
References

Mixed Graphical Models via Exponential Families

Pradeep Ravikumar

Joint with E. Yang, Y. Baker, G. Allen, Z. Liu

University of Texas at Austin

Conference on Applied Statistics in Defense 2014

(UT Austin) Mixed Graphical Models via Exponential Families
Conference on Applied Statistics in Defense 2014 1

/ 22



References

Graphical Models : Introduction

A multivariate distribution over a large number of variables can be represented
using a graph G = (V ,E) (with |V | = p)

Graph Nodes i ∈ V correspond to random variables Xi

Graph Edges E encode
I Correlations?
I Causations?
I Markov Independence Relationships!
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Graphical Models: Factorization

(Hammersley-Clifford theorem) Joint dist. is the product of local
factors: each of which depends only on a clique

P(X ) =
1

Z
ΨA(XA)ΨB(XB)ΨC (XC )
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MRFs for Categorical Data

Categorical data: Xs ∈ {0, 1, ...,K}

Potts Model:

P(X ) ∝ exp

{ ∑
(s,t)∈E

θst I(Xs = Xt)

}

Other Discrete Data MRFs: Ising MRF, Overcomplete Discrete MRF

Applications: Internet data, Genomics data, Image processing,
Marketing, Statistical physics, ...
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MRFs for Thin-tailed Continuous Data

(Thin-tailed) Continuous data: Xs ∈ R

Gaussian MRFs:

P(X ) ∝ exp

{
− 1

2
〈〈Θ,XXT 〉〉+ 〈θ,X 〉

}
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MRFs for Count-valued Data

Count data: Xs ∈ {0, 1, . . .}

Poisson MRFs: (Yang et al., 2012,13)

P(X ) ∝ exp

{∑
s

θsXs +
∑

(s,t)∈E

θst Xs Xt −
∑
s

log(Xs !)

}
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Mixed Data

What if we jointly observe heterogeneous/mixed variables of many
different types?

SNPs: discrete data

Gene Expression:
continuous data

RNA sequencing: count
data

Genomic Mutations:
binary data

Need multivariate MRFs that permit dependencies over mixed
variables!
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Existing Models for Mixed Data Types

Limited to Gaussian-Discrete case: a continuous random vector,
conditioned on a discrete random vector, distributed as multivariate
Gaussian.

I Formulated by Lauritzen (1996), where they called these “conditional
Gaussian MRFs”

I Structure can be learnt tractably (Lee and Hastie (2012))

I Extension to three-way interactions (Cheng, Levina, Zhu (2012))
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Extending Heterogenous Univariate Distributions to Multivariate
Graphical Models

Need a general class of mixed graphical models

(KEY QUESTION) Can we go systematically from heterogenous
univariate dist. to multivariate mixed MRFs?
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Review: Exponential Families

Most common univariate distributions: Gaussian, Exponential,
Bernoulli, Binomial, Poisson, Negative binomial, ...

A broad class of distributions sharing a certain form:

P(X ; θ) = exp

{∑
i∈I

θiBi (X ) + C (X )− A(θ)

}

Ingredients:

θ = {θi}i∈I Parameters

B(X ) = {Bi (X )}i∈I Sufficient statistics

C (X ) Base measure

A(θ) = log
{∑

X

exp〈θ,B(X )〉+ C (X )
}

Log-partition function
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Heterogeneous Univariate Exponential Families → Mixed Graphical
Models

We know

I Gaussian graphical models: each Xs is Gaussian dist. given all neighbors

I Ising models: each Xs is Bernoulli dist. given all neighbors

I Poisson models: each Xs is Poisson dist. given all neighbors

Introduce a new class of graphical models:

I Given XV\s , each variable Xs follows a potentially different univariate
exponential family distribution of choice

I Dependencies between (X1, ...,Xp) modeled via graphical model structure.

What form would such a joint distribution take — if any?
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Mixed Exponential Family Markov Random Fields

The most general assumptions:

I Allow heterogenous node-conditional distributions:

P(Xs |XV\s) = exp{Es(XV\s)Bs(Xs) + Cs(Xs)− Ās(XV\s)}
Es(XV\s) Parameters

Bs(X ) Sufficient statistics

Cs(X ) Base measure

Ās(θ) Log-partition function

I Joint distribution over X given by a graphical model with
factors of size ≤ k

P(X ) ∝
∏
c∈C

Ψc(Xc).

