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DOE Course – Module 1 

Introduction, Definitions and an Example 

Goals  

1. Introduce fundamental concepts  

2. Design & analyze an experiment 

3. Introduce linear statistical models 

4. Explain factor coding conventions 

5. Show the relationship of a model to a design 

6. Introduce criteria for evaluating the goodness of a 

design 

 

  



What Is a Designed Experiment? 

a structured set of tests of a system or process 



Integral to a designed experiment are… 

1. Response(s) 

2. Factor(s) 

3. Model 



What Is a Response? 

A response is a measurable result. 

– yield of a chemical reaction (chemical process) 

– deposition rate (semiconductor) 

– gas mileage (automotive) 

Response 



What Is a Factor? 

A factor is any variable that you think may affect a response of 

interest. We begin by considering two types of factors – 

continuous and categorical 

 continuous factors take any value on an interval 

  e.g. octane rating [89 93] 

 categorical factors have a discrete number of levels 

  e.g. brand [BP, Shell, Exxon] 

  



What is a model? 

a simplified mathematical surrogate for the process 

Factor(s) Model Response(s) 



Example Experiment #1 

You want to know 2 things: 

1.Does higher octane rating improve gas mileage? 

2.Which brand (BP, Shell or Exxon) is best for gas 

mileage? 

 



Important Points from the Fathers of DOE 

“To discover what happens to a process when a factor 
is changed, you must actually change it!” 

 

DOE – Problem solving methodology for efficiently 

identifying cause-and-effect relationships. 

Fisher’s Four Fundamentals of DOE 

1. Factorial principle 

2. Randomization 

3. Blocking 

4. Replication 
 

R.A. Fisher 

George Box 

http://images.google.com/imgres?imgurl=http://www.bobabernethy.com/photos/statisticians/Sir_Ronald_Fisher_2.jpg&imgrefurl=http://www.bobabernethy.com/bios_stats.htm&h=334&w=205&sz=17&hl=en&start=4&tbnid=DUzthbs0qrfySM:&tbnh=119&tbnw=73&prev=/images?q=sir+ronald+fisher&gbv=2&svnum=10&hl=en


Examples of Models 

Comparing three brands of gasoline using an ANOVA model: 

 

 

Finding the effect of octane rating using a regression model: 

Y (the response) is the mileage of a car in miles per gallon. 



ANOVA Model for Mileage Study 

Note that we have 4 unknown parameters and only 3 brands of gasoline. 

Our model is overspecified –  

 if we know any three parameters, we can compute the 4th. 

 We say there are 2 degrees of freedom (df) for alpha. 
 



Categorical Factor Coding – 3 levels  

Orthogonal Coding: 

There are two “dummy” columns – 2 degrees of freedom 

The sum of squares of both columns is 3. 

The sum of the element wise products is zero  

 (i.e. the dot product is zero) 

Names Numeric 

Label 

Effects 

Coding 
 X

1
             X

2 
 

or 
Orthogonal 

Coding 
 X

1
         X

2 
 



Orthogonal Coding and Orthogonal Design 

1. Dummy columns for categorical factors are orthogonally coded if their 

dot product is zero. 

a) The column means are zero. 

b) The pairwise column correlations are zero. 

2. For the purpose of this course we say that a design is orthogonal if: 

a) The means of the columns of the design matrix are all zero. 

b) The pairwise correlation for all column pairs of the design matrix are zero. 

c) So, whether a design is orthogonal can depend on the model you fit. 



ANOVA and regression models are equivalent… 

Replace  with 
0
 and 

1
 and 

2 
with 

1
 and 

2
.  



ANOVA/Regression Model – Matrix Notation 



Categorical Factor Coding – 4 levels  

There are three columns – 3 degrees of freedom 

The sum of squares of all columns is 4. 

The sum of the element wise products are zero  

 (i.e. all dot products of column pairs are zero) 



Categorical Factor Coding – 2 levels  

Orthogonal 

& 

Effects 

Coding 



JMP Scripting Language (JSL) Function for Orthogonal Dummy Variable 

Coding  

level2dummy = function({nl,val}, 

   dummy = j(1,nl-1,0); 

   c1 = sqrt(nl*val/(val+1)); 

   for (i=1,i<nl,i++, 

      c2 = sqrt(nl/(i*(i+1))); 

      if (val==i,l1=1,l1=0); 

      if ((i>val)|(val==nl),l2=1,l2=0); 

      dummy[1,i]=c1*l1-c2*l2; 

   ); 

   dummy; 

); 

nl is the number of levels 

val is the numeric label for the level you want to 

code 



Continuous Factor Coding 

MR – midrange 

HR – half range 

Hi – high value 

Lo – low value 



Continuous Factor Coding Example 

If Hi is 93 

& Lo is 89, 

then MR is 91 

& HR is 2 

If X is 93, then the scaled value is 1. 

If X is 89, then the scaled value is -1. 

If X is 91, then the scale value is 0. 

Suppose X is 92, what is the scaled value of X? 



The Model/Design Relationship – 

Parameter Estimates 

The matrix, X, is called the design matrix. The 

least-squares estimator of  is: 

The variance of the least-squares estimator of  is:  

 is inherent to the system but we choose the design matrix, X.  



The Model/Design Relationship – 

Predicted Responses 

The predicted values of the response are contained in the vector: 

The variance matrix of the predicted responses is:  

Again,  is inherent to the system, but we choose the design, X. 

Where the so-called, “hat” matrix, H, is:   



The Model/Design Relationship – Aliasing 

Suppose the best polynomial approximating model is: 

where the alias matrix, A, is: 

Now the elements of the least-squares estimates of 
1
 

are biased by 
2
, that is:   

But we estimate only 
1
 using least-squares: 



What makes a design good? 

1. Low variance of the coefficients. 

2. Low variance of predicted responses. 

3. Minimal aliasing of terms in the model from likely effects 

that are not in the model (0.5 or less). 

4. Correlations between likely effects that are not in the 

model are small (0.5 or less). 

The first two deal with variance – the last two with bias. 

Reducing variance and bias are fundamental goals. 



Design Optimality Criteria 

D-optimality 

I-optimality 

Alias optimality 



1. Not all orthogonal designs are good. 
a) It is inappropriate to change the requirements of a problem to use 

an orthogonal design as a “solution”. 

b) As we will see, in many practical situations no orthogonal design 

exists. 

2. Not all good designs are orthogonal. 
Sometimes it may be useful to sacrifice orthogonality for some other 

desirable design feature. 

3. In standard two-level screening design orthogonal designs 

minimize the variance of the coefficient estimates, so 

focusing on variance results in orthogonal designs, if they 

are possible. 

Why isn’t orthogonality a design criterion? 



Example Experiment #2 

Simple experiment for 

three factors and four 

runs to illustrate 

design diagnostics. 



Module 1 – Conclusions 

1. Remember Fisher’s Four Principles 

1. Factorial Principle 

2. Randomization 

3. Blocking  

4. Replication 

2. ANOVA models can be converted to regression models. 

3. Factor coding for continuous and categorical factors is a 

technical detail important for this conversion. 

4. Variance and bias are fundamental criteria for evaluating 

designs. 

 

 



Standard designs using an optimal design tool. 

Goals 

1. Give many examples of familiar designs created using an 

optimal design algorithm 

 

DOE Course – Module 2 



Full Factorial designs are D-optimal for the models they support. 

Example: 

2k designs are optimal for main effects plus interactions up to any 

order less than or equal to k. 

Optimal <> Full Factorial 



Flight Test 

INPUTS 

(Factors) 

OUTPUT 

(Response) 

PROCESS: 

TF / TA Radar 

Performance 

Gross Weight 

Radar Measurement 

Noise 

Airspeed 

Set Clearance Plane 

Turn Rate 

Ride Mode 

SCP Deviation 

P1 - 31 



Properties of this design 

• Orthogonal 

• Makes interpretation easy 

• Minimizes the variance of the model coefficients 

• Minimizes the average prediction variance 

• Minimizes the maximum prediction variance 

• You can’t do any better than this (for three factors in eight runs)! 



Fractional Factorial designs are D-optimal for the models they support. 

Example: 

2k-p designs are optimal for main effects plus interactions an order 

dependent on the resolution of the design. 

