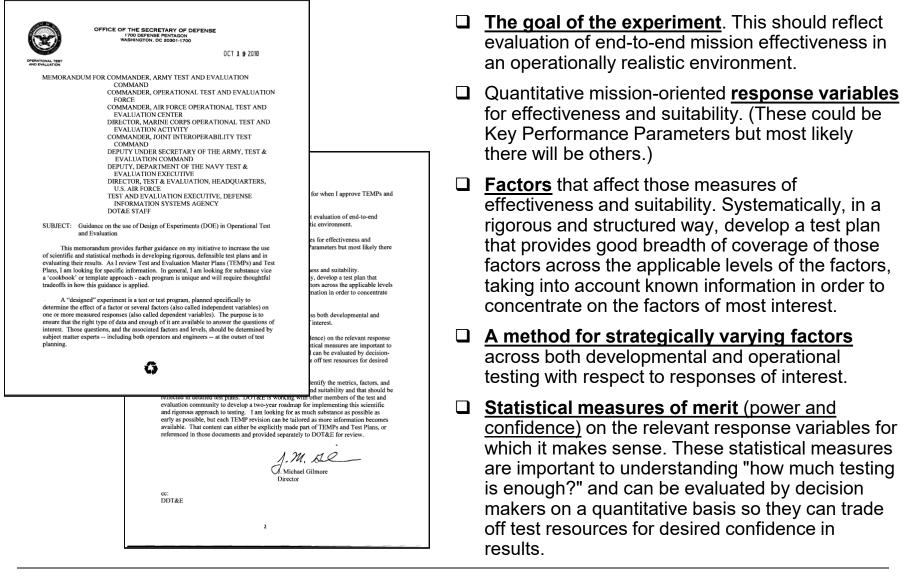
Empirical Signal-to-Noise Ratios from Operational Test Data

Dr. Matthew R Avery, Institute for Defense Analyses

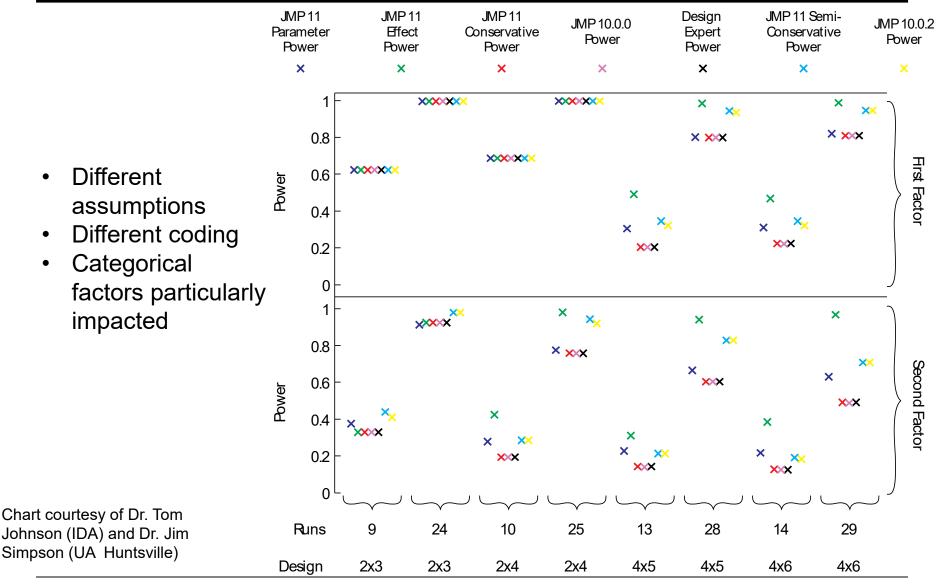


- Using signal-to-noise ratios for operational test planning
- Signal-to-noise ratios for binary responses
- Summary of results
- Case Study: KC-46A
- Recommendations & next steps

DOT&E Guidance

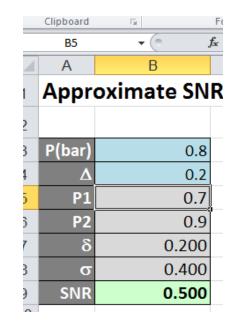
Dr. Gilmore's October 19, 2010 Memo to OTAs

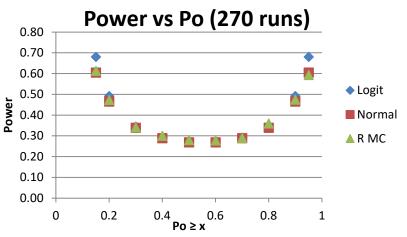
DOT&E requires power analysis to justify test size/duration for all operational tests


