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FOREWORD

The U. S. Army Signal Research and Development Laboratory of Fort

Monmouth, New Jersey served as host to the Seventh Conference on the

Design of Experiments in Army Research, Development and Testing. This

Laboratory is the Signal Corps' major scientific arm. It has the responsi

bility to conceive and develop vital detection and communications equip

ment. Starting during World War las the Radio Laboratories with a small

group of officers, enlisted men and civilians, the Laboratory has grown

to an ultra-modern facility. Surviving through wartime expansions, econ

omy waves and name changes, USASRDL has attained a hard-earned repu

tation as a leader in most phases of electronics research and development.

Included among the many accomplishments of the Laboratory are such

things as the development of the essential vehicular and fixed radios used

in World War I, the walkie-talkie, radar, the world's first radar contact

with the moon, radar storm detection, the first feasible ma s s -production

technique using printed circuits, the first solar batteries for satellites,

the world's first communications satellite, and the world's first weather

satellite.

The research and development atmosphere of USASRDL provided an

ideal locale for a conference on the Design of Experiments. The spon

soring group—the Army Mathematics Steering Committee—was pleased to

receive an invitation from Colonel H. McD. Brown to use the facilities

under his Command for the 1961 conference. Colonel Brown named

Messrs. J. A. McClung and Joseph Weinstein as cochairmen for this

meeting. At this time the AMSC would like to thank these gentlemen for

the excellent local arrangements of the Conference and for the effective

ness with which they provided for the needs of all who participated

and attended this conference.

At the Seventh Conference on the Design of Experiments Drs. R. L.

Anderson, John Hammersley, G. S. Watson, and G. A. Watterson de

livered the invited addresses. Estimation of variance components,

Monte Carlo methods, hazard analysis, and time series and spectral

analysis were, respectively, the topics treated by these specialists.

Professor R. M. Thrall served as Chairman of the Panel Discussion on

Simulation. He arranged for Colonel A. W. DeQuoy, Mr. J. H. Moss,

and Dr. Gustave Rabson to discuss various aspects of simulation, with

Dr. Hammersley serving as a commentator on the papers presented. In

addition to these parts of the program, 10 papers were given in Clinical

Sessions, and 19 papers in the Technical Sessions.
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This volume of the Proceedings contains 3 7 of the papers which were

presented at Conference. In order to contribute to a wider dissemin

ation of knowledge and use of modern statistical principles in the

design of experiments, particularly for Army research, development and

testing scientists and engineers, the AMSC is making these articles

available in this form.

The Seventh Conference was attended by 152 registrants and partici

pants from over 70 different organizations. Speakers and panelists

came from the Armour Research Foundation; Bethesda -Chevy Chase

High School; Booz -Allen Applied Research, Inc.; Massachusetts

Institute of Technology; Mathematics Research Center, University of

Wisconsin; Montgomery Blair High School; North Carolina State College;

Operations Research Inc.; Phillips Andover Academy; Research Analysis

Corporation; Research Triangle Institute; U. S. Bureau of Mines; Cornell

University; University of Delaware; University of Georgia; Harvard

University; Oxford University; Princeton University; University of

Toronto; Woodrow Wilson High School and 11 Army facilities.

The members of the Army Mathematics Steering Committee take this

opportunity to express their thanks to the many speakers and other

research workers who participated in the Conference; to Colonel

H. McD. Brown for making available the excellent facilities of

USASRDL for the conference; and to J. A. McClung and Joseph Weinstein

for organizing a most interesting and informative tour of the facilities

of the U. S. Army Signal Research and Development Laboratory as well

as presenting a movie documenting some of the research work being

conducted at the Laboratory.

Finally, the Chairman wishes to express his appreciation to his

Advisory Committee: F. G. Dressel (Secretary), Fred Frishman, Boyd

Harshbarger, Frank E. Grubbs, H. L. Lucas Jr., Clifford J. Maloney,

and Joseph Weinstein for their help in selecting the invited speakers

and formalizing the plans for this conference.

S. S. Wilks

Professor of Mathematics

Princeton University



SEVENTH CONFERENCE ON THE DESIGN OF EXPERIMENTS

IN ARMY RESEARCH, DEVELOPMENT AND TESTING

18-20 October 1961

U. S. Army Signal Research and Development Laboratory

Tuesday, 17 October

REGISTRATION: 1830-2230 (Eastern Daylight Saving Time)

Hotel Berkeley - Carteret - Asbury Park, New Jersey

ORIENTATION FILM: 2130-2215 - Hotel Berkeley - Carteret - Crystal Terrace

A Film, USASRDL Report 1960, outlining the areas of

operations at the Laboratories will be shown.

Wednesday, 18 October

BREAKFAST: 0700-0800 Coffee Shop - Berkeley-Carteret Hotel

Busses will take conferees to U. S. Army Signal R&D Laboratory

REGISTRATION: 0830-0900 Hexagon Building

GENERAL SESSION 1: 0900-1145 Hexagon Building - Room (Main Auditorium)

Calling of Conference to Order:

Mr. Joseph Weinstein, Local Chairman

Welcome:

Colonel Raymond H. Bates, Deputy Commander

U. S. Signal Research & Development Laboratory

Chairman:

Colonel George W. Taylor, Commanding Officer

Army Research Office (Durham)

Time Series and Spectral Analysis:

Dr. G. A. Watterson, Virginia Polytechnic Institute

Monte Carlo Methods:

Dr. John Hammers ley, Oxford University and Princeton University

LUNCH: 1200-1330 Hotel Berkeley- Carteret Coffee Shop and Grill

TOURS: 1400

DINNER: 1800-1900 Hotel Berkeley-Carteret Coffee Shop & Grill

Two technical sessions are scheduled for Wednesday night.
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TECHNICAL SESSION I: 1930-2145 Hotel Berkeley-Carteret Hunt Suite 'A'

Chairman: F. J. Anscombe, Princeton University

The Construction and Analysis of Non-Orthogonal Plans for the

2 Factorial Experiments

Sidney Addelman, Statistics Research Division, Research

Triangle Institute

Use of the Up-and-Down Method with Factorial Designs

R. L. Grant and R. W. VanDolah, Explosive Research Laboratory,

U. S. Bureau of Mines

A General Formula and Positional Index Algorithm for Orthogonal

Contrasts in Factorial Designs

Erwin Biser, Systems Division, U. S. Army Signal Research

and Development Laboratory

TECHNICAL SESSION II: 1930-2145 Hotel Berkeley-Carteret Skyline Room

Chairman: James F. O'Neal, Springfield Armory

A Semi-Automatic Gaming System

John L. Donaldson, Research Analysis Corporation

Thomas R. Shaw, Operations Research Inc., Silver Spring, Md.

Transient Nuclear Radiation Effects on Electron Tubes and

Transistors

Richard G. Saelens, U. S. Army Signal Research and Development

Laboratory

The Development of Subminiature Tube Handbook Information

J. A. Zoellner, Analysis and Programming, Electromagnetic

Compatability Analysis Center, Armour Research Foundation

Thursday, 19 October

BREAKFAST: 0700-0800 Coffee Shop

Technical Session III and Clinical Sessions A and В will run from 0820

to 1030. Technical Sessions IV, V, and VI scheduled from 1100 to 1230 com

plete the morning phase of the program. General Session 2 is a panel dis

cussion and is timed from 1400-1600. The Subcommittee on Probability and

Statistics of the Army Mathematics Steering Committee will meet at 1630;

all members of the conference are invited to attend this committee meeting.
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Starting at 1930 there will be a discussion of education programs now being

conducted in certain installations. This will be followed by a game in

which members of the audience are invited to participate.

TECHNICAL SESSION: 0820-1030 Hotel Berkeley-Carteret Crystal Terrace

Chairman: John P. Purtell, Research Branch, Watervliet Arsenal

Reliability Testing and Estimation for Single and Multiple

Environments Using Increased Severity Methods

S. K. Einbinder and Ingram Olkin, Picatinny Arsenal

Reliability, Probability and Bionomial Inference

W. A. Thompson, Jr., University of Delaware

An Experiment on Aircraft Vulnerability

Garth McCormick and Bruce Taylor, Research Analysis Corporation

CLINICAL SESSION A: 0820-1030 Hotel Berkeley-Carteret Hunt Suite 'A'

Chairman: A. Hammer, Springfield Armory

Panel Members: O. P. Bruno, Ballistic Research Laboratories

F. E. Grubbs, Ballistic Research Laboratories

Boyd Harshbarger, Virginia Polytechnic Institute

C. J. Maloney, U. S. Army Biological Warfare Labs.

S. S. Wilks, Princeton University

Marvin Zelen, U. S. Army Mathematics Research

Center, The University of Michigan

A Method of Weapon System Analysis

Harry Smith, Picatinny Arsenal

Variation of Artillery Ammunition Expenditure with intelligence ..

(Members of the ORO 1961 Summer Research Program for Young People)

Robert H. Hobbs (Group Leader) , Mass. Institute of Technology

Simon H. Kahan, Harvard University

Thomas H. Brylawski, Woodrow Wilson High School, Wash., D. C.

Andrew H. Levy, Phillips Andover Academy, Andover, Mass.

Peter E. Lobban, Bethe s da-Chevy Chase High School, Bethesda, Md.

Michael M. Weisfield, Montgomery Blair High School Silver Spring,

Maryland

Sponsoring Agency: Research Analysis Corporation
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An Approach to Sensitivity Analysis of CARMONETTE (A Small Unit

Combat Monte Carlo Simulation)

Richard J. Matteis and William C. Suhler, Research Analysis Corp.

CLINICAL SESSION B: 0820-1030 Hotel Berkeley-Carteret Skyline Room

Chairman: Fred Frishman, Army Research Office, Washington;

Office, Chief of Research and Development

Panel Members: R. L. Anderson, North Carolina State College

F. J. Anscombe, Princeton University

R. E. Bechhofer, Cornell University

A. C. Cohen, Jr., The University of Georgia

H. L. Lucas, North Carolina State College

G. S. Watson, University of Toronto

The Complex Nature of Reliability

A. Bulfinch, Picatinny Arsenal

Surveillance Inspection of Textile Materials

William S. Cowie, Laboratory and Control Section, Textile

Engineering Branch, TC & F Division, QMR & E Command,

Natick, Massachusetts

Problems Involved in Developing and Analyzing Durability Data

from Field Tests of Textile Footwear Items

Harold R. Rush, Quartermaster Research and Engineering Field

Agency, Fort Lee, Virginia

BREAK: 1030-1100 Oval Lounge - Hotel Berkeley-Carteret

TECHNICAL SESSION IV: 1100-1230 Skyline Room

Chairman: J. F. McAreavy, Headquarters, U. S. Army Ordnance

Weapons Command

A Predictor Model for Stability Estimates in the Rotating Drum

Cecil Orain Eckard, U. S. Army Chemical Corps, Fort Detrick,

Frederick, Maryland

Disease Severity Quantitation, III

Clifford Joseph Maloney, U. S. Army Chemical Corps, Fort

Detrick, Frederick, Maryland
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Statistical Studies of Plaque Results in Virus Assay

Francis Marion Wadley and Walter Dean Foster, U. S. Army

Chemical Corps, Fort Detrick, Frederick, Maryland

TECHNICAL SESSION V: 1100-1230 Hotel Berkeley-Carteret Hunt Suite 'A'

Chairman: Erwin Biser, U. S. Army Signal Research and Development

Laboratory

A Confidence Interval for the Reliability of Multi-Component Systems

John K. Abraham, Surveillance Branch, Weapon Systems Laboratory

Ballistic Research Laboratories, U. S. Army Ordnance, Aberdeen

Proving Ground

Reliability of Compliance with One-Side Specification Limits when

Data is Normally Distributed

E. L. Bombara, Army Rocket & Guided Missile Agency, Redstone

Arsenal

A General Approach to Engineering Tolerance Specification

Sheldon G. Levin, Diamond Ordnance Fuze Laboratories

TECHNICAL SESSION VI: 1100-1230 Hotel Berkeley-Carteret Crystal Terrace

Chairman: J. J. Gergen, Army Research Office (Durham)

A Further Analysis of Missile Range Tracking Systems

Oliver Lee Kingsley, Range Instrumentation Development

Division, White Sands Missile Range

Efficiency of Average Radius as an Estimate of Circular Probable

Error when True Center of Impact is Unknown

Robert I. McKeague, Jr., U. S. Army Ordnance Ammunition Command

LUNCH: 1230-1330 Hotel Berkeley-Carteret Coffee Shop & Grill

GENERAL SESSION 2: 1400-1600 Hotel Berkeley-Carteret Crystal Terrace

Panel Discussion on Simulation

Chairman: Dr. Robert M. Thrall, The University of Michigan

Panel Members: Colonel Alfred W. DeQuoy, Chief, Strategy and

Tactics Analysis Group, Department of Army

Dr. John Hammersley, Oxford University and

Princeton University

Mr. John H. Moss, Research Analysis Corporation

Dr. Gustave Rabson, The University of Michigan
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BREAK: 1600-1630 Oval Lounge - Berkeley-Carteret

GENERAL SESSION 3: 1630 Hotel Berkeley-Carteret Crystal Terrace Room

Subcommittee on Probability and Statistics

Chairman: Dr. Clifford Joseph Maloney, U. S. Army Chemical Corps

Fort Detrick, Frederick, Maryland

The Subcommittee on Probability and Statistics of the Army Mathematics

Steering Committee, as one of its assigned duties, is required to survey

the needs of the Army for development of new techniques in its field "with a

major impact on Army research development and testing", and call these to

the attention of the Chief of R & D at least annually.

This open meeting is scheduled during the conference in order to pro

vide an opportunity for Army scientists generally to call specific attention

to any such requirements that they may be aware of at this time. Full

attendance and participation in this Subcommittee meeting is encouraged.

DINNER: 1800-1900 Hotel Berkeley-Carteret Coffee Shop & Grill

EDUCATIONAL AND GAME SESSION: 1930-2200 Crystal Terrace Room

Hotel Berkeley-Carteret

Chairman: Ralph D. Doner, Army Rocket and Guided Missile Agency,

U. S. Army Ordnance Missile Command

Training Programs in Statistics

A. Bulfinch, Picatinny Arsenal

A Review of a Statistical Workshop

Walter D. Foster, U. S. Army Chemical Corps, Fort Detrick, Md.

Theodore W. Horner, Booz-Allen Applied Research, Inc., Bethesda,

Maryland

Ye Olde Confidence Game

(In this interesting game the audience takes an active part. Please

read the abstract of this paper.)

Theodore W. Horner, Booz-Allen Research, Inc.

Walter D. Foster, U. S. Army Chemical Corps
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Friday*, 20 October

BREAKFAST: 0700-0800 Coffee Shop & Grill - Hotel Berkeley-Carteret

Clinical Session С carries a security classification of CONFIDENTIAL.

Technical Session VII and Clinical Sessions С & D run from 0830-0945.

General Session 4 is called from 1015-1230.

TECHNICAL SESSION VII: 0830-0945 Hotel Berkeley-Carteret Crystal Terrace

Chairman; M. J. Pascual, Research Branch, Watervliet Arsenal

Some Aspects of Linear Regression Systems

William S. Mallios, Institute of Statistics, North Carolina

State College

Some Results Concerning the Reduction of Product Variability

through the Use of Variance Component Analysis

Richard R. Prairie, Institute of Statistics North Carolina State

College

CLINICAL SESSION C: 0830-0945 Hotel Berkeley-Carteret, Skyline Room

Security Classification - CONFIDENTIAL

Chairman: Ira A. DeArmon, Jr., Operations Research Group, U. S.

Army Chemical Corps

Panel Members: O. P. Bruno, Ballistic Research Laboratories

F. E. Grubbs, Ballistic Research Laboratories

Boyd Harshbarger, Virginia Polytechnic Institute

S. S. Wilks, Princeton University

Marvin Zelen, U. S. Army Mathematics Research

Center, The University of Wisconsin

Use of Statistical Designs in Laboratory Environmental Testing of

Adaption Kits

Daniel J. Taravella, Picatinny Arsenal

* Due to the length of the program and the agreed checkout time of 1330,

conferees are requested to pack their bags and complete their financial

transactions during the period from 0800-0830 or during the morning

coffee break.
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A Series of Two-Phase Experiments

Emil H. Jebe, Institute of Science and Technology, The University

of Michigan

CLINICAL SESSION D: 0830-0945 Hotel Berkeley-Carteret Hunt Suite 'A'

Chairman: Dorothy M. Gilford, Logistics and Mathematical Statistics

Branch, Office of Naval Research

Panel Members: R. E. Bechhofer, Cornell University

A. C. Cohen, Jr., The University of Georgia

H. L. Lucas, North Carolina State College

C.J. Maloney, U. S. Army Biological Warfare

Laboratories

G. A. Watterson, Virginia Polytechnic Institute

Fitting the "Modified Exponential" Function by a Multiple Regression

Method

Willis LeRoy Hasty, U. S. Army Chemical Corps, Fort Detrick,

Frederick, Maryland

Problems Related to a Bio-Assay for Spore-Germination Inhibitors

Associated with Uredospores

K. R. Bromfield, Crops Division, U. S. Army Chemical Corps,

Chemical Corps Biological Laboratories, Fort Detrick, Md.

BREAK: 0945-1015 Hotel Berkeley-Carteret Oval Lounge

GENERAL SESSION 4: 1015-1230 Hotel Berkeley-Carteret Crystal Terrace

Room

Chairman: Dr. S. S. Wilks, Princeton University

Designs for Estimating Variance Components

Dr. R. L. Anderson, Institute for Statistics, North Carolina State

College

Hazard Analysis

Dr. G. S. Watson, University of Toronto

LUNCH: 1230-1330 Hotel Berkeley-Carteret Coffee Shop & Grill



TIME SERIES AND SPECTRAL ANALYSIS

G. A. Watterson

Virginia Polytechnic Institute

INTRODUCTION. One of the classical problems in statistics is the

following. An experiment produces a result which is a random variable

having a density function f(x) say. In order to investigate the nature of

this density, several independent experiments are performed, yielding ob

servations

X , X_ , , . . , X •

i ¿ n

The joint density (the "likelihood") of these observations is then

(1) f(xj, x2, ..., xn) = f (xj)f (x2) ... f(xn) ,

and assuming the form of f(x) is known, the parameters may be estimated

by maximum likelihood.

A more general problem is the following. Suppose the observations

x , x , . . . , x

1 ¿ n

are taken on an experiment, where the subscript refers to the time at which

the observation is made. For such time-series, one can seldom assume

independence between the observations. There are two points of view which

can be taken about the analysis of such observations. The lack of inde

pendence is often a nuisance — we wish to analyze the observations by the

use of standard techniques such as t and F tests, confidence limits,

regression analysis," but cannot because of the lack of independence. On

the other hand in aome situations the lack of independence is just that

aspect in which we are most interested. If we wish to predict something

about the future on the basis of past experience, it would, indeed, be a

nuisance if the future was independent of the past. So, depending on one's

point of view, correlation can either be a hinderance or a help.
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One of the most fruitful assumptions that can be made, at least as far

as mathematical theory is concerned, is that of (weak) stationarity. By

this, we mean that the expected values, and the variances, of our obser

vations are constant over time, and that the covariance between two ob

servations depends on the time between them, but not on just when we

take the observations. Whether this assumption is true or not of course

depends on the practical situation. We give three examples.

(i) A radar installation detects echos of radio signals bounced back

from a physical object. Ideally, no statistics is required and the observed

echos are explained deterministically; if the object is in motion, the signals

will not be stationary. But suppose no object exists, and the only "signal"

received is due to the "noise" generated by the tubes in the receiver. This

noise may very well satisfy the requirements for a stationary, random, time

series.

(ii) Ocean waves tend to make a ship rock. If the waves have most of

their energy concentrated in a frequency range corresponding to the natural

frequency of oscillation of the ship, then a dangerous rocking motion may

result. Thus we wish to study the frequency structure of waves, which

over a short time may be approximately stationary in the above sense,

although over longer periods of time will exhibit non-stationary features

due to tides, etc.

(iii) The word "time" used above need not really mean "time". An axle

for a truck may be specified as having a diameter of one inch; if the pro

duction machinery is satisfactory then one can expect that the average

diameter of a batch of axles will be close to one inch wherever the measure

ment is taken, but certainly, observations made on the same axle will

have a correlation depending on the distance apart that they are taken. If

the production machinery is not working as it should, then one end of the

axles may be larger than the other and the expected values would not be

stationary along the axle.

In this paper, we intend to review some of the techniques that may be

used for handling correlated data taken at equally spaced time intervals,

under the assumption of stationarity. Two approaches can be made. One

I call the "statistician's" approach, in which one tries to estimate the

parameters in the joint distribution of the observations. The other, here

called the "electrical engineer's" approach, concerns the estimation of how

important, or otherwise, are certain frequencies apparent in observed time

series. In choosing my labels, I am doing an injustice to statisticians -
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the frequency interpretation is probably the most interesting in practice,

and certainly statisticians are also interested in it. In any case, the two

approaches are intimately connected although not obviously so. Some of

the more recent books discussing time series analysis are [2], [4], [5J.

STATISTICIAN'S APPROACH. Let us take as our time scale unit, the

interval between successive observations. The assumptions of stationarity

imply

E(x)= E(x) =... = E (x ) = . . . =E(x) = ^l say ,

12 t n

(2) Cov (xt , xt ) = c(t,- t2) = c(t2 - tj) say, for all t^ , X. г = 1,2, . . . , n

1 ¿

and in particular, Var (x. ) = Var (x2 ) = ... = Var (x ) = c(0) .

If, in addition, we may assume that the joint distribution of the obser

vations is normal, with density function

(3) f (x x ..., x ) = (1/2 If)

I ¿ n

n/2 ,_-l, 1/2 -\(x-«V£~l{xS

where

E-

с (0) с (1)

c(l) c(0) c(l)

с (n - 1)

с (n - 1)

с (n - 2)

*с (1)

•с(1) -с(О)
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is the matrix of the variances and covariances, and

n

XL =

^

Л

JJ-

then we see that there are n + 1 parameters /u~, с (0), с (1), . . . , с (n - 1)

to be estimated. Of course, from one sample of size n one can hardly

hope to estimate all n + 1 parameters reliably. We will see shortly how

these can sometimes be reduced in number by making additional assump

tions. A time-series with (3) as density, is called "Gaussian".

For samples obtained independently, the most generally useful estimate

of ¿u. is

I
t = 1

x -

n

since it is unbiased, E (x) = ^u, and has a variance o~ /n (or in our

notation c(0)/n) which can be made arbitrarily small by taking a suf

ficiently large sample. However, in time-series analysis, x is not the

maximum likelihood estimate of ^M even when (3) is taken to be the like

lihood. There are estimates of smaller variance than x, see [9j. Never

theless x is almost invariably used since it is unbiased, easy to compute,

and its competitors involve a knowledge of the covariances or at least

their estimation. Whether x has a variance which decreases as n in

creases is, of course, a very important question, and forms the basis of
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the Ergodic Theorem. Roughly speaking, provided the covariance between

observations decreases fairly rapidly as the time between them increases,

then the observed average of a time series approaches the population mean

/uas the number of observations increase. For, we have

n
n n

?*.
Var(x) = Var( - ) = 1/'n L—, L , Cov (x , x )

t2 = l tri h *2

n

2_, eft -t ) .

ich can be seen to equal

n-1

- c(0) + 2

n n
Z- (1 - t/n) с (t)

t = 1

If we write ю (t) = correlation between observations spaced t apart

Cov (x , x )l 1 + t = c(t)

VVar (x ) • Var (x ~ ) c (°)

we have

n-1

(4) Var(x) = -^Mj 1 + 2 X (l-t/n)p(t)J .

t = 1
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n-1

Thus, provided —> 0 as n -*• oo , Var (x) —*■ 0 .

n

When the conditions of the theorem are fulfilled, we do not need to in

dependently replicate the realizations to get a good estimate of ^м. ; all

we need is a single, long, realization. But what if the conditions do not

hold? For example, suppose we try to estimate the average rainfall over

U.S.A. by choosing only one recording station at random, say New York,

to provide us our data. Clearly, for a long series of observations from New

York we can get a good estimate of the average rainfall at New York , but

this tells us very little about the entire country. In the wider view, the

New York observations are correlated no matter how far they are separated

in time; they are all subject to the same particular environmental factors.

Then, replication using other recording stations would be necessary.

Turning now to the estimation of the covariances, our assumptions of

stationarity included the condition that the n - t pairs

X 1 ' x 1 + t ' X2 ' xt + 2 ' ' ' " ' xn - t ' xn

each had the covariance c(t). It is natural to estimate с (t) by

(x - x) (x - x) + (x - x) (x - x) + . . . + (x - x) (x - x)

^/^ 1 1 + t 2 2+t n-t n
c(t) =

n-t

n-t

I (xj -x)(xj+t-x)

(5) = -^ , t = 0, 1 n-1

n - t

In partiular, the variance с (0) would be estimated by

n

-.2

I (x j - x)

(6) с (0) = -Ь!
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which is, of course, very familiar from elementary statistics. Clearly some

of these estimates are better than others. In (6) we are averaging n

terms, but when we come to estimating c(n - 1) we have only one pair of

observations to use. In any case, the estimates will be biased in general,

and their exact distribution is difficult to find.

с (t)
The correlations p (t) = )A can most naturally be estimated by

(7) ¿<t) = -%r£r t = 1, 2 n -1

' с (0)

using (5) and (6) . Again, and especially for small n, these estimates

are somewhat biased, and for those with t close to n their variances

are large. A plot of these estimated correlations, called the " corre logra m" ,

will give a general idea of how the dependence of an observation on the

previous ones behaves.

Under fairly general conditions - roughly that the true correlations p{t)

tend to zero fairly rapidly as t —> со - it has been shown that our esti

mates x, c(t), /o(t) are asymptotically normal as n —*<x> . The exact,

small sample, distributions depend on the assumptions made about the

joint density f(x. , x„, ..., x ), and even when this is multivariate

normal only x has a simple (normal) distribution. Various versions of

estimates p (t) have been investigated; for their moments see [_2~], and

their distributions see [1], [3j, [I2j.

One device which is of frequent use in explaining an observed time

series, using fewer parameters than those introduced above, is the auto-

regressive model. As an example, one might, to a first approximation,

expect that the stock market index today, x is dependent on the index

yesterday, x. _ ,, on the direction of the previous trend (whether upward

or downward), x - x , and also on additional factors peculiar to

today, efc . We might have asa model

Xt = aiXt-l + £X2(xt-l-Xt-2)+et
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or, written slightly differently,

(8) xt = Vt-1+ ^2xt-2+et

A model of this type, where the dependence of x. on previous values is

linear, is called a (linear) autoregression. The parameters of interest are

the regression coefficients ß PL, ... and the variance of the e

Least squares estimation of course yields the usual expressions encountered

in ordinary regression analysis, although here, x plays the dual role of

dependent and independent variable. In fairly general situations, the

sampling properties of the estimates are closely approximated by the usual

distributions used in regression theory. For significance tests in auto-

regressive models see [10], [6j, [7j.

ELECTRICAL ENGINEER'S APPROACH. When frequency of oscillation is

more interesting than the serial correlations, a somewhat different approach

is taken. Even a simple model like

(9) xt = - P xt _ 1 + et

with p> 0, can produce observations which tend to be alternatively

positive, and negative; the pattern can of course be disrupted by the error

term et . The most important single frequency here would be 1 cycle per

2 time units. A more general model such as (8) can exhibit oscillations

of any frequency. To show the connection between the two approaches, let

us consider again the serial covariance function. Any linear combination of

x,, x„, ..., x , say a,x, + a„x„ + . . . + a x must have a nonnegative

12 n 1122 nn

variance. That is
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Var (a. X. + a2 x2 + = о . + a

n n

nX"' ÎI\\G0,|XVV

tj-lt -1

n n

=ZI w^-v
'2=1,Г1

i О

By choosing, firstly, a = costó, and secondly, a = sin te, and

combining the two results, one can show that the covariance function c(t)

cannot be completely arbitrary, but must be expressible as

(10) c(t) = c(0)J cos(t@)dF(©) ,

0

where F(©) is some cumulative distribution function on (0,7^), see \_2~\.

Of course F( Ö ) is not the distribution of x ; for the moment, it is just

some function needed to explain the second order moment of the x series.

To get an idea of what F(0) represents, we consider an example:

Let

(il) x = a cos e t + ь sin e t , о £ e ^ir

where a, b are independent random variables with E(a) = E(b) = 0,

2
Var (a) = Var (b) = cr . Then x is itself a random variable, although
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clearly all possible realizations are trigonometric functions of frequency

9i /2 7f with amplitude and phase determined at random. The realization

will appear to be completely deterministic, but in the population of possible

realizations we have

2 2
E(xt) = 0, Var(xt) = cos Ô^Var (a) + sin ©2tVar(b)

2 2 2 2
= (cos &l t + sin ©2t*°r = a '

and

Cov (xt , xfc ) = Var(a) cos e^ cos e^ + Var (b) sin e^j sin <э^2

= er cos [(tj - t2))ei ,

Thus we have

2
c(t) = o- cost©. ,

and the model (11) is a stationary (random) time series. Now comparing

2

c(t) = cr cos 1 9

with (10),

c(t) = c(0) / cos (te) dF(@)
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we see that F(©) must have the form

F(9)

1
7Г

♦ft

Interpreting this result,

corresponds to О = ©

F(©) shows that the only frequency of interest

which is obvious from (11). By importance,
Г

we mean that the total variance c(0) = cr can be explained by trigono

metric terms, with random coefficients, at the frequency in question. But

of course most time series are not of this type. In general, we have that

T.(&2) - Fíej)'

represents the proportion of the variance ("energy") of the series which is

due to frequencies O/llf in the range ( & /2 7f , &n/2V) . When

F(0) is differentiable, we write

&2/2v)

f(e) =
dF(e)

d©

and the above proportion is f(e)de .

i

F(©) is called the spectral distribution, while f(©) is called the

spectral density. To the engineer, a knowledge of F(0) or f(©) tells

him all he needs to know about the importance of discrete frequencies, or

a continuous range of frequencies.

Consider the special case where f(&) = 1/z^ , 0— & — /f. This

uniform density tells us that all frequencies are equally important, and in
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musical terms this would be "noise" rather than an acceptable musical

sound. Technically, the series is called "white noise". Let us consider

the consequences. In (10) we have

c(t) - c(0)/ costödF(e) = c(0)/ cost©f(e)de

= с (0)/7Г1 cos tede

c(0) if t = 0

0 if t =11, +2, ±3, ...

Thus the covariance of variables at different times is zero. Such would

be the case if the x,, x«, . . . , x were independent. Hence the case

with a uniform spectral density is an extreme one, and is often used as a

null hypothesis in significance testing.

But now, how does one estimate the spectral density? If we have a

model in mind, e.g.

: = - ßy. , + e
t r t - 1 t

where the e are themselves a white noise process, it can be shown that

the spectral density is

f(e) = \/if IzJt , o±e±7Ty

1 + 2p cos 9 + ß 2
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and the obvious way to estimate this is to estimate Q by regression

analysis and plug in to the formula. The significance test j3 = 0 is the

same as testing f(ö) = l/Tf , that is, whether the series is only "white

noise" or not.

If however, no model has been established, then one can proceed as

follows. Assuming a spectral density exists, by inverting the formula (10)

we find

(12)

OO CO

f(©) = 1/V + 2/7fY -^-£L. cos tö = \/7f + 1/7?) p (t)cos t© .

¿- с (0) I— r

t=l t=l

Now if we have n observations, we do not have any observations spaced

(in time) by more than n - 1 units apart, and so /O (n) , p(n + 1), ...

cannot be estimated at all. We may be willing to assume these are all

zero in view of the long time lags involved. Then we might estimate i(&)

by

(13)

n-1

f{&) = l/^+2/^У Aл

t = l

(t) cos t e-

where the estimate p (t) is given in (5), (7). Certainly the estimate

may be biased because terms have been left out. It suffers from the other

disability that it includes estimates f> (t) for t close to n-1, which

are unreliable in the sense that large variances may be expected in view of

the few pairs of observations that they are based on. A slightly different

estimate, but not much better than the one above, is the "periodogram" .

