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Fundamentals of Bayesian Analysis




Bayesian methods are commonly used and becoming
more widely accepted

 Applications

o FAA/ USAF in estimating probability of success of launch vehicles

o Delphi Automotive for new fuel injection systems

0 Science-based Stockpile Stewardship program at LANL for nuclear warheads
o Army for estimating reliability of new aircraft systems

o FDAforapproving new medical devices

 Recent High Profile Successes:

0 During the search for Air France 447 (2009-2011), black box location

o The Coast Guard in 2013 found the missing fisherman, John Aldridge

0 Use in defining the search area for Malaysian Airlines flight MH370 in 2014 by
Australian government




Classical versus Bayesian Statistics
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Bayesian Statistics 101

DA

We have a system comprised of 2components:Component 1and
Component 2.

Foreach ofthe two components, 10 pass/ fail tests are administered
and results are recorded. Component 1fails twice and Component 2

fails zero times.
= We can calculate the reliability of each component, R; and R,.

= We also want an assessment of the system reliability, assuming
the components work in series.

2 0
Rsystem = R1 * Ry =<1—1—O>*<1—1—0>=0.8*1=0.8

**For the purposes ofthe next few slides, focus on Component 1.



Bayesian Statistics 101

Your Bayesian analysis Is just

1. Construct prior from prior information
2. Construct likelihood from test data
3. Estimate posterior distribution using Bayes Theorem




Bayesian Statistics 101: Priors

The prior distribution of the
reliability, f,;,,(R), Is constructed
from previous data or expert
knowledge. This is your first ’q
assessment of the system. \
I

4/
Say Component 1was previously ”
tested and failed 3 out of 40 tests: \
use Beta distribution.

forior(R1) &< Ry npp(l — R)™(~P)  careful thought should always be

. e
> pis the reliability estimate and n, = put into the prior distribution:

0 weights the relevance of the prior

test data.
DA




Bayesian Statistics 101: Likelihood

Tests are performed and the resulting test data is used in the
likelihood function, L(data|R).

The binary test data of Component 1follows a Binomial distribution
with probability of a pass of R;

L(data|R;) « R;*(1 — R )

s; Is the number of successes and f;is the number of failures from
Component 1




Bayesian Statistics 101: Posterior Distribution

Bayes Theorem
_ L(x|6)f(6)
O = Tiaaer®

oc L(x|6)f(6)




Bayesian Statistics 101: Posterior Distribution

Bayes theorem is used to find the posterior
reliability distribution, o rior(Rldata). The
posterior distribution is the product of the prior
distribution and the likelihood function for all
subsystems in the unit

For our smallexample, choosing the Beta distribution as a prior is
ideal for a few reasons:itensures that Ris between (0, 1) and itis
the “conjugate”prior for the Binomial distribution (i.e.the math
works out easily)

fposterior(Rl) X Rfl(l — Rl)flRlnpp(l — Rl)"p(l_p)
" R51+npp(1 _ R )f1+np(1 D)




Bayesian Statistics 101: Posterior Distribution

Pi = Prior P
— Likelihood — Likelihood — Likelihood
Post - Poste Post
- - -
[} L] L]
™ ™ o™

T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Ry R R

0.86 (0.76,0.95) 0.75 (0.58,0.89) 0.70 (0.54,085)

Classical Estimate: 0.8 (0.55, 0.95)




Bayesian Statistics 101: Conjugate Priors

Likelihood Parameter Prior Posterior
Binomial(s+f, R) O0<R<1 Beta(a,b) Beta(a’,b’)
a>0,b>0 a’=a+s
b’=b +f
Poisson(A) A>0 Gamma(a,b) Gamma(a’,b’)
a>0,b>0 a’=a+n
b’=b+2t
Exponential(A) A>0 Gamma(a,b) Gamma(a’,b’)
a>0,b>0 a’=a+n
b’=b+2t

*Formore examples,see Conjugate Priors Wikipedia page or
“Bayesian Reliability”pg 48




When should we think about using Bayesian techniques?

« To obtain interval estimates (credible intervals) when there are

zero failures
= Mean time between failure for short tests or for highly reliable
systems

= Interval estimates in kill-chain analysis where zero failures occur at
any point along the kill-chain

o Ifyou are assessing a complex system mission reliability

= LCS Example - Confidence intervals are not straightforward to
obtain using frequentist methods, impossible with zero failures in

any sub-system
o Ifthere is relevant prior information to be incorporated in your
analysis — this may include previous developmental (or
operational)test data, engineering analyses, or information from

modeling and simulation.
= MaxxPro LWB Ambulance Example

= BDS Example




Case Study: Littoral Combat Ship




Case Study: LCS

Freedom Class Independence Class

« The Littoral Combat Ship (LCS)are a new family of surface ships.

e The Capability Development Document for LCS provides a
reliability requirements for four functional areas

= Sea Frame Operations

= Core Mission

= Mission Package Support
= SUW Mission Package

DA




Case Study: LCS

The Capability Development Document for LCS provides a

reliability threshold for Core Mission functional area.

