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Abstract
There has been a continued interest in modeling the activity profile of terrorist groups over the

last few decades. Pioneered by Enders and Sandler, initial work in terrorism modeling focused on
time-series analysis techniques such as the threshold vector auto-regression (TAR) model. More
recent developments in this area have been along two directions. The first framework leverages
a self-exciting hurdle model (SEHM), popularized in diverse applications such as seismology and
gang warfare modeling, for terrorist activity. The second framework builds a hidden Markov model
(HMM) framework to capture terrorist group dynamics. The focus of this work is on a comparative
analysis of the SEHM and HMM frameworks in terms of their explanatory and predictive powers.
Specific attention is then paid to the inferencing capability of the HMM framework for the early
detection of spurts and downfalls in activity.

Key Words: Explanation and prediction, inferencing, spurt detection, changepoint detec-
tion, model comparison, terrorism analysis, threshold vector auto-regression model, self-
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1. Introduction

Given a surge in terrorist activity over the last few decades and a corresponding growing
interest in modeling and inferencing of the activity of terrorist groups, this paper studies
different aspects of these two problems.

Early works on modeling the activity of terrorist groups adopt different classical time-
series analyses techniques resulting in diverse modeling frameworks such as the threshold
vector auto-regression (TAR), Cox proportional hazards and zero-inflated Poisson models.
While terrorist activity can be reasonably accurately captured with these models, these
models have been primarily studied in the context of worldwide terrorism trends, rather
than for specific terrorist groups. The focus of this paper is on two recent innovations: self-
exciting hurdle modeling (SEHM) framework motivated by modeling efforts in seismology
and gang warfare, and a hidden Markov modeling (HMM) framework motivated by the
need to capture abrupt switches in terrorism dynamics.

From a modeling perspective, this paper addresses the distinctions between the SEHM
and the HMM frameworks. It studies the fine nuances in terms of modeling as well as the
impact of these nuances on the explanatory and predictive powers of these frameworks on
terrorist activity. While the two frameworks appear to have their own unique advantages in
terms of explanation, the HMM framework appears to be superior in terms of prediction.

From an inferencing perspective, this paper studies three different approaches for the
quick detection of spurts and downfalls in the activity. The first (and simplest) approach
exploits the HMM structure and is of parametric nature. While this approach appears to
be excellent in terms of inferencing performance, it suffers from disadvantages that render
it difficult to be adopted from a practical standpoint. These disadvantages include model
learning delays and retrospective (non-causal) state classification. Motivated by these is-
sues, the second approach adopts a changepoint detection view of the problem and uses
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an Exponentially Weighted Moving-Average (EWMA) algorithm to repeatedly declare a
change when a spurt exceeds an appropriate threshold. Though non-parametric, this ap-
proach suffers from a significant performance deterioration (relative to the first approach)
that allows it to classify only major spurts and/or downfalls. To overcome this difficulty,
the third approach further nuances the notion of a spurt by associating it with changes in the
resilience or coordination in the group and detecting such changes. This task is eased by de-
veloping a majorization theory-based ordering of attack frequency vectors. This approach
is not only non-parametric and hence easily adoptable, but also comparable in performance
with the parametric scheme.

2. Temporal Modeling of Activity Profiles

The observations capturing terrorist group dynamics come from a complex network that
bestows correlations in both time and spatial (network) structure. In general, these ob-
servations are multivariate and are of mixed type. Specifically, observations in terrorism
modeling are made of categorical, ordinal and interval variables, e.g., time, location, type
of ammunition used, (apparent) sub-group of the group involved, intensity and impact of
the attacks, etc. In addition, the observations can suffer from non-idealities such as missing
data, mislabeled data, temporal and attributional ambiguity, etc.

