Generation and Detction of Models with Multivariate Heavy Tails

Sidney Resnick
School of Operations Research and Information Engineering Rhodes Hall, Cornell University Ithaca NY 14853 USA
http://people.orie.cornell.edu/~sid 6072551210 sir1@cornell.edu

```
Page 1 of 22
```

Go Back

ACAS DC

October 20, 2014

```
Full Screen
```


1. MURI team

- Cornell (Resnick, Samorodnitsky-ORIE)
- Columbia (Davis-Stat)
- University of Massachusetts (Gong-ECE, Towsley-CS)
- American University (Nolan-Math)
- Ohio State University (Shroff-ECE \& CS)
- University of Illinois (Srikant-ECE)
- University of Minnesota (Zhang-CS)

Team

Objective

2. Scientific Objectives

Goal: Develop and apply tools to models of multivariate heavy tail phenomena:

- applied probability modeling,
- statistical modeling, simulation, numerical analysis.
- control and optimization; algorithms.

Synthesize core discipline strengths:
applied probability, statistics, simulation, numerical analysis, computer science, electrical engineering, operations research and optimization.

Apply to significant application areas:

- risk estimation,
- social networks,
- cloud computing,

Title Page
44
4
Page 3 of 22

Go Back

Full Screen

- scheduling and control, eg cloud computing,
- anomaly detection.

3. Heavy Tailed Phenomena

3.1. Description?

- Rough: The probability of observing large multivariate values is relatively large.
Large usually means beyond the range of the data.

- Associated with power laws: In one dimension, if $X>0$, roughly

$$
P[X>x] \approx x^{-\alpha}, \quad x>x_{0}
$$

- Need to specify a dependence structure; correlations may not exist and are vague information.

CORNELL

Team

Objective

Heavy Tails
Generation
Detection
Challenges

Title Page
44

Page 4 of 22

Full Screen

- Generalize to higher dimensions d or even sequence or stochastic processes. If $\boldsymbol{X}=\left(X_{1}, \ldots, X_{d}\right) \in \mathbb{R}_{+}^{d}, \boldsymbol{X}$ has a multivariate heavy

CORNELL tail if
$-\exists b(t) \rightarrow \infty$ as $t \rightarrow \infty$, and
$-\exists$ measure $\nu(\cdot)$, such that for nice sets A (thought of as tail regions,

$$
\begin{equation*}
t P\left[\frac{\boldsymbol{X}}{b(t)} \in A\right] \rightarrow \nu(A) \tag{HT}
\end{equation*}
$$

- To infer beyond the range of the data, we make the reasonably robust assumption that (HT) holds so that for tail region \mathcal{R},

$$
P[\boldsymbol{X} \in \mathcal{R}] \approx \frac{1}{t} \nu(\mathcal{R} / b(t)) \approx \frac{1}{t} \hat{\nu}(\mathcal{R} / \hat{b}(t))
$$

Replacement of a converging family by the limit is peaks over threshold (POT) philosophy.

- Estimates based on asymptotic methods depend on a convergence rate as a threshold gets large.
- There could be more than one relevant asymptotic regime.
3.2. How to model different dependence structures in heavy tailed data

Cornell

- (Left) Large values occur together (strong extremal dependence
- (Middle) Large value of one variable occurs with range of values in other.
- (Right) No risk contagion or extremal dependence.

Team

Objective
Heavy Tails

4. Model Generation

4.1. A general construction of a standardized multivariate heavy tailed distribution

- On \mathbb{R}_{+}^{d}, delete a closed cone F; for example:

$$
\begin{aligned}
& -F=\{\mathbf{0}\} \text { or } \\
& -F=[\text { axes }]
\end{aligned}
$$

- Regions away from F are considered tail regions.
- Write

$$
\aleph_{F}=\{\mathbf{x}: d(\mathbf{x}, F)=1\}
$$

Take

$$
\Theta \text { random element in } \aleph_{F}, \quad R \sim \text { Pareto, } \quad \Theta \Perp R .
$$

- Set

$$
\boldsymbol{X}=R \boldsymbol{\Theta}
$$

and $\boldsymbol{X} \in \mathrm{MRV}$ on $R_{+}^{d} \backslash F$.

