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1. Introdution

Classial game theory has foused upon situations in whih outomes are known.

When unertainty is addressed, it makes unreasonable assumptions about ommon

knowledge (f. Harsanyi, 1967/68a,b). Also, game theory makes unreasonable

assumptions about human deision-making (Camerer, 2003).

Classial risk analysis has foused upon situations in whih the hazards arise at

random. This is appropriate for aident and life insurane, but it does not apply

when hazards result from the ations of an intelligent adversary.

Corporate ompetition, federal regulation, and ounterterrorism all entail strategi

problems with unertain outomes and partial information about the goals and

ations of the opponents. This talk desribes a Bayesian approah to Adversarial Risk

Analysis (ARA). It extends the deision analysis proposed by Kadane and Larkey

(1982) and Rai�a (1982) [and rejeted by Harsanyi (1982)℄.
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Myerson (1991, p. 114) points up the issues learly:

�A fundamental di�ulty may make the deision-analyti approah

impossible to implement, however. To assess his subjetive

probability distribution over the other players' strategies, player i

may feel that he should try to imagine himself in their situations.

When he does so, he may realize that the other players annot

determine their optimal strategies until they have assessed their

subjetive probability distributions over i's possible strategies.

Thus, player i may realize that he annot predit his opponents'

behavior until he understands what an intelligent person would

rationally expet him to do, whih is, of ourse, the problem that

he started with. This di�ulty would fore i to abandon the

deision analyti approah and instead undertake a game-theoreti

approah, in whih he tries to solve all players' deision problems

simultaneously.�

However, instead of following Myerson in defaulting bak to game theory, we use

ARA. In some ases this may be viewed as a Bayesian version of Level-k thinking

(Stahl and Wilson, 1995).
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The ARA framework builds a model for the deision-making proess of the opponents,

and uses that to develop a subjetive distribution on their ations. The model an be

omplex; e.g., it an be a mixture over several simpler models.

ARA onveniently partitions the unertainty in the problem into

� aleatory unertainty, whih desribes the randomness in the outome onditional

on the ations hosen;

� epistemi unertainty, whih desribes Bayesian beliefs about the utilities,

information and apabilities of an opponent; and

� onept unertainty, whih desribes unertainty about the solution onept that

an opponent is using.

Parnell and Merrik (2011) ompared Probabilisti Risk Analysis with various

intelligent adversary methods, and preferred ARA, in large part beause this division

enables more transparent modeling.

We now explore ARA more formallhy.
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2. Autions

Suppose Daphne is bidding for a �rst edition of the Theory of Games and Eonomi

Behavior. She is the only bidder, but the owner has set a seret reservation prie v

�

below whih the book will not be sold. Daphne does not know v

�

, and expresses her

unertainty as a subjetive Bayesian distribution F (v).

Daphne's utility funtion is linear in money and her personal valuation of the book is

d

0

. If money is in�nitely divisible, her hoie set is D = IR

+

. so her expeted utility

from a bid of d is (d

0

� d)IP[d > V

�

℄. Thus Daphne should maximize her expeted

utility by bidding

d

�

= argmax

d2IR

+

(d

0

� d)F (d):

This is a standard approah in Bayesian aution theory (f. Rai�a, 2002).
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2.1 Two-Person Autions

Consider a two-person �rst-prie independent private-value sealed-bid aution among

risk-neutral opponents (hereafter, aution).

Spei�ally, suppose Daphne and Apollo are bidding for a �rst edition of the Theory

of Games and Eonomi Behavior.

Aleatory unertainty arises in this situation if the value of the book is a random

variable. Perhaps it is damaged, or has marginalia by John Nash. So the pro�t or

loss, onditional on the bids, is a random variable.

Epistemi unertainty arises beause neither opponent knows the value (or expeted

value) of the book to the other.

Conept unertainty arises beause Daphne does not know how Apollo will determine

his bid. Will he be non-strategi? Will he seek a Bayes Nash equilibrium? Will he use

level-k thinking?
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To begin, we assume there is no aleatory unertainty�both bidders know their

personal value. We analyze the game from the perspetive of Daphne, whose ertain

value for the book is x

0

.

She may think that Apollo is non-strategi, and that he bids some random fration P

of his true value V . As a Bayesian, Daphne has a subjetive distribution f

1

over V

and a subjetive distribution f

2

over P . In that ase her belief about the distribution

of Apollo's bid is

G(y) = IP[PV � y℄ =

Z

1

0

Z

y=v

0

f

2

(p)f

1

(v) dpdv:

Then Daphne's optimal bid is

x

�

= argmax

x2IR

+

(x

0

� x)G(x)

sine this maximizes her expeted utility. If she wins, her pro�t is (x

0

� x), and her

subjetive probability of winning is G(x).
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But Daphne may think Apollo is strategi. Perhaps he seeks a Bayes Nash

equilibrium (BNE) solution.

The BNE formulation makes a strong ommon knowledge assumption: both Apollo

and Daphne have distributions H

D

and H

A

for eah other's valuation, and eah

knows both distributions and knows that the other knows them.

This leads to solving a system of �rst-order ODEs. For an asymmetri aution, when

H

A

6= H

D

, no solution algorithm exists, although it is known that if H

A

and H

D

are

di�erentiable then a unique solution exists and is also di�erentiable (LeBrun, 1999).

Previous attempts at solutions are based on the bakshooting algorithm. But

Fibih and Gavish (2011) have reently shown that all suh algorithms are inherently

unstable. Kirkegaard (2009) established results on rossing onditions in the solutions,

and Hubbard et al. (2012) used these to provide a visual test, but their work fails

in examples. Tim Au (2014) has an algorithm that sueeds, based on the limit of

disretized bids and points of indi�erene.
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From an ARA perspetive, the ommon knowledge assumption an be replaed by

something more reasonable. Daphne has a subjetive opinion about the distribution

H

D

that she thinks Apollo has for her value, and she has a subjetive opinion about

H

A

, the distribution she believes he thinks is her distribution for his value. The H

A

and H

D

represent her epistemi unertainty.

