Generation and Detction of Models with Multivariate Heavy Tails

Sidney Resnick School of Operations Research and Information Engineering Rhodes Hall, Cornell University Ithaca NY 14853 USA

 $\begin{array}{ll} \mbox{http://people.orie.cornell.edu/}{\sim}\mbox{sid} \\ 607\ 255\ 1210 & \mbox{sir1@cornell.edu} \end{array}$

ACAS DC

October 20, 2014

Team Obiective Heavy Tails Generation Detection Challenges •• Page 1 of 22 Go Back Full Screen Close Quit

CORNELL

Work with: B. Das

1. MURI team

- Cornell (Resnick, Samorodnitsky–ORIE)
- Columbia (Davis–Stat)
- University of Massachusetts (Gong–ECE, Towsley–CS)
- American University (Nolan–Math)
- Ohio State University (Shroff–ECE & CS)
- University of Illinois (Srikant–ECE)
- University of Minnesota (Zhang–CS)

Cornell
Team
Objective
Heavy Tails
Generation
Detection
Challenges
Title Page
44 >>
• •
Page 2 of 22
Go Back
Full Screen
Close
Quit

2. Scientific Objectives

Goal: Develop and apply tools to models of multivariate heavy tail phenomena:

- applied probability modeling,
- $\bullet\,$ statistical modeling, simulation, numerical analysis.
- control and optimization; algorithms.

Synthesize core discipline strengths:

applied probability, statistics, simulation, numerical analysis, computer science, electrical engineering, operations research and optimization.

Apply to significant application areas:

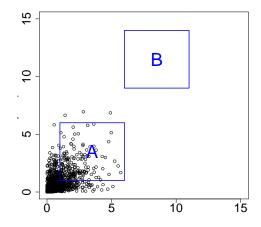
- \bullet risk estimation,
- social networks,
- cloud computing,
- scheduling and control, eg cloud computing,
- anomaly detection.

3. Heavy Tailed Phenomena

3.1. Description?

• Rough: The probability of observing large multivariate values is relatively large.

Large usually means beyond the range of the data.



• Associated with *power laws*: In one dimension, if X > 0, roughly

 $P[X > x] \approx x^{-\alpha}, \quad x > x_0.$

• Need to specify a dependence structure; correlations may not exist and are vague information.

- Generalize to higher dimensions d or even sequence or stochastic processes. If $\mathbf{X} = (X_1, \ldots, X_d) \in \mathbb{R}^d_+$, \mathbf{X} has a multivariate heavy tail if
 - $\exists b(t) \to \infty \text{ as } t \to \infty, \text{ and}$
 - \exists measure $\nu(\cdot)$, such that for nice sets A (thought of as *tail regions*,

$$tP\left[\frac{\boldsymbol{X}}{b(t)} \in A\right] \to \nu(A).$$
 (HT)

• To infer beyond the range of the data, we make the reasonably robust assumption that (HT) holds so that for tail region \mathcal{R} ,

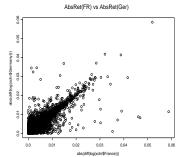
$$P[\boldsymbol{X} \in \mathcal{R}] \approx \frac{1}{t} \nu(\mathcal{R}/b(t)) \approx \frac{1}{t} \hat{\nu}(\mathcal{R}/\hat{b}(t))$$

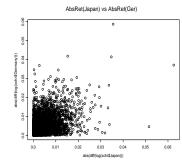
Replacement of a converging family by the limit is *peaks over* threshold (POT) philosophy.

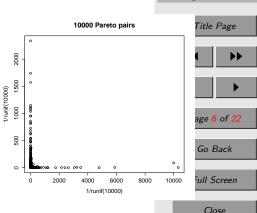
- Estimates based on asymptotic methods depend on a convergence rate as a threshold gets large.
- There could be more than one relevant asymptotic regime. Ouch!

3.2. How to model different dependence structures in heavy tailed data

- (Left) Large values occur together (strong extremal dependence
- (Middle) Large value of one variable occurs with range of values in other.
- (Right) No risk contagion or extremal dependence.







Quit

4. Model Generation

4.1. A general construction of a standardized multivariate heavy tailed distribution

• On \mathbb{R}^d_+ , delete a closed cone F; for example:

$$-F = \{0\}$$
 or
 $-F = [axes].$

- Regions away from F are considered *tail regions*.
- \bullet Write

$$\aleph_F = \{ \mathbf{x} : d(\mathbf{x}, F) = 1 \}.$$

Take

 Θ random element in \aleph_F , $R \sim$ Pareto, $\Theta \perp R$.

