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DOE Course — Module 1

Introduction, Definitions and an Example

Goals
1.

S OB

Introduce fundamental concepts

Design & analyze an experiment

Introduce linear statistical models

Explain factor coding conventions

Show the relationship of a model to a design

Introduce criteria for evaluating the goodness of a
design



What Is a Designed Experiment?

a structured set of tests of a system or process

Controllable factors

x, X, x,

Inputs Output

— Process —é&
z, z, 2,

Uncontrollable factors



Integral to a designed experiment are...

1. Response(s)
2. Factor(s)
3. Model



What Is a Response?

A response is a measurable result.
— vyield of a chemical reaction (chemical process)
— deposition rate (semiconductor)
— gas mileage (automotive)

Inputs

Controllable factors

Xy Xy xp

Process

2, Zz zq

Uncontrollable factors

Response

Output
-



What |s a Factor?

A factor is any variable that you think may affect a response of
interest. We begin by considering two types of factors —
continuous and categorical

continuous factors take any value on an interval
e.g. octane rating [89 93]

categorical factors have a discrete number of levels
e.g. brand [BP, Shell, Exxon]



What is a model?

a simplified mathematical surrogate for the process

Factor(s) —— Model —— Response(s)

Controllable factors

X, X xp

Inputs Output
——— Process —-ﬁ&
2z, z, 2,

Uncontrollable factors



Example Experiment #1

You want to know 2 things:

1.Does higher octane rating improve gas mileage?

2.Which brand (BP, Shell or Exxon) is best for gas
mileage?

Octane Rating Brand
39 ] g3  Oa
Octane OB

9 QOcC

Fesponze
KMIL

Run One Test




Important Points from the Fathers of DOE

DOE - Problem solving methodology for efficiently
identifying cause-and-effect relationships.
Fisher’s Four Fundamentals of DOE

1. Factorial principle

2. Randomization

3. B|Ocking R.A. Fisher

4. Replication

“To discover what happens to a process when a factor

is changed, you must actually change it! 23

George Box


http://images.google.com/imgres?imgurl=http://www.bobabernethy.com/photos/statisticians/Sir_Ronald_Fisher_2.jpg&imgrefurl=http://www.bobabernethy.com/bios_stats.htm&h=334&w=205&sz=17&hl=en&start=4&tbnid=DUzthbs0qrfySM:&tbnh=119&tbnw=73&prev=/images?q=sir+ronald+fisher&gbv=2&svnum=10&hl=en

Examples of Models

Comparing three brands of gasoline using an ANOVA model:

Yj@j:M_FOéi—i‘Eij

Finding the effect of octane rating using a regression model:

Yi = Do+ 51Xy + €

Y (the response) is the mileage of a car in miles per gallon.



ANOVA Model for Mileage Study

( [+ o +¢ it Brand = BP;
Mileage;, = ¢ p+ as +¢; 1t Brand = Shell;
| 1+ s+ € it Brand = Exxon.

Note that we have 4 unknown parameters and only 3 brands of gasoline.
Our model is overspecified —

if we know any three parameters, we can compute the 4%,

We say there are 2 degrees of freedom (df) for alpha.



Categorical Factor Coding — 3 levels

Names Numeric  Orthogonal or Effects

Label Coding Coding
X1 X2 X1 X2

- oBp 1 [1] [ E o-il 1 0
Shell |=| 2 || 0 V2 0 1

- Bzxon | 3] _—\/g—%__—l —1 |

Orthogonal Coding:
There are two “dummy” columns — 2 degrees of freedom
The sum of squares of both columns is 3.
The sum of the element wise products is zero
(i.e. the dot product is zero)



1.

Orthogonal Coding and Orthogonal Design

Dummy columns for categorical factors are orthogonally coded if their
dot product is zero.

a) The column means are zero.
b) The pairwise column correlations are zero.
For the purpose of this course we say that a design is orthogonal if:
a) The means of the columns of the design matrix are all zero.
b) The pairwise correlation for all column pairs of the design matrix are zero.

c) So, whether a design is orthogonal can depend on the model you fit.



ANOVA and regression models are equivalent...

( 1w+ o +¢ it Brand = BP:
Mileage;, = ¢ p+ as +¢; 1t Brand = Shell;
| 1+ s+ € if Brand = Exxon.

Replace p with B, and o, and o, with 3, and 3.

Bo 4+ 511 + 350 + €; if Brand = BP:
Mileage; = Bo + 10 + G214+ ¢€; if Brand = Shell:
Go+ B1(=1) + Bo(—1) +¢€; if Brand = Exxon.

Mileage; = Py + 01 X1 + P2 X2 + €



ANOVA/Regression Model — Matrix Notation

_?11_ _:h 1 0 ) _I,.i’))() 61-
Yo | = 0 1 _51 + | €9
Y3 1 —1 — 1_ __52_ €3
\ 1 / /
y = X3+ ¢



Categorical Factor Coding — 4 levels

L _\/5—\/2—\/3
— ! \/g_\/g
0 0 V3

4 ViV

There are three columns — 3 degrees of freedom

ne sum of squares of all columns is 4.

The sum of the element wise products are zero

(i.e. all dot products of column pairs are zero)

= QO DN =

—]




Categorical Factor Coding — 2 levels

Orthogonal
&
Effects

Coding

1 —1
2 1




JMP Scripting Language (JSL) Function for Orthogonal Dummy Variable
Coding

level2dummy = function({nl,val},
dummy = j(1,nl-1,0);
cl = sqrt(nl*val/(val+1));
for (i=1,i<nl,i++,
c2 = sqrt(nl/(i*(i+1)));
if (val==i,11=1,11=0);
if ((i>val)|(val==nl),I12=1,12=0);
dummy[1,i]=c1*I11-c2*12;
);

dummy;

);

nl is the number of levels
val is the numeric label for the level you want to
code



Continuous Factor Coding

X —MR MR -midrange

AR - half range
, Hi — high value
MR_H?’;LO Lo - low value
Hi— L
HR — ( 0,




Continuous Factor Coding Example

X —-—MR
Xscae —
fed HR
VR — Hi+ Lo
2
Hi— L
HR: 12 0]

Suppose X is 92, what is the scaled value of X?

92-91 1
2 9

If Hi is 93

& Lo is 89,
then MR is 91
& HRis 2

If X is 93, then the scaled value is 1.
If X is 89, then the scaled value is -1.
If X is 91, then the scale value is 0.



The Model/Design Relationship -
Parameter Estimates

y =XB+€ Var(e) =0’

The matrix, X, is called the design matrix. The
least-squares estimator of B is:

8= (X'X)"'X'y

The variance of the least-squares estimator of 3 is:

AN

Var(3) = o*(X'X) !

o IS inherent to the system but we choose the design matrix, X.



The Model/Design Relationship -
Predicted Responses

The predicted values of the response are contained in the vector:
y=XB8=X(XX)"'X'y =Hy
Where the so-called, “hat” matrix, H, is: H = X(X'X)~'X’
The variance matrix of the predicted responses is:

Var(y) = o X(X'X) ' X’

Again, o is inherent to the system, but we choose the design, X.



The Model/Design Relationship — Aliasing

Suppose the best polynomial approximating model is:
y = X108, + X206, +¢€
But we estimate only B, using least-squares:
) / 1~/
By = (X1 X)) Xy

Now the elements of the least-squares estimates of 3,
are biased by 8, that is:

E(B:) =B, + AB,

where the alias matrix, A, Is:
(X’le)_lX’ng



What makes a design good?

Low variance of the coefficients.
Low variance of predicted responses.

Minimal aliasing of terms in the model from likely effects
that are not in the model (0.5 or less).

Correlations between likely effects that are not in the
model are small (0.5 or less).

The first two deal with variance — the last two with bias.
Reducing variance and bias are fundamental goals.



Design Optimality Criteria

max | X4’ X
D-optimality d | d d|

f f’(X) (Xd,Xd) _1f(X)dX

l-optimality min = [ dx

Alias optimality 11‘1(}11 Tr[A(d)' A(d)], subject to D.(d) > [p



Why isn't orthogonality a design criterion?

1. Not all orthogonal designs are good.

a) Itis inappropriate to change the requirements of a problem to use
an orthogonal design as a “solution”.

b) As we will see, in many practical situations no orthogonal design
exists.

2. Not all good designs are orthogonal.
Sometimes it may be useful to sacrifice orthogonality for some other
desirable design feature.
3. In standard two-level screening design orthogonal designs
minimize the variance of the coefficient estimates, so
focusing on variance results in orthogonal designs, if they

are possible.



Example Experiment #2

Design Relative Variance of Coefficients Fraction of Design Space Plot
1.0
Run X1 X2 X3 Significance Level 0.05 0.9 -
1 1 -1 1 Signal to Noise Ratio 1 8'3 7
2 1 1 -1 Effect Variance Power 5 g 0:6 i
3 -1 -1 -1 Intercept 025 0.126 S Sos-
©

4 -1 1 1 X1 025 0.126 & 204

X2 025 0.126 02 ]

X3 0.25 0.126 0.1 4

00 T T T T ; T T T T
0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1.0
Fraction of
Slmple experlment for Alias Matrix Color Map On Correlations
three factors and four Effoct X1%X2 X1°X3 X2°X3 S 9 e 9 o9 o
1 Int t 0 0 0 x X £
runs to illustrate ntereep X
_ . . X1 0 0 -1 Iri

design diagnostics. 2. 0 4 0 0

X3 -1 0 0



Module 1 — Conclusions

1. Remember Fisher's Four Principles
1. Factorial Principle
2. Randomization
3. Blocking
4. Replication
2. ANOVA models can be converted to regression models.

