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FOREWORD

The U. S. Army Signal Research and Development Laboratory of Fort
Monmouth, New Jersey served as host to the Seventh Conference on the
Design of Experiments in Army Research, Development and Testing. This
Laboratory is the Signal Corps' major scientific arm. It has the responsi-
bility to conceive and develop vital detection and communications equip-
ment. Starting during World War I as the Radio Laboratories with a small
group of officers, enlisted men and civilians, the Laboratory has grown
to an ultra-modern facility. Surviving through wartime expansions, econ-
omy waves and name changes, USASRDL has attained a hard-earned repu-
tation as a leader in most phases of electronics research and development.
Included among the many accomplishments of the Laboratory are such
things as the development of the essential vehicular and fixed radios used
in World War I, the walkie-talkie, radar, the world's first radar contact
with the moon, radar storm detection, the first feasible mass-production
technique using printed circuits, the first solar batteries for satellites,
the world's first communications satellite, and the world's first weather
satellite.

The research and development atmosphere of USASRDL provided an
ideal locale for a conference on the Design of Experiments. The spon-
soring group--the Army Mathematics Steering Committee--was pleased to
receive an invitation from Colonel H. McD. Brown to use the facilities
under his Command for the 1961 conference. Colonel Brown named
Messrs. J. A. McClung and Joseph Weinstein as cochairmen for this
meeting. At this time the AMSC would like to thank these gentlemen for
the excellent local arrangements of the Conference and for the effective-
ness with which they provided for the needs of all who participated
and attended this conference.

At the Seventh Conference on the Design of Experiments Drs. R. L.
Anderson, John Hammersley, G. S. Watson, and G. A. Watterson de-
livered the invited addresses. Estimation of variance components,
Monte Carlo methods, hazard analysis, and time series and spectral
analysis were, respectively, the topics treated by these specialists.
Professor R. M. Thrall served as Chairman of the Panel Discussion on
Simulation. He arranged for Colonel A, W. DeQuoy, Mr. J. H. Moss,
and Dr. Gustave Rabson to discuss various aspects of simulation, with
Dr. Hammersley serving as a commentator on the papers presented. In
addition to these parts of the program, 10 papers were given in Clinical
Sessions, and 19 papers in the Technical Sessions.
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This volume of the Proceedings contains 37 of the papers which were
presented at Conference. In order to contribute to a wider dissemin-
ation of knowledge and use of modern statistical principles in the
design of experiments, particularly for Army research, development and
testing scientists and engineers, the AMSC is making these articles
available in this form.

The Seventh Conference was attended by 152 registrants and partici-
pants from over 70 different organizations. Speakers and panelists
came from the Armour Research Foundation; Bethesda-Chevy Chase
High School; Booz-Allen Applied Research, Inc.; Massachusetts
Institute of Technology; Mathematics Research Center, University of
Wisconsin; Montgomery Blair High School; North Carolina State College;
Operations Research Inc.; Phillips Andover Academy; Research Analysis
Corporation; Research Triangle Institute; U. S. Bureau of Mines; Cornell
University; University of Delaware; University of Georgia; Harvard
University; Oxford University; Princeton University; University of
Toronto; Woodrow Wilson High School and 1l Army facilities.

The members of the Army Mathematics Steering Committee take this
opportunity to express their thanks to the many speakers and other
research workers who participated in the Conference; to Colonel
H. McD. Brown for making available the excellent facilities of
USASRDL for the conference; and to J. A. McClung and Joseph Weinstein
for organizing a most interesting and informative tour of the facilities
of the U. S. Army Signal Research and Development Laboratory as well
as presenting a movie documenting some of the research work being
conducted at the Laboratory.

Finally, the Chairman wishes to express his appreciation to his
Advisory Committee: F. G. Dressel (Secretary), Fred Frishman, Boyd
Harshbarger, Frank E. Grubbs, H. L. Lucas Jr., Clifford J. Maloney,
and Joseph Weinstein for their help in selecting the invited speakers
and formalizing the plans for this conference.

S. S. Wilks
Professor of Mathematics
Princeton University
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Statistics of the Army Mathematics Steering Committee will meet at 1630;
all members of the conference are invited to attend this committee meeting.
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conducted in certain installations. This will be followed by a game in
which members of the audience are invited to participate.
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TIME SERIES AND SPECTRAL ANALYSIS

G. A. Watterson
Virginia Polytechnic Institute

INTRODUCTION. One of the classical problems in statistics is the
following. An experiment produces a result which is a random variable
having a density function f(x) say. In order to investigate the nature of
this density, several independent experiments are performed, yielding ob-
servations

X, s Xy e0es X
1° 727 “n

The joint density (the "likelihood") of these observations is then

(1) f(xl, Koy eoes xn) = f(xl)f(xz) f(xn) s

and assuming the form of f(x) is known, the parameters may be estimated
by maximum likelihood.

A more general problem is the following. Suppose the observations

are taken on an experiment, where the subscript refers to the time at which
the observation is made. For such time-series, one can seldom assume
independence between the observations. There are two points of view which
can be taken about the analysis of such observations. The lack of inde-
pendence is often a nuisance -- we wish to analyze the observations by the
use of standard techniques such as t and F tests, confidence limits,
regression analysis, but cannot because of the lack of independence. On
the other hand in some situations the lack of independence is just that
aspect in which we are most interested. If we wish to predict something
about the future on the basis of past experience, it would, indeed, be a
nuisance if the future was independent of the past. So, depending on one's
point of view, correlation can either be a hinderance or a help.
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One of the most fruitful assumptions that can be made, at least as far
as mathematical theory is concerned, is that of (weak) stationarity. By
this, we mean that the expected values, and the variances, of our obser-
vations are constant over time, and that the covariance between two ob-
servations depends on the time between them, but not on just when we
take the observations. Whether this assumption is true or not of course
depends on the practical situation. We give three examples.

(i) A radar installation detects echos of radio signals bounced back
from a physical object. Ideally, no statistics is required and the observed
echos are explained deterministically; if the object is in motion, the signals
will not be stationary. But suppose no object exists, and the only "signal"
received is due to the "noise" generated by the tubes in the receiver. This
noise may very well satisfy the requirements for a stationary, random, time
series.

(ii) Ocean waves tend to make a ship rock. If the waves have most of
their energy concentrated in a frequency range corresponding to the natural
frequency of oscillation of the ship, then a dangerous rocking motion may
result. Thus we wish to study the frequency structure of waves, which
over a short time may be approximately stationary in the above sense,
although over longer periods of time will exhibit non-stationary features
due to tides, etc.

(1ii) The word "time" used above need not really mean "time". An axle
for a truck may be specified as having a diameter of one inch; if the pro-
duction machinery is satisfactory then one can expect that the average
diameter of a batch of axles will be close to one inch wherever the measure-
ment is taken, but certainly, observations made on the same axle will
have a correlation depending on the distance apart that they are taken. If
the production machinery is not working as it should, then one end of the
axles may be larger than the other and the expected values would not be
stationary along the axle.

In this paper, we intend to review some of the techniques that may be
used for handling correlated data taken at equally spaced time intervals,
under the assumption of stationarity. Two approaches can be made. One
I call the "statistician's" approach, in which one tries to estimate the
parameters in the joint distribution of the observations. The other, here
called the "electrical engineer's" approach, concerns the estimation of how
important, or otherwise, are certain frequencies apparent in observed time
series. In choosing my labels, I am doing an injustice to statisticians -
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the frequency interpretation is probably the most interesting in practice,
and certainly statisticians are also interested in it. In any case, the two
approaches are intimately connected although not obviously so. Some of
the more recent books discussing time series analysis are (2], [4], [(5J.

STATISTICIAN'S APPROACH. Let us take as our time scale unit, the
interval between successive observations. The assumptions of stationarity
imply

B(xl)= E(xz) =.,.. =E(xt)=... =B(xn)= 4L say ,

(2) Cov(xtl, xt2)=c(t1-t2)=c(t2-t1) say, for all tl' t2=1,2,...,n

and in particular, Var (xl) = Var (x2) =,,, =Var(x n) =c(0) .

If, in addition, we may assume that the joint distribution of the obser-
vations is normal, with density function

1. el

(3) fx ,x , ..., x ) = (1/2’77’)n/2 ,Z-l, l/Ze-zb‘{ A2 &

1 2 n
where

s < ... c@-1 ]

c), cO@, cO, c(n-2)

(2 ) ’ ‘C(l)
Lc(n-l) *c(l) *c(0) |
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is the matrix of the variances and covariances, and

x, ] [ .
X = ’ L= ’
| *n _ LA

then we see that there are n 4+ 1 parameters «, c(0), c(l), ..., c(n-1)
to be estimated. Of course, from one sample of size n one can hardly
hope to estimate all n + 1 parameters reliably. We will see shortly how
these can sometimes be reduced in number by making additional assump-
tions. A time-series with (3) as density, is called "Gaussian".

For samples obtained independently, the most generally useful estimate

of/u_ is

since it is unbiased, E(X) = «, and has a variance O‘z/n (or in our
notation c¢(0)/n) which can be made arbitrarily small by taking a suf-
ficiently large sample. However, in time-series analysis, x 1is not the
maximum likelihood estimate of & even when (3) is taken to be the like-
lihood. There are estimates of smaller variance than X, see [9]. Never-
theless x is almost invariably used since it is unbiased, easy to compute,
and its competitors involve a knowledge of the covariances or at least

their estimation. Whether X has a variance which decreases as n in-
creases is, of course, a very important question, and forms the basis of
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the Ergodic Theorem. Roughly speaking, provided the covariance between
observations decreases fairly rapidly as the time between them increases,
then the observed average of a time series approaches the population mean
M as the number of observations increase. For, we have

r—nM:J

Var (x) = Var( -

L .

DR

) = 1/n Cov(xt , xt) s
t2=lt1=l 1 2

1t

n n
2
=1/n E § c(tl -tz) ,
t2= 1=1

which can be seen to equal

n-1
=_c(O) + _ﬁ_ tZl (1l -t/n)c(t)

n

If we write P (t) = correlation between observations spaced t apart

1+t) _ c®

i Vvar (x) * Var(x ) | c (0)

Cov (xl, X

1+t

we have

n-1
_cn(O) z 142 Z 1 - t/n)p(t)}

t=1

(4) Var(@ =
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n-1

z e ®

1 —> 0 as n—>o, Var(x) — 0 .

Thus, provided

When the conditions of the theorem are fulfilled, we do not need to in-

dependently replicate the realizations to get a good estimate of _«¢ ; all
we need is a single, long, realization. But what if the conditions do not
hold? For example, suppose we try to estimate the average rainfall over
U.S.A. by choosing only one recording station at random, say New York,

to provide us our data. Clearly, for a long series of observations from New

York we can get a good estimate of the average rainfall at New York, but
this tells us very little about the entire country. In the wider view, the
New York observations are correlated no matter how far they are separated
in time; they are all subject to the same particular environmental factors.
Then, replication using other recording stations would be necessary.

Turning now to the estimation of the covariances, our assumptions of
stationarity included the condition that the n - t pairs

Xp v Xraee ' X Xgpi see i X X
each had the covariance c(t). It is natural to estimate c(t) by
-X -X) + -x) (x X))+ ...+ (x -X
N . (x x)(x1+t X) (x2 )(2+t x) (n-tx)(xn
c(t) =
' n-t
n-t
(X.j‘-°)(xj+t-X)
(5) = —i=l , t =0,1, ....,n-1.

(6) -

- ;{)
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which is, of course, very familiar from elementary statistics. Clearly some
of these estimates are better than others. In (6) we are averaging n
terms, but when we come to estimating c(n - 1) we have only one pair of
observations to use. In any case, the estimates will be biased in general,
and their exact distribution is difficult to find.

The correlations p(t) = -g—%))- can most naturally be estimated by

e (t)

—_—— t=1,2, ..., -1
c (0) n

@) Al =

using (5) and (6) . Again, and especially for small n, these estimates
are somewhat biased, and for those with t close to n their variances

are large. A plot of these estimated correlations, called the "correlogram",
will give a general idea of how the dependence of an observation on the
previous ones behaves.

Under fairly general conditions - roughly that the true correlations ,o(t)
tend to zero fairly rapidly as t —> 0 - it has been shown that our esti-
mates X, €(t), ,6\(t) are asymptotically normal as n-—o0 . The exact,
small sample, distributions depend on the assumptions made about the
joint density f(xl, Kor voes xn), and even when this is multivariate

normal only X has a simple (normal) distribution. Various versions of
estimates ,6\(t) have been investigated; for their moments see [2], and
their distributions see [1], [3], [12].

One device which is of frequent use in explaining an observed time
series, using fewer parameters than those introduced above, is the auto-
regressive model. As an example, one might, to a first approximation,
expect that the stock market index today, X, is dependent on the index

yesterday, X, _ 1. on the direction of the previous trend (whether upward
or downward), xt 1% -9 and also on additional factors peculiar to

today, e . We might have as a model

X, = oyx v -x ) te
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or, written slightly differently,
(8) X, = ﬁlxt_l-l- ﬂzxt_z-l-et .

A model of this type, where the dependence of X, on previous values is

linear, is called a (linear) autoregression. The parameters of interest are
the regression coefficients pl’ ﬁZ' ... and the variance of the e,.

Least squares estimation of course yields the usual expressions encountered
in ordinary regression analysis, although here, x plays the dual role of
dependent and independent variable. In fairly general situations, the
sampling properties of the estimates are closely approximated by the usual
distributions used in regression theory. For significance tests in auto-
regressive models see [10], (6], [7].

ELECTRICAL ENGINEER'S APPROACH. When frequency of oscillation is
more interesting than the serial correlations, a somewhat different approach
is taken. Even a simple model like

(9) X, = -ﬁxt_l-i-et .

with }3 > 0, can produce observations which tend to be alternatively
positive, and negative; the pattern can of course be disrupted by the error
term e, . The most importaht single frequency here would be 1 cycle per
2 time units. A more general model such as (8) can exhibit oscillations

of any frequency. To show the connection between the two approaches, let
us consider again the serial covariance function. Any linear combination of
X 0 X0 eees X, SAY A% +a.x +... -c-.'anxn must have a nonnegative

11 2 2
variance. That is
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n
Var(al X\ ¥a %, +... +anxn) =ZZ atl atz Cov (xt . Xy )

By choosing, firstly, a, = cost ©, and secondly, a, = sinte©, and

t
combining the two results, one can show that the covariance function c(t)
cannot be completely arbitrary, but must be expressible as

N
(10) clt) = c(O)f cos (t©)dF (©) ,
0

where F(©) is some cumulative distribution function on (0, 7’), see [2].
Of course F(©6 ) is not the distribution of Xyi for the moment, it is just
some function needed to explain the second order moment of the X, series.
To get an idea of what F(©) represents, we consider an example:

Let

(11) x, = acos e

IN
)
IN
A

+ .
lt b sin elt , 0

where a, b are independent random variables with E(@) = E(b) = 0,

Var (@) = Var(b) = 0'2. Then X, is itself a random variable, although
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clearly all possible realizations are trigonometric functions of frequency
91 /2 7r with amplitude and phase determined at random. The realization

will appear to be completely deterministic, but in the population of possible
realizations we have

E(Xt) = 0, Var (xt) cos2 O, tVar (@) + sin2 O, tVar (b)

2 2

2 2
(cos”" ©, t + sin ezt)c =0 |,

1
and

Cov (xt . Xy ) = Var(a) cos Ot cos eltz + Var (b) sin &t sin ity

o’z cos [(tl - tz)}el .

Thus we have

c(t) = o*zcost:e1 ,

and the model (1) is a stationary (random) time series. Now comparing

2
c(t) = o cos t9'l

with (10),

w
clt) = c(O)f cos (t ®) dF (©)
0
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we see that F(©) must have the form

F(O)

Interpreting this result, F(©) shows that the only frequency of interest
corresponds to © = el’ which is obvious from (l11). By importance,

we mean that the total variance c(0) = & 2 can be explained by trigond-
metric terms, with random coefficients, at the frequency in question. But
of course most time series are not of this type. In general, we have that

represents the proportion of the variance ("energy") of the series which is
due to frequencies ©/27 in the range ( 91/27/‘ , 92/277’) . When

F(©) is differentiable, we write

fHo) = dF (o)
de
S,
and the above proportion is [ f(e)de

!

F(©) is called the spectral distribution, while f(©) is called the
spectral density. To the engineer, a knowledge of F(©) or (&) tells
him all he needs to know about the importance of discrete frequencies, or
a continuous range of frequencies.

Consider the special case where (&) = /22, 0= 6 = 7. This
uniform density tells us that all frequencies are equally important, and in
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musical terms this would be "noise" rather than an acceptable musical
sound. Technically, the series is called "white noise®. Let us consider

the consequences. In (10) we have

T v/
clt) = C(O)f cos t © dF (8) c(O)f cos to f(©) do
0 0

w
= c(O)/ﬂ'] cos téde
0

c() if t =0

0 if t =11, *2, *3,

Thus the covariance of variables at different times is zero. Such would

be the case if the X), Xg, ..., X, were independent. Hence the case

with a uniform spectral density is an extreme one, and is often used as a
null hypothesis in significance testing.

But now, how does one estimate the spectral density? If we have a
model in mind, e.gq.

xt=-ﬂxt_l+et

where the et are themselves a white noise process, it can be shown that

the spectral density is

2
f(e) = /7 1- B - 0<e<7,
1+2F cos & + ﬁ
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and the obvious way to estimate this is to estimate ﬁ by regression
analysis and plug in to the formula. The significance test ﬁ = 0 is the
same as testing f(©) = 1/7” , that is, whether the series is only "white
noise" or not.

If however, no model has been established, then one can proceed as
follows. Assuming a spectral density exists, by inverting the formula (10)
we find

oo o0 )
12) £(6) = 17 + z/w*tZ_l%{EOL) coste= 177 + z/z:le (t) cos t© .

Now if we have n observations, we do not have any observations spaced
(in time) by more than n -1 units apart, and so /O(n), P +1)),

cannot be estimated at all. We may be willing to assume these are all
zero in view of the long time lags involved. Then we might estimate (&)
by

n-1
(13) fe) = 1+ 2/77'2 slcos te
t=1

where the estimate ,S(t) is given in (5), (7). Certainly the estimate
may be biased because terms have bee,g left out. It suffers from the other
disability that it includes estimates A (t) for t close to n -1, which
are unreliable in the sense that large variances may be expected in view of
the few pairs of observations that they are based on. A slightly different
estimate, but not much better than the one above, is the "periodogram".
This can be defined as follows:

n ' 2 n _ 2
In(e) =[2/rg§[zl: (xt -x) coset] +[21: (xt - x) sinet] } ,
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(although various authors use different multiplying constants) and can be
shown to equal

n-1
(14) 28(0) + 42 1-t/n) @) cos te .
t=1

By comparing (14) with (12) we can see that the periodogram actually
estimates 277 c(0) f(©); the multiplier (1 - t/n) in (14) reduces the im-
portance of the terms &(t) for t large, which is advantageous in view of
their bad sampling properties, but may increase the bias of the estimate.
One way that the bad effects of the variance of the &(t) or the Ié\(t), can
be eliminated is to disregard entirely those based on few observations.
Thus instead of (13) one might use

m
o) = 14 +(z/7az A1) cos to

t=1

where m is much smaller than n. This results in an estimate which has a
comparatively low variance, but if the neglected terms are important, will
produce a badly biased estimate. One has to make a compromise decision

as to the practical importance of the bias and variance. This subject has
been studied, and several estimates proposed, by various people, see e.g.
[11]. Significance tests against the null hypothesis of white noise, or any
other particular density f(©), can be made using the periodogram. Some

of these tests assume normality of the underlying distribution, a consequence
being that the periodogram ordinates at ej = 27/n, 3 =1,2, ...,

[% (n - 1)] have essentially independent 7(2 distributions with 2 degrees

of freedom when the series is actually white noise. See [5], [8] for the
distribution theory and significance tests for estimates of the spectral
density.

SUMMARY. We have made a quick survey of how stationary time series
can be analysed in terms of covariances, correlations, or by autoregressive
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models; also we have considered how frequency effects can be investigated.
We have not discussed the problems associated with observations taken

at unequal time intervals, or the vast field of problems with continuous

time recording, or the concept of multivariate time series, or the analysis
of non-stationary processes. Many of these aspects are partly solved,

but remain a fruitful area for research.
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MONTE CARLO METHODS

J. M. Hammersley
Oxford University and Princeton University

The research worker too often feels that he must say something new and
original whenever he says anything, whereas the politician knows quite
well that he should hammer away at some old cliche’ (preferably filched from
elsewhere so that it can be disavowed in emergency) until the public
believes it. I have filched this remark from a Nobel prizewinner (of whose
capacity for original research there can consequently be no doubt), and I
propose to follow his advice and to subject you to a political speech this
morning.

"The Monte Carlo method, " said Dr. Curtiss in a foreword to the proceed-
ings of a symposium on the subject {1], "may briefly be described as the
device of studying an artificial stochastic model of a physical or mathemati-
cal process. The device is certainly not new. Moreover, the theory of
stochastic processes has been a subject of study for quite some time, and
the novelty of the Monte Carlo method does not lie here. The novelty lies
rather in the suggestion that where an equation arising in a non-probabilistic
context demands a numerical solution not easily obtainable by standard
numerical methods, there may exist a stochastic process with distributions
or parameters which satisfy the equation, and it may actually be more
efficient to construct such a process and compute the statistics than to
attempt to use those standard methods. Simple and natural as this
suggestion seems, once it is made, someone had to make it first in a voice
loud enough to attract notice. The voices seem to have been chiefly those
of Ulam and von Neumann, though Enrico Fermi, not elsewhere mentioned in
these Proceedings, also contributed."

It seems to me entirely right and proper that the credit should go to Ulam,
von Neumann, and Fermi in this way, for indeed it was they who showed
the world at large what Monte Carlo methods might do. By way of contrast
Lord Kelvin, who employed Monte Carlo methods sixty years ago to study
the Boltzmann equation (8] and other topics still under active examination at
Los Alamos, failed to make himself heard: I would not have known of his
work had it not been brought to my attention by Dr. Stephen Brush (of the
Radiation Laboratory at Livermore), who has a particular interest in the
history of mathematics. '
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We are accustomed to dividing physicists, say, into theoretical and
experimental physicists; but it is a less familiar practice to classify
mathematicians in the same way . Nevertheless, experimental
mathematics is a genuine subject of study, and Monte Carlo methods
comprise one of its principal branches. The essential difference
between the theoretician and the experimentalist is that the former
postulates and deduces whereas the latter observes and infers. As with
other subjects, this is not a dichotomy into exclusive parts; and the work
of the theoretical mathematician is an adjunct and a complement to that of
the experimental mathematician, and vice versa. In all experimental work,
the better the experimental technique the more reliable are the answers.

In a Monte Carlo experiment, the basic observational material consists
of random numbers. The experimental technique is to combine these random
numbers by some arithmetical procedure to form an estimator, which
produces an estimate that is a solution of the problem under study. As a
rule, it is not hard to concoct unbiased estimators. The difficult part of
the art is find an estimator with a respectably small variance. Of course,
variances can be made small by taking large samples; but in general this
is not a rewarding course of action, for the size of the final standard
error is inversely proportional to the square root of the sample size. To
this extent, the relative efficiency of a Monte Carlo procedure may be
defined as inversely proportional to the product of the variance of the
estimator and the amount of computation expended on obtaining it.

Since this is a political talk, I shall be much concerned with principles.
The overriding principle of Monte Carlo work is to cheat: indeed it is this
which distinguishes it from straightforward simulation. The game theorists
tell us that you cannot guarantee to win a fair game without cheating. Now
there is an important difference between the statistician's task in Monte
Carlo work and in the handling of data obtained from the average physical
or biological experiment. In the latter, there are experimental errors
dictated by Nature; and, though every good statistician should utilize
efficient experimental designs to mitigate and balance out these errors,
there often comes a point beyond which further elimination of the errors is
either not possible or would destroy the very purpose of the investigation.
But a Monte Carlo experiment is artificial, the creation of the experimenter
himself; and, if the errors are immoderately large, that is simply the fault
of the experimenter. In Monte Carlo work we can take heed of Lord
Rutherford's dictum: "If your experiment needs statistics, you ought to
have done a better experiment." In a sense, all good Monte Carlo work is
self-liquidating: although we start out with random numbers in order to
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solve a problem, which may seem to be intractable by conventional numeri-
cal analysis, nevertheless we should strive to reduce their influence on
the final result, and one should always seize any opportunity to replace a
part or even the whole of the sampling experiment by exact analysis.

By way of illustration I shall consider the problem of evaluating
integrals. This is not so special a case as it may seem: for most
Monte Carlo work treats of the expected values of estimators, and these
are simply integrals over sample space. Usually the sample space has
a large number of dimensions, if not infinitely many; and this brings its
attendant troubles. However, for simplicity I shall work with one
dimension only, which will be cenough to exhibit those basic principles
that I want to discuss this morning.

Suppose then that we have a function f(x) which satisfies
(1) o<f(x)<l,

and that we wish to evaluate

1
(2) 6=l: f(x) dx .

If we draw the curve of y = f(x) in the (x,y) Euclidean plane and
construct the unit square S with corners at (0, 0), (0, 1), (1, 0) and

(1, 1), then O is the fraction of the area of S which lies below the curve.
There can scarcely be a cruder Monte Carlo procedure than to take a
sample of n points, each uniformly and independently distributed over S,
to observe the number r of these points which fall below the curve, and
touse r/n as an estimator of @. It is unbiased, distributed binomially,
and has sampling variance O(1 - 8)/n. For purposes of comparison
between one method and other, the denominator is superfluous and we
shall suppress it and work instead with

(3) 6(1-6),
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which represents the reciprocal of the efficiency of the method inasmuch as
it is proportional to the product of the sampling variance and the amount of
work expended in obtaining the estimate.

An alternative procedure would be to take a random number £ , where
here and hereafter £ with or without a suffix denotes a number uniformly
distributed between 0 and 1, and to use

(4) t = f(§)

as an estimator of 8. More generally, in practice one would use the mean
of n such quantities (4); but, as already explained, the case n = 1
provides us with all the comparative information we need. If we replace

x by § in (2), we see at once that (4) is unbiased. Its sampling
variance is

1
(5) ffz dx - 92.
0

By (1), we have f2 <f; and hence in comparison with (3)

]
(6) ffzdx-92<!fdx-92= 0- 6%=9(1-6).
0

Consequently (4) provides a better estimator than we got from choosing a
point uniformly at random in S. The improvement comes from using the
exact value of f corresponding to the randomg , Instead of the less exact
information on the relative position (below or above) of the point to the
curve. This is an example of partial replacement of experiment by a piece
of calculation or exact analysis. The relative efficiency of the two methods
comes from the ratio of (3) to (5), adjusted by some factor representing
the relative amounts: of computing time: in one method, we need to choose
two random numbers to fix a point in the square and we have to decide
whether the point is above or below the curve; in the other method we have
only one random number to choose, but we have to calculate f exactly for
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this random argument. The adjustment will depend upon the form of the
function f; and I leave it to you to make the assessment in various particular
cases according to your taste.

For reference purposes, I shall call (4) crude Monte Carlo. The other
method of choosing a point in the square is so abysmally bad that it does
not merit a name. '

Evidently the sampling errors in the crude Monte Carlo method arise
from fluctuations in the value of f(}) as § ranges over its possible values
from 0 to 1. If f is a reasonably smooth function, it will undergo less
fluctuation in a shorter interval. This suggests~breaking the range of
integration up into several pieces by points 0 =ag<ca)} <... <ap=1,

estimating the several integrals over the respective subintervals by crude
Monte Carlo methods, and finally adding the results together to obtain an
estimate of @. Simple linear transformations make allowance for the
changed lengths of the subintervals, and from these we obtain the estimator

m
7 tL leymap TRy tleymagy ) £

This method is known as stratified Monte Carlo. It is reminiscent of the
sundry linear formulae (trapezoidal rule, Simpson's rule, etc.) which

occur in classical numerical analysis for evaluating integrals, and indeed

it shares much in common with them. The question naturally arises of how
we should choose the numbers aj to make the method as efficient as possible.

A full discussion of this would take me too far afield, so I shall content
myself with saying that (i) the problem is substantially the same as that
encountered in sampling surveys and can be found under the heading of
stratified sampling in the standard textbooks on sampling methods, and

(ii) broadly speaking, a pretty good procedure is to choose the subintervals
to equalize the variation of f in each subinterval.

Next consider rewriting (2) in the form

: o
(8) 9=f f(x) dx =) _f(x) g(x) dx,
0 0 9%
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where g (x) is a frequency function over the interval (0, 1): that is to say

1
(9) gx)>0 and f g(x) dx =1.
0

It follows from (8) that, if M is a random variable from the distribution
whose frequency function is g, then

(10) t=1(n)/g(vn)

is an unbiased estimator of 8 . This holds for any g, and we would like to
know how to choose g to minimize the sampling variance. According to

the principles already explained, we shall get a small variance if t in (10)
is practically constant. Indeed we might try to make t exactly a constant
by choosing g = cf, where ¢ is a constant. We can determine the constant
¢ from (2) and (9):

1 1
(11) 1 =f g (x) dx=f cf(x) dx=c6.
0 0

Thus we want to sample from the distribution whose frequency function is

f (x) /@; and we could do this if only we knew @, the answer to the problem
we are engaged on solving! This is asking too much: and in practice we
compromise by selecting g to meet as best as we can the two conflicting
requirements:-

(@) g(x) must be a simple enough function for us to be able to integrate
it analytically and thereby ensure that is satisfies (9), or normalize
if it does not already satisfy (9); and

(b) g(x) must be a reasonably good mimic of the function f(x), whose
integral we do not know, so that t in (10) is substantially cons-
. tant at least over a good part of the range of integration.
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If we succeed in satisfying (b) to a reasonable extent, then g will be
large when f 1is, and accordingly the majority of values 1 will cluster
around the points where f has its largest or most important values. For
this reason (10) is known as importance sampling.

The expected value of the sum of several random variables is the sum of
their expectations, whether or not these random variables are independent.
Hence no bias will be introduced if in (7) we make the various § j dependent.