- JMP and Design Expert are common tools
 - » Both require Signal-to-Noise Ratio (SNR) as an input
- Signal: Change in response per change in a factor's level
- Noise: Root Mean Square Error (RMSE)

Allas	Terma						
Design							
Run	Continuous	2-level	3-level				
1	1	Α	С				
2	-1	Α	D				
3	-1	В	E				
4	1	Α	E				
5	1	В	D				
6	-1	A	D				
7	-1	Α	С				
8	1	В	D				
9	-1	В	E				
10	1	Α	E				
11	0	В	С				
12	0	В	С				
Deale	n Evelvetia						

⊿ Power Analysis				
Significance Level		0.05		
Signal to Noise Ratio		2		
Error Degrees of Freedom		7		
Power				
Effect	Lower Bound	Numerator DF		
Continuous	0.774	1		
2-level	0.842	1		
3-level	0.643	2		
Variance Inflation Factors				


Aside: Power calculations can vary dramatically by software package and version



12/22/2021-5

- For some DOD systems, binary response variables are unavoidable
 - Message completion rate
 - Torpedo hit/miss
- SNR framework doesn't apply well to binary response variables
 - Signal
 - » Based on change in p?
 - » Based on log odds ratio?
 - Noise depends on \bar{p}
 - No software solution available
- Work-around allows use of software¹
 - Normal approximation conservative relative to logit method
 - Resulting power estimates close to what you'd get through simulation

¹Dealing with Categorical Data Types in a Designed Experiment Part II: Sizing a Designed Experiment When Using a Binary Response, Dr. Francisco Ortiz, AFIT 12/22/2021-6 STAT T&E COE; www.AFIT.edu/STAT

IDA What SNR values are we currently using?

• SNR

- STUAS: SNR of 0.5 for NIIRS, 2 for SPOI
- AAV-SU: SNR of 1.3
- AMISS: SNR of 2
- Firescout: SNR of 1.5
- MNRV: 2
- JLTV: SNR=0.5, 1, 2

Effect Sizes

- APB 5: Δ=0.3, 0.2, 0.15
- AMPV MS B TEMP: Δ=0.3, 0.25, 0.2
- STUAS IOT Test Plan: Δ=0.2
- MNRV: Δ=0.32

Are these values reasonable?

Goal: Determine what size effects are observed in real test data

Fitting the model

- Fit a plausible, fully estimable model
- All two-way interactions if possible
- Reduce model if necessary (estimability, degrees of freedom, model overfit, etc.)
 - Note: Goal *is not* to fit optimal model

For continuous response variables:

- Noise is RMSE
- Signal:
 - For categorical factor, the signal is β (R default 0-1 coding used)
 - For continuous factor, the signal is $\beta(\mu_{75} \mu_{25})$
 - » μ_n is the *n*th percentile for that factor
 - » Many data sets have a few "extreme" data points

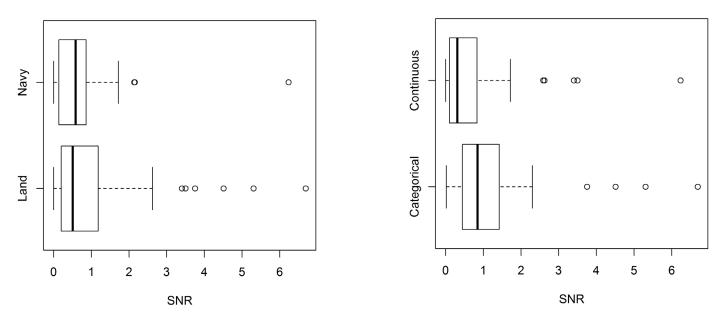
For categorical response variables:

- Using "workaround", all we need is to estimate Δ
- Begin by computing \bar{p} :
 - Literally estimated by taking average over all effects:
 - $\bar{p} = \beta_0 + \frac{1}{m} \sum \beta_i^*$, where *m* is the number of effects estimated, and $\beta^* = \frac{1}{m_i} \sum \beta_j^i$
- Estimating ∆:
 - For categorical factor, the signal is inverse_logit($\bar{p} + \beta$)
 - For continuous factor, the signal is inverse_logit($\bar{p} + \beta(\mu_{75} \mu_{25})$)
 - » μ_q is the *q*th percentile for that factor