3. Factor coding for continuous and categorical factors is a
technical detail important for this conversion.

4. Variance and bias are fundamental criteria for evaluating
designs.



DOE Course — Module 2

Standard designs using an optimal design tool.

Goals

1. Give many examples of familiar designs created using an
optimal design algorithm



Optimal <> Full Factorial

Full Factorial designs are D-optimal for the models they support.

Example:

2“ designs are optimal for main effects plus interactions up to any
order less than or equal to k.



INPUTS
(Factors)

Airspeed

Turn Rate

A 4

Set Clearance Plane

A\ 4

Ride Mode

\ 4

A 4

Flight Test

Gross Weight
Radar Measurement

PROCESS:

OUTPUT
(Response)

SCP Deviation

TF / TA Radar
Performance

\4

Noise

P1-31



Properties of this design

Orthogonal

Makes interpretation easy

Minimizes the variance of the model coefficients

Minimizes the average prediction variance

Minimizes the maximum prediction variance

You can't do any better than this (for three factors in eight runs)!




Optimal <> Fractional Factorial

Fractional Factorial designs are D-optimal for the models they support.

Example:

2P designs are optimal for main effects plus interactions an order
dependent on the resolution of the design.



Resolution V

* Models for main effects + all two-factor interactions

* Consider five factors in a photolithography process
— A = aperture setting
— B =exposure time
— C =develop time
— D = mask dimension
— E =etch time



Consider the 2> — Again Created
Using an Optimal Design Tool

Basic Design

Treatment
Run A B O N E = ABCD Combination Yield
| - - - - + e it
2 + — — - i 4
3 — + — — — b 34
4 + + — — + abe a2
5 — — + — - - X
6 + — + — + ace 22
7 — + + — + bce 45
B + + + — — abc 6()
0 — — — + — d o]
10 + — — + + ade 10
11 — + — + + bde 30
12 + + — + — abd 50
13 — — + + + cde 5
14 + — + + — acd 21
15 — + + + — bed 4
16 + + + + + abcde 63




abe =52

abe = 6

A

abede =63

~“hde—30 | -
ade = 10
boh = 44
!&Fd:EI
|
I
I
I
__ L __
..-"f ﬁi:ﬁﬂ




The 2°

Aliases:
— All main effects are clear of the two-factor interactions
— All two-factor interactions are clear of each other

Orthogonal

Makes interpretation easy

Minimizes the variance of the model coefficients
Minimizes the average prediction variance
Minimizes the maximum prediction variance
Once again, you can't do any better than this!




JMP Demo

\ Relative Variance of Coefficients

Significance Level
Signal to Noise Ratio

Effect Variance

Intercept
A

B
C
D
E

A'B
A*C
AD
A'E
B*C
B*D
B*E
C*D
C'E
D*E

0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063
0.063

Power
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246
0.246

0.050
1.000



Resolution |V

Designs are optimal for main effects models

Certain two-factor interactions are also estimable with full precision
but may be fully aliased with other two-factor interactions.

Example: 2%



INPUTS
(Factors)

Missile Variant

SPEAR AGM Tests

2

Cloud cover
Sun orientation

Ground Range

\4

Launch Altitude

\4

Attack Airspeed

40

ROCESS

SPEAR AGM

OUTPUTS
(Responses)

Miss Distance (ft)

N

Impact Angle Error (d\eg)

Noise



The 241

Aliases:
— All main effects are clear of the two-factor interactions
— two-factor interactions may be confounded with each other

Orthogonal

Makes interpretation easy - if there are no active interactions
Minimizes the variance of the model coefficients

Minimizes the average prediction variance

Minimizes the maximum prediction variance

Once again, you can’t do any better than this!




Suppose that we want to focus on main effects.

 Six factors [eye focus time experiment from Montgomery (2009)]
— A =visual acuity
— B = distance to target
— C =target shape
— D = illumination level
— E =target size
— F =target density
 What are reasonable design choices?



Basic Design

Run A i) [ = AR = AC = BC

| - — - + + + def

2 + — - - - + af

3 — + — — + - be

4 + + - + - - abd

5 — — + + — = cd

& + — + — + — ace

7 — + + — — + beof

8 + + + + + abcdef

This is a 263 fractional factorial, resolution Ill The defining relation is

I=ABD = ACE = BCF = BCDE = ACDF = ABEF = DEF

Let’s work out the aliases

We can create this design using an optimal design tool. It is

useful to see the alias structure.



JMP Demo

Alias Matrix

13 14 15 16 23 24 25 26 34 35 36 45 46 56

12

Effect
Intercept

0

AF



The 253

Aliases:

— All main effects are confounded with two-factor interactions
Orthogonal

Makes interpretation easy - if there are no active interactions
Minimizes the variance of the model coefficients

Minimizes the average prediction variance

Minimizes the maximum prediction variance




Module 2 - Summary

1. Main message is that standard designs are optimal designs.

2. Optimal design generators can reproduce standard designs for
routine problems.



Module 3 — Modern Screening Methods

There is substantial new research in both design and analysis of
screening experiments in the last 15 years.

Much of this new research calls into question the conventional
strategy of the standard use of regular fractional factorial designs
for screening.

We will introduce some of these new methods in this section.

Many of the new designs are orthogonal but have more desirable
aliasing properties than the regular fractional factorial designs
previously shown.



Regular Designs may not Always be the Best Choice
for Screening

In regular designs the alias matrix consists of either 0, +1 or -1
entries

That means that effects are completely confounded

Unless the experimenter has some “process knowledge®, effects
cannot be separated without conducting additional experiments

— Fold-over
— Partial fold-over
— Optimal augmentation

48



Number of Orthogonal Designs versus
Number of Factors

27
55
80
87
/8
58
36
18
10

Nonisomorphic

49



Define Nonisomorphic

Two designs are nonisomorphic if you cannot get one
from the other by:

—Permuting rows
—Permuting columns
—Relabeling the level names




A Six-Factor Example

Based on Example 8.4, DCM (2009)

A = mold temperature, B = screw speed, C = holding time, D
=cycle time, E = gate size, F = holding pressure

Response = shrinkage

The regular design is a 252 fraction — this design is the
maximum resolution (IV) and minimum aberration fraction

51



10
32
60

15
26

60

12
34
60

16

37
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F | Shrinkage

E

D

b

A

-1

-1

-1

.1
-1

1
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Pattern

2|+H——

3|—+—++

A ++———+

| —+—++

h||+—4+—+

7|—4+4—

S ++4+—1+—

9| —
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[Screening for Shrinkage

{Contrasts
Lenth Individual Simultaneous

Term Contrast t-Ratio p-Value p-Value Aliases
B 17.8125 38.00 <.0001* <.0001* A*C*E,D*C*F
A 6.9375 14.80 <.0001* 0.0002 B*C*E,D*E*F
D 0.6875 1.47 0.1475 0.8300 B*C*F, A*E*F
C -0.4375 -0.93 0.3217 0.9974 B*A*E, B*D*F
E 0.1875 0.40 0.7173 1.0000 B*A*C,A*D*F
F 0.1875 0.40 0.7173 1.0000 B*D*C, A*D*E
B*A 5.9375 ] 1267  <0001* 00003 C*E
B*D -0.0625 -0.13 0.9007 1.0000 C*F
A*D -2.6875 I:‘ -5.73 0.0022* 0.0150* E*F
B*C -0.9375 -2.00 0.0655 0.4886  A*E, D*F
A*C -0.8125 -1.73 0.0977 0.6557 B*E
D*C -0.0625 -0.13 0.9007 1.0000 B*F
D*E 0.3125 0.67 0.5315 1.0000 A*F
B*A*D 0.0625 0.13 0.9007 1.0000 D*C*E, A*C*F, B*E*F
A*D*C -2.4375 F -5.20 0.0030* 0.0220* B*D*E, B*A*F, C*E*F
Half Normal Plot

20

1B

. 151

é

c

3104

L

=}

3 e

o 54

<

+AABHE
0 _4-+—H—+—4—*—+:M’C//
T T T T T T
0.0 0.5 1.0 15 2.0 25
Half Normal Quantile

Lenth PSE=0.46875

P-Values derived from a simulation of 10000 Lenth t ratios.

Main effects of A and
B are important

The AB + CE
Interaction is important

The AD + EF
Interaction is important

How do we separate
these interactions?

Unless there Is outside
Information available,
we’ll need more data

53



The No-Confounding Design

L (]
(= A B C D E F Shrinkage
1 1 1 1 1 1 1| 52 6802341
2 1 11 1| 1| -1 -1| 646413187
3 -1 -1 1 11 1| 1| 7.96901017
4 -1 -1 1] -1 1 1| 242780873
5 1 1 1] 1 1| -1| 67.7850438
6 1 11 1 1] 1 1| 56.8934034
[ -1 -1 1 -1 -1 1| 687241076
g -1 -1 1 1 1| -1 16.7307703
=) 1 -1 1 1 1] -1 937286885
10 1 1] 1] 1| -1 1| 11.5373273
11 -1 1 1 1] -1 1 35.51462
12 -1 1] 1] 1 11 -1| 26.9296784
13 1 -1 1 -1 1| 1| 137857102
14 1 -1 1 1 1 1| 7.30349366
15 -1 1 1] 1 1 1| 34 5201021
16 -1 1] 1 1] 1| 1| 32.0355995

54



Where Did the Data in this Experiment
Come From?

Simulated data

We chose the significant main effects A and B, along with
the two interactions AB and AD.

