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Abstract
An open source R package mvmesh for working with multivariate meshes is described. This

package allows one to work with complex geometric objects in dimensions n ≥ 2.
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1. Introduction

The purpose of this paper is to give a quick introduction to some ideas in computational
geometry that allow one to work with shapes in n-dimensions, particularly n > 2. When
the data of interest is supported on a non-rectangular shape, non-standard methods are
needed. For example, directional data concerns points the unit sphere. Compositional data
is concerned with the proportion of a sample that is of different types, e.g. a sample of
ore may contain 20% iron, 30% copper, etc. In such problems, the proportions of different
types sum to one, so observations are points on the unit simplex. Multivariate extreme
value distributions have a complicated dependence structure that is specified by a measure
on the unit simplex. Likewise, multivariate stable distributions are specified by a measure
on the unit sphere. To model these two classes in practice, we need to be able to partition
the simplex or sphere and to manipulate these objects.

In two dimensions, it is straightforward to approximate most shapes, e.g. a simplex or
circle or path. In higher dimensions, it is not so simple. The R package mvmesh, Nolan
(2015a), is an open source package which is available on the CRAN network that gives a
collection of functions to define, subdivide and perform other operations with geometric
objects. A key goal in this package is to go beyond 2 and 3 dimensions, providing meth-
ods that work in arbitrary dimensions. The mvmesh package builds on two existing R
packages: rcdd by Geyer & Meeden (2015) and geometry by Barber et al. (2015) to
make is simpler to define and manipulate whole objects. We also add features that combine
computational geometry with statistics, e.g. simulating points from a shape and producing
multivariate histograms over non-rectangular shapes.

2. Simplices and meshes

The basic building block for representing shapes in a computationally tractable way is a
simplex. There are two common ways to represent simplices: the vertex (V) representation
and the half-space (H) representation. The V-representation of a simplex is simply a list
of the vertices v1, . . . ,vk; the simplex is the closed convex hull of these vertices. The
H-representation is given by the intersection of half-spaces. For example, in 3-dimensions
the standard solid simplex in Figure 1 can represented by the vertices v1 = (1, 0, 0), v2 =
(0, 1, 0), v3 = (0, 0, 1) and v4 = (0, 0, 0) or by the intersection of the 4 half-spaces x1 ≥ 0,
x2 ≥ 0, x3 ≥ 0, and x1 + x2 + x3 ≤ 1. These inequalities can always be expressed in
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matrix form as Ax ≤ b. By allowing some of the inequalities to be equalities, we can get
a lower dimensional simplex. For example, the unit simplex (see Figure 1) can be specified
as the closed convex hull of v1, v2, and v3; or by replacing the last inequality above with
equality x1 + x2 + x3 = 1.

There is a detail to be aware of when dealing with simplices in a computer. To spec-
ify points exactly, one could use rational numbers, stored as pairs of integers, for ver-
tices (in the V-representation) or as coefficients in the equalities/inequalities (in the H-
representation). Some R packages like rcdd, Geyer & Meeden (2015), use the GNU Mul-
tiple Precision Library to do this. While this has many advantages in exactly specifying
simplices, we do not use it. One reason is that this approach does not work when a vertex
is not a rational number; e.g. most points on the unit sphere. Another reason is that we
frequently want to do further processing with a simplex, e.g. translate, rotate, or integrate
a function over a simplex, and vertices are more conveniently represented as floating point
numbers for these purposes. Because of these reasons, we represent vertices as n-tuples
of floating point numbers. One consequence of this is that it is generally not possible to
determine if a point is on a line, plane, or hyperplane, because of the limited precision of
floating point numbers.

