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Tegting the Untestable: Réliability in the 21% Century

Thomas R. Bement,! Jane M. Booker,*
Sdlie Kdler-McNulty,* and Nozer D. Singpurwalla®

As stience and technology become increasingly sophisticated, government and
industry are relying more and more on science’ s advanced methods to
determine reliability. Unfortunatdly, politica, economic, time, and other
congraints imposed by the red world inhibit the ability of researchersto
caculate reliability efficiently and accurately. Because of such constraints,
reliability must undergo an evolutionary change. Thefirst step in thisevolutionis
to reinterpret the concept so that it meets the new century’ s needs. The next
dep isto quantify rdiability usng both empirica methods and auxiliary data
sources, such as such as expert knowledge, corporate memory, and
mathematica modding and smulation.

!_os Alamos National Laboratory
*The George Washington University
1.0 Introduction

“Rdiability” isacharged word guaranteed to get attention at its mere mention. Bringing with
it ahost of connotations, religbility, and in particular its gppraisd, faces a critica dilemma et the
dawn of anew century.

Traditiond reiability assessment conggis of various red-world assessments driven by the
sdentific method. In other words, conducting extensive redl-world tests over extensve time
periods (often years) enabled scientists to determine a product’ s rdligbility under a host of
gpecific conditions.

In the 21% century, humanity’ s technological advances walk hand in hand with myriad testing
congraints, such as politica and societd mores, economic and time considerations, and lack of

scientific and technologica knowledge. Because of these
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condraints, the accuracy and efficiency of traditiond reliability becomes much more
questionable.

For example, how can traditiond reliability assessment techniques determine the
dependability of manned space vehicles designed to explore Mars, given that humanity has yet
to venture that far into space? How can we determine the rdliability of anuclear wegpon, given
that the world has in place test-ban tregties and internationd agreements? And finaly, how can
we decide which artificid heart to place into a patient, given neither has ever been insde a
human before?

To resolve this dilemma, religbility must be (1) reinterpreted and (2) quantified.

To reinterpret reliability, we mugt first move away from logica inferences and move closer to
empirica evidence. The primary reason for this shift is because logic encompasses aworld of
tautologies, with terms such as “ certainty” and “impossbility.” Techniques driven by logic
calculate numbers such as 10° for falure rates. Does this number mean onefailurein 10°
identicd trids?Isit possble in the red world to create identical trids? From apractica point of
view, logica approaches are much too abstract to be an effective means of determining the
reliability of productsin the red world.

As has been previoudy stated, empirica evidence drives the traditional meaning of
reliability. Usng the scientific method, researchers use empiricad evidence to determine the
probability of success or falure. Therefore, religbility can be seen asamirror image of
probability. But what exactly is probability, particularly at the dawn of anew century? The first
part of this paper presents an overview of severd interpretations of probability and how they

relate to rdiability.
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Once rdiahility has been reinterpreted, we must next quantify it. And thisis where advanced
methodol ogies mix with traditiond ones. Rether than relying done on so-called “hard data,” the
redefined concept of rdiability incorporates auixiliary sources of data, such as expert
knowledge, corporate memory, and mathematica modeling and smulation. By

“fusing”.combining both types of data, reliability assessment is ready to enter the 21% century.

2.0 Rdiability, Probability, and Decison Making
In this section we discuss reliability’ s link to decison making and its close association with
probability. This overview will serve as afoundation for the next section, which addresses the

reinterpretetion of religbility.

2.1 What is Reliability?

When most individuas think of the term reliability, they equate fedings of credibility,
trustworthiness, and dependability. Some specidists (e.g., socid scientists) have amuch
narrower interpretation, onein which rdiability equates with the consstency of atest ingrument
(such as psychologicd test). A classca example of this interpretation is the risng and setting of
the sun. Because humanity has seen the sun rise and st for aslong as it can remember, thereis
an dmogt certain belief that the sun will rise and set tomorrow.

This paper defines rdiability as amathematical term (see Barlow and Proschan, 1975).
Thus, rdidbility is a quantified measure of uncertainty about a particular type of event (or
events). Fhus-reiabilityRdiability can be seen as a typefunction of probability. Inthe sun
example-given-above, it therefore is highly probable that the sun will rise and set tomorrow,

given the wedth of empiricd data
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2.2 Reliability’ s Role in Decision Making

Rdiability can be seen asatoal that helps individuas make logicaly sound decisons.
Decigons can be technicd (e.g., science and engineering) or nontechnicd (e.q., Srategy or
management). Thisrole brings up two principa questions:.

