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Characterizing Reliability During a Product Devel opment
Program

W.J. Kerscher I11
Delphi Automotive Systems, Flint, Michigan, USA

JM. Booker, T.R. Bement, M.A. Meyer
Los Alamos National Laboratory, Los Alamos, New Mexico, USA

ABSTRACT: Dephi Automotive Systems and the Los Alamos Nationa Laboratory
worked together to develop a methodology to characterize the rdiability of a new prod-
uct during its development program. One of the traditiona techniques utilized in this e
gad is Reiability Growth Teding (RGT). This paper outlines a more timdy and effi-
cent goproach to achieving and maintaining the reiability perspective. Rather than
conducting testing after hardware has been built, and devedoping datistica confidence
bands around the reaults, this updating approach dsarts with an early reiability estimeate
characterized by large uncertainty, and then proceeds to reduce the uncertainty by fold-
ing in fresh information in a Bayesan framework. A consderable amount of knowledge
is avallable at the beginning of a program in the form of expert judgment which helps to
provide the initid edimate. This edimate is then continudly updated as sbgantid and
varied information becomes available during the course of the development program.

1 SUMMARY AND CONCLUSIONS

A methodology has been developed to characterize the rdiability of new product programs dur-
ing their development phase. This gpproach has been found to be effective in evauating systems
ranging from automotive to nationd defense. Just as estimates of cost and program timing are
critical factors to be known and monitored during program development, product rdiability aso
needs to be addressed. The reliability estimate and the uncertainty of that estimate are an excd-
lent way to provide this characterization. The methodology involves combining information that
ranges from quditative, such as expert judgment, to quantitative, such as test data. It is posshble
to develop redidtic rdiability estimates a the beginning of a new product program, even though
hardware is not available, because a consderable amount of knowledge exists in the eperience
base of engineers. This knowledge is dlicited in the form of expert judgment. The process of es-
timating the reiability characterization proceeds during the entire development program, incor-
porating information from any avalable source (i.e. supplier, cusomer), about any level of the
product (i.e. subsystem, component). The approach dlows the reliability of the new product to
be characterized early, before hardware exists, and to be updated as the design evolves. This &
lows the project team to “keep score”  as they work through the program to design in reiability.
The results may aso be used to provide steerage to the project team with regard to how to drive
reliability higher and / or reduce the uncertainty in religbility.



The chalenge has been to devdop a framework for this reliability characterization which
is physicdly, logicdly, and mahemdticdly sound, but which is flexible enough to accommodate
dl of the diverse information that becomes avalable, and responsive enough to provide timely
results which support the development process. The information updating approaches (such as
those based on Bayes Theorem) are suggested as key nethods directly applicable to this prob-
lem. This paper describes an  gpproach to reliability modding that encompasses the impact of
both product and manufacturing process design on the digtribution of reiability over time. Such
a didribution represents the uncertainty associated with the rdiability a any given time. This
work builds on methods previoudy published by the same authors (Kerscher et d. 1998). The
goproach in both papers describes the dicitation and analyss of expert judgment which is used
to quantify the initid rdiability estimate, including uncertainty. The approach aso describes
Bayesan updating which is gpplicable throughout the development program, and which accom-
modates a wide variety of possble new information sources. Although the modd is rigorous in
its execution, some user friendly goproximations are dso described which may be useful to the
product development team for purposes of test and vdidation planning. The whole idea is to &
low new project development teams to address the rdiability issue with the same focus that they
traditiondly have on cost and timing.

2 INTRODUCTION

Over the years many advancing techniques in the area of reiability engineering have surfaced.
One of these techniques in the military sphere of influence is Rdigbility Growth Tesing (RGT).
Private industry has reviewed RGT as pat of the solution to ther rdiability concerns, but many
practical consderations have dowed its implementation. It's objective is to demongrate the reli-
ability requirement of a new product with a specified confidence. This paper spesks directly to
that objective but discusses a somewhat different gpproach to achieving it. Rather than conduct-
ing tesing as a continuum and developing detistica confidence bands around the results, this
goproach dats with a reiability estimate characterized by combining dl avaladle information
and data sources a the time. Because this initidly results in reveding large uncertainties, it then
proceeds to reduce the uncertainties by folding in fresh information.

