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As science and technology become increasingly sophisticated, government and 
industry are relying more and more on science’s advanced methods to 
determine reliability. Unfortunately, political, economic, time, and other 
constraints imposed by the real world inhibit the ability of researchers to 
calculate reliability efficiently and accurately. Because of such constraints, 
reliability must undergo an evolutionary change. The first step in this evolution is 
to reinterpret the concept so that it meets the new century’s needs. The next 
step is to quantify reliability using both empirical methods and auxiliary data 
sources, such as such as expert knowledge, corporate memory, and 
mathematical modeling and simulation. 
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1.0 Introduction 

“Reliability” is a charged word guaranteed to get attention at its mere mention. Bringing with 

it a host of connotations, reliability, and in particular its appraisal, faces a critical dilemma at the 

dawn of a new century.  

Traditional reliability assessment consists of various real-world assessments driven by the 

scientific method. In other words, conducting extensive real-world tests over extensive time 

periods (often years) enabled scientists to determine a product’s reliability under a host of 

specific conditions.  

In the 21st century, humanity’s technological advances walk hand in hand with myriad testing 

constraints, such as political and societal mores, economic and time considerations, and lack of 

scientific and technological knowledge. Because of these  
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constraints, the accuracy and efficiency of traditional reliability becomes much more 

questionable. 

For example, how can traditional reliability assessment techniques determine the 

dependability of manned space vehicles designed to explore Mars, given that humanity has yet 

to venture that far into space? How can we determine the reliability of a nuclear weapon, given 

that the world has in place test-ban treaties and international agreements? And finally, how can 

we decide which artificial heart to place into a patient, given neither has ever been inside a 

human before? 

To resolve this dilemma, reliability must be (1) reinterpreted and (2) quantified.  

To reinterpret reliability, we must first move away from logical inferences and move closer to 

empirical evidence. The primary reason for this shift is because logic encompasses a world of 

tautologies, with terms such as “certainty” and “impossibility.” Techniques driven by logic 

calculate numbers such as 10-9 for failure rates. Does this number mean one failure in 109 

identical trials? Is it possible in the real world to create identical trials? From a practical point of 

view, logical approaches are much too abstract to be an effective means of determining the 

reliability of products in the real world. 

As has been previously stated, empirical evidence drives the traditional meaning of 

reliability. Using the scientific method, researchers use empirical evidence to determine the 

probability of success or failure. Therefore, reliability can be seen as a mirror image of 

probability. But what exactly is probability, particularly at the dawn of a new century? The first 

part of this paper presents an overview of several interpretations of probability and how they 

relate to reliability. 
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Once reliability has been reinterpreted, we must next quantify it. And this is where advanced 

methodologies mix with traditional ones. Rather than relying alone on so-called “hard data,” the 

redefined concept of reliability incorporates auxiliary sources of data, such as expert 

knowledge, corporate memory, and mathematical modeling and simulation. By 

“fusing”combining both types of data, reliability assessment is ready to enter the 21st century.  

 
2.0 Reliability, Probability, and Decision Making 

In this section we discuss reliability’s link to decision making and its close association with 

probability. This overview will serve as a foundation for the next section, which addresses the 

reinterpretation of reliability. 

 
2.1 What is Reliability? 

When most individuals think of the term reliability, they equate feelings of credibility, 

trustworthiness, and dependability. Some specialists (e.g., social scientists) have a much 

narrower interpretation, one in which reliability equates with the consistency of a test instrument 

(such as psychological test). A classical example of this interpretation is the rising and setting of 

the sun. Because humanity has seen the sun rise and set for as long as it can remember, there is 

an almost certain belief that the sun will rise and set tomorrow. 

This paper defines reliability as a mathematical term (see Barlow and Proschan, 1975). 

Thus, reliability is a quantified measure of uncertainty about a particular type of event (or 

events). Thus, reliabilityReliability can be seen as a type function of probability. In the sun 

example given above, it therefore is highly probable that the sun will rise and set tomorrow, 

given the wealth of empirical data.  
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2.2 Reliability’s Role in Decision Making 

Reliability can be seen as a tool that helps individuals make logically sound decisions. 

Decisions can be technical (e.g., science and engineering) or nontechnical (e.g., strategy or 

management). This role brings up two principal questions: 

• If reliability is defined as a quantified measure of uncertainty, then whose uncertainty is 
it? 

• What does it mean to say that a decision is logically sound? 
 
There are several answers to the first question. For example, the uncertainty may pertain to 

a particular group of individuals or there may be an inherent notion of “universal” uncertainty. 

Section 45.0 shows that the answer to this first question dictates the paradigm used to quantify 

reliability.  

Logically sound decisions use what is called a normative approach. This approach involves 

a system of rules (also called axioms) that a decision maker or a group of decision makers has 

agreed upon as being appropriate. This type of approach in essence tells us how we should act, 

not how we actually act. In most instances, individuals make decisions based on emotion, 

whim, and personal/political agendas. A classic example of such decision making is when 

individuals elect to drive instead of taking an airplane, despite empirical evidence that the latter is 

a much safer mode of transportation.  

