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Estimating the exponent of regular variation

Recall that a univariate distribution (function) F is said to have a
regularly varying right tail of index α > 0 if the tail function
F̄ = 1− F satisfies

lim
x→∞

F̄ (tx)

F̄ (x)
= t−α

The index α measures the heaviness of the tail and estimating it is
of crucial importance in many applications of stochastic models.

A number of estimators have been designed for that purpose.
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The best known estimator of the tail index is the Hill estimator,
introduced by Hill (1975).

Let X1,n ≤ X2,n ≤ . . . ≤ Xn,n be the order statistics from a positive
sample (or from the positive part of a general sample) X1, . . . ,Xn.

The Hill estimator based on k upper order statistics is defined as

Hk,n :=
1

k

k−1∑
i=0

log
Xn−i ,n
Xn−k,n
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Suppose that the original observations form an i.i.d. sample from a
distribution with a regularly varying right tail with tail index α. If

n→∞, k →∞, k

n
→ 0 ,

then

Hk,n → γ =
1

α
in probability

(Mason (1982)).

If, additionally, k/ log log n→∞, then we even have

Hk,n → γ =
1

α
a.s.

(Deheuvels, Hausler, Mason (1988)).
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Choosing the appropriate number k of upper order statistics when
the Hill estimator is applied to a finite sample, is very difficult.

Visual techniques are used: the estimator is plotted for a
range of k , and then one looks for a part of the plot that
looks stable.

Several smoothing techniques have been introduced to assist
in this visual analysis (Resnick and Starica (1997)).
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Hill estimator applied to i.i.d. SαS sample of 5000, α = 1.7.

15 288 561 834 1107 1380 1653 1926 2199 2472

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

 8.76000  1.80000  1.11000  0.62200  0.18800

Order Statistics

al
ph
a

Threshold



Introduction Tail begins Testing Conclusions

Systematic ways of selecting the number of upper order
statistics

Hall (1990) suggested a procedure minimizing the asymptotic
MSE of the estimator based on the assumption of 2nd order
regular variation.

Danielsson et. al (2001) improved the above approach via a
two-step bootstrap procedure that uses minimal a priori
information.

Drees and Kaufmann (1998) introduced a thresholding
approach that works under certain additional assumptions.
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Most of existing approaches to selecting the number k in a tail
estimator is via optimizing asymptotic efficiency.

We view it as the problem of deciding which part of a given sample
contains reliable information on the tail of the distribution F .

Where does the tail begin?

Importance is even higher in a highly dimensional multivariate
context, where we need to test repeatedly for tail independence.
This is highly sensitive to the contamination of the tail by the
center of the distribution.
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Our approach is based on a simple idea. Under the assumption of
regular variation, vague convergence of point processes holds:

Nn =
n∑

i=1

δXi/an
v→ N∗ ,

where:

δx is a point mass at x ;

(an) a positive sequence satisfying F̄ (an) ∼ 1/n as n→∞;

N∗ is a Poisson random measure on (0,∞] with mean
measure µ∗(x ,∞] = x−α, x > 0.
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We interpret this result as follows:

any upper order statistics in the sample that fall in the tail region
behave like points of a Poisson random measure with a power
intensity.

This property can be tested statistically, and sequentially.

One can perform appropriate statistical tests on the subsamples
Xn−k+1,n,Xn−k+2,n, . . . ,Xn,n with increasing k .

Terminate the procedure once the k upper order statistics
stop resembling points of a Poisson random measure with a
power intensity.
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In order to avoid taking into account too many order statistics, it is
desirable to make it easier to reject the null hypothesis for larger k .

We achieved this by selecting an increasing sequence θn ↑ ∞ and
set

Nn := inf

{
k : 1 ≤ k ≤ n, |Qk,n| ≥ ω

√
θn
k

}
.

Under a suitable growth condition on θn, this definition of Nn

makes it, roughly, proportional to θn.
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Theorem Let θn = o
(
n

2|ρ|
1+2|ρ|

)
as n→∞. Then

The Hill estimator based on Nn upper order statistics is
consistent:

HNn,n =
1

Nn

Nn−1∑
i=0

log
Xn−i ,n
Xn−Nn,n

P→ γ, n→∞.

the asymptotic behaviour of the estimator is given by√
θn

(
HNn,n

γ
− 1

)
⇒ G

(τω)1/2
,

where G is a standard normal random variable independent of
the first hitting time τω of the set ±ω by a standard Brownian
motion.
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Simulated data, n = 5000

Method Hill Nn, θn = (log n)2 Bootstrap k̂opt
Dist. α Mean RMSE Mean RMSE Mean RMSE Mean RMSE

Student(4) 4 2.7794 1.7098 3.4568 .6510 3.6135 .6859 3.4270 .6629
Student(3) 3 2.1719 .9843 2.7726 .3657 2.8490 .4383 2.7669 .3358
Student(1) 1 .9326 .3937 1.0109 .0890 .9881 .0502 .9965 .0391
Stable(1.7) 1.7 2.0347 .6951 2.0013 .3887 2.2515 .5654 2.2138 .5283
Stable(1) 1 .8965 .1683 1.0099 .0855 .9945 .0689 .9912 .0404

MA(1) 3 2.8335 1.8239 3.1434 .5232 3.1365 .5647 3.0955 .3708
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Simulated data, n = 50000

Method Hill Nn, θn = (log n)2 Bootstrap k̂opt
Dist. α Mean RMSE Mean RMSE Mean RMSE Mean RMSE

Student(4) 4 3.2954 1.5064 3.7958 .4743 3.7690 .5282 3.6080 .4217
Student(3) 3 2.5280 .6734 2.9391 .2245 2.8900 .3013 2.8490 .1839
Student(1) 1 .9499 .2182 1.0103 .0697 .9959 .0215 .9970 .0159
Stable(1.7) 1.7 2.0894 .5303 1.7733 .1670 2.2276 .5288 2.1057 .4079
Stable(1) 1 .9608 .1357 1.0079 .0764 .9918 .0204 .9965 .0165

MA(1) 3 3.6480 5.4884 3.1893 .4743 3.1014 .2113 3.0898 .1775
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Conclusions

The suggested choice of the sample fraction works well with
various distributions;

it works well even with modest sample sizes;

it is very efficient computationally;

we still need to understand its behaviour under tail
dependence.
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