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Abstract 
This paper describes a method for constructing and evaluating Bayesian networks (BNs) 
as a logically consistent model of a set of derived system requirements. A BN consists of 
(1) a directed acyclic graph, (2) a set of fully defined states for each node in the graph, 
and (3) a conditional probability table (CPT) for each of the nodes. Designed simulation 
experiments are central to the construction and evaluation of BN models to predict 
system performance given a set of subsystem requirements. Probability estimates in each 
CPT are first made by mining data from simulation experiments on prior, similar 
systems, and then—using engineering judgment—the CPT entries are altered to explore 
options for satisfying top-level requirements of the system under current design. 
Sensitivity analysis is conducted to prioritize and assign values to each requirement. 

A notional weapon kill-chain example illustrates the construction and evaluation of a BN 
requirements-flow model. Benefits of using Bayesian networks are reported, including 
the ability to (1) analyze design margin, (2) allocate subsystem tolerances, (3) estimate 
the achievable upper bound on system performance for a proposed design improvement, 
and (4) integrate results from designed simulation experiments involving multiple 
subsystems. 
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1. Introduction 
ROBABILITY and logic have a long history of application to rigorous scientific 
inquiry. The writings of E.T. Jaynes illustrate the benefits of constructing logically 

consistent probability models.1  Jaynes advocated Bayesian statistical analysis as a way 
of combining current, often limited data with external (“prior”) knowledge of a specific 
domain to make logical inferences.2  This paper introduces an application of Bayesian 
networks (BNs) and designed simulation experiments (DASE) to systems engineering. 
Despite the name, either “frequentist” or Bayesian statistics can be employed to construct 
BNs. The example in Section IV employs the former. In either case, central to the BN 
paradigm is the definition of conditional probability, commonly attributed to Bayes and 
later popularized by Laplace: 
 
 

where A is a simple or compound event of interest and B is a second, simple or compound 
event for which evidence is given. The conditional probability is computed by dividing 
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the joint probability of events A and B by the marginal probability of event B, which is 
found by summing across each of the “nuisance variables” that are not of interest in the 
conditional probability query. Although A and B can be represented by continuous 
random variables, in this paper, they are represented by discrete—binomial or 
multinomial—random variables. 

System-level requirements are often stated as probabilities and must be decomposed into 
several lower-level, “derived” subsystem requirements before system- and subsystem-
level design work can proceed. In the past, various ad-hoc quantitative and graphical 
methods have been used to articulate and visualize “flow-down” requirements. 
Ambiguous references are often made to “probabilities.” These methods have proven 
useful for guiding and prioritizing design decisions. However, when the time arrives to 
verify compliance with the requirements or to troubleshoot a non-compliant case, issues 
often arise. These issues can stem from the ambiguous references to probabilities as well 
as from the difficulty in using the informal methods to satisfy quantitatively specific 
“what-if” queries. 

The high dimensionality of the joint probability distribution of a complex, engineered 
system makes it difficult to use directly in analysis. However, the concepts of 
independence, conditional independence, and marginal probability enable straightforward 
computation of all probabilities of interest without direct reference to the joint probability 
distribution. Moreover, as illustrated in Sections II and IV, the concept of a causal flow of 
events enables simplified expression of the joint probability distribution and computation 
of the desired conditional probability. Once constructed, acausal, diagnostic questions 
can be asked of a probability-based requirements model. For this reason, the model is 
called a requirements-flow model, emphasizing the inherent inclusion of data-driven 
feedback for reasoning about system-level implications of specific, subsystem 
requirements that are under consideration. 

Section II briefly reviews the basic elements of Bayesian networks (BNs) and includes 
several references for finding further details. Section III summarizes the synergy between 
BNs and the design and analysis of simulation experiments (DASE), which are used to 
collect data for estimating conditional probabilities within BNs. Section IV describes an 
example of constructing a BN model of a notional kill chain for an anti-aircraft missile. 
Section V summarizes the ideas and work accomplished thus far using BNs and DASE 
for developing requirements-flow models. 