The first step in terrorism modeling is the development of a temporal model for the
activity profile of a terrorist group by discarding the categorical and ordinal variables. In
this direction, let the first and last day of the time-period of interest be denoted as Day 1
and Day N , respectively. Let Mi denote the number of terrorism incidents on the ith day
of observation, i = 1, · · · , N . Note that Mi can take values from the set {0, 1, 2, · · · }
with Mi = 0 corresponding to no terrorist activity on the ith day of observation. On
the other hand, there could be multiple terrorism incidents corresponding to independent
attacks on a given day reflecting a high level of coordination between various sub-groups
of the group. Let Hi denote the history of the group’s activity till (and including) day i.
That is, Hi = {M1, · · · ,Mi} , i = 1, 2, · · · , N with H0 , ∅. The temporal point process
model is completely specified if P (Mi = r|Hi−1) is known as a function of Hi−1 for all
i = 1, · · · , N and r = 0, 1, 2, · · · .

2.1 Classical time-series methods

Different versions of interrupted time-series analyses have been used to study whether cer-
tain strategic policy interventions lead to statistically significant reduction in certain types
of attacks and/or if different types of attacks act as substitutes for (or complements of)
one another. In particular, the main focus of works such as [1–4] is the study of the ef-
ficacy of interventions such as strengthening airport security barriers, fortification of US
embassies/missions abroad, US’ anti-terrorism laws, international conventions on hijack-
ings, retaliatory bombings, etc.

To be specific, a simple first-order threshold vector auto-regression (TAR) model study-
ing the impact of a certain policy intervention (captured by the indicator function where the
policy is in effect and denoted as p1) on two types of attacks (denoted by the time-series
{M1,i} and {M2,i}, respectively) is given as:

M1,i = a1M1,i−1 + b1M2,i−1 + c1 p1 + Other components, (1)

M2,i = a2M2,i−1 + b2M1,i−1 + c2 p1 + Other components. (2)

In general, the two types of attacks are cross-correlated with appropriately chosen model
coefficients (aj , bj and cj , j = 1, 2) capturing the interdependence between them.
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The main conclusion from the TAR modeling approach is that certain policy interven-
tions result in an unanticipated increase in certain types of substitution attacks. For exam-
ple, installation of metal detectors and airport security barriers that render certain types of
attacks more costly for the terrorist group (such as skyjackings) tend to result in the sub-
stitution of these attacks with other types of attacks that are less costly for the group (such
as other types of hostage events not protected by metal detectors). Another example of
this substitution effect is the rise in assassinations of protected persons as a consequence of
increased security barriers at US missions abroad, even as kidnappings and hostage events
decrease. The net consequence of this study is the identification of a rough 4 and 1/2-year
cycle in terrorism events corresponding to increased terrorist activity (perhaps of a differ-
ent kind) in response to certain interventions that then results in depletion of terrorist group
resources leading to a subsequent phase of low activity.

Other examples of the use of the TAR model include [5–7] and Cox proportional haz-
ards or zero-inflated Poisson models [8,9] for the short- and long-run behavior of worldwide
terrorist activity.

2.2 Self-exciting hurdle model (SEHM)

A theoretical foundation for the above-described phenomenon of attack clustering and con-
tagion is provided by the SEHM framework developed in [10,11]. In its simplest form, the
hurdle component of the SEHM creates data sparsity by ensuring a pre-specified density
of zero counts, while the self-exciting component induces clustering of data. Self-exciting
models have become increasingly popular in diverse fields such as seismology [12], gang
behavior modeling [13], and insurgency dynamics [14]. The SEHM used in [10] is de-
scribed as

P (Mi = r|Hi−1) =

{
e−(Bi+SEi(Hi−1)), r = 0

r−s

ζ(s) ·
(
1− e−(Bi+SEi(Hi−1))

)
, r ≥ 1

(3)

where Bi is a baseline process, and SEi(·) is the self-exciting component given as

SEi(Hi−1) =
∑

j : j < i,Mj > 0

αjg(i− j) (4)

for an appropriate choice of decay function g(·) and influence parameters {αj}. On the
other hand, s ∈ (1,∞) is an appropriately chosen parameter of the zeta distribution, and
ζ(s) =

∑∞
n=1 n

−s is the Riemann-zeta function. While a constant s parameter leads to the
simplest modeling framework, s can in general be driven by another self-exciting process.
A class described by eight parameters is studied in [10] and it is shown that a four parame-
ter model optimizes an Akaike Information Criterion (AIC) metric for terrorism data from
Indonesia/Timor-Leste over the period from 1994 to 2007. This model is shown to accu-
rately capture terrorism data (especially the extreme outliers such as days with 36, 11, and
10 attacks).