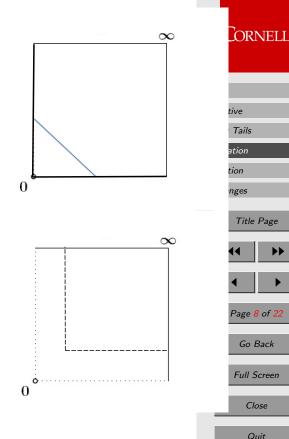
 $\bullet \ {\rm Set}$

 $\boldsymbol{X} = R\boldsymbol{\Theta}$

and $\boldsymbol{X} \in MRV$ on $R^d_+ \setminus F$.

Can apply this construction to successive choices of deleted F:

- first delete F_1 (eg, origin)
 - $-\aleph_0 = [\|\mathbf{x}\| = 1]$
 - tail regions bounded away from **0**.
 - $-tP[\mathbf{X}/b(t) \in A] \rightarrow \nu(A)$ for A bounded away from **0**.
- then deleting $F_1 \cup F_2$; ie, delete 2nd cone F_2 (eg, axes).
 - $\aleph_{[axes]} = dashed lines.$
 - tail regions bounded away from axes; both components big
 - $-tP[\mathbf{X}/b_1(t) \in A] \rightarrow \nu_1(A)$ for A bounded away axes.



Close

Quit

4.2. Hidden regular variation

When **X** has regular variation on both $\mathbb{R}^2_+ \setminus \{\mathbf{0}\}$ and $\mathbb{R}^2_+ \setminus [axes]$, and

 $b(t)/b_1(t) \to \infty$,

we say X has hidden regular variation (HRV).

? How do the 2 regular variation properties interact? Statistically identifiable? Das and Resnick (2014).

4.2.1. Methods to generate models having both MRV & HRV:

- Product method described above:
 - Construct $R\Theta$, MRV on $\mathbb{R}^2_+ \setminus [axes]$.
 - Moment conditions ensure $R \boldsymbol{\Theta}_i$ are one-dimensional regularly varying.
 - Once marginals are regularly varying, $R\Theta$ has a multivariate distribution that is also regularly varying on $\mathbb{R}^2_+ \setminus \{\mathbf{0}\}$.
- Mixture method (Maulik and Resnick, 2005).

$$\boldsymbol{X} = B\boldsymbol{Y} + (1-B)\boldsymbol{V}, \quad B \perp \boldsymbol{Y} \perp \boldsymbol{V},$$

where

- B is a Bernoulli switching variable: P[B = 0] = P[B = 1] = 1/2.
- \mathbf{Y} is regularly varying on $\mathbb{R}^2_+ \setminus \{\mathbf{0}\}$.
- \mathbf{V} is regularly varying on $\mathbb{R}^2_+ \setminus \{[axes]\}.$

Cornell
Team
Objective
Heavy Tails
Generation
Detection
Challenges
Title Page
•• ••
Page 10 of 22
Go Back
Full Screen
Close
Quit

• Additive models (Weller and Cooley, 2014):

 $X = Y + V, \quad Y \perp V,$

where

- \mathbf{Y} is MRV on $\mathbb{R}^2_+ \setminus \{\mathbf{0}\}$
- \mathbf{V} is MRV on $\mathbb{R}^2_+ \setminus \{ [axes] \}.$

This model has severe identification issues:

- Does HRV of \boldsymbol{X} come from \boldsymbol{Y} (sometimes) or \boldsymbol{V} (sometimes)?
- Is the hidden index of regular variation of X (the scaling property) what one would predict from V (not necessarily).

Cornell
Team
Objective
Heavy Tails
Generation
Detection
Challenges
Title Page
•• ••
•
Page 11 of 22
Go Back
Full Screen
Close
Quit

5. Model Detection Diagnostics

When should MRV or HRV be applied to data?

- 1. Reduction to one dimension:
 - $X \in MRV$ on $\mathbb{R}^2_+ \setminus \{\mathbf{0}\}$ iff $aX_1 \lor bX_2 \in RV(\alpha)$ for all $a \ge 0, b \ge 0$.
 - $X \in \text{HRV}$ on $\mathbb{R}^2_+ \setminus [\text{axes}]$ iff $aX_1 \wedge bX_2 \in RV(\alpha_0)$ for $a \wedge b > 0$.

[Hint: Cannot check $\forall a, b.$]

- 2. Use GPOLAR to convert to the CEV model and then use CEV diagnostics (Das and Resnick, 2011) using the *Hillish* and *Pickandsish* plots.
 - A CEV model for (ξ, η) has the form

$$tP\left[\left(\frac{\xi}{b(t)},\eta\right)\in \cdot\right] \to \mu(\cdot),$$

on $(0,\infty) \times [0,\infty)$.

