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Course outline
1. Motivating examples

(a) Least squares regression: impact of air pollution on house prices

(b) Poisson regression: defects in soldering circuit boards

(c) Multiresponse data: interactions of variables in production of concrete

(d) Longitudinal data: hourly wages of high-school dropouts

(e) Censored data and differential treatment effects: breast cancer survival

(f) Simple classification: Fisher’s iris data

(g) Classification with unequal costs: attitudes towards mammography

(h) Unbalanced classes: characterizing dissatisfied credit card holders

2. Classification tree algorithms

(a) THAID (Messenger and Mandell, 1972), CART (Breiman et al., 1984),
RPART (Therneau and Atkinson, 2013, 2012)

(b) FACT (Loh and Vanichsetakul, 1988), QUEST (Loh and Shih, 1997),
CRUISE (Kim and Loh, 2001, 2003), GUIDE (Loh, 2009)

W-Y Loh Classification and Regression Trees and Forests 2



(c) C4.5 (Quinlan, 1993), CHAID (Kass, 1980), CTREE (Hothorn et al., 2006)

(d) More examples: peptide binding; fish identification; car prediction

(e) Missing values, selection bias, accuracy, speed, and tree complexity

3. Regression tree algorithms

(a) Piecewise constant least squares models: AID (Morgan and Sonquist,
1963), CART, RPART, GUIDE (Loh, 2002)

(b) Piecewise linear least squares, quantile regression, subgroup identification
of differential treatment effects, and longitudinal data effects: GUIDE (Loh
and Zheng, 2013)

(c) Others: M5 (Quinlan, 1992), MOB (Zeileis et al., 2008)

(d) More examples: college tuition; primary biliary cirrhosis of the liver;
progression of CD4 counts in AIDS

(e) Missing values, selection bias, accuracy, speed, and tree complexity

4. Conclusion
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Learning objectives

1. Recognize the fundamental difference between

(a) inference-based approach of traditional statistical methods and

(b) data description and prediction objectives of decision tree methods

2. Discover the ways tree methods enrich the statistician’s toolbox

3. Know the key ideas that differentiate decision tree algorithms

4. Observe their impact on performance (e.g., computational speed, selection
bias) and extensibility (e.g., multiresponse data, missing values)

5. Compare the strengths, weaknesses, and limitations of each algorithm
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Classification of tree algorithms by purpose

1. Binary classification trees—CART, RPART, CTREE, QUEST, GUIDE

2. Non-binary classification trees—CHAID, C4.5, CRUISE

3. Piecewise-constant least-squares trees—CART, RPART, CTREE, GUIDE

4. Piecewise-linear least-squares regression trees—M5, GUIDE, CTREE

5. Least-median-of-squares regression trees—GUIDE

6. Quantile regression trees—GUIDE

7. Poisson regression trees—RPART, GUIDE, MOB

8. Logistic regression trees—LOTUS (Chan and Loh, 2004), MOB

9. Censored response variables—RPART, GUIDE, MOB

10. Multivariate and longitudinal response variables—GUIDE

11. Tree ensembles—GUIDE, CTREE, MOB, random forest (Breiman, 2001),
random survival forest (Ishwaran et al., 2006)
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Free software

• C4.5—www.rulequest.com/Personal/c4.5r8.tar.gz; see also
www.cs.uregina.ca/~dbd/cs831/notes/ml/dtrees/c4.5/tutorial.html

• CART, C4.5, M5, etc.—www.cs.waikato.ac.nz/~ml/weka/

• CRUISE, GUIDE, LOTUS, QUEST—www.stat.wisc.edu/~loh/

• RPART, CTREE, MOB, PARTY, RandomForest —cran.us.r-project.org/

• LATEX (text processing package)—http://www.ctan.org/

CRUISE, GUIDE, LOTUS, and QUEST produce LATEX tree diagrams
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Some review papers

1. Lemon et al. (2003), Classification and regression tree analysis in public
health: methodological review and comparison with logistic regression,
Annals of Behavioral Medicine

2. Loh (2008a), Classification and regression tree methods, Encyclopedia of
Statistics in Quality and Reliability

3. Merkle and Shaffer (2011), Binary recursive partitioning: background,
methods, and application to psychology, British Journal of Mathematical
and Statistical Psychology

4. Loh (2011), Classification and regression trees, Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery

5. Loh (2013), Fifty years of classification and regression trees (with
discussion), International Statistical Review
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Linear regression: 1970 Boston housing data
(Harrison and Rubinfeld, 1978; Belsley et al., 1980)

Var Definition Var Definition

ID census tract number TOWN township (92 values)

MEDV median value in $1000 AGE % built before 1940

CRIM per capita crime rate DIS distance to employment centers

ZN % zoned for lots > 25K sq.ft. RAD accessibility to radial highways

INDUS % nonretail business TAX property tax rate per $10000

CHAS 1 on Charles River, 0 else PT pupil/teacher ratio

NOX nitrogen oxide conc. (p.p.109) B (% black - 63)2/10

RM average number of rooms LSTAT % lower-status population

Data: 506 observations (census tracts) in the greater Boston area
Objective: To examine the impact of air pollution on house price
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Harrison & Rubinfeld model for log(MEDV)

X β t ρ X β t ρ

Constant 4.6 30.0 AGE 7.1E-5 0.1 -0.5

CRIM -1.2E-2 -9.6 -0.5 log(DIS) -2.0E-1 -6.0 0.4

ZN 9.2E-5 0.2 0.4 log(RAD) 9.0E-2 4.7 -0.4

INDUS 1.8E-4 0.1 -0.5 TAX -4.2E-4 -3.5 -0.6

CHAS 9.2E-2 2.8 0.2 PT -3.0E-2 -6.0 -0.5

NOX2 -6.4E-1 -5.7 -0.5 B 3.6E-4 3.6 0.4

RM2 6.3E-3 4.8 0.6 log(LSTAT) -3.7E-1 -15.2 -0.8

β = coefficient, t = t-statistic, ρ = corr(X,Y )

What can we conclude from this model?
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GUIDE piecewise constant model for MEDV

LSTAT ≤ 9.73

RM
≤∗ 7.44

RM
≤∗ 6.64

RAD
≤∗ 7.5

102
23.6

11
32.2

RM
≤ 6.94

29
29.4

40
33.5

30
45.1

LSTAT
≤∗ 16.09

150
20.3

NOX
≤ .603

49
17.6

CRIM
≤∗ 10.45

59
14.2

36
9.6

Sample means and sample sizes below and beside nodes.
At each intermediate node, a case goes left if and only if the condition is true.

Symbol “≤∗” means “≤ or missing.”
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GUIDE piecewise simple linear model for MEDV
RM

≤∗ 7.01 1

RM
≤∗ 6.54 2

PT
≤∗ 19.20 4

174 8
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-LSTAT

DIS
≤ 1.60 9
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RM
≤∗ 7.44 3
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45.10
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Mean MEDV and signed linear predictor beneath each node
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GUIDE piecewise two-variable model for MEDV

RM ≤∗ 6.54

PT ≤∗ 19.6

TAX
LSTAT 4

21

DIS
≤ 1.81

DIS
LSTAT 10

15

B
LSTAT 11

17

PT ≤∗ 19.2

RM
LSTAT 6

34

CHAS
LSTAT 7

21

Mean MEDV beneath each node
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Data and fits in GUIDE two-variable model
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Comparison of models
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Difficulties in interpreting regression coefficients:
Harrison & Rubinfeld model for log(MEDV)

X β t ρ X β t ρ

Constant 4.6 30.0 AGE 7.1E-5 0.1 -0.5

CRIM -1.2E-2 -9.6 -0.5 log(DIS) -2.0E-1 -6.0 0.4

ZN 9.2E-5 0.2 0.4 log(RAD) 9.0E-2 4.7 -0.4

INDUS 1.8E-4 0.1 -0.5 TAX -4.2E-4 -3.5 -0.6

CHAS 9.2E-2 2.8 0.2 PT -3.0E-2 -6.0 -0.5

NOX2 -6.4E-1 -5.7 -0.5 B 3.6E-4 3.6 0.4

RM2 6.3E-3 4.8 0.6 log(LSTAT) -3.7E-1 -15.2 -0.8

β = coefficient, t = t-statistic, ρ = corr(X,Y )

Why do β and ρ have opposite signs for log(DIS) and log(RAD)?
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log(MEDV) vs. log(DIS)

0.5 1.0 1.5 2.0 2.5

2.
0

2.
5

3.
0

3.
5

4.
0

log(DIS)

lo
g(

M
E

D
V

)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

−
0.

5
0.

0
0.

5

log(DIS) adjusted for others

lo
g(

M
E

D
V

) 
ad

ju
st

ed
 fo

r 
ot

he
rs

W-Y Loh Classification and Regression Trees and Forests 17



Model for log(MEDV) with log(DIS) as linear predictor
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Model for MEDV with NOX as only linear predictor
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≤∗ 6.98

LSTAT
≤ 9.95
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MEDV vs NOX
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Poisson regression:
Unreplicated 3× 2× 4× 10× 3 soldering experiment

Opening: Amount of clearance around a mounting pad (small, medium, large)

Solder: Amount of solder (thin, thick)

Mask: Type and thickness of solder mask (A1.5, A3, B3, B6)

Pad: Shape and size of mounting pad (D4, D6, D7, L4, L6, L7, L8, L9, W4,
W9)

Panel: Each board is divided into three panels (1, 2, 3)

Response: Number of solder skips (0–48)

Ref: Comizzoli et al. (1990), Chambers and Hastie (1992)
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Full 2nd-degree Poisson loglinear model

Term df Deviance P Term df Deviance P

open 2 2524.6 0.000 open:pad 18 47.4 0.000

solder 1 937.0 0.000 open:panel 4 11.2 0.024

mask 3 1653.1 0.000 solder:pad 9 43.4 0.000

pad 9 542.5 0.000 solder:panel 2 6.0 0.050

panel 2 68.1 0.000 mask:pad 27 61.5 0.000

open:solder 2 28.0 0.000 mask:panel 6 21.2 0.002

open:mask 6 71.0 0.000 pad:panel 18 13.7 0.748

solder:mask 3 59.8 0.000
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Chambers & Hastie (1992) model with three 2-factor interact ions
Regressor Coef t-stat Regressor Coef t-stat

Constant -2.668 -9.25

maskA3 0.396 1.21 openmedium 0.921 2.95

maskB3 2.101 7.54 opensmall 2.919 11.63

maskB6 3.010 11.36 soldthin 2.495 11.44

padD6 -0.369 -5.17 maskA3:openmedium 0.816 2.44

padD7 -0.098 -1.49 maskB3:openmedium -0.447 -1.44

padL4 0.262 4.32 maskB6:openmedium -0.032 -0.11

padL6 -0.668 -8.53 maskA3:opensmall -0.087 -0.32

padL7 -0.490 -6.62 maskB3:opensmall -0.266 -1.12

padL8 -0.271 -3.91 maskB6:opensmall -0.610 -2.74

padL9 -0.636 -8.20 maskA3:soldthin -0.034 -0.16

padW4 -0.110 -1.66 maskB3:soldthin -0.805 -4.42

padW9 -1.438 -13.80 maskB6:soldthin -0.850 -4.85

panel2 0.334 7.93 openmedium:soldthin -0.833 -4.80

panel3 0.254 5.95 opensmall:soldthin -0.762 -5.13
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GUIDE piecewise-constant Poisson model

opening
= small
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in S1
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= thick
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GUIDE piecewise main effects Poisson model
solder
= thick

360

2.5

opening
= small

120

16.4

240

3.0

Number in italics below terminal node is sample mean of solder skips.
Number beside terminal node is sample size.
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solder = thick solder = thin

opening = small medium or large

Regressor Coef t-stat Coef t-stat Coef t-stat

Constant -2.43 -10.68 2.08 21.5 -0.37 -1.9

maskA3 0.47 2.37 0.31 3.3 0.81 4.5

maskB3 1.83 11.01 1.05 12.8 1.01 5.8

maskB6 2.52 15.71 1.50 19.3 2.27 14.6

openmedium 0.86 5.57 aliased 0.10 1.4

opensmall 2.46 18.18 aliased aliased

panel2 0.22 2.72 0.31 5.5 0.58 5.7

panel3 0.07 0.81 0.19 3.2 0.69 6.9

padD6 -0.32 -2.03 -0.25 -2.8 -0.80 -4.6

padD7 0.12 0.85 -0.15 -1.7 -0.19 -1.3

padL4 0.70 5.53 0.08 1.0 0.21 1.6

padL6 -0.40 -2.46 -0.72 -6.8 -0.82 -4.7

padL7 0.04 0.29 -0.65 -6.3 -0.76 -4.5

padL8 0.15 1.05 -0.43 -4.5 -0.36 -2.4

padL9 -0.59 -3.43 -0.64 -6.3 -0.67 -4.1

padW4 -0.05 -0.37 -0.09 -1.0 -0.23 -1.6

padW9 -1.32 -5.89 -1.38 -10.3 -1.75 -7.0
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Observed vs. fitted values
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Multiresponse data:
viscosity and strength of concrete (Yeh, 2007)

