developed which may 
be used by the team to organize their planning to achieve higher reliability. 

 
 

Table 2.  Prior and Posterior Reliability Distributions   (Testing of Component C) 
          Prior   R0        Posterior   R1   
 12 Month 100,000 Miles 12 Month 100,000 Miles 
Percentiles 5 50 95 5 50 95 5 50 95 5 50 95 
Component A 0.9996 0.9999 1 0.9993 0.9999 1               Same    
Component B 0.9989 1 1 0.9986 0.9999 1               Same    
Component C 0.976 0.9989 0.9999 0.8829 0.9952 0.9997 0.9908 0.9992 0.9999 0.9599 0.9964 0.9997 
Subsystem  D 0.9723 0.9985 0.9998 0.8794 0.9944 0.9994 0.9887 0.9989 0.9998 0.957 0.9957 0.9994 
 

 
 

8 SOME USEFUL APPROXIMATIONS  

While the methodology described in Section 7 does not require f(Ri) to conform to any particular 
distributional form or family, a useful approximation which sometimes may be helpful for plan- 
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ning purposes can be organized around the beta and binomial distributions, eq (3) and eq (4) re-
spectively. 

 
Beta (a, b) = Γ(a+b)/[ Γ (a) Γ (b)]  p  a-1 (1- p) b-1  (3) 

 
Binomial (n, p)  =         n!      p x (1-p) n -x  (4)  
                                x! (n-p)! 

 
 
The beta distribution is the conjugate prior distribution for the binomial parameter, p, (Martz et 
al. 1990) and 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
can in some cases be used to approximate the empirical distribution  (resulting from the simula-
tion)  of the Ri. The beta is often well-suited for representing possible values for p because it 
ranges between 0 and 1, and  in addition, it is an extremely flexible distribution with many pos-
sible shapes  (e.g., symmetric, asymmetric, unimodal, uniform, U-shaped, or J-shaped). Its use-
fulness derives from the fact that the two parameters of the beta in eq (3) , a and b, are some-
times referred to as the pseudo successes and pseudo failures, respectively. This calls to mind the 
image of a pseudo test, where a + b equals the number of pseudo tests. 
 

A useful planning application involves situations where new test data is, or will be, of the 
form of x number of successes out of n number of trials.  Such data is binomially  (eq (4)) dis-
tributed.  In a Bayesian reliability formulation, if a beta distribution with parameters a and b is 
considered to be the prior distribution for R0, then the posterior distribution for R1  (formed from 
a test of x successes in n trials) will also be a beta, with parameters a + x and b + n - x.  Thus, us-
ing the beta formulation may be useful in characterizing the possible value of additional tests.  
Because the posterior distribution and the prior distribution are both of the beta family, this proc-
ess could be iterated indefinitely. 

 
For example, the beta distribution shown in Figure 5 was fit to the prior reliability distri-

bution for component C in Figure 2  (design portion only). In this case, a beta approximation 
yielded, a = 28.2 pseudo successes and b= 0.22 pseudo failures  (a pseudo test of about 28 sam-
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ples).  New information, in the form of a 12 month test of 60 of these components resulting in 
zero failures was introduced, and a new predicted posterior beta reliability distribution was de-
termined, also shown in Figure 5, using the methodology described above. Note that the beta pa-
rameters of this predicted posterior distribution are a = 88.2 and b = 0.22. This is obviously quite 
similar to the corresponding fitted posterior reliability distribution calculated empirically for 
component C and also shown in Figure 5. It is also possible to streamline the calculations of the 
posterior distribution of subsystem D by using this beta estimate. The power of this approxima-
tion, however, lies in simply noting the potential impact of this test  (visually or through the beta 
parameters) and allowing the engineering community to judge the usefulness of this test before it 
is run. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Another useful approximation which sometimes may be helpful for planning purposes 

can be organized around the gamma and exponential distributions, eq (5) and eq (6) respectively,  
 

Gamma (α, η)  =    ηα  λ  α-1 exp (-ηλ)      (5) 
                                               ∫  x α-1 exp (-x) dx 
 

Exponential (t,λ)  =   λ  exp (- λ t)   (6) 
 

or the gamma and Weibull distribution eq (7) in what is referred to as transformed time.  
 