Critical Subsystem Total syste_m Operating Operatlo_nal Mission
Time Failures
Total Ship Computing
Environment (full-time) 4500 hours 1
Sea Sensors and Controls 2000 hours 3
(underway)

Communications (full-time) 4500 hours 0

Sea Engagement Weapons .
11 missions 2

(on-demand)

The target reliability for Core Mission is 0.80 in 720 hours.

»Assume the functional area is a series system:system is up if

all subsystems are up.
DA




Case Study: LCS— Prior Assumptions

On-demand system
= Assume no beliefin the relevance of prior knowledge,
n, =0

Continuous systems

* The Gamma prior parameterais setto 1, giving large
variance. To ensure the 50th percentile is set at
A5o=l/ MTBF,,.ss choose b=og(2)xMTBF, .

" MTBF,,.ss chosen by solving the reliability function at
the requirement

/Guiding Principles in Prior Selection: \

Start with the properties of the parameter of interest

Decide on what prior information to use

Allow for the analysis to change freely based on the data observed
Priors specified at the system level, as opposed to mission level —
k check impact on system prior /




Case Study: LCS— Prior Assumptions
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Case Study: LCS— Prior Assumptions

Possible Prior 1: Too much information, if the Possible Prior 2: Too little information, for
prior probability of a value is 0, no amount of continuous measures, flat priors can be
data can move the posterior MTBF there! problematic when there are few or zero
failures.
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Case Study: LCS— Prior Assumptions

Possible Prior 3: Bounding the prior in case there are few
failures, but ensuring enough flexibility for the data to speak
for itself.
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Case Study: LCS— Prior Assumptions

10

_ / Note the core \

mission prior is
somewhat
informative — We
© - will want to check
the impact of this
in the analysis /

-~
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Case Study: LCS — Posterior Computation

« Even when we choose independent,conjugate priors for
each subsystem orcomponent,the combined system
reliability does not have an analytic solution for its
distribution!

« Simulate values from the posterior distribution via MCMC

Basic MCMC algorithm

= Generate avalue from each component/ subsystem
reliability parameter posterior distribution.

= |If necessary, calculate reliability at time t.

= Combine the component/ subsystem reliabilities through
the expression determined by the system structure.

= Repeat many, many times.




Caste Study: LCS — Posterior Computation

or{i in 1:B){
|lambdaTCG[i]=rgamma (1, TSCE+aT, TSCET+bT)
| ambdaSSCGLi]=rgamma (1, SensCont+as, SensContT+b5)
| ambdaCOMMLi]=rgamma (1, Comm+aC, CommT+b()
pSEW[i]l=rbeta(1, SEWs + pguess*pweight, SEWFf+ (1-pguess) *pweight)

Rsys[il=exp (—-720% | ambdaTC[i]) *exp (-720%*| ambdaS5C[i]) *exp (-720% | ambdaCGOMMLi]) *pSEW[i]

b
+
4
4
+
+
4
4
+
4
4
+
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Case Study: LCS - Results

Classical Classical Bayesian Bayesian
MTBOME Rel;;l(a)lrl]lrtg at MTBOME Rel;a;tc))wrtg at
TSCE 4500 hrs 0.85 3630 hrs 0.73
(1156 hrs, 42710 hrs) (0.54,0.98) (1279 hrs, 6753 hrs) (0.54,0.90)
SSC 667 hrs 0.33 697 hrs 0.31
rs, rs 09,0. rs, rs 11,0.
(299 hrs, 1814 hrs) (0.09,0.67) (332 hrs, 1172 hrs) (0.11,0 54)
Comm « 10320 hrs 0.83
>2796 hrs >0.77 (1721 hrs, 18210 hrs) (0.66,0.96)
: 0.82 0.77
SEW / Many ways to think 0.58.0.95) 062.0.91)
about calculating R R
Core this, none of which S 0.15
Mission are particularly -~ (0.05,0.27)
\_ satisfactory J / /
TSCE: Total Ship Computing Environment - Full Mission mean
SSC: Sea Sensors and Controls Note _the_ Impact OT is comparable with
Comm: Communications the prioris greaterin P

the simple point
estimate

SEW: Sea Engagement Weapons the one failure syste m

DA




Case Study: LCS - Results
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Case Study: LCS - Results

Core Mission

Posterior mean and 80% = )
intervals for each subsystem o | 1 T ¢ .
and the total system reliability © | :
over 15 days (light blue)and 30 ! |
days (dark blue) for the notional - ) &
example. e : ]
z e
. e
¢
i_ ¢
{=360hrs =
g | —— t=720hrs




Case Study: LCS — Value of Bayesian Statistics

 Avoids unrealistic reliability estimates when there are no observed
failures.