If religbility is defined as a quantified measure of uncertainty, then whose uncertainty is
it?
3\}hat doesit mean to say that adecison islogicaly sound?

There are several answersto the first question. For example, the uncertainty may pertain to
apaticular group of individuds or there may be an inherent notion of “universd” uncertainty.
Section 45.0 shows that the answer to thisfirst question dictates the paradigm used to quantify
reliability.

Logicdly sound decisions use what is caled a normative approach. This gpproach involves
asystem of rules (dso cdled axioms) that a decison maker or agroup of decison makers has
agreed upon as being appropriate. This type of approach in essence tells us how we should act,
not how we actually act. In most ingtances, individuas make decisions based on emaotion,
whim, and persona/politica agendas. A classic example of such decison making iswhen
individuals elect to drive ingtead of taking an arplane, despite empiricd evidence that the latter is
amuch safer mode of transportation.

However, the normative approach is crucid in decison making because of itslogic, which in
turn makes such decisons much easier to explain and, if necessary, judtify.

Figure 1 provides an outline of the normative gpproach in the form of what isknown asa
decision tree (thistree is a generic example for a system deployment decision).

A decision tree conssts of one more decision nodes (shown as rectangles on Fig. 1) and one or
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more random nodes (shown as circles). A decision node dways precedes arandom node, but a
random node may or may nhot be followed by a decison node. At the terminus of atree there

are appear-what-are- knewn-as- consequences.” A-conseguencethat can include

tangibles such as cods, pendties and profits, and
intangibles such as goodwill, tastes, and preferences.

When the consequences are quantified (and represented on a scale, such as from zero to one)
they are known as “ utilities.”

The decison tree shown in Fig. 1 conssts of one decision node from which spawn two
decisons. If the system is deployed, then there are two possible outcomes, each of which brings
about separate consequences. Similarly, when the system is not deployed, there is aresulting
conseguence. Although decision trees are not anew idea (for an overview of related literature,
see Booker and Bryson, 1985a and 1985h), they remain a powerful characterization of the

normative gpproach to decison making.

Outcome
Probabilities
(or Relijabilities)
> =} Consequence
Do not Deploy
System
L » | Decision
Node Consequence

Mission Succeeds
Deplo
bfgte% > A, ( Random
o Node ~ . .
Utilities Mission Fails

Fig. 1. An example of a decision tree.
There are two formal processes used to make decisons. the “ Andytica Hierarchy Process’

Consequence

of Saaty (1980) and the “ Statistical Decison Theory” (DeGroot, 1992).
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Of these, only the latter is consdered a normative gpproach. Thistheory in turn has

two variants, the Bayesan and the frequentist, with the former considered normative.
Commonly referred to as the Bayesian Decison Theory, it is entirely based on the caculus of
probability (see Section 53.0).

According to the dictates of this theory, a decison maker should choose that action which
maximizes the expected utility—knewn-asthe“MEU-principle” [cf. Lindley 1985, p.59]. An
action’s expected utility is the sum of the products of the probability of an action’s outcome and
the consequence that results from the action-outcome combination. To compute the expected
utility of each action, we must determine the probabilities of al the outcomes that can result from
the action. Therefore, like utilities, outcome probakilities are the required ingredients of
normative decison making in a certain class of problems, namdy problems that involve the

ability of systemsto perform (or not) as desired.

2.3 Understanding Reliability
If we accept that religbility condgsts of aquantified measure of uncertainty, then we must
once again ask to whom the uncertainty belongs: Doesit belong to an individud?
Isit an interpretation from agroup? Or isit anotion of inherent universal uncertainty?
This question’ s answer depends on the basis for the quantification of uncertainty.
The basis could be based upon any of the following:
engineering, scientific, or other subject matter information;
mathematica models, physical models, and smulations,
informed testimonies and collective judgements from subject matter specidids,
corporate memory, commercia databases, knowledge bases, and historica information;

hard datigtica data on severd replicas of the uncertain event(s) of interest via
experiments and tests; and

s owdE
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6. dl theabove.