At the same time dependence can reduce the variance. For instance,
consider the case m =2, a;=a, §,=1- §,=§, for which (7) becomes

(12) t=af(ag)+(1-a)fll-(1-a)gd = Taf(g),

where .Ta is the functional operator defined by (12). If f is a monotone

function, the two terms in the central member of (12) will tend to balance
one another out, one being high when the other is low; and the variance
of t will be correspondingly reduced. Because the two terms of (12)
reduce the variance by acting against each other, this method is known as
the antithetic variate method. A different kind of dependence, appro-
priate for integrands with a hump or a trough in the middle 1sfl= §2= $;

and (7) would instead become
(13) t=af(af) + (1-a)ffa+(1-a)§] =S_f(g).

In general, this second transformation is not so powerful a means of
reducing variance as the antithetic variate transformation. However, very
striking gains of efficiency may result from a combination of both methods.
In each case we may ask how a should be chosen. Now (12) shows that
antithetic variate estimation applied to the integrand f is equivalent to
crude Monte Carlo applied to the transformed function Taf : and the latter

will have a small variance if we can choose a to make T,f as constant

as possible. As a rough and ready means of achieving this, we might
equate the values of Taf rat the ends of the range of integration. This

gives a = where & is the root of

(14) f@)=(1-a)f() +a£(0).
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The choice of a in (13) is a more difficult matter, discussed in the original
paper on the subject [6]. However, if (12) and (I3) are to be used in
combination with one another, the appropriate thing is to apply T4 first,
where @ is given by (14), followed by as many applications of 31/2 as
may be desired.

As an example of the foregoing remarks, consider the case

(14) f(x) = sin (TTx/2).

The sampling variances (per random number used) and the ratios of these to
the variance for the crude Monte Carlo method are:-

Rough esti-
Sampling mate of com-

Method Variance Ratio puting time Efficiency
Crude Monte Carlo 9-5 x 10"—2' 1.0 1 1.0
Importance sampling 6+8 x 10‘_3- 1.4x 10! 3 4.7

. -4 2 2
Antithetic ToL 3:6x 10 - 2,7x10 2 1.3 x10
Antithetic §, T, 2:2 10-5  4.4x103 4 1.1x 103
Antithetic SS‘I/ZT“ 84x10-8 1.1x10°%" 16 6.9 x 102

The importance function used for the second line of the above table was
g (x) = 2x, which bears about the right relative degree of simplicity to £
encountered in real applications. In the final line (Tg followed by

three applications of 31/2 ) there will be 16 observations per random number

used: thus the variance is reduced by a factor of a million at the expense of
a sixteenfold increase in computing, which means an overall efficiency gain
of about 70,000. Further examples, including a detailed discussion of a
genuine application to a six dimensional integral, appear in [6]. The theory
of the subject ({5], [7]) shqws that we need only consider dependencies of
the forms stated above, namely El =§,or gl =1-,. Further efficiency

gains result from using values of the integrand outside the range of
integration [3].
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In the methods discussed above, there is usually some choice (e.g.,
choice of importance function, choice of stratification point a in the anti-
thetic variate methods, etc.). If the choice is not made in an optimum .
fashion, there will be some loss of efficiency (though seldom much loss
because of the flatness of minima); but there will be no introduction of
bias however bad the choice. To this extent, the methods are robust.

There is of course no reason why one should not apply several methods
simultaneously; and there are a variety of useful methods which I have
omitted from this talk. It is also worth using numbers which are not
random on certain occasions. This and other questions are discussed

in [4].

True to political tenets, I have said nothing profound or new; but I hope
I have exposed a few of the tricks of the trade.
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THE CONSTRUCTION AND ANALYSIS OF NON-ORTHOGONAL PLANS
FOR THE 2" FACTORIAL EXPERIMENTS

Sidney Addelman
Research Triangle Institute

INTRODUCTION. There are many situations in which an experimenter
must estimate the important effects of a symmetrical factorial experiment
with as few trials as possible. There are instances where, say, all two-
factor interactions are important and the orthogonal plan necessary to
estimate these parameters requires more trials than one can afford. If the
experimenter is restricted to orthogonal fractional replicate plans he must
then either abandon the investigation or lose information on some of the
interactions that may be important.

Consider, for example, a situation where it is desirable to estimate

the main effects and two-factor interaction effects of the 27 experiment
and no more than 50 trials can be made. It is well known thata 1/2 re-

plicate of the 27 experiment allows orthogonal estimates of all main
effects and two-factor interactions and that a 1/4 replicate does not.
The 1/2 replicate plan requires 64 trials and the 1/4 replicate plan
requires 32 trials. It then seems reasonable to inquire whether a plan
with 48 trials can be constructed that yields information on all main
effects and two-factor interaction effects. The consideration of all pos-
sible subsets of 48 treatment combinations from the totality of 128

possible combinations in the 27 experiment is a tedious task. There-
fore, an investigation has been made of the use of subsets which consist

of a number, k, of the possible 2™ distinct 1/2™ fractional replicates
defined by a particular identity relationship.

DEVELOPMENT OF NON-ORTHOGONAL PLANS. The treatment combin-

ations of the 2" experiment may be represented as the points of a n-

dimensional lattice with axes Xj, Xgu eees Xpo Each axis of the lattice

will have two points, 0 and l. Thus, for example, the treatment combin-

ations of the 2 factorial experiment, with factors A and B, which
are usually represented by (1), a, band ab can also be represented
by the points; (0, 0), (1, 0), (0, 1) and (1, 1), respectively. The points

(0, 0) and (1, 1) both satisfy the equation X, + x, = 0 (modulo 2) and
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comprise the 1/2 replicate of the 22 experiment defined by the identity
relationship I = AB. The symbol AB0 can be used to denote the set of

treatment combinations for which X *x, = 0 (modulo 2). Similarly ABl

denotes the set of treatment combinations for which :A:1 + x2 =1 (modulo
2).

Consider n factors, A, B, C, ..., L, each with two levels.
Then ABC.¢ o s, L‘: denotes the set of treatment combinations for which

X + x2+... + xn=i, where i=0orl. A 0 or 1 can be associated

with every effect or interaction of the identity relationship. For example,

the 4 possible 1/4 replicates of the 29 experiment defined by the
identity relationship

I = ABC = ADE = BCDE

can be represented by the four relationships

I = ABC, = ADE

0 0 BCDE

BCDE

I = ABC, = ADE

I = ABC, = ADE_ = BCDE

I = ABC, = ADE, = BCDE

or can be displayed in tabular form as in Table 1.
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TABLE 1

STRUCTURE OF THE 1/4 REPLICATES OF A 25 EXPERIMENT

Identity relationship Fractional replicate
1 2 3 4
I
ABC 0 0 1 1
ADE 0 1 0 1
BCDE 0 1 1 0

Since the interaction BCDE is the generalized interaction of ABC and
ADE the subscripts associated with BCDE in each of the four fractional
replicates may be obtained as the sum (modulo 2) of the corresponding
subscripts of ABC and ADE.

The treatment combinations which constitute a 3/4 replicate plan of

the 25 experiment may be obtained by selecting the treatment combinations
that occur in any 3 of the four 1/4 replicates given in Table 1.

If each of the k subscripts associated with a member of the identity
relationship defining a k/2m replicate of the 2" experiment are identical,
then that effect is completely confounded with the mean, A . If the k
subscripts are not identical then that member of the identity relationship
is partially confounded with the mean. If, for any interaction, k is an
even number and half of the subscripts are 0 and the other half are 1,
then that interaction is unconfounded with the mean.

The following theorem, which can be easily verified, is helpful in the
construction of non-orthogonal plans.

Theorem 1. In a k/Zm replicate plan for the 2" factorial experiment
no main effect or interaction need be completely confounded with the mean
if k> (m+1).

Corollary. Ina k/2m replicate plan for the 2" experiment, if
k=(m-u), where u=0,1, 2, .., then (u+1) interactions and their
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generalized interactions will be completely confounded with the mean.

If k= (m -u), itis often possible to construct a non-orthogonal plan
so that the interactions which are completely confounded with the mean
will contain at least five factors. This can always be arranged if there

exists a 1/2u * replicate of the Zn experiment which permits uncor-
related estimates of the main effects and all two-factor interaction effects,
when higher order interactions are negligible. These plans are sometimes
called plans of Resolution V. If it is not possible to have only five-
factor and higher order interactions completely confounded with the mean,
then some two-factor interactions will not be estimable.

Of the k subscripts associated with a member of the identity relation-

ship defining a k/2m replicate of the 2n experiment let t be 0 and
(k - t) be 1. The following theorem can easily be verified:

Theorem 2. If an interaction of the identity relationship defining a

k/2m replicate of the Zn experiment has an odd number of factors, the
off-diagonal elements of the information matrix, corresponding to the

partially confounded effects that are determined by the interaction, are

equal to (k - 2t) 2"~ m' If an interaction has an even number of factors,

the off-diagonal elements of the information matrix associated with that
. n -
interaction are equal to -(k - 2t) 2

We shall adopt the rule that when k is odd, an odd-factor interaction
will have an odd number of the k subscripts associated with it equal to
1 and an even-factor interaction will have an even number of the k sub-
scripts associated with it equal to 1. With this rule the off-diagonal
elements of the information matrix associated with each member of the
identity relationship, for which the absolute value of (k - 2t) is constant,
will have the same value when k is odd. When k is even it may often
be desirable to have (1/2)k subscripts equal to 0 and (1/2)k sub-
scripts equal to 1 for some interactions so that they are unconfounded
with the mean.

If we also adopt the procedure of grouping the effects and interactions
of interest in such a way that those which are partially confounded with
each other are contiguous, then the information matrix will consist of
various sized blocks about the main diagonal with off-diagonal blocks
of zero elements. The variance-covariance matrix can then be obtained
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by inverting each of the blocks about the diagonal separately.

If the above procedures are followed, the blocks which lie about the

diagonal of the information matrix of a 3/2m replicate of the 2n experi-
ment will be of the form

- + 2 -
2n m I_zn m]_

where 1 is the identity matrix of rank p and J isa px p matrix of
l's. It is easily verified that the inverse of this matrix, the variance-
covariance matrix, is

_1___[“ 1 1]
2l'l-m-l-Z 4-p

When p = 2 the block on the diagonal of the variance~covariance matrix
is

2-n-m-l-3 1

w

and when p = 3 the block is given by
2 1 1

-m+2
zn m

It is evident from the form of the variance-covariance matrix that if
for any block in the information matrix p = 4, then that block must be
singular so that an inverse of that block does not exist. In such a situ-
ation one must assume that one of the interactions in that block is
negligible and thus reduce the size of the block to a 3 x 3, making it
non-singular.
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The yield of a treatment combination in a ln:/2m replicate plan for

the 2n experiment can be written'in terms of the main effects and
interactions:

I+

Yijk . .5, =M “;‘At';-B.‘! %ABi-;- C +AC + etc. + error

where the sign

0 and + if i = ]

on A is - if i

on B is - if j 0 and + {f §j =1

on Cis - if k = 0and # if k = ]
and so ony .
and the sign ona term involving several letters is the product of the signs

on the individual letters.

The estimates of the 3/2m replicate plan for the Zn experiment can
be shown to have the following forms:

(1) If X, Y, and Z denote effects and/or interactions that are parti-
ally confounded with each other, their estimates are given by

i 1 (2 ) 1] [x]
T| = ey 1 2 1 [Y]
2 11 2 | [z]
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where |X) denotes the sum of the treatment combinations whose expec=
tations contain X positively minus the sum of the combinations whose
expectations contain X negatively, [Y] and [Z] being similarly defined.
The variances and covariances are obtained from the variance-covariance
matrix and can be shown to be

A A

var () = var (Y) = var (2) =o,2/2n-m-l

cov X,9) = cov X,2) = cov (¥,2) = of/2n =M

(ii) If _«, X and Y are partially confounded with one another, their
estimates are given by

(2 2] (2 1 1] [ 1]
)/(\ =‘2nf:nﬁ 1 2 1 [X]
A

Y LR L[Y]d

where T denotes the sum of all treatment combinations.

A 2, n-m-1

var X) = var (1/[\) = o/2

A A\

A AN -
cov (24,X) = cov (Z,ZL\,Y) =cov (X,Y) = 0'2/2n m

(ii1) If X and Y are partially confounded with each other and with no
others, their estimates are given by
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A\
X 31 [x]

2n-m-l-Z ! 3 [Y]

34

—
L

A
Y

N A 2 -m+ on 2 -m+
var 0 = var () = 3022 TPl v XY = ot Tt

(iv) If .o and X are partially confounded with each other and no others,
their estimates are given by

2.4 3 1 T
1 .
A~ | on-m+2
X 2 1 3 [X]
2 - A 2,n-m+
var ® = 3(’_Z/Zn m+14 cov (Zﬁ,x) _ o-/Zn m+1,

The correlation of the estimates in a 3/2rn replicate of the Zrl experi-
ment which are partially confounded with each other can be shown to
equal 1/(5 - p), where 1 < p < 5. Hence, if p = 2, the correlation
is equal to 1/3 and if p = 3 the correlation is equal to 1/2.

EXAMPLES OF NON-ORTHOGONAL PLANS. The structure of some use-~
ful non-orthogonal plans are presented in the following tables.
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TABLE 2

A 3/4 REPLICATE OF THE 24 EXPERIMENT

Identity relationship Fractional replicate
1 2 3
I
ABC 0 0 1
ABD 0 1 0
CD 0 1 1
TABLE 3

A 3/8 REPLICATE OF THE 27 EXPERIMENT

Identity relationship Fractional replicate
1 2 3
I
ABCDE 1 1 1
ABF 0 0 1
CDEF 1 1 0
AEG 0 1 0
BCDG 1 0 1
BEFG 0 1 1

ACDFG 1 0 0
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TABLE 4
A 3/16 REPLICATE OF THE 28 EXPERIMENT
Identity relationship Fractional replicate
1 2 3

I

ABCDE 1 1 1
ABFGH 1 1 1
CDEFGH 0 0 0
ACF 0 0 1
BDEF 1 1 0
BCGH 1 1 0
ADEGH 0 0 1
BEG 0 1 0
ACDG 1 0 1
AEFH 1 0 1
BCDFH 0 1 0
ABCEFG 0 1 1
DFG 1 0 0
CEH 1 0 0

ABDH 0 1 1
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A USEFUL APPLICATION OF THE NON-ORTHOGONAL PLANS. In the
application of factorial patterns there sometimes arise situations where
the experimenter feels that one or more additional factors should have been
included in an experiment which has just been performed. Using the non-
orthogonal plans described in this paper, the original plan can be augmented
to yield information on the additional factors, without losing the information
obtained with the original design.

If the original experimental plan was a 23 factorial arrangement and an
additional factor must be added, it can be assumed that the additional
factor was held at its 0 level in the original plan and that the original 8

trials were a 1/2 replicate of the 24 experiment. By adding 4 treatment

combinations which constitute another 1/4 replicate of the 2 experiment,
the additional factor, as well as the interaction of that factor with the origi-
nal three factors, can be estimated. The augmented plan is a 3/4 replicate

of the 24 experiment. A fifth factor can be introduced by adding 4 more

treatment combinations and the resulting plan is a 4/8 replicate of the 2
experiment. If a sixth factor is introduced, the resulting plan will be a

6
5/16 replicate of the 2 experiment. When more than one factor is added
to the original orthogonal plan the resulting non-orthogonal plan does not
permit the estimation of the interactions among the additional factors.

5

Table 5 gives the structure of the 23 plan augmented to a 5/16 replicate

of the 26 experiment. Imbedded in this plan are a 4/8 replicate of the

2° and a 3/4 replicate of the 24 experiments. The letters A, Band C
denote the original 3 factors and D, E and F denote the additional
factors,
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TABLE §

3

STRUCTURE OF A 2° PLAN AUGMENTED TO A 5/16

REPLICATE OF THE 2° EXPERIMENT
Identity relationship Fractional replicate

1 2 3 4 5

I .
D 0 0 1 0 0
ABC 0 1 0 1 1
ABCD 0 1 1 1 1
E 0 0 0 1 0
DE 0 0 | 1 0
ABCE 0 1 0 0 1
ABCDE 0 1 1 0 1
F 0 0 0 0 1
DF 0 0 1 0 1
ABCF 0 1 0 1 0
ABCDF 0 1 1 1 0
EF 0 | 0 0 1 1
DEF 0 0 1 1 1
ABCEF 0 1 0 0 0

ABCDEF 0 1 1 0 0



USE OF THE UP-AND-DOWN METHOD WITH FACTORIAL DESIGNS

R. L. Grant and R. W. Van Dolah
Explosive Research Laboratory, Bureau of Mines
Pittsburgh, Pennsylvania

The adaptation of the up-and-down method to experimental designs for
which it might be appropriate has been hampered by tpe fact that at least
S0 trials per sequence are usually recommended (). Where the individual
trials are expensive, as for explosives and ordnance experimentation, the
cost of such long sequences becomes prohibitive. During the past several
years, the Explosives Research Laboratory of the Bureau of Mines has sought
to exploit the advantages of the up-and-down method and of factorial
experiments by combining the two into a single design and to overcome the
cost objection of the up-and~down method by the economical use of shorter
sequences. The principle of the model based on the combination design is
to assume a factorial design and accept as particular response values the
means as calculated from the corresponding randomized up-and-down se-
quences. Since the up-and-down method is founded on an efficient design
for estimating a mean and since factorial experiments are based on efficient
designs for evaluating factor effects, a combination of the two should also
be relatively efficient. Such a design should be applicable to situations of
wide occurrence in explosives and ordnance experimentation where experi-
ments are conducted of the go-no-go, or success-failure, type and where it
is desired to study the effects of one or more factors. However, unless the
sequences are relatively short the number of trials and the cost of the experi-
ment will be large for this design. In the course of this work, attention was
given to meeting the requirements of the up-and-down method in order to
increase its efficiency and thus permit shorter sequences. These require-
ments are that the basic distribution must be normal, its standard deviation
be known approximately, and the up-and-down interval be approximately
equal to the standard deviation.

This paper reviews the work conducted at the Bureau with this combin-
ation model for experiments with coal mine explosives. The statistical
principles are described and the application of the design is illustrated
with five factorial experiments for evaluating certain effects which in-
fluence the safety of these explosives.

*Underlined numbers in parentheses refer to items in the list of references
at the end of this report.
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THEORY. A conventional two-factor experiment is assumed; the design
for this is illustrated in Figure la¥ Here there are p levels of factor A
and r levels of factor C. The response, or experimental observation, for
a particular combination of A and C is designated by Y, where Yll

denotes the combination of factors A and C each at the first level and

Yij denotes the general response. The model is

(la) Y., = 4+ X

ij ; t '7;-&((17')”-!-

€
i

(1b)

m+ai+c -l-(ac)ij-l-e

J ij

where equation (la) represents the universe and (lb) the sample estimate.
(The notation of Anderson and Bancroft (3) has been followed.)

To obtain a response Y an up-and-dgwn sequence is performed accord-
ing to the design illustrated in Figure lb. Sequence 1l is that for combination
A Cy and sequence n for .l\pCr . Each up-and-down sequence yields a

mean and is generally designated as an X. The mean of any given sequence
is assumed as a Y response for use in the design of Figure la. Or,

(2) X

of Figure lb Y,, of Figure la,

11 11

}(ij of Figure 1b

Yi j of Figure la.

Thus, the mean as determined by the up-and-down sequence is accepted
as a measurement of sensitivity of the explosive or item of ordnance under
study and this measurement serves as the corresponding response value for
the factorial experiment.

It will be noted that there are pr combinations in the factorial design
of Figure la and therefore there must be the same number of up-and-down
sequences in Figure lb. That is,

*Figures appear at the end of the article.
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(3) pr = n

is a property of the combination design represented by equations (1) and
(2). The experiments described in this report were conducted according

to this combination design. It is clear that although the two~factor design
has been cited, the combination design may be composed of the up~-and-
down design and any factorial design.

Randomization is achieved as follows. Essentially, the n up-and-
down sequences are conducted simultaneously and in random order. To
illustrate, if p is 3 and r is 3, then n will be 9. Numbers from
l1to 9 are assigned to the 9 different combinations randomly and the
individual trials, or shots for explosives, made in order of the assigned
number.

Orthogonality, or rectangular symmetry, of the factorial design of Figure
la is assured by the requirement that each up~-and-down sequence of Figure
b be of the same length. This means that there should be the same number
of yes-no pairs in each sequence. For example, 10 yes-no pairs will re-
quire a minimum of 20 trials, or shots, with explosives.

' The method of calculation for the mean of each up-and-down sequence
is given by Dixon and Massey (2). After entering the appropriate response
values in the factorial design, this is analyzed in the usual way (3, 8).

VALIDITY OF THE UP-AND-DOWN METHOD. The following three con-
ditions must be satisfied for valid application of the up-and-down method
2, 9:

(1) The underlying, or stimulus, variable of the experiment must be
normally distributed.

(2) The standard deviation of this variable must be known, at least
approximately.

(3) The predetermined intervals of this variable employed in the up-and-
down steps should be within the range of one-half to two standard deviations.

Although the normality requirement may be examined best by conducting
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relatively long up-and-down preliminary sequences, these cannot always
be justified. Short sequences or sequences which are an integral part of
the investigation will then be advisable. In this investigation a test for
normality was made with a 60-shot sequence with explosive A, a selected
permissible explosive (Figure 2). The size of the interval between the
steps was based on the logarithm of the charge weight of the explosive
expressed in grams. At the time this experiment was started, the best
estimate of the standard deviation was 0.06 log units and accordingly
this was chosen for the steps of the sequence. A plot of the distribution
of the ignitions, or ¥Y's, is shown in Figure 3 as a histogram. The test for
normality using the chi-square method described in (1, S) permitted the
conclusion that this distribution was acceptably fitted by a normal curve.
The best-fitting normal curve is drawn in Figure 3.

This sequence gave an estimate of the standard deviation of 0.081 log
units, thus fulfilling requirement (2). Therefore, for requirement (3) an
interval of magnitude between half and twice this estimate, or 0.04 and
0.16, would be reasonably satisfactory for the up-and-down steps. The
actual interval of 0.06 used for this sequence was evidently well chosen.

The sequence of Figure 2 also provided information concerning the relia-~
bility of short sequences. To obtain this, the 60-shot sequence is first
subdivided into three equal sequences each with 10 yes-no pairs. For the
30-pair sequence and for each of the 10-pair sequences, 95 percent con-
fidence limits of the respective means were calculated. The results of
these calculations are plotted as intervals in Figure 4a. The assumption
is made that the best estimate available from the dsta of the 95 percent
confidence interval for a 10-pair, or 20-shot, sequence is the confidence
interval based on the 30-pair, or 60-shot, sequence adjusted to 10 pairs.
This adjustment to 10 pairs is made by multiplying the 95 percent con-
fidence interval of 30 pairs by 43_0/»/_13, or 1.732. These adjusted con-
fidence limits are shown as dashed lines in Figure 4a. The mean of any
20-shot up-and~down sequence should fall within this adjusted interval
and, if such is the case, one may conclude that satisfactory reproducibility
of the mean has been achieved. Figure 4a shows that each of the three
means based on 10 pairs, or 20 shots, were within the adjusted interval.

Three additional 60-shot, or 30-pair, sequences were made with the
same explosive and test procedure (Figures 4b, c, and d). Each mean
based on 20 shots, or 10 pairs, fell within the corresponding adjusted
interval. Thus, these 240 shots indicated that satisfactory reproducibility
of @ mean based on @ minimum of 20 shots was achieved 12 out of 12 times
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with the up-and-down method. This, of course, reflects an important
property of this method, namely, that the mean is measured with increased
efficiency.

Therefore, the conclusions were made that the requirements of the up-
and-down method were being met and that sequences of a minimum length
of 20 shots would be reasonably satisfactory for our experiments.

FACTORIAL EXPERIMENTS WITH EXPLOSIVES. Five factorial experiments
have been conducted using the combination design described above as the
model. Each experiment dealt with some aspect of the safety of coal mine
explosives in the presence of a flammable atmosphere. The explosives -
were either special formulations prepared by explosives manufacturers for
the Bureau of Mines or commercial (permissible) explosives. The charges
of explosives were fired from steel cannons into an explosive mixture of
natural gas in air. Figure 5 shows the operator loading the explosive charge
into the borehole of the steel cannon. The weight of the charge varied
from 150 to 1,300 grams. On the left of the photo is shown the end of the
steel gallery which contains the natural gas in air at the time of the shot.
Figure 6 presents an overall view of the gallery taken at the instant of
ignition of the gas in the gallery by an explosive charge fired into it. The
volume of flammable gas which is ignited is 625 cubic feet. The philosophy
of this testing procedure is based on the hypothesis that safe explosives
will require relatively large charge weights to ignite the gas and dangerous
explosives will require smaller charge weights. Accordingly, this is a
sensitivity experiment because there will be a critical charge weight above
which more or less consistent ignitions will be obtained and below which
nonignitions will result. For such a test, the up~and~-down method is
suitable. The experiments presented below were run over a period of -
several years and can be described only briefly.

Experiment 1. The object was to study the effects of the particle size
of the ammonium nitrate and the types of carbonaceous material of the
explosive on their incendivity to the natural gas atmosphere. There were
three grades of particle size and five types of carbonaceous material.
Accordingly, this was designed as a 3 x 5 factorial with two replications
in order to estimate interaction between the two factors. The results of
the experiment are given in Table la in which each number in the body of

the table is a W50 value. This is defined as the mean weight of explosive
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as determined from an up-and-down sequence consisting of a nominal 20-
shot sequence. This weight will be expected to produce ignitions 50 per-
cent of the time. A total of 612 shots were fired in the course of this ex-
periment. Table lb presents the analysis of variance. The conclusions
were that: (@) The particle size of the ammonium nitrate in permissible-
type explosives has a highly significant effect on the incendivity of the
explosive to natural gas (methane plus ethane) in air, with coarse ammon-
ium nitrate producing less incendive explosives than the fine. (b) The
type of carbonaceous material and the interaction between the two main
factors have no significant effect on the incendivity (6).

Experiment 2. Several new types of stemming for holding and increasing
the confinement of the explosive in the coal borehole in mines have been
proposed. A study was made of the safety characteristics of these by de-
termining their effectiveness in reducing the likelihood of ignition of the
gas. Table 2a shows the combined results of three separate factorial ex-
periments with a total of seven types of stemming materials and nine samples
of explosives. However, the question of interest was the behavior of a
given stemming material with the standard, or control, stemming and,
accordingly, these results were analyzed by comparing a particular stem-
ming with the standard stemming, which was one pound of dry fireclay.

The analyses of variance for the principal comparisons are given in Table
2b. The conclusions were as follows: The stemming materials which

were significantly better than the standard fireclay were dry sodium chloride
in an asbestos container, ordinary water, gelled water, and a saturated
sodium chloride solution in water, each contained in a plastic bag. The
wet fireclay did not differ significantly from the standard dry fireclay but
the special asbestos stemming device was distinctly inferior, and there-
fore relatively hazardous, as compared with the standard fireclay (1).

Experiment 3. A two-factor 3 x 7 experiment was performed to establish
the percentage of natural gas which represented the mixture of maximum
ignitibility when the explosives were fired into the gas-air mixtures. The
combustibles in the natural gas were analyzed and expressed as methane
plus ethane. In this factorial experiment one factor was the gas concen-
tration at 7 levels, 7.0, 7.5, to 10.0 percent, and the second factor
was three typical permissible explosives. The principal object was to
determine whether the gas concentration had a significant effect on the
result expressed as a W50 value of the explosive and, if so, to ascertain

gas concentration representing maximum ignitibility. Table 3a shows the
results and Table 3b the analysis of variance. The conclusion was that




TABLE 1la. - Results of Experiment 1, a 3 x 5 factorial

The upper figute' is the result of the first replicate and
the lower figure is the result of the secondreplicate.
Each result is a W5 value in grams of explosive.

mmoni a
Fine Medium Coarse Total

Carbonaceous material:

Wood meal 436 424 514

374 487 480 2,15
Fine bagasse 467 493 514

401 473 507 2,855
Coarse bagasse 412 480 507

401 480 493 2,773
Starch 436 473 500

418 487 487 2,801
Walnut meal 473 487 473

467 500 529 2,929

Total, first replicate 2,224 2,357 2,508 7,089
Total, second replicate 2,061 2,427 2,496 6,984
Total, both replicates 4,285 4,784 5,004 14,073
Means - 428.5 478.4 500.4

' TABLE 1b. - Results of analysis of variance

Source of Sum of Degrees of Mean F F.5 F.00

variance squares freedom squares

Particle size of

ammonium nitrate 27,146 2 13,573.0 21.86"3.74 6.51
Carbonaceous material 4,426 4 1,106.5 1.78 3.11 -
Interaction 3,036 8 3795 .61 2.70 -
Replicates 368 1 368.0 .59 4.60 -
Error 8,693 4 6209 - .- -

Total 43,693 29 - = = -




TABLE 2q. - Results of Experiment 2, a series of r x 2 factorials. Each result
represents a Ws( value based on a nominal 20-shot series

Special % Ib. % b,
1 Ib. % Ib. asbestos 11b. Y% Ib. water-salt gelled water
Explosive  dry water in  stemming wet dry solution in in plastic
fireclay plastic bag device fireclay salt plastic bag bag
] 582 632 - . . . .
2 507 591 168 461 258 . .
3 473 487 198 522 599 . .
4 687 660 265 599 599 . .
5 574 727 N 536 430 . .
6 522 607 288 - - 7 727
7 424 536 218 - . 591 624
8 544 436 210 . - 514 551
9 551 789 544 - - 906 747

~ TABLE 2b. - Analyses of variance for the data of Table 2a

Source of Sum of Degreesof Mean F F o F g

- variance squares freedom squares

A. Comparing % Ib. water in plastic bag with 1 Ib. dry fireclay:

Stemming methods 20,067 1 20,067 392 532 -
Explosives 103,001 8 12,875
Error 40,917 8 5,115

B. Comparing | special asbestos stemming device with 1 Ib. dry fireclay:
Stemming methods 265,225 1 265,225 35.02** 5.59 12.25

Explosives 89,624 7 12,803
Error 53,013 7 7,573

C. Comparing 1 |b. wet firecloy with 1 lb, dry fireclay:
Stemming methods 1,891 1 1,891 1.4 1013 -
Explosives 31,362 3 10,454
Error 4,962 3 1,654

D. Comparing % Ib. dry salt with 1 Ib. dry fireclay:
Stemming methods 15,753 1 15,753 1.26 1013 -
Explosives 69,094 3 23,031
Error 37,426 3 12,475

E. Comparing % |b. water-salt solution with 1 Ib, dry fireclay:
Stemming methods 58,996 1 58,996 4.73 10.13 -
Explosives 60,860 3 20,287
Error 37,423 3 12,474

F. Comparing % Ib. gelled water with 1 Ib. dry fireclay:
Stemming methods 46,208 1 46,208 9.88 10.13 -
Explosives 21,555 3 7,185

Error 14,037 3 4,679




TABLE 3a. - Results of Experiment 3

Gas, percent
Explosive 7.0 7.5 8.0 8.5 9.0 9.5 10.0
1 633 500 500 651 659 789 866
2 660 717 599 616 589 599 607
3 894 858 651 632 688 800 1,026
Totals 2,187 2,075 1,750 1,899 1,936 2,188 2,499

Means 729.0 691.7 583.3 633.0 6453 729.3 833.0

TABLE 3b. - Analysis of variance of results in Table 3a

Source of Sum of Degrees of Mean F FosFor

voriation squares freedom  squores
Gas, linear 21,600 ] 21,600 2.01 4.75 -
Gas, quadratic 90,517 1 90,517 8.40* 4.75 9.33
Gas, higher 8,133 4 2,033 .90 3.26 -
Explosives 109,484 2 54,742 5.08* 3.88 6,93
Error 129,281 12 10,773 . .« .
Total 359,098 20 . . . .