• 103 observations on seven input variables (kg per cubic meter):

1. Cement

2. Slag

3. Fly ash

4. Water

5. Superplasticizer

6. Coarse aggregate

7. Fine aggregate

• Three output variables:

1. Slump (cm)

2. Flow (cm)

3. 28-day compressive strength (Mpa)
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Separate linear models

Slump Flow Strength

Estimate P-value Estimate P-value Estimate P-value

(Intercept) -88.525 0.66 -252.875 0.472 139.782 0.052

Cement 0.010 0.88 0.054 0.634 0.061 0.008

Slag -0.013 0.89 -0.006 0.971 -0.030 0.352

Flyash 0.006 0.93 0.061 0.593 0.051 0.032

Water 0.259 0.21 0.732 0.041 -0.23270 0.002

SP -0.184 0.63 0.298 0.654 0.103 0.445

CoarseAggr 0.030 0.71 0.074 0.587 -0.056 0.045

FineAggr 0.039 0.64 0.094 0.509 -0.039 0.178

Is there really nothing significant for Slump?
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Water and Slag are highly significant for Slump
if no other variables are in the model!

Estimate Std. Error t value Pr(> |t|)
(Intercept) -18.099 7.314 -2.475 0.01502 *

Water 0.199 0.036 5.455 3.56e-07 ***

Slag -0.039 0.012 -3.227 0.00169 **

(Intercept) 11.370 9.683 1.174 0.243

Water 0.050 0.0486 1.025 0.308

Slag -0.479 0.104 -4.604 1.23e-05 ***

Water:Slag 0.002 0.001 4.251 4.83e-05 ***
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One tree for each response variable
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One tree for all response variables

Water ≤ 182
CoarseAggr

≤∗ 960

5.5
26.7
44.4 17

17.1
41.1
33.8 12

Cement ≤∗ 180

20.2
54.1
29.4 28

Fly ash
≤ 117

20.4
53.5
31.9 22

22.7
61.2
42.8 24

sl
um

p 
(c

m
)

flo
w

 (
cm

)

st
re

ng
th

 (
M

pa
)0

10

20

30

40

50

60

Water ≤ 182
CoarseAggr ≤ 960

sl
um

p 
(c

m
)

flo
w

 (
cm

)

st
re

ng
th

 (
M

pa
)0

10

20

30

40

50

60

Water ≤ 182
CoarseAggr > 960

sl
um

p 
(c

m
)

flo
w

 (
cm

)

st
re

ng
th

 (
M

pa
)0

10

20

30

40

50

60

Water > 182
Cement ≤ 180

sl
um

p 
(c

m
)

flo
w

 (
cm

)

st
re

ng
th

 (
M

pa
)0

10

20

30

40

50

60

Water > 182
Cement > 180
FlyAsh ≤ 117

sl
um

p 
(c

m
)

flo
w

 (
cm

)

st
re

ng
th

 (
M

pa
)0

10

20

30

40

50

60

Water > 182
Cement > 180
FlyAsh > 117

W-Y Loh Classification and Regression Trees and Forests 34



College tuition and graduation rate

• Data on 1134 U.S. colleges and universities for year 1995 from U. S. News
& World Report (http://lib.stat.cmu.edu/)

• Response variables are out-of-state tuition and graduation rate

• 515 complete cases
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Explanatory variables for college data

Name Description #Missing

PubPriv Public or private college (binary) 0

CombSAT Average Combined SAT score 471

AppsRec Number of applications received 9

AppsAcc Number of applicants accepted 9

NewEnrol Number of new students enrolled 5

Top10 Percent new students from top 10% of H.S. class 183

Top25 Percent new students from top 25% of H.S. class 155

FUgrad Number of fulltime undergraduates 3
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Explanatory variables for college data (cont’d)

Name Description #Missing

RnBcost Room and board costs 57

PFacPhD Percent of faculty with Ph.D.’s 29

StudFac Student/faculty ratio 2

InstExp Instructional expenditure per student 24

GradRate Graduation rate 69

Type Type of college (I: PhD, IIA: master, or IIB: bachelor) 0

FullPSal Average salary—full professors (in $100’s) 61

NFullProf Number of full professors 0

513 cases with complete observations
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Out-of-state tuition (in $100s)

GradRate
≤∗63

PubPriv
= Priv

RnBcost
≤∗4401

InstExp
≤∗5861

64 90

InstExp
≤∗9730

109 135

FullPSal
≤532

RnBcost
≤∗3377

45 62

68

InstExp
≤∗10742

InstExp
≤∗6967

PubPriv
= Priv

88 59

InstExp
≤∗8822

FullPSal
≤593

108 87

120

RnBcost
≤5585

FUgrad
≤∗2813

155 121

86
175
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Out-of-state tuition and graduation rate

RnBcost ≤∗ 3999 1

PubPriv = Private 2

Top10
≤∗ 26 4

81
57 8

193

9

62

109
69

FullPSal
≤∗ 565 5

51
45 10

230

11

84

74
54

InstExp ≤∗ 11474 3

PubPriv
= Private 6

InstExp
≤∗ 7998 12

99
65 24

113

25

172

123
71

13

108

70
55

Top25
≤∗ 72 7

142
70 14

69

15

101
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84

Predicted values of OutTuition, GradRate, resp., beside terminal nodes, sample sizes below
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Longitudinal data:
Hourly wage of high-school dropouts

• 888 male high-school dropouts (246 Black, 204 Hispanic, 438 White)
observed over time

• Response is hourly wage (in 1990 dollars)

• Predictor variables are:

1. hgc: highest grade completed (6–12)

2. exper: years in labor force (0.001–12.7 yrs)

3. black: 1 if Black, 0 otherwise

4. hisp: 1 if Hispanic, 0 otherwise

• Data from the National Longitudinal Survey of Youth

• References: Murnane et al. (1999), Singer and Willett (2003, Sec. 5.2.1)
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Design details and complications

1. At first wave of data collection, subjects varied in age from 14–17

2. Some subsequent waves separated by one year, others by two

3. Each wave’s interviews conducted at different times in calendar year

4. Subjects observed at random times and random number of times:
77 have 1–2, 82 have 3–4, 166 have 5–6, 226 have 7–8, 240 have 9–10,
and 97 have more than 10 observations

5. Subjects could describe more than one job at each interview

6. Subjects drop out of school and enter labor force at varying times

7. Subjects can change jobs at any time

8. Murnane et al. (1999) clocked time from each subject’s first day of work
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Some individual trajectories
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Questions in analysis of longitudinal data

1. How does the outcome change over time?

2. Can we predict the differences in these changes?

Two popular approaches

Parametric: Fit a mixed model (also called individual growth model,
random coefficient model, multilevel model, and hierarchical linear
model) and deduce the effect of predictor variables from the
regression coefficients

Nonparametric: Cluster the subject trajectories, then test each
predictor variable for its effect on the clusters
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Linear mixed model (Singer and Willett, 2003)

log(wage) = β0 + β1hgc+ β2exper+ β3black+ β4hisp

+ β5exper× black+ β6exper× hisp

+ b0 + b1exper+ ǫ

Assumptions/limitations:

1. Random (subject) intercepts and slopes b0 ∼ N(0, σ2
0) and b1 ∼ N(0, σ2

1);
ǫ ∼ N(0, σ2); all independent

2. Log transformation of wage to address skewness, linearize individual wage
trajectories, and overcome range restriction

3. Predictions of wage requires exponentiation of fitted values of log(wage)
— least-squares fit on log-dollar scale not best for dollar scale

W-Y Loh Classification and Regression Trees and Forests 48



Coefficients of fixed effect terms

Value Std.Error DF t-value p-value

(Intercept) 1.382 0.059 5511 23.43 0.000

hgc 0.038 0.006 884 5.94 0.000

exper 0.047 0.003 5511 14.57 0.000

black 0.006 0.025 884 0.25 0.804

hisp -0.028 0.027 884 -1.03 0.302

exper×black -0.015 0.006 5511 -2.65 0.008

exper×hisp 0.009 0.006 5511 1.51 0.131

“Analyses not shown here suggest that we cannot distinguish statistically
between the trajectories of Hispanic and White dropouts.” (Singer and Willett,
2003, p. 149)
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race = white

hgc ≤∗ 9
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hgc ≤∗ 9

race = black
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LME vs. GUIDE fits
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Censored response data: breast cancer

• Randomized clinical trial of 672 subjects with primary node positive breast
cancer (Schumacher et al., 1994; data from ipred R package; 14 subjects
with censored times less than smallest uncensored time excluded)

• Response is recurrence-free survival time (8–2659 days, 299 uncensored,
387 censored)

• Eight predictor variables with no missing values:

1. horTh (hormone therapy, yes/no)

2. age (21–80 years)

3. tsize (tumor size, 3–120 mm)

4. pnodes (number of positive lymph nodes, 1–51)

5. progrec (progesterone receptor status, 0–2380 fmol)

6. estrec (estrogen receptor status, 0–1144 fmol)

7. menostat (menopausal status, pre/post)

8. tgrade (tumor grade, 1, 2, 3)
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Variable Coef p-value Variable Coef p-value

horTh=yes -0.3463 7.3e-03 tsize 0.0078 4.8e-02

age -0.0095 3.1e-01 pnodes 0.0488 5.7e-11

meno=Post 0.2585 1.6e-01 progrec -0.0022 1.1e-04

tgrade.L 0.5513 3.7e-03 estrec 0.0002 6.6e-01

tgrade.Q -0.2011 9.9e-02

Is there a subgroup where hormone therapy is ineffective?
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GUIDE tree for subgroup identification
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Classification: Fisher’s iris data

• 3 classes (Setosa, Versicolour, Virginica)

• 50 observations per class

• 4 predictor variables (petal length and width, sepal length and width)
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Plot of iris data in first 2 discriminant coords
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Classification trees for iris data
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Women’s knowledge, attitude,
and behavior toward mammography

(Hosmer and Lemeshow, 2000)

• Data on 412 women and 3 classes:
234 had no mammography experience;
104 had a mammogram within the last year;
74 had one more than a year ago

• 5 predictor variables: 2 binary; 2 ordered categorical; 1 ordinal

Unequal misclassification costs

True class

Predicted 1 (≤ 1 yr) 2 (> 1 yr) 3 (never)

1 (≤ 1 yr) 0 1 2

2 (> 1 yr) 1 0 1

3 (never) 2 1 0
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Mammography variables

Name Description Values

ME Mammography experience within one year (1), over one year
ago (2), never (3)

SYMP You do not need a mam-
mogram unless you develop
symptoms

Strongly agree (1), agree (2), dis-
agree (3), strongly disagree (4)

PB Perceived benefit of mam-
mography

5, 6, . . . , 20 (low values imply
greater perceived benefit)

HIST Mother or sister with history
of breast cancer

no (0), yes (1)

BSE Anyone taught you how to ex-
amine your own breasts?

no (0), yes (1)

DETC How likely is it that a mammo-
gram can find a new case of
breast cancer?