(UT Austin) Mixed Graphical Models via Exponential Families
Conference on Applied Statistics in Defense 2014 12

/ 22



References

Mixed Exponential Family Markov Random Fields

Theorem

Under the previous general conditions that (a) the node conditional distributions belong
to exponential families and (b) the joint is a graphical model with factors of size at most
k,

Joint dist. necessarily has the following form:

P(X ) = exp

{∑
s

θsBs(Xs) +
∑
s∈V

∑
t∈N(s)

θst Bs(Xs)Bt(Xt) + ...

+
∑
s∈V

∑
t2,...,tk∈N(s)

θs...tk Bs(Xs)
k∏

j=2

Btj (Xtj ) +
∑
s

Cs(Xs)− A(θ)

}
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Multivariate Graphical Models for Different Types

Given multiple variables of varied types, only need to specify k ,
{Bs(X )}s∈V and {Cs(X )}s∈V
Some could be time interval data: time spent on website, networks
call time, etc., yet others could be count data: incident reports,
websites visit counts, next generation genomic data based on RNA
fragment counts, etc.), and so on

The mixed MRF would provide a joint distribution over all of these
heterogeneous random variables.
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Examples: Mixed MRFs with Two Data Types

Gaussian - Ising Graphical Models

P(Y ,Z) ∝ exp

{ ∑
s∈VY

θYs
σr

Ys +
∑

s′∈VZ

θzs′Zs′ +
∑

(s,t)∈EY

θyyst
σrσt

YsYt

+
∑

(s′,t′)∈EZ

θzzs′t′ Zs′ Zt′ +
∑

(s,s′)∈EYZ

θyz
ss′

σr
Ys Zs′ −

∑
s∈VY

Y 2
s

2σ2
r

}
.

Poisson - Ising Graphical Models

P(Y ,Z) ∝ exp

{ ∑
s∈VY

θYs Ys +
∑

s′∈VZ

θzs′Zs′ +
∑

(s,t)∈EY

θyyst YsYt

+
∑

(s′,t′)∈EZ

θzzs′t′ Zs′ Zt′ +
∑

(s,s′)∈EYZ

θyz
ss′ Ys Zs′ −

∑
s∈VY

log(Ys !)

}
. (1)
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Examples: Mixed MRFs with Two Data Types

Gaussian - Poisson Graphical Models ?

P(Y ,Z) ∝ exp

{ ∑
s∈VY

θYs
σr

Ys +
∑

s′∈VZ

θzs′Zs′ +
∑

(s,t)∈EY

θyyst
σrσt

YsYt

+
∑

(s′,t′)∈EZ

θzzs′t′ Zs′ Zt′ +
∑

(s,s′)∈EYZ

θyz
ss′

σr
Ys Zs′ −

∑
s∈VY

Y 2
s

2σ2
r

−
∑

s′∈VZ

log(Zs′ !)

}
.

Corollary

The Gaussian-Poisson distribution is not normalizable unless θst = 0 for all (s, t) ∈ EYZ .
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Normalizability Conditions for Manichean Graphical Models

We provide conditions characterizing normalizability of general mixed graphical models.
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Experiments: Simulated Data

Lattice graphs, with p = 72: pY = 36 and pZ = 36
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(a) Poisson-Ising
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(b) Gaussian-Ising
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(c) TPGM-Ising
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(d) TPGM-Gaussian
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Experiments: Cancer Genomic and Transcriptomic Data
Combine ‘Level III RNA-sequencing’ data and ‘Level II non-silent somatic mutation
and level III copy number variation data’ for 697 breast cancer patients.
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TPGM - Ising graphical model

(Yellow) Gene expression via RNA-sequencing, count-valued

(Blue) Genomic mutation, binary mutation status

Well known components: (DLK1, THSD4) - (TP53)
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Summary

Broadens the class of off-the-shelf graphical models, and provides
a flexible multivariate modeling toolkit for mixed data

I Univariate exp. family → multivariate Mixed MRFs

Allows us to use graphical model machinery to model dependencies for
a broader range of data, where each variable may belong to a
potentially different type

Can estimate such graphical models/networks under standard
regularity conditions

Software (R package) coming soon!
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Thank you!
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