

Engineering, Operations & Technology Boeing Research & Technology

Multi-Criteria Decision Analysis on Aircraft Stringer Selection

Dr. Shuguang Song The Boeing Company

Joint work with You Ren and Paul D. Sampson University of Washington

October 22, 2014

Engineering, Operations & Technology | Boeing Research & Technology

Multi-Criteria Decision Analysis (MCDA) problems often involve multiple Decision Makers(DMs). In this paper, we present several decision analysis algorithms, considering both subjective and objective decision criteria with different strategies to account for uncertainty. We address the uncertainty and availability of weights for decision criteria, and develop probability scoring for the criteria. We demonstrate an application of our method with a case study concerning aircraft stringer decisions.

Introduction

Engineering, Operations & Technology | Boeing Research & Technology

Categorize the decision criteria into subjective decision criteria and objective decision criteria.

- To model the uncertainty of subjective criteria, we sample the data from a Bayesian posterior distribution.
- To model the uncertainty of objective criteria, we sample the data from appropriate probability distribution or empirical distribution.
- Study the uncertainty in weights from multiple DMs by treating weight as a subjective criterion.
- Develop a probability score with embedded sampling procedure to measure the probability that one alternative outperforms another.
- Implemented five MCDA algorithms
 - 1-stage sampling + normalization table
 - 2-stage sampling + normalization table
 - > 1-stage sampling + interval hull linear score
 - 2-stage sampling + interval hull linear score
 - > probability score (related to the pairwise winning index)

Bayesian 2-Stage Sampling Procedure

- Let X_i be the value for a subjective decision criterion from ith DM, i =1, ..., d.
- $X_i | \vec{p} \sim \text{Multinominal}(\vec{p}), i=1, ..., d$
- Prior distribution: $\vec{p} \sim \text{Dirichlet}(\vec{\alpha}=1,...,1)$
- Posterior distribution: $\vec{p} | X_{1, \dots, X_d} \sim \text{Dirichlet} (\vec{\gamma} = \vec{\alpha} + \vec{\beta})$, where $\beta_r = \sum_{s=1}^{d} \mathbf{1}_{[Xs=r]}$.
- 2-Stage Bayesian sampling: for t from 1 to M,
 - > Step 1: Sample one \vec{p}_t from its posterior distribution $\vec{p} \sim \text{Dirichlet}(\vec{\gamma})$.
 - > Step 2: Sample one data value X_t from its distribution $X_t \sim Multinomial(\vec{p}_t)$.

Bayesian 1-Stage Sampling Procedure

Engineering, Operations & Technology | **Boeing Research & Technology**

 The optimal parameter estimate I the one that minimize the quadratic loss function, which is the mean of the posterior distribution.

$$\mathbf{P} \, \widehat{\overrightarrow{p}} = \frac{\overrightarrow{\gamma}}{\mathbf{1}^T \, \overrightarrow{\gamma}}$$

- Algorithm: obtain posterior mean $\hat{\vec{p}} = \frac{\vec{\gamma}}{1^T \vec{\gamma}}$. For t from 1 to M, sample one data value X_t from its distribution $X_t \sim$ Multinomial($\hat{\vec{p}}$).
- Both 1-stage sampling procedure and 2-stage sampling procedure can be used to continuous subjective decision criterion by discretization.

Probability Score

- Let X₁ denote the criterion variable for alternative 1, and X₂ denote the criteria variable for alternative 2.
- If the higher the criterion value, the better the alternative
 - > probability score of X_1 is $P_r(X_1 > X_2)$
 - > probability score of X_2 is $P_r(X_2 > X_1)$
- If the lower the criterion value, the better the alternative
 - > probability score of X_1 is $P_r(X_2 > X_1)$
 - > probability score of X_2 is $P_r(X_2 < X_1)$
- If categorical variable, take $Pr(X_1 > X_2) + 0.5 Pr(X_1 = X_2)$
- Rescale original probability score from [0,1] to [-1, 1].

Probability Score: objective criteria

Engineering, Operations & Technology | **Boeing Research & Technology**

Subjective criterion: for sample t from 1 to M,

- > Step 1: Sample one \vec{p}_t^1 for Alternative 1, \vec{p}_t^2 for Alternative 2 from their posterior distributions.
- > $X_t^1 \sim \text{Multinomial}(\vec{p}_t^1)$, $X_t^2 \sim \text{Multinomial}(\vec{p}_t^2)$. $S_{12} = \Pr(X_t^1 > X_t^2)$ or $\Pr(X_t^1 < X_t^2)$.
- Matrix of pairwise comparison

$$\begin{bmatrix} 0 & s_{12} \cdots & s_{1m} \\ \vdots & 0 & \ddots & \vdots \\ s_{m1} & s_{m2} & & 0 \end{bmatrix}$$

> Obtain probability score vector ($\bar{s}_1, ..., \bar{s}_m$) for each alternative on one subjective criterion under sample t. Here, $\bar{s}_k = \sum_{l=1}^m \frac{s_{kl}}{m-1}$, which represents the average probability of alternative k outperforming the others.