Not likely (1), somewhat likely (2),
very likely (3)
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Distributions of predictor variables
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Multinomial logistic regression model
with “ME = never” as baseline category

Logit(ME = within 1 year) Logit(ME = more than 1 year)

Variable Coef SE P-value Variable Coef SE P-value

Constant -2.62 0.93 0.005 Constant -1.82 0.86 0.033

SYMPD* 2.10 0.46 <0.001 SYMPD* 1.13 0.36 0.002

PB -0.25 0.07 0.001 PB -0.15 0.07 0.034

HIST 1.31 0.43 0.003 HIST 1.06 0.45 0.019

BSE 1.24 0.53 0.019 BSE 0.96 0.51 0.056

DETCD** 0.89 0.36 0.019 DETCD** 0.11 0.32 0.720

* SYMPD = 1 if SYMP = “disagree” or “strongly disagree”, SYMPD = 0
otherwise

** DETCD = 1 if DETC = “very likely”, DETCD = 0 otherwise
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GUIDE classification tree for mammography data
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Highly unbalanced classes: credit card data

• Goal: A major credit card company wants to find out why 14.8% of its card
holders are dissatisfied

• Data: 22,242 card holder records with information on 24 predictor variables

• Missing values: 1,752 records contain one or more missing values; 0.34%
missing values overall

• Response variable: whether a card holder is satisfied with the card

• Problem: Low percent of dissatisfied card holders makes most methods
classify everyone as “satisfied”—a useless result

• Two solutions: Use equal priors or make cost of misclassifying dissatisfied
= 5.5 × that of satisfied (more emphasis on identifying dissatisfied card
holders)
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Predictor variables for credit card data

numadv30 How many times did you get cash advances in last 30 days?

spend30 How much money did you spend on purchases in last 30 days? ($)

numpur30 How many times did you make purchases in last 30 days?

over30 Have you gone over limit in last 30 days? (1=yes 0 = no)

otherbal How much balance do you carry on other bank cards?

(0=0K, 1=0–2.5k, 2=2.5K–5K, . . . , 8 = 17.5k–20k, 9 = 20k+)

othercred How much credit do you have on other bank cards?

(0=0K, 1=0–2.5k, 2=2.5K–5K, . . . , 8 = 17.5k–20k, 9 = 20k+)

apply How many times did you apply for credit card in last year?

joint Do you have a joint account? (1 = yes 0 = no)

employ Are you currently employed? (1 = yes 0 = no)

cardyrs How many years have you had any credit card?
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dailybal The average daily balance, unit in $

currentbal The current balance, unit in $

credlim The current credit limit, unit in $100

mpastdue How many months the customer is past due

apr The annual percent rate, unit in %

worthy Historical index, credit worthiness, range [0,400]

months How many months has the customer had the card?

init Initial credit limit when account was opened, unit in $100

adv1 Cash advance indicator for month -1, 1 = yes, 0 = no

adv2 Cash advance indicator for month -2, 1 = yes, 0 = no

adv3 Cash advance indicator for month -3, 1 = yes, 0 = no

adv4 Cash advance indicator for month -4, 1 = yes, 0 = no

adv5 Cash advance indicator for month -5, 1 = yes, 0 = no

adv6 Cash advance indicator for month -6, 1 = yes, 0 = no
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t-tests on ordered predictors
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Chi-squared tests of categorical predictors

over30 (p = 0.13) joint (p = 0.47) employ (p = 0.002)

Satisfied No Yes No Yes No Yes

Yes 17951 836 3875 15079 2394 16560

No 3132 125 691 2597 351 2937

otherbal (p = 1.5× 10−13)

Satisfied 1 2 3 4 5 6 7 8 9

Yes 9281 4711 1610 1308 497 471 199 194 533

No 1370 947 356 242 98 92 19 34 109

othercred (p < 2.2× 10−16)

Satisfied 1 2 3 4 5 6 7 8 9

Yes 3304 6107 2393 2469 1056 1075 505 522 1435

No 312 915 491 501 227 256 120 110 343
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Chi-squared tests of categorical predictors
(cont’d.)

apr (p = 0.002431)

Satisfied 4 5 6 7 8 9 10 11 15

Yes 164 5 273 36 459 4 145 17386 482

No 24 6 42 11 59 1 27 3044 74

init (p < 2.2× 10−16)

Satisfied 20 24 31 44

Yes 3375 13 8062 7367

No 773 8 1375 1114
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Logistic regression model for Pr(Dissatisfied)

Variable Estimate p-value Variable Estimate p-value

(Intercept) -1.802e+00 7.12e-07 credlim 4.218e-02 8.20e-05

numadv30 -1.442e-02 0.517144 mpastdue 4.479e-01 3.42e-06

spend30 2.661e-03 0.399596 apr 1.556e-02 0.375681

numpur30 3.477e-03 0.594214 worthy 5.604e-03 <2e-16

over30 6.561e-02 0.529030 months -4.112e-02 0.003214

otherbal -7.053e-02 2.22e-05 init -5.195e-02 2.19e-06

othercred 1.351e-01 <2e-16 adv1 -9.934e-02 0.374672

apply 3.229e-02 8.97e-05 adv2 -8.055e-03 0.938932

joint -8.693e-02 0.081735 adv3 -3.709e-02 0.752908

employ 2.313e-01 0.000356 adv4 -2.381e-02 0.827685

cardyrs 3.080e-02 4.05e-09 adv5 1.072e-01 0.310609

dailybal -5.665e-05 0.161080 adv6 -2.010e-02 0.841265

currentbal -2.623e-04 1.83e-12
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GUIDE tree with equal priors (or 5.5 to 1 costs)

currentbal ≤ 2250

worthy
≤ 94

worthy
≤ 63

718
61

apply
≤ 4

564
79

507
98

4445
1333

worthy ≤ 141

othercred
≤ 2

3491
218

3346
434

othercred ≤ 1

775
68

currentbal
≤∗ 3550

cardyrs
≤ 5

641
98

2099
554

2368
345

True

Predict Satis. Diss.

Satis. 11903 1303

Diss. 7051 1985

Total 18954 3288
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Properties of an ideal classifier

High predictive accuracy: classify unseen cases with low error

Intuitive, comprehensible structure: give insight into the roles and relative
importance of the predictor variables

Correct, unbiased inference: draw inferences without bias

Fast training time: construct models quickly

Definition

A classifier or classification rule is a function d(x) defined on X such
that for every x, d(x) is equal to one of the numbers 1, 2, . . . , J .

A classifier is a partition of the sample space X such that

Aj = {x : d(x) = j}
X = ∪jAj
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Notations

Y : response variable

J : number of classes

C = {1, . . . , J}: set of classes

N : training sample size

K: number of predictor variables

X = (X1, . . . , XK): vector of predictor variables

X : Space of predictor variables
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AID (Morgan and Sonquist, 1963)

AID is the first published regression tree algorithm. It works as follows.

1. Recursively partition the data with splits of the form “X ≤ c” (ordinal X)
and “X ∈ S” (categorical X).

2. At each stage, choose the split that minimizes a measure of node impurity,
e.g., sum of squared deviations from mean:

∑

(yi − ȳ)2.

3. Stop splitting if reduction in impurity is below preset value.
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THAID (Messenger and Mandell, 1972)

THAID is the first published classification tree algorithm (categorical Y )

• At each node, count the number of observations in the most frequent Y
category (modal category)

• Choose the split that maximizes the sum of observations in the modal
categories of the subnodes

• Follow the rest of the AID algorithm
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CART (Breiman et al., 1984)

1. Choose the split that maximizes the decrease in node impurity (Gini index
for classification, sum of squared errors for regression)

2. For classification, let C(i|j) be cost of misclassifying a class j as class i.
Assign terminal node t to class j∗ if it minimizes the misclassification cost

∑

j

C(j∗|j)p(j|t) = min
i

∑

j

C(i|j)p(j|t)

For regression, use the sample Y mean in t as predicted value

3. Prune tree using test sample or cross-validation

4. Use surrogates splits to deal with missing values
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Estimates of misclassification error
Resubstitution estimate. Use the training data:

R(d) = N−1
N
∑

n=1

I(d(xn) 6= jn)

Test sample estimate. Divide L into L1 and L2. Let N2 = #L2. Construct d
from L1. Then

Rts(d) = N−1
2

∑

L2

I(d(xn) 6= jn)

V -fold cross-validation estimate.

1. Divide L into subsets L1, . . . ,LV . Let d(v) be constructed from L − Lv.

2. Define
Rts(d(v)) = N−1

v

∑

Lv

I(d(v)(xn) 6= jn)

3. The V -fold cross-validation estimate is

Rcv(d) = V −1
V
∑

v=1

Rts(d(v))
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More notation

t denotes a node

J is the number of classes in training sample

Jt is the number of classes in t

N(t) is the number of training samples in t

Nj is the number of class j training samples

Nj(t) is the number of class j training samples in t

T denotes a tree

T̃ is the set of terminal nodes of T

|T̃ | is number of terminal nodes of T

Tt is a subtree of T with root node t

{t} is a subtree of Tt containing only the root node t
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Node impurity measures

Let p(j|t) be the proportion of class j learning samples in node t. Define the
node impurity measure

i(t) = φ(p(·|t)) ≥ 0

where φ is a symmetric function with maximum value φ(J−1, J−1, . . . , J−1) and

φ(1, 0, . . . , 0) = φ(0, 1, . . . , 0) = . . . = φ(0, 0, . . . , 0, 1) = 0

Entropy: i(t) = −∑J
j=1 p(j|t) log p(j|t)

Gini index: i(t) = 1−∑

j p
2(j|t)

• We use g(t) to denote the Gini index

• If J = 2, then g(t) = 2p(1|t)p(2|t), i.e., two times binomial variance
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Split set selection

1. Define the goodness of a split s as

∆i(s, t) = i(t)− pLi(tL)− pRi(tR)

where tL and tR are the left and right subnodes of t and pL and pR are the
probabilities of being in those subnodes.

2. Define a set S of binary splits of the form X ∈ A, where,

A = (−∞, c], if X is ordinal

A ⊂ X , if X is categorical

(a) If X is ordinal with k unique values, there are (k − 1) splits

(b) If X is categorical with k unique values, there are (2k−1 − 1) splits

3. Find s∗ ∈ S such that ∆i(s∗, t) = maxs∈S ∆i(s, t).
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Shortcut for categorical splits with 2 classes

Theorem 1 Let X be a categorical variable taking values in {b1, . . . , bL}.
Suppose i(t) = φ(p(1|t)), where φ is strictly concave.
Define (bl(i); i = 1, . . . , L) such that

p(1|X = bl(1)) ≤ p(1|X = bl(2)) ≤ . . . ≤ p(1|X = bl(L))

Then the split on X that maximizes the decrease in impurity is one of the splits:

X ∈ {bl(1), . . . , bl(h)}, h = 1, . . . , L− 1

This reduces the search from (2L−1 − 1) subsets to (L− 1) subsets
Proof: See Breiman et al. (1984, Sec. 9.4)
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Categorical predictors: peptide-binding data

• 310 amino acid sequences of peptides

• 181 bind to a class of MHC molecule, 129 do not

• Each amino acid sequence has length 8

• Each position in a sequence is one of 18–20 amino acids

• Problem: What amino acids in which positions are predictive of binding?

• Milik et al. (1998) convert amino acid info into 104 numerical “property
variables” and use neural networks

• Segal et al. (2001) use CART
http://repositories.cdlib.org/cbmb/peptide_binding
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Distributions of peptide-binding data
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Distributions of peptide-binding data (cont’d.)
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RPART (Therneau and Atkinson, 2012)
tree for peptide data

pos5 6= F,M,Y

pos8 6= L,W

104
5

nonbinder
pos2 = D,E,F,H,Q,T

10
0

nonbinder
pos5 =G,P,S,T

5
2

nonbinder

0
15

binder

pos8 = D,G,P,Q,W

7
2

nonbinder binder

3
157

Counts of nonbinder and binder, resp., are beside terminal nodes
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Levels of Pos5 ordered by P(Y = 0)

Class Class

Level 0 1 Total Prop. Level 0 1 Total Prop.

F 3 73 76 0.039 V 8 1 9 0.889

Y 5 75 80 0.063 C 1 0 1 1

M 2 11 13 0.154 D 11 0 11 1

N 1 1 2 0.5 E 5 0 5 1

L 12 9 21 0.571 K 6 0 6 1

I 3 2 5 0.6 Q 2 0 2 1

H 6 3 9 0.667 R 13 0 13 1

A 7 2 9 0.778 S 12 0 12 1

G 5 1 6 0.833 T 8 0 8 1

P 17 3 20 0.85 W 2 0 2 1
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Resubstitution estimate of misclassification cost

• Let π(j) be the prior probability of class j

• Let Nj(t) be the number of class j observations in node t

• Let Nj be the number of class j observations in the training sample

• Let p(j, t) = π(j)Nj(t)/Nj be the estimated probability of being in class j

and in node t

• Define p(t) =
∑

j p(j, t) and p(j|t) = p(j, t)/p(t)

• The resubstitution estimate of expected misclassification cost of node t is

r(t) = min
i

∑

j

C(i|j)p(j|t)

• The resubstitution estimate of expected misclassification cost of a tree T is

R(T ) =
∑

t∈T̃

r(t)p(t)
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Why not use R(t) as impurity function?