Weibull (t,λ,β)  =   λ β  ( t ) β−1  exp (- λ ( t ) β)    (7) 
 

The gamma distribution is the conjugate prior distribution for the exponential parameter, λ, and 
can in some cases be used to approximate the empirical distribution  (resulting from the simula-
tion)  of the Ri. The gamma is often well-suited for representing possible values for λ because it 
ranges between 0 and infinity. 
 

Suppose the test planning situation involves test data that is, or will be, of the form of the 
number of successes in a test run for a specified length of time.  Such data is distributed accord-
ing to the Weibull model eq (7) where λ is the failure rate as specified by the data and β  is the 
decay of that rate. Note that this parameterization of the Weibull reduces to the exponential dis-
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tribution eq (6) when β  =1. Note also that for a constant value of β , λ in the Weibull expression 
eq (7) is equivalent to the λ in the exponential expression eq (6) for transformed time, t β.  In the 
Bayesian reliability formulation with β  = 1  (exponential), if a gamma distribution eq (5) with 
parameters α and η is considered to be the prior distribution for λ, then the posterior distribution 
for λ will also be a gamma, with parameters α + s and η + t, where s failures are observed during 
t total time on test  (t = Σ ti and ti is the time on test for the i th test unit). The usefulness of this ar-
rangement derives from the fact that the two parameters of the gamma in eq (5) , α and η, are 
sometimes referred to as the pseudo failures and pseudo total test time, respectively. This calls to 
mind the image of a pseudo test, where α failures are experienced during η amount of total test 
time. 

 
Analogous results hold for the Weibull when β  is constant and known.  Such a failure 

model is equivalent to an exponential with a transformed time variable, or with t replaced by tβ. 
In this Bayesian case, if a gamma distribution with parameters α and η is considered to be the 
prior distribution for λ, then the posterior distribution for λ will also be a gamma, with parame-
ters α + s and η + τ where s failures are observed during τ total transformed time on test  (τ = 
Σ (ti)β, and ti is the time on test for the i th test unit).  The usefulness of this arrangement again de-
rives from the fact that the two parameters of the gamma, α and η, are sometimes referred to as 
the pseudo failures and pseudo total transformed test time, respectively. This again calls to mind 
the image of a prior pseudo test, which may be useful in characterizing the possible value of ad-
ditional tests. Because the posterior distribution and the prior distribution are both of the gamma 
family, this process could also be iterated indefinitely. Various limitations of these examples are 
discussed in Kerscher et al. (1998). 

 
Characterizing with large uncertainty the initial reliability of a new product under devel-

opment, and then working to reduce that uncertainty, has been found to be a culturally acceptable 
way to address the reliability issue. These examples illustrate cases where new test information 
or data are introduced to update a reliability, Ri, to the form Ri+1.   The continuous monitoring of 
these reliability snapshots, Ri and f(Ri), is possible as new information or changes become avail-
able.  Not all changes may be beneficial, as reliability can decrease and / or the uncertainty in-
crease at any given change step, i.   However, by judiciously planning new tests, analyses or 
changes for the purposes of reducing uncertainty and / or improving reliability, the overall trend 
will indicate such desired results (reliability growth). This overall methodology may prove useful 
in characterizing the reliability of a new product in its concept stage, updating and reporting on 
that reliability during the development stage, and facilitating the planning of appropriate future 
activities which, when accomplished, will drive reliability higher. If application of this method-
ology allows a project team to successfully include the reliability issue in its day-to-day activities 
involving performance, cost, and timeliness, it will prove to be a powerful tool in the develop-
ment of a high reliability product. 
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