
Maximum Likelihood Estimation of a Non-
homogeneous Poisson Process Software 
Reliability Model with the Expectation 
Conditional Maximization Algorithm

• Vidhyashree Nagaraju, BE, University of Massachusetts Dartmouth
• Thierry Wandji, PhD, Naval Air Systems Command
• Lance Fiondella, PhD, University of Massachusetts Dartmouth



Motivation
• Department of Defense (DoD) increasingly 

depends on software intensive systems
– Mission and life critical
– Must preserve high reliability and availability

• Urgency to deploy new technologies and military 
capabilities may result in
– Inadequate reliability testing
– Severe economic damage and loss of life



Background
• Recent National Academies report on Enhancing 

Defense System Reliability recommends
– Use of reliability growth models to direct contractor 

design and test activities
• Several tools to

– Automatically apply reliability models 
– Automate reliability test and evaluation



Background (2)
• Software reliability tools over two decades old

– Difficult to configure on modern operating systems
• Developing open source software reliability tool (SRT) for 

– Naval Air Systems Command (NAVAIR)
– Department of Defense
– Broader software engineering community

• Technical challenge: Stability of underlying model fitting 
algorithms



Present work
• To improve robustness of model fitting process 

– Developing algorithms to compute maximum likelihood 
estimates (MLE) of software reliability growth models (SRGM)

• Expectation maximization (EM)
• Expectation conditional maximization (ECM)

• Our contribution: Implicit ECM algorithm
– Eliminates computationally intensive integration from update 

rules of ECM
– Guarantees dimensionality reduction
– Speedup 200-400 times explicit EM and ECM algorithms



Nonhomogeneous Poisson 
process (NHPP) SRGM

• Stochastic process counts number of events 
observed as function of time
– In context of software reliability, NHPP counts number of 

faults detected by time 𝑡𝑡
• Counting process characterized by mean value 

function (MVF)
– Form of MVF of several SRGM: 𝑚𝑚 𝑡𝑡 = 𝑎𝑎 × 𝐹𝐹(𝑡𝑡)

• 𝑎𝑎 - number software that would be detected with indefinite testing
• 𝐹𝐹(𝑡𝑡) - cumulative distribution function (CDF)
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Weibull SRGM
• Substituting Weibull distribution for 𝐹𝐹(𝑡𝑡)

𝑚𝑚 𝑡𝑡 = 𝑎𝑎 1 − 𝑒𝑒−𝑏𝑏𝑡𝑡𝑐𝑐

– 𝑏𝑏 - scale parameter
– 𝑐𝑐 - shape parameters

• 𝑐𝑐 = 1 simplifies to exponential distribution
– Also known as Goel-Okumoto SRGM
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Maximum likelihood estimation
• Procedure to identify numerical values of model 

parameters that best fit observed failure data
• Two common types of failure data

– Failure times: vector of individual failure times 
T =< 𝑡𝑡1, 𝑡𝑡2, … , 𝑡𝑡𝑛𝑛>
• 𝑛𝑛 – number of faults observed

– Failure counts: T = 𝑡𝑡1,𝑘𝑘1 , 𝑡𝑡2,𝑘𝑘2 , … , 𝑡𝑡𝑛𝑛,𝑘𝑘𝑛𝑛
• 𝑡𝑡𝑖𝑖 – time at which 𝑖𝑖th interval ends
• 𝑘𝑘𝑖𝑖 – number of faults detected in interval 𝑘𝑘
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Maximum likelihood estimation (2)
• NHPP failure times data log-likelihood

𝐿𝐿𝐿𝐿 T Θ = −𝑚𝑚 𝑡𝑡𝑛𝑛 + �
𝑖𝑖=1

𝑛𝑛

log 𝜆𝜆 𝑡𝑡𝑖𝑖

– Θ - vector of model parameters

– 𝜆𝜆 𝑡𝑡 ≔ 𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑡𝑡

- instantaneous failure rate at time 𝑡𝑡𝑖𝑖

• Traditional approach solves simultaneous system of 
equations with Newton’s Method

𝜕𝜕
𝜕𝜕Θ

𝐿𝐿𝐿𝐿 T Θ = 𝟎𝟎
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Expectation maximization (EM)
• EM algorithm also maximizes log-likelihood
• Unlike maximum likelihood estimation 

– EM algorithm maximizes with respect to complete data
• Observed and unobserved data

• E-step: Function for expectation of log-likelihood  
evaluated using current parameter estimates

• M-step: Computes parameters maximizing expected log-
likelihood found in E-step.