 

 

Optimal <> Fractional Factorial 



Resolution V 

• Models for main effects + all two-factor interactions 

• Consider five factors in a photolithography process 

– A = aperture setting 

– B = exposure time 

– C = develop time 

– D = mask dimension 

– E = etch time 



Consider the 25-1 – Again Created 

Using an Optimal Design Tool 





The 25-1  

• Aliases: 

– All main effects are clear of the two-factor interactions 

– All two-factor interactions are clear of each other 

• Orthogonal 

• Makes interpretation easy 

• Minimizes the variance of the model coefficients 

• Minimizes the average prediction variance 

• Minimizes the maximum prediction variance 

• Once again, you can’t do any better than this! 

 



JMP Demo 

Significance Level 0.050

Signal to Noise Ratio 1.000

Intercept

A

B

C

D

E

A*B

A*C

A*D

A*E

B*C

B*D

B*E

C*D

C*E

D*E

Effect

0.063

0.063

0.063

0.063

0.063

0.063

0.063

0.063

0.063

0.063

0.063

0.063

0.063

0.063

0.063

0.063

Var iance

0.246

0.246

0.246

0.246

0.246

0.246

0.246

0.246

0.246

0.246

0.246

0.246

0.246

0.246

0.246

0.246

Power

Relative Var iance of Coefficients



Designs are optimal for main effects models 

Certain two-factor interactions are also estimable with full precision 

but may be fully aliased with other two-factor interactions. 

Example: 2(4-1) 

  

Resolution IV 



SPEAR AGM Tests 

40 

INPUTS 

(Factors) 

OUTPUTS 

(Responses) 

PROCESS: 

SPEAR AGM 

Cloud cover 

Sun orientation 

Noise 

Attack Airspeed 

Missile Variant Miss Distance (ft) 

Launch Altitude 

Ground Range Impact Angle Error (deg) 



The 24-1  

• Aliases: 

– All main effects are clear of the two-factor interactions 

– two-factor interactions may be confounded with each other 

• Orthogonal 

• Makes interpretation easy – if there are no active interactions 

• Minimizes the variance of the model coefficients 

• Minimizes the average prediction variance 

• Minimizes the maximum prediction variance 

• Once again, you can’t do any better than this! 

 



Suppose that we want to focus on main effects. 

• Six factors [eye focus time experiment from Montgomery (2009)] 

– A = visual acuity 

– B = distance to target 

– C = target shape 

– D = illumination level 

– E = target size 

– F = target density 

• What are reasonable design choices? 



This is a 26-3  fractional factorial, resolution III The defining relation is 

Let’s work out the aliases 

We can create this design using an optimal design tool. It is 

useful to see the alias structure. 



JMP Demo 

Intercept

A

B

C

D

E

F

A*F

Effect

0

0

0

0

1

0

0

0

1 2

0

0

0

0

0

1

0

0

1 3

0

0

1

0

0

0

0

0

1 4

0

0

0

1

0

0

0

0

1 5

0

0

0

0

0

0

0

1

1 6

0

0

0

0

0

0

0

1

2 3

0

1

0

0

0

0

0

0

2 4

0

0

0

0

0

0

1

0

2 5

0

0

0

0

0

1

0

0

2 6

0

0

0

0

0

0

1

0

3 4

0

1

0

0

0

0

0

0

3 5

0

0

0

0

1

0

0

0

3 6

0

0

0

0

0

0

0

1

4 5

0

0

0

1

0

0

0

0

4 6

0

0

1

0

0

0

0

0

5 6

Alias Matr ix



The 26-3  

• Aliases: 

– All main effects are confounded with two-factor interactions 

• Orthogonal 

• Makes interpretation easy – if there are no active interactions 

• Minimizes the variance of the model coefficients 

• Minimizes the average prediction variance 

• Minimizes the maximum prediction variance 



1. Main message is that standard designs are optimal designs. 

2. Optimal design generators can reproduce standard designs for 

routine problems. 

Module 2 - Summary 



There is substantial new research in both design and analysis of 

screening experiments in the last 15 years. 

Much of this new research calls into question the conventional 

strategy of the standard use of regular fractional factorial designs 

for screening. 

We will introduce some of these new methods in this section. 

Many of the new designs are orthogonal but have more desirable 

aliasing properties than the regular fractional factorial designs 

previously shown. 

Module 3 – Modern Screening Methods 



Regular Designs may not Always be the Best Choice 

for Screening 

• In regular designs the alias matrix consists of either 0, +1 or -1 
entries 

• That means that effects are completely confounded 

• Unless the experimenter has some “process knowledge”, effects 
cannot be separated without conducting additional experiments 

– Fold-over 

– Partial fold-over  

– Optimal augmentation 

48 



Number of Orthogonal Designs versus 

Number of Factors 

Number of Factors Number of Nonisomorphic Designs 

6 27 

7 55 

8 80 

9 87 

10 78 

11 58 

12 36 

13 18 

14 10 

15 5 49 



Define Nonisomorphic 

Two designs are nonisomorphic if you cannot get one 

from the other by: 

–Permuting rows 

–Permuting columns 

–Relabeling the level names 

50 



A Six-Factor Example 

• Based on Example 8.4, DCM (2009) 

• A = mold temperature, B = screw speed, C = holding time, D 

=cycle time, E = gate size, F = holding pressure 

• Response = shrinkage 

• The regular design is a 26-2 fraction – this design is the 

maximum resolution (IV) and minimum aberration fraction 

51 



52 



B

A

D

C

E

F

B*A

B*D

A*D

B*C

A*C

D*C

D*E

B*A*D

A*D*C

Term

17.8125

6.9375

0.6875

-0.4375

0.1875

0.1875

5.9375

-0.0625

-2.6875

-0.9375

-0.8125

-0.0625

0.3125

0.0625

-2.4375

Contrast

38.00

14.80

1.47

-0.93

0.40

0.40

12.67

-0.13

-5.73

-2.00

-1.73

-0.13

0.67

0.13

-5.20

Lenth

t-Ratio

<.0001*

<.0001*

0.1475

0.3217

0.7173

0.7173

<.0001*

0.9007

0.0022*

0.0655

0.0977

0.9007

0.5315

0.9007

0.0030*

Individual

p-Value

<.0001*

0.0002*

0.8300

0.9974

1.0000

1.0000

0.0003*

1.0000

0.0150*

0.4886

0.6557

1.0000

1.0000

1.0000

0.0220*

Simultaneous

p-Value

A*C*E, D*C*F

B*C*E, D*E*F

B*C*F, A*E*F

B*A*E, B*D*F

B*A*C, A*D*F

B*D*C, A*D*E

C*E

C*F

E*F

A*E, D*F

B*E

B*F

A*F

D*C*E, A*C*F, B*E*F

B*D*E, B*A*F, C*E*F

Aliases

Contrasts

0

5

10

15

20

A
b

so
lu

te
 C

o
n

tr
a
s
t

B

A
B*A

A*D

B*CA*C

A*D*C

0.0 0.5 1.0 1.5 2.0 2.5

Half Normal Quantile

Half Normal Plot

Lenth PSE=0.46875

P-Values derived from a s im ulation of 10000 Lenth t ratios .

Screening for Shrinkage

Main effects of A and 

B are important 

The AB + CE 

interaction is important 

The AD + EF 

interaction is important 

How do we separate 

these interactions? 

Unless there is outside 

information available, 

we’ll need more data 

53 



The No-Confounding Design 

54 



Where Did the Data in this Experiment 

Come From? 

• Simulated data 

• We chose the significant main effects A and B, along with 

the two interactions AB and AD. 

• We selected the random component to have the same 

standard deviation as the original data  

• The result is data that represents closely the original 

experiment if the no-confounding design had been run 

55 



Color Plot for the No-Confounding Design 

The design is orthogonal 

No two-factor interactions are aliased with each other 

There is no complete confounding 
56 



Response: Shrinkage

Prob to Enter

Prob to Leave

0.250

0.100

Direction:Forward

Rules :       Combine

Stepwise Regression Control

6659.4375

SSE

15

DFE

443.9625

MSE

0.0000

RSquare

0.0000

RSquare Adj

.