2.3 Hidden Markov model (HMM)

An alternate modeling framework based on HMMs is proposed for the activity profile
in [15], where it is hypothesized that Mi depends only on certain hidden states Si (such
as Intentions, Tactics, or Capabilities) in the sense that Mi is conditionally independent
of Hi−1 and S1, · · · ,Si−1 given Si. Further, [15] also hypothesizes a time-homogenous
one-step Markovian evolution for Si with a d-state model to capture the dynamics of the
group over time. That is, Si ∈ {0, 1, · · · , d− 1} with each distinct value corresponding to
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a different level in the underlying attribute of the group. Using these two hypotheses, the
temporal point process model can be simplified as

P (Mi = r|Hi−1)

=

d−1∑
j=0

d−1∑
k=0

P (Mi = r, Si = j, Si−1 = k|Hi−1) (5)

=

d−1∑
j=0

d−1∑
k=0

P (Mi = r|Si = j, Si−1 = k, Hi−1) · P (Si = j, Si−1 = k|Hi−1) (6)

=

d−1∑
j=0

d−1∑
k=0

P (Mi = r|Si = j) · P (Si = j, Si−1 = k) . (7)

The trade-off between accurate modeling of the group’s attributes (larger d is better for
this goal) versus estimating more model parameters1 (smaller d is better for this goal) is
resolved in [15] by focussing on mature terrorist groups (where the Intentions and Tactics
attributes remain stable) and by considering a d = 2 setting. This trade-off corresponds
to a binary quantization of the group’s Capabilities into Active and Inactive states. For the
observations, a simple model such as the two-parameter hurdle-based geometric model,
defined as,

P(Mi = r|Si = j) , HBG (µj , γj) =

{
1− γj , r = 0

γj(1− µj) · (µj)
r−1, r ≥ 1

(8)

can be hypothesized. The intuition behind the hurdle-based geometric model is that the
terrorist group remains oblivious of its past activity and continues to attack with the same
Tactics as before, as long as its objective is met, provided a certain group resistance/hurdle
has been overcome. The special case where there is no group resistance to this aforemen-
tioned strategy is obtained by setting µj = γj , resulting in a geometric observation density.
From a class of many one- and two-parameter observation models, [15] shows that the
hurdle-based geometric model fits the FARC dataset from RAND Database on Worldwide
Terrorism Incidents (RDWTI) [16] best. The FARC dataset captures the activity of the
group in Colombia over the nine-year period from 1998 to 2006.

3. Model Comparison: Explanation and Prediction

3.1 Qualitative comparison

While the TAR, SEHM and HMM frameworks assume that the current observation/activity
in a terrorist group is dependent on the past history of the group, the models differ in how
this dependence is realized. In the TAR model, the current observation is explicitly de-
pendent on the past observations along with (possibly) the impact from other independent
variables corresponding to certain geopolitical events/interventions. In the SEHM frame-
work, the probability of a future attack is enhanced by the history of the group according
to the formula:

P(Mi > 0|Hi−1)
∣∣∣
SEHM

P(Mi > 0|Hi−1)
∣∣∣
Non−SEHM

= 1 +
e−Bi

1− e−Bi
·
(
1− e−SEi(Hi−1)

)
≥ 1. (9)

1The model parameters in the HMM framework include the transition probability matrix parameters and
the observation density parameters. Thus, the number of parameters is d(d− 1 + ℓ) where ℓ is the number of
observation density parameters in each state.
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The HMM framework combines both these facets by introducing a hidden state sequence.
The state sequence depends explicitly on its most immediate past (one-step Markovian
structure), whereas the probability of an attack is enhanced based on the state realization.

