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1. Introduction 
 
Information Integration Technology is a combination of processes, methods, and tools for 
collecting, organizing, and analyzing diverse information and for utilizing that 
information to guide optimal decision making.  PREDICT (Performance and Reliability 
Evaluation with Diverse Information Combination and Tracking) is a highly successful 
example of information integration technology that has been applied in two parallel 
applications, automotive system development and stockpile physics packages in nuclear 
weapons.  Specifically the PREDICT application is a formal, multidisciplinary process 
for estimating the performance of a product when test data are sparse or nonexistent.  The 
acronym indicates the purpose of the methodology: to evaluate the performance or 
reliability of a product/system by combining all available (often diverse) sources of 
information and then tracking that performance as the product undergoes changes.  
PREDICT’s calculations have been demonstrated to guide product development for 
automotive systems before, during, and after prototyping and production, and documents 
the product’s performance through its lifetime from concept through customer use and 
maintenance. 
 
PREDICT is a methodology that allows users to estimate reliability early in product 
development, before costly design and production decisions are made by making 
effective use of all available information: expert knowledge, historical information, 
experience with similar products, and computer model outputs.  Until now, much of this 
information (especially expert knowledge) was not formally included in performance 
calculations because it was either implicit, undocumented or non-numeric. In PREDICT, 
all available information (with appropriate uncertainties attached) is collected and 
combined for estimating the reliability of the product at various stages in its lifetime..  
The PREDICT methodology has been used to provide accurate reliability estimates for 
potential products while they were only engineering concepts. As the product undergoes 
changes during its development stage, or as conditions change, or new information 
becomes available, the reliability estimates are updated accordingly, providing a lifetime 
track record of the performance of the product or system. 

 
 
PREDICT’s philosophy and uniqueness arise from these aspects of the methodology:  
• All available, and often diverse, sources of information along with their associated 

uncertainties are combined.  Sources of information include expert knowledge, 
historical test data, data from  of similar systems, parts, processes, etc., design 
specifications, production information, maintenance records, computer simulation 
model outputs, physical model / code outputs (both stochastic and deterministic), and 
test, experimental or observational data. 

• The multidisciplinary methods used for integrating diverse information are 
formalized, especially regarding the use of expert knowledge (Meyer and Booker, 
1991). 

• As the product or system undergoes change (e.g., under development, or aging), the 
information integration methods “update” the performance estimates in light of the 
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information associated with this change.  This updating can be in the form of 
traditional Bayesian updating, and can also be in the form of changes in the system 
itself or other conditions affecting the performance.  

• The dynamics of the system are captured with updating analysis methods which not 
only track the changing state of knowledge but also provide planning tools for timely 
decision making.  What-if questions can be posed to provide guidance for resource 
allocation and identify areas where reliability could be improved and/or uncertainty 
reduced by certain actions. 

• The choices, modifications, and uses of the methods are customized to the application 
and its users.  They are tailored to the community of practice’s way of thinking about 
the product and its performance/reliability. For example, some engineers might think 
in terms of failures per million parts, while other would think if performance in terms 
of cycles per second. 

• Emphasis is placed on the need for definitions and requirements for performance, and 
the importance of structuring the problem.  Otherwise, all the information gathered 
has little purpose, and there is no rationale for its combination. 

• Analysis is performed at all of the system’s multiple levels and dimensions.  The 
performance of most systems is not merely the successful operation of multiple 
pieces, but involves failure mechanisms and activities such as quality control, 
manufacturing processes, chemistry, physics, mechanics, etc.   

• The analysis tools and methods are customized to the application and the ways that 
the community thinks about performance.  That community then owns the analysis, 
the results and the tailored methods for their use.  The PREDICT methodology 
becomes apart of the way they monitor reliability and performance. 

• Documentation is a vital aspect of the methodology to provide a traceable record for 
updating and an understanding of the dynamic environment. 

 
For non-statisticians, the statistics involved are not scary or difficult and are tailored to fit 
their “culture” or community of practice. For the engineer, PREDICT is a practical, 
logical, and useful methodology as reflected by comments such as “This can actually help 
me do my job.” For the decisionmaker or program manager, PREDICT is a planning 
method, for determining the allocation of resources to improve performance and/or 
reduce uncertainty. 
 
The sections that follow outline the applications, implementation steps, expert judgment, 
statistical tools, and decision making that make up the PREDICT methodology.  The 
examples presented are notional for illustrative purposes only.  The conclusion includes a 
discussion of research topics for continued development of the Information Integration 
Technology. 
 
 
2. The Applications  
 
PREDICT’s success is evidenced by the benefits created in two applications where sparse 
data precluded traditional statistical reliability analysis (Mann, Schafer, Singpurwalla, 
1974, Meeker and Escobar, 1998). Both systems were in dynamic environments: one 
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system – fuel systems for Delphi Automotive Systems — undergoing changes because of 
development from concept to production, and the other system — stockpiled physics 
packages in nuclear weapons — already built to specifications but undergoing aging and 
maintenance changes.  Each application presented new challenges for analysis.  It was the 
success of PREDICT in these applications that attracted the attention of the R&D 100 
Award judges in that national competition for the 100 top technologies of 1999 
(AMSTAT News, 1999, Meyer, et. al, 1999). 
 
While aging and maintainability issues are a traditional statistical problem, they require 
test data for the full system and its components. For the physics package systems in the 
nuclear stockpile, such tests are prohibited by test ban treaties and environmental 
concerns.  Maintenance is complicated by the fact that many replacement parts and 
processes are no longer available, some materials can no longer be used due to 
regulations, and production plants are no longer operational.  This lack of test data makes 
it essential to use all available information: historical records, surveillance information, 
expert knowledge, physical models, and test data from similar systems before test bans.   
 
