# Computational geometry for multivariate statistics 

John P. Nolan<br>American University<br>Washington, DC, USA

CASD 2015
George Mason University
21 October 2015

## Outline

(1) Introduction

(2) Computational geometry

- Multivariate histograms


## (3) Generalized spherical distributions

(4) Multivariate EVDs

## ARO Multidisciplinary University Research Initiative (MURI)

5 year grant on Multivariate Heavy Tailed Phenomena

Richard Davis - Columbia University (Statistics)
Weibo Gong - UMass Amherst (ECE)
John Nolan - American University (Math)
Sidney Resnick - Cornell University (ORIE)
Gennady Samorodnitsky - Cornell University (ORIE)
Ness Shroff - Ohio State University
R. Srikant - University of Illinois at Urbana-Champaign (ECE)

Don Towsley - UMass Amherst (CS)
Zhi-Li Zhang - University of Minnesota

## Some topics the MURI group has worked on

- Growth of social networks - preferential attachment model leads to joint heavy tailed model for (in-degree, out-degree)
- Random walks on large graphs
- Analysis of communication networks with heavy tailed traffic
- Resource allocation in cloud computing
- Reducing power consumption on mobile devices
- Multivariate extreme value distributions - calculations and estimation
- Threshold selection in heavy tailed inference
- Dimensionality reduction for heavy tailed data - robust PCA and ICA


## Outline

## (1) Introduction

(2) Computational geometry

- Multivariate histograms


## (3) Generalized spherical distributions

(4) Multivariate EVDs

There is a need for non-traditional models for multivariate data. Working in dimension $d>2$ requires new tools.

- grids and meshes on non-rectangular shapes
- numerical integration over surfaces
- simulate from a shape

There is a need for non-traditional models for multivariate data.
Working in dimension $d>2$ requires new tools.

- grids and meshes on non-rectangular shapes
- numerical integration over surfaces
- simulate from a shape

R software packages

- mvmesh - MultiVariate Meshes (CRAN)
- SphericalCubature (CRAN)
- Simplicial Cubature (CRAN)
- gensphere (manuscript submitted)
- mvevd - MultiVariate Extreme Value Distributions (in progress)


## mvmesh

Rectangular grids are straightforward in any dimensions


Grid points evenly spaced, easy to determine which cell a point is in.

Other shapes are not well described by rectangular grids


Points are not evenly spread, faces have different numbers of vertices.

## Simplices - equal area subdivisions



This and following shapes can be generated in any dimension $d \geq 2$.

## Balls/spheres - approximate equal area subdivisions

unit ball
unit sphere


## Tubes- approximate equal area subdivisions



## Rectangular histograms



## Rectangular histograms



## Histograms of non-rectangular regions



## Histograms of non-rectangular regions



## Directional histogram $d=2$ - count how many in each "direction"


threshold= 0

threshold= 1

threshold= 4


## Generalize to $d \geq 3$ ?

- triangulate/tessellate the sphere
- each simplex on sphere determines a cone starting at the origin
- loop through data points, seeing which cone each falls in
- plot histogram



## Directional histogram $d=3$, positive data

positive data


## Directional histogram $d=4$

$\mathrm{n}=100000$ dimension= 4


Radially symmetric data in $\mathbb{R}^{4}$

## Directional histogram $d=4$

$\mathrm{n}=100000$ dimension= 4


All octants where $3^{\text {rd }}$ component is negative are empty.

## Outline

## (1) Introduction

(2) Computational geometry

- Multivariate histograms
(3) Generalized spherical distributions
(4) Multivariate EVDs


## Generalized spherical distributions

Distributions with level sets that are all scaled versions of a star shaped region. Flexible scheme for building up nonstandard star shaped contours.

## Generalized spherical distributions

Distributions with level sets that are all scaled versions of a star shaped region. Flexible scheme for building up nonstandard star shaped contours.


A tessellation based on the added 'bumps' is automatically generated and used in simulating from the contour. Process requires the arclength/ surface area of the contour.

Add a radial component to get a distribution: $\mathbf{X}=R \mathbf{Z}$, where $\mathbf{Z}$ is uniform w.r.t. $(d-1)$-dimensional surface area on contour. Here $R \sim \Gamma(2,1)$


Sample of $\mathbf{X}=R \mathbf{Z}$
density surface

## Many contour shapes possible



## Choice of $R$ determines radial behavior



In all cases, contour is a diamond. (a) $R \sim \operatorname{Uniform}(0,1)$
(b) $R \sim \Gamma(2,1)$
(c) $R=|\mathbf{Y}|$ where $\mathbf{Y}$ is 2D isotropic stable
(d) $R \sim \Gamma(5,1)$

## 3D example - contour


uniform sample from contour

sample from distribution $\mathbf{X}$ with $R \sim \Gamma(2,1)$


## Flexible shapes



Specified some letters in 3D, can sample from this word proportional to arclength

## Flexible shapes



Specified some letters in 3D, can sample from this word proportional to arclength


## Outline

## (1) Introduction

(2) Computational geometry

- Multivariate histograms
(3) Generalized spherical distributions
(4) Multivariate EVDs


## Multivariate Fréchet Distributions

de Haan and Resnick (1977): X max stable, centered with shape index $\xi$, is characterized by the angular measure $H$ on the unit simplex $\mathbb{W}_{+}$. The spread of mass by $H$ determines the joint structure. Define the scale function

$$
\sigma^{\xi}(\mathbf{u})=\int_{\mathbb{W}_{+}}\left(\bigvee_{i=1}^{d} u^{\xi} w_{i}\right) H(d \mathbf{w})
$$

(If the components of $\mathbf{X}$ are normalized and $\xi=1$, then this is the tail dependence function $\ell(\mathbf{u})$.)

## Multivariate Fréchet Distributions

de Haan and Resnick (1977): X max stable, centered with shape index $\xi$, is characterized by the angular measure $H$ on the unit simplex $\mathbb{W}_{+}$. The spread of mass by $H$ determines the joint structure. Define the scale function

$$
\sigma^{\xi}(\mathbf{u})=\int_{\mathbb{W}_{+}}\left(\bigvee_{i=1}^{d} u^{\xi} w_{i}\right) H(d \mathbf{w})
$$

(If the components of $\mathbf{X}$ are normalized and $\xi=1$, then this is the tail dependence function $\ell(\mathbf{u})$.) The scale function determines the joint distribution:

$$
G(\mathbf{x})=P(\mathbf{X} \leq \mathbf{x})=\exp \left(-\sigma^{\xi}\left(\mathbf{x}^{-1}\right)\right)
$$

Observation: need to (a) describe different types of measures and (b) integrate over a surface

## R package mvevd, $d \geq 2$

- Define classes of mvevds: discrete $H$, generalized logistic, Dirichlet mixture, piecewise constant and linear angular measures (computational geometry)
- Compute scale functions $\sigma(\mathbf{u})$ for above classes (integrate over simplices, computational geometry)
- Fitting mvevd data with any of the above classes (max projections)
- Exact simulation from these classes (Dirichlet mix - Dombry, Engelke \& Oesting (EVA 2015), Dieker and Mikosch (2015))
- Compute cdf $G(\mathbf{x})=P(\mathbf{X} \leq \mathbf{x})=\exp \left(-\sigma^{\xi}\left(\mathbf{x}^{-1}\right)\right), \quad(\boldsymbol{\mu}=0, \mathbf{x} \geq 0)$.
- Computation of density $g(\mathbf{x})$ when known (partitions)
- Computation of $H(S)$ for a simplex $S$ to estimate tail probabilities in the direction $S$. (computational geometry \& integrate over simplices)

