US ARMY DUGWAY PROVING GROUND

Test Design Adequacy for Logistic Regression Prepared by Kendal Ferguson and Scott Hunter For Conference on Applied Statistics in Defense 23 October 2016

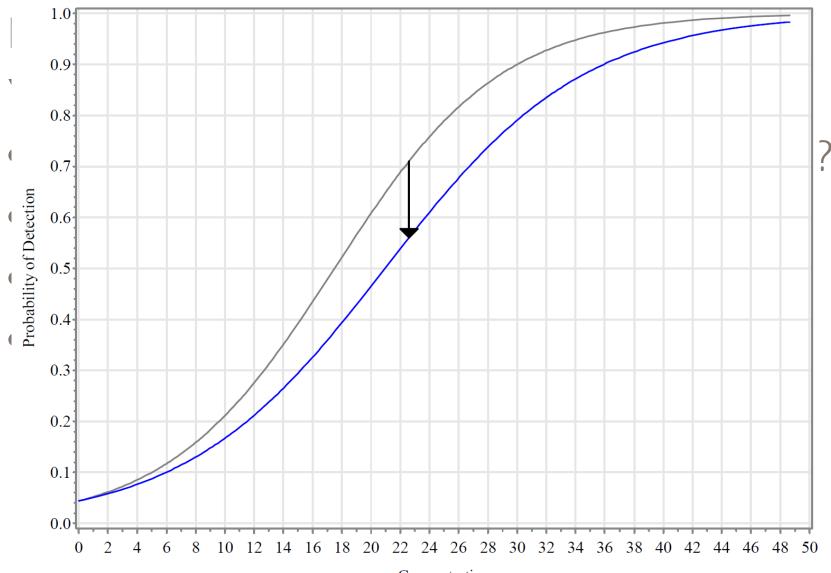
Approved for Public Release

Motivation

- When creating test designs, power analysis can be a useful tool in helping to decide design adequacy but shouldn't necessarily be THE answer
- Software is generally useful in calculating power. However, things become more complicated when dealing with a binary response
- We wanted to develop a methodology to help users and decision makers visualize and understand the impact of their assumptions and make assessment of test design adequacy more meaningful NOT just provide a power number

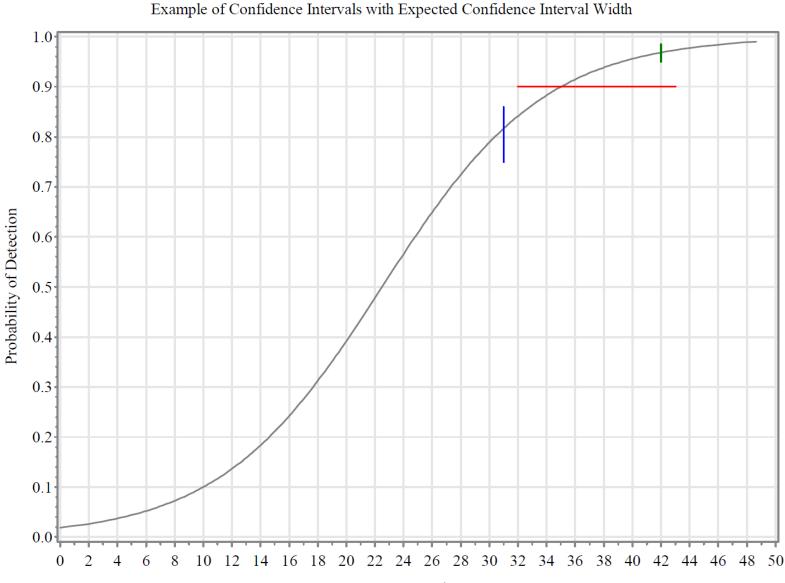
Scenario

Example of Slope Shift, Constant Intercept



Concentration

Other Measures to Consider



Concentration

DesignExpert

Gegrees of Fr	Evaluation Power Option edom for Evaluation	IS
Model	2	
Residuals	77	
Lack of Fit	7	
Pure Error	70	
Corr Total	79	

A recommendation is a minimum of 3 lack of fit df and 4 df for pure error.