However, the normative approach is crucial in decision making because of its logic, which in 

turn makes such decisions much easier to explain and, if necessary, justify.  

Figure 1 provides an outline of the normative approach in the form of what is known as a 

decision tree (this tree is a generic example for a system deployment decision).  

A decision tree consists of one more decision nodes (shown as rectangles on Fig. 1) and one or 
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more random nodes (shown as circles). A decision node always precedes a random node, but a 

random node may or may not be followed by a decision node. At the terminus of a tree there 

are appear what are known as “consequences.” A consequencethat can include 

• tangibles such as costs, penalties and profits, and  
• intangibles such as goodwill, tastes, and preferences. 

 
When the consequences are quantified (and represented on a scale, such as from zero to one) 

they are known as “utilities.” 

The decision tree shown in Fig. 1 consists of one decision node from which spawn two 

decisions. If the system is deployed, then there are two possible outcomes, each of which brings 

about separate consequences. Similarly, when the system is not deployed, there is a resulting 

consequence. Although decision trees are not a new idea (for an overview of related literature, 

see Booker and Bryson, 1985a and 1985b), they remain a powerful characterization of the 

normative approach to decision making. 

Fig. 1. An example of a decision tree. 
There are two formal processes used to make decisions: the “Analytical Hierarchy Process” 

of Saaty (1980) and the “Statistical Decision Theory” (DeGroot, 1992).  

Outcome 
Probabilities 

(or Reliabilities)

Decision 
Node

Random 
Node

Utilities

Do not Deploy 
System

Deploy 
System

Consequence

Mission Succeeds

Mission Fails

Consequence

Consequence
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Of these, only the latter is considered a normative approach. This theory in turn has  

two variants, the Bayesian and the frequentist, with the former considered normative. 

Commonly referred to as the Bayesian Decision Theory, it is entirely based on the calculus of 

probability (see Section 53.0).  

According to the dictates of this theory, a decision maker should choose that action which 

maximizes the expected utility—known as the “MEU principle” [cf. Lindley 1985, p.59]. An 

action’s expected utility is the sum of the products of the probability of an action’s outcome and 

the consequence that results from the action-outcome combination. To compute the expected 

utility of each action, we must determine the probabilities of all the outcomes that can result from 

the action. Therefore, like utilities, outcome probabilities are the required ingredients of 

normative decision making in a certain class of problems, namely problems that involve the 

ability of systems to perform (or not) as desired. 

 
2.3 Understanding Reliability 

If we accept that reliability consists of a quantified measure of uncertainty, then we must 

once again ask to whom the uncertainty belongs: Does it belong to an individual?  

Is it an interpretation from a group? Or is it a notion of inherent universal uncertainty?  

This question’s answer depends on the basis for the quantification of uncertainty.  

The basis could be based upon any of the following: 

1. engineering, scientific, or other subject matter information; 
2. mathematical models, physical models, and simulations; 
3. informed testimonies and collective judgements from subject matter specialists; 
4. corporate memory, commercial databases, knowledge bases, and historical information; 
5. hard statistical data on several replicas of the uncertain event(s) of interest via 

experiments and tests; and 
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6. all the above. 
 
This list represents numerous schools of thought. For example, some schools maintain that 

only hard statistical data are relevant for quantifying uncertainty, whereas other schools 

advocate that all the methodologies should be represented. Philosophical disagreement plays a 

critical role in quantifying reliability. For example, an individual who advocates hard data 

exclusively will calculate a reliability that is dramatically different from someone who advocates 

using hard data and modeling and simulation. The inherent universal uncertainty is the aleatory 

uncertainty referred to earlier and incorporates the random physical and natural variation left 

after exhausting the sources on information, data, and knowledge listed above. Our 

reinterpretation of reliability advocates the use of all data on the list, and its success has been 

demonstrated1 (Meyer, Booker, and Bement, 1999). 

3.0 Probability: A Method to Quantify Uncertainty (Reliability) 

This section provides an overview of several attempts at addressing the quantification of 

uncertainty. These attempts have contributors with diverse backgrounds, from philosophers and 

economists to physicists, psychologists, sociologists, engineers, statisticians, and 

mathematicians. Each approach has it own merits and flaws. Before we discuss these 

approaches, we must introduce some notation and terminology.  

