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INTRODUCTION

Purpose: 

Describe and illustrate simple methods for 
combining information  

Overview:
• Classical Methods
• Basic Bayesian Methods
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RDMS EXAMPLE

GOAL: Estimate R(t| θ) for motor component
one (MC1).

R(t| θ) = Pr (T > t) is the reliability function, 
there are several choices.

θ = mean time to failure due to overheating 
of MC1

T = time to failure

PROBLEM: Determine a value for θ.
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INFORMATION SOURCES 
FOR EXAMPLE

• 2 Experts
• 3 Computer Codes (similar system)
• 5 Sets of Data from Physical 

Experiments  
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EXPERT’S INFORMATION

Jill: mean = 80.0  standard deviation = 4.0
Jack: mean = 73.0  standard deviation = 4.0

60 70 80 90 100
θ

π(θ)

Suppose Jack and Jill are identified as experts due 
to their experience with MC1’s use in previous 
systems.  From these elicitations, distributions 
and point estimates for θ are obtained.
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COMPUTER CODES  

Code 1: mean = 78.0  standard deviation = 6.3
Code 2: mean = 69.0  standard deviation = 10.8
Code 3: mean = 67.0  standard deviation = 6.5

50 60 70 80 90 100

Down the hall in the computer lab, three 
computer models have been identified as being 
able to forecast distributions for θ.

θ

π(θ)
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PHYSICAL EXPERIMENTS

In a lab across the street, physical experiments 
(heat stress) were performed on five different sets 
of motors.  For each motor, the time to failure for 
MC1 was observed.  

60 70 80 90 100
t = time to failure

f(t;θ)

mean      std
Exp1 87.0       5.0
Exp2 83.0       3.5
Exp3 67.0       3.0
Exp4  77.0       4.0
Exp5 70.0       5.0



8

Code 1

Expert 2Expert 1

Final Integrated Estimate

Code 3Code 2

Combination

INFORMATION SOURCE
INTEGRATION

Experiment 1

Experiment 4

Experiment 3

Experiment 2

Experiment 5
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APPROACHES FOR 
DETERMINING θ

These differences are subtle, but lead to two 
different approaches for determining θ

• Classical Estimation
– data are random
– θ is fixed
– the problem is to estimate θ

• Bayesian Prediction
– data are fixed
– θ is random
– the problem is to use the distribution π(θ) to 

predict θ
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CLASSICAL ESTIMATION: BLUE

• E:  Estimation 
• L:  Linear, a weighted average

• U:  Unbiased, correct on average,

• B:  Best, most precise,

– wi is inversely related to

– wi, wj are inversely related to  

...ˆwˆwˆwˆ
332211 +θ+θ+θ=θ
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θ
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CLASSICAL ESTIMATION:
EXPERT JUDGMENT

• The elicited information is taken as estimates of θ :

– Jill =  80 and    Jack =  73

– STD(   Jill) = 4 and STD(   Jack) = 4

• An intuitive way to combine this information into  
a single estimate for θ is 

– = .5(80) + .5(73) = 76.5

–STD(   ) = sqrt(.52 ∗ 42 +.52 ∗ 42) = 2.82

–BLUE because the STDs are the same and the 
information is assumed independent.

θ̂ θ̂

θ̂ θ̂

θ̂
θ̂
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COMPUTER CODES:
SIMILAR SYSTEMS

• Similar system: a process distinctly different from the 
system under study (e.g., random variable T~f(t; θ)), 
but expected to behave in a similar fashion
– prototypes

– components produced by the same design team

– computer codes

• Assume the performance of the similar system is 
measured by X ~ f(x;δ)
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SIMILAR SYSTEMS

• What does it mean to be “similar”?
– It does not mean that T and X are correlated.

• The distribution functions f(t;θ) and f(x;δ) are 
similar in form and location

• δ is treated as a surrogate for θ, with θ = δ + ε, 
where ε is random, with µε and σ2

ε , OR some 
other relationship between f(t;θ) and f(x;δ) must 
be assumed and modeled
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COMPUTER CODES:
SIMILAR SYSTEMS

• Computer code gives estimate of δ and 
This is the similar system information.

• Suppose there is no reason to believe δ is greater 
than or less than θ.  This means E(ε)=0 and            

• The variance estimate is

Var(   ) = Var(   ) + σ2
ε.

• Now we are ready to combine the computer code 
information with the expert judgment data.

.ˆˆ δ=θ

δ̂θ̂

.)ˆ(Var 2
εσ+δ
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EXPERT JUDGEMENT + CODES

• We now have five
• The BLUE for θ is a weighted average of the five 

with weights inversely proportional to the STDs.