This ensures a valid lack of fit test.

Fewer df will lead to a test that may not detect lack of fit.

Power calculations are performed using response type "Proportion".

Delta=0.1, Proportion=0.9, Run Variation (as % grand mean proportion)=10%, Samples per Run=1

Note: Currently FDS is unavailable for proportion responses.

Term	StdErr1	VIF	Ri-Squared	0.33346 Std. Dev.		
А	0.32	1.00	0.0000	26.0 %		
В	0.11	1.00	0.0000	58.3 %		
		Arcsine Square Root				
		OK	Cancel	Apply	Help	

Power at 20 % alpha level to detect signal/noise ratio of

and

a 11

SAS Simulation Input

- Reads in design from .csv
- Inputs

Number of Simulations	10000	
Factor Name	Detector	
Number of Levels	2	
Covariate	Concentration	
Covariate Unit	mg/m³	
Slope Sign (1-pos, 2-neg, 3 +/-)	1	
Alpha (Hypothesis Test)	20	
Alpha (Confidence Interval)	20	
Simulation Quantile	80	

SAS Simulation Input

Low Value (x1)	1.6
Probability at Low Value (x1)	0.5
Std Dev for Low Value (x1)	0.3
High Value (x2)	3.2
Probability at High Value (x2)	0.9
Std Dev for High Value (x2)	0.5
Correlation (x1,x2)	0.4

SAS Simulation Input

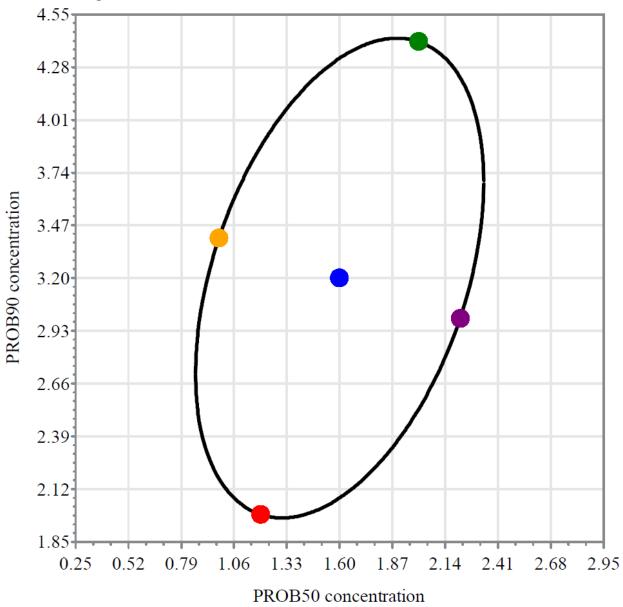
Variant2 Change Int=1 Slope=2	2
Variant2 Shift (Intercept)	
Variant2 Shift (Slope)	-0.1
Confidence Interval on X for Desired	
Probability Level	90
Confidence Interval for a Desired X	4
Confidence Interval for a Desired X	5

Behind the Scenes Work

- Generate the baseline and shifted curves using inputs to create baseline and Newton Raphson method to create the shifted curve
- Generate random data from these curves at test design points
- Obtain coefficient estimates for logistic models and calculate confidence intervals at points of interest
- Obtain distributions of interval widths and report width at desired quantile
- Estimate power using proportion of simulations which indicate shift is significant

