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TERRORIST NETWORKS
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= Terrorism has been around and has been studied for a long time
= Ongoing radicalization of different interest groups
= Rise of social media has made tracking terrorist activity a harder task




FUNDAMENTAL CHALLENGES

= Challenge 0: How to incorporate the network into the model?

= Challenge 1: Multivariate observations are of mixed type
< Time and location of attack
< Intensity of attack (injured, dead, “walking dead”)

< Impact of attack (economic damage, political damage, loss of confidence
of any kind)

< Localized vs. globalized impact, e.g., 9/11 vs. Oklahoma City bombings
Not all the data can be quantified
Not all the attacks are comparable

= Challenge 2: Temporal modeling issues
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< Point process model (Poisson, renewal, etc.)
< Correlation/clustering of attacks in time




EXISTING MODELS FOR TERRORISM - 1

Type 1: Classical time-series techniques

< Transform, fit trend, seasonality and stationary components to time-series
[Brophy-Baermann & Coneybeare, Cauley & Im, Enders & Sandler]

< Fit lagged value of endogenous variables, and other variables [Barros]

< Quadratic or cubic trend = 4 parameters, seasonality = 3, stationary part
= 1, often 8 or more model parameters

Key Theme:
< Study of impact of interventions (airport security checks, Reagan-era laws)

alMl,i_l + blMZ,i—l + Other comps.
— agMgﬂ;_l + b2M1,i—1 -+ Other comps.
Two attack types Impact of intervention

Good-to-acceptable fit for time-series at the cost of large number of
parameters in @ model with complicated dependencies
Some interventions have no apparent long-term effect




EXISTING MODELS FOR TERRORISM - 11

= Type 2: Group-based trajectory analysis
< Identify cases with similar development trends [Nagin]

< Cox proportional hazards model + logistic regression methods for model
selection [LaFree, Dugan & co-workers from UMD START Center]

= Key Themes:
< Focussed on worldwide terrorism trends instead of specific groups

< Contagion theoretic viewpoint = Current activity of group is influenced
by past history of group - Attacks are clustered




EXISTING MODELS FOR TERRORISM - III

= Type 3: Self-exciting hurdle model (SEHM)
= Puts the contagion point-of-view on a theoretical footing
= Motivated by similar model development in
< Earthquake models — Aftershocks are function of current shock

< Inter-gang violence — Action-reaction violence between gangs
» Epidemiology — immigrants + offsprings in a cell colony
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= Hurdle probability component: Accounts for few attacks
= Self-exciting component: Accounts for clustering of attacks
= Key Theme:
< Excellent model-fit

< Explains clustering of attacks from a theoretical perspective

< Self-exciting component can be complicated - more parameters
[Mohler et al. 2011, Porter & White 2012, White, Porter & Mazerolle 2012, Lewis 2013]




A HMM FRAMEWORK FOR TERRORIST ACTIVITY

= Assumption 1: Current activity of the group depends on past history
only through k dominant states S; =[S, ;,--- , Sk ;] (that remain

hidden
idden) P(M;|H;_1,S;) =P(M;]S;), i =1,2,---

= Assumption 2: These k dominant states include

< The group’s Intentions — Guiding ideology/philosophy (e.g., Marxist-
Leninist-Maoist thought, political Islam), designated enemy group, nature
of high profile attacks, nature of propaganda warfare, etc.

< The group’s Capabilities — Manpower assets, special skills (bomb-making,
IED), propaganda warfare skills, logistics skills, coordination with other
groups, ability to raise finances, etc.

< Capabilities are tempered by Strategies/Tactics (repeated/multiple
attacks over time — group resilience, multiple attacks over space —
coordination)

P(M;|S;) = P(M;|{51.4,52,i, - ,Sk.i})

[Cragin and Daly, “"The dynamic terrorist threat: An assessment of group motivations and
capabilities in a changing world"]




A HMM FRAMEWORK FOR TERRORIST ACTIVITY
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DATASET DESCRIPTION

= Data from 1970-2010 period from GTD/UMD START Center
= Missing data from 1993 substituted with data summary from GTD

= Data corresponding to five regions
< Latin and South America — 28209 attacks
< West Asia, North Africa and Central Asia — 19166 attacks
< Southeast Asia, East Asia and Australasia — 6802 attacks
< South Asia — 17727 attacks
< Western Europe — 14701 attacks




Number of attacks
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Broad correlation between no. of attacks and fatalities/injuries
< WEU peaked in late 70s, LA in early 90s
< SEA peaked in mid 90s and late 2000s
< ME peaked in late 70s, mid 90s and mid 2000s
< SA peaked in late 80s, mid 90s and late 2000s
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A MORE DETAILED CASE STUDY: FARC

Revolutionary Armed Forces of Colombia (FARC)

< Oldest and largest terrorist group in the Americas, based in Colombia
< Marxist-Leninist ideology, anti-establishmentist, uses guerilla warfare

< Actively involved in cocaine cultivation and trans-shipment to U.S. and W.
Europe, kidnapping rings, ...