Cp

98.49923

AIC

LockEntered

Intercept

A

B

C

D

E

F

A*B

A*C

A*D

A*E

A*F

B*C

B*D

B*E

B*F

C*D

C*E

C*F

D*E

D*F

E*F

Parameter

27.3125

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Estimate

1

1

1

1

1

1

1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

nDF

0

770.0625

5076.563

3.16e-30

3.16e-30

28.89063

28.89063

6410.688

781.4608

885.625

819.0536

809.2569

5076.563

5087.961

5115.757

5125.554

13.78835

2577.449

690.0164

345.2905

2382.766

60.24101

SS

0.000

1.831

44.900

0.000

0.000

0.061

0.061

103.086

0.532

0.614

0.561

0.553

12.829

12.951

13.256

13.366

0.008

2.526

0.462

0.219

2.229

0.037

"F Ratio"

1.0000

0.1975

0.0000

1.0000

1.0000

0.8085

0.8085

0.0000

0.6691

0.6192

0.6509

0.6556

0.0005

0.0005

0.0004

0.0004

0.9989

0.1068

0.7138

0.8815

0.1374

0.9902

"Prob>F"

Current Estimates

Step  Parameter Action "Sig Prob" Seq SS RSquare Cp p

Step History

Stepwise Fit

We can use 

stepwise 

regression model 

fitting 

All main effects 

and two-factor 

interactions are 

candidate 

variables for the 

model 

Because there is 

no complete 

confounding, all 

interactions are  

potential 

candidates 57 



Response: Shrinkage

Prob to Enter

Prob to Leave

0.250

0.100

Direction:Forward

Rules :       Combine

Stepwise Regression Control

133.18753

SSE

10

DFE

13.318753

MSE

0.9800

RSquare

0.9700

RSquare Adj

.

Cp

45.90671

AIC

LockEntered

Intercept

A

B

C

D

E

F

A*B

A*C

A*D

A*E

A*F

B*C

B*D

B*E

B*F

C*D

C*E

C*F

D*E

D*F

E*F

Parameter

27.3125

6.9375

17.8125

0

-4.441e-16

0

0

5.9375

0

-2.6875

0

0

0

0

0

0

0

0

0

0

0

0

Estimate

1

3

2

1

2

1

1

1

2

1

2

2

2

1

2

2

2

3

3

2

2

3

nDF

0

1449.688

5640.625

3.16e-30

115.5625

4.21e-30

4.21e-30

564.0625

11.39834

115.5625

26.80068

13.7383

1.58e-29

11.39834

13.7383

26.80068

13.78835

1.933557

31.4007

31.4007

1.933557

2.459758

SS

0.000

36.282

211.755

0.000

4.338

0.000

0.000

42.351

0.374

8.677

1.008

0.460

0.000

0.842

0.460

1.008

0.462

0.034

0.720

1.234

0.059

0.044

"F Ratio"

1.0000

0.0000

0.0000

1.0000

0.0440

1.0000

1.0000

0.0001

0.6992

0.0146

0.4071

0.6470

1.0000

0.3827

0.6470

0.4071

0.6459

0.9907

0.5711

0.3411

0.9432

0.9867

"Prob>F"

Current Estimates

1

2

Step  

A*B

A*D

Parameter

Entered

Entered

Action

0.0000

0.0440

"Sig Prob"

6410.688

115.5625

Seq SS

0.9626

0.9800

RSquare

.

.

Cp

4

6

p

Step History

Stepwise Fit

Stepwise regression 

selects the main 

effects of A and B, 

along with the AB and 

AD interactions 

The main effect of D is 

added to preserve the 

hierarchy in the model 

The no-confounding 

design correctly 

identifies the model 

without any ambiguity 

and no need for 

additional runs 

58 



No-Confounding Designs 

• The 16-run minimum aberration resolution IV designs (6, 7, 
and 8 factors) are among the most widely used designs in 
practice 

• It is possible to find no-confounding designs that are 
superior to the standard minimum aberration resolution IV 
designs in the sense that they offer a better chance of 
detecting significant two-factor interactions 

• These designs are constructed from the Hall matrices 

 

59 



Hall I 15 Factor Design 

Run A B C D E F G H J K L M N P Q 

1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 

2 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 

3 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

5 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 

7 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 

8 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

9 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 

10 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

11 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 

12 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 

14 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 

15 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

60 



Hall II 15 Factor Design 

Run A B C D E F G H J K L M N P Q 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

10 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 

11 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 

12 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 

15 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 

16 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 
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Hall III 15 Factor Design 

Run A B C D E F G H J K L M N P Q 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

10 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 

11 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 

15 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 

16 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 
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Hall IV 15 Factor Design 

Run A B C D E F G H J K L M N P Q 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

10 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 

11 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 

13 -1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 

15 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 

16 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 
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Hall V 15 Factor Design 

Run A B C D E F G H J K L M N P Q 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 

7 1 -1 -1 -1 -1 1 1 1 -1 1 -1 1 -1 1 -1 

8 1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1 

9 -1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 1 

10 -1 1 -1 1 -1 1 -1 -1 -1 1 1 1 1 -1 -1 

11 -1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 1 

13 -1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 -1 1 

14 -1 -1 1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 

15 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 

16 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 
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Constructing the Recommended 6 Factor 

Design 

Run A B C D E F G H J K L M N P Q 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

10 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 

11 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 

12 -1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 

15 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 1 

16 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 

Hall II – Columns D, E, H, K, M, Q 
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Run A B C D E F 

1 1 1 1 1 1 1 

2 1 1 -1 -1 -1 -1 

3 -1 -1 1 1 -1 -1 

4 -1 -1 -1 -1 1 1 

5 1 1 1 -1 1 -1 

6 1 1 -1 1 -1 1 

7 -1 -1 1 -1 -1 1 

8 -1 -1 -1 1 1 -1 

9 1 -1 1 1 1 -1 

10 1 -1 -1 -1 -1 1 

11 -1 1 1 1 -1 1 

12 -1 1 -1 -1 1 -1 

13 1 -1 1 -1 -1 -1 

14 1 -1 -1 1 1 1 

15 -1 1 1 -1 1 1 

16 -1 1 -1 1 -1 -1 

Recommended Nonregular 6 Factor 

Design 
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Color Plot for the Standard Minimum 

Aberration Resolution IV 7-Factor Design  
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Constructing the Recommended 7 Factor 

Design 

Hall III – Columns A, B, D, H, J, M, Q 

Run A B C D E F G H J K L M N P Q 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

10 -1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 

11 -1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 

13 -1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 

15 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 

16 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 
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Recommended Nonregular 7 Factor Design 

Run A B C D E F G 

1 1 1 1 1 1 1 1 

2 1 1 1 -1 -1 -1 -1 

3 1 1 -1 1 1 -1 -1 

4 1 1 -1 -1 -1 1 1 

5 1 -1 1 1 -1 1 -1 

6 1 -1 1 -1 1 -1 1 

7 1 -1 -1 1 -1 -1 1 

8 1 -1 -1 -1 1 1 -1 

9 -1 1 1 1 1 1 -1 

10 -1 1 1 -1 -1 -1 1 

11 -1 1 -1 1 -1 1 1 

12 -1 1 -1 -1 1 -1 -1 

13 -1 -1 1 1 -1 -1 -1 

14 -1 -1 1 -1 1 1 1 

15 -1 -1 -1 1 1 -1 1 

16 -1 -1 -1 -1 -1 1 -1 
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Comparison of Color Plots for the Standard 

and No-confounding Designs 

The recommended design is orthogonal and does 

not have any complete confounding of effects 
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Color Plot for the Standard Minimum 

Aberration Resolution IV 8-Factor Design  
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Constructing the Recommended 8 Factor Design 

Hall IV – Columns A, B, D, F, H, J, M, P 

Run A B C D E F G H J K L M N P Q 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

3 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

4 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

5 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 

6 1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 

7 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

8 1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 

9 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

10 -1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 

11 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 

12 -1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 

13 -1 -1 1 1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 

14 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 

15 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 

16 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 
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Recommended Nonregular 8 Factor Design 

