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Abstract

Multi-CriteriaDecision Analysis (MCDA) problems often involve multiple Decision Makers (DMs).

In this paper, we present several decision analysis algorithms, considering both subjective and objec-

tive decision criteria with different strategies to account for uncertainty. We address the uncertainty

and availability of weights for decision criteria, and develop probability scoring for the criteria. We

demonstrate an application of our method with a case study concerning aircraft stringer decisions.
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1. Introduction

In aircraft manufacturing, a stringer is a thin strip of wood, metal, or carbon fiber to which

the skin of the airplane is fastened. Consider the decision of choosing one of three stringer

designs: Stringer I, Stringer II, and Stringer III. There are five decision criteria in this

decision analysis problem. They are cost, cycle time per airplane, labor hours per airplane,

rework rate and Technical Readiness Level (TRL). The cost of capital equipment for each

of the three stringers is given. The criterion cycle time per airplane is used to measure the

time needed to install the stringers per airplane. The criterion labor hours per airplane is

used to measure total labor hours needed to install all stringers per airplane. Simulation

models are developed for manufacturing processes of the three stringers according to their

designs. The scale for TRL is from 1 to 10 and data were collected from 8 Decision Makers

(DMs). The range of rework rate is from 0% to 100%. Ten DMs provided their subjective

estimates of rework rate for the three stringers. Weights were also collected from two DMs

for each of the five decision criteria. In this paper, we apply five Multi-Criteria Decision

Analysis (MCDA) algorithms that involve multiple DMs by modeling the uncertainty in

both types of decision factors and, in particular, uncertainty of weights, to rank the three

stringer designs in aircraft manufacturing.

Multi-Criteria Decision Analysis (MCDA) involving multiple Decision Makers (DMs)

has a broad applicability in finance, public policies, energy planning, nuclear waste, telecom-

munication network planning, and natural resources planning, see Figueira et al. (2005a),

Hayashi (2000), Hajkowicz and Collins (2007), Brown (2009) and Brothers et al. (2009).

Early applications were in military planning (Eckenrode, 1965). Figueira et al. (2005b)

provided a thorough review of MCDA methods. Most MCDA methods study the determin-

istic consequences of alternatives on a set of criteria with sensitivity analysis. T. J. Stewart

reviewed several methods addressing criteria value uncertainties in Figueira et al. (2005a).

Decision criteria that follow distributions marginally and independently were studied in

Hadar and Russell (1969). Keeney and Raiffa (1976) studied the case that utility function

of every alternative has a distribution. Weight information is generally needed or elicited
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from DMs. Instead of asking for weights of criteria and reporting the single best alternative,

Stochastic Multicriteria Acceptability Analysis (SMAA) explores the weight space by con-

sidering the uncertainty of weights, see Lahdelma et al. (1998), Lahdelma and Salminen

(2001) and Tervonen and Figueira (2008). SMAA also takes into account the uncertainties

of criteria values by imposing probability distributions. In the following, we highlight three

aspects of our MCDA algorithms that involved in multiple DMs.

First, we categorize the decision criteria into two types: subjective decision crite-

ria where values are subjective assessments from experts, and objective decision criteria

where values come from historical numeric data or other sources such as simulation. To

model the uncertainty of decision criteria, SMAA requires the specification of distributions.

Lahdelma et al. (1998) assumed a uniform distribution for the criteria value. Lahdelma

et al. (2006) and Lahdelma et al. (2009) assumed a multivariate normal distribution to han-

dle the dependence among criteria and considered dependent uncertainties. In our proposed

methodology, appropriate probability distributions or empirical distributions of objective

criteria are estimated from data. To model the uncertainty of subjective criteria, we sample

the data from a Bayesian posterior distribution. The Bayesian model can naturally handle

the case of missing observations through prior, and it balances the prior and the observa-

tions obtained from DMs.

Second, we study the uncertainties that are embedded in the weights of criteria. The

weights of criteria are usually elicited from the DMs and are very subjective. Similar

to subjective criteria, we construct distributions for weights if weights are provided by

multiple DMs. The Monte Carlo samples drawn from the weights distribution are able to

fully capture the uncertainties in weights. If little or no weights information is available,

we sample the weights from a uniform distribution, as in the SMAA approach.

