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Epinions.com: Example of large network dataset

Unbiased Reviews by Real People

I Members of Epinions.com can decide whether to ”trust”
each other.

I “Web of Trust” combined with review ratings to determine
which reviews are shown to the user.

I Dataset of Massa and Avesani (2007):
I n = 131,828 nodes
I n(n − 1) = 17.4 billion observations
I 841,372 of these are nonzero (±1)



The Goal: Cluster 131,828 users

I Basis for clustering: Patterns of
trusts and distrusts in the
network

I If possible: understand the
features of the clusters by
examining parameter estimates.

Unbiased Reviews by Real People

Notation: Throughout, we let yij be rating of j by i and y = (yij).

Next, a few words about how we might model observed (yij)
data. . .



Estimation for exponential-family models can be hard
I General exponential-family random graph model (ERGM):

Pθ(Y = y | x) = exp{θ>g(x , y)− ψ(θ)},

where y is a particular realization of the random network Y
and x represents any covariates.

I The normalizing function is given by

ψ(θ) =
∑

all possible y ′
exp{θ>g(x , y ′)}.
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Pop quiz: How large is the set of all
possible y ′ for this 34-node,
symmetric, zero-one network?



We restrict attention to a more tractable model class

Special case of ERGMs called dyadic independence:

Pθ(Y = y | x) =
∏
i<j

Pθ(Dij = dij | x)

Dyad Dij , directed case:

i j

Dyad Dij , undirected case:

i j

Dyadic independence models have drawbacks but they
I facilitate estimation;
I facilitate simulation;
I avoid degeneracy issue (cf. Schweinberger, 2011).



To model dependence, add K -component mixture
structure

Let Zi denote the class membership of the i th node.

We assume

I Zi
iid∼ Multinomial(1; γ1, . . . , γK );

I Pγ,θ(Y = y | x) =
∑

z

∏
i<j

Pθ(Dij = dij | x ,Z = z)Pγ(Z = z).

In other words:
Conditional on the Zi , we have a dyadic independence model.



Consider two examples of conditional dyadic
independence for the Epinions dataset

1. The “full model” of Nowicki and Snijders (2001):

Pθ(Dij = d | Zi = k ,Zj = l) = θd ;kl

2. A more parsimonious model:

Pθ(Dij = dij | Zi = k ,Zj = l) ∝ exp{θ−(y−ij + y−ji )

+θ∆
k yji + θ∆

l yij

+θ−−y−ij y−ji + θ++y+
ij y+

ji }

where y−ij = I{Yij = −1} and y+
ij = I{Yij = +1}.

I The term θ+(y+
ij + y+

ji ) is missing from the second model to
avoid perfect collinearity.



Consider two examples of conditional dyadic
independence for the Epinions dataset

1. The “full model” of Nowicki and Snijders (2001):

Pθ(Dij = d | Zi = k ,Zj = l) = θd ;kl

2. A more parsimonious model:

Pθ(Dij = dij | Zi = k ,Zj = l) ∝ exp{θ−(y−ij + y−ji )

+θ∆
k yji + θ∆

l yij

+θ−−y−ij y−ji + θ++y+
ij y+

ji }

where y−ij = I{Yij = −1} and y+
ij = I{Yij = +1}.

I When K = 5 components, these models have 109 and 12
parameters, respectively.



Approximate maximum likelihood estimation uses a
variational EM algorithm

I For MLE, goal is to maximize the
loglikelihood `(γ, θ).

I Basic idea: Establish lower bound

J(γ, θ, α) ≤ `(γ, θ) (1)

after augmenting parameters by adding α.
I Create an EM-like algorithm guaranteed to

increase J(γ, θ, α) at each iteration.
I If we maximize the lower bound, then we’re

hoping that the inequality (1) will be tight
enough to put us close to a maximum of
`(γ, θ).

We adapt the variational EM idea of Daudin, Picard, & Robin (2008).



We may derive a lower bound by simple algebra

I Clever variational idea: Augment the parameter set, letting

αik = P(Zi = k) for all 1 ≤ i ≤ n and 1 ≤ k ≤ K .

I Let Aα(Z ) =
∏

i Mult(zi ;αi) denote the joint dist. of Z .
I Direct calculation gives

J(γ, θ, α) def
= `(γ, θ)− KL {Aα(Z ),Pγ,θ(Z |Y )}
= . . .

= Eα [log Pγ.θ(Y ,Z )]− H [Aα(Z )] .

I Thus, an EM-like algorithm consists of alternately:
I maximizing J(γ, θ, α) with respect to α (“E-step”)
I maximizing Eα [log Pγ,θ(Y ,Z )] with respect to γ, θ

(“M-step”)



The variational E-step may be modified using a
(non-variational) MM algorithm

I Idea: Use a “generalized variational E-step” in which
J(γ, θ, α) is increased but not necessarily maximized.