In the traditional military context a product would be developed (or an existing product
modified), and then the product would be put on test. The typicdly long-term test was designed
to ddidicdly demondrate a reliability requirement a a specified confidence. This product was
then ddivered to the military services with demondrated reliability as pat of the ddiverables
package. The fact that the test involved additional time, cost and resources was deemed to be ac-
ceptable. In the indudtrial setting, however, these drawbacks can become acute, and in many
cases deter the use of this traditional gproach. Also, dthough not planned, it is possble for the
end of a development program to approach the scheduled start of volume production. RGT & this
point is seen not only as an additiona amount of time and expense in the development program,
but aso as a holding item before production may begin.

Probably the most sgnificant negative factor, however, has nothing to do with timing and
resources, but rather the organizationa environment that design engineers are asked to work
within. Not aypicaly, the rdiability growth tes may be the firs large-scae organized develop-
ment test to be conducted on the new product design. In some gpplications such as nuclear
wegpons, such large-scale tedts are prohibited by treaty. The results typicaly identify severd
week spots / falures in the design, which should be expected. The rdiability growth test, how-



ever, has been organized to demondrate the desired reiability, and do it efficiently, by organiz
ing the test around an anticipated few or no fallures. The result is a triple blow to the design pro-
gram. Fird, it demondrates that the desired religbility has not been achieved. Second, it demon-
drates it with datistica confidence, and findly, it may produce this result near to the scheduled
dat of volume production, which dictates the choice of shipping defective product or delaying
the start of production. Perceptive program managers who recognize the deficiency of their
product in the area of reiability naturdly tend to resst demondrating the fact without sufficient
time to respond. All of these factors tend to work againg the implementation of traditiond RGT
inanindudria seting.

There is a definite need, however, for an undersanding of the rdiability perspective of a
new product during its development program. ldentifying the uncertainty in the reiability esti-
mates, which typicdly drives the unrdiability, and doing it early enough in the development cy-
cle for corrective action to be organized by the development team, has been found to be a cultur-
ally acceptable way to gproach the reiability issue, and can therefore be a powerful factor in the
drive for high reiability. The information combination and updating approach is a methodology
which isdirectly gpplicable to this problem.

The following notations are used :

R reliability characterization of asystem, estimated at time step, 1.

f(R) probability digribution function of R, representing the uncertainty in system rdiability.

I falure rate for a component, subsystem or system (e.g., failures per vehicle per scaed
unit of time) and scale parameter of the Weibull distribution.

t time.

b dope or shape parameter of the Weibull distribution.

R(t) rdiability from atwo- parameter Weibull digtribution.

Gn) gammafunction, whichisthe X e dx from Oto 1.

q parameter of interest.

(ab) two parameters of the beta digribution, sometimes referred to as the pseudo successes
and pseudo failures, respectively.

p probability of success of atrid.

n number of tests.

(@, h) two parameters of the gamma digtribution, sometimes referred to as the pseudo failures
and pseudo total transformed test time, respectively.

S falures

t total transformed test time (t,° + t,° + ...)

3 OVERVIEW OF RELIABILITY UPDATING METHODOLOGY

The reigbility of the product (including the manufacturing process) a any given point in time
or a any given sep in the overal product / process design assurance program is what has been
refered to by the term rdiability characterization. “Rdiability characterization” includes both
the functiona cdculation of the rdiability (point edimae vdue) and the uncertanty (usudly
represented by a didribution function) that accompanies the rdiability vaue. Rdiability vaues
can be cdculated from formulas or models, which integrate the structure of the system. For pur-
poses here, the system structure is represented by ardiability block diagram.



Either the rdiability cadculation and / or its uncertainty digribution can change due to
various changes in the devdopment program (Hulting et d. 1994). Examples include the devel-
opment of expert judgment from changes in the exiging state of knowledge, the determination of
requirements, the avalability of test data or supplier information, the implementation of correc-
tive actions, etc. New components or failure modes may be added, or existing eements deleted,
as the design evolves. Changes can occur in both the product design as well as the manufacturing
process which can affect the rdiability value and / or its associated uncertanty.

Once a change occurs anywhere in the development process, a new step (i) is designated
and a new rdiability, R;, is caculated dong with a new uncertainty didribution, f(R). The track-
ing of these reiability snapshots over time is one method of monitoring how the changes in rdi-
ability are approaching the target value, as part of the vaidation effort.