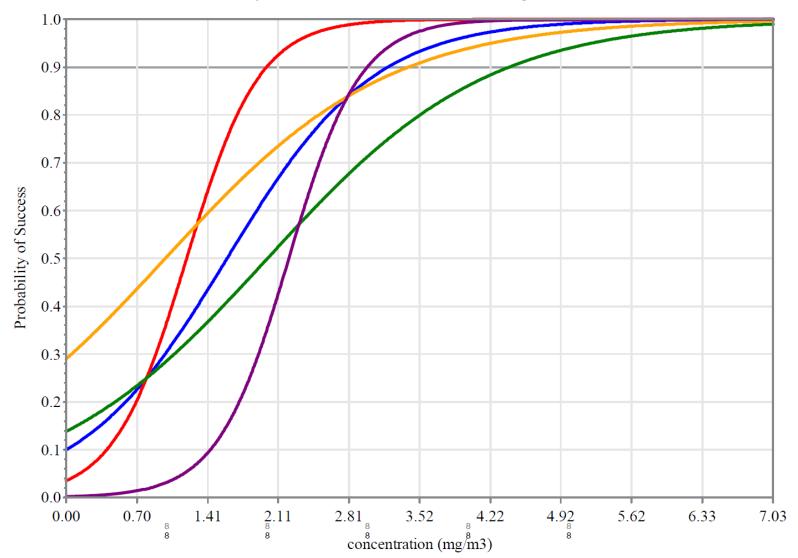
Output

Ellipse Containing 95% of Joint PROB50 concentration, PROB90 concentration Distribution



Output

Detector 1 Probability of Success vs concentration - Wide Range of Possible Functions



Number of detection opportunities at amounts shown in gray (Detector 1) and black (Detector 2)

Output

Asymptotic Requirements

Percent of 80% Confidence Intervals Containing True b: 79.9
Percent of 80% Confidence Intervals Containing True c: 82.4
Percent of detector 1 80% Confidence Intervals Containing True PROB90 Amt: 83
Percent of detector 2 80% Confidence Intervals Containing True PROB90 Amt: 85.5
Percent of detector 1 80% Confidence Intervals Containing True 4 mg/m3 Probability of Success: 79.8
Percent of detector 2 80% Confidence Intervals Containing True 4 mg/m3 Probability of Success: 79.3
Percent of detector 1 80% Confidence Intervals Containing True 5 mg/m3 Probability of Success: 79.4
Percent of detector 2 80% Confidence Intervals Containing True 5 mg/m3 Probability of Success: 79.2

Power(Alpha= 20%)

Percent of Simulations with Significantly Positive b: 100 Percent of Simulations with Significantly Negative c: 44.5

Two-Sided Confidence Interval Widths(Alpha= 20%, Percentile=80%)

Width of 80th Percentile Interval on detector 1 PROB90 Amt: 1.73 mg/m3
Width of 80th Percentile Interval on detector 2 PROB90 Amt: 2.65 mg/m3
Width of 80th Percentile Interval on detector 1 4 mg/m3 Probability of Success: 15.4%
Width of 80th Percentile Interval on detector 2 4 mg/m3 Probability of Success: 21.4%
Width of 80th Percentile Interval on detector 1 5 mg/m3 Probability of Success: 9.7%
Width of 80th Percentile Interval on detector 2 5 mg/m3 Probability of Success: 17.7%

Conclusion

- Statistical software give power numbers, but do they make sense?
- The simulation approach provides a more intuitive way to understand if testing is adequate
- Other indicators can be evaluated besides power
- Outputs clearly illustrate assumptions and provide discussion points for decision makers

Future Work

- Add more factors
- More comparisons with JMP simulations
- Web-based app so those without SAS can use the method

References

Institute for Defense Analyses, Alexandria, Virginia, IDA Document Number D-5205, Power Analysis Tutorial for Experimental Design Software, November 2014.

Stat-Ease Inc, Minneapolis, Minnesota, Version 10.01, Handbook for Experimenters, http://www.statease.com/pubs/handbk_for_exp_sv.pdf, accessed on 25 October 2016.

Mathematics Department, University of British Columbia, Vancouver, BC Canada, The Newton-Raphson Method, https://www.math.ubc.ca/~anstee/math104/104newtonmethod.pdf, accessed on 8 August 2016.

Stanford University, Stanford, California, Taylor Approximation and the Delta Method,

http://web.stanford.edu/class/cme308/OldWebsite/notes/TaylorAppD eltaMethod.pdf, accessed on 25 October 2016.