Title Page

4

Page 7 of 22

Go Back

Full Screen
Can apply this construction to successive choices of deleted F :

Team

Objective

Heavy Tails

- first delete F_{1} (eg, origin)
$-\aleph_{0}=[\|\mathbf{x}\|=1]$
- tail regions bounded away from $\mathbf{0}$.
$-t P[\boldsymbol{X} / b(t) \in A] \rightarrow \nu(A)$ for A bounded away from 0 .

- then deleting $F_{1} \cup F_{2}$; ie, delete 2 nd cone F_{2} (eg, axes).
$-\aleph_{\text {[axes] }}=$ dashed lines.
- tail regions bounded away from axes; both components big
$-t P\left[\boldsymbol{X} / b_{1}(t) \in A\right] \rightarrow \nu_{1}(A)$ for A bounded away axes.

Page 8 of 22

Go Back

Full Screen

4.2. Hidden regular variation

When \boldsymbol{X} has regular variation on both $\mathbb{R}_{+}^{2} \backslash\{\mathbf{0}\}$ and $\mathbb{R}_{+}^{2} \backslash$ [axes], and

$$
b(t) / b_{1}(t) \rightarrow \infty
$$

we say \boldsymbol{X} has hidden regular variation (HRV).
? How do the 2 regular variation properties interact? Statistically identifiable? Das and Resnick (2014).

Team

Objective

4.2.1. Methods to generate models having both MRV \& HRV:

- Product method described above:
- Construct $R \Theta$, MRV on $\mathbb{R}_{+}^{2} \backslash$ [axes].
- Moment conditions ensure $R \Theta_{i}$ are one-dimensional regularly varying.
- Once marginals are regularly varying, $R \boldsymbol{\Theta}$ has a multivariate distribution that is also regularly varying on $\mathbb{R}_{+}^{2} \backslash\{\mathbf{0}\}$.
- Mixture method (Maulik and Resnick, 2005).

$$
\boldsymbol{X}=B \boldsymbol{Y}+(1-B) \boldsymbol{V}, \quad B \Perp \boldsymbol{Y} \Perp \boldsymbol{V}
$$

where

- B is a Bernoulli switching variable: $P[B=0]=P[B=1]=$ $1 / 2$.
$-\boldsymbol{Y}$ is regularly varying on $\mathbb{R}_{+}^{2} \backslash\{\mathbf{0}\}$.
- \boldsymbol{V} is regularly varying on $\mathbb{R}_{+}^{2} \backslash\{[$ axes $]\}$.

Title Page

Team

Objective

Heavy Tails
Generation

Detection

- Additive models (Weller and Cooley, 2014):

$$
\boldsymbol{X}=\boldsymbol{Y}+\boldsymbol{V}, \quad \boldsymbol{Y} \Perp \boldsymbol{V}
$$

where
$-\boldsymbol{Y}$ is MRV on $\mathbb{R}_{+}^{2} \backslash\{\mathbf{0}\}$

- \boldsymbol{V} is MRV on $\mathbb{R}_{+}^{2} \backslash\{[$ axes $]\}$.

This model has severe identification issues:

- Does HRV of \boldsymbol{X} come from \boldsymbol{Y} (sometimes) or \boldsymbol{V} (sometimes)?
- Is the hidden index of regular variation of \boldsymbol{X} (the scaling property) what one would predict from \boldsymbol{V} (not necessarily).

CORNELL

Team

Objective

Heavy Tails
Generation

Detection

Challenges

Title Page

4

Page 11 of 22

Go Back

Full Screen

5. Model Detection Diagnostics

When should MRV or HRV be applied to data?

1. Reduction to one dimension:

- $\boldsymbol{X} \in \mathrm{MRV}$ on $\mathbb{R}_{+}^{2} \backslash\{\mathbf{0}\}$ iff $a X_{1} \vee b X_{2} \in R V(\alpha)$ for all $a \geq$ $0, b \geq 0$.
- $\boldsymbol{X} \in \mathrm{HRV}$ on $\mathbb{R}_{+}^{2} \backslash[$ axes $]$ iff $a X_{1} \wedge b X_{2} \in R V\left(\alpha_{0}\right)$ for $a \wedge b>0$.
[Hint: Cannot check $\forall a, b$.]

