Terrorism trends via model learning and non-parametric approaches

Vasanthan Raghavan Qualcomm Flarion Technologies, Inc. Bridgewater, NJ October 26, 2016

- Terrorism has been around and has been studied for a long time
- Ongoing radicalization of different interest groups
- Rise of social media has made tracking terrorist activity a harder task

FUNDAMENTAL CHALLENGES

• **Challenge 0:** How to incorporate the network into the model?

• Challenge 1: Multivariate observations are of mixed type

- Time and location of attack
- Intensity of attack (injured, dead, "walking dead")
- Impact of attack (economic damage, political damage, loss of confidence of any kind)

Localized vs. globalized impact, e.g., 9/11 vs. Oklahoma City bombings
 Not all the data can be quantified

Not all the attacks are comparable

Challenge 2: Temporal modeling issues

 $\mathcal{H}_{i-1} = \{M_1, \cdots, M_{i-1}\} \Longrightarrow \mathsf{P}(M_i = r | \mathcal{H}_{i-1}), \ r = 0, 1, 2, \cdots, \ i = 1, \cdots, \mathcal{N}$

- Point process model (Poisson, renewal, etc.)
- Correlation/clustering of attacks in time

EXISTING MODELS FOR TERRORISM - I

Type 1: Classical time-series techniques

- Transform, fit trend, seasonality and stationary components to time-series [Brophy-Baermann & Coneybeare, Cauley & Im, Enders & Sandler]
- Fit lagged value of endogenous variables, and other variables [Barros]
- Quadratic or cubic trend = 4 parameters, seasonality = 3, stationary part
 = 1, often 8 or more model parameters

Key Theme:

Study of impact of interventions (airport security checks, Reagan-era laws)

$$\begin{pmatrix} M_{1,i} \\ M_{2,i} \end{pmatrix} = a_1 M_{1,i-1} + b_1 M_{2,i-1} + c_1 p_1 + \text{Other comps.} \\ a_2 M_{2,i-1} + b_2 M_{1,i-1} + c_2 p_1 + \text{Other comps.} \\ \end{pmatrix} + \text{Other comps.}$$

Two attack types

Impact of intervention

Good-to-acceptable fit for time-series at the cost of large number of parameters in a model with complicated dependencies Some interventions have no apparent long-term effect

EXISTING MODELS FOR TERRORISM - II

Type 2: Group-based trajectory analysis

- Identify cases with similar development trends [Nagin]
- Cox proportional hazards model + logistic regression methods for model selection [LaFree, Dugan & co-workers from UMD START Center]

Key Themes:

- Focussed on worldwide terrorism trends instead of specific groups
- ♦ Contagion theoretic viewpoint → Current activity of group is influenced by past history of group → Attacks are clustered

EXISTING MODELS FOR TERRORISM - III

- **Type 3:** Self-exciting hurdle model (SEHM)
- Puts the contagion point-of-view on a theoretical footing
- Motivated by similar model development in
 - Earthquake models Aftershocks are function of current shock
 - Inter-gang violence Action-reaction violence between gangs
 - Epidemiology immigrants + offsprings in a cell colony

$$\mathsf{P}(M_i = r | \mathcal{H}_{i-1}) = \begin{cases} \overbrace{e^{-(B_i + SE_i(\mathcal{H}_{i-1}))}, & r = 0}\\ \frac{r^{-s}}{\zeta(s)} \cdot \left(1 - e^{-(B_i + SE_i(\mathcal{H}_{i-1}))}\right), & r \ge 1 \end{cases}$$

- Hurdle probability component: Accounts for few attacks
- Self-exciting component: Accounts for clustering of attacks

Key Theme:

- Excellent model-fit
- Explains clustering of attacks from a theoretical perspective
- ♦ Self-exciting component can be complicated \rightarrow more parameters

[Mohler et al. 2011, Porter & White 2012, White, Porter & Mazerolle 2012, Lewis 2013]

A HMM FRAMEWORK FOR TERRORIST ACTIVITY

- Assumption 1: Current activity of the group depends on past history only through k dominant states S_i = [S_{1,i}, · · · , S_{k,i}] (that remain hidden)
 P(M_i|H_{i-1}, S_i) = P(M_i|S_i), i = 1, 2, · · ·
- Assumption 2: These k dominant states include
 - The group's Intentions Guiding ideology/philosophy (e.g., Marxist-Leninist-Maoist thought, political Islam), designated enemy group, nature of high profile attacks, nature of propaganda warfare, etc.
 - The group's Capabilities Manpower assets, special skills (bomb-making, IED), propaganda warfare skills, logistics skills, coordination with other groups, ability to raise finances, etc.
 - Capabilities are tempered by Strategies/Tactics (repeated/multiple attacks over time – group resilience, multiple attacks over space – coordination)

$$\mathsf{P}(M_i|\mathbf{S}_i) = \mathsf{P}(M_i|\{S_{1,i}, S_{2,i}, \cdots, S_{k,i}\})$$