47
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the gas concentration, methane plus ethane, had a significant effect on the
ignitibility of the gas mixture and the concentration of maximum ignitibility
was approximately 8 percent. As orthogonality was maintained in this
experiment, the calculation methods described by Anderson and Bancroft

(3) and Cochran and Cox (8) were applicable. Single degree of freedom
analysis showed the quadratic regression for the gas to be significant.
Therefore, the relationship between the gas concentration and ignitibility,
assumed as the inverse of the W50 values, is expressed as the parabolic
curve of Figure 7.

Experiment 4. One of the early experiments in this series was a one-
factor experiment to determine the effect of the quantity of sodium chloride
in the explosive on its incendivity to the 8 percent gas mixture. A feature
of this experiment was background randomization of all other factors which
conceivably could affect the result. Accordingly, Experiment 4 was a series
of smaller randomized experiments in which the sodium chloride was varied
deliberately and the other factors varied randomly. This was accomplished
by determining the W50 values on a relatively large number, in this case,

87, explosives of varying compositions. Although this experiment repre-
sents considerable work, much of the data was a by-product of the regular
testing schedules. Table 4a shows the results placed in the form of a one
factor experiment with unequal numbers of subsamples. From the 87 W50

values suitable calculations gave ratios, called improvement indexes, for
the table of data for analysis. Table 4b presents the results of the analysis
of variance. The large F value permitted the strong conclusion that added
sodium chloride, up to 20 percent, has a highly significant effect in re-
ducing the incendivity of formulations of permissible explosives (4).

Experiment 5. In a manner similar to that of Experiment 4, a study was
made of the effect of the particle size of the sodium chloride constituent
(Tables 5a and 5b). The conclusion was that the fine sodium chloride re-
duced the incendivity of the explosives significantly more than the coarse
salt at the 90 percent probability level (or the 10 percent confidence level)

(4).

CONCLUSIONS. With respect to the experimental design it was concluded
that: (1) The up-and-down method may be combined with a factorial design
to provide a useful combination design that gives valid conclusions for re-
latively complex experiments with explosives. (2) Satisfaction of the
requirements of the up-and-down method permits the use of sequences of a
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minimum of 20, rather than 50 trials, or shots, with this design and leads
to appreciable reduction in the cost of the experiments.
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TABLE: 4a. - Effect of quantity of sodium chloride: 55 improvement
indexes derived from 87 W5 values

Imnovement indexl/
Wso)y (Mohg _ , Msody2/ (Wsohys (Wsodyg

Explosive No.

(Ws0)g  (¥50) (Ws)3  (Ws0)g (Ws0)g
| PP 1.2 . ' . .
; SOOI 1.08 . . .
K JO Y - . .
[ IO 1 ) 4 . . .
Souoo ooooooo ves 096 hd hd h
[ YOO veene 1,20 . . -
Toeereenne vorene 1.30 - . .
80. OOOOOOOOOOOOO 1.]0 L ' L] L
9ieeccrnccnnenns . 1.28 . .
10.cc00ceee verene . 1.09 . .
| PO . - 1.07 . .
| b S - 1.07 . -
Boovrsrrerrens = 1.44 . .
[ ST - 1.51 . .
|- TSR 1.05 . .
1600iceeee . 1.19 . .
| O vees ® 1.09 . .
|1 . 2.29 . 291 2.9
|1 2 vress @ 1.50 . .
y {| S . . 1.39 . .
2Maiieeeens e = 1.37 . .
22..0i000000s ves 1.30 . .
y X ST A 1.3 . .
7 PPN - 1.25 . .
25...... v . 1.60 . .
Y { TP . 1.45 . .
27.ieernsennne . 1.58 . .
28..ciiieiinnnnnn . 1.58 . .
29.cieeiennn e = 1.79 2.2 2.59
30........ crecens . 2,05 1.91 3.16
Meieierrerreens = 1.23 1.40 1.91
Ky S - 1.53 1.70 6.51
KX FO e ® 1.00 1.24 1.28
K7 PO . 1.23 . 2.74
K1 1.77 - I X
- 36uienniennns e ® 2.29 4.68 7.66
K 7 . 2.32 3.03 4.05

1/ Subscript denotes percentage of sodium chloride in formulations.
2/ (W Ws()
¥ 50)10 assumed same as 50 10

(Vlso)o (Wso)3
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TABLE 4b. - Analysis of variance

Source of Sum of Degrees of Mean F  Fo.05 Fo.01
variance squares  freedom squares _
Improvement index
— (columns).e..ceeeeeenees 47.84 3 1595 1592* 2,79 4.19
El‘l’ﬂ..... oooooooo esecesvee 5‘.‘0 5' ‘.002 . . b4

Total.eererereenee veaee 98.94 54 . . . .




TABLE S5a. - Improvement indexes showing the effect

of particle size of sodium chloride

Improvement index
Formulation Stemming W5 (coarse) W5 (fine)

No. WS(ﬂNo NaCT) Wso (No NaCT)
| IO Fireclay - .
y SOOI do. 1.45 -
K JOT do. - 1.60
[ S do. 1.51 -
L A do. - 1.51
[ T 2 plugs - .
Teernocronas do. 1.79 .
Buviernrennes do. . 2.05
 J do. 2.21 .
[ [ do. - 19N
L1 JSRR do. 2.59 -
| A do. . 3.16
| K F. ceess  None . .
| I P do. 1.23 .
| |- T - do. . 1.53
| T do. 1.23 .
| I do. - .77
L1 IO do. 1.40 -
| | 2 e do. . 1.70
) IO do. 191 .
y | [T o do. . 6.51
22...ccuueee e do. 2,74 -
y X OO do - 5.23
7 PO do. . .
25.0ceccencnens do. 2.32 -
26.ccceecenes do. - 2.29
27 ceeceecinens do. 3.03 -
28...ccccnenne do. . 4.68
29.ceeeeecnens do. 4.05 -
30.ccceenenns do. . 7.66

TABLE 5b. - Analysis of variance

Source of Sum of Degrees of Mean F FyF 05
variance squares freedom squares o '
Particle size
(columns) 7.69 1 7.69 2,99 293 4.26
~ Error 61.76 24 2.573 - - .

Total 69.45 25 - - - .
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GENERAL FORMUILAS AND A POSITIONAL INDEX-ALGORITHM
FOR GENERATING ORTHOGONAL CONTRASTS
IN MULTI-VARIABLE STATISTICAL DESIGNS

Erwin Biser
Systems Division, Surveillance Department
U. S. Army Signal Research and Development Laboratory,
Fort Monmouth, New Jersey

ABSTRACT. This report deals with the development and application of
general formulas and a number-positional algorithm to generate the effect
functions (effects and interactions) of the factors in orthogonal multi-
variable statistical designs. The positional indices serve to establish a
biunique correspondence between the elements of a data-matrix and their
associated coefficient-multipliers.

The formulas, symmetric functions of the contrast indices, level indices,
and factor indices, facilitate the unique identification and computation of
the effects and interactions of a desired set or subset of factors in orthogonal
designs.

The algorithm and general formulas presented in this report are ideally
suited for a computer. The factors, their levels, the associated A-matrices
of polynomial values, and the elements of the data-matrix are uniquely re-
presented by sets of positionally ordered numerical indices as subscripts -
and superscripts. This situation is amply conducive to machine computations
that involve sums of products.

The application of the general formulatoa 5 x4 x 3 x 2 orthogonal
design is elucidated by charts and tables. The report contains a compre-
hensive summary of formulas for generating the elements of an orthogonal
contrast matrix, as well as of the symbolic notation for the positional
representation of the index algorithm. '

The algorithm developed leads to a significant simplification of the usual
techniques of analysis of variance.
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GLOSSARY OF TERMS AND SYMBOILS

Algorithm. A symbolic technique and/or method used in mathematical
disciplines. '

Analysis of Variance. A statistical technique for estimating how much of the
total variation in a set of data can be attributed to one or more assignable
causes of variation.

Contrast. A comparison or difference between two means or groups of means
of a set of data. A contrast can be represented as a Linear combination
of ‘tHese. means. with known coefficients. When the sum of these
coefficients is zero the contrast is said to be orthogonal.

Design of Experiment. An experiment which chooses the important factors,
the selection of levels, and the order in which the treatments are taken.

Effect. The effect of a factor is the change in response produced by a
change in the level of this factor. The differences between the means
of the higher and lower levels of one factor, averaged over all levels of
the other factors, constitute the effect, or more specifically, its main
effect.

Experiment. A planned set of operations (trials) which lead to a correspond=
ing set of observations, these being the results of the individual trials
constituting the experiment.

Factor. Denotes any feature of the experimental conditions which may be
deliberately varied from trial to trial. It may represent, for example,
temperature, pressure, velocity of a chemical reaction, or azimuth,
elevation, slant range for obtaining target positions. Factors may be
qualitative (when the levels cannot be arranged in any order of magni-
tude) or quantitative (when the levels can be arranged in some order
of magnitude).

Factorial Experiment. One which studies the effects of a number of
different factors .on some observable quantity by varying two or more
of these factors simultaneously.

Interaction. If the effect of one factor is dependent upon the level chosen
for another factor, the two factors are said to interact, or, that an inter-
action is present.
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Level of a Factor. The various fixed values of a factor examined in a fact-
orial experiment are known as levels. The term applies to qualitative
as well as quantitative factors. For example in a three factor experiment
there may be methods, batches and temperatures involved. There may
be two methods (two levels) M) and My , four batches (four levels)

B;, By, B3, By, and three temperatures (three levels) Ty, T, T3. We

designate this experiment as a 2 x 3 x 4 factorial experiment.

Replication. Repetition of the whole or part of an experiment a number of
times in order to establish the effect of a given treatment more accurately
and to provide an estimate of the variation between experimental units
receiving the same treatment.

Treatment. The set of levels of all factors used in a given trial is called
the treatment or treatment combination. The term treatment is also used
to denote the different procedures whose effects are to be measured.

il, iz , o .im
R PRVERERS M indices indicating summation
p ’ q oo vV

inj;m Element in the ith row and jth column of the orthogonal polynomial
coefficient matrix for the mth factor Fp.

in=1,2, 3,..., Ny -1 yields the linear, quadratic, cubic,..., (N -1)

contrasts respectively.
Jjm =1, 2, 3,...,Np, refers to the first, second, third,..., N} levels for
the factorsF;, F,, F3,..., Fy respectively. -

(m) represent row vectors of the transpose matrix of the Fisher
A . orthogonal polynomial coefficients of factor F, with the

iy J
m m restriction that in $0.

(m) (m)

-represent the normalized form of .
im jl'l'l im jm
Cil iy i represents the general element of the orthogonal contrast

(interaction) matrix of the factors Fi1, Fpo vy Py



70 Design of Experiments

G. A. Grand average.

r Number of replications per cell (treatment).

m
leTlNk Ni*Np® ... «N_.

S. . . . General element of data - matrix for factors Fy, Fp, ..., Fp.

]112 m
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GENERAL FORMULAS AND A POSITIONAL INDEX-ALGORITHM
FOR GENERATING ORTHOGONAL CONTRASTS
IN MULTI-VARIABLE STATISTICAL DESIGNS

1. INTRODUCTION . Orthogonal experimental designs are being used
extensively in statistical work for many reasons. The principal advantages
that accrue from using orthogonal designs are the following:

a. The main effects and interactions can be estimated independently of
each other, i.e. the estimate of any effect is unaltered by changes in one
or more of the other effects.

b. The work of computing the effects and interactions and of interpreting
the results is very much simplified.

c. Fully orthogonal designs are more efficient in that they make possible,
for a given number of trials, a more precise estimation of the effects.

The purpose of this paper is to present and elucidate the derivation of a
compact general formula for obtaining the orthogonal contrasts or comparisons -
effects and interactions - of one or more factors in a multi-factor statistical
design. The levels of these factors are equally spaced; this, to be sure,
constitutes a constraint on the design, but it has the advantage of facili-
tating the regression analysis of the treatment sum of squares. The analy-
tical procedure makes use of matrices of orthogonal polynomial values tabu-
lated in tables of orthogonal polynomials (given in Table XXIII, Statistical
Tables for Biological Agricultural and Medical Research by Fisher and Yates;
Oliver and Boyd, London, 1949, Hafner Publishing Company, New York.)

These polynomial values, namely the values of the orthogonal poly-
nomials at the equally spaced levels, serve as coefficients of the elements
of a data-matrix, i.e. the set of data arranged according to a factorial
structure (treatment combinations). The tables of values of these ortho-
gonal coefficients are of invaluable aid in simplifying the computation of the
linear, quadratic, cubic, etc., components of the factor interactions.

Thus results of the theory of orthogonal polynomials are fruitfully brought
to bear on the problem of computing orthogonal contrasts (effects and inter-
actions) for designs characterized by equal spacings of the factor levels.

2. SUMMARY.

a. A general formula and an efficient Positional Index Algorithm are
developed for generating all the elements of an orthogonal contrast (inter-
action) matrix. This formula and algorithm yield all the effect functions
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(effects and interactions) of the factors in orthogonal multifactor statistical
experiments (the levels of each factor are equally spaced). The spacings
of the levels need not be the same for all factors.

b. The algorithm is particularly suited for a computer since the indices,
both the subscripts and the superscripts have positional significance and
the formulas consist of sums of products.

c. The positional indices serve to establish a biunique correspondence
between the elements of a data-matrix and their associated coefficient-
multipliers.

d. The index algorithm and general formula facilitate the unique identi-
fication and computation of the effects and interactions (contrasts) of a
desired set or subset of factors, as well as the total sum of observations
of orthogonal multifactor experiments.

e. The formula and algorithm are general in that they are not restricted
to a specific number of factors.

f. The formulas, symmetric functions of the contrast indices, level
indices, and factor indices, facilitate an expeditious selection of the
factors whose interaction is desired.

- 3. DISCUSSION
a. A Heuristic Approach. It is deemed advisable to introduce the
application of the theory of orthogonal contrasts by way of a simple
example.

Consider a 2 x 2 factorial experiment given below:

> 1 2
)

1 51 812

2 Sy1 Sy2

DATA-MATRIX. Table 1.
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The matrix in Table 1 represents a data-matrix of a two factor experiment
symbolized by Sn.; where the subscripts i and j refer to rows and columns
respectively. Furthermore, i refers to the levels of Fl’ the first factor
and j to those of Fz, the second factor. Thus: i=1, 2; j=1, 2. The
juxtapostion i and j in Si j has positional significance, in that the

first subscript (from left to right) refers to factor 1 (Fl) and the second

refers to factor 2 (Fz) . The concept of positional notation is introduced

here for the purpose of stressing its significance and use in the subsequent
development and derivation of general formulas and algorithms for ortho-
gonal contrasts. S, stands for the treatment in which F, (factor 1) is at

the second level and Bz (factor 2) is at the first level.

Let the data or observations in the data-matrix be arranged in the follow-
ing way, i.e. as a vector, or a row (or column) matrix:

5: [311' S5+ 8310 S5 |

Now we know that the main effects and interactions can be expressed
by the following scheme:

TREATMENT COMBINATION
(1) (a) (b) (ab) DIVISOR

@] -1 | # -1 lw 2
Bl -1 -1 +1 +1 2
iTAEI +1 ) -1 |+l 2

TABLE 2.
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Here A corresponds to F1

B corresponds to Fj.

If the treatment symbols are interpreted as:

(1) = a)b; = 8, (both factors at their lowest levels)
(@) = ayp) = 8,
(b) = a)b, = 8,

(ab) = ayb, = Sy, (both factors at their highest levels),
then:
[A] The main effect of A = (1/2) [853 - Siz + 82) - sy
(3a-1) [B] The main effect of B = (1/2) [822 + 812 -85, - Sll]
[AB] The AB interaction = (1/2) [822 - Sj2-83 ¢ Sn] .

[A] can be represented as the difference or comparison of two
means:

G-y [a} [Séz: 321], _ [512 *2' s11] ;
likewise for [B} [B] = [Szz : Slz] - [SZIZSH] ;
whereas: E\B] = [322; Sn]_ [821 Z 812] .

Let us rearrange the elements in Table 2 to correspond to the elements of
S’, the transpose of S. We shall simply interchange only the 2nd and
3rd columns of the matrix in Table 2. We obtain the lambda matrix:
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-1 -1 +1 +1
(3a-3) A = [lij] =]-1 41 -1 +1
+] -1 -1 +1

'?\ij = the element in the i-th row and j-th column; i=1, 2, 3; j=1, 2, 3, 4.

If we pre-multiply the column-martix

)
511
S12
s!' = by the matrix A .,
S)1
S22
we obtain:
’ /
(3a-4) AS =cC,
where C is a 3xl column-matrix given by:
-
FCI =(-8)) - 812 + 821 + 82 )T Ci
Ga-5) [0 = |cy= (=848, -5 +5) |z |c,
Lcs =( 831~ 812 -85, *+8;,) Lcs )

Each element of the C-matrix is termed a contrast or a comparison, i.e.,
a difference of means (if we take into account the appropriate divisor). The
first element, C), is the main A effect; the second element, Cy, the main

B effect; and the third, Cg. is the AB effect.
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As has been pointed out, these contrasts can be put on a mean basis by
introducing proper divisors.

b. Orthogonal Contrasts:

From an examination of the contrast matrix in (3a-5) it can be seen
that each element of this matrix, the C-matrix, is a linear form of the
means of treatinent combinations. Cl' for instance, is given by

(3b-1)
-Su -812 + SZl +Szz§(’1) Sn + (-1) Slz + (+l) 321 + (+1) 322 s e e

The coefficients of Sij (3b-1) are elements .)‘ij (j =1, to 4) of the
A -matrix in (3a-3). These coefficients have the following property

A

(3b-1) At gt Azt A= 0

+ =
nt Apt Apt Ay =0

A3t Azt A3t Az = 0,

This can be written as:

4
(3b-2) Z Ay = O (i=1, 2, 3).
Lt

Thus from (3a-3) it is clear that:

-1 -1 +1 +1

I\
o

(3b-3) -1 41 -1 41 =0

+1 -1 -1 +1 =0 |J.
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The coefficients of the orthogonal contrasts possess another property,
namely, that expressed by the following equation:

(3b-4) - ifk ,.
? AyA =0 ’
(§ refers to columns) ,

wheré i1 and k refer to different contrasts of the set; i.e.; the inner
product of any pair of rows of the coefficients in the A -matrix of an
orthogonal matrix equals to zero.

Thus from (3a-3) it is seen that: (taking the first and third row)
(3b-5) - (-1) (+1) + (-1) (-1) + (1) (-1) + (1) (1) =0O.

It is this properfy that enables one to estimate the effect of,  say,
factor A, independently of factor B, and of the effect of the AB inter-
action.

The notion of contrast can be put on a more formal basis. It is
pertinent to present some of the salient structural characteristics of
the concept of contrasts.

Contrasts are ¢ oingarison s or differenceg between two means or groups
of means. A contrast among, parameters 81 82,. .o lS is a linear function_

of the 3, with known constant coefficients subject to the condition that
the sum of the coefficients is zero:

= >‘1131‘“ A8yt .o+t A 8 .

Z Ay 8y

=1

(3b~6)
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n
Cl is a contrast if Z >\11' =0.

=1
Two contrasts
C, = )‘1131*>‘1232+ .”+xln n
Cy = Ag8;+ A8+ =t + Ay Sy

are said to be orthogonal if

in

(3b-7) >*117‘21‘” Al Agp ¥ttt A

or more compactly written as:
n

(3b-8) Z Ay Agy = 0.
=1

The sums of squares (SS) associated with any contrast C; is given by:

. 2/& 2
(3b-9) Ss (Ci) = (CI/Z ( >\“)
=]

EXAMPLE: The following simple example is given with the aim in mind
of concretizing some of the abstract notions on contrasts presented
thus far:
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A by b, |TOTALS
a Si S12 |51t S
13 18 31
S S +8
21 S,0 P17 P22
)
15 22 37
S.. = Sij
i=1 j=1
TOTALS |5, + 5,15, +5,,
= 68
28 40 S..=68/4=17

S.. is the total sum of treatment measurements: grand total.

TWO-BY-TWO TABLE. Table 3

S.. is the grand mean.

The main effect of A = (37-31)/2 = 3.

The main effect of B = (40-28)/2 =6 .

The interaction of A and B = (13 + 22 - 18 - 15)/2 = 1.

The effect of A in the presence of b1 is equal to 15-13 = 2.

The effect of A »1n the presence of b2 is equal to 22-18 =4.

8l

Similarly, measures can be obtained for the effects of B in the presence

of a and in the presence of a, respectively. Note that

2 2 2
(3)” + (6)° + (1)” =46. This the total sum of squares (TSS) given by
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the usual formula:

- 2
TSS(Sij)'=§j(Sﬁ- S..)

(3b-10) =(13 - 17)% + (18 - 17)2 + (15 - 17)2 + (22 - 1.7)2

= 46.

Let us apply the matrix of orthogonal coefficients given in (3a-3) and
make use of equation (3a-4):

-1 -1 +1 +1] [ 13 ]
-1 41 -1 +1 18
(3b-1) \§ = =C,
15
+1 -1 -1 +1] 22 |
[ 6 | "cl
(contrast .
matrix) [C] = |12 = Cz .
2 C
o | 3]

Cl = the A-effect total

02 = the B-effect total
C3 = the AB interaction total.
The sum of squares of the contrast elements is given by (3b-9)
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2 2
SS(Ci)=(Ci) )_}(,)\”)

2 2 2 2
SS(Cy)=36/(1" +1"+1"+1) =9

2 2 2 2
SS(CZ)=144/(1 +1 +1 +1)=36

2 2 2 2
SS(C3)=4/(1 +1 +1 +1)=1

3
2 2] _
TSS=Z[%_1(}\H) ]—9+36+1 46.

i=l

c. A Replicated 5 x 4 Design. Let us turn our attention to a two
factor experiment with F, (factor A) and F, (factor, B) at four and five

levels respectively. The levels of P1 and Fz are equally spaced.

The spacings of A and B need not be the same. The experiment is
conducted with three replications for each treatment combination:

4

, N1 (Number of levels of Fl)

(3c-1) N2 (Number of levels of Fz) = 5

r (Number of replications) = 3
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The following tableau gives the data matrix of the experiment:

[Su]‘ | DATA MATRIX OF 5 x 4 EXPERIMENT

R B

A B b | b, | by by bs | TOTALS

TS,

j

3 Sul Siz| S | S | P15 |=Fa,

s

a, Sp1| Saz| S23 | S24 | Sz _5_',.21
a s..| s s S s 2331 TABLE 4A.
3 31| S3z| S33 34 35 | =Fa, 1455 24

ag | S4| S42| 8 544 | 545 ZS‘”

43 Ya,

Lsy) Z512 Lsy3 L8y | LSis Zzzzasi“

TOTALS |
=Ly =dby = Lbg | = Ly [=Lbs |=Lby

Sij is the data matrix of this experiment; i=1to4: j=1to 5.

Table XXIII of The Fisher and Yates Tables give the following
orthogonal coefficient matrix (the matrix of polynomial values):

For factor A (Nl = 4) this matrix is
[C3 41 -1
(3c-2) [P(A)] = -1 -1 43

+1 -1 =3

[+3 +1 +l_
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The first column is associated with the linear, the second column with the
guadratic and the third column with the cubic effects respectively.

Let us form the matrix [kg’ , the transpose of P(A) in (3c-2).

-

(1) (1) (1) (1)
An Az A

14
o M . |l
(8c-3) >\u] P21 Paz Xaz Ay
i=1, 2, 3
j=1,2,3,4

(1) (1) (1) (1)

34
-3 -1 +1 43 |
- +1 -1 -1 41
-1 +3 -3 4l
L -
(1) (1) (1) (1)
L, L, Ly Ly
= (1) 1 1 1
Q Q(z ) Qg) Q(4)
(1) (1) (1) (1)
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>\ 1 J , the first row is the linear row;

[« (1]
>\( ) , the second row is the quadratic row;

, the third row is the cubic row.

1
The superscript (1) m[>‘(ij)] refers to the F|, factor A.

One can obtain the contrast matrix for the A-effects by post-multiplying

(1)
the [>\ i j] matrix for factor A, given in (3c-3) by the column-matrix

anl
Ta,
Yaj
Yay)
o o w] .
Loy Ly L, Zal
(3c-4) [Ck(A)] = Qil) Q;” Q(sl) Qfll)H zaz ,
k=1, 2, 3) a
(1) (1) (1) (1) 3
C, G, Cy G| |L,
L IR 4_]
where
(3c-5) Zai = ZZSH, i=1,2,3, 4,

(see Table 4A).
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(

Cl = Lil)Zal + Lgl)zaz + Lgl)za:; + L&”Za‘t

Linear effect total of A

Q
N
n

Q}”Zal + le)z.az + Qg”):aa + 021)234
(3c-6) W

Quadratic effect total of A
(1) (1) (1) (1)
C3— 1 Z.—;\I+C2 Za2+C3 263+C4 }:a4

= Cubic effect total of A

L (a)
(3c-7) [, @] = o,
(k=1,2,3) 3 (A)

Note that there are three A contrasts; this number is one less than the
number of levels of A, which is four (N1 = 4).

The sum of squares (SS) of the element Ck(A), the k-th element of
contrast matrix of A is given by the following expression:

(C, )

(ny¢ -
'Nzi [>\n
=1

(3c-8) SS [c:k (A)] =

k=1, 2, 3)
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(1)
where [)\ jj | is given in (3¢c-3); and where
N2 = Number of levels of Pz (factor B),

r = Number of replications of each treatment.

In this example N2 =5; r=3. See (3c-l).

The total sum of squares (TSS) for factor A is given by the following
expression:

1
(3¢-9) TSS (A) =§:{[c]§%1\12i [7\(11) 2}
=] j:l

3 4 2
(3c-10) = 2 Aty }
Cc in{[ci] 15;—1[ ij J

Analogously it can be shown that the contrast matrjix for factor
B (=F,) is given by the following expression:

) [ (2) (2) (2) () (2] [EB
(et ool Iy Ly L Zb
2

ol2) ol2) f2) (2) [(2) 5

s ®)] = 1 2 3 4 5 by

k (2) f2) (2) (2) (2) 5
k=1,2,3,4) ! 2 S 4 5 J b,

2 2 2 2 2

Lqi)qé)qg)qi)qé) Tng|.
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Where:

-
(2) (2) (2)
L° L Ly

(2) (2)

e (2)

<G

(2)
G

(3¢c-12)
(2)

C

(2)
, C

2

(2)
9

(2)
9,

(2)
93

+l -4 +6 -4 +1|.

o0 [ A 8
| 598 2
R | CRERCRORG
] b w8,

-2 -1 0 +1 +2

+2 -1 -2 -1 42

-1 +2 0 -2 +l

Note there are four B contrasts; i.e., one less than the number of

levels of B(N2 = 5).

(3c-13) [Ck(B)] =

(k=11213l4)

_CI(B)_
C,(B)
C3(B)
C4(B)
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The sum of squares of the k-th contrast of B is given by:

2
(3c-14) ss [c )] = ‘Clz;) ;
eri[ ij]
]:

Where N1 = the number of levels of A(=Fl)

d. Derivation of Expression for Elements of Contrast Matrix (Two
Factor Experiment).

