Computational geometry for multivariate statistics

John P. Nolan

American University Washington, DC, USA

CASD 2015 George Mason University 21 October 2015

4 ∃ > 4

Outline

Introduction

- Computational geometryMultivariate histograms
- 3 Generalized spherical distributions

4 Multivariate EVDs

< 一型

- ₹ 🗦 🕨

ARO Multidisciplinary University Research Initiative (MURI)

5 year grant on Multivariate Heavy Tailed Phenomena

Richard Davis - Columbia University (Statistics) Weibo Gong - UMass Amherst (ECE) John Nolan - American University (Math) Sidney Resnick - Cornell University (ORIE) Gennady Samorodnitsky - Cornell University (ORIE) Ness Shroff - Ohio State University R. Srikant - University of Illinois at Urbana-Champaign (ECE) Don Towsley - UMass Amherst (CS) Zhi-Li Zhang - University of Minnesota

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Some topics the MURI group has worked on

- Growth of social networks preferential attachment model leads to joint heavy tailed model for (in-degree, out-degree)
- Random walks on large graphs
- Analysis of communication networks with heavy tailed traffic
- Resource allocation in cloud computing
- Reducing power consumption on mobile devices
- Multivariate extreme value distributions calculations and estimation
- Threshold selection in heavy tailed inference
- Dimensionality reduction for heavy tailed data robust PCA and ICA

Outline

Introduction

- Computational geometryMultivariate histograms
- 3 Generalized spherical distributions

4 Multivariate EVDs

There is a need for non-traditional models for multivariate data. Working in dimension d > 2 requires new tools.

- grids and meshes on non-rectangular shapes
- numerical integration over surfaces
- simulate from a shape

There is a need for non-traditional models for multivariate data. Working in dimension d > 2 requires new tools.

- grids and meshes on non-rectangular shapes
- numerical integration over surfaces
- simulate from a shape

R software packages

- mvmesh MultiVariate Meshes (CRAN)
- SphericalCubature (CRAN)
- Simplicial Cubature (CRAN)
- gensphere (manuscript submitted)
- mvevd MultiVariate Extreme Value Distributions (in progress)

mvmesh

Rectangular grids are straightforward in any dimensions

Grid points evenly spaced, easy to determine which cell a point is in.

Other shapes are not well described by rectangular grids

Points are not evenly spread, faces have different numbers of vertices.

Nolan (American U)

Computational geometry

21 Oct 2015 8 / 30

Simplices - equal area subdivisions

This and following shapes can be generated in any dimension $d \ge 2$.

Nolan (American U)

Computational geometry

▶ < ≣ ▶ ≣ ∽ < @ 21 Oct 2015 9 / 30

<ロ> (日) (日) (日) (日) (日)

Balls/spheres - approximate equal area subdivisions

unit ball unit sphere

Nolan (American U)

Tubes- approximate equal area subdivisions

21 Oct 2015 11 / 30

Rectangular histograms

Rectangular histograms

Nolan (American U)

Computational geometry

Histograms of non-rectangular regions

Image: A math a math

Histograms of non-rectangular regions

Image: A match a ma

∃ →

Directional histogram d = 2 - count how many in each "direction"

threshold= 1

Nolan (American U)

Computational geometry

21 Oct 2015 14 / 30

 Generalize to $d \ge 3$?

- triangulate/tessellate the sphere
- each simplex on sphere determines a cone starting at the origin
- loop through data points, seeing which cone each falls in
- plot histogram

Directional histogram d = 3, positive data

positive data

Nolan (American U)

21 Oct 2015 16 / 30

Directional histogram d = 4

n=100000 dimension= 4

Radially symmetric data in \mathbb{R}^4

Nolan (American U)

21 Oct 2015 17 / 30

Directional histogram d = 4

All octants where $3^{\rm rd}$ component is negative are empty.

Nolan (American U)

21 Oct 2015 18 / 30

Outline

Introduction

- Computational geometry
 Multivariate histograms
- 3 Generalized spherical distributions

4 Multivariate EVDs

Generalized spherical distributions

Distributions with level sets that are all scaled versions of a star shaped region. Flexible scheme for building up nonstandard star shaped contours.