[Cragin and Daly, "The dynamic terrorist threat: An assessment of group motivations and capabilities in a changing world"]

A HMM FRAMEWORK FOR TERRORIST ACTIVITY

DATASET DESCRIPTION

- Data from 1970-2010 period from GTD/UMD START Center
- Missing data from 1993 substituted with data summary from GTD
- Data corresponding to five regions
 - Latin and South America 28209 attacks
 - ✤ West Asia, North Africa and Central Asia 19166 attacks
 - Southeast Asia, East Asia and Australasia 6802 attacks
 - South Asia 17727 attacks
 - Western Europe 14701 attacks

Broad correlation between no. of attacks and fatalities/injuries

- WEU peaked in late 70s, LA in early 90s
- SEA peaked in mid 90s and late 2000s
- ME peaked in late 70s, mid 90s and mid 2000s
- SA peaked in late 80s, mid 90s and late 2000s

HOTSPOTS – II

Hotspots

- ✤ WEU peaked in late 70s, LA in early 90s
- SEA peaked in mid 90s and late 2000s
- ME peaked in late 70s, mid 90s and mid 2000s
- SA peaked in late 80s, mid 90s and late 2000s

A MORE DETAILED CASE STUDY: FARC

Revolutionary Armed Forces of Colombia (FARC)

- Oldest and largest terrorist group in the Americas, based in Colombia
- Marxist-Leninist ideology, anti-establishmentist, uses guerilla warfare
- Actively involved in cocaine cultivation and trans-shipment to U.S. and W. Europe, kidnapping rings, ...

Why FARC?

- ♦ Dominant in Colombia → Less ambiguity in terms of other groups' attacks
- ♦ Anti-establishment group → Strong signature in attack profile → Easy to differentiate FARC from non-FARC attacks in case of ambiguity

- Time-period of interest: 1998 2007, Why? Two key geo-pol events
 - Spurt 1
 - > 1997: Colombia becomes leading cultivator of coca
 - > 1999–2000: Plan Colombia with U.S. aid
 - > 2001–2002: President Uribe's election on anti-FARC plank
 - Spurt 2
 - > 2003–2004: Anti-FARC efforts bear fruit
 - > 2005 2006: President Uribe's re-election bid and local elections

MODELS FOR FARC

Histogram of observed number of attacks per day for FARC data with different model-fits, $\delta = 15$ days

No. attacks	Obs.	Poisson	Shifted	Geomet.	Pòlya	Hurdle-	Hurdle-
(Inactive			Zipf		_	Based	Based
State)						Zipf	Geomet.
0	2420	2421	2470	2430	2421	2420	2421
1	227	225	144	207	225	229	226
2	9	11	27	18	11	7	10
3	1	0	8	2	0	1	0
4	0	0	4	0	0	0	0
> 4	0	0	4	0	0	0	0
AIC		1690.34	1772.81	1696.74	1692.32	1692.58	1691.86
Parameter		0.0933	4.105	0.0854	$\widehat{r}_0 = 24.4749,$	$\widehat{\gamma}_0 = 0.0892,$	$\widehat{\mu}_0 = 0.0444,$
Estimate					$\hat{y}_{0} = 0.0038$	$\widehat{y}_{0} = 5.10$	$\hat{\gamma}_{0} = 0.0892$
No. attacks	Obs.	Poisson	Shifted	Geomet.	Pòlya	Hurdle-	Hurdle-
(Active			Zipf			Based	Based
State)						Zipf	Geomet.
0	384	359	455	404	389	384	384
1	174	202	87	144	160	189	171
2	46	57	33	52	56	31	52
3	19	11	16	19	17	11	16
4	4	1	9	7	6	5	5
> 4	3	0	30	4	2	10	2
AIC		1313.88	1416.88	1291.73	1288.85	1308.09	1287.11
Parameter		0.5651	2.40	0.3611	$\hat{r}_1 = 1.4834,$	$\widehat{\gamma}_1 = 0.3905,$	$\hat{\mu}_1 = 0.3090,$
Estimate					$\widehat{y}_1 = 0.2759$	$\widehat{y}_1 = 2.61$	$\widehat{\gamma}_1 = 0.3905$

LESSONS FROM MODEL LEARNING

 HMM: If parsimony is critical, a geometric observation model is good

 $\mathsf{P}(M_i = k | S_{2,i} = j) = (1 - \gamma_j) \cdot (\gamma_j)^k$

- Group has a short-term objective
- Every new attack contributes equally to the success of this objective
- As long as objective is not met, group remains oblivious (memoryless) of past activity
- Otherwise, a hurdle-based geometric is a good fit

$$\mathsf{P}(M_{i} = k | S_{2,i} = j) = \begin{cases} 1 - \gamma_{j} & \text{if } k = 0\\ \gamma_{j} \cdot (1 - \mu_{j}) \cdot (\mu_{j})^{k-1} & \text{if } k \ge 1 \end{cases}$$

