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INTRODUCTION . This paper attempts to answer two questions:

(1) What do we mean by the reliability of a piece of equipment (a

radio for example), and (2) in what senses can we assure this

reliability? The emphasis will be primarily on the logical and

philosophic aspects of the problem rather than on technic. This is

not, then, a "how to do it" manual unreliability but rather a pre

liminary discussion of the foundations of the subject. In order not

to obscure the foundations, the examples have been kept very

simple; however, these illustrations have been adapted from the

author's own practical experience and hence have a basis in fact.

The problem of reliability prediction and control may be looked at

from several points of view. 1. Given an existing piece of equipment,

how can we analyze and/or test it in order to determine its reliability?

2 . What corrective actions may be initiated in the production process

which will improve reliability? 3. What testing and sampling methods

can we use which will prove to the customer that the equipment has the

reliability he asked for? Or from the customers point of view, what

methods can be used to monitor the reliability of equipment which is

being purchased? 4. What guiding principles (such as redundant

components) should be followed in order to design reliability into the

equipment? A first answer to the question of "What is reliability

assurance?" is that it is the collection of all techniques which throw

light on one of the four preceding questions. We hope that the remainder

of this paper will show that the first answer is not the whole answer.

I. RELATION TO SCIENTIFIC METHOD IN GENERAL. Before focusing

our attention on the details of reliability engineering it would perhaps

be advisable to examine the relation of the subject to scientific method

in general. It is the point of view of common sense that a piece of

equipment is real and that the properties which we perceive are in the

equipment. Thus a radio is a real object which has several qualities

in it. Examples of these qualities might be 1. being painted green,

2. being hard, or 3. being reliable. Adopting this common sense

point of view, we find that the circumstances surrounding the operation

of the equipment are usually too complicated to comprehend in their

entirety. Thus it is necessary to idealize the real radio and study a
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conceptual one instead. This conceptual radio is called a model. The

trick is to choose a model which is simple enough to work, with and yet

complicated enough to describe the operation of the device to a desired

degree of approximation.

In short, knowledge about the reliability of a piece of equipment is

knowledge about an abstraction rather than knowledge about the real device.

Thus it will be important for us to distinguish between the real device which

common sense tells us is "out there" and the conceptual or abstract DEVICE

whose reliability we may study. As in the previous sentence we make this

distinction by using all capital letters whenever the abstract noun is intended.

The job of specifying the nature of the EQUIPMENT is not as easy as it

at first appears and careful study of this aspect of the undertaking is

frequently very fruitful. Quite aside from the question of representative

samples there is usually a difference between the universe of devices which

are investigated and the universe to which the conclusions are applied.

For example, one procedure in determining the average failure time of a

DEVICE is to test a single unit until it fails, replace the failed part and

inspect the unit to restore it to its original condition then test this repaired

unit until it fails, etc. The average failure time is taken to be the long run

ratio of total operating time to total failures. Here the universe of investi

gation is the collection of all repaired states of a single unit while the

universe of application is surely the collection of all units which are

produced by a certain process. The validity of the entire study depends on

how closely these two universes approximate each other.

Without going into too much detail the DEVICE will be characterized by a

process of cross classification. Thus the DEVICE may consist of all devices

of a certain design produced in 19 50 at a specific factory and to be used in

the continental United States. The possibility of classifying a set of objects

so that the set has properties other than those used in the classification is a

basic assumption and an observed fact of science.

One classification which deserves special attention is the class of

failures to be considered. Several possibilities are illustrated by the

following questions. Will the radio work when the customer first drops in

a battery? If it does work initially then how long will it give satisfactory

service? Does satisfactory service mean no failures or does it mean only

easily repaired failures? Must the radio work continuously or only for a

few hours each day? Are we interested in failures due to design faults,

the process being out of control, or only in workmanship failures ? Several
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different techniques would be needed in order to treat these different -

questions but in this paper we will be able to discuss in detail only those

situations where the device either fails or does not fail. In particular the

important literature connected with life testing is much too extensive to be

reviewed at this writing .

Certainly there is no single scientific method which provides a simple

set of rules for "doing science"; however, complex activities are frequently

better understood by considering a simplified version of them. In this spirit

we present the following view of scientific method as a process of successive

approximation. Schematically this process may be shown as proceeding as

in H. C. Sweeney's diagram which appears here as Figure 1. An example

follows of how the diagram could work in a reliability situation. The

initial idea might be the reliability design specifications of a complex

industrial valve to be used in turning off a rocket motor at a preassigned

time. An experimental valve is then built and tested. It is found that with

sufficient adjustment this experimental unit can be made to work for short

periods of time in the laboratory. It is decided that if the design is altered

and care is taken in the construction then the equipment will be feasible.

A limited production run is undertaken to provide several units for test and

demonstration. All valves work well in the laboratory but when the items

are shipped for demonstration it is found that few of them work at all and that

considerable training is needed to adjust the valve for initial operation. If

the valve is designed more ruggedly and installation training is provided, it

is believed that the reliability will be satisfactory. The decision is made to

manufacture and promote the item. When the valve is mass produced and

user tested, anticipated failures did not materialize for those valves which

were carefully handled but very few of the devices receiving rough treatment

performed satisfactorily. The reader should not think of the example as

stopping at this point but as continuing on through cycle after cycle, each

new model of reliability depending on all the previous models and all the

previous data gathered. However, the general pattern is now clear. The

reliability of the DEVICE is an evolutionary thing with the universe of

investigation continuing to change and for the most part expand.

II. RELIABILITY AND PROBABILITY. The more advanced reader will want

to skip this and the next section. There are many aspects of reliability which

are not probabilistic in nature; for example, we might discuss with relevance

the industrial revolution, piece-work and management science. Though these

topics are interesting and important they do not fall within the scope of this
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article. As the title indicates this paper concerns itself with examining

that substantial portion of reliability which is related to probability. In

this section we take the point of view that the meaning of "the device

functions correctly" becomes clear as soon as the abstract DEVICE, whose

reliability is being studied, is specified. Remember that the abstract DEVICE

is determined by a process of cross classification where the criteria of

classification include such things as the conditions of operation, the kinds

of failures to be considered, etc. For the purposes of this paper, the

reliability of a DEVICE is then defined to be the probability that it functions

correctly. This definition is more general than some in that the role of time

to failure is not explicitly emphasized. Thus when time is a determining

factor it may be included in the definition of "functions correctly" but if

time is unessential the definition still applies. It is instructive to discuss

this meaning of reliability by recalling a few of the various concepts of

probability which have been proposed and specializing these to the

reliability situation.

Before discussing probability it is necessary to have in mind the

primitive concept of an experiment. For example, in studying the effect of

gravitation on falling bodies a ball is rolled down a prearranged inclined

plane and the resulting time required for the ball to make the trip is recorded.

It is customary to think of this experiment as being deterministic in that the

conditions of the experiment completely determine the result. For other

experiments there will be various possible outcomes and it will be

impossible to predict which of these will occur on any particular performance.

This latter kind of experiment is termed probabilistic.

The possible outcomes of a probabilistic experiment are called events .

Some of these events are thought of as being simple or indivisible while

others are considered to be compound in that they are composed of simple

events connected together by means of the words "and", "or", "not". If

the occurrence of the event A necessarily implies the occurrence of В

then we say that В contains A asa subevent . The compound event which

contains all possible outcomes of the experiment is worth naming, we call

it the universal event. The simple events are to be thought of as having the

following two properties: 1) they are exhaustive in the sense that when the

experiment is performed one of the simple events always occurs and 2 ) they

are mutually exclusive, it being impossible that two simple events will

occur on the same performance of the experiment. The illustration of a

valve which is to shut off the flow of a liquid at a given instant provides

an example which is typical of reliability work. Here the simple events ;

are i. the flow of liquid is stopped and ii. the liquid continues to flow.
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A more complicated probabilistic experiment is provided by setting an

alarm clock (or fuze) and measuring the alarm timing error which equals the

actual time when the bell first rings minus the time for which the alarm is

set. If the measuring instruments are accurate to the nearest tenth of a

second and if we think of the alarm error, in seconds, as being plotted on

a line then the simple events will be all multiples of 1/10 within a certain

interval, say +300 to -300. Since the length of this interval is long com

pared to the accuracy of the instrument (600 versus 1/10) it is convenient to

idealize this experiment to include all points on the line as simple events.

This kind of idealization is essential in many situations in order to obtain

a model which is of manageable proportions. The model is particularly

appropriate since if the measuring accuracy is improved to say a hundredth

of a second then all multiples of 1/100 between +300 and -300 actually are

possible outcomes of the experiment. In passing note that if the model is to

be an accurate approximation to the true situation it will be necessary to

assign a very small amount of probability to that portion of the line which is

outside the interval +300 to -300.

The historically first concept of probability is referred to herein as the

equally likely definition. This requires that we decide on m equally

likely simple events of which с imply the occurrence of a compound

event of interest. The probability of the latter event is then taken to be the

ratio of с to m. Thus if the six faces of a die are taken to be equally

likely and if С denotes the compound event of observing an even number

of dots on the up face then the probability of C, written P(C), is 3/6.

If В and С are two events then a third event, (C and B), may be

formed by considering their simultaneous occurrence. Further, if с simple

events imply С and of these d imply (C and B) then the elementary

formula

(d/m) = (c/m) • (d/c)

yields the important multiplication rule:

P(C and B) = P(C) • P(B|CL,

where P (B|C) stands for the probability of the event В if the occurrence

of С is made part of the conditions of the experiment.
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The most important objection of defining probabilities in terms of equally

likely is that many of the most interesting applications cannot be formulated

in this way. While the equally likely idea of probability works quite well

for the illustration of rolling a die; in both the valve and the alarm clock

examples it would be exceedingly difficult to intuitively fix upon m mutually

exclusive and equally likely simple events. The equally likely definition

originates from a time when it was thought necessary to base all mathematics

on "self evident truths" but there is nothing self evident about equally likely

for the reliability type of problem and hence it would seem that we must look

elsewhere for an adequate concept of reliability. If we adopt the point of

view that it is essential to be able to verify a probability by observation and

we ask what is available to check the correctness of a probability then we

are immediately led to the frequency definition.

In order to talk about frequencies we must first discuss what is meant

by n performances of the same experiment. If n experiments differ only

in unimportant conditions then we will say that they are n performances of

the same experiment. The apparently necessary vagueness at this point

seems to be a drawback to defining probabilities as frequencies. We will

see that independence is what is needed here, but this concept will be

defined in terms of probability and hence a definition of probability in terms

of independence would be circular.

If, in n performances of an experiment, a specified event С occurs

s times then the frequency of occurrence of С is s/n. According to the

frequency definition, s/n is a measurement of a permanent numerical

property of the experiment; this property, if it exists, is called the probability

of С . In short, probability is that property of an experiment which is

measured by frequency. All measurements are inaccurate to a greater or

lesser degree; in the present instance we would expect the accuracy with

which s/n measures P(C) to increase with n. If in n trials, С occurs

s times and the compound event (C and B) occurs s times then

Sj/n = (s/n) • (s./s) which again yields the multiplication rule:

P(C and B) = P(C) • (b|c).

There is a difference however, in that the probabilities involved are now

probabilities in the frequency rather than the equally likely sense.
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We may try to interpret our concept of reliability in terms of frequency

probabilities; this yields something like the following: Reliability is that

property of a DEVICE which is measured by the frequency of correct functioning.

Though it is implied by our convention concerning the use of nouns with all

capital letters, it is worth emphasizing that a frequency probability statement

refers to an individual item only in so far as it is a member of a class. If we

choose a particular valve from an assembly line and mark an * on it, then we

should not speak of the reliability of the valve with the *, but only of the

reliability of a class of valves of which this particular one is a member.