• Optimal split is not unique: possible for R(t)−R(tL)−R(tR) = 0 for some
or all splits

• Shortcut algorithm for categorical split is not applicable because R(t) is not
a strictly concave function of {p(j|t)}
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CART pruning

1. Given α and tree T , define the cost-complexity Rα(T ) = R(T ) + α|T̃ |

2. For each α, there is a tree T that minimizes the cost-complexity

3. Let t be any node and Tt be the branch of T with root node t. Then

Rα({t}) = R(t) + α

Rα(Tt) = R(Tt) + α|T̃t|

4. Rα(Tt) = Rα({t}) when α = u(t) = [R(t)−R(Tt)]/[|T̃t| − 1]

5. Prune branches at nodes t1 for which u(t1) = min{u(t) : t ∈ T − T̃}

6. Define α1 = u(t1) and iterate to obtain a nested sequence of trees

Sequence of minimal cost-complexity trees is a subsequence of the subtrees
constructed by finding the minimum cost subtree for a given number of terminal
nodes.
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Subtree selection by V -fold cross-validation

1. Let α1 < α2 < . . . be the α-values associated with the pruned sequence of
subtrees T1 ≻ T2 ≻ . . .. Define α′

k =
√
αkαk+1

2. Divide L into V subsets L1, . . . ,LV

3. Let T (v)(α′
k) be the minimal cost-complexity tree grown from L − Lv,

v = 1, . . . , V

4. Let R′(T (v)(α′
k)) be the estimate of the misclassification cost of T (v)(α′

k)

based on the test sample Lv

5. The V -fold CV estimate for subtree Tk is

Rcv(Tk) = V −1
V
∑

v=1

R′(T (v)(α′
k))

6. Select the subtree with the smallest CV cost
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V -fold cross-validation

Main tree CV tree 1 CV tree 2 . . . CV tree V

α′

3 →

α′

2 →

← α′

1

← α′

4

← α′

3

← α′

2

α′

1 →

α′

3 →

α′

1 → ← α′

2

• Main tree is grown using all the data

• Each CV tree is grown using (V − 1) subsets
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k-SE rule
1. Let R̂(Tj) be the CV estimate of misclassification cost of Tj , let T ∗ be the

tree with min. value of R̂(Tj), and let SE be the standard error of R̂(T ∗)

2. The k-SE tree T ∗∗ is the smallest subtree such that

R̂(T ∗∗) ≤ min
j

R̂(Tj) + k × SE
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RPART tree for iris data

petallen
< 2.45

Setosa
50
0
0

petalwid
< 1.75

Versicolour
0

49
5

Virginica
0
1

45
0.5 1.0 1.5 2.0 2.5

1
2

3
4

5
6

7

Petal width

P
et

al
 le

ng
th

sssss
s

ssss sss
s s

sss
sss s

s

ss
s sssss ss ss
ss

s ss sss
s

s
sssss

c c
c

c

cc c

c

c

c
c

cc

c

c

c c
c

c

c

c

c

cc
c c

c c
c

c
cc c

c

c cc
c
cc

c c

c

c

cc cc

c

c

v

v

v
v v

v

v

v
v

v

vv v
v vvv

v v

v

v

v

v

v

v
v

vv

vv
v

v

v
v

v
v

vv

v

v v
vv

v v
vv v v

v

W-Y Loh Classification and Regression Trees and Forests 92



Unequal misclassification costs via Gini

• The Gini index can be generalized to:

i(t) =
∑

i,j

C(i|j)p(i|t)p(j|t)

This reduces for J = 2 to

i(t) = [C(2|1) + C(1|2)]p(1|t)p(2|t)

which gives the same split criterion as for unit costs

• Disadvantage: Index symmetrizes the cost matrix
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Unequal misclassification costs via altered priors

• Let π(j) be the prior probability of class j ∈ C

• Let Q(i|j) be the proportion of class j cases in L classified as class i by T

• Resubstitution estimate of T is R(T ) =
∑

i,j∈C C(i|j)Q(i|j)π(j)

• The value of R(T ) is the same if {π′(j)} and {C ′(i|j)} satisfy

C ′(i|j)π′(j) = C(i|j)π(j), i, j ∈ C

• Thus unequal C(i|j) can be accommodated by altering π(j) to π′(j)

• If C(i|j) = C(j), i 6= j for each j, define C ′(i|j) = 1, i 6= j and

π′(j) =
C(j)π(j)

∑

i C(i)π(i)

• Otherwise, use C(j) =
∑

i C(i|j) in the above formula for π′(j)

• Disadvantage: Only uses the values of
∑

i C(i|j)
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RPART trees for credit card data:
equal priors (left), 5.5:1 costs (right)

currentbal
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Dissatisfied and satisfied nodes in red and green colors
P(Dissatisfied) beside node in left tree; Sample sizes beneath nodes
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Missing values: CART surrogate splits

Suppose X ∈ S is selected to split node t

1. For each Xi 6= X, find the split Xi ∈ Si that best predicts X ∈ S in terms of
maximizing the number, Mi, of observations going to the corresponding
subnodes

2. Order the Xi in terms of Mi to form a preferential set of surrogate splits
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CART surrogate splits: the details
1. Recall that p(j, t) = π(j)Nj(t)/Nj and p(t) =

∑

j p(j, t)

2. Let s∗ be the best split of t into tL and tR

3. For each k, let Sk be the set of all splits on xk

4. Let s ∈ Sk with subnodes t′L and t′R

5. Let Nj(LL) be the number of class j cases in tL ∩ t′L

6. Define p(tL ∩ t′L) =
∑

j π(j)Nj(LL)/Nj

• Let pLL(s
∗, s) be an estimate of P (both s∗ and s send a case left):

pLL(s
∗, s) = p(tL ∩ t′L)/p(t)

• Similarly, define pRR(s
∗, s) = p(tR ∩ t′R)/p(t)

• Estimate P (s predicts s∗) by p(s∗, s) = pLL(s
∗, s) + pRR(s

∗, s)

• s̃k is called a surrogate split on xk for s∗ if

p(s∗, s̃k) = max{p(s∗, s) : s ∈ Sk}
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Measure of association for surrogate splits

• Let pL and pR be the probabilities that s∗ sends a case to tL and tR, resp.

• The naive predictor sends every case to tL if pL ≥ pR and to tR otherwise

• Error probability of the naive predictor is min(pL, pR)

• Define the measure of association between s∗ and s as the relative
reduction in error:

λ(s∗, s) =
min(pL, pR)− [1− p(s∗, s)]

min(pL, pR)

• Rank the surrogate splits according to their λ(s∗, s̃k) values

• If λ(s∗, s̃k) ≤ 0, s̃k is not used as a surrogate split
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Uses of surrogate splits in CART

1. Enable tree construction when there are missing values in the learning
sample

2. Enable classification of new cases with missing values

3. Rank variables by their order of importance (not available in RPART)

4. Detect masking of variables
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CART classification tree construction when
there are missing values in the learning sample

Univariate splits: Find the best split s∗k on each xk using only cases
non-missing in xk. Select the split s∗ that maximizes
∆i(s, t) = i(t)− pLi(tL)− pRi(tR). Note: i(t) is constant for all splits but
pL, pR, i(tL), and i(tR) are computed from the non-missing values only.
This induces a selection bias (Therneau and Atkinson, 2013, pp.18–19).

Linear combination splits: Find the best split s∗ using only cases
non-missing in all variables

Passing a case with missing values through the split: Let s̃m be the
surrogate split based on each variable xm that is nonmissing for the case.
Let s̃m∗ be the surrogate split among them with the highest measure of
association with s∗. The split s̃m∗ is used on the case in place of s∗.
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CART classification of
a new case with missing values

• Let s∗ be the split at a node. Suppose the new case is missing some
variable(s) that are required by s∗.

• Among all nonmissing variables in the case, find the one whose surrogate
split s̃k (say) has the highest measure of association with s∗.

• Send the case down using s̃k. If no s̃k, send the case to the larger node.

Notes on RPART:

1. If a split variable has no missing training values, it has no surrogate splits.
In that case, new cases with missing values are sent to the larger node.

2. If a split is on a categorical variable X and a new case has an X value not
in the training sample, RPART will return an error.
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Importance ranking of predictor variables in CART

• The importance of variable xk is measured by

M(xk) =
∑

t∈T

∆i(s̃k, t)

• CART reports the standardized values

100M(xk)/max
m

M(xm)

• The more obvious alternative measure
∑

t∈T

∆i(s∗k, t)

is not used because it was found to be inferior
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Problems with CART classification

• Biased toward variables with more splits: A k-valued ordered variable has
(k − 1) splits; a k-valued categorical variable has (2k−1 − 1) splits.

• Biased toward predictors with more missing values: Split method uses only
proportions of nonmissing cases—it ignores the number of missing values.
A variable taking a unique value for exactly one case in each class and
missing on all other cases yields the largest decrease in impurity. Bias
exists for surrogate splits too.

• Computation: Impractical when there are three or more classes and
categorical variables with many values. Note: Because CART and RPART
encode each categorical variable split with a 32-bit binary integer, they do
not properly deal with categorical variables having more than 32 values.

• Prediction accuracy: Often no better than linear discriminant analysis.
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Predicting drive train for 1993 model year cars
(Lock, 1993)

• 93 cars and 25 variables (3 categorical, 2 binary, 20 ordinal)

• Drive train takes three values: 16 (17.2%) rear (rwd), 67 (72.0%) front
(fwd), and 10 (10.8%) four-wheel (4wd) drive
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Variable Description Variable Description

manuf Manufacturer (31 values) rev Engine revolutions/mile

type Type (small, sporty, com-
pact, midsize, large, van)

manual Manual transmission
available (yes, no)

minprice Minimum price (in $1,000) fuel Fuel tank (gallons)

midprice Midrange price (in $1,000) passngr Passenger capacity

maxprice Maximum price (in $1,000) length Length (inches)

citympg City miles per gallon whlbase Wheelbase (inches)

hwympg Highway miles per gallon width Width (inches)

airbag Air bags standard (0, 1, 2) uturn U-turn space (feet)

cylin Number of cylinders rseat Rear seat room (inches)

enginzs Engine size (liters) luggage Luggage capacity (cu. ft.)

hp Maximum horsepower weight Weight (pounds)

rpm Revolutions per minute domestic U.S./non U.S.
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RPART trees with (left) and without (right) manuf

manuf ∈ S1

fwd

hp
< 187.5

manuf
∈ S2

4wd

width
< 71.5

fwd rwd

rwd

fuel < 19.45

rpm
< 4700

rwd fwd

type
= van

4wd rwd

• S1 = {Acura, Audi, Buick, Cadillac, Chrysler, Dodge, Eagle, Geo, Honda, Hyundai,
Mitsubishi, Nissan, Oldsmobile, Pontiac, Saab, Saturn, Suzuki, Toyota, VW}

• S2 = {Mercedes-Benz, Plymouth, Subaru, Volvo}

• Sc

2 = {Chevrolet, Ford, Lexus, Lincoln, Mazda, Mercury}

• Trees took 821.6s (13.7m) and 0.023s , respectively, to construct
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FACT (Loh and Vanichsetakul, 1988)
Classification trees with two or more splits/node

An approximate, quick, and fairly accurate solution with J splits per node:

1. Replace missing values by means and modes at each node

2. Convert each categorical variable to a dummy vector and then transform to
largest discriminant variable (crimcoord)

3. For linear splits, use recursive linear discriminant analysis (LDA)

4. For univariate splits:

(a) Use one-way ANOVA to choose split variable or crimcoord

(b) Use LDA on selected variable or crimcoord to split node

(c) If split is on crimcoord, re-express it as an univariate split X ∈ S

5. Use weighted sums of ANOVA F-statistics as importance scores
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FACT method for categorical variable splits

1. Suppose X takes values in the set {a1, . . . , ac}

2. Define dummy vector D = (d1, . . . , dc−1) with di = I(X = ai)

3. Project the D-data onto the largest discriminant coordinate (crimcoord)
U =

∑

i biI(X = ai)