In that framework, Apollo solves the BNE equations:

argmax

d2IR

+

(D

�

� d)G(d) � F

argmax

a2IR

+

(A

�

� a)F (a) � G:

where D � H

D

and A � H

A

. The equilibrium solution gives G, her best guess, under

the BNE solution onept, of the distribution for Apollo's bid.

Now Daphne should step outside the BNE framework and solve

x

�

= argmax

x2IR

+

(x

0

� x)G(x)

where x

0

is her true value. This is a mirroring argument.
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Note: A nie feature of the ARA mirror equilibrium formulation is that it allows

a new lass of problems in n-person games. If Bob is also bidding for the book,

then Daphne an have opinions about what Apollo thinks about Bob and what

Apollo thinks Daphne thinks about Bob that are not expressible in the BNE

ommon-knowledge framework.

As long as all of Daphne's opinions are oherent, then there is a solution that gives

her best guess about the bidding distributions of eah opponent, allowing her to �nd

the solution that maximizes her expeted utility.

Note: In terms of onept unertainty, we �rst took Apollo to be non-strategi, and

then assumed he used the BNE onept. In pratie, Daphne might have probability

p

1

that he is non-strategi, probability p

2

that he uses BNE, probability p

3

that he is

a level-1 reasoner, and so forth. (There are many more possible solution onepts.)

She would then solve her deision theory problem under eah senario, and form the

mixture distribution G(x) with eah solution omponent weighted by the p

i

and then

solve

x

�

= argmax

x2IR+

(x

0

� x)G(x)

1
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A fourth solution onept is level-k thinking. If Daphne is a level-0 thinker, she bids

non-strategially. If she is a level-1 thinker, she believes Apollo is a level-0 thinker,

and makes her best response given her subjetive assessment of the probabilities. If

she is a level-2 thinker, she believes Apollo is a level-1 thinker, and so forth.

The �I think that you think that I think ...� reasoning beomes intriate. (Reall

Vizzini's analysis of the ioaine powder in The Priness Bride). An example will be

more lear: Suppose Daphne is a level-2 thinker. She believes Apollo is a level-1

thinker who thus believes that she is non-strategi.

Spei�ally, assume her subjetive belief is that Apollo thinks her value for the book

has distribution F

1

(v) supported on [$100, $200℄ and that she bids bids a proportion

of her value F

2

(p) = p

9

, 0 � p � 1. Then

g(y) =

Z

1

0

f

1

(v)f

2

(y=v)

1

v

dv =

Z

1

0

g

1

(v)9(y=v)

8

v

�1

dv / y

8

so G(y) = (y=200)

9

.

1
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Apollo's best response is to bid x

�

suh that

x

�

= argmax

x2IR+

(X

0

� x)G(x)

where X

0

is his true value (a random variable to Daphne). He should take the

derivative, set it to 0, and solve:

0 =

d

dx

[(X

0

� x)G(x)℄ = 9

x

8

200

9

(X

0

� x)�

�

x

200

�

9

:

So Apollo's bid should be 90% of his true value X

0

.

Daphne does not know Apollo's true value, but suppose she thinks it has the

triangular distribution on [$140, $200℄ with peak at $170. Sine Apollo should bid

90% of his true value, Daphne believes that his bid will be a random variable with

triangular distribution F (x) that is supported on [$126, $180℄ with peak at $153.

Finally, for y

0

her (known) true value for the book, Daphne solves

y

�

= argmax

y2IR+

(y

0

� y)F (y):

1
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2.2 More Than Two Bidders

An important advantage of ARA is that it enables a more nuaned treatment of

many-player games. Spei�ally, the ARA formulation allows one to frame fresh

problems in aution theory when there are more than two bidders, by permitting

asymmetri models for how eah opponent views the others.

If Bonnie is a level-1 thinker, then she assumes that Alvin and Clyde are non-strategi,

and there is no novelty in the analysis. She has distributions over the non-strategi

bids of eah, and hooses her bid aording to the maximum of those. Spei�ally, she

has a subjetive distribution F

A

over Alvin's bid A and a subjetive distribution F

C

over Clyde's bid C, and she alulates the distribution F of maxfA;Cg. Then she

makes the bid

b

�

= argmax

b2IR

+

(b

0

� b)F (b);

where b

0

is her true value for the book.

1
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Now suppose Bonnie is a level-2 thinker. She thinks that Alvin has a belief about

the distribution of her bid and also Clyde's bid; similarly, she thinks Clyde has a

distribution for her bid and for Alvin's. Let F

IJ

(x) be what Bonnie thinks player I

thinks is the distribution for player J 's bid, and G

IJ

(x) be her belief about what

player I thinks is the distribution for player J 's value.

Her level-2 analysis assumes both Alvin and Clyde are level-1 thinkers who believe

their opponents are level-0 thinkers, then knowing F

IJ

diretly determines G

IJ

.

The level-2 ARA formulation means that Bonnie thinks Alvin will make the bid

a

�

= maxfa

�
B

; a

�
C

g for

a

�
B

= argmax

a2IR

+

(a

0

� a)IP[B

�

< a℄

a

�
C

= argmax

a2IR

+

(a

0

� a)IP[C

�

< a℄;

where a

0

is Alvin's true value, B

�

is a random variable whose distribution is Alvin's

opinion about Bonnie's bid, and C

�

is a random variable whose distribution is Alvin's

opinion about Clyde's bid.