In the previous two definitions we have taken probability itself to be

primitive. In the first instance we disguised this fact by using the words

equally likely and in the second we emphasized the measurement of probability

and ignored the nature of the concept. It appears that it may be necessary to

take probability, and hence reliability, as in intuitive and undefined

concept . If this is so then we might as well shift the emphasis from the

nature of probability to how we want it to behave. It is this line of reasoning

which leads to the axiomatic theory. According to this treatment a number

not less than zero and not greater than one is allowed to correspond to each

of the events of a probabilistic experiment; the number corresponding to the

event С is denoted by P(C) and is called the probability of С . We insist

that this correspondence have the following two properties-: 1.) the probability

of the universal event is one, and 2 .) if А, В, С ... are mutually exclusive

events then

P(A or В or С or . . .) = P(A) + P(B) + P(C) +

For axiomatic probabilities the logical status of the multiplication rule is

simply that of a definition. By analogy with the frequency and equally likely

theories we define conditional probabilities so that the multiplication theorem

will hold .

Two experiments are said to independent if P(C and B) = P(C) ■ P(B)

whenever С and В are possible results of the first and second experiments

respectively. From the multiplication rule we see that this is the same as

requiring P(B) = Р(в|с) i.e. , the probability of every possible result of the

second experiment is independent in the grammatical sense of what has

happened on the first experiment. If the potential results and their probabil

ities are identical for a sequence of n independent experiments then the

sequence is said to consist of n independent trials. Earlier when we



Design of Experiments 301

introduced the frequency definition it was the concept of independent trials

which was needed but unavailable. Of course, the idea of independent

trials could be developed in the above manner from either the equally likely

or the frequency definitions, but independence would be available only

after probability is introduced and hence could not be made the basis for

defining probability.

The main difficulty with the axiomatic approach is that at this point one

is tempted to say, "Yes, but what improbability? " . This objection is

lessened somewhat by the law of large numbers [8] which shows that there

is a close relation between the axiomatic theory and the frequency definition.

The axiomatic development does not yield an exact counterpart of the precise

frequency definition. In fact, if fn is the frequency of occurrence of the

event С in the first n performances of an experiment and if the axiomatic

probability of С is 1/2 then it is conceptually possible that С could

occur in each of an infinite sequence of performances. In this eventuality

fn would equal 1 for all n and the sequence would approach 1 which is

not equal to 1/2 . However, in the axiomatic theory it is demonstrable that

in a sequence of independent trials, fn approaches P(C) with probability

one. Thus the cases where fn does not approach P(C) forms a negligible

exception .

At first consideration the axiomatic theory seems to add little to an

understanding of the nature of reliability since it requires the introduction of

many events which are not clearly pertinent. However, the following

consequence of the law of large numbers (which in turn can be developed as

a consequence of the axiomatic theory) seems to give some real insight into

the nature of reliability: Except for cases having probability zero, the

reliability of a DEVICE is the limit of the frequency of correct functioning in

a sequence of independent trials .

We now return to the probabilistic experiment of observing whether a

valve does or does not shut off the flow of a liquid at a given signal. If

this experiment is performed on n identical valves and* if the probability of

correct functioning at each performance is f then it will often be appropriate

to think of the n performances as constituting independent trials. Under

these circumstances the probability of exactly s successful valves in

some particular order is Ps (l-p)n-s.

Thus if ( ) denotes the number of ways of ordering s successful

s

and n-s unsuccessful valves, then the probability of exactly s successful
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valves in an arbitrary order is

ô ps (l-p)1

The entire series of n performances is called a binomial sample and s

is said to have the binomial distribution.

It is important to point out that 99% reliability does not mean that at

least 99 out of each 100 pieces of equipment do what they are supposed to.

The law of large numbers hypothesizes a sequence of independent trials

and the frequency definition requires n performances of the same experiment,

It is conceivable that each of 100 devices might have a 1% probability of

failure, but that if one fails then all the rest will fail also. However,

even if the 100 devices are independent, the reliability of a single device

must be at least .9995 in order to insure that 99 out of 100 items will

function properly with an axiomatic probability of 95% ; and in fact, no

reliability less than 1 will guarantee that 99 out of 100 items do what they

are supposed to do.

III. TESTS OF SIGNIFICANCE. The logic of a test of significance is

patterned after that of proof by contradiction; the main difference being

that in certain places the word "false" is replaced by the phrase "very

unlikely". Thus to accept R as being true, provisionally assume that R

is not true. Next collect a sample and examine this sample using a

probability argument. If the sample is very unlikely under our provisional

assumption, then two explanations are possible. We may either believe that

R is false and we have observed a very unlikely event or we can believe

that R is true. Many people will prefer the second explanation, as the

first is akin to "believing in miracles" . Of course it is possible that the

truth of R may be considered to be a "miracle" of higher order than the

above mentioned very unlikely event, but this would seem to indicate that

either the conclusion possibilities have been artificially restricted or all

explanations of the sample are unlikely and consequently that the sample is

not the whole of the available information.

1 99 100

Consider the equation 100p (!-£>) + P = .95
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A manufacturer agrees to supply one of his customers with radios which

have a 99% initial probability of working correctly. How may the customer

check to see whether the manufacturer is abiding by his agreement? The

only answer which immediately presents itself is to gather and examine

experimental evidence. We take the simplest case where this evidence

constitutes a binomial sample. Thus knowing that s out of n radios

perform correctly we would like to determine whether p could be as large

as 99%. It is intuitively clear that large s values are consistent with the

belief that p exceeds 99% and that small s values are inconsistent with

this belief . Thus we may adopt a cut-off value, v, such that if s is

less than v we declare that p is too small and the manufacturer has

violated his agreement.

Applying the general procedure of the second previous paragraph we find,

from tables of the binomial distribution, that if an event which occurs with

probability .0138 is held to be very unlikely than 48 is an appropriate

value for v. More explicitly, if 3 or more radios out of 50 fail to work

initially then we declare that the manufacturer has violated his agreement;

however, if 2 or fewer failures are observed, then we say merely that the

data is consistent with believing that f J 99%. But the data would be

consistent with other beliefs as well. For example, 2 failures is even

more consistent with the belief that p= 9 6%. Thus we cannot claim to have

proved that the manufacturer is living up to his agreement .

Before leaving tests of significance, it should be pointed out that this

theory gives no help in defining the expression "very unlikely" and experience

has shown that examining the specific situation only helps a little. The

difficulty of precisely defining the meaning of this expression is then a

noticeable weak point in the theory of tests of significance.

IV. DECISIONS AND HYPOTHESIS TESTING. Continuing the radio

example of the previous section, suppose that instead of desiring to monitor

reliability we want to make a "decision" concerning whether the reliability

is adequate or not. It should be pointed out that some writers would refuse

to recognize a difference in these two objectives. Here, we do not comment

on this point but discuss one possible rational basis for making such

decisions. Presumably, any rule for making decisions should take account

of the experimental evidence, s; hence we speak of the decision rule

D(s) which, for example, makes the decision D(n) when all tested radios

work satisfactorily. Also, there will be certain monetary or other losses
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associated with making any decision. The economist is more optimistic

and speaks of the gain in making a certain decision but this is, of course,

an equivalent point of view since loss is negative gain. The loss depends

on the decision which in turn depends on s so that LL/o, D(s)J , the

loss incurred in using the rule D(s) if p is true, is a quantity which is

subject to chance. For any particular rule the loss may be averaged over

the n+1 possible values of s to obtain the expected loss, or risk, if

D(s) is used and p is the true reliability. With this formulation it now

seems reasonable to choose that decision rule which minimizes the risk in

some manner .

In order to explain one possible solution to this problem we pretend, as

a simplifying assumption, that there are only two possible wrong decisions

and only two different losses. More precisely we postulate that D(s) can

make only two decisions; the rule must decide either Dn, that reliability

is adequate, or D. , that it is inadequate. Further, the reliability will be

called satisfactory or unsatisfactory depending on whether p¿S9% or

P < 97%. The region 9 7% < p < 99% is a zone of indifference where we

do not much care whether the reliability is pronounced adequate or inadequate.

As a notational convenience we will sometimes refer to the decision rule

D and write D D0, for example, when we mean that the rule makes the

decision Dn . In addition we take the various possible losses to be as in
0

Table 1,

TABLE 1

LOSSES FOR THE SIX POSSIBLE DECISION-TRUE

RELIABILITY COMBINATIONS

true ^-~-4ecision

reliability

adequate

indifferent

inadequate

DQ: adequate

0

0

L,

D,: inadequate

N ow write P(D = D|p) for the probability that the decision rule, D,
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makes the decision D when о is the true reliability and define

P(D = DJ p) similarly; then the risk equals L • P (D = D.| p) or

LQ • P(D = Dq|p) according as p > 99% or p<97% and is zero when p is

in the zone of indifference. Hence we may speak of there being, effectively,

only two kinds of risk. The central idea of this method may now be stated,

it is that we should choose a decision rule which constrains one kind of risk

but minimizes the other. Or what amounts to the same thing, we demand that

P(D = D \o) should not exceed a given small but positive number <* through

out the region p¿ 99% and subject to this restriction we then seek to

minimize P(D = DJ:p) in the region p £ 97%. This method of minimizing

the risk is an interpretation of the Neyman-Pearson Ц93 hypothesis

testing theory from Wald' s [24j decision rule point of view.

A very important technical result, the Neyman-Pearson lemma [17J,

may be used to show that if a' is .0138 then the practical procedure of

the previous section accomplishes the Neyman-Pearson minimization. In

more detail, let D*(s) consist of deciding that reliability is adequate

when 2 or fewer out of 50 radios fail and otherwise deciding that relia

bility is inadequate. Then P(D* = Djlp) does not exceed .0138 through

out the region p¿99% and if D is any other decision rule satisfying this

requirement then

P(D* = DJ p ) < P(D =Djp) for all p<97%.

Because of the way in which the Neyman-Pearson risk minimization is

carried out, it seems that tests of hypotheses are subject to two different

logical interpretations. First, of course, we may look at hypothesis testing

as a method of choosing wisely between two possible gambles. This is the

minimum risk point of view emphasized in this section. But secondly, since

the number Q- is always taken to be small, the test of significance argument

would seem to apply as well.

It can be fairly argued that the previous paragraph fails to fully exploit

the power of the decision rule point of view. We may, for instance, be

able to proceed as follows. Any decision of consequence will result in a

course of action; here, the customers course of action might quite reason

ably be to continue or cancel the manufacturer's contract according as
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reliability is decided to be adequate or inadequate. The consequence of

canceling the contract of a manufacturer who is producing radios of adequate

reliability would almost certainly be the permanent loss of a conscientious

supplier. On the other hand, if the contract is allowed to remain with a

producer of goods having inadequate reliability then the customer will acquire

a number of radios of poor quality. However, this error will presumably be

rectified at a later date and the damage is only temporary compared with the

permanent loss of a conscientious supplier. Accordingly we assign to L.

and L the somewhat arbitrary values of 10 and 1 respectively. The

risk becomes 10 P(D = D,| p) for рг99%, P(D = DQ|p) for p¿97%

and 0 in the indifference region. It is very appealing to require that the

two kinds of risk be equal in some sense and subject to this restriction

minimize their common value. Because of technical difficulties we can't

quite accomplish this objective but we can do something very similar; we

can choose the minimax rule [24j. As p is varied, each decision rule will

have a maximum risk; we choose that decision rule which minimizes the

maximum risk. Again it is almost obvious that we may restrict outselves to

decision rules which have a cut-off value, v, such that reliability will be

declared inadequate if and only if s < v . Table 2 shows the way in

which the binomial distribution may be used to compute the cut-off value

yielding the minimax rule. Once again we will decide that reliability is

adequate when and only when 2 or fewer out of 50 tested radios fail.

TABLE 2

DETERMINING THE MINIMAX CUT-OFF VALUE

Maximum risk Maximum risk

v for p 7 99% for p c. 9 7%

50 3.95 .22

49 .89 .56

48 .14 .81

47 .02 .94

46 .00 .98
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The minimax value of v depends strongly on the relative magnitudes of

Ln and L ; if L, and LQ equal 2 and 1 respectively then v would be

49 instead of 48.

V. CONFIDENCE BOUNDS. Again we consider the probabilistic experi

ment of observing whether a valve does or does not shut off the flow of a

liquid at a given signal and we consider that a binomial sample is available.