Cornell
Team
Objective
Heavy Tails
Generation
Detection
Challenges
Title Page
•• ••
•
Page 12 of 22
Go Back
Full Screen
Close
Quit

• MRV on $\mathbb{R}^2_+ \setminus \{0\}$, after transformation via GPOLAR is of the form

$$tP\left[\left(\underbrace{\|\boldsymbol{X}\|}_{\xi}/b(t),\underbrace{\boldsymbol{X}/\|\boldsymbol{X}\|}_{\eta}\right) \in \cdot\right] \to \underbrace{\nu_{\alpha} \times S(\cdot)}_{\text{product measure}}, \quad \text{ on } (0,\infty) \times \aleph_{\mathbf{0}}.$$

• HRV on $\mathbb{R}^2_+ \setminus [axes]$ after transformation by

$$\text{GPOLAR}: \mathbf{x} \mapsto \left(d(\mathbf{x}, \aleph_{\text{[axes]}}), \frac{\mathbf{x}}{d(\mathbf{x}, \aleph_{\text{[axes]}})} \right),$$

is of the form

$$tP\Big[\Big(\frac{X_1 \wedge X_2}{b_0(t)}, \frac{\mathbf{X}}{X_1 \wedge X_2}\Big) \in \cdot\Big] \to \nu_{\alpha_0} \times S_0(\cdot) \qquad \text{on } ((0, \infty) \times \aleph_{\text{[axes]}}).$$

5.0.2. Hillish statistic.

Suppose (ξ_i, η_i) ; $1 \leq i \leq n$ are iid samples in \mathbb{R}^2_+ and $(\xi_1, \eta_1) \in CEV(b, \mu)$. Notation:

$$\begin{split} \xi_{(1)} &\geq \ldots \geq \xi_{(n)} & \text{ The decreasing order statistics of } \xi_1, \ldots, \xi_n. \\ \eta_i^*, \ 1 \leq i \leq n & \text{ The } \eta\text{-variable corresponding to } \xi_{(i)}, \text{ also called } \\ & \text{ the concomitant of } \xi_{(i)}. \end{split}$$

$$N_i^k = \sum_{l=i}^k \mathbf{1}_{\{\eta_l^* \le \eta_i^*\}} \quad \text{Rank of } \eta_i^* \text{ among } \eta_1^*, \dots, \eta_k^*. \text{ We write } N_i = N_i^k.$$

Hillish statistic. For $1 \le k \le n$, the *Hillish statistic* is

$$\operatorname{Hillish}_{k,n} = \operatorname{Hillish}_{k,n}(\xi,\eta) := \frac{1}{k} \sum_{j=1}^{k} \log \frac{k}{j} \log \frac{k}{N_j^k} \tag{1}$$

Properties (Das and Resnick, 2011): If,

- $(\xi_i, \eta_i); 1 \le i \le n$ are iid observations from the $CEV(b, \mu);$
- Mild regularity.

•
$$k = k(n) \to \infty$$
, $n \to \infty$ and $k/n \to 0$.

Cornell
Team
Objective
Heavy Tails
Generation
Detection
Challenges
Title Page
44 >>
• •
Page 14 of 22
Go Back
Full Screen
Close
Quit

then

$$\operatorname{Hillish}_{k,n} \xrightarrow{P} I_{\mu} = \operatorname{ugly integral}$$

Moreover μ is a product measure if and only if both

 $\operatorname{Hillish}_{k,n}(\xi,\eta) \xrightarrow{P} 1 \quad \text{and} \quad \operatorname{Hillish}_{k,n}(\xi,-\eta) \xrightarrow{P} 1.$

Usefulness: Detect either MRV or HRV after applying GPOLAR.

Cornell
Team
Objective
Heavy Tails
Generation
Detection
Challenges
Title Page
44 >>
Page 15 of 22
Go Back
Full Screen
Close
Quit

5.0.3. Example: BU data; HTTP downloads: MRV with asymptotic independence + HRV

- HTTP downloads in sessions from 1995.
- 8 hours 20 minutes worth of downloads after applying an aggregation rule to downloads to associate machine triggered actions with human requests. See Guerin, Nyberg, Perrin, Resnick, Rootzén, and Stărică (2003).
- 4161 downloads.