Objective criterion:

> bootstrap observed values to get another sample, calculate $Pr(X_t^1 > X_t^2)$

> If the sample size is large, no need of bootstrapping.

Normalization Table and Interval Hull

Engineering, Operations & Technology | **Boeing Research & Technology**

Normalization table

list the value range of each criterion and its associated score
 provided by DMs.

Interval Hull Linear Mapping Method

- The interval hull for criterion j is the smallest interval that contains 95% confidence intervals of all M alternatives on criterion j.
- The two end points of the interval hull are mapped to the least and the most preferable values in the utility function, i.e., 0 and 1.
- The utility or mapping function is then assumed to be linear between the two end points.
- See Tervonen et al. (2005)

An Illustrated Example: Aircraft Stringer Selection

CycleTimeAP.xls [Compatibility Mode]				Lab	orhoursAP.	xlsx					cost	.xls [Compa	tibility Mode				
	А	В	С	D			Α	В		С	D			В	С	D	
1	ID	Stringer I	Stringer II	Stringer III		1	ID	Stringer	I String	jer II	Stringer III		1	Stringer I	Stringer II	Stringer	III
2	1	560	396	6 255		2		1 2	257	1858	1781	1	2	109	91		88
3	2	654	379	9 281		3		2 2	351	1912	1504	1		→ → She	eet1 Sheet	2 / Sheet	3 / 💭
4	3	595	442	2 246		4		3 2	326	1770	1555	5					
5	4	587	364	4 218		5		4 2	220	2018	1630)	ma	opingTable	withDirection	Only.xlsx	
6	5	637	416	6 272		6		5 2	552	1800	1709)		Λ	D		
7	6	485	344	4 256		7		6 2	232	2009	1864	1		Critoria	directi		
8	7	558	394	4 265		8		7 2	316	1949	1411	1	1		direction		
9	8	552	480	244	_	9	()) I ()	8 2	390	1704	1439)	2	cost		-1	
	She	et1 Shee	t2 / Sheet3		_	1		heet1 Sr	ieet2 / Shi	eet3 🖉	C.		3	reworkRa	te	-1	
	- duD - to sub-	C	- Mardal										4	Laborhou	rsAP	-1	
rew	orkkate.xis [Compatibili	y wodej	_		TRL.CS	V						5	CycleTime	eAP	-1	
	A	В	С	D	- 11		Α	В	С	D)		6	TRL		1	
1	Expert ID	Stringer I	Stringer II	Stringer III		1 E	xpert ID	Stringer I	Stringer II	String	ger III		H.	↔ H Sh	eet1 Sheet	2 / Shee	
2	1	5%	15%	25%		2	1	10	8		(
3	2	8%	13%	20%		3	2	10	9)	6	P) (P	weight.>	ds [Compat	ibility M 🔒	- 🗖	X
4	3	10%	13%	18%		4	3	9	10		5			А	В	С	
5	4	10%	15%	15%	- 11	5	4	8	8		9	1	Decis	ion Factor	expert1	expert2	
6	5	9%	10%	10%	- 11	6	5	10	5	1	7	2	cost			5 /	5
1	6	13%	8%	18%	- 11	7	5	20	-	,	7	3	TRL			4	3
8	1	/%	16%	16%	_	0	0 7	0	1	:	0	4	rewor	kRate		3	4
9	8	1%	12%	14%	_	ŏ	/	9)	ð	5	Labor	hoursAP	2	2 ;	2
10	9	8%	15%	20%	_	9	8	/ /			8	6	Cycle	TimeAP		1 :	2 🔻
11	10	14%	16%	25%								H •	I I I	Sheet1 /	Sheet 🛛 🖣 🔜		
	She She	eet1 / Shee	t2 🔬 Sheet3														

Aircraft Stringer Selection: Weight of Decision Criteria

Decision Factor	Weight from DM1	Weight from DM2
Cost	5	5
Cycle time per airplane	1	2
Labor hours per airplane	2	2
Rework rate	3	4
TRL	4	3