This can be defined as follows:

(в) =[2/n|

n
. 2

У (x - x) cos et

M t

n

У (x - x) sinOt
} .
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(although various authors use different multiplying constants) and can be

shown to equal

n-1

(14) 2 с (о) + 4 ])Г (l - t/n) с (t) cos t .

t = l

By comparing (14) with (12) we can see that the periodogram actually

estimates 2^c(0) f(©); the multiplier (1 - t/n) in (14) reduces the im

portance of the terms ô(t) for t large, which is advantageous in view of

their bad sampling properties, but may increase the bias of the estimate.

One way that the bad effects of the variance of the c(t) or the p(t), can

be eliminated is to disregard entirely those based on few observations.

Thus instead of (13) one might use

m

î(0) = \/тГ +(2/^ /o(t) cos t©

t = l

where m is much smaller than n. This results in an estimate which has a

comparatively low variance, but if the neglected terms are important, will

produce a badly biased estimate. One has to make a compromise decision

as to the practical importance of the bias and variance. This subject has

been studied, and several estimates proposed, by various people, see e.g.

[11]. Significance tests against the null hypothesis of white noise, or any

other particular density f(©), can be made using the periodogram. Some

of these tests assume normality of the underlying distribution, a consequence

being that the periodogram ordinates at О = 2^tj/n, j = 1, 2, ...,

г ] i ^2
(-=- (n - 1)J have essentially independent X distributions with 2 degrees

¿à

of freedom when the series is actually white noise. See [5j, [8] for the

distribution theory and significance tests for estimates of the spectral

density.

SUMMARY. We have made a quick survey of how stationary time series

can be analysed in terms of covariances, correlations, or by autoregressive
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models; also we have considered how frequency effects can be investigated.

We have not discussed the problems associated with observations taken

at unequal time intervals, or the vast field of problems with continuous

time recording, or the concept of multivariate time series, or the analysis

of non-stationary processes. Many of these aspects are partly solved,

but remain a fruitful area for research.
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MONTE CARLO METHODS

J. M. Hammersley

Oxford University and Princeton University

The research worker too often feels that he must say something new and

original whenever he says anything, whereas the politician knows quite

well that he should hammer away at some old cliche/ (preferably filched from

elsewhere so that it can be disavowed in emergency) until the public

believes it. I have filched this remark from a Nobel prizewinner (of whose

capacity for original research there can consequently be no doubt), and I

propose to follow his advice and to subject you to a political speech this

morning .

"The Monte Carlo method, " said Dr. Curtiss in a foreword to the proceed

ings of a symposium on the subject \1] , "may briefly be described as the

device of studying an artificial stochastic model of a physical or mathemati

cal process. The device is certainly not new. Moreover, the theory of

stochastic processes has been a subject of study for quite some time, and

the novelty of the Monte Carlo method does not lie here. The novelty lies

rather in the suggestion that where an equation arising in a non-probabilistic

context demands a numerical solution not easily obtainable by standard

numerical methods, there may exist a stochastic process with distributions

or parameters which satisfy the equation, and it may actually be more

efficient to construct such a process and compute the statistics than to

attempt to use those standard methods. Simple and natural as this

suggestion seems, once it is made, someone had to make it first in a voice

loud enough to attract notice. The voices seem to have been chiefly those

of Ulam and von Neumann, though Enrico Fermi, not elsewhere mentioned in

these Proceedings, also contributed."

It seems to me entirely right and proper that the credit should go to Ulam,

von Neumann, and Fermi in this way, for indeed it was they who showed

the world at large what Monte Carlo methods might do. By way of contrast

Lord Kelvin, who employed Monte Carlo methods sixty years ago to study

the Boltzmann equation [8] and other topics still under active examination at

Los Alamos, failed to make himself heard: I would not have known of his

work had it not been brought to my attention by Dr. Stephen Brush (of the

Radiation Laboratory at Livermore), who has a particular interest in the

history of mathematics .
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We are accustomed to dividing physicists, say, into theoretical and

experimental physicists; but it is a less familiar practice to classify

mathematicians in the same way . Nevertheless, experimental

mathematics is a genuine subject of study, and Monte Carlo methods

comprise one of its principal branches. The essential difference

between the theoretician and the experimentalist is that the former

postulates and deduces whereas the latter observes and infers. As with

other subjects, this is not a dichotomy into exclusive parts; and the work

of the theoretical mathematician is an adjunct and a complement to that of

the experimental mathematician, and vice versa. In all experimental work,

the better the experimental technique the more reliable are the answers.

In a Monte Carlo experiment, the basic observational material consists

of random numbers. The experimental technique is to combine these random

numbers by some arithmetical procedure to form an estimator, which

produces an estimate that is a solution of the problem under study. As a

rule, it is not hard to concoct unbiased estimators. The difficult part of

the art is find an estimator with a respectably small variance. Of course,

variances can be made small by taking large samples; but in general this

is not a rewarding course of action, for the size of the final standard

error is inversely proportional to the square root of the sample size. To

this extent, the relative efficiency of a Monte Carlo procedure may be

defined as inversely proportional to the product of the variance of the

/estimator and the amount of computation expended on obtaining it.

Since this is a political talk, I shall be much concerned with principles.

The overriding principle of Monte Carlo work is to cheat: indeed it is this

which distinguishes it from straightforward simulation. The game theorists

tell us that you cannot guarantee to win a fair game without cheating. Now

there is an important difference between the statistician's task in Monte

Carlo work and in the handling of data obtained from the average physical

or biological experiment. In the latter, there are experimental errors

dictated by Nature; and, though every good statistician should utilize

efficient experimental designs to mitigate and balance out these errors,

there often comes a point beyond which further elimination of the errors is

either not possible or would destroy the very purpose of the investigation.

But a Monte Carlo experiment is artificial, the creation of the experimenter

himself; and, if the errors are immoderately large, that is simply the fault

of the experimenter. In Monte Carlo work we can take heed of Lord

Rutherford's dictum: "If your experiment needs statistics, you ought to

have done a better experiment." In a sense, all good Monte Carlo work is

self- liquidating: although we start out with random numbers in order to
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solve a problem, which may seem to be intractable by conventional numeri

cal analysis, nevertheless we should strive to reduce their influence on

the final result, and one should always seize any opportunity to replace a

part or even the whole of the sampling experiment by exact analysis.

By way of illustration I shall consider the problem of evaluating

integrals. This is not so special a case as it may seem: for most

Monte Carlo work treats of the expected values of estimators, and these

are simply integrals over sample space. Usually the sample space has

a large number of dimensions, if not infinitely many; and this brings its

attendant troubles. However, for simplicity I shall work with one

dimension only, which will be cenough to exhibit those basic principles

that I want to discuss this morning.

Suppose then that we have a function f (x) which satisfies

(1) 0<f(x)<l,

and that we wish to evaluate

I
(2) 0 = f (x) dx

If we draw the curve of y = f (x) in the (x,y) Euclidean plane and

construct the unit square S with corners at (0, 0), (0, 1), (1, 0) and

(1, 1), then y is the fraction of the area of S which lies below the curve.

There can scarcely be a cruder Monte Carlo procedure than to take a

sample of n points, each uniformly and independently distributed over S,

to observe the number r of these points which fall below the curve, and

to use r/n as an estimator of Q . It is unbiased, distributed binomially,

and has sampling variance 0(1 - 0)/n. For purposes of comparison

between one method and other, the denominator is superfluous and we

shall suppress it and work instead with

(3) 0(1-0),



20 Design of Experiments

which represents the reciprocal of the efficiency of the method inasmuch as

it is proportional to the product of the sampling variance and the amount of

work expended in obtaining the estimate .

An alternative procedure would be to take a random number f , where

here and hereafter £ with or without a suffix denotes a number uniformly

distributed between 0 and 1, and to use

(4) t = f(£)

as an estimator of 6. More generally, in practice one would use the mean

of n such quantities (4); but, as already explained, the case n = 1

provides us with all the comparative information we need. If we replace

x by £ in (2), we see at once that (4) is unbiased. Its sampling

variance is

(5) if2 dx - Ô2.

Л

By (1), we have f2<.f; and hence in comparison with (3)

Л 1

(6) ff2 dx - 92 < f f dx -02= Э- G2= 0(1 - 9)

Consequently (4) provides a better estimator than we got from choosing a

point uniformly at random in S. The improvement comes from using the

exact value of f corresponding to the random £ , instead of the less exact

information on the relative position (below or above) of the point to the

curve. This is an example of partial replacement of experiment by a piece

of calculation or exact analysis . The relative efficiency of the two methods

comes from the ratio of (3) to (5), adjusted by some factor representing

the relative amounts; of computing time: in one method, we need to choose

two random numbers to fix a point in the square and we have to decide

whether the point is above or below the curve; in the other method we have

only one random number to choose, but we have to calculate f exactly for
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this random argument. The adjustment will depend upon the form of the

function f; and I leave it to you to make the assessment in various particular

cases according to your taste.

For reference purposes, I shall call (4) crude Monte Carlo. The other

method of choosing a point in the square is so abysmally bad that it does

not merit a name.

Evidently the sampling errors in the crude Monte Carlo method arise

from fluctuations in the value of f (£) as Ç ranges over its possible values

from 0 to 1. If f is a reasonably smooth function, it will undergo less

fluctuation in a shorter interval. This suggests^breaking the range of

integration up into several pieces by points 0 = ag <aj < . . . <.am= 1,

estimating the several integrals over the respective subintervals by crude

Monte Carlo methods, and finally adding the results together to obtain an

estimate of 0. Simple linear transformations make allowance for the

changed lengths of the subintervals, and from these we obtain the estimator

m

(7) t=I («,- aj-i.) f&j-l +(аГаЫ ) £jb

This method is known as stratified Monte Carlo. It is reminiscent of the

sundry linear formulae (trapezoidal rule, Simpson's rule, etc.) which

occur in classical numerical analysis for evaluating integrals, and indeed

it shares much in common with them. The question naturally arises of how

we should choose the numbers aj to make the method as efficient as possible,

A full discussion of this would take me too far afield, so I shall content

myself with saying that (i) the problem is substantially the same as that

encountered in sampling surveys and can be found under the heading of

stratified sampling in the standard textbooks on sampling methods, and

(ii) broadly speaking, a pretty good procedure is to choose the subintervals

to equalize the variation of f in each subinterval.

Next consider rewriting (2) in the form

(8) в = ¡ f (x) dx = f f(x) g (x) dx

i¿3W
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where g (x) is a frequency function over the interval (0, 1): that is to say

1

(9) g(x)>0 and f g (x) dx = l.

Jo

It follows from (8) that, if tj is a random variable from the distribution

whose frequency function is g, then

(10) t=f(7,)/g(4)

is an unbiased estimator of 9 . This holds for any g, and we would like to

know how to choose g to minimize the sampling variance. According to

the principles already explained, we shall get a small variance if t in (10)

is practically constant. Indeed we might try to make t exactly a constant

by choosing g = cf, where с is a constant. We can determine the constant

с from (2) and (9):

1 1

(il) 1 - rf

J0

= i g (x) dx = Г cf (x) dx = с В

Thus we want to sample from the distribution whose frequency function is

f (x)/$; and we could do this if only we knew Q , the answer to the problem

we are engaged on solving/ This is asking too much: and in practice we

compromise by selecting g to meet as best as we can the two conflicting

requirements:-

(a) g (x) must be a simple enough function for us to be able to integrate

it analytically and thereby ensure that is satisfies (9), or normalize

if it does not already satisfy (9); and

(b) g (x) must be a reasonably good mimic of the function f (x) , whose

integral we do not know, so that t in (10) is substantially cons

tant at least over a good part of the range of integration.
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If we succeed in satisfying (b) to a reasonable extent, then g will be

large when f is, and accordingly the majority of values >j will cluster

around the points where f has its largest or most important values. For

this reason (10) is known as importance sampling.

The expected value of the sum of several random variables is the sum of

their expectations, whether or not these random variables are independent.

Hence no bias will be introduced if in (7) we make the various £j dependent,

At the same time dependence can reduce the variance. For instance,

consider the case m = 2, a, = a, g , = 1 - |2 =£, for which (7) becomes

(12) t = af (a|) + (1 - а) Щ - (1 - a)£ = Tf($),

where T is the functional operator defined by (12). If f is a monotone
a

function, the two terms in the central member of (12) will tend to balance

one another out, one being high when the other is low; and the variance

of t will be correspondingly reduced. Because the two terms of (12)

reduce the variance by acting against each other, this method is known as

the antithetic varíate method . A different kind of dependence, appro

priate for integrands with a hump or a trough in the middle is£j= sj= % ;

and (7) would instead become

(13) t = af (af) + (1 - a) ffa + (1 - a)£J =SJ (|)

In general, this second transformation is not so powerful a means of

reducing variance as the antithetic variate transformation. However, very

striking gains of efficiency may result from a combination of both methods.

In each case we may ask how a should be chosen . Now (12) shows that

antithetic variate estimation applied to the integrand f is equivalent to

crude Monte Carlo applied to the transformed function T f : and the latter
a

will have a small variance if we can choose a to make T-,f as constant

as possible. As a rough and ready means of achieving this, we might

equate the values of Taf rat the ends of the range of integration. This

gives a =0( where a is the root of

(14) f(ar) = (i-*)f(U+«rf(0).
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The choice of a. in (13) is a more difficult matter, discussed in the original

paper on the subject [6 J. However, if (12) and (13) are to be used in

combination with one another, the appropriate thing is to apply T^ first,

where a. is given by (14), followed by as many applications of

may be desired.

As an example of the foregoing remarks, consider the case

»1/2
as

(14) f (x) = sin (TTx/2).

The sampling variances (per random number used) and the ratios of these to

the variance for the crude Monte Carlo method are:-

Sampling

Variance

Rough esti

mate of com

puting timeMethod

9-5 x 10*"2-

Ratio Efficiency

Crude Monte Carlo 1.0 1 1.0

Importance sampling 6.8 x 10~-
1.4 x 10 l

3 4.7

Antithetic T^

-4

3*6 x 10 2. 7 x 10 2 2 1.3 x 10 2

Antithetic S, ,„T,

1/2 %

2.2 x 10"5 4. 4 x 10 3 4 1.1 x 10 3

Antithetic S51/9T.- 8-4 x 10"8 l.lx 10 6 16 6.9 x 10

The importance function used for the second line of the above table was

g (x) = 2x, which bears about the right relative degree of simplicity to f

encountered in real applications. In the final line (T^ followed by

three applications of S^/2 ) there will be 16 observations per random number

used: thus the variance is reduced by a factor of a million at the expense of

a sixteenfold increase in computing, which means an overall efficiency gain

of about 70,000. Further examples, including a detailed discussion of a

genuine application to a six dimensional integral, appear in £6J. The theory

of the subject ([5], [7J) shows that we need only consider dependencies of

the forms stated above, namely £=£_or§=l- £ . Further efficiency

gains result from using values of the integrand outside the range of

integration [3J.
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In the methods discussed above, there is usually some choice (e.g.,

choice of importance function, choice of stratification point a in the anti

thetic variate methods, etc.). If the choice is not made in an optimum

fashion, there will be some loss of efficiency (though seldom much loss

because of the flatness of minima); but there will be no introduction of

bias however bad the choice. To this extent, the methods are robust.

There is of course no reason why one should not apply several methods

simultaneously; and there are a variety of useful methods which I have

omitted from this talk. It is also worth using numbers which are not

random on certain occasions. This and other questions are discussed

in og.

True to political tenets, I have said nothing profound or new; but I hope

I have exposed a few of the tricks of the trade.
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THE CONSTRUCTION AND ANALYSIS OF NON-ORTHOGONAL PLANS

FOR THE 2П FACTORIAL EXPERIMENTS

Sidney Addelman

Research Triangle Institute

INTRODUCTION . There are many situations in which an experimenter

must estimate the important effects of a symmetrical factorial experiment

with as few trials as possible. There are instances where, say, all two-

factor interactions are important and the orthogonal plan necessary to

estimate these parameters requires more trials than one can afford. If the

experimenter is restricted to orthogonal fractional replicate plans he must

then either abandon the investigation or lose information on some of the

interactions that may be important.

Consider, for example, a situation where it is desirable to estimate

7

the main effects and two-factor interaction effects of the 2 experiment

and no more than 50 trials can be made. It is well known that a 1/2 re-

plicate of the 2 experiment allows orthogonal estimates of all main

effects and two-factor interactions and that a 1/4 replicate does not.

The 1/2 replicate plan requires 64 trials and the 1/4 replicate plan

requires 32 trials. It then seems reasonable to inquire whether a plan

with 48 trials can be constructed that yields information on all main

effects and two-factor interaction effects. The consideration of all pos

sible subsets of 48 treatment combinations from the totality of 128

7
possible combinations in the 2 experiment is a tedious task. There

fore, an investigation has been made of the use of subsets which consist

of a number, k, of the possible 2m distinct l/2m fractional replicates

defined by a particular identity relationship.

DEVELOPMENT OF NON-ORTHOGONAL PLANS. The treatment combin

ations of the 2n experiment may be represented as the points of a n-

dimensional lattice with axes x, , x2 , . . . , x . Each axis of the lattice

will have two points, 0 and 1. Thus, for example, the treatment combin-

2
ations of the 2 factorial experiment, with factors A and B, which

are usually represented by (1), a, b and ab can also be represented

by the points, (0, 0), (1, 0), (0, 1) and (1, 1), respectively. The points

(0, 0) and '(1, 1) both satisfy the equation x. + x = 0 (modulo 2) and
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2
comprise the 1/2 replicate of the 2 experiment defined by the identity

relationship I = AB. The symbol AB can be used to denote the set of

treatment combinations for which x. + x2 = 0 (modulo 2). Similarly AB,

denotes the set of treatment combinations for which x. 4 x„ = 1 (modulo

2).

Consider n factors, A, B, C, . .., L, each with two levels.

Then ABC • •. ,».. L/ denotes the set of treatment combinations for which

x, + x, + .. . 4 x = i, where i = 0 or 1. A 0 or 1 can be associated
i ¿ n

with every effect or interaction of the identity relationship. For example,

the 4 possible 1/4 replicates of the 2 experiment defined by the

identity relationship

I = ABC = ADE = BCDE

can be represented by the four relationships

I = ABC0 = ADEg = BCDEQ

I = ABC = ADE = BCDE

I = ABC, - ADEn = BCDE,
1 0 1

I = ABC = ADE = BCDE

or can be displayed in tabular form as in Table 1.
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TABLE 1

STRUCTURE OF THE 1/4 REPLICATES OF A 2 EXPERIMENT

Identity relationship Fractional replicate

12 3 4

I

ABC 0 0 11

ADE 0 10 1

BCDE 0 110

Since the interaction BCDE is the generalized interaction of ABC and

ADE the subscripts associated with BCDE in each of the four fractional

replicates may be obtained as the sum (modulo 2) of the corresponding

subscripts of ABC and ADE.

The treatment combinations which constitute a 3/4 replicate plan of

the 2 experiment may be obtained by selecting the treatment combinati

that occur in any 3 of the four 1/4 replicates given in Table 1.

If each of the к subscripts associated with a member of the identity

relationship defining a k/2 replicate of the 2n experiment are identical,

then that effect is completely confounded with the mean,>< . If the к

subscripts are not identical then that member of the identity relationship

is partially confounded with the mean. If, for any interaction, к is an

even number and half of the subscripts are 0 and the other half are 1,

then that interaction is unconfounded with the mean.

The following theorem, which can be easily verified, is helpful in the

construction of non-orthogonal plans.

Theorem 1. In a k/2 replicate plan for the 2 factorial experiment

no main effect or interaction need be completely confounded with the mean

if к > (m + 1).

Corollary. In a k/2 replicate plan for the 2 experiment, if

к = (m - u), where u = 0, 1, 2, . . , then (u + 1) interactions and their



30 Design of Experiments

generalized interactions will be completely confounded with the mean.

If к = (m - u), it is often possible to construct a non-orthogonal plan

so that the interactions which are completely confounded with the mean

will contain at least five factors. This can always be arranged if there

exists a 1/2 replicate of the 2 experiment which permits uncor

rected estimates of the main effects and all two-factor interaction effects,

when higher order interactions are negligible. These plans are sometimes

called plans of Resolution V. If it is not possible to have only five-

factor and higher order interactions completely confounded with the mean,

then some two-factor interactions will not be estimable.

Of the к subscripts associated with a member of the identity relation

ship defining a k/2 replicate of the 2 experiment let t be 0 and

(k - t) be 1. The following theorem can easily be verified:

Theorem 2 . If an interaction of the identity relationship defining a

k/2 replicate of the 2 experiment has an odd number of factors, the

off-diagonal elements of the information matrix, corresponding to the

partially confounded effects that are determined by the interaction, are

equal to (k - 2t) 2 . If an interaction has an even number of factors,

the off -diagonal elements of the information matrix associated with that

interaction are equal to -(k - 2t) 2

We shall adopt the rule that when к is odd, an odd-factor interaction

will have an odd number of the к subscripts associated with it equal to

1 and an even-factor interaction will have an even number of the к sub

scripts associated with it equal to 1. With this rule the off-diagonal

elements of the information matrix associated with each member of the

identity relationship, for which the absolute value of (k - 2t) is constant,

will have the same value when к is odd. When к is even it may often

be desirable to have (1/2) к subscripts equal to 0 and (1/2) к sub

scripts equal to 1 for some interactions so that they are unconfounded

with the mean.

If we also adopt the procedure of grouping the effects and interactions

of interest in such a way that those which are partially confounded with

each other are contiguous, then the information matrix will consist of

various sized blocks about the main diagonal with off -diagonal blocks

of zero elements. The varia nee -covaria nee matrix can then be obtained
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by inverting each of the blocks about the diagonal separately.

If the above procedures are followed, the blocks which lie about the

diagonal of the information matrix of a 3/2 replicate of the 2 experi

ment will be of the form

n - m + 2 n - m

2 1-2 J

where I is the identity matrix of rank p and J is a p x p matrix of

l's. It is easily verified that the inverse of this matrix, the variance -

covariance matrix, is

n - m + 2

I +

4 -

When p = 2 the block on the diagonal of the varia nee -covariance matrix

is

,n - m + 3

3 1

1 3

and when p = 3 the block is given by

1

2 1 1

1 2 1

n - m + 2

2
1 1 2

It is evident from the form of the variance -covariance matrix that if

for any block in the information matrix p = 4, then that block must be

singular so that an inverse of that block does not exist. In such a situ

ation one must assume that one of the interactions in that block is

negligible and thus reduce the size of the block to a 3x3, making it

non-singular.
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The yield of a treatment combination in a k/2 replicate plan for

the 2 experiment can be written in terms of the main effects and

interactions:

тчъ '■- ">* + — A + — В + — AB + — С + AC + etc. + error
ljk . . . ^ - г ~2 - 1 - 2 - -

where the sign

on A is - if i = 0 and + if i = 1

on В is - if j = 0 and + if j = 1

on С is - if к = 0 and + if к - 1

and so on>,

and the sign on a term involving several letters is the product of the signs

on the individual letters.

The estimates of the 3/2 replicate plan for the 2 experiment can

be shown to have the following forms:

(i) If X, Y, and Z denote effects and/or interactions that are parti

ally confounded with each other, their estimates are given by

X 2 1 1 ML J

1

fvlY 1 2 1 LYJ
2n - m + 1

Иz 1 1 2
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where \X3 denotes the sum of the treatment combinations whose expec

tations contain X positively minus the sum of the combinations whose

expectations contain X negatively, [Yj and [Z] being similarly defined.

The variances and covariances are obtained from the variance -covariance

matrix and can be shown to be

var (X) = var (Y) = var (Z) = cr2/2n " m l

cov (X,Y) = cov (X,Z) = cov (Y,Z) = 0-2/2n " m

(ii) \t jul, X and Y are partially confounded with one another, their

estimates are given by

X

A

Y

1

,n - m + 1

T

M

M

where T denotes the sum of all treatment combinations,

A /s

var (X) = var (Y) =
c2/2n - m - l

"* <** a. a -a A 2n-m

cov (2>¿,X) = cov (2>i,Y) - cov (X,Y) = Cr /2

(iii) If X and Y are partially confounded with each other and with no

others, their estimates are given by
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X

Y

,n - m + 2

Ы

M

var « = var (?) = ScV " m + ', ccv «.?) = oV " m + '

(iv) If yU. and X are partially confounded with each other and no others,

their estimates are given by

iJL

X

1

,n - m + 2

лл , J/,n-m+l
var (X) = 3 cr /2

1

cov (2^U,, X)

M

о-2/2П " m * l

The correlation of the estimates in a 3/2 replicate of the 2 experi

ment which are partially confounded with each other can be shown to

equal 1/(5 - p), where 1 < p < 5. Hence, if p = 2, the correlation

is equal to 1/3 and if p = 3 the correlation is equal to 1/2.

EXAMPLES OF NON-ORTHOGONAL PLANS. The structure of some use

ful non -orthogonal plans are presented in the following tables.
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TABLE 2

A 3/4 REPLICATE OF THE 2 EXPERIMENT

Identity relationship Fractional replicate

1 2 3

I

ABC 0 0 1

ABD 0 1 0

CD Oil

TABLE 3

A 3/8 REPLICATE OF THE l' EXPERIMENT
,7

Identity relationship Fractional replicate

1 2 3

I

ABCDE 1 1 1

ABF 0 0 1

CDEF 1 1 0

AEG 0 1 0

BCDG 1 0 1

BEFG 0 1 1

ACDFG 1 0 0
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TABLE 4

A 3/16 REPUCATE OF THE 28 EXPERIMENT

Identity relationship Fractional replicate

1 2 3

I

ABODE 1 1 1

ABFGH 1 1 1

CDEFGH 0 0 0

ACF 0 0 1

BDEF 1 1 0

BCGH 1 1 0

ADEGH 0 0 1

BEG 0 1 0

ACDG 1 0 1

AEFH 1 0 1

BCDFH 0 1 0

ABCEFG 0 1 1

DFG 1 0 0

СЕН 1 0 0

ABDH 0 1 1
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A USEFUL APPLICATION OF THE NON-ORTHOGONAL PLANS. In the

application of factorial patterns there sometimes arise situations where

the experimenter feels thst one or more additional factors should have been

included in an experiment which has just been performed. Using the non-

orthogonal plans described in this paper, the original plan can be augmented

to yield information on the additional factors, without losing the information

obtained with the original design.

3
If the original experimental plan was a 2 factorial arrangement and an

additional factor must be added, it can be assumed that the additional

factor was held at its 0 level in the original plan and that the original 8

4
trials were a 1/2 replicate of the 2 experiment. By adding 4 treatment

4

combinations which constitute another 1/4 replicate of the 2 experiment,

the additional factor, as well as the interaction of that factor with the origi

nal three factors, can be estimated. The augmented plan is a 3/4 replicate

4
of the 2 experiment. A fifth factor can be introduced by adding 4 more

treatment combinations and the resulting plan is a 4/8 replicate of the 2

experiment. If a sixth factor is introduced, the resulting plan will be a

5/16 replicate of the 2 experiment. When more than one factor is added

to the original orthogonal plan the resulting non -orthogonal plan does not

permit the estimation of the interactions among the additional factors.

3
Table 5 gives the structure of the 2 plan augmented to a 5/16 replicate

с

of the 2 experiment. Imbedded in this plan are a 4/8 replicate of the

2 anda 3/4 replicate of the 2 experiments. The letters А, В and С

denote the original 3 factors and D, E and F denote the additional

factors.
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TABLE 5

STRUCTURE OF A 23 PLAN AUGMENTED TO A 5/16

REPLICATE OF THE 26 EXPERIMENT

Identity relationship Fractional replicate

I

1 2 3 4

D 0 0 1 0

ABC 0 1 0 1

ABCD 0 1 1 1

1E 0 0 0

DE 0 0 1 1

ABCE 0 1 0 0

АВСDE 0 1 1 0

F

DF

ABC F

ABCDF

EF

DEF

ABCEF

ABCDEF

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

1

1

1

1

0

0

0

1

1

0

0

1

1

1

1

0

0

1

1

0

0



USE OF THE UP-AND-DOWN METHOD WITH FACTORIAL DESIGNS

R. L. Grant and R. W. Van Dolah

Explosive Research Laboratory, Bureau of Mines

Pittsburgh, Pennsylvania

The adaptation of the up-and-down method to experimental designs for

which it might be appropriate has been hampered by the fact that at least

50 trials per sequence are usually recommended (1). Where the individual

trials are expensive, as for explosives and ordnance experimentation, the

cost of such long sequences becomes prohibitive. During the past several

years, the Explosives Research Laboratory of the Bureau of Mines has sought

to exploit the advantages of the up-and-down method and of factorial

experiments by combining the two into a single design and to overcome the

cost objection of the up-and-down method by the economical use of shorter

sequences. The principle of the model based on the combination design is

to assume a factorial design and accept as particular response values the

means as calculated from the corresponding randomized up-and-down se

quences. Since the up-and-down method is founded on an efficient design

for estimating a mean and since factorial experiments are based on efficient

designs for evaluating factor effects, a combination of the two should also

be relatively efficient. Such a design should be applicable to situations of

wide occurrence in explosives and ordnance experimentation where experi

ments are conducted of the go-no-go, or success -failure, type and where it

is desired to study the effects of one or more factors. However, unless the

sequences are relatively short the number of trials and the cost of the experi

ment will be large for this design. In the course of this work, attention was

given to meeting the requirements of the up-and-down method in order to

increase its efficiency and thus permit shorter sequences. These require

ments are that the basic distribution must be normal, its standard deviation

be known approximately, and the up-and-down interval be approximately

equal to the standard deviation.

This paper reviews the work conducted at the Bureau with this combin

ation model for experiments with coal mine explosives. The statistical

principles are described and the application of the design is illustrated

with five factorial experiments for evaluating certain effects which in

fluence the safety of these explosives.

♦Underlined numbers in parentheses refer to items in the list of references

at the end of this report.
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THEORY. A conventional two-factor experiment is assumed; the design

for this is illustrated in Figure la. Here there are p levels of factor A

and r levels of factor C. The response, or experimental observation, for

a particular combination of A and С is designated by Y, where Y..

denotes the combination of factors A and С each at the first level and

Y. . denotes the general response. The model is

(la) Ytj =^+ a. + -7J + (*7)ц + €ц

(lb) = m + а. + с. + (ас) е.i j х 'ij ij

where equation (la) represents the universe and (lb) the sample estimate.

(The notation of Anderson and Bancroft (3) has been followed.)

To obtain a response Y an up-and-dçwn sequence is performed accord

ing to the design illustrated in Figure lb. Sequence 1 is that for combination

A1C1 and sequence n for A Cr . Each up-and-down sequence yields a

mean and is generally designated as an X. The mean of any given sequence

is assumed as a Y response for use in the design of Figure la. Or,

(2) X.. of Figure lb = Y., of Figure la,

X., of Figure lb = Y. . of Figure la.

Thus, the mean as determined by the up-and-down sequence is accepted

asa measurement of sensitivity of the explosive or item of ordnance under

study and this measurement serves as the corresponding response value for

the factorial experiment.

It will be noted that there are pr combinations in the factorial design

of Figure la and therefore there must be the same number of up-and-down

sequences in Figure lb. That is,

*Figures appear at the end of the article.
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(3) рг = n

is a property of the combination design represented by equations (1) and

(2). The experiments described in this report were conducted according

to this combination design. It is clear that although the two-factor design

has been cited, the combination design may be composed of the up-and-

down design and any factorial design.

Randomization is achieved as follows. Essentially, the n up-and-

down sequences are conducted simultaneously and in random order. To

illustrate, if p is 3 and r is 3, then n will be 9. Numbers from

1 to 9 are assigned to the 9 different combinations randomly and the

individual trials, or shots for explosives, made in order of the assigned

number.

Orthogonality, or rectangular symmetry, of the factorial design of Figure

la is assured by the requirement that each up-and-down sequence of Figure

lb be of the same length. This means that there should be the same number

of yes-no pairs in each sequence. For example, 10 yes-no pairs will re

quire a minimum of 20 trials, or shots, with explosives.