At each rdiability sngpshot, gaps in the curent state of knowledge become apparent,
providing the project team with a rational basis for a dtrategy for deciding where to devote future
tesing and andyss resources (i.e. a rdiability growth plan). In a proactive sense, “what if”
andyses dlow the project team to develop the optimd test / andyss and vdidation plan given
exiding condraints of hardware, facilities, timing, etc. The power of these “what if” approxima
tions lies in gaining understanding about the potential impact of the tet / andyss, and dlowing
the project team to judge the usefulness of the effort before it is started. The existence of the rdli-
ability characterization aso alows the cusomer to paticipate in a condructive way, if desred,
and dso provides an avenue for suppliers to contribute, if gppropriate. This methodology was
evduated on a program in the automotive indudry, the results of which are the subject of this
paper and the previous paper discussed earlier (Kerscher et al. 1998).

4 FRAMEWORK

One of the firg activities of an organized rdiability program is the condruction of a rdiability
logic flow diagram (eg. reliability block diagram, success tree) representing the structure of the
product under development. The framework of the rdiability characterization involves sdecting
a mahematicd modd fallowing the logic flow in that diagram, making an initid estimate of the
parameters identified in the modd, and organizing a methodology for updeting the mode as new
information becomes available. Section 5 describes the Welbull functions sdected to modd the
product reliability. Section 6 describes the dicitation of expert judgment which is used to de-
velop the initid (or prior information-based) edtimate of the modd parameters. Section 7 de-
scribes the use of Bayes Theorem to update the modd. Also, Section 8 describes some useful -
proximations that may be used for planning purposes.

5 DESCRIPTION OF WEIBULL MODELS

The concept of the hazard function of a manufactured product being made up of definable por-
tions such as infant mortdity, useful life, and wearout, has long been utilized (Kerscher 1989). It
is further suggested here that the “infant mortdity” is manly due to the latent defect sub-
population generated during the manufacturing process, and the “useful life’ portion is primaily
due to latent design defects which manifest themsdves over the life of the product. “Wearout” is
the third sub-population of parts which fal due to falure modes associated with operating the
product beyond its useful life. Good engineering practice has long hed that wearout failure



modes should be identified during the development process, and that those fallure modes that
cannot be designed out should at kast be designed to accur beyond the useful life of the product.
For the purposes of this paper any wearout failure modes are assumed to occur beyond useful
life, and are not, therefore discussed here. The approach to identifying and addressing the latent
defects in the fird two sub-populations is not as well established, dthough that is in fact the do-
jective of a comprehensive design assurance program (Kerscher 1993). A first helpful step in
identifying those latent defects is the establishment of a rdiability modd. Figure 1 shows a por-
tion of the rdiability logic flow diagram used in the automotive program. The section shown is
in the form of a success tree diagram. The two parameter Welbull may be used to modd both the
defect subpopulation due to the manufacturing process, as well as the defect sub-population due
to the product design (Kerscher 1989). The total distribution is the combination of the two sub-
populations.

Figure 1. Reliability Success Tree Diagram
The two-parameter Welbull expression for religbility is given in equetion ().

R = exp(-1 (1)) @

This verson of the Welbull separates the two parameters and often smplifies the agebra and the
subsequent Bayesan manipulations (Martz et d. 1982). The chalenge is to identify the two &
rameters, b (the dope) and | (the falure rate per scded unit of time) (Martz et d. 1982). Sec-
tion 6 describes the dicitation of expert judgment to provide initid estimates of these parame-
ters. The gpproach for this specific example is detailed at length in Kerscher et a. (1998). Table
1 ligts the two parameters, b and | , of both the manufacturing and design defect sub-populations,
for the components in the example: A, B, and C. No information was dicited for the subsystem
D, whose rdiahility is defined by the logic flow diagran (Fig. 1) and the rdiabilities of compo-
nentsA, B, and C.

Once the individud didributions for the latent desgn and manufacturing defects have
been idertified, they may be combined to produce the digtribution representative of the whole
component or subsysem. All of the individud distributions of the individud eements may then
be combined according to the rdiability logic flow diagram to form the distribution representa-
tive of the entire product. Estimates of rdiability (including uncertainty) can then be caculated
using &g (1) at various pointsin time for predicting the long term performance.