Let us consider the data matrix [Sij]given in Table 4A
(i=1to4;j=1to5).
The last column in this table, consisting of Zal, Zaz, Za3, and of Za4

can be obtained by postmultiplying the data matrix [Sij] by the column-
matrix consisting of 1's in the following manner:

1 I ]

S1  S;2 S13 S Spg L 51
1

521 Sz S23 Sp4 Sps ZSZj

S31 S33 S35 S34  S3g , S35

Sq1 S42 S43  S44 Sy 1 LZS41

In view of equations (3c-3) and (3c-4), the contrast-matrix of A
can be expressed as follows:
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(3d-2)

[Ck(A)]
k=1, 2, 3)

(1) (1)

s (1)
>\lI ?\12 )\13
(l) (1) (1)
>\ AZZ )\23
1 1 1
RO

AE) Sn Sz S;3 S Sps
%(214’( S21 S22 S23 Sz4 S35
>‘(92_ 831 832 S33 S34 S5

_341 Sa2 S43 Syq 345_

9

1

1

Thus it is clear that postmultiplying the data matrix by the column-matrix
of I's has the effect of eliminating the B factor, since it merely adds the

data row-wise yielding the vector in the last column of Table 4;
column vector on the right hand of equation (3d-1I).

also be put in the following form:

(3d-3)

[Ck(A)] =
k=1, 2, 3)

-

_
g0 )
(M (1) (1) (1)
Ql QZ Q3 Q4
(1) (1) (1) (1)
Cl C2 C3 C4

Ls),

o o0 0
zszj 0 0
0 zs3j 0

0 0 qu

1
-

this is the
Equation (3d-2) can

In order to obtain the contrast matrix for factor B (=F,), the data matrix,
[Sij ‘ts premultiplied by the row-matrix of 1's; the resulting matrix is

premultiplied by thi€ matrix 'of orthogonal coefficient$ corresponding to the
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number of levels of factor B(=F,). Thus analogously to (3d-2) the contrast
matrix for factor B is given by the following expression (N2 = 5):

_ T
2) (2) (2) (2) (2)] - -
L Ly Ly Ly L [1 llﬂ §1 Si2 83 S84 315-\
(3d-4) .
(2) (2) (2) (2) (2)
Q Q Q4 Q < S1 %2 %3 §4 55
[Ck (B)] = \
(2) (2) (2) (2) _(2)
G G G G G 831 532 §3 §4 §
k=1, 2,
3, 4) (2) _(2) (2) _(2) _(2)
| T 939 95 % a2 Bas Baa Sas ]
where
B I
c1 (B)
Cy (B)
(3d-5) e, ®)] =
k=1to4 (=N,-]) C3 (B)
C,(B)
1 4 4

The contrast matrix for factor B can be written in a form analogous to (3d-3):

* Actually, the transpose of the resulting matrix product is premultiplied
by the coefficient matrix; analogously for the product of the two right extreme
matrices in equation (3d-6).
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(3d-6)

[c, @)
k =1,2,3,4)

[ (2)
L
(2)

B

(2)
Cl

(2)

| 9)

(2) (2) (2)
L, Ly I,

2) (2) (2) (2
-Q( ) (2) (2) (2)

2 3 405

(2) (2) (2) (2)
CZ CB C4 CS
@ @ @ o

2 43 94 95 ]

(2)
Ls

[;1llﬂ

93

Thus far the presentation dealt with the contrast matrices.for the A and
B factors singly, i.e., no interaction terms were involved. What is
needed is to develop an expression for obtaining the general element of the
contrast matrix for the AB interaction, or the interaction contrast matrix.

Let the data matrix of the experiment, denoted by [sij] , be

premultiplied

by the matrix of orthogonal coefficients for factor A, namely, the[?\lj ]

matrix given in (3c-3); and postmultiplied by the
orthogonal coefficients for fdctor B, namely, the

(3d- 7)'
oW
L L
m
Q
m
K

(1)

L

(1)

Q3

C

(1)
3

(1)
Ly

(1)
Q4

C( 1)

4
-

S1 S22 S3 Sy

S1 %2 B3 Sy
81 8, 83 Sy

1 S41 S42 S43 Sa4

Sis

S5
85

(e

(2)
L

(2)
L

@

(2)
Ly

(2)
L

LS

(2)
Qr

2

3

(2)
Qg

(2)
QS

(2) C:(2)

(2) C(2)

(2).
G

2

3
(2)

Cq
(2)
c

5

transpose of the matrix of
N

(2) |

i

matrix given in (3c-12):
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This can be seen to equal to:

_ - -
X (11)311 2L (11) Si2 L (11)313 2 (il)si4 L (11) 157 L(lz) % C:Z) q(lz )
ZQ(il) 11 z (1) E-:0(11)313 ZQ(11)814 ZQ(il) iS5 | I"(22) Q(ZZ) C.(‘ZZ) q;2)
Xc) i S Zc(il) 5, L (il) Si3 z‘3'(111)314 ZC(111)315 L(: ! (: ) C§2) q(g)
] where T N)l: =4 - @ 2 ng) @
(3d-8) Y f(:) Q(sz) cf’ q(g)-
=C,(aB) . This is the AB interaction contrast

(k=1,2,°--,12)
matrix.
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Equation (3d-8) can be seen to be equivalent to the following expression:

(3d-9)

thﬁ

(02

i,j=1

)Ny

(1) (2)
Qi Ly 8y

wllNz

(1).(2)
Cj Ly 8

NNy

ZL(DQ(Z)SH

i,j=1

NI'NZ

1) (2
Zo(i )Q( )Sil

i;j=.1

NNy

ZC( 2o

i,j=1

Nl’NZ

i,j=1

2
b

Wl

[N
~
b
]
—
[
Nomde

N].N,

Z (11) C(jz )S

i,j=1

.
NN,
Y g
U

1,j=1
NI'NZ

(1 (2)
ZQI qi Sy
i,j=1
N N3

(1) (2)
i,5=1 A
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In view of (3c-3), equation (3d-9) can be represented by the following expression:
(3d-10) |
Ex @s) =

(k =1, 2[ cee 12)

[Ny, N, N}, N, N, N, NN, ]
(1) (2) (1) (2) (1) y(2) (1) y(2)
Z/\h Ayjs ij Z’l A28y Z\u A3;8i Z"n ’\4;' 54

i,j=1 i,j= i,j= i,j=1
) NN, | NN, N /N

(1) y(2) (1) y(2) 1)13(2)e (1) (2)
Z’{ Ay's Sij Z’\n’lm 54 Zfl /{3131j A21Aq;s ij
iIJ-l ilj= 11j=1 1:j=1
NN, NN, NN, N

(1) y(2) (1) (2) (1) y(2) (1) (2)
Z'\ai/\lj Sii Z’l ’121 ij 2/131/\3131, Z’\ A41 ij
| 1571 Ll 1,i= 1,4=1 _
where

NN, N N
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i=1to N, (=4 in this experiment)
j=1toN, (=5 in this experiment),

where [)‘(111)]’ [/\(?2], [A(;i] are the linear, quadratic, and cubic _row-
matrices associated with Fl' which is factor A. Note that the super-
script "(1)" refers to factor designated by 1, namely F; (=A). Also

note that the subscripts "1", "2" and "3" refer to the linear, quadratic,
and cubic row-vectors of the matrix of orthogonal coefficients. Pari
passu, similar descriptions hold for the row-vectors associated with
factor designated by 2, namely F2: ‘

e, o P(ﬁ)]c ['\(22} " [,\(32])]' [,1(421)]

The equation for the general element of the interaction matrix, Cpq /

namely the element in the p-th row and g-th column of the interaction
matrix, is as follows:

NI N2

_ - 092
(3d-11) Coq kZl;;\pqujskj

p=1toN; - 1(=3 in this experiment)
gq=1lto N, - 1 (=4 in this experiment)

where Nl = the number of levels of F; (x4),
N2= the number of levels of P2 (= B).



98 Design of Experiments

The AB jnteraction orthogonal contrast matrix is @ 3 x 4 matrix given as

follows:

c c
11 2 %3 Cu
3d-12 c -
(3d-12) [Cpa] Ca C G, Cag
Cy Cy, Ca Sy

This notational matrix can be represented in a more familiar symbolism:

(3d-13) FA B A_ B B A. B i}
Lin Lin Lin Quad pi.ln Cubic Lin Quart
T = A ‘ ‘ ' B
chq] AQuadBLin AQuadBQuad QuadB'Cubic AQuad Quart
B A B A A B
_ACubic Lin Cubic Quad CubicBCubic Cubic Quart

It is noteworthy to point to the fruitful significance of the positional
notation used in equation (3d-11):

(1) There are only two indices (subscripts) in the general symbol Cpq'

This indicates there are only two factors involved, namely l=‘1 and Fz . Thus

the number of subscripts in ihe general symbol designating the general
element of the contrast matrix equals to the number of factors involved in
the experiment.

(2) The first subscript (from left to right) of the general symbol Cpq

is also the first subscript of the orthogonal coefficients associated with
the first factor, Fl'

(3) The second subscript of the general element is the first subscript
of the orthogonal coefficients associated with the second factor (= Fz) .
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1
(4) The second subscripts of /\(pl and A(qzj) orthogonal coefficients are

also the subscripts of the elements of the data matrix ( Skj in equation (3d-11)).

(5) For any set of values of the doublet (p, q) each element of the data-

matrix is uniquely associated with one and only one element of the )\ lk
2 P
and one and only one element of /\( j) coefficients. Thus in computing C__,

1 23
the element S 41 is associated uniquely with /\(221 and with A(j 1) . This

establishes the biunique mapping of the indices of the orthogonal coefficients
and those of the elements of the data matrix, for any set of values of the
indices of the elements of the contrast matrix. The subscripts of the general
term of the contrast matrix identify the sources (factors in their proper
positions) of information. ‘

Let us now turn to the problem of utilizing this compact symbolism to
obtain the A and B effects. This entails a slight innovation in equation
(3d-11). We introduce the symbols /\(01:( and )(021 where

,\“) 1 for k=1,2,--, N

(2)
A5

1
(3d-14)

1 f =1,2, ++-,
or j N2

Thus the A and B effects (totals) are given by the two following express-
ions respectively:

(3a-15) N, N
(A-effect) = Cpy = i ik‘;i /\(jj)skj
k=1 j=1
Ny N
B A(;L kj ,
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(3d-16) N

Nl

W @)
Z Ak AqsSks
k=

1 1

N

(B-effect) = Coq

be
]

N, N,
= (2)
) ) NG
k=1 §=1

The total of all observations in the experiment is given by:

(3d-17) N N

_ (1) (2)
Coo = | ok A 07 5k;

2

1 j=1
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Numerical Examgle

Consider the following experiment, exhibited in the following table:

Data Matrix of 4 x 3 Experiment

[sk j] :

. ,
k=1to4 B by b P3 TOTALS
j=1to 3
511 512 513
2l 50 90 130 La) =270
b
Szl Szz S23
a, 30 80 110 La, =220
531 532 %33
ia 70 90 150 | La, =310
3 3
s s s
41 42 43
2, 40 70 90 | La, =200
! Za = Zb-
i . _ k = &b
TOTALS| Lb, = 190 | Lb, =330 | Lby =480| _ L Ts,,
= 1,000

TABLE 4B.
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- n
-3 -1 41 43
(3d-18) [,\(;]Z] = +1 -1 -1 +]
p=1to3 -1 43 -3 4l
k=1to4 - -
-1 0 +l1
(3d-19) )L(Z)] =
. +1 -2 +]
q=1,2;j=1, 2, 3
N, =4
(3d-20)
N, =3

The effects (total) of A are given by:

4 3
3d’1 =
SR
k=1 j=1

p=1 2,3 (=N1- 1).

The Linear effect (total) of A is given by:

w

Clo Al Sk
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(1) (1)
(3d-23) Clp = Ausy+ Xilsy, + Xy sy

(1) 1 (1)
+ X8, % A(12)322" Az 853

(1) (1) (1)
+ X 8yt '\13 Sy * A3 S35

(1) 1) . (1)
+ XS+ ’1(14)342" PNV

The expression (3d-23) is equivalent to:

)\(l)(s +8., 48, + ‘l(.l‘)(s' +.5,,%8,.)
(3d-24) 111l 7 Y12 7 P13 Az W21 7722 .23
+ 1(113) (85, +5,,.* 8,0 + /\(114) (8, +S,, + 5, -

32 42

The latter in turn is equivalent to the matrix product:

I 111) A(llz) ’\(113) A 114) r Zalq

Ta,

(3d-25) Zaa
(For La), La,. etc. see TABLE 5), | Z""4_

C10 = (-3) (270) + (-1) (220) +1(310) + 3(200) = -120.

The Linear effect of A = -120/12 = -10 (per treatment).
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Likewise, C20 , the quadratic effect (total) of A equals to the matrix
product:

_ [ ) 3y 'y
C20° [’\21 A2z A2a ’\24] Lay

(3d-26)

= (+1) (270) + (-1) (220) + (-1) (310)
+ (+1) (200) = -60.

The gquadratic effect of A = -60/12 = -5 (per treatment)

(The number of observations is twelve).

1
The cubic effect (total) of A: Cjp (=z 2/\(3]2 Skj) can be represented by:
k:

[y y ]
C30 7 [/\31 A32 A33 A-34] Zal
Zaz
(3d-27)
Zas
Lay.

Thus, Cgjq . the ubic effect total of factor A, equals (-1) (270) +3(220)
-3 (310) +1 (200) = -340.
The cubic effect of A = -340/12

= -28.34 (per treatment)
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[ (1)] = z-3 -1 +1 +3
(3d-28) [,\(”] - [s-1-1 4]
[)L(l) = [-1 43 -3

Similar procedures can be employed to obtain the linear and quadratic
components of the B-effect. Now b, replaces the Zal in exprelssions

(2
(3d-25) to (3d-28); and the /\ -matrix of (3d-19) replaces the /\ -matrix
in these expressions. Expression (3d-16) constitutes a more general
formula for obtaining the B-effect.

Let us now compute some elements of the AB interaction contrast matrix:

The expression for sz is given below

N=4 N,=

(1) (2)
(3d-29) Cpa EAGBY Z Z)x

k=1 j=1

where [/\( o = =[#1 -1 -1 #l]i k=110 4

and [/1(221)] =1 -2 v1]i1=1t03

(3d-30)  Cyy = A(211) /\(2 Si /\( /\(2) SIZ*A( A(23. 513

(1) (2) (1) (2) (1) (2)
’\21 21+ /\ ’\22 zz Azs 23

(1) 4(2) (1) y(2) (1) (2)

A ’\21 317 /\ ’\22 32 ’\ A23 33

1
)\( )/\(2),?341+ A( A(zz Syp* /\(1) /\(2)
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( (+1) (+1) 50 + (+1) (-2) 90 + (+1) (#]) 130=0 }
(3d-31)
e (<) (+1) 30 + (=1) (-2) 80 + (-1) (+1) 110 = +20

Cyz= = -30.

-~

+(-1) (+#1) 70 + (-1) (-2) 90 + (-1) (+1) 150 = -40

\+ (+1) (+1) 40 + (*1) (-2) 704+ (1) (+1) 90 =-10 .
/

What is done in (3d-30) and (3d:21) f\f to superimpose on the data matrix,
S. , the matrix formed from N= 2=3 namely, the matrix:

Kj
§ (1) (2)
E Azk’\Zj

k=1 j=1

— —
[ @ (1) 4(2)
N SNE A i\

247723

1) 3)(2 1) 2
@ g

The superimpo?it)ion( i)s unique in that every element S
1 2
the product /\Zk AZj

indices. This is clearly seen in (3d-30).

ki is multiplied by

with due regard to the positional sigificance of the

(3d-32) N =4 N2 =3
_ (1) y(2)
CroEAnn) = > . > A 1k )‘oj Sk
k=1 i=1

where [A(llk)] = [-3 -1 +1 +3]; A(i: =1, for all j
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(-3) 50 + (-3) 90 + (-3) 130 = -810

(3d-33)
(-1) 30 + (-1) 80 + (-1) 110 = -220
Cio. =
: (#1) 70 + (1) 90 + (1) 150 = +310
(#3) 40 +(3) 70 + (3) 90 = 600
= -120.
Cp = =20

We can include the total sum of observations (C0 0) , the A and B

effects totals by having p, and g, in Cpq, assume the values O0;

p=26,1,2,3;,q=0,1, 2.

o0 Col Co2

0 Cn C2
(3d-34) [c pq] -

Ca0 ©C2 Ca2

1 C30 Ca Cag
1,000 4290  +10

2120 -90 430

(3d-35) [c ]=
Pq -60 -30 -30
| -340 30 -190 ] .

It is to be noted that COO' the total sum, does not represent a contrast.
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e. The Extension of Formula and Algorithm to Three-, and Four-Factor
Orthogonal Designs.

The Case of Three Factors: In the case of three factors A (EPI), B (ePz),

and C (=F 3) the elements of the interaction contrast matrix can be generated

by the following expression (It is 1mmaterial which factors are first, second,
third, etc.):

SRR ( ) ( ) \3)
i ) 1) \(2) 3
(3e-1) Cor E § E ez SxjL
k=1 j=1 L=1

From the positional notation, it is evident that p, q, r refer to Pl' Fz P3
respectively. Note the symmetrical arrangement of the indices p, q, r (in
the general element of the contrast matrix) and that of the indices k, j,.¢
(the indices of the elements of the data matrix).

If R

3e-2 N =4, N = = 2
( ) 1 2 3'N3

p, 4, r take one of the following values:

= {1 2, 3
(3e-3) a ={1, 2)
r ={1)

The interaction matrix (in groups of three factor effects) consists of
six elements, and can be represented as follows:
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i -
[Coarl = [Cm S
(3e-4) Con  Ca22i
c cC
| an sat .

A particular element of this matrix, for instance 0121 (zALBQCL) can be

computed by the following expression (using (3e-1)):

4 3 2
' O\ (1) 1(2) 43)
(3e-5) €21 = Z >~ ;._ AieAs A
k=1 j=1.L=1

It is evident from (3e-4) that each element of the data matrix, Skjl , 1s

multiplied by its uniquely associated multiplier consisting of the product
of three unique elements from the orthogonal polynomial matrices of the
factors A, B, and C respectively. Thus for each element of the contrast
matrix there is a biunique one-to-one correspondence between a set of
multipliers and the elements of the data-matrix.

In computing, for example, 0121 , the element ?f the data-matrix, say
S 1 db /\( L /\(2)3A(3
432 is multiplied by the mutiplier, 14 /A 237V 12: the element S321 by

(1) (2) y(3)
’113 ’\22 All' etc.

Note that the indices 1, 2, 1 of the contrast element 0121 appear

sequentially (in accordance with the positional notation) as the first indices

1) 1(2) 43
of /\( ,) A( ), A( ) respectively (as subscripts).

The computational scheme for obtaining the contrast C121 under the

condition (3e-2) can be displayed as follows:
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(3 -6).(1) (2) 4(3) (1) y(2) 4(3) 4 o)1) 2@ @) ¢
) A1 A 1 Ap S 111 A A '112 uz? Au’{ '112 132

Ci21 =
(1) 2) \(3) (1) (2) 3) e (1) (2) 33 g
A ’l A11 Szn A1z A 12 8212 * ’\ '{12 232

1) 2) y@)g (1) y(2) 4@3) .o (1) 1(2) y@3)
3 A AL Sap+ Ay A AQp S 312 + Ay Ay A 833,

(1) y2) @) (1) ¥2) @ (1) 1) ()
'A14 ’{ 1 Ay S 411 A14 A '{12 a” + Ay ’\ ’l

Let S,/ consist of the following data:

[2 3 4 5 6 7
123556
Ge-7) ), [sw] =|3 44578
i=1,....3 13 3 4 b 5|
4=1,2
Ny= N, = 4
(36-8) NB = N2 = 3

N = N_ =2
C 3

The orthogonal polynomial matrices for the factors A, B, and C are
given as follows:

12 432 .
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-~ 1 ]
(3e-9) AR 8
(1) (1) (1) (1)
[A(A)] = A2 Npp  Ags Ay
N, =4)
(1) (1) (1) (1)
i Ay '{32 Ay Ay i

T3 o1 4l 43
[(1) _
(3e-10) A @l = +1 -1 -1 41
-1 43 -3+
[(ﬁ] = [-3 -1 41 +3]
(3e-11) [/\‘2{] = |1«
[A“BL] = [ -3 +1]
k=1 2,3,4
2 1@ @]
(3e-12 11 Alz A.IB -1 0 <+
2
ll()(s)] = - ) ()‘ =
2 2 2
4_’,\21 ’\zz ’\23; +# -2 4],
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where

| [/\(ZI:L [t o +]
[A‘gh L - +]

j=1,2,3

(3e-13)

’ .

S B I

(e-15) o b

L=1, 2.

[N -
To compute the contrast C  (=zA B C _) the array of the product of
121 LQL

multipliers (A( ill' Ag), /{(3} is given as follows:

3 -3 663 -3

l -1 -2 21 -1
(3e-16)
=211 2 -2 -1 1

.:336'6'3‘L'
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They represent the values of the corresponding elements of the array:

PRPCD I SO GRS PP

X )éz) A(:” )\(11) (2) A(3) ) A(l) )L( ).(3)
2

(3e-17)
(1) y(2) (3) (1) y(2) 4(3) (1) y(2) y(3)
)‘13 /\21 )‘n )\ )\ )‘12 A & Azs )\12
(1) y(2) y(3) (2) (3) 1) y(2) y(3)
)‘ 21 )‘11 )\ A A23A12

Upon multiplying the values in (3e-16) by their uniquely corresponding
elements of the data matrix of (3e-7) and adding we obtain:

(

6 -9 -24 +30 +18 -21 = . O

+
1 -2 -6 +10 +5 -6 = 2

(3e-18) * +
-3 +4 48 -10 -7 +8 = 0

+
k -3 49 +18 -24 -12+15 = 3
5

(3e-19) C..=(=A.B cL) = 5.

121 L Q

This method enables one to superimpose uniquely the matrix of products
of orthogonal polynomial coefficients, as given in (3e-17) in this example,

on the data-matrix of (3e-7) with the object of computing the elements of
the contrast matrix.

Likewise all the elements of the contrast matrix given in (3e-4) can be
computed in this manner .
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If the values of p, q, r in (3e-3) are extended to include zero,
(3e-20) p=0.1,2,3),qa=(0, 1, 2), r={0, 1)

one obtains, in addition to three factor effects, two factor effects, linear
effects (main effects totals), and the sum of the total number of observa-_
tions. The latter is not a contrast. The matrix is now given by the fol-
lowing expression:

4 3 2
(1) y(2) (3)
(3e-21) Cpqr Z Z qu Ar)’skj/
=] j=1 1=1
where
(3e-22) A(Ok =1, A((z)‘)i =1, A( oz=1

for all values of k, j, .¢.

The contrast matrix of the elements given in (3e-21), subject to
the conditions of (3e-20), is given as follows:
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(3e-23)

[Co]

)

r—COOO C001 C010

CIOO C101 CllO

CZOO CZOI C210v
C300 C301 C310

C011

Clll

C211

C311

C020

C120

0220

C320

=
COZI

0121

CZZI

321

115

|

There are twenty four (4 x 3 x 2) elements of which COOO’ the total sum

of observations, is not a contrast.

The terms, two indices of which are equal to zero, are linear effects
(totals); the terms one index of which is zero constitute the two-factor
effects (totals); the terms all three indices of which are not zero are the
three-factor effects (totals). There is only one element (not a contrast)
all the indices of which are equal to zero; this is the total sum of all the

observations (COOO) .

The Case of Four Factors: For a design of four factors, with the levels
of each factor equally spaced (the spacings of one factor need not be the
same as those of the levels of another) the expression of the general

element is given by:

(3e-24) N N2 N3 N,

S (1) y(2) 3(3) )4)
CPCITS /\pk Aq' A Asm kjZm
k=1 ]= ,(:1 m=1

pP= DI ll tte, Nl -1
q=0,1, **-, N, -1

(3e-25) 2
r=0, 1, . N3 -1
s=0, 1, , N, -1
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where:
N1 = number of levels of F; (= 4)
N2 = number of levels of Fz (=B)
(3e-26)
N3 = number of levels of F, (=C)
N4 = number of levels of 11‘4 (=D)

The contrast for any two-factor interaction, say, the AC interaction can
be obtained by means of the following expression:

(3e-27) N, N, N

Ny N3 Ny
CpOrO = Z‘ Z‘/\( A(z) A(s)A

k=1 j= =] m=l

1

Om kj,{m .

(2) 4
Since AO]'= A(03'n=l’ CpOrO becomes

(3e-28) NN, N N,
_ (1) (3)
Cooro } > > Aok (1) A7, (1) 8 0
k=1 j=1 £=1 m=1

Because of the positional notation of the indices, the zero's in CpOrO

indicate the elimination as regards interaction effects of the factors with
corresponding positional places, namely, in this case F2 (=B) and

F4 (=D). This is indicated in the righthand member of (3e-2 8) by
edquating to one (1), the polynomial coefficients corresponding to these

2) 4
factors (F2 and F4), namely A(Oj and A(OZn The appearance of a
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zero in a given position of the indices of the general term for the contrast
constitutes a rule for filling in the number 1 for the value of the position-
ally corresponding polynomial coefficient.

As an example, in computing C1020 (= ALCQ), the element of the data-
matrix, say, S (N>3;N =22; N 24; N >5) is multiplied by the
3245 1 2 3 4

product A( (1) )}3) (1); and the element S is multiplied by

2134

)S 1) (1) ,\( (1). A similar procedure is used with regards to the

remaining elements of the data-matrix. Note that the indices 1 and 2,
occurring in the first and third places (from left to right) in C102 g corres-

(1) 3)
pond to their occurrence in the first position indices of /\ and A(
namely, the orthogonal polynomial coefficients corresponding to F1 (=4)

and P3 (»C) respectively. Likewise, C0 0 is given by:
qr

(3e-29) N N N

w300

(1) 2) (3)
A /\rl mskj,dn

BMZ
o

This scheme can readily be extended to any finite number of factors, as is
shown in the next section.
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f. A Generalized Formula and Algorithm for Orthogonal Contrasts

The generalization of the formulas given in the preceding section can be
carried out in the following manner:

Instead of the symbols p, q, r, s, t **+, as subscripts in the
expression for the general term for the orthogonal contrasts involving m
factors, we shall use the symbols: 11, 12, 13, e °1m. il refers to Fl;

i2 to factor Fz; and i, to Pm (the m-th factor). The contrast is

written as follows:

c ce
111213 1m

The symbols jl' jz, 13 s jm will be used as subscripts for identifying

the elements of the data-matrix. The elements of the data-matrix will be
symbolized by: Sjl"jZ'j3 ...j . where j1 refers to the number of levels of
N m

Fl’ j2 to the number of levels of 'FZ' ..., and im refers to the number of
levels of Pm , the m-th factor. (All levels are equally spaced..)

The doublets 1111: 12]'2; 13j3; .

indices of the orthogonal polynomial matrices (the )L' s) corresponding to
Fl ; Pz; F3; e Pm. To avoid confusion we shall adopt the superscript

symbols (1); (2); (3); --+ ; (m) for the A‘s:

*+, i _j will be used as subscript
m’m pdidndbeicl) 343

Note that the first subscript for the _)L's, is taken from the set of subscripts
{ik] (lskgm) of contrast, C

i * o o
Llpeerig
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The second subscript for the A‘ﬁs is taken from the set of subscripts

(ix} (¢ksm) of the data matrix, S J,i3" " -

The following represents the formulation, explanation, and definition
of the expressions and algorithm for generating orthogonal contrasts

(note that the total sum of observatjons, C 00 0’ is not a contrast).

LOGIC, SYMBOLIC NOTATION, EXPRESSIONS
AND FORMUIAS FOR ORTHOGONAL CONTRASTS
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ELEMENT OF DATA-MATRIX FOR FACTORS F,F,...,F

SUBSCRIPTS: i, Joye -5l

oooooooooooo

FACTORS: F, F,,..., F
LEVELS OF FACTORS:
N, = NUMBER OF LEVELS OF F,
NZ. " L " FZ .-}

....................

Nep= " " " " Fln
VALUES OF SUBSCRIPTS: | ,
i, =0, 1y .. .oN, =1 J=h 2. 0N,
=0 by Ny=l =1, 2., N,

OOOOOOOOOOOOOOOOOOOOOO
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GENERAL ELEMENT OF ORTHOGONAL CONTRAST
MATRIX FOR FACTORS Fs Fz" N

N, N Nm ) (2 (m)
Ca.uz...i,“:]':' l?' '“lf?l >‘l|l, )‘lzlz"')‘lmlm Sl,la...lm
g_l_m n  (2) (m)
)\'u )\? )\u sz...ym
WHERE

NOTE: |yl !S THE ELEMENT IN THE 1" row anp j'™™ coLumn oF
THE ORTHOGONAL COEFFICIENT' MATRIX FOR THE mfh
FACTOR Fp,.
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138 Design of Experiments

FORMULAS FOR GENERATING THE ELEMENTS OF AN
ORTHOGONAL POLYNOMIAL CONTRAST MATRIX

(1) C
iliz. im
Nl NZ. Nm
2 (m)
DY ) 0 AR
ljl 1212 i j 3.3, -3
= = = mm-'1°2 m
i=13 =1 j =1
1 2 m
Nl N2 e, Nm‘
(1) (2) (m)
= g Ay Ay Sy
) 1’1 272 mm 1°2°°" 'm
11j2 . jm
where we have written
Nl N2 Nm Nl N2 ...,Nm
jl j2 jm j1"2' jm

The single summation symbol will be employed in the formulas which follow.
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(2) Values of the Subscripts

i, = 0,1, ..., N -1

jl = 1, . ’ Nl
12=0,l, .,Nz-l jz-l, ,N2
i =20,1, 2, , N -1 j =1, , N
m m m m
(3) Levels of the Factor Fm
N1 = number of levels of F1
N2 = number of levels of l=‘2
Nm = number of levels of Fm
(4) Factors. Fl, F2 ) eee Fm
(5) C i ) represents the general element of the orthogonal
1 2" m contrast (interaction) matrix of the factors F),
FZ 2 o 0 0o, F .

m

(6) Index Notation

i J,, refers to the element in the b row and jm coluﬁn of the
orthogonal polynomial coefficient matrix for the m*! factor Fm
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i =1,2,3, ..., Nm - 1 yields the linear, quadratic, cubic, ..

