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1. MURI team

• Cornell (Resnick, Samorodnitsky–ORIE)

• Columbia (Davis–Stat)

• University of Massachusetts (Gong–ECE, Towsley–CS)

• American University (Nolan–Math)

• Ohio State University (Shroff–ECE & CS)

• University of Illinois (Srikant–ECE)

• University of Minnesota (Zhang–CS)
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2. Scientific Objectives

Goal: Develop and apply tools to models of multivariate heavy tail
phenomena:

• applied probability modeling,

• statistical modeling, simulation, numerical analysis.

• control and optimization; algorithms.

Synthesize core discipline strengths:

applied probability, statistics, simulation, numerical analysis,
computer science, electrical engineering, operations research
and optimization.

Apply to significant application areas:

• risk estimation,

• social networks,

• cloud computing,

• scheduling and control, eg cloud computing,

• anomaly detection.
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3. Heavy Tailed Phenomena

3.1. Description?

• Rough: The probabil-
ity of observing large
multivariate values is
relatively large.

Large usually means
beyond the range of the
data.

Problems
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No natural direction of extrapolation in multivariate space
Different directions of extrapolation need to be considered, each with
different assumptions
These provide a tool box of methods
Diagnostics required to assess different directions, assumptions, and
methods

Jonathan Tawn (Lancaster) Multivariate Extremes Bristol, July 2014

• Associated with power laws : In one dimension, if X > 0, roughly

P [X > x] ≈ x−α, x > x0.

• Need to specify a dependence structure; correlations may not exist
and are vague information.
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• Generalize to higher dimensions d or even sequence or stochastic
processes. If X = (X1, . . . , Xd) ∈ Rd

+, X has a multivariate heavy
tail if

– ∃ b(t)→∞ as t→∞, and

– ∃ measure ν(·), such that for nice sets A (thought of as tail
regions ,

tP
[ X

b(t)
∈ A

]
→ ν(A). (HT)

• To infer beyond the range of the data, we make the reasonably
robust assumption that (HT) holds so that for tail region R,

P [X ∈ R] ≈ 1

t
ν(R/b(t)) ≈ 1

t
ν̂(R/b̂(t)).

Replacement of a converging family by the limit is peaks over
threshold (POT) philosophy.

– Estimates based on asymptotic methods depend on a conver-
gence rate as a threshold gets large.

– There could be more than one relevant asymptotic regime.
Ouch!



Team

Objective

Heavy Tails

Generation

Detection

Challenges

Title Page

JJ II

J I

Page 6 of 22

Go Back

Full Screen

Close

Quit

3.2. How to model different dependence structures in heavy
tailed data

• (Left) Large values occur together (strong extremal dependence

• (Middle) Large value of one variable occurs with range of values
in other.

• (Right) No risk contagion or extremal dependence.
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4. Model Generation

4.1. A general construction of a standardized multivariate heavy
tailed distribution

• On Rd
+, delete a closed cone F ; for example:

– F = {0} or

– F =[axes].

• Regions away from F are considered tail regions .

• Write
ℵF = {x : d(x, F ) = 1}.

Take

Θ random element in ℵF , R ∼ Pareto, Θ ⊥⊥ R.

• Set
X = RΘ

and X ∈ MRV on Rd
+ \ F .

Can apply this construction to successive choices of deleted F :
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• first delete F1 (eg, origin)

– ℵ0 = [‖x‖ = 1]

– tail regions bounded
away from 0.

– tP [X/b(t) ∈ A]→ ν(A)
for A bounded away
from 0.

• then deleting F1 ∪ F2;
ie, delete 2nd cone F2 (eg, axes).

– ℵ[axes] = dashed lines.

– tail regions bounded away
from axes; both components big.

– tP [X/b1(t) ∈ A]→ ν1(A)
for A bounded away axes.
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4.2. Hidden regular variation

When X has regular variation on both R2
+ \ {0} and R2

+ \ [axes], and

b(t)/b1(t)→∞,

we say X has hidden regular variation (HRV).

? How do the 2 regular variation properties interact? Statisti-
cally identifiable? Das and Resnick (2014).
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4.2.1. Methods to generate models having both MRV & HRV:

• Product method described above:

– Construct RΘ, MRV on R2
+ \ [axes].

– Moment conditions ensure RΘi are one-dimensional regularly
varying.

– Once marginals are regularly varying, RΘ has a multivariate
distribution that is also regularly varying on R2

+ \ {0}.

• Mixture method (Maulik and Resnick, 2005).

X = BY + (1−B)V , B ⊥⊥ Y ⊥⊥ V ,

where

– B is a Bernoulli switching variable: P [B = 0] = P [B = 1] =
1/2.

– Y is regularly varying on R2
+ \ {0}.

– V is regularly varying on R2
+ \ {[axes]}.
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• Additive models (Weller and Cooley, 2014):

X = Y + V , Y ⊥⊥ V ,

where

– Y is MRV on R2
+ \ {0}

– V is MRV on R2
+ \ {[axes]}.

