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1. Introduction

Information Integration Technology is acombination of processes, methods, and tools for
collecting, organizing, and analyzing diverse information and for utilizing thet

information to guide optimal decison making. PREDICT (Performance and Rdliability
Evduation with Diverse Information Combination and Tracking) isahighly successful
example of information integration technology that has been gpplied in two pardle
gpplications, automotive system development and stockpile physics packages in nuclear
wegpons. Specificaly the PREDICT gpplication isaforma, multidisciplinary process
for estimating the performance of a product when test data are Sparse or nonexistent. The
acronym indicates the purpose of the methodology: to evaluate the performance or
reliability of a product/system by combining al available (often diverse) sources of
information and then tracking that performance as the product undergoes changes.
PREDICT’ s cdculations have been demonstrated to guide product development for
automotive systems before, during, and after prototyping and production, and documents
the product’ s performance through its lifetime from concept through customer use and
mai ntenance.

PREDICT isamethodology thet alows users to estimate reliability early in product
development, before costly design and production decisions are made by making
effective use of dl avalable information: expert knowledge, higtorical information,
experience with smilar products, and computer model outputs. Until now, much of this
information (especidly expert knowledge) was not formaly included in performance
caculations because it was ether implicit, undocumented or non-numeric. In PREDICT,
al available information (with appropriate uncertainties attached) is collected and
combined for estimating the rdiability of the product at various sagesin its lifetime.

The PREDICT methodology has been used to provide accurate reliability estimates for
potentia products while they were only engineering concepts. As the product undergoes
changes during its development stage, or as conditions change, or new information
becomes avallable, the reiability estimates are updated accordingly, providing alifetime
track record of the performance of the product or system.

PREDICT’ s philosophy and uniqueness arise from these aspects of the methodology:
All available, and often diverse, sources of information along with their associated
uncertainties are combined. Sources of information include expert knowledge,
historical test data, datafrom of similar systems, parts, processes, etc., design
specifications, production information, maintenance records, computer Smulation
model outputs, physica model / code outputs (both stochastic and deterministic), and
test, experimenta or observationd data
The multidisciplinary methods used for integrating diverse informetion are
formalized, especidly regarding the use of expert knowledge (Meyer and Booker,
1991).
Asthe product or system undergoes change (e.g., under development, or aging), the
information integration methods “ update’ the performance estimates in light of the
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information associated with this change. This updating can bein the form of
traditiond Bayesian updating, and can dso be in the form of changesin the system
itself or other conditions affecting the performance.

The dynamics of the system are captured with updating andlys's methods which not
only track the changing state of knowledge but aso provide planning tools for timely
decison making. What-if questions can be posed to provide guidance for resource
dlocation and identify areas where rdiability could be improved and/or uncertainty
reduced by certain actions.

The choices, modifications, and uses of the methods are customized to the gpplication
and itsusars. They aretallored to the community of practice’ sway of thinking about
the product and its performance/rdiability. For example, some engineers might think
interms of failures per million parts, while other would think if performance in terms
of cycles per second.

Emphasisis placed on the need for definitions and requirements for performance, and
the importance of structuring the problem. Otherwise, dl the information gathered
has little purpose, and there is no rationde for its combination.

Andyssis peformed a al of the sysem’s multiple levelsand dimensons. The
performance of most systemsis not merely the successful operation of multiple
pieces, but involves failure mechanisms and activities such as qudity control,
manufacturing processes, chemigtry, physics, mechanics, etc.

The andysis tools and methods are customized to the gpplication and the ways that
the community thinks about performance. That community then ownsthe andysis,
the results and the tailored methods for their use. The PREDICT methodology
becomes gpart of the way they monitor reliability and performance.

Documentation is a vital aspect of the methodology to provide atraceable record for
updating and an understanding of the dynamic environment.

For non-datigticians, the datistics involved are not scary or difficult and are tailored to fit
their “culturé’ or community of practice. For the engineer, PREDICT isapracticd,
logica, and useful methodology as reflected by comments such as “This can actudly help
me do my job.” For the decisonmaker or program manager, PREDICT isaplanning
method, for determining the alocation of resources to improve performance and/or
reduce uncertainty.

The sections that follow outline the gpplications, implementation steps, expert judgment,
datistical tools, and decison making that make up the PREDICT methodology. The
examples presented are notiond for illugtrative purposes only. The conclusion includes a
discussion of research topics for continued development of the Information Integration
Technology.

2. The Applications

PREDICT’ s successis evidenced by the benefits created in two applications where sparse
data precluded traditiona datistica reliability analyss (Mann, Schafer, Singpurwalla,
1974, Meeker and Escobar, 1998). Both systems were in dynamic environments. one
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system — fud systemsfor Delphi Automotive Systemns — undergoing changes because of
development from concept to production, and the other system — stockpiled physics
packages in nuclear weapons — aready built to specifications but undergoing aging and
maintenance changes. Each application presented new chalenges for andysis. 1t wasthe
success of PREDICT in these gpplications that attracted the attention of the R&D 100
Award judgesin that national competition for the 100 top technologies of 1999
(AMSTAT News, 1999, Meyer, et. al, 1999).

While aging and maintainability issues are atraditiona statistical problem, they require

test data for the full system and its components. For the physics package systemsin the
nuclear stockpile, such tests are prohibited by test ban treaties and environmental
concerns. Maintenance is complicated by the fact that many replacement parts and
processes are no longer available, some materias can no longer be used due to
regulations, and production plants are no longer operational. Thislack of test data makes
it essential to use dl available information: higtorica records, survelllance information,
expert knowledge, physical models, and test data from smilar systems before test bans.