 Inournotionalexample (zero failures for the Communications
system), the Bayesian approach helped us solve an otherwise
intractable problem.

e Obtaining interval estimates is straightforward for system reliability

» Frequentist methods would have to employ the Delta method, Normal
approximations, or bootstrapping.

o Flexibility in developing system models

= We used a series system for the core mission reliability

= Many other system models are possible and we can still get full system
reliability estimates with intervals.




Case Study: MaxxPro LWB Ambulance




Case Study: MaxxPro LWB Ambulance

Litter rail and trolley system

Primary mission of an ambulance-
equipped unitis medical evacuation.

Three medical Soldiers crew the vehicle:
driver, vehicle commander, and
medic/ gunner,

Holds two litter patients, one litter patient
and two ambulatory patients, or four
ambulatory patients.

The ambulance has a rail, trolley, and
hoist system for litter loading/ unloading,
and medical supportequipment
(monitoring equipment, intravenous
management system, oxygen
concentrators, etc.)



Case Study: MaxxPro LWB Ambulance

« MRAP vehicles have a reliability requirement of at least 600 Mean
Miles Between Operational Mission Failures (MMBOMF)

« 1Vehicle available for DT to drive 1025 miles

« 2Vehicles available in the LUT that drove a total of 3026 miles

e There were four OMFs in DT and one OMF in LUT
o 3flattires and 1air conditioner failure in DT
o lflattire in LUT

e Flat tires during missions result in OMFs, because the LWB
Ambulance does not carry a usable jack and spare tire




Case Study: MaxxPro - Model

Model: Estimating
Modenngw@hmE;:::z.XiDTl~«Exp(A)Z:j777 MMBF
Fail
Ifl/llillérse Xiruri ~ Exp(y2)

Change from DT to LUT
i = 1,2 for vehicle

l=12,..,n for observed failures

A~Gamma(ay, by), y~Gamma(ay, b,),
a, = b/l = Cly = by = 0.001

Posteriors:

Ay, X ~ Gamma(nypr + nypyr + Nopur + ap tipre + ¥ CGLore + tarure) + by)

YA X ~ Gamma(ny Lyt + napyr + ay, A8 Lyre + t2pure) + by)




Case Study: MaxxPro — Posterior Computation

or (i in 2:B){
lambdali]l] = rgamma (1, DTFails+LUTFails+alam, DTMiles+gammali—-1]*LUTMi les+b|am)

gammali]l = rgamma (1, LUTFails+agam, lambdali]l*LUTMi les+bgam)

[ N—
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+
+
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Case Study: MaxxPro - Results

Greater precision in the estimate
of MMBOMF during LUT
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Case Study: MaxxPro - Results

OMF 80% Credible Intervals Sensitivity
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It is always a good idea to check the sensitivity of your prior
assumptions on your results!!




Case Study: MaxxPro — Value of Bayesian Statistics

 Instead ofassuming that testing is equivalent in DT and
LUT, we leverage information across the two phases. The
model allows fora change (increase ordecrease)in the
failure rate from DT to the LUT.

e Asensitivity analysis is performed to assess the
robustness of the model. Mean Miles Between
Operational Mission Failure (MMBOMF) interval estimates
are comparable until we add the equivalent of one failure
of information.

« Use ofdiffuse priors does not include a lot of information,
but can be troublesome with few failures.




Case Study:Bio-chemical Detection System




Case Study: BDS

« The Bio-chemical Detection System analyzes environmental
samples and identifies chemical, biological, radiological agents.
Each subsystem is comprised ofa collection of components of
various sensitivity.

« KPP performance requirement for each subsystem:detect 85-90%
of samples that come into the lab.

 Multiple Tiers of testing

o Tier 2 (vendor testing)

v 5components:~2000 trials
o Tier 3 (vendor testing)

v 8 components:~3600 trials
o DT/ OT (government testing)

v' 80-90 trials on multiple

components
v Final callmade by operator




Case Study: BDS

DT/ OT:set concentration levels, comparatively small sample size

« Standard logistic regression on the Tier 3 data could be
problematic

 All detections or non-detections

« Bayesian approach with a dispersed prior:

logit(Pp) = Py * conc + BIatrix 4 ﬁggent
(B1, B2, B3) ~ Multivariate Normal(0, W)

» Explicitly forcing a dependence on concentration.