This model has severe identification issues:

– Does HRV of X come from Y (sometimes) or V (sometimes)?

– Is the hidden index of regular variation of X (the scaling
property) what one would predict from V (not necessarily).
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5. Model Detection Diagnostics

When should MRV or HRV be applied to data?

1. Reduction to one dimension:

• X ∈ MRV on R2
+ \ {0} iff aX1 ∨ bX2 ∈ RV (α) for all a ≥

0, b ≥ 0.

• X ∈ HRV on R2
+\ [axes] iff aX1∧bX2 ∈ RV (α0) for a∧b > 0.

[Hint: Cannot check ∀a, b.]

2. Use GPOLAR to convert to the CEV model and then use CEV di-
agnostics (Das and Resnick, 2011) using the Hillish and Pickand-
sish plots.

• A CEV model for (ξ, η) has the form

tP

[(
ξ

b(t)
, η

)
∈ ·

]
→ µ(·),

on (0,∞)× [0,∞).
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• MRV on R2
+ \ {0}, after transformation via GPOLAR is of

the form

tP
[(
‖X‖︸︷︷︸
ξ

/b(t),X/‖X‖︸ ︷︷ ︸
η

)
∈ ·
]
→ να × S(·)︸ ︷︷ ︸

product measure

, on (0,∞)×ℵ0.

• HRV on R2
+ \ [axes] after transformation by

GPOLAR : x 7→
(
d(x,ℵ[axes]),

x

d(x,ℵ[axes])

)
,

is of the form

tP
[(X1 ∧X2

b0(t)
,

X

X1 ∧X2

)
∈ ·
]
→ να0×S0(·) on

(
(0,∞)×ℵ[axes]).
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5.0.2. Hillish statistic.

Suppose (ξi, ηi); 1 ≤ i ≤ n are iid samples in R2
+ and (ξ1, η1) ∈

CEV(b, µ). Notation:

ξ(1) ≥ . . . ≥ ξ(n) The decreasing order statistics of ξ1, . . . , ξn.

η∗i , 1 ≤ i ≤ n The η-variable corresponding to ξ(i), also called

the concomitant of ξ(i).

Nk
i =

k∑
l=i

1{η∗l ≤η∗i } Rank of η∗i among η∗1, . . . , η
∗
k. We write Ni = Nk

i .

Hillish statistic. For 1 ≤ k ≤ n, the Hillish statistic is

Hillishk,n = Hillishk,n(ξ, η) :=
1

k

k∑
j=1

log
k

j
log

k

Nk
j

(1)

Properties (Das and Resnick, 2011): If,

• (ξi, ηi); 1 ≤ i ≤ n are iid observations from the CEV(b, µ);

• Mild regularity.

• k = k(n)→∞, n→∞ and k/n→ 0.
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then
Hillishk,n

P→ Iµ = ugly integral.

Moreover µ is a product measure if and only if both

Hillishk,n(ξ, η)
P→ 1 and Hillishk,n(ξ,−η)

P→ 1.

Usefulness: Detect either MRV or HRV after applying GPOLAR.
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5.0.3. Example: BU data; HTTP downloads: MRV with asymptotic indepen-
dence + HRV

• HTTP downloads in sessions from 1995.

• 8 hours 20 minutes worth of downloads after applying an aggrega-
tion rule to downloads to associate machine triggered actions with
human requests. See Guerin, Nyberg, Perrin, Resnick, Rootzén,
and Stărică (2003).

• 4161 downloads.

Consider the variables:

• S = the size of the download in kilobytes,

• D = the duration of the download in seconds,

• R = throughput of the download; that is, = S/D.

Concentrate on (D,R) and standardize with rank transformed vari-
ables:

D∗i =
4161∑
j=1

1{Di≥Dj}, R
∗
i =

4161∑
j=1

1{Ri≥Rj}.
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One dimensional analysis.
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Conclusions so far:

• Hill plots for marginals D∗ and R∗ consistent with marginal heavy
tails.

• Evidence that the MRV on R2
+ \ {0} exists with asymptotic inde-

pendence and limit measure concentrates on [axes]:

– Spectral density plot seems to concentrate on {0} and {π/2}.
– Hill plot for min(D∗, R∗) is heavy tailed but with index

α0 ≈ 2.4 > 1 = marginal indices

which is evidence for regular variation on R2
+ \ {[axes]}.

• Will Hillish confirm existence of HRV on R2
+ \ {[axes]}?
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Hillish analysis for HRV.
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6. Challenges.

• Practical?

– Limitations of asymptotic methods: rates of convergence?

• Need for more formal inference for estimation including confidence
statements.

• General HRV technique in higher dimensions requires knowing the
support of the limit measure. Estimate support?

• High dimension problems? How to sift through different possi-
ble subcones? There could be a sequence of cones with regular
variation on each. How to teach a computer to find the cones?

• How to go from standard to more realistic non-standard case; still
some inference problems.
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