We selected the random component to have the same
standard deviation as the original data

The result is data that represents closely the original
experiment if the no-confounding design had been run

55



Color Plot for the No-Confounding Design

e v I B N Ty T

Do o WL O 0 WL oW W b
14 44 @Doomomo oo a0l

]
—_ =

[}

The design is orthogonal

No two-factor interactions are aliased with each other

There is no complete confounding

'
—_

)
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{Stepwise Fit

Response:Shrinkage
{Stepwise Regression Control

Prob to Enter 0.250
Probto Leave 0.100

Directioniw
Rules: ’@é

{Current Estimates

SSE DFE MSE RSquare RSquare Adj Cp AlC
6659.4375 15 443.9625  0.0000 0.0000 . 98.49923
LockEntered Parameter Estimate nDF SS "FRatio" "Prob>F"
Intercept 27.3125 1 0 0.000 1.0000
O d A 0 1 770.0625 1.831 0.1975
O O B 0 1 5076563 44.900 0.0000
O O c 0 1 3.16e-30 0.000 1.0000
O O D 0 1 3.16e-30 0.000 1.0000
O O E 0 1 28.89063 0.061 0.8085
O O F 0 1 28.89063 0.061 0.8085
O O AB 0 3 6410.688 103.086 0.0000
O O A*C 0 3 781.4608 0532 0.6691
O O A*D 0 3  885.625 0614 0.6192
O O AE 0 3 819.0536 0561 0.6509
O O AF 0 3 809.2569 0553 0.6556
O d B*C 0 3 5076.563 12.829 0.0005
O O B*D 0 3 5087.961 12.951 0.0005
O O B*E 0 3 5115.757 13.256 0.0004
O O B*F 0 3 5125554 13.366 0.0004
O O C*D 0 3 13.78835 0.008 0.9989
O O C*E 0 3 2577.449 2526 0.1068
O O C*F 0 3 690.0164 0.462 0.7138
O O D*E 0 3 345.2905 0.219 0.8815
O O D*F 0 3 2382.766 2.229 0.1374
O O E*F 0 3 60.24101 0.037 0.9902
[Step History
Step Parameter Action "SigProb" SeqSS RSquare Cp p

We can use
stepwise
regression model
fitting

All main effects
and two-factor
Interactions are
candidate
variables for the
model

Because there is
no complete
confounding, all
Interactions are
potential
candidates 57



[Stepwise Fit

Response:Shrinkage
[Stepwise Regression Control

Prob to Enter 0.250
Probto Leave 0.100

Direction@
Rules: \M&

{Current Estimates

SSE DFE MSE RSquare RSquare Adj Cp AlC
133.18753 10 13.318753  0.9800 0.9700 . 45.90671
LockEntered Parameter Estimate nDF SS "FRatio" "Prob>F'
Intercept 27.3125 1 0 0.000 1.0000
] A 6.9375 3 1449.688 36.282 0.0000
O B 17.8125 2 5640.625 211.755 0.0000
O O C 0 1 3.16e-30 0.000 1.0000
O D -4.441e-16 2 115.5625 4338 0.0440
O > E 0 1 4.21e-30 0.000 1.0000
O O F 0 1 4.21e-30 0.000 1.0000
] A*B 5.9375 1 564.0625 42.351 0.0001
O O A*C 0 2 11.39834 0.374 0.6992
O A*D -2.6875 1 115.5625 8.677 0.0146
O O AE 0 2 26.80068 1.008 0.4071
O O AF 0 2 13.7383 0.460 0.6470
O O B*C 0 2 158e-29 0.000 1.0000
O O B*D 0 1 11.39834 0.842 0.3827
O O B*E 0 2 13.7383 0.460 0.6470
O O B*F 0 2 26.80068 1.008 0.4071
O O C*D 0 2 13.78835 0.462 0.6459
O O C*E 0 3 1.933557 0.034 0.9907
O O C*F 0 3 31.4007 0.720 05711
O O D*E 0 2 31.4007 1.234 0.3411
O O D*F 0 2 1.933557 0.059 0.9432
O O E*F 0 3 2.459758 0.044 0.9867
[Step History
Step Parameter Action "Sig Prob" SeqSS RSquare Cp p

1 A*B Entered 0.0000 6410.688 0.9626 4

2 A*D Entered 0.0440 115.5625  0.9800 6

Stepwise regression
selects the main
effects of A and B,
along with the AB and
AD interactions

The main effect of D is
added to preserve the
hierarchy in the model

The no-confounding
design correctly
identifies the model
without any ambiguity
and no need for
additional runs

58



No-Confounding Designs

* The 16-run minimum aberration resolution IV designs (6, 7,
and 8 factors) are among the most widely used designs in
practice

* |tis possible to find no-confounding designs that are
superior to the standard minimum aberration resolution [V
designs in the sense that they offer a better chance of
detecting significant two-factor interactions

* These designs are constructed from the Hall matrices

59



Hall | 15 Factor Design

60



Hall Il 15 Factor Design
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Hall 1l 15 Factor Design
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Hall IV 15 Factor Design
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Hall V 15 Factor Design

64



Constructing the Recommended 6 Factor

Design

Run

10
11
12

Hall Il — Columns D, E, H, K, M, Q

65



Recommended Nonregular 6 Factor

Design

Run

10
11
12
13
14
15
16

66



Color Plot for the Standard Minimum
Aberration Resolution IV 7-Factor Design
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Constructing the Recommended 7 Factor

Design

LL

Ll

(@]
R EEEEEEEEEEEEE
@)

0]

Hall Ill — Columns A, B, D, H, J, M, Q
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Recommended Nonregular 7 Factor Design

10
11
12
13
14
15
16
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Comparison of Color Plots for the Standard
and No-confounding Designs

mmmmmmmmmmmmmmmmmmmm fox o o I N T I T e Y o T O T Y o T WY
< octciciciigmmmm%ooogoogu_IEE AdAdLdgmmOmOm oo o000 ol

The recommended design is orthogonal and does
not have any complete confounding of effects
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Color Plot for the Standard Minimum
Aberration Resolution IV 8-Factor Design
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Constructing the Recommended 8 Factor Design
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Hall IV - Columns A, B, D, E H, J, M, P
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Recommended Nonregular 8 Factor Design
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Comparison of Color Plots for the Standard
and No-confounding Designs
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The recommended design is orthogonal and does
not have any complete confounding of effects
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Alternatives to Resolution Ill Designs

The regular resolution Il designs with from 9 to 15 factors in 16 runs are
used frequently in practice

These designs completely confound some interactions with main effects
For example, in the minimum aberration nine factor case, 12 two-factor
Interactions are aliased with main effects and 24 two-factor interactions

are confounded in groups with other two-factor interactions

Follow-up experiments are often necessary, and the best augmentation
approach may not be obvious.

Nonregular designs with no pure confounding of main effects and two-
factor interactions are useful alternatives.

We provide a collection of these designs.
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Recommended 9 Factor Design

Run

10
11
12
13
14
15
16

s i e T o e

Correlation of Main Effects and Two-Factor

Interactions



Recommended 10 Factor Design

Run
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Recommended 11 Factor Design
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Recommended 12 Factor Design
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Recommended 13 Factor Design
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Recommended 14 Factor Design
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Nine Factor Example from a Consumer Products
Company

Factor names and levels have been changed to protect confidentiality.

Fattern A, B C D E F 5 H d b
———— i+ -1 -1 -1 -1 1 1 1 -1 1 2618
——— 1 -1 -1 -1 1 1 -1 1 -1 21.14
———t—t+ - 1 -1 - 1 - 1 1 -1 33.16
=t 1 1 -1 - 1 - -1 -1 1 20.3
——t——t++ -1 -1 1 -1 -1 1 1 1 -1 a0.4
=+ 1 -1 1 - -1 1 -1 -1 1 22 4B
— - 1 1 - -1 - 1 -1 1 33.55
+++————+— 1 1 1 -1 -1 -1 -1 1 -1 19.9
_—t— -1 -1 -1 1 -1 - -1 -1 -1 22 93
——t+——+++ 1 -1 -1 1 -1 -1 1 1 1 d0.54
———+—++ -1 1 -1 1 -1 1 -1 1 1 29 BB
+——++—— 1 1 -1 1 -1 1 1 -1 -1 21.05
——t+——++ -1 -1 1 1 1 -1 -1 1 1 238
—+++—+— 1 -1 1 1 1 -1 1 -1 -1 28.94
— -1 1 1 1 1 1 -1 -1 -1 22.84
+++++++++ 1 1 1 1 1 1 1 1 1 2164



Screening Results

Lenth Individual Simultaneous

Term Contrast t-Ratio p-Value p-Value Aliases
Bl o190 345 00127 01084  ATD
22843 | | 297 0.0200° 01806 G°D
F -1.10937 144 01457 08422 DB
E 0.75062 1.02 02774 09923 D°C
H 0.74937 EI 097  0.2956 09959  J°D
J 0.48562 063 05635 1.0000  HD
D 0.35563 046 06728 1.0000  G*A, H*J, F*B, E*C
B 0.26813 035  0.7459 1.0000  F*D
C -0.09937 012 0.9058 1.0000 ED
225863 || 293 0.0209° 01874  E%J, A’B, HC
AF 0.56438 | | 073 04325 1.0000 E*H, G'B, J'T
G*E 0.07813 010 09173 1.0000  F%J, H'B, A°C
ATE 0.53939 070  0.4548 10000  F*™H, J'B, G*C
F*E -0.69063 [ 090  0.3363 09993  A*H, G*J, B'C
G*H 0.00312 000  0.9967 1.0000 A%, E*B, FC
: 30
Note that both main -
25-
effects and two-factor oy
Interactions are = 2
=
confounded. Many SHIiES
a
models are confounded 5 104
. . . E ++ A

leading to ambiguity £ 051

and the need for follow- ond e

up experimentation. e

g — T T T " T " 1
0.0 0.5 1.0 1.6 20 25
Half Marmal Cluantile




Nonregular Alternative

Data was constructed similarly to the earlier six factor example.