 
3.1 Notation and Terminology 

                                                                 
1  PREDICT (which stands for Performance & Reliability Evaluation with Diverse Information Combination 
and Tracking) is an integrated reliability methodology that combines all available information, with 
appropriate uncertainties attached, relating to the system’s performance. Information sources include expert 
judgement, historical data/information about the system’s parts and processes, vendor/designer 
specifications, computer simulation output results, physical models, test data, and data on similar parts, 
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Let E, E1, . . ., Ei, . . ., denote several uncertain events of interest at some reference time, 

say τ. Although it is common to set τ=ο,  it is important not to lose track of its presence. For 

example, E could denote an event that a deployed system accomplishes its mission. The 

complement of E is denoted by E , the event that a deployed system fails to accomplish its 

mission (see Fig. 1). Another example could be that Ei={Ti≥t}, where Ti denotes the lifetime of 

the i-th sub-system of a deployed system (measured from the time of the system’s deployment) 

and {Ti≥t} denotes the event that the i-th sub-system functions for at least t units of time. In this 

case, t is called the “mission time.” 

Let H denote the “history” or the “background information” available to the individual(s) 

contemplating the uncertain events, at time τ. In principle, H should encompass all that is known 

at time ττ: scientific knowledge, engineering information, informed testimonies, design 

specification, physical models, computer codes, judgement, preferences, and hard historical 

data on replicates of the uncertain event (if available). Thus at any time ττ, there is the known H, 

and the unknown E, E1, . . ., Ei, . . ., . 

The fundamental problem of the treatment of uncertainty is how the uncertainty about E, E1, 

. . ., Ei, . . ., at the τ, should be quantified in the light of H. To address this problem, several 

approaches have been proposed, some of which pay attention to the issue of “whose 

uncertainty” and others which impose restrictions on what H can and cannot contain. Some of 

these proposed approaches are as follows: 

• probability,  
• belief functions,  

                                                                                                                                                                                                 
subsystem, processes and systems. As new information becomes available, the method permits updating 
the performance of the system. 
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• possibility theory and fuzzy logic,  
• upper and lower probabilities,  
• Jeffrey's Rule of Combination,  
• confidence limits,  
• hypothesis testing with Type I and Type II errors,  
• significance levels,  
• maximum likelihood estimates, and  
• goodness of fit tests. 
 
Some of these approaches have a normative foundation, whereas others are ad hoc. We 

will focus on probability and make a case for it. 

3.2 Probability and the Calculus of Probability 

The calculus of probability consists of certain rules (or axioms) denoted by a number 

determined by P τ(E; H), in which the probability of an event, E, is related to H at time τ. When 

the event E pertains to the ability to perform a certain function (e.g., survive a specified mission 

time), then P τ(E; H) is known as the product’s reliability. Therefore, reliability is de facto the 

probability of a certain type of an event. 

When the item in question is a human subject, the term “survival analysis,” rather than 

reliability, is commonly used. As indicated above, the mission time need not be measured in 

units of time, but rather it can be taken from other performance metrics, such as miles traveled, 

rounds fired, cycles completed, or output produced. 

The calculus of probability consists of the following three rules: convexity, addition, and 

multiplication. These rules are given mathematically in order: 

• 0 ≤ P τ(E; H) ≤ 1, for any event E; 
• P τ(E1, or E2; H) = P τ(E1; H) + P τ(E2; H) for any two events E1 and E2 that are 

mutually exclusive—that is, they cannot simultaneously take place; and  
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• P τ(E1 and E2; H) = P τ(E1 | E2; H) · P τ(E2; H), where P τ(E1 | E2; H) is a quantification 
via probability of the uncertainty about an event E (supposing that event E2 has taken 
place). 

 
The quantity P τ(E1 |  E2; H) is known as the “conditional probability” of E1, given n E2. 

Note that conditional probabilities are in the subjunctive. In other words, the disposition of E2 at 

time τ, were it to be known, would become a part of the history H at time  τ.  

The vertical line between E1 and E2 represents a supposition or assumption about the 

occurrence of E2.  Finally, P τ(E1 and E2; H) also can be written as P τ(E2 | E1; H) · P τ(E1; H) 

because at time τ both E1 and E2 are uncertain events and one can contemplate the uncertainty 

about E1 supposing that E2 were to be true or vice versa. 

The calculus of probability does not interpret probability. It does not do any of the 

following: itIt neither tells use what probability means, nor is it concerned with issues, such as the 

nature of uncertainty, whose uncertainty, how large should H be, and how to determine P τ(E; 

H) and make the result operational.  

What does the calculus do? It simply provides a set of rules by which the uncertainties 

about two or more vents combine or “cohere.” Any set of rules for combining uncertainties that 

are in violation of the rules given above are said to be “incoherent” with respect to the calculus 

of probability. The next section discusses why these rules are necessary.  

 
3.3 Why Subscribe to the Calculus of Probability? 

In addition to the calculus of probability, there are a number of methods designed to comb 

and specify uncertainties, such as  

• Jeffrey’s rule of combination (Jeffrey, 1983),  
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• possibility theory and fuzzy logic (Zadeh, 1979),  
• upper and lower probabilities (Smith, 1961), and  
• belief functions (Dempster, 1968). 
 
