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Blackbox constrained optimization

Consider constrained optimization problems of the form

min{f(x) : c¢(x) <0,x € B}, where

» f:RY — R is a scalar-valued objective function
» ¢ :RY — R™ is a vector of constraint functions

» B C RY is known, bounded, and convex

This is a challenging problem when ¢ are non-linear, and when
evaluation of f and/or c requires expensive (blackbox)
simulation.



Here is a toy problem to fix ideas.
» A linear objective in two variables:
min {x1 + x : c1(x) <0, &(x) <0, x € [0,1]*}

» where two non-linear constraints are given by

Even when treating f(x) = x; + x> as known, this is a hard
problem when c(x) is treated as a blackbox.



xA = [0.1954, 0.4044],
f (XA> ~ 0.5998,

xB ~[0.7197, 0.1411],
f (XB> ~ 0.8600,

x¢ =10, 0.75],
f (XC) —0.75,
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» ¢(x) may seem uninteresting, but it reminds us that

solutions may not exist on every boundary




Solvers

Mathematical programming has efficient algorithms for
non-linear (blackbox) optimization (under constraints) with

» provable local convergence properties,

» lots of polished open source software

Statistical approaches e.g., El (Jones et al., 1998)
» enjoy global convergence properties,

» excel when simulation is expensive, noisy, non-convex

... but offer limited support for constraints.
(Schonlau et al., 1998; G & Lee, 2011; Williams et al., 2010)



A hybrid proposal

Combine (global) statistical objective-only optimization tools
a) response surface modeling/emulation: training a flexible
model " on {x() y()}"_ to guide choosing x("+1)
(e.g., Mockus, et al., 1978, Booker et al., 1999)
b) expected improvement (El) via Gaussian process (GP)
emulation (Jones, et al., 1998)

.. with a tool from mathematical programming

c) augmented Lagrangian (AL): converting a problem with
general constraints into a sequence of simply constrained
ones (e.g., Bertsekas, 1982)



Gaussian process (GP) surrogate/regression models make
popular emulators.

As predictors, they are
» rarely beaten in out-of-sample tests,

» have appropriate coverage, and can interpolate

Using data D = (X, Y), where X is an n X p design matrix,
the n x 1 response vector Y has MVN likelihood:

Y ~ N,(0,7°K), where Kj; = K(x;,x)

often with prior 7(72) oc 772 (Berger et al., 2001)



The predictive equations have

mean  u"(x|D,K) = k" (x)K7LY,
UK (x,x) = kT ()K" k(x)]

Y

and scale  0?"(x|D,K) =

n

where k' (x) is the n-vector whose i*" component is K(x, x;).
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Expected Improvement

Suppose the predicting equations from f” are conditionally
normal, i.e., from a GP: Y(x) ~ N (u"(x), o%"(x))

Define the improvement as
/(X) - max{O, min Y(X)}

Then, its expectation (EIl) has a closed form expression:

E{1(x)} = (5, "<x))¢<frﬂfna—TﬂXL;<X>)+an<x)¢(%;_(i;<x>>
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Augmented Lagrangian

AL methods for constrained nonlinear optimization have
favorable theoretical properties for finding local solutions.

The main tool is the AL:
1 m
Lalxi A, p) = F0) £ ATe(x) + 5 ; max (0, ¢;(x))’

» p > 0 is a penalty parameter

» X € RT serves as a Lagrange multiplier; omitting this
term leads to a so-called additive penalty method (APM)

AL-based methods transform a constrained problem into a
sequence of simply constrained problems.
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Given (pF=1 A1),
1. approximately solve the subproblem
x* =argmin {La(x; A1, p* 1) s x € B}

2. update:
> Aj( — max (0,)\.11(_1 + pkl_lcj'(Xk)), J — 17- cey m
1 k-1

» If ¢(x¥) <0, set pk = p¥~1; otherwise, set pk = 5P

... then repeat, incrementing k.

» Functions f and c are only evaluated when solving the
subproblem(s), comprising an “inner loop” .
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Statistical surrogate AL

AL methods are not designed for global optimization.
» Convergence results have a certain robustness,

» but only local solutions are guaranteed.

Hybridizing with surrogate models offers a potential remedy.

» Focus is on finding x* in the “inner loop”,

» using evaluations (x(), F(1) ¢ (x(") £(n) ()
collected over all “inner” and “outer” loops
(=1,....k—1.