¥

32 0926451

28 0576578

27 BRB15287

226731614
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313646256

24 5011871

28.6340547

214708721

213770478

19.00104585

317377578

2139736585

182847755

30.9549555
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Screening Analysis

Term Contrast

Ell 00

-2.28438

-1.10938

H 0.71313 B
J 045777 []

C 0.35511 F
E 0.04106

D 0.02457

B 0.02041 H

Ee 0.14098

-2 25663

-1.16424

e 0.59995 B
A -0,30347

F*J 0.17084 I

Main effects are not aliased.

One two-factor
interaction is

confounded with others.

Much less ambiguity
and an easy prospect
for augmentation.

Lenth Individual Simultaneous
t-Ratio p-Value p-Value Aliases
£.34 0.0026* 00209+
-4 Gl 0.0045* 0.0376"
-2 24 0.0445* 03502
1.44 0.1497 08424
-0.92 0.3283 0.9953
07z 0.4453 1.0000
0.0a 0.9330 1.0000
-0.05 09616 1.0000
0.04 0.9686 1.0000
0.23 07374 1.0000
-4 55 0.0046* 0.03s9* A, D, ETB
-2 35 0.0381* 03020
1.21 02126 09557  AE, F*D, C*B
-0.61 0.5785 1.0000
0.34 0.7545 1.0000 C*E, G*D, A™B
30
254 1
+H35
E 20+
=
3 1.6
o *
ERNE Liall
= L
=L 0.5+ +++
0.0- ..4--4-'41*#
'DE I T I T I I T I I
0.0 0.4 1.0 1.5 20 25
Half Maormal Quantile
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Plackett-Burman Designs

These are a relatively familiar class of resolution Ill design
The number of runs, N, need only be a multiple of four
N=4,68,12, 16, 20, 24, 28, 32, 36, 40, ...

The designs where N =12, 20, 24, etc. are called
nongeometric PB designs

The nongeometric deigns are nonregular designs
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Plackett-Burman Designs

m TABLE 8.24

Plackett—Burman Design for N = 12, k = 11

Run A B C D E F G H I J K
1 + — + — — — + + + — +
2 + + — + — — — + + + —
3 . + + - - - - - - - =
4 + — + + — + — — — + +
5 + + . - - - - - . — +
6 + + + — + + — + — — —
7 — + + + - + - - + — —
8 — — + + + — + + — + —
9 — — — + + + - + - — +

10 + — — — + + + — + + —
L1 — + — — - + - + . + +
12 - - - - - - - - - - -
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The Alias Matrix for the 12-run Plackett-
Burman Design

'|'I" Cell Plot of Alias Matrix (gray =0, red = 0.333, blue = 0.333)
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A 12-Factor Example

1 1 1 1 1 1 1 1 1
-1 -1 1 1 1 1 -1 1 -1
1 -1 -1 1 1 1 1 -1 1
-1 1 -1 -1 1 1 1 1 -1
-1 -1 1 -1 -1 1 1 1 1
1 -1 -1 1 -1 -1 1 1 1
1 1 -1 -1 1 -1 -1 1 1
-1 1 1 -1 -1 1 -1 -1 1
-1 -1 1 1 -1 -1 1 -1 -1
-1 -1 -1 1 1 -1 -1 1 -1
-1 -1 -1 -1 1 1 -1 -1 1
1 -1 -1 -1 -1 1 1 -1 -1
-1 1 -1 -1 -1 -1 1 1 -1
1 -1 1 -1 -1 -1 -1 1 1
-1 1 -1 1 -1 -1 -1 -1 1
1 -1 1 -1 1 -1 -1 -1 -1
1 1 -1 1 -1 1 -1 -1 -1
1 1 1 -1 1 -1 1 -1 -1
1 1 1 1 -1 1 -1 1 -1
-1 1 1 1 1 -1 1 -1 1

This is a 20-run Plackett-Burman design.

It Is a nonregular design

221.5032
213.8037
167.5424
232.2071
186.3883
210.6819
168.4163
180.9365
172.5698
181.8605
202.4022
186.0079
216.4375
192.4121
224.4362
190.3312
228.3411
223.6747
163.5351
236.5124
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m TABLE 8.26
The Alias Matrix

Effect 12 13 14 15 16 17 18 19 110 111 112 23 24 25 26 27 28 29 210 211 212 34 35 36 37 38 39 310 311 312 45 46 47 48

Intercept 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X1 0 0 0 0 0 0 0 0 0 0 0 02 02 02 0.2° =02 02 -02 -02 02 02 -02 02 -02 -02 02 -02 -02 -02 0125 =02 0.6 02 02
X2 0 02 0.2 0.2 02 -02 02 —02 -—02 02 02 0 0 0 0 0 0 0 0 0 0 02 02 02 02 -02 02 -02 -02 02 -02 02 -02-0.2
X3 0.2 0 —-02 02 -02 -02 02 -02 -02 -02 02 0 02 02 0:2° 0:2° -02 02 -02 -02 02 0 0 0 0 0 0 0 0 0 02 02 02 02
X4 02 -0.2 0 =02 06 02 02 02 -02 0.2 0.2 02 0 -02 02 —-02 =02 02 -02 -02 -02 0 02 02 02 02 -02 02 -02 -02 0 0 0 0
X5 02 02 -02 0 -02 02 —-02 02 02 0.6 —02 02 -02 0 —-02 06 02 02 02 -02 02 0 0 —02 02 -02 -02 02 -02 -02 0 02 02 02
X6 02" =02 0.6 —02 0 02 -02 -02 -02 02 -02 02 02 -02 0 —-02 02 -02 02 02 06 02 —02 0 —-02 06 02 02 02 -02 02 0 -02 02
X7 =@ =2 0.2 0.2 02 0 -02 02 02 -02 02 02 —-02 06 -02 0 02 —-02 -02 —-02 02 02 02 -02 0 -02 02, =02 @2 07 02 -—-02 0 —0.2
X8 0.2 0.2 02 -02 -02 -—-02 0 006 02 -02 02 —-02 —-02 02 02 02 0 —-02 0.2 02 -02 02 -02 06 -02 0 02 -02 -02 -02 0.2 02 -02 0
X9 —-02 -02 0.2 02 -02 0.2 0.6 0 0.2 02 02 02 02 02 -02 -02 -02 0 06 02 -02 -02 -02 02 02 02 0 —-02 02 02 02 —-02 0.6 —0.2

X10 —-02 -02 -02 02 -02 0.2 02 02 0 02 -02 -02 —-02 02 02 —02 0.2 0.6 0 02 02 02 02 02 —02 —02 —-02 0 06 02 -02 -02 02 02

X11 020 =0.2 02 0.6 02 -02 -02 02 0.2 0 —-02 -02 -02 -02 0.2° =02 0.2 0.2 0.2 0 02 -02 -02 02 02 =02 02 06 0 02 0.2 0.2 02 —0.2

X12 0.2 0.2 02 —-02 -02 0.2 02 02 —-02 -02 0 02 -02 02 06 02 -02 -02 0.2 0.2 0 -02 —-02 -02 02 -02 02 02 02 0 —-02 -02 02 02

Effect 49 410 411 412 56 57 58 59 510 511 512 67 68 69 610 611 612 78 79 710 711 712 89 810 811 812 910 911 912 1011 1012 1112

Intercept 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X1 02 -02 02 02 -02 02 -02 02 0.2 06 —-02 02 -02 -02 -02 02 -02 -02 0.2 02 -02 02 0.6 02 -02 02 0.2 02 02 02 -02 -02
X2 02 =02 =02 -0.2 =02 0.6 02 02 02 -02 02 -02 025 =02 0.2 (02 0.6 02 -02 -02 -02 0 =07 07 02 -02 0.6 02 —0.2 07 07 0.2
X3 =02 02 -02 -02 -02 02 -02 -—-02 02 -02 —-02 -02 0.6 0.2 0.2 02 —-02 -02 02 -02 0.2 02 02 -02 -02 -02 -02 02 0.2 0.6 0.2 02
X4 0 0 0 0 02 0.2 02 028 =0.2 02 -02 -02 02 —-02 -02 028 =028 =02 0.6 0.2 0.2 02 -0.2 0.2 =02 0.2 02 —-02 -02 -02 0.2 0.6
X5 02 -02 025 =02 0 0 0 0 0 0 0 02 02 02 02 -02 02 -02 02 -02 -02 02 =02 0.6 0.2 OI28 =02 02 =02 02 -02 -02
X6 01208 =02 0128 =012 0 0.2 02 02 02 -02 02 0 0 0 0 0 0 0.2 0.2 0.2 0125 =028 =012 02 -02 -02 -02 0.6 025 =0.2 02 02
X7 0.6 0.2 0.2 0.2 02 0 -02 02 -02 -02 02 0 02 02 0.2 02 -02 0 0 0 0 0 0.2 0.2 0.2 02 -02 02 =02 =02 0.6 —02
X8 =02 0.2 —-02 0.2 02 -02 0 —-02 0.6 02 02 02 0 -02 0:20 =0:2° =02 0 (072 0.2 07 02 0 0 0 0 0.2 02 02 =02 020 =02
X9 0 02 —-02 -02 02 02 -—-02 0 -02 02 -02 02 -02 0 -02 0.6 0.2 0.2 0 -02 02 —02 0 0.2 0.2 0.2 0 0 0 0.2 02 =02