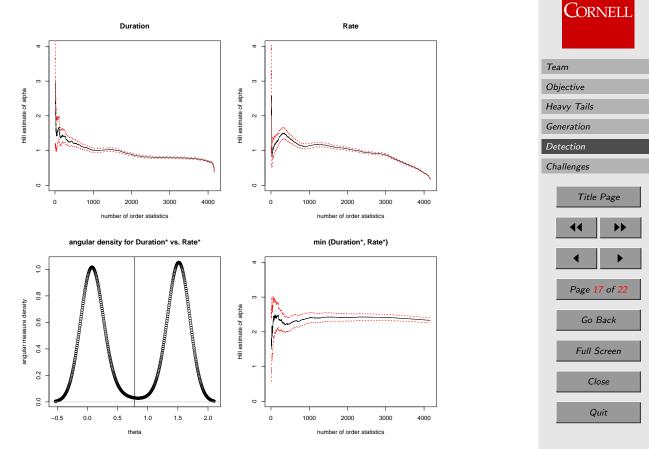
Consider the variables:

- S = the size of the download in kilobytes,
- D = the duration of the download in seconds,
- R = throughput of the download; that is, = S/D.

Concentrate on (D, R) and *standardize* with rank transformed variables:

$$D_i^* = \sum_{j=1}^{4101} \mathbf{1}_{\{D_i \ge D_j\}}, R_i^* = \sum_{j=1}^{4101} \mathbf{1}_{\{R_i \ge R_j\}}$$

One dimensional analysis.



Conclusions so far:

- Hill plots for marginals D^* and R^* consistent with marginal heavy tails.
- Evidence that the MRV on R²₊ \ {0} exists with asymptotic independence and limit measure concentrates on [axes]:
 - Spectral density plot seems to concentrate on $\{0\}$ and $\{\pi/2\}$.
 - Hill plot for $\min(D^*, R^*)$ is heavy tailed but with index

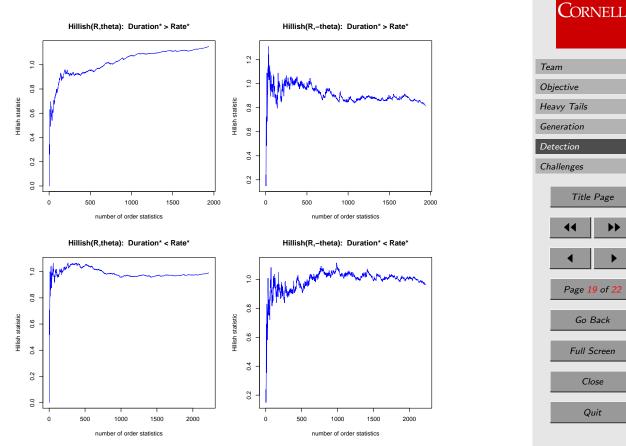
 $\alpha_0 \approx 2.4 > 1 = \text{marginal indices}$

which is evidence for regular variation on $\mathbb{R}^2_+ \setminus \{[axes]\}$.

• Will Hillish confirm existence of HRV on $\mathbb{R}^2_+ \setminus \{[axes]\}$?

Cornell
Team
Objective
Heavy Tails
Generation
Detection
Challenges
Title Page
•• ••
Page 18 of 22
Go Back
Full Screen
Close
Quit

Hillish analysis for HRV.



6. Challenges.

- Practical?
 - Limitations of asymptotic methods: rates of convergence?
- Need for more formal inference for estimation including confidence statements.
- General HRV technique in higher dimensions requires knowing the support of the limit measure. Estimate support?
- High dimension problems? How to sift through different possible subcones? There could be a sequence of cones with regular variation on each. How to teach a computer to find the cones?
- How to go from standard to more realistic non-standard case; still some inference problems.

Cornell
Team
Objective
Heavy Tails
Generation
Detection
Challenges
Title Page
•• ••
Page 20 of 22
Go Back
Full Screen
Close
Quit

Contents

Team

Objective

Heavy Tails

Generation

Detection

Challenges

Cornell

References

- B. Das and S. Resnick. Generation and detection of multivariate regular variation and hidden regular variation. ArXiv e-prints, March 2014. URL http://adsabs.harvard.edu/abs/2014arXiv1403.
 5774D. Accepted pending revision in Stochastic Systems.
- B. Das and S.I. Resnick. Detecting a conditional extreme value model. *Extremes*, 14(1):29–61, 2011.
- C.A. Guerin, H. Nyberg, O. Perrin, S.I. Resnick, H. Rootzén, and C. Stărică. Empirical testing of the infinite source poisson data traffic model. *Stochastic Models*, 19(2):151–200, 2003.
- K. Maulik and S.I. Resnick. Characterizations and examples of hidden regular variation. *Extremes*, 7(1):31–67, 2005.
- G.B. Weller and D. Cooley. A sum characterization of hidden regular variation with likelihood inference via expectation-maximization. *Biometrika*, 101(1):17–36, 2014. ISSN 0006-3444. doi: 10. 1093/biomet/ast046. URL http://dx.doi.org/10.1093/biomet/ast046.

CORNELL