There are several options for how exactly to proceed.
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One option is easy to rule out.
Let y() = La(x(D; \k=2 pk=1) via () and ¢ le.,

1_1 3 max (0, g (x7))
j=1

YO = F() + () elx?) +
2p
» fit a GP emulator " to the n pairs {(x{), y())}r_,

» guide “inner loop” search by the predictive mean or El

Benefits include:
» modular

» facilitates global-local tradeoff
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But modeling this x—y relationship presents serious challenges.

1

yO = (D) 4+ AT Te(xD) + —= > max (0, ¢(x1))?
j=1

2p
Inherently nonstationarity.
» square amplifies and max creates kinks

Fails to exploit known structure.

» a quadratic form

Needlessly models a (potentially) known quantity.

» many interesting problems have linear f
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Separated modeling

Shortcomings can be addressed by separately/independently
modeling each component of the AL.

> f" emitting Yo (x)
» " =(cf,...,cp) emitting Y7(x) = (YI(x),..., Y (x))

The distribution of the composite random variable
Y(x) = Ye(x)+ ATY. —i——ZmaxOY

can serve as a surrogate for La(x; A, p).
» simplifications when f is known
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The composite posterior mean is available in closed form, e.g.,
under GP priors.

BLY(} = 1)+ A7) + 5 S B{max(0. Y5 ()}

A result from generalized El (Schonlau et al., 1998) gives

E{max(0, Y, (x))°} = E{ Ly, ()} + Var[Ly, (x)]

o w2 GO\ (e )\ () (un(x)
=0."(x) [(H <0£} (X)> ) ¢ (ag. (X)) + 72 () ¢ (03 (X))} .
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Expected improvement for AL

The simplest way to evaluate the El is via Monte Carlo:
» take 100 samples Yf(i)(x) and Yc(i)(x)
> then El(x) & g5 >0 max{0, i, — Y (x)}

The “max” in the AL makes analytic calculation intractible.

But you can remove the “max” by introducing slack variables
» turning inequality into equality constraints
» and making the AL composite Y(x) a simple quadratic.

» The EI then becomes a one-dimensional integral of
non-central chi-squared quantities.
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best valid objective (f)

Results on toy data
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blackbox evaluations (n)

n| 25 50 100

95%
El [ 0866 0775 0.602
EY | 1.052 0854 0.603
SANN | 1.013 0940 0.855
MADS-AL | 1.070 0.979 0.908
AsyEnt | 0.825 0761 0.758
MADS | 1.056 0.886 0.863
model | 1.064 0.861 0.750

5%
El [ 0610 0602 0.600
EY | 0607 0.601 0.600
SANN | 0648 0.630 0.612
MADS-AL | 0.600 0.600 0.600
AsyEnt | 0.610 0.601  0.600
MADS | 0.608 0.600 0.599
model | 0.600 0.599  0.599
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Benchmark problem

Two contaminant plumes threaten a valuable water source:

the Yellowstone River.

A ":.5 :
Hillop R4 / / / ;
5‘ WbekviosuSolvent

&
3

No flow

To prevent further expansion of these plumes, six
pump-and-treat wells have been proposed.

Specified head



Mayer et al. (2002) first posed the pump-and-treat problem as
a constrained blackbox optimization.

If x; denotes the pumping rate for well j, then
m|n {f(x ZXJ al(x) <0, a(x) <0, x €[0,2-10%°}.

» f is linear, describing costs to operate the wells

» ¢1 and ¢, denote plume flow exiting the boundary:
simulated via an analytic element method groundwater

model
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optimizers, treating constraints via APM.

Matott et al. (2011) compared MATLAB and Python

Pump-and-Treat Cost Function (XQX $35/m*/d)
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best valid objective (f)
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SANN
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—— AsyEnt
—— MADS
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EY
El

blackbox evaluations (n)

n| 100 200 500

95%
El [ 37584 28698 25695
EY | 36554 32770 27362
SANN | 43928 35456 30920
MADS-AL | 60000 49020 32663
AsyEnt | 49030 20079 27445
MADS | 60000 60000 60000
model | 60000 60000 35730

5%
El | 27054 25119 24196
EY | 25677 24492 24100
SANN | 28766 27238 26824
MADS-AL | 30776 26358 24102
AsyEnt | 37483 26681 25377
MADS | 30023 26591 23571
model | 25012 25164 24939
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Summarizing

Nontrivial multiple blackbox constraints present serious
challenges to optimization

» even when the objective is simple/known.

The augmented Lagrangian method from mathematical
programming is a nice framework for handling constraints

» but only local convergence is guaranteed.

Statistical surrogate modeling and expected improvement
nicely hybridize with the AL:

» implementation is straightforward (see 1aGP on CRAN).
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