Thislist represents numerous schools of thought. For example, some schools maintain that
only hard statistical data are relevant for quantifying uncertainty, whereas other schools
advocate that al the methodologies should be represented. Philosophica disagreement playsa
critica role in quantifying reliability. For example, an individua who advocates hard data
exclusvely will caculate ardiability thet is dramaticdly different from someone who advocates
using hard data and modeing and smulation. The inherent universal uncertainty isthe-alestory
dneertainty-referred-to-earlier-and-incorporates the random physicd and naturd variation left
after exhausting the sources on information, data, and knowledge listed above. Our

reinterpretation of reliability advocates the use of al data on the list, and its success has been

demonstrated* (Meyer, Booker, and Bement, 1999).

3.0 Probability: A Method to Quantify Uncertainty (Reliability)

This section provides an overview of severa attempts at addressing the quantification of

uncertainty. These attempts have contributors with diverse backgrounds, from philosophers and

economists to physicists, psychologists, sociologists, engineers, Statisticians, and

mathematicians. Each approach has it own merits and flaws. Before we discuss these

approaches, we must introduce some notation and terminoloqy.

3.1 Notation and Terminology

! PREDICT (which stands for Performance & Reliability Evaluation with Diverse Information Combination
and Tracking) is an integrated reliability methodology that combines all available information, with
appropriate uncertainties attached, relating to the system’s performance. Information sources include expert
judgement, historical data/information about the system’ s parts and processes, vendor/designer
specifications, computer simulation output results, physical models, test data, and data on similar parts,
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LetE E, ... E,... denote severd uncertain events of interest at some reference time,

say t. Although it is common to set t=0, it isimportant not to lose track of its presence. For

example, E could denote an event that a deployed system accomplishes its misson. The

complement of E isdenoted by E, the event that a deployed system fails to accomplish its

misson (see Fig. 1). Another example could bethat E={ T;3 t}, where T; denotes the lifetime of

thei-th sub-system of adeployed system (measured from the time of the system’ s deployment)

and { T;3 t} denotes the event that the i-th sub-system functions for at least t units of time. In this

cag, tiscdled the “misson time.”

Let H denote the “history” or the “background information” available to the individua ()

contemplating the uncertain events, at timet. In principle, H should encompass dl that is known

a timett: scientific knowledge, enginegring information, informed testimonies, design

goecification, physical models, computer codes, judgement, preferences, and hard historical

data on replicates of the uncartain event (if available). Thus a any timett, thereis the known H,

andtheunknown E, E;, ... E, ... .

The fundamental problem of the trestment of uncertainty is how the uncertainty about E, E;,

... 5,... athet, should be quanified in thelight of H. To address this problem, severd

approaches have been proposed, some of which pay attention to the issue of “whose

uncertainty” and others which impose restrictions on what H can and cannot contain. Some of

these proposed approaches are asfollows;

- probability,
bdief functions,

subsystem, processes and systems. As new information becomes available, the method permits updating
the performance of the system.
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posshility theory and fuzzy logic,

upper and lower probabilities,

Jeffrey's Rule of Combination,

confidence limits,

hypothesistesting with Type | and Type |l erors,
sgnificance levels,

maximum likelihood estimates, and

goodness of fit tedts.

Some of these approaches have a normative foundation, whereas others are ad hoc. We

will focus on probability and make acasefor it.

3.2 Probability and the Calculus of Probability

The cdculus of probability condsts of cartain rules (or axioms) denoted by a number

determined by P ' (E: H), in which the probability of an event, E, isrelated to H a timet. When

the event E pertains to the ability to perform a cartain function (e.q., survive a specified misson

time), then P ' (E: H) is known as the product’ s religbility. Therefore, rdiability is de facto the

probability of acertain type of an event.

When theitem in question is a human subject, the term “surviva andyds” rather than

reiability, is commonly used. Asindicated above, the misson time need not be measured in

units of time, but rather it can be taken from other performance metrics, such as milestraveled,

rounds fired, cycles completed, or output produced.

The caculus of probability condgts of the following three rules. convexity, addition, and

multiplication. These rules are given mathematically in order:

0£PY(E: H) £ 1, for any event E:
P Y(E,, or E>: H) = P'(E;: H) + P '(E,: H) for any two events E; and E that are
mutudly exdusve—that is, they cannot smultaneoudy take place; and
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PY(E; and E;: H) = P'(E; | E;; H) - P'(E,; H), where P ' (E; | E;; H) isaquantification
via probability of the uncertainty about an event E (supposng that event E, has taken
place).