X10 02 0 —02 0.2 02 -02 0.6 —02 0 02 -02 02 02 —-02 0 —02 02 02 =02 0 —02 0.6 02 0 -02 02 0 02 02 0 0 02

X11 =02 -02 0 06 -02 -02 02 02 0.2 0 —02 02 -02 06 —-02 0 02 02 02 -02 0F =02 02 =02 0 —-02 0.2 0 -02 0 0.2 0

X12 =02 0.2 0.6 0 0.2 0.2 02 -02 -02 -02 0 -02 -02 0.2 0.2 (02 0 02 -02 0.6 —0.2 0 07 02 =02 0 02 -02 0 07 0 0
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Stepwise Regression Analysis

¥ = Stepwise Fit
Response: Y
¥ Stepwise Regression Control

Frob to Enter | 0.250 Enter Al
Prob to Leawe 0.100
Direction:| Fanward  w Renareil]
Fules: Caombine »
G0 Skap Step Make Madel
¥ Current Estimates
SSE DFE MSE RSquare RSquare Adj Cp AlCc

10731.993 19 85484173 0.0000 0.0000 . 1871685

LockEntered Parameter Estimate nDF SS °F Ratio™ "Prob=F"

Intercept 200000005 o 0.000 1

1
O O 1 0 1 1279.998 2438 013887
N "2 0 1 2784798 6307 002178
O O 3 0 1 4522794 0792 0.38525
O O i 0 1 1843202 3733 0.0B5926
O O 5 0 1 B7.22014 0113 074014
N b 0 1 B86.41364 0145 070575
O O W7 0 1 292 6683 0505 048657
O O fi 0 1 B0.08345 0101  0.75389
HEE #9 0 1 £72.9883 1.015  0.32701
N ®10 0 1 3253469 0055  0.81766
O O #11 0 1 1537749 0026 087411
O O %12 0 1 0.159758 0000  0.98712
O O FAR. 0 3 5907.994 5532  0.00431
R W1*3 0 3 1736.791 1030 040582



The data for the example came from a simulation model:

y = 200+ 8x, + 10x, + 12X, - 12x,X,+ 9X X, + &

g~ N(025)

¥ Current Estimates

SSE

211.8823

LockEntered Parameter
Intercept

000000000000 dn
RORODODOOOO R R EL R ]

DFE

#1

11

172
173
#1174

MSE RSquare RSquare Adj
19.262027 0.2303

200.000005
741406665
88209758
1]
12.7575105
3.13135896
-2.5290584
1]

Lo Y s Y s Y o O o

-12.857586
1]
11.9654342

Estimate nDF

—= k) — =% o —a —x —a o R R R = B L —

0.9659
S5 "F Ratio™
1] 0.000
SB69. 637 95114
4202343 109.034
3.198243 0.153
40437468 104 967
253.0099 B.827
169.9072 4.410
B.902356 0.337
2263211 1.196
21.37415 1.122
18.95875 0.833
41.50512 2436
17 5764 0.205
26918684 139751
18.25134 0.424
1415354 73.479

Cp AIC:
148.40¢

"Prob=F"
1

3.2e-d
5 58e-8
0.70365
B.83e-8
0.01181
0.03922
0.57 456
0.29979
0.31441
0.3449
0.14963
0.36395
1.36e-7
0.BEETS
3.37e-b

All model terms were correctly identified.

Estimated parameters are very close to
the actual values

One non-significant factor (X;) was
identified — a type | error

Type | errors in screening experiments
are less of a problem than Type Il errors.
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Alias Optimal Design

One criticism of variance optimal designs (D,  and G) is that they
focus all the effort on precise estimation of only one model.

In particular, there is no attention to possible aliasing of terms in
this model by likely higher order terms.

Example:

In screening designs we want to get good estimates of
main effects but we do not want these estimates biased by
two-factor interactions.



Embarrassing Problem Case

Suppose we have 4 factors and want to generate an 8 run
experiment.

The classical design everyone would use is the resolution [V
design that confounds factor 4 with the 123 interaction.

Yet, any orthogonal 2-level design is optimal for the main effect
model.

Demonstration in JMP



A New Optimality Criterion

Recently Jones and Nachtsheim proposed a new criterion that
addresses this concern.

Their designs minimize the squared norm of the alias matrix
subject to a lower bound constraint on the D-efficiency of the
design.

Their results are impressive and provide a safer approach to
screening design for novice investigators.



Reactor Case Study

Box, Hunter and Hunter (2005) p. 260 present the results of a
reactor study that was a full factorial design with 5 factors at 2

levels each.
Suppose that they had run a 12 run screening experiment instead.

The D-optimal design is the orthogonal 12 run design that is
isomorphic to the Plackett-Burman design.

We will compare the performance of this design with the alias
optimal design.



Robust Screening Designs

Engineers often prefer designs for quantitative factors to have three
levels. Yet the most familiar screening designs are two-level designs.

Robust screening designs are three-level designs for quantitative
factors with some very nice properties.



Robust Screening Design Properties

. The number of required runs is only one more than twice the number of factors.

. Unlike resolution Ill designs, main effects are completely independent of two-factor
interactions. As a result, estimates of main effects are not biased by the presence of
active two-factor interactions, regardless of whether the interactions are included in the
model.

. Unlike resolution IV designs, two-factor interactions are not completely confounded with
other two-factor interactions, although they may be correlated.

. Unlike resolution I, IV and V designs with added center points, all quadratic effects are
estimable in models comprised of any number of linear and quadratic main effects terms.

. Quadratic effects are orthogonal to main effects and not completely confounded (though
correlated) with interaction effects.

. With six or more factors, the designs are capable of estimating all possible full quadratic
models involving three or fewer factors.



Robust Screening Design Structure

Foldover Run Factor Levels
Pair (2) Li1 Liz2 I3 Lim
1 1 0 =1 =1 +1
2 0 F1 =F1 1
2 3 +1 0 =1 +1
4 1 0 =F1 1
3 5) +1 £1 0 +1
§ F1 F1 0 1
m 2m—1 | =1 =1 =1 0
2m 1 F1 =F1 0
Centerpoint | m+1 | 0 0 0 0




Robust Screening Design JMP Example

Scatterplot Matrix
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The Case for Non-orthogonal Designs

Sometimes insisting on an orthogonal design is problematic

Suppose that we have five factors:
— Ais categorical at 5 levels
— B is categorical at 4 levels
— C s categorical at 3 levels
— D & E are continuous with 2 levels

A full factorial has 240 runs and is orthogonal

But would you really seriously consider running this
experiment?



The Case for Non-orthogonal Designs

What about a one-half fraction?
— 120 runs
— Not orthogonal, but very close

What about a one-quarter fraction?
— 60 runs
— Not orthogonal, but close

The 30 run design isn’t orthogonal, but it's close

We only need 11 degrees of freedom to estimate the main
effects?

What can we do with 15 runs?
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Module 3 - Conclusions

* The traditional approach to screening is to use regular fractional
factorial designs.

* Recent research in design has found alternative designs that
are strong competitors to these designs.

* Inany case where two-factor interactions are likely and you
cannot afford to run a resolution V design, these new designs
are preferred.



Module 4 - Blocking

Many experiments involve factors that affect the response, but the
experimenter isn't really interested in them for the purposes of
system or process control.

Sometimes these are called nuisance variables

Examples include batches of raw material, operators, and time
(shift, day of week, etc)

Blocking is a design technique to separate the effect of a nuisance
factor from the other sources of variability.



Tire Wear Study

We have 4 brands of Tires
— Michelin, Continental, Goodyear and Firestone

We want to evaluate each brand with respect to tread wear
using a road test

How should we design this study?

Let's consider some possibilities...
— We will use JMP to explore various possible plans.



Blocking

Blocking is a technique for dealing with nuisance factors

A nuisance factor is a factor that probably has some effect on the
response, but it's of no interest to the experimenter...however, the
variability it transmits to the response needs to be controlled or
minimized

Typical nuisance factors include batches of raw material, operators,

pieces of test equipment, time (shifts, days, etc.), different
experimental units

Many industrial experiments involve blocking (or should)

Failure to block is a common flaw in designing an experiment
(consequences?)



An example of blocking

The tire mileage experiment

Four brands of tires (Firestone, Goodyear, Continental,
Michelin)

Do the tires differ with respect to mean mileage performance?
Suppose that we have four cars available for the experiment
Let's consider some possible designs



The randomized complete block design (RCBD) -
using an optimal design tool

Every block contains a complete replicate of the experiment (all
treatment combinations)

Blocks are orthogonal to treatments

This design completely removes the block effects from the
treatment comparisons

What about our “bad assumptions” about the wheel positions?
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The Latin Square Design — Using an
Optimal Design Tool

Wheel Positions
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What to do if you think wheel position could also matter.



The Latin Square Design

This is also an orthogonal design

The effects of both nuisance factors are balanced out
The Latin square is actually a fractional factorial, a 43!
But we can find this design with an optimal design tool.
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Another Example of a Latin Square

» The Latin square design can be used with more
complex treatment structures.

* The radar experiment (DOX 7E, DCM, 2009)

— Two different filters

— Three different levels of ground clutter

— Response variable — intensity level at detection

— Nuisance variable (1) operators

— Nuisance variable (2) we can only run 6 tests per day



Another Example of a Latin Square

* The treatment structure is a factorial; 2 levels of one
factor and 3 levels of another.

» Each replicate requires 2 x 3 = 6 runs.

