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Graphical Models : Introduction

o A multivariate distribution over a large number of variables can be represented
using a graph G = (V, E) (with |V| = p)

@ Graph Nodes i € V correspond to random variables X;

o Graph Edges E encode

> Correlations?
» Causations?
» Markov Independence Relationships!
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Graphical Models : Introduction

o A multivariate distribution over a large number of variables can be represented
using a graph G = (V, E) (with |V|=p)

@ Graph Nodes i € V correspond to random variables X;

o Graph Edges E encode

> Correlations?
> Causations?
> Markov Independence Relationships!
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Graphical Models: Factorization

o (Hammersley-Clifford theorem) Joint dist. is the product of local
factors: each of which depends only on a clique

P(X) = ZWA(Xa)Vs(Xe)Vc(Xe)
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MRFs for Categorical Data
o Categorical data: X; € {0,1,..., K}
o Potts Model:

P xen{ 3 e = X)]

(s,t)EE

o Other Discrete Data MRFs: Ising MRF, Overcomplete Discrete MRF

o Applications: Internet data, Genomics data, Image processing,
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MRFs for Thin-tailed Continuous Data

o (Thin-tailed) Continuous data: X; € R
o Gaussian MRFs:
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MRFs for Count-valued Data
o Count data: X; € {0,1,...}

o Poisson MRFs: (Yang et al., 2012,13)

ST O X Xe =Y |og(Xs!)}

(s,t)€E s

P(X) x exp{ Z 0sXs +
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Mixed Data

o What if we jointly observe heterogeneous/mixed variables of many
different types?

o SNPs: discrete data

o Gene Expression:
continuous data

o RNA sequencing: count
data

o Genomic Mutations:
binary data

o Need multivariate MRFs that permit dependencies over mixed
variables!
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Existing Models for Mixed Data Types

o Limited to Gaussian-Discrete case: a continuous random vector,
conditioned on a discrete random vector, distributed as multivariate
Gaussian.

» Formulated by Lauritzen (1996), where they called these “conditional
Gaussian MRFs”

» Structure can be learnt tractably (Lee and Hastie (2012))

» Extension to three-way interactions (Cheng, Levina, Zhu (2012))
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Extending Heterogenous Univariate Distributions to Multivariate
Graphical Models

o Need a general class of mixed graphical models

o (KEY QUESTION) Can we go systematically from heterogenous
univariate dist. to multivariate mixed MRFs?
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Review: Exponential Families

e Most common univariate distributions: Gaussian, Exponential,
Bernoulli, Binomial, Poisson, Negative binomial, ...

o A broad class of distributions sharing a certain form:

P(X;0) = exp {Z 0:B;(X) + C(X) — A(e)}

i€l

e Ingredients:

0 =16;}icr Parameters
B(X) ={Bi(X)}ier Sufficient statistics
C(X) Base measure

A(0) = log { Zexp(@, B(X)) + C(X)} Log-partition function
X
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Heterogeneous Univariate Exponential Families — Mixed Graphical
Models

o We know
» Gaussian graphical models: each X; is Gaussian dist. given all neighbors

» Ising models: each X; is Bernoulli dist. given all neighbors

» Poisson models: each X; is Poisson dist. given all neighbors

o Introduce a new class of graphical models:
» Given Xy\, each variable X; follows a potentially different univariate
exponential family distribution of choice

» Dependencies between (X, ..., X,) modeled via graphical model structure.
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Heterogeneous Univariate Exponential Families — Mixed Graphical
Models

o We know
» Gaussian graphical models: each X; is Gaussian dist. given all neighbors

» Ising models: each X; is Bernoulli dist. given all neighbors

» Poisson models: each X; is Poisson dist. given all neighbors

o Introduce a new class of graphical models:
» Given Xy\, each variable X; follows a potentially different univariate
exponential family distribution of choice

» Dependencies between (X, ..., X,) modeled via graphical model structure.