1
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Bonnie does not know a

0

, and she does not know Alvin's distributions for the bids,

but as a Bayesian, she has a subjetive opinion about these. She regards a

0

as a

random variable with distribution G

BA

, and her best guess is that B

�

and C

�

have

distributions F

AB

and F

AC

, respetively.

In order to �nd F

AB

, Bonnie uses the fat that Alvin thinks she is a level-0 thinker.

He views her as non-strategi, and thus thinks her bid follows some probability

distribution, perhaps an unknown proportion of her unknown true value, so both the

unknown proportion and the true value an be modeled as random variables.

Thus, Bonnie's opinion about the distribution of Alvin's bid is found by solving

A

�
B

= argmax

a2IR

+

(A

0

� a)F

AB

(a)

A

�
C

= argmax

a2IR

+

(A

0

� a)F

AC

(a)

and then assuming that Alvin bids the larger of those two random variables. So his

bid is A

�

= maxfA

�
B

; A

�
C

g.

1
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Similarly, Bonnie belief about Clyde's bid C

�

is that it has the distribution of

maxfC

�

A

; C

�

B

g, where

C

�

A

= argmax

2IR

+

(C

0

� )F

CA

()

C

�

B

= argmax

2IR

+

(C

0

� )F

CB

()

and C

0

is Clyde's true value, with distribution G

BC

, sine it is unknown to Bonnie.

Just as before, Bonnie uses her beliefs about what Clyde thinks about Alvin's

non-strategy and her non-strategy to identify F

CA

and F

CB

, respetively, and thus

�nds the distribution of C

�

.

Bonnie has alulated her distribution for Alvin's bid A

�

and Clyde's bid C

�

. Now

she should plae the bid

b

�

= argmax

b2IR

+

(b

0

� b)IP[maxfA

�

; C

�

g < b℄:

1
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For example, suppose Bonnie believes that Alvin thinks her value for the �rst edition

is Beta(1,1), and that Clyde's value is Beta(2, 1).

Similarly, she believes that Clyde thinks her value for the �rst edition is Beta(4, 1),

and she thinks Clyde thinks Alvin's value is Beta(3,1).

One an now use the BID algorithm developed by Tim Au to solve this three-person

game. In this appliation, of ourse, we are supporting Bonnie.

1
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Alvin's bid is A

�

= maxfA

�
B

; A

�
C

g. The left panel shows the dfs of A

�
B

and A

�
C

, and

the right shows the df of A

�

.

1
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Clyde's bid is C

�

= maxfC

�

A

; C

�

B

g. The left panel shows the dfs of C

�

A

and C

�

B

, and

the right shows the df of C

�

.

1
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This �gure shows the distribution of the maximum of the optimal bids for Alvin and

Clyde.

Under these assumptions about the beliefs of Alvin and Clyde, if Bonnie's true value

for the book is 0.95, then her optimal bid is 0.7523.

2
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Now onsider the use of the mirror equilibrium solution onept when there are three

bidders. This assumes that all bidders are solving the problem in the same way, but

with possibly di�erent subjetive distributions over all unknown quantities.

The two-person system extends so that the basi problem is to solve

A

�

= argmax

a2IR

+

(A

0

� a)F

�

A

(a)

B

�

= argmax

b2IR

+

(B

0

� b)F

�

B

(b) (1)

C

�

= argmax

2IR

+

(C

0

� )F

�

C

()

from the perspetive of eah of the players, where F

�

I

(x) is what bidder I thinks is

the hane that a bid of x will win. Bonnie does not know F

�

I

, but she an use ARA

to �nd F

I

, whih is her belief about what eah opponent thinks is the hane that a

given bid is suessful.

2
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The �gure shows the notation that desribes what Bonnie thinks eah person believes

about the distributions for eah of the other bidders' true values. The G

IJ

is what

Bonnie thinks bidder I believes is distribution of the true value for bidder J , and

G

IJK

is the distribution that Bonnie thinks bidder I thinks bidder J has for the true

value of the book to bidder K.

Bonnie 

Alvin Clyde 

G
ABA

 

G
AB 

G
AC 

G
ACA 

G
ABC 

G
ACB 

Figure 1: A representation of what Bonnie believes about the opinions held by eah of

the bidders regarding the value of the book to eah the other bidders.

2
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First, she models Alvin's logi. Bonnie thinks he obtains his distribution for her bid

by solving (1) with A

0

� G

ABA

, B

0

� G

AB

, and C

0

� G

ABC

. Sine he, like Bonnie,

does not know the true F

�

I

, he must develop his own beliefs about them.

Here, his F

A

is the distribution of the maximum of B

�

and C

�

, F

B

is the distribution

of the maximum of A

�

and C

�

, and F

C

is the distribution of the maximum of B

�

and

C

�

. After numerial omputation to �nd the equilibrium solution, he obtains F

AB

,

his belief about the distribution of Bonnie's bid.

Next, Alvin onsiders Clyde. Bonnie thinks he solves (1) with A

0

� G

ACA

,

B

0

� G

ACB

, and C

0

� G

AC

. He proeeds as before, and obtains F

AC

, his belief

about the distribution of Clyde's bid. From this, Bonnie thinks his distribution for

the probability of winning with a bid of a is F

A

, where F

A

is the distribution of the

maximum of B � F

AB

and C � F

AC

.

2
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Bonnie's analysis for Clyde is analogous. To �nd Clyde's distribution for Bonnie's bid,

she thinks he solves (1) with A

0

� G

CBA

, B

0

� G

CB

, and C

0

� G

CBC

to obtain F

CB

.

Similarly, to �nd Clyde's distribution for Alvin's bid, he uses A

0

� G

CA

, B

0

� G

CAB

,

and C

0

� G

CAC

to obtain F

CA

. Putting these together, Bonnie thinks that Clyde

thinks the probability that a bid of  will win is F

C

(), whih is the distribution of

the maximum of A � F

CA

and B � F

CB

.

Based on this reasoning, Bonnie thinks that Alvin's bid will be

A

�

= argmax

a2IR

+

(A

0

� a)F

A

(a) � F

BA

;

where A

0

� G

BA

.

2
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Bonnie thinks Clyde's bid will be

C

�

= argmax

2IR

+

(C

0

� )F

C

() � F

BC

;

where C

0

� G

BC

. From this, the hane that a bid of b will win is F

B

(b), where F

B

is

the distribution of the maximum of A

�

� F

BA

and C

�

� F

BC

. Now Bonnie uses her

known value b

0

and solves

b

�

= argmax

b2IR

+

(b

0

� b)F

B

(b)

to obtain her best bid under the mirror equilibrium solution onept.

Lebrun (1999, 2006) shows that an equilibrium solution always exists, and that, under

a mild log onavity ondition, the equilibrium is unique.

2
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3. ARA in General

In ARA one takes the side of one agent, using only her beliefs and knowledge, rather

than assuming ommon knowledge and trying to solve all of the agents' problems

simultaneously. The seleted agent must have

� a subjetive probability about the ations of eah opponent,

� subjetive onditional probabilities about the outome for every set of possible

hoies, and

� perfet knowledge of her own utility funtion.

Thus Daphne believes Apollo has probability �

D

(a) of hoosing ation a 2 A. She has

a subjetive probability p

D

(s j d; a) for eah possible outome s 2 S given every hoie

(d; a) 2 D �A. And she knows her own utility u

D

(d; a; s) for eah ombination of

outome and pair of hoies.

2
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Daphne maximizes her expeted utility by hoosing the ation d

�

suh that

d

�

= argmax

d2D

IE

�

D

;p

D

[u

D

(d;A; S)℄

= argmax

d2D

Z

s2S

Z

a2A

u

D

(d; a; s)p

D

(s j d; a)�

D

(a) da ds

where A is the random ation hosen by Apollo and S is the random outome that

results from hoosing A and d.

In pratie, the most di�ult quantity to obtain is �

D

(a). The p

D

(s j d; a) is found by

onventional risk analysis and u

D

(d; a; s) is a personal utility.

Previously, we laid out ARA methods for obtaining �

D

(a), in the ases of the the

non-strategi opponent, the Nash equilibrium seeking opponent, the opponent whose

analysis mirrors that of the deision-maker, and the opponent who is a level-k thinker.

Implementing these approahes imposes di�erent ognitive loads upon the analyst.

The following shows how the ognitive load depends upon the kind of ARA. Eah row

orresponds to a di�erent level of reasoning in level-k thinking.

2
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The table displays the quantities that Daphne must assess in order to implement a

level-k analysis. Row 0 orresponds to the utilities and beliefs of Daphne and Apollo,

as pereived by themselves. Subsequently, row k ontains the additional utilities and

probabilities that Daphne would have to assess in order to perform a level-k analysis.

� The �rst olumn ontains what Daphne believes are the utility funtions that

Apollo asribes to her.

� The seond olumn ontains the probabilities of the outome, onditional on both

her ation and Apollo's, that she believes Apollo asribes to her.

� The third olumn ontains her opinion of what Apollo thinks is her distribution

for he will do.

� The fourth olumn ontains the utility funtions she asribes to Apollo.

� The �fth olumn ontains the onditional probabilities of the outome, given her

hoie and Apollo's, that she asribes to Apollo.

� The sixth olumn ontains what she thinks is Apollo's distribution over her

hoie.

2
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1 2 3 4 5 6

0 u

D

p

D

(� j d; a) �

D

(a) u

A

p

A

(� j d; a) �

A

(d)

1 U

1

D

P

1

D

(� j d; a) �

1
D

(a) U

1

A

P

1

A

(� j d; a) �

1
A

(d)

2 U

2

D

P

2

D

(� j d; a) �

2
D

(a) U

2

A

P

2

A

(� j d; a) �

2
A

(d)

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

The upper ase haraters in rows 1 and higher indiate that these quantities are all

random variables to Daphne.
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In terms of the table, di�erent solution onepts require information in di�erent ells:

� Traditional game theory requires ells (0,1), (0,2), (0,4), (0,5) and assumes that

these are ommon knowledge.

� The non-strategi adversary analysis requires ells (0,1), (0,2) and (0,3), where

the (0,3) ell is assessed from historial data and/or expert opinion.

� When the adversary seeks a Nash equilibrium solution, the analysis requires ells

(0,1), (0,2) and (1,1), (1,2), (1,4) and (1,5). It uses these last four ells to infer

ell (0,3).

� The level-k adversary approah requires ells (0,1), (0,2) and:

� for a level-1 analysis, ells (1,4), (1,5) and (1,6) an produe (0,3);

� for a level-2 analysis, ells (1,1), (1,2) and (1,3) produe (1,6), whih, with

(1,4), (1,5) an then produe (0,3);

� and so forth for larger k.

� The mirror equilibrium approah requires ells (0,1), (0,2) and uses a onsisteny

ondition between (1,4), (1,5), (1,6) and (1,1), (1,2) and (1,3) to produe (0,3).

The main message is that all of these methods entail signi�ant e�ort.
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4. Routing Games

The most famous routing game is Nash. But a simpler game with pratial importane

is to route a onvoy through a ity street network when an adversary may plae IEDs.
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The Defender has imperfet information about the plaement of the IEDs, and the

Attaker's resoures and utilities. Symmetrially, the Attaker has probabilisti

knowledge about route hoie, onvoy value, and Defender utilities. But Harsanyi's

ommon-knowledge analysis is untenable.

As with autions, this leads to oupled probability equations. But here the stohasti

payo�s for the Attaker and the Defender have additive struture.