I To this end, we create a surrogate function

Q(α, γ(t), θ(t), α(t))

of α, where t is the counter of the iteration number.

I The surrogate function is a
minorizer of J(γ, θ, α):
It has the property that maximizing
or increasing its value will guarantee
an increase in the value of J(γ, θ, α).

In the figure, the red curve minorizes f (x) at x0.

x0

f((x0))



Construction of the minorizer of J(γ, θ, α) uses
standard MM algorithm methods

J(γ, θ, α) =
∑
i<j

K∑
k=1

K∑
`=1

αikαjl logπdij ;kl(θ)

+
n∑

i=1

C∑
k=1

αik (log γk − logαik ) .

We may define a minorizing function as follows:

Q(α, γ, θ, α(t)) =
∑
i<j

K∑
k=1

K∑
`=1

α2
ik

α
(t)
j`

2α(t)
ik

+ α2
j`
α

(t)
ik

2α(t)
j`

 logπdij ;kl(θ)

+
n∑

i=1

K∑
k=1

αik

(
log γk − logα(t)

ik −
αik

α
(t)
ik

+ 1

)
.

I Can be maximized (in α) using quadratic programming.



The parsimonious model for the Epinions dataset

Pθ(Dij = dij | Zi = k ,Zj = l) ∝ exp{θ−(y−ij + y−ji )

+θ∆
k yji + θ∆

l yij

+θ−−y−ij y−ji + θ++y+
ij y+

ji }

where y−ij = I{Yij = −1} and y+
ij = I{Yij = +1}.

Dyad Dij , directed
case:

i j

I θ−: Overall tendency toward distrust
I θ∆

k : Category-specific trustedness
I θ−−: lex talionis tendency (eye for an eye)
I θ++: quid pro quo tendency (one good turn. . . )



Parameter estimates themselves are of interest

Parameter Confidence
Parameter Estimate Interval
Negative edges (θ−) −24.020 (−24.029,−24.012)
Positive edges (θ+) 0 —
Negative reciprocity (θ−−) 8.660 (8.614,8.699)
Positive reciprocity (θ++) 9.899 (9.891,9.907)
Cluster 1 Trustworthiness (θ∆

1 ) −6.256 (−6.260,−6.251)
Cluster 2 Trustworthiness (θ∆

2 ) −7.658 (−7.662,−7.653)
Cluster 3 Trustworthiness (θ∆

3 ) −9.343 (−9.348,−9.337)
Cluster 4 Trustworthiness (θ∆

4 ) −11.914 (−11.919,−11.908)
Cluster 5 Trustworthiness (θ∆

5 ) −15.212 (−15.225,−15.200)

95% Confidence intervals based on parametric bootstrap using
500 simulated networks.
NB: There are some strange aspects of the bootstrap we
cannot explain yet.



Multiple starting points converge to the same solution

Trace plots from 100 different randomly selected starting
parameter values:
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Full (109-parameter) model results look nothing like this.



We may use average ratings of reviews by other users
as a way to “ground-truth” the clustering solutions

659,290 articles categorized by author’s highest-probability
component. (Vertical axis is average article rating.)

Parsimonious (12-parameter) Model Full (109-parameter) Model
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Conclusion: This work extends the current state of the
art in at least four ways

I Advances existing model-based clustering approaches via
a simple and flexible modeling framework based on dyadic
independence exponential family models.

I Introduces algorithmic improvements to the variational EM
approach to approximate MLE.

I Considers bootstrap standard errors for parameter
estimates

I Applies these methods to networks at least an order of
magnitude larger than other networks previously
considered.

Finally, we’d like to acknowledge the two giant mileposts in this
developing body of work: Nowicki and Snijders (2001) and
Daudin, Picard, and Robin (2008).
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Simulating networks from the model is challenging

Let b denote the most common (baseline) value of a dyad in
the network.
(Assuming sparsity, b is the empty dyad.)

1. Sample Z by sampling M ∼ Multinomial(n; γ1, . . . , γK ) and
assigning nodes 1, . . . ,M1 to component 1, nodes
M1 + 1, . . . ,M1 + M2 to component 2, etc.

2. Sample Y | Z as follows: For each 1 ≤ k ≤ l ≤ K ,
2.1 sample the number of dyads Skl with non-baseline values:

Skl ∼ Binomial(Nkl ,1− πb;kl), where Nkl is the number of
pairs of nodes belonging to components k and l ;

2.2 sample Skl out of Nkl pairs of nodes i < j without
replacement;

2.3 for each of the Skl sampled pairs of nodes i < j , sample the
non-baseline value Dij according to the probabilities
πd ;kl/(1− πb;kl), d 6= b.