Ddphi Automotive Systems (formerly General Motor’s AC/Delco Parts and system’'s
businesses) had a different dynamic environment and a newer Satigtica problem. When
anew system is proposed, it istargeted for a certain modd year that locks it into atight
schedule for development and production. Relying on datistical and engineering
reliability methods, the Delphi engineers would build prototypes and run tests to gather
datafor reliability growth analysis. When test results indicated problems, it was possible
that insufficient time for corrective action was available before the scheduled start of
production, requiring delaysin the schedule. In the extreme case, this could result in one
of theindustry’ sworst nightmares: product recals. Delphi gpproached Los Alamas with
the smple question “Can’'t we do better in esimating rdligbility beforeit’stoo late and
avoid surprises?”  “And how can we do this without test deta?” At the sametime, the
wespons program at Los Alamos was asking the same questions.

The development of the PREDICT methodology was the result of beginning to answer
those questions. With the pardld analyses in both gpplications, lessons and methods
developed in one gpplication cross-fertilized in another. The Ddphi fud systems lacked
the test data during their early stages of development, when they were just engineering
concepts. Eventudly, tests were performed and customer use data became available so
that the automotive experts could gauge the estimated performance during the early
development stages. The wegpons program will not have the luxury of obtaining such
data. Successful predictions a Delphi provided corroboration for the methods applied to
the weapons program. Conversdly, the early developments and use of knowledge
systems for the weapons program resulted in Delphi’ sinterest in developing asmilar
approach.

We have tracked the development of five Delphi Automotive concept systems to date,
and we are scheduled to analyze more. During those system studies, test data (for certain
falure mechanisms, components, subsystems, and systems) became available to
determine the accuracy of the experts judgments. The positive results have been
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welcomed by the weapons program because they corroborate the PREDICT
methodology. Such test datawill not be available for the wegpons program, so they view
Delphi’s successes as their own.

Dephi Automotive Systems has seen the vaue of what-if andys's as a planning tool, and
has utilized it to avert “surprises’ (e.g. problems found during production, or worst case,
product recdls) and to effectively plan resources for test programs. In summary, Delphi
has converted the way they perform riahility to this globd view of combining al
information and tracking changes. Their community of practice has changed, and the
reactions of the expertsinvolved has been that “PREDICT can help me do my job.”

The successes PREDICT has had to date in both applications can be summarized by
testimonies such as.
“PREDICT is an important tool that we will use to ensure the continued
safety and reliability of our nuclear deterrent.” (Joseph Martz, Program
Manager, Enhanced Surveillance and Materias R& D, Los Alamos
Nationd Laboratory)

“One of the most important and useful tools that | have used in new
product definition and development” (James Jeffers, Fud Pump
Program Manager, Delphi Automotive Systems)

3. Stepsfor Implementing PREDICT

The PREDICT methodology embodies a toolbox of multidisciplinary methods and
techniques, gpplied usng aframework of steps for the implementation and use of these
methods. Figure 1 depicts these steps and illudtrates the cyclical nature of tracking a
complex system through its dynamic lifetime (whether in the loop from concept to in-use
development, or in the loop due to aging/maintenance in the field). The steps followed to
implement PREDICT are:

1) Define Requirements and Rdiability/Performance Measures
Because rdidbility is defined in terms of the system functioning according to
gpecifications, those specifications must be carefully defined in terms that the
community of experts understands. Performance can be measured in a number
of different ways, cycles per second, output per shift, maximum gtress limits,
pressure ranges of operation, operationd availability, reiability a 12 months,
10°° probability of system failure, etc. There may not be asingle definition of
performance that fits al parts of the sysem. How to convert from one
definition to another becomes important and is pecified by the experts.
Taking the time to carefully define termsin this sep isimportant. And like the
other steps, these definitions can change as the system changes and as new
information becomes available.
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Figure 1. PREDICT implementation steps and flowchart

Traditiona anthropologica field techniques are used to dicit the insders ways of
thinking about performance in their own words and to develop aframework which
guides the subsequent dicitation and andysis of expert judgment on performance.
This step ensures that the PREDICT process will make sense to the insiders, that the
needed information is gathered in the appropriate form, and will fit their culture and
community of practice. Piecesin this step draw from the fields of anthropology,
sociology, expert judgment, decison andlys's, and include identifying the key
indders who will provide an explanation of their culture. These key experts (or
advisors) are individuas who are knowledgeabl e about their community of practice/
culture, provide an “entreg’ into their culture of both other experts and management,
explan itsworkings to andysts, provide guidance on the dicitation, and motivate
wider participation by other experts.

2) Structure the System—Create the Framework
While no single sep is the most important, this one is vita for the sudy to
succeed. It isoften neglected or over smplified, resulting in frugtration by the
experts and confusion over how to combine the sources of data and
information. The sysem—all its parts, pieces, processes, activities, failure
mechanisms, workings, environments, conditions, etc.—must be diagramed or
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structured according to dl these aspects affecting performance and in ways
familiar to the community. There are various methods for establishing

graphica representations of the system and its performance. The Probabilistic
Risk Assessment (PRA) community has traditionally uses fault trees, event
trees, fallure modes and effects, and reliability block diagramsfor the parts—
components, subsystems, system. However, structuring the activitieswhich
can include manufacturing processes (e.g., assembly of parts), qudity control /
assurance activities (e.g., inspections), and physical processes (e.g., mechanics,
chemigtry) is not as obvious. Describing these processes using traditiona tools
is often cumbersome.  If actud equations and models are lacking for
establishing interactions and interrel ations among the parts and processes, then
perhaps alogic-based modd is appropriate. Process trees, Bayesan networks
(Jensen, 1996) and probability networks and directed graphic techniques are
designed to handle complex and intricate relationships among parts and
processes. This step includes formd dicitation (working with the expertsto
define the structure), knowledge and use of various structuring methods (e.g.,
logic diagrams, process trees), and formulating the interrelationships among

the various parts and activities of the sysem. This step a0 includes the
formulation of mathematical models and functiond relaionships thet bind the
parts, nodes and levels of the system structure together. For example, if the
systemisin series, aWelbull modd might be chosen to calculate the riability
for each part/node and the product of those reliabilities would determine how
to caculate the performance within and between levels.