Normalization Table for Stringer Study

Score	10	9	8	7	6	5	4	3	2	1
cost	0-	50-	80-	90-	100-	110-	120-	130-	140-	150-
	50	80	90	100	110	120	130	140	150	160
TRL	10	9	8	7	6	5	4	3	2	1
rework	0%-	10%-	20%-	30%-	40%-	50%-	60%-	70%-	80%-	90%-
rate	10%	20%	30%	40%	50%	60%	70%	80%	90%	100%
labor	0.5K-	1.0K-	1.5K-	2.0K-	2.5K-	3.0K-	3.5K-	4.0K-	4.5K-	5.0K-
hours	1.0 K	1.5K	2.0 K	2.5K	3.0 K	3.5K	4.0 K	4.5K	5.0 K	5.5K
cycle	100-	200-	300-	400-	500-	600-	700-	800-	900-	1K-
time	200-	300-	400-	500-	600-	700-	800-	900-	1K-	1.1K

Comparison of Algorithms: Total Weighted Scores

Algorithm	Stringer	Mean	95% CI
1 store compling	Stringer I	7.03	(5.44, 8.21)
r-stage sampling,	Stringer II	7.56	(6.06, 8.54)
normalization table	Stringer III	7.99	(6.47, 8.93)
2 stose compling	Stringer I	7.02	(5.38, 8.21)
2-stage sampling,	Stringer II	7.56	(6.06, 8.56)
normalization table	Stringer III	7.99	(6.47, 8.93)
1-stage sampling,	Stringer I	0.34	(0.12, 0.57)
interval hull linear	Stringer II	0.64	(0.43, 0.80)
score	Stringer III	0.72	(0.51, 0.89)
2-stage sampling,	Stringer I	0.34	(0.12, 0.56)
interval hull linear	Stringer II	0.64	(0.43, 0.80)
score	Stringer III	0.72	(0.51, 0.89)
	Stringer I	-0.47	(-0.73, -0.19)
probability scoring	Stringer II	0.03	(-0.07, 0.13)
	Stringer III	0.44	(0.16, 0.69)

Comparison of Algorithms: Rank Acceptability Index

Algorithm	Stringer	Rank 1	Rank2	Rank3
1 storo compling	Stringer I	0.07	0.24	0.69
r-stage sampling,	Stringer II	0.25	0.54	0.21
normalization table	Stringer III	0.68	0.22	0.10
2 staga sampling	Stringer I	0.08	0.24	0.68
2-stage sampling,	Stringer II	0.24	0.54	0.22
normalization table	Stringer III	0.68	0.22	0.10
1-stage sampling,	Stringer I	0.01	0.04	0.95
interval hull linear	Stringer II	0.25	0.72	0.03
score	Stringer III	0.74	0.24	0.02
2-stage sampling,	Stringer I	0.01	0.04	0.95
interval hull linear	Stringer II	0.26	0.71	0.03
score	Stringer III	0.74	0.25	0.01
	Stringer I	0.00	0.00	1.00
probability scoring	Stringer II	0.01	0.99	0.00
	Stringer III	0.99	0.01	0.00

BDAT

BOEING

Engineering, Operations & Technology Boeing Research & Technology

Boeing Decision Analysis Tool (BDAT)

OVERVIEW:

Trade studies are needed to evaluate different designs and manufacturing processes in manufacturing industry. The decision factors for choosing a design or a manufacturing process can usually be categorized into numeric and subjective decision factors. Very often, experts provide subjective weight to each decision factor. Boeing Decision Analysis Tool (BDAT) provides several decision analysis algorithms to recommend an optimal decision by considering uncertainty of all various decision factors and weights. For more detailed explanation of decision factors, mapping table and weight that are input for decision analysis, please click the question marks below. Here is the <u>BDAT Users Guide</u>. For more technical details and additional questions, contact <u>Shuguang Song</u> at 206-304-8569.

DATA INPUT FILES	
Decision Factors: 3	Browse
	Add another Decision Factor
Mapping Table:	Browse
Weight file (optional):	Browse
	Run Analysis

ANALYSIS RESULTS: 3

The analysis results will be displayed below. For a detailed explanation of these results, click the question mark above.

Analysis Results: Probability Score

Engineering, Operations & Technology | Boeing Research & Technology

ANALYSIS RESULTS: **0** The analysis results will be displayed below. For a detailed explanation of these results, click the question mark above.

Analysis Results: 1-Stage Interval Hull

Engineering, Operations & Technology | Boeing Research & Technology

ANALYSIS RESULTS: @

The analysis results will be displayed below. For a detailed explanation of these results, click the question mark above.

1stageintervalHull Result Set:

Export Analysis Results...

I_Mean_Cl.csv								
Mean	95%CI-left	95%CI-right						
0.34	0.12	0.57						
0.64	0.43	0.8						
0.72	0.51	0.89						
	Mean 0.34 0.64 0.72	Mean 95%Cl-left 0.34 0.12 0.64 0.43 0.72 0.51						

1.0

	Rank 1	Rank 2	Rank 3	
Stringer.I	0.01	0.04	0.95	
Stringer.II	0.25	0.72	0.03	
Stringer.III	0.74	0.24	0.02	

Show/Hide supporting data ...