By a well known technique, see Mood£l7, p. 233J we may obtain rc, a

95 per cent lower confidence bound, for p . In the derivation of r we

contemplate the consequence of the occurrence of an event which has

probability .95; r is determined so that p is greater then r whenever
С 'С

this event occurs. But according to the frequency interpretation of proba-'

bility such an event will occur in 95 per cent of a large number of samples;

thus the statement "p is greater than r " should, in the long run, be

С

correct 95 per cent of the time. This is the logical basis of the lower

confidence bound. The figure 95% was, of course, chosen for definiteness

and other confidence levels are possible.

At this writing the method of confidence bounds is one of the most

important techniques for "assuring reliability" but, as Wilson [26J indicates,

in perhaps a majority of the cases it is inapplicable. An indication of this

is the large sample size required to give a useful bound. From column 2

of Table 4 we see that even with 95 per cent confidence, which is fre

quently thought to be inadequate, the confidence bound does not get to be

interesting until the sample size is in the neighborhood of sixty. This

requirement is frequently at odds with common sense.

For example no one would think it necessary to observe sixty consecutive

failures of a frosted light bulb before stating that the bulb is defective. If

the bulb does not burn for the first several trials then we reason that the

filament is broken and we throw the bulb away . The reader may consider

the above example to be unfair since the various trials are not independent

and hence the reasoning used in deriving the lower confidence bound does

not apply. But this is exactly the point. We are not attempting to criticise

confidence bounds when they apply but to indicate that the knowledge of a

physical theory can override the statistical considerations in a way which

will cause current statistical methods to be inapplicable. In a certain

sense the best way to assure the reliability of a device is to build it in

conformity with a physical theory which says that it should work.
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Following the line of reasoning of the preceding paragraph, it is tempting

to classify situations as being either deterministic or empirical and to main

tain that statistical methods should be appropriate to the latter but not the

former. However, this is not typically the case; many scientific inference

situations will have a deterministic as well as a statistical aspect. Even

in the lightbulb example it is sometimes possible to "repair" a burned out

bulb by striking it sharply with the eraser of a pencil. Thus we might want

to try the bulb say three times before throwing it away rather than just once

as a completely deterministic approach would indicate.

If we are to make a completely isolated and purely empirical statement

about the reliability of a device then the sample sizes of Table 3 are

probably in fact essential. However, for most problems the situation is

quite different; the device is usually designed according to well tested

scientific principles and other similar devices will frequently be available

to help in appraising reliability. The difficulty is in formalizing the vague

but real evidence given by an analogous but not identical situation. What

the light-bulb discussion points out is that, even though they may be

difficult to develop, there is a definite need for statistical methods which

allow for the role of prior knowledge in reliability and other scientific

inference .

TABLE 3

NINETY-FIVE PER CENT LOWER BOUNDS ON RELIABILITY

IF NO FAILURES ARE OBSERVED IN A SAMPLE OF SIZE n

(1) (2) (3) (4)

n Confidence Bayesian Stable

Bound (prior beta

distribution

a=160, b=8.4)

Estimation

2 .22 • 92 .Ik

5 • 55 .92 • 5*

10 • 7* .92 Л^

20 .86 • 93 .86

30 • 90 • 93 • 90

60 •951 • 9^0 • 951

90 .967 • 9^7 • 967

200 • 985 .963 • 985

300 • 990 .971 •990

1000 • 997 .988 •997

3000 .9990 •9957 .9990
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VI. SUBJECTIVE PROBABILITIES . The method of confidence bounds has

been called the blind man's approach to reliability assurance in that no use

is made of knowledge which may be available from previous results on

similar components. As we previously pointed out, the confidence procedure

frequently requires large sample sizes and yields uninteresting bounds.

Where smaller sample sizes and tighter bounds are justified it is because the

investigator has prior knowledge about analogous components. In order to

discuss the form which this prior knowledge might take, we return to the

example of determining P , the reliability of a valve .

From design considerations and a knowledge of the reliability of other

similar valves the investigator may believe that p is very likely to be

near .95 and that it is extremely unlikely that p will be smaller than .90.

If a complete and explicit statement of this prior knowledge about P were

possible then it might be representable as in Figure 2 . g (p ) is a function

defined for each p between 0 and 1 inclusive such that the area under

g( p) is 1.

FIGURE 2

A REPRESENTATION OF PRIOR KNOWLEDGE

9{p)f

"4 f

The strength of the investigator's hunch that p is in the interval I is

taken to be the area (shaded in Figure 2) under g (p ) and over I. This

area is called the investigator's prior probability that p is in I. In order

to reflect the investigator's prior knowledge the bulk of the area must be

near .95 and almost all of it must be over the interval .90 to 1.
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One function which is versatile enough to yield a curve with the

general characteristics of Figure 2 is

л — 1 Y\— 1

g ( p) = const, p (1-p) , a > 0, b> 0

For this particular choice of g, p is said to have the beta distribution.

The average of the beta distribution is a/(a+b); hence the prior knowledge

tells us that it would be desirable to pick a and b to satisfy

a/(a+b) = .95. In order to satisfy the second hunch we choose a and b

so that the area under g(p) over the interval 0 to .90 is .01. These

two restrictions are enough to completely determine a and b; we find

that a = 160 and b = 8.4. With this choice of a and b the beta

distribution reflects the assumed prior knowledge that p is near .95 and

almost certainly greater than .90.

The prior probability of the previous paragraphs is a special case of

subjective probability. In the sense of Savage [21, 22j, subjective proba

bility if very much like what we have called axiomatic probability, except

that it is completely determined by the betting odds which an idealized

rational person would be willing to offer. "Though we are not quite like

that person, we wish we were, . . .", and Savage emphasizes this by

referring to the idealized individual as "thou". Earlier we chose the para

meters a and b of our prior beta distribution so that the area under g(p)

and over the interval 0 to .90 would be .01. From the subjective point

of view this means that "thou wouldst barely" be willing to offer odds of

99:1 that p > .90 against p < .90.

In order to discuss the logical status of the multiplication rule for

subjective probabilities write P' (X) = P(xlc) for every event X which

implies С . In accordance with the frequency and equally likely theories

we should assign the probabilities, P' (X), to the events X so that the

multiplication rule will hold. But is it necessary to base the subjective

assignment of conditional probabilities on the frequency or equally likely

definitions? That the answer is in the negative is shown by an argument

of Savage [21, section 3.5]. We give a more elementary intuitive argument

due to Kemeny, et ab [11]. The universal event for the conditional probability

experiment has been reduced to С but no new information about subsets of

С is available. Thus, if X and Y are arbitrary subsets of С then thou

wouldst want the betting odds of X against Y to be unchanged by the

knowledge that С has occurred; i.e., P1 (X)/P' (Y) = P(X)/P(Y), or
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P (X) / P' (X) = P (Y) / P.' (Y) = к , a constant . Hence P (X) = к P' (X) for all

subsets, X, of C. To determine к we note that P(C) = k-P" (C) = k-1 = к

and finally P(X) = P(C) P'(X) for all X contained in C. Now let В be an

arbitrary event not necessarily contained in C. The compound event (C and

B) is, however, contained in С and hence

P (C and B) = P(C) • P' (C and B)

= P(C) • P(C and B|C)

= P(C) • P(B c),

which is the multiplication rule.

VII. MINIMUM EXPECTED RISK. "When subjective probability is taken

seriously decision, loss and other economic concepts, though they remain

important, become relatively uninteresting because in principle the solution

of every decision problem is simply to minimize expected risk with respect

to the subjective probability that applies at the moment of making the

decision." We illustrate this comment of Savage's r22j by considering a

method of estimating reliability which uses prior knowledge. Thus, to

continue the previous example, if n valves are tested and s of them are

successes then how would this alter our hunch that the reliability of the

valve is very near .95? Let r denote such an altered estimate of reliability.

If we decide to adopt the beta distribution representation of prior knowledge

then r should clearly depend only on a, b, s and n since these four

quantities determine the prior knowledge and the additional experimental

evidence concerning p . In the interest of simplifying the notation we

suppress the dependence of r on a, b, n and write r = r(s) to empha

size that, because of chance variation in s, r is also subject to chance.

We now attempt to find a rational basis for choosing among the many

possible estimates of reliability. If p is the true reliability of the valve

then there is a certain loss in acting as though p is equal to r(s); denote

this loss by L [p , r(s) J . If r actually equals p then the loss would

presumably be zero. For any particular estimator, L may be averaged over

the n+1 possible values of s to obtain the average loss if r(s) is used

and p is the true reliability. This average loss may be called the risk in

using r(s) if p is true. The reader will not fail to notice that this is
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another use of the decision rule idea which was first introduced in Section IV.

Now, taking account of the prior probability distribution of p , the expected

risk may be calculated to be a positive multiple of the sum of the n+1 terms

1

n Г a+i-1 , , n+b-i-1

( .) i Up. r(i)) p (1-p) dp , i = 0, 1,

0

n.

It would seem to be reasonable to use that estimator, r(s), which minimizes

the expected risk. We may find this estimator by separately minimizing each

of the n+1 terms whose sum is the average risk. Taking the squared error

loss function, L( p , r) = (p -r) , then the estimator having minimum

average risk is r(s) = (a+s)/ (n+b+a) . In particular, if all n valves

function correctly then our altered estimate of p is r(n) = (n+a) / (n+b+a) .

The squared error loss function is one of many choices which has the

general properties desired; it is zero when r and p are equal and is an

increasing function of the error of estimation. There is a modestly valid

power- series reason for being interested in mean squared error [21, p. 233J .

VIII. BAYES' THEOREM. In order to illustrate how the next concept of

inference might work, we adopt the beta distribution representation of prior

knowledge concerning reliability. Again consider that n valves are tested

and that s of them work satisfactorily. In the light of the further evidence

given by the newly tested valves what now should be the state of the

observers mind? If В is the event that s out of n valves function cor

rectly, then P(B) is computed by averaging the probability of В for given

reliability, p , with respect tothe prior distribution of reliability. Thus

i

Г / n . s . , , n- s , . ,

P(B) = ( ) p (1-p ) g(p) dp

Note that we have integrated over the entire range of p and hence P(B)

does not depend on p . Now define С to be the event that the reliability

is in the interval ( p/ p + & p) and use the multiplication rule.
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P(B) • P(C В) = P(C and В) = P(B С) • Р(С) .

Hence in the limit as Др approaches 0

p(c|b)=[i/p(b)J (n) ps (1-р)п_3д(р)др

Remembering the meanings of the events С and В we may write the last

equation as

h( ds)dp = constant p (1-p) g(p)dp

where the constant will be independent of p . h( p s) is called the

conditional probability density function of p given s and the meaning

of h is that if we know the value of s then we may graph h as a function

of p ; the probabilities of various conditional events are then calculated

by measuring areas under h. This is, of course, a special case of the

more general result known as Bayes' theorem. Allowing g( p) to be repre

sented by the beta distribution we obtain asa special case

/ i ч a+s-1 . , . n+b-s-1

h( p s) = constant p (1-p )

The observers subjective probability concerning the true reliability is again

given by the beta distribution, but the parameters have been altered by

further experimental evidence. This altered distribution is called the post

erior distribution of reliability.

A very impressive fact concerning Bayesian inference in the present form,

is that it fits nicely into the successive approximation scheme of scientific

method. Thus in Figure 1, the initial idea is the prior beta distribution of

Section VI. If a = 160 and b = 8.4 in this prior distribution and if the

experimental data consist of observing ten additional successful valves then

the data and the prior distribution combine to yield a posterior beta distribution
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with parameters a = 170 and b = 8.4. In Figure 1, the posterior distri

bution of the first cycle becomes the new idea and hence the prior distri

bution of the second cycle. If fifteen further successes are observed,

then the third "idea" of reliability is that it has a beta distribution with

parameters a = 185 and b = 8.4.