3) Gaher and Elicit All Sources of Data and Information
The above framework guides expertsto identify sources of information that
might be applicable to “ populate’ the various parts and processes of the
gructure and relating to the performance requirements. At this step
uncertainties for al the sources are characterized according to the discusson in
the previous section.  This step dso includes aforma elicitation exercise
where experts provide their estimatesin the absence of data and where experts
provide their expertise about what sources of information are relevant to use
and how they should be weighted (section 4.2).

4) Documentation (Knowledge System)
Documentation is an important step throughout the implementation of the PREDICT
methodology. It begins by documenting the definitions of performance created in
Step 1 and ends with the last bit of information acquired about the system’s use.
Elicitation methods, experts qudifications, and how they arrived at their judgments
(their sources of information, assumptions, cavests) are al recorded for traceability
and later updating. One of the documentation techniquesis to build an eectronic
repogitory, a knowledge system, which alows the user to readily store, access, and
trace the expert judgments and the information arising from the below seps. Piecesin
this step include dlicitation and documentation techniques.

5) Cdculae Initid Rdiahility (with Uncertainties Attached) from Experts
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The framework in step 2 provides aforma structure and modds for the
sysem. The expert dicitation in step 3 provides performance estimates,
uncertainty ranges, their reasons for these estimates, and the sources of future
test/experimenta data. This expert information is then combined with other
sources of informetion (historical records, computer runs, etc.) to formulate an
initid reiability (with uncertainties) of the system. If the system is a concept
design, then mogt of the information will come from the experts. If the system
is one adready developed and fielded, then there isless emphass on expertise,
and it isused only when data are sparse. Thisinitia religbility or performance
edimate will bein the form of an uncertainty distribution. That digtribution is
documented and becomes the first snapshot in time of the existing knowledge
about the system.  Subsequent new information and analyses will change this
estimate, beginning the tracking and updating cycle. Performance or rdligbility
uncertainty distributions are calculated for al pieces and processes and
propagated through higher system levels using Monte Carlo smulation. Pieces
in this sep include dicitation, Satisticad methods, and uncertainty andyss.

6) The Updating Cycle
The middle portion of the flowchart (figure 1) depicts a cycling set of steps that
begins with the updating concept. Updeating could occur for severd different
reasons. new information becomes available, new test data becomes available,
or the experts ask what-if questions. After viewing the results from the initia
reliability estimation of the concept product, the experts determine the ensuing
courses of action based on these choices. Theinitid reiability results could
indicate what parts or processes need improvement, what design changes might
be beneficid, what tests or prototypes should be built, etc. Even before any
(expensive) actions are taken (e.g. building prototypes), what-if cases can be
caculated to predict the effects on rdiability of such proposed changes or tests.
Therefore, the experts may want to run severd what-if cases before deciding
on design changes, prototypes, or planning for tests.

Any new information that becomes available, such as design changes, test results,
prototyping, manufacturing changes, is utilized to caculate new rdiability and
uncertainty estimates. Experts review the results of each caculation, using theseasa
basis for decisons about how to improve the rdiability and reduce the uncertainty.
With each subsequent change or addition of new information or new data, the
reliability caculations are made again and again throughout the product’ s lifetime—
design, prototyping, testing, production, and in-use phases. Iterations late in the
sysem'slifetime will reflect rdiability based on in-use data, coming from warranty
data and customer-provided information. As part of the dynamics of the system, its
performance requirements and structure may aso change. Piecesin this step include
dictation, gatisticd methods, uncertainty andyss, and documentation techniques.

7) The Fdding Cycle
Once the requirements and objectives of the system are met, the system (and its
andyss) goesinto the fielding cycle. But here, new information, new use data, or
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other changes may il continue. To accommodate these, another cycle of update,
reandyze, document, and make decisons/plans occurs. This cycle continues through
the system’ s lifetime until retiremen.

8) Fina Documentation
At the end of a sysem’slifetime, the implementation of the PREDICT methodology
includes a complete, well-documented record—a knowledge system (section 4.3)—aof
the lifetime development and performance of this product. This can be used by others
in the future, provide alearning tool, and contribute to corporate memory for the next
new system.

4. Expert Judgment
4.1 Expert Judgment as Data

The formd use of expert judgment is at the heart of the PREDICT methodology and
appearsin many of its steps. For years, methods have been researched on how to
dructure dicitations so that andyss of this information can be performed Satisticaly
(Meyer and Booker, 1991). Expertise gathered in an ad hoc manner is not recommended
for these purposes.

Expert judgments are the expressions of informed opinion, based on knowledge and
experience, that experts make in responding to technica problems (Ortiz, et. d, 1991).
Experts are individual s who have background in the subject area and are recognized, such
as by their peers, as qudified to address the technica problems. Expert judgment is used
in dl technicd fidlds—medicine, economics, engineering, risk/safety assessment,
knowledge acquisition, decision sciences, pharmaceuticals, environmenta studies, to
name afew.