Most interesting geometric objects are more complicated than simplices. To be com-
putationally accessible, they are approximated by a list of simplices. We will use the term
mesh to mean a list of vertices along with the grouping necessary to specify what points
are in what simplices. The mvmesh package (the name is a contraction of MultiVariate
MESH) has functions to define several standard shapes, some of which are shown in Fig-
ure 1. The canonical solid simplex is {x = (x1, . . . , xn) : xi ≥ 0,

∑n
i=1 xi ≤ 1}. The

basic building block for a surface is the unit simplex {x : xi ≥ 0,
∑n

i=1 xi = 1}. In
general, any m-dimensional simplex in Rn is a linear transformation of these basic (possi-
bly lower dimensional) simplices. These shapes can be subdivided into regions with equal
volume/area by specifying a parameter. For example, SolidSimplex(n=3,k=4) gen-
erates the solid simplex in the upper left of the first figure. The argument n = 3 specifies
a simplex in R3, the k = 4 value subdivides each side of the standard simplex into 4
pieces and computes the resulting subdivision using the k-edge subdivision algorithm of
Edelsbrunner & Grayson (1999).

Shapes with curvature are approximated by a tessellation, e.g. lists of simplices. The
`p solid unit ball is {x : ‖x‖p := (

∑n
i=1 |xi|p)

1/p ≤ 1}, and the unit sphere is {x :
‖x‖p = 1}. These meshes are simplicial approximations to the true shape, with different
subdivision schemes possible. It is impossible to subdivide equally in general dimension,
but an approximately equal area subdivision is possible using a k = 2 edge subdivision on
each octant recursively. It is also possible use a polar coordinates approach to subdivide the
unit ball and sphere, however this has two drawbacks. First, the regions are not all of the
same type: at a pair of antipodal points the simplices that make up the surface of the sphere
have fewer vertices than all the other simplices. For example, the sphere in R3 with the
standard latitude and longitude grid has all longitude lines meeting at the north and south
poles. The second reason is that the approximating simplices will have very different areas
near these poles than in other regions. A rectangular mesh is a simple rectilinear partition
of a hyperrectangle. Solid tubes in Rn are defined by crossing an (n− 1)-dimensional ball
with an interval; a hollow tube is the cross of a unit sphere with an interval.

It is also possible to build ad hoc geometric shapes by specifying the vertices and a
grouping directly. This takes some effort, especially in higher dimensions, but allows one
to work with custom shapes. Figure 2 shows a surface that could be used to model the shape
of an explosion. It also shows an object constructed to show the name of the CASD 2015
Conference by specifying vertices and line segments that spell out the letters and numbers,
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as well as a trefoil note, both in R3. One advantage of constructing such objects as an
mvmesh object is that they can be plotted using the functions described below to plot and
simulate from the mesh.

Figure 1: Basic shapes in R3: starting from top left, by row the objects are solid simplex,
unit simplex, unit ball, unit sphere, polar sphere, `1/2 unit sphere, rectangular mesh, hollow
tube.

Multivariate meshes are implemented in the package as S3 objects of class “mvmesh”,
e.g. lists with multiple fields. The key fields are shown in Table 1. Other fields are specific
to the type of mesh and generally describe the parameters that were used to generate the
mesh.

3. Showing and manipulating shapes

Once a mesh is defined, there are standard operations that can be performed on any mesh.
There are print and plot methods for an mvmesh object. The plot uses standard R graphics
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Figure 2: Custom shapes: an explosion, CASD 2015 logo, and a trefoil knot. The blue
points are points randomly generated from the underlying red object.

type a string describing the mesh, e.g. “UnitSimplex”
n dimension of the space
m dimension of the mesh
vps vertices per simplex, the number of vertices that define a simplex, which

must be the same for all simplices in this mesh
S an (vps × n × nS) array, with S[i , ,k] specifying the i-th vertex of

the k-th simplex
V an (nV × n) matrix giving the coordinates of the distinct vertices in the list of

simplices (repeated vertices in S that are on common edges are removed)
SVI an integer (vps × nS) matrix which specifies the indices of the vertices that make

up the simplices in S. SVI[ ,k ] gives the subscripts in the vertex array V that
determine the k-th simplex in S