• Monotonically improves log-likelihood in each iteration
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Expectation condition 
maximization (ECM)

• Preserves monotonicity property of EM algorithm
• Replaces M-step of EM algorithm with 𝑝𝑝

conditional maximization (CM)-steps
– 𝑝𝑝 - number of model parameters

• Divides single 𝑝𝑝 −dimensional problem into
𝑝𝑝 1-dimensional problems
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Main steps of ECM algorithm
1. Specify log-likelihood of NHPP SRGM
2. For each parameter, differentiate log-likelihood 

function to obtain conditional maximum (CM)-steps
– Solve for closed form expression if possible

• Otherwise systems of implicit algebraic expressions results

3. Holding (𝑝𝑝 − 1) parameters constant, cycle through 𝑝𝑝
CM-steps until improvement in log-likelihood is small

– Must cycle through subsets of simultaneous CM-steps if 
close form expressions not obtainable

4. Return MLE of parameter vector �Θ(𝑡𝑡)



Explicit Weibull ECM
• 𝑎𝑎′′ = 𝑛𝑛 + 𝑎𝑎′𝑒𝑒−𝑏𝑏′𝑡𝑡𝑛𝑛𝑐𝑐

′

• 𝑏𝑏′′ = 𝑛𝑛+𝑎𝑎′𝑒𝑒−𝑏𝑏′𝑡𝑡𝑛𝑛
𝑐𝑐′

𝑏𝑏′

∑𝑖𝑖=1
𝑛𝑛 𝑡𝑡𝑖𝑖

Γ 𝑏𝑏′𝑡𝑡𝑖𝑖
𝑐𝑐′ ;2 −Γ 𝑏𝑏′𝑡𝑡𝑖𝑖−1

𝑐𝑐′ ;2

𝑒𝑒−𝑏𝑏
′𝑡𝑡𝑖𝑖−1
𝑐𝑐′

−𝑒𝑒−𝑏𝑏
′𝑡𝑡𝑖𝑖
𝑐𝑐′

−𝑎𝑎′�Γ(b′𝑡𝑡𝑛𝑛𝑐𝑐
′;2)

• 𝑐𝑐′′ = 𝑛𝑛+𝑎𝑎′𝑒𝑒−𝑏𝑏′𝑡𝑡𝑛𝑛
𝑐𝑐′′

∑𝑖𝑖=1
𝑛𝑛 𝑡𝑡𝑖𝑖

∫𝑡𝑡𝑖𝑖−1
𝑡𝑡𝑖𝑖 𝑏𝑏′′𝑢𝑢𝑐𝑐′′−1 ln 𝑢𝑢 𝑓𝑓 𝑢𝑢;𝑏𝑏′,𝑐𝑐′ 𝑑𝑑𝑢𝑢

𝑒𝑒−𝑏𝑏
′𝑡𝑡𝑖𝑖−1
𝑐𝑐′

−𝑒𝑒−𝑏𝑏
′𝑡𝑡𝑖𝑖
𝑐𝑐′

+𝑎𝑎′ ∫𝑡𝑡𝑘𝑘
∞(𝑏𝑏′′𝑢𝑢𝑐𝑐′′−1) ln 𝑢𝑢 𝑓𝑓 𝑢𝑢;𝑏𝑏′,𝑐𝑐′ 𝑑𝑑𝑢𝑢

May require solution of system of subset of equations



Implicit ECM (IECM) algorithm
• Specify log-likelihood function of failure times NHPP 