4. Search for a split of the form ‘U ≤ c’

5. Re-express the split as ‘X ∈ A’ with A = {ai : bi ≤ c}
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QUEST (Loh and Shih, 1997)
First algorithm with unbiased variable selection

1. If J > 2, use 2-means clustering of class means to form 2 superclasses

2. For univariate splits:

(a) Find p-value of 1-way ANOVA for each ordinal variable

(b) Find p-value of χ2 test of independence for each categorical variable

(c) Select variable with smallest p-value to split node

(d) Transform each categorical variable to a crimcoord

(e) Use QDA on selected variable or crimcoord to find split

3. For linear combination splits, use FACT method (LDA on ordinal and
crimcoord variables)

4. Use mean/mode imputation for missing values at each node

5. Use CART method to prune the tree
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CRUISE (Kim and Loh, 2001, 2003)
First unbiased algorithm with multiple splits

1. Find p-value of χ2 test of Y vs. each variable, with ordinal variables
discretized (replaces F test of QUEST)

2. Find p-value of χ2 test of Y vs. each pair of variables (adds ability to detect
local interactions)

3. Select the variable(s) with smallest p-value; if latter is from an interaction
test, select the variable with smaller marginal p-value

4. If selected variable is categorical, transform it to a crimcoord

5. Use Box-Cox transformations and LDA to split on selected variable

6. For linear combination splits, use LDA on all variables

7. Use different surrogate split methods for missing values

8. Optionally fit bivariate LDA models in nodes

9. Use CART method to prune the tree
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CRUISE ‘alternate variable’ missing value method

1. For univariate splits:

(a) Compute χ2 tests using non-missing cases in the respective variables

(b) For tree construction, impute missing values with class mean/mode

(c) For predicting new cases, use the next best split at the node to predict
the class and then impute with its mean/mode

2. For linear combination splits:

(a) For tree construction, impute with class mean/mode

(b) For predicting new cases:

i. Use best univariate split to predict class; then impute with estimated
class mean/mode

ii. If variable in best univariate split is also missing, impute with grand
mean/mode
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Prob. of surrogate/alternate variable selection

CART CRUISE

Percent missing X1 Percent missing X1

1 2 3 4 25 1 2 3 4 25

X1 .18 .12 .09 .05 .00 .19 .20 .18 .20 .18

X2 .25 .25 .26 .24 .30 .18 .22 .18 .19 .19

X3 .21 .23 .26 .27 .25 .22 .19 .20 .21 .19

X4 .20 .23 .20 .23 .23 .22 .19 .22 .22 .21

X5 .17 .17 .19 .21 .22 .20 .20 .22 .18 .23

• Y ∼ Bernoulli(1/2), X0 ∼ N(0.3Y, 1), and X1, . . . , X5 indep. N(0, 1)

• Variable X1 has missing values but others do not

• Estimates based on 1000 iterations and n = 200 in each iteration

• Simulation standard errors about 0.015
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GUIDE classification (Loh, 2009)
Improving on FACT, QUEST, and CRUISE

1. Use marginal and interaction χ2 contingency table tests (as in CRUISE)

2. Use two-deep search to choose variable if split is based on interaction test
(more powerful than CRUISE)

3. Allow linear splits on pairs of variables (new; useful for collinearity)

4. Use Bonferroni to control frequencies of interaction and linear splits
(corrects CRUISE’s propensity to split on interactions)

5. Allow kernel and nearest-neighbor node models (new; reduces tree size
and yields predicted probabilities, à la logistic regression)

6. Treat missing values as a separate category in split selection (new;
replaces imputation and surrogate splits)

7. Use CART method to prune the tree
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GUIDE marginal tests for ordinal X

1. Compute the sample mean x̄ and SD s of X in t.

2. Define k = 3 if N(t) < 20Jt; else k = 4. Define b = 2s
√
3/k.

3. Divide the range of X into k intervals with boundaries x̄− s
√
3 + bj;

j = 1, 2, . . . , k − 1. Add one “interval” for missing values, if any.

4. Form a table with class values as rows and intervals as columns.

5. Let ν be df of the table. Compute the chi-squared statistic χ2
ν for testing

independence.

6. Convert χ2
ν to a 1-df chi-squared (Wilson and Hilferty, 1931)

WM (X) = max



0,

[

7

9
+
√
ν

{

(

χ2
ν

ν

)1/3

− 1 +
2

9ν

}]3


 .

Note: For categorical X, use its values to form the columns of the table
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Chi-squared tests

Petal length (χ2

6 = 223.9) Petal width (χ2

6 = 226.0)

≤2.2 (2.2, 3.7] (3.7, 5.2] >5.2 ≤0.5 (0.5, 1.1] (1.1, 1.8] >1.8

Setosa 50 0 0 0 49 1 0 0

Versicol 0 7 43 0 0 10 40 0

Virginica 0 0 18 32 0 0 16 34

Sepal length (χ2

6 = 109.2) Sepal width (χ2

6 = 64.6)

≤5.1 (5.1, 5.8] (5.8, 6.5] >6.5 ≤2.6 (2.6, 3.0] (3.0, 3.4] >3.4

Setosa 36 14 0 0 1 7 21 21

Versicol 4 20 18 8 16 26 8 0

Virginica 1 5 22 22 7 26 16 3
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RPART (left) & GUIDE (right) trees for mammography
SYMP = agree

or strongly agree

6
12
95

PB
< 9.5

HIST
= no

DETC = not or
somewhat likely

6
11
29

BSE
= no

3
0

12

64
33
58

SYMP =
disagree or
s. disagree

11
2
0

7
7
5

7
9

35

SYMP = agree
or strongly agree

6
12
95

HIST
= no

DETC = not or
somewhat likely

7
14
37

BSE
= no

3
2

17
SYMP

PB

14
7

31

56
29
48

SYMP =
strongly

disagree

11
2
0

7
8
6

Within 1 year in green , more than one year in blue , never in red
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Chi-squared tests

SYMP (χ2
6 = 57.2; χ2

1 ≈ 47)

strongly strongly

ME agree agree disagree disagree

Never 33 62 85 54

1 year 2 4 43 55

> 1 yr 5 7 32 30

PB (χ2
6 = 31.3; χ2

1 ≈ 19)

ME ≤ 5.7 (5.7, 7.6] (7.6, 9.4] > 9.4

Never 33 68 65 68

1 year 31 43 22 8

> 1 yr 19 25 18 12
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DETC (χ2
4 = 24.1; χ2

1 ≈ 16)

not somewhat very

ME likely likely likely

Never 13 77 144

1 year 1 12 91

> 1 yr 4 16 54

BSE (χ2
2 = 15.6, χ2

1 ≈ 13) HIST (χ2
2 = 13.1, χ2

1 ≈ 10)

ME no yes no yes

Never 44 190 220 14

1 year 5 99 85 19

> 1 yr 5 69 63 11

W-Y Loh Classification and Regression Trees and Forests 119



1st split
SYMP = agree

or strongly agree

HIST
= no

DETC = not or
somewhat likely

BSE
= no

SYMP
PB

SYMP =
strongly

disagree

s.agree agree s.disagree

SYMP
0

20
40

60
80
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2nd split
SYMP = agree

or strongly agree

HIST
= no

DETC = not or
somewhat likely

BSE
= no

SYMP
PB

SYMP =
strongly

disagree

no yes

HIST
0

20
40

60
80

10
0

12
0
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3rd split
SYMP = agree

or strongly agree

HIST
= no

DETC = not or
somewhat likely

BSE
= no

SYMP
PB

SYMP =
strongly

disagree

not likely somewhat very likely

DETC
0

20
40

60
80
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4th split
SYMP = agree

or strongly agree

HIST
= no

DETC = not or
somewhat likely

BSE
= no

SYMP
PB

SYMP =
strongly

disagree

no yes

BSE

0
20

40
60

S
Y

M
P
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5th split
SYMP = agree

or strongly agree

HIST
= no

DETC = not or
somewhat likely

BSE
= no

SYMP
PB

SYMP =
strongly

disagree

6 8 10 12

3.
0

3.
2

3.
4

3.
6

3.
8

4.
0

PB
S

Y
M

P

1

2

3

3
13 3

3

1

33
2

2

3
3 2 2
1

3

13

2
13

3

3

3

2

3

311
21

3

1
3

1

1 3

2 2
3

2
2

3

1 31
21

3 113 1

3
3

1

1
11

1

112 1

1
3

3

1
3

21

2 3

3

3

1
3 3

3

1

31

1

13
1

2

3

1

33

1

3 1
3

3
3

2 1 2

3
3

31

1
3

3

13

32

3

3

11
2

1

3

33

1
3

3

3 3

2
3

32

1

2
2
3

11
2

3

1

3

1

3

11

1

1 2

3
13

1

2

3

31

3

12

1

3

2
2 31
21

3 1

1

2 2
3

12

113 1

1

2

31 3

W-Y Loh Classification and Regression Trees and Forests 124



6th split
SYMP = agree

or strongly agree

HIST
= no

DETC = not or
somewhat likely

BSE
= no

SYMP
PB

SYMP =
strongly

disagree

disagree s.disagree

SYMP

0
2

4
6

8
10
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Two-class problem with interaction
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GUIDE split variable selection:
interaction tests for X1, X2

1. Divide the (X1, X2)-space into sets

Bk,m = {(x1, x2) : x1 ∈ A1k, x2 ∈ A2m}, k,m = 1, 2, . . .

where A1k and A2m are the respective intervals or categories

2. Form a contingency table with class labels as rows and {Bk,m} as columns

3. Compute chi-squared statistic and use Wilson-Hilferty approximation to
convert it to a 1-df chi-squared value WI(X1, X2)
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SYMP-BSE interaction test

SYMP

strongly strongly

agree agree disagree disagree

BSE BSE BSE BSE

ME no yes no yes no yes no yes

0 6 27 15 47 15 70 8 46

1 1 1 0 4 0 43 4 51

2 1 4 0 7 2 30 2 28

χ2
14 = 72, χ2

1 = 45, p = 9× 10−10
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GUIDE split variable selection

1. Let K be the number of non-constant predictor variables in node t.

2. Let χ2
ν,α be the upper-α quantile of the chi-squared distribution with ν df

and define

α =
0.05

K
, β =

0.1

K(K − 1)

3. Find WM (Xi) for each Xi.

4. (a) If maxi WM (Xi) > χ2
1,α, select the variable with the largest WM (Xi).

(b) Otherwise, find WI(Xi, Xj) for each pair of predictor variables.

i. If maxi6=j WI(Xi, Xj) > χ2
1,β , select pair with largest WI(Xi, Xj).

ii. Otherwise, select variable with largest WM (Xi).
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Split set selection for ordinal X

Search all splits of the form X ≤ c to minimize misclassification cost

Split set selection for categorical X

Suppose X takes distinct values {a1, a2, . . . , an} in node t

1. If J = 2 or n ≤ 11, search all subsets S to find tL = {X ∈ S}

2. If J ≤ 11 and n > 20, let class ji minimize misclassification cost in
t ∩ {X = ai}

(a) Define X ′ =
∑

i ji I(X = ai) and search for the split based on X ′ that
minimizes the decrease in impurity

(b) Express the split as tL = {X ∈ S}

3. Otherwise, use linear discriminant analysis on the dummy vectors
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Bivariate linear discriminant split

Let X1 and X2 be two s variables in node t

1. For the jth class and each Xi, find node class mean x̄i,j and SD si,j

2. Find trimmed set Sj of class j samples in t such that |Xi − x̄i,j | ≤ 2.5si,j

3. Find the larger linear discrim. coord. Z from observations in S1 ∪ . . . ∪ SJ

4. Project the data in t onto the Z-axis

5. Compute the Wilson-Hilferty 1-df chi-squared WL(X1, X2) from the Z values
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Summary of GUIDE classification split selection

Let K be the number of non-constant predictor variables and let K1 (< K) be
the number that are ordinal. Define

α = 0.05/K, β = 0.1/{K(K − 1)}, γ = 0.1/{K1(K1 − 1)}

1. Split on the Xi with the largest marginal χ2 , if it is significant at level α

2. Otherwise,

(a) If (Xi, Xj) has largest interaction χ2 and is significant at level β,
use a two-deep search to find the best split on Xi or Xj