Because expert judgment is often used implicitly, it is not dways acknowledged as expert
judgment. It can aso be obtained explicitly through the use of forma dicitation, the
focus here.

Examplesof expert judgment include:

the probability of an occurrence of an event,

aprediction of the performance of some product or process,

the decison about what stetistical methods to use and what variables enter into a
datigticd andyss,

the decision about which data sets are relevant for use,

the assumptions used in sdecting amode,

the decison concerning which probability distributions are appropriate to use,

adescription of experts thinking and information sources in arriving & any of the
above responses.



Expert judgment can be expressed in quantitative form—probabilities, ratings, odds,
uncertainty estimates, weighting factors, and physica quantities of interest (e.g., Costs,
time, length, weight, etc.)—or in qualitative form—atextua description of the expert’s
assumptions in reaching an estimate, reasons for selecting or diminating certain data or
information from andyss, and naturd language statements of physica quantities of
interest (e.g., “the system performs well under these conditions.”)

Quantitative expert judgment can be considered to be “data’. And quditative expert
judgment can be quantified and then aso be considered asdata. Like “hard” data from te<t,
experiments or physical observations, expert judgment must be handled according to the
same kinds of considerations.

- Expert judgment is affected by how it is gathered. Elicitation methods take advantage of
the body of knowledge on human cognition and motivation and include procedures for
aiding memory and countering effects arising from the phrasing of the questions,
response modes, the influence of the dicitor, and the expert’s personal agenda (Meyer
and Booker, 1991).

Jugt as planning ahead for what to gather isimportant in experimenta design, such
planning isimportant for expert judgment.

Expert judgment has uncertainty, which can be characterized and subsequently analyzed.
Many experts are accustomed to giving uncertainty estimates in the form of smple
ranges of vaues. In diciting uncertainties, the analysts should be aware of experts

natural tendency to underestimate uncertainty.

Expert judgment can be conditioned on various factors. These factors include: the
phrasing of the question (Payne, 1951), the information the experts considered, the
experts methods of solving the problem (Booker and Meyer, 1988), and the experts
assumptions (Ascher, 1978). A forma structured approach to elicitation gives andydsa
better handle on conditioning effects.

Expert judgment can be combined with other data. For example, in Bayesan updating
andyds, an expert’s estimate can be used as a prior digribution for aninitid reliability.
When test data become available, for the role of the likelihood, the expert’ s rdiability
estimates may be updated, usng Bayesian methods (Kerscher e, d, 1998).

4.2 Formal Elicitation Phases and Steps

The formd steps for Sructuring and designing aformd dicitation are briefly outlined
below. The details and techniques are available in Meyer and Booker (1991).

Phase 1. Determine whether expert judgment can be feasbly dicited. Questions that
must be addressed include, “does the problem involve rapid response?’, “can the
potential experts ‘think doud’ ?’, and “has there been prior use of expert judgment?”.

Phase 2: Determine whether expert judgment can be better eicited in a probabilistic or
dternative (e.g., fuzzy) framework. The answer depends on whether expertsthink in
terms of (subjective) probability or not, what kinds of vagueness are involved, and how
quditetive the information is.
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Phase 3: Desgn the dicitation. This phase involves severd detailed steps:

Step 1: Identify the advisor expert(s) who can provide reasons, goals, or motivations
for championing the work. These individuas can be utilized to obtain and ensure the
continued participation and good will of theinsders

Step 2: Condtruct representations of the way that experts measure and forecast the
performance/rdiability of the system. Thisis begun by asking advisor experts how
the community represents and thinks about the system. For example, experts may
think in terms of ardliability block diagram.

Step 3: Draft the questions. Ask advisor experts to identify the phenomena (variables)
of interest, how these are assessed, and what metrics or natural language terms are
used.

Step 4: Plan the interview Situation. Advisor expert(s) are asked what settings would
be the best, groups'teams or individud interviews. Isit preferable to andyticaly
aggregate multiple expert estimates or reach a consensus? Should estimates be
anonymous?

Step 5: Sdlect the experts. A sdection strategy is developed with the expert
advisor(s) conddering the community of practice, experts ffiliations and
publications, the diversity among the experts, and their availability.

Step 6: Motivate Experts Participation. Ask advisor expert(s) for inhibitors and
motivators to participation, and then mitigate and enhance these. Ask how the
officia request for experts participation should be delivered (e.g., by whom, means,
timing, and order of information). Identify factors that will help the experts do their
jobs.

Step 7: Pilot test the questions and the interview setting. Pilot tests are conducted on
advisor expert(s) and selected expertsto test the “think aloud” protocol, and provide
alast check on the icitation design (i.e., question phrasing).

Phase 4. Perform the dicitation and document the results. Experts estimates and thelr
uncertainties may require some trandation into uncertainty distributions, acommon
performance metric, or quantification. Whatever is done with the experts judgmentsis
fed back to them for review to minimize the chance of misrepresenting their knowledge.

4.3 Knowledge Systems

Knowledge is defined as what qudified individuas know with respect to their technica
practices (eg., problem solving). For example, it addresses questions such as, “how do
you do x under circumstances y?’ and “what isit you know?’ It refersto the context in
which information is used and, therefore, to the community of practice.

Knowledge systems were briefly introduced in step 4 of the implementation of the
PREDICT methodology. They are a web-based eectronic repository customized to the
technical communities that brings together their data and knowledge. The repository is
congtructed in quantitative form to provide the methods and tools that the experts need to
solve problems and make decisions. Congructing a knowledge system relies heavily on
formal expert icitation to structure the system and to “populate’ it. The process of
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congtructing this repository aso provides avauable learning opportunity by breaking
down the complex system into managesable parts. Other advantages for usng a
knowledge system include: the stored knowledge is available at customized levels of
detail for different users such as new project personnel, managers, and decisionmakers,
updates and decisions are traceable (i.e., understanding of why we did thiswhen we did it
and what we knew back when); and the knowledge is available for the next system to be
studied.