» Leverage all device runs to learn about each agent/ matrix
combination performance curve.




Case Study: BDS — Posterior Computation

» post=function(betal, betal, betald) {
betavec=c (betal, beta?, betal)

val=dtnormibetavec[1],0,1073, lower=0, log=TRUE) +
dmvnorm (betavec[-1], rep (0, length(betavec[-1])),diag(rep (1073, length(betavec) -1}, log=TRUE)} +

sumidbinomiy, 1.mylogit (betal*log (X[, 1]1)+betaZ [X[, 2] 1+betad*X[, 31}, log=TRUE} ]

return(val)

+ + F F F F + + + + F




Case Study: BDS — Posterior Computation

or (1 in 1:size) |

#update betal

cand. betal=rnorm(1, betal, 0. 1}

i f (cand. betal > 0} {

r = post (cand. betal, beta?, betald) - posti(betal,beta?, betad)
u = runifi1) <= expir)

aratel = aratel + u

betal = cand. betal*(u==1}) + betal1*(u==0)}

#update betal
for(j in 1:lengthiunique(X[, 213331
cand. betaZ=betal
cand. betaZ2[jl=rnorm{1, beta2[j].0.7)
r = post (betal, cand. beta2, betad) — post(betal, betal, betal)
u=runif(1} <= explir)
arate2[j] = arate2[j] + u
betaZlj] = cand. betaZ[j]*(u==1) + betaZ[j]*(u==0)}

#update hetald
for(j in 2:length{unique (X[, 31))} {
cand. betai=hetal
cand. beta3[j]=rnorm{1, beta3[j], 0.7}
r = post (betal, betaZ, cand. betald) - postibetal, betaZ, betad)
u = runifi1) <= explir)
arate3[j] = arated[j] + u
beta3[j] = cand. betal3[j]1*(u==1) + betad[j]* (u==0)}

par[i.] = c(betal, beta?, betad) #save current parameter values

e T




Case Study: BDS — Posterior Computation

tupdate betalZ
forij in 1:length{unique (X[, 21} ) {
cand. beta2[j]=rnorm(1, beta2[j].0. 7}
post (betal, cand. beta?, betald) - postibetal, beta?, betald)
runif i1} <= exp(r]

-

u

arate? ] = arate2[j] + u
betaZlj] = cand. beta2[j]*{u==1) + betaZ[j]*(u==0}]




Case Study: BDS — Posterior Computation

arm library: bayesg/mis a simple alteration of glm that uses an approximate
EM algorithm to update the regression coefficients at each step using an
augmented regression to represent the prior information.

library (arm)

M1 = bayesglm(y 0+log (X[, 1])+as. factor (X[, 2])+as. factor (X[, 31},
family=binomial (|l ink="legit"),prior. scale=10, prior. df=Inf}

R R T




Case Study: BDS — Posterior Computation

MCMCpack library: functions to perform Bayesian inference using posterior
simulation fora number of statistical models, all models return coda mcmc
objects that can then be summarized using the coda package.

b
» library (MCMCpack)




Case Study: BDS - Results

Component: Chemical e
Detector 1

Agent: Chemical A @ _
Matrix: Soil, Swab

Chemical A (mg)




Case Study: BDS - Results
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Case Study: BDS - Results
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Case Study: BDS — Value of Bayesian Statistics

e Tier2and Tier 3 produced a lot of data which we can leverage to
make informed decisions.

« By knowing the concentrations of agents within various matrices that
each componentcan detect,we can determine concentrations that
the system of devices might be easy or difficult for the operators to
identify in DT/ OT.

« This analysis can serve as the basis for the analysis of the DT/ OT
data.




Discussion




Discussion: When Is it Worth the Effort?

v Inclusion of prior information from prior testing, modeling and
simulation, or engineering analyses only when it is relevant to
the current test. We do not want to bias the results.

v Even when including prior information, the prior must have
enough variability to allow the estimates to move away from
what was previously seen if the data support such values.

v We can use very flexible models for many types of test data
(e.g.kill chains,complex system structures, linking EFFs to SA)
and obtain estimates more readily than with the frequentist
paradigm.The modeland assumptions have to make sense for
the test at hand.




Discussion: Other Resources

For other Rpackages that provide easy to implement tools and short
but informative how to guides with examples, see

a N

As with any new statistical method, it isimportant to
have an expert review your work the first few times you
apply these techniques.

There are many ways to accidentally do bad statistics!

= /



https://cran.r-project.org/web/views/Bayesian.html
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