What form would such a joint distribution take — if any?
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Mixed Exponential Family Markov Random Fields

e The most general assumptions:

» Allow heterogenous node-conditional distributions:

P(X5|XV\5) = exp{Es(XV\s) Bs(Xs) + Cs(Xs) - _s(XV\s)}
Es(Xw\s) Parameters
Bs(X) Sufficient statistics
G(X) Base measure
As(9) Log-partition function

» Joint distribution over X given by a graphical model with
factors of size < k

P(X) o< [ We(Xo).

ceC
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Mixed Exponential Family Markov Random Fields

Theorem

Under the previous general conditions that (a) the node conditional distributions belong
to exponential families and (b) the joint is a graphical model with factors of size at most

k,
Joint dist. necessarily has the following form:

P(X)—exp{ZGB )+ D D 0 Bo(X)Be(Xe) + ...

scV teN(s)

k
YD) O BX) T Bo (X)) + D Ci(Xs) — A(H)}

SEV ty,...,t, EN(s) Jj=2
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Multivariate Graphical Models for Different Types

o Given multiple variables of varied types, only need to specify k,
{B:(X)}sev and {C(X)}sev

o Some could be time interval data: time spent on website, networks
call time, etc., yet others could be count data: incident reports,
websites visit counts, next generation genomic data based on RNA
fragment counts, etc.), and so on

o The mixed MRF would provide a joint distribution over all of these
heterogeneous random variables.
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Examples: Mixed MRFs with Two Data Types

o Gaussian - Ising Graphical Models

P(Y,Z)ocexp{ Z YS+Z 0% 7., +Z YsYt

sevy 7" s'eVy (steE Trot

Y2

S
v ezize 3 Eviz-y El
(s’,t')EEZ (s,s eEYZ’ sevy “Ur

e Poisson - Ising Graphical Models

P(Y,Z)ocexp{ Sorve+ Y 0nza+ > 0V

seVy s’eVy (s,t)EEY
Y 0T 7 Zu+ D 02 =y |og(ys;)}, 1)
(s t')E€EZ (s,s’)EEyz sEVy
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Examples: Mixed MRFs with Two Data Types

o Gaussian - Poisson Graphical Models ?

P(Y,Z)cxexp{ > 24 Yot 057, +Z

sevy 77 s'eVz (s t)EEy

2
+> 0%, 7070 + Z Ys o= 2’;2 -3 Iog(Zs/!)}.

(s’,t')EE; (s, s/)EEYZ sEVy r s'eVy
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Examples: Mixed MRFs with Two Data Types

o Gaussian - Poisson Graphical Models ?

S
P(Y,Z)cxexp{ > rYS+Z 057 + Z . Ysyf
seVy s'eVz (s t)EEy
Y2
S I Sl AV o - |og(zs,!)}.
(s’ ,t")EEZ (s, s’)EEYZ seVy ~ 7 s'eVz

Corollary

The Gaussian-Poisson distribution is not normalizable unless s = 0 for all (s,t) € Eyz.
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Normalizability Conditions for Manichean Graphical Models

We provide conditions characterizing normalizability of general mixed graphical models.
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Experiments: Simulated Data
o Lattice graphs, with p =72: py =36 and pz = 36
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Experiments: Cancer Genomic and Transcriptomic Data

@ Combine ‘Level Ill RNA-sequencing’' data and ‘Level Il non-silent somatic mutation
and level Il copy number variation data’ for 697 breast cancer patients.
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o TPGM - Ising graphical model

o (Yellow) Gene expression via RNA-sequencing, count-valued
@ (Blue) Genomic mutation, binary mutation status

@ Well known components: (DLK1, THSD4) - (TP53)
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Experiments: Cancer Genomic and Transcriptomic Data

@ Combine ‘Level Ill RNA-sequencing’ data and ‘Level Il non-silent somatic mutation
and level Il copy number variation data’ for 697 breast cancer patients.
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TPGM - Ising graphical model o
(Yellow) Gene expression via RNA-sequencing, count-valued
(Blue) Genomic mutation, binary mutation status
Well known components: (DLK1, THSD4) - (TP53)

(UT Austin) Mixed Graphical Models via Exponential Families

Conference on Applied Statistics in Defense 2014} )




Summary

o Broadens the class of off-the-shelf graphical models, and provides
a flexible multivariate modeling toolkit for mixed data

» Univariate exp. family — multivariate Mixed MRFs

o Allows us to use graphical model machinery to model dependencies for
a broader range of data, where each variable may belong to a
potentially different type

o Can estimate such graphical models/networks under standard
regularity conditions

o Software (R package) coming soon!
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Thank you!
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