SRGM by substituting 𝑚𝑚(𝑡𝑡) into and simplifying

𝐿𝐿𝐿𝐿 T Θ = −𝑚𝑚 𝑡𝑡𝑛𝑛 + �
𝑖𝑖=1

𝑛𝑛

log 𝜆𝜆 𝑡𝑡𝑖𝑖

• Reduce log-likelihood function from 𝑝𝑝 to 𝑝𝑝 − 1
parameters by computing 𝜕𝜕𝜕𝜕𝜕𝜕

𝜕𝜕𝑎𝑎
= 0 and solve for �𝑎𝑎

– When MVF possesses form 𝑎𝑎 × 𝐹𝐹 𝑡𝑡

�𝑎𝑎 = 𝑛𝑛
𝐹𝐹(𝑡𝑡𝑛𝑛)

• Substitute �𝑎𝑎 into LL to obtain reduced log-likelihood (RLL)



Implicit ECM algorithm (2)
• Derive conditional maximum (CM)-step for remaining 

𝑝𝑝 − 1 parameters by
𝜕𝜕𝜕𝜕𝐿𝐿𝐿𝐿
𝜕𝜕Θ𝑖𝑖

= 0, 1 ≤ 𝑖𝑖 ≤ 𝑝𝑝 − 1

• No closed form expression sought
– Implicit ECM guarantees dimensionality reduction

• Algorithm cycles through 𝑝𝑝 − 1 CM-steps 
– Holds other 𝑝𝑝 − 2 parameters constant at present estimate 

