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Extremes and Time Series Modeling

Do fitted models actually capture the desired (extremal)

characteristics of the data? 

• How do we assess “fitted” (expected) with “observed”?

• Need a mechanism for measuring extremal dependence.

Goal of this talk: Describe the extremogram which may be useful 

as a tool for addressing this question.  That is, how well does the 

“sample” extremogram match up with the “population” 

extremogram?
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Illustration (Windspeed at Kilkenny)
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Illustration with ACF
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ACF Plots for Kilkenny

ACF of the from 15 simulated realizations from fitted AR model + 
real data.
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ACF Plots for Kilkenny

ACF of the squares from 15 simulated realizations from fitted AR 
model + real data.
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Game Plan

7

 Extremes and time series modeling
• A motivating example
• Starting point: GARCH vs SV

 The Extremogram
• Examples
• Sufficient conditions for existence: regular variation
• Empirical extremogram
• Illustrations (permutation procedures)
• Cross-extremogram (devolatilizing/deGARCHing)

 Application to spatial processes
• Kernel estimate of extremogram
• Rainfall data
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Characteristics of financial time series

Define Xt = ln (Pt) - ln (Pt-1)   (log returns)

• heavy tailed

P(|X1| > x) ~ RV(-),     

• uncorrelated

near 0 for all lags h > 0

• |Xt| and Xt
2 have slowly decaying autocorrelations

converge to 0 slowly as h increases.

• process exhibits ‘volatility clustering’.

)(ˆ hX

  )(ˆ  and  )(ˆ 2|| hh
XX 
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Example: Log returns for IBM 1/3/62-11/3/00 
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Starting point: GARCH vs SV

Xt = t Zt (observation eqn in state-space formulation) 

(i) GARCH(1,1)

(ii) Stochastic Volatility 

)1,0(IID~}{  ,2
11

2
110

2
tt tt-t-tt Z σβ Xαα,   σZX 

Key question:

What intrinsic (extremal?) features in the data (if any) can be used 
to discriminate between these two models?

)N(0, IID~}{   , log log    , 22
110

2   ttttttt ZX
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The extremogram of a stationary time series {Xt} can be viewed as the 
analogue of the correlogram in time series for measuring dependence in 
extremes (see Davis and Mikosch (2009)). 

Definition:  For two sets A & B bounded away from 0, the extremogram
is defined as 

A,B(h) = limxP(Xh ϵ xB | X0 ϵ xA)

= limxP(X0 ϵ xA, Xh ϵ xB)/P(X0 ϵ xA),

for h = 0, 1, …, provided the limit exists, where Xh=(Xh,Xh+1,…,Xh+k).

Remark: This definition requires that the limit exists.  
a)  exists for heavy-tailed time series (see forthcoming slide) 
b)  exists for some light-tailed time series w/ special choices of A and B.
c)  extremal dependence depends on the choice of sets A & B.

The Extremogram
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If one takes A=B=(1,) and k = 0, then

A,B(h) = limx P(Xh >x | X0 >x) = (X0,Xh)

often called the extremal dependence coefficient ( = 0 means 

independence or asymptotic independence).

Other choices of A and B can lead to interesting extremograms:

• P(X1  < -x | X0 < -x)    (negative return followed by a neg return)

• P(X1  > x | X0 < -x) (neg return followed by a pos return)

• P(X1  + ∙ ∙ ∙ + X4 > 2x | X0 < -x) (neg return followed by a big pos

return aggregated over next 4 days)

• P(X1 > x, . . . , X4 > x | X0 > x) (pos return followed by a pos

return in next 4 days)

The Extremogram (cont)
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Let A = B = (1,), then

A,B(h) = limxP(X0  > x, Xh > x)/P(X0 > x)

Gaussian Processes: In this case, 

A,B(h) = 0 for all h > 0  (asymptotic independence).

connected to the Gaussian copula. 

GARCH: In this case 

 A,B(h) > 0 for all h > 0, 

but decays to 0 geometrically fast.

SV process:  

In this case, 

 A,B(h) = 0 for all h > 0.