Summary of programs involved in this study

System	Response Variable	n	
Aegis	P(Raid Annihilation)	nihilation) 22	
Airborne Mine Neutralization System	Time to neutralize	33	
Virginia Class Submarine	Bearing Prediction Error	147 256	
Chemical Agent Detector	Time to Detection	9,461	
LPD-17 (amphibious combat ship)	P(Impact)	296	
Mk54 CBASS Torpedo	P(Hit)	115	
Mk48 Torpedo	P(Hit)	35	
ARC-I Sonar	Difference in detection time	100	
Patriot	P(Intercept)	3,472	
RQ-21a Tactical UAV	Target Location Error	32	
Stryker Mobile Gun System	Correct Target Classification	464	
Global Broadcast Service	P(Successful Communication)	358	87
Paladin Self-Propelled Howitzer	Miss Distance	71	
Shadow Tactical UAV	Target Location Error	285	

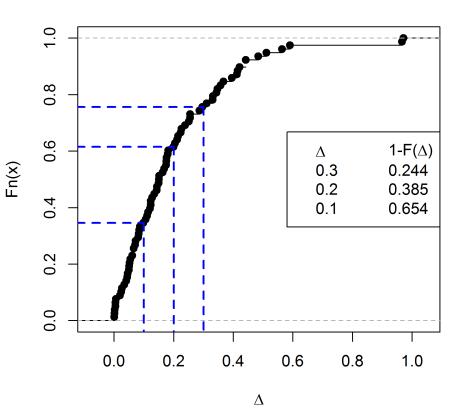
12/22/2021-10



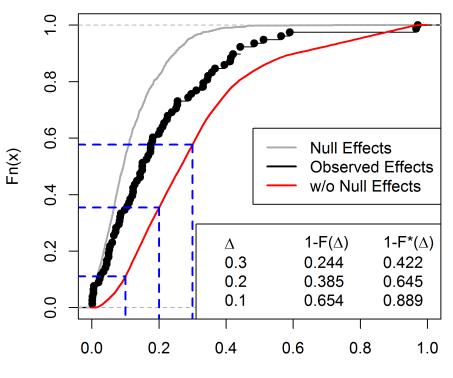
Mean	0.888
Median	0.534
75 th percentile	1.151
90 th percentile	2.026

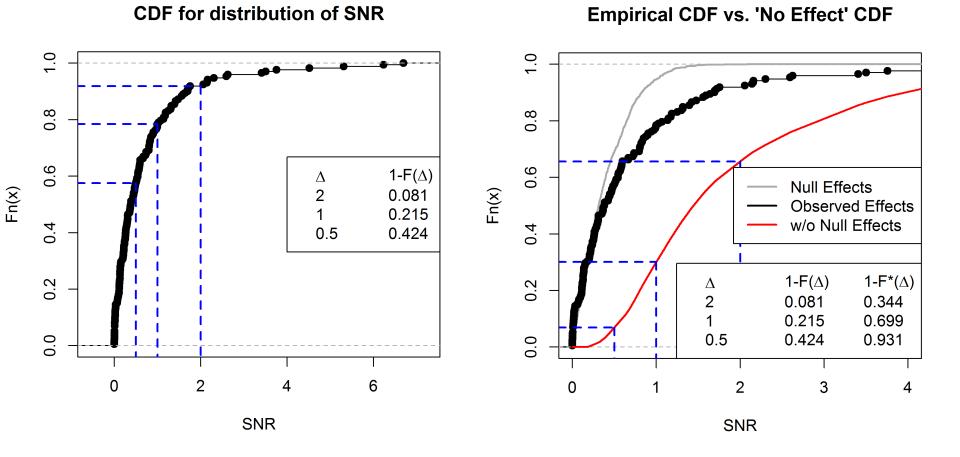
- Over 90% of observed effects have SNR < 2
- Minimal variation across warfare group
- Categorical factors had higher SNR
 - » Possibly an artifact of estimation method

SNR for Land vs. Navy Programs



- Some effects are very large
 - Largest come from continuous factors observed over large ranges
- Typical values for Δ when sizing tests: 0.3, 0.2, 0.1
 - Median effect size: 0.151
- Many effect sizes very close to 0
 - Most (11/14) with $\Delta < 0.05$ are interactions
 - How many are just "noise"?


