
Derivation of the Distribution Function for the  
Tampered Brownian Motion Process Model1  

 
 

Arthur Fries 
Institute for Defense Analyses, Alexandria, VA 22311 

 

 

 
Abstract 
The tampered Brownian motion process (BMP) arises in the context of partial step-stress 
accelerated life testing when the underlying system fatigue accumulated over time is 
modeled by two constituent BMPs, one governing up to the predetermined time point at 
which the stress level is elevated and the other afterwards. A conditioning argument 
obtains the probability distribution function (pdf) of the corresponding time-to-failure 
random variable. This result has been reported and studied in the literature, but its 
derivation has not been published. 
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1. Introduction 
 
The tampered BMP (Bhattacharyya 1987, Lu & Storer 2001) arises in the context of 
partial step-stress accelerated life testing when the underlying system fatigue 
accumulated over time t, B(t), is modeled by two separate BMPs, one applicable before 
the stress level is elevated at a predetermined fixed time point τ and the other afterwards 
(assuming that an item under test has not failed by time τ). Specifically, let 
 

                                 𝐵𝐵(𝑡𝑡) =  �  𝐵𝐵1
(𝑡𝑡),                              𝑡𝑡 ≤  𝜏𝜏

𝐵𝐵1(𝜏𝜏) + 𝐵𝐵2(𝑡𝑡 −  𝜏𝜏),    𝑡𝑡 >  𝜏𝜏,                               (1)                                            

 
where Bi(t) = Bi(t;ηi,δ), i = 1, 2, are independent BMPs with positive drifts ηi and a 
common diffusion parameter δ2, and the system fails when B(t) first attains a critical 
threshold value ξ. The ordering η2 > η1 ensures that fatigue accrues relatively faster at the 
higher stress value. 
 
A primary impetus for prescribing the representation (1) is its plausible physical basis. 
Additionally, the corresponding single stress setting problem is known to yield the 
prominent inverse Gaussian (IG) distribution for the first passage time of the BMP with 
respect to a critical boundary (Shrӧdinger 1915, Smoluchowski 1915, Tweedie 1945). 
The IG pdf accommodates a spectrum of shapes, adheres to the structure of an 
exponential family, and supports well-developed statistical inference procedures (Folks & 
Chhikara 1978). It has been applied extensively in the modeling of reliability, fatigue life, 
and long-tailed phenomena (Chhikara & Folks 1977, Bhattacharyya & Fries 1982b, 
Seshadri 1999). The IG pdf and cdf take the forms: 
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                                     𝑔𝑔(𝑡𝑡) = 𝑔𝑔(𝑡𝑡;𝜇𝜇, 𝜆𝜆) = � 𝜆𝜆
2𝜋𝜋𝑡𝑡3

𝑒𝑒𝑒𝑒𝑒𝑒 �−𝜆𝜆(𝑡𝑡−𝜇𝜇)2

2𝜇𝜇2𝑡𝑡
�,                                       (2) 

 

  𝐺𝐺(𝑡𝑡) =  𝐺𝐺(𝑡𝑡;𝜇𝜇, 𝜆𝜆) = 𝛷𝛷��
𝜆𝜆
𝑡𝑡
�
𝑡𝑡
𝜇𝜇
− 1��  + 𝑒𝑒𝑒𝑒𝑒𝑒 �

2𝜆𝜆
𝜇𝜇
�𝛷𝛷�−�

𝜆𝜆
𝑡𝑡
�
𝑡𝑡
𝜇𝜇

+ 1��, 

 
denoting the mean as μ, the shape parameter as λ, and the standard N(0,1) cdf as Φ(·). 
 
Doksum & Hóyland (1992) examine variable accelerated life testing experiments for 
which the time-to-failure distribution is expressed in terms of linear time-transformed IG 
distribution functions, a construct that is incompatible with (1). Both Lu & Storer (2001) 
and Doksum & Hóyland (1992) employ a common characterization of the failure time: T 
= inf{t: B(t) > ξ}. Different representations of B(t), however, lead to distinct pdfs.  
 