- Several extreme values: SEHM with shifted Zipf is a better fit
- HMM and SEHM are competitive on explanatory power
- HMM outperforms SEHM in predictive power
- HMM approach is robust to missing data

TYPICAL ABRUPT CHANGES

- Organizational changes in terrorist group
 - Resilience of group
 - Level of coordination in group
- Different signatures in terms of activity profile
- Resilience has a less bursty signature, coordination has a more bursty signature
- Other applications
 - Sudden burstiness in a topic/hashtag on Twitter
 - > Why is burstiness detection important?
 - Natural calamities (earthquakes)
 - Unexpected events (fire, snowstorm, armed person in campus/mall)
 - Epidemics (Google Flutrends, H5N1, meningitis)
 - Spread of panic (stock market crash, riots)
 - "Sense of social media" Impact of political events/speech, election campaigns, policy announcements, etc.
- Goal: Can such abrupt changes be detected quickly?

SOME ASSUMPTIONS

- Organizational changes in terrorist group
 - Resilience of group
 - Level of coordination in group
- Want to classify organizational behavior over a time-window Δ_n (week/fortnight/month etc., but not every day)
- An attack metric proxy for resilience is the number of days of attacks over $\Delta_{\!n}$

$$X_n = \sum_{i \in \Delta_n} \mathbb{1}(\boldsymbol{M}_i > 0)$$

• An attack metric proxy for coordination is the number of attacks over Δ_n $Y_n = \sum M_i$

$$X_n = \sum_{i \in \Delta_n} \boldsymbol{M}_i$$

- Approach a:
 - Learn parameters with observations
 - Binary state classification
 - Binning and mapping to resilience and coordinating states
- Approach b:
 - Bin observations to form attack metrics
 - Learn parameters with attack metrics
 - Binary state classification and mapping to resilience and coordinating states

PROBLEMS WITH PARAMETRIC APPROACHES

- Terrorism is "rare" from a model learning perspective
 - ✤ For FARC, 641 incidents over a 10 year period ~ 1.23 incidents per week
 - Similar trends across almost all the groups in GTD
- Learning a 4 parameter HMM could need approx. 4 * 100/1.23 ~ 325 weeks ~ 6 ¼ years
- Models capture some underlying dynamic of group
 - Model stability issues
 - Inferencing on the short time-horizon?
- HMM learning and state classification is non-causal/retrospective
 Applications in online decision-making?

NON-PARAMETRIC APPROACH TO CLASSIFICATION

- Approach based on majorization theory
- Majorization provides a partial ordering for probability vectors
- We use a reverse majorization theory for better than partial ordering

THEOREM 4.1. Let $\{\underline{P}, \underline{Q}\} \in \mathbb{P}_{\delta}$. In one of two possibilities, \underline{P} and \underline{Q} are not comparable with each other in the form of a catalytic majorization relationship. In the other possibility, their comparability is verified by checking an equivalent set of conditions over only two types of functions:

- i) $\mathsf{PM}(\underline{\boldsymbol{P}}, \alpha) < \mathsf{PM}(\boldsymbol{Q}, \alpha)$ if $\alpha > 1$,
- ii) $\mathsf{PM}(\underline{\boldsymbol{P}}, \alpha) > \mathsf{PM}(\underline{\boldsymbol{Q}}, \alpha)$ if $\alpha < 1$, and
- iii) $SE(\underline{\mathbf{P}}) > SE(\underline{\mathbf{Q}}).$

In the above equations, $SE(\cdot)$ and $PM(\cdot, \alpha)$ stand for the Shannon entropy function and the power mean function corresponding to an index α , and are defined as,

$$\mathsf{SE}(\underline{\mathbf{P}}) \triangleq -\sum_{i=1}^{\delta} \mathbf{P}(i) \log \left(\mathbf{P}(i)\right), \qquad \mathsf{PM}(\underline{\mathbf{P}}, \alpha) \triangleq \left(\frac{\sum_{i=1}^{\delta} \mathbf{P}(i)^{\alpha}}{\sum_{i=1}^{\delta} \mathbbm{1}(\mathbf{P}(i) > 0)}\right)^{1/\epsilon}$$

APPLICATION TO BURSTINESS DETECTION

Define an attack frequency vector

$$\boldsymbol{P}_n(i) = \left\{ \begin{array}{ll} \frac{\boldsymbol{M}_{(n-1)\delta+i}}{\sum_{j \in \Delta_n} \boldsymbol{M}_j} & \text{if } \sum_{j \in \Delta_n} \boldsymbol{M}_j > 0, \\ 0 & \text{otherwise} \end{array} \right.$$