Table 1: Basic fields in an mvmesh object.

in two dimensions and the rgl package Adler et al. (2016) in three dimensions.
We next describe some of the more useful general operations that can be performed on

mvmesh objects. The function V2Hrep converts a list of simplices specified by the vertex
representation to a list of half-space representations; the function H2Vrep does the inverse.
Objects can be scaled, rotated, and shifted using function AffineTransformation.
Several meshes can be combined together to make a more complicated mesh using
mvmeshCombine, and there are functions to intersect meshes in V or H representations:
IntersectMultipleSimplicesV and IntersectMultipleSimplicesH.

Another useful operation is simulation from a mesh. The function rtessellation
simulates from a tessellation; it uses the S field from a mesh, i.e. the list of simplices, and a
vector of weights specifying the weight of each simplex. A point is simulated by selecting
a simplex Sj according to those weights, then simulating a point uniformly distributed on
the simplex. This last step is performed by simulating a uniform distribution on the unit
simplex of dimension m using the standard method of simulating from a Dirichlet distri-
bution with shape parameter (1, 1, . . . , 1) and then linearly mapping that to the simplex S.
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Figure 2 shows some examples. At the bottom left of the figure, points have been randomly
sampled from the explosion shape in the upper left. The figure on the right shows points
sampled from both the CASD 2015 logo and a trefoil knot superimposed on the underlying
mvmesh objects.

While not a part of the mvmesh package, one can numerically evaluate the integral of
a function over a mesh by using package SimplicialCubature Nolan (2015b).

4. Multivariate histograms

We end with an application of the mvmesh package to calculating multivariate histograms.
First we show some examples of histograms in dimensions 2 and 3. Figure 3 shows a
histogram of two dimensional data on the left and three dimensional data on the right, both
using a rectangular mesh. In Figure 4, the left plot shows the two dimensional spread of
points contained in a circle by counting how many points are in pie-shaped sectors; the right
plot shows counts of points distributed throughout the three dimensional solid simplex. The
construction of multivariate histograms is explained through several cases.

Figure 3: Histograms based on rectangular meshes in 2 and 3 dimensions. The right hand
plot slices the data into 3 horizontal bands and computes histograms on each slice.

Figure 4: Histogram by circular sector in 2 dimensions on the left; height of the plot shows
frequency. On the right, counts of number of data points in a subdivision of a solid simplex
in 3 dimensions.
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4.1 Tallying points in solid simplices

We start with the simplest case: a mesh is given by a list of solid simplices S1, . . . , SM . For
a data set x1, . . . ,xn, we wish to tally how many points are in each simplex. The approach
is straightforward: for each simplex j, find the half-space representation Ajx ≤ bj . It is
now a simple double loop to test each point xi against each H-representation for simplex:
if Ajxi ≤ bj , we say the point is in the j-th simplex.

There are two details with this procedure: points not in any simplex and points on
the boundary of two or more simplices. To handle the first issue, we keep a count of the
number of rejects, i.e. points that do not satisfy any set of constraints. For the second, we
count the point as being in the first (based on order of the list of simplices) simplex j that
satisfies Ajxi ≤ bj , but also check to see if that point satisfies any other set of constraints,
e.g. a tie. There is a argument to the tally function that controls how much reporting gets
done: if report=“summary”, then a single message is printed saying how many ties there
are; if report=“all”, then every point that satisifes more than one set of constraints is
individually reported; if report=“none”, then no messages are printed out. The default is
“summary”. In all cases, the counts of how many ties and how many rejects are observed
and returns these values to the user.