Based on (1), Lu & Storer (2001) report the pdf for their tampered BMP model to be: 
 

                𝑓𝑓(𝑡𝑡) =  

⎩
⎨

⎧ � 𝜆𝜆
2𝜋𝜋𝑡𝑡3

𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜆𝜆𝜆𝜆𝑐𝑐2(𝜇𝜇1,𝑡𝑡)
2

�                                           𝑡𝑡 ≤  𝜏𝜏,

� 𝜆𝜆
2𝜋𝜋𝑡𝑡3

𝑒𝑒𝑒𝑒𝑒𝑒 �− 𝜆𝜆𝜆𝜆
2
�𝑐𝑐2(𝜇𝜇1, 𝑡𝑡) + 𝑡𝑡

𝜇𝜇22
𝑐𝑐(𝜏𝜏, 𝑡𝑡)�� 𝑠𝑠(𝑡𝑡),     𝑡𝑡 >  𝜏𝜏,

                   (3) 

 
specifying λ = ξ2/δ2, μi = ξ/ηi, for i = 1, 2, c(a,b) = (1/a – 1/b) for a, b ≠ 0, ∆ = τ∙c(μ2,μ1), 
s(t) = q(t,∆+1,λ) – q(t,∆–1,λ), and q(t,a,λ) = a·exp(½a2λc(τ,t))·Φ(a(λc(τ,t))½). On the 
interval (0,τ], f(t) matches g(t), the IG pdf given in (2), with parameters μ1 and λ. For 
larger values of t, f(t) incorporates μ2 from B2(t) and takes on an unwieldy form. Lu & 
Storer (2001) establish numerous properties of (3): f(t) is continuous and may be either 
unimodal or bimodal; all positive integer moments exist; and maximum likelihood 
estimators are unique with probability tending to 1, are strongly consistent, and are 
asymptotically normally distributed.  
 
Lu and Storer (2001) state that (3) was obtained after Bhattacharyya (1987) and attribute 
the derivation to Bhattacharyya – contradicting Bhattacharyya (1987, p. 156): “The 
distribution … has been derived by using a conditioning approach which led to a closed 
form expression for the pdf” [emphasis added]. I derived the tampered BMP pdf (Fries 
1982) while awaiting my PhD defense. Gouri Bhattachatyya, my advisor, posed the 
problem to me (Bhattacharyya 1982) and shortly thereafter crafted a skeleton of a draft 
manuscript (Bhattacharyya & Fries, 1982a) streamlining portions of my exposition and 
introducing the exact parameterization (3). Section 2 below details the approach taken in 
the derivation.  
 

2. Pdf Derivation 
 
Two lemmas support the development of (3). Both were obtained from first principles in 
1982, but at present it suffices to cite published sources. Lemma 1 establishes the 
probability that a BMP in the future will attain a particular value, given that it earlier had 
reached a specified point at some prescribed instance in time – a fundamental probability 
arising naturally in the context of conditioning arguments. Lemma 2 simplifies certain 
integral expressions involving exponential functions.  
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Lemma 1 (Wang & Pötzelberger 1997, Eq. (2)). Let B*(t) = B*(t;η,δ) be a BMP with 
positive drift η and variance δ2, and let τ, a, and b be positive constants. Then, 
independent of η, 

𝑃𝑃 �  𝐵𝐵∗(𝑠𝑠)𝑠𝑠 𝜖𝜖 [0,𝜏𝜏]
𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 𝑎𝑎 | 𝐵𝐵∗(𝜏𝜏) = 𝑏𝑏� =  �𝑒𝑒𝑒𝑒𝑒𝑒�

−2𝑎𝑎(𝑎𝑎 − 𝑏𝑏)
𝛿𝛿2𝜏𝜏 �

1               𝑖𝑖𝑖𝑖 𝑏𝑏 ≥ 𝑎𝑎.
 𝑖𝑖𝑖𝑖 𝑏𝑏 < 𝑎𝑎, 

 
Lemma 2 (Gradshteyn & Ryzhik 2007, pp. 365 & 1030). Let 𝜙𝜙(·) = Φ'(·) denote the 
standard normal pdf. For α > 0, 

𝐼𝐼(𝛼𝛼,𝛽𝛽) ≡  ∫ 𝜗𝜗 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒�−(𝛼𝛼𝜗𝜗2 + 𝛽𝛽𝛽𝛽)�∞
0 d𝜗𝜗 =  1

2𝛼𝛼
�1− � 𝛽𝛽

√2𝛼𝛼
�
𝛷𝛷�− 𝛽𝛽

√2𝛼𝛼
�

𝜙𝜙�− 𝛽𝛽
√2𝛼𝛼

�
�. 

Derivation of (3). On the time interval (0,τ], it is straightforward to determine the 
associated component of the cdf F(t) = P[T ≤ t]. For a fixed t ≤ τ, B(t) = B1(t) and  
 

𝑃𝑃[𝑇𝑇 ≤ 𝑡𝑡] = 𝑃𝑃 �  𝐵𝐵(𝑠𝑠)𝑠𝑠 𝜖𝜖 [0,𝑡𝑡]
𝑠𝑠𝑠𝑠𝑠𝑠 > 𝜉𝜉� = 𝑃𝑃 �  𝐵𝐵1(𝑠𝑠)𝑠𝑠 𝜖𝜖 [0,𝑡𝑡]

𝑠𝑠𝑠𝑠𝑠𝑠 > 𝜉𝜉� = 𝐺𝐺(𝑡𝑡; 𝜇𝜇1,𝜆𝜆). 
 