- Define two metrics
 - Shannon entropy
 - Normalized power mean with a fixed power index

$$\begin{split} \mathsf{SE}(\underline{P}_n) &= \log\left(\sum_{i\in\Delta_n} M_i\right) - \frac{\sum_{i\in\Delta_n} M_i \log(M_i)}{\sum_{i\in\Delta_n} M_i} \\ \mathsf{NPM}(\underline{P}_n, \alpha^\star) &= \frac{\left(\sum_{i\in\Delta_n} (M_i)^{\alpha^\star}\right)^{1/\alpha^\star}}{\left(\sum_{i\in\Delta_n} M_i\right) \cdot \left(\sum_{i\in\Delta_n} \mathbbm{1}\left(M_i > 0\right)\right)^{1+1/\alpha^\star}}, \end{split}$$

Resilience and coordination classification

Resilient \iff SE $(\underline{P}_n) > \underline{SE}$ and $X_n > \widetilde{\eta}_X$ Coordinating \iff NPM $(\underline{P}_n, \alpha^*) > \underline{NPM}$ and $Y_n > \widetilde{\eta}_Y$

FARC EXAMPLE

FARC data								
Setting	Parameters	Number of states classified and (P_{MD}, P_{FA})						
		Resilient	Coordinating	Both				
True	_	37	18	14				
Observations								
Learning	$\widehat{\gamma}_0 = 0.0953, \widehat{\mu}_0 = 0.0762$	27	13	13				
with $\{{M}_i\}$	$\widehat{\gamma}_1 = 0.3988, \widehat{\mu}_1 = 0.3087$	(0.2703, 0)	(0.3889, 0.1538)	(0.2143, 0.1538)				
Learning	$\widehat{\gamma}_0 = 0.0933, \widehat{\mu}_0 = 0.3505$	125	-	-				
with $\{X_n\}$	$\widehat{\gamma}_1 = 0.3921, \widehat{\mu}_1 = 0.3505$	(0, 0.7040)						
Learning	$\widehat{\gamma}_0 = 0.0951, \widehat{\mu}_0 = 0.1232$	_	73	-				
with $\{Y_n\}$	$\widehat{\gamma}_1 = 0.2500, \widehat{\mu}_1 = 0.5745$		(0, 0.7534)					
Learning	$\hat{\gamma}_0 = 0.0949, \hat{\mu}_0 = 0.0752$	_	_	73				
with $\{(X_n, Y_n)\}$	$\widehat{\gamma}_1 = 0.3958, \widehat{\mu}_1 = 0.3082$			(0, 0.8082)				
Majorization	_	27	15	13				
theory		(0.2703, 0)	(0.2778, 0.1333)	(0.2143, 0.1538)				

TRACKING RESILIENCE/COORDINATION

Resilience and coordination classification

 $\begin{array}{rcl} \text{Resilient} & \Longleftrightarrow & \mathsf{SE}(\underline{\boldsymbol{P}}_n) > \underline{\mathsf{SE}} \text{ and } X_n > \widetilde{\eta}_\mathsf{X} \\ \text{Coordinating} & \Longleftrightarrow & \mathsf{NPM}(\underline{\boldsymbol{P}}_n,\,\alpha^\star) > \underline{\mathsf{NPM}} \text{ and } Y_n > \widetilde{\eta}_\mathsf{Y} \end{array}$

Tracking functions

$$\begin{split} \mathsf{Res}(n) &= \mathsf{Res}(n-1) + \mathsf{SE}(\underline{\boldsymbol{P}}_n) + X_n - \frac{\sum_{n'=1}^{N_{\max}} \left(\mathsf{SE}(\underline{\boldsymbol{P}}_{n'}) + X_{n'}\right)}{N_{\max}} \\ \mathsf{Coord}(n) &= \mathsf{Coord}(n-1) + \mathsf{NPM}(\underline{\boldsymbol{P}}_n, \alpha^\star) + Y_n - \frac{\sum_{n'=1}^{N_{\max}} \left(\mathsf{NPM}(\underline{\boldsymbol{P}}_{n'}, \alpha^\star) + Y_{n'}\right)}{N_{\max}} \end{split}$$

KEY CONCLUSIONS

- Model learning is good to learn about what the group's behavior looks like in a very broad sense
- But it is a poor way forward for online/short-term detection/classification etc.
- Non-parametric approaches can be better if the metric is appropriately chosen for tracking
 - Low miss detection and low false alarm
 - Parametric approaches often result in high false alarms

[R, Galstyan & Tartakovsky, Annals of Applied Statistics, 2014] [R & Tartakovsky, ArXiv 1604.02051]