The quantity P ' (E; | E,: H) is known as the “conditiona probability” of E;, given a-E..

Note that conditiona probabilities are in the subjunctive. In other words, the disposition of E; at

timet, were it to be known, would become a part of the history H at time t.

The verticd line between E; and E; represents a supposition or assumption about the

occurrence of E,. Findly, P '(E; and E,: H) aso can be written asP ' (E; | E;: H) - P '(E;: H)

because at timet both E; and E, are uncertain events and one can contempl ate the uncertainty

about E; supposing that E, were to be true or vice versa.

The caculus of probability does not interpret probability. H-does-net-do-any-of-the

following—itlt naeither tells use what probability means, nor isit concerned with issues, such asthe

nature of uncertainty, whose uncertainty, how large should H be, and how to determine P ' (E:

H) and make the result operationa.

What does the calculus do? It Smply provides a set of rules by which the uncertainties

about two or more vents combine or “ cohere.” Any set of rules for combining uncertainties that

arein violation of the rules given above are said to be “incoherent” with respect to the calculus

of probability. The next section discusses why these rules are necessary.

3.3 Why Subscribe to the Calculus of Probability?

In addition to the cdculus of probahility, there are anumber of methods designed to comb

and specify uncertainties, such as

Jeffrey’ s rule of combination (Jeffrey, 1983),
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possihility theory and fuzzy logic (Zadeh, 1979),
upper and lower probabilities (Smith, 1961), and
belief functions (Dempster, 1968).

With so many theories, why should anyone subscribe to the calculus of probability? In a

book by Howson and Urbach (1989), a number of contributors attempt to answer this very

question; contributors range from gamblers and phil osophers to mathematicians, decison

theorists, behaviord scientigts, and expertsin atificia intdligence and knowledge acquigtion. In

the following subsections, we present some of the arguments used to justify the caculus of

probability.

3.3.1TheHaw of “Can't Win"

Since the time of Cardono (who lived during the 1500s), gamblers recognized that avoiding

the rules of probability in games of chance resulted in a“sureloss’ (i.e, a Dutch-Book). A

cdassc exampleis acoin tossin which the scenario is as follows, heads you lose, tails | win.

3.3.2 The Scoring Rule

To justify the calculus of probahility, de Finetti (cf. Lindley, 1982) used a*“ scoring rule)”

which is used to ask an individua assessng and uncertainty to declare anumber that best

describes said individud'’ s uncertainty. Once the uncertainty reveadsitsdf or isresolved, the

individua is scored (i.e., rewarded or pendized) according to how close the declared number

was to redlity.

De Finetti’ s core argument is that under some very generd conditions, an individua faced

with a collection of uncertainties must use the caculus of probability to maximize an overdl

score. The above dam istruefor alarge class of scoring schemes.
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3.3.3 Betting Coefficients

In horse racing, cartain numbers known as “ betting coefficients’ are used. These numbers

are odds on or against a particular horse or horsesinvolved in ahorse race. It has been

demondtrated (for example, by Howson and Urbach, 1989) that to maximize winnings (i.e.,

determine the most accurate probability of success), the betting coefficients must follow the

caculus of probahility.

3.3.4 Behaviorigic Axioms

The three previous subsections provided answers based on gambling and scoring scenarios;

such scenarios could be objectionable to some individuas, particuarly those who question the

mord and ethicd implication of gambling and fierce competition. Therefore, Ramsey (1931) and

Savage (1972) proposed an dternative system of “behavioristic axioms’ to justify the calculus

of probahility. Based in mathematics, the Ramsey- Savage argument is related to coherence and

congstency (an excdlent expodtion of this argument is given by DeGroot, 1970).