* The Latin square design will require 6 operators
(easy to do; there are lots of operators)

» Six test days will be required



Treatments for the 6 x 6 Latin square:
A= flgl
B =flg2
C =1f1g3
D =291
E =1292
F =1293

where fi = filter type I, g1 = ground clutter low, g2 =
ground clutter medium and g3 = ground clutter high



m TABLE 5.23

Radar Detection Experiment Run in a 6 X 6 Latin Square
L]

Operator
Day 1 2 3 4 p .
1 A(fig, = 90) B(f,g, = 106) C(fig; = 108) D(fsg, = 81) F(f.g, = 90) E(f.g, = 88)
2 C(fig; = 114) Alfig, = 96) B(f,g, = 105) F(f,g; = 83) E(f = 86) D(f;g, = 84)
4 E(f>g, = 87) D(f>g, = 84) A(fig, = 100) B(fig. = 96) C(f,d._,_x = 110) F(fog; = 91)
5 F(f,gs =93) C(f,g; = 112) D(fsg, = 92) E(f;g, = 80) A(fig, = 90) B(f g, = 98)
6 D(f,g, = 86) F(f,g, = 91) E(f.g, = 97) C(f,g; = 98) B(f,g, = 100) A(fig, = 92)

In general, if there are p treatment combinations in the factorial
design, a p x p Latin square will be required to handle the two
nuisance factors
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Back to tire testing

Suppose that we have more tire brands, say seven brands
What do we do now?

Can we find cars with seven wheel positions?

Balanced incomplete block designs

Widely used in agricultural experiments
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Module 4 — Summary

Most design problems have factors that are ripe for use as
blocking variables.

Ignoring these variables can make it hard to detect the real
effects of the control factors due to the inflation of the error
variance from the effect of the blocking factor.

Traditional blocking structures are also optimal.

T
d

nese structures can be reproduced using optimal design
gorithms.

I_

owever, these algorithms also work in situations where non-

standard block and/or sample sizes are required.



DOE Course — Module 5

Designed Split-plot Experiments

Goals
1.

2.
3.
4

Introduce the idea behind split-plot experiments.
Develop a model for the design of split-plot experiments.
Compare random blocked to split-plot experiments.
Provide an example of a split-plot experiment.



Split-plot Graphic Definition

Split Plots

Field 1 Field 2 Field 3 Field 4

T— N S

Whole Plots



Split-plot Definition

A split-plot experiment is a blocked experiment, where the
blocks themselves serve as experimental units for a
subset of the factors.

Jones, B. and Nachtsheim, C. (2009) “Split-plot Designs: What, Why and How”
Journal of Quality Technology, Vol. 41 #4



Model for Split-plot Experiments

Y =XB8+7Zvy+e¢
Estimatorforp 3 = (X'V~'X)~!X'V~ly

10 -

0 -
1 - 0

0 ...

0o 0 -

0

- 0

1

0]

1_

V =var(Z~y + ¢)
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o2 1|Z + 071,

= 0227 + o1,



Split-plot versus Random Blocks

1. Split-Plot Designs are a special case of Random
Block design.

2. The difference is that in split-plot designs, certain
factors (the “whole plot” factors) do not change
within the blocks but only between blocks.

3. Inordinary random block designs, all the factors
may change within each block.



Split-plot Design Set Up

General procedure

. Specily the number of whole plots, n,,.

. Specify the number of split plots per whole plot, n,.
. Specify the response model, f(w, s).

. specily the prior estimate for o

. Use computer software to construct the design for (1) through (4) that maximizes the
D-optimality criterion.

. Study the sensitivity of the optimal design to small changes in d, ny, and n,.




Split-plot Design Objective Functions

o X'V-1X
D-optimality {"f-’tx"ﬂz‘ N |
Criterion
l-optimality Cr(X,d) = Rl f Fx)[XV X f(x)dx
Jpdx Jr

Criterion




Split-Plot Example

Scenario
1. Four factors
2. Two are hard-to-change and two are easy-to-change
3. Hard-to-change factor design can only have 10 runs.
4. Budget of 50 runs for the full design.



Factor Table

Factor (label) Type Low level Center level High level
Front ride height (FRH) Hard-to-change 3.0in 3.51n 4.0 in
Rear ride height (RRH) Hard-to-change 34 in 351in 36 in
Yaw angle (yaw) Easy-to-change -3.0° -1.0° +1.0°
Grille tape coverage (tape) Easy-to-change 0% 50% 100%




Ad hoc Design #1
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Ad hoc Design #2
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l-optimal Split-Plot Design

Hard-to-Change Front Bear Yow Grille
Factor Setting | Ride Height FRide Height Angle Cowverage
1 1 1
1 1 1
1 | i 1]
1 1 1 1
1 1
2 ] 1 1 1
a ] 1 il 0
2 ] 1 1 1
2 ] 1 i 1
2 o 1 1 1]
3 1 1 1
3 1 1 1
3 1 1 1
3 1 1 1
3 1 il 0
A 1 0 1 0
A 1 0 il 1
A 1 0 1 0
i 1 0 L] 1
A 1 0 1
5 ] 0 il 1
5 ] 0 1 0
5 ] 0 il 0
5 ] 0 1 1
5 ] 0 il 0
L o 0 1 1]
3 ] 0 il 0
[ ] 0 il 0
3 ] 0 il 0
[ ] 0 1 1
T 1 0 il
T 1 0 1 1
T 1 0 il 0
T 1 0 il 1
T 1 0 1 0
8 1 1
8 1 1 1 1
8 1 1 il 0
8 1 1 1 1
8 1 1
a i} 1 1 0
9 ] 1 il 1
q ] 1 il 0
9 ] 1 il 1
9 ] 1 1
10 1 1
10 1 1
10 1 1 1
10 1 1 0
10 1 L] 1




Comparison of Coefficient Variances

Intercept 0.429 0.454
Front Ride Height (FRH) 0.200 0.200
Rear Ride Height (RRH) 0.200 0.200
Yaw Angle 0.042 0.032
Grille Coverage 0.042 0.032
FRH * RRH 0.300 0.300
FRH * Yaw Angle 0.050 0.046
FRH * Grill Coverage 0.050 0.046
RRH * Yaw Angle 0.050 0.046
RRH * Grille Coverage 0.050 0.046
Yaw Angle * Grille Coverage 0.063 0.042
FRH * FRH 0.554 0.523
RRH * RRH 0.554 0.523
Yaw Angle * Yaw Angle 0.125 0.102
Grille Coverage * Grille Coverage 0.125 0.102
Average (Including Intercept) 0.189 0.180
Average (Excluding Intercept) 0.172 0.160

Left column is for ad hoc design #2, right column is for I-optimal split-plot design.



OLS vs GLS Data Analysis

Effect | Estimate St. Error D.F. ¢ Ratio p Value Effect | Estimate St.Error D.F. fRatio p Value
5o 0.9014  0.0046 42 194.83  0.0000 B0 0.9160  0.0068 6.99  135.38  0.0000
531 —0.0607  0.0038 42 —16.05  0.0000 51 —0.0607  0.0087 6.99 —6.94  0.0002
3o 0.0529  0.0038 42 14.04  0.0000 B9 0.0524  0.0087 6.99 5.99  0.0005
O3 —0.0237  0.0038 42 —6.28  0.0000 33 —0.0246  0.0028  35.07 —=8.82  0.0000
B4 0.0756  0.0037 42 20.32  0.0000 B4 0.0743  0.0028  35.18 26.85  0.0000
Bog 0.0241  0.0060 42 4.03  0.0002 B13 0.0102  0.0033  35.03 3.08  0.0040
B13 0.0097  0.0045 42 2.15 0.0374 B14 —0.0107  0.0033  35.07 —=3.29 0.0023
814 —0.0103  0.0044 42 —2.34  0.0244 B394 0.0078  0.0033  35.08 2.39  0.0226
The indices 1, 2 and 3 in the first column of the table refer to the The indices 1, 2 and 3 in the first column of the table refer to the
front ride height. the rear ride height, the yaw angle and the grille front rnide height, the rear ride height, the yaw angle and the gnlle
coverage, respectively. coverage, respectively.

OLS Analysis GLS Analysis
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Module 5 — Summary

Split-plot designs are common in industry.

They are not commonly recognized as being split-plot designs.

As a result, these designs are mistakenly analyzed using OLS.
Explicitly, taking randomization restrictions into account makes the
design process more economical, often more statistically efficient
and more likely to produce valid analytical results.



Module 6 — Introduction to RSM

Define RSM
ntroduce the standard RSM model
llustrate coordinate exchange algorithm




The Response Surface Framework for

Industrial Experimentation
Response Surface Methods (RSM) are a collection of mathematical
and statistical design/model building techniques useful for developing,
improving, and optimizing systems
RSM employs a sequential strategy to explore the relationship between

the response variables of interest and the independent variables in the
process

RSM dates from the late 1940s
Mechanistic Models versus Empirical Models

The response surface and the associated contour plot - refer to Figure
1.1, pg. 2 (RSM 2009, Myers, Montgomery & Anderson-Cook)
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Figure 1.1 (a) A theoretical response surface showing the relationship between yield of a
chemical process and the process variables reaction time (£,) and reaction temperature (£,).
(b) A contour plot of the theoretical response surface.



Response Surface Methodology

* The physical mechanism is almost always unknown and must
be approximated, usually with a low-order polynomial

* Polynomial approximation:

o first-order model y: /80 + /81)(1 4 ﬁzxz -

« second-order model

y= /80 T /61)(1 +/82X2 T /812X1X2 "'/811)(12 + /6'22)(22 T&

* Once the approximating model is fit, optimum conditions are
determined



Response Surface Methodology

* Why do we use second-order models in
RSM?