For the non-trivial case, t > τ, the derivation proceeds by conditioning on B1(τ) and 
invoking the independence of B1(∙) and B2(∙): 
 
 𝑃𝑃[𝑇𝑇 ≤ 𝑡𝑡] = 𝑃𝑃[𝑇𝑇 ≤ 𝜏𝜏] + 𝑃𝑃[𝜏𝜏 < 𝑇𝑇 ≤ 𝑡𝑡], where 
 
𝑃𝑃[𝜏𝜏 < 𝑇𝑇 ≤ 𝑡𝑡] = 𝑃𝑃 ��  𝐵𝐵(𝑠𝑠)𝑠𝑠 𝜖𝜖 [0,𝜏𝜏]

𝑠𝑠𝑠𝑠𝑠𝑠 < 𝜉𝜉� ∩ �  𝐵𝐵(𝑠𝑠)𝑠𝑠 𝜖𝜖 (𝜏𝜏,𝑡𝑡]
𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 𝜉𝜉��  

 
= ∫ 𝑃𝑃 ���  𝐵𝐵(𝑠𝑠)𝑠𝑠 𝜖𝜖 [0,𝜏𝜏]

𝑠𝑠𝑠𝑠𝑝𝑝 < 𝜉𝜉� ∩ �  𝐵𝐵(𝑠𝑠)𝑠𝑠 𝜖𝜖 (𝜏𝜏,𝑡𝑡]
𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 𝜉𝜉�� | 𝐵𝐵1(𝜏𝜏) = 𝑏𝑏� 𝑓𝑓𝐵𝐵1(𝜏𝜏)(𝑏𝑏)d𝑏𝑏∞

−∞                (4) 
 

= � 𝑃𝑃 ���  𝐵𝐵1(𝑠𝑠)𝑠𝑠 𝜖𝜖 [0,𝜏𝜏]
𝑠𝑠𝑠𝑠𝑠𝑠 < 𝜉𝜉� ∩ �  𝐵𝐵2(𝑠𝑠)𝑠𝑠 𝜖𝜖 (0,𝑡𝑡−𝜏𝜏]

𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 𝜉𝜉 − 𝑏𝑏�� | 𝐵𝐵1(𝜏𝜏) = 𝑏𝑏� 𝑓𝑓𝐵𝐵1(𝜏𝜏)(𝑏𝑏)d𝑏𝑏
∞

−∞

 

 
 = ∫ 𝑃𝑃 �  𝐵𝐵1(𝑠𝑠)𝑠𝑠 𝜖𝜖 [0,𝜏𝜏]

𝑠𝑠𝑠𝑠𝑠𝑠 < 𝜉𝜉 | 𝐵𝐵1(𝜏𝜏) = 𝑏𝑏� ∙ 𝑃𝑃[(𝜉𝜉 − 𝑏𝑏)]𝑓𝑓𝐵𝐵1(𝜏𝜏)(𝑏𝑏)d𝑏𝑏.∞
−∞  

 
Lemma 1 enables the first term appearing in the final integrand to be evaluated directly, 
and effectively restricts the upper limit of the integral to be ξ. The second element in the 
integrand is recognized to be an IG cdf, G(t – τ;(ξ – b)/η2,(ξ – b)2/δ2). Note that this is the 
only factor in (4) that involves t. The last component of the integrand can be written as a 
normal pdf since B1(τ) has the distribution N(η1τ,δ2τ). Substituting back into (4), 
rearranging terms, and reparameterizing via the transformation υ = ξ – b yields:  
 

𝐹𝐹(𝑡𝑡) =  𝑃𝑃[𝑇𝑇 ≤ 𝜏𝜏] + � 𝐺𝐺 �𝑡𝑡 − 𝜏𝜏;
𝜐𝜐
𝜂𝜂2

,
𝜐𝜐2

𝛿𝛿2�
∞

0
�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−

2𝜉𝜉𝜉𝜉
𝛿𝛿2𝜏𝜏

��
1
𝛿𝛿√𝜏𝜏

𝜙𝜙 �
𝜐𝜐 − 𝜉𝜉 + 𝜂𝜂1𝜏𝜏

𝛿𝛿√𝜏𝜏
�d𝜐𝜐, 

 