0

(Nm - 1) contrasts respectively.

j 1, 2, 3, ..., Nm refers to the first, second, third, ..., Nmm

m
levels for the factors Fl , F2 . P3 y ee e Pm respectively.
(m)
A represent row vectors of the transpose matrix of the Fisher

mj m orthogonal polynomial coefficients of factor Pm with the

restriction that i~ # 0. For example, let us write down the

matrix for ]\(12) j o
2°2
(m) (m)
_A represent the normalized form of )\1 j
1
m’m
- , N ~ . -
)\(2) (2) 7\(2) 5(2) @t
ient
1 )\2 \3 7\ 4 Linear contrast coefficients
(2)
A, @ 3@ @ )@
i j | = = ‘coefficient
12]2 )\21 AZZ A23 24 Quadratic contrast coefficients
2 (2) @) ()
7\;1) A32 A33 A3 4 Cubic contrasts coefficients |,
where
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Note that the first row of the matrix gives the linear contrast coefficients,
the second row gives the quadratic contrast coefﬁcients ’ld the third row
gives the cubic contrast coefficients. Note also the - matrix refers

to factor P2 possessing 4 levels. To summarize, )L(i)j represents a
272
3 x 4 matrix for factor F2 of 4 levels with 3 contrasts: linear, quadratic,

cubic. The extension to 7L(im)j is obvious.

mm

(7) The Special Case )\(On;) . Define
m

(m) .
)\Oj = ] for all m's and jr;ls . This symbol is used in a two-fold
m

way: (a) to obtain the total sum of the observations; (b)
to obtain interactions of lower than the highest order.
It should be noted that the row vector consisting of 1's is not
orthogonal to the row vectors of the orthogonal coefficient

matrix [)\ ]where im # 0 . The row vector [ m) ]

will not be subject to normalization.

(8) Interaction Contrasts of Order Less Than the Highest

2 Gy 0i5004,0...0

Nl' NZ' eees N

m
o (2) 3) (4) (5)_ (6 _(7) _ (m)
= )‘ h ij 0j 17\117l 7\“‘ J
4 s 17 m iz
jljz' jm
NN, ,Nn}

(l)j 7\1(3)1 7\1(6: S , since }\ —Iforl‘k‘-r
333" lg Jydz e in

]
-

S D PR
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b. Main Effects Total of the k’t—}l Factor F

C
00 .iko 0
Nl' NZ ! ! Nm‘
= > (1) 7\(2) (k) (k+l) l(m)
A [N ] A L S
10«0 04 05y K‘kjk O o1 O I3 I
Nl ! N2 ! ! Nm
= } (1) (k)
A S , since \ =lforl€k%m .
g = ip R 03,
(9) The Special Case C00 0 Total Sum of Observations Sj j j
Pg e
N,, N,,.., N
1 2 " 'm
) = (1) (@ (m)
Co0...0 T > AL A -+ A S
‘ 011 012 OJm S dge e i
Jl iz . jm
Nl' N2 , "Nm
(k)
= s ,
> Jl j2’ jm since lojk =1, 14k<m
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T (Total sum of observations with one unit per cell).

Now assume there are r replications per cell (treatment). Then

k=1
The G. A. (Grand Average) = rt N S
erN2 . 'Nm r Nk .
k=
C00...0
Without replicates, G. A. = —
TN
k=1 k
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(10) Sum of Squares (SS) of Ci i ) with Replication.

12..: m
Interaction of Factors F, F , . . .,F .
1 2 m
SS (C, . C )
1112...1m
[ N
N, N,...,
7 )\(l) 7\(1)
1 i, ] i.j
- 1°1 . — 2
r N1 ) N2 )
(1) (2)
> 0] 2]
\ ]1=1 171 j2=1
| 3, im
3 -2
N Ny,ooo N
B (1) (2) (m)
T A - iy, """ Aij Sjljz"'jm
T3 » B! 272 m’m
| l]2 ' ]m |
2
N Ny.oo N _ "
_ 1 7 Ak '
—— ,' o S-
r 2 i s k=1 1kjk h jZ"° jm .
]lj2"' ’m

(k)
It should be pointed out that the orthogonal contrast coeffieients )\ j

k'k
(with the restriction that ik 7‘ 0) are normalized as follows:
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/\(k)

hed

e . 4
(11) Special Case. Sum of Squares (SS) of C1 01.00...0 with

173

Replicaticll,lntetaction of First and Third Factors Fl and F_.

8s(C )
11_(1130. ..0

Nl ‘NZ'. . o/Nm
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m
N\
NN (1) (3)
= 13 =
i
1°1 373
fiit -
le j2 o I -
(m)
As pointed out in Paragraph 7, it should be observed that the AOj

“(m) m
are not normalized. When im # 0, the )L i3 are normalized thus:

(m)
AL

T

g. The Application of the Algorithm toa 5 x 4 x 3 x 2 Design. What
follows is the application of the general formulas and the index-positional
algorithm to the 5 x 4 x 3 x 2 design given in the data-matrix shown in

Chart VIII. There are 120 (5 x 4 x 3 x 2) treatments (without replications).

/\ (m)

Chart VI exhibits the index-presentation of this data-matrix.

The matrices (of orthogonal polynomial values) associated with each
factor are given in Chart I.

The orthogonal coefficient-multipliers corresponding to each element
of the data-matrix are computed for the effect total of the contrast
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= D). ff t t II.
C3121 ( ACBL CQ L) These coefficients are given in Chart II. (The
complete set is given in Chart IV.) Those for the effect totals of the

contrast C3 020 (-:-ACCQ) ~are given in Chart III. The complete set is

given in Chart V.

The effect totals of some of the contrasts of this § x4 x 3 x 2 design
are given in Tables 5, 6, and 7.
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CHART 111

GENERATION OF ELEMENTS OF ORTHOGONAL
CONTRAST MATRIX BY A GENERAL FORMULA

(EFFECT TOTAL Cyq5,)

¢, {
0, 5, \
8 (=1 )1= - (=1)1(HN= -1
. Siin Sina
(=1HN= - (=001 (+)1= -y
A i Si2n1 S1212
B (=1)I(H)1= =4 (=1 (H)1= -1
y .
$i3n1 Sian
(=) (HN= -1, (=11 (H1)1= =) (
B Siuni slnqz 1
g | @NON= % (@n(1)=2 ‘
)
Ay Sain S2112
(@)= (0= 2
't S S
2211 2212
. . o
r__,,..\_,——-"H'\.___.-”’,_.____,_f’\ h_\)
8, (+1)(H1)=1 (H(H =
A 85311 S5312
" (M= (+HHN=
Ssu11 S5412

151

C3

L)

C(=IN(H)IE -
Sz

(=1 (+H)1= =)
S1232

(=1 #HN=
sl332

(=1 (+1)I= =)
Siua2

(v2)1(+1)= 2

$2132

(22)1(+1)= 2
S2232

r‘\_-

(.

__/-——-——"_—"\—

\-—"N

()=
S5332

(H)i(ain=

Seus2
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CHART 1V
COMPLETE SET OF ORTHOGOMAL COEFFICIENTS

CORRESPOND ING UNIQUELY TO ELEMENTS OF DATA MATRIX
(EFFECT TOTAL Cg,,,)

¢, c, c,

D Dy D, D, D, Dy

B, -3 +3 +6 -6 -3 +3

B, -1 + +2 -2 -1 +

h By | +I -1 2 | N -1
By +3 -3 -6 | +3 -3

B, +6 -6 =12 +12 +6 -6

B, +2 -2 -4 +4 +2 -2
N +2 " -4 -2 +2
By | -6 +6 412 -12 -6 +6

B, 0 0 o | o 0 0

B, 0 0 0 0 0 0

. B, 0 0 0 0 0 0
By 0 0 0 0 0 0

8, -6 +6 +12 -12 -6 +6

A B,y -2 +2 Y -4 -2 +2
B, +2 -2 -4 W+ -2

By +6 -6 -12 +12 +6 -6

B, +3 -3 -6 +6 +3 -3

B, +1 -1 -2 +2 +| -1

. By -1 +| +2 -2 -l +
By -3 +3 16 -6 -3 +3




CHART V

COMPLETE SET OF ORTHOGONAL COEFFICIENTS

CORRESPOND ING UNIQUELY TO ELEMENTS OF DATA MATRIX
(EFFECT TOTAL C3g920)

¢, C, Cs
D, D, D, D, D, D,
By - - +2 +2 -1 -
B, -1 -1 +2 +2 - -1
f' B3 -1 -1 +2 +2 - -1
By -1 -1 +2 +2 -1 -1
B, +2 +2 4 -4 +2 +2
8, +2 +2 -4 -4 +2 +2
i B, | 2 | +2 " -y +2 +2
" By +2 +2 -4 -4 +2 +2
8, 0 0 0 0 0 0
B, 0 0 0 0 0 0
A3 .
By 0 0 0 0 0 0
By 0 0 0 0 0 0
B, -2 -2 + +4 -2 -2
" 8, -2 -2 +H +H -2 -2
By -2 -2 + + -2 -2
B, -2 -2 + + -2 -2
B +l +l -2 -2 + +
R 82 +l + -2 -2 + +
: By +| +| -2 -2 +l -+l
By + + -2 -2 H +

153



154 CHART VI

COMPLETE MATRIX OF INDICES
CORRESPOMD ING UNIQUELY TO ELEMEMTS
OF DATA MATRIX

Cy Ca Cs

D, D, D, 0, D, D,
By [ 11 2 | n2r | w22 | nse | 32
N B, | 1211 1212 | 1220 | 1222 | 123 | 1232
By | 1310 1312 | 1320 | 1322 | 133 | 1332
By | 1411 ez | 1m2e 22 | 3 1432
8, | 2 22| 220 | w2 | an | 232
. B, | 2211 212 | 2221 | 2222 | 22: | 2232
’ By, | 2311 2312 | 2320 | 2322 | 233 | 2932
By | 2411 212 | w21 | 2422 | 3 | 232
B, | 31t | 3nz| a2 | a2 | a3 | 332
. B, | 321 3212 | 3221 | 3222 | 3231 | 3232
’ By | 3311 3312 | 3321 | 3322 | 333 | 3332
By | 3un awi2 [ sw2r | 3u22 | 3u3l | 3u32
B, | win wiiz | w2t | wizz | wiae | wis2
. By | wan w212 | w221 | w222 | w231 | w232
Yl By, | 43N 4312 | w321 4322 4331 4332
8, | wun w2 | we2r | owu22 | wearl | we32
B, | s si2 | s121 | s122 | s131 | 5132
B, | san 5212 | 5221 | 5222 | 5231 | 5232
s By | 5311 5312 | 5321 | 5322 | 5331 | 5332
By | S5uIl Syi2 | su21 | sw22 | su3l | 5432




' CHART V1|
MATRIX OF TREATMENTS BY YATES REPRESENTATION

c, c,
0, 0, D 0, 0 0,
B, (1) d c cd c? c2d
B, b bd be bed be? bc2d
" B, b2 b2d blc b2ed | b2e? | b2c2d
B, | b b | b% | bled | bd%? | blc2d
B, a ad ac acd ac? acld
B, ab abd abe abed abc? | abcld
" 8, | ab? ab2d | ablc | abZcd | ab2c? | ablcd
By | abd abdd | ab3c | abdcd | abdc? | abdcld
8, a? ald aZc aZcd alc? | alc%
B, | ab aZbd a?bc | albcd | a2bc? | a?bcld
b By a?p? a2b2d| aZb2c| a2b2cd | ab2c? | alblcid
By a2p? a2b3d | a2bdc | a?bdcd | aZb3c? |abdcd
B, al add alc adcd adc? | adc2d
B, a3b adbd adbc | adbcd | adbc? | adbeld
. By a3p? a%b2d | a3b2c | adb2cd | a3b2c? | d%b2c2d
8, adp3 adbdd| a3b3c | adb3cd| a%bdc? | albdcld
B, at a'd a‘c a%cd | a%c? a%c2d
B, a'b a%bd | a%be a%ed | a%c? | a'beld
h By a%2 | a*b2d | a'b2c | a'bZcd | a¥%b2c? | a“b2c?d
1 B a%3 | a%b3d | a%b3c | a%blcd | a%b3c? | a%bcld
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DATA FOR THE 5xUx3x2
ORTHOGONAL DESIGN

Ci Ca Cs3

D, D, D, D, D, D,

B, 2 2 2 2 3 8

B, | 2 2 3 ¥ 4
.A' B3 2 4 6 2 Y Y
By 1 2 2 4 3 2

B, 3 v 5 7 9 10
B, 2 2 3 7 7 8

h B, 3 6 6 6 8 10
By | v 3 6 5 7
B, 4 6 8 10 12 e

8, 2 " 6 10 10 12

“ 3 6 8 8 10 1y 16
By 2 6 6 8 8 10

8, 5 8 1 13 15 18

B, 2 6 9 13 13 17
M By 9 10 10 4 20 22
B, 3 7 9 10 T 13
B, 6 | 10 I I8 2| 2
B, 3 6 10 17 16 19

. By | 10 12 10 18 T 2
By 3 " 10 12 13 I8
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h. An Algorithm for Computing Elements of an Orthogonal Contrast.

The 5x 4 x 3 x 2 factorial design shown in Chart VI of the preceding
section will be used to great advantage, it is hoped, to explain the technique
of computing the elements of an orthogonal contrast.

Let us consider the general formula for obtaining the elements of the
contrast matrix for the 5 x 4 x 3 x 2 design discussed in Section g:

(3h-1)

5 4 3 2
(1) (2) (3) (4)
c = E g E Ay Ay ALy AL S
i)igigig ) Tl Mgy T, 3y dodad,

jl=1 12=1 j3=1 j4=l

As shown in Chart I, an orthogonal A—matrix of polynomial values is
associated with each of the four factors. Thus the matrices

_ (1) (2) (3) (@
(3h-2) [Ailjl] , [Aizjz Y [Ai313] ’ ['\i4j4]

are associated respectively with factors Pl' F F P4 respectively.

31

The superscripts of the elements of the ){-matrix associated with each
factor, indicate the number of the factor with which that A-matrix_ is
associated. For example the superscript (3) indicates that this A-matrix
is associated with factor I—‘3, etc.

The number of rows of each. /\-matrix is one less than the number of

levels of the factor with which it is associated. The number of columns
of each A—matrix is equal to the number of levels of the associated factor.

21

1)
Thus the ’-/\(i ljl] matrix associated with F.

). has four rows and five columns.

t

The row-number indicates either the linear, or, quadratic, or cubic, or
quartic component of the contrast; row number two indicates the quadratic
component. (Either-or is meant in the exclusive sense.)
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Each row in a /\-matrix is a row-matrix with its proper number attached
to it. For example, the third row of polynomial values (-1 +2 +0-2+1)
in the /\-matrix in Chart I associated with Fl is symbolized by:

(1) (1) (1) (1) (1)
[)\31 Ny A X3 /\35].

The first subscript of each element in this matrix is the number 3, which
alludes to the cubic component of the contrast.

Let us explain how to compute an element of the contrast matrix for this
design, say, C312 1° The procedure isthe same for computing any element

of a contrast matrix:

The following set of four ordered doublets is formed:

(3h-3) (a3, 210, w2 521, ] -

These doublets have a positional order: 311 is the first doublet, 1j

2
the second doublet, etc. The number of doublets in a set is equal to the
number of factors.

Tl}e first numbers of the first, second, third and fourth doublets in
(3h-3) are taken from the first, second, third, and fourth subscripts
respectively in C312 1 These are underlined in (3h-3).

The second members of the doublets in (3h-3) are taken from the
(positional) subscripts of the elements of the data-martix, Sj j
1

2j3j4l

namely j1 ,12,13 ,14; with j1 going to the first doublet, to the second,

j

2

etc. Thus the subscripts of the general contrast symbol (C}1 i )
1727374

furnish the first members of the doublets; the subscripts of the elements of
the data-matrix furnish the second members of the doublets.

Each doublet of a set represents the symbol of a pol of a
~-matrix associated with a particular factor. Thus in a set of doublets:
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[31; 11; 21; 12] , the third doublet, 21, corresponding to the third factor in
Chart I, symbolizes the polynomial value taken from the second row, first

(3)
element of the matrix Ai3j3 . This value is (+1).

Let us consider Charts Il and IV in the computation of the contrast C

w

12

—
.

|

It is to be noted that every element of the data-matrix is utilized in the
computation of a single element of the contrast-matrix, such as C3121, or

say C4211'

The computation of C : Each element of the data-matrix is multiplied
by the product of four po}ynomial values, one from each )k-matrix associated
with its corresponding factor. For example, let us consider the data-element

81332 . For this purpose the following set of four ordered doublets is formed:

(3h-4) 30 1w 23 ).

This is the same as in (3h-3) except that j1 ,12 ,j3 and j4 take on the

values of 1, 3, 3, and 2 respectively. These arg underlined in (3h-4).
The expression (3h-4) serves as a command in computer logic. It says
in effect:

a. First doublet, 31: select from the )cmatrix corresponding to the
first factor, the polynomial value from the third row and first column. This
value is (-1). (See Chart I for values of doublets.)

b. Second doublet, 13: selectfrom the /\-matrix corresponding to the
second factor the polynomial value from the first row and third column.
This value is (+1).

c. Third doublet, 23: select from the )&-matrix corresponding to the
third factor the polynomial value from the second row and third column.
This value is (+1).

d. Fourth doublet, 12: select from the /\—matrix corresponding to the
fourth factor the polynomial value from the first row and second column.

This value is (+1). The product of these four polynomjal values correspond-
ing to the data (matrix) element 31332 s_(-1). This product is then
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multiplied by the value of the data (matrix) element 51332 (=4 from Chart VIII).

The result is (-4) for this data element. For the computation of C 3121 see

Chart IV. It contains the complete set of the products of quadruples (four
polynomial values) associated with each element of the data-matrix given in
Chart VIII.

The sum of the products of the appropriate polynomial values multiplied by

each data (matrix) element yields the value of the contrast 0312 v this value

is 414 . Note that the first members of all the four ordered doublets formed
for computing the contrast C3121 hav_e the values 3, 1, 2, 1 in the

natural order 1, 2, 3, 4 respectively. This is indicated in expression
(3h-3) where the first members of the doublets are fixed (namely, 3, 1,

2, 1) and jl' jz, j3 and j4 vary to generate the indices of (the elements

of) the data matrix.

This procedure is valid for computing contrasts of an m-factor orthogonal
design. The validity is assured by the general formula given in the preceding
pages. This formula represents the sum of products of each element of a
data-matrix by m appropriately (uniquely) selected polynomial values.

To compute a particular contrast C {* *... gx We form the set of doublets:
1 2 m

(3h-5) ENE ST SIS TLEN B

where il*, i;, cee, 1:1 are fixed values for the particular contrast and

jl’ 12, ceo, jm vary, taking on the values of the indices (subscripts) of

the elements of the data-matrix.

Suppose one wishes to compute, say, the contrast C

3020 (EACCQ). We

form the following set of doublets:

(3h-5a) [33,: 03,0 2355 03,]
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where jl' jz,j3,j4 take on the values of the subscripts of the elements of
the data-matrix.

(k)
; and since /\Oj =1 for

0j
k k
1€k <m, Ojk represents the value 1. For example, in computing C3020

Now 0]k is the symbol representing A

consider the data-element, 35412 . (See Chart III). The set of doublets for

this data-element is:
(3h-6) [35: 04; 21; 2]

Since 04 and 02 eachrepresent the value 1, the coefficient-multipliers

are:
¢

(3h—7) (+l)l (i)l (+1)l (_l_)'

The value of the product of these coefficients is +l; this value is in turn
multiplied by the data-element represented by 5412 of the data-matrix of
Chart VIII, namely the number 1l. The result is +ll for the element 85412 .

Similarly this is done for every data-element and the results are summed to
yield the value of C3020.

Note that the underlined second and fourth doublets, in (3h-6), namely
04 and 02 and their respective referents (1) and (1) in (3h-7) do not
represent polynomial values. They merely indicate that the value 1 is to
be used as a multiplier in lieu of the ordered polynomial values for the
factors (F2 and F3) that are not being considered, i.e., are eliminated,

in th lculati f thi ticul trast, 1
in the calculation o s particular contrast, namely 03020( ACCQ)

Factors, P2(=B) and F4(-D) are not taken into account in this contrast.

In general an ordered doublet such as 0jk whose first member is 0

represents the value 1; and 1 is to be used as a multiplier in lieu of the
positionally corresponding polynomial value for the missing k -th factor.

Thus for the computation of the contrast, C * ok gi*ee. gt i ¥ the
1) 1 0dg7 77 Oyres dy

following sets of ordered doublets are generated:
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* * * e o 00 0.* . e o 0 *
(3h-8) [ 905 45 30 03gi i 0 =500t s oo dh o]

since 0 =0 = 1 (3h-8) becomes:
g = 05 =1

*

* * . . . . * . . *
(3h-9) [11 TR S PR IEE VS FERRRTE RS MEIPEPTE wip iy

where if, i; . 12, etc. are fixed values for the particular contrast and

jl’ jz , e .,jm vary by taking on the values of the subscripts of the elements

of the data-matrix.

4. CONCLUSIONS. The algorithm and general formulas developed and
presented in this paper for obtaining and computing orthogonal contrasts are
ideally suited for a computer. The factors, their levels, the associated

,\-matrices of polynomial values, and the elements of the data-matrix, are
represented by unique sets of positionally ordered numerical indices
(subscripts and superscripts).

What is of equal significance is that the orthogonal contrasts are
obtained by virtue of a unique correspondence and relationship between the
positionally ordered numerical indices of the contrasts and those of the

-matrices and of the elements of the data matrix. This situation is
amply conducive to machine computations that involve sums of products.

To Summarize: There are three principal entities required for the
computation of orthogonal contrasts. These are: the factors and their
levels, their corresponding /\-matrices of polynomial values, and the
data-matrix.

The computer identifies the factors by means of a set of numbers:
1, 2, ..., m).

The levels of each factor are identified in the computer by means of a

set of positionally ordered numbers: {jl, jz, ey jm} .
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where:

J = ll 2' ’ N i = 1[ 2[ I N - 1
1 1 1 1

Jz = ll 21 ] Nz iz = ll 2: ' N2 e 1

j = 11 21 ’ N i = l, 2, ‘ N - 1
m m m m

The computer stores one /\-matrix with the proper tag-number
corresponding to each factor:

e ot N s |

The tag-numbers are the superscripts: (1), (2), ..., (m). These
correspond (1-1) to the factor numbers: {1, 2, ee., m}

The rows and columns of the /\-matrices are identified by the sets of

positionally ordered numbers: {il, VR lm\ and []1, Jgr e jm)
respectively.

The elements of the data-matrix are numbered by varying the positional

subscripts:
j ’ j ’ o e 0y j .
{ 1 2 ]m}

To obtain a specific contrast Ci* i* * each element of the data-
1 7°2**"'m

matrix is multiplied by the product of m appropriately ordered polynomial
values:

(2) (m)
DU SR (.}

- 12j2 m’m
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(Here S is a particular element of the data-matrix.)

!

N

The results for each data-element are summed to obtain the effect
total of the desired contrast:

4@ (m)
C* * * = /\ A*., .;-,,\* S .
ety z Z Z L, idm W2 o im

To compute contrasts in which one or more of the subscripts (ik}

(1c¢kgm) is zero the following procedure is adopted:

The value 1 is substituted in the proper positional order for the
polynomial value corresponding to the factor(s) that is being eliminated in
computing a desired contrast. As was noted on several occassions,
COOO. .0 the sum tota_l of all the observations is not a contrast.

5. SUMMARY OF FORMUIAS . What follows is a summary of the
formulas for obtaining contrasts in orthogonal designs; and an
explication of the symbolic terms and of the index notation used in this
report.

SUMMARY OF FORMUIAS
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1.

SUMMARY OF FORMILAS FOR GENERATING THE
ELEMENTS OF AN ORTHOGO:!AL POLYNOMIAL CONTRAST MATRIX

General Element of Orthogonal Contrast (Interaction) Matrix for

Factors F,,

Fz’ LA Fm.

N, ,V,.

i

5\

() 2[3)

(rm)
X 4 e

"/"avn“:m ‘ J t
A /‘-/ m>/ 'fl ’1
”’lua.‘/m
—_ o) (>) ™)
= A‘_‘ /" oo /‘l 5
/// ;jr fl/)"’}"”
vhere 4/?& L ;;
”l ”’\ ”m ”Ii”}lloo‘ ”’n
o ~ \
> / > w4 2 J > Vi
4.71 5= Im=/ Trdreee Jm
a. Elements of Data (Observations) Matrix:§, $
"1‘000 "
b. Factors: Fl, Fe, seey Fm
c. levels of Factors Fy, Fp, .;., Fn

d.

N; = Number of levels of Fy

N2 = LLJ . " " N F2

00 0060000000000 0000000000000

" n "

Nm -
Values of Subscripts

11‘0’ 1’ 2, sy Nl -1
12-0’ 1’ 2, seey Na"l

1m‘0’1,2, coo’Nm"l

" Fm

Jl = 1, 2, soey N]_
Ja = 1’ 2,.000’ lg

0000 0000000000000 0

dm =1, 2, viey Ny
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of Formulas for Generating the Elements of an Ort
%iyn%ﬁ Contrast Matrix QCOnf'd[

e. Index Notation

4‘” fm : element in the 1'B rov and JB column of the

orthogonal polynomial coefficient matrix for the

nt_h factor Fy.

»

‘m = 1’ 2’ 3’ seoey “m - 1 yi‘ld. the limr’ q‘mtic’

cubic, .o, (ll.‘ - i)g:_ contrasts respectively. -

% =1, 2, 3, ..., Ny refers to the first, second,

third, ..., Njth levels of the factors Fy, Fj,

r3’ ceey Fn.

(m)
[7‘4./". —

: rov vectors of the transpose matrix of the Fisher
orthogonal coefficients of factor rn, with the

Linear contrast coefficients

Quadratic contrest coefficients

Cubic contrast coefficients

00000 0000000000000 00000000000000

(Ny-1)th contrast coefficients

2(m)
“mim
restriction that ‘.m Fo.
(m
, ) : normalized form of a‘(m)
(2) Formula fox‘-'?;trix [A ) ) mm
‘“miIm
m) ~(m) - (m)
A” )' a2 °° A,‘ ”m
m) 20m) (m)
zz' Aaa’ o o4 Aa,%
(m) o(m) (m)
130 2'32 ¢oo aJ.um
a(m; A(m) ;\('m
T S T
- -

-

Q
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Summary of Formulas for Generating the Elements of an Orthogonal
olynomial Contrast Matrix (Cont'd

(3) Formula for the Special Case

a&e) . <k< 'J
o4, 1 for I€K<Mm and for all ;i‘ . Bymbol used to

obtain the total sum of the observations; also used to

obtain interactions of order lower than the highest

order.
(.3 ' . )
(h) Formula for Normalized Form, (‘,k,lx, of R;ik;x ’ [Sksm
&)
A(f) = __&L ¢ £o0
‘k’# Ny *) 2 ? A
¥

0) 10) 1(3) (P y05) ®) A”’, . Em)
7N '2‘}/3 )% /]% a‘ib % %'%imlm

— “) 20 @) ) e t2ke
,\% /1‘43 ,14& ,5/"/}4» 4 Simee o ) Ay m

b. Main Effects

NI’”,IJ”'I ”m

Xy A ey S

€ vo...0 — o, Opm it dm
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Summary of Formlas for Generating the Elements of an Orthogonal
Polynomial Contrast Matrix (Config)

(5) Special Cases of Orthogonal Contrasts (Cont'd)

b. Main Effects (Cont'd)
N, Ny soos, N

«@)
A‘: y ) 5’/’3\ o "Jm

Coomo =

/¥ 4 XXX ”y ‘
= Main (Total) effect of factor F, of order one

Similarly for main effects of F,, 1'3, eeey Foo

c. Total Sum of Observations S/J",,,j»
N,

M,o-o

() (A)." (m)
X Yt b o

7.8 dm

M Nopooo ”m a,
- y Stnce 2 =1br1$k£m

"Sf,jb”.}” %.
}/ Ireoe fm '
=T (motq sum of observations vith one unit per cell)

Coa-n o - I'T:kg'l; =7 assuming r replications

per cell (treatment)

d. GOrand Average (G.A.)

(1) without Replication

60Ao —_— Coo”.o - T

' W 1w,
| K=t % E o

(2) with Replication

GOA P rT _— T'

r M”& Lz N.’ —rj.,’ Nk
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Bummary of Formulas for Generating the Elements of an Orthogonal
Polynomial Contrast Matrix {Cont'd)

(6) sum of squares (s8) of Cy 4, 1 » ¥ith Replication

Interaction of Factors Fy, Fo, +co, Fye

- _2

NII”&)“‘I”;R
SS(C-:' s\ 1 ) ) . (m)
42000 4m)~ _r- | , A,(;jl /Xf;f; A%%:lﬁ”'fm :
[ Fo 202 fom )

NIINL, .001 ”m

=D TIAvs

j, j', cea ?’m K=1 "ktk 1,'71...1:"1

‘ -
Where
) (k)
A”") — A i . »
‘; J "k ¢ o

b = Yu 2
/)
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Summary of Formulas for Generating the Elements of an Orthogonal
Polynomial Contrast Matrix (Cont'd)

(7) Special Case. Sum of Squares (SS) off

0‘30“. o vith Replication.
Interaction of First and Third Factors Fl and 13 _
B Nos¥eyooo, Nm, <%
| )( )
S 5( / N, N /],, G
Ose - t0e ’
o) = i | /w— /—,,, AL 2
oh Z[&”’]"
1, ’}‘" afm i
~ -l
”u” Jove ”M
(') ) .
- NN s A, L__ 8
- m., — Qr s J1nce 1
rﬁ Ni b dm

k3!

/ ; [1“/:] / ; [’:»:], for1SKém

s ’) "1“"’

od -

-2
[ M Nyeoo, Nem

“) /\(J) :
AT
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Summary of Formulas for Generating the Elements of an Orthogonal

Polynomial Contrast Matrix (Cont'd)

Likewise, for the interaction of factors Fp, F5 and Fg,

5s(c¢

o;;ooz;.aoj,o.., o) - rﬁ. Nk

-

Ny sNyeeo, N

| K gm

(x)

4’};

(3) (&

o U

“h Su

¥ 788

-
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A SEMIAUTOMATIC WAR GAMING SYSTEM

John L. Donaldson
Research Analysis Corporation
and
Thomas R. Shaw
Operations Research, Inc.

SUMMARY

PROBLEM. To devise a method whereby a digital computer can be used
to support war gaming activities and to design a set of computer programs
which will accomplish this objective.