Run A B C D E F G H 

1 1 1 1 1 1 1 1 1 

2 1 1 1 1 -1 -1 -1 -1 

3 1 1 -1 -1 1 1 -1 -1 

4 1 1 -1 -1 -1 -1 1 1 

5 1 -1 1 -1 1 -1 1 -1 

6 1 -1 1 -1 -1 1 -1 1 

7 1 -1 -1 1 1 -1 -1 1 

8 1 -1 -1 1 -1 1 1 -1 

9 -1 1 1 1 1 1 1 1 

10 -1 1 1 -1 1 -1 -1 -1 

11 -1 1 -1 1 -1 -1 1 -1 

12 -1 1 -1 -1 -1 1 -1 1 

13 -1 -1 1 1 -1 -1 -1 1 

14 -1 -1 1 -1 -1 1 1 -1 

15 -1 -1 -1 1 1 1 -1 -1 

16 -1 -1 -1 -1 1 -1 1 1 
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Comparison of Color Plots for the Standard 

and No-confounding Designs 

The recommended design is orthogonal and does 

not have any complete confounding of effects 
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Alternatives to Resolution III Designs 

The regular resolution III designs with from 9 to 15 factors in 16 runs are 

used frequently in practice 

 

These designs completely confound some interactions with main effects 

 

For example, in the minimum aberration nine factor case, 12 two-factor 

interactions are aliased with main effects and 24 two-factor interactions 

are confounded in groups with other two-factor interactions 

 

Follow-up experiments are often necessary, and the best augmentation 

approach may not be obvious. 

 

Nonregular designs with no pure confounding of main effects and two-

factor interactions are useful alternatives. 

 

We provide a collection of these designs.  
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Recommended 9 Factor Design 
Run A B C D E F G H J 

1 -1 -1 -1 -1 -1 -1 1 -1 1 

2 -1 -1 -1 1 -1 1 -1 1 -1 

3 -1 -1 1 -1 1 1 1 1 -1 

4 -1 -1 1 1 1 -1 -1 -1 1 

5 -1 1 -1 -1 1 1 -1 1 1 

6 -1 1 -1 1 1 -1 1 -1 -1 

7 -1 1 1 -1 -1 -1 -1 1 -1 

8 -1 1 1 1 -1 1 1 -1 1 

9 1 -1 -1 -1 1 -1 -1 -1 -1 

10 1 -1 -1 1 1 1 1 1 1 

11 1 -1 1 -1 -1 1 -1 -1 1 

12 1 -1 1 1 -1 -1 1 1 -1 

13 1 1 -1 -1 -1 1 1 -1 -1 

14 1 1 -1 1 -1 -1 -1 1 1 

15 1 1 1 -1 1 -1 1 1 1 

16 1 1 1 1 1 1 -1 -1 -1 

Correlation of Main Effects and Two-Factor 

Interactions 



Recommended 10 Factor Design 

Correlation of Main Effects and Two-Factor 

Interactions 

Run A B C D E F G H J K 

1 -1 -1 -1 -1 1 -1 -1 1 -1 1 

2 -1 -1 -1 1 1 1 -1 -1 1 1 

3 -1 -1 1 -1 -1 1 1 1 1 1 

4 -1 -1 1 -1 1 -1 1 -1 1 -1 

5 -1 1 -1 1 -1 1 1 1 -1 1 

6 -1 1 -1 1 1 -1 1 -1 -1 -1 

7 -1 1 1 -1 -1 -1 -1 1 -1 -1 

8 -1 1 1 1 -1 1 -1 -1 1 -1 

9 1 -1 -1 -1 -1 1 1 -1 -1 -1 

10 1 -1 -1 1 -1 -1 -1 1 1 -1 

11 1 -1 1 1 -1 -1 1 -1 -1 1 

12 1 -1 1 1 1 1 -1 1 -1 -1 

13 1 1 -1 -1 -1 -1 -1 -1 1 1 

14 1 1 -1 -1 1 1 1 1 1 -1 

15 1 1 1 -1 1 1 -1 -1 -1 1 

16 1 1 1 1 1 -1 1 1 1 1 
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Recommended 11 Factor Design 

Correlation of Main Effects and Two-Factor 

Interactions 

Run A B C D E F G H J K L 

1 -1 -1 -1 1 1 -1 -1 -1 1 -1 1 

2 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 

3 -1 -1 1 -1 1 1 -1 1 -1 -1 -1 

4 -1 -1 1 1 -1 1 1 1 -1 1 1 

5 -1 1 -1 -1 -1 -1 -1 -1 -1 1 1 

6 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 

7 -1 1 -1 1 1 1 -1 1 1 1 -1 

8 -1 1 1 -1 1 -1 1 1 1 1 1 

9 1 -1 -1 -1 -1 1 -1 1 1 -1 1 

10 1 -1 -1 -1 1 1 1 -1 -1 1 1 

11 1 -1 -1 1 -1 -1 1 1 1 1 -1 

12 1 -1 1 1 1 -1 -1 -1 -1 1 -1 

13 1 1 -1 -1 1 -1 1 1 -1 -1 -1 

14 1 1 1 -1 -1 1 -1 -1 1 1 -1 

15 1 1 1 1 -1 -1 -1 1 -1 -1 1 

16 1 1 1 1 1 1 1 -1 1 -1 1 
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Recommended 12 Factor Design 

Correlation of Main Effects and Two-Factor 

Interactions 

Run A B C D E F G H J K L M 

1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 

2 -1 -1 -1 1 -1 1 1 1 -1 -1 1 -1 

3 -1 -1 1 -1 -1 -1 1 -1 1 1 -1 1 

4 -1 -1 1 1 1 1 -1 -1 -1 1 -1 -1 

5 -1 1 -1 1 -1 -1 -1 -1 -1 -1 -1 1 

6 -1 1 -1 1 1 1 1 -1 1 1 1 1 

7 -1 1 1 -1 -1 1 -1 1 1 -1 -1 -1 

8 -1 1 1 -1 1 -1 1 1 -1 1 1 -1 

9 1 -1 -1 -1 -1 1 -1 -1 1 1 1 -1 

10 1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 

11 1 -1 1 1 -1 -1 -1 1 -1 1 1 1 

12 1 -1 1 1 1 1 1 1 1 -1 -1 1 

13 1 1 -1 -1 -1 1 1 1 -1 1 -1 1 

14 1 1 -1 1 1 -1 -1 1 1 1 -1 -1 

15 1 1 1 -1 1 1 -1 -1 -1 -1 1 1 

16 1 1 1 1 -1 -1 1 -1 1 -1 1 -1 
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Recommended 13 Factor Design 

Correlation of Main Effects and Two-Factor 

Interactions 

Run A B C D E F G H J K L M N 

1 -1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 

2 -1 -1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1 

3 -1 -1 1 -1 1 1 1 1 1 -1 1 -1 -1 

4 -1 -1 1 1 -1 1 1 1 -1 1 -1 1 -1 

5 -1 1 -1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 

6 -1 1 -1 -1 1 1 1 -1 -1 1 -1 1 1 

7 -1 1 -1 1 -1 -1 1 1 1 -1 1 1 1 

8 -1 1 1 1 1 -1 -1 -1 1 -1 -1 1 -1 

9 1 -1 -1 -1 -1 -1 1 -1 1 1 1 1 -1 

10 1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 1 -1 

11 1 -1 -1 1 1 1 1 -1 1 -1 -1 -1 1 

12 1 -1 1 1 -1 1 -1 -1 -1 -1 1 1 1 

13 1 1 -1 1 -1 1 -1 1 1 1 -1 -1 -1 

14 1 1 1 -1 -1 -1 1 1 -1 -1 -1 -1 1 

15 1 1 1 -1 1 1 -1 1 1 1 1 1 1 

16 1 1 1 1 1 -1 1 -1 -1 1 1 -1 -1 
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Recommended 14 Factor Design 

Correlation of Main Effects and Two-Factor 

Interactions 

Run A B C D E F G H J K L M N P 

1 -1 -1 -1 -1 1 -1 1 1 -1 1 1 -1 -1 1 

2 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 1 1 -1 

3 -1 -1 1 -1 -1 1 -1 1 1 1 -1 -1 1 1 

4 -1 -1 1 1 1 1 1 -1 -1 -1 1 -1 1 -1 

5 -1 1 -1 -1 -1 1 1 -1 1 -1 1 1 -1 1 

6 -1 1 -1 1 1 1 -1 1 -1 1 -1 1 -1 -1 

7 -1 1 1 -1 -1 -1 -1 1 -1 -1 1 1 1 -1 

8 -1 1 1 1 1 -1 -1 -1 1 -1 -1 -1 -1 1 

9 1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 

10 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 -1 -1 

11 1 -1 1 -1 1 -1 -1 -1 1 1 1 1 -1 -1 

12 1 -1 1 1 -1 -1 1 1 -1 -1 -1 1 -1 1 

13 1 1 -1 -1 1 -1 1 1 1 -1 -1 -1 1 -1 

14 1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 1 1 

15 1 1 1 -1 -1 1 1 -1 -1 1 -1 -1 -1 -1 

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Nine Factor Example from a Consumer Products 

Company 

Factor names and levels have been changed to protect confidentiality. 