= .34(80) + .34(73) +
.14(78) + .05(69) + .13(67) 

= 75.12

Std(   ) = 2.34

.s)'ˆSTD( and s'ˆ θθ

θ̂

θ̂
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PHYSICAL EXPERIMENT DATA

• For a single experiment                      are computed 
in a traditional fashion using maximum likelihood 
or method of moments estimation, e.g.,

• If the experiments generated completely 
independent observations, the combined estimate 
would be obtained using weights that are a 
function of the individual variances (same as 
previous example).

• Let’s suppose the experiments do not generate 
independent data.  Now the weights for the BLUE 
for θ will depend both on the variances and the 
correlations between the experiments.

)ˆVar( and ˆ θθ

.Tˆ =θ
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CLASSICAL CRITIQUE

• Advantages
– robust (distribution free)
– computationally straightforward

• Disadvantages
– sub-optimal use of information
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Posterior Likelihood    ∗ Prior

60 70 80 90 100

prior
posterior

likelihood

π(θ|data) ∝ f(data|θ) ∗ π(θ)

BAYESIAN PREDICTION
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Code 1

Expert 2Expert 1

Final Integrated Distribution

Code 3Code 2

Combination

INFORMATION SOURCE INTEGRATION

Experiment 1

Experiment 4

Experiment 3

Experiment 2

Experiment 5
π (θ) f (t|θ)

π(θ|t)
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FINDING THE PRIOR π (θ)

Use general mixture distribution 
weighting formula

π (θ) = w1·π 1 (θ)+w2·π 2 (θ)+ w3·π 3 (θ)+....

Weighting Schemes
•Equal Weights
•Expert Supplied Weights
•Weights Based on Inverse Variance
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CODE ESTIMATES

Equal weights combination
1/3 π1 (θ)+1/3 π2 (θ)+ 1/3 π3 (θ)

Combined mean=71.3
Combined standard deviation=9.4

50 60 70 80 90 100
θ

π(θ)
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CODE + EXPERTS’ ESTIMATES

Expert supplied weights combination: 
1/6 π1 (θ)+1/6 π2 (θ)+1/6 π3(θ)+1/4 π4(θ4)+1/4 π5 (θ5)
{w1= w2 = w3 =1/6 ; wexpert1 = wexpert2 =0.25}

Combined Estimates:
mean=73.9 
standard deviation=8.1
95% interval [55.7, 87.6]

50 60 70 80 90 100
θ

π(θ)
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ALTERNATE CODE + EXPERTS 
COMBINATION

Weights inversely proportional to variances and 
account for distances from overall mean
{w1, w2, w3, w4, w5}

For each information source i, i=1,2,3,4,5, let 
mean = mi and standard deviation = si.  Then,
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Combined Estimates:
mean=73.85 
standard deviation=6.6
95% interval [59.4, 86.4]

50 60 70 80 90 100

ALTERNATE CODE + EXPERTS 
COMBINATION

θ

π(θ)
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IMS WEIGHTS VS EXPERT SUPPLIED

mean=73.85 
standard deviation=6.6
95% interval [59.4, 86.4]

mean=73.9 
standard deviation=8.1
95% interval [55.7, 87.6]

60 70 80 90 100θ

π(θ)

IMS Expert
Supplied
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PHYSICAL EXPERIMENTS:  f(t|θ)

60 70 80 90 100
t

f(t;θ)

To build a likelihood, f(t|θ), from this data we need 
some assumptions:

• Across the five experiments, T ~ (θ,Σ)
• Σ must be estimated or predicted via some prior

For this example we will assume T~ MVN(θ,        )EXPΣ̂
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LIKELIHOOD RESULTS

mean=78.4 standard deviation=1.9

60 70 80 90 100

f(t|θ)
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BAYESIAN COMBINATION

Example with IMS weighted Priors (codes + experts),
and MVN Likelihood model (physical experiments).

60 70 80 90 100

prior

posterior

likelihood
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BAYESIAN CRITIQUE

• Advantages
– optimally combines information
– naturally accommodates expert judgement and 

information updating

• Disadvantages
– specifications of priors can be difficult 

(sensitivity analyses recommended)
– computationally complex
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CONCLUSIONS

• Bayesian and classical methods have more 
similarities than differences

• The methods should not produce wildly different 
results

• Computing both is a good check for
– specification/computational errors
– sensitivities

• Weights are selected via theory or elicited from 
experts --- theory is not w/o assumptions

• In practice, we would also put distributions on the 
weights