Generalized spherical distributions

Distributions with level sets that are all scaled versions of a star shaped region. Flexible scheme for building up nonstandard star shaped contours.

A tessellation based on the added 'bumps' is automatically generated and used in simulating from the contour. Process requires the arclength/ surface area of the contour.

Nolan (American U)

Add a radial component to get a distribution: $\mathbf{X} = R\mathbf{Z}$, where \mathbf{Z} is uniform w.r.t. (d-1)-dimensional surface area on contour. Here $R \sim \Gamma(2,1)$

Sample of $\mathbf{X} = R\mathbf{Z}$

density surface

Many contour shapes possible

Nolan (American U)

Computational geometry

21 Oct 2015 22 / 30

∃ →

Image: A match a ma

э

Choice of R determines radial behavior

In all cases, contour is a diamond. (a) $R \sim \text{Uniform}(0,1)$ (b) $R \sim \Gamma(2,1)$ (c) $R = |\mathbf{Y}|$ where \mathbf{Y} is 2D isotropic stable (d) $R \sim \Gamma(5,1)$

3D example - contour

Nolan (American U)

Computational geometry

· ▲ 볼 ▶ 볼 ∽ ९ (~ 21 Oct 2015 24 / 30

<ロ> (日) (日) (日) (日) (日)

uniform sample from contour

sample from distribution **X** with $R \sim \Gamma(2, 1)$

Nolan (American U)

Computational geometry

21 Oct 2015 26 / 30

Flexible shapes

Specified some letters in 3D, can sample from this word proportional to arclength

Flexible shapes

Specified some letters in 3D, can sample from this word proportional to arclength

Nolan (American U)

Computational geometry

Outline

Introduction

- Computational geometryMultivariate histograms
- 3 Generalized spherical distributions

4 Multivariate EVDs

Multivariate Fréchet Distributions

de Haan and Resnick (1977): **X** max stable, centered with shape index ξ , is characterized by the angular measure H on the unit simplex \mathbb{W}_+ . The spread of mass by H determines the joint structure. Define the scale function

$$\sigma^{\xi}(\mathbf{u}) = \int_{\mathbb{W}_+} \left(\bigvee_{i=1}^d u^{\xi} w_i \right) \ H(d\mathbf{w}).$$

(If the components of **X** are normalized and $\xi = 1$, then this is the tail dependence function $\ell(\mathbf{u})$.)

Multivariate Fréchet Distributions

de Haan and Resnick (1977): **X** max stable, centered with shape index ξ , is characterized by the angular measure H on the unit simplex \mathbb{W}_+ . The spread of mass by H determines the joint structure. Define the scale function

$$\sigma^{\xi}(\mathbf{u}) = \int_{\mathbb{W}_+} \left(\bigvee_{i=1}^d u^{\xi} w_i \right) \ H(d\mathbf{w}).$$

(If the components of **X** are normalized and $\xi = 1$, then this is the tail dependence function $\ell(\mathbf{u})$.) The scale function determines the joint distribution:

$$G(\mathbf{x}) = P(\mathbf{X} \leq \mathbf{x}) = \exp\left(-\sigma^{\xi}(\mathbf{x}^{-1})\right).$$

Observation: need to (a) describe different types of measures and (b) integrate over a surface

イロト 不得 トイヨト イヨト 二日

R package mvevd, $d \geq 2$

- Define classes of mvevds: discrete *H*, generalized logistic, Dirichlet mixture, piecewise constant and linear angular measures (computational geometry)
- Compute scale functions σ(u) for above classes (integrate over simplices, computational geometry)
- Fitting mvevd data with any of the above classes (max projections)
- Exact simulation from these classes (Dirichlet mix Dombry, Engelke & Oesting (EVA 2015), Dieker and Mikosch (2015))
- Compute cdf $G(\mathbf{x}) = P(\mathbf{X} \le \mathbf{x}) = \exp(-\sigma^{\xi}(\mathbf{x}^{-1})), \ (\boldsymbol{\mu} = 0, \mathbf{x} \ge 0).$
- Computation of density $g(\mathbf{x})$ when known (partitions)
- Computation of H(S) for a simplex S to estimate tail probabilities in the direction S. (computational geometry & integrate over simplices)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの