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Abstract 
Often in the development of complex discrete functioning systems the systems 
level testing is very limited at the point significant decisions are made in the 
development process.  One such point is typically the production decision to 
commit large resources to low rate initial production concurrent with the 
completion of developmental and operational testing.  This condition introduces 
significant risk into the program and technical management of these type systems.  
Often these type systems are not designed from scratch, but utilize components 
and subsystems from previous programs that have extensive usage data in similar 
or identical environments.  Most developments require extensive component and 
subsystem design verification testing and qualification testing across most of the 
environments that are expected to be encountered.  A method is needed to utilize 
previous system development and production data and subsystem level test results 
combined with the systems level test data available when making reliability 
assessments.  This paper explores Bayesian methodology to combine different 
types of data into a mathematically useful result for evaluating system reliability 
for these types of systems.  The model presented is relatively simple, but allows 
combining expert opinion, previous system data, component and subsystem level 
testing with a limited amount of system level testing to develop a more 
comprehensive reliability case early in the system level test phase, but at point 
when significant program decisions must be made. 
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1. Introduction 
 
Often in the development of complex discrete functioning systems the systems 
level testing is very limited at the point significant decisions are made in the 
development process.  One such point is typically the production decision to 
commit large resources to low rate initial production concurrent with the 
completion of developmental and operational testing.  A method is needed to 
utilize previous system development and production data and subsystem level test 
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results combined with the systems level test data available when making 
reliability assessments.  
  
It’s not so important that we have an exact point estimate of our reliability, as it is 
that we have a method of measuring the confidence we have in meeting our 
decision criteria.  
 
It is also important that our statistical data be correlated to identifying risk areas 
as we proceed with development and production.  Being able to combine 
component, subsystem level, and system level data gives us this ability.  The 
production decision reliability case study assesses confidence in meeting 
requirements along with a detailed description of the environmental and 
functional test exposure and failure modes identified and corrected.  Failure 
modes are characterized by probability giving us a means of assessing the residual 
risk at the time of the production decision. The Bayesian approach of combining 
different test data allows us to assess the system across a wide array of 
environmental and functional exposure as well as evaluating increasing levels of 
complexity as the system is integrated at higher levels.  This approach gives us 
both breadth and depth of evaluation. More complex versions of these type 
models have been developed by Reese and Mense to handle very complex 
systems with multiple mission phases and “different modalities distinguished by 
test fidelity and level of test (system vs. component)” [Reese].  However, we 
attempted to create a simpler model that would be more readily accepted and 
easily used by the practicing reliability engineer while providing the fidelity of 
result appropriate for the decision in question.  The significant question early in a 
program at the production decision point-is the system on track to meet its 
reliability requirements.  This is measured by comparing current reliability 
parameters to values on a planned growth curve.  Typical statistical analysis 
usually “seeks objectivity by generally restricting the information” [Mense] used 
to system level testing in the actual usage environment which is “clearly relevant 
data” [Mense], but also very limited.  The parameters such as a mean reliability 
are considered “fixed but unknown” [Mense] and estimated from a very small 
sample of data.  The Bayesian approach considers these reliability parameters as 
“random, not fixed” [Mense] and uses previous system data and subsystem testing 
to develop a prior understanding of these reliability parameters and then modifies 
them using the system level likelihood data into a posterior distribution of the 
reliability parameters along with “credibility intervals” [Mense] for use in making 
inference statements about the maturity of the system relative to expectations.  
We need a method of evaluating a complex system at points in development when 
we have a limited amount of system level data requiring full functional exercise in 
the actual usage environment. An approach is needed to prevent underestimating 
or over estimating reliability early in the evaluation and test cycle.  We want to 
protect against perfect assessment early on or low estimates if there are early 
failures.  An effort should be taken to make use of all data available including 
previous data on similar systems and expert opinion as to component, subsystem 
and system reliabilities. Our desire is for reliability to converge to that given by 
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actual test data as more and more data becomes available. We are seeking a 
method that correctly estimates actual confidence for the reliability relative to our 
decision criteria.  Classical confidence intervals do not give an interval of interest. 
The posterior distribution used to make a production decision, will produce the 
prior distribution that will be used for later test phases. 