The TAR model and the HMM are similar from the viewpoint of regime switching
as these features are modeled explicitly. However, the mechanism of regime switching is
different in the two cases: the former assumes a change in the auto-regressive process,
whereas the latter assumes a state transition in the HMM. The SEHM also incorporates a
switch between states (induced by the self-exciting component), but this switch is more of
an implicit feature of the model rather than an explicit component. More importantly, the
TAR model considers global terrorism trends rather than trends constrained to a specific
region or a specific group. Similarly, the Indonesia/Timor-Leste dataset considered by [10]
is a collation of all attacks in Indonesia and Timor-Leste from diverse groups with signif-
icantly different activity profiles such as Dar-ul-Islam, Gerakan Aceh Merdeka, Jemaah
Islamiyah, etc. On the other hand, the FARC dataset considered in [15] is exclusively the
action of the many sub-groups of FARC.

These subtle (yet important) differences lead to distinctive abilities for each framework
in terms of the explanatory power (of past attacks) and the predictive power (of future
attacks). These aspects are studied next and the power of each framework is illustrated with
the FARC dataset studied in [15] and the Indonesia/Timor-Leste dataset studied in [10]. To
ease model learning2, we let Tk, k = 1, 2, · · · denote the time to the kth day of terrorist
activity (with T0 set to T0 = 0) and define ∆Tk , Tk − Tk−1 to denote the time to the
subsequent day of activity (inter-arrival duration of attack days).

3.2 Model learning

For the HMM framework, three one-parameter models3 (viz. Poisson, shifted zeta and geo-
metric), as well as three two-parameter models (viz. Pòlya, non-self-exciting hurdle-based
zeta and hurdle-based geometric) are considered for {Mi}. With a two-state HMM as
an overlay over {Mi}, model parameters (denoted by the simplistic notation λHMM) are
learned with the classical Baum–Welch algorithm [17] to locally maximize the likelihood
function of the inter-arrival durations, P (∆Tn

1 |λHMM). Of these six models, the geometric
and the hurdle-based geometric models allow simple recursions for estimates of model pa-
rameter(s) via the Baum–Welch algorithm, while the shifted zeta and the hurdle-based zeta
distributions capture heavy tails; see [15] for details. Further, the geometric model turns
out to be generally the best from a parsimonious sense, whereas the hurdle-based geometric
model turns out to be a good fit from among the six models from an AIC perspective.

For the SEHM approach, the different baseline and self-exciting models considered
in [10] are used to model {∆Tn

1 }. The fmincon function in MATLAB is used to learn model
parameters that maximize the likelihood function, P (∆Tn

1 |λSEHM) (see [10, Eq. 8]). It
turns out that a four parameter model (one parameter for the trend component and three
parameters for the negative binomial self-exciting component) is a good model for both
datasets.

3.3 Explanatory power

For the explanatory power, we focus on SEHM’s and HMM’s ability to explain the times
to the subsequent day of activity {∆Tn

1 }. This is captured by the AIC for the two models,

2Model learning with {Mi} is problematic since the solution to the subsequent inferencing problem mirrors
the randomness in {Mi}, instead of exposing the macroscopic features of the terrorist group.

3These models have support on the non-negative integers.
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defined as,

AIC(n)
∣∣∣
HMM

, 2kHMM − 2P (∆Tn
1 |λHMM) (10)

AIC(n)
∣∣∣
SEHM

, 2kSEHM − 2P (∆Tn
1 |λSEHM) . (11)

Note that the AIC score captures the negative of the log-likelihood and thus a model with
a smaller AIC score is better than a model with a larger AIC score. Table 1 shows the
AIC score comparison between the optimal four parameter SEHM and the optimal HMM
for the two datasets. From this study, we see that in terms of explanatory power, both
HMM and SEHM frameworks perform reasonably well, with neither framework clearly
outperforming the other. The HMM framework is better for the FARC dataset, whereas
the SEHM is seen to be better for the Indonesia/Timor-Leste dataset. An explanation for
this observation is that the Indonesia/Timor-Leste dataset has a heavier tail than the FARC
dataset, which is better captured with the SEHM framework.

Table 1: Comparison between AIC scores with the SEHM and HMM frameworks for the
FARC and Indonesia/Timor-Leste datasets.