The Extremogram: examples

)N(0, IID~}{  , log    , 2
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Let A = B = (1,), then

A,B(h) = limxP(X0  > x, Xh > x)/P(X0 > x)

AR(1): Xt=  Xt-1 + Zt ,  {Zt}~IID Cauchy.  Then

A,B(h) = max(0, h).

Note if  < 0, then extremogram alternates between positive #’s and 0

MaxMA(2): Let (Zt) be iid with Pareto distribution, i.e.,  P(Z1 > x) = x-

for x 1, and set Xt = max(Zt, Zt-1, Zt-2). Then 
A,B(h) = 1    for h = 0. 

= 2/3  for h = 1
= 1/3  for h = 2
= 0,    for h > 2.

The Extremogram: examples
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Regular variation of X=(X1, . . . , Xk): (heavy-tailed analogue of 
multivariate Gaussian)

(i) The radial part |X| is heavy-tailed, i.e.,

P(|X|> tx)/P(|X|>t)  x-

(ii) The angular part X / |X| is asymptotically independent of the 
radial part |X|, i.e., there exists a random vector   Sk-1 such that

P(X/|X|   | |X|>t) w P(   )    as t  ∞.

(w weak convergence on Sk-1 = unit sphere in Rk) .  

• P(  ∈ ) is called the spectral measure

•  is the index of X.

Definition: A time series {Xt} is regularly varying if all the finite 
dimensional distributions are regularly varying.

Regular Variation — multivariate case

22
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Facts 

1.   The extremogram of a RV stationary time series {Xt} exists for all 
choices of sets A & B bounded away from the origin.  

2. Many heavy-tailed time series (GARCH and SV) are regularly 
varying.

Regular Variation and the Extremogram
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A natural estimator of the extremogram, 
஺,஻ߩ ݄ ൌ 	lim	ݔܲሺܺ௛	߳	ܤݔ	|	0ܺ	߳	ܣݔሻ

based on observations, ܺ1, . . . , ܺ݊, is the empirical extremogram
defined by

where ܽ݉ is the 1 െ 1/݉ quantile of |ܺݐ|.	For the theory to work, need

݉௡		∞ with ݉/݊		0.	

Under suitable mixing conditions, a CLT for the empirical estimate is 
established in D&M (2009). 

The Empirical Extremogram
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After first establishing a joint CLT for the numerator and denominator, we 
obtain the limit result

where m(h) is the ratio of expectations (pre-asymptotic extremogram), 
P (am

-1X0 ϵ A, am
-1Xh ϵ B)/ P (am

-1X0 ϵ A).

Now provided a bias condition, such as

(n/m)1/2 (mP (am
-1X0 ϵ A, am

-1Xh ϵ B) – h(AB))  0,

holds, then m(h) can be replaced with A,B(h).  This condition can often 
be difficult to check. 

The Empirical Extremogram — central limit theorem
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Application to Five-Minute Return Data (US/DM) exchange 
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Extremogram A=B=(1,)

Application to Five-Minute Return Data (US/DM) exchange 
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Extremogram A=B=(1,)

Application to Five-Minute Return Data (US/DM) exchange 
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Extremogram A=B=(1,)

Application to Five-Minute Return Data (US/DM) exchange 
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A natural way (not often used in time series) for testing serial 
correlation is to compute the ACF for random permutations of the 
data.  If the sample ACF appears more extreme than the ACFs based 
on random permutations, then there is evidence of serial correlation.  
We apply the same idea to the extremogram.  

Resampling and Testing for Serial Dependence
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A natural way (not often used in time series) for testing serial 
correlation is to compute the ACF for random permutations of the 
data.  If the sample ACF appears more extreme than the ACFs based 
on random permutations, then there is evidence of serial correlation.  
We apply the same idea to the extremogram.  
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Extremogram for residuals from subset AR(18) and from GARCH 
A=B=(1,)

Application to Five-Minute Return Data (US/DM) exchange 
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Extremogram for residuals from subset AR(18) and from GARCH 
A=B=(1,)

Application to Five-Minute Return Data (US/DM) exchange 

Residuals from AR Residuals from GARCH
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Log-returns for DAX and Nikkei (Apr 4, `84-Oct 2, `09
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Extremogram for FTSE, S&P, DAX, Nikkei
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Extremogram for FTSE, S&P, DAX, Nikkei
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Cross-Extremogram FTSE and SP
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Strategy:  Devolatilize the component series before computing the 
extremogram.  This is analogous to the issue of spurious cross-
correlations in a time series without whitening the series first.