 
2. Materials and Methods 

 
This paper explores Bayesian methodology to combine different types of data into 
a mathematically useful result for evaluating system reliability for these types of 
systems.  The model presented is relatively simple, but allows combining expert 
opinion, previous system data, component and subsystem level testing with a 
limited amount of system level testing to develop a more comprehensive 
reliability case early in the system level test phase, but at a point when significant 
program decisions must be made. The type of system under consideration is 
relatively complex electromechanical system with extensive imbedded software 
and several discrete functions and components.  We break these systems down 
into several functional areas generally representative of these types of systems.  
The system is then further broken down into approximately 20 components for 
which we have expert opinions, previous system data, component and subsystem 
design verification and qualification testing.  Finally, we utilize system level test 
and assigned failure modes for those tests in which we could identify a failed 
subsystem or component.  Prior distributions were developed for components and 
subsystems.  Likelihood functions were developed at the system level and for 
components and subsystems where they could be assigned. We are developing the 
prior distribution for later test phases by finding a posterior distribution based on 
subsystem priors and a variety of partial system level tests. The component priors 
have been created either from component test data or subject matter expert inputs 
and used to specify the values for nprior[i] and rprior[i] that are used in a beta 
distribution e.g.  
 
 fprior(R)=Constant* Rnprior*rprior  * (1-R)nprior*(1-rprior) 

– rprior is the mode of the prior distribution and  

– nprior is a weighting (or importance) factor .  

– nprior=0 gives a uniform prior.  

Computation was performed using Markov Chain Monte Carlo (MCMC).  The 
updates were all performed using the Metropolis-Hastings (M-H) algorithm.  
Updates were done with beta proposal distributions centered at the previous value.  
The acceptance probability was adjusted to reflect the asymmetric proposal 
density. This Bayesian reliability model performs reliability analysis on the 
system whose functional components are assumed to all be in series from a 
reliability standpoint, i.e. if any component fails the system fails. The initial prior 
assessment is represented by a beta probability distribution with given parameters.  
The prior distribution is “multiplied” by the likelihood function using the data 
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from development testing of the product. This results in a joint distribution with 
approximately 20 different reliabilities and from this one samples to obtain the 
required posterior distributions for the components as well as the system 
reliability distribution.  Statistical inferences can be made from information 
conveyed by the posterior distribution. 
 

1. Select an appropriate prior probability distribution 
2. Obtain new evidence (data) 
3. Choose a likelihood function, based on data type 
4. Update the prior distribution with the new evidence to generate a posterior 

probability distribution. 

 
2.1 Selecting the Prior 
For the system under consideration “prior knowledge exists for each subsystem” 
therefore we used a beta prior distribution to account for this “existing 
knowledge”.  The beta distribution is in the form: 
 
Pij = estimate of reliability for the jth component at the ith iteration 
Nm = accuracy weighting for the predicted reliability 
 
This form of the beta distribution has been used previously by Mense and is called 
the Los Alamos formulation for a beta prior distribution.  Where previous system 
test data existed to provide us with “confidence about the reliability of the item” 
we used it to establish a strong prior resulting in a “narrow and peaked 
distribution” that was not significantly affected by the actual test results.  In most 
cases there was not a failure in the actual testing.  For those cases where little 
previous system data or component or subsystem testing did not exist we used a 
weak prior, with a “weak distribution that is wide and relatively flat” to allow the 
posterior to be more influence by the actual system level test data [Mense].   
 
2.2 Likelihood Function 
The likelihood function was evaluated using system level test data.  The priors 
were developed using previous system data and component and subsystem test 
data, no system level test data was used to form the priors.  Therefore, 
independence was maintained.  Since the system under consideration includes 
many discrete functions, a binomial likelihood function was chosen.  The 
reliability of the component is R.  The likelihood function indicates that n tests 
were performed on this component and of those n tests there were s successes and 
(n-s) failures.  This results in the likelihood function having the form shown 
below: 
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2.3 Calculating the Posterior Distribution 
Using the beta prior distributions and the binomial likelihood functions the 
posterior distribution was calculated using the following: 
 

( )joint 1 2( , ,..., ) N ln( ) (N (1 ) ( )) ln(1 )n i mi i i Mi i i i i
i

f R R R s R n s Rπ π∝ + + − + − −  ∑  

For the complex multi-component system the posterior distribution is found 
numerically using MCMC sampling of the joint distribution and applying the M-
H selection algorithm.  From each subsystem’s posterior distribution, we 
extracted the reliability for each subsystem and multiplying each of these 
reliabilities for each iteration of the MCMC we constructed the posterior 
distribution for the entire system.  With the posterior distribution for the system 
we also determined the 80% “credibility interval” around the median reliability. 
 

