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Blackbox constrained optimization

Consider constrained optimization problems of the form

min
x
{f (x) : c(x) ≤ 0, x ∈ B} , where

I f : Rd → R is a scalar-valued objective function

I c : Rd → Rm is a vector of constraint functions

I B ⊂ Rd is known, bounded, and convex

This is a challenging problem when c are non-linear, and when

evaluation of f and/or c requires expensive (blackbox)

simulation.
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Here is a toy problem to fix ideas.

I A linear objective in two variables:

min
x

{
x1 + x2 : c1(x) ≤ 0, c2(x) ≤ 0, x ∈ [0, 1]2

}
I where two non-linear constraints are given by

c1(x) =
3

2
− x1 − 2x2 −

1

2
sin
(
2π(x21 − 2x2)

)
c2(x) = x21 + x22 −

3

2

Even when treating f (x) = x1 + x2 as known, this is a hard

problem when c(x) is treated as a blackbox.
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xA ≈ [0.1954, 0.4044],

f
(
xA
)
≈ 0.5998,

xB ≈ [0.7197, 0.1411],

f
(
xB
)
≈ 0.8609,

xC = [0, 0.75],

f
(
xC
)

= 0.75,
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I c2(x) may seem uninteresting, but it reminds us that

solutions may not exist on every boundary
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Solvers

Mathematical programming has efficient algorithms for

non-linear (blackbox) optimization (under constraints) with

I provable local convergence properties,

I lots of polished open source software

Statistical approaches e.g., EI (Jones et al., 1998)

I enjoy global convergence properties,

I excel when simulation is expensive, noisy, non-convex

... but offer limited support for constraints.

(Schonlau et al., 1998; G & Lee, 2011; Williams et al., 2010)
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A hybrid proposal

Combine (global) statistical objective-only optimization tools

a) response surface modeling/emulation: training a flexible

model f n on {x (i), y (i)}ni=1 to guide choosing x (n+1)

(e.g., Mockus, et al., 1978, Booker et al., 1999)

b) expected improvement (EI) via Gaussian process (GP)

emulation (Jones, et al., 1998)

... with a tool from mathematical programming

c) augmented Lagrangian (AL): converting a problem with

general constraints into a sequence of simply constrained

ones (e.g., Bertsekas, 1982)
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Gaussian process (GP) surrogate/regression models make

popular emulators.

As predictors, they are

I rarely beaten in out-of-sample tests,

I have appropriate coverage, and can interpolate

Using data D = (X ,Y ), where X is an n × p design matrix,

the n × 1 response vector Y has MVN likelihood:

Y ∼ Nn(0, τ 2K ), where Kij = K (xi , xj)

often with prior π(τ 2) ∝ τ−2 (Berger et al., 2001)
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The predictive equations have

mean µn(x |D,K ) = k>(x)K−1Y ,

and scale σ2n(x |D,K ) =
ψ[K (x , x)− k>(x)K−1k(x)]

n
,

where k>(x) is the n-vector whose i th component is K (x , xi).
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Expected Improvement

Suppose the predicting equations from f n are conditionally

normal, i.e., from a GP: Y (x) ∼ N (µn(x), σ2n(x))

Define the improvement as

I (x) = max{0, f nmin − Y (x)}

Then, its expectation (EI) has a closed form expression:

E{I (x)}=(f nmin−µn(x))Φ

(
f nmin − µn(x)

σn(x)

)
+σn(x)φ

(
f nmin − µn(x)

σn(x)

)
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Figure 10. Our uncertainty about the function’s value at a point (such as x = 8 above) can
be treated as if the value there were a realization of a normal random variable with mean and
standard deviation given by the DACE predictor and its standard error.

A highly attractive figure of merit that balances local and global search is ‘ex-
pected improvement’. This concept can be found in the literature as early as 1978
(e.g., Mockus et al. [24]). The expected improvement criterion is computed as
follows. Let fmin = min(y(1), . . . , y(n)) be the current best function value. Before
we sample at some point x, we are uncertain about the value y(x). Of course, there
is nothing random about y(x); we simply do not know what it is. Let us model our
uncertainty at y(x) by treating it as the realization of a normally distributed random
variable Y with mean and standard deviation given by the DACE predictor and its
standard error. This idea is illustrated in Figure 10 where, at the point x = 8,
we have drawn a normal density function with the mean and standard deviation
suggested by the DACE model. If we treat the function’s value at x = 8 as a real-
ization of the random variable Y with the density function shown in Figure 10, then
there is some probability that the function’s value at x = 8 will be better than (or
‘improve upon’) our current best function value fmin. This is true because the tail of
the density function shown in Figure 10 extends below the line y = fmin. Different
amounts of improvement, or different distances below the line y = fmin, are asso-
ciated with different density values. If we weight all these possible improvements
by the associated density value, we get what we call ‘expected improvement’.
Formally, the improvement at the point x is I = max(fmin − Y, 0). This expres-

sion is a random variable because Y is a random variable (it models our uncertainty
about the function’s value at x). To obtain the expected improvement we simply
take the expected value:

E[I (x)] ≡ E
[
max(fmin − Y, 0)

]
. (14)

To compute this expectation, let us introduce the compact notation ŷ and s to denote
the DACE predictor and its standard error at x. In this notation, Y is Normal(ŷ, s2).
By expressing the right-hand side of (14) as an integral, and applying some tedious
integration by parts, one can express the expected improvement in closed form:

E[I (x)] = (fmin − ŷ)!

(
fmin − ŷ

s

)
+ sφ

(
fmin − ŷ

s

)
. (15)
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Figure 11. (a) The expected improvement function when only five points have been sampled;
(b) the expected improvement function after adding a point at x = 2.8. In both (a) and (b) the
left scale is for the objective function and the right scale is for the expected improvement.

In the above, φ(·) and "(·) are the standard normal density and distribution func-
tion. Note that it is s, not s2 , that appears in Equation (15).
Figure 11a shows the expected improvement function for our simple one-dimen-

break sional example (the value of the expected improvement is shown on the
right-hand scale). Surprisingly, it has two peaks, one at x = 2.8 and another at
x = 8.3. The peak at x = 2.8 is higher, so we would sample there. But on the
next iteration, as shown in Figure 11b, the expected improvement is maximized at
x = 8.8, and thus we are driven to search globally.
As this example illustrates, the expected improvement function is highly multi-

modal. In fact, it is easy to show that expected improvement is zero at the sampled
points and is positive in between (though perhaps very small). As in Figure 11,
it is also common for there to be large areas where the expected improvement is
essentially zero and so appears quite ‘flat’. Both of these features make optimizing
the expected improvement function with standard multistart approaches difficult
and potentially unreliable.
Although multimodal, the expected improvement function is in closed form, and

so we can hope to exploit its structure when trying to find the maximum. As we
will soon show, it turns out that we can maximize E[I (x)] to guaranteed optimality
using a branch-and-bound algorithm. To use branch and bound, we need some way
to compute an upper bound on E[I (x)] over any rectangular subregion defined by
ℓh ≤ xh ≤ uh for h = 1, . . . , k. The computation of these bounds is greatly
facilitated by the fact that E(I ) is monotonic in ŷ and in s. In fact, if one computes
the derivative of E(I ) as given in (15) with respect to ŷ or s, one gets several terms
that cancel, resulting in the surprisingly simple expressions:

∂E(I )

∂ ŷ
= −"

(
fmin − ŷ

s

)
< 0

µn(x)

�n(x)

E{I(x)} E{I(x)}

I balancing exploitation

and exploration

(Jones, et al., 1998)
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Augmented Lagrangian

AL methods for constrained nonlinear optimization have

favorable theoretical properties for finding local solutions.

The main tool is the AL:

LA(x ;λ, ρ) = f (x) + λ>c(x) +
1

2ρ

m∑
j=1

max (0, cj(x))2

I ρ > 0 is a penalty parameter

I λ ∈ Rm
+ serves as a Lagrange multiplier; omitting this

term leads to a so-called additive penalty method (APM)

AL-based methods transform a constrained problem into a

sequence of simply constrained problems.
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Given (ρk−1, λk−1),

1. approximately solve the subproblem

xk = arg min
x

{
LA(x ;λk−1, ρk−1) : x ∈ B

}
2. update:

I λkj = max
(

0, λk−1j + 1
ρk−1 cj(x

k)
)

, j = 1, . . . ,m

I If c(xk) ≤ 0, set ρk = ρk−1; otherwise, set ρk = 1
2ρ

k−1

... then repeat, incrementing k .

I Functions f and c are only evaluated when solving the

subproblem(s), comprising an “inner loop”.
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Statistical surrogate AL

AL methods are not designed for global optimization.

I Convergence results have a certain robustness,

I but only local solutions are guaranteed.

Hybridizing with surrogate models offers a potential remedy.

I Focus is on finding xk in the “inner loop”,

I using evaluations (x (1), f (1), c (1)), . . . , (x (n), f (n), c (n))

collected over all “inner” and “outer” loops

` = 1, . . . , k − 1.

There are several options for how exactly to proceed.
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One option is easy to rule out.