and applies numerical root finding algorithm to update



Implicit ECM algorithm (3)
• Cycle repeats until convergence

𝜕𝜕𝐿𝐿𝐿𝐿𝑗𝑗 − 𝜕𝜕𝐿𝐿𝐿𝐿𝑗𝑗−1 < 𝜀𝜀
- 𝜀𝜀 - small positive constant 

• Identifies MLEs �Θ/𝑎𝑎
• Substitute values of �Θ/𝑎𝑎 into equation for �𝑎𝑎

– Produces MLE �Θ for all 𝑝𝑝 model parameters



Weibull SRGM – IECM 
• Instantaneous failure rate

𝜆𝜆 𝑡𝑡 = 𝑎𝑎𝑏𝑏𝑐𝑐𝑡𝑡𝑐𝑐−1𝑒𝑒−𝑏𝑏𝑡𝑡𝑐𝑐

• Log-likelihood function

𝐿𝐿𝐿𝐿 T;Θ = −𝑎𝑎 1 − 𝑒𝑒−𝑏𝑏𝑡𝑡𝑛𝑛𝑐𝑐 + �
𝑖𝑖=1

𝑛𝑛

log 𝑎𝑎𝑏𝑏𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐−1𝑒𝑒−𝑏𝑏𝑡𝑡𝑖𝑖
𝑐𝑐

• MLE of parameter 𝑎𝑎
�𝑎𝑎 =

𝑛𝑛
1 − 𝑒𝑒−𝑏𝑏𝑡𝑡𝑛𝑛𝑐𝑐



Weibull SRGM – IECM (2) 
• Substituting for �𝑎𝑎 in log-likelihood  

𝜕𝜕𝐿𝐿𝐿𝐿 T;Θ = −𝑛𝑛 + �
𝑖𝑖=1

𝑛𝑛

log
𝑛𝑛𝑏𝑏𝑐𝑐𝑡𝑡𝑖𝑖𝑐𝑐−1𝑒𝑒−𝑏𝑏𝑡𝑡𝑖𝑖

𝑐𝑐

1 − 𝑒𝑒−𝑏𝑏𝑡𝑡𝑛𝑛𝑐𝑐

• Differentiating w.r.t 𝑏𝑏 produces CM-step for 𝑏𝑏

𝑏𝑏′′ =
−𝑛𝑛𝑡𝑡𝑛𝑛𝑐𝑐

′𝑒𝑒−𝑏𝑏′′𝑡𝑡𝑛𝑛𝑐𝑐
′

+ 𝑛𝑛
𝑏𝑏′′ − ∑𝑖𝑖=1𝑛𝑛 𝑡𝑡𝑖𝑖𝑐𝑐

′
1 − 𝑒𝑒−𝑏𝑏′′𝑡𝑡𝑛𝑛𝑐𝑐

′

1 − 𝑒𝑒−𝑏𝑏′′𝑡𝑡𝑛𝑛𝑐𝑐
′

• Differentiating w.r.t 𝑐𝑐 produces CM-step for 𝑐𝑐

𝑐𝑐′′ =
−𝑛𝑛𝑡𝑡𝑛𝑛𝑐𝑐

′′𝑏𝑏′ log 𝑡𝑡𝑛𝑛 𝑒𝑒−𝑏𝑏
′𝑡𝑡𝑛𝑛𝑐𝑐

′′

1 − 𝑒𝑒−𝑏𝑏′𝑡𝑡𝑛𝑛𝑐𝑐
′′ +

𝑛𝑛
𝑐𝑐′′ + �

𝑖𝑖=1

𝑛𝑛

log 𝑡𝑡𝑖𝑖 − 𝑏𝑏′�
𝑖𝑖=1

𝑛𝑛

𝑡𝑡𝑖𝑖𝑐𝑐
′′

log 𝑡𝑡𝑖𝑖



Initial parameter estimates selection
• By the first order optimality condition,

– Initial estimates of parameters of  the function 𝐹𝐹 𝑡𝑡;Θ

𝑎𝑎 0 = 𝑛𝑛
and 

Θ 0 ≔�
𝑖𝑖=1

𝑛𝑛
𝜕𝜕
𝜕𝜕Θ

log 𝑓𝑓 𝑡𝑡𝑖𝑖;Θ = 𝟎𝟎



Illustration
• SYS1 dataset

– 𝑛𝑛 = 136 failure times
• Initial estimates

– 𝑐𝑐(0) = 1 – simplifies to exponential SRGM
• Provide feasible initial solution

– 𝑏𝑏(0) = 𝑛𝑛
∑𝑖𝑖=1
𝑛𝑛 𝑡𝑡𝑖𝑖

𝑐𝑐 (initial EM estimate when 𝑐𝑐 = 1)



Iterations of IECM of Weibull

Monotonic improvements made in each of 172 iterations



Log-likelihood function 

IECM iterations improve log-likelihood function monotonically



Performance analysis

IECM algorithm 200 to 400 times faster than EM and ECM
With initial estimates, IECM<0.015 seconds, ECM>5 minutes

Initial value
factor (𝛒𝛒)

EM ECM IECM 𝑬𝑬𝑬𝑬𝑬𝑬
𝑰𝑰𝑬𝑬𝑬𝑬𝑬𝑬

𝑬𝑬𝑬𝑬
𝑰𝑰𝑬𝑬𝑬𝑬𝑬𝑬

0.25 2.695 2.310 0.012 197.434 230.342
0.50 2.232 1.994 0.010 196.645 220.116
0.75 1.808 1.840 0.005 393.151 386.322
0.90 1.764 1.689 0.005 309.338 323.075
1.25 1.826 1.780 0.006 285.255 292.626
1.50 1.888 1.761 0.005 322.525 345.785
1.75 1.965 1.966 0.006 315.062 314.902
2.0 2.123 1.983 0.006 317.786 340.222



Summary and conclusions
• Proposed approach to accelerate explicit EM and

ECM algorithms in context of NHPP SRGM
• Results indicate IECM

– Avoids computationally expensive gamma function and
numerical integration present in explicit CM-steps

– Guarantees dimensionality reduction
– Performs two orders of magnitude faster than explicit

approaches



Future work
• Develop multi-phase algorithms that employ a 

combination of algorithms to enhance stability and 
performance
– Assess tradeoff between stability and performance of algorithms

• Incorporate IECM algorithms into Software Reliability 
Tool (SRT)



Tab view



Laplace trend test



Cumulative failures



Failure intensity



Time between failures



Reliability growth curve
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