Delphi Automotive Systems (formerly General Motor’s AC/Delco Parts and system’s 
businesses) had a different dynamic environment and a newer statistical problem.  When 
a new system is proposed, it is targeted for a certain model year that locks it into a tight 
schedule for development and production. Relying on statistical and engineering 
reliability methods, the Delphi engineers would build prototypes and run tests to gather 
data for reliability growth analysis.  When test results indicated problems, it was possible 
that insufficient time for corrective action was available before the scheduled start of 
production, requiring delays in the schedule. In the extreme case, this could result in one 
of the industry’s worst nightmares: product recalls.  Delphi approached Los Alamos with 
the simple question “Can’t we do better in estimating reliability before it’s too late and 
avoid surprises?”    “And how can we do this without test data?” At the same time, the 
weapons program at Los Alamos was asking the same questions.   
 
The development of the PREDICT methodology was the result of beginning to answer 
those questions. With the parallel analyses in both applications, lessons and methods 
developed in one application cross-fertilized in another.  The Delphi fuel systems lacked 
the test data during their early stages of development, when they were just engineering 
concepts.  Eventually, tests were performed and customer use data became available so 
that the automotive experts could gauge the estimated performance during the early 
development stages.  The weapons program will not have the luxury of obtaining such 
data.  Successful predictions at Delphi provided corroboration for the methods applied to 
the weapons program.  Conversely, the early developments and use of knowledge 
systems for the weapons program resulted in Delphi’s interest in developing a similar 
approach.   
 
We have tracked the development of five Delphi Automotive concept systems to date, 
and we are scheduled to analyze more.  During those system studies, test data (for certain 
failure mechanisms, components, subsystems, and systems) became available to 
determine the accuracy of the experts’ judgments.  The positive results have been 
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welcomed by the weapons program because they corroborate the PREDICT 
methodology.  Such test data will not be available for the weapons program, so they view 
Delphi’s successes as their own. 
 
Delphi Automotive Systems has seen the value of what-if analysis as a planning tool, and 
has utilized it to avert “surprises” (e.g. problems found during production, or worst case, 
product recalls) and to effectively plan resources for test programs.  In summary, Delphi 
has converted the way they perform reliability to this global view of combining all 
information and tracking changes.  Their community of practice has changed, and the 
reactions of the experts involved has been that “PREDICT can help me do my job.” 
 
The successes PREDICT has had to date in both applications can be summarized by 
testimonies such as: 

“PREDICT is an important tool that we will use to ensure the continued 
safety and reliability of our nuclear deterrent.” (Joseph Martz, Program 
Manager, Enhanced Surveillance and Materials R&D, Los Alamos 
National Laboratory) 
 
“One of the most important and useful tools that I have used in new 
product definition and development”  (James Jeffers, Fuel Pump 
Program Manager, Delphi Automotive Systems) 

 
 
3. Steps for Implementing PREDICT 
 
The PREDICT methodology embodies a toolbox of multidisciplinary methods and 
techniques, applied using a framework of steps for the implementation and use of these 
methods.  Figure 1 depicts these steps and illustrates the cyclical nature of tracking a 
complex system through its dynamic lifetime (whether in the loop from concept to in-use 
development, or in the loop due to aging/maintenance in the field). The steps followed to 
implement PREDICT are: 
 
1) Define Requirements and Reliability/Performance Measures 

Because reliability is defined in terms of the system functioning according to 
specifications, those specifications must be carefully defined in terms that the 
community of experts understands.  Performance can be measured in a number 
of different ways, cycles per second, output per shift, maximum stress limits, 
pressure ranges of operation, operational availability, reliability at 12 months, 
10-9 probability of system failure, etc.  There may not be a single definition of 
performance that fits all parts of the system.  How to convert from one 
definition to another becomes important and is specified by the experts.  
Taking the time to carefully define terms in this step is important.  And like the 
other steps, these definitions can change as the system changes and as new 
information becomes available.  
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Figure 1.  PREDICT implementation steps and flowchart 
 
 

Traditional anthropological field techniques are used to elicit the insiders’ ways of 
thinking about performance in their own words and to develop a framework which 
guides the subsequent elicitation and analysis of expert judgment on performance.   
This step ensures that the PREDICT process will make sense to the insiders, that the 
needed information is gathered in the appropriate form, and will fit their culture and 
community of practice.  Pieces in this step draw from the fields of anthropology, 
sociology, expert judgment, decision analysis, and include identifying the key 
insiders who will provide an explanation of their culture.  These key experts (or 
advisors) are individuals who are knowledgeable about their community of practice / 
culture, provide an “entree” into their culture of both other experts and management, 
explain its workings to analysts, provide guidance on the elicitation, and motivate 
wider participation by other experts. 

 
2) Structure the System—Create the Framework 

While no single step is the most important, this one is vital for the study to 
succeed.  It is often neglected or over simplified, resulting in frustration by the 
experts and confusion over how to combine the sources of data and 
information.  The system—all its parts, pieces, processes, activities, failure 
mechanisms, workings, environments, conditions, etc.—must be diagramed or 
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structured according to all these aspects affecting performance and in ways 
familiar to the community.  There are various methods for establishing 
graphical representations of the system and its performance.  The Probabilistic 
Risk Assessment (PRA) community has traditionally uses fault trees, event 
trees, failure modes and effects, and reliability block diagrams for the parts—
components, subsystems, system.  However, structuring the activities which 
can include manufacturing processes (e.g., assembly of parts), quality control / 
assurance activities (e.g., inspections), and physical processes (e.g., mechanics, 
chemistry) is not as obvious.  Describing these processes using traditional tools 
is often cumbersome.   If actual equations and models are lacking for 
establishing interactions and interrelations among the parts and processes, then 
perhaps a logic-based model is appropriate.  Process trees, Bayesian networks 
(Jensen, 1996) and probability networks and directed graphic techniques are 
designed to handle complex and intricate relationships among parts and 
processes.  This step includes formal elicitation (working with the experts to 
define the structure), knowledge and use of various structuring methods (e.g., 
logic diagrams, process trees), and formulating the interrelationships among 
the various parts and activities of the system.  This step also includes the 
formulation of mathematical models and functional relationships that bind the 
parts, nodes and levels of the system structure together.  For example, if the 
system is in series, a Weibull model might be chosen to calculate the reliability 
for each part/node and the product of those reliabilities would determine how 
to calculate the performance within and between levels. 