2. Basics of Bayesian Networks 
Bayesian networks (BNs) were developed in the 1980s by Pearl and others in the field of 
artificial intelligence (AI).3,4 Although AI researchers pursued several paths for 
automating reasoning, including formal logic, it became clear that another paradigm was 
needed to mimic the way that humans reason.5,6 Central to the BN paradigm are the 
notions of causality and what Darwiche called degree of belief.7,8   

Figure 1 illustrates a simplest-possible BN that is commonly used to introduce the 
elements of a BN and the mathematical concepts used in analyzing it.9  Each BN has 
three distinct types of components: (1) a directed, acyclic graph (DAG), where the arcs 
indicate the cause-effect flow between nodes; (2) a set of precise definitions for the 
possible states of each node (e.g., what quantity and rate of water constitutes “wet grass” 
or “rain”); and (3) a set of conditional probability tables (CPTs), one per node in the 
DAG. 
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Figure 1:  DAG and CPTs constituting a simple Bayesian network (nodal state 
definitions not shown).9 
For engineered systems, the state definitions are critical, both (a) for using designed 
simulation experiments to populate each CPT entry as an allocated requirement and (b) to 
evaluate compliance of each requirement, once the system has been implemented.10 

After constructing the BN—including populating all CPT entries with values for fully 
defined states—the BN can be analyzed visually and mathematically. By inspection, any 
node with no incoming arcs from parent nodes (e.g., Rain in Figure 1) is understood to be 
independent, i.e. having no conditional cases within its CPT. A node with incoming arcs 
from one or more parent nodes is conditionally independent of its non-descendants, given 
evidence of its parents’ states, listed (one column per parent) within the node’s CPT. This 
local Markov property is useful in expressing the joint probability distribution of the 
nodes’ states: instead of exhaustively writing down all conditional and marginal 
probabilities, the product chain rule can be applied, based upon the BN DAG, to express 
a simplified version of the joint probability distribution. 
For a specific query, e.g., Pr(R | G) in Figure 1, there are nuisance variables in the joint 
and marginal probabilities—Pr(G,R) and Pr(G), respectively—across which probabilities 
must be summed. This query example involves nodes with only two complementary 
states, {X, ¬X}. Since there is only one nuisance variable {S} in the numerator and two 
nuisance variables {R, S} in the denominator, manually computing the sums and quotient 
is straightforward.  For the k-node case, each having m ≥ 2 possible states, some of which 
are known (“evidence”), mathematical operations quickly become cumbersome, of 
computational complexity O(mk ). This is where inference engine algorithms become 
useful, either to compute exact or approximate probabilities, depending on the 
computational complexity of the specific BN. 

The work reported in this paper was accomplished using a MATLAB-based tool from 
Murphy called BNT (Bayesian Network Toolbox) and a JAVA-based tool called SamIam 
from UCLA’s Automated Reasoning Group. Both tools include a suite of inference 
algorithms; SamIam also includes a graphical editor. Murphy compiled a list of several 
other BN tools.11,12 

3. Synergy between BNs and Design & Analysis of Simulation Experiments 
The principles and methods of experimental design pioneered by Fisher were later 
expanded by others for industrial applications, including simulation experiments to 
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accomplish software-intensive systems engineering work.13,14,15 Subsystem development 
has benefitted greatly from the design and analysis simulation experiments (DASE).  
DASE involves defining a factor space and one or more responses to be observed while 
sampling treatments—i.e. combination of factor levels—within the defined factor space. 
The most common experimental design in DASE involves collecting space-filling 
samples. For BNs, the useful output of DASE is a summary statistic estimate of each 
entry within the CPTs, representing the conditional probability of occurrence of response 
values for the factor space defined for each BN. 

The strengths of probability and logic come together with the strength of statistics and 
simulation by evaluating a BN requirements-flow model in the following 3-phase 
(usually iterative) sequence. 

(1) Using the BN nodal state definitions, sample proportion estimates are computed 
for each CPT entry by mining data from space-filling simulation experiments on 
a system that is similar to the one under current design. 

(2) Modifications to these “baseline” CPT entries are considered by subject matter 
experts, who must weigh the cost and feasibility of subsystem improvements 
against the potential system performance increase that proposed subsystem 
improvements/replacements offer. 

(3) Once designs are completed (i.e. subsystem replacement or improvement 
decisions are made), more simulation experiments are conducted to verify that 
the expected system performance improvement has been realized by 
incorporating the new designs. 

In the past, although DASE has been instrumental in improving subsystems, when 
multiple subsystems have been integrated, it has often become clear that DASE-driven 
design decisions for each subsystem have resulted in suboptimal system performance 
and/or cost. Thus, the synergy between BNs and DASE provides a natural framework for 
fine-grained, precise requirements definition and performance verification that is needed 
for defining and integrating results from multiple simulation experiments. 

4. Example Application: A Bayesian Model of a Weapon Kill Chain 

Figure 2 illustrates a requirements-flow BN model for a notional kill-chain for an anti-
aircraft weapon. The example is a simplified version of an unclassified, open-source 
example from Ball’s textbook, which has been used previously in other published 
studies.16,17  Although this section describes only a single, illustrative requirement 
modification, the BN model could be used to explore many more options. 

