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1. What is Boosting?

Boosting is general technique to potentially improve a given prediction or

classification scheme, especially useful for large data set problems.

References: Schapire (1989), Freund (1990); Freund and Schapire (1995)...

An improvement in the range of 30 to 50% in classification problems.

Computer does the work!
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Why are they suited for large data set problems?

For a large data set,

� it is easy to get a sensible procedure to start with;

� it is hard to get a sensible model under which to optimize.
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Boosting (cf. Freund & Schapire, 1996):

� starting with a weak classifier (learner);

� resampling data with weights wi for data point i;

� re-application of the initial procedure to the new sample to get a new procedure

fj ;

� iteration;

� at the end of M iter, averaging and taking sign to get the classifier FM .

Let errj the classification error at iter. j, for cj = log((1� errj)=errj) :

wi(j) / wi(j � 1) exp(cjIfyi 6=fj(xi)g);
X
wi = 1:

Heavily misclassified examples getting large weights!

A sequential algorithm...
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After M iterations,

CM (x) := IfPBoost

M

(x)>1=2g; P
Boost

M (x) =

exp (2FM (x))

1 + exp(2FM (x))

where

FM (x) =

MX
j=1

cjfj(x);

fj(x) = estimate from ‘weak learner’ of

1
2

log

P (x)

1� P (x)
:

Bag-boosting (BY, 2000b): use the bagged estimator/learner as the weak learner in

boosting.
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State of affaris:

� big improvements when initial is tree procedures like CART;

� resistance to overfitting for most data sets tried;

� Freund and Schapire et al: VC bounds/distribution of margins on generalization

errors.

� gradient-descent interpretation (Breiman, Mason et al, Friedman et al (FHT)) of

boosting

{ fj(x) is a step of Newton method for minimizing a surrogate exp. loss

function J(F ) = E [exp(�Y F (X))];

{ in every Newton step the expectation in J is approximated using the current

estimate of P (x).
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Boosting (or gradient descent) in terms of other loss functions (FHT, 2000;

Friedman, 1999)

C(y; f) = exp(�yf) with y 2 f�1; 1g: AdaBoost cost function;

C(y; f) = log(1 + exp(�2yf)) with y 2 f�1; 1g: LogitBoost cost function;

C(y; f) = (y � f)2=2 with y 2 IR: L2Boost cost function: (1)

Their population minimizers are

F (x) =
1

2
log(

P[Y = 1jX = x]

P[Y = �1jX = x]
) for AdaBoost and LogitBoost cost;

F (x) = E [Y jX = x] for L2Boost cost: (2)
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Generalization to L2 regression (Friedman, 1999) – more tractable analytically

Under regression model:

Yi = f(xi) + �i (3)

where f = (f(x1); :::; f(xn))
T ; � = (�1; :::; �n)
T iid N(0; �2).

BY (2001): Denote the weak learner by SY , then the boosting estimate in iteration

m can be represented as:

^Fm = BmY where Bm =

mX
j=0

S(I � S)j = (I � (I � S)m+1):

No weighting!

m = 1 corresponds to Tukey’s twicing.
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Theorem (Linear case) Consider a linear, symmetric weak learner S with

eigenvalues f�k; k = 1; : : : ; ng, satisfying 0 � �k � 1; k = 1; : : : ; n and

eigenvectors building the columns of the orthonormal matrix U . Then, the bias,

variance and averaged mean squared error for L2Boost are

bias =

nX
i=1

(E [ ^Fm(xi)]� f(xi))
2
n
�1 = f
T
Udiag((1� �k)

2m+2)UT
fn
�

variance =

nX
i=1

Var( ^Fm(xi))n
�1 = �
2

nX
k=1

(1� (1� �k)
m+1)2n�1;

MSE = bias + variance:
Example 1: S is projection then L2Boosting has no effect.

Example 2: S = smoothing spline.

For any fixed n, limm!1MSE = �
2: overfitting in the boosting limit.
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Denote

G
(p) = ff :
Z

[f (p)(x)]2dx <1g:
and SY = gp(�) is the smoothing spline solution to the penalized Least Squares

problem

gp(�) = argming2G(p)
1

n

X
i

[Yi � g(Xi)]
2 + �
Z

[f (p)(x)]2dx

Theorem (optimality of L2Boost for smoothing splines) Suppose S is a smoothing

spline linear learner gp(�0) of degree p corresponding to a fixed smoothing

parameter �0. If � � p, then there is an m = m(n) = O(n2p=(2�+1))!1

such that ^Fm(n) achieves the optimal minimax rate n�2�=(2�+1) of the smoother

function class in terms of MSE.
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Remarks:

Boosting smoothing splines is optimal for a given smoothness class and it adapts to

any arbirtrary higher order smoothness.

Gu (1987) analyzes twicing (m=1) and shows that twicing can adapt to a higher

order smoothness � < 2p.

For cubic smoothing spline with � = p = 2, the optimal rate n�4=5 is achieved by

m = O(n4=5). If the underlying smoothness is 3 > 2, then the boosted cubic

smoothing spline can achieve the optimal rate n�6=7for the smoother class.
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A simulation example:

f(x) = 0:8x+ sin(6x); x 2 IR1
;

x1; : : : ; xn i.i.d. realizations fromN (0; 1); n = 100;

"i � N (0; �2); �2 = 2: (4)

S is a cubic smoothing spline weak learner.
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smoothing spline fit
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Figure 1: Left: realization of model (3) with (4) (dots), cubic smoothing spline fit (solid

line) and true function f(�) (dotted line). Right: first ordered 25 eigenvalues of cubic

smoothing spline operator S (with 20 degrees of freedom).

