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1  Introduction and Background 
 
Fuzzy control system techniques are used to sythesize systems, often including their 
expert operators, for enhanced control of processes and systems.  These techniques 
can be especially useful in applications involving highly nonlinear systems or 
systems whose mathematical models are either inaccurate or unavailable. The 
control system maps observed plant output parameter values into required control 
actions, or plant inputs.  In a fuzzy control system, these observed plant outputs are 
transformed into degrees of membership in fuzzy plant-output sets via output 
membership functions.  If-Then rules transform these degrees of output membership 
into weights associated with corresponding plant-input sets.  The input sets are 
characterized by input membership functions.  The set of possible control actions, 
the control-action set, is characterized by a weighted combination of the 
corresponding input membership functions.  The precise control action is 
determined via a defuzzification process such as selecting the centroid of the 
control-action set, based on the combined input membership function that describes 
the control-action set [1].  
 A similar process can be applied to the development of uncertainty distributions 
in applications such as probabilistic risk assessment, probabilistic safety assessment, 
and reliability analysis. For instance, the plant-output parameters used by the control 
system may become component condition, and the control-action may become the 
predicted component response or performance. 
 Fuzzy logic methods permit experts to assess parameters affecting performance 
of components/systems in natural language terms more familiar to them (e.g., 
"high," "good," etc.). Recognizing that there is a cost associated with obtaining 
more precise information, our particular interest is in cases where the relationship 
between the condition of the system and its performance is not well understood, 
especially for some sets of possible operating conditions, and where developing a 
better understanding is very difficult and/or expensive.  The methods allow the 
experts to make use of the level of precision with which they understand the 
underlying process [2]. 



 We consider and compare various methods of formulating the process just 
described, with an application in reliability analysis where expert information forms 
a significant (if not sole) source of data for reliability analysis. The flow of 
information through the fuzzy-control-systems based analysis is studied using a 
simple, hypothetical problem which mimics the structure used to elicit expert 
information in Parse (such as in NUREG 1150 [3]). We also characterize the effect 
of using progressively more refined information and examine the use of fuzzy-based 
methods as data pooling/fusion mechanisms. 
 
2  The Fuzzy System Formulation 
 
Consider a system with one component, which can influence performance of the 
system.  The component is subject to wear, potentially degrading performance.  For 
a given condition level (analogous to plant output), performance degradation will be 
variable, and the range of possible performance levels is analogous to the control-
action set. Figure 1 shows membership functions for three hypothetical component-
condition sets and three performance-level sets.  The notation N(mean, standard 
deviation) is used for the performance-level functions which are normal 
distributions without the scale factor so that they range from 0 to 1.    
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Figure 1. Component-condition and performance-level sets for 3 membership functions 

 
 Three rules define the condition/performance relationship: if condition is A, then 
performance is A; if condition is B, then performance is B; and if condition is C, 
then performance is C. If component condition is x = 4.0, then x has membership of 
0.6 in A and 0.4 in B. Using the rules, the defined component component-condition 
membership values are mapped to performance-level weights and performance-level 
set A, N(800,25), characterizes the range of performance values with a weight of 
0.6 and the membership function for performance-level set B, N(650,75), 
characterizes the range of performance values with a weight of 0.4.  In fuzzy control 
system methods, the membership functions for performance-level sets A, 
N(800,25), and B, N(650,75), are combined based on the weights 0.6 and 0.4.  This 
combined membership function can be bimodal and can be used to form the basis of 
an uncertainty distribution for characterizing performance for a given condition 
level.  
 Departing from standard fuzzy systems methods, we normalize the combined 
performance membership function so that it integrates to 1.0.  The resulting 
function, f(y|x), is the performance, y, uncertainty distribution corresponding to the 
situation where component condition is equal to x. Figure 2 is the cumulative 
distribution function, CDF,  form of the uncertainty distribution, F(y|x). If 
performance must exceed some threshold, T, in order for the system to operate 
successfully, the reliability of the system for the situation where component 
condition is equal to x can be expressed as R(x) = 1- F(T|x). As illustrated in Figure 
2, a threshold of T = 550 corresponds to a reliability of R(4.0) = 0.925. Unless 
otherwise stated, the performance membership functions or combined performance 
membership functions will refer to normalized functions. 
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Figure 2. Performance uncertainty CDF 
 
