
UNCERTAINTY AND
RELIABILITY
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OUTLINE

� Sources of Uncertainty

� Background information

1. Probability basics

2. Reliability/Performance Models

� Different sources of information
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SOURCES OF UNCERTAINTY

� “Statistical” Variability

1. sampling variability

2. measurement error

� Data

� Bias

� Model
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SOURCES OF UNCERTAINTY

Example

� Want to understand the effect of threat

characteristics on missile performance

� Response variable: miss distance

� Explanatory variable: velocity of the threat
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SOURCES OF UNCERTAINTY
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SOURCES OF UNCERTAINTY
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SOURCES OF UNCERTAINTY
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SOURCES OF UNCERTAINTY

Computer Models May Induce Bias

� Physical experiments: everything’s in there, we

just don’t know what’s in there

� Computer experiments:not everything’s in there,

but we know everything that’s in there.

� two kinds of bias:

1. location bias

2. scale bias
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SOURCES OF UNCERTAINTY
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SOURCES OF UNCERTAINTY
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SOURCES OF UNCERTAINTY
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DISCUSSION

� Difficulties

1. Statistical – need data (sometimesa lot)

2. Data – exactly what constitutes “strange”?

3. Bias – identifiability

4. Model – by far the hardest to assess

� WIP
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CONDITIONAL PROBABILITY

� Independence:Pr(A\B) = Pr(A)�Pr(B)

� Conditional Probability

Pr(AjB) =
Pr(A\B)

Pr(B)
Note: if A andB are independent, then

Pr(AjB) = Pr(A).
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RELIABILITY MODELS

� What is reliability?

R(t) = Pr(T � t) =
Z t

0
f (x)dx

where f (x) is the distribution of failure times.

� Easy textbook definition, hard in practice.

1. What is a failure?

2. Is there a mapping between performance and

reliability?
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RELIABILITY MODELS

slide indicating problems defining reliability

reliability vs. performance
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RELIABILITY MODELS

Hazard Rate

� Definehazard rate as:

h(t) =

f (t)

R(t)

� So what?

1. Instantaneous failure rate

2. Great for model identification
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RELIABILITY

Reliability Basics

� T represents ourrandom variable of interest.

� OftenT is the time until failure or failure time.

� Probability distribution of failure times (f (t)).

� t represents therealization of the random

variable.
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RELIABILITY – BINOMIAL

� Model for success/failure data

� n trials,X successes

� p = Pr(success) is the same for all trials

� Trials are independent

�

Pr(X = c) =
�

n
c

�

pc(1� p)n�c
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RELIABILITY – EXPONENTIAL

� Reliability

R(tjλ) = exp�λt

;t > 0

� Hazard Rate

h(tjλ) = λ

� Mean Time to Failure (MTTF)

E(T ) =
1
λ

� Variance of TTF

V (T ) =

1
λ2
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RELIABILITY – EXPONENTIAL
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RELIABILITY – WEIBULL

� Reliability

R(tjα;θ) = exp

�
�

�

t�θ
α

��
;t > θ

� Hazard Rate

h(tjα;θ) =
β
α

�
t�θ

α

�β�1

;t > θ

� Mean Time to Failure (MTTF)

E(T ) = θ+αΓ
�

β+1
β

�

� Variance of TTF

V (T ) = α2

�

Γ

�

β+2
β

�
�Γ2

�
β+1

β
��
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RELIABILITY – WEIBULL
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RELIABILITY – LOGNORMAL

� Reliability: if log(Y )� Normal thenY � LN

R(tjξ;σ) = 1�Φ

�

logt� ξ
σ

�

� Hazard Rate

h(tjξ;σ) =
φ

�

logt�ξ
σ

�

σt�σtΦ

�

logt�ξ
σ

�

� Mean Time to Failure (MTTF)

E(T ) = exp

�

ξ+σ2
=2
�

� Variance of TTF

V (T ) = (e2ξ+σ2

)(eσ2

�1)
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RELIABILITY – LOGNORMAL
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RELIABILITY – GAMMA

� Reliability:

R(tjα;β) =

Γ(α)�Γ(α;tβ)

Γ(α)

� Hazard Rate

h(tjα;β) = βα tα�1exp(�tβ)

[Γ(α)�Γ(α;tβ)]

� Mean Time to Failure (MTTF)

E(T ) =
α
β

� Variance of TTF

V (T ) =

α
β2
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RELIABILITY – GAMMA
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PERFORMANCE

Performance Basics

� Y represents ourrandom variable of interest.

� Represents the level of performance and its

uncertainty.

� Probability distribution of failure times (g(y)).

� y represents therealization of the random

variable.
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PERFORMANCE – NORMAL

� Performance Distribution:

g(yjµ;σ) = (2π)�

1
2 exp

�
�

(y�µ)2

2σ2

�

� Mean performance

E(Y ) = µ

� Variance of performance

V (Y ) = σ2

� Sometimes called “Gaussian”.
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PERFORMANCE – BETA

� Performance: [support on (0,1)]

g(yjno;xo) =

Γ(no)

Γ(xo)Γ(no� xo)

yxo�1(1� y)no�xo�1

� Mean performance

E(Y ) =

xo

no

� Variance of performance

V (Y ) =

xo(no� xo)

n2
0(no +1)
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EMPIRICAL DISTRIBUTIONS

� Probability distributions must integrate to one

� Why force them into one of the above forms?

(Besides making it easier to teach the course?)

� Bumps and tails

� Kernel density estimators
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EMPIRICAL DISTRIBUTIONS
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LINEAR MODELS

� Recall: We wanted to understand the miss

distance of our Really Deadly Missile System as

a function of the threat characteristic: Threat

velocity.

� Are there other threat characteristics of interest?

1. Velocity (V )

2. Radar cross section (C)

3. Penetration aids (A)

4. Pitch (P)
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LINEAR MODELS

� When we only have one threat characteristic

(velocity), we have

Yi � N(β0+β1Vi;σ2)

� Now, how to compactly represent the situation

where we are interested in all 4 threat

characteristics?

Yi � N(β0+β1Vi + � � �+β4Pi;σ2)

� Not very compact (20 explanatory vars)
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LINEAR MODELS

� Better:

Y � N(Xβ;σ2I);

whereX contains all 4 explanatory variables and

I =
0

BBBBBB@
1 0 � � � 0

0 1 � � � 0
... 0

... 0

0 � � � � � � 1
1

CCCCCCA
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DISCUSSION

� We’ve just discussed statistical models for “data”.

� What types of things constitute “data”?

1. Complex computer codes

2. Physical experimental data

3. Expert judgement

4. Other
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DISCUSSION

� While most of the discussion for the class will

focus on simple parametric models, keep in mind

that

1. empirical distributions and non-parametric

models are often useful, and

2. more complicated models are used frequently,

and come up naturally as different data

sources are combined.
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