 
3) Gather and Elicit All Sources of Data and Information 

The above framework guides experts to identify sources of information that 
might be applicable to “populate” the various parts and processes of the 
structure and relating to the performance requirements. At this step 
uncertainties for all the sources are characterized according to the discussion in 
the previous section.   This step also includes a formal elicitation exercise 
where experts provide their estimates in the absence of data and where experts 
provide their expertise about what sources of information are relevant to use 
and how they should be weighted (section 4.2).  
 

4) Documentation (Knowledge System) 
Documentation is an important step throughout the implementation of the PREDICT 
methodology.  It begins by documenting the definitions of performance created in 
Step 1 and ends with the last bit of information acquired about the system’s use. 
Elicitation methods, experts’ qualifications, and how they arrived at their judgments 
(their sources of information, assumptions, caveats) are all recorded for traceability 
and later updating. One of the documentation techniques is to build an electronic 
repository, a knowledge system, which allows the user to readily store, access, and 
trace the expert judgments and the information arising from the below steps. Pieces in 
this step include elicitation and documentation techniques. 

 
5) Calculate Initial Reliability (with Uncertainties Attached) from Experts 
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The framework in step 2 provides a formal structure and models for the 
system.  The expert elicitation in step 3 provides performance estimates, 
uncertainty ranges, their reasons for these estimates, and the sources of future 
test/experimental data.  This expert information is then combined with other 
sources of information (historical records, computer runs, etc.) to formulate an 
initial reliability (with uncertainties) of the system. If the system is a concept 
design, then most of the information will come from the experts.  If the system 
is one already developed and fielded, then there is less emphasis on expertise, 
and it is used only when data are sparse.  This initial reliability or performance 
estimate will be in the form of an uncertainty distribution.  That distribution is 
documented and becomes the first snapshot in time of the existing knowledge 
about the system.  Subsequent new information and analyses will change this 
estimate, beginning the tracking and updating cycle. Performance or reliability 
uncertainty distributions are calculated for all pieces and processes and 
propagated through higher system levels using Monte Carlo simulation.  Pieces 
in this step include elicitation, statistical methods, and uncertainty analysis. 

 
6) The Updating Cycle 

The middle portion of the flowchart (figure 1) depicts a cycling set of steps that 
begins with the updating concept.  Updating could occur for several different 
reasons: new information becomes available, new test data becomes available, 
or the experts ask what-if questions.  After viewing the results from the initial 
reliability estimation of the concept product, the experts determine the ensuing 
courses of action based on these choices.  The initial reliability results could 
indicate what parts or processes need improvement, what design changes might 
be beneficial, what tests or prototypes should be built, etc.  Even before any 
(expensive) actions are taken (e.g. building prototypes), what-if cases can be 
calculated to predict the effects on reliability of such proposed changes or tests.  
Therefore, the experts may want to run several what-if cases before deciding 
on design changes, prototypes, or planning for tests.  
 
Any new information that becomes available, such as design changes, test results, 
prototyping, manufacturing changes, is utilized to calculate new reliability and 
uncertainty estimates.  Experts review the results of each calculation, using these as a 
basis for decisions about how to improve the reliability and reduce the uncertainty. 
With each subsequent change or addition of new information or new data, the 
reliability calculations are made again and again throughout the product’s lifetime—
design, prototyping, testing, production, and in-use phases.  Iterations late in the 
system’s lifetime will reflect reliability based on in-use data, coming from warranty 
data and customer-provided information.  As part of the dynamics of the system, its 
performance requirements and structure may also change.  Pieces in this step include 
elicitation, statistical methods, uncertainty analysis, and documentation techniques. 
 

7) The Fielding Cycle 
Once the requirements and objectives of the system are met, the system (and its 
analysis) goes into the fielding cycle.  But here, new information, new use data, or 
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other changes may still continue.  To accommodate these, another cycle of update, 
reanalyze, document, and make decisions/plans occurs.  This cycle continues through 
the system’s lifetime until retirement. 

 
8) Final Documentation  

At the end of a system’s lifetime, the implementation of the PREDICT methodology 
includes a complete, well-documented record—a knowledge system (section 4.3)—of 
the lifetime development and performance of this product.  This can be used by others 
in the future, provide a learning tool, and contribute to corporate memory for the next 
new system. 
 

 
4. Expert Judgment 
 
4.1 Expert Judgment as Data 
 
The formal use of expert judgment is at the heart of the PREDICT methodology and 
appears in many of its steps.  For years, methods have been researched on how to 
structure elicitations so that analysis of this information can be performed statistically 
(Meyer and Booker, 1991).  Expertise gathered in an ad hoc manner is not recommended 
for these purposes.   
 
Expert judgments are the expressions of informed opinion, based on knowledge and 
experience, that experts make in responding to technical problems (Ortiz, et. al, 1991). 
Experts are individuals who have background in the subject area and are recognized, such 
as by their peers, as qualified to address the technical problems. Expert judgment is used 
in all technical fields—medicine, economics, engineering, risk/safety assessment, 
knowledge acquisition, decision sciences, pharmaceuticals, environmental studies, to 
name a few.   
 