* They are flexible
* It is easy to estimate the parameters
* There is a lot of empirical evidence that they work

* Philosophy of using low-order
polynomials is based on a Taylor series
analogy



Confidence Intervals (Page 36)

CI on individual model parameter:

b. —

] a/Zn P

se(b;) < B; <b,; +t se(b;)

al2,n-p

Joint confidence region on model parameters:

! !
(b - B) X X(b - B) <F Elliptically-shaped region
— o, p,n— p
pI\/ISE T~ Tricky to construct
Conceptually very useful




Cl on the mean response at a point of interest:

Point of interest — not

XE) :[1’ XOl’XOZ’“"XOk]

necessarily a design point

)A/(XO) — X;Jb

Estimate (unbiased) of the mean
response at the point of interest

Variance of the mean

VI§(%e)] = "X (XX) "X

The CI 1s:

response at the point of
Interest

P(%0) ~taran py X6 (XX) " Xg < . < J(Xo) +1, 10053 57X (XX) X,

N

Mean response at the point of interest




The Sequential Nature of RSM

Phases of an RSM Study:
— Factor screening (phase zero)
— Seeking the region of the optimum (phase 1)
— Determination of optimum conditions (phase 2)
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Figure 1.6 The region of operability and the region of experimentation.




Three Typical Applications of RSM

» Mapping a response surface over a region of interest

* Optimization of the response
 Selection of operating conditions to achieve
specifications or customer requirements
— May not correspond to a stationary point on the response surface
— This often involves multiple responses



RSM Applications

« “Classical” RSM problem
* Product formulation or mixture problems

* "Robust parameter design” or RPD problem

— How to select the parameters of a system so as to make the
response insensitive to factors that are difficult to control

— Process robustness studies



Useful References on RSM

Box, G.E.P. and Wilson, K.B. (1951), “On the Experimental
Attainment of Optimum Conditions”, Journal of the Royal Statistical
Society B, Vol. 13, pp. 1-45

Myers, R.H., Montgomery, D.C. and Anderson-Cook (2009),
Response Surface Methodology, 3™ edition, Wiley, NY

Montgomery, D. C. (2009), Design and Analysis of Experiments, 7t
edition, Wiley, NY

Myers, R. H., Montgomery, D. C., Vining, G. G., Borror, C. M., and
Kowalski, S. M. (2004), “Response Surface Methodology: A

Retrospective and Literature Survey”, Journal of Quality Technology,
Vol. 36, No. 1, pp. 93-77.



Designs for the Second-Order RS Model

 The basic RSM second-order designs
— The central composite design (CCD)
— The Box-Behnken design (BBD)
 These designs are very useful in “standard” RSM settings
— The region of interest is either a cube or a sphere
— No significant restrictions on the number of runs



Categorical and Continuous Variables in RSM

Most of the work in RSM and RSM designs assume that all
design factors are continuous

There are situations where a combination of continuous and
categorical are encountered

There are no standard designs for these situations
Optimal designs are very appropriate here



Module 6 - Summary

« RSM is all about prediction and optimization.

* This naturally leads to minimizing the average variance of
prediction as an appropriate design criterion (I-optimality)

* In many practical applications of RSM, the structure and
constraints of the problem make it impossible to use traditional
RSM designs. In such cases, an optimal design approach is
useful.



Module 7 — RSM with Factor Constraints

Goals

1. Explain the practical need for RSM designs when there are
constraints on the design factors

2. Provide an example of inequality constraints

3. Give an example for avoiding infeasible factor
combinations



Situations where Standard Designs
may not be Appropriate

« Constraints on the design region
* Nonstandard model

o . - 2 2
y=PB8y+ Bx; + Bax, + Brxx, + Xy + Byx;

5 1
+ B XiXy + B Xjx, + &

« Unusual sample size or blocking requirements

In these situations computer-generated
or “optimal” designs are useful




A problem with a constrained design region —
amount of adhesive and cure temperature

Page 391 & 392
—1.5 <x, +x,
T X +x, =1

Figure 8.1 A constrained design region in two variables.



How would we design an experiment for this problem?

 “Force” a standard design into the experimental region
— May lead to a case of the “square peg and the round hole”
 (Generate a unique design just for this particular situation
— Need criteria for constructing the design
— Computer implementation essential
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Infeasible Factor Combinations

Especially when there are categorical factors with multiple
levels, it is often the case that certain factor combinations
are either infeasible or even impossible to run.

For example the Navy attack aircraft, A4, could not operate
at night. The A6 was able to operate day or night. Suppose
you want to run an experiment with both aircraft testing three
different weapon systems under varying light conditions.

How can we accomplish this given the problem with the A4
not being able to fly at night?



Module 7 - Summary

Constraints on design factors, unusual blocking requirements,
and non-standard models are common in RSM

Optimal designs are a logical way to solve these problems.

Objective is to use a design that is customized to the specific
problem



Module 8 — Robust Design

« Goals
— Introduce the robust design problem
— lllustrate control factor and noise factors

— Show how to model the variability transmitted from noise
factors

— lllustrate how to achieve robustness - trading off mean
performance and transmitted variance



Robust Parameter Design and Process
Robustness Studies

Origins of the RPD problem
Taguchi and the American Supplier Institute

RPD - proper choice of controllable factors to achieve
robustness, or insensitivity to changes in uncontrollable
noise variables

— Control factors

— Noise factors — these are factors that are uncontrollable in the

system but controllable for purposes of a test

An RPD problem in a manufacturing process is often called
a process robustness study



Example of Noise Factors

Table 11.1

Some Examples of Control Variables and Noise Variables

Application

Control Variables

Noise Variables

Development of a cake mix

Development of a gasoline

Development of a tobacco
product

Large-scale chemical process

Production of a box-filling
machine for filling boxes
of detergent

Manufacturing a dry
detergent

Amount of sugar, starch,
and other ingredients

Ingredients in the blend;
other processing
conditions

Ingredient types and
concentrations; other
processing conditions

Processing conditions,
including nominal
ambiant temperature

Surface area; geometry
of the machine
(rectangular, circular)

Chemical formulation,
processing variables

Owen temperature, baking time,
amount of milk added

Type of driver, driving conditions,
changes in engine type

Moisture conditions; storage
conditions on tobacco

Deviations from nominal ambient
temperature; deviations from
other processing conditions

Particle size of detergent

Temperature and relative
humidity during
manufacture




The Response Surface Approach

Section 11.4, page 552

Table 11.5 Experimental Data in a Crossed Array

Inner Array Outer Array Response
A B C= -1 +1 Means
-1 —1 11 15 13.0
-1 1 7 8 1.5
1 —1 10 26 18.0
1 1 10 14 12.0
Y

Importance of the
control-by-noise
factor interactions

(a) AC interaction plot. (b) BC interaction plot.

Figure 11.7 Interaction plots for the data in Table 11.5.

Both factors A
and B have
dispersion
effects and
location effects




A Modeling Approach that Includes both Control Variables and Noise
Variables

Example 11.3  The Pilot Plant Experiment

Consider the experiment described in Example 3.2, where a 2* factorial
design was used to study the filtration rate of a chemical product. The four
factors are temperature, pressure, concentration of formaldehyde, and stir-
ring rate. Each factor is present at two levels. The design matrix and the

response data obtained from a single replicate of the 2* experiment are
repeated for convenience in Table 11.7. The 16 runs are made in random

order.

Table 11.7 Pilot Plant Filtration Rate Experiment

v Filtration Comblned array
Run actor Rate .
Number 7, X, X, Y3 (gal /hr) deSIQn
1 - - - - 45
2 + - - - 71
Temperature, z, iS P S p
y £, 4 + + - - 65 ’
the rllooise variable | 2 7 - 1 = « | Thexs are the
6 + - + - 60 1
S o control variables
8 + + + 63
9 - - - + 43
10 + — - + 100
11 — + — + 45
12 + + — + 104
13 - - + + 75
14 + — + + 86
15 - + + + 70
16 + + + + 96




Filtration Robust Processing Example
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Radar Experiment

 Factors
1. Filter Type
2. Ground Clutter

3. Operator
The last two factors are noise factors...



JMP Demo
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Module 8 - Summary

By running an experiment that places both control and noise
factors in the same design matrix we can develop a model for
both the mean response and the transmitted variance

In many cases it is possible to find settings for the control
factors that reduce or even minimize the variability transmitted
from the noise factors

Optimal designs are good choices for the robust design problem
Modern software makes this easy



Module 9 Mixture Designs

+ Goals
— Introduce mixture experiments
— Design region for mixtures
— Mixture models
— Construction of mixture designs
— Applications



Experiments with Mixtures

* A mixture experiment is a special type of response
surface experiment where

— The design factors are the components or ingredients of a
mixture

— The response depends on the proportions of the ingredients
present

* The basic mixture constraint:

X+ X+ X =1



Mixtures occur in lots of settings

Manufacturing — plasma etching in semiconductor
manufacturing

Product formulation

— Paints, coatings, other industrial products

— Personal care and commercial products

— Pharmaceuticals

— Food & beverages
* Fruitjuices, or finding the perfect Bordeaux blend



Mixture experiments involve a constrained region

A*2
1 7
X2 1 x1
———————— =
0 x 1 x3 X)+xp+x3=1
X1 +x2= 1
(a) (b)

Figure 12.1 Constrained factor space for mixtures with (a) ¢ = 2 components and (b) ¢ = 3
components.



Simplex Designs

xy=1 :.L1='1

.r2= 1 .1'1Lh=ﬂ

A [3,2] lattice

X3 =1 Xq =1
A [4,2] lattice A [4,3] lattice

Simplex Designs are Optimal Designs



Constraints on the mixture components are common, often in the
form of lower and upper bounds on component proportions

The effect of these constraints is to alter the shape of the original
simplex region

If there are only lower bounds, the simplex designs shown previously
will still work

If there are both lower and upper bounds, simplex designs will not work
for these types of problems



An experiment involving The experiment involves a
shampoo formulation constrained design region

An optimal design
constructed by computeris a
good choice

There are upper and
lower bounds on each
component proportion

The response variable is
foam height

13=D

J.‘2=1 x1=CI 1321

Figure 13.12 Feasible experimental region for the shampoo foam experiment.