Cross-Extremogram
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Devolatilizing (deGARCHing) S&P

Extremogram for S&P: significant for large number of lags ~40+

Devolatilize S&P by fitting GARCH(1,1):
ݐܺ ൌ 6.28݁ െ 7 ൅ .057ܺ௧ିଵଶ

	
൅ ௧ିଵଶߪ939. ଵ/ଶܼݐ,

	ሼܼݐሽ	~	ܦܫܫ	ݐሺ6.14ሻ,
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Devolatilizing S&P

Extremogram for S&P: significant for large number of lags ~40+

Devolatilize S&P by fitting GARCH(1,1):
ݐܺ ൌ 6.28݁ െ 7 ൅ .057ܺ௧ିଵଶ

	
൅ ௧ିଵଶߪ939. ଵ/ଶܼݐ,

	ሼܼݐሽ	~	ܦܫܫ	ݐሺ6.14ሻ,
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FTSE and DAX have largest extremogram at lag 0.
- proximity of the two countries
- membership in the EU

Second row (conditional on S&P) has significant extremogram at 
lag 1.  Given a significant left tail event today, implies extreme 
left tail event in FTSE, DAX, and Nikkei the following day.  

- FTSE, DAX close at 11:30am (EST), Nikkei at 1:00am EST, 
so the ripple effect of S&P will not be felt to the next day 
(possibly current day for FTSE and DAX).

No symmetry at lag 1 (compare second 
column and second row).  

-Extreme event in FTSE and DAX 
will have an impact the same day 
on S&P (not so much for Nikkei).
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Setup:  Let ܺ ݏ 	 be a stationary (isotropic?) spatial process defined on 	ݏ ∈

Թଶ (or on a regular lattice ݏ ∈ Ժଶ). 

Extremogram in Space
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Extremal Dependence in Space and Time

49
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Data from Naveau et al. (2009).  Precipitation in Bourgogne of France; 51 year 
maxima of daily precipitation.  Data has been adjusted for seasonality and 
orographic effects.

Illustration with French Precipitation Data
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Setup:  Let ܺ ݏ 	 be a RV stationary (isotropic?) spatial process defined on 

ݏ	 ∈ Թଶ (or on a regular lattice ݏ ∈ Ժଶ).  Consider the former—latter is more 

straightforward.

Lattice vs cont space

஺,஻ߩ ݄ ൌ lim ݔ ܲ ܺ ݏ ൅ ݄ 	ܤݔ	߳	 	ܺ ݏ ,ሻܣݔ	߳	 	݄ ∈ Թଶ
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France Precipitation Data
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Random pattern

random pattern

h = 1; # of pairs = 0
h = 1 േ	.25
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Random pattern

random pattern

Note: 
• Expanding domain asymptotics: domain is getting bigger.
• Not infill asymptotics:  insert more points in fixed domain.  
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Estimating the extremogram--random pattern

Setup:  Suppose we have observations, ܺ ଵݏ , … , ܺ ேݏ 	at locations 

,ଵݏ … , ே೙ݏ of some Poisson process ܰ	with rate ߥ in a domain ܵ௡ ↑ Թଶ.

Here, ௡ܰ ൌ ܰ ܵ௡ ൌ	number of Poisson points in ܵ௡, ௡ܰ~ܲݏ݅݋ ߥ ܵ௡ .