As pat of the logic diagram, how the blocks interact / connect is specified as are any lev-
els within the blocks (eg., component, subsytem and system). These interreations of the



blocks will determine how the rdiability is to be cdculated a various levels. For ingance, if the
components within a block (A, B, and C in the example in Fig. 1) are dl in series, the block
(subsystem D) relidbility isthe product of the reliabilities of the components.

Tablel. Weibull Parametersfor Design and M anufacturing Models
and
Initial Reliability Estimatesat 12 Months and 100,000 Miles

Parameters Reliability RO
Design Manufacturing 12 Month 100,000 Miles
5 50 95 5 50 95
b | b | , Percentiles
Component A 0.75 0.00001 0.14 517 0.9996 0.9999 1 0.9993 0.9999 1
Component B 0.75 0.00002 0.43 9.94 0.9989 1 1 0.9986 0.9999 1
Component C 0.75 0.001 0.42 4.18 0976 0.9989 0.9999 0.8829 0.9952  0.9997
Subsystem D ~ ~ ~ ~ 0.9723 0.9985 0.9998 0.8794 0.9944  0.9994

6 ELICITATION OF EXPERT JUDGMENT AND INITIAL RELIABILITY
CHARACTERIZATION

To obtain an initid overdl rdigbility edimate, Ry, of the entire logic flow diagram, esimates of
component and subsystem rdiability’s  (with uncertainties) were dicited from teams of subject
matter experts. The experts had been previoudy sdlected by their managers and peers as being
knowledgeable of ther subsysem or component. The dicitations were first conducted with
those working on the product design and then with those working on the manufacturing process.

The experts were not asked to estimate rdiabilities, per se, but alowed to provide ther
estimates about component, subsystem and sysem performance in terms familiar to them. (This
approach and its berefits are described in further detall in Meyer et d. (1991)). For example, the
experts in the design process gave ther edtimates as incidents per thousand vehicles (IPTV),
while those familiar with the manufacturing process gave their esimates as parts per million
(PPM). As part of ther edtimates, the experts were asked to give a very brief explanation of their
reasoning. In addition, the experts provided ranges on their estimates, which were used to repre-
sent the uncertainty and ultimately formulate f(R)).

It should be noted that information about fallure modes of various blocks, and their ap-
portionment, can dso be dicited during the initid characterization. This may become important
later when tests are planned or performed on a subset of failure modes.

The reaults from the design dicitations were presented to dl of the participating experts
for thar review and reconciliation across the entire sysem. This information was then used to
cdculate the b and | parameters for desgn and manufacturing as given in Section 5. The uncer-
tanty expressed in the expert dicitations was transformed into didributiond informeation in the
meathematical modd.



Rdiabilities were then caculated usng eq (1), with subsystem and system estimates be-
ing cdculaed udng the rdiadility logic flow diagram and numerical sampling techniques. The
results included reliabilities in digributiond form  (reflecting the uncertainty) for components,
subsystems and the system a various times. The results for the initid rdiability characterization,
Ro, & 12 months and 100,000 miles are summarized in Table 1. For ingtance, the median reliabil-
ity of subsystem D a 12 months was estimated to be 0.9985, with the 5 ™ and 95 " percentile re-
ligbility estimated at 0.9723 and 0.9998 respectively.

Subsequent information, including new test data, is reflected in subsequent vaues of R
and f(R;) as described in Section 7. In this way rdigbility may be monitored over time (reigbil-
ity growth), and plans formulated accordingly.

7 DESCRIPTION OF UPDATING METHODOLOGY

Pooling data from different sources or of different types (eg. tests, process capability studies,
engineering judgment) is usudly done with methods that combine the didribution functions as-
sociated with the various information sources. Bayes Theorem offers one mechaniam for such
combination. Bayesan pooling combines information with the following dructure the existing
informetion  (deta) forms a didribution, caled the likdihood. That likelihood didribution is
formed from the data / information symbolized by the random variable, x, and it has characteris-
tics (i.e parameters), such as a mean. That parameter(s) is not consdered a fixed quantity but
indead, has its own probability distribution, caled the prior. The prior is combined with the like-
lihood usng Bayes Theorem to form the resulting or podterior digribution. Bayes Theorem is
used to caculate the pogterior digtribution, g(q |x), from the likelihood digtribution, f(x|q ) as:

oalx) = [f(xla) g(q)] / 6f(xla) o(a) dg 2

where g(q) is the prior didribution on the parameter of interest, g. Bayesan combination is often
referred to as an updating process, where new information is combined with exiging informe-
tion.