(b) Otherwise, compute linear discriminant χ2 for all ordinal pairs

i. Use most significant linear split if it is significant at level γ
ii. Otherwise, choose the Xi with largest marginal χ2
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Fish classification

• 159 fish caught from the same lake near Tampere, Finland

• The fish are from 7 species: (1) 35 Bream, (2) 11 Parkki, (3) 56 Perch,
(4) 17 Pike, (5) 20 Roach, (6) 14 Smelt, (7) 6 Whitefish

Predictor Definition

Weight Weight of the fish (in grams); one missing value

Length1 Length from the nose to the beginning of the tail (in cm)

Length2 Length from the nose to the notch of the tail (in cm)

Length3 Length from the nose to the end of the tail (in cm)

Height Maximal height as % of Length3

Width Maximal width as % of Length3

Sex female, male, unknown
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Bream (left) and Parkki (right)

Perch (left) and Whitefish (right)
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Pike

Roach (left) and Smelt (right)
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Boxplots of continuous variables
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Sex by species

Species

Sex Bream Parkki Perch Pike Roach Smelt White Total

female 3 4 25 5 8 9 1 55

male 6 3 2 1 0 5 0 17

unknown 26 4 29 11 12 0 5 87

Total 35 11 56 17 20 14 6 159
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Linear discriminant analysis
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Plot of Length2 vs. Length3
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RPART (26 errors) and GUIDE (14 errors)
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Fish data with linear priority splits (7 errors)
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Importance ranking of variables

Importance score of Xi is

IMP(i) =
∑

t

n(t)WM (t, i)

• WM (t, i) is the Wilson-Hilferty marginal chi-squared value of Xi at t

• n(t) is the training sample size at node t

• sum is over all intermediate nodes t

If Xi is constant at t, set WM (t, i) = 1
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Null distribution of importance scores

• If Xi is independent of Y , then

– IMP(i) is a linear combination of independent chi-squared variables

– Use Satterthwaite (1946) method to approximate distribution of IMP(i)

• Cut-off score for separating important from unimportant variables is the
upper-α quantile of the corresponding chi-squared distribution, where

α = k0/K

and k0 is a user-specified expected number of unimportant variables
erroneously identified as important (default value of k0 is 2 for classification
and 1 for regression)
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Importance scores for
iris (left) and mammography (right) data
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Importance scores for fish data
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A hard three-class problem with 8 predictors
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Kernel density estimation

1. Let s and r be the SD and inter-quartile range of x1, x2, . . . , xn

2. The kernel density estimate is

f̂(x) = (nh)−1
n
∑

i=1

φ{(x− xi)/h}

where φ is the standard normal density function and h is the bandwidth

h =







2.5min(s, 0.7413r)n−1/5, if r > 0

2.5sn−1/5, otherwise
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Kernel node models

Let Y denote the class variable

1. If the split is due to a marginal chi-squared, let X be the selected variable
and fit a kernel density estimate to X for each class in t

2. If the split is due to an interaction chi-squared, let X1 and X2 be the
selected variables. Fit a bivariate density estimate to (X1, X2) for each
class in t:

(a) If X1 and X2 are categorical, use their sample class joint density

(b) If X1 is categorical and X2 is ordinal, for each combination of (X1, Y )

values in t, let h(Y,X1) be the bandwidth and h̄(Y ) their average. For
each value of X1 and Y , find a kernel density estimate for X2 using
h̄(Y ) as bandwidth.

(c) If X1, X2 are ordinal, fit a bivariate Gaussian kernel density to each
class with correlation equal to the class sample correlation

The predicted class is the one with the largest estimated density
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Nearest-neighbor node models

Given n, define k = max(3, ⌈logn⌉)

1. If the split is due to a marginal chi-squared, let X be the selected variable

(a) If X is categorical, Ŷ is the highest probability class among the
observations in t with the same X value as the one to be classified

(b) If X is ordinal, use k-NN classifier based on X with n = N(t)

2. If the split is due to an interaction chi-squared, let X1 and X2 be selected

(a) If both are categorical, Ŷ is the highest probability class among the
cases in t with the same (X1, X2) values as the one to be classified

(b) If X1 is categorical and X2 is ordinal, Ŷ is given by the k-NN classifier
based on X2 applied to the set S of observations in t that have the
same X1 value as the one to be classified, with n being the size of S

(c) If both variables are ordinal, use the bivariate k-NN classifier based on
(X1, X2) with the Mahalanobis distance and n = N(t)
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GUIDE treatment of missing values

1. Cases with missing Y -values are not used for tree construction

2. For categorical X, missing values are assigned a separate “missing”
category

3. For ordinal X:

(a) Cases with missing values are assigned to a “missing” interval for
selection of split variables

(b) A split on missingness is always considered for split point selection

(c) Two splits are evaluated for each split on a non-missing value: one for
each way of sending the missing values
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Annealing data: lots of missing values

Variable C M Variable C M Variable C M

class 5 surfacequality 4 217 exptl 1 796

family 2 687 enamelability 2 785 ferro 1 772

steel 7 70 bc 1 797 bright 3 793

carbon o bf 1 680 lustre 1 753

hardness o bt 1 736 shape 2

temperrolling 1 675 bwme 2 609 width o

condition 2 271 bl 1 662 len o

formability 4 283 chrom 1 775 oil 2 740

strength o phos 1 791 bore 3

nonageing 1 703 cbond 1 730 packing 2 789

surfacefinish 1 790 thick o

• 798 observations; 6 ordinal and 25 categorical variables

• Cols. C and M give numbers of categories and missing values (o = ordinal)
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RPART tree for annealing data
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RPART (left, with missing as separate category) and
GUIDE (right) trees for annealing data
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C4.5 (Quinlan, 1993)

• Univariate splits only

• Binary splits on ordered predictors via exhaustive search; splits at data
values

• Multiway splits on categorical predictors
— one subnode for each categorical value (with option to merge
categories)

• Pruning based on statistical heuristics; no cross-validation

• Missing values handled by case weights

• Priors and misclassification costs cannot be specified

• Cross-validation error estimate available
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C4.5: Gain ratio split criterion

• Define the “info” at node t as the entropy

info(t) = −
∑

j

p(j|t) log2{p(j|t)}

• Suppose t is split into subnodes t1, . . . , tn by predictor X. Define

infoX(t) =
∑

i

info(ti)
N(ti)

N(t)

gain(X) = info(t)− infoX(t)

split info(X) = −
∑

i

N(ti)

N(t)
log2

N(ti)

N(t)

gain ratio(X) =
gain(X)

split info(X)

• Split that yields the highest gain ratio is selected
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C4.5: Case weights for missing values

• Initialize the weight for each case to be 1 at the root node

• Suppose t is split by X into subnodes t1, . . . , tn

• Let W (ti) be the sum of the weights of cases with known X that land in ti

and let W (t) =
∑

i W (ti)

• If a case in learning sample with weight w is missing X, send it down each
subnode with weight in ti equal to

wi =
W (ti)

W (t)
w

• Do the same for each test case. If a test case ends up in more than 1
terminal node, assign it the class with largest total weight
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Generalization when there are missing values

• Let pw(j|t) = sum of class j weights in t
total weight in t

and define:

info(t) = −
∑

j

pw(j|t) log2{pw(j|t)}

infoX(t) =
∑

i

info(ti)
W (ti)

W (t)

• Let f be the fraction of learning cases in t that are nonmissing X and
define

gain(X) = f × {info(t)− infoX(t)}

split info(X) = −
∑

i

W (ti)

W (t)
log2

W (ti)

W (t)
− (1− f) log2(1− f)

gain ratio(X) =
gain(X)

split info(X)

W-Y Loh Classification and Regression Trees and Forests 161



C4.5: Pruning

• Suppose NE(t) learning cases are misclassified in node t

• C4.5 estimates the true misclassification probability with the upper 75%
confidence bound p where

NE(t)
∑

i=0

N(t)!

i! (N(t)− i)!
pi(1− p)N(t)−i = 0.25

• Let ν1 = 2(N(t)−NE(t) + 1), ν2 = 2NE(t) and Fν1,ν2;0.75 be the 75%
percentile of the Fν1,ν2

dist. Then (Owen 1962, p. 273)

p = 1− NE(t)

NE(t) + (N(t)−NE(t) + 1)Fν1,ν2;0.75

• The misclassification cost at t is estimated by N(t)p

• A branch is pruned if its estimated cost is larger than its root node
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RPART, GUIDE and C4.5 trees for iris data
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RPART (left) and J48 (right) trees for peptide data
pos5

=F,M,Y

169
10/169

141
22/141

pos1
=T

pos5
=D,E,G,I,
P,R,S,V

2/15

=else

3/27

=S,Y

18/167

=else

6/101

Red denotes binder, yellow denotes non-binder

Numbers beneath nodes are misclassified/sample size
RPART and J48 misclassify 32 and 29 cases, respectively
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J48 (left) and GUIDE (right) trees for fish data
height ≤ 31.6

height
≤ 18.9

weight
≤ 100

smelt
0/14

pike
0/17

width
≤ 14.4

height
≤ 24.8

perch
0/3

roach
1/10

perch
17/69

length3
≤ 29.4

parkki
0/11

bream
0/35

height ≤∗ 33.9

length3
≤ 15.6

smelt
2/15

length2
≤∗ 44.5

length3
≤∗ 30.7

length1
length2

perch
6/16

length1
length3

roach
0/15

perch
1/5

height
≤ 21.0

pike
0/9

perch
5/25

pike
0/8

length3
≤∗ 29.5

parkki
0/11

bream
0/35

W-Y Loh Classification and Regression Trees and Forests 165



CHAID (Kass, 1980)

• Extends AID to categorical and ordered dependent variables

• Uses a direct stopping rule; no pruning

• Uses significance tests to select split variables and split points

• Uses Bonferroni method to control for multiple testing

• Can split each node into more than two subnodes
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CHAID predictor types

Monotonic: Ordered or ordinal categorical

Free: Nominal categorical

Floating: Ordinal categorical with exception of a single category that either
does not belong to the rest or whose position on the ordinal scale is
unknown, e.g., “missing” category

Note: A variable is treated as floating only if it has some missing values in the
learning sample. Otherwise it is treated as either monotonic or free. Therefore
if a learning sample has no missing values, the tree may not be able to classify
future cases that have missing values.
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CHAID algorithm
Let α1 > α2 and α3 be three given significance levels.

Prepare predictors. Discretize values of each ordinal X into 10 interval
groups. For categorical X, the groups are the categories.

Merge categories. Do for each predictor variable:

1. For classification, take each pair of categories and compute the p-value
of the chi-squared test of independence between categories and class

2. For regression, take each pair of categories and compute the p-value of
the two-sample two-sided t-test, using the categories as groups

3. Find least significant pair of categories. If p > α1, merge the two
categories and repeat this step.

4. For each compound category containing three or more of the original
categories, find the most significant binary split.
If p < α2, split the compound category and return to Step 3.

Select split. Compute Bonferroni-adjusted p-value for each predictor. If
smallest p < α3, split the node; otherwise stop.
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CHAID Bonferroni multipliers

Suppose a predictor with c original categories is merged into r categories. The
Bonferroni adjustments to the p-values are:

Monotonic: B =

(

c− 1

r − 1

)

Free: B =

r−1
∑

i=0

(−1)i
(r − i)c

i! (r − i)!