The Bayesian concept which is analogous to the 95% lower confidence

bound would seem to be to calculate that value of p , say r , such that

' В

9 5% of the posterior distribution of p is greater than rR . The practical

matter of actually evaluating rR is not quite as easy as it at first appears

but when r is near one, as we would expect in the reliability situation,

В

we may write

rB = 1"X2 (.05)/(2a' + 2b' - 1)

where a' and b' are the parameters of the posterior distribution and

2
"X (.05) is such that a chi- square deviate with 2b' degrees of freedom will

2
exceed X (-05) with probability 5%. This method of evaluating rR is

based on an approximation due to Tukey which, however, appears in a paper

of Kimball and Leach [13j. It is interesting to compare the Bayesian bounds

obtained in this way with the confidence bounds in the second column of

Table 3; column three of this same table has been prepared to facilitate

such a comparison. Note that if the sample size becomes much larger than

about 60, the confidence bound is more strigent than the Bayesian bound;

this is because the experimental evidence indicates a greater reliability

than the prior opinion would warrent. Finally, the observer's posterior

opinion of the exact value of reliability is obtained by integrating the post

erior distribution over the interval (0, 1) to obtain (a+s)/ (n+b+a) = r(s),

the minimum mean square error estimate of Section VII. r(s) when derived

by the method of the present section may be called the average posterior

estimate of reliability to distinguish it from the numerically equal but

conceptually different estimate of Section VII.

IX. STABLE ESTIMATION . The reader will not have failed to wonder

whether it is often possible to formulate prior knowledge specifically enough
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to describe it by means of a beta distribution or for that matter any specific

prior distribution. In many instances prior knowledge will be a hazy, fuzzy,

ill-defined thing which an individual feels but is unable to specify. At first

consideration this seems to severely limit the cases in which Bayes' theorem

can be applied; however, sharp peaks in the prior density function, g,

correspond to relatively precise prior opinions and hence if prior knowledge

is ill-defined then g must be broad and relatively flat over small ranges

of p . Savage [22] points out that if the distribution is flat over narrow

ranges it matters little how it is defined. For this reason, the method to be

explained below is called the theory of stable estimation.

To illustrate for the type of problem under consideration remember that

Bayes' theorem gave the result that h( p\ s) is proportional to b(s| p ) g(p )

where h, b and g are respectively tne posterior density of p given s,

the binomial distribution and the prior density of p . Now, in those

instances where the prior knowledge is ill-defined it seems that though we

would not know g specifically, we would know some of its properties. It

seems that sometimes g should be taken to be a wide flat curve with no

marked peaks. In contrast, when considered as a function of p , b would

usually be sharp and pointed in the neighborhood of s/n and would be

quite small for values of p which are much removed from s/n. Under these

circumstances b(s|p) g(p ) is well approximated by b(s||0) g(s/n). There

fore h is a probability density which is well approximated by a constant

multiple of b(s|p) considered as a function of p , i.e., h(p| s) =

constant p s(l-p)n-s to a good approximation. Again the posterior

distribution is of beta type but this time the parameters are s+1 and n-s+1.

In fact the results are the same as if we had assumed a prior beta distribution

with parameters a=b=l but surely the method of obtaining the result is more

satisfactory.

Much of what was said in the previous section would now apply here as

well. For example, hi^l s) may be taken as the prior probability for the

second stage of a successive approximation and we may calculate average

posterior estimates and lower Bayesian bounds just as we did before. The

results of several sample computations of such lower bounds appear in

column four of Table 3 . It is interesting to compare columns two and four

of this table since the prior knowledge is assumed to be imprecisely known

for both the confidence and the stable estimation bounds; the agreement is,

in this instance, remarkable. In general for large s the agreement will be

good since the stable estimation lower bound is the corresponding confidence

bound with sample size and number of successes each increased by one;



316 Design of Experiments

see for example Mood [17, p. 235 J. Stable estimation seems to describe

the situation in which the experimenter finds himself in a large number of

practical situations and once accepted the theory has far reaching

implications .

We now mention an interesting related idea which may be referred to as

Anscombe's prior distribution [lj. We are asked to consider a "unique trial

for which there is no clearly relevant past experience" but where "every

effort will have been made, in design and production, to prevent failures."

What prior density function g { p ) would represent the initial opinion of an

open-minded unprejudiced observer? Such an observer's initial opinion

about p would presumably be diffuse and hence g would be continuous

and would change only slowly with p , except possibly in the neighborhood

of p=l. "There is little loss of generality in assuming that (g) is of beta

type; ..." In view of the assumed considerable effort to prevent failures

it most unlikely that p will be really small. Hence in the prior beta

distribution, a will be large relative to b and at least as large as 1. The

behavior of g(p ) near p =1 will then, depend mainly on b. For b <* 1,

g ( p) becomes infinite at p =1 and to choose b > 1 implies a definite

belief that p is bounded away from 1. If we choose b=l then g(p) will

be a slowly increasing function for all p , so that over any short interval

g [p ) is not far from uniform. For the experimental circumstances envisaged,

it is accordingly proposed that the prior density function should be taken to

be of beta type with parameters b=l and a large relative to 1. Though

Anscombe has in mind a particular kind of sequential acceptance procedure,

his prior distribution could presumably also be used for the purposes

explained in our section entitled Bayes1 Theorem.

X. CONCLUSIONS. We have seen in the preceding sections that,

starting with prior distributions, we can build up a fairly elaborate mathe

matical theory of inference. We are able to "get answers" and these

answers are appealing in that they make use of prior knowledge. But does

this mathematical theory describe the physical situation? Should we want to

do the job for which this theory provides the foundation?

Some would answer these questions in the negative on the grounds that

the reliability of a device is not subject to chance variation but is a fixed

although unknown constant. Thus, they continue, it is foolish and mis

leading to assign a probability distribution to reliability. Further the

whole idea of subjective and prior probabilities is incorrect since the

probability of an event would differ from person to person and it would be



Design of Experiments 317

impossible to empirically check the correctness of a probability. Finally,

the investigator will merely have some vague feelings about reliability

which he will be unable to formulate in the precise manner indicated in

Section VI and even if he were able to formulate his prior knowledge it

wouldn't take the form of ascribing a beta distribution to /° .

The last criticism has been anticipated in the discussion of stable

estimation. There it was pointed out that under certain circumstances the

prior distribution will be broad and if it is broad then it matters little how

the prior distribution is exactly defined. In general this final objection will

be met if Bayesian procedures can be found which do not depend too strongly

on the precise nature of the prior distribution.

To discuss the first objection intelligently it is necessary to recall the

distinction that we made in Section I between the device of common sense

and the DEVICE whose reliability is capable of being studied. Remember that

the DEVICE is an abstraction; it is the common sense device as seen by the

observers measuring instruments and interpreted with respect to his precon

ceived ideas. Even if the reliability of a concrete device (which we haven't

defined) is a fixed but unknown constant it is not completely clear that the

same is true of the reliability of the abstract DEVICE. It might be that, in

the transition, reliability assumes a distributional character due to the

lack of accuracy of the process of observation and interpretation. We

hasten to re-emphasize that the reliability of a common sense device can

not be studied empirically since as soon as it is formulated and observed it

interacts with our senses and preconceived ideas and becomes a DEVICE.

As regards the second objection it does seem that a situation in which

there is no agreement among individuals about basic scientific questions

would come close to destroying the character of physical science. Thus

prior distributions which are the results of whims or hunches may form a

proper subject matter for psychology or sociology but in the physical sciences

prior distributions should not be used unless they have some sound basis.

Except where we are studying how the mind itself works we should not use

prior distributions which are pulled out of thin air, but should insist that

they be advanced as the consequence of some more or less valid argument.

Such a valid argument could be a physical theory or a development along the

lines of stable estimation for example . If a valid prior distribution is not

available then the confidence bounds and tests of hypotheses of classical

statistics can be used. Thus the second criticism of subjective probabilities

leads to a clarification of the practical cases to which Bayesian inference can

be applied rather than a refutation of the method .
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It is to be expected that many objectivists would maintain that there

are no practical situations where a valid prior distribution would be

available while the subjectivists would tend to claim that their techniques

are almost universally applicable. If the reader is interested in the details

of this controversy he may consult the insightful and valuable works of

Lindley[15], Savage [212 Edwards [7]and Tukey [23].
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AN EXPERIMENT ON AIRCRAFT VULNERABILITY
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The problems involved in the conduct, data reduction, and analysis of

data from a large scale field experiment are not always fully recognized by

designers and planners of such experiments . It is the intention of this

paper to present the history of one such experiment including some of the

results, and to draw from it some general conclusions about the practicality

of conducting experiments on that scale.

The experiment was conducted during October and November 1958 at the

Hunter Liggett Military Reservation, California . It was a US Army Combat

Development Experimentation Center (USA CDEC) experiment in which ORO

participated. Experimentation was conducted concurrently but independently

by both agencies. Data was collected by ORO only during October 1958 and

this paper is concerned with the ORO experimentation.

The problem was to determine the effectiveness of some light antiair

craft weapons and small arms against low-flying tactical aircraft in the

forward battle area . At the time of the experiment many new aircraft

systems were under study by different Army organizations. Because of the

missile threat at medium and high altitudes most tactics envisioned low-

flying aircraft. In the region below 600 feet only light arms presented a

threat to aircraft in the forward areas. There was however very little known

about response and detection capabilities of an antiaircraft crew under

alert and non-alert conditions. Furthermore aiming error and hit probability

data did not exist for effectiveness of small arms against aircraft flying

below 600 feet. The experiment was designed to obtain these basic data

from the field .

It was considered important to relate these data to measurable variables

which were thought to be instrumental in determining weapon effectiveness

(Fig. 1) . The specific problem then to which the experimental results were

addressed was the following. What is the effect of target velocity, altitude,

crossing range, terrain mask angle and gun-crew alert status upon single-

weapon vs. single-aircraft engagement kill probability and upon related

quantities such as gun-crew detections ranges and number of rounds fired?

The experiment consisted of a series of single aircraft passes over sites

containing antiaircraft units. Four sites were selected to give a variety
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of terrain features (Fig. 2) . For any aircraft pass only three sites were

occupied. Each of these contained the group of weapons shown in Table 1.

Table 1

WEAPONS USED

1 Twin 40 AA

4 M-l Rifles

2 BARS

2 50 Cal MG (mounted onAPC's)

1 Quad 50 AAMG

In addition a Redeye simulator was placed in each of two sites,

The targets for all weapons were the Army L19 observation aircraft flying

at a velocity of 75 KT, the Air Force T37 jet trainer flying at 200 KT, and the

Air Force F100 fighter flying at 325- and 450-KT. During the experiment the

aircraft flew straight and level courses with respect to the ground weapons.

It was planned that these targets be generalized to other aircraft of the

same general size and velocity class by using the average vulnerability

characteristics of these and related aircraft.

The operation of all weapons was simulated in the sense that camera film

records were obtained from the experiment rather than actual target damage

from real rounds fired. Two of the weapons were further simulated. The

Redeye was a mock-up, or specially designed dummy to simulate to the

Redeye operator some of the more important characteristics of the weapon.

The Twin 40mm was also simulated in that the gun crew did not use its

computing sight .

DESIGN OF EXPERIMENT. Each aircraft flight was carefully controlled

so that with respect to each weapon site pre- specified values of the

independent variables were taken on. A factorial design with two replica

tions was originally intended. That is, every combination of the values of
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the independent variables shown in Table 2 would be taken on during two

aircraft-site passes. Because of equipment and time limitations only

one replication was possible, and after data reduction the factorial design

was incomplete. Where possible these gaps were filled by standard

statistical techniques.

Using a regression analysis it was planned to determine the functional

relationship between the dependent and independent variables. The basic

method described by Milne , is that of approximation by orthogonal poly

nomials. This requires that the independent variables take on values at

equally spaced intervals; and this requirement was met by the selection of

values as seen in Table 2 .

Table 2

Velocity Altitude Mask Crossing Range Warning

(In knots) (In feet) (In degrees)

75 0 No Overhead Surprised

200 200 0-5°

325 400 5-10 Crossing (300 meters) Warned

450 600 10-15° '

Having explained the intention and design of the experiment, it is still

necessary to describe some of the details of instrumentation, troop training,

and data reduction in order to give some notion of the limitations of method

and hence applicability of the results of the experiment.

INSTRUMENTATION - SOURCES OF DATA

There were four major sources of data from the experiment, gun, cameras,

radars, phototheodolites, and pen records .

Two types of gun cameras were used (Fig. 3). The first, used only for

the Ml rifle, was the Robot Star 35mm still camera. This was mounted on

Milne, Numerical Calculus, Sect. 71, Princeton University Press,

Princeton, New Jersey.
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the rifle and instrumented via its trigger. When the trigger was pulled a

picture would automatically be taken and the film advanced by one frame.