FARC Indonesia/Timor − Leste

n SEHM HMM n SEHM HMM

100 671.68 671.06 100 723.78 729.47
200 1117.40 1112.07 165 1091.78 1116.92
300 1521.93 1521.36 200 1283.08 1305.27
400 2127.55 2121.81 250 1589.43 1615.87
450 2333.88 2327.02 300 2018.92 2041.35

3.4 Predictive power

For the predictive power, we focus on each approach’s ability to predict ∆Tn+1 given
{∆Tn

1 }. For this, we use the conditional mean estimator of the form ∆̃Tn+1 = E [∆Tn+1|∆Tn
1 ].

For the HMM framework, it can be checked that

∆̃Tn+1

∣∣∣
HMM

=
1∑

i=0

βiE [∆Tn+1|Sn+1 = i)] , (12)

where αn(j) , P(∆Tn
1 ,Sn = j) is updated via the forward procedure [17] and

βi =

∑
j αn(j)P(Sn+1 = i|Sn = j)∑

j αn(j)
. (13)

For the SEHM framework, from (3), we have

∆̃Tn+1

∣∣∣
SEHM

=
1

1− e−(Bn+SEn(Hn−1))
. (14)

For the sake of comparison, we also use a sample mean estimator as a baseline:

∆̃Tn+1

∣∣∣
Baseline

=
1

n

n∑
i=1

∆Ti. (15)
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To compare prediction with the three approaches, we use the Symmetric Mean Absolute
Percentage Error (SMAPE) score, defined as,

SMAPE(n) , 1

n

n∑
i=1

∣∣∣∣∣∆Ti − ∆̃Ti

∆Ti + ∆̃Ti

∣∣∣∣∣ . (16)

Note that the SMAPE score captures the relative error in prediction and is a number be-
tween 0% and 100% with a smaller value indicating a better prediction algorithm. The
SMAPE scores of the time to the next day of activity for the three estimators (HMM,
SEHM, and baseline) are plotted as a function of the training period for model learning in
Fig. 1(a) for the FARC dataset and in Fig. 1(b) for the Indonesia/Timor-Leste dataset. Ta-
ble 2 also shows the SMAPE comparison between the two frameworks for the two datasets.
It can be seen from these results that for both the datasets, the HMM framework results in a
better prediction than the SEHM and the baseline frameworks provided the training period
is long to ensure accurate model learning for the HMM. Further, for the Indonesia/Timor-
Leste dataset, even the baseline sample mean estimator outperforms the SEHM estimator
for large n.

Table 2: Comparison between SMAPE scores with the SEHM and HMM frameworks for
the FARC and Indonesia/Timor-Leste datasets.

FARC Indonesia/Timor − Leste

n SEHM HMM n SEHM HMM

100 46.27% 52.78% 100 46.33% 43.32%
150 42.95% 35.75% 125 45.47% 41.89%
200 40.40% 35.61% 150 42.84% 38.75%
250 40.09% 38.14% 175 45.23% 38.00%
300 39.92% 37.35% 200 43.46% 33.99%
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Figure 1: SMAPE scores for the three models with a) the FARC dataset and b) the
Indonesia/Timor-Leste dataset.
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4. Inferencing: Detecting Spurts and Downfalls in Activity

Motivated by the above studies, in the sequel, we hypothesize that the observations (corre-
sponding to terrorist activity) can be accurately described by a d = 2-state HMM frame-
work with observations following the hurdle-based geometric model as in (8). Our goal is
the early detection of abrupt spurts and downfalls in the activity profile. This is a problem
of significant bearing in counterinsurgency operations as well as policy framing.

4.1 Parametric approach: Viterbi algorithm

The simplest approach to leverage the underlying HMM structure is to develop a parametric
scheme to classify the hidden states (Capabilities) via the use of the Viterbi algorithm [17]
with the converged model parameter estimates from the Baum–Welch algorithm on {Mi}.
A notable disadvantage of this approach is that inferencing on the group’s Capabilities on
a daily basis could lead to a performance mirroring the potential rapid fluctuations in the
observations. This is particularly disadvantageous in making global policy decisions based
on local inferencing of group dynamics.