Because expert judgment is often used implicitly, it is not always acknowledged as expert 
judgment. It can also be obtained explicitly through the use of formal elicitation, the 
focus here.   
 
Examples of expert judgment include:  
• the probability of an occurrence of an event, 
• a prediction of the performance of some product or process,  
• the decision about what statistical methods to use and what variables enter into a 

statistical analysis, 
• the decision about which data sets are relevant for use, 
• the assumptions used in selecting a model, 
• the decision concerning which probability distributions are appropriate to use, 
• a description of experts’ thinking and information sources in arriving at any of the 

above responses. 
 



 

-10- 
 

Expert judgment can be expressed in quantitative form—probabilities, ratings, odds, 
uncertainty estimates, weighting factors, and physical quantities of interest (e.g., costs, 
time, length, weight, etc.)—or in qualitative form—a textual description of the expert’s 
assumptions in reaching an estimate, reasons for selecting or eliminating certain data or 
information from analysis, and natural language statements of physical quantities of 
interest (e.g., “the system performs well under these conditions.”) 

 
Quantitative expert judgment can be considered to be “data”. And qualitative expert 
judgment can be quantified and then also be considered as data.  Like “hard” data from test, 
experiments or physical observations, expert judgment must be handled according to the 
same kinds of considerations: 
• Expert judgment is affected by how it is gathered. Elicitation methods take advantage of 

the body of knowledge on human cognition and motivation and include procedures for 
aiding memory and countering effects arising from the phrasing of the questions, 
response modes, the influence of the elicitor, and the expert’s personal agenda (Meyer 
and Booker, 1991).  

• Just as planning ahead for what to gather is important in experimental design, such 
planning is important for expert judgment.  

• Expert judgment has uncertainty, which can be characterized and subsequently analyzed.  
Many experts are accustomed to giving uncertainty estimates in the form of simple 
ranges of values. In eliciting uncertainties, the analysts should be aware of experts 
natural tendency to underestimate uncertainty. 

• Expert judgment can be conditioned on various factors.  These factors include: the 
phrasing of the question (Payne, 1951), the information the experts considered, the 
experts’ methods of solving the problem (Booker and Meyer, 1988), and the experts’ 
assumptions (Ascher, 1978). A formal structured approach to elicitation gives analysts a 
better handle on conditioning effects. 

• Expert judgment can be combined with other data.  For example, in Bayesian updating 
analysis, an expert’s estimate can be used as a prior distribution for an initial reliability.  
When test data become available, for the role of the likelihood, the expert’s reliability 
estimates may be updated, using Bayesian methods (Kerscher et, al, 1998). 

 
 
4.2 Formal Elicitation Phases and Steps  
 
The formal steps for structuring and designing a formal elicitation are briefly outlined 
below.  The details and techniques are available in Meyer and Booker (1991). 
 
Phase 1: Determine whether expert judgment can be feasibly elicited. Questions that 
must be addressed include, “does the problem involve rapid response?”, “can the 
potential experts ‘think aloud’?”, and “has there been prior use of expert judgment?”. 
 
Phase 2: Determine whether expert judgment can be better elicited in a probabilistic or 
alternative (e.g., fuzzy) framework.  The answer depends on whether experts think in 
terms of (subjective) probability or not, what kinds of vagueness are involved, and how 
qualitative the information is. 
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Phase 3: Design the elicitation.  This phase involves several detailed steps: 

Step 1: Identify the advisor expert(s) who can provide reasons, goals, or motivations 
for championing the work. These individuals can be utilized to obtain and ensure the 
continued participation and good will of the insiders.  

Step 2: Construct representations of the way that experts measure and forecast the 
performance/reliability of the system. This is begun by asking advisor experts how 
the community represents and thinks about the system. For example, experts may 
think in terms of a reliability block diagram. 

Step 3: Draft the questions. Ask advisor experts to identify the phenomena (variables) 
of interest, how these are assessed, and what metrics or natural language terms are 
used. 

Step 4: Plan the interview situation.  Advisor expert(s) are asked what settings would 
be the best, groups/teams or individual interviews. Is it preferable to analytically 
aggregate multiple expert estimates or reach a consensus? Should estimates be 
anonymous? 

Step 5: Select the experts.  A selection strategy is developed with the expert 
advisor(s) considering the community of practice, experts’ affiliations and 
publications, the diversity among the experts, and their availability. 

Step 6: Motivate Experts’ Participation.  Ask advisor expert(s) for inhibitors and 
motivators to participation, and then mitigate and enhance these. Ask how the 
official request for experts’ participation should be delivered (e.g., by whom, means, 
timing, and order of information).  Identify factors that will help the experts do their 
jobs.  

Step 7: Pilot test the questions and the interview setting. Pilot tests are conducted on 
advisor expert(s) and selected experts to test the “think aloud” protocol, and provide 
a last check on the elicitation design (i.e., question phrasing). 

 
Phase 4: Perform the elicitation and document the results.  Experts’ estimates and their 
uncertainties may require some translation into uncertainty distributions, a common 
performance metric, or quantification.   Whatever is done with the experts’ judgments is 
fed back to them for review to minimize the chance of misrepresenting their knowledge. 
 
4.3 Knowledge Systems 
 
Knowledge is defined as what qualified individuals know with respect to their technical 
practices (e.g., problem solving).  For example, it addresses questions such as, “how do 
you do x under circumstances y?” and  “what is it you know?”  It refers to the context in 
which information is used and, therefore, to the community of practice. 
 