3  Study Description 
 
We now consider a set of hypothetical situations to investigate how well the fuzzy 
characterization of uncertainty outlined above describes an unknown relationship 
between condition and performance.  The true relationship between condition, x, 
and performance, y, unknown in actual applications, is specified using a series of 
normal distributions whose means and variances are calculated for 0≤x≤20. In 
Figure 3, the mean (shown as the solid line) and the standard deviation of y given x 
are 

µy = 800 - 25x + 2x2 - 0.1x3,    σy = 25 + 5x . (1) 
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Figure 3. Underlying true relationship between condition and performance 

 



 To simplify the study, the fuzzy rules that map condition into performance are 
exact, meaning input membership function A maps exactly into output membership 
function A, a N(800,25) in this case.  For the first step of the study, it is assumed 
that the condition/performance relationship is known exactly at three values.  That 
is, if condition is equal to one of these values, then the performance membership 
function is the corresponding normal distribution specified in (1).  The number of 
evenly spaced membership functions is then varied between three and eleven to 
determine how many are necessary to capture the underlying true normal 
distributions.  From Figure 1, it is seen that for x = 0, 10, and 20, the output 
membership normal functions are exactly specified, with no mixtures.  At all other 
values of x, mixtures result, as seen in Figure 2. 
 Formulating a mixture distribution can result in a "valley" or trough near the 
centroid, giving little density in the place where the central estimate is taken.  A 
distribution from a linear combination of the two membership distributions results 
in a smoother transition, and a linear combination of two normals is another normal, 
making calculations easy.  Therefore, these two combination approaches were used 
to calculate the uncertainty distributions for performance.  
 
4  Results 
 
To determine how well the resulting uncertainty distribution for performance 
matches the underlying true normal, goodness-of-fit tests [4] were applied for half-
integer values of x on 0≤x≤20.  The Kolmogorov test for normality is shown to be 
quite powerful [5] against all alternative distributions.  Figure 4 shows where the 
deviations from the specified underlying normals occurred for the mixture of 
distributions approach, using a 1% level of significance.  
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Figure 4. Deviations from normality for mixture performance distributions 

 
 Another goodness-of-fit test was developed using the Kullback-Leibler 
information,  
 

 f(x) ln(f(x) / g(x)) dx (2) 
 

where the density of the specified normal is g(x) and the performance distribution is 
f(x).  This test produced similar results to those in Figure 4. 
 Results for the linear combinations are similar to the mixture approach.  In both 
simple cases presented here, a minimum of five membership functions is indicated 
for close matching to the underlying normals. 
 
5  Conclusions and Further Studies 
 
Although this study indicates that a minimum of five membership functions 
sufficiently captures the underlying true normals for either the mixture of 
distributions or linear combinations approaches, further studies are needed to 
determine the influence of other effects on this result.  It is common practice to 
represent the expert's knowledge using triangular distributions rather than normals.  
The effect of using non-normal distributions for the component-condition sets and 
for the performance-level sets and the underlying true distributions is not known.  In 
this study equidistant spacing of the condition membership functions were used.  
Common sense dictates that the experts should be able to provide better spacing of 
the membership functions for the component-condition sets and for the 
performance-level sets according to their knowledge. Such optimal spacing should 
result in more accurate results than indicated in this study.   
 In addition, work is underway to develop better goodness-of-fit tests such as 
those based on Kullback-Leibler information [5] for determining how well the 
resulting distributions match the underlying truth.  Other measures of goodness-of-
fit may be more useful for a given application.  For example one might be interested 
in representing the 5th and 95th percentiles accurately, rather than the entire 
distribution.  
 Another area of study is multiple-input, multiple-output systems — an area 
where fuzzy control systems have been used successfully.  One such example is a 
multiple component system where one is interested in both performance and safety.  
 The replacement of the fuzzy control system approach with a probabilistic 
controller approach is described in [6].  This area for further study essentially 
involves replacing the performance membership functions with probability density 
functions and formulating a mixture problem. 
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