All the other weapons were mounted with the AN-N6 movie camera. During

tracking of the aircraft the camera took a movie of the aircraft while the

trigger of the weapon was depressed.

Two M-33 type radars were used to track the aircraft and record its

instanteous positions. The aircraft range, azimuth, and elevation were

read directly on dials which were photographed every half second by

cameras .

To insure adequate aircraft tracking data at all altitudes, four photo-

theodolites were stationed about the test site. Cameras recorded at inter

vals of very half second the azimuth and elevation angles of the aircraft

as well as its relative position to the phototheodolite crosslines as seen

through the optical sights.

The cameras, radars, and phototheodolites were synchronized by pen

recorders. Twenty pens operated for each site during an engagement.

Each of 14 of the pens was wired to a weapon and recorded the trigger

movements of the weapon. One of the pens was activated by a button

pressed by an ORO observer on the site who indicated when the aircraft

came into view, when it was first observed by the troops, and when it

disappeared from view. Two other pens were controlled by Twin 40 and

Quad 50 observers who recorded by pushing a button when the first turret

motion occurred, when first tracking started, and when tracking ended.

In addition to measures of crew responses which could be gotten directly

from the pen records, the pen records made it possible during a later phase

of data reduction to assign real times to gun camera pictures and radar

observations .

For one month prior to the experiment an extensive training program for

the gunners was conducted. The men were given instructions on how to lead

moving aircraft and how to estimate range properly.

A firing doctrine was established for each weapon and the gunners were

trained in using their weapons in accordance with this doctrine. Effective

ranges were set for the different weapons! The effective range for the Twin

40 was 1,500 yards, for the Quad 50 and Single 50 800 yards, for the Ml

rifle and BAR - 400 yards, and for the Redeye 2,000 yards. The Ml riflemen

were not to fire more than 8 rounds during one engagement. Redeye gunners

were instructed to fire continuously as long as the aircraft was in range.
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For all other weapons the gunners were instructed to fire in simulated

bursts as long as the plane was within range of their weapons.

During and after the experiment the "raw data", that is, the pen records,

gun camera films and pictures of radar dials, were read-out on to IBM cards.

It was decided not to reduce the phototheodolite data to cards because of

the prohibitive cost and because most of those data duplicated the radar

data. The result of this reduction was approximately 200,000 cards. The

data from these cards were then put on magnetic tapes.

The next stage in the data reduction consisted of a series of computer

programs (using the 1103A Univac Scientific Machine) which eliminated a

considerable amount of bad data (about 30% of the total) and by sorting

and other techniques associated the pen record data with the gun camera

and radar data. This provided a means for assigning a real time to each

radar and gun camera observation.

The data were then in shape so that the model used in determining measures

of weapon effectiveness could be employed.

The most important measure of weapon effectiveness is the probability

that during an engagement, fire from the weapon will result in the "kill"

of the aircraft. This measure is called "Engagement Kill Probability" (EKP) .

The bulk of computations were directed toward computing this quantity for

each weapon-aircraft engagement.

The first step was to simulate the path of the bullet as indicated for

each gun camera frame and to determine the closest approach of the bullet to

the aircraft during its flight. The distance to the aircraft at the closest

approach of the bullet was called the "miss distance". Necessary to this

simulation was the capability of determining the bullet position at any point

in time. This was accomplished by a series of curve fits to ballistic data

found in firing tables. Orthogonal polynomial methods were used to do this.

The main results of each bullet-aircraft simulation were the co-ordinates

of the bullet at point of closest approach in the miss distance plane. This

plane is that which has its origin at the center of the aircraft and is perpend

icular to the line from the gunner to the aircraft. For each weapon-aircraft

engagement the bullet co-ordinates in the miss distance plane provided a

dispersion pattern which was found to be approximately normally distributed

in each direction. The center of the pattern was always found to be biased

about the aircraft. The bias tended to be proportional to the velocity of the

aircraft.
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Aircraft vulnerability data were combined with the dispersion pattern

in order to compute the probability that a single bullet would "kill" the

aircraft . The vulnerability data were gotten from BRL publications . The

vulnerable areas of typical aircraft were averaged and that area assumed to

be one standardized vulnerable square centered at the aircraft. The single

shot kill probability (or the probability that a single bullet would strike the

vulnerable portion of the aircraft) was simply the double integral of the

bivariate normal distribution function determined by the bullet dispersion

patterns over the vulnerable square in the miss-distance plane.

The number of rounds fired by each weapon during an engagement was

gotten from the known firing rates of the weapons and the experimentally

measured time during which the gunners fired at the aircraft. The engage

ment kill probability then was simply:

,(No. of Rounds Fired)

Ekp = 1 - (1 - Single Shot Kill Probability)

In addition to Engagement Kill Probability other measures of weapon

effectiveness and crew response were computed. These were associated with

the independent variables. As mentioned previously each engagement was

designed to correspond to different values of the independent variables.

However, after the experiment the radar data were examined to determine the

actual altitude, velocity, and crossing range of the aircraft. This resulted

in a reclassification of about 10% of the aircraft- site engagements with

respect to the independent variables.

The original method of fitting orthogonal polynomials was not used because

of the form in which it was apparent that some of the dependent variables

were influenced by the independent variables. For example, the single shot

kill probability varied as the inverse square of the velocity. An approximation

to this statement using a polynomial whose variables contained positive

powers would have been misleading and not very useful.

The relation of the independent to dependent variables where it was

found to exist was gotten by straight-forward methods. Most of these

results can be tabulated and presented but no explicit meaningful formulas

given. Several examples of results will show that more clearly.
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RESULTS. DETECTION RANGE. One useful measure of the ability of

ground observers to visually detect aircraft is the slant range at which

the aircraft is first observed. The variables of warning, crossing range,

and velocity appeared to have no measurable influence on the detection

range in this experiment. The two most important variables were terrain

masking and target altitude.

Figures 4,5, and 6 show the large difference in detection range

cumulative probability as a result of the different mask angles. There is

a gradual decrease in the difference between the 0-5 degree masks and no-

mask cases as altitude increases. At 600 feet the difference disappears

entirely.

Figure 7 shows the detection range probability when the data are

averaged over all controlled variables except altitude. Each mask group

contributes an unequal amount of data to each altitude and the effect of

altitude is not as regular as it is when taken by mask case.

FIRING TIME. The firing time for a weapon is the time between start-

fire and end-fire times for a given engagement. It was recorded automati

cally from a trigger pull switch. Firing time is useful as a rough experimental

indication of the number of real rounds that could be fired during an

engagement. As was expected firing time was an inverse function of

felocity. The variables of mask and altitude were also important as shown

in Figures 8,9, and 10.

Figure 11 contains a plot of the bullet dispersion pattern means for the

Ml. Pre-experimental calculations had assumed that bullet dispersion

patterns would always be centered at the target and that the effect of the

different variables would be in the variance of the distributions. However,

as indicated in this figure the centers are displaced roughly proportional

to the velocity of the aircraft. This statement was true for those weapons

which required the gunners to lead the aircraft. In the case of the Twin 40

and Redeye which aimed directly on the target, however, the dispersion

means were very close to the center of the aircraft and showed little if

any effect of velocity. Figure 12 demonstrates this for the Twin 40. These

patterns include range effects. In an effort to mask out all but angular

aiming errors a new quantity was introduced called "miss angle aiming

error" and was computed as the ratio of the miss distance divided by the

slant range to the aircraft. Figure 13 shows the mean of this quantity plot

ted against velocity for all the weapons. This demonstrates quite clearly
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the advantage especially at high velocities that weapons not requiring lead

have over those that do.

Single- shot kill probabilities seen in Figures 14 and 15 show similar

sharp decreases as velocity changes from 75 to 200 knots. The single shot

kill probabilities for the Ml, BAR, Single 50 and Quad 50 seemed to vary as

the inverse square of velocity. Other variables were important in some cases

but no regularities were found .

Finally, engagement kill probabilities as shown in Figures 16 and 17 were

most strongly influenced by velocity. The data for the cases at higher

velocities were scarce but the general trend for the weapons which required

some lead by the gunners was for engagement kill probability to vary as the

inverse cube of velocity. The Twin 40 Ekp was approximately a slowly

decreasing function of the inverse of the velocity although data at higher

velocities is incomplete.

One particular assumption which determines the results is the size of

the vulnerable area. Different areas other than the standard one were tried

but the general shapes of the curves remained the same .

The flow of data from the field was such that at no single point in the flow

was there raw data which was recognizable as such. The flow started with

undeveloped film and pen records. The information on these media was not

digitalized until a later time, and then only in very large amounts. The

film had to be developed and then its information transferred to IBM cards

and listed before any numerical data could be seen. There was an analogous

set of steps for the pen records . . . The data handling was something like

real-time data processing of the kind that is used during missile tracking

and testing. It was quite different from the classical procedure of experi

mentation in which an observer records in numerical form what he sees on

an instrument dial or number of objects he counts, the small amount of

recorded data then being inserted in explicit mathematical formulae for

computation of final results. Hence, the report on this experiment does not

contain any raw data, nor a set of formulae which when applied by them

selves to the raw data will yield the results contained in the report . . .

A corollary of this view is that, like missile testing data handling, this

experiment cannot efficiently yield results with just one trial. It requires

more or less repeated runs in order to obtain an efficient operation. Since

the ORO part of the aircraft vulnerability experiment was a one-of-a-kind

event, data was lost, time was consumed, and some inefficiency resulted.
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APPRAISAL OF THE EXPERIMENT . It has become apparent during the

period of data transfer, reduction, and analysis that this experiment was

entirely too large a scale for the results that were desired. The concept

of divide and conquer is as applicable here as in war itself. This field

test was really a set of 5-10 smaller experiments that could much better

have been performed serially so as to yield a set of principles and a body

of field testing experience at each stage to be fed into the next experiment .

Thus separate experiments on detection ranges, response time, aiming

errors, and individual weapons taken alone, would have been appropriate

and would have made it clear and feasible that originally planned experi

mentation should be expanded or reduced in scope. By carrying out a

very large scale test it was hoped to conserve resources, especially

expensive aircraft operations. This result did occur but only at the price

of a 2 to 3 year waiting period for results, loss of significant results from

recognition of corrective measures long after the experiment was run, and

a large turnover in the needed experimenters during the critical data

transfer, reduction, and analysis phases.

Similar experiments in the future should be broken down into components

and run separately, and/or incorporated into a continuing program of

experimentation and data treatment .





A METHOD OF WEAPON SYSTEM ANALYSIS

H. G. Smith

Picatinny Arsenal

ABSTRACT . A method of determining optimum weapon system parameters

using the optimization criterion of minimum weapon system weight is

discussed.

Secondly, means of obtaining the probable error in range due to probable

errors in ballistic coefficient, muzzle velocity, and angle of elevation is

discussed .

Also, the possibility of determining optimum weapon system parameters

using the optimization criterion of maximum ballistic accuracy is presented.

The purpose of this paper is to present a method of optimizing weapon

system parameters for minimum system weight and a method of approximating

the ballistic errors of projectiles. Also, the concept of designing weapon

system parameters to achieve maximum ballistic accuracy is presented.

In many applications, a weapon system of minimum possible weight is

highly desirable, especially where high maneuverability is required.

Since the weapon system weight is approximately proportional to the

kinetic energy of the projectile at the muzzle, the criterion of minimum

kinetic energy is used in this analysis for simplicity.

In order to determine the optimum point of minimum kinetic energy

required to obtain a given range, the following procedure may be used.

