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ARO Multidisciplinary University Research Initiative
(MURI)

5 year grant on Multivariate Heavy Tailed Phenomena

Richard Davis - Columbia University (Statistics)
Weibo Gong - UMass Amherst (ECE)
John Nolan - American University (Math)
Sidney Resnick - Cornell University (ORIE)
Gennady Samorodnitsky - Cornell University (ORIE)
Ness Shroff - Ohio State University
R. Srikant - University of Illinois at Urbana-Champaign (ECE)
Don Towsley - UMass Amherst (CS)
Zhi-Li Zhang - University of Minnesota
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Some topics the MURI group has worked on

Growth of social networks - preferential attachment model leads to
joint heavy tailed model for (in-degree, out-degree)

Random walks on large graphs

Analysis of communication networks with heavy tailed traffic

Resource allocation in cloud computing

Reducing power consumption on mobile devices

Multivariate extreme value distributions - calculations and estimation

Threshold selection in heavy tailed inference

Dimensionality reduction for heavy tailed data - robust PCA and ICA
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There is a need for non-traditional models for multivariate data.
Working in dimension d > 2 requires new tools.

grids and meshes on non-rectangular shapes

numerical integration over surfaces

simulate from a shape

R software packages

mvmesh - MultiVariate Meshes (CRAN)

SphericalCubature (CRAN)

Simplicial Cubature (CRAN)

gensphere (manuscript submitted)

mvevd - MultiVariate Extreme Value Distributions (in progress)
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mvmesh

Rectangular grids are straightforward in any dimensions

Grid points evenly spaced, easy to determine which cell a point is in.
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Other shapes are not well described by rectangular grids

Points are not evenly spread, faces have different numbers of vertices.
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Simplices - equal area subdivisions

This and following shapes can be generated in any dimension d ≥ 2.
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Balls/spheres - approximate equal area subdivisions
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Tubes- approximate equal area subdivisions
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Rectangular histograms
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Rectangular histograms
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Histograms of non-rectangular regions
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Histograms of non-rectangular regions
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Directional histogram d = 2 - count how many in each
“direction”
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Generalize to d ≥ 3?

triangulate/tessellate
the sphere

each simplex on sphere
determines a cone
starting at the origin

loop through data
points, seeing which
cone each falls in

plot histogram
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Directional histogram d = 3, positive data
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Directional histogram d = 4
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n=100000  dimension= 4

Radially symmetric data in R4
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Directional histogram d = 4
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All octants where 3rd component is negative are empty.
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Generalized spherical distributions
Distributions with level sets that are all scaled versions of a star shaped
region. Flexible scheme for building up nonstandard star shaped contours.
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A tessellation based on the added ‘bumps’ is automatically generated and
used in simulating from the contour. Process requires the arclength/
surface area of the contour.
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Generalized spherical distributions
Distributions with level sets that are all scaled versions of a star shaped
region. Flexible scheme for building up nonstandard star shaped contours.
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A tessellation based on the added ‘bumps’ is automatically generated and
used in simulating from the contour. Process requires the arclength/
surface area of the contour.
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Add a radial component to get a distribution: X = RZ, where Z is uniform
w.r.t. (d − 1)-dimensional surface area on contour. Here R ∼ Γ(2, 1)
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Many contour shapes possible
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Choice of R determines radial behavior

x

y

z

x

y

z

x

y

z

x

y

z

In all cases, contour is a diamond. (a) R ∼Uniform(0,1) (b) R ∼ Γ(2, 1)
(c) R = |Y| where Y is 2D isotropic stable (d) R ∼ Γ(5, 1)
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3D example - contour
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uniform sample from contour
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sample from distribution X with R ∼ Γ(2, 1)
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Flexible shapes

Specified some letters in 3D, can sample from this word proportional to
arclength
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Outline

1 Introduction

2 Computational geometry
Multivariate histograms

3 Generalized spherical distributions

4 Multivariate EVDs
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Multivariate Fréchet Distributions

de Haan and Resnick (1977): X max stable, centered with shape index ξ,
is characterized by the angular measure H on the unit simplex W+. The
spread of mass by H determines the joint structure. Define the scale
function

σξ(u) =

∫
W+

(
d∨

i=1

uξwi

)
H(dw).

(If the components of X are normalized and ξ = 1, then this is the tail
dependence function `(u).)

The scale function determines the joint
distribution:

G (x) = P(X ≤ x) = exp
(
−σξ(x−1)

)
.

Observation: need to (a) describe different types of measures and (b)
integrate over a surface
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R package mvevd, d ≥ 2

Define classes of mvevds: discrete H, generalized logistic, Dirichlet
mixture, piecewise constant and linear angular measures
(computational geometry)

Compute scale functions σ(u) for above classes (integrate over
simplices, computational geometry)

Fitting mvevd data with any of the above classes (max projections)

Exact simulation from these classes (Dirichlet mix - Dombry, Engelke
& Oesting (EVA 2015), Dieker and Mikosch (2015))

Compute cdf G (x) = P(X ≤ x) = exp(−σξ(x−1)), (µ = 0, x ≥ 0).

Computation of density g(x) when known (partitions)

Computation of H(S) for a simplex S to estimate tail probabilities in
the direction S . (computational geometry & integrate over simplices)
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