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Introduction: Networks and Degree Distribution

Network Graphs

It is common to represent networks – i.e., systems of inter-connected
elements – with a graph G = (V ,E ), of vertices v ∈ V and edges
{u, v} ∈ E between them.

Figure : Zacharys karate club network (left) and AIDS Blog Network (right)
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Introduction: Networks and Degree Distribution

Network Sampling: Motivation

Common modus operandi in network analysis:

System of elements and their interactions is of interest.

Collect elements and relations among elements.

Represent the collected data via a network.

Characterize properties of the network.

Sounds good . . . right?
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Introduction: Networks and Degree Distribution

Interpretation: Two Scenarios

With respect to what frame of reference are the network characteristics
interpreted?

1 The collected network data are themselves the primary object of
interest.

2 The collected network data are interesting primarily as representative
of an underlying ‘true’ network.

The distinction is important!

Under Scenario 2, statistical sampling theory
becomes relevant . . . but is not trivial.

CASD, Oct 27-28, 2016



Introduction: Networks and Degree Distribution

Some Common Network Sampling Designs
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Introduction: Networks and Degree Distribution

Caveat emptor . . .

Completely ignoring sampling issues is equivalent to using ‘plug-in’
estimators.

The resulting bias(es) can be both substantial and unpredictable!

BA PPI AS arXiv
Degree Exponent ↑ ↑ ↓ ↑ ↑ = = = ↓ ↑ ↑ ↓
Average Path Length ↑ ↑ = ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓
Betweenness ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↓ = = =
Assortativity = = ↓ = = ↓ = = ↓ = = ↓
Clustering Coefficient = = ↑ ↑ ↓ ↑ ↓ ↓ ↑ ↓ ↓ ↓

Lee et al (2006): Entries indicate direction of bias for vertex (red), edge
(green), and snowball (blue) sampling.
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Introduction: Networks and Degree Distribution

The Degree Distribution

The degree of a vertex1 is the number of edges it shares with other
vertices.

The degree distribution is given by the relative frequency of these
degrees over the whole network.

As such, degree distributions are considered one of the most
fundamental summary characteristics of a graph.

Our Objective: Given a sub-graph G ∗ ⊂ G observed through random
sampling, estimate the degree distribution of G .

1For simplicitly, we consider only undirected graphs.
Extension to directed graphs is straightforward.
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Why Is This Problem Nontrivial?

Some Notation

Under a variety of sampling designs, the following holds:

E [N∗] = PN , (1)

where

N = (N0,N1, ...,NM): the true degree vector, for
Ni : the number of vertices with degree i in the original graph

N∗ = (N∗0 ,N
∗
1 , ...,N

∗
M): the observed degree vector, for

N∗i : the number of vertices with degree i in the sampled graph

P is an M + 1 by M + 1 matrix operator, where
M = maximum degree in the original graph
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Why Is This Problem Nontrivial?

Estimating Degree Distribution: An Inverse Problem

Ove Frank (1978) proposed solving for the degree distribution by an
unbiased estimator of N, defined as

N̂naive = P−1N∗ . (2)

There are two problems with this simple solution:

1 The matrix P is typically not invertible in practice.

2 The non-negativity of the solution is not guaranteed.
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Why Is This Problem Nontrivial?

An Illustration
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Figure : Left: ER graph with 100 vertices and 500 edges. Right: Naive estimate
of degree distribution, according to equation (2). Data drawn according to
induced subgraph sampling with sampling rate p = 60%.
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Why Is This Problem Nontrivial?

Also . . . Degree Distributions Can Take Many Forms!
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Figure : Erdős-Rényi model (left) and Barabási-Albert model (right)

CASD, Oct 27-28, 2016



Why Is This Problem Nontrivial?

Our Contributions

Characterization of the problem as an ill-posed linear inverse problem.

Development of a constrained, penalized least-squares estimator.

Smoothing parameter selection through Monte Carlo SURE.

Illustration through simulation and application to social media data.
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Characterizing the Inverse Problem Nature of the Operator P

Sampling Design

Our focus is on the contexts where the matrix P fully depends on the
sampling design.