Simulation methods are often used to combine or propagate uncertainties (represented as
digribution functions) through the logic flow diagram, as wel as accomplishing the Bayesan
combination itself. This is the gpproach taken with this project. The range and nomind estimates
provided through the expert dicitation are used to form empiricd digribution functions for reli-
ability (initid rdiability characterization) for each item in the logic flow diagram. Monte Carlo
gamulation is used to propagate rdiability characterizations through the various levels of the dia-
gram, with the accuracy being dependent on the number of smulations The poderior distribu-
tions realting from the amulation are empirica in form, meaning they are not fit to any particu-
lar digribution (eg., a beta) or didribution family. It is not necessary to develop prior
information for subsystems above the component level. These are available by combining the e
liability characterizations from the levels below. However, if there is information on these sub-
sysems, the rdiability characterization from that information can be combined with the distribu-
tion from levels beow $wing methods in Martz et a. (1997, 1990, 1988). More importantly, test
data and other new information can aso be added to the exiding reiability characterization at
any levd and / or block (eg. system, subsystem, component). This data may be applicable to the
entire block, or only to a single falure mode within the block. This process is presented in detail
in Martz et a. (1988) for series systems and in Martz et a. (1990) for series/ pardld systems.



In genead, the initid rdiability characterization Rp, is developed from expert judgment
and is referred to as the native prior distribution. During the course of the development program
data may be developed regarding each dement (eg. system, subsystem, component) and this
would be used to form data (or likelihood) didributions. All of the didribution information in
the items at the various levels must be combined up through the logic flow diagram, to produce a
find edimae of the rdiability and its uncertainty a the top, or sysem, levd. Three different
combination methods are used:

For each prior digtribution that needs combining with a data distribution (in a block),
Bayes Theorem is used and a pogterior distribution results.

Pogerior didributions within a given level are combined according to the logic of the
logic flow diagram to form the induced prior ditribution of the next higher levd.

Induced prior and native prior digtributions a the higher leves are combined within
the same item usng a method in Martz et a. (1988) to form the combined prior (for that block)
which is then merged with the data (for that block) via method 1. This gpproach is continued up
the diagram until a posterior didribution is developed at the system leve.

As more data becomes avalable and incorporated into the reliability characterization
through the Bayesian updating process, this data will tend to dominate over the effects of the ini-
tid edimate developed through expert judgment. In other words, R formulated from many test
results will look less and less like R from expert estimates. It should be noted that updating can
be done by combination methods other than Bayes Theorem (Meyer et a. 1991).

A dngle update from our example will be hdpful to illustrate. Figure 2 shows the prob-
ability digributions of rdiability a 12 months for the components and subsystem in the example
a a cetan point during the devdopment program. Note that there is condderable uncertainty
around component C which is reflected in subsysem D (note dso the difference in x-axis
scaes). In our example, 60 samples of component C were tested for 12 months with no observed
falures, and this was treated as an ypdate event.

Density

1 I 1 1 L ] 1 L L L

0.998 0.999 1 0.998 0.999 1 0.92 0.96 1 09 0.96

Reliability Reliability Reliability Reliability
Component A Component B Component C Subsystem D

Figure 2. Réiability Prior Distributions @ 12 Months
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Figure 3 shows this data and the resulting posterior distribution of component C after the
Bayesan update. Note how the additiona data works to reduce the uncertainty around the esti-
mate. Figure 3 dso shows how this additiond testing is reflected as reduced uncertainty a the
subsystem level D. A numerica summary of the Bayesian update is shown in Table 2.