Third, we show our Bayesian sampling frame work is compatible with other“winning”

measures, such as pairwise winning index that was introduced by Leskinen et al. (2006).

We call the winning measure a “probability score”. For a single criterion, “probability

score” measures the probability that one alternative outperforms another.

The rest of this paper is organized as follows: uncertainty modeling is provided in Sec-

tion 2. In Section 3, we present the scoring methods that are implemented in our decision

analysis algorithms. In particular, we describe the probability scoring. A design case is

used to illustrate the proposed decision analysis methods in Section 4. Finally, we provide

some conclusions and discussion in Section 5.

2. Sampling Methods

Consider a MCDA problem that involves multiple DMs to evaluate m alternatives {A1, A2,

. . . , Am}: there are n1 subjective decision criteria {C1
S , C2

S , . . . , Cn1

S } and n2 objective

decision criteria {C1
O, C2

O, . . . , Cn2

O }. For each subjective decision criteria Cj
S , where j =

1, 2, . . . , n1, its subjective assessment can be collected from a number of different DMs.

Note that the number of DMs for each subjective decision criteria could be different. For

each objective decision criteria C
j
O, the number of its data points could also be different.

The total n1 + n2 weights for n1 subjective decision criteria and n2 objective decision

criteria can be selected from a number of different experts. We also consider the case that

there is no weight information in our methods. In the following, we provide several decision

analysis algorithms to rank the m alternatives. The proposed methods for the multi-criteria

decision making problems consist of two major parts: sampling and scoring. Sampling

deals with uncertainty of criteria values and weights. For each sample, scoring method

transforms the criteria values into utility score. The final total score, which is defined as

the weighted sum of utility scores of each decision criteria, is computed for each sample.
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Consequently, we obtain empirical distribution of total scores for all samples. For each

sample, we can rank each of the total M alternatives from 1 to M . For all samples, we

can count the number of an alternative being ranked rth choice for r = 1, . . . , M . The

rank acceptability index, which is defined as such counted number being divided by total

number of samples, is also obtained for all M alternatives.

2.1 Sampling methods

In this section, we describe the sampling methods for subjective decision criteria, objective

decision criteria, and weights.

2.1.1 Bayesian method

Subjective decision criteria can be categorical variables or continuous variables. For ex-

ample, the decision criterion “Technical Readiness Level” is usually used to assess tech-

nological maturity of designs and its values are subjective input from DMs. The values

of subjective decision criteria can also be continuous. Rework rate is usually a decision

criteria to assess the percentage of parts that need to be reworked for each design and takes

values from 0% to 100%. For a new design, the parts have not been massively manufac-

tured and its rework rate is assessed by DMs. Thus, rework rate is a subjective decision

criteria with continuous values.

Let Xi be the value for a subjective decision criterion from ith DM, where i = 1, . . . , n.

Xi takes l discrete values. Assume Xi follows a multinomial distribution:

Xi|~p i.i.d. ∼ Multinomial(~p), i = 1, . . . , d, (1)

where ~p = (p1, . . . , pl) and pr is the probability of Xi taking rth discrete value. Further,

we assume a prior distribution on the parameters ~p:

~p ∼ Dirichlet(~α = 1, . . . , 1), (2)

where ~α is a vector of length l. The Dirichlet distribution is the conjugate prior for a multi-

nomial distribution. A symmetric Dirichlet distribution with common element values in the

prior vector ~α is often used as a non-informative prior, in which case no prior preference

is placed on any support values. With values in ~α set to 1, the symmetric Dirichlet distri-

bution is equivalent to a uniform distribution over all points in its support. The data from

experts can be reparameterized as ~β = (β1, . . . , βl), where βr =
∑d

s=1 1{Xs=r}. Bayesian

analysis leads to the posterior distribution of ~p as follows,

~p|X1, . . . , Xd ∼ Dirichlet(~γ = ~α + ~β). (3)

With the Bayesian model established, we propose the following 2-stage Bayesian sampling

procedure:

For t from 1 to M ,

Step 1. Sample one ~pt from its posterior distribution ~p ∼ Dirichlet(~γ).

Step 2. Sample one data value Xt from its distribution Xt ∼ Multinomial(~pt).