Designs of interest include

Ego-centric and one-wave snow-ball sampling,

Induced and incident subgraph sampling,

Random walk and other exploration-based methods.
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Characterizing the Inverse Problem Nature of the Operator P

Characterization Through the SVD

The singular value decomposition can be used to better understand the
nature of the operator P in our linear inverse problem.

Let P = UDV T , where D = diag(d0, d1, · · · , dM) is a diagonal matrix of
singular values, and U = (u0,u1, · · · ,uM), V = (v0, v1, · · · , vM) are
orthogonal matrices of the left- and right-singular vectors, respectively.

Then

N̂naive =
M∑
i=0

[
1

di
uTi N

∗
]
vi (3)

decomposes the naive estimator (2) into a linear combination of the right
singular vectors of P.
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Characterizing the Inverse Problem Nature of the Operator P

Ego-centric and One-wave Snow-ball Sampling

For ego-centric sampling, the operator P is a diagonal matrix with the
sampling rate p at each diagonal position, i.e.,

Pego(i , j) =

{
p for i = j = 0, 1, · · · ,M
0 for i , j = 0, · · · ,M; i 6= j .

(4)

The operator P for one-wave snow-ball sampling is

Psnow(i , j) =

{
1− (1− p)i+1 for i = j = 0, 1, · · · ,M
0 for i , j = 0, · · · ,M; i 6= j .

(5)
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Characterizing the Inverse Problem Nature of the Operator P

Ego-centric and One-wave Snow-ball Sampling (Cont.)

In both cases,

the singular values are equal to the diagonal elements, and
both the left and right singular vectors are just the canonical basis
vectors.

Pego is not ill-conditioned at all, since Pego = I × p.

The condition number of Psnow is equal to

Psnow(M,M)

Psnow(0, 0)
=

1− (1− p)M+1

1− (1− p)
=

1− (1− p)M+1

p
, (6)

In the case where p is fixed, as M increases, the condition number is
upper bounded by 1

p .

On the other hand, if Mp = o(1), the condition number ∼ (M + 1).
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Characterizing the Inverse Problem Nature of the Operator P

Induced and Incident Subgraph Sampling

The P matrix for induced subgraph sampling is

Pind(i , j) =

{(j
i

)
pi+1(1− p)j−i for 0 ≤ i ≤ j ≤ M

0 for 0 ≤ j < i ≤ M ,
(7)

while that for incident subgraph sampling2 is

Pinc(i , j) =

{(j
i

)
pi (1− p)j−i for 1 ≤ i ≤ j ≤ M

0 for 0 ≤ j < i ≤ M .
(8)

2For incident subgraph sampling the index i starts from 1, because there are no
isolated vertices in the sample.
CASD, Oct 27-28, 2016



Characterizing the Inverse Problem Nature of the Operator P

Induced and Incident Subgraph Sampling (Cont.)
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Figure : Right singular vectors: maximum degree M = 20, sampling rate p = 0.2
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Characterizing the Inverse Problem Nature of the Operator P

Induced and Incident Subgraph Sampling (Cont.)
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Figure : Left singular vectors: maximum degree M = 20, sampling rate p = 0.2
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Characterizing the Inverse Problem Nature of the Operator P

Induced and Incident Subgraph Sampling (Cont.)
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Figure : Singular values decay under Induced Subgraph sampling. M = 20.
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Characterizing the Inverse Problem Nature of the Operator P

Induced and Incident Subgraph Sampling (Cont.)

While it would be desirable to have an analytical expression for the
singular vectors under induced/incident subgraph sampling, we are
unable to produce one.

However, it is possible to produce expressions for the eigenfunctions
of Pind , as solutions to the non-symmetric eigen-decomposition
Pind = ŨΛŨ−1.

CASD, Oct 27-28, 2016



Characterizing the Inverse Problem Nature of the Operator P

Random Walk and Other Exploration-based Methods

If we consider a random walk sampling over a non-bipartite,
connected, undirected graph, once the steady state is reached, it
shares an important property with incident subgraph sampling with
SRS of edges, in that both sample edges uniformly at random
(Ribeiro and Towsley, 2010).

Thus

PRW(i , j) =

{(j
i

)(ne−j
n∗e−i

)(ne
n∗e

)−1
for 1 ≤ i ≤ j ≤ M

0 for 0 ≤ j < i ≤ M .
(9)

where ne is the total number of edges in the true network,n∗e is the
number of edges selected in the sample.