N=60
X=60
12 Months

Density

Data

0.98

Component C Reliability

Figure3. Reliability Posterior Distributions @ 12 Months

0.98 1

Subsystem D Reliability

This methodology was used throughout the activity to provide edimates of rdiability
with uncertainty for al components, subsystems, and the system a various operating times. The
median system rdiability and lower 90 % confidence limit were dso plotted againgt caendar
time (as update events occurred) to track progress and demongtrate religbility growth as shown
in Figure 4. The individud data points correspond to the initid rdiability characterization R and
the events associated with the updates R This plot captures the results of the design teams early
efforts to mprove rdiability, but the power of the approach is the roadmap developed which may
be used by the team to organize their planning to achieve higher rdiahility.

Table2. Prior and Posterior Reliahility Distributions (Testing of Component C)

Prior RO Posterior R1
12 Month 100,000 Miles 12 Month 100,000 Miles
Percentiles 5 50 95 5 50 95 5 50 95 5 50 9%
Component A 09996 0.9999 1 0.9993 0.9999 1 Same
Component B 0.9989 1 1 09986 0.9999 1 Same
Component C 0976 0.9989 09999 08829 0.9952 09997 09908 0.9992 0.9999 09599 0.99%4 0.9997
Subsystem D 09723 09985 0.9998 0.8794 0.9944 0.9994 0.9887 0.9989 0.9998 0957 09957 0.9994

8 SOME USEFUL APPROXIMATIONS

While the methodology described in Section 7 does not require f(R;) to conform to any particular
digributiona form or family, a useful gpproximeation which sometimes may be helpful for plan-



ning purposes can be organized aound the beta and binomia distributions, eq (3) and eq (4) re-
Spectively.

Beta (a, b) = Ga+h)/[ G(a) G(b)] p ** (1- p) ** ©)
Binomial (n, p) = nl__ p*(l-p)"* (4)
x! (n-p)!

The beta didribution is the conjugate prior distribution for the binomiad parameter, p, (Martz et
al. 1990) and

1 S— - —
R Rs
0.995 4 R e R |
R1 R,

099 +

0.985 +
—e—Rdidhility

o984 Ro =—g—|_ower 90% CL

0.975

Figure 4. Rdiability Growth

can in some cases be used to gpproximate the empirica didribution  (resulting from the smula
tion) of the R. The beta is often well-suited for representing possible values for p because it
ranges between 0 and 1, and in addition, it is an extremdy flexible didribution with many pos-
gble shapes (eg., symmetric, asymmetric, unimoda, uniform, U-shaped, or Jshaped). Its use-
fulness derives from the fact that the two parameters of the beta in eq (3) , a and b, are some-
times referred to as the pseudo successes and pseudo failures, respectively. This cdls to mind the
image of apseudo test, where a + b equals the number of pseudo tests.

A ussful planning gpplication involves Stuations where new test data is, or will be, of the
form of x number of successes out of n number of trids. Such data is binomidly (eq (4)) dis-
tributed. In a Bayesan rdigbility formulation, if a beta digtribution with parameters a and b is
consdered to be the prior distribution for R, then the pogterior digtribution for R (formed from
atest of x successesin n trids) will dso be a beta, with parametersa+ x and b + n - x. Thus, s
ing the beta formulation may be useful in characterizing the possble vaue of additiona tedts.
Because the pogerior digtribution and the prior digtribution are both of the beta family, this proc-
ess could be iterated indefinitely.

For example, the beta distribution shown in Figure 5 was fit to the prior rdiability digri-
bution for component C in Figure 2 (design portion only). In this case, a beta approximation
yielded, a = 28.2 pseudo successes and b= 0.22 pseudo failures (a pseudo test of about 28 sam+



ples). New information, in the form of a 12 month test of 60 of these components resulting in
zero falures was introduced, and a new predicted pogterior beta reigbility digtribution was de-
termined, dso shown in Figure 5, usng the methodology described above. Note that the beta pa-
rameters of this predicted posterior distribution are a = 88.2 and b = 0.22. This is obvioudy quite
gmilar to the corresponding fitted poderior reiability didribution caculaed empiricaly for
component C and aso shown in Figure 5. It is dso possble to streamline the caculations of the
posterior digtribution of subsystem D by usng this beta estimate. The power of this gpproxima
tion, however, lies in amply nating the potentia impact of this test  (visudly or through the beta
parameters) and dlowing the engineering community to judge the usefulness of this test before it
isrun.