To overcome this difficulty, we propose inferencing over a δ > 1 day time-window.
For this, we decompose the time-period of interest into disjoint time-windows, ∆n, n =
1, 2, · · · ,K, where ∆n = {(n− 1)δ + 1, · · · , nδ} and K = ⌈Nδ ⌉. The appropriate choice
of δ is determined by the group dynamics and the timelines for inferencing decisions with
typical choices being 7 or 15 days corresponding to a weekly or a fortnightly decision
process. We then assume that the hidden state remains fixed over ∆n:

Si

∣∣∣
i∈∆n

= sn, sn ∈ {0, 1}, (17)

and our goal is to infer sn with the aid of an appropriate set of observations corresponding
to ∆n.

To aid in inferencing, we associate a spurt in activity to either a change in the resilience
of the group or a change in the level of coordination in the group [18–23] (or perhaps both
features). We focus on a set of attack metrics that capture the resilience and coordination
in the group: i) Xn, the number of days of terrorist activity, and ii) Yn, the total number of
attacks, both within the ∆n time-window,

Xn =
∑
i∈∆n

11 ({Mi > 0}) ; Yn =
∑
i∈∆n

Mi, n = 1, 2, · · · , (18)

where 11(·) denotes the indicator function of the set under consideration. Note that Yn/δ is
the average number of attacks per day and thus Yn is a reflection of the intensity of attacks
launched by the group. In general, Xn is more indicative of resilience in the group, whereas
Yn captures the level of coordination better.

With the hurdle-based geometric model in (8), it can be seen that [15]

P
(
Xn = k, Yn = r

∣∣∣Si|i∈∆n = j
)
=

(
δ

k

)(
r − 1

r − k

)
·

(1− γj)
δ−k(γj)

k · (1− µj)
k(µj)

r−k, r ≥ k. (19)

Model parameters learned with the Baum–Welch algorithm with {(Xn, Yn)} as observa-
tions are then used retrospectively (or non-causally) with the Viterbi algorithm for state
classification. The output of the Viterbi algorithm is a state estimate for the period of inter-
est {

Si = ŝn ∈ {0, 1} for all i ∈ ∆n and n = 1, · · · ,K
}
. (20)
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A state estimate of 1 indicates that the group is Active over the period of interest, whereas
an estimate of 0 indicates that the group is Inactive. Transition between states indicates
spurt/downfall in the activity.

This approach is applied to the FARC dataset with a δ = 15 day time-window and the
results are illustrated in Fig. 2(a). As can be seen from this study, the state classification ap-
proach detects even small and non-persistent changes. However, this performance comes at
the cost of model learning (which implicitly assumes model stationarity) and retrospective
state classification (that renders it almost impractical from an applications standpoint).
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Figure 2: (a) State classification with the hurdle-based geometric model for the observation
sequence {(Xn, Yn)} for the FARC dataset. (b) Performance of the three EWMA tests in
spurt detection for the FARC dataset.

4.2 Non-parametric approach: EWMA algorithm

The changepoint detection problem of detecting sudden and abrupt changes in the statistical
nature of observations has been studied for over sixty years; see, for example, [24–26] and
the references therein for a summary of the state-of-the-art of the area.

Motivated by the rich literature of changepoint detection, we now propose a spurt de-
tection approach based on the Exponential Weighted Moving-Average (EWMA) algorithm.
The EWMA algorithm was first introduced by [27] for (continuously) tracking and detect-
ing a change in the mean of a sequence of observations. Here, the test-statistic (Rn) is
a first-order auto-regressive version of the observation process (Zn) to be tracked with
smoothing effected by an appropriately-chosen parameter (λ):

Rn = (1− λ)Rn−1 + λZn, n ≥ 1 (21)

and R0 = 0. The test-statistic is tested continuously against a threshold Aγ and change is
declared at the first instant the test-statistic exceeds the threshold:

τEWMA = inf {n ≥ 1 : Rn ≥ Aγ} . (22)

Aγ is chosen to ensure that the average run length (ARL) to false alarm is at least γ. Small
values of the smoothing parameter λ usually work best in changepoint detection [28,29] as
they smoothen small changes and enhance big changes.