Floating: B =

(

c− 2

r − 2

)

+ r

(

c− 2

r − 1

)
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s = Setosa, c = Versicolour, v = Virginica
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CHAID tree for fish data (45 misclassified)

height

(0,16]
pike
3/16

(16,18.9]
smelt
4/15

(18.9,30.4]
perch
25/80

>30.4
bream
13/48
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CTREE (Hothorn et al., 2006)

1. Use conditional permutation tests to select variables

• Requires computation of p-values, either by exact calculation, Monte
Carlo simulation, or asymptotic approximation

2. Use stopping rules controlled by Bonferroni adjustments; no pruning

3. Surrogate splits are used to deal with missing values

4. Permutation tests (with subnode label as response variable) are used to
find the surrogate variables
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CTREE tree for iris data
petallen
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GUIDE (14 errors) and CTREE (28 errors) for fish data

height ≤∗ 33.9

length3
≤ 15.6

smelt
2/15

length2
≤∗ 44.5

length3
≤∗ 30.7

length1
length2

perch
6/36

length1
length3

roach
0/15

perch
1/5

height
≤ 21.0

pike
0/9

perch
5/25

pike
0/8

length3
≤∗ 29.5

parkki
0/11

bream
0/35

height ≤ 31.6

height
≤ 16.2

pike
4/18

height
≤ 18.9

smelt
3/13

height
≤ 28.3

width
≤ 14.3

roach
4/13

perch
10/55

perch
7/14

length3
≤ 29

parkki
0/11

bream
0/35
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J48 (16 errors) for fish data

height ≤ 31.6

height ≤ 18.9

weight
≤ 100

smelt
0/14

pike
0/17

width ≤ 14.3

height
≤ 25.4

perch
2/5

roach
1/8

height ≤ 27.7

perch
6/45

width ≤ 16.6

length2
≤ 25

perch
3/7

whitefish
3/8

perch
1/9

length3
≤ 29.4

parkki
0/11

bream
0/35
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Comparisons on 46 datasets (Loh, 2009)

C45 C4.5

C2d CRUISE with interaction detection and simple node models

C2v CRUISE with interaction detection and linear discriminant node models

Qu QUEST with univariate splits

Ql QUEST with linear splits

Rp RPART

Ct CTree

S GUIDE with simple node models

K GUIDE with kernel node models

N GUIDE with nearest-neighbor node models

W-Y Loh Classification and Regression Trees and Forests 176



Error rates by dataset
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Number of leaf nodes by dataset
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Geometric means over 46 datasets
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Geometric means relative to best for dataset
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Tree ensembles

A tree ensemble uses the majority vote from a collection of tree models to
predict the class of an observation

• Bagging (Breiman 1996) creates the ensemble by using bootstrap samples
of the training data to construct the trees

• Random Forest (RF) employs 500 CART trees, but chooses a random
subset of

√
K variables to split each node

• Bagged GUIDE (BG) is an ensemble of 100 pruned GUIDE trees, each
constructed using the S method from a bootstrap sample

• GUIDE Forest (GF) is an ensemble of 500 unpruned GUIDE trees
constructed by the S method without interaction and linear splits. As in RF,
GF uses a random subset of

√
K variables to split each node
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Mean error rates over 43 datasets (Loh, 2009)

Algorithm S K BG GF RF

Error rate 0.228 0.231 0.212 0.212 0.206

Notes:

• Although the differences in mean error rates are not statistically significant,
ensemble methods tend to have 10% or higher higher prediction accuracy
than single-tree methods

• RF is inapplicable if categorical variables have more than 32 levels
— datasets adu and lak have this characteristic

• RF gives an error if the test sample contains class values that do not
appear in the training sample
— dataset eco has this characteristic
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Computational times (sec.) of GUIDE

Data #Obs #Cat #Ord Linux Win7

Golub 72 0 3,571 2.5 2.8

Adult 32,561 7 6 6.6 7.7

Coil 5,822 2 83 31 36

Arcene 200 0 10,000 71 83

Cover 495,141 2 10 92 106

Gene 1,504 288 17 289 307

Gisette 6,000 0 5,000 403 459

Birthwt 4,268,495 11 12 1933 2198

Computer: 16GB 3.3GHz i3-2120; Compiler: Intel Fortran
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CART regression tree algorithm

• Fit a constant, the node mean ȳ, at each node

• Use sum of squared deviations
∑

i(yi − ȳ)2 as node impurity

• Keep rest of the CART algorithm unchanged
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Piecewise-constant regression model
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Piecewise-linear regression model
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GUIDE regression tree models

• Piecewise constant, multiple linear, stepwise linear, best simple
polynomial, and best simple ANCOVA

• Least squares, least median of squares, quantile, Poisson, proportional
hazards (with censoring), multi-response, and longitudinal data

• Predictor variables can be used for model fitting only, splitting only, or both

• Unbiased variable selection (bootstrap bias correction for linear models)

• Trees pruned with CART method

Ref: Chaudhuri et al. (1994, 1995); Chaudhuri and Loh (2002); Loh (2002,
2006, 2008b); Loh and Zheng (2013)
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Variable roles in GUIDE description files
D: Dependent variable (least-squares, least median of squares,

quantile, Poisson, multi-response and longitudinal) or death
indicator (proportional hazards)

N: Numerically ordered variable used for fitting and splitting

F: Numerically ordered variable used for fitting only

S: Numerically ordered variable used for splitting only

C: Categorical variable used for splitting only

B: Categorical variable for both for splitting and fitting via dummies

R: Treatment categorical variable for fitting only

W: Weight variable for weighted least squares and case exclusion

T: Survival or observation time (prop. hazards or longitudinal data)

Z: Offset variable (Poisson regression)

X: Excluded variable
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GUIDE variable selection for regression

1. Fit a model to the data in the node and obtain the residuals

2. Define a “class” variable that equals +1 if residual is positive, -1 otherwise

3. Follow GUIDE classification procedure to select a variable to split node
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Split variable selection based on residual patterns
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Pos. res. 18 49 68 27
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χ2
3 = 66.7, p = 2× 10−14

Pos. res. 37 41 45 39

Neg. res. 34 28 39 37

χ2
3 = 1.14, p = 0.77
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Selection bias: Boston housing data

• Categorical variable TOWN has 92 values

• If TOWN is included, RPART has a high chance to select it

– actually, RPART can search over at most 32 categorical values

– it is unclear how it deals with TOWN

• GUIDE is much less influenced by the presence of TOWN
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RPART tree for MEDV without TOWN
RM

< 6.84

LSTAT
≥ 14.4

CRIM
≥ 6.99

73
11.8

101
17.1

DIS ≥ 1.55

RM
< 6.54

193
21.7

45
27.3

7
38.0

RM < 7.44

LSTAT
≥ 11.3

7
22.6

50
32.6

30
45.1

Predicted MEDV values beneath terminal nodes; sample sizes on left
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RPART tree for MEDV with TOWN

TOWN

LSTAT
≥ 14.4

TOWN

93
12.1

83
18.0

LSTAT ≥ 4.63

LSTAT
≥ 7.77

150
21.0

65
24.5

9
40.1

RM < 7.44

CRIM
< 4.13

RM
< 6.727

27
26.9

48
33.0

7
42.9

24
44.8

Predicted MEDV values beneath terminal nodes; sample sizes on left
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GUIDE tree for MEDV without TOWN
LSTAT
≤ 9.73

RM
≤∗ 7.44

RM
≤∗ 6.64

RAD
≤∗ 7

102
23.6

11
32.2

RM
≤ 6.94

29
29.4

40
33.5

30
45.1

LSTAT
≤∗ 16.09

150
20.3

NOX
≤ 0.6

49
17.6

CRIM
≤∗ 10.5

59
14.2

36
9.6

Predicted MEDV values beneath terminal nodes; sample sizes on left

W-Y Loh Classification and Regression Trees and Forests 195



GUIDE tree for MEDV with TOWN
LSTAT
≤ 9.73

RM
≤∗ 7.44

RM
≤∗ 6.64

CRIM
≤∗ .1404

RM
≤ 6.12

23
20.7

56
24.7

CRIM
≤∗ 0.628

23
24.5

11
31.2

RM
≤ 6.94

29
29.4

40
33.5

30
45.1

LSTAT
≤∗ 16.09

150
20.3

NOX
≤ 0.6

49
17.6

CRIM
≤∗ 10.5

59
14.2

36
9.6

Predicted MEDV values beneath terminal nodes; sample sizes on left
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Converting categorical variables to
dummy variables is undesirable

1. Transform each X into a 0-1 dummy vector (U1, . . . , Uc)

2. Use U1, . . . , Uc as predictors in model

3. Resulting ANCOVA model

(a) uses up many degrees of freedom if c is large

(b) forces all non-categorical predictors to have constant slope coefficients
for all values of categorical predictors

4. Splits of the form Ui = 0 vs. Ui = 1 translates to unappealing “singleton”
splits of the form X = a vs. X 6= a

GUIDE treatment of categorical predictors
• Categorical predictors can be used for splitting and/or model fitting;

ANCOVA models tend to yield shorter trees

• Splits are on subsets of categories
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Naive variable selection for piecewise-linear model

1. Fit a linear model to the n and f-variables in the node and obtain residuals

2. For each s and n-variable X:

(a) Divide cases into three or four groups

(b) Cross-tab data with signs of residuals as rows and groups as columns

(c) Compute a Wilson-Hilferty χ2
1-value

3. Do the same for each c-variable, using categories to form columns of table

4. Select the variable with the largest χ2
1 value

Selection bias in linear fit

• Residuals uncorrelated with n-predictors, but not with c and s-variables

• χ2 tests for n-variables are less significant than those for c and s-variables
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Simulation experiment

Predictors Independent Weakly dependent Strongly dependent

X1 T T T

X2 W W W

X3 Z T +W + Z W + 0.1Z

X4 C5 ⌊UC10/2⌋+ 1 ⌊UC10/2⌋+ 1

X5 C10 C10 C10

• Ck is k-category taking values {1, 2, . . . , k} with equal probabilities

• T is non-categorical uniformly distributed variable on {±1,±3}

• U is uniform U(0, 1); W is exponential with mean 1; Z is N(0, 1)

• Ck, U , T , W , and Z are mutually independent

• ⌊.⌋ is the greatest integer function
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Selection probabilities for piecewise linear model
when Y is independent of predictors

Independent Xi Weakly depend. Xi Strongly depend. Xi

Xi Type Uncorr. Corr. Uncorr. Corr. Uncorr. Corr.

X1 n 0 .202 0 .181 0 .197

X2 n 0 .217 0 .228 0 .214

X3 s .352 .203 .288 .134 .313 .121

X4 c .307 .178 .360 .238 .360 .256

X5 c .341 .200 .352 .219 .327 .212
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Bootstrap bias correction: basic idea

• Since chi-squared values of n-variables are stochastically smaller, scale
them with a multiple γ > 1

• Estimate γ with the bootstrap: randomly permute the Y values and find the
γ that yields equal selection probabilities
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GUIDE regression in a nutshell

1. Fit a model to the node and use residual signs to form two classes

2. Apply GUIDE classification to select a variable to split node

3. If selected variable is due to a marginal test:

X is n or s: Search all splits of form X ≤ c to minimize sum of deviances

X is b or c:

(a) If 9 or fewer unique X values, search exhaustively
(b) Otherwise apply GUIDE classification to the two-class problem

4. If selected variables are due to an interaction test, use GUIDE classification
to select variable and split set

See p.132 for Steps 3(b) and 4.
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GUIDE approach to missing values for regression

1. A “missing” category is created for each categorical variable for split
selection

2. For each split on an ordered variable, missing values are sent to the left or
right node, depending on which one reduces node impurity more. The split
that sends all missing values to one node and all nonmissing to the other is
also considered.

3. For piecewise constant models, only cases complete in the d, w, t, and z
variables are used for split selection and model fitting

4. For all other models, fitting is restricted to cases complete in the n and f
variables; the node Y mean is fitted to the other cases

5. Bootstrap bias-correction is performed for multiple linear models only
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Quantile regression example:
Which colleges are the most expensive?