CDF for distribution of Delta


- Gray curve: Simulated data where "null" model is true
 - Most effects are small
 - Median=0.093
- Subtracting "null" effects and normalizing yields red curve
 - Distribution of true effects
 - Most are greater than 0.2
 - Nearly all greater than 0.1

Empirical CDF vs. 'No Effect' CDF

Δ

IDA Empirical SNR for continuous data

12/22/2021-14

- After normalizing:
 - 59% of SNRs between 0.5 and 2
 - 46% of ∆s between 0.1 and 0.3
- How do these values compare to what we've used for test planning?
 - Planning for SNR=2 or Δ =0.3 is probably optimistic
 - » Only 34.4% of effects have SNR>2
 - » Only 42.4% of effects have Δ >0.3
- Look at the ranges
 - Compare power estimates over range of SNRs/Δs with likelihood of observing effects of that size
 - » Ranges should at least cover 0.5 (SNR) or 0.1 (Δ)
- Is it appropriate to generalize across all systems?
 - Possibly....

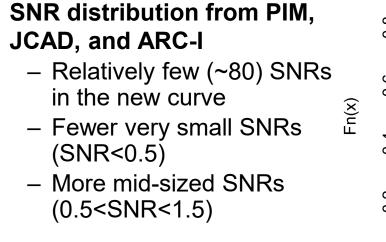
IDA Customization: Case Study for KC-46A

KC-46 GWEF testing

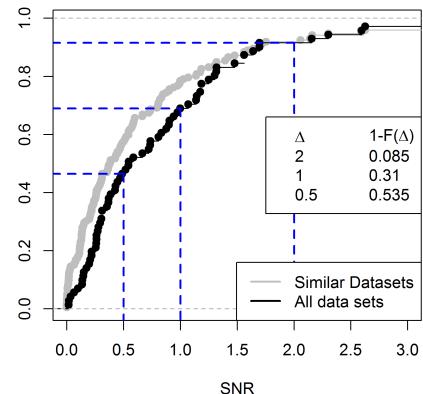
- KC-46 is new in-flight refueler
 - » Replacing KC-135
- Objective: Characterize performance for LAIRCM on KC-46 against representative surface-to-air threats

Test planning using empirical SNR distributions

- Identify similar tests
 - » Response variable
 - » Number of factors/levels
 - » Test size
- Compute "null" distribution based on these tests
- Estimate CDF for SNRs
 - » Difference between distribution of SNRs from similar tests and "null" distribution


IDA Null distribution for KC-46 test design

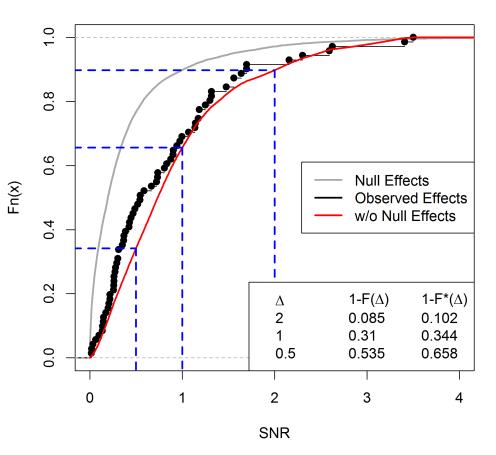
- Response Variable: Miss distance (continuous)
- Factors
 - IRCM status (Wet vs. Dry)
 - » 2 levels
 - Scenario
 - » 3 levels (categorical)
 - Declare Time
 - » 5 levels (continuous)
 - Range
 - » 5 levels (continuous)
 - Azimuth
 - » 7 levels (categorical)
- Total of n=500 data points
- Most similar data sets:
 - PIM, JCAD, ARC-I


What is "similar"?

- Physically
 - Response variable
 - System type
- Statistically
 - Sample size
 - Number of factors
 - Levels of factors

IDA SNR distribution for similar systems to KC-46

SNR CDF for chosen systems



•

IDA Custom SNR CDF for KC-46

- Using custom CDF, we can estimate distribution of "real" effects for this test
 - 25% have 1<SNR<2
 - 30% have 0.5<SNR<1
 - Based on this data, nearly 2/3 of SNRs from similar data sets to KC-46 are smaller than 1
 - » For all data sets, only 30% of effects have SNR<1</p>
- How much power does this design have for these SNRs?

Custom empirical CDF for KC46

- Major Conclusions
 - After normalizing:
 - » 59% of SNRs between 0.5 and 2
 - » 46% of Δs between 0.1 and 0.3

• Future Work

- Additional data sets must be added for "customized" approach to be effective
- Assess accuracy of *a priori* estimates of SNR
 - » Are the values currently being used in test plans reflective of the SNRs observed once the tests have been conducted?
- Assess uncertainty of estimates
 - » Confidence intervals, sensitivity testing

Recommendations

- Ceteris paribus, use SNR no greater than 1 (70%) for power calculations
- Ceteris paribus, use Δ no greater than 0.15 (76%) for power calculations
- When power ranges reported, should include SNR=0.5 and Δ =0.1