With so many theories, why should anyone subscribe to the calculus of probability? In a 

book by Howson and Urbach (1989), a number of contributors attempt to answer this very 

question; contributors range from gamblers and philosophers to mathematicians, decision 

theorists, behavioral scientists, and experts in artificial intelligence and knowledge acquisition. In 

the following subsections, we present some of the arguments used to justify the calculus of 

probability.  

 
3.3.1 The Flaw of “Can’t Win” 

Since the time of Cardono (who lived during the 1500s), gamblers recognized that avoiding 

the rules of probability in games of chance resulted in a “sure loss” (i.e., a Dutch-Book). A 

classic example is a coin toss in which the scenario is as follows: heads you lose, tails I win.  

 
3.3.2 The Scoring Rule 

To justify the calculus of probability, de Finetti (cf. Lindley, 1982) used a “scoring rule,” 

which is used to ask an individual assessing and uncertainty to declare a number that best 

describes said individual’s uncertainty. Once the uncertainty reveals itself or is resolved, the 

individual is scored (i.e., rewarded or penalized) according to how close the declared number 

was to reality. 

De Finetti’s core argument is that under some very general conditions, an individual faced 

with a collection of uncertainties must use the calculus of probability to maximize an overall 

score. The above claim is true for a large class of scoring schemes. 



Testing the Untestable: Reliability in the 21st Century 12 

 
3.3.3 Betting Coefficients 

In horse racing, certain numbers known as “betting coefficients” are used. These numbers 

are odds on or against a particular horse or horses involved in a horse race. It has been 

demonstrated (for example, by Howson and Urbach, 1989) that to maximize winnings (i.e., 

determine the most accurate probability of success), the betting coefficients must follow the 

calculus of probability. 

 
3.3.4 Behavioristic Axioms 

The three previous subsections provided answers based on gambling and scoring scenarios; 

such scenarios could be objectionable to some individuals, particularly those who question the 

moral and ethical implication of gambling and fierce competition. Therefore, Ramsey (1931) and 

Savage (1972) proposed an alternative system of “behavioristic axioms” to justify the calculus 

of probability. Based in mathematics, the Ramsey-Savage argument is related to coherence and 

consistency (an excellent exposition of this argument is given by DeGroot, 1970).  

This argument has two principal difficulties. The first is that the intuitive and natural elements 

of gambling and scoring are lost; axiomatic arguments tend to be abstract and therefore less 

appealing. The second and perhaps more serious difficulty is that behavioristic axioms are in 

actuality violated by (most) individuals (cf. Kahneman, et al., 1986). Despite these criticisms, 

behavioristic axioms prescribe normative behavior. It is not imperative that the calculus of 

probability be treated as axiomatic, but rather that it is seen as a consequence of certain 

behavioristic axioms, with the latter being taken as given (not withstanding some criticism).  
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Our reinterpretation of reliability advocates the use of all data on the list. Based on this 

philosophical principle, we developed new methodology known as PREDICT2 (Meyer, 

Booker, and Bement, 1999). PREDICT is an excellent example of a planning, tracking, and 

forecasting tool that reflects the needs of this fledgling century. 

 

34.0 Reinterpreting Reliability 

According to Good (1965), there are approximately eleven ways to interpret probability.  

As we have shown in Section 2.0, reliability is a probability, and because the latter can be 

interpreted in several ways, then it follows the reliability can be interpreted and quantified in 

several ways. Because of the flexibility of these terms, there are many different philosophies 

behind effective decision making. Thus, which philosophy we advocate will dictate the 

effectiveness of reliability assessment in the 21st century.  

There are four principal theories related to interpreting probability: 

• Classical Theory,  
• A Priori or Logical Theory,  
• Relative Frequency Theory, and  
• Personalistic or Subjective Theory. 
 
Although the interpretation of reliability has no effect on the calculus of probability (see 

Section 43.0), the assignment of initial probabilities (which are needed to initiate the calculus) 

depends on reliability’s interpretation. The following provide an overview of the key features of 

                                                                 
2  PREDICT (which stands for Performance & Reliability Evaluation with Diverse Information Combination 
and Tracking) is an integrated reliability methodology that combines all available information, with 
appropriate uncertainties attached, relating to the system’s performance. Information sources include expert 
judgement, historical data/information about the system’s parts and processes, vendor/designer 
specifications, computer simulation output results, physical models, test data, and data on similar parts, 
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the four theories mentioned above. For more detailed information, please consult Fine (1973), 

Good (1965), Maistrov (1974), Hacking (1974), or Gigerenzer et al. (1989). 

                                                                                                                                                                                                 
subsystem, processes and systems. As new information becomes available, the method permits updating 
the performance of the system. 
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34.1 Classical Theory 

Influenced by Newton, the following “determinists” founded this theory: Cardano, Pascal, 

Fermat, Huygens, Bernoulli, DeMoiure, Bayes, Laplace, and Poisson.  