The samples for each Cj
S with discrete values can be obtained from this Bayesian 2-stage

sampling method, where j = 1, . . . , n1.

For subjective decision criterion with continuous values such as rework rate, several

DMs may provide their own estimates. But it is extremely challenging and unrobust to
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construct a continuous distribution based on only a handful of data points and then sample

from the constructed continuous distribution. To utilize the handful of data points and over-

come this challenge, we first discretize the continuous values and then apply the developed

sampling procedure for categorical values. We categorize the range of the continuous vari-

able into discrete “categories”, [a, b1], (b1, b2], . . . , (bl−1, bl], where l is the total number of

categories, a ≤ b1 ≤ . . . ≤ bl and bl = b. Let Xi be the continuous variable. The dis-

cretization transforms the continuous value Xi into the categorical variable Yi. The value

Xi, br−1 < Xi ≤ br is mapped to Yi = r and the support region of Xi, [a, b], is mapped to

the support region of Yi, {1, 2, . . . , l}. The same Bayesian model for a categorical variable

described above can be applied to a discretized continuous variable. Both the variability in

observations and in distribution parameters will be accounted for by the 2-stage sampling

procedure: first sampling parameters from Bayesian posterior and then sampling criterion

values based on the sampled parameters. Uniquely for continuous variables, a discretiza-

tion and a conversion back to continuous values are added before and after the sampling

procedure. The detailed sampling procedure for subjective continuous criteria is listed as

follows:

For t from 1 to M ,

Step 1. Sample one ~pt from its posterior distribution ~p ∼ Dirichlet(~γ).

Step 2. Sample one discrete value Yt from its distribution Yt ∼ Multinomial(~pt). Record

the value Yt = r.

Step 3. Sample one continuous value Xt from Uniform(br−1,br
).

The samples for each Cj
S with continuous values can be obtained by this Bayesian 2-stage

sampling method, where j = 1, . . . , n1.

2.1.2 Loss function method

We now consider a 1-stage sampling scheme using a single point estimate of the multino-

mial parameter vector ~p. In Bayesian statistics, a loss function is defined as the expected

loss with respect to the posterior distribution of parameters. The optimal parameter esti-

mate is the one that minimizes the expected loss. For quadratic loss functions, the optimal

estimate is the mean of the posterior distribution. In the case of posterior distribution of

~p that follows (3), we have ~̂p = ~γ
1T~γ

. Thus, an alternative to the two-stage procedure, not

accounting for uncertainty in estimation of the parameters of the multinomial expressed in

the Dirichlet prior, is to use the posterior mean of the parameter vector ~p. We then have a

simpler 1-stage sampling procedure for criterion values as follows,

Obtain the posterior mean, ~̂p = ~γ
1T~γ

. For t from 1 to M ,

Step 1. Sample one data value Xt from its distribution Xt ∼ Multinomial(~̂p).

Compared to the 2-stage Bayesian sampling, the 1-stage sampling scheme for the loss

function method has only one stage. In other words, the 1-stage sampling means to sample

criterion values from a single multinomial distribution with its parameters ~p being the pos-

terior mean of (3). As described before, the 1-stage sampling procedure can also be applied

to continuous subjective decision criterion by discretization.
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2.1.3 Sampling of weights

In this section, we first show how to study the uncertainty in the weights from a number of

experts and then describe the method for the case that weights are not provided.

We first consider the case that weights for each decision criteria are collected from

a number of DMs. Each DM assigns weights for n1 subjective decision criteria and n2

objective decision criteria. The values assigned on the weights can be constrained to inte-

gers from 1 to n1 + n2 with n1 + n2 being the most important criterion and 1 being the

least important criterion. Note that ties and missing values are allowed. Since the weights

will be normalized, i.e.
∑n

j=1 wj = 1, the initial values of weight scale is not a con-

cern. Let (wj
1
, . . . , wj

d) denote the weight for the jth decision criterion by d DMs, where

j = 1, . . . , n1 + n2. The random variable W j
i that is the weight by ith DM for Cj

S takes

discrete values from {1, . . . , n1 + n2}. Thus, the 2-stage sampling method and the 1-stage

sampling method can both be applied the weight sampling.