Screening Results 

Note that both main 

effects and two-factor 

interactions are 

confounded. Many 

models are confounded 

leading to ambiguity 

and the need for follow-

up experimentation. 
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Nonregular Alternative 

Data was constructed similarly to the earlier six factor example. 
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Screening Analysis 

Main effects are not aliased. 

One two-factor 

interaction is 

confounded with others. 

Much less ambiguity 

and an easy prospect 

for augmentation. 
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Plackett-Burman Designs 

• These are a relatively familiar class of resolution III design 

• The number of runs, N, need only be a multiple of four 

• N = 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, … 

• The designs where N = 12, 20, 24, etc. are called 

nongeometric PB designs 

• The nongeometric deigns are nonregular designs 
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Plackett-Burman Designs 
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The Alias Matrix for the 12-run Plackett-

Burman Design 
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A 12-Factor Example 

++++++++++++ 1 1 1 1 1 1 1 1 1 1 1 1 221.5032

?+??++++?+?+ -1 1 -1 -1 1 1 1 1 -1 1 -1 1 213.8037

??+??++++?+? -1 -1 1 -1 -1 1 1 1 1 -1 1 -1 167.5424

+??+??++++?+ 1 -1 -1 1 -1 -1 1 1 1 1 -1 1 232.2071

++??+??++++? 1 1 -1 -1 1 -1 -1 1 1 1 1 -1 186.3883

?++??+??++++ -1 1 1 -1 -1 1 -1 -1 1 1 1 1 210.6819

??++??+??+++ -1 -1 1 1 -1 -1 1 -1 -1 1 1 1 168.4163

???++??+??++ -1 -1 -1 1 1 -1 -1 1 -1 -1 1 1 180.9365

????++??+??+ -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 1 172.5698

+????++??+?? 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 181.8605

?+????++??+? -1 1 -1 -1 -1 -1 1 1 -1 -1 1 -1 202.4022

+?+????++??+ 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 1 186.0079

?+?+????++?? -1 1 -1 1 -1 -1 -1 -1 1 1 -1 -1 216.4375

+?+?+????++? 1 -1 1 -1 1 -1 -1 -1 -1 1 1 -1 192.4121

++?+?+????++ 1 1 -1 1 -1 1 -1 -1 -1 -1 1 1 224.4362

+++?+?+????+ 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 190.3312

++++?+?+???? 1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 228.3411

?++++?+?+??? -1 1 1 1 1 -1 1 -1 1 -1 -1 -1 223.6747

??++++?+?+?? -1 -1 1 1 1 1 -1 1 -1 1 -1 -1 163.5351

+??++++?+?+? 1 -1 -1 1 1 1 1 -1 1 -1 1 -1 236.5124

This is a 20-run Plackett-Burman design.   

It is a nonregular design 
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Stepwise Regression Analysis 



The data for the example came from a simulation model: 

y = + 8x
1
 + 10x

2
 + 12x

4
 - 12x

1
x

2 
+ 9x

1
x

4 
+ 

 

All model terms were correctly identified. 

Estimated parameters are very close to 

the actual values 

One non-significant factor (X
5
) was 

identified – a type I error 

Type I errors in screening experiments 

are less of a problem than Type II errors. 
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Alias Optimal Design 

One criticism of variance optimal designs (D, I and G) is that they 

focus all the effort on precise estimation of only one model. 

In particular, there is no attention to possible aliasing of terms in 

this model by likely higher order terms.  

Example:  

 In screening designs we want to get good estimates of 

 main effects but we do not want these estimates biased by 

 two-factor interactions. 



Embarrassing Problem Case 

Suppose we have 4 factors and want to generate an 8 run 

experiment. 

The classical design everyone would use is the resolution IV 

design that confounds factor 4 with the 123 interaction. 

Yet, any orthogonal 2-level design is optimal for the main effect 

model. 

Demonstration in JMP 



A New Optimality Criterion 

Recently Jones and Nachtsheim proposed a new criterion that 

addresses this concern.  

Their designs minimize the squared norm of the alias matrix 

subject to a lower bound constraint on the D-efficiency of the 

design. 

Their results are impressive and provide a safer approach to 

screening design for novice investigators. 



Reactor Case Study 

Box, Hunter and Hunter (2005) p. 260 present the results of a 

reactor study that was a full factorial design with 5 factors at 2 

levels each. 

Suppose that they had run a 12 run screening experiment instead. 

The D-optimal design is the orthogonal 12 run design that is 

isomorphic to the Plackett-Burman design. 

We will compare the performance of this design with the alias 

optimal design. 



Robust Screening Designs 

Engineers often prefer designs for quantitative factors to have three 

levels. Yet the most familiar screening designs are two-level designs. 

Robust screening designs are three-level designs for quantitative 

factors with some very nice properties. 



Robust Screening Design Properties 
1. The number of required runs is only one more than twice the number of factors. 

2. Unlike resolution III designs, main effects are completely independent of two-factor 

interactions. As a result, estimates of main effects are not biased by the presence of 

active two-factor interactions, regardless of whether the interactions are included in the 

model. 

3. Unlike resolution IV designs, two-factor interactions are not completely confounded with 

other two-factor interactions, although they may be correlated. 

4. Unlike resolution III, IV and V designs with added center points, all quadratic effects are 

estimable in models comprised of any number of linear and quadratic main effects terms. 

5. Quadratic effects are orthogonal to main effects and not completely confounded (though 

correlated) with interaction effects. 

6. With six or more factors, the designs are capable of estimating all possible full quadratic 

models involving three or fewer factors. 



Robust Screening Design Structure 



Robust Screening Design JMP Example 



The Case for Non-orthogonal Designs 

• Sometimes insisting on an orthogonal design is problematic 

• Suppose that we have five factors: 
– A is categorical at 5 levels 

– B is categorical at 4 levels 

– C is categorical at 3 levels 

– D & E are continuous with 2 levels 

• A full factorial has 240 runs and is orthogonal 

• But would you really seriously consider running this 
experiment? 



• What about a one-half fraction?  
– 120 runs 

– Not orthogonal, but very close 

• What about a one-quarter fraction? 
– 60 runs 

– Not orthogonal, but close 

• The 30 run design isn’t orthogonal, but it’s close 

• We only need 11 degrees of freedom to estimate the main 
effects? 

• What can we do with 15 runs? 

The Case for Non-orthogonal Designs 



JMP Demo 
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• The traditional approach to screening is to use regular fractional 

factorial designs. 

• Recent research in design has found alternative designs that 

are strong competitors to these designs. 

• In any case where two-factor interactions are likely and you 

cannot afford to run a resolution V design, these new designs 

are preferred. 

Module 3 - Conclusions 



Module 4 - Blocking 

• Many experiments involve factors that affect the response, but the 

experimenter isn’t really interested in them for the purposes of 

system or process control. 

• Sometimes these are called nuisance variables 

• Examples include batches of raw material, operators, and time 

(shift, day of week, etc) 

• Blocking is a design technique to separate the effect of a nuisance 

factor from the other sources of variability. 



Tire Wear Study 

• We have 4 brands of Tires 

– Michelin, Continental, Goodyear and Firestone 

• We want to evaluate each brand with respect to tread wear 
using a road test 

• How should we design this study? 

• Let’s consider some possibilities… 

– We will use JMP to explore various possible plans. 