2. Use GPOLAR to convert to the CEV model and then use CEV diagnostics (Das and Resnick, 2011) using the Hillish and Pickandsish plots.

- A CEV model for (ξ, η) has the form

$$
t P\left[\left(\frac{\xi}{b(t)}, \eta\right) \in \cdot\right] \rightarrow \mu(\cdot)
$$

on $(0, \infty) \times[0, \infty)$.

Full Screen

- MRV on $\mathbb{R}_{+}^{2} \backslash\{\mathbf{0}\}$, after transformation via GPOLAR is of the form

CORNELL
$t P[(\underbrace{\|\boldsymbol{X}\|}_{\xi} / b(t), \underbrace{\boldsymbol{X} /\|\boldsymbol{X}\|}_{\eta}) \in \cdot] \rightarrow \underbrace{\nu_{\alpha} \times S(\cdot)}_{\text {product measure }}, \quad$ on $(0, \infty) \times \aleph_{\mathbf{0}}$.

Team

- HRV on $\mathbb{R}_{+}^{2} \backslash$ axes] after transformation by

$$
\text { GPOLAR }: \mathbf{x} \mapsto\left(d\left(\mathbf{x}, \aleph_{[\text {axes }]}\right), \frac{\mathbf{x}}{d\left(\mathbf{x}, \aleph_{[\text {axes }]}\right)}\right)
$$

is of the form

$$
t P\left[\left(\frac{X_{1} \wedge X_{2}}{b_{0}(t)}, \frac{\boldsymbol{X}}{X_{1} \wedge X_{2}}\right) \in \cdot\right] \rightarrow \nu_{\alpha_{0}} \times S_{0}(\cdot) \quad \text { on }\left((0, \infty) \times \aleph_{[\text {axes }]}\right)
$$

Title Page

Page 13 of 22

5.0.2. Hillish statistic.

Suppose $\left(\xi_{i}, \eta_{i}\right) ; 1 \leq i \leq n$ are iid samples in \mathbb{R}_{+}^{2} and $\left(\xi_{1}, \eta_{1}\right) \in$ $\operatorname{CEV}(b, \mu)$. Notation:
$\xi_{(1)} \geq \ldots \geq \xi_{(n)} \quad$ The decreasing order statistics of ξ_{1}, \ldots, ξ_{n}.
$\eta_{i}^{*}, 1 \leq i \leq n \quad$ The η-variable corresponding to $\xi_{(i)}$, also called the concomitant of $\xi_{(i)}$.
$N_{i}^{k}=\sum_{l=i}^{k} \mathbf{1}_{\left\{\eta_{l}^{*} \leq \eta_{i}^{*}\right\}}$ Rank of η_{i}^{*} among $\eta_{1}^{*}, \ldots, \eta_{k}^{*}$. We write $N_{i}=N_{i}^{k}$.
CORNELL

Team

Objective

Hillish statistic. For $1 \leq k \leq n$, the Hillish statistic is

$$
\begin{equation*}
\operatorname{Hillish}_{k, n}=\operatorname{Hillish}_{k, n}(\xi, \eta):=\frac{1}{k} \sum_{j=1}^{k} \log \frac{k}{j} \log \frac{k}{N_{j}^{k}} \tag{1}
\end{equation*}
$$

44
\square
Page 14 of 22
Properties (Das and Resnick, 2011): If,

- $\left(\xi_{i}, \eta_{i}\right) ; 1 \leq i \leq n$ are iid observations from the $\operatorname{CEV}(b, \mu) ;$

```
Full Screen
```

- Mild regularity.

Close

- $k=k(n) \rightarrow \infty, n \rightarrow \infty$ and $k / n \rightarrow 0$.
then

$$
\operatorname{Hillish}_{k, n} \xrightarrow{P} I_{\mu}=\text { ugly integral. }
$$

CORNELL
Moreover μ is a product measure if and only if both
$\operatorname{Hillish}_{k, n}(\xi, \eta) \xrightarrow{P} 1$ and $\operatorname{Hillish}_{k, n}(\xi,-\eta) \xrightarrow{P} 1$.
Usefulness: Detect either MRV or HRV after applying GPOLAR.