𝑓𝑓(𝑡𝑡) = 𝐹𝐹′(𝑡𝑡) = � 𝑔𝑔�𝑡𝑡 − 𝜏𝜏;
𝜐𝜐
𝜂𝜂2

,
𝜐𝜐2

𝛿𝛿2�
∞

0
�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−

2𝜉𝜉𝜉𝜉
𝛿𝛿2𝜏𝜏

��
1
𝛿𝛿√𝜏𝜏

𝜙𝜙 �
𝜐𝜐 − 𝜉𝜉 + 𝜂𝜂1𝜏𝜏

𝛿𝛿√𝜏𝜏
�d𝜐𝜐. 
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Incorporating (2) and expanding the exponential function terms gives: 

𝑓𝑓(𝑡𝑡) =
1

2𝜋𝜋𝛿𝛿2
1

�𝜏𝜏(𝑡𝑡 − 𝜏𝜏)3
∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2𝛿𝛿2

�
(𝜂𝜂1𝜏𝜏 − 𝜉𝜉)2

𝜏𝜏
+ 𝜂𝜂22(𝑡𝑡 − 𝜏𝜏)�� 

∙ � 𝜐𝜐 ∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �−
1

2𝛿𝛿2 �
𝜐𝜐2 �

1
𝑡𝑡 − 𝜏𝜏

+
1
𝜏𝜏
� − 2𝜐𝜐 �𝜂𝜂2 − 𝜂𝜂1 +

𝜉𝜉
𝜏𝜏
���

∞

0
�1 − 𝑒𝑒𝑒𝑒𝑒𝑒 �−

2𝜉𝜉𝜉𝜉
𝛿𝛿2𝜏𝜏

��d𝜐𝜐 

          =
1

2𝜋𝜋𝛿𝛿2
1

�𝜏𝜏(𝑡𝑡 − 𝜏𝜏)3
∙ 𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2𝛿𝛿2

�
(𝜂𝜂1𝜏𝜏 − 𝜉𝜉)2

𝜏𝜏
+ 𝜂𝜂22(𝑡𝑡 − 𝜏𝜏)��             

∙ �𝐼𝐼 ��
1

𝑡𝑡 − 𝜏𝜏 + 1
𝜏𝜏

2𝛿𝛿2 � ,−�
𝜂𝜂2 − 𝜂𝜂1 + 𝜉𝜉

𝜏𝜏
𝛿𝛿2 ��

− 𝐼𝐼 ��
1

𝑡𝑡 − 𝜏𝜏 + 1
𝜏𝜏

2𝛿𝛿2 � ,−�
𝜂𝜂2 − 𝜂𝜂1 −

𝜉𝜉
𝜏𝜏

𝛿𝛿2 ���. 

 
The precise form of (3) follows by application of Lemma 2 (observing that the first 
additive term in that result cancels out due to the difference being taken between the two 
I terms), assimilating the parameter definitions accompanying the initial statement of (3), 
and routine algebra. 
 

3. Discussion 
 
The original derivation of the pdf for the tampered BMP, over three decades old but 
hitherto unpublished, has been presented. Extensions to encompass experiments with 
three or more stress levels conceptually could be developed following analogous 
conditioning arguments, but cumbersome analytical expressions are encountered, e.g., 

� Φ(𝛼𝛼1 + 𝛽𝛽1𝑥𝑥)
∞

0
𝜙𝜙(𝛼𝛼2 + 𝛽𝛽2𝑥𝑥)𝑑𝑑𝑑𝑑. 

This integral does not seem to be representable in a closed form or even a single series 
expansion; Fayed & Atiya (2014) establish that a related integral can be written as an 
infinite series of the normalized incomplete Gamma function and the Hermite 
polynomial. The identical analytical complexity arises when attempting to integrate the 
F(t) expression under (4) to directly obtain the tampered BMP cdf. 
 
Upon reading an early draft of this paper, Nozer Singpurwalla noted that realizations of 
an underlying BMP with positive drift are not necessarily monotonically increasing. 
While such a construct plausibly may model many physical phenomena (e.g., when 
fatigue or degradation can be partially mitigated by regenerative or restorative processes), 
it would not realistically portray circumstances for which accumulated levels cannot 
decrease over time. For these situations, he endorsed modeling based on an underlying 
Wiener Maximum Process (introduced in Singpurwalla 2006), i.e., the customary 
B(t;η,δ), a BMP with drift η > 0 and variance δ2 > 0,  would be replaced by M(t;η,δ) ≡ 
sup0<s≤t B(s;η,δ). Since the distribution of the first hitting time of a threshold barrier is 
derived from considerations of the maximum attained value, one obtains the standard IG 
pdf (2) regardless of whether the phenomenon of interest is modeled by the standard 
BMP or by its maximum. The derivation of the tampered BMP (3) presented in this paper 
only considers standard BMPs. It does not account for the prospect that B1(t;η,δ) and 
M1(t;η,δ) are not identical. 
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