

ARL

Assessment of Energy Efficient Planning

Craig Lennon^a, Marshal Childers^a, Mario Harper^b, Camilo Ordonez^b, Nikhil Gupta^b, James Pace^b, Ryan Kopinsky^b, Aneesh Sharma^b, Emmanuel Collins^b, Jonathan Clark^b a) Vehicle Technology Directorate b) Florida State University

The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

ARL RCTA

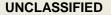
Robotics Collaborative Technology Alliance

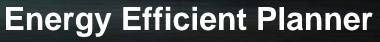
- Fundamental and applied research to change robots from tools into teammates
 - Universities & Labs (e.g. FSU, CMU, UCF, Upenn, JPL)
 - Companies (GDLS, RR)
- ARL develops technology and assesses RCTA partners work

Skid Steering and Planning

ARL

- Skid steer vehicles turn by having wheels/tracks slip and/or skid
 - Robust and easy to maintain
 - Sharp turns increase motor torque (maybe beyond limit)
 - Result can be higher energy use
 - Idea: plan a path reducing sharp turns
 - Gain: potentially more energy efficient and fewer collisions
- FSU/CMU developed a planner intended to plan paths constrained by keeping turns within torque limits.
- These limits are terrain dependent, so learning is required to inform the constraints.





- Start with theoretical model of robot dynamics (requires friction).
- Power model: torque as learned function of commanded turn radius.
- Models are combined to create constraint for turn radius.

U.S. ARMY RDECOM®

- Path planning samples possible paths, with a heuristic preference for energy efficient ones, rejecting those that violate constraint.
- Details "Learning of Skid-Steered Kinematic and Dynamic Models for Motion Planning" Camilo Ordonez, Nikhil Gupta, Brandon Reese, Neal Seegmiller, Alonzo Kelly, Emmanuel Collins

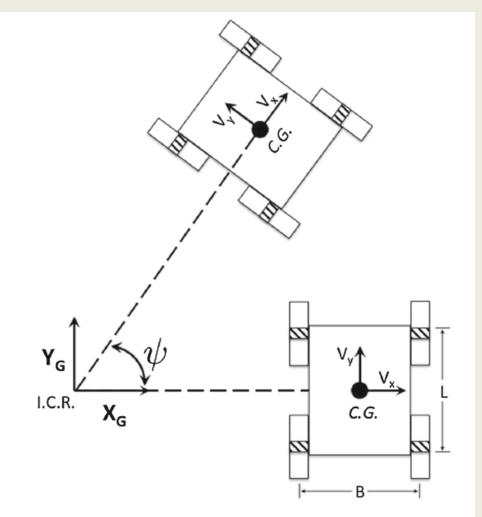


Fig. 1 A skid-steered vehicle performing a circular turn at constant velocity

$$\begin{bmatrix} v_y \\ \psi' \end{bmatrix} = \frac{r}{\alpha B} \begin{bmatrix} \alpha B & \alpha B \\ \frac{2}{-1} & \frac{2}{1} \end{bmatrix} \begin{bmatrix} \omega_l \\ \omega_r \end{bmatrix}$$

 α is terrain parameter r is wheel radius ω is angular wheel velocity

Basis for dynamic model

Assume motion in a plane

Goal of Experiment

- Primary:
 - Does energy efficient planning (EE) use less energy than minimum distance planning (MD)?
 - Compare difference in energy use of EE and MD paired by course
- Secondary:
 - Does energy efficient planning (EE) use less energy than energy efficient planning without learning (EE*)?
 - Compare difference in energy use of EE and EE* paired by course
 - Does energy efficient planning result in fewer collisions (if any occur)?
 - Comparison method TBD

Equipment

U.S. ARMY RDECOM®

Robot

- Clearpath Robotics Husky
- Stereo for visual odometry
- Lidar for obstacle detection

Variables / Factors

Recording

- Energy expended
- # collisions

Course factors

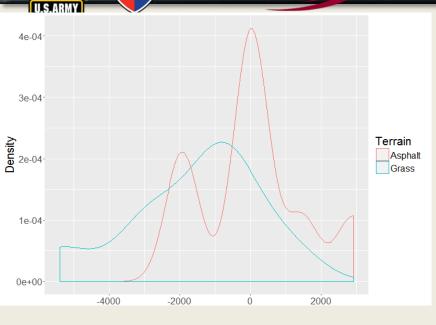
- Asphalt & Grass
- Configuration of Cardboard Obstacles
- Time for at most 40 runs (tropical storm)