FACTS. War gaming is currently receiving much attention as a method-
ology in the field of operations research. However, the hand-played war
game involves many disadvantages which tend to restrict the desirability of
of its application to the solution of many problems which otherwise lend
themselves well to resolution by gaming techniques. Basically it is an
extremely costly venture. A large group of experienced players and skilled
.controllers is required to operate a game. Further, a great amount of time
can be spent in repetitive, laborious calculations which can affect both the
accuracy and timeliness of the results.

On the other hand, the high speed digital computer can perform certain
data processing functions with great rapidity and accuracy. There are,
however, limitations to the usefullness of computers particularly in the
performance of functions that require a high degree of human insight and
decision. The simulation' of decision processes by computers is possible .
only when the criteria for judgment and the alternatives for action can be
adequately described in a quantitative fashion. Also the speed and accuracy
of computers can be compromised by the need for frequent human intervention.
The computer, therefore, can be used to best advantage in those areas where
present human knowledge and ability permits.

DISCUSSION. The semiautomatic war gaming system has two aspects -
man and machine. In the system the computer has three functions:
performing the assessment calculations, maintaining the quantitative records,
and displaying the results, while the man portion of the system is concerned
primarily with the problems of decision-making. These two aspects of the
system are treated in this paper in terms of the flow of information. The
operations which comprise the system are discussed according to input,
function, and output. For the human aspect of the system these items are
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related to the responsibilities which they entail; in the computer portion of
the system these items are examined quantitatively in terms of data sets.

The system was designed for the THEATERSPIEL Study (35.10) and was
used in the play of POMEX I. From this initial attempt, much experience
was gained leading to the projection of certain general consequences of
such an application of computer techniques. Some degree of insight
was realized concerning the multi-faceted problem of coordinating the
many functions which comprise the system. Finally the learning process
enabled other uses for this system to become evident and suggested ways
in which further refinements could be incorporated conducive to greater
applicability to other problems.

INTRODUCTION

The THEATERSPIEL Study was established in October, 1959, with
Mr Richard E. Zimmerman (Chairman), BGen John G. Hill, USA (Ret.),
and Capt. J. O. F. Dorsett, USN (Ret.), being assigned as the original
members of the study group. As originally conceived, the purpose of
the project was to be an outgrowth of the FAME gamel; it was to develop a
theater level war game that would indicate the Army's need infuture
military operations paying particular attention to the requirements placed
on the development of TO/Es. Further, the study was to draw on the
resources provided by computer usage.

In the beginning the members of the study were aware of the advantages
and disadvantages inherent in various gaming methodologies as applied to the
study at hand. Drawing on their previous experiences in simulations and
war gaming, they felt that it would be undesirable to program all facets of
the gaming environment, e.g., certain of the presently unquantifiable aspects
of combat decision-making, and yet there was a desire to avoid the tedium
and repetition of much of the assessment phase of the gaming operation. It
was this particular thinking that led to the design of the semiautomatic
gaming system.

However the semiautomatic system described in this paper did not
immediately result from this initial attitude. It was necessary first to
determine to what extent the game should be automated; that is, which
should be the human functions in the game and which the computer's. One
of the difficulties concerned with defining the programming the human
decision function, a basic characteristic of the gaming approach, was
expressed by the late John Von Neuman in The Computer and the Brain:
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and Capt. J. O. F. Dorsett, USN (Ret.), being assigned as the original
members of the study group. As originally conceived, the purpose of
the project was to be an outgrowth of the FAME gamel; it was to develop a
theater level war game that would indicate the Army's need infuture
military operations paying particular attention to the requirements placed
on the development of TO/Es. Further, the study was to draw on the
resources provided by computer usage.

In the beginning the members of the study were aware of the advantages
and disadvantages inherent in various gaming methodologies as applied to the
study at hand. Drawing on their previous experiences in simulations and
war gaming, they felt that it would be undesirable to program all facets of
the gaming environment, e.g., certain of the presently unquantifiable aspects
of combat decision-making, and yet there was a desire to avoid the tedium
and repetition of much of the assessment phase of the gaming operation. It
was this particular thinking that led to the design of the semiautomatic
gaming system.

However the semiautomatic system described in this paper did not
immediately result from this initial attitude. It was necessary first to
determine to what extent the game should be automated; that is, which
should be the human functions in the game and which the computer's. One
of the difficulties concerned with defining the programming the human
decision function, a basic characteristic of the gaming approach, was
expressed by the late John Von Neuman in The Computer and the Brain:2
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Hence it is to be expected that an efficiently organized
large natural automation (like the human nervous system) will
tend to pick up as many logical (or informational) items as
possible simulataneously, and process them simultaneously,
while an efficiently organized large artificial automaton (like
a large modern. computing machine) will be more likely to do
things successively - one thing at a time, or at any rate not

so many things at a time. . . natural automata are likely to
be highly parallel, while. . . artificial automata will tend to

be. . . serial.

Establishing thus the area for one boundary, to maintain certain decisions
as human responsibility, the question next to be faced was how far to push
this boundary.

Soon after RAdm. Marion N. Little, USN (Ret.), Mr. William H.
Sutherland, and Mr. Billy L. Himes joined the study in the spring of 1960,
work was commenced on the SANDWAR series of games.” It had been
decided that in this case the computer would be used primarily to maintain
the records of the play. In accordance with this decision, a system was
devised by which all units being played in the game were recorded by
computer methods on a file (see Chapters 2 and 3), and the results generated
by the hand-played assessment models were incorporated into this file
providing a current record on the status of all units. It was to this effort
that the Chief of the Strategic Division, Dr. Joseph O. Harrison, Jr.,
first introduced the support of the Computing Laboratory; Maj. R. G. Williams,
USA (Ret.) of the COMPLAB together with Mr. Himes were for the most part
responsible for much of the computer work at this time. Shortly thereafter
one of the authors of this paper, Mr. Donaldson, joined the study and
began working with Maj. Williams and Mr. Himes on the records system.

During the play of the SANDWAR games it soon became apparent that
the computer could perform additional functions in supporting game play.
As had been earlier realized, "it is. . . advantageous, as far as possible,
to remove the human element from any elaborate chain of computation, and
only to introduce it where it is absolutely unavoidable, at the very begin-
ning and at the very end. nd It was on the basis of thinking along this line
that it was decided in late 1960 to mechanize the greater part of the assess-
ment phase of the gaming operation. Four of the previously hand-played models
were to be programmed for the POMEX series of games: one for air combat,
one for support weapons effect, one for ground combat, and finally one for
logistics. The records system which had been used during the SANDWAR
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games was to form the starting point for the development of the system to
incorporate the four models. Mr. George E. Clark, Jr., CAMPLAB Division
Chief, made additional personnel available for the undertaking, which was
begun early in 1961.

Thus it was the other author of this paper, Mr. Shaw, was assigned to
work on the master program along with Maj. Williams and Mr. Donaldson.
Continuing in the direction indicated by the records system, it was realized
that this to a great extent determined what the requirements were for certain
aspects of the input and the output of the proposed system. It suggested a
method of programming. While the work was being done on the master
program, concurrent with this effort the above mentioned members of the
THEATERSPIEL group and Mr. David B. Webster, who joined the study at
this time, together with support from COMPLAB, programmed the four
assessment models.* The design and structure of these models is reported
in a series of papers. S, 6, 7 POMEX I was played in the latter part of July
and early August of 1961 using the new system. A complete report on the play
of this game is in preparation. 7 It is the purpose of the present paper to
describe only the master program and the context in which it was placed and
to discuss some of the consequences of using such an approach.

That this approach, the semiautomatic gaming system, is of current
interest and of significant value is demonstrated in a paper recently prepared
for the Defense Atomic Support Agency discussing the need for a gaming system
which will meet the gaming requirements of the Joint Chiefs of Staff. In the
paper much attention has been focused on the problem of devising a computer-
assisted war gaming capability.” The present paper presents one such
system.

* Air: Capt. Dorsett, programming support, Miss Arla E. Weinert;
Support Weapons and Ground Combat Models: Mr. Webster and
Mr. Sutherland, programming support, Mrs. Barbara Fain and

Mr. J. B. Creegan; Logistics Model: RAdm. Little and Mr. Himes,
programming support, Mr. Donaldson.
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Chapter 1

GAME ENVIRONMENT. In the semiautomatic system discussed in this
paper, the digital computer fulfills two functions: first, it performs the
game assessment calculations, relieving the control group of this tedious,
time-consuming responsibility; and second, it serves as a bookkeeper,
providing complete numerical records of the play, interval by interval, in
a form suitable for post-game analysis. To appreciate this application of a
computer and its consequences, the reader must first be familiarized with
the system within which the computer operates.

The war gaming system can be considered as a sequence of related events,
the relationship being what might be termed an "information flow". Thus
for each event there is an input (which is the result of some prior event),
some function which prescribes the manner in which this input is to be
processed, and an output which is the result of this function (which will be
input to the next event). By defining all events individually with regards to
their inputs, functions, and outputs, the system as a whole is described.
This chapter will examine the system in this manner, with one exception:
The function of the computer operation, and its execution, will be the subject
of a detailed discussion in the second chapter; in the present chapter com-
puter input-output will be discussed only to the extent necessary for the
continuity of development.

The events occurring within the system can be divided into three phases:
pre-game planning, game play, and post-game analysis. Although each of
these phases will be examined separately, it should be remembered that in
reality they do not operate independently , since they too are related by an
information flow, or input-output process. '

PRE-GAME PLANNING. Once the study directive has been received, and
it has been decided that war gaming is an appropriate method of solution of
the problem, the pre-game planning phase is begun. The initial effort of this
phase is to obtain a satisfactory statement of the problem together with
specification of the purpose and objectives of the game. This does not pre-
clude the possibility that in the later stages of this phase it may be necessary
to redefine the problem and objectives repeatedly, however at the outset at
least some general statement of purpose is a prerequisite to further development.
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After the purpose has been determined, preparations for the game proceed
along two parallel paths. Both the substantive and methodological aspects
of play must be described. Consistent with the outlined objectives the game
environment must be established. This includes choosing a locale, develop-
ing a scenario, and collecting pertinent data. The choice of local consists
of selecting the geographical sector in which the game is to be played, of a
size commensurate with the level of aggregation desired. The scenario
includes the description of the political, economic, and cultural aspects of
the environment leading up to the conflict. Also a part of the scenario are
the TO/Es of the forces to be engaged in the conflict. In addition there
arises the need for many other quantitative factors describing the geographic
region, weapons; capabilities, and many similar data as required by the
particular objectives of the study.

While this work is being done, attention must also be focused on
developing rules and procedures for the play phase. This includes the rules
according to which the players will make their decisions and the procedures
by which control will implement the players' orders. Establishing procedures
also includes the development of the assessment models since these models
and the way in which they are programmed will reflect the decisions made
with respect to procedures. In the semiautomatic system this is perhaps the
most time-consuming element of the preparations and also the most critical.
Efficient rules and procedures together with realistic models are among the
most important aspects of the system.

As the mechanized components of the system are defined, and after the
quantitative factors have been obtained, some time must be spent in putting
these data in a form consistent with the input requirements of the models.
Here again effective procedures will ensure less time being wasted during
play of the game due to improper or inaccurate data.

Prior to the play of the game some time must be devoted to player
orientation. The players must be briefed on the scenarios so as to become
familiar with the environment for the game so that they might learn what is
expected of them. They must be given their game objectives. Secondly
they must be instructed on the rules of play. So that they might better
expedite the system and use it to its full potential, they must also be
given a good understanding of the mechanics of the play. Finally, they must
be provided with a record of the status of their forces and all relevant data.
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Orientation of the players is the final step prior to the play of the game.
Once this has been accomplished, the second phase of the system can be
initiated.

GAME PLAY. The game play phase can be considered as a repetitive
cycle of events; the cycle being repeated until the pre-stated objectives
of the play have been realized, i.e., until one of the player teams has
been successful in achieving its predetermined goal. In some cases
however, this may not be possible, and it then becomes the responsibility
of the control group to terminate play.

The player teams initiate play be determining what tactics or strategies
they wish to employ in acheiving their goals. On the basis of their mission
and available forces, the players generate orders which are communicated
to the control group. The control group then takes the orders issued by
both player teams and integrates them, judging as to their relative feasibil-
ities. Control, in rendering these decisions, considers such aspects as
whether or not one side's forces can execute their orders without exposing
themselves to enemy action, or whether or not a move is logistically
feasible. Once control has evaluated the orders, it is necessary to
specify the interactions that will result. Viewing the execution of both
teams' orders with respect to one another, the control group is able to
establish what interactions will occur.

As the battle situations become evident, control translates a description
of these interactions into appropriate machine language. When all the
battles have been so defined, it is then possible to feed this information
into the computer. The computer, on the basis of the models programmed
during the pre-play phase, then assesses the outcomes of the interactions
of the opposing forces. It determines what has been gained and lost by the
two sides. Upon completing these calculations, the computer then generates
output which consists of the results of the assessment in terms of casualties,
moves, and other similar information. These results are distributed to the
two player teams and to the control group. On the basis of the results, the
control group prepares a summary of the action for the players to supplement
the machine results.

The cycle then begins again with the players weighing the results against
the achievement of their objectives. Based on the current status of their forces
and whatever intelligence estimates they may have received, they generate a
new set of orders, and the cycle is repeated. This repetition occurs until,
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as said above, either the control group halts play, or a player team
realizes its goal. When play is stopped, the last phase of the system
begins.

POST-GAME ANALYSIS. Analysis of the game is perhaps the least
defined aspect of the system. It can follow a number of different courses
dependent upon the original intent of the study; nevertheless, there is a
very general pattern which this phase might follow. First many questions
must be asked, such as what were the critical aspects of the game, what
caused the turning points of the action, how did the initial situation as
defined in the pre-play phase affect the outcome of play? It must be
determined what the essential elements of the game were that influenced
the consequent action and how they affected that aspect of the play relevant
to the stated problem. Analysis for these factors can be both quantitative
and qualitative. The former lends itself well to being resolved on the
computer, whereas the latter most generally is handled by the control group
with support from the players. It is important to realize the potentiality of
computer analysis of the results. Since the results have all been generated
by the machine and complete records kept in machine lanquage, all the data
required for a quantitative analysis of results are already in a form suitable
for immediate machine analysis.

Interpreting the quantitative and qualitative analysis leads to the
conclusions to be drawn from the game. From such a system both substantive
and methodological conclusions may result. The methodological conclusions
are then incorporated into the system improving it for the next play, while
the substantive conclusions are either held until numerous repetitions of
the game can further substantiate them, or else they are used to infer
possible recommendations with regards to the original study directive.

Figure 1 summarizes the material presented in this chapter; each aspect
of the system which is a separate event is enclosed within a rectangle; also
included, in some cases, is a brief indication of the activities performed
during the event. The diagram also serves to demonstrate the principle of
information flow. In the following chapter the reason for the emphasis on
this principle will become evident. The computer programs, the subject of
the next chapter, have the primary function of providing for the proper flow
of the information necessary for assessment calculations during the
computer operation.
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Chapter 2

THE MECHANICS OF THE COMPUTER OPERATIONS. The two basic purposes
for using the computer in the semiautomatic system have been indicated in
Chapter 1 - assessment and bookkeeping. The assessment function is
accomplished through the application of various models, defined by the type
of function they perform. For example, an air model assesses the inter-
actions occurring during various phases of air operations, such as escort
missions, interceptor missions, reconnaissance, interdiction, and the like;
there will be as many models as there are well-defined, distinct assessment
operations. The need to interconnect these models generates the requirement
for some master program that provides the medium in which these models can
operate. There is the further stipulation that this master program will be
responsible for maintaining accurate and up-to-date records, with the
provision for automatic changes to these records.

Thus it is the intent of this chapter to enable the reader to understand
what are the requirements for a master program, its inputs, its operations,
and its outputs. The objective is to describe these characteristics of the
master program in a way conducive to other applications, i.e., so that
others may find use for it.

OBJECTIVES. The specifications that are placed on the design of the
master program are as follows:

(1) To require a minimum control effort in composing input to
the computer.

(2) To establish an input format which is meaningful to control
(@ minimum of symbolism).

(3) To include the means for processing, routing, and storing
data sets for use by assessment models.

(4) To allow for the operation of logically distinct models.

(5) To provide a method whereby accurate records may be
maintained with the capability for their alteration.

(6) To enable results to be displayed in an understandable
form.
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INPUT. The input to the computer falls into three categories. There is
that input which results from control definition of the combat- interactions.
There is also the status of forces file which includes all units being played
in the game and their attributes. Finally, there are those inputs from
control which do not result from any defined interaction but are changes to
the status of forces file; these include such changes as increasing the
number of men in a unit when reinforcements are introduced by the control
group or specifying a new location when a unit is to have its assigned
location changed. (These examples assume that strength and location are
attributes of a unit and are recorded in the status of forces file.)

The basic principle involved in the input that defines the interactions is
that all units participating in a given combat situation will comprise what
is termed a "battle group", and the information for each battle group will
be recorded on punched cards, one card per unit. All such units must be
designated explicitly to be considered by the assessment models. In
addition to naming the units, it is assumed that there would be certain
factors included which describe the conditions of the battle and influence
its outcome. Such factors as posture, terrain, and type of engagement
might be included.

Each interaction defined as a separate battle group is processed as a
separate engagement within the computer assessment of the outcome. The
control group has the responsibility of specifying the different battle groups
and parameters involved for each play; the master program maintains each
as a separate entity in referencing the assessment models.

One of the fundamental elements in the system is the status of forces
file. It is prepared initially during the pre-game planning phase by the
control group; all relevant data for each unit to be played in the game are
placed on standard forms, and they are then translated and processed onto
magnetic tape. This is the only non-mechanized, or non-automatic, aspect
of maintaining the status of forces file. It then serves as input to the initial
interval of play, after which it is automatically revised consequent to the
assessments of outcomes, and any new values for the characteristics of
units are then incorporated into it. The characteristics of the units
contained in the status of forces file are an integral part of the determination
of the outcomes of the interactions. These characteristics are the factors
plugged into the formulae of the models. The emphasis placed on the
processing of these data will be seen later in this chapter.
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The last type of input to the computer system is related to the status of
forces file. As has been explained, the status of forces file exists on
magnetic tape and is automatically processed and changed by the master
program as a result of changes to unit characteristics as generated by the
models. However the possibility for non-machine generated changes must
be acknowledged. For this reason, provision is included within the master
program to incorporate changes to unit characteristics issuing directly
from the control group. Thus by control decision whole units, or parts
thereof, can be eradicated or revised automatically as indicated by the
changes recorded on punched cards.

DESCRIPTION OF THE MASTER PROGRAM. In Chapter 1 the principle of
information flow was emphasized. In terms of the master program it is of
equal importance; however in the medium of the computer the information
assumes the form of data sets. The input information in "raw" form is
organized by the master program into logically distinct data sets. The
master program is then concerned with the ordering and storing of these
data sets. When this has been accomplished, the master program references
the relevant models which are to operate on the data sets. As changes to
data pieces within sets occur, it is the responsibility of the master program
to incorporate these changes into the data sets. Finally when all the
changes have been affected, the master program provides the means whereby
the revised data sets are edited and dumped as output from the computer.
The master program is composed of a number of basic routines which enable
it to accomplish these functions. There are six such routines:

(1) Read battle group cards.

(2) Select and store status of forces data.

(3) Reference models and adjust data.

(4) Edit assessment results.

(5) Update status of fcrces file.

(6) Edit status of forces file.
Each one will be discussed in terms of data sets with regard to the pro-
cedures to be followed in executing its operations, the input required,

internally stored data necessary for execution, and the results of the
operation.
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The general flow of operations performed by the master program is
presented by the flow diagram in Figure 2. The diagram is a much simplified
one; the more specific details of the operation have been excluded. In
determining what should be included in the diagram, the authors have
attempted to present only those relationships such that to change them
would, in effect, create a different program. It is felt that changes within
any one of the individual boxes would not appreciably affect the over-all
program; but to change the relationship among the operations illustrated -
would be such a significant alteration that it would be more advantageous
to design a new program.

READ BATTLE GROUP CARDS ROUTINE. The master program "starts" by
reading in the control information defining the battle groups, or combat
interactions. This information has been recorded on cards punched in a
specific format designed for the problem. Each card contains on it the
designation of a unit involved in the interaction, in addition to parameters
relating the unit to the battle situation. The data are extracted from the
cards and are converted from the input code to the internal language of
the computer. The process is continued until all the cards for the units
being played during the present interval have been read. The names of -
these units are stored in a list which is to serve as a key for model
routing. The control data for these units are then stored to be integrated
at a later stage with the information extracted from the status of forces
file. When all the battle groups have been read into the computer and pro-
cessed in this fashion, the functions of the first routine have been accomp-
lished, and the computer system is ready for the second routine to begin
operation.

SELECT AND STORE ROUTINE. The select and store routine also performs
an input function. This routine reads in the status of forces file (from
magnetic tape). Contained on this file, as has been mentioned above, is a
record of all the units and data describing these units. The routine in read-
ing the file checks the name of each unit against the list of names made
from the control input, and when a match is found, the data for this unit are
extracted from the file.
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The data are then converted from the tape code to the internal language
of the computer in the same fashion as were the card input data. Once the
data have been extracted and converted, they are stored with the card input
for the unit. The process is repeated until all the units contained in the
control list have been matched with data taken from the status of forces file.
When all such information has been stored, the storage region will be organ-
ized in the form of the following example (in consecutlve machine cells):

Name of lst Unit Specified 3rd Div
1st Control Input Parameter (posture) befend
2nd Control Input Parameter (terrain) Flat
Ist File Datum (location) Berlin
2nd File Datum (strength) 9,000
3rd File Datum (armament - %) | 100

etc., for all specified units.

Each unit and its corresponding input data organized in this manner within

the computer are referred to as a "unit data set". The remainder of the
explanation of the computer system will be focused on the processing of

this basic entity, this process being analogous to the principle of information
flow in the non-automated portion of the system.

MODEL SELECTOR AND DATA ADJUSTOR ROUTINE. The central routine of
the master program is the model selector and data adjustor program. The
other routines of the system merely supplement the functions of this routine.
Its purposes are to reference the appropriate model and to provide it with the
unit data sets necessary for its calculations. To accomplish this the routine
first selects the unit data sets comprising one battle group and transfers
these to a working area. Next it determines what type (and how many) units
are represented in.the group; by doing this the routine is then able to
determine what models should be called in to assess the outcome of the
interaction. At this point a slight digression is warranted to make explicit
the assumptions underlying this approach and what it requires.

The obvious premise is that the type of unit involved in an interaction
entails what model should assess its effect on the outcome. .Specifically
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it implies that a battle group composed only of air units, perhaps squadrons
or wings, should be processed by an air model. This is obvious; however,
what is not so clear is the procedure to be followed when the battle group is
composed of a mixture of types of units, i.e., a battle group containing air,
artillery, armor, and other dissimilar units. What procedure is to be applied
must be decided early in the pre-game planning phase and requires what
might be considered simply a delegation of respgnsibility - which models
should assess what portion of the interactions. The approach agreed upon
by the control group is arbitrary as far as the master program is concerned;
regardless of what decision is reached, however, some means of specifying
the unit type is necessary. Thus the two requirements for the master pro-
gram are that first a doctrine be defined, and second a means be provided
whereby it is possible to differentiate between the types of units.

With this in mind the reader can now better understand the function of
the master program to determine what types of units are present in the battle
group. Before the models can be executed, however, there are still two
operations which the master program must perform. It prepares a list of
machine addresses, which are the first cells of each type of input unit data
sets, and it also calculates the amount of storage necessary for results of
the assessment and assigns storage addresses for this purpose. At this
point the master program is ready to reference each model in turn in accord-
ance with the procedure established in the planning phase.

The master program thus provides each model with the following four
items: 1) the input data sets, 2) the addresses of the locations of these
data sets, 3) the number of the various types of units within each battle
group, and 4) the first addresses of the storage areas where the results are
to be placed. After each model has assessed the interaction and has stored
its results in the results region, the master program revises the input unit
data sets with respect to these results, so that as each subsequent model
operates, it is then provided with an updated data set. In this way there is
established an interconnection between the various models of the system.
This also demonstrates the importance attached to the procedure to be fol-
lowed concerning the order in which the models are to be referenced. Since
this is a fixed system, i.e., the logical order of the models never varies,
emphasis should be placed on selecting that order which most nearly repre-
sents the usual sequence of events in reality.*

* See Chapter 3

* It is acknowledged that in reality sometimes events occur simultaneously;
however, reality must be compromised to be made compatible with the fact
that the digital computer operates sequentially.
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After the models have assessed the outcome of a particular battle
situation, the entire assessment operation is repeated for each of the
remaining battle groups. At the completion of each cycle, the input data
sets for the processed battle groups are discarded, while the data sets of
results are stored for the later phases of the operation.

RESULTS EDIT ROUTINE. It is the function of the results edit routine
to provide the output from the assessments. It first selects a unit data
set of results. Next it converts the data into the output code, arranges
them according to the output format, and writes them on magnetic tape.
The results indicate all those items of the status of forces file which have
been altered by the models and are the actual changes, not the result of
these changes. For example, given an infantry division which has suffered
heavy losses in combat, the results from this might be the number of
casualties suffered to personnel and losses of equipment. The results
output then consists of the name of the unit and changes to that unit, and
these are given for each model and in total for all models. The routine
continues in this manner until the results for all units played during the
interval have been edited.

UPDATE ROUTINE. It was pointed out at the beginning of the discussion
that the status of forces file was automatically maintained, and it is the
function of the last phase of the system to accomplish this task. The first
part of this operation is the update routine. The routine sorts all the data
sets of results and arranges them in the same order as they appear in the
status of forces file. This generates the requirement for a definite order
for the units in the file. This could be done in either of two ways; either
a list of the order of the units in the file could be stored within the routine,
or the units could be arranged in some logical pattern in the file. The latter
choice is the one incorporated in the computer system; it is assumed that
all units are recorded in the file by number and that these numbers are in
ascending sequence. Thus the routine is able to order all the data sets of
results in ascending sequence to facilitate the updating process. While
ordering these data sets, the routine checks for units have been refer~
enced more than once. Where a unit does appear more than once in the data
sets, the results are accumulated forming just one data set for each unit
further facilitating the update process.

An auxillary function of the routine is to provide the capability for
making changes to the status of forces file which are not machine
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generated, i.e., those that directly reflect a control decision. To execute
this, it is possible to introduce such changes by punched cards. So that
computer storage restrictions would impose no limitation on the number of
units that could be changed in this manner, the card changes are read for
only one unit at a time; the next set are read in after the first set of changes
have been made. These changes, therefore, must be in the same order as
the units on the file. Any datum for a unit can be changed except the
identification number. The number of such data changes is unrestricted so
that, for example, control could revise the number of personnel assigned to
a unit to reflect a decision regarding reinforcements, or it could alter all
the data attributes if necessary.

After the results of the model assessments have been ordered and a set
of control changes for one unit read in, the routine begins to read in the
status of forces file from magnetic tape. As each unit is extracted from the
file, a check is made to determine whether any of its data attributes are to
be replaced by those data of the control cards. (In the present system two
cards are required per unit.) If there are any, the new data are substituted
for the corresponding data comprising the file unit data set. Next the unit
data set is converted to the internal language of the computer, and a check
is made for the existence of any assessment results for the unit. When such
results are present, the file unit data set is updated with this information,
and the revised unit data set is stored within the machine. This process is
continued until all the units for one side (Blue or Red) have been transferred
from the file into the computer at which point the integration of all changes
for these units from control and the models should have been completed.

The reason for storing all the data sets of just one side is to provide
what is required for the execution of models that do not perform interaction
assessment calculations, but rather that accomplish what might be called
"recovery procedures”". It is assumed that such models do not, therefore,
require access to unit data sets for both sides; as a consequence only the
data sets representing either Blue or Red units, respectively, are stored at
any given time for these models. By this approach a more effective utiliza-
tion of storage space is accomplished. (In the THEATERSPIEL application of
the system, a logistics model was included at this point to perform consump-
tion and resupply calculations for all units in the theater of operations.)

OUTPUT GENERATOR. After the model, or models, have been executed,
the system has only to generate the output. Output is generated after each
pass through the update-recovery portion of the system, i.e., after both the
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Blue and Red units have been processed. This involves selecting, in turn,
each of the unit data sets, converting the data into the output code,
arranging the data sets into the output format, and writing this material on
magnetic tape; in doing this the revised status of forces file is produced.

From the system then there results two forms of output: assessment
results and a revised status of forces file. In addition all input to the
system has been placed on punched cards. Thus all the quantitative
material of the play exists in machine language. These three items can
be retained for the work on the post-game analysis phase and provide the
initial means whereby this analysis can be efficiently executed by the
computer, thus accruing an important additional benefit from a computer
supported gaming system.
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CHAPTER 3

THE THEATERSPIEL COMPUTER SYSTEM. The computer system described
in the previous chapter has been designed for the THEATERSPIEL Study
(35.10, Strategic Division), for its POMEX series of war games. The
development of the system was accomplished through the joint work of this
study group and the Computing Laboratory staff; as such many of the
decisions concerning critical aspects of this development reflect the efforts
and decisions of both groups.

POMEX I was played during the latter part of July and the early part of
August, 196l. In preparing for play (Phase I) and during play (Phase II) a
great deal of attention was directed towards providing for the efficient
employment of the computer system; at the same time much was learned
in applying the system. It is the purpose of the present chapter to present
some of the methods devised for the application of the computer system by
THEATERSPIEL, and in the following chapter to give some indication of what
one computer-oriented experience has gained for the study group, so that
other studies with a similar orientation may benefit from this first attempt.

PHASE I: THEATERSPIEL COMPUTER USAGE PREPARATIONS. It was
decided that the computer-oriented objectives for the play of POMEX I would
be to mechanize four separate models: an air model, a support weapons
model, a ground combat model, and finally a logistics model. The sub-
stance of the models, coupled with the over-all objectives of the study,
determined the level of aggregation of play, i.e., the amount of detail to
be included. As a consequence the size of units to be played was that
of division level. Further the choice of the particular theater to be played
affected the decision as to what types of units were played. Finally the
data required by the models for each unit determined what characteristics
were used to describe the units. It was in this manner that the specifi-
cations placed on the design of the status of forces file became evident.