Y : the Defender's privately known loss matrix (whih is unknown to the Attaker);

~

X: the random variable whih the Defender uses to model the Attaker's gain

matrix�it has probability distribution F ;

~

Y : the random variable that the Defender uses to desribe the Attaker's beliefs

about the Defender's loss matrix�it has probability distribution G;

~

a: the random vetor that the Defender uses to model the Attaker's deision�it has

distribution P with support A ;

~

r: the random vetor that the Defender uses to model the Attaker's belief about the

Defender's deision�it has distribution Q with support D .

3
2



ARA Algorithm: Assume

~

X � F ,

~

Y � G, a 2 A and r 2 D .

1. Initialize. The Defender starts with a pair of probability distributions (P

0

; Q

0

),

where P

0

is a distribution for

~

a and Q

0

is a distribution for

~

r.

2. Iterate. Given (P

k

; Q

k

), iterate to onvergene.

2.A Simulate many realizations of

~

X. For eah, the Defender mimis the

Attaker's analysis and solves a

�

= max

a2A

a

0

~

XIE

Q

k

[

~

r℄. Sine

~

X � F , the

resulting maximizer is a random variable, and the distribution of the solutions

is an estimate of P

k+1

, the updated distribution of

~

a; i.e.,

argmax

a2A

a

0

~

XIE

Q

k

[

~

r℄ =

~

a � P

k+1

:

2.B Update Q

k

of

~

r using P

k+1

by generating realizations of

~

Y and solving

argmin

r2D

IE

P

k+1

[

~

a℄

0

~

Y r =

~

r � Q

k+1

:

3. Terminate. The Defender hooses r

�

= argmin

r2D

IE

P

�

[

~

a℄

0

Y r: In this �nal step the

Defender uses the true loss matrix Y .
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For this situation, we an obtain two theorems:

Theorem 1: A mirroring �xed-point for the system of equations exists.

Theorem 2: If there exists a total order �

A

on A and �

D

on D suh that

1.

~

V

a;r

:= a

~

Xr has inreasing di�erene in (a; r),

2.

~

W

a;r

:= a

~

Y r has dereasing di�erene in (a; r),

then the ARA Algorithm onverges to the mirroring �xed point.

The seond theorem is tehnial, using submodularity, but is satis�ed if most (some)

of the losses or gains are of opposite sign. For example, it holds for zero-sum games.

In general, �nding �xed-point solutions in game theory is hard. For the speial

struture of the routing game, we know that equilibria exist and an provide

onditions under whih a reasonable algorithm onverges to the mirroring method

solution.
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The mirroring argument provides an expliit mehanism for modeling the reasoning of

one's opponents. Previously, the deision-theoreti Bayesians who did game theory

simply delared a distribution over the ations of their opponents.

Kadane (2009) points to a passage in Poe's The Purloined Letter that illustrates the

naturalness of the ARA approah, in ontrast to the minimax solution. Dupin realls:

I knew one [shool-boy℄ about eight years of age, whose suess

at guessing in the game of �even and odd� attrated universal

admiration. This game is simple, and is played with marbles. One

player holds in his hand a number of these toys and demands of

another whether that number is even or odd. If the guess is right,

the guesser wins one; if wrong, he loses one. The boy to whom

I allude won all the marbles of the shool. Of ourse he had

some priniple of guessing; and this lay in mere observation and

admeasurement of the astuteness of his opponents.
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For example, an arrant simpleton is his opponent, and, holding up

his losed hand, asks, �Are they even or odd?� Our shool-boy

replies, �Odd,� and loses; but upon the seond trial he wins, for

he then says to himself: �The simpleton had them even upon the

�rst trial, and his amount of unning is just su�ient to make him

have them odd upon the seond; I will therefore guess odd�; he

guesses odd, and wins. Now, with a simpleton a degree above the

�rst, he would have reasoned thus: �This fellow �nds that in the

�rst instane I guessed odd, and, in the seond, he will propose to

himself, upon the �rst impulse, a simple variation from even to odd,

as did the �rst simpleton; but then a seond thought will suggest

that this is too simple a variation, and �nally he will deide upon

putting it even as before. I will therefore guess even�; he guesses

even, and wins. Now this mode of reasoning in the shoolboy,

whom his fellows termed �luky,� what, in its last analysis, is it?

It is merely, I said, an identi�ation of the reasoner's intellet with

that of his opponent.

3
6



5. La Relane: A Primitive Version of Poker

Pokeresque games have reeived onsiderable attention in the game theory literature.

Early work by von Neumann and Morgenstern (1947) and Borel (1938) developed

solutions under various simplifying assumptions. More reently, Ferguson and

Ferguson (2008) provide approximate analyses pertinent to more omplex games, suh

as Texas hold'em.

In the following, assume that Bart and Lisa play a game in whih eah privately and

independently draws a U [0; 1℄ random number. Eah must ante an amount a = 1.

First, Bart examines his number X and deides whether to bet b or fold. Then Lisa

examines her Y and deides whether to bet b or fold. If both players bet, they

ompare their draws to determine who wins the pot. Otherwise, the �rst person to

fold forfeits his or her ante.

3
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Let V

x

be the amount Bart wins. The table shows the four possible situations:

V

x

Bart's Deision Lisa's Deision Outome

-1 fold

1 bet fold

1+b bet bet X > Y

-(1+b) bet bet X < Y

From the table, the expeted amount won by Bart, given his draw X = x, is:

IE[V

x

℄ = �IP[ Bart folds ℄ + IP[ Bart bets and Lisa folds ℄

+(1 + b)IP[ Lisa bets and loses ℄

�(1 + b)IP[ Lisa bets and wins ℄:

Bart must use mirroring to �nd a subjetive distribution for the probabilities, based

on the adversarial analysis he expets Lisa to perform.