This argument has two principa difficulties. Thefird isthat the intuitive and natura dements

of gambling and scoring are logt; axiomatic arguments tend to be abstract and therefore less

appeding. The second and perhaps more serious difficulty isthat behaviorigic axioms arein

actudity violated by (mogt) individuas (cf. Kahneman, et d., 1986). Despite these criticiams,

behaviorigtic axioms prescribe normative behavior. It is not imperative that the caculus of

probability be treated as axiomatic, but rather that it is seen as a consequence of certain

behaviorigic axioms, with the latter being taken as given (not withstanding some criticism).
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Aswe have shown in Section 2.0, reliability is a probability, and because the latter can be

interpreted in severd ways, then it follows the reliability can be interpreted and quantified in
severd ways. Because of the flexibility of these terms, there are many different philosophies
behind effective decison making. Thus, which philosophy we advocate will dictate the
effectiveness of rdliability assessment in the 21% century.
There are four principd theories related to interpreting probability:
Classca Theory,
A Priori or Logica Theory,
Relative Frequency Theory, and
Persondistic or Subjective Theory.
Although the interpretation of reliability has no effect on the calculus of probability (see

Section 43.0), the assgnment of initid probabilities (which are needed to initiate the calculus)

depends on rediability’ sinterpretation. The following provide an overview of the key features of
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the four theories mentioned above. For more detailed information, please consult Fine (1973),

Good (1965), Maistrov (1974), Hacking (1974), or Gigerenzer et . (1989).

14
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34.1 Classical Theory

Influenced by Newton, the following “determinists’ founded this theory: Cardano, Pascd,
Fermat, Huygens, Bernoulli, DeMoaiure, Bayes, Laplace, and Poisson.

As determinigts, these individuas believed that every event, act, and decision was the inevitable
consequence of antecedents that are independent of the human will. Of these individuds, the
only one to venture aforma definition of probability was Laplace, who in essence described it
astheratio of favorable cases to the number of “equipossible’ cases. Cases are equipossible if
we have no reason to expect the occurrence of one over the other. The setup involving
equipossible cases condgts of the three following labels:

“principle of indifference,”

“principle of insufficient reason,” or

“Bayes podtulate.”

Although this theory has merit in games of chance, it dso has a number of flawsdeficiencies.
_For example, the principle of indifference appearsto be a circular argument because
equipossible implies “equiprobable’ and vice versa. It dso is difficult to divide up dterndtives.
For example, take the following problem:

When rolling adie, what is the probability that it will land on “5"? The answer is
1/6, if the dlternatives are considered 1, 2, . . . 6, but it is 1/2 if the dternatives
are consdered area 5 and not a 5.

Perhaps the most crucid flaw is the potentid for exceptions. For example, what if the diein

the example above isloaded? What if thereisaflaw inthe dieitsdf, which in turn affectsthe

overd| probahility? Given these exceptions, now think of a unique space vehicle. What flaws

will affect its reliability?
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Although fraweddeficient, thistheory is used to thisday. It is particularly useful in teaching
the concept of probability, aswell asin anumber of gpplications, such as Monte Carlo

amulation, sampling, and experimenta design.

34.2 A Priori Theory

Although it was the economist Keynes who first proposed the A Priori Theory of
probability, it was Carnap (a physicist whose interests ranged from logic and syntax to
semantics and languages) who expanded upon it. Others who have contributed to this theory
include Jeffreys (1961), Koopman, Kemney, and Good (1965), and Ramsey (1964).

The A Priori Theory is difficult to summarize in words because it involves the notions of
logic and syntax. Basicdlly, it interprets probability asalogicdly derived “entity.” In other
words, aviolation of logic yields an ingppropriate concluson. Because it is difficult to gpply this

theory to rdiability assessments, this theory is often discussed but rardly used.

34.3 Relative Frequency Theory
Although the origin of this theory dates back to Arigtatle, it was Venn who was the firgt to
articulate the concept in 1866. I1ts mathematical devel opment has been traced to von Mises
(1957), whereas its philosophical discourse was developed by Reichenbach (1949). The
following bullets summarize this theory’ s key dements:
Probability isameasure of an empiricd, objective, and physica fact of the red world. It
isindependent of human attitudes, opinions, models, and smulaions. Von Mises
believed probability to be a part of a descriptive modd, whereas Reichenbach viewed it
as part of the theoretica structure of physics.

Because probability is based only upon observations, it can be known only
a posteriori (literaly, after observation).
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43.3.1 ThisTheory’s Virtues

Thistheory appliesto casesin which the indifference principle fallsto hold (asix-faced dieis
loaded). Because the theory emphasizes observation, it has a strong link with the scientific
method. Moreover, the theory rgects intangible things and relies on what many consider the
essentid tools of science: experimentation, observation, and confirmation through experimentd

replication.