Why FARC?
<+ Dominant in Colombia - Less ambiguity in terms of other groups’ attacks

< Anti-establishment group = Strong signature in attack profile > Easy to
differentiate FARC from non-FARC attacks in case of ambiguity
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WHY FARC?

Elections, Uribe’s win,
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= Time-period of interest: 1998 — 2007, Why? Two key geo-pol events

< Spurt 1
» 1997: Colombia becomes leading cultivator of coca
» 1999-2000: Plan Colombia with U.S. aid

» 2001-2002: President Uribe’s election on anti-FARC plank

< Spurt 2
> 2003-2004: Anti-FARC efforts bear fruit

> 2005 — 2006: President Uribe’s re-election bid and local elections




MODELS FOR FARC

Histogram of observed number of attacks per day for FARC data with different model-fits, 6 = 15 days

No. attacks | Obs. Poisson  Shifted Geomet. Polya Hurdle- Hurdle-
(Inactive Zipt Based Based
State) Zipf Geomet.
0] 2420 2421 2470 2430 2421 2420 2421
1 227 225 144 207 225 229 226
2 9 11 27 18 11 7 10
3 1 0 8 2 0 1 0
4 0 0 4 0 0 0 0
>4 0 0 4 0 0 0 0
AIC 1690.34 | 1772.81 1696.74 1692.32 1692.58 1691.86
Parameter 0.0933 4.105 0.0854 7o = 24.4749, 7Ho = 0.0892, | Lo = 0.0444,
Estimate Yo = 0.0038 Yo =5.10 Yo = 0.0892
No. attacks | Obs. Poisson  Shifted Geomet. Polya Hurdle- Hurdle-
(Active Zipf Based Based
State Zipf Geomet.
0 384 359 455 404 389 384 384
1 174 202 87 144 160 189 171
2 46 57 33 52 56 31 52
3 19 11 16 19 17 11 16
4 4 1 9 7 6 5 5
>4 3 0 30 4 2 10 2
AIC 1313.88  1416.88  1291.73 1288.85 1308.09 1287.11
Parameter 0.5651 2.40 0.3611 r1 = 14834, 71 =0.3905, |1 = 0.3090,
Estimate 71 = 0.2759 71 = 2.61 71 = 0.3905
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MODEL VERIFICATION

Q-Q plot of inter-arrival duration (Period 1: 1998-2001)
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Q-Q plot of inter-arrival duration (Period 2: 2002)
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LESSONS FROM MODEL LEARNING

HMM: If parsimony is critical, a geometric observation model is

good
P(M; = k|S2: =) = (1= ;) - ()"

< Group has a short-term objective
< Every new attack contributes equally to the success of this objective

< As long as objective is not met, group remains oblivious (memoryless) of
past activity

Otherwise, a hurdle-based geometric is a good fit

| =, if k=0
P Zt/iz :k:S ,L: ) ju— J o .
( 192:=1) {vj'(luj)°(uj)k1 if k> 1

Several extreme values: SEHM with shifted Zipf is a better fit

HMM and SEHM are competitive on explanatory power
HMM outperforms SEHM in predictive power
HMM approach is robust to missing data




TYPICAL ABRUPT CHANGES

Organizational changes in terrorist group

> Resilience of group

» Level of coordination in group

Different signatures in terms of activity profile

Resilience has a less bursty signature, coordination has a more bursty
signature

>
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Other applications
> Sudden burstiness in a topic/hashtag on Twitter

> Why is burstiness detection important?

Natural calamities (earthquakes)

Unexpected events (fire, snowstorm, armed person in campus/mall)
Epidemics (Google Flutrends, H5N1, meningitis)

Spread of panic (stock market crash, riots)

“Sense of social media” — Impact of political events/speech, election campaigns, policy
announcements, etc.
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Goal: Can such abrupt changes be detected quickly?