It is known that the weights assigned to criteria play a critical role in the rankings

of alternatives. In practice, DMs may be reluctant to provide the weights due to lack of

knowledge about the relative consequences of different criteria. In the case that weights

are not provided, Lahdelma et al. (1998) introduced Stochastic Multicriteria Acceptability

Analysis (SMAA). The essential idea is to simulate weights uniformly from its space. The

steps of sampling uniformly distributed normalized weights are described in Section 3.2

of Tervonen and Lahdelma (2007). We list the steps as follows to sample one vector of

uniformly distributed normalized weights for c criteria.

Step 1. Simulate c− 1 random numbers from Uniform(0, 1) distribution. Add 0 and

1 to form a vector of length c + 1.

Step 2. Sort the vector in ascending order, (q1, . . . , qc+1).

Step 3. Compute the weights vector as, wi = qi+1 − qi, i = 1, . . . , c.

It is proven by David (1970) that the procedure above would generate uniformly distributed

normalized weights. Given the unconstrained weight space, every alternative is possible to

be the best under a favorable set of criteria weights. For example, if an alternative has the

highest score in criterion 1 and the lowest scores in all the other criteria, a weight vector

of (1, 0, . . . , 0) makes this alternative rank first. Based on a large number of simulations

of weights and criteria values, we can calculate the central (average) weight vector under

which each alternative is ranked first respectively. The decision making is aided by choos-

ing the most sensible set of weights that properly prioritizes the criteria. The alternative

associated with the chosen weights is the best alternative. The central weight vector was

also studied in the SMAA and SMAA-2, see Lahdelma et al. (1998) and Lahdelma and

Salminen (2001).

3. Probability Scoring

Scoring is a process to map the decision criteria data to some numeric value through a

so-called utility function, so that the score quantitatively measures which alternatives are

better based on a set of criteria. We summarize the conventional methods of normalization

tables and interval hull linear mapping, and then implement a probability scoring method

accounting for uncertainties in criteria values and weights based on Bayesian 2-stage sam-

pling.

A normalization table is usually provided by DMs after carefully studying the relation-

ships among the criteria based on experience and thorough discussion. It explicitly lists
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the value range of each criterion and its associated score, see Taque (2005). The limita-

tion of this method is that it does not consider the variation of input from different DMs.

An interval hull linear mapping method was proposed by Tervonen et al. (2011). The key

idea is to learn a mapping function from the criteria values observed, with some extreme

observations removed. For alternative k on criterion j, the sampling procedure can yield

an empirical sampling distribution for the jth criterion. A corresponding 95% confidence

interval can then be obtained. The interval hull for criterion j is the smallest interval that

contains 95% confidence intervals of all M alternatives on criterion j. We assume that there

is a monotonic relationship between criterion values and scores. The two end points of the

interval hull are mapped to the least and the most preferable values in the utility function,

i.e., 0 and 1. The utility or mapping function is then assumed to be linear between the two

end points. The interval hull based on 95% confidence intervals ensures the robustness of

scores to outliers. The linear mapping is a simple way to implement and interpret. The

DMs may apply a more sophisticated mapping function to the interval hull in order to tailor

the method to a specific problem.

Here, we propose probability score to measure the probability that one alternative out-

performs the other alternatives for a given decision criteria. Let X1 denote the criterion

variable for alternative 1, and X2 denote the criterion variable for alternative 2. If the higher

the criterion value, the better the alternative, the probability score of X1 is then defined as

Pr(X1 > X2) and the score of X2 is Pr(X2 > X1). If the lower the criterion value,

the better the alternative, the probability score of X1 is then defined as Pr(X1 < X2)
and the score of X2 is Pr(X2 < X1). If the criterion is a categorical variable, the

probability score is adjusted by adding half of the probability of X1 equaling to X2, i.e.

Pr(X1 > X2) + 0.5Pr(X1 = X2). In the follow, we describe the proposed probability

scoring methods for both subjective decision criteria and objective decision criterion. Note

that the algorithm below is based on the Bayesian sampling procedure as described before.

For one subjective criterion:

For sample t from 1 to M ,

Step 1. Sample one parameter for Alternative 1, ~p1
t , from its posterior distribution; Sample

one parameter for Alternative 2, ~p2
t , from its posterior distribution.