43.3.2 This Theory’s Criticiams
The“core’ of thistheory is on replication. To achieve replication, we must
intr_oduce arandom “collective’ (i.e., ascenario involving events that repesat again and
ggfai‘r?é,that probability isindeed a random collective, and
Specify that probability is a property of the collective and not an individual member of
sad collective.

Creeting a collective in the red world is a difficult problem. For example, tossng acoin an
infinite number of times raises the following question: To be consdered a collective, how similar
must the tosses be? If the tosses are identicdl, then the outcome will not change. If they are
dissmilar, how much dissmilarity is dlowed (if this can be assessed a dl)? Findly, rdaive
frequency probability is never known, can never be known to exigt (limits of sequencesisan
abstract mathematica notion), and its value can never be confirmed or disputed.

Although collectives can be developed for socid phenomena (actuariad tables and individud
1Qs) and some topics in physics (e.g., movement of gas particles), it isfor the most part a

difficult task. Although the collective concept was first embraced by physcigs like von Mises, it

was subsequently rejected by individuds like Bohr and Schrodinger, both of whom were
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influenced by Heisenberg's “principle of uncertainty.” This principa defined uncertainty and
probability without the collective concept.

Under the relative frequency view of probability, t and H have no roleto play, so that P ‘' (E;
H)PYEH) = P(E). Smilarly, expert testimonies, corporate memory, mathematical models and

scientific information do not matter; only hard data on actua events can be used to assessthe

initial probabilities.

43.4 The Personalistic or Subjective Theory

Although Boredl was perhaps the first to generate this theory as early as 1924, it was
Ramsey who in 1931 first articulated the theory. It was later refined by de Finetti (1937 and
1974) and Savage (1954).

According to the theory, there is no such thing as an objective probability. Moreover,
probability is adegree of bdief for agiven individud a agiven time. Not only must the degree
of belief be measured in some fashion, but dso an individud’ s degrees of belief must conform to
each other in a certain manner. Theindividud in question is an idedized one—in essence, one
who behaves normétively.

Because the intengity of belief is extremely difficult to quantify, researchers dected to look at
some property related to it. For example, Ramsey and de Finetti favored a behaviorigtic
approach in which the degree of belief is expressed through the willingness to gamble. Thus, the
probability of an event isthe amount (say p) the individua iswilling to bet, on atwo-sided bet,
in exchange for $1, should the event take place. By atwo-sided bet we mean staking (1-p) in

exchange for $1, should the event not take place.
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The normative component of this theory liesin afeature known as “coherence.” Coherence

ensures that the degrees of belief do not conflict (for example, it avoids a“Dutch- Book™-er

“head-win-tallsyoulesdscenanio). Thisis achieved by adhering to the caculus of probability.

43.4.1 This Theory’s Virtues

According to this theory, probability is dictated by individua opinions, and thus “unknown
probability,” “ correct probability,” and “objective probability” cannot be achieved. To
determine an individud’ s probakilities, al aresearcher need do isinvoke the principle of
indifference, apply a system of carefully conducted comparative wagers, or Smply ask the
individud. In thistheory, any factor that an individua eectsto consder isreevant and any

coherent value is as good as another.

43.4.2 This Theory’s Criticiams
The principd criticism leveled a this theory isthat there can belittle if any condgstency in
determining probability. For example, the theory has no provision to ensure that individuas with
identica background information will declare identica probabilities. Given an individud’ s action,
it isdifficult to separate the individua’ s probabilities from his or her utilities. Because congstency
isthe hdlmark of science, thistheory is commonly refuted by scientists and engineers dike.
Perhaps the most important argument againg this theory is thet experiments by
psychologists have shown that individuas do not declare probabilities that have coherence (i.e,
they do not act according to the dictates of the calculus of probability).
A counter-argument to the above criticism is that the theory of persona probability isa

normative one; it prescribes how we should act—not how we do act.
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54.0 Which Interpretation of Probability is Appropriatefor Reiability?

In the world of organizations such as the U.S. Government’ s Military Standards, automobile
warranties, and commercid contracts, reliability andysisis entrenched in the relative frequency
view of probability. With its clams of “objectivity,” this pogtion is reinforced by the peer review
process for publication in many gpplied scientific journas.