SOME ASSUMPTIONS

Organizational changes in terrorist group

< Resilience of group

< Level of coordination in group
Want to classify organizational behavior over a time-window A,
(week/fortnight/month etc., but not every day)

An attack metric proxy for resilience is the number of days of attacks
over A,

€A,

An attack metric proxy for coordination is the number of attacks over
A

” Y=Y M,

1eA,,




PARAMETRIC APPROACHES TO CLASSIFICATION
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M; P < —_ 3 Resilient,
{M;} ' €A, Attack “ Xn, Ya :'} HMM State Si i€A, — o Coordinating,
Binning Metrics Parameter [=——0 5 C!as;:jjcation > Active or
Computation | [ X, }or {¥y,} Learning inactive
S! Sn
‘ ‘ i€A,
(b)

= Approach a:
< Learn parameters with observations
< Binary state classification
< Binning and mapping to resilience and coordinating states
= Approach b:
< Bin observations to form attack metrics
< Learn parameters with attack metrics
< Binary state classification and mapping to resilience and coordinating states




PROBLEMS WITH PARAMETRIC APPROACHES

= Terrorism is “rare” from a model learning perspective
< For FARC, 641 incidents over a 10 year period ~ 1.23 incidents per week
< Similar trends across almost all the groups in GTD

= Learning a 4 parameter HMM could need approx. 4 * 100/1.23 ~
325 weeks ~ 6 V4 years

= Models capture some underlying dynamic of group
< Model stability issues
< Inferencing on the short time-horizon?

= HMM learning and state classification is hon-causal/retrospective
< Applications in online decision-making?




NON-PARAMETRIC APPROACH TO CLASSIFICATION

= Approach based on majorization theory

Majorization provides a partial ordering for probability vectors
= We use a reverse majorization theory for better than partial ordering

THEOREM 4.1.

Let {P, Q} € Ps. In one of two possibilities. P and Q are not com-
parable with each other in the form of a catalytic majorization relationship. In the other

possibility, their comparability is verified by checking an equivalent set of conditions over
only two types of functions:

a) < PM(Q, o) if a > 1,
Q, «

i) PM(P,
(P. ) it a < 1, and

i) PM(P, ) > PM(

ii) SE(P) > SE(Q).

In the above equations, SE(-) and PM(-, «) stand for the Shannon entropy function and the
power mean function corresponding to an index o, and are defined as,

é

5 o l/a
SE(P) 2 -3 " P(i)log (P(i)), PM(P,a)2 (Z 2i=1 P(i) )) |

— *_ L I(P(i) >0




APPLICATION TO BURSTINESS DETECTION

= Define an attack frequency vector

JP"4(?1—1}64_1' . |

0 otherwise

= Define two metrics
< Shannon entropy
< Normalized power mean with a fixed power index
SE(P,) = log (Z I\/f,{;) B Zie% M ligf(‘ﬂ/fi)
€A, i€A, 1Y
1/a*

(ZiEL\n (-’Mz‘)&j)
(Xica, Mi) - (Xiea, 1(M; > U))Hlm“

s Resilience and coordination classification

NPM(P,. a*) =

Resilient <= SE(P,) > SE and X,, > 1x
Coordinating <= NPM(P,, a*) > NPM and Y,, > 7y
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TRACKING RESILIENCE/COORDINATION

s Resilience and coordination classification

Resilient <= SE(P,) > SE and X,, > 7jx
Coordinating <= NPM(P,,, o) > NPM and Y,, > 7y

= Tracking functions
S (SE(R,) + Xow)

Res(n) = Res(n—1)+SE(P,,)+ X, — N
S (NPMR,,, a%) + Yy )
Coord(n) = Coord(n—1)+NPM(LP,,., o™)+Y, — N
40

— Res(n) : P
----- Coord(N) [ ... N
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KEY CONCLUSIONS

Model learning is good to learn about what the group’s
behavior looks like in a very broad sense

But it is a poor way forward for online/short-term
detection/classification etc.

Non-parametric approaches can be better if the metric is
appropriately chosen for tracking

< Low miss detection and low false alarm
< Parametric approaches often result in high false alarms

[R, Galstyan & Tartakovsky, Annals of Applied Statistics, 2014]
[R & Tartakovsky, ArXiv 1604.02051 ]