With respect to the nature of the inverse problem that we study here,
we may categorize this sampling plan with the induced and incident
subgraph sampling plans described above.
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Characterizing the Inverse Problem Nature of the ‘Noise’

A Regression-based Perspective

N∗ can be thought of as a ’noisy’ observation of N.

Our numerical and analytical work suggests two possible models:

Normal Model:

N∗ = PN + ε (10)

Poisson Model

N∗ = Pois(PN) (11)

Our goal then becomes one of recovering N through regression.
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Characterizing the Inverse Problem Nature of the ‘Noise’

Modeling the ‘Noise’

For ego-centric sampling, a vertex is observed to have degree k if and only
if the vertex is selected through Bernoulli sampling and also has degree k
in the true graph.

Therefore
N∗k =

∑
{u:du=k}

I{u ∈ V ∗} , (12)

Thus the distribution of the N∗k is that of M + 1 independent binomials,
i.e. N∗k ∼ Bin(p,Nk).

=⇒ Nonconstant variance a concern,
especially for heterogeneous degree distributions.
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Characterizing the Inverse Problem Nature of the ‘Noise’

Modeling the ‘Noise’ (Cont.)

For one-wave snowball sampling, the representation (12) still applies.
However, the indicator functions are not independent.

For induced-subgraph sampling, we can write

N∗k =
M∑
r=k

nv∑
u=1

I{u ∈ V ∗, d∗u = k , du = r} . (13)

Under these two sampling methods, a Chen-Stein argument shows
that the Poisson model is a good approximation under low sampling
rate.
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Characterizing the Inverse Problem Summing Up

Solving An Ill-posed Inverse Problem

These observations suggest approaching the estimation of N as an
ill-posed linear inverse problem.

Inverse problems are well-studied in literature, with contributions from
mathematics, statistics, signal/image processing, geology, etc.

Penalized least-squares solutions are the most common approach.
Need to match

1 loss-function to noise, and
2 penalty function to nature of object to be recovered.

We pursue a constrained, penalized weighted least-squares approach.
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Our Proposed Method

Constrained, Penalized WLS

We use penalized weighted least squares with additional constraints.

minimize
N

(PN−N∗)T C−1 (PN−N∗) + λ · pen(N)

subject to Ni ≥ 0, i = 0, 1, . . .M

M∑
i=0

Ni = nv ,

(14)

where

C = Cov(N∗),

pen(N) is a penalty on the complexity of N,

λ is a smoothing parameter, and

nv is the total number of vertices of the true graph.
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Our Proposed Method

Penalty Function

We assume a smooth true degree distribution, and therefore adopt a
penalty of the form

‖DN‖2
2 ,

where the matrix D represents a second-order differencing operator, i.e.,

D =



1 −2 1 0 . . . 0 0 0 0
0 1 −2 1 . . . 0 0 0 0
0 0 1 −2 . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . −2 1 0 0
0 0 0 0 . . . 1 −2 1 0
0 0 0 0 . . . 0 1 −2 1


. (15)

This choice, in the discrete setting, is analogous to the use of a Sobolev
norm with nonparametric function estimation in the continuous setting
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Our Proposed Method

Smoothing Parameter Selection

Cross validation appears not to work well in this setting. Why?

The elements in the observed degree vector are not i.i.d.

Stein’s Unbiased Risk Estimation (SURE) estimates MSE for i.i.d.
Gaussian case. However, in our setting

the elements in the observed degree vector are not i.i.d. , and
the operator P is rank deficient .

Our Solution:

Yonina C. Eldar (2008) extended SURE to general exponential families.
We define a weighted mean square error (WMSE) in the observation
space as

WMSE (N̂,N) = E
[
(PN− PN̂)TC−1(PN− PN̂)

]
. (16)
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Our Proposed Method

Smoothing Parameter Selection (Cont.)

An unbiased estimate of MSE is given by

ŴMSE (N̂,N) = (PN)TC−1PN + (PN̂)TC−1PN̂

+2

{
Trace

(
P
∂N̂

∂N∗

)}
−2(PN̂)TC−1N∗ .