An example: formulating the optimum three-
component beverage

The constraints on the component proportions are:
X, +X, +X;, =1
0.3<x, <09
0.1<x, £0.7

The response variable is a rating, where the taster
compares each blend to a “reference” blend and 0 - 4
indicates a blend that is inferior to the reference while 6
-10 indicates a blend that is superior



Makeup of an Aircraft Carrier Air Wing

* The air wing is composed of at least 6 aircraft types
— Attack aircraft (bombers, like F/A-18)
— Fighters (CAP, RESCAP, etc, like F-39)
— Helos (SH-60, SAR, plane guard, etc)
— ASW (S-3)
— Ship-to-shore (think the C-2)
— Electronics (E-2C, EA-6B)

» Space is limited — you can only have a maximum of 85 aircraft of
all types

* A computer simulation model will be used to evaluate combat
effectiveness for different air wing configurations



Mixture Constraints:
X, = attack, X, =25
X, = fighters, X, >25
X, = helos, X,>10
X,=ASW,8<X,<20
X = ship-to-shore, 1< X <4
X
X

SN

ol

= electronics, 10 < X, <20
X, F X+ X+ X+ X =85

(@)



Mixtures in JMP

Ternary Plot
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Module 9 - Summary

 Mixture experiments are just a special type of response
surface experiment

 Mixture experiments involve a constrained design region
which will always require a custom design

 Mixture experiments occur in many settings — once you
know about mixtures you will be surprised at how common
they are



Module 10 — Covering Arrays

» Goals
1. Introduce covering array concept
2. Demonstrate their efficiency for detecting failure conditions
3. Provide examples of their use



Scenario

Suppose we are testing a system with 10 components.
For simplicity, let each component have two settings.
(This constraint can be relaxed)

We want to make sure that each pair of components has all 4 possible
combinations tested.

We want to perform as few system tests as possible.
(Guess the minimum number of necessary tests)

Note: it is not necessary to fit a model — just demonstrate that pairwise
combinations work



Covering Array Definition

A covering array CA(N; t, k, v)isan Nk array such that the i-th column contains
v distinct symbols. If a CA(N; t, k, v) has the property that for any ¢ coordinate
projection, all vt combinations of symbols exist, then it is a t-covering array (or

strength t covering array). A t-covering array is optimal if N is minimal for fixed t, k,
and v.

N is the number of tests. (find minimum N)

k is the number of factors. (k=10)

t is the number of factors such that all t-factor combinations are tested. (t=2)
v is the number of levels of each factor. (v=2)



Minimum Covering Array

The size of a covering array is the covering array number
CAN(t, k, v),

CAN(t, k, v) = min{N: 3CA(N; t, k, v)}.

The minimum covering array is the covering array
with the fewest runs.

For (tk,v)=(2,10,2), N = 6!



Covering arrays

AL

vy

CA(6:2,5,2)

CA(12:3,5,2)

Do these have the fewest possible runs?



Covering arrays and software testing

Let foo(m,n,p,qg) denote a software
system with four input parameters each of

which has two possible values 1, 2.

Thorough testing would require a test case
for each point in the input space (i.e. 16 test

cases).

What if you can only afford 8 (or fewer) test

cases?

—
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Covering arrays and software testing

m n p g //Example 1
| 1| 1| | 1| #fkwzmBise p==1 & q==2, I N O
» 1 1 1 2 if(mzzz/&/sﬁu;éf & g==2, 1 1 2 2
= 1 | 1] 2] write("n=",n), 1|21 11| 2
» 1 1 2 2 ) ; //other stuff 1 2 2 1
» 1 5 1 1 Write("m:",m, " Il:",@," :I_p::"][p/'Z'
= 1 | 2| 1| 2 | 97Exghple 2 2 | 1| 2|1
= | 2] 2| }f(m==2 & p==1, 2 | 2| 1|1
» 1 2 2 2 SR 2 2 2 2
. . Jy/Example 2
if(m==2 & p==1, AII 1, 2,.3-wayplu350%4-way
=> 1| 2‘ St UEE interactions.
u
=l 21|z 0 A3, 4,2),
» 5 1 2 > 1 T]rltle f)_ s 11, q="7 V4 _
{/o%her srurr CAN(3, 4,2)=8
» 2 1 1 2
» , writ2€ {rrén:n,m/ " I]:",I], " p:",p, "
2 2 = All 1, 2-way plus 63% 3-way, 31% 4-way
a=|",q)
» 2 2 2 1 ) 2 2 1 2 interactions.
= 2| 2]2]¢2 2] 2]2]1] CA(5:2 4,2),CAN2,4,2)=5




Example - Air to ground missile system

Consider a software system controlling the state of an air to ground

missile (Dalal & Mallows). The inputs are:

Altitude Roll

Attack angle Yaw

Bank angle Ambient Temperature
Speed Pressure

Pitch Wind Velocity

Challenge: We are interested in deriving test cases to effectively

assess “...response during attack maneuvering.”



Example - Air to ground missile system

Suppose we know the maximum and minimum values for each
input. Thus, we could choose to have a set of equivalence classes,
each corresponding to the range of an input.

Note: This is equivalence partitioning.

Select the maximum and minimum as two representative values for
each of the 10 input parameters and denote these values by the

symbols 1, 2 respectively.



Example - Air to ground missile system

For complete coverage, we would need to do 2'° = 1024 system

tests. This is clearly not feasible.
Can covering arrays help?
Of course!

JMP Demo of Air to Ground system test.



CA(N:2,k,2) Results

2-3 4 5-10 11-15 | 16-35 | 36-56 | 57-126 1717-2000

4 5 6 7 8 9 10 15




JMP Card Trick #1

A= Distributions
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Module 10 - Summary

Covering arrays are the most efficient way to test all possible
pairwise combinations of any number of factors

Covering arrays are useful in software and system testing to
assure that no pair of conditions will lead to a failure.

Covering arrays can also be constructed that protect against
triples or higher order combinations but these require more
runs.

JMP has state-of-the-art tools for creating covering arrays.



Module 11 — Supersaturated Designs

Goals
1. Introduce the idea of supersaturated designs
2. Show the theory for constructing them.
3. Give an example.



What is a supersaturated design?
Supersaturated designs have more factors than runs.

This may seem laughable...
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A more general definition...

Supersaturated designs have fewer runs than parameters
of interest.

201



Supersaturated Design History

o Satterthwaithe (1959) — random balance experimentation
 Booth & Cox (1962) — computer search designs
* Lin (1993) - created new interest in the topic



Classical “supersaturated” designs

Examples of classical supersaturated design using the
more general definition.

1. Adding center points to 2-level factorial designs.
2. Fractional factorial designs.
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Case 1 - Center points.

2x2 factorial design with center points.

Supersaturated with respect to model with both
quadratic effects.

O O
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Case 2 — Fractional Factorial Designs

1. Resolution Il

Supersaturated with respect to the model containing all two-
factor interaction effects.

2. Resolution IV

Supersaturated with respect to the model containing all two-
factor interaction effects.

3. Resolution V

Supersaturated with respect to models containing any three-
factor or higher order interaction.
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D-Optimal Design Definition
Given the usual linear regression model
y=Xf+¢
find a design matrix, X, to maximize

XX
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Problem

D-Optimal designs depend on the choice of the a
priori model, i.e. X
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Solution: Bayesian D-Optimality

Consider two kinds of effects:

effects are ones you are sure you want to estimate.
There are p, of these.

Potential effects are ones you are afraid to ignore. There are
p, of these.

For sample size, n

p,<n<p, *p,

208
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Example

2°*Fractional Factorial Resolution IV design
intercept and main effects are primary
2-factor interactions are potential
p1 <n< p1 ¥ p2

p1=7 p2=15n=16 (7 <16 <22)



Defining the K matrix

0 0

K _ P1X Py P1X Po

0 |

P2X Py P2X Py
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Bayesian D-Optimal designs

Find a design matrix, X, to maximize

D, =|X"X+K/y

Bayes
where v Is a tuning parameter.
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Comparison

Five Run D-Optimal Five Run Bayesian D-Optimal
O @ O @

Add center point!
O

@ O O O

Repeat this point???
212



Question

Why should only higher order terms be potential?

y=L0,1+BX +..+ X +te=X[+&g

Inspiration: Allow main effects to be potential.

Result: Supersaturated designs using Bayesian D-Optimality.
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Benefits of Bayesian D-Optimal Supersaturated Design

1. Easy and fast to compute
2. Flexible formulation (sample size, factor type, etc.)

References:
DuMouchel and Jones, Technometrics (1994) vol.36 #1 pp. 37-47.

Jones, B., Lin, D., and Nachtsheim, C. (2008) “Bayesian D-Optimal Supersaturated
Designs.” Journal of Statistical Planning and Inference, 138, 86-92.
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£ = Custom Design
[’/ Responses
4 Factors

Card Trick in JMP
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Module 11 - Summary

Supersaturated designs are not laughable.
It is time to start using them to solve real problems...



DOX Course - Final Thoughts

1. Optimal design framework is general and powerful for handling
all kinds of DOX problems.

2. Modern software makes it easy to generate optimal designs
for virtually any problem incorporating constraints on
1. Factor combinations
2. Model requirements
3. Restrictions on sample size
4. Restrictions on randomization

3. ltis time to break away from traditional methods

4. Make the design fit the problem don't force your problem into
the constraints of a classical design.