Step 2. Therefore, Criterion value of Alternative 1, X1
t , follows Multinomial(~p1

t);

Criterion value of Alternative 2, X2
t , follows Multinomial(~p2

t); Calculate Pr(X1
t < X2

t ).

If the preference direction is increasing, probability score s12 = Pr(X1
t > X2

t ). If the

preference direction is decreasing, probability score s12 = Pr(X1
t < X2

t ). Repeat the

pairwise comparison for any two alternatives (total m alternatives).

Step 3. Summarize all pairwise comparison scores in a matrix













0 s12 · · · s1m

s21 0 · · · s2m

...
...

. . .
...

sm1 sm2 · · · 0













.

Calculate the row sums, then divided by (m− 1). s̄k =
∑m

l=1 skl/(m− 1), which

represents the average probability of alternative k outperforming the others. Thus, we

obtain a vector of probability scores (s̄1, . . . , s̄m) for each alternative on one subjective

criterion under sample t.

For objective criteria, we bootstrap the observed values to get another sample, denoted as

Sample t. We then calculate the pairwise probability score Pr(X1
t > X2

t ) by convolution
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over empirical distributions of X1
t and X2

t . Note if the sample size for an objective criterion

is large, bootstrapping may not be necessary. The probability scores calculated from the

original sample will be very close to the scores calculated from bootstrapped samples. We

can save some computing time by computing the scores based on the original sample only.

The probability score derives from the probability of one alternative outperforming the

other. Its value is from 0 to 1, with 1 meaning a winner, 0 meaning a loser and 0.5 meaning

the two alternatives having equal performance. We can rescale the original probability

scores from the support [0, 1] to a new scale [−1, 1]. In the new score scale, 1 means a

complete winner, −1 means a complete failure and 0 means that the two alternatives have

the same performance.

4. Application of MCDA Algorithms to Aircraft Stringers

As described before, there are five decision criteria in the aircraft stringers selection prob-

lem. They are cost, cycle time per airplane, labor hours per airplane, rework rate and

Technical Readiness Level (TRL). Rework rate and TRL are two subjective decision cri-

teria. Simulation models are developed for manufacturing processes of the three stringers

according to their designs. In this case study, we have 200 simulation runs for the cycle

time per airplane, and 100 simulation runs for the labor hours per airplane. Note that miss-

ing values are allowed in our algorithms. Ties in weights are also allowed for decision

criteria, see Table 1. A normalization table is provided in Table 2.

Decision Factor weight from DM1 weight from DM2

cost 5 5

cycle time per airplane 1 2

labor hours per airplane 2 2

rework rate 3 4

TRL 4 3

Table 1: Weights of Decision Criteria.

Score 10 9 8 7 6 5 4 3 2 1

cost 0- 50- 80- 90- 100- 110- 120- 130- 140- 150-

50 80 90 100 110 120 130 140 150 160

TRL 10 9 8 7 6 5 4 3 2 1

rework 0%- 10%- 20%- 30%- 40%- 50%- 60%- 70%- 80%- 90%-

rate 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

labor 0.5K- 1.0K- 1.5K- 2.0K- 2.5K- 3.0K- 3.5K- 4.0K- 4.5K- 5.0K-

hours 1.0K 1.5K 2.0K 2.5K 3.0K 3.5K 4.0K 4.5K 5.0K 5.5K

cycle 100- 200- 300- 400- 500- 600- 700- 800- 900- 1K-

time 200- 300- 400- 500- 600- 700- 800- 900- 1K- 1.1K

Table 2: Normalization Table for Stringer Study.

With weights, we provide five decision analysis algorithms. A combination of two

sampling procedures (2-stage sampling and 1-stage sampling) and two scoring methods

(normalization table and interval hull linear mapping method) yields four decision analy-

sis algorithms. The fifth algorithm is based on probability scoring method that uses the

Bayesian 2-stage sampling method for subjective decision criteria. For each decision anal-

ysis algorithm, 50,000 samples of criteria values and weights are generated from corre-

sponding Bayesian 2-stage sampling procedure or 1-stage sampling procedure. Using the

corresponding scoring method in each algorithm, we have 50,000 total weighted scores.
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Algorithm Stringer Mean 95% CI

1-stage sampling,

normalization table

Stringer I 7.03 (5.44, 8.21)

Stringer II 7.56 (6.06, 8.54)