The preparation of the status of forces file involved several stages of
development. First a unit designation system by which the units could be
identified was devised consistent with the various classifications of units
to be considered in the game; it was based on the use of five digits, the
pattern and use of which is illustrated in Table 1. It can be noted that there
can be no more than 100 units of any given type and nationality with the use
of this symbolic system, however the addition of one digit would increase
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this number to 1,000 and would remain compatible with the system in its
present form. The unit designation number as such was used throughout

the game by both the player teams and the control group when referring to
specific units. For map purposes, only the last two digits were used on *
the unit symbols. However the color and shape of the symbol determined

the rest of the designation, and thus identification of units was accomplished.

After the scheme for unit designations had been developed, it was
necessary to specify what characteristics would form the various unit
data sets for each type of unit. Since each model required certain pieces
of data for each unit, all that was needed was to accumulate these require-
ments. To be kept in mind in doing this, however, was the goal of compact-
ness, i.e., where possible to have the data pieces serve more than one
model's needs. Table 2 contains the result of this effort. As can be seen,
there are six unit types represented for which in most cases the character-
istics are the same.
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Table 1
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EXPLANATION OF UNIT DESIGNATION NUMBER

First Digit: Allegiance

B=
R =

Second Digit: Type

Blue
Red

0 = AIR
1 =SAM

SPT

3 =GND
4 = LOG
5 = STN

Third Digit: Nationality

NO bW~ O
oo o
w2 w
BRzZE=

o
537G

8 = PO
9 =CzZ

Fourth and Fifth Digits:

Identification Number

As desired

EXAMPLES:

Bl1234

R0O601

Air unit

SAM unit

Support Weapons unit
Ground Combat unit
Logistics unit

Supply Point

United States
Great Britain
France

West Germany
Belgium
Netherlands
Soviet Russia
East Germany
Poland
Czechoslavakia

34th French SAM unit

1st Soviet Air unit






200 Design of Experiments

For example, each unit data set except for supply points, which are a
special type of "unit", has a characteristic labeled "pers str" which is the
abbreviation used for "present strength"; this has a different meaning
depending on the type of unit described; for air units it describes the
number of planes, for SAM units the number of launchers, and for the rest
the number of men. This demonstrates what was achieved in striving for
compactness and applies to many of the other characteristics. An explan-
ation of the meaning of the other-abbreviations can be found in Appendix A.

In the process of preparing the status of forces file the next step was
to design a suitable format. It has been previously indicated that the file
exists on magnetic tape, however the actual working file, which the player
teams and the control group use, is the listing made from the magnetic tape
on the High Speed Printer; the format was designed with this fact in mind
considering the size of the sheets of printer paper, the amount of material
on the status of forces file, and the clarity of presentation. The result was
a printer page containing, at most, eighteen unit data sets arranged in two
tables of nine units each with the data pieces of each unit data set placed
vertically with respect to one another. An example of this format is
provided in Table 3.

For the other input to the computer two forms were used. Table 4 pro-
vides a sample card format for the battle groups. Sheets similar to this
one were filled out by the control group to be key-punched on cards to be
read into the machine. The first six columns of the card contained the
unit designation number; the next six were used to specify the percentage
of the unit being employed in the case of air units or, in the case of ground
units, to indicate the type of terrain in which the engagement was to take
place; the third set of six columns was used to specify the type of engage-
ment being fought, and the last six either the target for an air unit or an
alternative location for a ground unit. The remaining fifty-six columns
were reserved for comments, and although these were not a necessary
part of the computer input, they were used by the control group to supple-
ment the records. The repetition of the number six is significant with
regard to the input and output of the system, and there is a reason for it.
The input-output is written in specific code, or language, which is
required by the High Speed Printer and which permits the intermixing of
alphabetic and numeric characters; as such it is only necessary for working
with the magnetic tapes (the status of forces file and the assessment
results), but the consistency it was decided to employ this same code when
using cards. In this way the entire input-output medium is written in the
one language; all pieces of data included can consist of no more than six
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characters due to translation of these data pieces into internal machine
language and the given work size within the computer.

This same idea applies to the changes to the status of forces file made
by the control group. These changes are punched on cards, and each six
columns on the card corresponds to one data piece of the unit data set.
Since each unit is described by some 20 data pieces, two cards are used
per unit (columns 79 and 80 are omitted). For example, columns 13
through 18 would contain whatever new data piece that should replace the
third data piece of the unit data set (counting the unit designation number
as the first). Referring to Table 3 suppose that control desires to change
the road in to the Russian armored division designated R3601, a card would
be prepared with the designation punched in columns one through five and
the new road in number, 512, in columns 16, 17 and 18. The revised status
of forces file for D+9 would then reflect the change.

In addition to designing the input formats, one output format had to be
prepared for the results of the assessments. A sample format can be seen
in Table 5 in which the results for three units are shown. For each unit
there are contained both its name and designation number, the date, its
new location (if it has beenmoved, as each of the three have), and the
various losses of the unit. The casualties are given in four columns; the
first three show the losses calculated by the assessment models (air,
support and combat) and the fourth the total casualties. Each page con-
tains units of only one side, either Blue or Red; this is done so that the
results can be separated and distributed to the respective player teams.
Every unit specified within the battle groups in any given interval of play
will be included on the results sheets in this fashion.

During Phase I the four models were programmed and integrated with
the master program. A great deal of care was taken in the coordination of
this task to insure internal consistency within the resulting computer
system. Each model was written as a separate program which, when finally
a part of the complete system, could be entered from the master program and
exited as an internally logically distinct and independent program, requiring
only the input data external to itself, i.e., the unit data sets, the
initial addresses thereof, and the initial addresses for the results storage.
As this programming effort and the data preparation were completed,
attention was directed to determining what procedures would be followed in
the execution of play.
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CASUALTY ASSESSMENTS POMEX I

CAUSE OF CAS
INPUT CAP
PERSONNEL
COMBAT POT

CAUSE OF CAS
INPUT CAP
PERSONNEL
COMBAT POT

CAUSE OF CAS
PERSONNEL
COMBAT POT

8 TK DIVISN
NEW LOCATION

ARTY

AIR OR SSM
2365 0
163 131
7 6

4 MTRZDIVISN
NEW LOCATION

ARTY
AIR OR SSM
1503 0
166 152
3 3
5 MTRZDIVISN
NEW LOCATION
ARTY
AIR OR SSM
N 1569
o 3
N
E
TABLE 5

R3608
NB80

GROUND

539
23

R3623
NAT6

GROUND
628
13

R362.
NAT8

GROUND
656
15

ASSESSMENT RESULTS FORMAT

D+ 8

TOTAL
2365
833

36

D+ 8

TOTAL
1503
946

19

D+8

TOTAL
815
18
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PHASE II: THEATERSPIEL GAME PIAY. The Blue and Red player teams were
each provided with a copy of the game scenario, their respective status of
forces file, and large maps of the theater of operations depicting the distri-
bution of their units. Using these three sources of information, the player
teams developed their tactics and communicated the orders to execute these
tactics to the control group. This was accomplished in two ways. Large
acetate overlays indicating the movement of the units by the players were
transferred into the control room; this was supplemented by written material
stating the players' general objectives for the current interval.

After the overlays from both player teams had been merged with the
control map, the control group proceeded to define the resulting interactions.
The assistant controller for logistics judged the extent to which the (player)
indicated moves could be executed within the given time interval of play,
based on such factors as availability of transport and troop readiness. In
the process of thus advancing the units, both Blue and Red, it was the
responsibility of the controller and assistant controller for ground combat to
determine in what cases combat interactions would result and what units
would be involved in the action. Figure 3 displays a general diagram of the
combat interactions defined on the basis of indicated movement; Red
(darkened symbols) had indicated a thrust over the MLR (main line of resist-
ance) thereby placing his units in the proximity of the fixed Blue positions.
This results in two separately defined interactions, the engagements being
grouped with the assumption that there will be no direct interaction among
the units of the two different battle groups. Next the assistant controller
for air operations committed air units for support of the respective forces, in
addition to stipulating any air interactions which were to take place, both
of these actions reflected the decisions of the players with respect to their
orders for the employment of air units.

As each of the battle. groups was thus defined, the information was
recorded on the control input sheets, each assistant controller being
responsible for filling out his own sheets. The input sheets were then
given to the assistant controller for machine operations who was responsible
for making a comprehensive check of all input sheets. Proper designation
of units, consistent interaction numbering, and completeness were among
the matters checked. After the examination of the input sheets was
completed, the information recorded was punched on cards which were then
checked and sorted for errors, and finally the computer system was run.

One set of output from the computer was separated to include only Blue
results and one only Red results and distributed to the respective player



206 w

BATTLE GROUP
2

BATTLE GROUP -
1

M4LR

Fig. 3 - Battle Groups Defined

z



Design of Experiments sz7

teams. Duplicate sets of output were distributed among the members of the
control group, who then composed reports to supplement the machine record.
At this time, too, the assistant controller for intelligence used the results
to generate the intelligence estimates provided for the players.*

The play continued in this manner with the players each time using the
revised status of forces file together with the other information given them
by the control group to generate their new set of orders, until the controller
judged that the combat had achieved that degree of resolution which had
been initially desired, at which time the game was ended.

This short summary of the THEATERSPIEL computer play of POMEX I has
been included to serve as an indication of how the play of a semiautomatic
system can be implemented; in addition it has been written to provide the
background for a discussion of some of the problems realized in such an
attempt. Those readers more interested in the substantive aspects of play -
are referred to the ?aper which has been written summarizing the history of
play of POMEX I..

* In the first play of the system the intelligence model had not been
programmed, and thus this operation was performed manually. It is
anticipated, however, that it will be programmed and incorporated
into the computer system for the next play.
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Chapter 4

SOME CONSIDERATIONS ON THE SUBJECT OF COMPUTER USAGE

EFFECTS ON GAME ORGANIZATION. The effects on organization are
felt in several ways. First it becomes necessary to define precisely the
rules by which play is to be conducted. The rules must be well defined
so that the programming can reflect these rules; since the nature of
programming is the expression in symbolic language of a logical progress-
ion of operations, the rules must be stated in a form conducive to the
accomplishment of this task. Secondly the procedures to be followed in
implementing the computer system during play must be equally explicit.
There must be a specific delegation of responsibility within the control
group, and each member of this group must understand at least the
fundamental principles of the operation of the computer and of the specific
programming involved. This is of importance if the maximum potential of
the computer is to be realized. If the operation of the system is to
proceed efficiently, the members of the control group should have a working
knowledge of the programs used. Superficially this may not appear to be
very necessary, however during the progress of play many unexpected
problems will arise, and the individuals concerned must be prepared to
cope with these rapidly. Furthermore an attempt should be made to provide
simple and concise forms for each step of the control operations in order
to avoid delays arising from errors and from misunderstandings.

There are two further implications which, broadly speaking, can be
considered a part of the organizational aspects of a semiautomatic system.
As the computer system increases in complexity, it becomes more difficult
to revise it. However if its development proceeds in a logical and orderly
fashion, this will tend to alleviate the severity of this problem. Care must
be taken to avoid the creation of a "black box" which becomes unmanageable.
Finally it must be realized that the use of the computer introduces new
responsibilities into the control room. One reason for using the computer
is to absolve the control group of many repetitive and tedious functions
usually associated with control procedures in a hand-played game. Never-
theless in diminishing the magnitude of these efforts, it is possible to
create new and more tedious difﬁculties.related to the use of the computer,
since it creates the requirement for high standards of accuracy.

THE QUESTION OF ACCURACY. The matter of accuracy in working with
a computer is two-sided. First information prepared for the computer must
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attain high standards of accuracy. Errors made in preparing input for the
computer can cause the system to fail in its operation, resulting in un-
necessary delay, or the errors can go unnoticed with the consequence that
they are perpetuated into successive stages before they are detected.

Here again proper organizational procedures can alleviate the difficulty;

it must be realized, however, that the final responsibility in this area lies
with the personnel of the control group, further emphasizing the need for
their proper understanding and knowledge of the system.

Secondly the computer provides the means for greater reliability in the
accuracy of the results of the game. (This is not to be confused with
validity.) Once the programs have been properly checked out, there need
be no concern for errors in the computations. Furthermore the speed and
capacity of the computer allows for more comprehensive calculations. Not
only does the computer enable the system to include more elaborate methods
of calculation that would be infeasible when performed by hand, but it also
allows many more factors to be considered, and in greater detail. Of
course, this opportunity should not be unnecessarily exploited; it is possible
to design a system which provides too much detail. If a player team is
given an overabundant amount of information including much irrelevant
material, some of it will tend to be ignored and will be of no use. Another
aspect to be treated in a cautious manner is the temptation to compromise
the game rules, or the corresponding calculations within the models, to
adjust to the requirements of the computer. Frequently times will occur in
which certain calculations present a problem in their translation to a pro-
grammed sequence. Inresolving the difficulty the programmer must avoid
an arbitrary compromise for the sake of programming clarity. In addition
to this, certain operations may arise for which the programming approach is
not immediately evident. Approximating the operation must be done with an
appreciation for the error introduced; consideration must be given to the fact
of whether or not this error will tend to cancel out during the remainder of
the calculations or be intensified. From this discussion the reader should
be aware that the problem of accuracy can work for or against the system,
although it will generally be positive factor if the proper attitude is adopted
when designing the system with regards to organization and procedures.

In summary, there is a certain danger to be avoided in the use of a
computer in the gaming environment. It must be remembered that the function
of the computer in this environment is to support the control operations. If
the computer receives too great an emphasis, its very advantage can be
turned into a detriment with too little thought being afforded to substance and
too much to method. Yet if concentrated attention is directed towards the
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design of the system in the pre-game planning phase, the degree to
which the game play becomes subordinated to the computer operation is
reduced to a level at which the efficient relationship between man and
computer is achieved.

APPLICATIONS. The system described in this paper could be used to
provide a satisfactory approach to any gaming environment similar to the
one outlined in Chapter 1. This is one in which there is a basic concern
for the quantitative assessment of the interaction among some fundamental
entities, and one in which there is a need for the consideration of a
great number of these entities and quantitative factors describing them.
Further there should be a requirement for logically distinct operations to
be performed in the calculation of these interactions which must be
repeated a sufficient number of times to warrant their mechanization.
Finally there should be a desire to maintain the separation of the human
decision functions and the quantitative analysis resulting from these
decisions, and yet the desire to maintain the interrelationships involved.

If these conditions are met, then the semiautomatic system discussed
could be utilized in any one of three ways. At the first level of utilization,
the method of approach might be applied to other studies, thus substantially
reducing the necessary planning effort involved. That is, it could be
applied as a logical system. At the second level of application, the
interpretation of this logical system, the master program, could be adapted
with a few slight revisions to other systems into which the pertinent models
could be incorporated. In this case all that would be necessary would be
to construct these models in a fashion consistent with the requirements of
the master program maintaining the basic operations outlined in Chapter 2.
Finally the third level of utilization would be one in which the whole system
would be used in toto including the models programmed by THEATERSPIEL.
This, however, requires a more detailed understanding of the substance of
the system and entails reference to the papers describing these models. %67

LIMITATIONS. There are two major limitations to be considered when
discussing the feasibility of this approach to war gaming. There was some
mention made in Chapter 2 of the problem of storage within the computer and
in the first section of this chapter of the difficulty involved in making changes
to the routines as the programming becomes progressively more complex. The
latter is by far the more important. For example, if it were desired to revise
and improve one of the models, the changes necessary would more than likely
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affect the other models. This snowballing effect would vastly increase
the time required to make the alteration. The greater the departure of the
new requirements from the original ones, the more difficult will be the
task of adjusting the system to suit these new requirements.

The problem of internal storage can be solved, although at the expense
of operating efficiency. Extensive use of magnetic tapes can provide an
almost unlimited storage capacity for the system. In doing so, however,
it must be realized that the speed with which the operations can be
accomplished will consequently be compromised, since tape storage, as
opposed to internal storage, has a much slower access time for computa-
tional purposes. As presently designed the THEATERSPIEL §emiautomatic
system's use of tape storage is minimal with the result that one complete
computer run of the system is accomplished in about fifteen minutes. It
can be anticipated that a significant increase in the use of tape would
double or triple this time. Moreover the reliance on greater usage of tape
storage would entail revising the logic of the presently programmed system
which in itself would require some time (in the order of months) to
accomplish.

EVALUATION. In general there are two major criticisms made of war
gaming as a means of problem solution; one is with respect to timeliness
and the other with regards to cost. It is the purpose of this section to
demonstrate that in terms of these two criticisms, the semiautomatic
system is a significant advancement in the state of the art. There are
frequent references in the literature about the expense gaming entails, -
and furthermore that it is such an extensive and time-consuming operation
that by the time the game is finished and the study completed, there is
no longer a requirement for the results. THEATERSPIEL's first play with
the system in POMEX I would tend to support the view that by the use of the
semiautomatic system, thi.s need not be the case.

After the initial period of familiarization and orientation to the use of
the system the last 10 intervals of play of POMEX I were completed over
a span of 2 weeks. It is estimated that to play a hand game with a
similar degree of complexity and detail which the use of the computer
permitted would require approximately 3 weeks of real time for each interval
of game play. Assuming in both cases the need for the full-time efforts of
10 analysts, together with any necessary additional support, the cost per
game interval if played by hand would be about $30,000; whereas using the
semiautomatic system, the cost per game interval would be about $2,100.
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Thus the total cost for 10 intervals played by hand would be $300,000

and would take about 30 weeks, whereas with the semiautomatic system the
10 intervals were completed in 2 weeks (10 work days) at a total cost of
$21,000. Of course, this description is incomplete unless the time spent in
developing the system is considered. The preparation of the computer
gaming system took about 6 months; this estimate includes design planning,
data collection, programming, debugging and education. This information
is summarized in Table 6.

Table 6

TIME AND COST OF HAND PILAY VERSUS THE SEMIAUTOMATIC SYSTEM

Hand- Computer-
Played vs  Assisted
Game Game
Real Time/Game Interval (Wks) 3.0 0.2
Estimated Cost/Interval $30,000 $2,100
Time for Preparation and Play
of POMEX 1 (Wks) 30 28
Cost of POMEX I $300,000 $294,000

But this table too is incomplete, in two ways. First the estimate of time
for preparation to play the game by hand should be revised with the
consequent effect on cost. Much of the same work required in preparation
for play with the computer-assisted system would also be required in
preparing for hand play. The same data would have to be obtained, the
same models prepared for use (though in a different form), and many of the
same procedures would have to be devised. Thus in effect this would
increase substantially the time and cost estimates for a hand played game.

The second area in which the presentation of Table 6 is deficient is with
respect to the ideal of future plays. The saving is demonstrated most
dramatically when considering future uses of the two approaches. Speculat-
ing as to a future play the results might appear as presented in Table 7.
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Table 7

TIME AND COST FOR A TWENTY INTERVAL FUTURE PLAY

Hand Computer

Played vs Assisted

Game Game
Real Time/Game Interval (Wks) 3.0 0.2
Estimated Cost/Interval $30,000 $2,100
Time to Play POMEX II (Wks) 60 4
Cost to Play POMEX I1 $600,000 $42,000

From this it can be seen that each repeated usage of the system will
increase the practicality of its development. However, this also
demonstrates the fact that where only one game play with the system is
desired, the merits of the computer=assisted game are not sufficiently
obvious. Nevertheless each future use of the system adds to the merit
of its original design and development.

There is another significant difference to be noted between these two
approaches which has a bearing on the criticism of timeliness. It has
been pointed out earlier in this paper that the post-game analysis phase
can be made far more efficient and profitable if the computer is put to
good use. This is especially true when the computer-assisted system
has been used, since all the data to be analyzed already exist in machine
form on punched cards and magnetic tape. Thus the problem of organizing
the game data for analysis purposes can greatly be diminished by the use
of the computer-assisted system.

In conclusion, the advantages gained during the game play phase and
post-game analysis phase with regards to time and cost would seem more
than to compensate for any lengthening of the pre-game planning phase.
Finally in those cases where a number of plays of the system are desired,
the computer-assisted game seems to be a vast improvement over the hand-
played game in terms of both time and cost.
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Appendix A

TABLE OF MEANINGS FOR UNIT ATTRIBUTES

NAME OF UNIT: Actual name of unit.

UNIT DESIG: Designation number of unit (explained in text) used in
game system.

LOCATION: Geographic position of unit.
ACTIVITY: Mission of unit in given interval of play.
ROAD IN: Number indicating supply point from which supplies

are to be obtained.

PRIORITY: Number indicating relative importance of unit in
obtaining supplies.

MAX INPUT CP: The upper limit (or original value) of a unit's capacity
to receive supplies.
PRES INPT CP: Capacity of unit to receive supplies during given interval.
TON/100 MEN: Total authorized weight of unit per each 100 men.
PRES STR: Number of men in unit available for combat at end of

given interval.

PRIOR STR: Number of men in unit at beginning of given interval.
. AUTH STR: Original number of men assigned to unit.
OH SUPPLY I: Total weight (in tons) of Class I supplies unit has
available.
II AND 1IV: Total weight (in tons) of Class II and IV supplies unit

has available.

III: Total weight (in tons) of Class III supplies unit has
available.
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OH SUPPLY V:

AIRFLD CAP:

NUMB SORTIES:

PREV FIRINGS:

WEAPONS:

COMBAT POT:

MAX SUP STRD:

PRS SUP STRD:

ROAD OUT:
1-10

Total weight (in tons) of Class V supplies unit has
available.

Number representing the capacity of an airfield to
expedite air operations.

Number of planes flown during last interval.
Number of missiles launched during last interval.
Index of combat value for support weapons units.
Index of combat value for ground combat units.

The upper limit on amount of supplies a supply
point can store.

The amount of supplies a supply point has stored
during given interval.

A number indicating which units can obtain supplies
from given supply point.
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TRANSIENT NUCLEAR RADIATION EFFECTS
ON ELECTRON TUBES AND TRANSISTORS

Richard G. Saelens
U. S. ArmySignal Research and Development Laboratory
Fort Monmouth, New Jersey

INTRODUCTION. The magnitude of the nuclear radiation effects program
at USASRDL has grown considerably during the past year. Although con-
siderable exposure-type investigations have been performed at other
facilities, approximately one and one-half years have elapsed since a
Godiva-type reactor was available. This paper will describe a large-scale
exposure at the Godiva reactor. The magnitude of this effort was made
possible by the 16 -month delay. By capitalizing on the interim period
between experiments, a program was designed to permit the exposure of
approximately 600 electron tubes and solid state devices. The objective
of this experiment was to obtain information on electron devices which
could be utilized by electronic equipment designers. In order to provide
these data, sample sizes were selected which would provide statistically
valid information. Although some question may arise as to the sample sizes
chosen, other factors including economics and availability of exposure
space and test equipment were also considered. Approximately 20 types
of transistors were exposed (sample size approximately 25 each), and 10
types of electron tubes (sample size approximately 10 each). The experi-
ment design included data on controls not exposed to the radiation environ-
ment, data acquisition on other environments, parameters which could
possibly have an effect, such as ambient temperature, and controls over
as many conditions as possible. In addition, controls were exercised over
the operation condition and capability of the test equipment. The experiment
was performed in late August 1961 instead of May 1961 as originally planned
and, therefore, the complete analysis of the vast amount of data could not
be accomplished. The data obtained during this experiment are still in
the process of being reduced. Complete data analysis is being performed
at USASRDL, and also will be performed under contract.

RADIATION EFFECTS MOBILE LABORATORY (REML). The magnitude of
this experiment necessitated the design and instrumentation of a special
mobile laboratory. This consisted of a 28' trailer equipped with energizing
circuitry, FM tape recorders, oscilloscopes, oscilloscope cameras,
temperature recorders, and ambient temperature controls. The interior of
the trailer showing the magnetic tape recorders and electron tube circuitry
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can be seen in Fig. L (Figures are at the end of this article.) The temper-
ature recorder, transistor circuitry, power supplies, and digital voltmeter
are shown in Fig. 2. A special rack designed to accommodate six oscil-
loscopes is shown in Fig. 3. In order to minimize circuit changes between
exposures, printed circuit boards were utilized for the electron tubes.
Through the proper selection of dropping resistors, the correct voltage is
applied to each tube type without changing the supply voltage (Fig. 4).

INSTRUMENTATION. The recording instrumentation of the REML
consisted of five 14-channel high-speed magnetic tape recorders and four
dual-beam oscilloscopes. The oscilloscopes were used to simultaneously
monitor certain tape inputs. This information was used to verify the valid-
ity of the tape data, and provided immediate information at the site on the
transient changes occurring in the devices under test.

A block diagram of a typical exposure during the experiment is shown
in Fig. 5. Cables fromthe exposure head are connected to a junction box
placed inside the Kiva (building housing the reactor). Typical exposure
heads are shown in Figs. 6, 7, 8, and 9. Note the sulphur pellets mounted
directly in the potting material on the transistor test heads. The junction
box is shown in Fig. 10. Cables from the junction box feed into a patch
panel on the side of the trailer and are, in turn, connected to the tube
and transistor circuitry. Transistor outputs are fed into differential pre-
amplifiers before they are recorded on magnetic tape.

A digital voltmeter with printout was utilized in the transistor monitoring
system. Through a series of stepping switches, it is possible to monitor
100 channels of information. The stepping rate is 0.5 sec. The information
recorded in digital form is used for pre- and post- radiation measurements.

EXPOSURE OF DEVICES.

a. Solid State Devices:

The following is a list of solid state devices which were exposed
during the experiment:

Special Computer Devices: Germanium 2N1304, 2N1305, 2N1306,
2N1307, 2N710, 2NI10l, 2Nl00
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Silicon Switching Devices: 2N706

Power Transistors: Germanium 2N797, 2N1309, 2N1043, 2N1046
Silicon: 697 C

General Purpose Devices: -Germanium 2N1406

Epitaxial Devices: 2N743, low signal silicon 2N335 and 2N726

Several diodes were also exposed, such as the IN752, XR-39, IN652,
and a GaAs Varactor diode. Parameters were monitored on all devices during

and after the radiation pulse.

b. Electron Tubes:

The following electron tube types were exposed: 2582 and 7457
power tubes, Nuvistor triodes and tetrodes, 6]J6, 12AT7, 6AQS5, 6943, 7244,
2146, 1724, and a Z-2352. Plate current, Ib' grid leakage current, Ic'

and a-c signal gain, ep, were measured on these devices before, during,

and after the radiation pulse.

SANDIA PULSE REACTOR FACILITY (SPRF). Briefly, the characteristics
of the SPRF are as follows:

60 ms pulse width at half height

16

3 x10°" leakage nei.ntrons/burst

3 x 1020

13

neutrons/sec peak leakage rate

10 2

n/cm® E > 1 Kev

17 2
2x10°° n/cm, sec peak intensity
2000 - 3000 rads gamma dose

2-3 x lO7 rad sec
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2
DOSIMETRY. Fast neutron dose measurements were made with S~

32
pellets. S pellets from USASRDL were exposed in pairs during several

shots in order to obtain corroboratory information. Additional neutron dose

237
measurements were made with Pu239 (E >1Kev), Np 3 (E> 0.7 Mev),

and U238 (E = 1.5 Mev) foils furnished by Sandia. Gamma dose measure-
ments were made with USASRDL NBS film-badge type dosimeters and micro-
dosimeters (glass rods). Gamma dose rate was measured with the MgO-
RAD* and SEMIRAD.

DATA ANALYSIS. The complete plan of analysis requires the data to be
treated as follows:

Transfer the information from the magnetic tapes to a visual form. This
may be accomplished by means of a visicorder.

Compare this information with the data which were taken simultaneously
on oscilloscopes during the radiation pulse. The oscilloscope pictures
and the visicorder information should be compared for any discrepancies.
If discrepancies are observed (due to bandwidth limitations in the magnetic
tape system), correlations should be made to compensate for any errors
which were introduced.

The data should then be normalized in order to eliminate the measured
parameter variations due to variation in burst yields.

Representative curves are to be plotted for each type of electron device,
and confidence levels indicated.

Adequate statistical methods will be employed during this and other
phases of the analysis.

The method of data acquisition (i.e., recording presentation) utilized
in the experiment will be compared with the methods used by other investi-
gators. An optimum method cof data acquisition will then be proposed.

Based on the results of the above analysis, recommendations will be pre-
sented for the design of future experiments.

*Magnesium Oxide Radiation Detector
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This plan could not be completely accomplished in the short period of
time between the conclusion of the experiment, the return of the mobile
laboratory, and the present time. What is reported here are the results
obtained to date.

L.

RESULTS.
a. General:

Equipment failures during the experiment resulted in a partial loss
of information during two shots. Three tape recorders malfunctioned during
one exposure, and one recorder during a second exposure. These mal-
functions resulted in a total of less than four percent of the data.

Electron devices were exposed during 16 shots. The information
recorded on magnetic tape was translated into visual form by playing the
tape data into oscilloscopes at the laboratory. Polaroid pictures were
taken of the waveforms. The magnetic tapes will also be played back into
a visicorder in order to determine long-term recoveries on certain transis-
tors. Recording at 60 inches per seconad (ips) and playing back at 1-7/8
ips produces a 32:1 reduction in tape speed, and is compatible to the band-
width of the visicorder. A comparison was also made of the waveforms
which were recorded directly on the oscilloscope during a burst to the data
which were played back from the tapes. The waveforms were identical.

b. Electron Tubes:

Representative results obtained on electron tubes are shown in the
following figures. The bottom trace of Fig. 1l depicts the a-c output of
the 7244 ceramic tube. The top trace represents grid leakage current.
The internal construction of this tube is identical to the 1724 ceramic tube
except that the active internal elements are mounted in a T-6 glass
envelope. Fig. 12 is the same as Fig. 1l except that the horizontal sweep
time on the oscilloscope is 0.2 ms/cm vs. 0.5 ms in Fig. 1I. The a-c
output of a conventional 6J6-type electron tube is shown in Fig. 13. The
7244 and 1724 have the same electrical characteristics as the 6J6.