The method of calculation for the mean of each up-and-down sequence

is given by Dixon and Massey (2). After entering the appropriate response

values in the factorial design, this is analyzed in the usual way (3_, j£).

VALIDITY OF THE UP-AND-DOWN METHOD . The following three con

ditions must be satisfied for valid application of the up-and-down method

(2, i):

(1) The underlying, or stimulus, variable of the experiment must be

normally distributed.

(2) The standard deviation of this variable must be known, at least

approximately.

(3) The predetermined intervals of this variable employed in the up-and-

down steps should be within the range of one-half to two standard deviations

Although the normality requirement may be examined best by conducting
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relatively long up-and-down preliminary sequences, these cannot always

be justified. Short sequences or sequences which are an integral part of

the investigation will then be advisable. In this investigation a test for

normality was made with a 60 -shot sequence with explosive A, a selected

permissible explosive (Figure 2). The size of the interval between the

steps was based on the logarithm of the charge weight of the explosive

expressed in grams. At the time this experiment was started, the best

estimate of the standard deviation was 0.06 log units and accordingly

this was chosen for the steps of the sequence. A plot of the distribution

of the ignitions, or Y's, is shown in Figure 3 as a histogram. The test for

normality using the chi-square method described in (1, Б) permitted the

conclusion that this distribution was acceptably fitted by a normal curve.

The best-fitting normal curve is drawn in Figure 3.

This sequence gave an estimate of the standard deviation of 0.081 log

units, thus fulfilling requirement (2). Therefore, for requirement (3) an

interval of magnitude between half and twice this estimate, or 0.04 and

0.16, would be reasonably satisfactory for the up-and-down steps. The

actual interval of 0.06 used for this sequence was evidently well chosen.

The sequence of Figure 2 also provided information concerning the relia

bility of short sequences. To obtain this, the 60 -shot sequence is first

subdivided into three equal sequences each with 10 yes -no pairs. For the

30-pair sequence and for each of the 10 -pair sequences, 95 percent con

fidence limits of the respective means were calculated. The results of

these calculations are plotted as intervals in Figure 4a. The assumption

is made that the best estimate available from the data of the 95 percent

confidence interval for a 10-pair, or 20-shot, sequence is the confidence

interval based on the 30-pair, or 60-shot, sequence adjusted to 10 pairs.

This adjustment to 10 pairs is made by multiplying the 95 percent con

fidence interval of 30 pairs by V 30/ /Ш, or 1.732. These adjusted con

fidence limits are shown as dashed lines in Figure 4a. The mean of any

20-shot up-and-down sequence should fall within this adjusted interval

and, if such is the case, one may conclude that satisfactory reproducibility

of the mean has been achieved. Figure 4a shows that each of the three

means based on 10 pairs, or 20 shots, were within the adjusted interval.

Three additional 60-shot, or 30-pair, sequences were made with the

same explosive and test procedure (Figures 4b, c, and d). Each mean

based on 20 shots, or 10 pairs, fell within the corresponding adjusted

interval. Thus, these 240 shots indicated that satisfactory reproducibility

of a mean based on a minimum of 20 shots was achieved 12 out of 12 times
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with the up-and-down method. This, of course, reflects an important

property of this method, namely, that the mean is measured with increased

efficiency.

Therefore, the conclusions were made that the requirements of the up-

and-down method were being met and that sequences of a minimum length

of 20 shots would be reasonably satisfactory for our experiments.

FACTORIAL EXPERIMENTS WITH EXPLOSIVES- Five factorial experiments

have been conducted using the combination design described above as the

model. Each experiment dealt with some aspect of the safety of coal mine

explosives in the presence of a flammable atmosphere. The explosives

were either special formulations prepared by explosives manufacturers for

the Bureau of Mines or commercial (permissible) explosives. The charges

of explosives were fired from steel cannons into an explosive mixture of

natural gas in air. Figure 5 shows the operator loading the explosive charge

into the borehole of the steel cannon. The weight of the charge varied

from 150 to 1,300 grams. On the left of the photo is shown the end of the

steel gallery which contains the natural gas in air at the time of the shot.

Figure 6 presents an overall view of the gallery taken at the instant of

ignition of the gas in the gallery by an explosive charge fired into it. The

volume of flammable gas which is ignited is 625 cubic feet. The philosophy

of this testing procedure is based on the hypothesis that safe explosives

will require relatively large charge weights to ignite the gas and dangerous

explosives will require smaller charge weights. Accordingly, this is a

sensitivity experiment because there will be a critical charge weight above

which more or less consistent ignitions will be obtained and below which

nonignitions will result. For such a test, the up-and-down method is

suitable. The experiments presented below were run over a period of

several years and can be described only briefly.

Experiment 1. The object was to study the effects of the particle size

of the ammonium nitrate and the types of carbonaceous material of the

explosive on their incendivity to the natural gas atmosphere „ There were

three grades of particle size and five types of carbonaceous material.

Accordingly, this was designed asa 3x5 factorial with two replications

in order to estimate interaction between the two factors. The results of

the experiment are given in Table la in which each number in the body of

the table is a W value. This is defined as the mean weight of explosive
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as determined from an up-and-down sequence consisting of a nominal 20-

shot sequence. This weight will be expected to produce ignitions 50 per

cent of the time. A total of 612 shots were fired in the course of this ex

periment. Table lb presents the analysis of variance. The conclusions

were that: (a) The particle size of the ammonium nitrate in permissible-

type explosives has a highly significant effect on the incendivity of the

explosive to natural gas (methane plus ethane) in air, with coarse ammon

ium nitrate producing less incendive explosives than the fine, (b) The

type of carbonaceous material and the interaction between the two main

factors have no significant effect on the incendivity (6).

Experiment 2. Several new types of stemming for holding and increasing

the confinement of the explosive in the coal borehole in mines have been

proposed, A study was made of the safety characteristics of these by de

termining their effectiveness in reducing the likelihood of ignition of the

gas. Table 2a shows the combined results of three separate factorial ex

periments with a total of seven types of stemming materials and nine samples

of explosives. However, the question of interest was the behavior of a

given stemming material with the standard, or control, stemming and,

accordingly, these results were analyzed by comparing a particular stem

ming with the standard stemming, which was one pound of dry fireclay.

The analyses of variance for the principal comparisons are given in Table

2b. The conclusions were as follows: The stemming materials which

were significantly better than the standard fireclay were dry sodium chloride

in an asbestos container, ordinary water, gelled water, and a saturated

sodium chloride solution in water, each contained in a plastic bag. The

wet fireclay did not differ significantly from the standard dry fireclay but

the special asbestos stemming device was distinctly inferior, and there

fore relatively hazardous, as compared with the standard fireclay (7).

Experiment 3. A two-factor 3x7 experiment was performed to establish

the percentage of natural gas which represented the mixture of maximum

ignitibility when the explosives were fired into the gas -air mixtures. The

combustibles in the natural gas were analyzed and expressed as methane

plus ethane. In this factorial experiment one factor was the gas concen

tration at 7 levels, 7.0, 7.5, to 10.0 percent, and the second factor

was three typical permissible explosives. The principal object was to

determine whether the gas concentration had a significant effect on the

result expressed as a W value of the explosive and, if so, to ascertain

gas concentration representing maximum ignitibility. Table 3a shows the

results and Table 3b the analysis of variance. The conclusion was that
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TABLE la. - Results of Experiment 1, a 3 x 5 factorial

The upper figure is the result of the first replicate and

the lower figure is the result of the second replicate.

Each result is a Weg value in grams of explosive.

Ammonium nitrate

Carbonaceous material:

Wood meal

Fine Medium Coarse Total

436

374

424

487

514

480 2,715

Fine bagasse 467

401

493

473

514

507 2,855

Coarse bagasse 412

401

480

480

507

493 2,773

Starch 436

418

473

487

500

487 2,801

Walnut meal 473

467

487

500

473

529 2,929

Total, first replicate

Total, second replicate

Total, both replicates

Means

2,224

2,061

4,285

428.5

2,357

2,427

4,784

478.4

2,508

2,496

5,004

500.4

7,089

6,984

14,073

TABLE lb. • Results of analysis of variance

Source of

variance

Sum of

squares

Degrees of

freedom

Mean

squares

F F.05 F.01

Particle size of

ammonium nitrate

Carbonaceous material

Interaction

Replicates

Error

27,146 2

4

8

1

14

13,573.0 21.86**3.74 6.51

4,426 1,106.5 1.78 3.11 -

3,036 379.5 .61 2.70 -

368 368.0 .59 4.60 -

8,693 620.9

Total 43,693 29 • .
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TABLE 2a. • Results of Experiment 2, о series of г x 2 factorials. Each result

represents a W5Q value based on a nominal 20-shot series

Special

1 lb. '/2 lb. asbestos

Explosive dry water in stemming

fireclay plastic bag device

Vi lb. К lb.

1 Ib. V4 lb. water-salt gelled water

wet dry solution in in plastic

fireclay salt plastic bag bog

1 582 632 • * . •

507 591 168 461 258 •

473 487 198 522 599 •

687 660 265 599 599
•■

574 727 331 536 430 ■

522 607 288 • • 717 727

424 536 218 ■ • 591 624

8 544 436 210 • • 514 551

9 551 789 544 • . 906 747

TABLE 2b . - Analyses of variance for the data of Table 2a

Source of Sum of Degrees of Mean

variance squares freedom squares

F.05 F.01

A. Comparing Yi lb. water in plastic bag with 1 lb. dry fireclay:

Stemming methods 20,067 1 20,067 3.92 5.32 •

Explosives 103,001 8 12,875

Error 40,917 8 5,115

B. Comparing 1 special asbestos stemming device with 1 lb. dry fireclay:

Stemming methods 265,225 1 265,225 35.02** 5.59

Explosives 89,624 7 12,803

Error 53,013 7 7,573

C. Comparing 1 lb. wet fireclay with 1 lb. dry fireclay:

Stemming methods 1,891 1 1,891 1.14 10.13

Explosives 31,362 3 10,454

Error 4,962 3 1,654

D. Comparing % lb. dry salt with 1 lb. dry fireclay:

Stemming methods 15,753 1 15,753 1.26 10.13

Explosives 69,094 3 23,031

Error 37,426 3 12,475

E. Comparing й lb. water-salt solution with 1 lb. dry fireclay:

Stemming methods 58,996 1 58,996 4.73 10.13

Explosives 60,860 3 20,287

Error 37,423 3 12,474

F. Comparing Уг lb. gelled water with 1 lb. dry fireclay:

Stemming methods 46,208 1 46,208 9.88 10.13

Explosives 21,555 3 7,185

Error 14,037 3 4,679

12.25
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Gas, percent

Explosi ve 7.0 7.5 8.0 8.5 9.0 9.5 10.0

1 633

660

894

500

717

858

500

599

651

651

616

632

659

589

688

789

599

800

866

2

3

607

1,026

Totals

Means

2,187

729.0

2,075

691.7

1,750

583.3

1,899

633.0

1,936

645.3

2,188

729.3

2,499

833.0

TABLE 3b. • Analysis of variance of results in Table 3a

Source of Sum of Degrees of Mean F F.05 F.01

variation squares freedom squares

Gas, linear 21,600 1 21,600 2.01 4.75 -

Gas, quadratic 90,517 1 90,517 8.40* 4.75 9.33

Gas, higher 8,133 4 2,033 .90 3.26 -

Explosives 109,484 2 54,742 5.08* 3.88 6.93

Error 129,281 12 10,773 ■ • •

Total 359,098 20 • • • m
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the gas concentration, methane plus ethane, had a significant effect on the

ignitibility of the gas mixture and the concentration of maximum ignitibility

was approximately 8 percent. As orthogonality was maintained in this

experiment, the calculation methods described by Anderson and Bancroft

(3) and Cochran and Cox (8) were applicable. Single degree of freedom

analysis showed the quadratic regression for the gas to be significant.

Therefore, the relationship between the gas concentration and ignitibility,

assumed as the inverse of the W values, is expressed as the parabolic

curve of Figure 7.

Experiment 4. One of the early experiments in this series was a one-

factor experiment to determine the effect of the quantity of sodium chloride

in the explosive on its incendivity to the 8 percent gas mixture. A feature

of this experiment was background randomization of all other factors which

conceivably could affect the result. Accordingly, Experiment 4 was a series

of smaller randomized experiments in which the sodium chloride was varied

deliberately and the other factors varied randomly. This was accomplished

by determining the W,fl values on a relatively large number, in this case,

87, explosives of varying compositions. Although this experiment repre

sents considerable work, much of the data was a by-product of the regular

testing schedules. Table 4a shows the results placed in the form of a one

factor experiment with unequal numbers of subsamples. From the 87 W5Q

values suitable calculations gave ratios, called improvement indexes, for

the table of data for analysis. Table 4b presents the results of the analysis

of variance. The large F value permitted the strong conclusion that added

sodium chloride, up to 20 percent, has a highly significant effect in re

ducing the incendivity of formulations of permissible explosives (4).

Experiment 5 . In a manner similar to that of Experiment 4, a study was

made of the effect of the particle size of the sodium chloride constituent

(Tables 5a and 5b). The conclusion was that the fine sodium chloride re

duced the incendivity of the explosives significantly more than the coarse

salt at the 90 percent probability level (or the 10 percent confidence level)

(4).

CONCLUSIONS. With respect to the experimental design it was concluded

that: (1) The up-and-down method may be combined with a factorial design

to provide a useful combination design that gives valid conclusions for re

latively complex experiments with explosives. (2) Satisfaction of the

requirements of the up-and-down method permits the use of sequences of a
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minimum of 20, rather than 50 trials, or shots, with this design and leads

to appreciable reduction in the cost of the experiments.
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TABLE 4a. - Effect of quantity of sodium chloride: 55 improvement

indexes derived from 87 Wjq values

Explosive No.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

1.21

08

07

17

96

20

30

10

Improvement index-/

(W5p)3 <w50\q and (W50>102/ (w50>15 <W50>

(W5o)0 (%о)0 °" (w5o)3 " (w5o)0 (bo\

20_

1.28

1.09

1.07

1.07

1.44

1.51

1.05

1.19

1.09

2.29

1.50

1.39

1.37

1.30

1.31

1.25

1.60

1.45

1.58

1.58

1.79

2.05

1.23

1.53

1.00

1.23

1.77

2.29

2.32

2.91 91

2.21 2.59

1.91 3.16

1.40 1.91

1.70 6.51

1.24 1.28

■ 2.74

. 5.23

4.68 7.66

3.03 4.05

1/ Subscript denotes percentage of sodium chloride in formulations,

.assumed same as

^(W50)io„„.._^ <W50)10

(*50)f
(W50),
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TABLE 4b. • Analysis of variance

Source of Sum of Degrees of Mean F F 0 05 ^0 01

variance squares freedom squares

Improvement index

(columns) 47.84 3 15.95 15.92** 2.79 4.19

Error 51.10 51 1.002 -

Total 98.94 54 ....
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TABLE 5a. • Improvement indexes showing the effect

of particle size of sodium <rhloride

Improvement i ndex

Formulati on Stemming Wjq (coarse) Wi50 (iine)

No.
W50(NoNaCl)W50(NoNaCl)

1 .

2 1.45

3 do. - 1.60

4 1.51

5 - 1.51

6 •

7 1.79

8 ■ 2.05

9 2.21

10 * 1.91

11 2.59

12 • 3.16

13 m

14 1.23

15 do. • 1.53

16 1.23

17 « 1.77

18 1.40

19 • 1.70

20 1.91

21
■ 6.51

22 2.74

23
- 5.23

24
•

25 do. 2.32

26 - 2.29

27 3.03

28
- 4.68

29 4.05 -

30 • 7.66

TABLE 5b.- Analysis of variance

Source of Sum of Degrees of Mean F F.10 F 05

variance squares freedom squares

Particle size

(columns) 7.69 1 7.69 2.99 2.93 4.26

Error 61.76 24 2.573 .

Total 69.45 25 - .
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FIGURE la
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FIGURE lb

FIGURE Ia.-DESIGN FOR A FACTORIAL EXPERIMENT

WITH TWO FACTORS A AND С

FIGURE Ib.- DESIGN FOR n RANDOMIZED UP-AND-

DOWN SEQUENCES, WHERE n EQUALS pr.
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1.000

70 7.5 8.0 8.5 90 9 5 Ю.О

NATURAL GAS (METHANE PLUS ETHANE), percent

105

FIGURE 7.-EFFECT OF NATURAL GAS CONCENTRATION ON IGNITIBILITY

OF GAS-AIR MIXTURES BY PERMISSIBLE EXPLOSIVES.

CURVE PLOTTED THROUGH MEAN VALUES OF THE RESULTS

FOR THE THREE EXPLOSIVES. MAXIMUM IGNITIBILIY IS

APPROXIMATELY 8.3 PERCENT GAS.
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GENERAL FORMULAS AND A POSITIONAL INDEX-ALGORITHM

FOR GENERATING ORTHOGONAL CONTRASTS

IN MULTI-VARIABLE STATISTICAL DESIGNS

Erwin Bis er

Systems Division, Surveillance Department

U.S. Army Signal Research and Development Laboratory,

Fort Monmouth, New Jersey

ABSTRACT. This report deals with the development and application of

general formulas and a number-positional algorithm to generate the effect

functions (effects and interactions) of the factors in orthogonal multi-

variable statistical designs. The positional indices serve to establish a

biunique correspondence between the elements of a data-matrix and their

associated coefficient-multipliers .

The formulas, symmetric functions of the contrast indices, level indices,

and factor indices, facilitate the unique identification and computation of

the effects and interactions of a desired set or subset of factors in orthogonal

designs.

The algorithm and general formulas presented in this report are ideally

suited for a computer. The factors, their levels, the associated Л-matrices

of polynomial values, and the elements of the data-matrix are uniquely re

presented by sets of positionally ordered numerical indices as subscripts

and superscripts . This situation is amply conducive to machine computations

that involve sums of products.

The application of the general formula to a 5x4x3x2 orthogonal

design is elucidated by charts and tables. The report contains a compre

hensive summary of formulas for generating the elements of an orthogonal

contrast matrix, as well as of the symbolic notation for the positional

representation of the index algorithm.

The algorithm developed leads to a significant simplification of the usual

techniques of analysis of variance.
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GLOSSARY OF TERMS AND SYMBOLS

Algorithm . A symbolic technique and/or method used in mathematical

disciplines.

Analysis of Variance. A statistical technique for estimating how much of the

total variation in a set of data can be attributed to one or more assignable

causes of variation.

Contrast . A comparison or difference between two means or groups of means

of a set of data . A contrast can be represented as a Linear combination

of these, means, with known coefficients. When the sum of these

coefficients is zero the contrast is said to be orthogonal.

Design of Experiment. An experiment which chooses the important factors,

the selection of levels, and the order in which the treatments are taken.

Effect . The effect of a factor is the change in response produced by a

change in the level of this factor. The differences between the means

of the higher and lower levels of one factor, averaged over all levels of

the other factors, constitute the effect, or more specifically, its main

effect .

Experiment . A planned set of operations (trials) which lead to a correspond

ing set of observations, these being the results of the individual trials

constituting the experiment .

Factor. Denotes any feature of the experimental conditions which may be

deliberately varied from trial to trial. It may represent, for example,

temperature, pressure, velocity of a chemical reaction, or azimuth,

elevation, slant range for obtaining target positions. Factors may be

qualitative (when the levels cannot be arranged in any order of magni

tude) or quantitative (when the levels can be arranged in some order

of magnitude) .

Factorial Experiment. One which studies the effects of a number of

diffèrent factors on some observable quantity by varying two or more

of these factors simultaneously.

Interaction. If the effect of one factor is dependent upon the level chosen

for another factor, the two factors are said to interact, or, that an inter

action is present.
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Level of a Factor. The various fixed values of a factor examined in a fact

orial experiment are known as levels . The term applies to qualitative

as well as quantitative factors. For example in a three factor experiment

there may be methods, batches and temperatures involved. There may

be two methods (two levels) Mi and M2 , four batches (four levels)

Bp B2, B3 , B^j/ and three temperatures (three levels) Tj , T2, T3 . We

designate this experiment as a 2x3x4 factorial experiment.

Replication. Repetition of the whole or part of an experiment a number of

times in order to establish the effect of a given treatment more accurately

and to provide an estimate of the variation between experimental units

receiving the same treatment.

Treatment . The set of levels of all factors used in a given trial is called

the treatment or treatment combination. The term treatment is also used

to denote the different procedures whose effects are to be measured.

il, i2> •

jj/ J2 ' •••^m) indices indicating summation

P / q , .

im jm Element in the ith row and jth column of the orthogonal polynomial

coefficient matrix for the mth factor Fm.

im = 1, 2, 3, . . . , Nm -1 yields the linear, quadratic, cubic, . . ., (Nm -1)

contrasts respectively.

Jm = 1, 2, 3, . . . ,Nm refers to the first, second, third, . . . , Nmth levels for

the factors Fi, F2, F3,..., Fm respectively.

X(m>

xm Jm

represent row vectors of the transpose matrix of the Fisher

orthogonal polynomial coefficients of factor Fm with the

restriction that i # 0 .m '

A(m) , \ (m)

represent the normalized form of A
-imJm '* xm Jm

Ci t . . .i represents the general element of the orthogonal contrast
xl 12 'm

(interaction) matrix of the factors F|, F2, . . . , F
m'



70 Design of Experiments

G. A. Grand average.

r Number of replications per cell (treatment) .

m

JFNk IV N2- ... -Nm.

k=l

S. , j General element of data- matrix for factors F-j, F?/ • • • , Fm.
J1J2* ' m
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GENERAL FORMULAS AND A POSITIONAL INDEX-ALGORITHM

FOR GENERATING ORTHOGONAL CONTRASTS

IN MULTI-VARIABLE STATISTICAL DESIGNS

1. INTRODUCTION . Orthogonal experimental designs are being used

extensively in statistical work for many reasons. The principal advantages

that accrue from using orthogonal designs are the following:

a. The main effects and interactions can be estimated independently of

each other, i.e. the estimate of any effect is unaltered by changes in one

or more of the other effects .

b. The work of computing the effects and interactions and of interpreting

the results is very much simplified.

c. Fully orthogonal designs are more efficient in that they make possible,

for a given number of trials, a more precise estimation of the effects.

The purpose of this paper is to present and elucidate the derivation of a

compact general formula for obtaining the orthogonal contrasts or comparisons

effects and interactions - of one or more factors in a multi-factor statistical

design. The levels of these factors are equally spaced; this, to be sure,

constitutes a constraint on the design, but it has the advantage of facili

tating the regression analysis of the treatment sum of squares. The analy

tical procedure makes use of matrices of orthogonal polynomial values tabu

lated in tables of orthogonal polynomials (given in Table XXIII. Statistical

Tables for Biological Agricultural and Medical Research by Fisher and Yates;

Oliver and Boyd, London.. 1949, Hafner Publishing Company, New York.)

These polynomial values, namely the values of the orthogonal poly

nomials at the equally spaced levels, serve as coefficients of the elements

of a data-matrix, i.e. the set of data arranged according to a factorial

structure (treatment combinations) . The tables of values of these ortho

gonal coefficients are of invaluable aid in simplifying the computation of the

linear, quadratic, cubic, etc., components of the factor interactions.

Thus results of the theory of orthogonal polynomials are fruitfully brought

to bear on the problem of computing orthogonal contrasts (effects and inter

actions) for designs characterized by equal spacings of the factor levels.

2 . SUMMARY. .

a . A general formula and an efficient Positional Index Algorithm are

developed for generating all the elements of an orthogonal contrast (inter

action) matrix. This formula and algorithm yield all the effect functions
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(effects and interactions) of the factors in orthogonal multifactor statistical

experiments (the levels of each factor are equally spaced). The spacings

of the levels need not be the same for all factors.

b. The algorithm is particularly suited for a computer since the indices,

both the subscripts and the superscripts have positional significance and

the formulas consist of sums of products.

c. The positional indices serve to establish a biunique correspondence

between the elements of a data-matrix and their associated coefficient-

multipliers.

d. The index algorithm and general formula facilitate the unique identi

fication and computation of the effects and interactions (contrasts) of a

desired set or subset of factors, as well as the total sum of observations

of orthogonal multifactor experiments.

e. The formula and algorithm are general in that they are not restricted

to a specific number of factors.

f. The formulas, symmetric functions of the contrast indices, level

indices, and factor indices, facilitate an expeditious selection of the

factors whose interaction is desired.

3. DISCUSSION

a. A Heuristic Approach. It is deemed advisable to introduce the

application of the theory of orthogonal contrasts by way of a simple

example.

Consider a 2 x 2 factorial experiment given below:

>><

1 2

1 SU S12

2 S21 S22

DATA- MATRIX. Table 1.
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The. matrix in Table 1 represents a data-matrix of a two factor experiment

symbolized by S. .; where the subscripts i and j refer to rows and columns

respectively. Furthermore, i refers to the levels of F,, the first factor

and j to those of F», the second factor. Thus: 1 = 1, 2; j = 1, 2. The

juxtapostion i and j in S. . has positional significance, in that the

first subscript (from left to right) refers to factor 1 (F,) and the second

refers to factor 2 (F2) • The concept of positional notation is introduced

here for the purpose of stressing its significance and use in the subsequent

development and derivation of general formulas and algorithms for ortho

gonal contrasts. S91 stands for the treatment in which Fj (factor 1) is at

the second level and F2 (factor 2) is at the first level.

Let the data or observations in the data-matrix be arranged in the follow

ing way, i.e. as a vector, or a row (or column) matrix:

S: LS11' S12' S21' S22

Now we know that the main effects and interactions can be expressed

by the following scheme:

TREATMENT COMBINATION

(1) (a) (b) (ab) DIVISOR

[A] -1 +1 -1 +1 2

И -1 -1 +1 +1 2

pug +1 -1 -1 +1 2

_: 1

TABLE 2 .
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Here A corresponds to Fj

В corresponds to F 2 .

If the treatment symbols are interpreted as:

(1) - a^bj ~ Sjj (both factors at their lowest levels)

(a) s a2bl = S21

lb) s 3lb2£ S12

(ab) h а2ь2 - S22 (both factors at their highest levels),

then:

[A] The main effect of A = (1/2) JS22 ~ S12 + s21 " slll

(3a- 1) [B] The main effect of В = (1/2) [s22 + S12 - S21 - Sn|

[AB] The AB interaction = (1/2) [S22 - S12 - S21 + S^l .

[a] can be represented as the difference or comparison of two

о..») [a], pilbk] - [ittpi] ;

Unwise for [в} [в] = р!1Щ - [iHlilL

means:

whereas: И = [М1Щ. ^ЦЩ

Let us rearrange the elements in Table 2 to correspond to the elements of

s', the transpose of S. We shall simply interchange only the 2nd and

3rd columns of the matrix in Table 2 . We obtain the lambda matrix:
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(За-3) A «M*

-1 -1 +1 +1

-1 +1 -1 +1

+1 -1 -1 +1

/К и = the element in the i-th row and j-th column; i = 1, 2 , 3; j = 1, 2, 3, 4

If we pre- multiply the column- martix

S' =

Г ~1

sll

}12

21

'22

by the matrix Л /

we obtain:

(3a-4) As'=C,

where С is a 3x1 column-matrix given by:

cl = ( "Sll - s12 + s21 + s22 )

C2 = ( "Sll+ S12 " S21 + S22 )

C3 = ( Su - S12 - S21 + S22 )

(3a- 5) [c] =

- —

Cl

c2-

c3

Each element of the C-matrix is termed a contrast or a comparison, i.e.j

a difference of means (if we take into account the appropriate divisor) . The

first element, Cj, is the main A effect; the second element, C2# the main

В effect; and the third, Co/ is the AB effect .
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As has been pointed out, these contrasts can be put on a mean basis by

introducing proper divisors.

b. Orthogonal Contrasts:

From an examination of the contrast matrix in (3a- 5) it can be seen

that each element of this matrix, the C-matrix, is a linear form of the

means of treatment combinations . Ci, for instance, is given by

(3b- 1)

"Sll "S12 + S21 +S22=*"1) SH + (_1) S12 + (+1) S21 + (+1> S22 ' • •

The coefficients of S^ (3b-l) are elements Ли (j = 1, to 4) of the

/\ -matrix in (3a-3) . These coefficients have the following property

(3b-l)

Xu* л12 + *13 + Л14= о

Л21 + *22 + *23 + *24 = °

^31 ^32 *33 + ^34 C •

This can be written as:

(3b-2) ^ ^ = 0; (i = l, 2, 3)

)=1

Thus from (3a- 3) it is clear that:

(3b-3)

-1 -1+1+1 = 0"

-1 +1-1+1=0 }

+1 -1 -1+1=0
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The coefficients of the orthogonal contrasts possess another property,

namely, that expressed by the following equation:

(J refers to columns),

where 1 and к refer to different contrasts of the set; i.e., the inner

product of any pair of rows of the coefficients in the X -matrix of an

orthogonal matrix equals to zero.

Thus from (3a- 3) it is seen that: (taking the first and third row)

(ЗЬ-5) (-1) (+1) + (-1) (-1) + (1) (-1) + (1) (1) = 0.

It is this property that enables one to estimate the effect of , say,

factor A, independently of factor B, and of the effect of the AB inter

action.

The notion of contrast can be put on a more formal basis. It is

pertinent to present some of the salient structural characteristics of

the concept of contrasts.

Contrasts are comparisons or differences between two means or groups

of means. A contrast among, parameter s S,( S,,. • .,S is a linear function

of the S, with known constant coefficients subject to the condition that

the sum of the coefficients is zero:

Cl • ^11 sl + ^12 S2 + * ' * + * In Sn

(3b- 6) n

c, -V A., s«..

j=i
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n

Cj is a contrast if \ Xij =

3=1

Two contrasts

îj = ^USl+\2S2 + •••+XinSn

C2 - ^21S1 + ^22S2 + " " * + ^2nSn

are said to be orthogonal if

(3b- 7)
Л11*21+ *12 X22 + ■*,+ Xln*2n = 0'

or more compactly written as:

n

(3b- 8)
¿^ \j ^2j -

j=l

The sums of squares (SS) associated with any contrast Cj is given by:

(3b-9) SS(CJ = (C•'/1Ы

EXAMPLE: The following simple example is given with the aim in mind

of concretizing some of the abstract notions on contrasts presented

thus far:



Design of Experiments 81

bl b2 TOTALS

al

Sn ! S12

18

Sll + S12

13 31

S21 ! S

22

s + s

a2

15 1

21 22

22 37

••-íí*
TOTALS Sll + S21 S + S

12 22

i=l j=l

= 68

28 40 S. . = 68/4 = 17

TWO-BY-TWO TABLE. Table 3

S. . is the total sum of treatment measurements: grand total .

S. . is the grand mean .

The main effect of A = (37-31)/2 = 3 .

The main effect of В = (40-2 8)/2 = 6 .

The interaction of A and В = (13 + 22 - 18 - 15)/2 = 1.

The effect of A in the presence of b, is equal to 15-13 = 2 .

The effect of A in the presence of b2 is equal to 22-18 «= 4.

Similarly, measures can be obtained for the effects of В in the presence

of a, and in the presence of a2 respectively. Note that

2 2 2

(3) +(6) + (1) =46. This the total sum of squares (TSS) given by
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the usual formula:

TSS(S..) =У (S.. - S..)

(3b-10) = (13 - 17) + (18 - 17) + (15 - 17) + (22 - 17)

= 46,

Let us apply the matrix of orthogonal coefficients given in (3a- 3) and

make use of equation (3a-4):

(3b-n) ДХ

-1 -1 +1 +1 13

-1 +1 -1 +1 18

15

+ 1 -1 -1 +1 22

= c,

(contrast n

matrix) [cj =

6

12

2

С = the A- effect total

C2 = the B- effect total

C- = the AB interaction total.