Thistraditiond interpretation to a degree has become outdated. For example, decision
meakers must make determinations under a number of intense redtrictions, such aslittle or no
testing (nuclear weapons, globa climate change, and automotive reliability), one- or firg-of-a-
kind units (aerospace and medica gpplications), and economic testing (particularly in the
manufacturing industry). Because of these and other restrictions, there has been agradud shift
toward the more persondigtic view.

This shift can be traced back to the nuclear reactor industry (see WASH 1400, 1975) and
evolved asthe U.S. Government began to experience intense pressure over defense
expenditures. As science and technology continued to evolve, other government and
commercid areas began to fed the pressures of testing in complex and dynamic environments,
particularly because such tests are either expendve, time consuming, or prohibitive for other
reasons. The following are but five examples:

Stricter emissions and performance requirements for automobiles while their engines
operate at the cutting edge of physics and engineering (Kerscher et d., 2000).
Determining software rdiability by usng complex and large computations

(ad-Mutairi et d., 1998).

Using graphica, numerica, and smulation-based methods for a broad range of models

found in rdigbility. This covers areas such as andyzing degradation data, in which falure
is not dichotomous but continuous (Meeker and Escobar, 1998).
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Empirica techniques used to solve complex manufacturing techniques by using an
empirica Bayesan gpproach to combine data with prior information (Samaniego and
Neath, 1996).

Using probability moddsfor falure data andys's regarding maintenance and prediction
related to a preliminary design. Thisis done by using influence diagrams, aswell asa
Bayesian approach (Barlow 1998).

From a philosophica standpoint, the persondigtic interpretation of probability does not lead
to the logica inconsstencies and other difficulties of communication mentioned before, nor does
it demand the availability of alarge amount of hard data (or preclude use if such data are
available). Thistype of interpretation adso enables us to do the following:

Make statements of uncertainty about unique products or systems.
Incorporate information for al sources that are deemed appropriate.

Incorporate al relevant knowledge we have at any given time with the ability to update
our probahilities (and hence rdiabilities) as new knowledge becomes available.

A-prire-exampleinwhich-theTh forma use of dl reevant knowledge esuld-can have

rereved unanticipated problems before costly decisions are made, such as manufacturing recdls

and disagters such as the Shuttle Chdlengertiance-on-the-hard-datafrom-the solid-rocket

. Therefore, we, fed that thisisthe point
of view most appropriate for addressing the rdiability problemsin the 21% century.

From a pragmétic point of view, the dramatic evolution of our computationd capabilitiesin
recent years has made knowledge and information avalable in avariety of qualitative and
quantitative forms. Large-scae smulations of complex, physica systems (such as trangportation

amulation, Beckman, 1997) provide gigabytes of information that must be andyzed and




Testing the Untestable: Reliability in the 21% Century 22

condensed in aform readily applicable for decison makers. Taking advantage of these

information sources, including hard data, is what further motivates our point of view.
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66.0 Using Expert Testimony in Reliability Assessment

Once we adopt a persondigtic interpretation of probability (reliability), we can assess
religbility by usng the calculus of probability on informed testimonies based on judgements,
experience, Imulations, or mathematica modeds. Expert testimony plays a crucid role
particularly in cases in which hard data are unavailable or even impossible to obtain. In many
instances, scientists and engineers have the knowledge and experience that can augment what
little empirical evidenceisavalable.

To maximize the accuracy of such expertise, it must be properly dicited and analyzed (cf.
Meyer and Booker, 1991). Informed testimonies do not obviate the role of hard data when
avalable. Insteed, the personaistic view fuses the import of informed knowledge and hard data,
the latter enhancing the former, viathe calculus of probability and its extensons. For adetailed

overview of thisview, see Lindley and Singpurwalla (1986) and Singpurwalla (1988).

7.0 Closing Thoughts

As human science and technology continue to become more and more sophisticated, we
will become more and more reliant on auxiliary information (especidly because of the computer
revolution) that augments direct hard data, which due to retrictions (such as politica and
societd congraints) may be scarce. Thus, the subjectivist view of probability can provide a
paradigm for the quantification of uncertainty and information/detaintegration and therefore yield

an accurate assessment of reliability. As aresult, decison makers will have the best toolsto
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apply to anew century of advanced science and technology and more sophisticated and
complex societd and business issues.
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