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OBJECTIVES

� Introduce a statistical method for use in analyzing

combined computer and physical experimental

data with expert opinion

� Illustrate the method by means of an example

� Discuss the proposed method and its application
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OUTLINE

� Motivation/Background

� Present the model

� Example

� Conclusions/Discussion
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BACKGROUND

� Computer/Physical experimental data

� Same (or a subset of the same) factors, but

possibly different factor values

� Different responses – transfer function

� Expert opinion

� Simultaneously analyze the combined data using

recursive Bayesian hierarchical model (RBHM)
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MOTIVATION

� Why bother? What do we gain?

1. More precisely estimated model

2. Validation of computer experiments

3. Better predictions

� Cost savings (design?)
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MOTIVATION

� The RBHM recognizes important differences

between different data sources (expert opinion,

computer model and physical data)

1. Both location and scale biases in computer

models (see Uncertainty and Reliability),

allowed to be different for each run of the

computer model

2. Both location and scale biases in individual

experts, allowed to be different for each expert

opinion (same or different experts)

6



MODEL

� RBHM is multi-stage Bayesian modeling

� Recall:

π(θjdata) ∝ f (datajθ)π(θ)

– reads: posterior distribution (distribution of

parameters given the data) is proportional to

the likelihood (joint distribution of the data)

times the prior distribution
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MODEL

� Stage 1

– Define initial priors on all unknown

parameters, including the biases

– Update these priors using the expert opinions

to form the posterior distributions (using

Bayes theorem)
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MODEL

� Stage 2

– Use the posteriors from Stage 1 as the priors

at Stage 2.

– Update these priors using the computer model

output to form new posterior distributions

(again by Bayes theorem).
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MODEL

� Stage 3

– Use the posteriors from Stage 2 as the priors

at Stage 3.

– Update these priors using the physical

experimental data to form new posterior

distributions (Bayes theorem).

– This yields the fully updated or final posterior

distributions of interest (e.g., regression

coefficients, or parameters of a reliability

distribution)
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DISCUSSION

� We can assess the effect of each data source by

comparing the posteriors as they evolve from

Stages 1 to 3 (this will be illustrated in the

example)

� RBHM can be applied in a linear model

framework as well as a reliability context. We

will illustrate it in a linear model framework.
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MODEL DETAILS

� Physical experimental data

– Y p � N(Xβ;σ2I), where the physical dataY p

are normally distributed with meanXβ, X is a

model matrix of factor values, andβ is a

vector of unknown regression parameters. The

notationσ2I indicates that each physical

observation is independent of the others and

has varianceσ2.
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MODEL DETAILS

� Goal

– The primary goal is to estimateβ andσ2 and

make inferences about them; namely, which

components ofβ are non-zero or “significant”

– More appropriately, we want to know which

covariates affect the performance metric.
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MODEL DETAILS

� Computer experimental data

– Comes from complex computer models of

physical phenomena, e.g., finite element

models.

– Y c � N(Xβ+δc;σ2Σc), whereδc is a vector

of model run specific location biases andΣc is

a matrix of scale biases (again computer

model run specific)
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MODEL DETAILS

– Usually

Σc =
0

BBBBBB@
1=kc1 0 � � � 0

0 1=kc2 0 � � �

... 0
...

� � �

0 � � � � � � 1=kcC

1
CCCCCCA

:
15



MODEL DETAILS

� Expert opinion data (expert judgment)

– Y o � N(Xβ+δo;σ2Σo), whereδo is a vector

of possible location biases andΣo is a matrix

of possible scale biases.
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MODEL DETAILS

� How do these biases arise?

– Location bias: an expert’s average value is

often either higher or lower than the true

mean.

– Scale bias: when an expert provides, say, a

0.90 quantile on the true response, this elicited

value is often in reality a 0.60 or 0.70 quantile

(over-valuation of information)
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MODEL DETAILS

� How are these expert opinions elicited?

– An expected response,yo.

– A quantileqξ for a prespecified probabilityξ
(e.g.,ξ = 0:9, and thus the expert believes that

90% of the responses will be belowqξ).

– The “worth” of the expert opinion,mo
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MODEL DETAILS

� What is meant by the worth of expert opinion?

– The corresponding number of physical

experimental observations equivalent to the

opinion.

– May be fractional (e.g., may be less than 1)

– Uncertainty aboutmo is expressed through a

prior distribution, which is then marginalized

(integrated out) when applying theRBHM.

19



MODEL DETAILS

� Why is it called RBHM?

– Hierarchical model

Xi � FXi(x;Θi)

Θi � FΘi(θ;Ω)

Ω � FΩ(ω;τ);

whereτ is a (possibly) vector-valued constant.

– Individual specific parameters

– “Borrowing of Strength”

– Results in shrinkage

� We have the hierarchical structure in the biases.
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MODEL DETAILS

� Why has this not been done before?

– Recall the posterior distribution:

π(θjdata) ∝ f (datajθ)π(θ)

but

π(θjdata) =

f (datajθ)π(θ)

R

f (datajθ)π(θ)dθ

and the denominator ishard to calculate.
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MODEL DETAILS

� MCMC methods to simulate observations from

the posterior distribution.

� Our method uses Gibbs sampling which involves

simulation from complete (or full) conditional

distributions.

– Distribution of each parameter conditional on

all other parameters and the data

– When the complete conditional can’t be found

in closed form, we simulate from the

complete conditional distribution using

Metropolis-Hastings algorithm.
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MODEL DETAILS

� Prior distributions

βjσ2
� N(µ

o

;σ2Co)

σ2

� IG(αo;γo);

moi � Uni f orm(0:5m(e)

oi ;2:0m(e)

oi )

δoi

iid

� N(θo;ξ2
o)

koi

iid

� G(φo;ωo)
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MODEL DETAILS

� Hyperprior distributions

– For δo:

θo � N(mθo ;s2
θo

)

ξ2
o � IG(aξ2

o

;bξ2
o

)

– For ko:

φo � G(aφo ;bφo)
ωo � G(aωo ;bωo);
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EXAMPLE

� Fluidized Beds used to coat food products

� Air is used to “float” the product through for even

coating
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EXAMPLE
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EXAMPLE

� Three thermodynamic computer models (with

increasing fidelity) were developed.

� Response: Steady-state thermodynamic operating

point (Y )

� Input variables:

– Pump air temperature (A)

– Fluid velocity (V )

– Coating solution flow rate (R)

– Atomization air pressure (P)

– Room Humidity (H)

– Room temperature (T )
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EXAMPLE

� 28 runs of each computer model (at different

combinations of input variables) for a total of

28�3 computer model runs.

� 28 runs of the physical machine at each of the

combinations of input variables.

� There are differences between “data” sources
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EXAMPLE

� Model

E(Yp) = Xβ= β0+β1A+β2R+β3V +β4(R�V )

� Interest lies in estimation of

β= (β0;β1;β2;β3;β4) andσ2.
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RESULTS
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RESULTS
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RESULTS

location bias
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RESULTS
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DISCUSSION

� More precise estimation of parameters
� Predictive distribution of biases provides

validation of computer models

� Wide applicability

– Example is for performance metrics in linear

models framework.

– Reliability distributions are minor

modification

– RDMS could be populated with biases

recognized.
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DISCUSSION

� Generalizes fundamentals section (covariances

and framework)

� Complicated models can be handled
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