The sum of squares of the contrast elements is given by (3b-9)
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SS (с.)Мс.^ЧА^

SSÍCj) = 36/(1 +1 +1 + 1 ) =9

SS (С ) = 144/(1 +1 +1 + 1 ) = 36

ù

SS(C3) = 4/(1 +1 +1 + 1 ) = 1

i=iL 7 j-i

c. A Replicated 5x4 Design. Let us turn our attention to a two

factor experiment with F, (factor A) and F (factor B) at four and five

levels respectively. The levels of F, and F? are equally spaced.

The spacings of A and В need not be the same. The experiment is

conducted with three replications for each treatment combination:

N. (Number of levels of F,) = 4

(3c-l) N_ (Number of levels of F2) = 5

r (Number of replications) = 3 .
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The following tableau gives the data matrix of the experiment:

Ы

1

DATA MATRIX OF 5 x 4 EXPERIMENT

v. в i

Y
b2 b3 b4 b5 TOTALS

ai Sll S12 S13 S14 S15
3Zhaí

a2 S21 S22 S23 S24 S25
^S2j

=Za2

a3 S31 S32 S33 S34 S35

E3j

a4 S41 S42 S43 S44 S45

-b3

^Si2 Esi3

= Еь3

^Si4

= Eb4

^Si5

~La4

TOTALS

=Ib2 = Ib5

TABLE 4A,

S.. is the data matrix of this experiment; i = 1 to 4; j = 1 to 5

Table XXIII of The Fisher and Yates Tables give the following

orthogonal coefficient matrix (the matrix of polynomial values):

For factor A (Ni = 4) this matrix is

(3c-2) [p(A)] =

-3 + 1 -1

-1 -1 + 3

+ 1 -1 -3

+3 + 1 + 1
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The first column is associated with the linear, the second column with the

quadratic and the third column with the cubic effects respectively.

Let us form the matrix Xr I» the transpose of P(A) in (3c-2)

(3c-3)

PS]
1 = 1, 2, 3

j = 1, 2, 3, 4

Aii

л
(i)

21

(1)

A
31

A 12

(1)

A
22

(1)

A
32

(1)

13
An ^

(1)

■^23

(1)

Л
33

(1)

14

A24

Л

(1)

34

-3

+ 1

-1

-1

-1

+ 3

+ 1 +3

-1 + 1

+ 1

(1)

'1

Qi

(i)

(i) M) (i)

(i) (i) (i)

32 Q3 Q4

Jl) JD „(1)
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К'] •

Kl ■

the first row is the linear row;

the second row is the quadratic row;

the third row is the cubic row.

the И

The superscript (1) in XAj refers to the Fj, factor A.

One can obtain the contrast matrix for the A- effect s by post-multiplying

matrix for factor A, given in (3c- 3) by the column-matrix

Ü'1¿.a2

Ea4

«Г <4" <4U <l)

o<» c<» c<» c«1'

(3c-4) [ck(A)] =

(k = 1, 2, 3)

where

(3c-5) ¿-a = ¡CEs . i = 1, 2, 3, 4,
1 i)

(see Table 4A)
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(3c-6) I

^-ií^ + li^ + l^^ + lí1^

= Linear effect total of A

-U^V o№2 + о^Ъз ♦ <£>&,
C2= Qj Lai+Q2

= Quadratic effect total of A

(l)v- (Dv U>r (Dv
C3 = c\ Zai + C2 ;Ia2 + C3 La3 + c4 L

= Cubic effect total of A

(3c- 7) [Ck (A)]

(k-1, 2, 3)

Cj (A)

P2(A)

C3(A)

Note that there are three A contrasts; this number is one less than the

number of levels of A, which is four (N, = 4).

The sum of squares (SS) of the element C, (A), the k-th element of

contrast matrix of A is given by the following expression:

(CJ

(3c- 8) SS[Ck(A)]

(k= 1, 2, 3)

rNira
j=i
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where Д is given in (3c-3); and where

*■ J N2 = Number of levels of F, (factor B),

r = Number of replications of each treatment .

In this example N„ = 5; r = 3. See (3c- 1).

The total sum of squares (TSS) for factor A is given by the following

expression:

(3c-9)

(Зс-10)

TSS (A) =ífotó [С]
k^l \ / j=l

Analogously it can be shown that the contrast matrix for factor

В (-F2) is given by the following expression:

(3c- 11)

[ск(в)] =

flc=l,2,3,4)

(2) (2) (2) (2) (2)

Ll L2 L3 L4 L5

(2) (2) (2) (2) (2)

Q, Q Q Q Qvl v2 v3 v4 v5

(2) (2) (2) (2) (2)

°1 °2 °3 C4 C5

(2) (2) (2) (2) (2)

ql q2 q3 q4 q5

Гц

lb.



Design of Experiments 89

Where :

(3c- 12)

.(2) (2) (2) (2) (2)

Ll L2 3 4 5

(2) (2) J2) (2) (2)

1

^ <% Q
<%

(2) (2) (2) (2) (2)

Cl C2 C3 C4 C5

(2) (2) (2) (2) (21

lqi q2 q3 q4 q5.

N(2) .(2) v(2) (2) Л2)

ЛЦ Л 12 A13 A14 A15

4(2) 4(2) N(2) ч(2) 4(2)

25
Д21 Л 22 Л23 Л24 Л

ч(2) 4(2) ч(2) ч(2) (2)

Л31 Л32 Л33 Л 34 Л
35

\(2) v(2) v(2) ч(2) ч(2)

А 41 А42 Л43 Л44 А45 ^

b «1
i = 1, 2, 3, 4

j = 1, 2, 3, 4, 5

-2 -1 0 +1 +2

+2 -1 -2 -1 4-2

-1 +2 0 -2 +1

+1 -4 +6 -4 +1

Note there are four В contrasts; i.e., one less than the number of

levels of B(N2 = 5).

(Зс-13) [ck(B>] =-

№=1,2,3,4)

С (B)

C2(B)

C3(B)

C4(B)
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The sum of squares of the k-th contrast of В is given by:

(Зс-14) SS [ck(A)] =
(Cu)'

rN,

fC]

Where N, = the number of levels of A( = Fj

d . Derivation of Expression for Elements of Contrast Matrix (Two

Factor Experiment) .

Let us consider the data matrix S^ given in Table 4A

(i = 1 to 4; j = 1 to 5) .

The last column in this table, consisting of Laj, ¿*а9,2_а~, and of La^

can be obtained by postmultiplying the data matrix I Sjjl by the column-

matrix consisting of Г s in the following manner:

(3d-l)

^1 S12 S13 S14 S15

'21 b22 ù23 ü24 ь25

S31 S32 %3 S34 S35l

S41 S42 S43 S44 S45

4

>2j

~°3j

ES4J

In view of equations (3c-3) and (3c-4), the contrast- matrix of A

can be expressed as follows:
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x(1)"

- • *■

x(1) x(1) 1
Л11 Л12 A13 A14 Sll S12 S13 S14 S15

(3d-2)

[ck(A)] = X(1)A21
X<1J

1

(k = l, 2, 3)

A22 A23 A24 S21 S22 S23 S24 S25

1.

_Л31 A(1)
^33

x(1) S31 S32 S33 S34 ^5A32 A34

1

S41 S42 S43 S44 S45
1

Thus it is clear that postmultiplying the data matrix by the column-matrix

of l's has the effect of eliminating the В factor, since it merely adds the

data row-wise yielding the vector in the last column of Table 4; this is the

column vector on the right hand of equation (3d-l). Equation (3d-2) can

also be put in the following form:

(3d-3)

[Ck(A>] =

0c = 1, 2, 3)

LU> L(1) L(1) L(1)
Ll L2 L3 L4

(i) in (i) (и
vl v2 v3 v4

(1) (1) (1) (1)

°1 °2 °3 °4

Ь

E,0 LSn 0 0

2J

о £s0. 0
3)

0 LS

4

In order to obtain the contrast matrix for factor В (=F2), the data matrix,

ÍS^l is premultiplied by the row- matrix of l's; the resulting matrix is

premultiplied by the matrix of orthogonal coefficients corresponding to the
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*

number of levels of factor B(=F2). Thus analogously to (3d-2) the conti

matrix for factor В is given by the following expression (N2 = 5):

(3d-4)

lcM =

(k = l, 2,

3, 4)

.(2) (2) (2) (2) (2)

Ll L2 L3 L4 L5

(2) (2) (2) (2) (2)

ЧЧ Q3 Q4 Q5

(2) (2) (2) (2) (2)

Cl C2 C3 C4 C5

(2) (2) (2) (2) (2)
a a a a aЧ1 Ч2 Ч3 Ч4 45

I n 3 hi S12 Ъ ^4 ^5^

S21 S22 ^23 S24 S25

S31 S32 %3 %4 %5

S S s s s „
41. 42 43 44 43

V

where

(3d-5) M

к = 1 to 4 (=N2-1)

cl (B)

c2 (B)

C3 (B)

C4 (B)

The contrast matrix for factor В can be written in a form analogous to (3d-3):

Actually, the transpose of the resulting matrix product is premultiplied

by the coefficient matrix; analogously for the product of the two right extreme

matrices in equation (3d- 6).
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T7

" (2) (2) (2) (2) (2)

Ll L2 L3 L4 L5 Ьнl.J ч
i

(3d- 6)

0 0 0 0

(2) (2) (2) (2) (2)

us 0 0 0
i2[ск(в)] =

Q Q Q Q Q
1 2 3 4 5

0

0(к = 1,2,3,4)
(2) (2) (2) (2) (2)

С С С С С o Zs „ 0 0
i31 2 3 4 5

(2) (2) (2) (2) (2)

o o Zs., 0Л Ч2 S q4 q5. 0
i4

o o o Zs

!

0

V
i5

Thus far the presentation dealt with the contrast matrices for the A and

В factors singly, i.e., no interaction terms were involved. What is

needed is to develop an expression for obtaining the general element of the

contrast matrix for the AB interaction, or the interaction contrast matrix.

Let the data matrix of the experiment, denoted by [SjJ , be premultiplied

by the matrix of orthogonal coefficients for factor A, namely, the) Лч^

matrix given in (3c-3); and postmultiplied by the transpose of the matrix of

orthogonal coefficient s for 'factor B',' namely, the [ ХтЛ matrix given in (3c- 12):

(3d- 7)

(1) (1) (1) (1)

Ll L2 L3 L4

(1) (1) (1) (1)

Qi Q2 Ъ Q4

cl

(1) Jl) Jl) Jl)

^1 ^2 ^3 ^4 ^5

%1 ^22 ^3 ^4 %5

%1 ^2 ^3 ^4 ^5

s41 s42 s43 s44 s45_

(2) (2) (2) (2)

'I
Cl

1

(2) (2) (2) (2)

L2 Q2 C2 42

(2) (2) (2) (2)

Ъ C3 4,

(2) (2) (2) (2)

Q4 q4

(2) (2) (2) (2)

L5 Q5 C5 q5_j.
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This can be seen to equal to:

i¿X i¿x *Аз

Dft, Ч\2 Ч\

у (i)e V tDe уЖ
Lcisn ^з12 LciSl3

Nj = 4

where £== J]

i = 1

(3d- 8)

U\. El(1)s
i 14 i i5

&¿V US
i i4 i i5

ECls14 ^C.s.,

(2) (2) (2) (2)

Ll S Cl ql

(2) (2) (2) (2)

L О С q2 w2 2 42

(2) (2) (2) (2)

°3 4.

(2) (2) (2) (2)

(2) (2) (2) (2)

L5 95 C5 q5

matrix .

= С, ( AB )

к

(к = 1,2,--М2)

. This is the AB interaction contrast
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Equation (3d- 8) can be seen to be equivalent to the following expression:

(3d-9)

Nj,!^ Ni'N2 N!'N2 ^i'^h

Y&x [^ ¿j№, B'4\
i/j=l i,j=l i,j=l i,j=l

N1#N2 N^N2 N¡,N2 N1'N2

\ (Щ2) Vil) (2) V^d) (2) V^ (1) (2)
¿Ji h sij ¿Ji Q) sij ¿jiC] Sij ¿j3' Q* s^

U=l i/j=l i,j=l i,j=l

where

Ni,N2 N1#N2 Nj,N2 NX/N2

S"c(1>L(2,S Vr(1,n(2)q Y^(V2,4 V^(1) (2)Q/^С1 Lj Sij ¿^i Oj Sij ¿^i Cj 8Ч ^i qj Sij

LJ=1 i/j=i i,j=l ij=l

Nj,N2 Nj N2

ij=l i=l j=l
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In view of (3c-3), equation (3d-9) can be represented by the following expression:

(3d-10)

Pк (AB)] =

(к = 1,-2... ••• 12)

NlfN2 Nl/N2

Ali Alj Sij

ij=l

NpN2

I'
ij-l

NlfN2 NpN2

(21

№,
À{l)X{2)s
Ali A3jSij

Ni,N2

i,j=l

NpN2

i(1);(2)4

U=l

NPN2

A2iAljSij A9Í A9,s..
2i 2j ij

ij=l

NrN2

ij=l

NrN2

\ (1) ^(2)o
A2iA3jSiJ

i,j=l

NrN2

i,j=l

A2iA4jSij

NrN2

]>}»„ I«s« £«,4, £а»Д»
i, j=l i,j=l i,j=l i,j=l

where

NrN2 N N2

4 T "I

-I £ l

i,j=l i=l j=l
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i ■ 1 to Ni (=4 in this experiment)

j ■ 1 to N2 (=5 in this experiment) ,

where [Д ; j, Л # [À I are the linear, quadratic, and cubic row-

matrices associated with F,, which is factor A. Note that the super

script "(1)" refers to factor designated by 1, namely Fj (5A). Also

note that the subscripts "1", "2" and "3" refer to the linear, quadratic,

and cubic row-vectors of the matrix of orthogonal coefficients. Pari

passu, similar descriptions hold for the row-vectors associated with

factor designated by 2, namely F2:

F2(£B): BH-BR

The equation for the general element of the interaction matrix, CDa /

namely the element in the p-th row and q-th column of the interaction

matrix, is as follows:

N1N2

k=l j=l

p = 1 to Nj - 1 (=3 in this experiment)

q = 1 to N2 - 1 (=4 in this experiment)

where Nj - the number of levels of Fj (iA),

N2= the number of levels of F2 (s B) .



98 Design of Experiments

The AB interaction orthogonal contrast matrix isa 3x4 matrix given as

follows:

(3d-12)

Ы

с с с с
11 12 13 14

С21 С22 С23 С24

С31 С32 С33 С34

This notational matrix can be represented in a more familiar symbolism:

(3d-13)

;cpJ

Ат- Вт-

Lin Lin Lin Quad Lin QuartLin Cubic

QuadTLin AQuaa Quad QuadCubic Quad Quart

AB AB AB AB

_ Cubic Lin Cubic Quad Cubic Cubic Cubic Quart

It is noteworthy to point to the fruitful significance of the positional

notation used in equation (3d- 11):

(1) There are only two indices (subscripts) in the general symbol С

This indicates there are only two factors involved, namely Fi and F . Thus

the number of subscripts in the general symbol designating the general

element of the contrast matrix equals to the number of factors involved in

the experiment .

(2) The first subscript (from left to right) of the general symbol С

pq

is also the first subscript of the orthogonal coefficients associated with

the first factor, F,.

(3) The second subscript of the general element is the first subscript

of the orthogonal coefficients associated with the second factor (s Y ).
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and one and only one element of A . coefficients. Thus in computing C,

(4) The second subscripts of Д, . and A , orthogonal coefficients are

also the subscripts of the elements of the data matrix ( S, . in equation (3d- 11))

(5) For any set of values of the doublet (p, q) each element of the data-

matrix is uniquely associated with one and only one element of the X' '

pk

the element S., is associated uniquely with A and with A,,,. This

establishes the biunique mapping of the indices of the orthogonal coefficients

and those of the elements of the data matrix, for any set of values of the

indices of the elements of the contrast matrix. The subscripts of the general

term of the contrast matrix identify the sources (factors in their proper

positions) of information .

Let us now turn to the problem of utilizing this compact symbolism to

obtain the A and В effects. This entails a slight innovation in equation

(3d-ll). We introduce the symbols № and l'« where

Ok Oj

(3d-14)

A(g¿ = 1 for k = l, 1,'". Nj

A(02? = 1 for j = l, 2, •••, N2

Thus the A and В effects (totals) are given by the two following express

ions respectively:

(3d-15)

üi

■ E(A- effect) » ¿_Ak A(2)<= CP0

k = l j=l

Л01"
5ki

Nl N2

■ E V i(1)
3kj

k=l j=l
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(3d-16) N, N

1 2

(B-effect) = C0q = ^ Y^Xioi Aq;

k=l j=l

.4.J kj

Nl N2

(2)s
qj kj

k = l Jfcl

The total of all observations in the experiment is given by:

(3d-17) Nj N2

с = Y Yx{l) A(2)s
00 Z_, L rQk Aojs>

'kj

k=l j=l

N, N0
i ¿

I I-
k=l j=l
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Numerical Example

Consider the following experiment, exhibited in the following table:

|S, .1 : Data Matrix of 4 x 3 Experiment

1 ,

bl b2 b3
k = lto4 TOTALS

j = lto3

Sll S12 S13

Еах = 270al 50 90 130

|

S21 S22 S23

Ea2 = 220a2 30 80 no

s31 S32 S33

Za3 = 310аз 70 90 150

S

41

S

42

S

43

Za4 = 200a4 40 70 90

Eb^ 19 0 Zb2 = 330 Eb3 = 480

^ак = /Lbj

TOTALS

= ZEskj

= 1,000

TABLE 4B ,
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(3d-18) A(1)'

p = 1 to 3

к = 1 to 4

' ч (2)'(3d- 19)

q = 1, 2; j = 1, 2, 3

(3d-20)

■*

-3 -1 +1 +3

+1 -1 -1 +1

-1 +3 -3 +1

-1 0 +1

+1 -2 +1

N1 = 4

N2 =3

The effects (total) of A are given by:

4 3

(3d-21)
(1) Л2)

P0

k = l j = l

p- 1, 2, 3 (=N1- 1)

2_^ 2_/^pk ^ oj Skj

The Linear effect (total) of A is given by:

(3d-22)

4 3

'10

■ ID(1)sIk bkj

k = l J = l
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(3d-23)

>(D (1), \U),
cio = ^nsn+ An s12 + Ans

13

+ A(iV АЩв22+ ЛЩв23

+ A13 s3i + A¿ s32 + A13 s33

(1)

+ Л14&41 A14 S42 + Л14 S43

The expression (3d-23) is equivalent to:

Л(1).„ .. . .. ч(1.)

(3d-24)

11 (S11 + S12 + S13) + A12(S21+,S22*.S23)

The latter in turn is equivalent to the matrix product:

(3d-25)

h(D 1(D 1(D 1(1)1 Г у
LA11 A12 A13 A14J Lal

Za2

la.

(For La1( Ea2- etc. see TABLE 5), ц 31

C10 = *~3* (270) + ^ ^220^ +1(31°) + 3(200) = -120.

The Linear effect of A = -12 0/12 = -10 (per treatment)
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Likewise, C20 , the quadratic effect (total) of A equals to the matrix

product:

(3d-26)

C20" 1(1) ;(1) д(1) 1(1)A21 A22 A23 A24

= (+1) (270) + (-1) (220) + (-1) (310)

+ (+1) (200) = -60.

The quadratic effect of A = -60/12 = _^5_ (per treatment)

(The number of observations is twelve) .

4 3 / i \

The cubic effect (total) of A: Coq (= > j A3k ^ki^ can ^e rePresented by:

m й

с = Г)(1) A(1) Л(1) )(i;
°30 LA31 A32 A33 A3,

(3d -2 7)

-a.

Thus, C30 / the cubic effect total of factor A, equals (-1) (270) +3(220)

-3 (310) +1 (200) = -340.

The cubic effect of A = -340/12

~-28.34 (per treatment)
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U(ik] - [-3 -1 +1 +3J

(3d-28.) [Л^] = f+l -1 -1 +l]

Ю - [-1 +3 -3 +D -

Similar procedures can be employed to obtain the linear and quadratic

components of the B- effect . Now ¿\b. replaces the Уа, in expressions
\{2) * U l 1(1)

(3d-2 5) to (3d-2 8); and the A -matrix of (3d- 19) replaces the A -matrix

in these expressions. Expression (3d-16) constitutes a more general

formula for obtaining the B- effect.

Let us now compute some elements of the AB interaction contrast matrix:

The expression for С„2 is given below

Np4 N2=3

(3d-29) C22feAQBQ)=\T ^>(2¿ >(2,}8к, ,

k = l j = l

where [Л2к] = [+i -1 -1 +ll; к = 1 to 4

and [A2 . ] = [+1 -2 +l] ; j = 1 to 3

(3d-30) c22 = A21A21sn+ A21A22 s12 + A 21 A23 S

+ )(D \(2) 0 )(1) )(2) о , л(1) Д(2) с
+ A22A21s21+ A22A22S22+ A22A23s

+ )(1) 1(2)ч + 1(1) A(2) s + }(1) A(2)sA23A21S31+ A23A22b32+ A23A23£>

+ )(1) \{2K + :(1) X{2) 4 + )(1) A<2) «3A24A21S41+ A24A22b42+ A24A23S

13

23

33
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(+1) (+1) 50 + (+1) (-2) 90 + (+1) (+1) 130 = 0 ^

+ (-1) (+1) 30 + (-1) (-2) 80 + (-1) (+1) 110 = +20

+ (-1) (+1) 70 + (-1) (-2) 90 + (-1) (+1) 150 = -40

+ (+1) (+1) 40 + (+1) (-2) 70 + ( 1) (+1). 90 = -10

(3d- 31)

c22~ ' = -30.

What is done in (3d- 30) and (3d^3D is to superimpose on the data matrix,

S, ,, the matrix formed from Nl N2=3 namely, the matrix:

kj

/L /L ^ 2k ^2j

k='l j = l

Д(1) Д(2) iDji
Л21 А21 Л21 Л

(2)

23

1(1) 1(2)

Л24Л21 '^24Л23

The superimposition is unique in that every element S, . is multiplied by

l(D l(2) ]
the product A2k. A 2 . with due regard to the positional sigificance of the

indices. This is clearly seen in (3d-30).

(3d-32) N,= 4 N = 3

1 2

C10(=-ALin> »

I)
A(1) X{2] чAlkA0JSkj

k=l j=l

where UVkJ'r3 _1 +1 +3J; ^0j = 1' fora11 j
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(3d-33)

'10.

(-3) 50 + (-3) 90 + (-3) 130 = -810

(-1) 30 + (-1) 80 + (-1) 110 = -220

(+1) 70 + (1) 90 + (1) 150 - +310

(+3) 40 +(3) 70 + (3) 90 - 600

о - -_Ш>.

We can include the total sum of observations (C ) , the A and В

effects totals by having p, and q, in С , assume the values 0;

pq

p= 0, 1, 2, 3; q- 0, 1, 2.

(3d-34)
L pqJ

00

10

20

30

01

11

'21

'31

'02

12

'22

32

(3d-35) [c 1-
L pqJ

1,000 +290 +10

-120 -90 +30

-60

-340

-30 -30

-30 -190

It is to be noted that Cnn# the total sum, does not represent a contrast.
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e. The Extension of Formula and Algorithm to Three-, and Four-Factor

Orthogonal Designs.

The Case of Three Factors: In the case of three factors A (sF ), В (bF ),

1 2

and С ^Fg), the elements of the interaction contrast matrix can be generated

by the following expression (It is immaterial which factors are first, second,

third, etc.):

k = l j=l *=1

From the positional notation, it is evident that p, q, r refer to F., F , F

respectively. Note the symmetrical arrangement of the indices p, q, r (in

the general element of the contrast matrix) and that of the indices k, j, Л

(the indices of the elements of the data matrix).

If

(3e-2) N = 4, N = 3, N =2

1 2 3

p, q, r take one of the following values:

P = (l, 2, 3}

(3e-3) q = (l, 2}

r =0)

The interaction matrix (in groups of three factor effects) consists of

six elements, and can be represented as follows:
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L pqrj

(3e-4)

CU1 C121

C211 C221

С

311

С

321

A particular element of this matrix, for instance C,_, («А В С ) can be

121 L Q L

computed by the following expression (using (3e-l)):

(3e-5)
'121

4 3 2

к - 1 i = 1 T=\

) Д(2) д(3)lkA2jAlAj^ .

It is evident from (3e-4) that each element of the data matrix, S , is

multiplied by its uniquely associated multiplier consisting of the product

of three unique elements from the orthogonal polynomial matrices of the

factors A, B, and С respectively. Thus for each element of the contrast

matrix there is a biunique one-to-one correspondence between a set of

multipliers and the elements of the data -matrix.

In computing, for example, C121 , the element_çf the data -matrix, saye element oi

(1) ft) ft)
S432 , is multiplied by the mutiplier, A 14 ^23 12' tne element S^2\ by

A13 A22 All' etc*

Note that the indices 1, 2, 1 of the contrast element С.?. appear

sequentially (in accordance with the positional notation) as the first indices

)(1) >,(2) )(3)

of Л , Л , Л respectively (as subscripts).

The computational scheme for obtaining the contrast С

condition (3e-2) can be displayed as follows:

121
under the
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(3e-6)

C121 =

p) p) }(3)s +)(D p) )(3)s +... + l(D i(2) p) s
л11 Л21 Л11 111 Л11 A21A12 112 А11 А23 А12

.)(1) Д(2) p)s . р) р) р) s + •
Л12 А21 А11 211 Ai2 А21 Л12 212

Ш) 1(2) ИЗ) s
А12 А23А12 232

+ 1(1) р) р) sА13 л23 А12 332
+)(1) }(2) i|(3)s р) р) р) s + .
А13А21А11 311 А13 А21 А12 312

+ )(1) )(2) р) о . р) р) р) с +-... }(0 ï(2) j|(3) «
Л14 А21л11 411 Л14 А21Л12 412 * Л 14 А23 Л 12 S

Let S|.y consist of the following data:

(3e-7)

j=l 3

/=1,2 I

l\J -

234567

123556

344578

1 3 3 4 4 5

(3e-8)

NA= Nl

NB= N2

4

3

N = N =2

С 3

The orthogonal polynomial matrices for the factors A , В , and С are

given as follows:
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(3e-9)

[A(A)]

(N { =4)

(3e-10)

(3e-ll)

~a(1) A(1)
1< 1)

A(1)"A12
3

A14

A(1) A(1) A(1)=
A21 A22 A23 Л24

À{1)Л31
AW

A(1) A(1)A34
32

лзз

\(1)

-3 -1 +1 +3

=

+1 -1 -1

-1 +3 -3

+1

+1

И = [«-il«]

И = [-1 « -3 «]

(3e-12

[i2) (»]

k = l, 2, 3, 4

"(2) л(2) ч(2)

Ац Ai2 Ai-
13

д(2) л(2) >(2)

,A21 A22 A23_

-1 0 +1

+1 -2 +1
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where

(3e-13)

(3e-14)

(3e-15)

Й- If - «3

1 = 1. 2, 3

ИJ - [к «j . [.. «]

mu

te]- t» «}

¿ = 1, 2.

То compute the contrast С (г А В С ) the array of the product of

121 L Q L

ltipliers (A lk, À: ., A i 0 is given as follows:

(3e-16)

3-3-663-3

1-1-221-1

-112-2-11

-336-6-33
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They represent the values of the corresponding elements of the array:

1(1) )(2) )(3) 4(1) ч(2) л(3) ч(1) ч(2) U3]

Л11 Л21Л11 Л11 Л21 Л12" ' 'А11 Л23Л12

(Зе-17)

l(l) ч(2) л(3) 4.(1) ч(2) л(3) П) 4(2) 4.(3)чш иг; -аз; ли; \UJ )4¿j \u; 4u; 4Ы;

A12 A21 All A12 A21 A12 ' ' ' 'A12 A23A12

ч(11 >(2) ч(3) ч(1) n(2) ч(3) s(1) ч(2) 4(3)

A13 A21 Л11 A13 A21 A12 ' ' ' *A13 A23 A12

ч(1) 4(2) 4(3) 4(1) 4(2) ч(3) <l) 4(2) 4l

A14 A21 All A14 A21 A12 ' ' * *A14 A23A

(3)

12

Upon multiplying the values in (3e-16) by their uniquely corresponding

elements of the data matrix of (3e-7) and adding we obtain:

f

(3e-18)

6 -9 -24 +30 +18 -21 =

1 -2 -6 +10 +5 -6

-3 +4 +8 -10 -7 +8

-3 +9 +18 -24 -12+ 15 =

0

2

0

_3_

5

(3e-19) C121 = UALBQCL) = 5

This method enables one to superimpose uniquely the matrix of products

of orthogonal polynomial coefficients, as given in (3e-17) in this example,

on the data-matrix of (3e-7) with the object of computing the elements of

the contrast matrix.

Likewise all the elements of the contrast matrix given in (3e-4) can be

computed in this manner .
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If the values of p, q, r in (3e-3) are extended to include zero,

(3e-20) P=(0, 1, 2, 3}; q=(o, 1, 2),. r ={0, l}

one obtains, in addition to three factor effects, two factor effects, linear

effects (main effects totals), and the sum of the total number of observa

tions. The latter is not a contrast . The matrix is now given by the fol

lowing expression:

4 3 2

»-« <w = ¿^¿C«%/
,(D ï(2) i(3)

к = 1 j=l -^=1

(Nj =4, N2 = 3, N3 = 2)

where

(3e-22) À Qk = 1/ A0j = 1, A0¿

for all values of к , j , Л •

The contrast matrix of the elements given in (3e-21), subject to

the conditions of (3e-20), is given as follows:
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(Зе-23)

L pqrj

cooo cooi coio con C020 C021

C100 C101 C110 Clll C120 C121

С С С С С С
200 201 210 211 220 221

_С300 °301 °310 С311 С320 C32U

There are twenty four (4x3x2) elements of which Cnnf), the total sum

of observations, is not a contrast.

The terms, two indices of which are equal to zero, are linear effects

(totals); the terms one index of which is zero constitute the two-factor

effects (totals); the terms all three indices of which are not zero are the

three-factor effects (totals). There is only one element (not a contrast)

all the indices of which are equal to zero; this is the total sum of all the

observations (Cq0Q).

The Case of Four Factors: For a design of four factors, with the levels

of each factor equally spaced (the spacings of one factor need not be the

same as those of the levels of another) the expression of the general

element is given by:

(3e-24)

С
pqrs

Nl N2 N_l i

}(1) Л2) л(3) Д(4) Q

Лрк ^qi ЛгУ Asm bki
kj/m

k = l j = l ¿=1 m = l

P = 0, 1, •••, Nx - 1

(3e-25)

q = 0, 1,

r = 0, 1,

s = 0, 1,

•\N2-1

••,N3-1

•'< N4-l
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where:

N, = number of levels of F» (=A)

(3e-26)

N = number of levels of F» (=B)

2 ¿

N = number of levels of F~ (гС)

N = number of levels of F . (sD)
4 4

The contrast for any two-factor interaction, say, the AC interaction can

be obtained by means of the following expression:

(3e-27) Nj N2 N3 N4

Cr

•J L j

pOrO / / / / Pk OJ r/ Om kj^m
I1» ñ A<3' A»> st

k = l J=T T^l m = l

Since A(o- = A(o}m-l. Cp0r0 becomes

(3e-28) N, N2 N3 N4

ZZZZ^u)A-(i,s^CpOrO / / / / /Vpk **' /Vr/'" "kj/m

k = l j = l лГ=1 m = l

Because of the positional notation of the indices, the zero's in С „ лr pOrO

indicate the elimination as regards interaction effects of the factors with

corresponding positional places, namely, in this case F„ (= B) and

F4 (SD). This is indicated in the righthand member of (3e-28) by

equating to one (1), the polynomial coefficients corresponding to these

factors (F2 and Fj, namely AQj and A0m. The appearance of a
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zero in a given position of the indices of the general term for the contrast

constitutes a rule for filling in the number 1 for the value of the position-

ally corresponding polynomial coefficient.