Because most technica professionds today are accustomed to using the web, HTML
GUIs are convenient foundations for knowledge systems. Other options include
commerdidly available languages such as IDLC (Interactive Data L anguage) and
software such as IBM Lotus Notes®.

5. Statistical Issuesand Analysis
5.1 Uncertainty, Fuzzy Logic, and Probability

A mgjor portion of the statistical analyses used in PREDICT focuses on characterizing,
combining, and propagating uncertainties through the system structure by using
distribution functions of one type or another. Uncertainties enter into the syssem study in
anumber of different ways.

- There are uncertainties involved in determining weighting factors for combining
experts and for combining other sources of datalinformation. It is recommended
(Meyer and Booker, 1991) that equa weights be used if there is no additiond
information to indicate otherwise. However, sengitivity studies should be made to
determine the impact of that maximum entropy solution.

All the sources of data and information have uncertainties. When estimates are
elicited from experts, uncertainty vaues, usudly in the form of ranges, are dso
elicited. Physical models or smulations models have uncertainties regarding input-
output relationships, in the choice of modds (so-cadled modding uncertainty) and in
mode parameters.

As noted above, different measures and units are often involved in specifying the
performance of the system. To map these into common units conversion factors are
often required. These conversons can aso have uncertainties and require a
digtribution function. For example, a Delphi Automotive, a two- parameter Weibull
mode is used to project the rdiagbility forward into key time points of the systems
lifetimes. a 12 months and a 36 months (for warranty periods), and at 100,000 miles
(for life congderations). This converson from miles to time has an associated
uncertainty distribution.

Probability theory provides a coherent way for determining uncertainties. There are many
different interpretations or meanings of probability that are conggent with its axioms,
Good (1965) provides eeven. Some examples include Rdative Frequency Theory and
Persondigtic or Subjective Theory (including) Bayes Theorem. Because of the flexibility
of interpretation permitted by the persondigiic or subjective theory (Bement, €. 4,
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2000a), it is the one chosen for PREDICT. For example, it is possible to know something
before observations ae made, and to utilize that informatiion. The subjective
interpretation aso dlows us to handle rare and one-of-a-kind events, and interpret such
quantities asa 10° falure rate.

Because rdiability is acommon performance metric and is defined as a probability thet
the system performs to specifications, probability theory is necessary. However, not al
experts or their community think in terms of probability. We have found it useful to use
dternatives such as fuzzy logic (Zadeh, 1965) for quantification when expertsthink in
terms of rules such asif-then rules, and for characterizing a certain type of ambiguity
uncertainty. For example, experts may have knowledge about the system expressed in
datements such as*If the temperature istoo hat, this component will not work very
well.” While that statement contains no numbers for andlysis or probability distributions,
it does contain valuable information and membership functions (from fuzzy control
systems theory) are a convenient way to cgpture and quantify that information (Smith
et.d., 1997, Smith et.a, 1998, LaVoilette, 1995). Moving thisinformation back into a
probabiligtic framework requires a bridging mechanism from these membership
functions. It can be shown (Bement, et. d, 2000b) that membership functions may be
interpreted as likelihoods; therefore the bridging can be accomplished usng Bayes
Theorem. Thisbridging isillustrated in figure 2 that depicts the various methods used for
formulating uncertainty distributions.

PDFs CDFs leeIAlh?js Member ship Functlons Possibility Distributions

From Probability From Fuzzy Set and
(Crisp Set) Theory Possibility Theory

Figure 2. Theoriesfor representing uncertainty distributions

5.2 Case Study: A Development System

Asnoted in the introduction, it is difficult to adequatdly test anewly designed system that
ison atight production schedule. This can cause adelay in production and/or result in
insufficient time to correct problems. The latter contributing to faulty products possibly
getting into customers hands, which resultsin lack of customer confidence and customer
dissatisfaction. Therefore, thereis a clear need for understanding the performance of a
newly designed system during its development program, even as eaxly as the concept
phase of development. Such aneed can be met by estimating rdiability usng al
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avalable information at every lifetime phase, induding when the sygemisan
engineering concept. Gathering and combining dl available information produces an
edimate for the performance of the sysem. The following is an example of how the
PREDICT methodology produces such an estimate.

5.2.1 Defining Performance and Structuring the System

Following the flowchart in figure 1, assume the performance metric is an uncertainty
digribution for the reliability of asystem. Thismetric is defined a various specified time
periods, say 1 year for warranty purposes.  The random variable for the reliability is R(t),
wheret, isthetimein years, and the uncertainty distribution function is f(R;t, g), whereq
isaset of parameters. For smplicity consder three specific sources of information for
esimating R(t) and f(R;t, q): expert judgment, test data, and data arising from smilar
systems.

The next step isto structure the system. Condder asmplein-series system conssting of
four levels asilludtrated in figure 3:

System leve

Design or Process level

Subsystem (combination of processes or components)

Individua components or processes
In redity, failure modes and mechanisms are identified below the individual component
level, but these extensons will not be consdered here. Reliability estimates for the
higher levdls may come from two sources: information from thet leve itsdf and dso
from the integrated estimate arising fromthe level below . The structure can be modified
to accommodate this combination as shown in figure 4.
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Design
(Parts)
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Figure 3. The system Structure

New Subsystem

T U

Subsystem Level
| nformation

A+B Combination
Information

Figure4. Higher Leved Rdiability Combinations
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Therdiability for eech levd of thisin-series system is defined as the product of the
reliabilities within that level and the system levd rdiahility is the product of dl the
reliabilities of the parts (Rqg) and processes (Rp):

Ny M

Rt a)=P Ra(t q) P Ryt ak’)
i=1 k=1

for ny parts and n, processes, where R(t, q;) and R(t, q ") are aspecific reliability modd
chosen by the experts, such as the two- parameter Welbull rigbility function:

Ra(t,! j,bj)=exp(-(I;t)”)and
Ro (t, 1 1, bi) = exp(-(1 " t) Y.