Blocking 

• Blocking is a technique for dealing with nuisance factors 

• A nuisance factor is a factor that probably has some effect on the 
response, but it’s of no interest to the experimenter…however, the 
variability it transmits to the response needs to be controlled or 
minimized 

• Typical nuisance factors include batches of raw material, operators, 
pieces of test equipment, time (shifts, days, etc.), different 
experimental units 

• Many industrial experiments involve blocking (or should) 

• Failure to block is a common flaw in designing an experiment 
(consequences?) 

 



An example of blocking 

• The tire mileage experiment 

• Four brands of tires (Firestone, Goodyear, Continental, 

Michelin) 

• Do the tires differ with respect to mean mileage performance? 

• Suppose that we have four cars available for the experiment 

• Let’s consider some possible designs 



The randomized complete block design (RCBD) – 

using an optimal design tool 

• Every block contains a complete replicate of the experiment (all 

treatment combinations) 

• Blocks are orthogonal to treatments 

• This design completely removes the block effects from the 

treatment comparisons 

• What about our “bad assumptions” about the wheel positions? 



JMP Demo 
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The Latin Square Design – Using an 

Optimal Design Tool 

RF RR LF LR 

1 F G C M 

2 M F G C 

3 C M F G 

4 G C M F 

Wheel Positions 

Cars 

What to do if you think wheel position could also matter. 



The Latin Square Design 

• This is also an orthogonal design 

• The effects of both nuisance factors are balanced out 

• The Latin square is actually a fractional factorial, a 43-1  

• But we can find this design with an optimal design tool. 

 



JMP Demo 



Another Example of a Latin Square 

• The Latin square design can be used with more 

complex treatment structures. 

• The radar experiment (DOX 7E, DCM, 2009) 

– Two different filters 

– Three different levels of ground clutter 

– Response variable – intensity level at detection 

– Nuisance variable (1) operators 

– Nuisance variable (2) we can only run 6 tests per day 

 



Another Example of a Latin Square 

• The treatment structure is a factorial; 2 levels of one 

factor and 3 levels of another. 

• Each replicate requires 2 x 3 = 6 runs. 

• The Latin square design will require 6 operators 

(easy to do; there are lots of operators) 

• Six test days will be required 



Treatments for the 6 x 6 Latin square: 

A = f1g1 

B = f1g2 

C = f1g3 

D = f2g1 

E = f2g2 

F = f2g3 

where fi = filter type i, g1 = ground clutter low, g2 = 

ground clutter medium and g3 = ground clutter high 



In general, if there are p treatment combinations in the factorial 

design, a p x p Latin square will be required to handle the two 

nuisance factors 



JMP Demo 



Back to tire testing 

• Suppose that we have more tire brands, say seven brands 

• What do we do now? 

• Can we find cars with seven wheel positions? 

• Balanced incomplete block designs 

• Widely used in agricultural experiments 



JMP Demo 
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• Most design problems have factors that are ripe for use as 

blocking variables. 

• Ignoring these variables can make it hard to detect the real 

effects of the control factors due to the inflation of the error 

variance from the effect of the blocking factor. 

• Traditional blocking structures are also optimal. 

• These structures can be reproduced using optimal design 

algorithms. 

• However, these algorithms also work in situations where non-

standard block and/or sample sizes are required. 

Module 4 – Summary 

 



DOE Course – Module 5 

Designed Split-plot Experiments  

Goals 

1. Introduce the idea behind split-plot experiments. 

2. Develop a model for the design of split-plot experiments. 

3. Compare random blocked to split-plot experiments. 

4. Provide an example of a split-plot experiment. 

 



Split-plot Graphic Definition 



Split-plot Definition 

A split-plot experiment is a blocked experiment, where the 

blocks themselves serve as experimental units for a 

subset of the factors. 

 
Jones, B. and Nachtsheim, C. (2009) “Split-plot Designs: What, Why and How” 

Journal of Quality Technology, Vol. 41 #4 



Model for Split-plot Experiments 

Estimator for 



Split-plot versus Random Blocks 

1. Split-Plot Designs are a special case of Random 

Block design. 

2. The difference is that in split-plot designs, certain 

factors (the “whole plot” factors) do not change 

within the blocks but only between blocks. 

3. In ordinary random block designs, all the factors 

may change within each block. 



General procedure 

 

Split-plot Design Set Up 



Split-plot Design Objective Functions 

D-optimality 

Criterion 

I-optimality 

Criterion 



Split-Plot Example 

Scenario 

1. Four factors 

2. Two are hard-to-change and two are easy-to-change 

3. Hard-to-change factor design can only have 10 runs. 

4. Budget of 50 runs for the full design. 



Factor Table 



Ad hoc Design #1 



Ad hoc Design #2 



I-optimal Split-Plot Design 



Comparison of Coefficient Variances 

Left column is for ad hoc design #2, right column is for I-optimal split-plot design. 



OLS vs GLS Data Analysis 

OLS Analysis GLS Analysis 



Module 5 – Summary 

1. Split-plot designs are common in industry. 

2. They are not commonly recognized as being split-plot designs. 

3. As a result, these designs are mistakenly analyzed using OLS. 

4. Explicitly, taking randomization restrictions into account makes the 

design process more economical, often more statistically efficient 

and more likely to produce valid analytical results. 



Module 6 – Introduction to RSM 

• Define RSM 

• Introduce the standard RSM model 

• Illustrate coordinate exchange algorithm 



The Response Surface Framework for 

Industrial Experimentation 

• Response Surface Methods (RSM) are a collection of mathematical 
and statistical design/model building techniques useful for developing, 
improving, and optimizing systems 

 
• RSM employs a sequential strategy to explore the relationship between 

the response variables of interest and the independent variables in the 
process 

 
• RSM dates from the late 1940s 

 
• Mechanistic Models versus Empirical Models 
 
• The response surface and the associated contour plot - refer to Figure 

1.1, pg.  2 (RSM 2009, Myers, Montgomery & Anderson-Cook) 



The response surface 

 

The contour plot 

E(y) = f( ) 



Response Surface Methodology 

• The physical mechanism is almost always unknown and must 

be approximated,  usually with a low-order polynomial 

• Polynomial approximation: 
• first-order model   

 

• second-order model 

 

 

• Once the approximating model is fit, optimum conditions are 

determined 

2 2

0 1 1 2 2 12 1 2 11 1 22 2y x x x x x x

0 1 1 2 2y x x



Response Surface Methodology 

• Why do we use second-order models in 
RSM? 

• They are flexible 

• It is easy to estimate the parameters 

• There is a lot of empirical evidence that they work 

• Philosophy of using low-order 
polynomials is based on a Taylor series 
analogy 



Confidence Intervals (Page 36) 

CI on individual model parameter: 

/ 2, / 2,( ) ( )j n p j j j n p jb t se b b t se b

Joint confidence region on model parameters: 

, ,p n p

E

F
pMS

(b -β) XX(b -β) Elliptically-shaped region 

Tricky to construct 

Conceptually very useful  



CI on the mean response at a point of interest: 

0 01 02 0
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Point of interest – not 

necessarily a design point 

Estimate (unbiased) of the mean 

response at the point of interest 

Variance of the mean 

response at the point of 

interest 

The CI is: 
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Mean response at the point of interest 



The Sequential Nature of RSM 

Phases of an RSM Study: 

– Factor screening (phase zero) 

– Seeking the region of the optimum (phase 1) 

– Determination of optimum conditions (phase 2) 

 





Three Typical Applications of RSM 

• Mapping a response surface over a region of interest 

• Optimization of the response 

• Selection of operating conditions to achieve 
specifications or customer requirements 
– May not correspond to a stationary point on the response surface 

– This often involves multiple responses 



RSM Applications 

• “Classical”  RSM problem 

• Product formulation or mixture problems 

• “Robust parameter design” or RPD problem 

– How to select the parameters of a system so as to make the 

response insensitive to factors that are difficult to control 

– Process robustness studies 



Useful References on RSM 

• Box, G.E.P. and Wilson, K.B. (1951), “On the Experimental 
Attainment of Optimum Conditions”, Journal of the Royal Statistical 
Society B, Vol. 13, pp. 1-45 

• Myers, R.H., Montgomery, D.C. and Anderson-Cook (2009), 
Response Surface Methodology, 3rd edition, Wiley, NY 

• Montgomery, D. C. (2009), Design and Analysis of Experiments, 7th 
edition, Wiley, NY 

• Myers, R. H., Montgomery, D. C., Vining, G. G., Borror, C. M., and 
Kowalski, S. M. (2004), “Response Surface Methodology: A 
Retrospective and Literature Survey”, Journal of Quality Technology, 
Vol. 36, No. 1, pp. 53-77.  