Knowledge systems were briefly introduced in step 4 of the implementation of the 
PREDICT methodology.  They are a web-based electronic repository customized to the 
technical communities that brings together their data and knowledge.  The repository is 
constructed in quantitative form to provide the methods and tools that the experts need to 
solve problems and make decisions.  Constructing a knowledge system relies heavily on 
formal expert elicitation to structure the system and to “populate” it.  The process of 
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constructing this repository also provides a valuable learning opportunity by breaking 
down the complex system into manageable parts. Other advantages for using a 
knowledge system include: the stored knowledge is available at customized levels of 
detail for different users such as new project personnel, managers, and decisionmakers; 
updates and decisions are traceable (i.e., understanding of why we did this when we did it 
and what we knew back when); and the knowledge is available for the next system to be 
studied.  
 
Because most technical professionals today are accustomed to using the web, HTML 
GUIs are convenient foundations for knowledge systems.  Other options include 
commercially available languages such as IDL (Interactive Data Language) and 
software such as IBM Lotus Notes. 
 
 
5. Statistical Issues and Analysis 
 
5.1 Uncertainty, Fuzzy Logic, and Probability 
 
A major portion of the statistical analyses used in PREDICT focuses on characterizing, 
combining, and propagating uncertainties through the system structure by using 
distribution functions of one type or another. Uncertainties enter into the system study in 
a number of different ways.   
• There are uncertainties involved in determining weighting factors for combining 

experts and for combining other sources of data/information.  It is recommended 
(Meyer and Booker, 1991) that equal weights be used if there is no additional 
information to indicate otherwise. However, sensitivity studies should be made to 
determine the impact of that maximum entropy solution.  

• All the sources of data and information have uncertainties. When estimates are 
elicited from experts, uncertainty values, usually in the form of ranges, are also 
elicited. Physical models or simulations models have uncertainties regarding input-
output relationships, in the choice of models (so-called modeling uncertainty) and in 
model parameters.   

• As noted above, different measures and units are often involved in specifying the 
performance of the system.  To map these into common units conversion factors are 
often required.  These conversions can also have uncertainties and require a 
distribution function.  For example, at Delphi Automotive, a two-parameter Weibull 
model is used to project the reliability forward into key time points of the systems’ 
lifetimes: at 12 months and at 36 months (for warranty periods), and at 100,000 miles 
(for life considerations).  This conversion from miles to time has an associated 
uncertainty distribution. 

 
Probability theory provides a coherent way for determining uncertainties. There are many 
different interpretations or meanings of probability that are consistent with its axioms, 
Good (1965) provides eleven. Some examples include Relative Frequency Theory and 
Personalistic or Subjective Theory (including) Bayes Theorem.  Because of the flexibility 
of interpretation permitted by the personalistic or subjective theory (Bement, et. al, 
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2000a), it is the one chosen for PREDICT.  For example, it is possible to know something 
before observations are made, and to utilize that information. The subjective 
interpretation also allows us to handle rare and one-of-a-kind events, and interpret such 
quantities as a 10-9 failure rate.   
 
Because reliability is a common performance metric and is defined as a probability that 
the system performs to specifications, probability theory is necessary.  However, not all 
experts or their community think in terms of probability.  We have found it useful to use 
alternatives such as fuzzy logic (Zadeh, 1965) for quantification when experts think in 
terms of rules such as if-then rules, and for characterizing a certain type of ambiguity 
uncertainty.  For example, experts may have knowledge about the system expressed in 
statements such as “If the temperature is too hot, this component will not work very 
well.”  While that statement contains no numbers for analysis or probability distributions, 
it does contain valuable information and membership functions (from fuzzy control 
systems theory) are a convenient way to capture and quantify that information (Smith 
et.al., 1997, Smith et.al, 1998, La Voilette, 1995).  Moving this information back into a 
probabilistic framework requires a bridging mechanism from these membership 
functions.  It can be shown (Bement, et. al, 2000b) that membership functions may be 
interpreted as likelihoods; therefore the bridging can be accomplished using Bayes 
Theorem.  This bridging is illustrated in figure 2 that depicts the various methods used for 
formulating uncertainty distributions. 
 
 

 
 
 
 
 
 
 
 

 
Figure 2.  Theories for representing uncertainty distributions 

 
 
 
 
5.2 Case Study: A Development System 
 
As noted in the introduction, it is difficult to adequately test a newly designed system that 
is on a tight production schedule.  This can cause a delay in production and/or result in 
insufficient time to correct problems. The latter contributing to faulty products possibly 
getting into customers’ hands, which results in lack of customer confidence and customer 
dissatisfaction. Therefore, there is a clear need for understanding the performance of a 
newly designed system during its development program, even as early as the concept 
phase of development. Such a need can be met by estimating reliability using all 
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available information at every lifetime phase, including when the system is an 
engineering concept. Gathering and combining all available information produces an 
estimate for the performance of the system.  The following is an example of how the 
PREDICT methodology produces such an estimate. 
 
5.2.1 Defining Performance and Structuring the System 
Following the flowchart in figure 1, assume the performance metric is an uncertainty 
distribution for the reliability of a system.  This metric is defined at various specified time 
periods, say 1 year for warranty purposes.   The random variable for the reliability is R(t), 
where t, is the time in  years, and the uncertainty distribution function is f(R;t, θ), where θ 
is a set of parameters.  For simplicity consider three specific sources of information for 
estimating R(t) and f(R;t, θ): expert judgment, test data, and data arising from similar 
systems.   