As an example, in computing Cin _ (sA С ), the element of the data-

matrix, say, S (N *■ 3; N ^ 2; N ■» 4; N » 5) is multiplied by the

3245 12 3 4

product An (1) K-\ (1); and the element S is multiplied by

Aio С 1 Э A2o (1). A similar procedure is used with regards to the

remaining elements of the data-matrix. Note that the indices ¿ and 2,

occurring in the first and third places (from left to right) in Cin„n corres-

)(1) )(3)

pond to their occurrence in the first position indices of Л and A

namely, the orthogonal polynomial coefficients corresponding to F, (=A)

and F (вС) respectively. Likewise, С is given by:

3 OqrO

(3e-29) Nj N2 N3 N4

p) ч(2) д(3) j>(4)

C0qr0 = /_/_,/_, ZL qj T* /^)Ш kj^

к = 1 j = 1 ^=1 m = 1

«Wo ■)'))> '»^^"^

k = l j = l S=\ m = l

This scheme can readily be extended to any finite number of factors, as is

shown in the next section.
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f. A Generalized Formula and Algorithm for Orthogonal Contrasts

The generalization of the formulas given in the preceding section can be

carried out in the following manner:

Instead of the symbols p, q, r, s, t ••*, as subscripts in the

expression for the general term for the orthogonal contrasts involving _m_

factors, we shall use the symbols: i,, i_ , i , ,,,im« ii refers to F,;

i„ to factor F2; and i to F (the m-th factor) . The contrast is

written as follows:

°Wt -S»

The symbols j,, j , j * * * J will be used as subscripts for identifying
12 3 m

the elements of the data-matrix. The elements of the data-matrix will be

symbolized by: Sj j j ... j- , where j, refers to the number of levels of

12 3 m

F., j to the number of levels of F2, . .;, and jm refers to the number of

levels of F , the m-th factor . (All levels are equally spaced!.)

The doublets ij,; i„j9; i j.; •••, i j will be used as subscript

indices of the orthogonal polynomial matrices (the A's) corresponding to

F, ; F_ ; F„ ; ' * ' ; F . To avoid confusion we shall adopt the superscript
i ¿ ó m

symbols (1); (2); (3); ••• ; (m) for the A's

Id) . )(2) )(3) . . )(m)

vr лМо; Мз' ",/Aa
1 1 2 2 3 J mm

Note that the first subscript for the /Vs is taken from the set of subscripts

ii ](Kk$m) of contrast, C. .

1 2 Am
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The second subscript for the л s is taken from the set of subscripts

ÍU (к<кш) of the data matrix, S, J2J3*" j .

The following represents the formulation, explanation, and definition

of the expressions and algorithm for generating orthogonal contrasts

(note that the total sum of observations, С , is not a contrast) .

LOGIC, SYMBOLIC NOTATION, EXPRESSIONS

AND FORMULAS FOR ORTHOGONAL CONTRASTS
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ELEMENT OF DATA-MATRIX FOR FACTORS F„ F0,..., Fm .

SUBSCRIPTS: j„ L,. . ., J|t i2>- • •> jm

j| sl»¿i" •* N|

Jp e 1» ¿* • • •> No

im-'.2' -Nm

factors: F,, F2, ..., Fm

LEVELS OF FACTORS:

N, s NUMBER OF LEVELS OF

*,

N2e " " » и

V

Nm- " и и Fm

VALUES OF SUBSCRIPTS:

i,-0, l,...,Nrl 1,-1.2, . . .|N|

i2eO, 1, .. .,N2-I )2"l,2,.• • »$ l»o

im«0,l, ...,Nm-l Jm-l,2,...,Nm
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GENERAL ELEMENT OF ORTHOGONAL CONTRAST

MATRIX FOR FACTORS F, F0,. . .,F .
12 m

Nl N2 Nm (I) (2) (m)

^U-.im~^ " '|i| У?" Um Mr-L
12 m ¡=i ¡-i i ai i» z¿ mm l z m

I 2 m

NN N

_ TT'-'^ (I) (2) (m)

- 2- . A-, -, ai i * • • Ai i Oii »

J.L...J vi 2J2 Win \h' "'m

i z m

WHERE

N| N2 Nm у^-.И,,

2 2 s => :
,«| ,«| ,=| J, i2...)m

Jl J2 Jm

NOTE: lmimIS THE ELEMENT IN THE Ith ROW AND Jth COLUMN OF

THE ORTHOGONAL COEFFICIENT MATRIX FOR THE m

FACTOR Fm.

th
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FORMULAS FOR GENERATING THE ELEMENTS OF AN

ORTHOGONAL POLYNOMIAL CONTRAST MATRIX

(1) C.
i, i9 . . .1

1 2 m

Nl N2 Nm

=11-1 f.x{
<2) Л(т) s

!1=И2 = 1 V

N N.... N
i ¿ m

,,, -J, "•' 11 J.J, .-.J

11 22 mml2 m

AD _ (2) (m)

A, . Л. .... A, s< i

ll z ¿ m m 1 ¿ m

^"Л

where we have written

1 ¿ m 1 2 m

i i-i *i :
12m 12 m

The single summation symbol will be employed in the formulas which follow.
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(2) Values of the Subscripts

ij = 0, 1 Nj - l JL = 1, . . . , Nj

i2 = 0, 1, ..., N2 - 1 J2 = 1, . . . , N2

i = 0, 1, 2 N - 1
m m

j = 1 N
m m

(3) Levels of the Factor F
m

N = number of levels of F

N = number of levels of F
ù ¿à

N = number of levels of F
m m

(4) Factors. F, , F„ , . . . , F12 m

(5) С

1 2 m

represents the general element of the orthogonal

contrast (interaction) matrix of the factors F.,

F F1 ri I • • • I * •

¿ m

(6) Index Notation

i_J_ refers to the element in the i— row and 1 column of the
m m re

orthogonal polynomial coefficient matrix for the m— factor F
m*
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i = 1. 2. 3. ..., N - 1 yields the linear, quadratic, cubic,
mm

(N - 1) contrasts respectively.
m

i = 1, 2, 3, ..., N refers to the first, second, third, ..., N thJm ' m m*-

levels for the factors F. , F« , F« , . . . # F respectively.

(m)

A. represent row vectors of the transpose matrix of the Fisher

1m'1 m orthogonal polynomial coefficients of factor F with the

restriction that i/o. For example, let us write down the
m

(2)

matrix for Д. . :

V2

J\ represent the normalized form of Л. .
i i l J

nrm m m

A

(2)

У2

.(2) .(2) Л2) .(2)

\ К Аз \*

А(2) Л(2) ДО) Д(2)

21 22 23 24

д(2) д(2, Д<2) Д(2,
31 ' 32 33 34

Linear contrast coefficients

Quadratic contrast coefficients

Cubic contrasts coefficients

where

J2 = 1. 2, 3, 4

i = 1, 2, 3,

2
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Note that the first row of the matrix gives the linear contrast coefficients,

the second row gives the quadratic contrast coefficients, .and the third row

gives the cubic contrast coefficients. Note also the \ - matrix refers

to factor F possessing 4 levels. To summarize, A1 . represents a

2 l2h

3x4 matrix for factor F9 of 4 levels with 3 contrasts: linear, quadratic,

cubic. The extension to Ai . is obvious.

m m

, . "x (m)
(7) The Special Case An, . Define

m

лы
= 1 for all m's and 1 's . This symbol is used in a two-fold

Oj m

m way: (a) to obtain the total sum of the observations; (b)

to obtain interactions of lower than the highest order.

It should be noted that the row vector consisting of Г s is not

orthogonal to the row vectors of the orthogonal coefficient

Г 4(m) -i r .(m) i

matrix A. , where i f 0 . The row vector Д.
1 i j J m i- oj J
mm Jm

will not be subject to normalization.

(8) Interaction Contrasts of Order Less Than the Highest

a. C,
ix 0i3 0 0i6 0 . . .0

N1# N2 N
m

.(1) . (2) (3) (4) (5) (6) (7) (m)

X. . лп. Л. . Л .. Л .. Л . . ЛЛ.,...ЛЛ. s ,
11J1 °j2 ^3 °j4 0]5 l6j6 °J7 °jm JlVJn

1 2 m

N. , N N

12 m
7

ZU'3' A,'6! S , Since Л<к, = Ног 1*1*,

J. i. ... i
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b. Main Effects Total of the K— Factor Fk

С

0 0 . . Л. 0 ... 0

к

N. , N N

i ¿ m

= \ (1) (2) (к) (кч-1) (m)

JlJî-im AoilAoi2'"\'kAo)k+Y'X(»mS¡l¡2"4

m

N, , N2 , . . . , N
m

(l) (M

_Д S , since \ = lforl£k^m

\lJ2 ••• ]m Vk Va '•• jk 0jk

(9) The Special Case Слг. n. Total Sum of Observations S

00 . . . 0 j,L...j

12 m

C00.. .0

Nl' N2 Nm

i ¿ m

(1) (2) (m)

X
A • • . A s

üjl °j2 0jm J2 J2. - -' jm

Nj, N2 , . ..,N

m

i ¿ m

Si i i ' SinCe An< , , i-lu^m
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= T (Total sum of observations with one unit per cell) .

Now assume there are r replications per cell (treatment) . Then

r

С n - rT = ) T, = T'
00. ..0 / к

k = l

rT
The G. A. (Grand Average) ■

rNlV..Nm rfK

k=l

°00...0

Without replicates, G. A. =

m

k = l к

m _

TTM

k = l
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(10) Sum of Squares (SS) of С

i

Interaction of Factors F , F ,1 2

nV "Sn

with Replication.

•'Fn/

m

SS (С. )

Mo • • «irr,
i ¿ m

Nj, N2„ . .,N
m

—r íl)

Vi

-> t=i

V2 m

Ai j
«

(m)

míHL

Im2 Im Bt\f
7Z\ Vi J H, 2J2 V*^! m'm

Jl-1 J2 Jm

J1J2-
'm

N1,N2,.../N

m

Ji Jo • • • J

12 m

т2

(1) (2)

Л - Л

Vi У2

(m)

Л s. . .
"i j JlJ2",Jm

m m

Nj, N2,. . VN
m
-r m

Л

L J1J2'" Jm

k = l

(k) S. .

Vk jl h'" jm

It should be pointed out that the orthogonal contrast coeffieients Д.

(k)

fcvith the restriction that i, ^ 0 ) are normalized as follows:

Vk
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ЛГ, -

Л1
0=)

X:
00

(11) Special Case. Sum of Squares (SS) of С. , with

1 <i

Replication^nteraction of First and Third Factors F and F

ss<ci1Oi3o...o»

Nft

m

rïï N,

k=l

Nl 'N2'" '/Nm

4

л<
1)

N,

/ У IK)
7—л ! *■ 1 =1
Jj9---J Jl

i ¿ m

л(3)(2) 'Vl

'Л / N

2 Oj

Уз
.(4) (m)

A . . .Д. s

D?J

2 01 °jm jlj2

j3=1

Уз

m

N1N3

m

rÏÏN,

k=l

Nj, N2,. . .,1^
m

К
(1)

1J1

N,

I№
л:'

JrJ2' ••V]m

Av;(3)

iiia.
s.

N, 1 ¿ m

]3 = 1
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since

к

N,,N2, . . VN

SS(C
i Oi 0

1 3

ji h "

(m)

Oj
As pointed out in Paragraph 7, it should be observed that the Л

•\ (m) , . , ,

are not normalized. When i ф 0, the Л. , are normalized thus:

m Vm

m

m

Л
(m)

i )

m m

ï(m)

Al j

m m

N
m

I [*" ]L—i L m-^m-1

j =1

m

g. The Application of the Algorithm to a 5x4 x 3_x 2 Design. What

follows is the application of the general formulas and the index-positional

algorithm to the 5x4x3x2 design given in the data-matrix shown in

Chart VIII. There are 12 0 (5x4x3x2) treatments (without replications)

Chart VI exhibits the index-presentation of this data-matrix.

The matrices (of orthogonal polynomial values) associated with each

factor are given in Chart I.

The orthogonal coefficient-multipliers corresponding to each element

of the data- matrix are computed for the effect total of the contrast
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С . (=A BCD). These coefficients are given in Chart II. (The

3121 С L Q L

complete set is given in Chart IV.) Those for the effect totals of the

contrast Cor.nn (=A-~.C,0 are given in Chart III. The complete set is
ÓUZU ^ Q

given in Chart V.

The effect totals of some of the contrasts of this 5x4x3x2 design

are given in Tables 5, 6, and 7.
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CHART I 1 1

GENERATION OF ELEMENTS OF ORTHOGONAL

CONTRAST MATRIX BY A GENERAL FORMULA

(EFFECT TOTAL C3020)

Вч

В,

'I

l)l(+l)l=-l

Sllll

-l)l(+l)l=-l

i)i(+i)i= -i

si 3 1 1

i)i(+i)i= -i

SI4I I

2)1(1)1= +2

S2III

2)1(1)1=2

S22l I

l)l( + l)l= -I

SMI2

l)l(+l)l=-l

SI2I2

»>l(+l)l = -I

S|3I2

l)l(+l)l=-l

SHI2

2)1(1)1= 2

S2II2

2)1(1)1= 2

S22I2

(+l)»(+l)= 1

fall

(+l)l(+l)l= 1

85312

(+I)K+I)I= «

$$332

*3

As

(+»)l(+l)l= 1 (+l)l(+l)l= 1 (+I)I(+D«= •

S6432

%

S54I2
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CHART IV

COMPLETE SET OF ORTHOGONAL COEFFICIENTS

CORRESPONDING UNIQUELY TO ELEMENTS OF DATA MATRIX

(EFFECT TOTAL C3|2|)

с. С
2

С
3

»1
D2

».
D2 о.

»2

B| -3 +3 +6 -6 -3 +3

h -1 ♦I +2 -2 -1 + 1

A,

B3 +1 -1 -2 +2 + 1 -1

Вц +3 -3 -6 +6 + 3 -3

в. +6 -6 -12 + 12 ♦6 -6

в2 +2 -2 -Ч +4 +2 -2

*2
в3

— 4. +2 +4 -Ч -2 +2

Вц -6 +6 + 12 •12 -6 +6

в, О О О О О О

в2 О О О О О О

A3

вз О О О О О О

Вц О О О О О О

"<
-6 +6 + 12 -12 -6 +6

в2 -2 ♦2 +4 -Ч -2 +2

Ац

ВЭ +2 -2 -Ч +4 +2 -2

Вц +6 -6 -12 + 12 ♦6 -6

в. +3 -3 -6 +6 +3 -3

в2 +1 -1 -2 ♦2 + 1 -1

*6

в3 -1 + 1 + 2 -2 -1 + 1

в. -3 ♦3 +6 -6 -3 ♦3
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COMPLETE SET OF ORTHOGONAL COEFFICIENTS

CORRESPONDING UNIQUELY TO ELEMENTS OF DATA MATRIX

(EFFECT TOTAL C302o)

153

с. с2 Сз

О, D2 0, В2 D, в2

B| -1
-1 +2 +2 -1 -1

B2 -1 -1 +2 +2 -1 -1

A.

B3 -1 -1 +2 +2 -1 -1

B„ -1 -1 +2 +2 *• 1 -1

B| ♦2 +2 -4 -4 +2 +2

B2 +2 +2 -Ч -4 +2 +2

*2

вз +2 +2 -4 -4 +2 +2

В, ♦2 +2 -4 -4 +2 +2

Bl О О 0 0 0 0

в2 О О 0 0 0 0

Аз

Вз О О 0 0 0 0

Вц О О 0 0 0 0

в.
-2 -2 +4 +4 -2 -2

в2 -2 -2 +4 +4 -2 -2

A,

в3 -2 -2 +4 +4 -2 -2

в, -2 -2 +4 +4 -2 -2

в,
+ 1 + 1 -2 -2 + 1 + 1

В2 + 1 + 1 -2 -2 ♦ 1 ♦ 1

*5

вз + 1 + 1 -2 -2 + 1 + 1

вч + 1 + 1 -2 -2 + 1 +1
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COMPLETE MATRIX OF INDICES

CORRESPONDING UNIQUELY TO ELEMENTS

OF DATA MATRIX

( с2 Сз
'I

D. t>2 о.
h D,

h

в. МП N12 1121 1122 1131 1132

В2 1211 1212 1221 1222 1231 1232

A.

В3 1311 1312 1321 1322 1331 1332

вч 1411 14Г2 1421 1422 1431 1432

в, 2111 2112 2121 2122 2131 2132

в2 2211 2212 2221 2222 2231 2232

h

в3 2311 2312 2321 2322 2331 2332

Вц 2411 2412 2421 2422 2431 2432

в, 3111 3112 3121 3122 3131 3132

в2 3211 3212 3221 3222 3231 3232

h

вз 3311 3312 3321 3322 3331 3332

\
341 1 3412 3421 3422 3431 3432

в, 4111 4112 4121 4122 4131 4132

в2 4211 4212 4221 4222 4231 4232

Ац

вз 4311 4312 4321 4322 4331 4332

\
4411 4412 4421 4422 4431 4432

в. 5111 5112 5121 5122 5131 5132

В2 5211 5212 5221 5222 5231 5232

Д5

Вз 5311 5312 5321 5322 5331 5332

в„ 5411 5412 5421 5422 5431 5432
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MATRIX OF TREATMENTS BY YATES REPRESENTATION

с. °2 C3

о. l>2
">. h D| h

B| (1) d с cd c2 c2d

*2
ь bd be bed bc2 bc2d

A,

h
ь2 b2d b2c b2cd b2c2 b2c2d

ВЦ ь3 b3d b3c b3cd b3c2 b3c2d

Bl а ad ac aed ac2 ac2d

в2 ab abd abc abed abc2 abc2d

A2

«3
ab2 ab2d ab2c ab2cd ab2c2 ab2c2d

вн ab3 ab3d ab3с ab3cd ab3c2 ab3c2d

в. а2 a2d a2c a2cd a2c2 a2c2d

В2 а2Ь a2bd a2bc a2bcd a2bc2 a2bc2d

*3

В3 aV à2b2d a2b2c a2b2cd a2b2c2 a2b2c2«

В, a2b3 a2b3d a2b3c a2b3cd a2b3c2 a2b3c2d

в. а3 a3d a3c a3cd a3c2 a3c2d

в2 a3b a3bd a3bc a3bcd a3bc2 a3bc2d

\

вз a3b2 a3b2d a3b2c a3b2cd a3b2c2 á3b2c2d

в* a3b3 a3b3d a3b3c a3b3cd a3b3c2 a3b3c2d

в. а» •«d a«c a*cd a»c2 a*c2d

в2 ачЬ
a"bd a*bc a4bcd a'bc2 a"»bc2d

*s

Вз а^Ь2 a»b2d aVc aVcd aVc2 a«b2c2d

в, a»b3 a*b3d a»b3c a4b3cd a*b3c2 aVc2d

I
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CHART VIM

ПАТА FOR THE 5x4x3x2

ORTHOGONAL DESIGN

С 1 са С|

О.
">2 0| в2 0| h

B| 2 2 2 2 3 8

h 1 2 2 3 ц 4

A.

83 2 4 6 2 4 4

Вц 1 2 2 4 3 2

B. 3 4 5 7 9 10

B2 2 2 3 7 7 8

A2

Вз 3 6 6 6 8 10

ВЧ 1 4 3 6 5 7

В, 4 6 8 10 12 14

В2 2 4 6 10 10 12

*3

В3 6 8 8 10 14 16

в„ 2 6 6 8 8 10

в, 5 8 II 13 15 18

«2
2 6 9 13 13 17

Ац

Вз 9 10 10 И 20 22

Вч 3 7 9 10 II 13

В. 6 10 14 18 21 20

«2 3 6 10 17 16 19

A5

В3 10 12 10 18 24 28

Вц 3 II 10 12 13 18
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h. An Algorithm for Computing Elements of an Orthogonal Contrast.

The 5x4x3x2 factorial design shown in Chart VI of the preceding

section will be used to great advantage, it is hoped, to explain the technique

of computing the elements of an orthogonal contrast.

Let us consider the general formula for obtaining the elements of the

contrast matrix for the 5x4x3x2 design discussed in Section g:

(3h-l) 5 4 3 2

CW34 = Z^/^Z^Zj^Vl Ai22J2Ai3J3Ai4J4SV2J3J4

J1 = U2=1 J3 = l j4 = l

As shown in Chart I, an orthogonal Л-matrix of polynomial values is

associated with each of the four factors. Thus the matrices

^ K'ib Ш föj< КJ

are associated respectively with factors F,, F , F , F4 respectively.

The superscripts of the elements of the A-matrix associated with each

factor, indicate the number of the factor with which that A- matrix is

associated. For example the superscript (3) indicates that this A -matrix

is associated with factor F„, etc.

The number of rows of each- A- matrix is one less than the number of

lSY_e_ls_ of the factor with which it is associated. The; numhfir of columns

of each A~matrix is equal to the number of levels of the associated factor.

Thus the
1J1rC

matrix associated with F. has four rows and five columns

The row- number indicates either the linear, or, quadratic, or cubic, or

quartic component of. the contrast; row number two indicates the quadratic

component. (Either-or is meant in the exclusive sense.)
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Each row in a A-matrix is a row-matrix with its proper number attached

to it. For example, the third row of polynomial values (-1 + 2 +0-2 + 1)

in the A-matrix in Chart I associated with F, is symbolized by:

ч<1) )(D )(D )(D )(D
Л31 Л 32 Л 33 A 34 A 35

The first subscript of each element in this matrix is the number _3, which

alludes to the cubic component of the contrast.

Let us explain how to compute an element of the contrast matrix for this

design, say, C~191 . The procedure is the same for computing any element

of a contrast matrix:

The following set of four ordered doublets is formed:

(3h-3) [¿J. ;jj2 l2J3 ;JJ4']

These doublets have a positional order: 3j is the first doublet, lj

the second doublet, etc. The number of doublets in a set is equal to the

number of factors .

The first numbers of the first, second, third and fourth doublets in

(3h-3) are taken from the first, second, third, and fourth subscripts

respectively in C-._.. These are underlined in (3h-3).

The second members of the doublets in (3h-3) are taken from the

(positional) subscripts of the elements of the data-martix, S. . . . ,

J1J2]3J4

namely j, »Jo'Jo 'Ía> with j, going to the first doublet, J to the second,

etc. Thus the subscripts of the general contrast symbol (Ç. . . . )

12 3 4

furnish the first members of the doublets; the subscripts of the elements of

the data-matrix furnish the second members of the doublets .

Each doublet of a set represents the symbol of a polynomial value of a

A-matrix associated with a particular factor. Thus in a set of doublets:
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[31; 11; 21; 12] , the third doublet, 21, corresponding to the third factor in

Chart I, symbolizes the polynomial value taken from the second row, first

A?'element of the matrix

*V3J

This value is (+1).

Let us consider Charts II and IV in the computation of the contrast С~,?, .

It is to be noted that every element of the data-matrix is utilized in the

computation of a single element of the contrast- matrix, such as C»,«,, or

say C4211.

The computation of C_191: Each element of the data-matrix is multiplied

by tne product oi tour polynomial values, one from each д-matrix associated

with its corresponding factor. For example, let us consider the data-element

S . For this purpose the following set of four ordered doublets is formed:

1332

(3h-4) [31; 13; 23; 12_] .

This is the same as in (3h-3) except that j. ,j9 ,j~ and ). take on the

values of 1, 3, 3, and 2 respectively. These are underlined in (3h-4).

The expression (3h-4) serves as a command in computer logic. It says

in effect :

a. First doublet, 31: select from the A-matrix corresponding to the

first factor, the polynomial value from the third row and first column. This

valuéis (-1). (See Chart I for values of doublets.)

b. Second doublet, 13: select from the л-matrix corresponding to the

second factor the polynomial value from the first row and third column.

This value is ( + 1).

c. Third doublet, 23: select from the A- matrix corresponding to the

third factor the polynomial value from the second row and third column.

This value is ( + 1).

d. Fourth doublet, 12: select from the Л-matrix corresponding to the

fourth factor the polynomial value from the first row and second column.

This value is (+1) . The product of these four polynomial values correspond

ing to the data (matrix) element S is (- 1) . This product is then

1 ó ó ù
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multiplied by the value of the data (matrix) element S1332 (=4 from Chart VIII) .

The result is (-4) for this data element. For the computation of С , see
■J ifa 1

Chart IV. It contains the complete set of the products of quadruples (four

polynomial values) associated with each element of the data- matrix given in

Chart VIII.

The sum of the products of the appropriate polynomial values multiplied by

each data (matrix) element yields the value of the contrast С ; this value

is 414 . Note that the first members of all the four ordered doublets formed

for computing the contrast C3121 have the values 3, 1, 2, 1 in the

natural order 1, 2, 3, 4 respectively. This is indicated in expression

(3h-3) where the first members of the doublets are fixed (namely, 3, 1,

2. 1) and i,, j , i and j vary to generate the indices of (the elements

1 2 3 4

of) the data matrix.

This procedure is valid for computing contrasts of an m-factor orthogonal

design. The validity is assured by the general formula given in the preceding

pages. This formula represents the sum of products of each element of a

data-matrix by m appropriately (uniquely) selected polynomial values.

To compute a particular contrast C. *.*... * we form the set of doublets:

1 12 m

(3h-5) [ij* jp- i2* j2 ; i3* j3 ; • • -;i * jm] ,

where i, , i 9 , • • • , i are fixed values for the particular contrast and

j,, Г , ••«, j vary, taking on the values of the indices (subscripts) of

12 m ' »

the elements of the data-matrix.

Suppose one wishes to compute, say, the contrast Conon (=A C^J. We

form the following set of doublets:

(3h-5a) [3jj,- 0j2; 2J3; 0J4]
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where j,, j?,jo,J4 take on the values of the subscripts of the elements of

the data-matrix.

i(k) )(k)

Now Oj, is the symbol representing Aq. ; and since Aqj =1 for

к к

l<k^m, Oj represents the value 1. For example, in computing C3q,q

consider the data-ele

this data-element is:

consider the data-element, S . (See Chart III). The set of doublets for
0 T 1Z

(3h-6) [35; 04; 21; 02 ]

Since 04 and 02 each represent the value 1, the coefficient-multipliers

are:

(3h-7) ( + 1), Q_), ( + 1), (J.)

The value of the product of these coefficients is +1; this value is in turn

multiplied by the data-element represented by 5412 of the data-matrix of

Chart VIII, namely the number 11. The result is +11 for the element Snjl,_ .— — 5412

Similarly this is done for every data-element and the results are summed to

yield the value of C~n?f).

Note that the underlined second and fourth doublets, in (3h-6), namely

04 and 02 and their respective referents (1) and (1) in (3h-7) do not

represent polynomial values. They merely indicate that the value 1 is to

be used as a multiplier in lieu of the ordered polynomial values for the

factors (F and F ) that are not being considered, i.e., are eliminated,

" 3

in the calculation of this particular contrast, namely С (***A С ).

3020 С О

Factors, F (=B) and F (=*D) are not taken into account in this contrast.

In general an ordered doublet such as Oj whose first member is _0_

к

represents the value _1; and J_ is to be used as a multiplier in lieu of the

positionally corresponding polynomial value for the missing к -th factor.

Thus for the computation of the contrast, C.*.*n.*. .<ri.* .* the
i , i _ 0i. 0i,* • • i

12 4 km

following sets of ordered doublets are generated:
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(3h-8) [i*h; i2*j2; 0i3;i4*j4; ■ • .;0Jk_ yi* Jk; ' " **m>m]

since Oj =0j =1 (3h-8) becomes:

(3h-9) [i* jr- i* j2 ; 1 ; i J )4 ; . . .; 1 ; ik* Jfc ; . . .; i* jj ,

where i, , i2 , i¿ , etc . are fixed values for the particular contrast and

j., ) , . . .,j vary by taking on the values of the subscripts of the elements

of the data- matrix.

4. CONCLUSIONS. The algorithm and general formulas developed and

presented in this paper for obtaining and computing orthogonal contrasts are

ideally suited for a computer. The factors, their levels, the associated

X -matrices of polynomial values, and the elements of the data-matrix, are

represented by unique sets of positionally ordered numerical indices

(subscripts and superscripts).

What is of equal significance is that the orthogonal contrasts are

obtained by virtue of a unique correspondence and relationship between the

positionally ordered numerical indices of the contrasts and those of the

A -matrices and of the elements of the data matrix. This situation is

amply conducive to machine computations that involve sums of products.

To Summarize: There are three principal entities required for the

computation of orthogonal contrasts . These are: the factors and their

levels, their corresponding X-matrices of polynomial values, and the

data- matrix.

The computer identifies the factors by means of a set of numbers:

vl, 2 , . . . , m\ .

The levels of each factor are identified in the computer by means of a

set of positionally ordered numbers: /],, j„, . . ., j \ ,

^1 * m/
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where:

J =1, 2, ..., N i =1, 2, . . ., N - 1

1 1

J2 = 1, 2 N2 i2 = 1, 2 N2 - 1

j = 1, 2, ..., N
m m

i = 1, 2, . . ., N - 1
m m

The computer stores one Л-matrix with the proper tag-number

corresponding to each factor:

A(1l 1, U(2
Vi

X2]2
A
(m)

i J
nrm

The tag-numbers are the superscripts: (1), (2), . .., (m) . These

correspond (1-1) to the factor numbers: (l, 2, . .., m\ .

The rows and columns of the A-matrices are identified by the sets of

positionally ordered numbers: (i,, i , ..., i \ and [j., \, ..., j \
1 1 2 m) 112 mj

respectively.

The elements of the data-matrix are numbered by varying the positional

subscripts:

112 mj

To obtain a specific contrast С * * * each element of the data-

MV^m

matrix is multiplied by the product of m appropriately ordered polynomial

values:

)(D )(2) }(m)

hh hh

* .

m m
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(Here S.j is a particular element of the data-matrix.)

31 2 •'• ]m

The results for each data-element are summed to obtain the effect

total of the desired contrast:

N
m

С*.* .*= ) ) \A.*- À ■*■'■• • ; -.À j* j S

1 2 m ¿ , ¿ , ¿ , 11 2 2 m m 1. 2 m

Jl x J2
m

To compute contrasts in which one or more of the subscripts f i, \

(l<k<m) is zero the following procedure is adopted:

The value 1 is substituted in the proper positional order for the

polynomial value corresponding to the factor(s) that is being eliminated in

computing a desired contrast. As was noted on several occassions,

Conn ç. , the sum total of all the observations is not a contrast .

5 . SUMMARY OF FORMULAS . What follows is a summary of the

formulas for obtaining contrasts in orthogonal designs; and an

explication of the symbolic terms and of the index notation used in this

report .

SUMMARY OF FORMULAS
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SUMMARY OF FORMULAS FOR GENERATING THE

ELEMENTS OF AN ORTHOGOüAL POLYNOMIAL CONTRAST MATRIX

1. General Element of Orthogonal Contrast (interaction) Matrix for

Factors Fif F«, ... Fm-

A?' №...)[** 'S

where

a. Elements of Data (Observations) Matrix :5v л Л* ^i7*'"/m

b. Factors : Fi, F2, . . . , Fm

c. Levels of Factors F]_, F2, • ••> Fm

N1 ■ Number of levels of F^

N2 - " " " " F2

M _ " " " " 1?
"m - Fm

d. Values of Subscripts

ix - 0, 1, 2, ..., Hx - 1 Jx « 1, 2, ..., N1

±2 - 0, 1, 2, ..., N3 - 1 J2 " 1| 2| Hi| Ig

1« - 0, 1, 2, . . . , »„ - 1 Jm = 1, 2, . . . , Nm
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Summary of Formulas for Generating the Elements of on Orthogonal

Polynomial Contrast Matrix (Cont'd)

e. Index Notation

¿^f~ : element in the iiiie row and J— column of the

orthogonal polynomial coefficient matrix for the

тУ? factor Fm.

i

¿ш - 1, 2, 3, • . -, Nm - 1 yields the linear, quadratic,

cubic, ,.., (Нщ - l)th contrasts respectively.

jifa - 1, 2, 3» •••» Ищ refers to the first, second,

third, ..., Hnjth levels of the factors T\$ ?2i

F^> • • • t *ш"

: rov vectors of the transpose matrix of the Fisher

orthogonal coefficients of factor Fn, with the

restriction that Crn фО.

ttri)

я:
4>

Ы)

mftn

j : normalized form of Д .