13



'
&

$
%

For boosting, iteration m is the "smoothing parameter".

Weak learner: a (shrinked) cubic smoothing spline with 20 degrees of freedom.

boosting

boosting iterations
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The boosting is a lot flatter or doesn’t go up as much after the optimal point; the

var/complexity term is bounded – hence good resistance to overfit!
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A real data set: Ozone

L2Boost with comp-wise cubic smoothing splines 17.495 (5)

L2Boost with comp-wise stumps 20.957 (26)

MARS (in S-Plus Lib(mda)) 18.092

Linear modeling (in S-Plus) 20.799

Table 1: Estimated test set MSE’s. Optimal number of boosts is given in parentheses.
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2. Boosting in 2-Class Problems

0-1 loss is a different creature from L2 loss...

2.1 Expanding smoothed 0-1 loss

Given new (Y;X) 2 f�1; 1g � IRp, indep. of training set, the misclassification

rate or 0-1 loss for ^Fm:

P[Y ^Fm(X) < 0] = E [1[Y ^Fm(X)<0]]:

0-1 loss can be approximated by a smoothed version:

jP[Y ^Fm(X) < 0]� E [C (Y ^Fm(X))]j = O( log(�1) ( ! 0);

where

C(z) = (1� exp(z=)=2)1[z<0] + exp(�z=)=21[z�0];  > 0:
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0-1 and smoothed 0-1 (gamma=0.05)

yF(x)
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Test set difference of P[Y ^Fm(X) < 0]� (E [C (Y ^Fm(X))] with LogitBoosting

stumps and breast cancer data:
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Expanding C(�) around Z� = Y F (X), i.e. the margin with the true F (�), and for

C
(k)
 (z) =

1
k

exp(
�jzj



)(�1[z<0] + (�1)k1[z�0]) : (5)

E [C (Z)] = E [C (Z
�)] +

1X
k=1

1
k!

E [C(k)
 (Z�)(Z � Z

�)k]

= (smoothed) Bayes risk + tapered1 bias + tapered2 MSE

+ tapered interactions between the bias and moments of random term;

where random term is defined as ^Fm � E ^Fm , and each term has a different

tapering function.

Moreover

tapered2MSE = tapered2 bias2 + tapered2 Variance :
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first two tapering functions

yF(x)

-1.0 -0.5 0.0 0.5 1.0

-1
50

-1
00

-5
0

0
50

10
0

15
0

20



'
&

$
%

Remarks:

1. Tapering functions C
(k)
 =k! add much robustness to overfitting on top of the

sub-linear complexity increase from L2 story – mostly only the classification

outcome around the class boundary matters.

2. Bias matters more in classification. Boosting reduces the bias (BY, 2001,

Breiman, 2000) hence behaves better than bagging in classification.

3. Complexity is not straightforward since the bias term interacts intimiately with

the random term (whose variance has been the conventional complexity term)

so no simple breakdowns into the bias and variance terms in an additive

fashion, unless the first two terms give a good approximation. (In the latter case,

the bias term has two parts involving two tapering functions. )
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Acceleration of F and classification noise

If the true F (�) moves away quickly from the classification boundary

fx;F (x) = 0g, the relevant tapering weights C
(k)
 (yF (x) decay very fast.

This can be measured with grad(F (x))jx=0 , the gradient of F at zero.

F (�): a large acceleration if its gradient is large.
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Mammen and Tsybakov (1999): under local constraints on F (�) near class

boundary, the minimax rate of convergence for the generalization error to approach

the Bayes risk can be faster than the parametric rate n�1=2!

Key: treating the problem as estimating the Bayes decision set, not function

estimation. Hence their minimax optimal classifier is not a plug-in, but the minimizer

of the empirical 0-1 risk over a set class of regulated size. Computationally difficult...
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2.2 L2Boost in Classification

Boosting algorithms use "nice" bounds on the empirical risk to minimize and stick

with the "plug-in" philosophy.

L
2 is a very good bound if we estimate E(Y = 1jx)!

loss functions of the margin
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Figure 2: Various loss functions of the margin Y F (X).
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Estimating E [Y jX = x] = 2p(x) � 1 in the classification can be seen as

estimating the regression function in a hetereoscadestic model:

Yi = 2p(xi)� 1 + �i

where �i are independent, mean zero, but with variance 4p(xi)(1� p(xi)).

Similarly as in L2 regression...
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Optimal rates for smoothing splines hold, which are known to be the optimal rates to

approach Bayes risk if global smoothness classes are assumed (cf. Marron, 1982).
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FHT: L2Boost has a slightly worse performance than LogitBoost...

Smoothing splines are appropriate as weak learners if the predictors are continuous.

Some Experimental Results

L2WCBoost: for each L2Boost iteration, impose the bound of [�1; 1].

Comparing cubic spline with stumps as a weak learner:

dataset n p learner L2WCBoost LogitBoost

Breast cancer 699 9 stumps 0.040 (275) 0.039 (27)

Breast cancer 699 9 cubic smoothing spline 0.036 (126)

Sonar 210 60 stumps 0.190 (335) 0.158 (228)

Sonar 210 60 cubic smoothing spline 0.168 (47) 0.158 (80)

Table 2: Estimated test set errors for L2WCBoost and LogitBoost. Optimal number

of boosts is given in parentheses.
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Open Problems:

1. Analysis of L2Boost for trees (on-going research).

2. Can boosting achieve the rates in Mammen and Tsybakov (1999) for the locally

constrained classes?

3. Breiman’s conjecture (2000):

Adaboost is an equalizer of margins so weighting doesn’t play much a role.

Our L2 boosting has no weighting hence it supports this conjecture.
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