First, one may select various values of ballistic coefficient. For each

ballistic coefficient selected, one may find the muzzle velocity required

to obtain the desired range from the appropriate ballistic tables or other

suitable solution of the trajectory equations. One may then compute the

product of the ballistic coefficient and the square of the muzzle velocity

which is proportional to the kinetic energy as long as the shell diameter

and form factor remain constant. By plotting a curve of this product, one

can readily determine the optimum ballistic coefficient by finding the

ballistic coefficient corresponding to the minimum point of the curve.
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An alternate method of determining the optimum ballistic coefficient

which involves slightly more calculations but may be easier to visualize

may also be utilized. As before, one starts by selecting various values of

ballistic coefficient and finding the corresponding muzzle velocities re

quired to obtain the desired range. One then can compute the shell weight

corresponding to each ballistic coefficient using the appropriate shell

diameter and form factor. Using the shell weight and muzzle velocity,

one may compute the kinetic energy and plot a curve of the kinetic energy

versus the shell weight. The optimum shell weight can be determined

from the curve at the point where the kinetic energy is a minimum. The

optimum ballistic coefficient can be computed using the optimum shell

weight and the appropriate shell diameter and form factor.

Once the optimum ballistic coefficient and corresponding muzzle

velocity required to obtain the desired range are known and the projectile

acceleration limit and piezometric efficiency are either known or estimated,

the length of travel (length of gun tube) can be calculated from the following

expression:

v2

2g (P.E.) a

where: L - Length of travel

V - Muzzle velocity

g - Acceleration due to gravity

(P.E.)-Piezometric efficiency

a - Acceleration limit (G's)

This equation is easily derived by equating the work done on the projec

tile by the propellant gases throughout the travel of the shell in the gun

tube to the kinetic energy of the projectile at the muzzle.

Work Done = P A L
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1 W 2

Kinetic Energy - 2 g ^

where: P - Average pressure

A - Bore area

L - Length of travel

W - Projectile weight

g - Acceleration due to gravity

V - Muzzle velocity

1 W 2

PAL = -^— V

2 g

2

PA L = V

W 2g

(P.E.) = — (by definition)

P

where: P - Peak pressure

Р

(P.E.) - Piezometric efficiency

P - Average pressure

P = (P.E.) P

P

PA 9

(P.E.) _P_ • L =JL_

W 2g
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P A

However: B— = Peak acceleration in G' s = a

W

V2

(P.E.) a L- 55

Therefore, the length of travel is:

L = -г-

v2

2g (P.E.) a

As an aid to the design engineer, system analysis charts for the

projectile types most encountered can be compiled. A separate chart is

required for each range of interest. A typical chart would include curves

of kinetic energy required to obtain the desired range versus shell weight

for several shell diameters with constant form factor, curves of ballistic

coefficient versus shell weight for several shell diameters with constant

form factor, a curve of muzzle velocity required to obtain the desired range

versus ballistic coefficient, and curves of length of travel versus muzzle

velocity for several acceleration limits with constant piezometric

efficiency.

Figures 1 through 4 (to be found at the end of this article) are typical

examples of these charts. The charts were compiled for Type I Projectiles

for ranges of 5,000, 10,000, 20,000, and 30, 000 meters using a form factor

of .5 and a piezometric efficiency of .5. Kinetic energy and ballistic

coefficient curves are shown for shell diameters of 4, 6, 8, and 10 inches

and length of travel curves are shown for acceleration limits of 2,000,

4,000, 6,000, 8,000, and 10,000 G's. The charts can be used for form

factors other than those used in the compilation of the charts by multiplying

the shell weight and kinetic energy obtained from the chart by the ratio of

the form factor desired to the form factor used in the chart. Similarly, the

charts can be used for piezometric efficiencies other than those used in the

compilation of the charts by multiplying the length of travel obtained from

the chart by the ratio of the piezometric efficiency used in the chart of the

piezometric efficiency desired.
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These charts can be very useful to the design engineer, not only in the

optimization of a weapon system, but also in visualizing the relationships

between the parameters required to obtain the desired range.

In the design of any projectile, the design engineer is concerned with

the attainment of acceptable accuracy with preliminary designs. The accuracy

of a newly designed projectile should be estimated in the preliminary stages

of design in order to avoid the situation of discovering that the accuracy of

a new design is unacceptable after a great deal of time and effort has been

spent in the design of the projectile.

In order to approximate the accuracy that might be expected from the pro

jectile, the design engineer must decide on the variations that might be

expected in the parameters that determine the projectile's trajectory and

determine the effect of each of the parameter variations on the range disper

sion before the total range dispersion can be computed. The effects of the

major parameter variations on the range can be obtained from the appropriate

exterior ballistic tables by selecting a convenient change in a parameter,

finding the corresponding change in range due to the parameter change, and

dividing the change in range obtained by the change in the parameter to find

the change in range due to a unit change in parameter. This procedure should

be followed for each parameter at each range of interest.

As an aid to the design engineer, these differential effects can be com

puted from ballistic tables and plotted so that the design engineer can pick

the differential effects off a graph and thereby simplify the task of estimating

the ballistic errors.

The following factors have been found to be convenient in describing the

major differential effects. They are the range -velocity sensitivity factor

(the percent change in range due to a one percent change in muzzle velocity at

at constant ballistic coefficient and angle of elevation), the range-ballistic

coefficient sensitivity factor (the percent change in range due to a one percent

change in ballistic coefficient at constant muzzle velocity and angle of

elevation), and the range-angle of elevation sensitivity factor (the percent

change in range due to a one percent change in angle of elevation at constant

muzzle velocity and ballistic coefficient). The major parameter variations

considered, for convenience since they are independent of each other, are

velocity variation at constant weight, weight variation, form factor or drag

coefficient variation, and angle of elevation variation. When the parameter

variations and the sensitivity factors are known, the probable error in range

can be determined from the following equation.
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P2 = (S P )2 + (S P + nS P ) + (S P.) + (SjP^t)r V v x с w V W CI w (p

where: S - Range-velocity sensitivity factor

S - Range-ballistic coefficient sensitivy

factor

Si - Range-angle of elevation sensitivity

T factor

P - Probable error in range in percent

r

P - Probable error in muzzle velocity in

percent (not including any error due to

variation of projectile weight)

P - Probable error in projectile weight in

w
percent

P, - Probable error in form factor (or drag

coefficient) in percent

P , - Probable error in angle of elevation in

T percent

n - Logarithmic rate of change of muzzle

velocity with projectile weight.

The Ordnance Engineering Design Handbook, ORDP 20-140, TRAJECTORIES,

DIFFERENTIAL EFFECTS, AND DATA FOR PROJECTILES, gives the following

approximate values for n.

Rifled gun with multiperforated propellant grains - n = - .3

Rifled gun with single-perforated propellant grains - n = -.4

Smooth bore mortar with flake propellant - n = - .47

Recoilless rifle with multiperforated propellant grains - n = - .65
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Figures 5 and 6 show typical plots of the three sensitivity factors for

Type I Projectiles. Figure 5 consists of curves of range-velocity sensitivity

factors versus muzzle velocity for several values of ballistic coefficient

at an angle of elevation 30° and curves of range-ballistic coefficient

sensitivity factor versus ballistic coefficient for several values of muzzle

velocity at an angle of elevation of 30°. Figure 6 consists of curves of

range-angle of elevation sensitivity factor versus angle of elevation for

various values of ballistic coefficient at a muzzle velocity of 440 meters

per second.

Since the curves are functions of the ballistic coefficient, the curves

may be used for any form factor as long as the ballistic coefficient used

is computed using the applicable form factor. It should be noted, however,

that the curves may only be used for projectiles which have drag functions

similar to the drag function of the projectile type for which the curves were

compiled .

These curves can be useful to the design engineer, not only in

estimating the range dispersion, but also in visualizing the parameter

changes that may be necessary to improve the accuracy.

Once the various parameter variations are known or assumed, it is

possible to optimize the parameters using an optimization criterion of

minimum ballistic error or, in other words, maximum ballistic accuracy.

This may be done by selecting several values of ballistic coefficient,

finding the corresponding muzzle velocities required to obtain the desired

range at the desired angle of elevation, computing the probable error in

range using the various parameter probable errors and the appropriate

sensitivity factors, and plotting a curve of the range probable error versus

ballistic coefficient. The optimum ballistic coefficient can be determined

from the curve at the point where the range probable error is a minimum.

This procedure is particularly useful in the design of projectiles for

existing weapons or any application where the primary design consideration

is accuracy.
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VARIATION OF ARTILLERY AMMUNITION EXPENDITURE WITH INTELLIGENCE
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SUMMARY. The purpose of this project was to determine how the

amount of intelligence available to the artillery officer affects his ammuni

tion expenditure. An experimental procedure consisting of a map exercise

was designed to solve this problem. The exercise was pre-tested by 37

artillery officers to test the effectiveness of the design.

PROBLEM. The purpose of this project is to develop a method for

determining the relation between target intelligence level and artillery

ammunition expenditure. In this study target intelligence was defined as

the percentage of the total number of enemy targets on the battlefield

detected by friendly forces .

BACKGROUND. Ammunition supply is a critical problem in any theater

of operations, particularly during the months immediately following the out

break of a war. Indeed, it has been estimated that in a general war a period

of twelve months would be required to attain maximum munitions production.

It is therefore necessary that ammunition stockpiling be sufficient to insure

adequate supply during the initial period of production adjustment. In 1958

a study was conducted at C&GSC, Ft. Leavenworth, which attempted to

determine supply levels which conform with modern war requirements . How

ever this study assumed perfect intelligence, a theoretical level never

attained on the battlefield. In 19 61 the Operations Research Office was asked

to study this problem. In their study the battlefield was divided into seg

ments and a weighted probability of detection was assigned over these seg

ments. However still no attempt was made to study how a wide variation in

intelligence might affect artillery ammunition expenditure and therefore it is

desirable to make such a study.

METHODOLOGY . Artillery ammunition expenditure varies as a function

of several factors: target detection, ammunition supply rate, terrain, phase

(attack, static, retrograde), type of war (nuclear, nonnuclear), support (air,
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naval), target identification (location, size, and type of target), and TOE

(table of organization and equipment) . The problem was evaluated by holding

all of these variables constant with the exception of the first two. The

interaction between these variables is evaluated by a three by three factori

al experiment employing a two-way analysis of variance.

In the specific design of the experiment several other variables may

indirectly affect the results of the exercise and must be taken into account.

These variables include the rank, general background, training, combat

experience, and status (Regular Army or Reserve Component) of the artillery

officers. Because these variables can affect the results of test subjects in

such a way as to mask the effects of the main variables, it is desirable in

designing the details of the experiment to allow for these effects and to

attempt to control them. This can be done by careful subject selection or by

a distribution of subjects such that the effects of these variables can be

taken into account in the analysis and true relations between the main

variables may be found.

In evaluating the problem, it is desirable to utilize the experience and

judgement of artillery officers. Two experimental procedures are possible:

a full-scale war game, and a static map exercise.

The advantage of a war game is that is allows the problem to be evalu

ated over a long period of time in a dynamic situation. However, this

superior yield is obtained at the expense of the sampling. Because of the

large individual variances among, a large sampling is necessary to obtain

significant results. Such a large sampling can best be obtained by means

of a map exercise, which requires a short period of testing time, and can

be administered to many subjects simultaneously.

The validity of the experimental design was tested by applying the

method to a specific situation - a nonnuclear attack against hastily organiz

ed defenses. Employment of nonnuclear weapons is based on the Ft. Leaven

worth study, which assumed the continuing importance of conventional war,

and conducted studies based on both nuclear and nonnuclear weapon employ

ment, In subsequent applications, the procedure could easily be modified

to include nuclear armaments.

An attack situation was chosen because the scheduling of attack fires

(preparation, counterbattery, harassing, and interdiction) demands more

individual judgement on the part of the commanding officer than scheduling

of other types of fire. The importance of the four types of fire considered
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is demonstrated by statistics on artillery usage in World War II. Studies

show that, in the attack phase, preparation, counterbattery, harassing,

and interdiction fires constituted 43.1 percent of all 105mm howitzer missions,

70.6 percent of all 155mm howitzer missions, and 81.6 percent of all 8- in.

howitzer missions.

Several situations were considered for the exercise: engagements from

World War II and the Korean conflict; school problems from the AMS, Ft. Sill,

and the C&GSC, Ft. Leavenworth; and an original situation. The situation

selected was taken from the Battle of the Bulge - the attack on the 2 8th U.S.