The reliability moddl must be physicaly appropriate and mathematically correct for the
system. Of equa importance, the mode and its usage must be culturaly acceptable to the
organization using it. The Weibull fits the infant mortaity and useful lifetime (Kerscher,
1989) aspects of the system, provides a time dependent function, and, in this case, suits
theimplicit understanding of the design and manufacturing (processes) communities
through their awareness of the corresponding hazard curve' s * bathtub” shape. 1t should
be noted that estimates are required for both parameters, for b (the dope) and for | (the
falure rate) for each component and process.

For a concept system, test data from prototypes or actud parts will be absent.
Information sources at this point in the system’ s development resde mainly within the
collective knowledge of the experts. Other information sources might include data from
previous studies, smilar parts, processes, and perhaps some physical model or smulation
code outputs.

5.2.2 Andyss of Expert Judgment

A formd dicitation is necessary (following section 4.2) to understand what expertise
exigs and how it can be related to the reliability estimation, i.e., how to estimate the
Weibull parameters. For thisexample, it is assumed that the experts are accustomed to
working in teams, and reaching a team consensus istheir usua way of working. It isnot
uncommon to learn from the eicitation preparation steps that not al teams think about
performance using the same terms. Performance could be defined in terms of incidences
per thousand vehicles (IPTV) which convert to failure rates for the product design, but in
termsof parts per million (PPM) failures manufactured which trandate to reiabilities for
processes. Best estimates of IPTV and PPM quantities are dicited from the experts dong
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with ranges of values. In this case, these three estimates are interpreted as the most likely

(i.e., the median), maximum (worst), and minimum (best) estimates.

The job of the satistician isto work with the experts to convert these estimates to the
parameters of the Weibull for both the design and manufacturing (or process) sides. The
top portion of figure 5 illustrates how these estimates fit into the reliability caculations

on both sides.

Sysem
R(1)=Ry()Ry(t)
Design ‘ Process

Full System Model Ry®=f(t! ,b) R, ()=f(t.1".1)
* hard dataon similar T
system (warranty data) | —
+ maximum likelihood ——>|—1L| I ()
estimation Failure Rate Function of information
 expert’s confirmation IPTV reported in PPM
and/or adjustment

Component Leve Block Diagram

Process Block Diagram

/

Ry (1)
* Expert judgment => min, most likely, max

R (1)
* Expert judgment + test data
* Bayesian update

R; (t)
* Expert judgment + test data
» Bayesian update

Figure 5. Dynamic system structure and model

Because IPTV at 1year isafalurerate, adigtribution for I can be determined. Failure
rates are often asymmetric distributions such as the lognormal or gamma. Because of the
positive vaues, variety of possible shapes, and occasiond interpretability of the
parameters (the first parameter corresponds to a pseudo number of failures and the
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second parameter to pseudo total time on test), the experts chose the gamma. The best
and worst cases were defined to represent the maximum and minimum possible vaues.
However, accounting for the well-documented tendency of experts to underestimate
uncertainty (Meyer and Booker, 1991), these values were equated with smdll tail
percentiles. Sengtivity studies are recommended to demondrate to the experts the effects
of such adecison, ensuring that their initid estimates are not misrepresented.

Another difficulty arises when fitting three expert estimates to a two-parameter
digtribution. One of the three estimates will not match, and the experts may insst that the
didribution exactly fit through al three estimates. A two- piece digtribution (not a
mixture of distributions), joined a one of the expert estimates can accommodate this
request. Figure 6 illudtrates the result of thisimplementation using agamma.

0.002 0.004 0.006 0.008 0.01

Figure 6. CDF of gamma formed from experts estimates of {.05, 1.0, 15.0} IPTV

The experts agreed that the b parameter for the components and subsystems of the new
system should correspond to that of previous, smilar systems, for which warranty was
available. Maximum likdlihood estimatesfor b from Weibull fits of this warranty data
provides a sarting estimate that the experts were free to adjust or confirm for the new
system. Warranty datais usudly only available at the system or certain subsystem leves,
making it necessary for the experts to make the find decisions about b vauesfor dl parts
and processes at lower levels.
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As part of the dicitation, experts were aso asked to specify dl known or potentia failure
mechanisms, or failure modes, for each part and process. Failure modes arefailuresin
the components themselves, such as a vave wearing out, mistakes being made during the
manufacture of components, or improper assembly of multiple componentsinto a
subsystem.  For updating and documenting purposes, the percent or proportion
contribution of each failure mode was aso specified by the experts.

Processes are compilations of complex steps and issues, which must be considered to
convert the experts PPM estimates to Welbull parameters. Some of these issues rdate to
how qudity control and ingpections integrate with the process. For example, the
reliability of the process depends upon the percent or proportion of itemsthat dip through
the quaity control procedures (caled spills). Quantities such as frequency and duration
of these pills affect reiability, and these are dicited aong with the functions required to
specify their relationships to the PPM values provided for the processes themselves.
Other issues are involved with fallure modes. Through a series of transformations
designed to account for these issues, the PPM estimates from the experts were converted
to Weibull parameters!” and b” for each process as depicted in figure 5. As on the design
Sde, experts estimates of best, most likely, and worst case vaues were used to fit an
uncertainty distribution for the process reliabilities. The experts chose to use a beta
digribution for the religbilities trandated from their three PPM estimates. The reasons
include the beta s appropriate (0 to 1) range, its wide variety of possible shapes, and its
occasond interpretability of parameters (the first parameter as pseudo number of failures
and the second parameter as pseudo number of trias).