4.2 Cones and directional histograms

A cone is an unbounded region easily specified by the H-representation. For example, in 2-
dimensions the 3 inequalities x1 ≥ 0, 2x2 ≥ x1 and x2 ≤ 3x1 determine a cone in the first
quadrant with x1/2 ≤ x2 ≤ 3x1. Given a list of such cones, we can use the tally procedure
described above to count how many data points are in each cone. This is particularly useful
to calculate directional histograms in n-dimensions. The function histDirectional
computes the H-representations of cones determined by the origin and a spherical trian-
gles generated by the function UnitSphere and then tallies the number of data points
in each cone. This sphere can be in any `p metric, and if the data is concentrated in the
positive octant, the plot can be restricted to just that octant. For example, Figure 5 shows
a sequence of directional histograms. The top left is a scatterplot of the a synthetic data
set, simulated from mixing 5000 light tailed (in the radial direction) values with uniformly
distributed angle in the first quadrant with 100 heavy tailed data values that are concen-
trated along certain rays. The top right plot shows a directional histogram of all the data,
using a Euclidean sphere to determine 9 bins, and showing frequency by length of the rays
in each direction. A common technique in extreme value theory is to look for directional
dependence in extreme data values. This is done by thresholding, i.e. picking some thresh-
old R and then forming a directional histogram using only data points with ‖xi‖p ≥ R.
The bottom two plots show this procedure with R = 1 and R = 4. In the last plot, it
is clear that the extremes are concentrated along certain directions. (In both multivariate
extreme value distributions and multivariate stable distributions, this occurs when the spec-
tral/angular measure is discrete.) Here thresholding was specified by a specific value of R,
another function allows thresholding by quantiles of the radii of sample points.

Figure 6 shows a three dimensional example. Here a synthetic nonnegative data set is
analyzed to show directional spread based on the `1 ball = unit simplex. When a 3d plot
like this is generated in R, it is interactive, so it can be rotated to more easily see where
data is concentrated. Other display modes are described below, including one showing 4
dimensional data.

As noted above, determining whether a point is on a line/plane/hyperplane is not possi-
ble in general using floating point numbers. Therefore doing histograms on a surface is not
feasible in general. For certain cases, e.g. a sphere or unit simplex, one can do a directional
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Figure 5: Directional histogram in 2 dimensions for non-negative data. Top left shows a
scatterplot of data points, top right shows a histogram of directions of all points. Lower
left looks eliminates data with ‖x‖2 ≤ 1, lower right eliminates ‖x‖2 ≤ 4, revealing the
directional dependence in the extremes.

histogram, but a general solution will require a rule to determine when a data point is “in”
a simplex.

4.3 Plotting multvariate histograms

There are multiple types of histogram plots that can be drawn, several of which are shown
in Figures 5, 6 and 7. A full list is:

“none” does not show a plot, just return the counts.

“counts” shows frequency counts as a number in the center of each simplex (right plot in
Figure 4).

“pillars” shows a 3D plot with pillars/columns having base the shape of the simplices
and height proportional to frequency counts (both plots in Figure 3 and left plot
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Figure 6: Directional histogram for non-negative three dimensional data using `1 unit ball.

in Figure 4). When the points are 2D, this works for histRectangular and
histSimplex; when the points are 3D, this only works for histRectangular

“radial” histDirectional only, shows radial spikes proportional to the counts (Fig-
ure 5).

“grayscale” histDirectional only, color codes simplices proportional to the counts.

“orthogonal” histDirectional only, shows radial spikes proportional to the counts
(Figure 5).

“default” type depends on the dimension of the data and type of histogram.

“index” shows a histogram of simplex index number versus count (Figure 7).

The last plot type is the only one that makes sense in dimension greater than 3. It does
not show the geometry, but gives a way to capture some information about a data set. For
example, Figure 7 shows a histogram of a 4-dimensional data set. It clearly shows that all
the data lies in quadrants with a + sign in the 3rd or 4th coordinate.

Most of the examples in this paper can be produced by installing the mvmesh package
and running the two built-in demos: demo(mvmesh) and demo(mvhist).
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Figure 7: Directional histogram in 4 dimensions, with order based on the order of the
cones in R4. The vertical red dashed lines describe octants; the key above each group is a
sequence of + and - signs that shows the sign of each coordinate.
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