3
8



Assume that Bart uses a �blu�ng funtion� g(x); given x, he bets with probability

g(x). Then

IE[V

x

℄ = �[1� g(x)℄ + g(x)IP[ Lisa folds j Bart bets ℄

+(1 + b)g(x)xIP[ Lisa bets j Bart bets ℄

�(1 + b)g(x)(1� x)IP[ Lisa bets j Bart bets ℄:

For optimal play, Bart needs to �nd IP[ Lisa bets j Bart bets ℄.

So Bart must �mirror� the thinking that Lisa will perform in deiding whether to bet.

He knows that Lisa's opinion about X is updated by the knowledge that Bart deided

to bet. Further, suppose Bart has a subjetive belief that Lisa thinks that his blu�ng

funtion is ~g(x). In that ase, Lisa should alulate the onditional density of X,

given that Bart deided to bet, as

~

f(x) =

~g(x)

R

~g(z) dz

:
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Note: If ~g is a step funtion (i.e., Lisa believes that Bart does not bet if x is less than

some value x

0

, but always bets if it is greater), then the posterior distribution on X

is trunated below the X value orresponding to x

0

and the weight is realloated

proportionally to values above x

0

.

From this analysis, Bart believes that Lisa alulates her probability of winning as

IP[X � yj Bart bet ℄ =

~

F (y), where Y = y is unknown to Bart. And thus Bart

believes that Lisa will bet if the expeted value of her return V

y

from betting b is

greater than the loss of a that results from folding; i.e., Lisa would bet if

IE[V

y

℄ = (1 + b)

~

F (y)� (1 + b)[1�

~

F (y)℄ � �1:

So Bart believes Lisa will bet if and only if

~

F (y) � b=2(1 + b).

Set ~y = inffy :

~

F (y) � b=2(1 + b)g. The probability that Lisa has drawn Y > ~y is

1� ~y and this is the probability that she bets. So the expeted value of the game for

Bart, given X = x, is:

V

x

= �[1� g(x)℄ + g(x)~y + (1 + b)g(x)[x� ~y℄

+

� (1 + b)g(x)(1� ~y � [x� ~y℄

+

):

Bart should hoose g(x) to maximize V

x

.
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Bart's expeted value has the form �1 + g(x), where

 = 1 + ~y + (1 + b)[x� ~y℄

+

� (1 + b)(1� ~y � [x� ~y℄

+

):

To maximize the expetation, Bart should make g(x) as small as possible when  is

negative (i.e., g(x) = 0), but as large as possible when  is positive (i.e., g(x) = 1).

Thus the optimal g(x) is a step funtion. It implies that Bart should never blu�, no

matter what he believes about the playing strategy used by Lisa.

When x � ~y, Bart bets if ~y > b=(b+ 2), he folds if ~y < b=(b+ 2), and he may do as he

pleases when ~y = b=(b+2). When x > ~y, then Bart bets if x > ~x = [b(1+ ~y)℄=[2(1+b)℄,

folds if x < ~x, and may do as he pleases when x = ~x.

As a sanity hek, if b = 0 then Lisa should always bet. Here ~x = 0, properly implying

that Bart also always bets.

The expeted value of the game, to Bart, is V =

R

1

0

V

x

dx. Its value depends on his

belief about Lisa's play.
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Case I: Bart Believes that Lisa Plays Minimax.

The traditional minimax solution has ~y = b=(b+ 2). In that ase it is known that

Bart should bet if x > ~y, and he should bet with probability 2=(b+ 2) when x � ~y.

The value of the game (to Bart) is V = �b

2

=(b+ 2)

2

; he is disadvantaged by the

sequene of play.

In ontrast, the ARA analysis �nds that when Lisa uses the minimax threshold

~y = b=(b+ 2), then Bart may bet or not, as he pleases, when x � ~x. This is slightly

di�erent from the minimax solution.

The di�erene arises beause, if Lisa knows that Bart's blu�ng funtion does not bet

with probability 2=(b+ 2) when x � b=(b+ 2), then she an improve her expeted

value for the game by hanging the threshold at whih she alls.

In the minimax game, Bart's blu� pins Lisa down, preventing her from using a more

pro�table rule. But for either game, the value for Bart is unhanged: �

�

b

b+2

�

2

.
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Case II: Bart Believes that Lisa Is Rash.

Suppose that Bart's analysis leads him to think that Lisa is rekless, alling with

~y < b=(b+ 2). Then the previous ARA shows that his blu�ng funtion should be

g(x) =

8
<

:

0 if 0 � x � maxf~y; ~xg

1 if maxf~y; ~xg < x � 1

where ~x = [b(1 + ~y)℄=[2(1 + b)℄.

The value of this ARA game to Bart is

V = �

Z

~x

0

dx+

Z

1

~x

�1 + 2x+ 2bx� b~y � b dx

= b~x� b~y(1� ~x)� (1 + b)~x

2

:

The value of this ARA game is stritly larger than the minimax value.
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Case III: Bart Believes that Lisa Is Conservative.

Suppose Bart believes that Lisa is risk averse, alling with ~y > b=(b+ 2). Then

V

x

= �1 + g(x)

�

1 + ~y + (1 + b)(1� ~y)

x� ~y

1� ~y

� (1 + b)(1� ~y)

�

1�

x� ~y

1� ~y

��

:

When x > ~y, Bart's optimal play is to bet. On the other hand, when x < ~y, Bart's

payo� is

V

x

= �1 + g(x) [1 + ~y � (1 + b)(1� ~y)℄ :

For ~y > b=(b+ 2), the quantity in the square brakets is stritly positive. Thus, when

x < ~y, Bart should bet.

