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TERRORIST NETWORKS
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= Terrorism has been around and has been studied for a long time
= Ongoing radicalization of different interest groups
= Rise of social media has made tracking terrorist activity a harder task

= "Data science” problems: Network dynamics and evolution, user
classification, information dissemination, missing links, anomaly detection




FUNDAMENTAL CHALLENGES

= Challenge 0: How to incorporate the network into the model?

= Challenge 1: Multivariate observations are of mixed type
< Time and location of attack
< Intensity of attack (injured, dead, “walking dead”)

< Impact of attack (economic damage, political damage, loss of confidence
of any kind)

< Localized vs. globalized impact, e.g., 9/11 vs. Oklahoma City bombings
Not all the data can be quantified
Not all the attacks are comparable

= Challenge 2: Temporal modeling issues
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< Point process model (Poisson, renewal, etc.)
< Correlation/clustering of attacks in time




EXISTING MODELS FOR TERRORISM- I

= Type 1: Classical time-series techniques

< Transform, fit trend, seasonality and stationary components to time-series
[Brophy-Baermann & Coneybeare, Cauley & Im, Enders & Sandler]

< Fit lagged value of endogenous variables, and other variables [Barros]

< Quadratic or cubic trend = 4 parameters, seasonality = 3, stationary part
= 1, often 8 or more model parameters

= Key Theme:
< Study of impact of interventions (airport sec. checks, Reagan-era laws)
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= Good-to-acceptable fit for time-series at the cost of large number of
parameters in @ model with complicated dependencies
= Some interventions have no apparent long-term effect




EXISTING MODELS FOR TERRORISM- II

= Type 2: Group-based trajectory analysis
< Identify cases with similar development trends [Nagin]

< Cox proportional hazards model + logistic regression methods for model
selection [LaFree, Dugan & co-workers]

= Key Themes:
< Focussed on worldwide terrorism trends instead of specific groups

< Contagion theoretic viewpoint = Current activity of group is influenced
by past history of group - Attacks are clustered




EXISTING MODELS FOR TERRORISM- II1

= Type 3: Self-exciting hurdle model (SEHM)
= Puts the contagion point-of-view on a theoretical footing
= Motivated by similar model development in
< Earthquake models — Aftershocks are function of current shock

< Inter-gang violence — Action-reaction violence between gangs
» Epidemiology — immigrants + offsprings in a cell colony
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= Hurdle probability component: Accounts for few attacks
= Self-exciting component: Accounts for clustering of attacks
= Key Theme:
< Excellent model-fit
< Explains clustering of attacks from a theoretical perspective

< Self-exciting component can be complicated - more parameters
[Mohler et al. 2011, Porter & White 2012, White, Porter & Mazerolle 2012, Lewis 2013]




MOTIVATING ASSUMPTIONS - I

Assumption 1: Current activity of the group depends on past history
only through k dominant states S; = [S; ;,--- , S.s] (that remain

hidden
idden) P(M;|H;_1,S;) =P(M;]S;), i =1,2,---

Assumption 2: Of these k states, the two most dominant are
< Its Intentions (51 ) — Guiding ideology/philosophy (e.g., Marxist-
Leninist-Maoist thought, political Islam), designated enemy group, nature
of high profile attacks, nature of propaganda warfare, etc.

+ Its Capabilities ( S2,;) — Manpower assets, special skills (bomb-making,
IED), propaganda warfare skills, logistics skills, coordination with other
groups, ability to raise finances, etc.

< Capabilities are tempered by Strategies/Tactics (repeated/multiple
attacks over time — group resilience, multiple attacks over space —

coordination)
P(M;|S;) = P(M;|{S51,i, 52,i })

[Cragin and Daly, "The dynamic terrorist threat: An assessment of group
motivations and capabilities in a changing world”]




MOTIVATING ASSUMPTIONS - II

= Assumption 3:

< Mature group = Intentions are to attack (more or less)

< Change in capabilities is primarily responsible for change in attack
patterns
P(M;[{S1,, S2,i}) = P(M;|S52,:)

S1,; = Always intend to attack

< A d-state model for Capabilities

» d = 2: - Active state (high capability/strong), Inactive state (low
capability/weak)

» Observation density: Different possibilities (Poisson, shifted Zipf,
geometric, etc.)
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COMPARING MODEL FRAMEWORKS

= All three models (TAR, SEHM and HMM) provide a framework for
explaining clustering of attacks

< TAR: Current observation is explicitly dependent on past observations
M,; = alMl,i_l + b]_MQ’i_]_ + c1p1 + Other comps.
Mg i = agMgﬂ;_l -+ b2M1,i—1 + Cop1 + Other comps.

< SEHM: Prob. of attack is enhanced by history of group
P(Mi > 0|,H1;_1)‘ —B;
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<+ HMM: Combines facets of both TAR and SEHM
> Observation depends on state
> Current state depends on past state

> Prob. of attack is enhanced based on state realization
d—1d—1
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HMM vs. SEHM

< Explanatory power: FARC and Indonesia datasets (AIC as metric)
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See [R, Galstyan & Tartakovsky, AOAS 2014] for more details




LESSONS FROM MODEL LEARNING

HMM: If parsimony is critical, a geometric obs. model is good
P(M; = k|Sa; = j) = (1 — ) - (1;)"
< Group has a short-term objective

< Every new attack contributes equally to the success of this objective

< As long as obj. is not met, group remains oblivious (memoryless) of past
activity

Otherwise, a hurdle-based geometric is a good fit
if k=20

. 1 — 7,
P(M; =k|S2;, =j) = { Vs k=1 eps g

Vi (1= p5) - (1)
Several extreme values: SEHM with shifted Zipf

HMM and SEHM are competitive on explanatory power
HMM outperforms SEHM in predictive power
HMM approach is robust to missing data




ABRUPT CHANGES

Organizational/Strategy changes in terrorist group
< Group resilience
< Level of coordination in group

Increase in either leads to spurts in no. of attacks, but with different
signatures in terms of activity profile

Goal: Can such abrupt changes be detected and classified quickly?