Stringer III 7.99 (6.47, 8.93)

2-stage sampling,

normalization table

Stringer I 7.02 (5.38, 8.21)

Stringer II 7.56 (6.06, 8.56)

Stringer III 7.99 (6.47, 8.93)

1-stage sampling, interval

hull linear score

Stringer I 0.34 (0.12, 0.57)

Stringer II 0.64 (0.43, 0.80)

Stringer III 0.72 (0.51, 0.89)

2-stage sampling, interval

hull linear score

Stringer I 0.34 (0.12, 0.56)

Stringer II 0.64 (0.43, 0.80)

Stringer III 0.72 (0.51, 0.89)

probability scoring

Stringer I -0.47 (-0.73,-0.19)

Stringer II 0.03 (-0.07, 0.13)

Stringer III 0.44 (0.16, 0.69)

Table 3: Mean and 95% Confidence Interval of Total Weighted Scores.

Algorithm Stringer Rank 1 Rank2 Rank3

1-stage sampling,

normalization table

Stringer I 0.07 0.24 0.69

Stringer II 0.25 0.54 0.21

Stringer III 0.68 0.22 0.10

2-stage sampling,

normalization table

Stringer I 0.08 0.24 0.68

Stringer II 0.24 0.54 0.22

Stringer III 0.68 0.22 0.10

1-stage sampling, interval

hull linear score

Stringer I 0.01 0.04 0.95

Stringer II 0.25 0.72 0.03

Stringer III 0.74 0.24 0.02

2-stage sampling, interval

hull linear score

Stringer I 0.01 0.04 0.95

Stringer II 0.26 0.71 0.03

Stringer III 0.74 0.25 0.01

probability scoring

Stringer I 0.00 0.00 1.00

Stringer II 0.01 0.99 0.00

Stringer III 0.99 0.01 0.00

Table 4: Rank Accpetability Index for the Five Decision Analysis Algorithms.

Table 3 shows the means and 95% confidence intervals (CIs) of total weighted scores for

the three stringers from each of the five decision algorithms. The higher the total weighted

score, the better the design. All five algorithms show that Stringer III is the best design,

Stringer II is the second best design, Stringer III is the third best design. Table 4 shows

the rank acceptability index for the three stringers from each of the five algorithms. “Rank

1” column shows the probability of each stringer to be the best design. “Rank 2” column

shows the probability of each stringer to be the second best design. “Rank 3” column shows

the probability of each stringer to be the third best design. Again, all five algorithms yield

a set of consistent results as shown in Table 3.

If weights are not available, we will use the sampling methods for weights in Section

2.1.3. The decision analysis is taken by choosing the most sensible set of central weights.

Using the 1-stage sampling procedure and normalization Table 2, we choose the central

weight vector with heavy weights on cost, cycle time per airplane, and labor hours per

airplane. Our study shows that Stringer III is still the best design.
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5. Conclusion and Discussion

Motivated by a real and typical decision problem in airplane manufacturing industry, we

separate decision criteria by their nature into subjective and objective criteria, and treat

them differently in the construction of the sampling distribution. All the uncertainties in

criteria values, weights and uncertainties in sampling distribution parameters are consid-

ered in one coherent model through a sampling step and a scoring step. We explored in

total five algorithms by combining the Bayesian 1-stage and 2-stage sampling procedures

with normalization table and interval hull linear mapping for scoring, and embedding a

pairwise winning index with the Bayesian 2-stage sampling scheme as our “probability

scoring” method. Note that the “probability scoring” idea is related to the pairwise win-

ning index introduced by Leskinen et al. (2006). Our contribution here is to implement this

general pairwise index idea in this decision problem setting, where the nature of criteria,

uncertainty of subjective criteria values from multiple DMs, uncertainty of weights, un-

certainty of sampling distribution parameters are all considered under the unified Bayesian

sampling and scoring approach. In our study of three aircraft stringers, the five algorithms

and two metrics (total weighted score and rank acceptability index) give the consistent

rankings for the three stringers. However, it is likely that the five algorithms can give dif-

ferent results for some other decision analysis problems. Thus, some extensive simulation

study is needed to compare the performance of the given MCDA algorithms, and it may be

worth the development of some ensemble MCDA algorithm.
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