Density

a=28.2 a=88.2 a=98.4
b=0.22 b=0.22 b=0.31
i | i i i 1
0.92 0.96 1.0 0.92 0.96 1.0 0.92 0.96 1.0
Fitted Prior Reliability Predicted Posterior Reliability Fitted Posterior Reliability

Figure5. Component C Beta Distributions (Design Failure)

Another useful gpproximation which sometimes may be hdpful for planning purposes
can be organized around the gamma and exponentia ditributions, eq (5) and eq (6) respectively,

Gamma(a,h) = h® | ®exp(-hl) (5)
0 x @ exp (-x) dx

Exponentia (t]) = | exp(-1 t) (6)
or the gamma and Weibull digtribution eq (7) in what is referred to as transformed time.
Waeibull (t1 b) = I b (t)P! exp(-1 (t)P) (7

The gamma didribution is the conjugate prior didribution for the exponentia parameter, |, and
can in some cases be used to gpproximate the empiricd didribution  (resulting from the smula
tion) of the R The gamma is often wel-suited for representing possible vaues for | because it
ranges between 0 and infinity.

Suppose the test planning Stuation involves test data that is, or will be, of the form of the
number of successes in a test run for a specified length of time. Such data is distributed accord-
ing to the Welbull modd eq (7) where | is the failure rate as specified by the data and b is the
decay of that rate. Note that this parameterization of the Welbull reduces to the exponentid dis-



tribution eq (6) when b =1. Note aso that for a condant vdueof b, | in the Welbull exprc-on
eq (7) is equivalent to the | in the exponentia expression eq (6) for transformed time, t°. In the
Bayesan rdiability formulation with b = 1 (exponentid), if a gamma distribution eq (5) with
parameters a and h is consdered to be the prior distribution for | , then the posterior distribution
for I will dso be a gamma, with parameters a + sand h + t, where s falures are observed during
t totd timeontest { = st and t; is the time on test for the i h test unit). The usefulness of this a-
rangement derives from the fact that the two parameters of the gammain eq (5) , a and h, are
sometimes referred to as the pseudo failures and pseudo total test time, reﬁpectively. Thiscdlsto
mind the image of a pseudo test, where a falures are experienced duing h amount of totd test
time.

Andogous results hold for the Weibull when b is constant and known. Such a falure
mode is eguivalent to an exponentia with a transformed time varigble, or with t replaced by t°.
In this Bayesan case, if a gamma didribution with parameters a and h is conddered to be the
prior digribution for |, then the posterior distribution for | will dso be a gamma, with parame-
teesa + sand h + t where s falures are observed during t total transformed time on test ¢ =
S (t)P, and t; is the time on test for the i ' test unit). The usefulness of this arrangement again de-
rives from the fact that the two parameters of the gamma, a and h, are sometimes referred to as
the pseudo failures and pseudo total transformed test time, respectively. This again cdls to mind
the imeage of a prior pseudo test, which may be ussful in characterizing the possible vdue of al-
ditional tests. Because the posterior didtribution and the prior distribution are both of the gamma
family, this process could dso be iterated indefinitely. Various limitetions of these examples are
discussed in Kerscher et a. (1998).

Characterizing with large uncertainty the initid rdiability of a new product under devel-
opment, and then working to reduce that uncertainty, has been found to be a culturdly acceptable
way to address the reliability issue. These examples illustrate cases where new test information
or data are introduced to update a ilidblity, R;, to the form R:1. The continuous monitoring of
these reiability sngpshots, R and f(R)), is possble as new information or changes become avail-
able. Not dl changes may be beneficid, as reiability can decrease and / or the uncertainty i+
creae a any given change sep, i.  However, by judicioudy planning new tests, analyses or
changes for the purposes of reducing uncertainty and / or improving reiability, the overdl trend
will indicate such dedred results (rdiability growth). This overdl methodology may prove useful
in characterizing the rdiability of a new product in its concept stage, updating and reporting on
that reiability during the devedopment dage, and fadlitating the planning of appropriate future
activities which, when accomplished, will drive rdiability higher. If application of this method-
ology dlows a project team to successfully include the rdiability issue in its day-to-day activities
involving performance, codt, and timeliness, it will prove to be a powerful tool in the deveop-
ment of a high reliability product.
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