3. Results 
 
Posterior distributions were developed for each component and subsystem as well 
as at the system level.  The results are consistent with both a classically 
development point estimate for system level mission success testing and a 
demonstrated growth value developed using failure modes identified during 
system level testing.  However, the credible interval was much narrower than the 
classical Clopper-Pearson estimate since the likelihood function includes tests that 
were each different in terms of which components were being tested.  This 
information cannot be handled in a non-Bayesian Pass/Fail model.  Also the 
classical Army Material Systems Analysis Activity (AMSAA) growth model does 
not exactly agree with the Bayesian approach as the posterior distribution takes 
into account all of the expert opinion, previous system data, and component and 
subsystem design verification and qualification testing.  However, the 
combination of these three measurements provides an evaluation tool that has 
both community acceptance and achieves a greater confidence in results relative 
to the decision criteria. The component and subsystem posterior distributions 
when utilized in conjunction with the description of environmental and functional 
test exposure and the failure modes identified and corrected provides a subjective 
verification of the applicability of the model and data to the decision at hand.  The 
same components and subsystems that degrade system level reliability are 
identified as being most susceptible to functional failure when exposed to 
environments.  This provides intuitively satisfying results and a means to assess 
the risk in moving forward with development and production. The system level 
posterior distribution yielded a mean and median in the low 0.80s and the 80% 
credible interval from the low 0.70s to the mid to high 0.80s or about 0.15 (Fig. 
1).  This is well within the 80% confidence interval of a classical sample result of 
10 successes out of 13 tests or 0.77 mean and a classical 80% confidence interval 
of [0.56 , 0.91].  The demonstrated growth value for the system level failure 
modes was in the low to mid 0.80s.  This gives us high confidence that the 
cumulative probability of success is the mid 0.70s and the growth value is in the 
low to mid 0.80s.  This allowed us to assess the system would meet the required 
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reliability of approximately 0.90 in the middle of low rate production based on the 
planned reliability growth test. 
 

  
Figure 1: System level Bayesian prior and posterior distributions with mean, median, and 10% and 
90% quantiles  
 
Additionally, we’re able to provide component and subsystem reliability 
distributions to substantiate the validity of the analysis and to correlate with 
identified failure modes for residual risk assessment.  There were five components 
and subsystems that were of particular concern.  These components and 
subsystems were give relatively low strength priors to account for the complexity 
and newness of the designs. System level failures on these components with weak 
priors yielded posterior distributions that were consistent with community 
perceptions of these type components expected reliability (Fig. 2).  Components 
with priors that reflected lower reliability from previous systems will reflect that 
reliability until there is sufficient likelihood data to overcome the prior.  
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Figure 2: Component with weak prior and sufficient likelihood data to overcome.  Results are 
consistent with community perceptions for these type components. 
  
These results and simply the visibility into the component and subsystem level 
enhance the credibility of the model.  This approach would appear to be superior 
to simply relying on the presence or absence of a failure mode of a certain 
component or subsystem to accurately reflect the expected contribution during 
longer term testing. 

4. Discussion 
 
The Bayesian model presented here builds on earlier work by simplifying their 
application to a specific, but significant use, and estimating the system reliability 
early in the program at the point of making a production decision. The model is 
useful, when used in conjunction with classical results and reliability growth 
analysis, for characterizing system level discrete reliability at this early stage of 
the test program.  The model can be easily adapted for use on similar systems by 
simply renaming the functional areas and subsystems and components.  The 
flexibility of utilizing prior information from expert opinion, previous system test 
and production, and subsystem and component design verification and 
qualification testing makes the model adaptable to almost any program situation.  
The use of attribute data, success or failure, in the likelihood function allows the 
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use of most system level test data with relatively small interpolations.  Posterior 
statistical results provided at the system level provide the ability to make system 
level reliability evaluations with confidence against program requirements.  
Additionally, posterior results provided at the subsystem and component level 
provide the ability to statistically evaluate risk areas.  These can be especially 
useful when used in conjunction with a qualitative assessment of test results in 
terms of subsystem and component exposure to environments and functional 
requirements with failure modes and corrective actions identified.  This Bayesian 
reliability model is simple enough to promote widespread use and opens up 
several possibilities for enhancement and adaptation. 
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