As determinists, these individuals believed that every event, act, and decision was the inevitable 

consequence of antecedents that are independent of the human will. Of these individuals, the 

only one to venture a formal definition of probability was Laplace, who in essence described it 

as the ratio of favorable cases to the number of “equipossible” cases. Cases are equipossible if 

we have no reason to expect the occurrence of one over the other. The setup involving 

equipossible cases consists of the three following labels: 

• “principle of indifference,”  
• “principle of insufficient reason,” or 
• “Bayes’ postulate.” 

Although this theory has merit in games of chance, it also has a number of flawsdeficiencies.  

 For example, the principle of indifference appears to be a circular argument because 

equipossible implies “equiprobable” and vice versa. It also is difficult to divide up alternatives. 

For example, take the following problem: 

When rolling a die, what is the probability that it will land on “5”? The answer is 
1/6, if the alternatives are considered 1, 2, . . . 6, but it is 1/2 if the alternatives 
are considered are a 5 and not a 5.  
 

Perhaps the most crucial flaw is the potential for exceptions. For example, what if the die in 

the example above is loaded? What if there is a flaw in the die itself, which in turn affects the 

overall probability? Given these exceptions, now think of a unique space vehicle. What flaws 

will affect its reliability? 
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Although flaweddeficient, this theory is used to this day. It is particularly useful in teaching 

the concept of probability, as well as in a number of applications, such as Monte Carlo 

simulation, sampling, and experimental design.  

 
34.2 A Priori Theory 

Although it was the economist Keynes who first proposed the A Priori Theory of 

probability, it was Carnap (a physicist whose interests ranged from logic and syntax to 

semantics and languages) who expanded upon it. Others who have contributed to this theory 

include Jeffreys (1961), Koopman, Kemney, and Good (1965), and Ramsey (1964). 

The A Priori Theory is difficult to summarize in words because it involves the notions of 

logic and syntax. Basically, it interprets probability as a logically derived “entity.” In other 

words, a violation of logic yields an inappropriate conclusion. Because it is difficult to apply this 

theory to reliability assessments, this theory is often discussed but rarely used.  

 
34.3 Relative Frequency Theory 

Although the origin of this theory dates back to Aristotle, it was Venn who was the first to 

articulate the concept in 1866. Its mathematical development has been traced to von Mises 

(1957), whereas its philosophical discourse was developed by Reichenbach (1949). The 

following bullets summarize this theory’s key elements: 

• Probability is a measure of an empirical, objective, and physical fact of the real world. It 
is independent of human attitudes, opinions, models, and simulations. Von Mises 
believed probability to be a part of a descriptive model, whereas Reichenbach viewed it 
as part of the theoretical structure of physics.  

• Because probability is based only upon observations, it can be known only  
a posteriori (literally, after observation).  
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43.3.1 This Theory’s Virtues 

This theory applies to cases in which the indifference principle fails to hold (a six-faced die is 

loaded). Because the theory emphasizes observation, it has a strong link with the scientific 

method. Moreover, the theory rejects intangible things and relies on what many consider the 

essential tools of science: experimentation, observation, and confirmation through experimental 

replication. 

 
43.3.2 This Theory’s Criticisms 

The “core” of this theory is on replication. To achieve replication, we must  

• introduce a random “collective” (i.e., a scenario involving events that repeat again and 
again),  

• define that probability is indeed a random collective, and  
• specify that probability is a property of the collective and not an individual member of 

said collective. 
 
Creating a collective in the real world is a difficult problem. For example, tossing a coin an 

infinite number of times raises the following question: To be considered a collective, how similar 

must the tosses be? If the tosses are identical, then the outcome will not change. If they are 

dissimilar, how much dissimilarity is allowed (if this can be assessed at all)? Finally, relative 

frequency probability is never known, can never be known to exist (limits of sequences is an 

abstract mathematical notion), and its value can never be confirmed or disputed. 

Although collectives can be developed for social phenomena (actuarial tables and individual 

IQs) and some topics in physics (e.g., movement of gas particles), it is for the most part a 

difficult task. Although the collective concept was first embraced by physicists like von Mises, it 

was subsequently rejected by individuals like Bohr and Schrodinger, both of whom were 
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influenced by Heisenberg’s “principle of uncertainty.” This principal defined uncertainty and 

probability without the collective concept. 

Under the relative frequency view of probability, τ and H have no role to play, so that P τ(E; 

H)Pτ(E; H) = P(E).  Similarly, expert testimonies, corporate memory, mathematical models and 

scientific information do not matter; only hard data on actual events can be used to assess the 

initial probabilities. 

 
43.4 The Personalistic or Subjective Theory 

Although Borel was perhaps the first to generate this theory as early as 1924, it was 

Ramsey who in 1931 first articulated the theory. It was later refined by de Finetti (1937 and 

1974) and Savage (1954).  

