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ADbstract

Abstract

The FORTE (Fast On-Orbit Recording of Transient Events) satellite collects records of radio frequency
events that exceed a threshold. Here we consider processed (dechirped) data from storm-like micro events.
Each data point isthe total electron count (TEC) accumulated over 400 microseconds. Each data record
contains approximately 100 to 400 micro events. Some data records contain well-defined storm events
which consist of many data points (micro events) in a specialized cluster. We present a method involving
noise rejection and cluster analysis to identify well-defined storms from the data records. We first remove
noise using density estimation and then apply hierarchical clustering to the higher-density micro events. For
each identified cluster of micro events, we fit TEC as a quadratic function of time (a quadratic shapeis
anticipated from atmospheric physics), and find more micro events that belong to the cluster using a careful
extrapolation. The overall performance of finding each storm and identifying which micro events belong to
which storm is assessed by comparing our results to test data produced by a human analyst.



Examples - data sets 6, 7, 18, 16

TEC and time are transformed to unit variance, 0 mean
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Problem Statment

Find smilesin TEC vstime
-each data point isthe total electron count over 400 s

-each data record contains 100 to 400 micro events

-most data records contain storms which consist of many
data points (micro events) in a specialized cluster

Anticipated cluster shape: bowl (“smile” or region of it)

-total record time approx 800 seconds, or 1 pass of satellite



Methods (in Splus now, PERL next)
* Noise-- remove viasimple density estimation
» Hierarchical clustering and experiment with:

- metric

- cutpoint using quantiles of distances
- clustering method: long, thin cl usters
- rule for rgecting small clusters

e, Vil
g 1

o Compare to model-based clustering (Raftery and othérs)

Ref: Stanford and Raftery 2000 | EEE Transactions on Pattern Analysis
Involved principal curve clustering with noise. CEM - PCC with BIC and
model for likelihood using hierarchical clustering as key steps
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Noise rglection performance: faise positive and faise negative rates
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Cluster Features

MAD({re

100

ne

SUD 400
Duration of Bvent

200

600

U

ff{Ran gTEC

Final QC check on any
purported storm can require
“reasonable values’ for any
subset of:

MAD(resid)
event duration
range(TEC)

And, concave up, not down
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Closest existing method: HPCC/CEM
Stanford and Raftery 2000 |EEE PAMI:

principal curve clustering with noise
|ssues here:
Noise model, gaps, quadratic anticipated and OK
BIC: 21log(L(X]q)) - M log(N)
L (X]qg) depends on noise model, feature model
M = Kk(DF + 2), DF= deg freedom in curve fit,

N points, k = no. of clusters

BIC for “true’ versus current best, near best guesses.

selects true 10 times, best 9 times and near best 11 times
Future: experiment with likelihood for noise and feature



M ethods

6 factors considered in a search:
2 noise rejection thresholds - relative (f1) and absolute (f2)

3 factorsrelated to hierarchical clustering -

cut tree at some high percentile {3

reject clusters with small relative no of observations f4
rgject clusters with small absolute no of observations f5

1 factor related to extrapolation from original cluster f6

what fraction of range of original cluster to allow extrapolation

Search over 3°runsto find good values. Result: optimal values
over 30 data sets approx same as those chosen from D1.



Data
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Exampl es - WIth NoISe - side 16 has method description
Final cluster
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Data

TEC (sl

TEC (k)

TEC (k)

Examples - some noise removal
Clustersfound: A and B parameters
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Example - with/without noise removal
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Method 1

Using values chosen from D1, and one set of nearby values:

1. rglect noise
2. cluster result A with optimal values, B with near optimal

3. For each cluster, extrapolate using quadratic fit and “zone
of ownership” to avoid ambiguous points.

4. Compare A and B results. For each cluster in A that is
confirmed in B, accept cluster as a storm.

Other methods™ informally evaluated, but results for 1 are:
false positives: O (found 24 of 59) false negatives. 35/59

false positive rate: 0.21 false negative rate: 0.09

" Example: BIC asin Stanford and Raftery 2000 evaluated for
true and estimates not yet working well, issue is likelithood.



Simulation Study: LI

S:Methodl, RI

S:mclust

Goals: Estimate performance, quantify difficulty,
effective number of clusters, identify other methods
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Summary/Future

« SUMMARY

Methodl: Combination of noise rejection, hierarchical
clustering, and extrapolation with zone of ownership

Metaparameters chosen by hand working with D1,
validated in 3° search over al 30 data sets.

Method 1 to be iImplemented in PERL and results
compared to manual results in large testing set.

« FUTURE

Stormsin TEC vstime plots to be evaluated using
ground-based observation data.

More analytical/ssmulation work on effective no. of
clusters and quantifying difficulty of each case