The value V of this game is

V =

Z

~y

0

~y � (1 + b)(1� ~y) +

Z

1

~y

~y + (1 + b)(x� ~y)� (1 + b)(1� x):

Solving the integral shows V = �b~y + ~y

2

(1 + b). This value is inreasing in ~y for

~y > b=(2 + b) and it is equal to the minimax value at ~y = b=(b+ 2). Thus the value of

the ARA game when Lisa is onservative is stritly larger than the minimax value.
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Note: This analysis of the Borel Game extends immediately to situations in whih

the two players draw independently from a ontinuous distribution W with density w.

In that ase, the onditional distribution that Bart imputes to Lisa is

~

f(x) =

~g(W (x))w(x)

R

~g(W (z))w(z) dz

and Bart's blu�ng funtion takes its step at

~x =

1
2

�

1�

1

1 + b

1 +W (~y)

1�W (~y

�

:

If Bart and Lisa draw from a bivariate, possibly disrete distribution W (x; y) (e.g., a

dek of ards) then the analysis is trivial (in G. H. Hardy's sense): Bart's distribution

for Y is the onditional W (yjX = x), and he knows that Lisa's analysis is symmetri.

Note: Some may be unomfortable with the spei�ity in requiring Bart to assume

that Lisa thinks his blu�ng funtion is

~

g(x). They might argue that Bart ould not

guess that exatly�that it would be more reasonable to say that he has a subjetive

distribution over the set G of all possible blu�ng funtions. But when Bart integrates

over that spae with respet to his subjetive distribution, he then obtains the ~g that

he needs for this analysis.
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Example: The ~g is a power funtion.

Suppose that Bart believes that Lisa thinks his blu�ng funtion has the form

g(x) = x

p

for some �xed value p > �1. Then ~y =

p+1

q

1
2

b

1+b

. Large values of p imply

that Lisa believes Bart tends to bet for large values of x, leading Lisa to fold more

frequently and inreasing Bart's expeted payo�.
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The left panel shows, for b = 2, the minimum value of x at whih Bart should bet as a

funtion of p. The right panel shows the game value, to Bart, as a funtion of p.
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4.1 Continuous Bets

Consider a modi�ation of the Borel Game, in whih Bart is not onstrained to bet

any amount on some interval (�;K℄.

De�ne the following notation:

�;K: the lower and upper bounds of the bets Bart an hoose, if he deides to bet;

i.e. [�;K℄ is Bart's betting strategy spae, where 0 < � � K (usually � is a very

small positive number).

g(x): the probability that Bart deides to bet after learning X = x.

h(bjx): a probability density on [�;K℄ that Bart will use to selet his bet onditional

on his deision to bet.

B

x

: a random variable with value in [�;K℄ representing Bart's bet after he learns

X = x.

Let IP

h(�jx)

[�℄ and IE

h(�jx)

[�℄ denote the probability and expetation omputed using

the probability measure indued by the density h(�jx).
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Bart must �mirror� Lisa's analysis given that she observes Bart's bet B

x

= b. De�ne

~g(x): Bart's belief about Lisa's belief of the probability that he deides to bet with

X = x.

~
h(bjx): Bart's belief about Lisa's belief of the density on [�;K℄ that Bart uses to bet.

~

f(xjb): Bart's belief about Lisa's posterior density for X after she observes that he

bets b:

~

f(xjb) =

~
h(bjx)~g(x)

R

1

0

~
h(bjz)~g(z) dz

:

Given g(x) and h(�jx), then V

x

= IE

g(x);h(�jx)

[V

B

jX = x℄:

V

x

= �(1� g(x))

| {z }

Bart folds

+g(x)

n

IE

h(�jx)

h

IP

~

f(�jB

x

)

[ Lisa folds j Bart bets B

x

℄ jX = x

i

+IE

h(�jx)

h

IP

~

f(�jB

x

)

[ Lisa loses j Bart bets B

x

℄ � (1 +B

x

) jX = x

i

�IE

h(�jx)

h

IP

~

f(�jB

x

)

[ Lisa wins j Bart bets B

x

℄ � (1 +B

x

) jX = x

io

:
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Bart's �rst-order ARA solution is

fg

�

(x); h

�

(�jx)g 2 argmax

g(x);h(�jx)

IE

g(x);h(�jx)

[V

B

jX = x℄ :

To solve for fg

�

(x); h

�

(�jx)g, he studies Lisa's strategy and rolls bak.

Bart believes Lisa will form the posterior assessment

~

f(�jb) on his X, so for Y = y,

Bart believes Lisa thinks her probability of winning is

IP

~

f(�jB

x

)

[X � Y jB

x

; Y = y℄ =

Z

y

0

~

f(zjB

x

) dz:

So Bart believes that Lisa is, by alling, expeting a payo� of

V

y

= IP

~

f(�jB

x

)

[ Lisa wins jB

x

; Y = y; Lisa alls ℄ � (1 +B

x

)

�IP

~

f(�jB

x

)

[ Lisa loses jB

x

; Y = y; Lisa alls ℄ � (1 +B

x

)

= 2(1 +B

x

)

Z

y

0

~

f(zjB

x

) dz � (1 +B

x

):
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So Bart believes Lisa will all if and only if

�1 � 2(1 +B

x

)

Z

y

0

~

f(zjB

x

) dz � (1 +B

x

):

Sine

~

f(zjB

x

) � 0, then for all y � ~y

�

(B

x

) we must have

Z

y

0

~

f(zjB

x

) dz �

Z

~y

�

0

(B

x

)

~

f(zjB

x

) dz �

B

x

2(1 +B

x

)

:

Then Lisa will all if and only if

Y � ~y

�

(B

x

) � inf

�

y 2 [0; 1℄ :

Z

y

0

~

f(zjB

x

) dz �

B

x

2(1 +B

x

)