According to the theory, there is no such thing as an objective probability. Moreover, 

probability is a degree of belief for a given individual at a given time. Not only must the degree 

of belief be measured in some fashion, but also an individual’s degrees of belief must conform to 

each other in a certain manner. The individual in question is an idealized one—in essence, one 

who behaves normatively.  

Because the intensity of belief is extremely difficult to quantify, researchers elected to look at 

some property related to it. For example, Ramsey and de Finetti favored a behavioristic 

approach in which the degree of belief is expressed through the willingness to gamble. Thus, the 

probability of an event is the amount (say p) the individual is willing to bet, on a two-sided bet, 

in exchange for $1, should the event take place. By a two-sided bet we mean staking (1-p) in 

exchange for $1, should the event not take place. 
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The normative component of this theory lies in a feature known as “coherence.” Coherence 

ensures that the degrees of belief do not conflict (for example, it avoids a “Dutch-Book” or 

“head I win, tails you lose” scenario). This is achieved by adhering to the calculus of probability.  

 
43.4.1 This Theory’s Virtues 

According to this theory, probability is dictated by individual opinions, and thus “unknown 

probability,” “correct probability,” and “objective probability” cannot be achieved. To 

determine an individual’s probabilities, all a researcher need do is invoke the principle of 

indifference, apply a system of carefully conducted comparative wagers, or simply ask the 

individual. In this theory, any factor that an individual elects to consider is relevant and any 

coherent value is as good as another. 

 
43.4.2 This Theory’s Criticisms 

The principal criticism leveled at this theory is that there can be little if any consistency in 

determining probability. For example, the theory has no provision to ensure that individuals with 

identical background information will declare identical probabilities. Given an individual’s action, 

it is difficult to separate the individual’s probabilities from his or her utilities. Because consistency 

is the hallmark of science, this theory is commonly refuted by scientists and engineers alike.  

Perhaps the most important argument against this theory is that experiments by 

psychologists have shown that individuals do not declare probabilities that have coherence (i.e., 

they do not act according to the dictates of the calculus of probability).  

A counter-argument to the above criticism is that the theory of personal probability is a 

normative one; it prescribes how we should act—not how we do act. 
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54.0 Which Interpretation of Probability is Appropriate for Reliability? 

In the world of organizations such as the U.S. Government’s Military Standards, automobile 

warranties, and commercial contracts, reliability analysis is entrenched in the relative frequency 

view of probability. With its claims of “objectivity,” this position is reinforced by the peer review 

process for publication in many applied scientific journals.  

This traditional interpretation to a degree has become outdated. For example, decision 

makers must make determinations under a number of intense restrictions, such as little or no 

testing (nuclear weapons, global climate change, and automotive reliability), one- or first-of-a-

kind units (aerospace and medical applications), and economic testing (particularly in the 

manufacturing industry). Because of these and other restrictions, there has been a gradual shift 

toward the more personalistic view.  

This shift can be traced back to the nuclear reactor industry (see WASH 1400, 1975) and 

evolved as the U.S. Government began to experience intense pressure over defense 

expenditures. As science and technology continued to evolve, other government and 

commercial areas began to feel the pressures of testing in complex and dynamic environments, 

particularly because such tests are either expensive, time consuming, or prohibitive for other 

reasons. The following are but five examples: 

• Stricter emissions and performance requirements for automobiles while their engines 
operate at the cutting edge of physics and engineering (Kerscher et al., 2000). 

• Determining software reliability by using complex and large computations  
(al-Mutairi et al., 1998). 

• Using graphical, numerical, and simulation-based methods for a broad range of models 
found in reliability. This covers areas such as analyzing degradation data, in which failure 
is not dichotomous but continuous (Meeker and Escobar, 1998). 
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• Empirical techniques used to solve complex manufacturing techniques by using an 
empirical Bayesian approach to combine data with prior information (Samaniego and 
Neath, 1996). 

• Using probability models for failure data analysis regarding maintenance and prediction 
related to a preliminary design. This is done by using influence diagrams, as well as a 
Bayesian approach (Barlow 1998).  

 
From a philosophical standpoint, the personalistic interpretation of probability does not lead 

to the logical inconsistencies and other difficulties of communication mentioned before, nor does 

it demand the availability of a large amount of hard data (or preclude use if such data are 

available). This type of interpretation also enables us to do the following: 

• Make statements of uncertainty about unique products or systems. 
• Incorporate information for all sources that are deemed appropriate.  
• Incorporate all relevant knowledge we have at any given time with the ability to update 

our probabilities (and hence reliabilities) as new knowledge becomes available. 
 
A prime example in which theTh formal use of all relevant knowledge could can have 

presented a different decision is the Challenger Space Shuttle tragedy. Instead of complete 

rereveal unanticipated problems before costly decisions are made, such as manufacturing recalls 

and disasters such as the Shuttle Challengerliance on the hard data from the solid rocket 

boosters (from a relative frequency view), a personalistic approach may have revealed the 

potential problems that subsequently led to the disaster. Therefore, we, feel that this is the point 

of view most appropriate for addressing the reliability problems in the 21st century. 