Infantry Division by German forces on 16 December 1944. This particular

engagement was chosen for several reasons. It was felt that an actual

tactical situation would yield the most significant data, and of the units

considered, the 2 8th Division had the most nearly complete after action

reports. In addition, the high dispersion of the 2 8th Division over its

sector closely approximates the deployment anticipated in future wars con

ducted under threat of nuclear employment .

Because of the completeness of data concerning 2 8th Division positions,

the U.S. deployment is assigned to Red (enemy) forces in the exercise.

Moreover, the officers' familiarity with U.S. tactics and deployment makes

a detailed description of enemy tactics and deployment unnecessary.

Blue (friendly forces) were organized according to ROAD 65 specifica

tions . ROAD 65 was employed because it represents an estimate of the type

of tactical organization which may be employed in future warfare, and

because it deploys friendly artillery in homogeneous groups (i.e., no

"mixed" battalions, such as rockets/howitzer or 8-in./155mm) .

Division artillery is equipped with six battalions; three 105mm howitzer

battalions, one 155 howitzer battalion, one 8-in. howitzer battalion, and

one Honest John battalion. Each 105mm and 155mm howitzer battalion has

three batteries of six guns each; the 8-in. battalion has three four-gun

batteries. Three artillery battalions are attached to division artillery; two

155mm howitzer battalions, and an 8-in. howitzer battalion.

Although a nonnuclear situation is considered, the war is assumed fought

under threat of nuclear weapon employment. A battalion of Honest John

rockets equipped with nuclear warheads is included in division artillery to

conform to ROAD 65 specifications, but it was not employed in the exercise.
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Enemy target deployment down to the company level was based on 2 8th

Division positions as given in after action reports for 16 December 1944.

Positions were broken down to platoon level by the study's military advisor.

Support units not listed in division records, such as supply points, were

added. Positions were then plotted on a 1:50,000 map of the combat area.

In the exercise three representative levels of the target intelligence

parameter were used: 2 5 percent, 50 percent and 75 percent. The proba

bility that any individual target would be detected was determined from

data giving probability of detection asa function of distance from the FEBA

(forward edge of battle area) . A mean probability of detection was then

determined for each intelligence level and type of target. The number of

each type of target, weighted in proportion to the mean probabilities of

detection selected for use in the exercise, was determined for each

intelligence level and a random number generator employed to determine

the actual targets detected for each intelligence level.

Statistics were obtained on quality of visual-contact report information.

These probability were then employed in conjunction with a random number

generator to determine the type of identification assigned to each target.

Some of the targets were identified perfectly as to size and type of target;

some were identified only with respect to size; some only with respect to

type of unit and some only as enemy.

Three levels of ammunition supply were considered. Figures were

obtained for artillery ammunition expenditure in an attack, against hastily

organized defenses. Additional values of 3/2 the mean level and 1/2 the

mean level were also employed.

Since artillery ammunition expenditure is dependent to a high degree

on available supply, three levels of supply covering a wide range were

employed to avoid having the results prejudiced by too extreme a value.

The use of three supply levels also permits the evaluation of a second

variable - the effect of supply on artillery ammunition expenditure for a

constant intelligence level.

The exercise was pretested by giving it to 37 test subjects. A ten-

minute verbal briefing was given subjects to acquaint them with the pro

cedure and to answer any questions which might arise. Subjects were

given test materials, consisting of a written set of instructions, a scenario,

a map and intelligence overlay, a work sheet for preparing the schedule of
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fires, and an officer questionnaire form. As much time was allowed as

was necessary to complete the exercise.

The scenario was designed to acquaint test subjects with the background

information which they would have acquired as commanders in the field.

Three forms were appended to the scenerio. The operations order describes

task organization, situation, mission, and execution. The administrative

order provides the subject with his available ammunition supply rate.

Division SOP (standing operating procedure) for numbering concentrations

is employed by subjects in the preparation of target lists. Subjects were

also given a 1:50,000 map of the combat area and an accompanying overlay

showing the friendly positions and enemy targets. Each subject was given

one of three different overlays, depending on the intelligence to which he

was assigned. The officer questionnaire form was designed to help deter

mine any factors in a subject's background which might prejudice his

results in the exercise.

RESULTS . The experimental procedure was tested on 37 subjects, of

whom 24 were able to furnish usable data. It was apparent that, because

of the deviations among subjects in each cell of the experimental design,

a significant analysis of variance between cells could have been obtained

only is sufficient subjects had been placed in each cell to establish a

significant mean, or to determine that deviations among subjects were too

large for a significant mean to be established by this method.

A sample of the results obtained in the pre-test are shown in Figure 1.

This is one cell containing the 50 percent intelligence level and the mean

ammunition supply rate. The figures shown are for the sum of the

expenditures for the three weapons each corresponding to one test subject.

Shown in Figure 2 are the means for each cell of the experimental design.

Again the numbers shown are for the sum of the three weapons .
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Figure 1

Ammunition Expenditure for All Weapons Combined

Ammunition Supply Level

Mean

2466

Target Intellig«эпсе 3766

Level 1914

50% 1002

5670

Figure 2

Ammunition Expenditure for All Weapons Combined

Ammunition Supply Level

1/2 Mean Mean 3/2 Mean

Target 25% 2460 3366 1578

Intelligence 50% 1960 2964 4195

Level 75% 4295 3363 4770

Usable data were furnished by all test subjects of rank lieutenant

colonel or above, whereas only 58% of other subjects supplied employable

results. Since subjects were asked to assume the position of a brigadier

general commanding division artillery, a greater familiarity with division

artillery fire planning techniques was necessary than was generally

encountered among test subjects below the rank of lieutenant colonel.

Moreover, deviations among test subjects of rank lieutenant colonel or

above were less than those among other subjects. Although it was

possible for subjects unfamiliar with division artillery fire planning

techniques to complete the exercise, the criterion employed in determining

artillery ammunition expenditure was the experienced judgment of the test

subjects. It was therefore found that the exercise could provide valid

results only if artillery officers of rank lieutenant colonel or above with

training and experience in fire planning had been employed as test subjects,
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CONCLUSIONS.

1. The amount of data obtained was not sufficient to allow a significant

analysis of the validity of the experiment.

2 . Based on experience in conducting the experiment and on the comments

of test subjects, it is the opinion of the authors that the procedure designed

is valid and applicable to the solution of the problem.

3 . Because the test subject is asked to assume the position of division

artillery commander, subjects should be experienced artillery officers of

rank Lt. Col. or above with recent training in fire planning techniques.





AN APPROACH TO SENSITIVITY ANALYSIS OF CARMONETTE

(A Small Unit Combat Monte Carlo Simulation)

Richard J. Matteis and William C. Suhler

Research Analysis Corporation

SUMMARY.

Problem. To develop an approach to the sensitivity analysis of the

Carmonette model, a small-unit combat Monte Carlo simulation.

Facts. The Carmonette model has been designed to simulate brief

intense battles between tactical units of approximately company strength.

The model contains a large number of variables to simulate in detail the

combat activities of such elements as individual tanks and infantry squads.

A sensitivity analysis is required to isolate critical variables and to deter

mine whether the simulated environment is consistent with existing know

ledge of combat situations and the assumptions on which the model was

constructed .

Discussion. The approach presented in this paper is an attempt to

screen a large number of variables in the Carmonette model under two

contradictory constraints. The number of input variables coupled with the

time requirement per play imposes an economic constraint, which forbids

the use of a full factorial statistical design. Conversely, the lack of a

priori knowledge concerning the interaction effects of the input variables

and the known existence of large experimental errors prohibits the use of

a less rigid design. Essentially the approach is divided into two distinct

phases. The first phase is devoted to generating some estimates of effects

and variances; the second phase will use these generated values to develop

a fractional factorial of the overall model.

The first phase is accomplished as follows: (1) A list of the input vari

ables that may be important is developed. (2) Through study of the structure

of the overall simulation, the model is divided into two logical parts and the

input variables grouped with respect to these parts. (3) From study of pre

liminary runs some of the variables are shown to have so much individual

effect that they may obscure effects of other variables in the statistical

analysis, so these very important variables are studied individually.

(4) The remaining variables within each group are then studied simultaneously

by a complete factorial.
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The second phase consists of taking the variables that have been found

to play a statistically significant role and placing them in a fractional

factorial of the entire simulation to study the interactions between parts.

Applications . The restraints which determined the nature of this

approach are common to the analysis of most Monte Carlo simulations.

Consequently, the method of analysis presented in this paper should be

applicable as a guide to the sensitivity analysis of Monte Carlo simulation

in general .

INTRODUCTION . To acquaint the reader with the simulation to be

analyzed a brief description of the objectives and structure of the

Carmonette Model is presented. The Carmonette Model was developed to

accomplish the following:

"Military planners need techniques that may be

used to test new ideas for Army equipment, organization ,

tactics, and doctrine early in the development cycle,

prior to substantial investments in prototype equipment

or in reorganization or retraining. The development of

the Carmonette Model was therefore undertaken to pro

vide a method for testing these ideas operationally in

an environment of simulated combat." *

Carmonette is a Monte Carlo model of small-unit ground combat that has

been programmed for the Univac Scientific 1103A digital computer. It has

been designed to simulate brief intense battles between tactical units of

approximately company strength. To accomplish this task the model simu

lates in detail the combat activities of such elements as individual tanks

and infantry squads. Each combat unit is able to maneuver on the battle

field, acquire combat intelligence, select and fire on targets, and communi

cate certain information to other units. The activities of the individual

units are guided by a tactical scenario, which may be varied from battle to

battle. Since it is difficult to state fixed relations for the complex inter

actions of ground combat, many of the rules of play in Carmonette are

probabilistic. This results in an extensive use of the Monte Carlo method

in the simulation.

The structural flow diagram of the Carmonette Model is shown in Fig. 1.

The sequence of events that occur within the simulation is determined by
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a clock system contained within the control routine, as shown on the flow

diagram. The clock system will determine whether a combat-unit operation,

new tactical missions, intelligence acquisition or neutralization will be

activated. The sub-routines shown on the flow diagram, such as target

selection and moving, will be referred to as "submodels" throughout the

rest of the paper.

It should be emphasized that, although the statistical designs are

necessarily oriented to the particular variables of the Carmonette Model,

the primary interest is to present a proposed approach for the sensitivity

analysis of Monte Carlo simulation in general.

GENERAL DESCRIPTION OF THE PROBLEM.

Sensitivity Study Requirement. To establish the necessity of a sensi

tivity analysis, the basic reason for a simulation approach to problem

solving should be examined. Simulation techniques should be utilized

only when the problem cannot be feasibly approached by analytical or

experimental methods. Of course this does not preclude the use of ana

lytical and experimental techniques to supplement the simulation effort.

In the case of small-unit combat there exists no satisfactory analytical

approach to determine the "outcome" of an engagement, and naturally an

experimental approach is not feasible. The point is that the simulation

approach is often used when the functional relation between some or all of

the variables is unknown.

In the construction of the Carmonette Model particular input variables

have been included. This inclusion has been prompted by several motiva

tions:

1. Certain variables have been included because of their known

importance, at least at the submodel level.

2 . Other variables have been included because intuitively they

are adjudged important within the structure of at least one of

the submodels.

3 . Finally there are variables included for which only a conjecture

can be made as to their importance to the phenomena being

simulated.
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Having incorporated these three categories of variables within the simu

lation, the purposes of a sensitivity analysis become clear.

1. To verify that the important known variables play their expected role.

2 . To determine the relative role of the variables that were adjudged

important .

3. To ascertain which members of the third class of variables have

any significant effect within the structure of the completed model .

4. To determine interactions between variables.

The model was constructed based on some known facts and assumptions

concerning the environment to be simulated. The sensitivity analysis

should generate a list of the important variables and interactions within

the simulation. It is necessary for the analysts and military advisors

associated with the simulation to study this list, to decide whether the

simulated environment is consistent with these known facts and assump

tions. Anomalous results that deviate from the analyst's conception of

the simulated environment should constitute a guide to parts of the simu

lation that require improvement. (Improvements can take the form of

either simplifications or refinements of certain parts of the simulation.)