Designs for the Second-Order RS Model 

• The basic RSM second-order designs 

– The central composite design (CCD) 

– The Box-Behnken design (BBD) 

• These designs are very useful in “standard” RSM settings 

– The region of interest is either a cube or a sphere 

– No significant restrictions on the number of runs  



Categorical and Continuous Variables in RSM 

• Most of the work in RSM and RSM designs assume that all 
design factors are continuous 

• There are situations where a combination of continuous and 
categorical are encountered 

• There are no standard designs for these situations 

• Optimal designs are very appropriate here 



Module 6 - Summary 

• RSM is all about prediction and optimization. 

• This naturally leads to minimizing the average variance of 

prediction as an appropriate design criterion (I-optimality) 

• In many practical applications of RSM, the structure and 

constraints of the problem make it impossible to use traditional 

RSM designs. In such cases, an optimal design approach is 

useful. 



Module 7 – RSM with Factor Constraints 

Goals 

1. Explain the practical need for RSM designs when there are 

constraints on the design factors 

2. Provide an example of inequality constraints 

3. Give an example for avoiding infeasible factor 

combinations 



Situations where Standard Designs 

may not be Appropriate 

• Constraints on the design region 

• Nonstandard model 
 

 

 

 

 

• Unusual sample size or blocking requirements  

In these situations computer-generated 

or “optimal” designs are useful 



A problem with a constrained design region – 

amount of adhesive and cure temperature  

Page 391 & 392 



How would we design an experiment for this problem? 

• “Force” a standard design into the experimental region 

– May lead to a case of the “square peg and the round hole” 

• Generate a unique design just for this particular situation 

– Need criteria for constructing the design 

– Computer implementation essential 

 



JMP Default RSM Design 



Design Comparison  

D-optimal Design Points I-optimal Design Points 

2 reps 



Design Comparison cont. 

D-optimal Design Variance Profiles I-optimal Design Variance Profile 



Infeasible Factor Combinations 

Especially when there are categorical factors with multiple 

levels, it is often the case that certain factor combinations 

are either infeasible or even impossible to run. 

 

For example the Navy attack aircraft, A4, could not operate 

at night. The A6 was able to operate day or night. Suppose 

you want to run an experiment with both aircraft testing three 

different weapon systems under varying light conditions.  

 

How can we accomplish this given the problem with the A4 

not being able to fly at night? 



Module 7 - Summary 

• Constraints on design factors, unusual blocking requirements, 

and non-standard models are common in RSM 

• Optimal designs are a logical way to solve these problems. 

• Objective is to use a design that is customized to the specific 

problem 



Module 8 – Robust Design 

• Goals 

– Introduce the robust design problem 

– Illustrate control factor and noise factors 

– Show how to model the variability transmitted from noise 

factors 

– Illustrate how to achieve robustness – trading off mean 

performance and transmitted variance 

 



Robust Parameter Design and Process  

Robustness Studies 
 

• Origins of the RPD problem 

• Taguchi and the American Supplier Institute 

• RPD – proper choice of controllable factors to achieve 
robustness, or insensitivity to changes in uncontrollable 
noise variables 
– Control factors 

– Noise factors – these are factors that are uncontrollable in the 
system but controllable for purposes of a test 

• An RPD problem in a manufacturing process is often called 
a process robustness study 

 



Example of Noise Factors 



The Response Surface Approach 
Section 11.4, page 552 

Importance of the 

control-by-noise 

factor interactions 

Both factors A 

and B have 

dispersion 

effects and 

location effects 



A Modeling Approach that Includes both Control Variables and Noise 

Variables 

Temperature, z, is 

the noise variable 
The x’s are the 

control variables 

Combined array 

design 



Filtration Robust Processing Example 



Radar Experiment 

• Factors 

1.  Filter Type 

2. Ground Clutter 

3. Operator 

The last two factors are noise factors… 

 



JMP Demo 



Module 8 - Summary 

• By running an experiment that places both control and noise 
factors in the same design matrix we can develop a model for 
both the mean response and the transmitted variance 

• In many cases it is possible to find settings for the control 
factors that reduce or even minimize the variability transmitted 
from the noise factors 

• Optimal designs are good choices for the robust design problem 

• Modern software makes this easy 



Module 9 Mixture Designs 

• Goals 

– Introduce mixture experiments 

– Design region for mixtures 

– Mixture models 

– Construction of mixture designs 

– Applications 

 



Experiments with Mixtures 

• A mixture experiment is a special type of response 

surface experiment where 

– The design factors are the components or ingredients of a 

mixture 

– The response depends on the proportions of the ingredients 

present 

• The basic mixture constraint: 

1 2 ... 1qx x x



Mixtures occur in lots of settings 

• Manufacturing – plasma etching in semiconductor 

manufacturing 

• Product formulation 

– Paints, coatings, other industrial products 

– Personal care and commercial products 

– Pharmaceuticals 

– Food & beverages 
• Fruit juices, or finding the perfect Bordeaux blend 



Mixture experiments involve a constrained region 



Simplex Designs 

Simplex Designs are Optimal Designs 



Constraints on the mixture components are common, often in the 

form of lower and upper bounds on component proportions 

The effect of these constraints is to alter the shape of the original 

simplex region 

If there are only lower bounds, the simplex designs shown previously 

will still work 

If there are both lower and upper bounds, simplex designs will not work 

for these types of problems 



An experiment involving 

shampoo formulation 

There are upper and 

lower bounds on each 

component proportion 

The response variable is 

foam height 

The experiment involves a 

constrained design region 

An optimal design 

constructed by computer is a 

good choice 
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An example: formulating the optimum three-

component beverage 

The constraints on the component proportions are: 

The response variable is a rating, where the taster 

compares each blend to a “reference” blend and 0 - 4   

indicates a blend that is inferior to the reference while 6 

-10 indicates a blend that is superior 



Makeup of an Aircraft Carrier Air Wing 

• The air wing is composed of at least 6 aircraft types 
– Attack aircraft (bombers, like F/A-18) 

– Fighters (CAP, RESCAP, etc, like F-35) 

– Helos (SH-60, SAR, plane guard, etc) 

– ASW (S-3) 

– Ship-to-shore (think the C-2) 

– Electronics (E-2C, EA-6B) 

• Space is limited – you can only have a maximum of 85 aircraft of 
all types 

• A computer simulation model will be used to evaluate combat 
effectiveness for different air wing configurations 



Mixture Constraints: 

1 1

2 2

3 3

4 4
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6 6
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 attack, 25
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Mixtures in JMP 
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Module 9 - Summary 

• Mixture experiments are just a special type of response 

surface experiment 

• Mixture experiments involve a constrained design region 

which will always require a custom design 

• Mixture experiments occur in many settings – once you 

know about mixtures you will be surprised at how common 

they are 

 

 



Module 10 – Covering Arrays 

• Goals 

1. Introduce covering array concept 

2. Demonstrate their efficiency for detecting failure conditions 

3. Provide examples of their use 



Scenario 

Suppose we are testing a system with 10 components. 

For simplicity, let each component have two settings.  

 (This constraint can be relaxed) 

We want to make sure that each pair of components has all 4 possible 

combinations tested. 

We want to perform as few system tests as possible.  

 (Guess the minimum number of necessary tests) 

Note: it is not necessary to fit a model – just demonstrate that pairwise 

combinations work 

  



Covering Array Definition 

A covering array CA(N; t, k, v) is an N 
 

 k array such that the i-th column contains 

v distinct symbols. If a CA(N; t, k, v) has the property that for any t coordinate 

projection, all vt combinations of symbols exist, then it is a t-covering array (or 

strength t covering array). A t-covering array is optimal if N is minimal for fixed t, k, 

and v. 

 

N is the number of tests. (find minimum N) 

k is the number of factors. (k=10) 

t is the number of factors such that all t-factor combinations are tested. (t=2) 

v is the number of levels of each factor. (v=2) 



Minimum Covering Array 

The size of a covering array is the covering array number 

CAN(t, k, v), 

CAN(t, k, v) = min{N: ∃CA(N; t, k, v)}. 