From a pragmatic point of view, the dramatic evolution of our computational capabilities in 

recent years has made knowledge and information available in a variety of qualitative and 

quantitative forms. Large-scale simulations of complex, physical systems (such as transportation 

simulation, Beckman, 1997) provide gigabytes of information that must be analyzed and 
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condensed in a form readily applicable for decision makers. Taking advantage of these 

information sources, including hard data, is what further motivates our point of view. 

 
5.0 Probability: A Method to Quantify Uncertainty (Reliability) 

This section provides an overview of several attempts at addressing the quantification of 

uncertainty. These attempts have contributors with diverse backgrounds, from philosophers and 

economists to physicists, psychologists, sociologists, engineers, statisticians, and 

mathematicians. Each approach has it own merits and flaws. Before we discuss these 

approaches, we must introduce some notation and terminology.  

 
5.1 Notation and Terminology 

Let E, E1, . . ., Ei, . . ., denote several uncertain events of interest at some reference time, 

say τ. Although it is common to set τ=ο,  it is important not to lose track of its presence. For 

example, E could denote an event that a deployed system accomplishes its mission. The 

complement of E is denoted by E , the event that a deployed system fails to accomplish its 

mission (see Fig. 1). Another example could be that Ei={Ti≥t}, where Ti denotes the lifetime of 

the i-th sub-system of a deployed system (measured from the time of the system’s deployment) 

and {Ti≥t} denotes the event that the i-th sub-system functions for at least t units of time. In this 

case, t is called the “mission time.” 

Let H denote the “history” or the “background information” available to the individual(s) 

contemplating the uncertain events, at time τ. In principle, H should encompass all that is known 

at time τ: scientific knowledge, engineering information, informed testimonies, design 

specification, physical models, computer codes, judgement, preferences, and hard historical 
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data on replicates of the uncertain event (if available). Thus at any time τ, there is the known H, 

and the unknown E, E1, . . ., Ei, . . ., . 

The fundamental problem of the treatment of uncertainty is how the uncertainty about E, E1, 

. . ., Ei, . . ., at the τ, should be quantified in the light of H. To address this problem, several 

approaches have been proposed, some of which pay attention to the issue of “whose 

uncertainty” and others which impose restrictions on what H can and cannot contain. Some of 

these proposed approaches are as follows: 

? probability,  
? belief functions,  
? possibility theory and fuzzy logic,  
? upper and lower probabilities,  
? Jeffrey's Rule of Combination,  
? confidence limits,  
? hypothesis testing with Type I and Type II errors,  
? significance levels,  
? maximum likelihood estimates, and  
? goodness of fit tests. 
 
Some of these approaches have a normative foundation, whereas others are ad hoc. We 

will focus on probability and make a case for it. 

5.2 Probability and the Calculus of Probability 

The calculus of probability consists of certain rules (or axioms) denoted by a number 

determined by P τ(E; H), in which the probability of an event, E, is related to H at time τ. When 

the event E pertains to the ability to perform a certain function (e.g., survive a specified mission 

time), then P τ(E; H) is known as the product’s reliability. Therefore, reliability is de facto the 

probability of a certain type of an event. 
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When the item in question is a human subject, the term “survival analysis,” rather than 

reliability, is commonly used. As indicated above, the mission time need not be measured in 

units of time, but rather it can be taken from other performance metrics, such as miles traveled, 

rounds fired, cycles completed, or output produced. 

The calculus of probability consists of the following three rules: convexity, addition, and 

multiplication. These rules are given mathematically in order: 

? 0 ≤ P τ(E; H) ≤ 1, for any event E; 
? P τ(E1, or E2; H) = P τ(E1; H) + P τ(E2; H) for any two events E1 and E2 that are mutually 

exclusive—that is, they cannot simultaneously take place; and  
? P τ(E1 and E2; H) = P τ(E1 | E2; H) · P τ(E2; H), where P τ(E1 | E2; H) is a quantification 

via probability of the uncertainty about an event E (supposing that event E2 has taken 
place). 

 
The quantity P τ(E1 |  E2; H) is known as the “conditional probability” of E1, given E2. Note 

that conditional probabilities are in the subjunctive. In other words, the disposition of E2 at time 

τ, were it to be known, would become a part of the history H at time  τ.  

The vertical line between E1 and E2 represents a supposition or assumption about the 

occurrence of E2.  Finally, P τ(E1 and E2; H) also can be written as P τ(E2 | E1; H) · P τ(E1; H) 

because at time τ both E1 and E2 are uncertain events and one can contemplate the uncertainty 

about E1 supposing that E2 were to be true or vice versa. 