Let y (i) = LA(x (i);λk−1, ρk−1) via f (i) and c (i). I.e.,

y (i) = f (x (i)) + (λk−1)>c(x (i)) +
1

2ρk−1

m∑
j=1

max
(
0, cj(x

(i))
)2

I fit a GP emulator f n to the n pairs {(x (i), y (i))}ni=1

I guide “inner loop” search by the predictive mean or EI

Benefits include:

I modular

I facilitates global–local tradeoff

13



But modeling this x–y relationship presents serious challenges.

y (i) = f (x (i)) + (λk−1)>c(x (i)) +
1

2ρk−1

m∑
j=1

max
(
0, cj(x

(i))
)2

Inherently nonstationarity.

I square amplifies and max creates kinks

Fails to exploit known structure.

I a quadratic form

Needlessly models a (potentially) known quantity.

I many interesting problems have linear f
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Separated modeling

Shortcomings can be addressed by separately/independently

modeling each component of the AL.

I f n emitting Yf n(x)

I cn = (cn1 , . . . , c
n
m) emitting Y n

c (x) = (Y n
c1

(x), . . . ,Y n
cm(x))

The distribution of the composite random variable

Y (x) = Yf (x) + λ>Yc(x) +
1

2ρ

m∑
j=1

max(0,Ycj (x))2

can serve as a surrogate for LA(x ;λ, ρ).

I simplifications when f is known
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The composite posterior mean is available in closed form, e.g.,

under GP priors.

E{Y (x)} = µn
f (x) + λ>µn

c(x) +
1

2ρ

m∑
j=1

E{max(0,Ycj (x))2}

A result from generalized EI (Schonlau et al., 1998) gives

E{max(0,Ycj (x))2} = E{I−Ycj
(x)}2 + Var[I−Ycj

(x)]

= σ2n
cj

(x)

1+

(
µn
cj

(x)

σn
cj

(x)

)2
Φ

(
µn
cj

(x)

σn
cj

(x)

)
+
µn
cj

(x)

σn
cj

(x)
φ

(
µn
cj

(x)

σn
cj

(x)

).
16



Expected improvement for AL

The simplest way to evaluate the EI is via Monte Carlo:

I take 100 samples Y
(i)
f (x) and Y

(i)
c (x)

I then EI (x) ≈ 1
100

∑100
i=1 max{0, yn

min − Y (i)(x)}

The “max” in the AL makes analytic calculation intractible.

But you can remove the “max”by introducing slack variables

I turning inequality into equality constraints

I and making the AL composite Y (x) a simple quadratic.

I The EI then becomes a one-dimensional integral of

non-central chi-squared quantities.

17



Results on toy data
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EY
EI

SANN
MADS−AL
AsyEnt
MADS
model−based

n 25 50 100

95%

EI 0.866 0.775 0.602

EY 1.052 0.854 0.603

SANN 1.013 0.940 0.855

MADS-AL 1.070 0.979 0.908

AsyEnt 0.825 0.761 0.758

MADS 1.056 0.886 0.863

model 1.064 0.861 0.750

5%

EI 0.610 0.602 0.600

EY 0.607 0.601 0.600

SANN 0.648 0.630 0.612

MADS-AL 0.600 0.600 0.600

AsyEnt 0.610 0.601 0.600

MADS 0.608 0.600 0.599

model 0.600 0.599 0.599
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Benchmark problem

Two contaminant plumes threaten a valuable water source:

the Yellowstone River.
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To prevent further expansion of these plumes, six

pump-and-treat wells have been proposed.
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Mayer et al. (2002) first posed the pump-and-treat problem as

a constrained blackbox optimization.

If xj denotes the pumping rate for well j , then

min
x
{f (x) =

6∑
j=1

xj : c1(x) ≤ 0, c2(x) ≤ 0, x ∈ [0, 2 · 104]6}.

I f is linear, describing costs to operate the wells

I c1 and c2 denote plume flow exiting the boundary:

simulated via an analytic element method groundwater

model
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Matott et al. (2011) compared MATLAB and Python

optimizers, treating constraints via APM.
Figures (continued) 
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Figure 4: Convergence Behavior of the Selected Algorithms 
(as applied to the Pump-and-Treat problem) 
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n 100 200 500

95%

EI 37584 28698 25695

EY 36554 32770 27362

SANN 43928 35456 30920

MADS-AL 60000 49020 32663

AsyEnt 49030 29079 27445

MADS 60000 60000 60000

model 60000 60000 35730

5%

EI 27054 25119 24196

EY 25677 24492 24100

SANN 28766 27238 26824

MADS-AL 30776 26358 24102

AsyEnt 37483 26681 25377

MADS 30023 26591 23571

model 25912 25164 24939
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Summarizing

Nontrivial multiple blackbox constraints present serious

challenges to optimization

I even when the objective is simple/known.

The augmented Lagrangian method from mathematical

programming is a nice framework for handling constraints

I but only local convergence is guaranteed.

Statistical surrogate modeling and expected improvement

nicely hybridize with the AL:

I implementation is straightforward (see laGP on CRAN).
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