CASD 2015 Short Course: Bayesian Inference

Instructor: Robert B. Gramacy (Bobby)
e-mail: rbgramacy@chicagobooth.edu
web: http://bobby.gramacy.com

Synopsis:

This course will cover the basics of the Bayesian approach to practical and coherent statistical inference. Particular attention will be paid to computational aspects, including MCMC. Examples/practical hands-on exercises will the run gamut from toy illustration to real-world data analysis from all areas of science, with R implementations/coaching provided.

Texts:

There is no required text, however the course closely follows P.D. Hoff's A First Course in Bayesian Statistical Methods—Springer 2009. Some examples are borrowed from two other texts which are nice references to have. J. Albert's' Bayesian Computation with R— Springer 2nd ed. 2009; A. Gelman, J.B. Carlin, H.S. Stern and D.B. Rubin's Bayesian Data Analysis—2nd ed. 2004

Tentative Schedule:

	Chapters		
Topic	Н	A	GCSR
Introduction and brief review & Stats	1,2	_	1
One–parameter models	3	3	2
Monte Carlo Inference	4	1,5.7-5.10	11.1,13.2-13.4
Multi–parameter and normal models	5	4	3
MCMC: Metropolis and Gibbs samplers	6,10.2-10.4	6	11
Multivariate normal and linear models (LMs)	7, 9.1 - 9.2	9	14
Hierarchical models	8	7	5
GLMs and hierarchical LMs & GLMs	10.1, 10.5, 11	_	15.1 - 15.4, 16

Prerequisites:

Undergraduate level Statistics, Probability, Calculus, Linear Algebra, and a familiarity with a programming language (e.g., R, Matlab, Python, C or Fortran)

Preparation:

Students are expected to install and familiarize themselves with R in advance of the course. A short tutorial with accompanying R code is provided here:

slides http://bobby.gramacy.com/teaching/bayes/rtutor.pdf
code http://bobby.gramacy.com/teaching/bayes/rtutor.R

Additionally, some other useful resources prepared by others include

video tutorials http://dist.stat.tamu.edu/pub/rvideos/ step-by-step guides http://tryr.codeschool.com