The calculus of probability does not interpret probability. It does not do any of the 

following: it neither tells use what probability means, nor is it concerned with issues, such as the 

nature of uncertainty, whose uncertainty, how large should H be, and how to determine P τ(E; 

H) and make the result operational.  
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What does the calculus do? It simply provides a set of rules by which the uncertainties 

about two or more vents combine or “cohere.” Any set of rules for combining uncertainties that 

are in violation of the rules given above are said to be “incoherent” with respect to the calculus 

of probability. The next section discusses why these rules are necessary.  

 
5.3 Why Subscribe to the Calculus of Probability? 

In addition to the calculus of probability, there are a number of methods designed to comb 

and specify uncertainties, such as  

? Jeffrey’s rule of combination (Jeffrey, 1983),  
? possibility theory and fuzzy logic (Zadeh, 1979),  
? upper and lower probabilities (Smith, 1961), and  
? belief functions (Dempster, 1968). 
 
With so many theories, why should anyone subscribe to the calculus of probability? In a 

book by Howson and Urbach (1989), a number of contributors attempt to answer this very 

question; contributors range from gamblers and philosophers to mathematicians, decision 

theorists, behavioral scientists, and experts in artificial intelligence and knowledge acquisition. In 

the following subsections, we present some of the arguments used to justify the calculus of 

probability.  

 
5.3.1 The Flaw of “Can’t Win” 

Since the time of Cardono (who lived during the 1500s), gamblers recognized that avoiding 

the rules of probability in games of chance resulted in a “sure loss” (i.e., a Dutch-Book). A 

classic example is a coin toss in which the scenario is as follows: heads you lose, tails I win.  

 
5.3.2 The Scoring Rule 
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To justify the calculus of probability, de Finetti (cf. Lindley, 1982) used a “scoring rule,” 

which is used to ask an individual assessing and uncertainty to declare a number that best 

describes said individual’s uncertainty. Once the uncertainty reveals itself or is resolved, the 

individual is scored (i.e., rewarded or penalized) according to how close the declared number 

was to reality. 

De Finetti’s core argument is that under some very general conditions, an individual faced 

with a collection of uncertainties must use the calculus of probability to maximize an overall 

score. The above claim is true for a large class of scoring schemes. 

 
5.3.3 Betting Coefficients 

In horse racing, certain numbers known as “betting coefficients” are used. These numbers 

are odds on or against a particular horse or horses involved in a horse race. It has been 

demonstrated (for example, by Howson and Urbach, 1989) that to maximize winnings (i.e., 

determine the most accurate probability of success), the betting coefficients must follow the 

calculus of probability. 

 
5.3.4 Behavioristic Axioms 

The three previous subsections provided answers based on gambling and scoring scenarios; 

such scenarios could be objectionable to some individuals, particularly those who question the 

moral and ethical implication of gambling and fierce competition. Therefore, Ramsey (1931) and 

Savage (1972) proposed an alternative system of “behavioristic axioms” to justify the calculus 

of probability. Based in mathematics, the Ramsey-Savage argument is related to coherence and 

consistency (an excellent exposition of this argument is given by DeGroot, 1970).  
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This argument has two principal difficulties. The first is that the intuitive and natural elements 

of gambling and scoring are lost; axiomatic arguments tend to be abstract and therefore less 

appealing. The second and perhaps more serious difficulty is that behavioristic axioms are in 

actuality violated by (most) individuals (cf. Kahneman, et al., 1986). Despite these criticisms, 

behavioristic axioms prescribe normative behavior. It is not imperative that the calculus of 

probability be treated as axiomatic, but rather that it is seen as a consequence of certain 

behavioristic axioms, with the latter being taken as given (not withstanding some criticism).  
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66.0 Using Expert Testimony in Reliability Assessment 

Once we adopt a personalistic interpretation of probability (reliability), we can assess 

reliability by using the calculus of probability on informed testimonies based on judgements, 

experience, simulations, or mathematical models. Expert testimony plays a crucial role 

particularly in cases in which hard data are unavailable or even impossible to obtain. In many 

instances, scientists and engineers have the knowledge and experience that can augment what 

little empirical evidence is available.  

To maximize the accuracy of such expertise, it must be properly elicited and analyzed (cf. 

Meyer and Booker, 1991). Informed testimonies do not obviate the role of hard data when 

available. Instead, the personalistic view fuses the import of informed knowledge and hard data, 

the latter enhancing the former, via the calculus of probability and its extensions. For a detailed 

overview of this view, see Lindley and Singpurwalla (1986) and Singpurwalla (1988). 

 

 
7.0 Closing Thoughts 

As human science and technology continue to become more and more sophisticated, we 

will become more and more reliant on auxiliary information (especially because of the computer 

revolution) that augments direct hard data, which due to restrictions (such as political and 

societal constraints) may be scarce. Thus, the subjectivist view of probability can provide a 

paradigm for the quantification of uncertainty and information/data integration and therefore yield 

an accurate assessment of reliability. As a result, decision makers will have the best tools to 
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apply to a new century of advanced science and technology and more sophisticated and 

complex societal and business issues.  
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