Design

Surface	Obstacles	Planner
Grass	Config 1	Min. Distance
Grass	Config 1	Energy Eff.
Grass	Config 1	Energy Eff. No learn

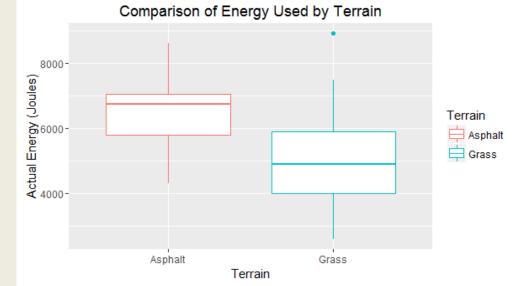
- 36 Runs
 - 18 Asphalt / 18 Grass
- Different terrain for variability
- 16 Configurations of obstacles
- Terrain & Configuration constitute blocks
- Planner order randomized within block
- 4 configurations included Energy Efficient planning without learning

Terrain Effects



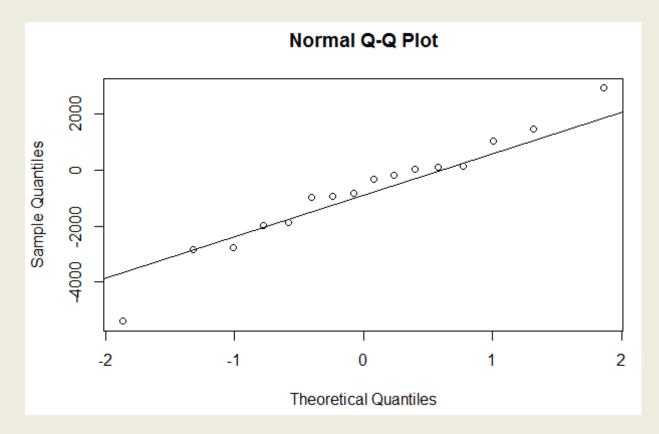
U.S. ARMY RDECOM®

- Left: Difference in energy use by pairs Energy Efficient – Minimum Distance
- Possible difference by terrain
- Below: Energy used on each terrain
- More energy used on asphalt then grass



 Points represent observed difference in energy use (EE – Min Dist) within a pair

U.S. ARMY RDECOM®



The Nation's Premier Laboratory for Land Forces

UNCLASSIFIED

U.S.AR

Aggregate Performance

ARL

- With extreme points
 - 16 pairs
 - 95% CI (-262, 1812) Joules of energy savings for EE
 - average of differences -775 Joules
 - Paired t-test: p-value 0.13
- Without extreme points
 - 14 pairs
 - 95% CI (-39, 1458) Joules of energy savings for EE
 - average of difference -710 Joules
 - Paired t-test: p-value 0.06

Collisions

# Collisions / # Runs			
Terrain/Planner	Min. Distance	Energy Efficient	
Grass	5/8	0/8	
Asphalt	0/8	0/8	

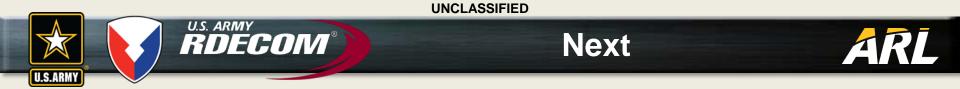
Value of Learning to EE

- Does energy efficient planning work better with learning than without?
 - Virtually certain the answer would be yes at the outset
 - Really just a sanity check
 - 4 Pairs (2 sided t-test)
 - 95% CI (-137, 2644) Joules energy savings with learning
 - p-value 0.06

Conclusions

ARL

- Potential energy savings
 - Real life vs simulation
 - Seeing the whole map vs having it revealed
 - Extreme points are not measurement errors
 - Might see substantial savings with human checking
- Evidence for better collision avoidance on grass
 - Possibly to other slippery surfaces



- We would like to test the algorithm further over a larger (sloped) course
- Test is of planning algorithm, not platform specific
- Try with a tracked platform or legged robot

• Craig Lennon -- Craig.T.Lennon.civ@mail.mil