 
The next step is to structure the system.  Consider a simple in-series system consisting of 
four levels as illustrated in figure 3: 

• System level 
• Design or Process level 
• Subsystem (combination of processes or components) 
• Individual components or processes 

In reality, failure modes and mechanisms are identified below the individual component 
level, but these extensions will not be considered here.  Reliability estimates for the 
higher levels may come from two sources: information from that level itself and also 
from the integrated estimate arising from the level below .  The structure can be modified 
to accommodate this combination as shown in figure 4. 
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Figure 3.  The system structure 
 
 
 
 

 
 
 

Figure 4.  Higher Level Reliability Combinations 
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The reliability for each level of this in-series system is defined as the product of the 
reliabilities within that level and the system level reliability is the product of all the 
reliabilities of the parts (Rd) and processes (Rp):  
                                                           nd                             np 

R (t, θ) = Π Rd (t, θj) · Π Rp (t, θ k
 *)       

                                                                       j=1                    k=1 

for nd parts and np processes, where R(t, θj) and R(t, θ k
 *) are a specific reliability model 

chosen by the experts, such as the two-parameter Weibull reliability function: 
 

Rd (t, λ j , β  j) = exp(-( λj t ) β j) and 
Rp (t, λ k, βk) = exp(-( λ∗

k t ) β∗ k). 
 

The reliability model must be physically appropriate and mathematically correct for the 
system. Of equal importance, the model and its usage must be culturally acceptable to the 
organization using it. The Weibull fits the infant mortality and useful lifetime (Kerscher, 
1989) aspects of the system, provides a time dependent function, and, in this case, suits 
the implicit understanding of the design and manufacturing (processes) communities 
through their awareness of the corresponding hazard curve’s “bathtub” shape.  It should 
be noted that estimates are required for both parameters, for β (the slope) and for λ (the 
failure rate) for each component and process. 
 
For a concept system, test data from prototypes or actual parts will be absent.  
Information sources at this point in the system’s development reside mainly within the 
collective knowledge of the experts.  Other information sources might include data from 
previous studies, similar parts, processes, and perhaps some physical model or simulation 
code outputs. 
 
5.2.2 Analysis of Expert Judgment 
A formal elicitation is necessary (following section 4.2) to understand what expertise 
exists and how it can be related to the reliability estimation, i.e., how to estimate the 
Weibull parameters.  For this example, it is assumed that the experts are accustomed to 
working in teams, and reaching a team consensus is their usual way of working.  It is not 
uncommon to learn from the elicitation preparation steps that not all teams think about 
performance using the same terms. Performance could be defined in terms of incidences 
per thousand vehicles (IPTV) which convert to failure rates for the product design, but in 
terms of parts per million (PPM) failures manufactured which translate to reliabilities for 
processes.  Best estimates of IPTV and PPM quantities are elicited from the experts along 
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with ranges of values.  In this case, these three estimates are interpreted as the most likely 
(i.e., the median), maximum (worst), and minimum (best) estimates.   
 
The job of the statistician is to work with the experts to convert these estimates to the 
parameters of the Weibull for both the design and manufacturing (or process) sides. The 
top portion of figure 5 illustrates how these estimates fit into the reliability calculations 
on both sides. 
 

 
 

Figure 5.  Dynamic system structure and model 
 
 
Because IPTV at 1 year is a failure rate, a distribution for λ can be determined.  Failure 
rates are often asymmetric distributions such as the lognormal or gamma.  Because of the 
positive values, variety of possible shapes, and occasional interpretability of the 
parameters (the first parameter corresponds to a pseudo number of failures and the 
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second parameter to pseudo total time on test), the experts chose the gamma.  The best 
and worst cases were defined to represent the maximum and minimum possible values.  
However, accounting for the well-documented tendency of experts to underestimate 
uncertainty (Meyer and Booker, 1991), these values were equated with small tail 
percentiles. Sensitivity studies are recommended to demonstrate to the experts the effects 
of such a decision, ensuring that their initial estimates are not misrepresented.   
 
Another difficulty arises when fitting three expert estimates to a two-parameter 
distribution.  One of the three estimates will not match, and the experts may insist that the 
distribution exactly fit through all three estimates.  A two-piece distribution (not a 
mixture of distributions), joined at one of the expert estimates can accommodate this 
request. Figure 6 illustrates the result of this implementation using a gamma.  
 

 
 
Figure 6.  CDF of gamma formed from experts’ estimates of {.05, 1.0, 15.0} IPTV 
 
 
The experts agreed that the β parameter for the components and subsystems of the new 
system should correspond to that of previous, similar systems, for which warranty was 
available.  Maximum likelihood estimates for β  from Weibull fits of this warranty data 
provides a starting estimate that the experts were free to adjust or confirm for the new 
system.  Warranty data is usually only available at the system or certain subsystem levels, 
making it necessary for the experts to make the final decisions about β values for all parts 
and processes at lower levels. 
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As part of the elicitation, experts were also asked to specify all known or potential failure 
mechanisms, or failure modes, for each part and process.  Failure modes are failures in 
the components themselves, such as a valve wearing out, mistakes being made during the 
manufacture of components, or improper assembly of multiple components into a 
subsystem.   For updating and documenting purposes, the percent or proportion 
contribution of each failure mode was also specified by the experts.   
 
Processes are compilations of complex steps and issues, which must be considered to 
convert the experts’ PPM estimates to Weibull parameters. Some of these issues relate to 
how quality control and inspections integrate with the process.  For example, the 
reliability of the process depends upon the percent or proportion of items that slip through 
the quality control procedures (called spills).  Quantities such as frequency and duration 
of these spills affect reliability, and these are elicited along with the functions required to 
specify their relationships to the PPM values provided for the processes themselves. 
Other issues are involved with failure modes.  Through a series of transformations 
designed to account for these issues, the PPM estimates from the experts were converted 
to Weibull parameters λ∗  and β∗  for each process as depicted in figure 5.  As on the design 
side, experts’ estimates of best, most likely, and worst case values were used to fit an 
uncertainty distribution for the process reliabilities.  The experts chose to use a beta 
distribution for the reliabilities translated from their three PPM estimates. The reasons 
include the beta’s appropriate (0 to 1) range, its wide variety of possible shapes, and its 
occasional interpretability of parameters (the first parameter as pseudo number of failures 
and the second parameter as pseudo number of trials).  
 