*mt)í7n f 5 <**> 1

(2/ Formula for Matrix [A - J

lm%

K/J=

Tlfin) -)p*)

II

ytTiri)

ZI л%

С 4Г... *£

1П

Linear contrast coefficients

Quadratic contrast coefficients

Cubic contrast coefficients

(Njn-lîth contrast coefficients
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Summary of Formulas for Generating the Elements of an Orthogonal

Polynomial Contrast Matrix (Cont'd) " ~~ "

/3) Formula for the Special Case

л0а «= 1 for 1<к>±7ГЬ and for ell £ S . Symbol ueed to

obtain the total sum of the observations j also used to

obtain interactions of order lower than the highest

order.

(4) Formula for Normalized Form, /V/ . of A¿ л , i^k^TYX

(5} Special Cases of Orthogonal Contrasts

r NT л<*> yO) <\Ü) л<*> Ф) 2<» Iм ÀM <\

-» AI

¿о Ài» ¡a) <r tÄ3 =tfiri£k¿m

ЪЛ№а-+>*""Ъ

hh "'¿fr*

b. Main Effects

T-'
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Summary of Formulas for Generating the Elements of an Orthogonal

Polynomial Contrast Matrix (Cont'd)

($) Special Cases of Orthogonal Contrasts (Cont'd)

b. Main Effects (Cont'd)

C¿,oo...o = /> \l, S*<t*-¿n.

- Main (Total) effect of factor F^ of order one

c. Total Sum of Observations ,5,

Similarly for main effects of Fg, Fo, ..., Fm.

Ni/Ah,--', N*b

- T (Total sum of observations with one unit per cell)

C-OQ , „ о « fT~ L^T = T f assuming r replications

per cell (treatment)

d. Grand Average (G.A.)

(l) Without Replication

G.A. = Coo-o - T

/ГЧ JTNK

(2) With Replication

a a — tZ — TL
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Summary of Formulas for Generating the Elements of an Orthogonal

Polynomial Contrast Matrix (Cont'd)

(б) Sum of Squares (SS) of C* * _ , , with Replication

Interaction of Factors Рд_, F2> • ••> Fm.

r
'~д m

чл,.»^.
^2

f*tV * * *
f**»

— 1

¿ifr^'f-m, k'i
I \\\$fc-'hn

Wkâre

Л? -
44 ж

<-„*0

¡he1



173

Summary of Formulae for Generating the Elements of an Orthogonal

Polynomial Contrast Matrix (Cont'd)

(7) Special Case. Sum of Squares (33) of Ç/ Q; n,.t/) t with Replication.

Interaction of First and Third Factors F, and F3.

SSyfyo/jO..*) =■

H,Ni

tWk

-f>

AV

_//*—A*

tipNiVillm

0) M>

'my

ï

_ ^vj

"rfK

,a

\0)

L.

$>}>•••}',

JfßJpuX
Л7* h*»

tik'-ím.

'm-

^ti^A>*"J^rn

-2

S> aW

АиЛи4и~А*

¿л r-m.
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Summary of Formulas for Generating the Elements of an Orthogonal

Polynomial Contract Matrix (Cont'dJ " "

Likewise, for the interaction of factors Fg, F5 and FQ,

SS(C Л zz xNs*

oixooisooigo,..o) г^Ык

H-!

M,,NA,...,N,
22k

Л"' Л1" AiS'S

}it*'-' ¿Tb
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A SEMIAUTOMATIC WAR GAMING SYSTEM

John L. Donaldson

Research Analysis Corporation

and

Thomas R. Shaw

Operations Research, Inc.

SUMMARY

PROBLEM. To devise a method whereby a digital computer can be used

to support war gaming activities and to design a set of computer programs

which will accomplish this objective.

FACTS . War gaming is currently receiving much attention as a method

ology in the field of operations research. However, the hand-played war

game involves many disadvantages which tend to restrict the desirability of

of its application to the solution of many problems which otherwise lend

themselves well to resolution by gaming techniques. Basically it is an

extremely costly venture. A large group of experienced players and skilled

• controllers is required to operate a game. Further, a great amount of time

can be spent in repetitive, laborious calculations which can affect both the

accuracy and timeliness of the results.

On the other hand, the high speed digital computer can perform certain

data processing functions with great rapidity and accuracy. There are,

however, limitations to the usefullness of computers particularly in the

performance of functions that require a high degree of human insight and

decision. The simulation of decision processes by computers is possible

only when the criteria for judgment and the alternatives for action can be

adequately described in a quantitative fashion. Also the speed and accuracy

of computers can be compromised by the need for frequent human intervention.

The computer, therefore, can be used to best advantage in those areas where

present human knowledge and ability permits.

DISCUSSION . The semiautomatic war gaming system has two aspects -

man and machine. In the system the computer has three functions:

performing the assessment calculations, maintaining the quantitative records,

and displaying the results, while the man portion of the system is concerned

primarily with the problems of decision-making. These two aspects of the

system are treated in this paper in terms of the flow of information. The

operations which comprise the system are discussed according to input,

function, and output. For the human aspect of the system these items are
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related to the responsibilities which they entail; in the computer portion of

the system these items are examined quantitatively in terms of data sets.

The system was designed for the THEATERSPIEL Study (35 .10) and was

used in the play of POMEX I. From this initial attempt, much experience

was gained leading to the projection of certain general consequences of

such an application of computer techniques. Some degree of insight

was realized concerning the multi- faceted problem of coordinating the

many functions which comprise the system. Finally the learning process

enabled other uses for this system to become evident and suggested ways

in which further refinements could be incorporated conducive to greater

applicability to other problems.

INTRODUCTION

The THEATERSPIEL Study was established in October, 1959, with

Mr Richard E. Zimmerman (Chairman), BGen John G. Hill, USA (Ret.),

and Capt, J. O. F. Dorsett, USN (Ret.), being assigned as the original

members of the study group. As originally conceived, the purpose of

the project was to be an outgrowth of the FAME game!; it was to develop a

theater level war game that would indicate the Army's need in future

military operations paying particular attention to the requirements placed

on the development of TO/Es. Further, the study was to draw on the

resources provided by computer usage.

In the beginning the members of the study were aware of the advantages

and disadvantages inherent in various gaming methodologies as applied to the

study at hand. Drawing on their previous experiences in simulations and

war gaming,, they felt that it would be undesirable to program all facets of

the gaming environment, e.g. , certain of the presently unquantifiable aspects

of combat decision-making, and yet there was a desire to avoid the tedium

and repetition of much of the assessment phase of the gaming operation. It

was this particular thinking that led to the design of the semiautomatic

gaming system.

However the semiautomatic system described in this paper did not

immediately result from this initial attitude. It was necessary first to

determine to what extent the game should be automated; that is, which

should be the human functions in the game and which the computer's. One

of the difficulties concerned with defining the programming the human

decision function, a basic characteristic of the gaming approach, was

expressed by the late John Von Neuman in The Computer and the Brain:
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SUMMARY

PROBLEM. To devise a method whereby a digital computer can be used

to support war gaming activities and to design a set of computer programs

which will accomplish this objective.

FACTS . War gaming is currently receiving much attention as a method

ology in the field of operations research. However, the hand-played war

game involves many disadvantages which tend to restrict the desirability of

of its application to the solution of many problems which otherwise lend

themselves well to resolution by gaming techniques. Basically it is an

extremely costly venture. A large group of experienced players and skilled

• controllers is required to operate a game. Further, a great amount of time

can be spent in repetitive, laborious calculations which can affect both the

accuracy and timeliness of the results.

On the other hand, the high speed digital computer can perform certain

data processing functions with great rapidity and accuracy. There are,

however, limitations to the usefullness of computers particularly in the

performance of functions that require a high degree of human insight and

decision. The simulation of decision processes by computers is possible

only when the criteria for judgment and the alternatives for action can be

adequately described in a quantitative fashion. Also the speed and accuracy

of computers can be compromised by the need for frequent human intervention.

The computer, therefore, can be used to best advantage in those areas where

present human knowledge and ability permits.

DISCUSSION. The semiautomatic war gaming system has two aspects -

man and machine. In the system the computer has three functions:

performing the assessment calculations, maintaining the quantitative records,

and displaying the results, while the man portion of the system is concerned

primarily with the problems of decision-making. These two aspects of the

system are treated in this paper in terms of the flow of information. The

operations which comprise the system are discussed according to input,

function, and output. For the human aspect of the system these items are
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related to the responsibilities which they entail; in the computer portion of

the system these items are examined quantitatively in terms of data sets.

The system was designed for the THEATERSPIEL Study (35 .10) and was

used in the play of POMEX I. From this initial attempt, much experience

was gained leading to the projection of certain general consequences of

such an application of computer techniques. Some degree of insight

was realized concerning the multi-faceted problem of coordinating the

many functions which comprise the system. Finally the learning process

enabled other uses for this system to become evident and suggested ways

in which further refinements could be incorporated conducive to greater

applicability to other problems.

INTRODUCTION

The THEATERSPIEL Study was established in October, 1959, with

Mr Richard E. Zimmerman (Chairman), BGen John G . Hill, USA (Ret.),

and Capt. J. O. F. Dorsett, USN (Ret.), being assigned as the original

members of the study group. As originally conceived, the purpose of

the project was to be an outgrowth of the FAME game!; it was to develop a

theater level war game that would indicate the Army's need in future

military operations paying particular attention to the requirements placed

on the development of TO/Es. Further, the study was to draw on the

resources provided by computer usage.

In the beginning the members of the study were aware of the advantages

and disadvantages inherent in various gaming methodologies as applied to the

study at hand. Drawing on their previous experiences in simulations and

war gaming, they felt that it would be undesirable to program all facets of

the gaming environment, e.g., certain of the presently unquantifiable aspects

of combat decision-making, and yet there was a desire to avoid the tedium

and repetition of much of the assessment phase of the gaming operation. It

was this particular thinking that led to the design of the semiautomatic

gaming system.

However the semiautomatic system described in this paper did not

immediately result from this initial attitude. It was necessary first to

determine to what extent the game should be automated; that is, which

should be the human functions in the game and which the computer's. One

of the difficulties concerned with defining the programming the human

decision function, a basic characteristic of the gaming approach, was

expressed by the late John Von Neuman in The Computer and the Brain:



Design of Experiments 179

Hence it is to be expected that an efficiently organized

large natural automation (like the human nervous system) will

tend to pick up as many logical (or informational) items as

possible simulataneously, and process them simultaneously,

while an efficiently organized large artificial automaton (like

a large modern computing machine) will be more likely to do

things successively - one thing at a time, or at any rate not

so many things at a time. . . natural automata are likely to

be highly parallel, while. . . artificial automata will tend to

be . . . serial.

Establishing thus the area for one boundary, to maintain certain decisions

as human responsibility, the question next to be faced was how far to push

this boundary.

Soon after RAdm. Marion N. Little, USN (Ret.), Mr. William H.

Sutherland, and Mr. Billy L. Himes joined the study in the spring of 19 60,

work was commenced on the SANDWAR series of games. It had been

decided that in this case the computer would be used primarily to maintain

the records of the play. In accordance with this decision, a system was

devised by which all units being played in the game were recorded by

computer methods on a file (see Chapters 2 and 3), and the results generated

by the hand-played assessment models were incorporated into this file

providing a current record on the status of all units. It was to this effort

that the Chief of the Strategic Division, Dr. Joseph O. Harrison, Jr.,

first introduced the support of the Computing Laboratory; Maj. R. G. Williams,

USA (Ret.) of the COMPLAB together with Mr. Himes were for the most part

responsible for much of the computer work at this time. Shortly thereafter

one of the authors of this paper, Mr. Donaldson, joined the study and

began working with Maj. Williams and Mr. Himes on the records system.

During the play of the SANDWAR games it soon became apparent that

the computer could perform additional functions in supporting game play.

As had been earlier realized, "it is. . . advantageous, as far as possible,

to remove the human element from any elaborate chain of computation, and

only to introduce it where it is absolutely unavoidable, at the very begin

ning and at the very end. " It was on the basis of thinking along this line

that it was decided in late 19 60 to mechanize the greater part of the assess

ment phase of the gaming operation. Four of the previously hand-played models

were to be programmed for the POMEX series of games: one for air combat,

one for support weapons effect, one for ground combat, and finally one for

logistics. The records system which had been used during the SANDWAR
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games was to form the starting point for the development of the system to

incorporate the four models. Mr. George E. Clark, Jr., CAMPIAB Division

Chief, made additional personnel available for the undertaking, which was

begun early in 19 61.

Thus it was the other author of this paper, Mr. Shaw, was assigned to

work on the master program along with Maj. Williams and Mr. Donaldson.

Continuing in the direction indicated by the records system, it was realized

that this to a great extent determined what the requirements were for certain

aspects of the input and the output of the proposed system. It suggested a

method of programming. While the work was being done on the master

program, concurrent with this effort the above mentioned members of the

THEATERSPIEL group and Mr. David B, Webster, who joined the study at

this time, together with support from COMPLAB, programmed the four

assessment models.* The design and structure of these models is reported

in a series of papers. 5, 6, 7 poMEX I was played in the latter part of July

and early August of 19 61 using the new system. A complete report on the play

of this game is in preparation. It is the purpose of the present paper to

describe only the master program and the context in which it was placed and

to discuss some of the consequences of using such an approach.

That this approach, the semiautomatic gaming system, is of current

interest and of significant value is demonstrated in a paper recently prepared

for the Defense Atomic Support Agency discussing the need for a gaming system

which will meet the gaming requirements of the Joint Chiefs of Staff. In the

paper much attention has been focused on the problem of devising a computer-

assisted war gaming capability. The present paper presents one such

system.

* Air: Capt. Dor sett, programming support, Miss Aria E. Weinert;

Support Weapons and Ground Combat Models: Mr. Webster and

Mr. Sutherland, programming support, Mrs. Barbara Fain and

Mr. J. B. Creegan; Logistics Model: RAdm . Little and Mr. Himes,

programming support, Mr. Donaldson.
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Chapter 1

GAME ENVIRONMENT. In the semiautomatic system discussed in this

paper, the digital computer fulfills two functions: first, it performs the

game assessment calculations, relieving the control group of this tedious,

time-consuming responsibility; and second, it serves as a bookkeeper,

providing complete numerical records of the play, interval by interval, in

a form suitable for post-game analysis. To appreciate this application of a

computer and its consequences, the reader must first be familiarized with

the system within which the computer operates.

The war gaming system can be considered as a sequence of related events,

the relationship being what might be termed an "information flow". Thus

for each event there is an input (which is the result of some prior event),

some function which prescribes the manner in which this input is to be

processed, and an output which is the result of this function (which will be

input to the next event) . By defining all events individually with regards to

their inputs, functions, and outputs, the system as a whole is described.

This chapter will examine the system in this manner, with one exception:

The function of the computer operation, and its execution, will be the subject

of a detailed discussion in the second chapter; in the present chapter com

puter input-output will be discussed only to the extent necessary for the

continuity of development .

The events occurring within the system can be divided into three phases-,

pre-game planning, game play, and post-game analysis. Although each of

these phases will be examined separately, it should be remembered that in

reality they do not operate independently , since they too are related by an

information flow, or input-output process.

PRE-GAME PLANNING. Once the study directive has been received, and

it has been decided that war gaming is an appropriate method of solution of

the problem, the pre-game planning phase is begun. The initial effort of this

phase is to obtain a satisfactory statement of the problem together with

specification of the purpose and objectives of the game. This does not pre

clude the possibility that in the later stages of this phase it may be necessary

to redefine the problem and objectives repeatedly, however at the outset at

least some general statement of purpose is a prerequisite to further development,
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After the purpose has been determined, preparations for the game proceed

along two parallel paths. Both the substantive and methodological aspects

of play must be described. Consistent with the outlined objectives the game

environment must be established. This includes choosing a locale, develop

ing a scenario, and collecting pertinent data. The choice of local consists

of selecting the geographical sector in which the game is to be played, of a

size commensurate with the level of aggregation desired. The scenario

includes the description of the political, economic, and cultural aspects of

the environment leading up to the conflict . Also a part of the scenario are

the TO/Es of the forces to be engaged in the conflict. In addition there

arises the need for many other quantitative factors describing the geographic

region, weapons; capabilities, and many similar data as required by the

particular objectives of the study.

While this work is being done, attention must also be focused on

developing rules and procedures for the play phase. This includes the rules

according to which the players will make their decisions and the procedures

by which control will implement the players' orders. Establishing procedures

also includes the development of the assessment models since these models

and the way in which they are programmed will reflect the decisions made

with respect to procedures. In the semiautomatic system this is perhaps the

most time-consuming element of the preparations and also the most critical.

Efficient rules and procedures together with realistic models are among the

most important aspects of the system.

As the mechanized components of the system are defined, and after the

quantitative factors have been obtained, some time must be spent in putting

these data in a form consistent with the input requirements of the models.

Here again effective procedures will ensure less time being wasted during

play of the game due to improper or inaccurate data .

Prior to the play of the game some time must be devoted to player

orientation. The players must be briefed on the scenarios so as to become

familiar with the environment for the game so that they might learn what is

expected of them. They must be given their game objectives. Secondly

they must be instructed on the rules of play. So that they might better

expedite the system and use it to its full potential, they must also be

given a good understanding of the mechanics of the play. Finally, they must

be provided with a record of the status of their forces and all relevant data .
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Orientation of the players is the final step prior to the play of the game.

Once this has been accomplished, the second phase of the system can be

initiated .

GAME PLAY. The game play phase can be considered as a repetitive

cycle of events; the cycle being repeated until the pre- stated objectives

of the play have been realized, i.e. , until one of the player teams has

been successful in achieving its predetermined goal. In some cases

however, this may not be possible, and it then becomes the responsibility

of the control group to terminate play.

The player teams initiate play be determining what tactics or strategies

they wish to employ in acheiving their goals. On the basis of their mission

and available forces, the players generate orders which are communicated

to the control group. The control group then takes the orders issued by

both player teams and integrates them, judging as to their relative feasibil

ities. Control, in rendering these decisions, considers such aspects as

whether or not one side's forces can execute their orders without exposing

themselves to enemy action, or whether or not a move is logistically

feasible. Once control has evaluated the orders, it is necessary to

specify the interactions that will result. Viewing the execution of both

teams' orders with respect to one another, the control group is able to

establish what interactions will occur.

As the battle situations become evident, control translates a description

of these interactions into appropriate machine language. When all the

battles have been so defined, it is then possible to feed this information

into the computer. The computer, on the basis of the models programmed

during the pre-play phase, then assesses the outcomes of the interactions

of the opposing forces. It determines what has been gained and lost by the

two sides. Upon completing these calculations, the computer then generates

output which consists of the results of the assessment in terms of casualties,

moves, and other similar information. These results are distributed to the

two player teams and to the control group. On the basis of the results, the

control group prepares a summary of the action for the players to supplement

the machine results.

The cycle then begins again with the players weighing the results against

the achievement of their objectives. Based on the current status of their forces

and whatever intelligence estimates they may have received, they generate a

new set of orders, and the cycle is repeated. This repetition occurs until,
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as said above, either the control group halts play, or a player team

realizes its goal. When play is stopped, the last phase of the system

begins.

POST-GAME ANALYSIS . Analysis of the game is perhaps the least

defined aspect of the system. It can follow a number of different courses

dependent upon the original intent of the study; nevertheless, there is a

very general pattern which this phase might follow. First many questions

must be asked, such as what were the critical aspects of the game, what

caused the turning points of the action, how did the initial situation as

defined in the pre-play phase affect the outcome of play? It must be

determined what the essential elements of the game were that influenced

the consequent action and how they affected that aspect of the play relevant

to the stated problem. Analysis for these factors can be both quantitative

and qualitative. The former lends itself well to being resolved on the

computer, whereas the latter most generally is handled by the control group

with support from the players. It is important to realize the potentiality of

computer analysis of the results. Since the results have all been generated

by the machine and complete records kept in machine lanquage, all the data

required for a quantitative analysis of results are already in a form suitable

for immediate machine analysis.

Interpreting the quantitative and qualitative analysis leads to the

conclusions to be drawn from the game. From such a system both substantive

and methodological conclusions may result. The methodological conclusions

are then incorporated into the system improving it for the next play, while

the substantive conclusions are either held until numerous repetitions of

the game can further substantiate them, or else they are used to infer

possible recommendations with regards to the original study directive.

Figure 1 summarizes the material presented in this chapter; each aspect

of the system which is a separate event is enclosed within a rectangle; also

included, in some cases, is a brief indication of the activities performed

during the event. The diagram also serves to demonstrate the principle of

information flow. In the following chapter the reason for the emphasis on

this principle will become evident. The computer programs, the subject of

the next chapter, have the primary function of providing for the proper flow

of the information necessary for assessment calculations during the

computer operation.
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Chapter 2

THE MECHANICS OF THE COMPUTER OPERATIONS. The two basic purposes

for using the computer in the semiautomatic system have been indicated in

Chapter 1 -assessment and bookkeeping. The assessment function is

accomplished through the application of various models, defined by the type

of function they perform. For example, an air model assesses the inter

actions occurring during various phases of air operations, such as escort

missions, interceptor missions, reconnaissance, interdiction, and the like;

there will be as many models as there are well-defined, distinct assessment

operations . The need to interconnect these models generates the requirement

for some master program that provides the medium in which these models can

operate. There is the further stipulation that this master program will be

responsible for maintaining accurate and up-to-date records, with the

provision for automatic changes to these records.

Thus it is the intent of this chapter to enable the reader to understand

what are the requirements for a master program, its inputs, its operations,

and its outputs. The objective is to describe these characteristics of the

master program in a way conducive to other applications, i.e., so that

others may find use for it.

OBJECTIVES. The specifications that are placed on the design of the

master program are as follows:

(1) To require a minimum control effort in composing input to

the computer.

(2) To establish an input format which is meaningful to control

(a minimum of symbolism) .

(3) To include the means for processing, routing, and storing

data sets for use by assessment models.

(4) To allow for the operation of logically distinct models.

(5) To provide a method whereby accurate records may be

maintained with the capability for their alteration.

(6) To enable results to be displayed in an understandable

form.
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INPUT. The input to the computer falls into three categories . There is

that input which results from control definition of the combat- interactions .

There is also the status of forces file which includes all units being played

in the game and their attributes. Finally, there are those inputs from

control which do not result from any defined interaction but are changes to

the status of forces file; these include such changes as increasing the

number of men in a unit when reinforcements are introduced by the control

group or specifying a new location when a unit is to have its assigned

location changed. (These examples assume that strength and location are

attributes of a unit and are recorded in the status of forces file.)

The basic principle involved in the input that defines the interactions is

that all units participating in a given combat situation will comprise what

is termed a "battle group", and the information for each battle group will

be recorded on punched cards, one card per unit. All such units must be

designated explicitly to be considered by the assessment models. In

addition to naming the units, it is assumed that there would be certain

factors included which describe the conditions of the battle and influence

its outcome. Such factors as posture, terrain, and type of engagement

might be included .

Each interaction defined as a separate battle group is processed asa

separate engagement within the computer assessment of the outcome. The

control group has the responsibility of specifying the different battle groups

and parameters involved for each play; the master program maintains each

as a separate entity in referencing the assessment models.

One of the fundamental elements in the system is the status of forces

file. It is prepared initially during the pre-game planning phase by the

control group; all relevant data for each unit to be played in the game are

placed on standard forms, and they are then translated and processed onto

magnetic tape. This is the only non-mechanized, or non-automatic, aspect

of maintaining the status of forces file,, It then serves as input to the initial

interval of play, after which it is automatically revised consequent to the

assessments of outcomes, and any new values for the characteristics of

units are then incorporated into it. The characteristics of the units

contained in the status of forces file are an integral part of the determination

of the outcomes of the interactions . These characteristics are the factors

plugged into the formulae of the models. The emphasis placed on the

processing of these data will be seen later in this chapter.
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The last type of input to the computer system is related to the status of

forces file. As has been explained, the status of forces file exists on

magnetic tape and is automatically processed and changed by the master

program as a result of changes to unit characteristics as generated by the

models. However the possibility for non-machine generated changes must

be acknowledged. For this reason, provision is included within the master

program to incorporate changes to unit characteristics issuing directly

from the control group. Thus by control decision whole units, or parts

thereof, can be eradicated or revised automatically as indicated by the

changes recorded on punched cards.

DESCRIPTION OF THE MASTER PROGRAM. In Chapter 1 the principle of

information flow was emphasized. In terms of the master program it is of

equal importance; however in the medium of the computer the information

assumes the form of data sets. The input information in "raw" form is

organized by the master program into logically distinct data sets. The

master program is then concerned with the ordering and storing of these

data sets. When this has been accomplished, the master program references

the relevant models which are to operate on the data sets. As changes to

data pieces within sets occur, it is the responsibility of the master program

to incorporate these changes into the data sets. Finally when all the

changes have been affected, the master program provides the means whereby

the revised data sets are edited and dumped as output from the computer.

The master program is composed of a number of basic routines which enable

it to accomplish these functions. There are six such routines:

(1) Read battle group cards.

(2) Select and store status of forces data .

(3) Reference models and adjust data.

(4) Edit assessment results.

(5) Update status of forces file.

(6) Edit status of forces file.

Each one will be discussed in terms of data sets with regard to the pro

cedures to be followed in executing its operations, the input required,

internally stored data necessary for execution, and the results of the

operation.
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The general flow of operations performed by the master program is

presented by the flow diagram in Figure 2 . The diagram is a much simplified

one; the more specific details of the operation have been excluded . In

determining what should be included in the diagram, the authors have

attempted to present only those relationships such that to change them

would, in effect,, create a different program. It is felt that changes within

any one of the individual boxes would not appreciably affect the over-all

program; but to change the relationship among the operations illustrated

would be such a significant alteration that it would be more advantageous

to design a new program.

READ BATTLE GROUP CARDS ROUTINE . The master program "starts" by

reading in the control information defining the battle groups, or combat

interactions. This information has been recorded on cards punched in a

specific format designed for the problem. Each card contains on it the

designation of a unit involved in the interaction, in addition to parameters

relating the unit to the battle situation. The data are extracted from the

cards and are converted from the input code to the internal language of

the computer. The process is continued until all the cards for the units

being played during the present interval have been read. The names of '

these units are stored in a list which is to serve as a key for model

routing. The control data for these units are then stored to be integrated

at a later stage with the information extracted from the status of forces

file. When all the battle groups have been read into the computer and pro

cessed in this fashion, the functions of the first routine have been accomp

lished, and the computer system is ready for the second routine to begin

operation.

SELECT AND STORE ROUTINE. The select and store routine also performs

an input function. This routine reads in the status of forces file (from

magnetic tape). Contained on this file, as has been mentioned above, is a

record of all the units and data describing these units. The routine in read

ing the file checks the name of each unit against the list of names made

from the control input, and when a match is found, the data for this unit are

extracted from the file .
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The data are then converted from the tape code to the internal language

of the computer in the same fashion as were the card input data . Once the

data have been extracted and converted, they are stored with the card input

for the unit. The process is repeated until all the units contained in the

control list have been matched with data taken from the status of forces file.

When all such information has been stored, the storage region will be organ

ized in the form of the following example (in consecutive machine cells):

Name of 1st Unit Specified 3rd Div

1st Control Input Parameter (posture) Defend

2nd Control Input Parameter (terrain) Flat

1st File Datum (location) Berlin

2nd File Datum (strength) 9,000

3rd File Datum (armament - %) 100

etc., for all specified units.

Each unit and its corresponding input data organized in this manner within

the computer are referred to as a "unit data set" . The remainder of the

explanation of the computer system will be focused on the processing of

this basic entity, this process being analogous to the principle of information

flow in the non-automated portion of the system.

MODEL SELECTOR AND DATA ADJUSTOR ROUTINE . The central routine of

the master program is the model selector and data adjustor program. The

other routines of the system merely supplement the functions of this routine.

Its purposes are to reference the appropriate model and to provide it with the

unit data sets necessary for its calculations. To accomplish this the routine

first selects the unit data sets comprising one battle group and transfers

these to a working area. Next it determines what type (and how many) units

are represented in .the group; by doing this the routine is then able to

determine what models should be called in to assess the outcome of the

interaction. At this point a slight digression is warranted to make explicit

the assumptions underlying this approach and what it requires.

The obvious premise is that the type of unit involved in an interaction

entails what model should assess its effect on the outcome. Specifically
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it implies that a battle group composed only of air units, perhaps squadrons

or wings, should be processed by an air model. This is obvious; however,

what is not so clear is the procedure to be followed when the battle group is

composed of a mixture of types of units, i.e. , a battle group containing air,

artillery, armor, and other dissimilar units. What procedure is to be applied

must be decided early in the pre-game planning phase and requires what

might be considered simply a delegation of responsibility - which models

should assess what portion of the interactions. The approach agreed upon

by the control group is arbitrary as far as the master program is concerned;

regardless of what decision is reached, however, some means of specifying

the unit type is necessary. Thus the two requirements for the master pro

gram are that first a doctrine be defined, and second a means be provided

whereby it is possible to differentiate between the types of units.

With this in mind the reader can now better understand the function of

the master program to determine what types of units are present in the battle

group. Before the models can be executed, however, there are still two

operations which the master program must perform. It prepares a list of

machine addresses, which are the first cells of each type of input unit data

sets, and it also calculates the amount of storage necessary for results of

the assessment and assigns storage addresses for this purpose. At this

point the master program is ready to reference each model in turn in accord

ance with the procedure established in the planning phase.

The master program thus provides each model with the following four

items: 1) the input data sets, 2) the addresses of the locations of these

data sets, 3) the number of the various types of units within each battle

group, and 4) the first addresses of the storage areas where the results are

to be placed. After each model has assessed the interaction and has stored

its results in the results region, the master program revises the input unit

data sets with respect to these results, so that as each subsequent model

operates, it is then provided with an updated data set. In this way there is

established an interconnection between the various models of the system.

This also demonstrates the importance attached to the procedure to be fol

lowed concerning the order in which the models are to be referenced. Since

this is a fixed system, i.e. , the logical order of the models never varies,

emphasis should be placed on selecting that order which most nearly repre

sents the usual sequence of events in reality.*

* See Chapter 3

* It is acknowledged that in reality sometimes events occur simultaneously;

however, reality must be compromised to be made compatible with the fact

that the digital computer operates sequentially.
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After the models have assessed the outcome of a particular battle

situation, the entire assessment operation is repeated for each of the

remaining battle groups. At the completion of each cycle, the input data

sets for the processed battle groups are discarded, while the data sets of

results are stored for the later phases of the operation.

RESULTS EDIT ROUTINE. It is the function of the results edit routine

to provide the output from the assessments. It first selects a unit data

set of results. Next it converts the data into the output code, arranges

them according to the output format, and writes them on magnetic tape.

The results indicate all those items of the status of forces file which have

been altered by the models and are the actual changes, not the result of

these changes. For example, given an infantry division which has suffered

heavy losses in combat, the results from this might be the number of

casualties suffered to personnel and losses of equipment. The results

output then consists of the name of the unit and changes to that unit, and

these are given for each model and in total for all models. The routine

continues in this manner until the results for all units played during the

interval have been edited .

UPDATE ROUTINE. It was pointed out at the beginning of the discussion

that the status of forces file was automatically maintained, and it is the

function of the last phase of the system to accomplish this task. The first

part of this operation is the update routine. The routine sorts all the data

sets of results and arranges them in the same order as they appear in the

status of forces file. This generates the requirement for a definite order

for the units in the file. This could be done in either of two ways; either

a list of the order of the units in the file could be stored within the routine,

or the units could be arranged in some logical pattern in the file. The latter

choice is the one incorporated in the computer system; it is assumed that

all units are recorded in the file by number and that these numbers are in

ascending sequence. Thus the routine is able to order all the data sets of

results in ascending sequence to facilitate the updating process. While

ordering these data sets, the routine checks for units have been refer

enced more than once. Where a unit does appear more than once in the data

sets, the results are accumulated forming just one data set for each unit

further facilitating the update process.

