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Presentation Topics

• Learning Curve models.

• Developing Learning Curve parameters.

• Shifting Reference Point from T1.

• How to select appropriate Reference Point.

• Demonstration of improvement achieved. 
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Standard Practice for Estimating Costs of
Multiple Unit Procurements

• Apply a cost improvement or “Learning Curve” (LC) rate 
to account for improvements in:
– Management

– Engineering processes

– Production efficiency

• Experience has shown that unit costs decrease (although at 
a declining rate) during the production process - regardless 
of how long the production runs. 

• There are two predominate schools of thought on how to 
apply LCs to estimate production cost.
– Cumulative Average Unit Cost Theory

– Unit Cost Theory
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Cumulative Average Unit Cost Theory

• Cumulative Average Unit Cost (CAUC) Theory posits that 
CAUC of successive production units decrease at a 
constant rate each time the production quantity is doubled.

• That constant rate is referred to as the “CAUC Learning 
Curve Slope” and is often expressed as a percent (e.g., 
90%).

• Standard form of the CAUC Theory equation is 

Y = axb, where:

Y is Cumulative Average Unit Cost of x units.

a is theoretical first unit cost (T1 or CAUC1).

b is learning curve exponent,

x is production quantity.
)2ln(

)ln(slope
b =



02/11/200
3

5

Total Production Costs using CAUC

• Total Production Cost (TPC) for x units

• Lot Total Cost (LTC)

where j is last unit of lot in question and i is last unit of prior lot.

• Lot Average Cost (LAC) can be determined by dividing LTC  by Lot
Quantity (q).
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Unit Cost Theory

• Unit Cost Theory posits that unit costs of production units 
decrease at a constant rate each time production quantity is 
doubled.

• That constant rate is referred to as the “Unit Learning 
Curve Slope” and is often expressed as a percent.

• The standard form of the Unit Cost Theory equation is 
very similar to the CAUC model.

Y = axb, where:

Y is Unit Cost of the xth unit.

a is theoretical first unit cost.

b is learning curve exponent,

x is number of units produced.
)2ln(

)ln(slope
b =
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Total Production Costs using Unit Theory

• Unit Theory is discrete so Lot Total Cost may be determined by 
summing unit costs for each unit

• It is often convenient to estimate lot

costs using a continuous approximation

of the discrete distribution.

Where i is first unit and j is last unit of the lot
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Developing a CAUC Model from Actual Data

• T1s and Learning Curve slopes can be derived from historical 
production costs.  Here is a sample data set. (“Cum” = Cumulative)

Lot BQ Cost Cum Q Cum C Cum AUC
1 45 58000 45 58000 1289
2 75 89000 120 147000 1225
3 276 195000 396 342000 864
4 230 175000 626 517000 826
5 509 375000 1135 892000 786
6 1618 695000 2753 1587000 576
7 2253 805000 5006 2392000 478

Plot of CAUC vs Cum Quantity
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CAUC is the dependent 
variable.

Cum Quantity is the 
independent variable.
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Curve Fitting Model

Iteratively Re-weighted Least Squares (IRLS) Analysis:

• Minimizes the sum of squared percentage error:

• May be performed using Excel Solver.
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Our first iteration uses values for a and b derived from a log/log regression model to 
determine predi(j-1) and then finds values of a and b that minimize the squared percent 
error function.  We then iterate this process, each time retaining our previous 
predictions in the denominator, until differences between our new predictions and 
previous predictions approach  0.

IRLS has several desirable properties vis-à-vis log/log regression:
• The minimization function is in unit space (vice log space).
• Weights each data point equally.
• Percent bias approaches 0.

∑
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The “Covariance Matrix”

• The covariance matrix can be developed as shown

• Adaptation of Dr. Matthew Goldberg’s presentation at 
DODCAS 1999.
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The covariance matrix enables us to develop variability parameters 
for the IRLS coefficients.
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Model Results Using IRLS

Estimate SE
T1 3165.5 340.3
b -0.213 0.0164
Slope 86.3%

% SE 7.95%
% Bias -0.005%

Cost Formula:  CAUCn = 3165.5 * n(-0.213) * error

Variability parameters tell us how well this equation predicts CAUC 
for historical system, but additional sources of variability are 
introduced when predicting cost of a new system.