The EWMA framework can be particularized to spurt detection in the activity profile
of a terrorist group by repeatedly applying (22) with Xn and Yn as observations. Two
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parameters {λ1, λ2} ∈ [0, 1] are chosen appropriately and used to update the variables
R1,n and R2,n as follows:

R1,n = (1− λ1)R1,n−1 + λ1Xn (23)

R2,n = (1− λ2)R2,n−1 + λ2Yn (24)

for n ≥ 1 with R1,0 = 0 = R2,0. The best choices of smoothing parameters λ1 and λ2

for changepoint detection are obtained experimentally/numerically since the state-of-the-
art in EWMA design is such that smoothing parameter design is still open, even for simple
models such as Gaussian and exponential densities [29]. We propose three stopping-times
for declaring change: one based on R1,n, another based on R2,n, and the third on a weighted
combination (with weights α and

√
1− α2, α ∈ [0, 1]) of the two test-statistics:

τ1 = inf {n ≥ 1 : R1,n ≥ A1} (25)

τ2 = inf {n ≥ 1 : R2,n ≥ A2} (26)

τweighted = inf
{
n ≥ 1 : αR1,n +

√
1− α2R2,n ≥ A

}
, (27)

where the thresholds A1, A2, and A are chosen to meet the corresponding ARL constraints.
While design of the threshold requires further work, experimental studies suggest that a
threshold of the form

{A1, A2, A} = O (log(γ)) (28)

ensures that {ARL(τ1), ARL(τ2), ARL(τweighted)} = O(γ). Since τweighted combines the
information contained in both {Xn} and {Yn}, it should empirically be a better test than
both τ1 and τ2. Nevertheless, all the three tests could be of potential utility depending on
the nature of the terrorist group.

In Fig. 2(b), we plot the test-statistics: R1,n with λ1 = 0.05, R2,n with λ2 = 0.10,
and αR1,n +

√
1− α2R2,n with α = 0.25. The threshold is designed as {A1, A2, A} =

3 log(γ) for γ = 10. From Fig. 2(b), we see that an appropriate weighted combination of
the metric that captures resilience and the level of coordination in the group performs bet-
ter than either test-statistic taken separately (with the same threshold for all the three tests).
While with the FARC dataset, the weighted sum performs only marginally better than the
resilience-based metric, in general, we expect τweighted to significantly improve the perfor-
mance over either τ1 or τ2. But more importantly, the EWMA algorithm-based approach
detects only persistent changes or changes that last for a sufficiently long duration such
that the changepoint detection methodology can work accurately. In other words, the major
spurts in FARC activity are detected, whereas the minor spurts cannot be detected with
this approach. This is because the method does not incorporate or exploit the underlying
statistical information of {Xn} or {Yn}.

4.3 Non-parametric approach: Majorization theory

We now consider an alternate non-parametric approach for spurt detection. To illustrate this
approach, consider two extreme scenarios: i) a group conducting δ attacks on a specific day
over a δ-day time-window and no other attacks in this period, and ii) a group conducting
one attack on each day of the δ-day period. The former setting correlates well with a group
having a high-degree of coordination, whereas the latter setting would be more amenable
with the belief that the group has a high-degree of resiliency. Rephrasing the above, a met-
ric that measures the degree of “well-spreadness” of attacks (or its lack thereof) over an
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appropriately chosen time-window can be used as an indicator of high resilience (or coor-
dination). On this note, majorization theory provides a theoretical framework to compare
two vectors on the basis of their “well-spreadness” [30].

We apply the theoretical framework of catalytic majorization and the existence of
certain functionals that bijectively capture this relationship, developed in [31], to detect
changes in resilience and coordination. Let M = [M1, · · · ,Mδ] capture the distribution of
frequency of attacks over a certain time-window. We call M the attack frequency vector
and note that by definition M ∈ P(δ), provided that there is at least one attack over this
time-window.