• Data on 1134 U.S. colleges and universities for year 1995 from U. S. News
& World Report (http://lib.stat.cmu.edu/)

• Response variable is out-of-state tuition

• Goal: Identify the top 10% most expensive colleges, after allowing for
various explanatory variables
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Explanatory variables for college data

Name Description #Missing

PubPriv Public or private college (binary) 0

CombSAT Average Combined SAT score 471

AppsRec Number of applications received 9

AppsAcc Number of applicants accepted 9

NewEnrol Number of new students enrolled 5

Top10 Percent new students from top 10% of H.S. class 183

Top25 Percent new students from top 25% of H.S. class 155

FUgrad Number of fulltime undergraduates 3
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Explanatory variables for college data (cont’d)

Name Description #Missing

RnBcost Room and board costs 57

PFacPhD Percent of faculty with Ph.D.’s 29

StudFac Student/faculty ratio 2

InstExp Instructional expenditure per student 24

GradRate Graduation rate 69

Type College type (I: doctoral, IIA: master, or IIB: bachelor) 0

FullPSal Average salary—full professors (in $100’s) 61

NFullProf Number of full professors 0

513 cases with complete observations
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GUIDE simple linear 90th-percentile tree
for out-of-state tuition

PubPriv = Private

NewEnrol ≤∗ 405

PFacPhD
≤ 72

284 8

11550
+InstExp

153 9

16695
+FullPSal

RnBcost
≤ 4574

FUgrad
≤∗ 2620

61 20

16975
+InstExp

32 21

14350
+Top25

StudFac
≤∗ 12.80

87 22

19700
-RnBcost

70 23

15947
+InstExp

PFacPhD ≤ 76

RnBcost
≤ 2759

73 12

5550
+InstExp

166 13

7799
+FullPSal

195 7

10096
+FullPSal
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Subgroup identification
for differential treatment effects:

an approach to personalized medicine

• A piecewise linear model is required for detection of treatment effects

• Piecewise constant models are ineffective because splitting on the
treatment variable is useless

• Solution: use the treatment variable as the only linear predictor (after
converting to dummy vector)

• Use all other variables for splitting

• Ref: Loh et al. (2013)
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Example: primary biliary cirrhosis (PBC) of the liver
(Fleming and Harrington, 2005)

• Randomized placebo controlled trial for the drug D-penicillamine

• 312 PBC patients, referred to Mayo Clinic during 1974–84

• Response variable is number of days between registration and the earlier of
death, liver transplantation, or study analysis time in July, 1986
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1 age days

2 sex 0=male, 1=female

3 presence of ascites 0=no 1=yes

4 presence of hepatomegaly 0=no 1=yes

5 presence of spiders 0=no 1=yes

0=no edema and no diuretic therapy for edema

6 presence of edema 0.5 = edema present w/o diuretics, or edema resolved by diuretics

1 = edema despite diuretic therapy

7 serum bilirubin mg/dl

8 serum cholesterol mg/dl

9 albumin gm/dl

10 urine copper ug/day

11 alkaline phosphatase U/liter

12 SGOT U/ml

13 triglicerides amg/dl

14 platelets per cubic ml / 1000

15 prothrombin time in seconds

16 histologic stage of disease 1, 2, 3, 4, 5
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GUIDE model for differential treatment effects
edema

= 1

19.18

6.43
20

hepatomegaly
= 0

0.47
0.39

147

bilirubin
≤∗ 2.10

0.69
0.57

73 72

3.84
3.70

• Relative risks of death (drug, upper; placebo, lower) on left of nodes

• Sample sizes beneath nodes
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Longitudinal data (Loh and Zheng, 2013)

1. Treat each data point as a curve (trajectory)

2. Fit a mean curve (lowess or smoothing spline) to data in the node

3. Group trajectories into classes according to shapes relative to mean curve

4. For each X variable, find p-value of chi-squared test of class vs. X

5. Select X with smallest p-value to split node

6. For each split point, fit a mean curve to each child node

7. Select the split that minimizes sum of squared deviations (normalized if
desired) of trajectories from mean curves in two child nodes

8. Stop splitting when sample size in node is too small

9. Prune the tree using cross-validation
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Example: CD4 counts from an AIDS study

• Randomized, double-blind, study of 1309 AIDS patients with advanced
immune suppression (Fitzmaurice et al., 2004)

• Four dual or triple combinations of HIV-1 reverse transcriptase inhibitors:

1: 600mg zidovudine alternating monthly with 400mg didanosine (dual
therapy)

2: 600mg zidovudine + 2.25mg zalcitabine (dual therapy)

3: 600mg zidovudine + 400mg didanosine (dual therapy)

4: 600mg zidovudine + 400mg didanosine + 400mg nevirapine (triple
therapy)

• CD4 counts at baseline and at 8-week intervals during 40-week follow-up

• Observations during follow-up varied from 1–9, with median of 4 due to:
(i) mistiming and (ii) missingness from skipped visits and dropout

• Response variable is log(CD4 counts + 1); covariates are age and gender
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Fitzmaurice et al. (2004) linear mixed effects model

E(Yij | bi) = β1 + β2tij + β3(tij − 16)+ + β4I(Trt = 4)× tij

+ β5I(Trt = 4)× (tij − 16)+ + b1i + b2itij + b3i(tij − 16)+

1. Yij = log(CD4ij + 1) for subject i at time tij

2. All fixed effects significant (p < 0.005)

3. Significant difference in rate of change from baseline to week 16 between
dual and triple therapies

4. No sig. difference in rate of change from week 16 to 40 between groups

5. Substantial within and between-patient variability (large random effects)
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GUIDE regression tree for AIDS data

Treatment = 4
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MOB: Model-based recursive partitioning
(Zeileis et al., 2008)

1. Fit a model once to data in the current node.

2. Assess whether parameter estimates are stable with respect to each split
variable, using Bonferroni-adjusted p-values.

3. If minimum p-value is sufficiently small, select the most unstable variable
and split the node into two. Otherwise stop.
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MOB for MEDV without TOWN (crashes with TOWN)
RM

≤ 6.83

LSTAT
≤ 14.4

LSTAT
≤ 5.33

26
29.9

LSTAT
≤ 9.69

DIS ≤ 4.44

43
26.39

RM
≤ 6.14

24
20.94

41
23.64

111
20.69

CRIM
≤ 6.96

NOX
≤ 0.524

24
19.81

LSTAT
≤ 18.76

53
17.17

24
14.04

NOX
≤ 0.67

22
14.23

LSTAT
≤ 20.31

20
13.22

31
9.05

RM
≤ 7.42

LSTAT
≤ 5.49

26
34.55

31
28.65

30
45.1

Predicted MEDV values beneath terminal nodes; sample sizes on left
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M5 regression tree (Quinlan, 1992)
1. Grow large tree: Grow a piecewise-constant tree using as reduction in

error
m

n

{

SD(t)− nLSD(tL) + nRSD(tR)

n

}

where node t (with sample size n) is split into tL and tR (with sample sizes
nL, nR), SD(t) is the sample standard deviation of the cases in t, and m is
the number of non-missing values in the split variable

2. Fit linear models: After the tree is grown, fit a multiple linear regression
model to the cases in each node t, using as regressors only the variables
that are selected for splitting in subtree Tt

3. Estimate error: Estimate the prediction error of each node t with

Err(t) =
∑

i |yi − ŷi|
n

× n+ ν

n− ν

where ν is the number of fitted parameters and n is the sample size in t

4. Simplify linear models: Use backward stepwise regression to reduce the
number of regressors in each node
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5. Prune tree: Starting from the bottom, remove branch Tt if Err(Tt) ≥ Err(t)

6. Smooth predicted values: Let t∗ be the parent node of t. Given a case,
let its predicted value at t and t∗ be ŷ and ŷ∗. The smoothed predicted
value is

ŷ∗∗ = (nŷ + kŷ∗)/(n+ k)

where k is a constant (default value 15). Repeat all the way up to root
node.
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Categorical predictors in M5

• Each categorical variable is converted to a vector of binary variables

• Suppose categorical variable X takes values X1, X2, . . . , Xc.

1. Order the X values by their sample mean Y -values

2. Denote the ordered values by X ′
1, X

′
2, . . . , X

′
c

3. Create binary variables U1, U2, . . . , Uc−1 such that

Ui =







0 if X ∈ {X ′
1, . . . , X

′
i}

1 otherwise

4. Replace X by (U1, U2, . . . , Uc−1)

• The conversion is usually carried out only at the root node
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Missing values in M5

Training data: Use the Y variable to form a surrogate split: Compare the
Y -value of the observation with the mean of the Y -values in the two
subnodes

Test data: Replace missing values with means from the training sample in the
node

M5 is implemented in Witten et al. (2011) as M5’
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Empirical comparison of regression algorithms
(Loh et al., 2007)

15 algorithms

• 10 regression tree methods

• 3 ensemble (bagged) methods

• 2 spline methods

52 datasets

• Training sample size from 96 to 21,252

• Number of ordered predictor variables from 1 to 28

• Number of categorical variables from 0 to 6

• Number of variables in model fitting from 3 to 104
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15 regression algorithms

GUIDE piecewise simple linear (G1) Generalized additive model (gam)

GUIDE piecewise simple quadratic (G2) Multivariate adaptive splines (mars)

GUIDE piecewise simple cubic (G3) M5 piecewise constant (mc)

GUIDE piecewise multiple linear (Gm) M5 piecewise multiple linear (mm)

GUIDE piecewise stepwise linear (Gs) Bagged M5 constant (mcb)

GUIDE stepwise pairs (Gp) Bagged M5 multiple linear (mmb)

GUIDE simple ancova (Ga) CART clone (rpart)

Random forest (rF)
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Characteristics of 52 datasets (no missing values)
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Relative MSE for 52 datasets
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Prediction error vs tree size over 52 datasets
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Some notations and definitions for asymptotics

• Let X be M -dimensional Euclidean space.

• Given a fixed integer M1, let B be the collection of all polyhedra in X
having at most M1 faces. These sets can be described as the
solutions to at most M1 inequalities, each inequality having the form
b1x1 + . . .+ bMxM ≤ c (or < c).

• If M1 ≥ 2M , B includes all boxes in X of the form

B = {(x1, . . . , xM ) : x1 ∈ I1, . . . , xM ∈ IM}

where I1, . . . , IM are open, closed, half-open, or half-closed intervals.

• Let X ∈ X and {(Xi, Yi) : i = 1, . . . , N} be a random sample with the
same distribution as (X,Y ).

• Given N ≥ 1 and t ∈ X , define ηN (t) = {i : Xi ∈ t, 1 ≤ i ≤ N}.

• Let T̃N be a partition of X into a finite number of disjoint sets, all of
which are in B, with T̃N indpendent of (X,Y ).
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• Let τN denote the partition function corresponding to T̃N , so that τN (x)

is the set t ∈ T̃N containing x.

• Let δ(t) = supx,x′∈t |x− x′| be the diameter of t, where |x| is Euclidean
distance.

• Let DN (x) = δ(τN (x)) be the diameter of the set t ∈ T̃N containing x.

• Let dN (x) = ȳN (τN (x)) be the estimate of the regression function dB ,
where

ȳN (t) =
∑

i∈ηN (t)

Yi/|ηN (t)|.

• Let pN (t) = N−1|{i : Xi ∈ t, 1 ≤ i ≤ N}| be the empirical distribution
of X.

• Let kN be nonnegative constants such that

pN (t) ≥ kN log(N)/N for N ≥ 1 and t ∈ T̃N .
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Bayes risk consistency of piecewise-constant
regression models (Breiman et al. 1984)

Theorem. Suppose that E|Y |q < ∞ for some 1 ≤ q < ∞ and that

kN → ∞ and DN (X)
P→ 0 as N → ∞. (1)

Let dB(x) = E(Y |X = x). Then E|dN (X)− dB(X)|q → 0.

Given any function d on X , let R(d) = E[Y − d(X)]2 denote the mean squared
error of d(X).

Theorem. Suppose that EY 2 < ∞ and that condition (1) holds. Then {dN} is
risk consistent, i.e., ER(dN ) → R(dB) as N → ∞.
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Asymptotic uniform consistency (Kim et al., 2007)
Given X = x, let Y have mean f(x). Suppose f(x) is continuous in a compact
rectangle C and there is a > 0 such that

sup
x∈C

E{exp(a|Y − f(x)|) | X = x} < ∞

Let Tn be the regression tree based on training sample size n, mn = minimum
node sample size, and δ(t) = supx,z∈t ‖x− z‖ be the diameter of node t

Assume that as n → ∞,

1. (logn)/mn
P→ 0

2. supt∈Tn
δ(t)

P→ 0

3. Minimum eigenvalue of node design matrices is bounded from 0 in
probability

Let f̂(x) be the regression estimate at x. Then

sup
x∈C

|f̂(x)− f(x)| P→ 0
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Conclusions
• Parametric models are often constrained by range restrictions, missing

values, distributional assumptions, and number and variety of variables.

• Tree models do not have such constraints.

• When the assumptions hold, parametric models are often more accurate.
But when the assumptions are wrong, the results can be very misleading.

• Parametric models depend on statistical inference for model selection.
Statistical inference is treacherous when there are many variables.

• Statistical inference is irrelevant to tree models, for which model selection
is automatic.

• Tree models can supplement parametric models by validating the
assumptions and suggesting alternative functional forms.

• Tree models allow high-level visualization of multivariate data through the
tree structures and low-level visualization through plots of terminal nodes.

• Tree models are not necessarily unique. If variable selection is unbiased,
each model gives a truthful description of the data.
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