Low High
T1 2825 3506
Slope 85.3% 87.3%

One Standard Deviation Interval

11% 

Nice tight interval on 
Learning Curve Slope, 
but T1 value has wider 
variability.

Using our sample
data from Chart 8.
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Estimating Costs of a New System

• Learning Curve Slope (b).  Typical methods for estimating Learning 
Curve Slope include:
– Analogy to another program

– Average of several similar programs

– Analyst Assumptions or “Expert Judgement”

• First Unit Cost (a).  Typical methods for estimating First Unit Cost 
include:
– Cost Estimating Relationship derived from historical data on earlier 

programs..

– Analogy to another program.

– Derived from prior data from same program.

• Annual Production Quantities (x).  Usually determined by mission 
requirements and availability of procurement funding.

• So, how good are these methods?  Let’s look first at some Learning 
Curves derived from historical data.
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Learning Curve Slopes for Missile Programs

• Study of missile programs shows that CAUC Learning 
Curve Slopes developed from historical data range widely.
– Slopes derived for 13 historical programs range from 95.8% to 

75.5%, with median slope of 84.0%

– Ranges only slightly narrowed when stratified by contractor, 
developing service, missile type, or first year of manufacturing.

– When stratified using multiple categories, sample sizes are too 
small for analysis.

• Therefore cost analysts tend to look for closest analogy 
using multiple criteria - but we don’t know how close the 
analogy fits the new program.

• Let’s look at how much a cost estimate can be affected by 
choice of learning curve.
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Impact of Learning Curve Choice

• Let’s assume we know that first unit cost of a new missile is exactly 
$1.0M, and the production requirement is 5000 missiles.

• Let’s accept the median historical LC slope (84%) for our pre-
production cost estimate, so that 

• Total production estimate for 5000 missiles is then

• But if, when production begins, the contractor is only able to manage a 
90% learning curve slope, and 

the actual production cost is now

• So we underestimated total production cost by $783M!

• This error is too large, even for DoD cost estimates.

• How can we improve the estimate?

252.)2ln(/)84ln(. −==b

MCAUCCostProd 9.586$)5000)(0.1(5000 252.1
5000 === −

152.)2ln(/)90ln(. −==b

MCAUCCostProd 0.1370$)5000)(0.1(5000 152.1
5000 === −
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Mitigating Effects of Learning Curve Choice

T1 Point of Reference
Difference Between 90% and 84% Slopes

0 1000 2000 3000 4000 5000

Unit

C
A

U
C

T500 Point of Reference
Difference Between 90% and 84% Slopes

0 1000 2000 3000 4000 5000
Unit

C
A

U
C

Estimating production costs based on T1 magnifies any error we make in 
selecting an appropriate learning curve.  The charts below illustrate how much 
better the estimate can be if we move the reference point away from T1.

As we move our reference point to the right towards 5000 units, the cost estimate is 
impacted less and less by a wrong choice in learning curves.  

90% Slope

84% Slope

90% Slope

84% Slope
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What if the Reference Point is the Delivery Quantity?

• The total production cost estimate will not be impacted by choice of learning 
curve.

• But we risk large errors in the cost estimate of early production lots, and this 
will cause budgeting problems.

T5000 Point of Reference
Difference Between 90% and 84% Slopes
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Proposed Model Standard Form

• N is the number of production units.

• m is the Cost Reference Point.

• Tm is the CAUC of m units.

• For fitting a learning curve model:
– Dependent variable is CAUC(N)

– Independent variable is (N/m)

– Analysis of data produces estimates for Tm and b.

b
m mNTNCAUC )/()( =
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Selecting a Good CAUC Reference Point (CRP)

• Desirable Characteristics:
– Mitigates effect of choosing wrong learning curve for both

• Production Total Cost

• Annual Production Costs
– Somewhere between T1 and Total Delivery Quantity

– Robust for use with multiple programs - doesn’t exceed total production 
requirement of most programs.