The BN begins with the conditionally independent Search node, which represents the 
probability that the in-flight weapon is searching for the aircraft threat. Given a 
successful Search, the two parallel nodes Det1 and Det2 represent detection of the target 
using two independent sensors. These sensors could be multiple instances of the same on-
board sensor, a single onboard bi-mode sensor, or one on-board and one remote sensor. 
Given target detection, the probability of target tracking, guiding the missile to the target, 
and then detonating the missile’s warhead is represented by the TrkGuide node. Given 
successful TrkGuide, warhead detonation leads to one of three possible Damage 
outcomes: no damage, sufficient damage to disable the target from completing its 
mission, or killing the target. The Damage node is the only multinomial case; all other 
nodes are binomial (i.e. having True/False states). 
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Figure 2:  A Bayesian network model for a notional anti-aircraft missile kill chain. 

In this simple example, a single CPT entry is modified to increase the weapon’s 
probability of kill, Pr(damage = Kill), a marginal probability that hereafter is referred to 
simply as Pk. By observing the CPTs for each node in the graph, we can count the total 
number of nodal states involved, i.e. 4 x 2 + 3 = 11, and compute the number of possible 
combinations of these states, 31 x 24 = 48, most of which become nuisance variables to be 
summed out for any specific query. The CPT entries within each row of a CPT must sum 
to one, but assignment of the child-node’s states usually differ row-by-row. Although not 
shown in Figure 2, the third element of a BN is the set of precise definitions for each state 
of each node. Simulation results are converted into sample proportion estimates of each 
CPT entry via these definitions. 

The CPT values in Figure 2 were chosen to illustrate a typical situation that might arise 
within a requirements-flow study. The situation involves changing subsystem 
requirements in order to increase a prior weapon’s marginal Pk from 0.70 to 0.77. A 
common misunderstanding is to confuse such a marginal probability with a conditional 
probability—in this case, confusing Pk, which was computed using an inference engine, 
with Pr(Damage = Kill | TrkGuide = True), which was estimated from a simulation 
experiment and later modified (“allocated”) to meet the new Pk system requirement. 

An opportunity for improving Pk is highlighted in the Det2 CPT in Figure 2. If Pr(Det2 = 
True | Search = True) can be increased above 0.60, the increased Pk value might be met 
without altering other attributes of the weapon. Consider the values in the TrkGuide CPT.  
When Det2 = True and Det1 = False then the conditional probability of TrkGuide is 0.88.  
On the other hand, when Det2 = False and Det1 = True, TrkGuide is 0.60.  In other 
words, Det2 success alone leads to higher probability of reaching the target than Det1 
success alone, (also illustrated is the higher TrkGuide success that results from both 
detectors being successful, but simultaneously improving both detectors was not 
considered in this example). 

To further explore the sensitivity of Pk to improving either Det1 or Det2, we consider 
what would happen, assuming different values of detection success.  Figure 3 illustrates 
how Pk changes as values change (one sensor at a time, holding the other sensor 
constant) for Pr(Det1 = True | Search = True) and Pr(Det2 = True | Search = True).  The 
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sensitivity for Det1 is +0.062, compared to +0.268 for Det2. Thus, work to improve 
Pr(Det2 = True | Search = True) will provide a higher incremental return for improving 
Pk. Note that it will likely be easier to implement a change in the initially lower Det2 
value than Det1, since the latter is already much closer to 1.0. 

SamIam’s inference engine was used to determine the value for Pr(Det2 = True | Search 
= True) that would meet the new Pk requirement of 0.77. The result was Pr(Det2 = True | 
Search = True) = 0.85. This prediction was then verified by running another simulation 
experiment, using the improved Det2 sensor having the increased CPT value. 

 

 
Figure 3: Sensitivity comparison between conditional sensor detection probabilities. 

5. Summary and Conclusions 

When combined with DASE, Bayesian networks (BNs) provide a way to evaluate 
subsystem requirements in a quantitative, comprehensive, manner. The power of logic 
and a rigorous probability model enable immediate evaluation of “what-if” queries when 
considering subsystem improvements. The requirements-flow model enables immediate 
sensitivity analysis and upper-bound estimates on the likely achievable gains of a 
proposed improvement, prior to expending the development effort to implement the 
proposed improvement. Moreover, BNs provide a natural framework for designing and 
evaluating results from multiple simulation experiments to mitigate the tendency for 
suboptimization. Tools exist to develop BNs, so the challenge is to educate engineers in 
the promise of BNs and the use of these tools. 
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