5.2.3. Initid rdiability caculation

Once the parameters and uncertainty distributions were specified for the design parts and
manufacturing processes, the initid rdiability, Ry(t, I, b) was caculated, usng Monte
Carlo smulation. Because thismodd is time dependent, predictions at specified times
are possible. Most of the data and expert estimates are given in terms of 1 year. For
gpplications such as automobiles, three years isimportant for warranty reasons, and
100,000 milesis dso important as alifetime indicator. The change from time in yearsto
time in mileage is one example of the need for a conversion factor. Such factors usudly
have uncertainties attached, so the converson aso requires an uncertainty distribution.
This didribution was fit usng maximum likelihood techniques applied to higorica
times-to-mileage data. This uncertainty distribution becomes part of the Monte Carlo
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smulaion. Theinitid religbility caculation is concluded with system, subsystem,
component, and process distributions calculated a these various time periods. Figure 7
shows the reliability for the total processes, R, (t, 17, b"), a t=1 year, 3 years and 100,000
miles

Reliahility 10

Figure 7. System Rdiability Uncertainty digtributions for 1 year (right), 3 years (middle),
and 100,000 miles (I€ft).

5.2.4 Tracking and updating the dynamic system

Theinitid rdiahilities are for the conceptua system and may be quite poor with large
uncertainties. Upon review, the experts can decide which parts or processesto change,
where to plan for tests, what prototypes to build, what vendors to use, or ask what-if
questionsin order to improve rdiability and reduce uncertainty. Before any usualy
expensve actions are taken (e.g. building prototypes), what-if cases are calculated to
predict the effects on estimated reliability of such proposed changes or tests. These cases
can involve changes in the structure, structural modd, experts estimates, and the terms
of the reliability model aswell as effects of proposed test data results. Further
breakdown of componentsinto the failure modes may be required to properly map these
changes and proposed test datainto the reliability model.

Because the system is under development or undergoing change, new informetion
becomes available a various stages of itslifetime. Examples include design changes
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such as adding, replacing, and deleting parts and processes, supplier changes, prototype
test data, production data, new engineering judgment, etc. Incorporating these changes
and new information into the exigting reliability estimatesis referred to as the updating
process.

New information and data from different sources or of different types (e.g. tests, process
cgpability studies, engineering judgment) are andyticaly merged by combining
uncertainty distribution functions of the old and new sources. This merging usualy takes
the form of aweighting scheme:

wy-fi+ws -
where w; are weights and f; are functions of parameters, random variables, models,
probability distributions, uncertainty distributions or rdligbilities, etc. Experts often
provide the weights, and sengtivity analyses are performed to demondtrate the effects of
their choices. TheR(t, 1, b) boxesin figure 5 illustrate the generd updating process.

Alternatively, Bayes Theorem can be used as a particular weighting scheme, providing
weights for the prior and the likelihood through agpplication of the theorem. Bayesian
combination is often referred to as Bayesian updating. If the prior and likelihood
distributions overlap (reinforce each other), then Bayesian combination will produce a
posterior whose variance is smaler than if the two were combined via other methods,
such as alinear combination of random variables or a mixture. Thisis one advantage of
using Bayes Theorem.

Because test data at the early stages of system development are lacking, theinitia
religbility, Ro(t, I, b), is developed from expert judgment and forms the prior distribution
for the system (figure 2). As the system develops, data and information may become
availablefor only certain parts or processes (e.g. system, subsystemn, component) and this
would be usad to form likelihood didtributions for Bayesan updating. All of the
digtribution information in the items at the various levels must be combined upward
through the system leves, to produce afind estimate of the rdiability and its uncertainty
at various levels dong the way, until reaching the top, or system, level. Three different
combination methods are used to form the next (updated) rdiability, Ru(t, I, b):

For each prior distribution that must be combined with a data-based or likelihood

digtribution, Bayes Theorem is used and a posterior distribution results.
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Pogterior digtributions within agiven level are combined according to the structurd
mode (e.g., multiplication of rdiabilities for parts/ processes in series) to form the
prior digtribution of the next higher leve (figure 2).

Prior digtributions at a given level are combined within the same part / process to
form the combined prior (for that item) which is then merged with the data (for that
part or process). This gpproach is continued up the levels until asystem level
posterior distribution is devel oped.

As more data and information become available and are incorporated into the reliability
cdculation through Bayesian updating, they will tend to dominate the effects of the
experts estimates developed through expert judgment. In other words, R(t, 1, b)
formulated from many test results will look lessand lesslike Ro(t, I, b) derived from
expert estimates.

For genera updating, test data and other new information can be added to the existing
reliability calculaion at any level and / or for any part or process. Thisdata/ information
may be gpplicable to only to asingle failure mode. When new data or information
becomes available a a higher leve (e.g., subsystem) for ardiability caculation a sep i,
it is necessary to back propagate the effects of this new information to the lower levels
(e.g., component). The reason isthat because at some future step, i+, updating may be
required at that lower level and its effect propagated up the structure. The Satistica
issues involved with this back propagation are difficult (Martz and Almond, 1997). Itis
also possible to back propagate by gpportioning either the reliability or its parametersto
the lower level according to their contributions at the higher level.  While it can be
shown that for well-behaved functions, solutions are possible, they may not be unique.
Therefore, constraints may be placed on the types of solutions desired by the experts. For
example, requiring that regardless of the gpportioning mechanism used to propagate
downward, the forward propageting maintains the origina results a the higher leve.