1_Plots3.jpeg

Stringer.II

Stringer.III

~

3 Value Path.csv

	cost	CycleTimeAP	LaborhoursAP	reworkRate	TRL
Stringer.I	0	0.18	0.2	0.64	0.67
Stringer.II	0.86	0.49	0.62	0.56	0.62
Stringer.III	1	0.8	0.77	0.45	0.57

6_Histogram.jpeg

One-stage sampling, interval hull linear mapping

Stringer.I

Analysis Results: 2-Stage Interval Hull

Engineering, Operations & Technology | Boeing Research & Technology

ANALYSIS RESULTS: •• The analysis results will be displayed below, For a detailed explanation of these results, click the question mark above,

Two-stage sampling, interval hull linear mapping

-

Result Set: 2stageintervalHull

1_Meas_CLesy

	Mean	95%CI-left	95%CI-right
Stringer.I	0.34	0.12	0.56
Stringer.II	0.64	0.43	0.8
Stringer.III	0.72	0.51	0.89

SExport Analysis Results.								
2_Rank_Acceptability_Index.csy								
	Rank 1	Rank 2	Rank 3					
Stringer.I	0.01	0.04	0.95					
Stringer.II	0.26	0.71	0.03					
Stringer.III	0.74	0.25	0.01					

Show/Hide supporting data....

1_Plots8.jper

Stringer.III

Stringer.II

8_Value_Path.csy

	cost	CycleTimeAP	LaborhoursAP	reworkRate	TRL
Stringer.I	0	0.18	0.2	0.64	0.67
Stringer.II	0.86	0.49	0.62	0.56	0.62
Stringer.III	1	0.8	0.77	0.45	0.58

0.0

Score

6_Histogram.jpeg

Two-stage sampling, interval hull linear mapping

Stringer.I

Conclusion and Discussion

Engineering, Operations & Technology | **Boeing Research & Technology**

- Decision criteria: objective vs subjective
- Bayesian sampling approach

• Five MCDA algorithms:

- 1-stage sampling + normalization table
- 2-stage sampling + normalization table
- > 1-stage sampling + interval hull linear score
- > 2-stage sampling + interval hull linear score
- > probability score (related to the pairwise winning index)
- Extensive simulation is needed to compare the performance of the MCDA algorithms.
- It may be worth the development of some ensemble MCDA algorithm.

Some References

- Figueira, J., Greco, S., Ehrgott, M., 2005a. Multiple criteria decision analysis: state of the art surveys. New York, Springer.
- Hajkowicz, S., Collins, K., 2007. A review of multiple criteria analysis for water resource planning and management. Water Resources Management 21, 1553–1566.
- Hayashi, K., 2000. Multicriteria analysis for agricultural resource management: A critical survey and future perspectives. European Journal of Operational Research 122, 486–500.
- Keeney, R. L., Raiffa, H., 1976. Decisions with Multiple Objectives: Preferences and Value Tradeoffs. New York, John Wiley and Sons.
- Lahdelma, R., Hokkanen, J., Salminen, P., 1998. SMAA stochastic multiobjective accept-ability analysis. European Journal of Operational Research 106, 137–143.
- Lahdelma, R., Makkonen, S., Salminen, P., 2006. Multivariate gaussian criteria in SMAA. European Journal of Operational Research 170, 957–970.
- Lahdelma, R., Makkonen, S., Salminen, P., 2009. Two ways to handle dependent uncertainties in multicriteria decision problems. Omega 37, 79–92.
- Lahdelma, R., Salminen, P., 2001. SMAA-2: stochastic multicriteria acceptability analysis for group decision making. Operations Research 49, 444–454.
- Leskinen, P., Viitanen, J., Kangas, A., Kangas, J., 2006. Alternatives to incorporate uncertainty and risk attitude in multicriteria evaluation of forest plans. Forest Science.
- Taque, N. R., 2005. The Quality Toolbox, 2nd Edition. ASQ Quality Press.
- Tervonen, T., Figueira, J. R., 2008. A survey on stochastic multicriteria acceptability analysis methods. Journal
 of Multi-criteria Decision Analysis 15, 1–14.
- Tervonen, T., Lahdelma, R., 2007. Implementing stochastic multicriteria acceptability analysis. European Journal of Operational Research 178, 500–513.
- Tervonen, T., Valkenhoef, G., Buskens, E., Hillege, H. L., Postmus, D., 2011. A stochastic multicriteria model for evidence-based decision making in drug benefit-risk analysis. Statistics in Medicine 30, 1419–1428.13

Questions?

