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Robotics Collaborative Technology Alliance
• Fundamental and applied research to change robots from tools into 

teammates
• Universities & Labs (e.g. FSU, CMU, UCF, Upenn, JPL)
• Companies (GDLS, RR)

• ARL develops technology and assesses RCTA partners work

ARL RCTA
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• Skid steer vehicles turn by having wheels/tracks slip and/or skid
• Robust and easy to maintain
• Sharp turns increase motor torque (maybe beyond limit)
• Result can be higher energy use 
• Idea:  plan a path reducing sharp turns
• Gain:  potentially more energy efficient and fewer collisions

• FSU/CMU developed a planner intended to plan paths constrained by 
keeping turns within torque limits.  

• These limits are terrain dependent, so learning is required to inform the 
constraints.

Skid Steering and Planning
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• Start with theoretical model of robot dynamics (requires friction).

• Power model: torque as learned function of commanded turn radius.

• Models are combined to create constraint for turn radius.

• Path planning samples possible paths, with a heuristic preference for 
energy efficient ones, rejecting those that violate constraint.

• Details “Learning of Skid-Steered Kinematic and Dynamic Models for 
Motion Planning” Camilo Ordonez, Nikhil Gupta, Brandon Reese, Neal 
Seegmiller, Alonzo Kelly, Emmanuel Collins

Energy Efficient Planner
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𝛼𝛼 is terrain parameter
𝑟𝑟 is wheel radius
𝜔𝜔 is angular wheel velocity

Basis for dynamic model

Assume motion in a plane

Kinematic Model
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• Primary: 
• Does energy efficient planning (EE) use less energy than minimum 

distance planning (MD)?
- Compare difference in energy use of EE and MD paired by 

course
• Secondary:

• Does energy efficient planning (EE) use less energy than energy 
efficient planning without learning (EE*)?

- Compare difference in energy use of EE and EE* paired by 
course

• Does energy efficient planning result in fewer collisions (if any 
occur)?

- Comparison method TBD

Goal of Experiment



UNCLASSIFIED

UNCLASSIFIED The Nation’s Premier Laboratory for Land Forces

Robot
– Clearpath Robotics Husky
– Stereo for visual odometry
– Lidar for obstacle detection

Equipment
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Recording
• Energy expended
• # collisions

Course factors
• Asphalt & Grass
• Configuration of 

Cardboard Obstacles
• Time for at most 40 

runs (tropical storm)

Variables / Factors 
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Design

Surface Obstacles Planner

Grass Config 1 Min. Distance
Grass Config 1 Energy Eff.
Grass Config 1 Energy Eff. No learn

• 36 Runs
• 18 Asphalt / 18 Grass

• Different terrain for variability

• 16 Configurations of 
obstacles

• Terrain & Configuration 
constitute blocks

• Planner order randomized 
within block

• 4 configurations included 
Energy Efficient planning 
without learning
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Terrain Effects

• Left:  Difference in energy use by pairs 
Energy Efficient – Minimum Distance

• Possible difference by terrain

• Below:  Energy used on each terrain
• More energy used on asphalt then grass
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• Points represent observed difference in energy use (EE – Min Dist) 
within a pair

Normality of Differences
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• With extreme points
• 16 pairs
• 95% CI (-262, 1812) Joules of energy savings for EE
• average of differences -775 Joules
• Paired t-test:  p-value 0.13

• Without extreme points
• 14 pairs
• 95% CI (-39, 1458) Joules of energy savings for EE
• average of difference -710 Joules
• Paired t-test:  p-value 0.06

Aggregate Performance
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Collisions

# Collisions / # Runs
Terrain/Planner Min. Distance Energy Efficient
Grass 5 / 8 0 / 8
Asphalt 0 / 8 0 / 8
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• Does energy efficient planning work better with learning than 
without?
• Virtually certain the answer would be yes at the outset
• Really just a sanity check
• 4  Pairs (2 sided t-test)
• 95% CI (-137, 2644) Joules energy savings with learning
• p-value  0.06

Value of Learning to EE
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• Potential energy savings
• Real life vs simulation
• Seeing the whole map vs having it revealed
• Extreme points are not measurement errors
• Might see substantial savings with human checking

• Evidence for better collision avoidance on grass
• Possibly to other slippery surfaces

Conclusions
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• We would like to test the algorithm further over a larger (sloped) 
course

• Test is of planning algorithm, not platform specific

• Try with a tracked platform or legged robot

• Craig Lennon -- Craig.T.Lennon.civ@mail.mil
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