Team

Objective

Page 15 of 22
5.0.3. Example: BU data; HTTP downloads: MRV with asymptotic independence + HRV

CORNELL

- HTTP downloads in sessions from 1995.
- 8 hours 20 minutes worth of downloads after applying an aggregation rule to downloads to associate machine triggered actions with human requests. See Guerin, Nyberg, Perrin, Resnick, Rootzén, and Stărică (2003).
- 4161 downloads.

Consider the variables:

- $S=$ the size of the download in kilobytes,
- $D=$ the duration of the download in seconds,
- $R=$ throughput of the download; that is, $=S / D$.

Concentrate on (D, R) and standardize with rank transformed variables:

$$
D_{i}^{*}=\sum_{j=1}^{4161} \mathbf{1}_{\left\{D_{i} \geq D_{j}\right\}}, R_{i}^{*}=\sum_{j=1}^{4161} \mathbf{1}_{\left\{R_{i} \geq R_{j}\right\}} .
$$

One dimensional analysis.

Cornell

angular density for Duration* vs. Rate*

Rate

\min (Duration*, Rate*)

Team

Objective

Page 17 of 22

Full Screen

Close

Quit

Conclusions so far:

- Hill plots for marginals D^{*} and R^{*} consistent with marginal heavy tails.
- Evidence that the MRV on $\mathbb{R}_{+}^{2} \backslash\{\mathbf{0}\}$ exists with asymptotic independence and limit measure concentrates on [axes]:
- Spectral density plot seems to concentrate on $\{0\}$ and $\{\pi / 2\}$.
- Hill plot for $\min \left(D^{*}, R^{*}\right)$ is heavy tailed but with index

$$
\alpha_{0} \approx 2.4>1=\text { marginal indices }
$$

which is evidence for regular variation on $\mathbb{R}_{+}^{2} \backslash\{[$ axes $]\}$.

- Will Hillish confirm existence of HRV on $\mathbb{R}_{+}^{2} \backslash\{[$ axes $]\}$?

Team

Objective

Hillish analysis for HRV.

CORNELL

Team

Objective

Full Screen

6. Challenges.

- Practical?
- Limitations of asymptotic methods: rates of convergence?
- Need for more formal inference for estimation including confidence statements.
- General HRV technique in higher dimensions requires knowing the support of the limit measure. Estimate support?
- High dimension problems? How to sift through different possible subcones? There could be a sequence of cones with regular variation on each. How to teach a computer to find the cones?
- How to go from standard to more realistic non-standard case; still some inference problems.

Team

Objective
Heavy Tails
Generation
Detection
Challenges

Title Page

4
4
Page 20 of 22

Go Back

Full Screen

Close

Quit

Contents

Team
Objective
Heavy Tails
Generation
Detection
Challenges

Title Page

Page 21 of 22

Go Back

Full Screen

Close

References

B. Das and S. Resnick. Generation and detection of multivariate regular variation and hidden regular variation. ArXiv e-prints, March 2014. URL http://adsabs.harvard.edu/abs/2014arXiv1403. 5774D. Accepted pending revision in Stochastic Systems.
B. Das and S.I. Resnick. Detecting a conditional extreme value model. Extremes, 14(1):29-61, 2011.
C.A. Guerin, H. Nyberg, O. Perrin, S.I. Resnick, H. Rootzén, and C. Stărică. Empirical testing of the infinite source poisson data traffic

Title Page model. Stochastic Models, 19(2):151-200, 2003.
K. Maulik and S.I. Resnick. Characterizations and examples of hidden regular variation. Extremes, 7(1):31-67, 2005.
G.B. Weller and D. Cooley. A sum characterization of hidden regular variation with likelihood inference via expectation-maximization. Biometrika, 101(1):17-36, 2014. ISSN 0006-3444. doi: 10. 1093/biomet/ast046. URL http://dx.doi.org/10.1093/biomet/ ast046.