The minimum covering array is the covering array 

with the fewest runs.  

 

For (t,k,v)=(2,10,2), N = 6! 



Covering arrays 

           

 

 

 

 

 

 

1 1 1 1 1 

2 2 2 2 2 

2 2 2 1 1 

2 1 1 2 2 

1 2 1 2 1 

1 1 2 1 2 

1 1 1 1 1 

1 1 2 1 1 

1 2 1 1 2 

1 2 2 1 2 

2 1 1 2 1 

2 1 2 2 1 

2 2 1 2 2 

2 2 2 2 2 

1 1 1 2 2 

2 2 1 1 1 

2 1 2 1 2 

1 2 2 2 1 

Do these have the fewest possible runs?      

CA(6:2,5,2) 

CA(12:3,5,2) 



Covering arrays and software testing 

Let foo(m,n,p,q) denote a software 

system with four input parameters each of 

which has two possible values 1, 2.  

Thorough testing would require a test case 

for each point in the input space (i.e. 16 test 

cases). 

 

 

 

1 1 1 1 

1 1 1 2 

1 1 2 1 

1 1 2 2 

1 2 1 1 

1 2 1 2 

1 2 2 1 

1 2 2 2 

2 1 1 1 

2 1 1 2 

2 1 2 1 

2 1 2 2 

2 2 1 1 

2 2 1 2 

2 2 2 1 

2 2 2 2 

What if you can only afford 8 (or fewer) test 

cases? 



Covering arrays and software testing 

1 1 1 1 

1 2 2 2 

2 1 2 2 

2 2 1 2 

2 2 2 1 

1 1 1 1 

1 1 2 2 

1 2 1 2 

1 2 2 1 

2 1 1 2 

2 1 2 1 

2 2 1 1 

2 2 2 2 

1 1 1 1 

1 1 1 2 

1 1 2 1 

1 1 2 2 

1 2 1 1 

1 2 1 2 

1 2 2 1 

1 2 2 2 

2 1 1 1 

2 1 1 2 

2 1 2 1 

2 1 2 2 

2 2 1 1 

2 2 1 2 

2 2 2 1 

2 2 2 2 

All 1, 2, 3-way plus 50% 4-way 

interactions. 

CA(8; 3, 4, 2),  

CAN(3, 4, 2) = 8  

All 1, 2-way plus 63% 3-way, 31% 4-way  

interactions. 

CA(5; 2, 4, 2), CAN(2, 4, 2) = 5    

//Example 1 

if(m==2 & p==1 & q==2, 

 //stuff  

 write("n=",n), 

 //other stuff  

 write("m=",m," n=",n," p=",p," 

q=",q) 

); 

 

//Example 2 

if(m==2 & p==1, 

 //stuff  

 write("n=",n," q=",q), 

 //other stuff  

 write("m=",m," n=",n," p=",p," 

q=",q) 

) 

m n p q 

//Example 1 

if(m==2 & p==1 & q==2, 

 ... 

); 

 

//Example 2 

if(m==2 & p==1, 

 ... 

) 



Example - Air to ground missile system 

Consider a software system controlling the state of an air to ground 

missile (Dalal & Mallows). The inputs are:  
 

 

 

 

 

 

 

 

Challenge: We are interested in deriving test cases to effectively 

assess “...response during attack maneuvering.” 

 

 

 

Altitude  Roll  

Attack angle  Yaw  

Bank angle  Ambient Temperature  

Speed  Pressure  

Pitch  Wind Velocity  



Example - Air to ground missile system 

Suppose we know the maximum and minimum values for each 

input. Thus, we could choose to have a set of equivalence classes, 

each corresponding to the range of an input.  

Note: This is equivalence partitioning. 

Select the maximum and minimum as two representative values for 

each of the 10 input parameters and denote these values by the 

symbols 1, 2 respectively.  

 

 

 



Example - Air to ground missile system 

For complete coverage, we would need to do 210 = 1024 system 

tests. This is clearly not feasible. 

Can covering arrays help? 

Of course! 

JMP Demo of Air to Ground system test. 

 

 

 



CA(N:2,k,2) Results 

k 2-3 4 5-10 11-15 16-35 36-56 57-126 ... 1717-2000 

N 4 5 6 7 8 9 10 ... 15 



JMP Card Trick #1 
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Module 10 - Summary 

• Covering arrays are the most efficient way to test all possible 

pairwise combinations of any number of factors 

• Covering arrays are useful in software and system testing to 

assure that no pair of conditions will lead to a failure. 

• Covering arrays can also be constructed that protect against 

triples or higher order combinations but these require more 

runs. 

• JMP has state-of-the-art tools for creating covering arrays. 



Module 11 – Supersaturated Designs 

Goals 

1. Introduce the idea of supersaturated designs 

2. Show the theory for constructing them. 

3. Give an example. 
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What is a supersaturated design? 

Supersaturated designs have more factors than runs. 

 

This may seem laughable… 

 



200 
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A more general definition… 

Supersaturated designs have fewer runs than parameters 

of interest. 



Supersaturated Design History 

• Satterthwaithe (1959) – random balance experimentation 

• Booth & Cox (1962) – computer search designs 

• Lin (1993) – created new interest in the topic 
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Classical “supersaturated” designs 

Examples of classical supersaturated design using the 

more general definition. 

1. Adding center points to 2-level factorial designs. 

2. Fractional factorial designs. 
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Case 1 – Center points. 

2x2 factorial design with center points.  

Supersaturated with respect to model with both 

quadratic effects. 
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Case 2 – Fractional Factorial Designs 

1. Resolution III 

Supersaturated with respect to the model containing all two-

factor interaction effects. 

2. Resolution IV 

Supersaturated with respect to the model containing all two-

factor interaction effects. 

3. Resolution V 

 Supersaturated with respect to models containing any three-

factor or higher order interaction.  
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D-Optimal Design Definition 

Xy

Given the usual linear regression model 

find a design matrix, X, to maximize 

XX T
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Problem 

D-Optimal designs depend on the choice of the a 

priori model, i.e. X 
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Solution: Bayesian D-Optimality 

Consider two kinds of effects: 

Primary effects are ones you are sure you want to estimate. 

There are p
1
 of these. 

Potential effects are ones you are afraid to ignore. There are 

p
2
 of these. 

 

For sample size, n 

 p
1
 < n < p

1
 + p

2
  

 



209 

Example 

 26-2 Fractional Factorial Resolution IV design 
 

  intercept and main effects are primary  

  2-factor interactions are potential 

 

p
1
 < n < p

1
 + p

2 

 

p
1
 = 7 p

2
 = 15 n = 16  (7 < 16 < 22) 
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Defining the K matrix 

2212

2111

0

00

pxppxp

pxppxp

I
K
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Bayesian D-Optimal designs 

/KXXD T

Bayes

Find a design matrix, X, to maximize 

where  is a tuning parameter. 
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Comparison 

Five Run D-Optimal Five Run Bayesian D-Optimal 

Repeat this point??? 

Add center point! 
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Question 

Why should only higher order terms be potential? 

Xxxy kk...1 110

Inspiration: Allow main effects to be potential. 

Result: Supersaturated designs using Bayesian D-Optimality. 
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Benefits of Bayesian D-Optimal Supersaturated Design 

1. Easy and fast to compute 

2. Flexible formulation (sample size, factor type, etc.) 

References: 
DuMouchel and Jones, Technometrics (1994) vol.36 #1 pp. 37-47. 

Jones, B., Lin, D., and Nachtsheim, C. (2008) “Bayesian D-Optimal Supersaturated 

Designs.” Journal of Statistical Planning and Inference, 138, 86-92. 

 



Card Trick in JMP 



Module 11 - Summary 

Supersaturated designs are not laughable. 

It is time to start using them to solve real problems… 



DOX Course – Final Thoughts 

1. Optimal design framework is general and powerful for handling 

all kinds of DOX problems. 

2. Modern software makes it easy to generate optimal designs 

for virtually any problem incorporating constraints on 

1. Factor combinations 

2. Model requirements 

3. Restrictions on sample size 

4. Restrictions on randomization 

3. It is time to break away from traditional methods  

4. Make the design fit the problem don’t force your problem into 

the constraints of a classical design. 

 