Weight function ݓ௡ሺݔሻ: Let ݓ ⋅ 	be a bounded pdf and set

௡ݓ ݔ ൌ
1
௡ଶߣ
ݓ

ݔ
௡ߣ

,	

where the bandwidth ߣ௡ → 0	and		ߣ௡ଶ ܵ௡ → ∞.
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Estimating extremogram--random pattern

஺,஻ߩ ݄ ൌ lim ݔ ܲሺܺ ݏ ൅ ݄ ,ܤݔ	߳	 ܺ ݏ ሻ/ܲሺܺܣݔ	߳	 ݏ ,ሻܣݔ	߳	 ݄ ∈ Թଶ

Kernel estimate of ߩ:

ො஺,஻ߩ ݄ ൌ

݉௡
ଶߥ ܵ௡

׬ ׬ ௡ሺ݄ݓ ൅ ଵݏ െ ܫଶሻݏ ܺ ଵݏ ∈ ܽ௠ܤ ሺܺܫ ଶݏ ∈ ܽ௠ܣௌ೙
ሻௌ೙
ܰଶሺ݀ݏଵ, ଶሻݏ݀

݉௡
|௡ܵ|ߥ ׬

ܫ ܺ ݏ ∈ ܽ௠ܣ ܰሺ݀ݏሻௌ೙

Note: ܰଶሺ݀ݏଵ, ଶ)ൌݏ݀ ܰ ଵݏ݀ ܰ ଶݏ݀ ܫ ଵݏ ് ଶݏ is product measure off the 

diagonal. 

ܵ௡ ௡ଶߣ

݉௡

ଵ
ଶ
ො஺,஻ߩ ݄ െ ஺,஻,௠ߩ ݄ → ܰ 0, Σ ,

Limit theory:
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Simulation of spatial extremogram

57

Box-plots based on 100 replications of BR on nonlattice

௡ߣ ൌ 1/ log ݊ (left), ௡ߣ ൌ 5/ log ݊ (right)
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Data Example:  extreme rainfall in Florida

58
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Data Example:  extreme rainfall in Florida
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Radar data:
Rainfall in inches measured in 15-minutes intervals at points of a 
spatial 2x2km grid.
Region:
120x120km, results in 60x60=3600 measurement points in space. 
Take only wet season (June-September).
Block maxima in space: Subdivide in 10x10km squares, take maxima 
of rainfall over 25 locations in each square. This results in 12x12=144 
spatial maxima.
Temporal domain: Analyze daily maxima and hourly accumulated 
rainfall observations.

Fit our extremal space-time model to daily/hourly maxima.
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Data Example:  extreme rainfall in Florida
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Hourly accumulated rainfall fields for four time points.
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Data Example:  extreme rainfall in Florida
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Empirical extremogram in space (left) and time (right)
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Data Example:  extreme rainfall in Florida
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Empirical extremogram in space (left) and time (right): 
spatial indep for lags > 4; temporal indep for lags > 6.
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Data Example:  extreme rainfall in Florida
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Computing conditional return maps.
Estimate ݖ௖ ,ݏ ݐ such that

ܲ ܼ ,ݏ ݐ ൐ ௖ݖ ,ݏ ݐ 	 	ܼ ,∗ݏ ∗ݐ ൐ ∗ݖ ൌ ,௖݌
where ∗ݖ satisfies ܲ ܼ ,∗ݏ ∗ݐ ൐ ∗ݖ ൌ ∗݌ is pre-assigned.
A straightforward calculation shows that ݖ௖ ,ݏ ݐ must solve,

௖݌ ൌ 1 െ
1
∗݌ exp െ

1
௖ݖ ,ݏ ݐ

൅
1
∗݌ ܨ ஻ோ ሺݖ௖ ,ݏ ݐ , 1 െ ሻ∗݌ ,
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100-hour return maps (݌௖ ൌ ∗ݏ :(01. ൌ 5,6 ,	 time lags = 0,2,4,6 hours 
(left to right on top and then right to left on bottom), quantiles in inches.
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Wrap-up
• Extremogram is another potential tool for estimating extremal
dependence that may be helpful for discriminating between models 
on the basis of extreme value behavior.

• Permutation procedures are a quick and clean way to test for 
significant values in the extremogram and other statistics.

• Bootstrapping may prove useful for constructing CI’s for the 
extremogram and also for assessing extremal dependence.

• The Extremogram can provide insight on extremal dependence 
between components in a multivariate time series.

• Extensions to spatial and space-time domains are possible. 

• Theory for the extremogram has been developed for spatial data 
that are observed at unequal spaced locations. 
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