5.2.3. Initial reliability calculation 
Once the parameters and uncertainty distributions were specified for the design parts and 
manufacturing processes, the initial reliability, R0(t, λ, β) was calculated, using Monte 
Carlo simulation.  Because this model is time dependent, predictions at specified times 
are possible.  Most of the data and expert estimates are given in terms of 1 year. For 
applications such as automobiles, three years is important for warranty reasons, and 
100,000 miles is also important as a lifetime indicator.  The change from time in years to 
time in mileage is one example of the need for a conversion factor. Such factors usually 
have uncertainties attached, so  the conversion also requires an uncertainty distribution.  
This distribution was fit using maximum likelihood techniques applied to historical 
times-to-mileage data.  This uncertainty distribution becomes part of the Monte Carlo 
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simulation.  The initial reliability calculation is concluded with system, subsystem, 
component, and process distributions calculated at these various time periods. Figure 7 
shows the reliability for the total processes, Rp (t, λ∗ , β∗), at t=1 year, 3 years and 100,000 
miles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. System Reliability Uncertainty distributions for 1 year (right), 3 years (middle), 
and 100,000 miles (left). 

 
 
5.2.4 Tracking and updating the dynamic system  
The initial reliabilities are for the conceptual system and may be quite poor with large 
uncertainties.  Upon review, the experts can decide which parts or processes to change, 
where to plan for tests, what prototypes to build, what vendors to use, or ask what-if 
questions in order to improve reliability and reduce uncertainty. Before any usually 
expensive actions are taken (e.g. building prototypes), what-if cases are calculated to 
predict the effects on estimated reliability of such proposed changes or tests. These cases 
can involve changes in the structure, structural model, experts’ estimates, and the terms 
of the reliability model as well as effects of proposed test data results.  Further 
breakdown of components into the failure modes may be required to properly map these 
changes and proposed test data into the reliability model. 
 
Because the system is under development or undergoing change, new information 
becomes available at various stages of its lifetime.  Examples include design changes 

                                            Reliability                                 1.0 
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such as adding, replacing, and deleting parts and processes, supplier changes, prototype 
test data, production data, new engineering judgment, etc.  Incorporating these changes 
and new information into the existing reliability estimates is referred to as the updating 
process.  
 
New information and data from different sources or of different types (e.g. tests, process 
capability studies, engineering judgment) are analytically merged by combining 
uncertainty distribution functions of the old and new sources. This merging usually takes 
the form of a weighting scheme: 

w1 · f1 + w2 · f2 

where wi are weights and fi are functions of parameters, random variables, models, 
probability distributions, uncertainty distributions or reliabilities, etc.  Experts often 
provide the weights, and sensitivity analyses are performed to demonstrate the effects of 
their choices.  The Ri(t, λ, β) boxes in figure 5 illustrate the general updating process. 
 
Alternatively, Bayes Theorem can be used as a particular weighting scheme, providing 
weights for the prior and the likelihood through application of the theorem. Bayesian 
combination is often referred to as Bayesian updating. If the prior and likelihood 
distributions overlap (reinforce each other), then Bayesian combination will produce a 
posterior whose variance is smaller than if the two were combined via other methods, 
such as a linear combination of random variables or a mixture. This is one advantage of 
using Bayes Theorem. 
 
Because test data at the early stages of system development are lacking, the initial 
reliability, R0(t, λ, β), is developed from expert judgment and forms the prior distribution 
for the system (figure 2). As the system develops, data and information may become 
available for only certain parts or processes (e.g. system, subsystem, component) and this 
would be used to form likelihood distributions for Bayesian updating.  All of the 
distribution information in the items at the various levels must be combined upward 
through the system levels, to produce a final estimate of the reliability and its uncertainty 
at various levels along the way, until reaching the top, or system, level. Three different 
combination methods are used to form the next (updated) reliability, R1(t, λ, β): 
• For each prior distribution that must be combined with a data-based or likelihood 

distribution, Bayes Theorem is used and a posterior distribution results. 
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• Posterior distributions within a given level are combined according to the structural 
model (e.g., multiplication of reliabilities for parts / processes in series) to form the 
prior distribution of the next higher level (figure 2). 

• Prior distributions at a given level are combined within the same part / process to 
form the combined prior (for that item) which is then merged with the data (for that 
part or process). This approach is continued up the levels until a system level 
posterior distribution is developed. 

 
As more data and information become available and are incorporated into the reliability 
calculation through Bayesian updating, they will tend to dominate the effects of the 
experts’ estimates developed through expert judgment.  In other words, Ri(t, λ, β) 
formulated from many test results will look less and less like R0(t, λ, β) derived from 
expert estimates. 
 
For general updating, test data and other new information can be added to the existing 
reliability calculation at any level and / or for any part or process. This data / information 
may be applicable to only to a single failure mode. When new data or information 
becomes available at a higher level (e.g., subsystem) for a reliability calculation at step i, 
it is necessary to back propagate the effects of this new information to the lower levels 
(e.g., component).  The reason is that because at some future step, i+j, updating may be 
required at that lower level and its effect propagated up the structure.  The statistical 
issues involved with this back propagation are difficult (Martz and Almond, 1997). It is 
also possible to back propagate by apportioning either the reliability or its parameters to 
the lower level according to their contributions at the higher level.   While it can be 
shown that for well-behaved functions, solutions are possible, they may not be unique.  
Therefore, constraints may be placed on the types of solutions desired by the experts.  For 
example, requiring that regardless of the apportioning mechanism used to propagate 
downward, the forward propagating maintains the original results at the higher level.  
 