Two natural approaches for spurt detection
< Exp. weighted moving average (EWMA)-based
< State estimation using Viterbi algorithm




EWMA-BASED SPURT DETECTION

= Consider a time-window of & days: [(n — 1)§ +1,--- ,nd], n=1,2,---
= Use no. of days of activity (X,) and no. of attacks (Y,)

Ri, = (1=X\)Ri._.1+MX,

Ryn = (1 =A)Ryp 1+ N\Y,
= A1, A2 are experimentally chosen to meet small FAR (typically small)

Tweighted = iDf {n. >1: alRy,+V1—0ao?Ry, > A}
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HMM STATE ESTIMATION

= Train: Learn HMM parameters (p,, q,, Active rate and Inactive rate) — Baum-
Welch/EM algorithm

= Classify States: As Active/Inactive using Viterbi algorithm
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EWMA vs. VA

EWMA

< Is oblivious of underlying distribution and robust

» Detects persistent changes and tracks underlying process

< But short moderate changes are not tracked

Viterbi Algorithm
< Is model-based and non-causal (both for training and state estimation)
< Has good performance for state classification

But neither approach can associate/link spurt with organizational
changes/changes in strategy
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Resilience: Ability of group to launch repeated attacks over time
Coordination: Ability of group to launch repeated attacks over
geography
IOW, if there are 25 attacks over 5 days with two different attack
profiles (A, = [5,5,5,5,5] and Az = [25,0,0,0,0] )

+ A1 suggests that the group is more resilient

+ A2 suggests that the group is better in coordination




MAJORIZATION THEORY

Use majorization theory for event probability/attack frequency vector
Majorization is a partial ordering on vectors with pos. entries and same sum
Measures how one vector is more ‘spread out’ than the other

Popular example: Gini index/income inequality

Illustration: M < N where

1 1 1 1

M= [z’ 111

} and N = [1, 0, 0, 0]

Caveat: Majorization is a partial order, not a complete order!
Way out: Use the idea of Schur-concavity
A function f(.) from Ry* to R is Schur-convex if
M<N= f(M) < f(N)
If f(.) is Schur-convex, -f(.) is Schur-concave

Examples:
% Max function f(M) = max M, is Schur-convex
< Shannon entropy is Schur-concave: f(M) = Z M; log(M

Under weak assumptions, certain Schur-convex functions can be used as a
proxy for complete ordering




A PROXY FOR ORDERING

= Catalytic majorization (trumping): Let M and N be probability vectors. M is
catalytically majorized by N if there exists P such that

MP<N®P
M®P=MPy,--- , M, P,,MsP;,--- ,MsP,,--- ,M,,,Py,--- ,MmPp]

= Fact 1: The set of all majorizable prob. vectors is strictly contained in the set
of all catalytically majorizable prob. vectors

= Fact 2 (Reverse catalytic majorization): Need just three functionals to
“characterize” all catalytically majorizable vectors

Functional Schur-convexity
1/a Schur-concave if « € [0, 1]
PM(M, a) = (Z M?) Schur-convex if @ <0 or a > 1
SE(M) = — > M log (M;) Schur-concave
1/m
GM(M) = (H Mi) Schur-concave

= If two vectors satisfy ALL the correct inequalities corr. to the above
functionals, the underlying vectors are catalytically majorizable




PROPOSED TEST

= No. of attacks over a time-window (Z,))
= Shannon entropy: x, — ASE(M|An)
% Zi:l SE (M|An—«;)
= Normalized power mean (NPM) = Power mean/No. of days of activity
B NPM (M|a, , )
& 2in i NPM (Mla, _,, )
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BURSTINESS DETECTION IN TWITTER

Observations: No. of hashtags on a certain topic in a certain block of time
[(: —1)0+ 1, 0] (say, 10 minutes) from all/relevant users
Accumulated Shannon Entropy (SE)

25
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ASE(i) = ASE(i — 1) + SE(4)

N —1 if no hashtags
SE(1) = { — >, pilogy(pi)  if hashtags
where [p1,- - ,ps] is the event
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Burst in topic interest is
detected by change in slope
from negative to positive

Higher slope - more
burstiness

Shannon entropy metric is
quick in detecting bursts, but
more importantly non-
parametric

Useful in other applications also




CONCLUSIONS

HMM-based model for terrorist activity is a good alternative
modeling framework that is computationally advantageous

Simple EWMA-based approach for spurt detection does not
detect minor spurts

VA classifies Active and Inactive states, but is non-causal and
difficult to implement

Proposed a simple majorization theory based framework that
helps in detecting spurts as well as classifying them
(resilience vs. coordination)

Parametric approaches have fundamental difficulties in
implementation