The a-c output of a 1724 ceramic dual triode is shown in Fig. 14.
As stated previously, this tube type is identical to the 7244 except for the
ceramic envelope.
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Direct-record amplifiers, although offering a higher frequency -
response than FM, introduce a phase shift. This phase shift, using a
direct-record amplifier, is shown in Fig. 15. The signal in Fig. 14 was
recorded directly onto an oscilloscope. Fig. 15 was recorded on tape
through a direct-record amplifier. The phase shift is caused by the low
frequency response of the direct-record amplifier. This does not occur in
the FM record-reproduce system.

The a-c output of the 12AT7 is shown in the bottom trace of Fig. 16.
The top trace is the grid leakage current. The 2225 is the ceramic equi-
valent of a 12AT7 glass triode. The a-c output and grid current signal of
a 2225-type electron tube are shown in Fig. 17. The signal was recorded
through a direct-record amplifier. Several direct-record amplifiers were
utilized because a limited number of FM amplifiers were available. During
future experiments, the tape system will be completely FM.

The a-c output of the 6AQS is shown in Fig. 18. The 2146 metal-
ceramic tube is the equivalent of a 6AQS5 glass-type tube. The a-c output
of the 2146 is shown in Fig. 19.

The a-c output of two 6943 -type electron tubes is shown in Fig. 20.
The 6943 is a subminiature glass pentode.

The a-c output of a Z-2352 stacked ceramic triode is depicted in
Fig. 21.

Nuvistor triodes and tetrodes were irradiated at several positions.
Fig. 22 represents the a-c output of a Nuvistor triode located at the reactor
scree, A Nuvistor triode positioned 8-1/2" from the screen is shown in
Fig. 23. The Nuvistor triode a-c output at a distance of 4-1/2" from the
screen is shown in Fig. 24. The Nuvistor tetrodes exposed at the screen
and 8-1/2" from the screen are shown in Figs. 25 and 26 respectively.

Before the data on solid state devices is presented, I would like to
report the results obtained on the MgO-RAD detector. It is presented at
this point because it is a vacuum device. Essentially, the active element
of the MgO-RAD consists of a titanium cylinder approximately 1/2" in
length and 1/4" in diameter. Inside the Ti envelope or cylinder is a
collector electrode concentric with the outer envelope. A ceramic spacer
is used as an insulator between the emitter and collector. A negative
potential of 300 V is applied to the emitter while the collector is at +300'V.
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The inside of the Ti envelope is coated with a layer of specially processed
MgO. Secondary electrons (Compton and photoelectrons) ejected from the
Ti envelope cause a multiplication of electrons through the MgO layer. It
is estimated that a multiplication factor as high as 1000 may ensue.

The MgO-RAD operates on the SEMIRAD principle, i.e., secondary
electrons; however, the multiplication which is produced permits a small
detector size with a high output. A typical radiation pulse detected with
the MgO-RAD is shown in Fig. 28.

c. Solid State Devices:

The data compiled on solid state devices are in the process of
further analysis. The following information is presently available:

Fig. 29 shows the transient change in Ico in a germanium (Ge) n-p-n

developmental transistor. The pﬁak leakage current is 82_« a. The neutron
dose during this shot was 1 x 10°® NVT. Although the gamma dose rate was
recorded on one channel on each tape recorder, the SEMIRAD detector
which was utilized failed to function properly. Additional data were ob-
tained on an oscilloscope with another gamma detector, and an attempt

will be made to correlate the peak gamma dose rate with the peak Ico

for various devices.

The top trace in Fig. 30 shows the change in HFE of a silicon

2N706 n-p-n transistor. This corresponds to a 25% decrease in HFE'

The bottom trace represents the transient increase in IC o during the
burst.

The change in H on a 2N1039 germanium p-n-p power transistor

, FE
is shown in the top trace of Fig. 31. The bottom trace is the change in Ico‘

The response of a 2N710 germanium p-n-p type transistor is shown
in Fig. 32. Trace A is the change in HFE’ while Trace B is the transient

change in Ico' The neutron dose is approximately 1012 NVT.

Fig. 33, Trace A shows the change in H of a 2N1305 germahium

FE
p-n-p transistor. The peak leakage current is shown in Trace B.
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Fig. 34, Trace A shows the permanent damage in a 2N406 germanium

p-n-p transistor after a neutron dose of 1.1 x 1012 NVT. The bottom Trace

B is the transient change in Ico‘

CONCLUSIONS.

a. Transistors:

The transient and permanent changes in Ico and HPE shown for

the transistors are representative of each type. Upon completion of the
analysis of these data, confidence limits for each type of device will be
available. Variations in Ico and HFE will be correlated to gamma rate,

neutron dose, and type of device - base width, alpha cutoff, etc.

In general, the transient change in Ico is proportional to the gamma
dose rate, and the permanent change in HFE is proportional to the inte-

grated dose.

b. Electron Tubes:

Transient changes occurring in electron tube operation appear to be
caused by electron emission (photoelectrons, Compton electrons) from the
elements in the tube structure. Under static conditions (no input signal),
an increase in plate current would be observed during the duration of the
radiation pulse. Under normal a-c signal operation, this increase in
plate current causes the tube to operate or amplify on the non-linear
portion of the ib vs. eg curve. After the radiation pulse, the tube re-

sumes normal operation with no permanent damage.

Circuit time constants associated with different tube types will be
a contributing factor to the time interval before the tube will resume normal
operation. Materials in the tube and type of tube geometry will also be
a significant factor.

In general, both the ceramic and glass tubes appear to exhibit the
same transient effects during the radiation pulse. The ceramic-metal tube
in which the metal envelope is internally connected to the plate exhibited
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the greatest effect. This would be consistent with the afore-mentioned
theory, inasmuch as additional electrons would be liberated because the
physical cross-section is greater.

The Nuvistor triode showed almost negligible effects during the
radiation burst, which is attributable to the type of construction and size.
The Nuvistor tetrode showed greater effects during the burst. This can be
related to the external cap which is the plate connection.

Other effects, such as gas liberation, changes to insulation re-
sistance are possible in certain types of tubes. Additional studies will
be performed in order to evaluate different types of electron tube construction
and to investigate the mechanisms which produce the transient effects.

c. Dosimetry:

The results obtained with the NBS film badge dosimeters were in-
consistent with the data obtained with the micro-dosimeters. Darkening
of the film by neutrons causes this error. The correction factor for neutron
darkening was larger than the actual gamma dose.

The USASRDL 832 neutron dose measurements were higher by approxi-

mately a factor of two over the Sandia 832 neutron dose. This was attri-
buted to the fact that a different cross-section and calibration source were
used by USASRDL.

The MgO-RAD compared favorably with the Sandia photodiode. The
output of the MgO-RAD was proportional to the A T (temperature rise or
yield) of the reactor.

In conclusion it may be said that the Radiation Effects Mobile Laboratory
will permit multi-parameter measurements during radiation effects experi-
ments. In addition, the design of the instrumentation in the REML has
proven to be extremely rugged.

Further experiments will be conducted after a complete analysis of the
data obtained on the 600 electron devices. The results of the analysis
will determine the design of the next experiment.
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FM TAPE RECORDERS AND ELECTRON TUBE CIRCUITRY

Fic. 1




RADIAT ION EFFECTS MOBILE LABORATORY
TEMPERATURE RECORDER, TRANS|STOR CIRCUITRY, DIFFERENTIAL PRE=-AM|
POWER SUPPLIES, DIGITAL VOLTMETER AND PRINTOUT

Fie, 2 .
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RADIAT ION EFFECTS MOBILE LABORATORY
UNIT HOUSING SIX OSCILLISCOPES AND POWER SUPPLIES

fFic, 3
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éLECTRON TUBE INSTRUMENTATION UTILIZING PRINTED CIRCUIT BOARDS

Fic, 4
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NUVISTOR TYPE ELECTRON TUBES MOUNTED ON CHASSIS

Fig., 9
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RELIABILITY TESTING AND ESTIMATION
FOR SINGLE AND MULTIPLE ENVIRONMENTS (Preliminary Report)

S. K. Einbinder
Picatinny Arsenal
Ingram Olkin
Stanford University

1. INTRODUCTION. In this age of complex missiles and costly weapon
systems, reliability has become an important objective. Programs for
assuring high reliability are now considered a basic part of the development
plan for new warheads and fuzes at Picatinny Arsenal. The environmental
factors or stresses, such as temperature, vibration, acceleration, rough
handling, etc., to which a weapon is subjected are many, and vary widely
in level of severity. In addition they may be encountered singly and multi-
ply, simultaneously or in sequence.

Our problem is concerned with the testing and estimation of weapon re-
liability. The term "weapon" may refer to a "warhead, " a "fuze," a'safing
and arming mechanism (S and A), " etc.

In order to establish high reliability, large sample sizes are generally
required, greater than are usually available in a development program for a
complex and expensive item. To obtain the most information with the least
expenditure of samples and funds, research is being conducted by many
investigators into new and improved statistical methods for solving the
reliability or failure estimation problem. There are many phases of the
problem that still require a realistic solution.

We first define the basic problem and the quantities we are trying to
estimate and then indicate procedures for making point and interval estimates.
These procedures will assume that some estimates of the failure distribution
parameters are available.

Lastly, a ray method for estimating the distribution parameters for the
multivariate stress case is described.

2. UNIVARIATE CASE. We first present the estimation problem for the uni-
variate case. The distribution of failure stress of a weapon or other item
may be estimated by testing to failure. The cumulative distribution function
of the failure stress X represents the probability that the failure stress is
less than x or the proportion of the population whose failure stress is below
the value x (Fig. 1) [ Figures start on page 275 ]
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If the distribution of applied stresses actually encountered in use, h(x),
is known, then the average probability of failure in use is given by:

Eh[P(X)] =j' h(x) F(x) dx |,
R

where R = (x: - ¢ x < c) is the region over which the use distri-
bution ranges. In general, the use distribution h(x) is not known. How-
ever, upper and sometimes lower limits of the applied stress which the
weapon must withstand are generally specified in military specifications.

If ¢ represents the upper limit of some stress variable, say temperature,
then by the mean value theorem for integrals, it is evident that

F) > E [Fo0)

i.e., the failure probability at the upper limit of the stress variable is an
upper bound for the average probability of failure in use. The point ¢ will
be referred to as a critical point or stress. It should also be noted that
Reliability = 1 - Probability of Failure. Thus our objective is to determine
or estimate

c
F (c) =f dF (x) = Pr{XS c} ,

- Oa

where c is a known critical stress. For the normakly distributed uni-
variate distribution with mean 4 and variance o , the proportion of
the population below c is given
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Thus our problem is to estimate g, which is a function of the population
parameters, based upon a sample of size N from a normal population.

3. MULTIVARIATE CASE. The problem may be generalized to the multi-
variate case where the failure distribution is a function of more than one
stress variable. A geometrical interpretation is shown in Figure 2 for the
bivariate case.

In the case of p variables, where the use distribution is
h(x) = h(xl, ..., x ) and the cumulative failure distribution is
P

P(xl, ey xp) = F(x), then the average probability of failure in use

under joint action of the p stresses is given by

3] Sp
E, [P '(X)] ==f ..,j h(x) F(x) dx,

where (cl, cees cp) represents the upper limit or maximum level of each

of the p applied stresses. As before,

Flo) > E_ [F 0]

For the multivariate normal distribution, with mean vector
B = (p [+ s M p) and (positive definite) covariance matrix

Yy = (dij) : p x p, our problem then is to estimate

< cp
-1
Flc) = /12 1/2[ .. f exp [— ZL x-p)L (x-p )']dx,-’gﬁ(,*,z ).
e gl e 2
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Thus, the general problem may be summarized as follows: Based upon
a sample of size N from a normal population, it is required to estimate the
g functions defined for the univariate and multivariate cases both by point
estimation and by confidence limits.

The g functions defined so far were all one sided, i.e., they represent
the proportion of the population in one tail of the normal distribution. In
reliability work, we are primarily concerned with the one sided case. How-
ever, the results can be extended to the two sided case which is of interest
in other applications.

4. POINT ESTIMATION. We now consider the problem of obtaining point
estimates of the g functions for the univariate and multivariate cases. In
Section 4.1 we consider the use of the maximum likelihood estimates of M
and O 2, and in Section 4.2 give a discussion of uniformly minimum
variance unbiased (UMVU) estimators. In order to facilitate the presentation,
the mathematical details and derivations are deferred to the Appendix.

4.1 Maximum Likelihood Estimates. Since the sample mean X =ZTxi/N

N
2 -2
and sample variance s =Z (xi - x) /N is a maximum likelihood estimate
1

2 - 2
of (}_L, o ), it is intuitively reasonable to consider gl(x, S ;c) as an
estimator of gl(H , dz; c), and the following asymptotic results provide a

more tangible justification.

- 2
Since gl(x, s ; c) is a function of the sample moments, it follows that

- 2
9 (x, s ; c) is asymptotically normally distributed, namely,

- 2 2
Vﬁ[%&,S;d-gﬁg,d:Cﬂ

(1) > 1/2
]

> N(,1) ,

c-X N-1 [c-X
S 2.+ 2== |2
s ¢ S )[ 2N s

where
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P (.Z_;E) = '\ﬁ'll—r - exp[— _.12_._ {j-;—a) 2] (see Appendix).

The latter result may be used for obtaining asymptotic confidence
intervals.

In the multivariate case the expressions are more complicated. Let
X = (5('1 ) eees ip) be the vector of sample means, S = (s“) be the

p x p sample covariance matrix. Then gp(;c, S; c) is asymptotically

normally distributed, namely,

[gp G, S5 0) =gy (p L o)

VV_ (&, )

(2) — N(, D ,

where

(3) Vo (u.L)

= 1 (N -1)
__N..i HiHjcrij + Nz Z H”sz(o'iko'l[ + o’i/ o'jk)
i,j=1 i<,
k<t

and where, for example,



266 Design of Experiments

(4) H1 =

p
1
fp exp(-—z-zA z')dz ,
\/ - 2 22
nlem®PVE -

1/2 - -
(CI-#I) |A22‘ CZ 82 (o} a
-9 |

where a = + (c - ‘L) ' j = 21 e e ey '
g =yl s K)oy P

/2 57 H Cp ™My
, LA : [ G T xpj>exp(-_12_z/\z.,dz,
(zmp/ - ) = y

/

Jij is the Kronecker delta,

[}
"1 71 A1 Ay 0
-1
Z: = - A
) Z22 Al 22

(see Appendix). The difficulty in actually carrying out the computations
lies in the computations of Hi and Hij’ since these involve the tails of

a multivariate normal distribution. For p = 2, 3, tables are available
which permit the computations of the Hi’ The determination of the Hij

may have to be carried out by Monte Carlo methods. This investigation is
still incomplete.
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4.2 Uniformly Minimum Variance Unbiased Estimation. UMVU
estimators of the g functions have been obtained for a number of cases,
and we now present a summary of these results.

2 2
When ¢ is known, the UMVU estimator of gl(P’ o ;c) is

V, N/(N-1) (c-%)/o )
j v%;exp(--lé-t)dt ,

-0

~

2
and for ¢ unknown, the result is

1 §-c-‘[N—
[max 0, ; - JZWI%IT] t[(N-2)/2]-1(l_t)[(N‘2)/2]‘1

N N
B -1,
( 2 2

dt ,

o

-1

2 : -2
where v = st = Z (xi - x) . These results were obtained by Kolmogorov

[l], and Lieberman and Resnikoff [2] . The two-gided univariate case is
also given in | 2| . Washio, Morimoto, and Ikeda (3| consider the expo-
nential family, rather than just the normal distribution, and give a number
of results concerning unbiased estimators. Schmetterer ;) considered a
more general type of problem but in the framework of the univariate normal
distribution, and this was extended to the multivariate normal case, as
well as to other families of distributions, by Ghurye and Olkin Tsj . The
UMVU estimator for the p-variate normal distribution was obtained in [;]
and by Lieberman [61 .

When Z, the population covariance matrix, is known, the UMVU
estimator of gp(,,.,,z; c) is given by
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1/2 % ) WN/(N -1 -% ) /N/(N -1
A / (e, %) VN/(N -1) (cp xp) /N/(N -1) 1

-l—l—/z exp(-?t/\t') dt
@)™ L )

and when Z is unknown, the result is

Rirw r
-1/2 -1 , IIN-p-1)/2/-1
BRI B Wi -e-n/g-1

I

R

where V

,_1 3
tv t' < 1°

I
Z
»
~
I

{tr-= ¢ 4 < ( -F)W/(N-D, 1 =1, ..., p,

Whereas for the univariate case the UMVU may easily be found from
tables of the normal distribution and the incomplete Beta distribution; the
integrals for the multivariate case are more troublesome, and numerical
methods and approximations may have to be used.

5. CONFIDENCE INTERVALS. Next, we consider the problem of obtaining
confidence intervals for the g functions. In the univariate case,

2
2. ‘,(C‘A)/oi exp(-—;- t)

gl(l(l dt.

- oo 2m

From the fact that \/ﬁj (c-x)/s, or equivalently, \/N(N—:_li (c-%)/v,

2
where v = NSZ, has a non-central t-distribution with N -1 degrees
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of freedom, and the monotonic nature of the function, we can obtain exact
confidence limits using the tables of the non-central t-distribution, [7]
or 8]

Resnikoff [9] presents tables for the univariate case, for both one and
two-sided tails, based on the UMVU estimator, and gives both point esti-
mates and confidence belts. The confidence coefficients are .90, .95
and .99 for sample sizes 3, 4, 5, 7, 10(5)40, 50, 75, 100, 150, 200.

For the two-sided case and the multivariate one or two-sided case, no
direct method is available. One procedure is to use a large sample ap-
proximation. We have observed that the use of the maximum likelihood
estimates yields asymptotic normality, so that from (1) we obtain the
confidence interval

= 2, 2z c-% N-1 vc-iﬁ
X i dar Ve 22t =57 .

with confidence coefficient 1 - @, where z is the 100 @ % double-tail
point of the N (0,1) distribution.

A similar development can be made for the multivariate case by using
(2), but the results are more complicated.

Two other progedures have been suggested for the two sided-case, one
by Wolfowijtz gé] , and one by Arnold, which appears in a paper by

Wallis i1} . neral descriptions of some of these methods may be found
in Bowker and Goode LIZ, Chapter ll] , and in [11] . Various computational
procedures are outlined in [:ll]

5.1 Open Problems. In the cases for which alternative procedures of
estimation are available, comparisons of the techniques need to be made.
Only a first step has been taken in the multivariate case, and more work
is required. In particular, where expressions are available, appropriate
tables should be prepared.

A second phase is to consider cases where the underlying distribution
is no[ 1orma1. Some alternative distributions have been considered in [3]
and |5
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6. RAY METHOD FOR ESTIMATING THE MULTIVARIATE NORMAL DISTRI-
BUTION. So far this presentation has been concerned essentially with the
problem of estimating the tail probabilities of a normal distribution assuming
that estimates of the parameters of the normal distribution are available
or can be obtained from sample data. In order to use these results in making
reliability estimates, it is necessary to be able to estimate the distribution
parameters. In the case of the normal distribution, we need estimates of
the mean vector and the covariance matrix. Practical and efficient methods
are required for obtaining estimates of the distribution parameters which do
not involve excessively large samples.

We next describe some preliminary results of a ray method for estimating
the parameters of the multivariate normal distribution, which may permit
fewer observations to be made. There are still a number of open questions,
and we do not know how good the method is.

To simplify the discussion, let us first confine our remarks to the bi-
variate normal case. The extension to the multivariate case will be
described later.

First, consider the model for the case where an object is subjected
jointly to two stresses, for example temperature and vibration. We assume
that the random stresses (Xl' xz) at which failure occurs for the population

of objects has a bivariate normal distribution BVN( H'Z)' The failure
stress may also be called the strength of an item. Let (gl, § 2) be the

levels of the applied stresses Xl and Xz, respectively. Assume that

all items in the population whose strength Xl or XZ' is less than the

respective applied stresses I3 1§ will fail under these loading

conditions. Then the proportion of the population that will fail under the
applied stress _§1 , 52 is given by

']. ]
-5 G T T e )

o oo e
f 12 dx ,
5, 27+ |2

ARITE PURM f

5)
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which also represents the probability of failure for the given applied
stresses.

Figure 3 depicts a correlated BVN failure stress distribution which we
wish to estimate. The distribution is defined by five parameters: two

means, M ; and #2, and three covariances, a7, &g, and 0’22.

By testing items to failure along the horizontal ray ) which is selected

to lie essentially below the entire distribution function, we get the marginal
distribution of Xl under our failure definition. Similarly, if the vertical
ray W/, is properly selected sufficiently to the left of the distribution,
we get the marginal distribution of Xz. Thus, for the BVN case, we can

obtain estimates of the marginal means and variances of )(1 and X

!

respectively, which are the unknown means and variances of the failure
distribution function. With two rays, therefore, it is possible to estimate
four of the required five parameters. In order to estimate the remaining
parameter, the covariance 0‘12' tests along another ray are required. The

best ray w along which to test appears to be the one passing through the
mean of the distribution. By testing-to-failure along the ray w, we mean
that the applied stresses are increased along w until failure occurs.
According to our definition, failure will occur when either of the applied
stresses exceeds its respective strength as defined by the BVN distribution.

If we start at w = -<= and increase the stress along w until failure
occurs, the probability of failure in the region Aw is given by

-1
-1 k- - )
pw)Aw = Ax r & dx
1 1/2 2
any]

ino +
W Ssin o xzo

dx. .

wcos oL + x10 2'""[2‘ /2 :

-1 ,
- -5 =0T x-p)
+ szf °
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This equation represents the proportion of the population strengths or items
whose failure stresses lie in the shaded region shown in Fig. 4.

Solution of the above equation (see Appendix) results in the following
expression for the probability density function of the failure stress

wcos X +X - um
(6) pw) = cosq-fp( 10 l) : [1 -é(dl)]
Vo |

K
+ sin ;(~<f( - 20 2) ' [l-@(dz)] '

z

2 [

h zmay o _ 1 ol z-a @) =
where ¢ (2=2) —exp - 7 (=), D J o(T)dr,

wsina +x - wcos & + X -
1 - _'_.( _1, e— g | P /; - (1 M_z)
oz F AVRITR
WCcos & +x - wWsina +x - )
d, = 0 "% o 20 Y2
2 \/-—— ) R >
oqi-p) 0, W=-p)
11 22

Figure 4 shows p(w) for several values of the covariance 0"12 while

holding the mean vector and the variances constant at the values indicated.
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It is evident that p(w) is asymmetric, the amount of asymmetry depending
upon the correlation between the variables Xl, XZ' The mode of the dis-

tribution also depends on the correlation between the variables. The next
question is to determine the best estimator for p or 0'12 based upon

a sample of the failure strengths W along the ray w, and assuming that

the other distribution parameters U 1 M 2 0"11, 0’22 are known or their

estimates are available. This problem is still unsolved, but it does appear

that p should be estimable from tests along the ray w. After we estimate
p . the entire BVN distribution will be defined and may be used for making
estimates of the g functions as described earlier.

Suppose we have a multivariate normal (MVN) distribution in p
variates, then we will have p unknown means i, and p(p +1)/2 un-

known covariances G’ij’ By using p(p + 1)/2 rays we will be able to

estimate all of the parameters. We use p rays, which we call principal
rays, to estimate the p marginal means ,lki and variances 0"ii and

p(p - 1)/2 rays to evaluate all of the covariances (J’ij (i # j). Justas

in the BVN case, it only appears necessary to consider two stress
variables at a time in order to estimate the covariance of these two variables.
The procedure is repeated for all possible combinations of the variables.

Thus, assuming that the failure model described is valid, an attempt
has been made to estimate the MVN distribution by testing along rays
with the expectation that this procedure may be more efficient in general
than procedures which involve mapping out the failure distribution surface.

It was assumed that the failure distribution along rays would be obtained
by testing to failure. In many practical applications, testing to failure is
impossible, especially where more than one applied stress or environment
is involved. Thus only success or failure in functioning properly may be
observed after subjection to the environmental conditions. Under these
circumstances, testing along rays is desirable because it may permit use
of some sort of sensitivity type of experiment for estimating the failure
distribution along the ray. This information, in turn, may then be used
to estimate the desired MVN distribution parameters as described. The
distribution functions derived in this paper are based on testing-to-failure
along a ray w. If this procedure is not followed, the distributions may be
different from those shown. Again, our work in connection with this problem
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is far from complete. We have attempted to summarize the status of our
efforts toward a practical solution of the reliability testing and estimation

problem in this paper:..

Appendix A

To simplify the presentation, the univariate and multivariate results
are treated separately. We first obtain the asymptotic distribution of

- 2 '
9, (x, sz; c). Since gl(!t, s ; ¢) is a function of the sample moments it
- 2
follows, [13, p. 354, 366], that gl(x, s ; ¢) is asymptotically normal

2
with mean gl(,u, ¢ ; c) and variance

2 2

3 - dg 2 d _ 2
« Var(x) + —-‘ . Var(s”) + 2 —9-‘ ) Cov(x,s).
%A{O‘Z) Bsz,u)o’z (6)(/4)0"2

)

— 2 - 2
Since x and s are independent, Cov(X,s ) = 0. From

gl(a,b;C) -1

Cexo[o L =)’
exp[-2 bz ]dt,

Vb ®
we obtain
09 —_gLca 39 -39 1 = -_1 c-a c-a
da b1" 3v®  ab2b 2519
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where

u-a 2"

- 1 !
P -y el p 5

2 2 4 2
Also, Var(R) = ¢ /N, Var(s ) = 2(N-1)o /N , and hence the asymptotic
variance is

- i N- l —.H\,l""‘l
AMELIER LIC=o PR = G

2 2
Since V. (X,s ) is a rational function of the sample moments X, s , it
follows by Slutsky's Theorem {13 p. 255] that V_(X,s ) converges in

probability to V (l“d ), and hence, Ll3 p. 254] , that

- 2 2
gl(x,s ic) - g,(. 6 ic)

2 »>N(0,1).
vV (X,s)

We now consider the multivariate case, and adopt the notation

el

= Ve : ot U
- (P—ll o s e g .LLp)I (dij) tPXDp, [\ Z ¢ X (xll o e ey xP):

S = (sij) p x p. Here X is the vector of sample means, and S is the

matrix of sample covariances, obtained from a sample of size N.
We now have
1 i i

ro1 — -1, =
g (%,8c) = ————==- .. ' exp -+ @t-R8 (t-%)'] at
p 20)” 21511/2 oo oo b2 ]



Design of Experiments. 285

Define

X 1A ,
Hi b'?i Ip. z ' Hij bsij P'IZ ;

then by the same argument as the univariate case, gp(?c', S;c) is asymptoti-

cally normal with mean gp(p,z ;c) and variance

Valpr L) = ) 'Cov(ii,ﬁ) + Y H H c:ov(sij ) .

X
] isjlkslijkl k£

,

'

The terms involving Cov(xi, s jk) are zero and have been omitted. We first
note that

Cov(:‘ci,a‘cj) =o'1j/N, Cov(sij,su) = (o’i L

o} -
Cig * 9@ /N,

14, p. 161 .

The evaluation of Hl yields

1
=7 2?? |TIv?

f T e [7‘1( )A( )
X exp|-x(c~-w ,t,,...,t )Alc -, ,t.,...,t ) |dt ,...,dt .
—o0 ”',]:., R A N U p]z p
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,\iA

),/\_l=<k

If we partition A =(
22

square, note that

1y, _
Au “Aagg Ay = Ve e | El= g

and simplify, we obtain

Design of Experiments

cees ’{lp)’ complete the

8! d .
1L 22" ;11-1|= °'11|Azz| '

2-
(c.-w)
_1ah
2 o
11 ‘ |1/2 c,-a, c -a |
HI:' e . 922 .. f exp(-‘sz.zzz')dz ,
all/lleﬁ 2y P2 J-e - o0
where a, = }Lj + (cl-ul)O‘n/o'u, i =2, .. p, i, e.,
CI_HI) ( -1
H =-0 g (@, .. ..a), A (., ....c).
1 4 | p-l1 2 p 22 2 p
o |°®
We now evaluate Hij' but first write
c, cp
g (p., Z ic) = ] f . . f exp [--l-trAB+-l- logll\l]dt,
P (Zﬂ)p/z - 00 -0 2 2
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where B = (t-p.)'(t-p). Also

d9 29 s
80y = ) QA d0yy
o« <A
But
(
<A + , 1#]
%x—%é— ={ *1'{1)9 Aoa /{iﬁ’)
i .
-A ! 1=jl
S Y
and

L Agl

- _.9_ _(_A_éj?l/;f f EZ i ’zl bog * a;(ﬁ]dt.

A V2
-—I—I72-—(2mp j f - 2 tr AB

a7\
e fbom + G, o(]dt'
After collecting terms we obtain
W+ 6B =~ Xy gp(pL i)
| o)
—tAt
1/2 P" ~C_— FL
+|Ap/ jl 1”1-‘9 P(Z:(&A )(%tk)e} dt,

(2r)
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where 8 y is the Kronecker delta.
i

Appendix B

In the present section we derive formula (6). Consider a BVN(H_, Z ),
and aray w = x1 + xz, where.the slope is given by

tand = (x2 - x20)/(xl - xlo) (see Figure 3). The probability density of

failures along this ray is given by

oo --zl(x-pL)A. (x= W) oo - 21 (x-p) B (x-p)
p(w)dw = dxlj e dx_+ dx Le dxl

a 1/2
(er)|2| /

= dxA+dx B,
1 2

where a =wsinaq + x20' b=wcosa +xm. Let yj=xj- P’j'

j =1, 2, then by completing the square,

1 2
exp (- 2 yl %L)
A= 22

o 1 ,
f oxP Pz—(yz VAt Ny VAy© ]dyz
a-

1/2

(ZT\’)IZ| /
2
LA

exp ("2"'0'
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where
d = (a- #2)\/7\22 Y A VA
e T M) plwooset v mg- M)
e, (- 2 Ve
0/22 2 ) 1 (1- r )
Hence

A=¢lwcos°(+xlo-,,(l\. [l-@(d)] '
| Vo /

By a similar reduction we obtain the expression for B. Formula (6)
follows by combining results.
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