General updating is an extremely useful decision tool for asking what-if questions and for 
planning resources, such as tests, to determine if the reliability requirements can be met 
before actually beginning production.  For example, the reliability uncertainty 
distributions calculated using simulation are empirical with no particular distribution 
form, but due to their asymmetric nature and because their range is from 0 to 1.0, they 
often appear to fit well to beta distributions. Suppose a beta distribution of the form: 
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Beta (x, a, b) = Γ(a+b)  x (a-1) (1-x) (b-1),     0=x=1, a>0, b>0 

   Γ(a)·Γ(b) 
 

is fit to a component reliability uncertainty distribution at some stage, Ri(t, λ, β), resulting 
in parameters a = 81.9 and b= 1.01.  The experts want to determine what would be gained 
by building 40 prototypes, testing them, and assuming all passed. Taking advantage of 
the beta as a conjugate prior for the binomial data, the new component reliability 
distribution, for Ri+1(t, λ, β) would be a beta with parameters a = 81.0 + 40 = 121.9 and b 
= 1.01 + 0 = 1.01. The median improves slightly (from, 0.991 to 0.994) but, more 
importantly to the experts, the 5th percentile improves from 0.96 to 0.98, providing an 
incentive to invest in the prototypes. 
 
The general updating cycle continues through the lifetime of the system as indicated in 
figure 1.  Figure 8 depicts the tracking of the reliability through the system development 
indicating three percentiles (5th, median, and 95th) of the reliability uncertainty 
distribution at various points in time. The individual data points begin with the initial 
reliability characterization R0(t, λ, β) for the system and continue with the events 
associated with the general updates, Ri(t, λ, β), the what-if cases, and incorporation of test 
results (depicted on the figure with vertical lines).  As previously noted, asking what-if 
questions  and calculating the effects on reliability of those provided valuable information 
for designing and modifying prototype building and test planning, before costly decisions 
were made.   
 
Graphs like figure 8 were constructed at all the levels of system to monitor the effects of 
updating for individual parts and processes.  Graphs were made for these levels  at the 
desired prediction time values (i.e., 1 year, 3 years and 100,000 miles) to determine if 
reliability requirements were met at those important time points in the life of the system. 
 
Plots like figure 8 capture the results of the experts’ efforts to improve reliability and 
reduce uncertainty. The power of the approach is that the roadmap developed leads to 
higher reliability and reduced uncertainty, and the ability to characterize all of the efforts 
made to achieve these improvements.   
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Figure 8.  Tracking the system level reliability uncertainty distribution at 1 year. 
 
 
 
6. Conclusions 
 
While this application of Information Integration Technology has a proven track record 
of successful use, the PREDICT methodology does not claim to have solutions for all 
technical problems.  There are many opportunities for research to expand the general 
Information Integration Technology base.  A partial list of these opportunities is given 
below. 
• The general areas of predictability and uncertainty analysis are not completely 

founded. More specifically in the uncertainty arena are challenges in understanding, 
specifying, quantifying, and propagating uncertainties.  Are there, better methods of 
characterizing uncertainties than uncertainty distributions? 

• Quantification of qualitative information has been a continuing research topic in 
expert judgment work.  Our methods reflect those advances by quantifying rules 
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using fuzzy system control methods.  Other quantification methods of qualitative 
information are needed.  Do other disciplines hold the key for new methods? 

• The PRA and decision analysis communities are branching into new methods of 
structuring the system with advances such as directed graphs, causal diagrams, 
networks, and process trees.  Because the structure is so important for gathering and 
combining information sources relevant to the performance requirements, new 
methods are needed to accommodate ill-defined processes rather than just 
constructing a system as a sum of parts.   

• More methods are needed to handle the back propagation problem, especially when 
dealing with empirical distributions and more complex structures.  

• Dependencies between the various sources of information are another topic for more 
research. For decades, this issue has been tossed about in the literature regarding 
dependencies among experts, without substantial resolution.  How should these be 
determined?   How do they affect the process of combining the different sources?  

• Methods of combining / integrating the various sources of information/data have 
relied on the traditional methods of combining distributions. Can other fields, like 
fuzzy logic, offer other solutions?  Can metrics be developed to determine which 
method works best for which type of information integration problem? We have been 
investigating areas of information theory with entropy-based measures like Jeffreys’ 
J, (1998), quantiles, or relative distributions (Handcock and Morris, 1999) for such 
purposes.  

• Finally, research in the knowledge capture and representation fields is ongoing.  
These areas include self-elicitation and eliciting and analyzing tacit (implicit) 
knowledge.  Although these involve different disciplines, the research has direct 
implications in methodologies, such as PREDICT, that deal with information  
integration. 

 
This Information Integration Technology, PREDICT, has demonstrated its effectiveness 
for expertise capture, reliability, and performance estimation in the nuclear weapons 
program and for concept system development in the automotive industry. In the post cold 
war era, the basic philosophy of information integration is positively impacting the 
certification process of our nuclear systems. This same philosophy is providing the 
formal structure for taking advantage of a company’s greatest asset—the knowledge and 
expertise of its engineers and designers. Our automotive and weapons customers agree 
that the greatest strength of Information Integration Technologies such as PREDICT is 
their ability to customize specific user needs, making them valuable methodologies for all 
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design or engineering communities. This is because users establish a core of expertise 
that perpetuates through the Information Integration Technology resulting in a permanent 
shift in the way they currently think about reliability. We believe Information Integration 
Technologies such as PREDICT will revolutionize the way products are developed and 
analyzed. 
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