Motivated by the discussion in [31], we consider the following functionals in comparing
two different attack frequency vectors: i) number of attacks over the time-window (denoted
as Zn), ii) normalized power mean for some α > 1, defined as,

NPM
(
M

∣∣
∆n

, α
)
, (

∑
iM

α
i )

1/α∑
i 11 ({Mi > 0})

, (29)

and iii) Shannon entropy, defined as,

SE
(
M

∣∣
∆n

)
, −

∑
i

Mi log(Mi). (30)

Rephrasing the main conclusion of [31], a vector that corresponds to a large Zn and is
more spread-out (indicating a high resilience in the group) results in a larger value for
SE

(
M

∣∣
∆n

)
. On the other hand, a vector that corresponds to a large Zn and is less spread-

out (indicating a high coordination in the group) results in a larger value for NPM
(
M

∣∣
∆n

, α
)

.
Finally, a small value for Zn suggests that the group is an Inactive state.

We now propose a simplistic birth-death process model to track changes in resilience
and coordination. For this, we define two functions that compare the Shannon entropy
and the normalized power mean over ∆n with the corresponding running sample means as
follows:

X̃n =
SE

(
M

∣∣
∆n

)
1
∆

∑∆
i=1 SE

(
M

∣∣
∆n−i

) ; Ỹn =
NPM

(
M

∣∣
∆n

, α
)

1
∆

∑∆
i=1 NPM

(
M

∣∣
∆n−i

, α
) . (31)

We then update two functions that capture the two facets of interest, R(n) and C(n), as
follows:

R(n) = R(n− 1) + τR, n ≥ 1, R(0) = 0, (32)

C(n) = C(n− 1) + τC , n ≥ 1, C(0) = 0, (33)

where pR and pC are appropriately chosen Inactive state penalties, and

τR = 11
(
X̃n > γR, Zn > τ

)
− 11

(
X̃n < γR, Zn > τ

)
− pR · 11 (Zn ≤ τ) (34)

τC = 11
(
Ỹn > γC , Zn > τ

)
− 11

(
Ỹn < γC , Zn > τ

)
− pC · 11 (Zn ≤ τ) . (35)

To restate, τR and τC take four possible values: 1, −1, 0, and pR (or pC), depending
on whether the group is resilient/coordinating, non-resilient/non-coordinating, neither re-
silient nor coordinating, and Inactive, respectively. More importantly, the proposed ap-
proach quickly detects changes in resilience and coordinaton (and allows these changes to
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be categorized) without suffering from explicit model learning delays. Thus, the proposed
approach is of tremendous advantage in practice.

We now consider state classification with the FARC dataset. We use the following
parameters in our study: δ = 15 days, ∆ = 5, α = 2.5, τ = 4, pR = 0.2, pC = 0,
γR = γC = 0.6770, and γR = γC = 0.4513. Fig. 3(a) plots the two statistics, R(n)
and C(n), against the backdrop of Z(n). It can be seen that R(n) decreases initially before
starting to rise in early 2002 (coinciding with Plan Columbia) and again in 2006 coinciding
with the re-election period. On the other hand, C(n) shows only minor spurts over the same
period indicating that FARC was a more resilient group than a group coordinating multiple
attacks.
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Figure 3: Resilience and level of coordination functions for the FARC dataset.

5. Concluding Remarks

The main focus of this paper is in model comparison between the SEHM framework and
the HMM framework that are used to capture the activity of terrorist groups. In particular,
the explanatory and predictive powers of the two frameworks are compared and contrasted,
with specific attention to the FARC and the Indonesia/Timor-Leste datasets. The com-
parison study illustrated the distinctive advantage of the HMM framework in prediction.
Building on this modeling study, we then considered the problem of quick detection of
spurts in the activity profile. We developed a non-parametric majorization theory-based
approach for this task and showed that this approach compares favorably relative to an (im-
practical) parametric approach as well as a non-parametric approach based on the EWMA
algorithm. Future work will consider the application of this approach to a broad swathe of
terrorist groups’ activity profiles.
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