Genera updating is an extremdy useful decision tool for asking what-if questions and for
planning resources, such astests, to determine if the reliability requirements can be met
before actudly beginning production. For example, the rdigbility uncertainty
digtributions cd culated using smulation are empirica with no particular distribution

form, but due to their asymmetric nature and because their range isfrom 0to 1.0, they
often appear to fit well to beta distributions. Suppose a beta digtribution of the forn
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Beta(x, a, b) = g(a+b) x @V (1-x) ®Y 0=x=1, a>0, b>0
&(a)-c(b)

isfit to acomponent religbility uncertainty distribution at some stage, R(t, I, b), resulting

in parametersa = 81.9 and b= 1.01. The experts want to determine what would be gained
by building 40 prototypes, testing them, and assuming al passed. Taking advantage of

the beta as a conjugate prior for the binomid data, the new component rdliability
digribution, for R+4(t, I, b) would be a betawith parametersa=81.0+40=1219and b
=1.01 + 0= 1.01. The median improves dightly (from, 0.991 to 0.994) but, more
importantly to the experts, the 5" percentile improves from 0.96 to 0.98, providing an
incentive to invest in the prototypes.

The generd updating cycle continues through the lifetime of the system asindicated in
figure 1. Figure 8 depictsthe tracking of the reliability through the system devel opment
indicating three percentiles (5™, median, and 95™") of the reliahility uncertainty

digribution at various pointsin time. Theindividua data points begin with theinitia
reliability characterization Ry(t, I, b) for the system and continue with the events
associated with the genera updates, R(t, 1, b), the what-if cases, and incorporation of test
results (depicted on the figure with verticd lines). As previoudy noted, asking what-if
questions and cdculating the effects on rdiability of those provided vauable information
for designing and modifying prototype building and test planning, before costly decisons
were made.

Graphslike figure 8 were condructed at dl the levels of system to monitor the effects of
updating for individua parts and processes. Graphs were made for these levels at the
desired prediction time vaues (i.e., 1 year, 3 years and 100,000 miles) to determine if
reliability requirements were met at those important time pointsin the life of the system.

Plots like figure 8 capture the results of the experts’ efforts to improve rdiability and
reduce uncertainty. The power of the gpproach is that the roadmap devel oped leads to
higher reliability and reduced uncertainty, and the ability to characterize al of the efforts
made to achieve these improvements.
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Figure 8. Tracking the system leve rdiability uncertainty distribution at 1 year.

6. Conclusions

While this application of Information Integration Technology has a proven track record
of successful use, the PREDICT methodology does not claim to have solutions for al
technica problems. There are many opportunities for research to expand the genera
Information Integration Technology base. A partid list of these opportunitiesis given
below.
The generd areas of predictability and uncertainty analysis are not completely
founded. More specificaly in the uncertainty arena are chalenges in understanding,
specifying, quantifying, and propagating uncertainties. Are there, better methods of
characterizing uncertainties than uncertainty distributions?
Quantification of quditative information has been a continuing research topic in
expert judgment work. Our methods reflect those advances by quantifying rules
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using fuzzy system control methods. Other quantification methods of quditative
information are needed. Do other disciplines hold the key for new methods?

The PRA and decision analysis communities are branching into new methods of
structuring the system with advances such as directed graphs, causa diagrams,
networks, and processtrees. Because the structure is so important for gathering and
combining information sources relevant to the performance requirements, new
methods are needed to accommodate ill-defined processes rather than just
congtructing a system as a sum of parts.

More methods are needed to handle the back propagation problem, especialy when
dedling with empirica digtributions and more complex structures.

Dependencies between the various sources of information are another topic for more
research. For decades, this issue has been tossed about in the literature regarding
dependencies among experts, without substantial resolution. How should these be
determined? How do they affect the process of combining the different sources?
Methods of combining / integrating the various sources of informeation/data have
relied on the traditiona methods of combining ditributions. Can other fidds, like
fuzzy logic, offer other solutions? Can metrics be developed to determine which
method works best for which type of information integration problem? We have been
investigating aress of information theory with entropy- based measures like Jeffreys
J, (1998), quarntiles, or relative distributions (Handcock and Morris, 1999) for such
puUrposes.

Finaly, research in the knowledge capture and representation fields is ongoing.
These areas include sdf-diditation and diciting and andyzing tecit (implicit)
knowledge. Although these involve different disciplines, the research has direct
implications in methodologies, such as PREDICT, that ded with information
integration.

This Information Integration Technology, PREDICT, has demondtrated its effectiveness
for expertise capture, rdiability, and performance estimation in the nuclear wegpons
program and for concept system development in the automotive industry. In the post cold
war era, the basic philosophy of information integration is positively impacting the
certification process of our nuclear systems. This same philosophy is providing the

formal structure for taking advantage of acompany’s greatest asset—the knowledge and
expertise of its engineers and designers. Our automotive and wegpons customers agree
that the greatest strength of Information Integration Technologies such as PREDICT is
their ability to customize specific user needs, making them vauable methodologies for al
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design or engineering communities. Thisis because users establish a core of expertise
that perpetuates through the Information Integration Technology resulting in a permanent
shift in the way they currently think about religbility. We believe Information Integration
Technologies such as PREDICT will revolutionize the way products are devel oped and
andyzed.
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