�

:

Hene, Bart believes that the probability Lisa will all after he bets the amount B

x

should be

IP

~

f(�jB

x

)

[ Lisa alls j Bart bets B

x

℄ = IP[Y � ~y

�

(B

x

) jB

x

℄ = 1� ~y

�

(B

x

):
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Now Bart is able to ompute the following quantities:

IP

~

f(�jB

x

)

[ Lisa folds j Bart bets B

x

℄ = ~y

�

(B

x

);

IP

~

f(�jB

x

)

[ Lisa loses j Bart bets B

x

℄ = IP[~y

�

(B

x

) � Y � xjB

x

℄

= [x� ~y

�

(B

x

)℄

+

;

IP

~

f(�jB

x

)

[ Lisa wins j Bart bets B

x

℄ = IP

~

f(�jB

x

)

[ Lisa alls j Bart bets B

x

℄

�IP

~

f(�jB

x

)

[ Lisa loses j Bart bets B

x

℄

= 1� ~y

�

(B

x

)� [x� ~y

�

(B

x

)℄

+

:

Combining these expressions shows:

V

x

= �(1� g(x)) +

g(x)IE

h(�jx)

�

~y

�

(B

x

) + 2[x� ~y

�

(B

x

)℄

+

(1 +B

x

)� (1� ~y

�

(B

x

))(1 +B

x

)

�

:

5
1



Theorem: For x 2 [0; 1℄ and given

~

f(�jb) positive and ontinuous in b 2 [�;K℄, let

b

�

(x) 2 argmax

b2[�;K℄

~y

�

(b) + 2(x� ~y

�

(b))

+

(1 + b)� (1� ~y

�

(b))(1 + b);

�

�

(x) � max

b2[�;K℄

~y

�

(b) + 2(x� ~y

�

(b))

+

(1 + b)� (1� ~y

�

(b))(1 + b):

Then, Bart's �rst-order ARA solution is

g

�

(x) =

8
<

:

0 if �

�

(x) < �1

1 if �

�

(x) � �1;

h

�

(bjx) = Æ(b� b

�

(x));

where Æ(�) is the Dira delta funtion.

In other words, when he observes X = x, Bart will fold with probability 1 if

�

�

(x) < �1 and bet b

�

(x) with probability 1 if �

�

(x) � �1. Of ourse, the regularity

ondition requiring that

~

f(�jb) be positive and ontinuous in b 2 [�;K℄ is purely

su�ient but not neessary.
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Example: Lisa has a step-funtion posterior.

To illustrate the use of the theorem to �nd the ARA solution in a Borel game with

ontinuous bets, suppose

~

f(�jb) is of the following form:

~

h(xjb) =

8
<

:

1+K

1+b

if 0 � x �

1+b

1+K

0 otherwise:

It is easy to see that ~y

�

(b) =

b

2(1+K)

, and

~y

�

(b) + 2(x� ~y

�

(b))

+

(1 + b)� (1� ~y

�

(b))(1 + b)

=

8
<

:

�

b

2

2(1+K)

+ (2x� 1)(b+ 1) if b � 2(1 +K)x

b

2

2(1+K)

�

K

1+K

b� 1 if b > 2(1 +K)x:

5
3



Assume that � is small enough that

�

2

+2(1+K)�

4(1+K)(1+�)

<

1
2

+

�

2(1+K)

. Consider the following

ases:

1. For x <

�

2

+2(1+K)�

4(1+K)(1+�)

, then b

�

(x) = � and �

�

(x) = �

�

2

2(1+K)

+ (2x� 1)(�+1) < �1.

By the theorem, g

�

(x) = 1; i.e., Bart will fold w.p. 1. There is no need to speify

h

�

(�jx).

2. For

�

2

+2(1+K)�

4(1+K)(1+�)

� x <

1
2

+

�

2(1+K)

, then b

�

(x) = � and

�

�

(x) = �

�

2

2(1+K)

+ (2x � 1)(� + 1) � �1. By the theorem, g

�

(x) = 1 and

h

�

(bjx) = Æ(b� �), i.e. Bart will bet � w.p. 1.

3. For

1
2

+

�

2(1+K)

� x <

1
2

+

K

2(1+K)

, then b

�

(x) = 2(1 +K)x � (1 +K) and

�

�

(x) =

1+K

2

(2x � 1)

2

+ (2x � 1) � �1. By the theorem, g

�

(x) = 1 and

h

�

(bjx) = Æ(b� (2(1 +K)x� (1 +K))); i.e., Bart will bet 2(1 +K)x� (1 +K)

w.p. 1.

4. For x �

1
2

+

K

2(1+K)

, then b

�

(x) = K and �

�

(x) = �

K

2

2(1+K)

+(2x�1)(K+1) � �1.

Then, by the Theorem, g

�

(x) = 1 and h

�

(bjx) = Æ(b�K); i.e., Bart will bet K

w.p. 1.
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0 1

x

�

2

+2(1+K)�

4(1+K)(1+�)

1
2

+

�

2(1+K)

1
2

+

K

2(1+K)

bet

�

K

fold
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6. Conlusions

ARA allows the analyst to �exibly model the thought-proess of the opponents. This

�ts naturally with a large body of modern work in behavioral game theory, and avoids

awkward assumptions about rationality and ommon knowledge.

It also partitions the total unertainty into usefully distint parts (aleatory, epistemi,

and onept unertainty), whih failitates eliitation and alulation.

The talk desribed ARA perspetives in two game settings: onvoy routing and La

Relane. The examples �nd interestingly di�erent results than one obtains under

traditional solution onepts.

Also, the ARA formulation leads to new researh questions, as with the n-person

version of La Relane in whih one an model all the pairwise beliefs that bidders

have about eah other's valuations, or the n-person aution.
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