UNCLASSIFIED

U.S. Army Research, Development and Engineering Command

Constructing a Movement Model for a Small Unit

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Vince Pulido University of Virginia

Craig Lennon Mary Anne Fields Laura Barnes 24 OCT 2014

- 1. The Autonomous Squad Member (ASM) Project is a research effort that provides a robot with intelligence to work with humans as teammates.
- 2. Anomaly Detection capabilities takes evidence from disparate sources to draw information from external environment.
- 3. A* is used to predict normal expected spatio-temporal characteristics of mission movement which is affected by THREE general factors:
 - MissionFactors
 - Terrain Factors
 - Human Factors
- 4. The method bounds the area where the small unit will be located at a particular time.

Autonomous Squad Member

UNCLASSIFIED

From robots as tools

Require detailed supervision

Confined to benign terrain

ARL

Tedious tele-operation through complex interfaces

... to robots as teammates

Understand tactical commands

Operate in various terrain

Reason about battlefield events

From The RCTA Vision: Achieving Foundational capabilities of Autonomy, Jan 2013

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ASM Goals

- Recognize anomalous situations
- Formulate new goals that respond to unanticipated situations and support the squad's goals
- Communicate effectively with squad mates

Recognize the transition from normal to off-normal operations using:

Evidence

Problem Statement

Given the Mission Factors and the Terrain Factors, can we reason about the movement of a small unit?

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Small Unit Movement Model

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

UNCLASSIFIED

u.s. army RDECOM®

- Goal: Create a model to estimate the time-dependent location of the squad members
- General Approach:
 - 1. Sample uncertain human factors
 - 2. Generate a portfolio of likely paths
 - 3. Estimate the time to arrival for each node.

Methods

Goal: Create an area where squad members are likely located

General Approach:

- 1. Sample uncertain human factors
- 2. Generate a portfolio of likely paths
- 3. Estimate the time to arrival for each node.

ARL

Methods

Goal: Create an area where squad members are likely located

General Approach:

- Sample uncertain human 1. factors
- Generate a portfolio of likely 2. paths
- Estimate the time to arrival 3. for each node.

Background

Sample uncertain human factors | Generate portfolio of likely paths | Estimate time of arrival.

A* search algorithm

- Popular algorithm widely used in path-finding and graph traversal (Hart, P.E. 1968)
- Searches for the minimum cost path for a given deterministic cost function:
 - $G(x, y) \coloneqq \text{Cost to arrive at node } (x, y)$
 - $H_d(x, y) \coloneqq$ Heuristic cost

- straight-line distance between the current node and the goal node

$$F(x,y) = G(x,y) + H_d(x,y)$$

Sample uncertain human factors | Generate portfolio of likely paths | Estimate time of arrival.

Human

- Terrain Variables:
 - Distance Travelled, v_1
 - Slope, v_2
 - **–** Type, *v*₃
 - Visibility, v_4

Mission Variables:

- Initial point, (x_0, y_0)
- Checkpoint, (x_T, y_T)

Human Variables:

- = Preferences, λ :
 - Distance, λ_1
 - Slope, λ_2
 - Soil-Type, λ_3
 - Visibility, λ_4

Factors Factors Factors Factors
$$F_{actors}$$
 Factors F_{actors} $F_$

Terrain

Such that

$$\sum \lambda_i = 1$$
 , $orall i$

Mission

Sample uncertain human factors | Generate a portfolio of likely paths | Estimate time of arrival.

Contour Plot of Conowingo Terrain

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Methods

Sample uncertain human factors | Generate a portfolio of likely paths | Estimate time of arrival

UNCLASSIFIED

- Terrain Variables:
 - Distance, z_1
 - Slope, z_2
 - **–** Type, *z*₃

Mission Variables:

- Initial point, (x_0, y_0)
- Checkpoint, (x_T, y_T)

Human Variables:

- Speed, s, Uncertain

Contour Plot of Conowingo Terrain

$$T(x, y; z; s) = t(x, y; z; s) + T(x_p, y_p; z_p).$$

Time to Arrival at node (x, y)

=

Time to arrival at parent node

Time to arrival from parent node to node (*x*, *y*) TECHNOLOGY DRIVEN, WARFIGHTER FOCUSED.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ARL

Possible Troop Locations Overlay on Conowingo Terrain

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ARL

Possible Troop Locations Overlay on Conowingo Terrain

19

ARL

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Possible Unit Location, T=100, alpha = .3

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Possible Unit Location, T=300, alpha = .3

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Results: Confidence Interval

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

ARL

Possible Unit Location, T=100, alpha = .1

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

- •We constructed a model to estimate expected locations for a small unit in order to reason about troop movement.
- Movement is part of the set of information used to detect anomalies.
- Anomaly detection is an important ability for an Autonomous Squad Member (ASM) in order to effectively perform as a teammate.

Future Work

Future Work:

- Collaboration with other organization to build a better movement model
- Increase model complexity by adding factors
 - Adversarial Factors
- Improved Time of Arrival Distribution

Thank you!

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

UNCLASSIFIED

Questions

Contact: j.vincepulido@virginia.edu

A* search algorithm

- Popular algorithm widely used in path-finding and graph traversal
- Searches for the minimum cost path for a given cost function
- Assumes deterministic cost path:
 - Cost to reach a node
 - Heuristic Cost

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

A* search algorithm

- Popular algorithm widely used in path-finding and graph traversal
- Searches for the minimum cost path for a given cost function
- Assumes deterministic cost path:
 - Cost to reach a node
 - Heuristic Cost

A* search algorithm

- Popular algorithm widely used in path-finding and graph traversal
- Searches for the minimum cost path for a given cost function
- Assumes deterministic cost path:
 - Cost to reach a node
 - Heuristic Cost

A* search algorithm

- Popular algorithm widely used in path-finding and graph traversal
- Searches for the minimum cost path for a given cost function
- Assumes deterministic cost path:
 - Cost to reach a node
 - Heuristic Cost

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Open List

http://en.wikipedia.org/wiki/A*_search_algorithm#mediaviewer/File:Astar_progress_animation.gif TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