An auxiliary function of the routine is to provide the capability for

making changes to the status of forces file which are not machine
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generated, i.e., those that directly reflect a control decision. To execute

this, it is possible to introduce such changes by punched cards. So that

computer storage restrictions would impose no limitation on the number of

units that could be changed in this manner, the card changes are read for

only one unit at a time; the next set are read in after the first set of changes

have been made. These changes, therefore, must be in the same order as

the units on the file. Any datum for a unit can be changed except the

identification number. The number of such data changes is unrestricted so

that, for example, control could revise the number of personnel assigned to

a unit to reflect a decision regarding reinforcements, or it could alter all

the data attributes if necessary.

After the results of the model assessments have been ordered and a set

of control changes for one unit read in, the routine begins to read in the

status of forces file from magnetic tape. As each unit is extracted from the

file, a check is made to determine whether any of its data attributes are to

be replaced by those data of the control cards. (In the present system two

cards are required per unit.) If there are any, the new data are substituted

for the corresponding data comprising the file unit data set. Next the unit

data set is converted to the internal language of the computer, and a check

is made for the existence of any assessment results for the unit. When such

results are present, the file unit data set is updated with this information,

and the revised unit data set is stored within the machine. This process is

continued until all the units for one side (Blue or Red) have been transferred

from the file into the computer at which point the integration of all changes

for these units from control and the models should have been completed.

The reason for storing all the data sets of just one side is to provide

what is required for the execution of models that do not perform interaction

assessment calculations, but rather that accomplish what might be called

"recovery procedures". It is assumed that such models do not, therefore,

require access to unit data sets for both sides; as a consequence only the

data sets representing either Blue or Red units, respectively, are stored at

any given time for these models. By this approach a more effective utiliza

tion of storage space is accomplished. (In the THEATERSPIEL application of

the system, a logistics model was included at this point to perform consump

tion and resupply calculations for all units in the theater of operations.)

OUTPUT GENERATOR. After the model, or models, have been executed,

the system has only to generate the output. Output is generated after each

pass through the update-recovery portion of the system, i.e., after both the
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Blue and Red units have been processed. This involves selecting, in turn,

each of the unit data sets, converting the data into the output code,

arranging the data sets into the output format, and writing this material on

magnetic tape; in doing this the revised status of forces file is produced.

From the system then there results two forms of output: assessment

results and a revised status of forces file. In addition all input to the

system has been placed on punched cards. Thus all the quantitative

material of the play exists in machine language. These three items can

be retained for the work on the post-game analysis phase and provide the

initial means whereby this analysis can be efficiently executed by the

computer, thus accruing an important additional benefit from a computer

supported gaming system.
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CHAPTER 3

THE THEATERSPIEL COMPUTER SYSTEM. The computer system described

in the previous chapter has been designed for the THEATERSPIEL Study

(35.10, Strategic Division), for its POMEX series of war games. The

development of the system was accomplished through the joint work of this

study group and the Computing Laboratory staff; as such many of the

decisions concerning critical aspects of this development reflect the efforts

and decisions of both groups.

POMEX I was played during the latter part of July and the early part of

August, 19 61. In preparing for play (Phase I) and during play (Phase II) a

great deal of attention was directed towards providing for the efficient

employment of the computer system; at the same time much was learned

in applying the system. It is the purpose of the present chapter to present

some of the methods devised for the application of the computer system by

THEATERSPIEL, and in the following chapter to give some indication of what

one computer- oriented experience has gained for the study group, so that

other studies with a similar orientation may benefit from this first attempt.

PHASE I: THEATERSPIEL COMPUTER USAGE PREPARATIONS. It was

decided that the computer- oriented objectives for the play of POMEX I would

be to mechanize four separate models: an air model, a support weapons

model, a ground combat model, and finally a logistics model. The sub

stance of the models, coupled with the over-all objectives of the study,

determined the level of aggregation of play, i.e., the amount of detail to

be included. As a consequence the size of units to be played was that

of division level. Further the choice of the particular theater to be played

affected the decision as to what types of units were played. Finally the

data required by the models for each unit determined what characteristics

were used to describe the units. It was in this manner that the specifi

cations placed on the design of the status of forces file became evident.

The preparation of the status of forces file involved several stages of

development. First a unit designation system by which the units could be

identified was devised consistent with the various classifications of units

to be considered in the game; it was based on the use of five digits, the

pattern and use of which is illustrated in Table 1. It can be noted that there

can be no more than 100 units of any given type and nationality with the use

of this symbolic system, however the addition of one digit would increase
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this number to 1,000 and would remain compatible with the system in its

present form. The unit designation number as such was used throughout

the game by both the player teams and the control group when referring to

specific units. For map purposes, only the last two digits were used on

the unit symbols . However the color and shape of the symbol determined

the rest of the designation, and thus identification of units was accomplished,

After the scheme for unit designations had been developed, it was

necessary to specify what characteristics would form the various unit

data sets for each type of unit. Since each model required certain pieces

of data for each unit, all that was needed was to accumulate these require

ments. To be kept in mind in doing this, however, was the goal of compact

ness, i.e., where possible to have the data pieces serve more than one

model's needs. Table 2 contains the result of this effort. As can be seen,

there are six unit types represented for which in most cases the character

istics are the same.
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Table 1

EXPLANATION OF UNIT DESIGNATION NUMBER

First Digit: Allegiance

Second Digit: Type

В = Blue

R = Red

0 = AIR

1 = SAM

2 = SPT

3 =GND

4 = LOG

5 = STN

Third Digit: Nationality

Air unit

SAM unit

Support Weapons unit

Ground Combat unit

Logistics unit

Supply Point

0 = US

1 = BR

2 = FR

3 = WG

4 = BE

5 = NE

6 = SR

7 = EG

8 = PO

9 = CZ

Fourth and Fifth Digits: Identification Number

As desired

EXAMPLES:

B1234 =

R0601 =

United States

Great Britain

France

West Germany

Belgium

Netherlands

Soviet Russia

East Germany

Poland

Czechoslavakia

34th French SAM unit

1st Soviet Air unit
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For example, each unit data set except for supply points, which are a

special type of "unit", has a characteristic labeled "pers str" which is the

abbreviation used for "present strength"; this has a different meaning

depending on the type of unit described; for air units it describes the

number of planes, for SAM units the number of launchers, and for the rest

the number of men. This demonstrates what was achieved in striving for

compactness and applies to many of the other characteristics. An explan

ation of the meaning of the other- abbreviations can be found in Appendix A.

In the process of preparing the status of forces file the next step was

to design a suitable format. It has been previously indicated that the file

exists on magnetic tape, however the actual working file, which the player

teams and the control group use, is the listing made from the magnetic tape

on the High Speed Printer; the format was designed with this fact in mind

considering the size of the sheets of printer paper, the amount of material

on the status of forces file, and the clarity of presentation. The result was

a printer page containing, at most, eighteen unit data sets arranged in two

tables of nine units each with the data pieces of each unit data set placed

vertically with respect to one another. An example of this format is

provided in Table 3 .

For the other input to the computer two forms were used. Table 4 pro

vides a sample card format for the battle groups. Sheets similar to this

one were filled out by the control group to be key-punched on cards to be

read into the machine. The first six columns of the card contained the

unit designation number; the next six were used to specify the percentage

of the unit being employed in the case of air units or, in the case of ground

units, to indicate the type of terrain in which the engagement was to take

place; the third set of six columns was used to specify the type of engage

ment being fought, and the last six either the target for an air unit or an

alternative location for a ground unit. The remaining fifty- six columns

were reserved for comments, and although these were not a necessary

part of the computer input, they were used by the control group to supple

ment the records . The repetition of the number six is significant with

regard to the input and output of the system, and there is a reason for it.

The input- output is written in specific code, or language, which is

required by the High Speed Printer and which permits the intermixing of

alphabetic and numeric characters; as such it is only necessary for working

with the magnetic tapes (the status of forces file and the assessment

results), but the consistency it was decided to employ this same code when

using cards. In this way the entire input-output medium is written in the

one language; all pieces of data included can consist of no more than six
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characters due to translation of these data pieces into internal machine

language and the given work size within the computer.

This same idea applies to the changes to the status of forces file made

by the control group. These changes are punched on cards, and each six

columns on the card corresponds to one data piece of the unit data set.

Since each unit is described by some 2 0 data pieces, two cards are used

per unit (columns 79 and 80 are omitted). For example, columns 13

through 18 would contain whatever new data piece that should replace the

third data piece of the unit data set (counting the unit designation number

as the first). Referring to Table 3 suppose that control desires to change

the road in to the Russian armored division designated R3601, a card would

be prepared with the designation punched in columns one through five and

the new road in number, 512, in columns 16, 17 and 18. The revised status

of forces file for D+9 would then reflect the change .

In addition to designing the input formats, one output format had to be

prepared for the results of the assessments. A sample format can be seen

in Table 5 in which the results for three units are shown. For each unit

there are contained both its name and designation number, the date, its

new location (if it has been moved, as each of the three have), and the

various losses of the unit. The casualties are given in four columns; the

first three show the losses calculated by the assessment models (air,

support and combat) and the fourth the total casualties. Each page con

tains units of only one side, either Blue or Red; this is done so that the

results can be separated and distributed to the respective player teams.

Every unit specified within the battle groups in any given interval of play

will be included on the results sheets in this fashion.

During Phase I the four models were programmed and integrated with

the master program. A great deal of care was taken in the coordination of

this task to insure internal consistency within the resulting computer

system. Each model was written as a separate program which, when finally

a part of the complete system, could be entered from the master program and

exited as an internally logically distinct and independent program, requiring

only the input data external to itself, i.e., the unit data sets, the

initial addresses thereof, and the initial addresses for the results storage.

As this programming effort and the data preparation were completed,

attention was directed to determining what procedures would be followed in

the execution of play.
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CASUALTY ASSESSMENTS POMEX I

8 TK DIVISN

NEW LOCATION

ARTY

R3608

NB80 D + 8

CAUSE OF CAS

INPUT CAP

PERSONNEL

COMBAT POT

AIR OR SSM GROUND TOTAL

2365 0 0 2365

163 131 539 833

7 6 23 36

4 MTRZDIVISN

NEW LOCATION

ARTY

R3623

NA76 D + 8

CAUSE OF CAS

INPUT CAP

PERSONNEL

COMBAT POT

AIR OR SSM GROUND TOTAL

1503 0 0 1503

166 152 628 946

3 3 13 19

5 MTRZDIVISN

NEW LOCATION

R362

ARTY

NA78 D + i

CAUSE OF CAS

PERSONNEL

COMBAT POT

AIR

N

0

OR SSM GROUND TOTAL

159 656 815

18

N

3 15

E

TABLE 5

ASSESSMENT RESULTS FORMAT
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PHASE II; THEATERSPIEL GAME PIAY. The Blue and Red player teams were

each provided with a copy of the game scenario, their respective status of

forces file, and large maps of the theater of operations depicting the distri

bution of their units. Using these three sources of information, the player

teams developed their tactics and communicated the orders to execute these

tactics to the control group. This was accomplished in two ways. Large

acetate overlays indicating the movement of the units by the players were

transferred into the control room; this was supplemented by written material

stating the players' general objectives for the current interval.

After the overlays from both player teams had been merged with the

control map, the control group proceeded to define the resulting interactions.

The assistant controller for logistics judged the extent to which the (player)

indicated moves could be executed within the given time interval of play,

based on such factors as availability of transport and troop readiness. In

the process of thus advancing the units, both Blue and Red, it was the

responsibility of the controller and assistant controller for ground combat to

determine in what cases combat interactions would result and what units

would be involved in the action. Figure 3 displays a general diagram of the

combat interactions defined on the basis of indicated movement; Red

(darkened symbols) had indicated a thrust over the MLR (main line of resist

ance) thereby placing his units in the proximity of the fixed Blue positions.

This results in two separately defined interactions, the engagements being

grouped with the assumption that there will be no direct interaction among

the units of the two different battle groups. Next the assistant controller

for air operations committed air units for support of the respective forces, in

addition to stipulating any air interactions which were to take place, both

of these actions reflected the decisions of the players with respect to their

orders for the employment of air units.

As each of the battle. groups was thus defined, the information was

recorded on the control input sheets, each assistant controller being

responsible for filling out his own sheets. The input sheets were then

given to the assistant controller for machine operations who was responsible

for making a comprehensive check of all input sheets . Proper designation

of units, consistent interaction numbering, and completeness were among

the matters checked. After the examination of the input sheets was

completed, the information recorded was punched on cards which were then

checked and sorted for errors, and finally the computer system was run.

One set of output from the computer was separated to include only Blue

results and one only Red results and distributed to the respective player
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Fig. 3 - Battle Groups Defined
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teams. Duplicate sets of output were distributed among the members of the

control group, who then composed reports to supplement the machine record,

At this time, too, the assistant controller for intelligence used the results

to generate the intelligence estimates provided for the players.*

The play continued in this manner with the players each time using the

revised status of forces file together with the other information given them

by the control group to generate their new set of orders, until the controller

judged that the combat had achieved that degree of resolution which had

been initially desired, at which time the game was ended.

This short summary of the THEATERSPIEL computer play of POMEX I has

been included to serve as an indication of how the play of a semiautomatic

system can be implemented; in addition it has been written to provide the

background for a discussion of some of the problems realized in such an

attempt. Those readers more interested in the substantive aspects of play

are referred to the paper which has been written summarizing the history of

play of POMEX I . *

* In the first play of the system the intelligence model had not been

programmed, and thus this operation was performed manually. It is

anticipated, however, that it will be programmed and incorporated

into the computer system for the next play.
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Chapter 4

SOME CONSIDERATIONS ON THE SUBJECT OF COMPUTER USAGE

EFFECTS ON GAME ORGANIZATION . The effects on organization are

felt in several ways. First it becomes necessary to define precisely the

rules by which play is to be conducted. The rules must be well defined

so that the programming can reflect these rules; since the nature of

programming is the expression in symbolic language of a logical progress

ion of operations, the rules must be stated in a form conducive to the

accomplishment of this task. Secondly the procedures to be followed in

implementing the computer system during play must be equally explicit.

There must be a specific delegation of responsibility within the control

group, and each member of this group must understand at least the

fundamental principles of the operation of the computer and of the specific

programming involved. This is of importance if the maximum potential of

the computer is to be realized. If the operation of the system is to

proceed efficiently, the members of the control group should have a working

knowledge of the programs used. Superficially this may not appear to be

very necessary, however during the progress of play many unexpected

problems will arise, and the individuals concerned must be prepared to

cope with these rapidly. Furthermore an attempt should be made to provide

simple and concise forms for each step of the control operations in order

to avoid delays arising from errors and from misunderstandings.

There are two further implications which, broadly speaking, can be

considered a part of the organizational aspects of a semiautomatic system.

As the computer system increases in complexity, it becomes more difficult

to revise it. However if its development proceeds in a logical and orderly

fashion, this will tend to alleviate the severity of this problem. Care must

be taken to avoid the creation of a "black box" which becomes unmanageable,

Finally it must be realized that the use of the computer introduces new

responsibilities into the control room. One reason for using the computer

is to absolve the control group of many repetitive and tedious functions

usually associated with control procedures in a hand-played game. Never

theless in diminishing the magnitude of these efforts, it is possible to

create new and more tedious difficulties related to the use of the computer,

since it creates the requirement for high standards of accuracy.

THE QUESTION OF ACCURACY. The matter of accuracy in working with

a computer is two-sided. First information prepared for the computer must
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attain high standards of accuracy. Errors made in preparing input for the

computer can cause the system to fail in its operation, resulting in un

necessary delay, or the errors can go unnoticed with the consequence that

they are perpetuated into successive stages before they are detected.

Here again proper organizational procedures can alleviate the difficulty;

it must be realized, however, that the final responsibility in this area lies

with the personnel of the control group, further emphasizing the need for

their proper understanding and knowledge of the system.

Secondly the computer provides the means for greater reliability in the

accuracy of the results of the game. (This is not to be confused with

validity.) Once the programs have been properly checked out, there need

be no concern for errors in the computations . Furthermore the speed and

capacity of the computer allows for more comprehensive calculations . Not

only does the computer enable the system to include more elaborate methods

of calculation that would be infeasible when performed by hand, but it also

allows many more factors to be considered, and in greater detail. Of

course, this opportunity should not be unnecessarily exploited; it is possible

to design a system which provides too much detail. If a player team is

given an overabundant amount of information including much irrelevant

material, some of it will tend to be ignored and will be of no use. Another

aspect to be treated in a cautious manner is the temptation to compromise

the game rules, or the corresponding calculations within the models, to

adjust to the requirements of the computer. Frequently times will occur in

which certain calculations present a problem in their translation to a pro

grammed sequence. In resolving the difficulty the programmer must avoid

an arbitrary compromise for the sake of programming clarity. In addition

to this, certain operations may arise for which the programming approach is

not immediately evident. Approximating the operation must be done with an

appreciation for the error introduced; consideration must be given to the fact

of whether or not this error will tend to cancel out during the remainder of

the calculations or be intensified. From this discussion the reader should

be aware that the problem of accuracy can work for or against the system,

although it will generally be positive factor if the proper attitude is adopted

when designing the system with regards to organization and procedures.

In summary, there is a certain danger to be avoided in the use of a

computer in the gaming environment. It must be remembered that the function

of the computer in this environment is to support the control operations. If

the computer receives too great an emphasis, its very advantage can be

turned into a detriment with too little thought being afforded to substance and

too much to method. Yet if concentrated attention is directed towards the
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design of the system in the pre-game planning phase, the degree to

which the game play becomes subordinated to the computer operation is

reduced to a level at which the efficient relationship between man and

computer is achieved.

APPLICATIONS. The system described in this paper could be used to

provide a satisfactory approach to any gaming environment similar to the

one outlined in Chapter 1. This is one in which there is a basic concern

for the quantitative assessment of the interaction among some fundamental

entities , and one in which there is a need for the consideration of a

great number of these entities and quantitative factors describing them.

Further there should be a requirement for logically distinct operations to

be performed in the calculation of these interactions which must be

repeated a sufficient number of times to warrant their mechanization.

Finally there should be a desire to maintain the separation of the human

decision functions and the quantitative analysis resulting from these

decisions, and yet the desire to maintain the interrelationships involved.

If these conditions are met, then the semiautomatic system discussed

could be utilized in any one of three ways. At the first level of utilization,

the method of approach might be applied to other studies, thus substantially

reducing the necessary planning effort involved. That is, it could be

applied as a logical system. At the second level of application, the

interpretation of this logical system, the master program, could be adapted

with a few slight revisions to other systems into which the pertinent models

could be incorporated. In this case all that would be necessary would be

to construct these models in a fashion consistent with the requirements of

the master program maintaining the basic operations outlined in Chapter 2.

Finally the third level of utilization would be one in which the whole system

would be used in totó including the models programmed by THEATERSPIEL.

This, however, requires a more detailed understanding of the substance of

the system and entails reference to the papers describing these models. '°'7

LIMITATIONS. There are two major limitations to be considered when

discussing the feasibility of this approach to war gaming. There was some

mention made in Chapter 2 of the problem of storage within the computer and

in the first section of this chapter of the difficulty involved in making changes

to the routines as the programming becomes progressively more complex. The

latter is by far the more important. For example, if it were desired to revise

and improve one of the models, the changes necessary would more than likely
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affect the other models. This snowballing effect would vastly increase

the time required to make the alteration. The greater the departure of the

new requirements from the original ones, the more difficult will be the

task of adjusting the system to suit these new requirements.

The problem of internal storage can be solved, although at the expense

of operating efficiency. Extensive use of magnetic tapes can provide ah

almost unlimited storage capacity for the system. In doing so, however,

it must be realized that the speed with which the operations can be

accomplished will consequently be compromised, since tape storage, as

opposed to internal storage, has a much slower access time for computa

tional purposes. As presently designed the THEATERSPIEL semiautomatic

system's use of tape storage is minimal with the result that one complete

computer run of the system is accomplished in about fifteen minutes. It

can be anticipated that a significant increase in the use of tape would

double or triple this time. Moreover the reliance on greater usage of tape

storage would entail revising the logic of the presently programmed system

which in itself would require some time (in the order of months) to

accomplish.

EVALUATION . In general there are two major criticisms made of war

gaming as a means of problem solution; one is with respect to timeliness

and the other with regards to cost . It is the purpose of this section to

demonstrate that in terms of these two criticisms, the semiautomatic

system is a significant advancement in the state of the art. There are

frequent references in the literature about the expense gaming entails,

and furthermore that it is such an extensive and time-consuming operation

that by the time the game is finished and the study completed, there is

no longer a requirement for the results. THEATERSPIEL1 s first play with

the system in POMEX I would tend to support the view that by the use of the

semiautomatic system, this need not be the case.

After the initial period of familiarization and orientation to the use of

the system the last 10 intervals of play of POMEX I were completed over

a span of 2 weeks . It is estimated that to play a hand game with a

similar degree of complexity and detail which the use of the computer

permitted would require approximately 3 weeks of real time for each interval

of game play. Assuming in both cases the need for the full-time efforts of

10 analysts, together with any necessary additional support, the cost per

game interval if played by hand would be about $30,000; whereas using the

semiautomatic system, the cost per game interval would be about $2,100.
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Thus the total cost for 10 intervals played by hand would be $300, 000

and would take about 30 weeks, whereas with the semiautomatic system the

10 intervals were completed in 2 weeks (10 work days) at a total cost of

$21,000. Of course, this description is incomplete unless the time spent in

developing the system is considered. The preparation of the computer

gaming system took about 6 months; this estimate includes design planning,

data collection, programming, debugging and education. This information

is summarized in Table 6.

Table 6

TIME AND COST OF HAND PLAY VERSUS THE SEMIAUTOMATIC SYSTEM

Hand- Computer-

Played vs Assisted

Game Game

3.0 0.2

$30,000 $2,100

Real Time/Game Interval (Wks)

Estimated Cost/Interval

Time for Preparation and Play

of POМЕХ I (Wks) 30 2 8

Cost of POMEX I $300,000 $294,000

But this table too is incomplete, in two ways. First the estimate of time

for preparation to play the game by hand should be revised with the

consequent effect on cost. Much of the same work required in preparation

for play with the computer-assisted system would also be required in

preparing for hand play. The same data would have to be obtained, the

same models prepared for use (though in a different form), and many of the

same procedures would have to be devised. Thus in effect this would

increase substantially the time and cost estimates for a hand played game.

The second area in which the presentation of Table 6 is deficient is with

respect to the ideal of future plays. The saving is demonstrated most

dramatically when considering future uses of the two approaches. Speculat

ing as to a future play the results might appear as presented in Table 7.
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Table 7

TIME AND COST FOR A TWENTY INTERVAL FUTURE PLAY

Hand Computer

Played vs Assisted

Game Game

Real Time/Game Interval (Wks) 3.0 0.2

Estimated Cost/Interval $30,000 $2,100

Time to Play POMEX II (Wks) 60 4

Cost to Play POMEX II -$600,000 $42,000

From this it can be seen that each repeated usage of the system will

increase the practicality of its development. However, this also

demonstrates the fact that where only one game play with the system is

desired, the merits of the computer^assisted game are not sufficiently

obvious. Nevertheless each future use of the system adds to the merit

of its original design and development.

There is another significant difference to be noted between these two

approaches which has a bearing on the criticism of timeliness. It has

been pointed out earlier in this paper that the post-game analysis phase

can be made far more efficient and profitable if the computer is put to

good use. This is especially true when the computer-assisted system

has been used, since all the data to be analyzed already exist in machine

form on punched cards and magnetic tape. Thus the problem of organizing

the game data for analysis purposes can greatly be diminished by the use

of the computer-assisted system.

In conclusion, the advantages gained during the game play phase and

post-game analysis phase with regards to time and cost would seem more

than to compensate for any lengthening of the pre-game planning phase.

Finally in those cases where a number of plays of the system are desired,

the computer-assisted game seems to be a vast improvement over the hand-

played game in terms of both time and cost.
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Appendix A

TABLE OF MEANINGS FOR UNIT ATTRIBUTES

NAME OF UNIT:

UNIT DESIG:

LOCATION:

ACTIVITY:

ROAD IN:

PRIORITY:

MAX INPUT CP:

PRES INPT CP:

TON/100 MEN:

PRES STR:

PRIOR STR:

AUTH STR:

OH SUPPLY I:

II AND IV:

III:

Actual name of unit.

Designation number of unit (explained in text) used in

game system .

Geographic position of unit.

Mission of unit in given interval of play.

Number indicating supply point from which supplies

are to be obtained.

Number indicating relative importance of unit in

obtaining supplies.

The upper limit (or original value) of a unit's capacity

to receive supplies.

Capacity of unit to receive supplies during given interval.

Total authorized weight of unit per each 100 men.

Number of men in unit available for combat at end of

given interval.

Number of men in unit at beginning of given interval.

Original number of men assigned to unit.

Total weight (in tons) of Class I supplies unit has

available.

Total weight (in tons) of Class II and IV supplies unit

has available .

Total weight (in tons) of Class III supplies unit has

available .
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OH SUPPLY V:

AIRFLD CAP:

NUMB SORTIES:

PREV FIRINGS:

WEAPONS:

COMBAT POT:

MAX SUP STRD:

PRS SUP STRD:

ROAD OUT:

1-10

Total weight (in tons) of Class V supplies unit has

available.

Number representing the capacity of an airfield to

expedite air operations.

Number of planes flown during last interval.

Number of missiles launched during last interval.

Index of combat value for support weapons units .

Index of combat value for ground combat units.

The upper limit on amount of supplies a supply

point can store .

The amount of supplies a supply point has stored

during given interval.

A number indicating which units can obtain supplies

from given supply point.
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TRANSIENT NUCLEAR RADIATION EFFECTS

ON ELECTRON TUBES AND TRANSISTORS

Richard G. Saelens

U. S. ArmySignal Research and Development Laboratory

Fort Monmouth, New Jersey

INTRODUCTION . The magnitude of the nuclear radiation effects program

at USASRDL has grown considerably during the past year. Although con

siderable exposure -type investigations have been performed at other

facilities, approximately one and one-half years have elapsed since a

Godiva-type reactor was available „ This paper will describe a large-scale

exposure at the Godiva reactor. The magnitude of this effort was made

possible by the 16 -month delay. By capitalizing on the interim period

between experiments, a program was designed to permit the exposure of

approximately 600 electron tubes and solid state devices. The objective

of this experiment was to obtain information on electron devices which

could be utilized by electronic equipment designers. In order to provide

these data, sample sizes were selected which would provide statistically

valid information. Although some question may arise as to the sample sizes

chosen, other factors including economics and availability of exposure

space and test equipment were also considered. Approximately 20 types

of transistors were exposed (sample size approximately 25 each), and 10

types of electron tubes (sample size approximately 10 each). The experi

ment design included data on controls not exposed to the radiation environ

ment, data acquisition on other environments, parameters which could

possibly have an effect, such as ambient temperature, and controls over

as many conditions as possible. In addition, controls were exercised over

the operation condition and capability of the test equipment« The experiment

was performed in late August 1961 instead of May 1961 as originally planned

and, therefore, the complete analysis of the vast amount of data could not

be accomplished. The data obtained during this experiment are still in

the process of being reduced. Complete data analysis is being performed

at USASRDL, and also will be performed under contract.

RADIATION EFFECTS MOBILE LABORATORY (REML) . The magnitude of

this experiment necessitated the design and instrumentation of a special

mobile laboratory. This consisted of a 28' trailer equipped with energizing

circuitry, FM tape recorders, oscilloscopes, oscilloscope cameras,

temperature recorders, and ambient temperature controls. The interior of

the trailer showing the magnetic tape recorders and electron tube circuitry
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can be seen in Fig. 1. (Figures are at the end of this article.) The temper

ature recorder, transistor circuitry, power supplies, and digital voltmeter

are shown in Fig. 2. A special rack designed to accommodate six oscil

loscopes is shown in Fig. 3. In order to minimize circuit changes between

exposures, printed circuit boards were utilized for the electron tubes.

Through the proper selection of dropping resistors, the correct voltage is

applied to each tube type without changing the supply voltage (Fig. 4).

INSTRUMENTATION. The recording instrumentation of the REML

consisted of five 14-channel high-speed magnetic tape recorders and four

dual-beam oscilloscopes. The oscilloscopes were used to simultaneously

monitor certain tape inputs. This information was used to verify the valid

ity of the tape data, and provided immediate information at the site on the

transient changes occurring in the devices under test.

A block diagram of a typical exposure during the experiment is shown

in Fig. 5. Cables from the exposure head are connected to a junction box

placed inside the Kiva (building housing the reactor). Typical exposure

heads are shown in Figs. 6, 7, 8, and 9. Note the sulphur pellets mounted

directly in the potting material on the transistor test heads. The junction

box is shown in Fig. 10. Cables from the junction box feed into a patch

panel on the side of the trailer and are, in turn, connected to the tube

and transistor circuitry. Transistor outputs are fed into differential pre

amplifiers before they are recorded on magnetic tape.

A digital voltmeter with printout was utilized in the transistor monitoring

system. Through a series of stepping switches, it is possible to monitor

100 channels of information. The stepping rate is 0.5 sec. The information

recorded in digital form is used for pre- and post- radiation measurements.

EXPOSURE OF DEVICES.

a. Solid State Devices:

The following is a list of solid state devices which were exposed

during the experiment:

Special Computer Devices: Germanium 2N1304, 2N1305, 2N1306,

2N1307, 2N710, 2N101, 2N100
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Silicon Switching Devices: 2N706

Power Transistors: Germanium 2N797, 2N1309, 2N1043, 2N1046

Silicon: 697

General Purpose Devices: Germanium 2N1406

Epitaxial Devices: 2N743, low signal silicon 2N335 and 2N726

Several diodes were also exposed, such as the 1N752, XR-39, 1N652,

and a GaAs Varactor diode. Parameters were monitored on all devices during

and after the radiation pulse.

b. Electron Tubes:

The following electron tube types were exposed: 2582 and 7457

power tubes, Nuvistor triodes and tetrodes, 6J6, 12AT7, 6AQ5, 6943, 7244,

2146, 1724, and a Z-2352. Plate current, I., grid leakage current, I ,

and a-c signal gain, e were measured on these devices before, during,

and after the radiation pulse.

SANDIA PULSE REACTOR FACILITY (SPRF) . Briefly, the characteristics

of the SPRF are as follows:

60 >us pulse width at half height

16

3 x 10 leakage neutrons/burst

20
3 x 10 neutrons/sec peak leakage rate

10 13 n/cm2 E > 1 Kev

17 2
2 x 10 n/cm. sec peak intensity

2000 - 3000 rads gamma dose

7
2-3 x 10 rad sec
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32

DOSIMETRY. Fest neutron dose measurements were made with S

32
pellets. S pellets from USASRDL were exposed in pairs during several

shots in order to obtain corroboratory information. Additional neutron dose

2 39 237
measurements were made with Pu (E >■ 1 Kev), Np (E > 0.7 Mev) ,

238
and U (E >■ 1.5 Mev) foils furnished by Sandia. Gamma dose measure

ments were made with USASRDL NBS film-badge type dosimeters and micro-

dosimeters (glass rods). Gamma dose rate was measured with the MgO-

RAD* and SEMIRAD.

DATA ANALYSIS. The complete plan of analysis requires the data to be

treated as follows:

Transfer the information from the magnetic tapes to a visual form. This

may be accomplished by means of a visicorder.

Compare this information with the data which were taken simultaneously

on oscilloscopes during the radiation pulse. The oscilloscope pictures

and the visicorder information should be compared for any discrepancies.

If discrepancies are observed (due to bandwidth limitations in the magnetic

tape system), correlations should be made to compensate for any errors

which were introduced.

The data should then be normalized in order to eliminate the measured

parameter variations due to variation in burst yields.

Representative curves are to be plotted for each type of electron device,

and confidence levels indicated.

Adequate statistical methods will be employed during this and other

phases of the analysis.

The method of data acquisition (i.e. , recording presentation) utilized

in the experiment will be compared with the methods used by other investi

gators. An optimum method of data acquisition will then be proposed.

Based on the results of the above analysis, recommendations will be pre

sented for the design of future experiments.