– Least possible error in estimating the CAUC at the Reference 
Point.
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Least Possible Estimating Error is Important

• Cost Estimating Relationships (CERs) are influenced by Tm estimating error.
– CERs use physical properties or characteristics of systems to predict cost.

– They start with development of Tm estimates for several similar systems from 
historical data using learning curve models (usually at T1).

– They use these Tm estimates as dependent variables in regression models - usually 
assuming that the Tm values are known with certainty.

– Error in estimating Tm for the historical systems degrades the accuracy of the CER.

• If we use an analogy, the Tm is derived from a learning curve model for the 
analgous system.

• So, if we minimize the error in developing the Tm in our learning curve 
models, we improve the accuracy of our cost estimating reference point.
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Minimizing Error in Estimating Tm

• Selecting an appropriate value for “m” can be done by examining % 
SE of Tm estimates at various values of “m”.

• The table and chart below (based on the data in chart 8) show that % 
SE is minimized near T500, and every value has lower % SE than T1.

• In support of BMDO, we use T250 for missile programs based on 
relatively small %SE and the anticipated procurement quantities of 
BMD missile systems.

m Tm SE(Tm) %SE(Tm)
1 3165.5 340.3 10.8%

100 1189.0 42.0 3.5%
250 978.3 28.2 2.9%
500 844.2 23.1 2.7%
750 774.4 22.3 2.9%

1000 728.4 22.6 3.1%
2500 599.3 26.3 4.4%
5000 517.1 29.4 5.7%

Plot of % SE vs m
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Variability in Production Estimates Using T1

• Let’s assume missile learning curves are triangularly distributed between 
95.8% and 75.5%, with a most likely value of 84%. 

• Let’s assume our T1 is lognormally distributed with a Point Estimate of 1 and 
a 30% SE.

• Now let’s randomly select a learning curve and T1 from their respective 
distributions 5000 times in a simulation to model the distribution of production 
cost outcomes.

Here are the simulation results :

• Wouldn’t you like to have an estimating methodology that narrows the 
range of probable outcomes better than this?

Statistic Value
Trials 5,000
Mean 815.00
Median 652.44
STD 577.47
Skewness 1.79
Kurtosis 7.33

Percentile $M
10% 276.04
30% 459.26
50% 652.44
70% 928.32
90% 1,585.77

The 10-90% Range is 
$1,309M. 
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Variability in Production Estimates Using T250

• Let’s continue to assume missile learning curves are triangularly distributed 
between 95.8% and 75.5%, with a most likely value of 84%. 

• Let’s assume our T250 is lognormally distributed with a Point Estimate of .25 
and a 25% SE (Assumes that better knowledge of dependent variable gives us 
a 5% reduction in %SE in the CERs as shown on chart 19).

• Now let’s simulate the production run 5000 times.

Here are the simulation results :

• The T250 Reference Point substantially reduces the risk associated with 
our cost estimates.

Statistic Value
Trials 5,000
Mean 535.11
Median 506.59
STD 176.49
Skewness 0.92
Kurtosis 4.14

Percentile $M
10% 336.69
30% 425.01
50% 506.59
70% 602.59
90% 773.36

The 10-90% Range 
is $337M, down 
almost $1,000M 
from a T1 Cost 
Estimate.
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Summary

• T1 is a poor reference point from which to start an 
estimate.
– It magnifies the impact of errors in selecting a learning curve 

slope.

– The SE in estimating a T1 is much larger than the SE for 
estimating Tm, where 1 < m < very large number.

• Using Tm as a reference point improves the accuracy the 
estimate.
– Error in selecting a learning curve is mitigated.

– Estimates of Tm are more precise and less influenced by the value 
of the learning curve slope.

– Provide a better basis for CER development.

Don’t Use T1s in Cost Estimates