The Monte-Carlo technique proposed by Ramani, Blu, and Unser ’08

can be used to compute Trace
(
P ∂N̂
∂N∗

)
.
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Our Proposed Method

Approximating div: Principles

Denote the solution to the optimization problem in (14) as N̂ = fλ(N∗), a
function of N∗, indexed by λ.

Let b be a vector with zero mean, covariance matrix I (that is independent
of N∗) and bounded higher order moments. Then under mild conditions,

div ≡ Trace

(
P
∂N̂

∂N∗

)
= lim

ε→0
Eb

{
bTP

(
fλ (N∗ + εb)− fλ (N∗)

ε

)}
.

(17)
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Our Proposed Method

Approximating div: Algorithm

Let bi be the realization of b at each simulation.

The algorithm for estimating div= Tr
(
P ∂N̂
∂N∗

)
and computing of ŴMSE

for a given λ = λ0 and fixed ε is as follows:

1 y = N∗

2 For λ = λ0, evaluate fλ(y); i = 1; div = 0

3 Build z = y + bi; Evaluate fλ(z) for λ = λ0

4 div=div+ 1
εbi

TP(fλ(z)− fλ(y)); i = i + 1

5 If (i ≤ K ) go to Step 3; otherwise evaluate sample mean: div =

div/K and compute ŴMSE (λ0) using eqn (17).
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Simulation Study

Simulation Study: Ego-Centric Sampling
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ER (nv =10000, density=0.01 ) BM (nv =10000, density=0.01)

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

10% 20% 30% 10% 20% 30%

10% 20% 30% 10% 20% 30%
Sampling Rate

K-S
 D-S

tatis
tic

Source Sample Nonparametric method Proposed method

Figure : Simulation results for ego-centric sampling. Error measured by K-S
D-Statistic.
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Simulation Study

Simulation Study: One-Wave Snowball Sampling
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Figure : Simulation results for one-wave snowball sampling. Error measured by
K-S D-Statistic.
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Simulation Study

Simulation Study: Induced Subgraph Sampling
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Figure : Simulation results for induced subgraph sampling. Error measured by
K-S D-Statistic.
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Application

Application to Online Social Networks
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Figure : Estimating degree distributions of communities from Friendster, Orkut and Livejournal. Blue dots represent the
true degree distributions, black dots represent the sample degree distributions, red dots represent the estimated degree

distributions. Sampling rate=30%. Dots which correspond to a density < 10−4 are eliminated from the plot.
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Application

Approximating an Epidemic Threshold

Moments of degree distributions can be used to obtain bounds of the
network’s epidemic threshold τc , which is relevant to viral marketing in
online social networks, etc.

For infection rate β and cure rate δ, an effective spreading rate
τ = (β/δ) > τc means the virus persists and a nontrivial fraction of
the nodes are infected, whereas for τ ≤ τc the epidemic dies out.
This threshold is shown to equal the inverse of the largest eigenvalue
λ1 of the network’s adjacency matrix in (Mieghem, Omic and Kooij,
2009) using mean field theory.
We can bound λ1 using functions of the first and second moments of
the degree distribution M1,M2, and the total number of edges
ne = |E |.The relationship is,

M1 ≤
√
M2 ≤ λ1 ≤ U , (18)

where U = (2 ∗ ne(nv − 1)/nv )1/2.

We estimate these bounds using our estimated degree distributions.
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Application

Friendster

Our method estimates the bounds pretty much right on target, whereas
using the sampled data is way off.
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Figure : Estimated bounds for epidemic threshold in Friendster, based on 20 samples. Four
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Application

Orkut and LiveJournal
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Thank you!

Final Thoughts

Original proposed solution to this problem was 35 years ago.

Key insight allowing new progress is observing connection to ill-posed
linear inverse problems, and leveraging modern machinery.

Ongoing work includes:

Theoretical characterization of performance.
Extension to estimation of node degrees (much harder!)
Generalization to adaptive sampling plans
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Thank you!

Thank you!

This is a joint work with
Yaonan Zhang

Department of Mathematics and Statistics, Boston University

Bruce Spencer
Department of Statistics, Northwestern University

This work is supported by NSF and AFOSR.
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