*Magnesium Oxide Radiation Detector
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This plan could not be completely accomplished in the short period of

time between the conclusion of the experiment, the return of the mobile

laboratory, and the present time. What is reported here are the results

obtained to date.

RESULTS.

a. General:

Equipment failures during the experiment resulted in a partial loss

of information during two shots. Three tape recorders malfunctioned during

one exposure, and one recorder during a second exposure. These mal

functions resulted in a total of less than four percent of the data.

Electron devices were exposed during 16 shots. The information

recorded on magnetic tape was translated into visual form by playing the

tape data into oscilloscopes at the laboratory. Polaroid pictures were

taken of the waveforms. The magnetic tapes will also be played back into

a visicorder in order to determine long-term recoveries on certain transis

tors. Recording at 60 inches per second (ips) and playing back at 1-7/8

ips produces a 32:1 reduction in tape speed, and is compatible to the band

width of the visicorder. A comparison was also made of the waveforms

which were recorded directly on the oscilloscope during a burst to the data

which were played back from the tapes. The waveforms were identical.

b. Electron Tubes:

Representative results obtained on electron tubes are shown in the

following figures. The bottom trace of Fig. 11 depicts the a-c output of

the 7244 ceramic tube. The top trace represents grid leakage current.

The internal construction of this tube is identical to the 1724 ceramic tube

except that the active internal elements are mounted in a T-6 glass

envelope. Fig. 12 is the same as Fig. 11 except that the horizontal sweep

time on the oscilloscope is 0.2 ms/cm vs. 0.5 ms in Fig. 11. The a-c

output of a conventional 6J6-type electron tube is shown in Fig. 13. The

7244 and 1724 have the same electrical characteristics as the 6J6.

The a-c output of a 1724 ceramic dual triode is shown in Fig. 14.

As stated previously, this tube type is identical to the 7244 except for the

ceramic envelope.
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Direct -record amplifiers, although offering a higher frequency

response than FM, introduce a phase shift. This phase shift, using a

direct-record amplifier, is shown in Fig. 15. The signal in Fig. 14 was

recorded directly onto an oscilloscope. Fig. 15 was recorded on tape

through a direct-record amplifier. The phase shift is caused by the low

frequency response of the direct -record amplifier. This does not occur in

the FM record-reproduce system.

The a-c output of the 12AT7 is shown in the bottom trace of Fig. 16.

The top trace is the grid leakage current. The 2225 is the ceramic equi

valent of a 12AT7 glass triode. The a-c output and grid current signal of

a 2225 -type electron tube are shown in Fig. 17. The signal was recorded

through a direct-record amplifier. Several direct-record amplifiers were

utilized because a limited number of FM amplifiers were available. During

future experiments, the tape system will be completely FM.

The a-c output of the 6AQ5 is shown in Fig. 18. The 2146 metal-

ceramic tube is the equivalent of a 6AQ5 glass-type tube. The a-c output

of the 2146 is shown in Fig. 19.

The a-c output of two 6943-type electron tubes is shown in Fig. 20.

The 6943 is a subminiature glass pentode.

The a-c output of a Z-2352 stacked ceramic triode is depicted in

Fig. 21.

Nuvistor triodes and tetrodes were irradiated at several positions.

Fig. 22 represents the a-c output of a Nuvistor triode located at the reactor

scree. A Nuvistor triode positioned 8-1/2" from the screen is shown in

Fig. 23. The Nuvistor triode a-c output at a distance of 4-1/2" from the

screen is shown in Fig. 24. The Nuvistor tetrodes exposed at the screen

and 8-1/2" from the screen are shown in Figs. 25 and 26 respectively.

Before the data on solid state devices is presented, I would like to

report the results obtained on the MgO-RAD detector. It is presented at

this point because it is a vacuum device. Essentially, the active element

of the MgO-RAD consists of a titanium cylinder approximately 1/2" in

length and 1/4" in diameter. Inside the Ti envelope or cylinder is a

collector electrode concentric with the outer envelope. A ceramic spacer

is used as an insulator between the emitter and collector. A negative

potential of 300 V is applied to the emitter while the collector is at +300 V.
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The inside of the Ti envelope is coated with a layer of specially processed

MgO. Secondary electrons (Compton and photoelectrons) ejected from the

Ti envelope cause a multiplication of electrons through the MgO layer. It

is estimated that a multiplication factor as high as 1000 may ensue.

The MgO-RAD operates on the SEMIRAD principle, i.e. , secondary

electrons; however, the multiplication which is produced permits a small

detector size with a high output. A typical radiation pulse detected with

the MgO-RAD is shown in Fig. 28.

c. Solid State Devices:

The data compiled on solid state devices are in the process of

further analysis. The following information is presently available:

Fig. 29 shows the transient change in I in a germanium (Ge) n-p-n
OU

developmental transistor. The peak leakage current is 82^a. The neutron

dose during this shot was 1 x 10 NVT. Although the gamma dose rate was

recorded on one channel on each tape recorder, the SEMIRAD detector

which was utilized failed to function properly. Additional data were ob

tained on an oscilloscope with another gamma detector, and an attempt

will be made to correlate the peak gamma dose rate with the peak I
со

for various devices.

The top trace in Fig. 30 shows the change in H„E of a silicon

2N706 n-p-n transistor. This corresponds to a 25% decrease in HpF.

The bottom trace represents the transient increase in I during the
CO

burst.

The change in H on a 2N1039 germanium p-n-p power transistor

is shown in the top trace of Fig. 31. The bottom trace is the change in I

The response of a 2N710 germanium p-n-p type transistor is shown

in Fig. 32. Trace A is the change in НрЕ, while Trace В is the transient

12
change in I . The neutron dose is approximately 10 NVT.

CO

Fig. 33, Trace A shows the change in Н_„ of a 2N1305 germanium

p-n-p transistor. The peak leakage current is shown in Trace B.
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Fig. 34, Trace A shows the permanent damage in a 2N406 germanium

xansistor after a neutre

В is the transient change in I,

12
p-n-p transistor after a neutron dose of 1.1 x 10 NVT. The bottom Trace

CO"

CONCLUSIONS.

Transistors:

The transient and permanent changes in I and HpE shown for

the transistors are representative of each type. Upon completion of the

analysis of these data, confidence limits for each type of device will be

available. Variations in I and H^ will be correlated to gamma rate,
со FE

neutron dose, and type of device - base width, alpha cutoff, etc.

In general, the transient change in I is proportional to the gamma
OU

dose rate, and the permanent change in H„p is proportional to the inte

grated dose.

b. Electron Tubes:

Transient changes occurring in electron tube operation appear to be

caused by electron emission (photoelectrons, Compton electrons) from the

elements in the tube structure. Under static conditions (no input signal),

an increase in plate current would be observed during the duration of the

radiation pulse. Under normal a-c signal operation, this increase in

plate current causes the tube to operate or amplify on the non-linear

portion of the i, vs. e curve. After the radiation pulse, the tube re-
b g

sumes normal operation with no permanent damage.

Circuit time constants associated with different tube types will be

a contributing factor to the time interval before the tube will resume normal

operation. Materials in the tube and type of tube geometry will also be

a significant factor.

In general, both the ceramic and glass tubes appear to exhibit the

same transient effects during the radiation pulse. The ceramic-metal tube

in which the metal envelope is internally connected to the plate exhibited
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the greatest effect. This would be consistent with the a fore -mentioned

theory, inasmuch as additional electrons would be liberated because the

physical cross -section is greater.

The Nuvistor triode showed almost negligible effects during the

radiation burst, which is attributable to the type of construction and size.

The Nuvistor tetrode showed greater effects during the burst. This can be

related to the external cap which is the plate connection.

Other effects, such as gas liberation, changes to insulation re

sistance are possible in certain types of tubes. Additional studies will

be performed in order to evaluate different types of electron tube construction

and to investigate the mechanisms which produce the transient effects.

c. Dosimetry:

The results obtained with the NBS film badge dosimeters were in

consistent with the data obtained with the micro-dosimeters. Darkening

of the film by neutrons causes this error. The correction factor for neutron

darkening was larger than the actual gamma dose.

32
The USASRDL S neutron dose measurements were higher by approxi-

32
mately a factor of two over the Sandia S neutron dose. This was attri

buted to the fact that a different cross-section and calibration source were

used by USASRDL.

The MgO-RAD compared favorably with the Sandia photodiode. The

output of the MgO-RAD was proportional to the -A T (temperature rise or

yield) of the reactor.

In conclusion it may be said that the Radiation Effects Mobile Laboratory

will permit multi -parameter measurements during radiation effects experi

ments. In addition, the design of the instrumentation in the REML has

proven to be extremely rugged.

Further experiments will be conducted after a complete analysis of the

data obtained on the 600 electron devices. The results of the analysis

will determine the design of the next experiment.
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FM TAPE RECORDERS AND ELECTRON TUBE CIRCUITRY

Fig. 1
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RADIATION EFFECTS MOBILE LABORATORY

temperature recorder, transistor circuitry, differential pre-ami

power supplies, digital voltmeter and printout

Fig. 2



RADIATION EFFECTS MOBILE LABORATORY

UNIT HOUSING SIX OSC ILL ISCOPES AND POWER SUPPLIES

Fig. 3
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ELECTRON TUBE INSTRUMENTATION UTILIZING PRINTED CIRCUIT BOARDS

F ig. 4
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JUNCTION BOX

Fig. 10
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RELIABILITY TESTING AND ESTIMATION

FOR SINGLE AND MULTIPLE ENVIRONMENTS (Preliminary Report)

S. K. Einbinder

Picatinny Arsenal

Ingram Olkin

Stanford University

1. INTRODUCTION . In this age of complex missiles and costly weapon

systems, reliability has become an important objective. Programs for

assuring high reliability are now considered a basic part of the development

plan for new warheads and fuzes at Picatinny Arsenal. The environmental

factors or stresses, such as temperature, vibration, acceleration, rough

handling, etc. , to which a weapon is subjected are many, and vary widely

in level of severity. In addition they may be encountered singly and multi

ply, simultaneously or in sequence.

Our problem is concerned with the testing and estimation of weapon re

liability. The term "weapon" may refer to a "warhead," a "fuze," a*safing

and arming mechanism (S and A)," etc.

In order to establish high reliability, large sample sizes are generally

required, greater than are usually available in a development program for a

complex and expensive item. To obtain the most information with the least

expenditure of samples and funds, research is being conducted by many

investigators into new and improved statistical methods for solving the

reliability or failure estimation problem. There are many phases of the

problem that still require a realistic solution.

We first define the basic problem and the quantities we are trying to

estimate and then indicate procedures for making point and interval estimates,

These procedures will assume that some estimates of the failure distribution

parameters are available.

Lastly, a ray method for estimating the distribution parameters for the

multivariate stress case is described.

2. UNIVARIATE CASE. We first present the estimation problem for the uni

variate case. The distribution of failure stress of a weapon or other item

may be estimated by testing to failure. The cumulative distribution function

of the failure stress X represents the probability that the failure stress is

less than x or the proportion of the population whose failure stress is below

the value x (Fig. 1) | Figures start on page 2 75 1.
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If the distribution of applied stresses actually encountered in use, h(x),

is known, then the average probability of failure in use is given by:

Eh [F(X)] = j h(x) F(x) dx '

where R = (x : - ~ < x <• c} is the region over which the use distri

bution ranges. In general, the use distribution h(x) is not known. How

ever, upper and sometimes lower limits of the applied stress which the

weapon must withstand are generally specified in military specifications.

If с represents the upper limit of some stress variable, say temperature,

then by the mean value theorem for integrals, it is evident that

F (с) > E [f (X)]

i.e. , the failure probability at the upper limit of the stress variable is an

upper bound for the average probability of failure in use. The point с will

be referred to as a critical point or stress. It should also be noted that

Reliability = 1 - Probability of Failure. Thus our objective is to determine

or estimate

с

F (с) =J dF(x) = Pr{x< cj> ,

where с is a known critical stress. For the normally distributed uni

variate distribution with mean ц and variance <y , the proportion of

the population below с is given

"C Г 21 2

F(c) = l— I exp - - (x " ft ) dx = g (M, a ; с)

c/277- -í L 2 2 J 1
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Thus our problem is to estimate g, which is a function of the population

parameters, based upon a sample of size N from a normal population.

3. MULTIVARIATE CASE. The problem may be generalized to the multi

variate case where the failure distribution is a function of more than one

stress variable. A geometrical interpretation is shown in Figure 2 for the

bivariate case.

In the case of p variables, where the use distribution is

h(x) m h(x , . . . , x ) and the cumulative failure distribution is

1 Р

F(x , . . . , x ) = F(x), then the average probability of failure in use

under joint action of the p stresses is given by

rl fp

Eh[F(X)] -J ...J h(x) F(x) dx,

where (c. , . . . , cD) represents the upper limit or maximum level of each

of the p applied stresses. As before,

F (с) > E^ ÍF (X)] .
h L j

For the multivariate normal distribution, with mean vector

f* = (/*., ...,/i ) and (positive definite) covariance matrix

У = (ст..) : P x p, our problem then is to estimate

F(c) =

p/2._,l/2

(27Г) И

cl CP

/ ...J exp [- — (x-/a)Z (x - Ц )']dx^g,(^,¿];c)
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Thus, the general problem may be summarized as follows: Based upon

a sample of size N from a normal population, it is required to estimate the

g functions defined for the univariate and multivariate cases both by point

estimation and by confidence limits.

The g functions defined so far were all one sided, i.e. , they represent

the proportion of the population in one tail of the normal distribution. In

reliability work, we are primarily concerned with the one sided case. How

ever, the results can be extended to the two sided case which is of interest

in other applications.

4. POINT ESTIMATION. We now consider the problem of obtaining point

estimates of the g functions for the univariate and multivariate cases. In

Section 4.1 we consider the use of the maximum likelihood estimates of u

and <T , and in Section 4.2 give a discussion of uniformly minimum

variance unbiased (UMVU) estimators. In order to facilitate the presentation,

the mathematical details and derivations are deferred to the Appendix.

4.1 Maximum Likelihood Estimates. Since the sample mean x = V* x /N

2 N - 2

and sample variance s =]Г (x. - x) /N is a maximum likelihood estimate

, 2 ' 2
of ( u , с ), it is intuitively reasonable to consider g,(x, s ; с) as an

2
estimator of дЛд , <S i с) , and the following asymptotic results provide a

more tangible justification.

2

Since g,(x, s ; с) is a function of the sample moments, it follows that

- 2
g. (x, s ; с) is asymptotically normally distributed, namely,

(1)

[9 9 i

g (x, s ; с) - g {[л, с ; с)]

<Р 1 +
N-1 / с - x ?

2N

1/2

•* N(0,1) ,

where
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»Pf) ■
1

27Г b

exp
-- I—)9 l Ь '

(see Appendix)

The latter result may be used for obtaining asymptotic confidence

intervals.

In the multivariate case the expressions are more complicated. Let

x = (x. , . . . , x ) be the vector of sample means, S ■ (s..) be the

p x p sample covariance matrix. Then g_.(x, S; c) is asymptotically

normally distributed, namely,

(2)

[gp(x, S; c) - gp (/*,£; c)|

Vv_(x-, S)

N(0, 1) ,

where

(3) V i*,D
Л'

p

+ vv ■

ij = l

and where, for example,
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.4, H,--,—

1/2
i л I co -Э-) с -a„

VM |Л22| Г' 2 Г13 P 1 A

— — • . . / ехр(--я- z/j z')dz ,
■\IZ t* _n/o v -' A 2Z

11 ' (2"ir)

(P - 11/2

where a. = u + (c - Д) ¿г /¿к,,- j = 2, . . . , p,

J J 1 1 ij 11

(5) (1+ S..)H.. = -A., g (и. T.'' c>

ij i] i] P

Л|

1/2 с - л

(2 7Г-)

P/2 "i
J

1 г 1

/

с - и

P Р

С ^Xrfl ) <£ zß X .) ехр( - -L zA2.) dz ,

х is the Kronecker delta,
i]

1 =

<r
11

z.
22

'Mi

A.

A

Л

\-l

= Л
-i

22

(see Appendix). The difficulty in actually carrying out the computations

lies in the computations of H. and H.., since these involve the tails of

a multivariate normal distribution. For p = 2,3, tables are available

which permit the computations of the H. . The determination of the EL,

may have to be carried out by Monte Carlo methods. This investigation is

still incomplete.
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4.2 Uniformly Minimum Variance Unbiased Estimation. UMVU

estimators of the g functions have been obtained for a number of cases,

and we now present a summary of these results.

2 2
When С is known, the UMVU estimator of д.(„, ^ ; c) is

Vn/(N - 1) (c-x)Ar

1 1 2

— exp ( t ) dt ,

2T 2J

2

and for ¿Г unknown, the result is

/'

Г n 1 (x - c)VÑ""
max 0, s Yr

L 2 2v VN - 1
t[(N-2)/2]-l &N-2)/2]-l

B(l-l,f-l)

2 2

dt ,

2 2 2
where v = Ns ■ ¿] (x. - x) . These results were obtained by Kolmogorov

i

[lj, and Lieberman and Resnikoff [2j . The two-gijded univariate case is

also given in I 2] . Washio, Morimoto, and Ikeda [3J consider the expo

nential family, rather than just the normal distribution, and give a number

of results concerning unbiased estimators. Schmetterer 4 considered a

more general type of problem but in the framework of the univariate normal

distribution, and this was extended to the multivariate normal case, as

well as to other families of distributions, by Ghurye and Olkin [5J . The

UMVU estimator for the p-variate normal distribution was obtained in 5

and by Lieberman 6Г.

When У , the population covariance matrix, is known, the UMVU

estimator of g (yu.,£]; c) is given by
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,1/2 r (с - x ) Vn/(N - 1) „ (с -x ) /N/(N - 1)

Д Г 1 1 f P P

(2.)P/4

exp( - 1- tAt') dt ,

and when * is unknown, the result is

Г

N -11

-1/2 / -1 [(N - p - 1)/2| - 1

[-IN-P-H J

' 2 R

V| (1-tV t) -' dt

where V = N S, R = |t : — < t. < (c. - x.) Vn/(N - 1) , i = 1 p,

tV t' < 1 -

Whereas for the univariate case the UMVU may easily be found from

tables of the normal distribution and the incomplete Beta distribution; the

integrals for the multivariate case are more troublesome, and numerical

methods and approximations may have to be used.

5. CONFIDENCE INTERVALS. Next, we consider the problem of obtaining

confidence intervals for the g functions. In the univariate case,

2 (c - * V* exp ( - \ t2)

g, ( m / ; с) = ' dt

1 J— v^

From the fact that л/И-\ (c-x)/s, or equivale ntly, yN(N-l) (c-x)/v,

2 2
where v = NS , has a non-central t -distribution with N - 1 degrees
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of freedom, and the monotonie nature of the function, we can obtain exact

confidence limits using the tables of the non-central t-distribution, |7|

or Ы .

Resnikoff [9J presents tables for the univariate case, for both one and

two-sided tails, based on the UMVU estimator, and gives both point esti

mates and confidence belts. The confidence coefficients are .90, .95

and .99 for sample sizes 3, 4, 5, 7, 10(5)40, 50, 75, 100, 150, 200.

For the two-sided case and the multivariate one or two-sided case, no

direct method is available. One procedure is to use a large sample ap

proximation. We have observed that the use of the maximum likelihood

estimates yields asymptotic normality, so that from (1) we obtain the

confidence interval

e6. .»,«,, ^ s , ^.-^T^T«^,2] .
VÑ

with confidence coefficient 1 - ct , where z is the 100 a. % double-tail

point of the N(0,1) distribution.

A similar development can be made for the multivariate case by using

(2), but the results are more complicated.

Two other procedures have been suggested for the two sided-case, one

by Wolfowitz llO , and one by Arnold, which appears in a paper by

Wallis 111 . General descriptions of some of these methods may be found

in Bowker and Goode Il2, Chapter 11 , and in [ill . Various computational

d in fill J
procedures are outlined in 11

5.1 Open Problems. In the cases for which alternative procedures of

estimation are available, comparisons of the techniques need to be made.

Only a first step has been taken in the multivariate case, and more work

is required. In particular, where expressions are available, appropriate

tables should be prepared.

A second phase is to consider cases where the underlying distribution

is not normal. Some alternative distributions have been considered in |3|

and [5] . L J
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6. RAY METHOD FOR ESTIMATING THE MULTIVARIATE NORMAL DISTRI

BUTION. So far this presentation has been concerned essentially with the

problem of estimating the tail probabilities of a normal distribution assuming

that estimates of the parameters of the normal distribution are available

or can be obtained from sample data. In order to use these results in making

reliability estimates, it is necessary to be able to estimate the distribution

parameters. In the case of the normal distribution, we need estimates of

the mean vector and the covariance matrix. Practical and efficient methods

are required for obtaining estimates of the distribution parameters which do

not involve excessively large samples.

We next describe some preliminary results of a ray method for estimating

the parameters of the multivariate normal distribution, which may permit

fewer observations to be made. There are still a number of open questions,

and we do not know how good the method is.

To simplify the discussion, let us first confine our remarks to the bi-

variate normal case. The extension to the multivariate case will be

described later.

First, consider the model for the case where an object is subjected

jointly to two stresses, for example temperature and vibration. We assume

that the random stresses (X x„) at which failure occurs for the population

of objects has a bivariate normal distribution BVN(^,£). The failure

stress may also be called the strength of an item. Let (£ ç ) be the

levels of the applied stresses X and X respectively. Assume that

all items in the population whose strength X. or X is less than the

respective applied stresses t ь will fail under these loading

conditions. Then the proportion of the population that will fail under the

applied stress J £ is given by

1 £*

-Я

- — (x-^ )£ (x-^)'

e ¿
F(v ¿2» ^-J J m— dx -

lx i2 гид
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which also represents the probability of failure for the given applied

stresses.

Figure 3 depicts a correlated BVN failure stress distribution which we

wish to estimate. The distribution is defined by five parameters: two

means, ^ ^ and P- 2' and three covariances, о-ц, dio, and °^22*

By testing items to failure along the horizontal ray wn which is selected

to lie essentially below the entire distribution function, we get the marginal

distribution of Xj under our failure definition. Similarly, if the vertical

ray w^ ,_ is properly selected sufficiently to the left of the distribution,

we get the marginal distribution of X Thus, for the BVN case, we can

obtain estimates of the marginal means and variances of X and X

respectively, which are the unknown means and variances of the failure

distribution function. With two rays, therefore, it is possible to estimate

four of the required five parameters. In order to estimate the remaining

parameter, the covariance 0"19, tests along another ray are required. The

best ray w along which to test appears to be the one passing through the

mean of the distribution. By testing-to-failure along the ray w, we mean

that the applied stresses are increased along w until failure occurs.

According to our definition, failure will occur when either of the applied

stresses exceeds its respective strength as defined by the BVN distribution.

If we start at w = -«» and increase the stress along w until failure

occurs, the probability of failure in the region Aw is given by

1 ^_1

- -j (X-/*)L (x- /i)

p(w)Aw = Ax, / dx„

• , in !/2 2
WSino¿+ X20 2lr\L\

•J

-1

e

- "7 (Х"Л )¡L (x-¿t)'
2

+ ДХ„ / — ; dx,

2 J ■_, 1/2

wcos OL + X

10 2-Й
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This equation represents the proportion of the population strengths or items

whose failure stresses lie in the shaded region shown in Fig. 4.

Solution of the above equation (see Appendix) results in the following

expression for the probability density function of the failure stress

(wcos ^ +xln - M i j i-12 L| • [l -ф{а1)\

ЛРц

+ Sin X'<f

I w sin A. + x - U

20 2

V*

[l-$(d2)J ,

22

2

where q> (-^¿) = _L exp - \ (-^-) " , (£(z) =1 «>(T)dr,
b 1/2ТГ b z b ¿

w sin (X + x - u (w cos ft + x - jU. )

d _ 20 2 10 1
'l —ZT - P

Vy22(1-^) Yv1-^

wcos Л + x - u. (w sin <x + x - и )

10 1 20 2
d2 = ; — f —

er a - p ) V0' iX-P )
11 v 22 '

Figure 4 shows p(w) for several values of the covariance С while

1 ¿л

holding the mean vector and the variances constant at the values indicated.
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It is evident that p(w) is asymmetric, the amount of asymmetry depending

upon the correlation between the variables X,, x9- The mode of the dis

tribution also depends on the correlation between the variables. The next

question is to determine the best estimator for p or &.„ based upon

a sample of the failure strengths W along the ray w^ and assuming that

the other distribution parameters ß . /л. Ö~.'.., 0^2 are known or their

estimates are available. This problem is still unsolved, but it does appear

that p should be estimable from tests along the ray w. After we estimate

p , the entire BVN distribution will be defined and may be used for making

estimates of the g functions as described earlier.

Suppose we have a multivariate normal (MVN) distribution in p

variâtes, then we will have p unknown means /x^ and p(p + l)/2 un

known covaria nee s 0"... By using p(p + l)/2 rays we will be able to

estimate all of the parameters. We use p rays, which we call principal

rays, to estimate the p marginal means fx . and variances 0"., and

P(p - D/2 rays to evaluate all of the covariances (Г. . (i ^ j) . Just as

in the BVN case, it only appears necessary to consider two stress

variables at a time in order to estimate the covariance of these two variables,

The procedure is repeated for all possible combinations of the variables.

Thus, assuming that the failure model described is valid, an attempt

has been made to estimate the MVN distribution by testing along rays

with the expectation that this procedure may be more efficient in general

than procedures which involve mapping out the failure distribution surface.

It was assumed that the failure distribution along rays would be obtained

by testing to failure. In many practical applications, testing to failure is

impossible, especially where more than one applied stress or environment

is involved. Thus only success or failure in functioning properly may be

observed after subjection to the environmental conditions. Under these

circumstances, testing along rays is desirable because it may permit use

of some sort of sensitivity type of experiment for estimating the failure

distribution along the ray. This information, in turn, may then be used

to estimate the desired MVN distribution parameters as described. The

distribution functions derived in this paper are based on testing-to-failure

along a ray w. If this procedure is not followed, the distributions may be

different from those shown. Again, our work in connection with this problem
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is far from complete. We have attempted to summarize the status of our

efforts toward a practical solution of the reliability testing and estimation

problem in this paper;..

Appendix A

To simplify the presentation, the univariate and multivariate results

are treated separately. We first obtain the asymptotic distribution of

_ 2 2

g. (x, s ; с) . Since g,(x~, s ; с) is a function of the sample moments it

follows , [l3, p. 354, 366

/- 2

, that g (x, s ; с) is asymptotically normal

with mean g (у, о* ; с) and variance

15

b*

VarGE) +-à£

Hjrl \ bs2

. Var(s2) + 2

/KjO"
ôx

M

Cov(x,s )

— 2 _ 2
Since x and s are independent, Cov(x,s ) = 0. From

с 2

g.(afb;e)-—zr- Г expf-* &=& 1 dt ,
1 V^b>°° L b2 J

we obtain

£-3 =-/rj23 b S = bg 1 =

ba <tb1' ^5 --

1 ,c-a. (c-a

2b « b
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where

/u-a\ —l— ! 1 /u~ay2 '

(F(~b") =V2^b ехР!:_-у( b ) /

2 2 4 2
Also, Var(x) = ö /N, Var(s ) = 2(N-l)cr /N , and hence the asymptotic

variance is

v.(^2) -P2(Hi,-;;i+*£eziY-;
2N

2 _ 2

Since V. (x, s ) is a rational function of the sample moments x, s , it

Г 1 - 2
follows by Slutsky's Theorem 1 13 , p. 2551, that V. (x, s ) converges in

2 Г ' Í
probability to V (m/O' h and hence, ¡13, p. 254 , that

2 2

g (x, s ;c) - д^ц., d ;c)

2 ->N(0,1)

V (x, s )

We now consider the multivariate case, and adopt the notation

"• = (\l > ■ • • , il), SJ = (d ) : P x p, Л= L~ , x = (x , . . . , Xp),

S = (s ) : p x p. Here x is the vector of sample means, and S is the

ij

matrix of sample covariances, obtained from a sample of size N.

We now have

с с

1 1 Г P г 1 -1 i

g (x,S;c) = /Г"--, . • • • ; exp,-T(t-x)S 4t-x)' dt
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Define

Ъд I Jlsl
h = x=* ,_ , h = *s

и-<Е'

then by the same argument as the univariate case, g (x,S;c) is asymptoti-

P

cally normal with mean g (|X/£ ;c) and variance

V„(^ T. ) - Z H H Cov(x x) + J H H Cov(s s ) .

Ij i J i J i< j,k<¿ 1J W ij k£

The terms involving Cov(x , s ) are zero and have been omitted. We first

1 JK

note that

Cov(x,x) = <r,./N, Cov(s ,s ) = (cf. ó. +<J.,ö )(N-1)/N,

i j ij i] k£ ik j¿ i¿ jk

[l4, p. 16l] .

The evaluation of H yields

Hl = ■ (2n)p/2 IHl/2

.с,-И2 n2 r p г-р . !

*l | exp -^-(с -\x. ,t t )л.(с -ц. ,t , ...,t )' dt ,...,dt .
J.eo ' J-oo L 2 i П 2 p 1П 2 pJ2 p
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If we partition Л =1

square, note that

'An Л i

л; л22

)'A.i = (V , X ) , complete the

-1 , didi

All "Ai^22^1 = V<r И' 1^1" dU 1^22 "dlf = 0rn^2¡'1'

and simplify, we obtain

(c - |X )

1 1 1

2 СГ

11

2-

H _

1*

K:
1/2 с -a

~ 2 2

1/2-/—:

(2Л)
(P-D/2 i.:2--/.

с -a

P P 1

exp(--2zA22z')dz ,

where a = H-. + (с -ц ) (Г. /<r , J = 2,

J j 11 lj 11
p, l. e. ,

1 И „ ч _1 /
g ,((ao, . . . , a ), л ; (c , ..., с ))

P 22 2 p

н, = - Ф ,

1 V*T~ p-1 2
'11

We now evaluate H , but first write

с с

(р., Т. ;с) = —i—- / . . .( exp í—i-tr AB +i logl Aljdt,

(21<)p/2 J- во J-eo L 2 2 J
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where В ■ (t- ^)'(t- ц). Also

bC

Ъ>cLß

ij

But

M
*tjB

ъ%

=
<

-(А. А + А А ) .
°4 JO oí J Ф

-A A
o(i ijS

i = L

and

-2_

¿X

<=C*

(2*Г)р7Г -L Г
i»e4

[- c^>S

+ er

dj3

]dt,

d g

эх
оСоС

!Л|1/2

(2-Г?)Р/2

trAB

_Oe
- rO

f-b + C5 . ]dt .

After collecting terms we obtain

<l +W~ Aijgp(^£;c)

+ 1aI1/2 rcr^:

(2*)

p/2
J - oo

^c - LL "2 J

• p (£ 'A^í1A,)e dt'
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where 8 is the Kronecker delta,

i]

Appendix В

In the present section we derive formula (6). Consider a BVN(ia_, l. ),

and a ray w = x + x , where. the slope is given by

1 M

tan CL = (x - *9n)/(x, " xin) (see Figure 3). The probability density of

failures along this ray is given by

©o -~{х-у.)Л. (x- yx.)'

p(w)dw = dx

1 Ja "

(2тт)|Е|

1/2

dx + dx | e

2 2.■f

- \ (x-fO ^ (x-p.)'

dx

= dx A + dx В ,

1 2

where a = w sin a + x„ . b = w cos a + x,. . Let y. = x - u. ,

20 10 J J ]

j = 1, 2, then by completing the square,

, l 2

exp - 2 y{

A = * A22

(2iT)lEl

л22/ Г

1/2 Ja-

exp

K^Ji^iV^ dy,

eXP|"TVll) r~

V2rt~ dU 1
/ ! 2X .

exp (- -o-z ) dz,
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where

d=(a-M2)V*~¡7+ yiVVX7

. <w sln* + *20_- * 2^ p(wcoSO( + x1Q- m¿

Hence

/w COS ОС + X

A = <W 10
7 1

\ v*n /

. [l-^(d)]

By a similar reduction we obtain the expression for B. Formula (6)

follows by combining results.
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