Having determined a list of important variables and interactions that is

considered appropriate and consistent with the existing knowledge of

combat situations, the developers should present this list to any potential

users of the simulation. Even if no knowledge exists by which the analyst

can validate the importance of a particular variable, the user should be

aware of the environment in which his hypotheses are being tested. Also

the user may wish to examine the effects of variables that play an insignif

icant role in the simulation, and the model would be inadequate to measure

differences in performance based on variation of these variables. The

sensitivity analysis of a model is not a new concept, any discussion of

model construction states the necessity of testing the relevance of the

variables included. However, there is a tendency to jump from model

construction to problem solving without checking model to determine what

it can measure with any confidence.

Measure of Effectiveness. As discussed earlier Carmonette was devel

oped to test new ideas for Army equipment, organizations, tactics, and
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doctrine for small military units in given situations. Given this objective,

a basic question arises at the outset: how does one measure the effect

iveness of competing systems? In simulations based on analytical models

there usually are well-defined measures of effectiveness, such as, mini

mization of operating cost and time.^ In attempting to evaluate competing

combat systems in Carmonette measures of effectiveness are not easily

identified. The analyst might consider one or more of the following measures

to base a decision as to which combat system is most effective.

1. The ratio of the casualties produced as a function of time.

2 . The amount of ammunition expended per casualty.

3. Weight of ammunition per casualty.

4 . Percentage attainment of final terrain objective by ratio of

casualty production or by time or both.

Of course, the costs of competing systems are paramount and decisions

should be based on a cost-effectiveness analysis of the competing systems.

Any analysis of combat systems based on the above-mentioned measures,

or any other measure of effectiveness, would have to be related to a

thorough sensitivity study of the effect of the input data on the measure of

effectiveness within the simulation. The input data can be grouped into

six major categories of information:

1. Information Acquisition Probabilities.

2 . Hit and kill probabilities of a particular weapon system.

3. Terrain.

4. Mobility.

5. Organization.

6. Tactics.

The user must know the sensitivity of the measure of effectiveness to the

input data to determine any real differences between the various combat

systems studied by use of the simulation.
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STATISTICAL APPROACH.

Discussion. Sensitivity analyses of computer simulations based on

specific functional equations may utilize at least two different approaches,

perturbation analysis and derivative analysis. Since no analytic measure

of effectiveness function exists in the Carmonette simulation, the avenue

of attack must be through the more difficult and tedious perturbation

approach.

A major restriction should be emphasized at this point. This analysis

is being carried out on a specific piece of terrain and with a specific

tactical meeting engagement of tanks . No attempt should be made to

generalize which effects will be most critical given a different tactical

situation within the Carmonette model. For example, playing dismounted

infantry would require a different resolution, as well asa different tacti

cal situation. For this new situation, the interactions within the simula

tion might be quite different .

The requirement of perturbation analysis, coupled with the large number

of input variables, immediately suggests the use of a large statistical

design. The next step is to consider which statistical design is best

suited for a sensitivity analysis of the Carmonette model. The constraints

on such a design are as follows:

1. Only a limited number of runs can be made due to cost and time

limitations. The simulation requires, at the very minimum, one

hour of computer time per run, in addition to the analyst time

needed to reduce the data .

2 . Limited a priori information about the interactions of the variables

within the simulation is known.

3. It is known that the experimental error is large. For example, an

analytic study of the growth of information within the intelligence

submodel indicates a large variance, on the order of the square of

the mean, in the time to attain various levels of knowledge.

Keeping these constraints in mind, a thorough literature search of the

available statistical designs was made. This included a review of designs

ranging from Satterthwaite's Random Balance^ to a full factorial design.

Owing to the economic constrain, a strong emphasis was placed on selecting

one of the less rigid designs. It was hoped that such a design would be
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sufficient to show at least the large effects with a minimum number of

runs. However, as the literature search proceeded it was found that the

assumptions required to use the limited designs were very restrictive.

Davies states:

"... .When the experimental error is large and/or when

higher order interactions are expected to be appreciable,

then there is no satisfactory alternative to the complete

factorial design. "*

The above is just one statement among the many such restrictive state

ments that may be found throughout the literature. These statements

demonstrate that, in view of our particular constraints, there are no

feasible alternatives to a factorial approach. Any results obtained from

the limited designs would be of questionable value.

This leaves only a full factorial design for consideration. Unfortunately,

the minimum number of variables that must be considered in studying

sensitivity of the model is on the order of 10, requiring for a two- level

10

factorial, 2 or 1024 runs for a single replication. This clearly exceeds

the economic constraint on the study. Through a careful study of the

model the list of variables, shown in Table 1, were chosen for consider

ation in the analysis.
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Table 1

BASIC VARIABLES TO BE CONSIDERED

Levels

1. Terrain roughness 2

2. Umpire-information-gain probability tables 2

3. Umpire-information- loss probability tables 2

4. Firing-disclosed-position probability tables 2

5 . Movement 2

6. Move missions 2

7. Move speeds 2

8. Organization 2

9 . Hit and kill probability tables 2

10. Rates of fire 2

PROPOSED APPROACH.

General. It becomes obvious at this point that a pure statistical

approach is not completely satisfactory. Fortunately this is a simulation

not a physical experiment. Since it is a simulation, the analyst can turn

to the basic model itself, and through study and control of the model,

reduce the size of the analysis to a workable level within the constraints

placed on it. Instead of considering the simulation to be a "black box",

the relations of the various submodels and their corresponding input

variables, can be ascertained. From these relations a grouping of the

listed variables can be developed. Once these groups have been derived,

they can be studied as units to find their internal effects. After these

internal effects have been studied each unit grouping may be treated asa

single secondary variable to study over-all effects. Jacoby also suggests
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this use of secondary variables in the Project OMEGA Air Battle simulation

and denotes them as "meta variables ".^

The original list is divided into two logical groups. One group consists

of those variables directly associated with information acquisition and the

second group with variables directly associated with casualty production.

Table 2 shows the five variables to be considered in the information

acquisition analysis. Even with the division of the variables into two

groups, to cover all combinations of the remaining five variables would

require a 2 factorial, or 32 plays per replication.

Again, by appealing to the ability to control a simulation, certain

variables can be approached individually, both analytically and experi

mentally during the rather extensive check-out period of the simulation.

Much experimental data can be obtained from a series of runs that must be

made to verify that the input data has been encoded correctly and that the

simulation is working properly.

Table 2

INFORMATION ACQUISITION VARIABLES

1. Terrain roughness: Line-of- sight Distribution

2 . Umpire-Information-Gain Probability Tables

3. Umpire- Information- Los s Probability Tables

4. Firing-Disclosed-Position Probability Tables

5. Movement- Either Stationary or Moving Targets

Finally, some variables will have to be held constant simply to force

the number of remaining variables to a reasonable size. Of the list of

variables in each grouping, this final requirement was imposed only after

some preliminary analysis was carried out.

Information-Acquisition Analysis . To study the five variables included

in the acquisition analysis a major requirement is to select a measure of

effectiveness. The measure chosen is the average time to pinpoint, E(P) .
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(Pinpoint defines the level of knowledge about an enemy unit necessary for

casualties to occur in direct-fire engagements.)

Of the five variables, perhaps the most basic is the terrain. The

characteristics of the terrain determine the existence of line of sight (LOS)

between units. Because of its precedence over the other variables, it has

been the subject of a thorough preliminary investigation. Terrain is repre

sented in CARMONETTE by a 36 by 3 6 array of grid squares. Each square is

provided with a numerical measure of several characteristics: elevation,

height of vegetation, and cover and concealment. In the particular simula

tion being carried out, a tank meeting engagement, fairly rough terrain is

being approximated. The grid- square size is 100 meters.

Several related sets of LOS calculations have been performed. ° The first

of these computations is the probability of LOS by range. The values for

the probability distribution for the entire battlefield are presented in Fig. 2 .

Tactical considerations rule out random location of the units on the

terrain. An additional curve representing the specific area with a high

probability of containing a unit of either side during a play is also pre

sented in Fig . 2 .

A second series of computations was carried out to determine the

average duration of LOS between an observer and an enemy unit. These

average durations of LOS are presented in Fig. 3 . When related to the

average time to pinpoint, the critical nature of the length of retention of

LOS is apparent. Assuming a fixed set of acquisition probabilities, this

relation can best be demonstrated by some examples . Given a moving

observer looking at a partly concealed moving tank target, with constant

LOS in the range 300 to 1,200 meters, the average time to pinpoint has been

computed to be 40 seconds with a standard deviation of 30 seconds. Given

the same conditions in the range 1,200 to 2,000 meters, the average time

to pinpoint is 150 seconds with a standard deviation of 90 seconds. These

values were computed using a Markov chain analysis of the intelligence

acquisition submodel and are illustrated on Fig. 3. Thus an observer

must have LOS to the square occupied by an enemy unit and retain LOS for

sufficient time to acquire a pinpoint level of intelligence about the enemy

unit.

Further analysis has been carried out on the availability of LOS during

one of the preliminary check-out plays of the simulation. This is pre

sented in histogram form in Fig. 4. Each block represents the range between
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two opposing units at some time during the play. The crosshatched

blocks represent the cases for which LOS actually existed. The percentage

figures represent the percentage of total cases at a particular range for

which LOS existed. The situation consisted of five tanks in the Blue force

and seven tanks in the Red force. Thus, each time a blue tank changed

location seven potential LOS's resulted. This figure verifies the low

probability of LOS that exists on this particular piece of terrain.

From this separate study of the LOS distributions the significant effect

on E(P) of the existence of LOS is apparent. In order that other variables

in information acquisition be investigated a series of plays with constant

LOS is required. Since LOS exists only a small percentage of the time,

even in the near ranges, it is felt that the effect of the other acquisition

variables would be obscured. This particular technique has been referred

to by Kahn as "importance sampling" . Use of this technique permits a

far larger sample of occurrences from the region of the sample space which

requires investigation.

One other variable will be held constant during this information-

acquisition study, i.e., the probability of loss of intelligence information.

Little knowledge exists about the length of retention of intelligence inform

ation in a short engagement. Consequently these probabilities have been

set such that little loss of information will occur during a Carmonette play

(30 minutes battlefield time).

Removal of the preceding two variables reduces the list to three still

to be considered, and this resolves into a three-factor factorial design

requiring eight plays per replication. Table 3 is a representation of this

design.

Casualty Production Analysis. On completion of the information

acquisition analysis, the remaining variables, shown in Table 4, will be

analyzed using casualty production as the measure of effectiveness.

Given that the hit and kill probabilities of all weapons will be varied

simultaneously, the total number of casualties will be the selected

measure. Again the variables must be examined to reduce the analysis

to a workable level. It has been previously stated that this analysis is

applicable to a specific tactical situation, and no attempt should be made

to generalize the results. This restriction was based on an examination of

the structure of the model, which resulted in the hypothesis that changes

in the tactical situation would have a significant effect on the "outcome"
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of the engagement. As in the case of LOS in the information-acquisition

analysis it is argued that changes in the tactical situation would obscure

the effects of other variables on casualty production. This leads to the use

of a fixed tactical scenario. The organization of the opposing forces is

considered part of the tactical scenario, and the variable denoted as organ

ization will be held constant in the analysis.

Table 3

INFORMATION ACQUISITION FACTORIAL DESIGN

Firing Disclosed

Position

Probabilities

С Low

1

C2 High

A Low

1

Umpire Probabilities

A High

2

В Stationary В Moving В Stationary В Moving

1 «

хш X x„,, x
121 211 221

X112 X122 X212 X222

Table 4

CASUALTY PRODUCTION VARIABLES

1. Move Missions

2 . Move Speeds

3 . Organization

4. Hit and Kill Probability Tables

5 . Rates of Fire

Preliminary analysis has shown that, owing to the extremely limited

choice of paths leading to intermediate terrain objectives under a fixed
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scenario, little effect could be anticipated by varying the move missions.

Therefore the move missions will be held constant in the analysis. This

leaves three variables to be considered and results in the three-factor

factorial design shown in Table 5 .

Table 5

CASUALTY PRODUCTION FACTORIAL DESIGN

Move Speed

Slow Fast

Hit and Kill Probabilities

Low High Low High

Ylll Y121 Y2H Y
221

Y

112

Y

122

Y

212

Y

222

Rates of Fire

Slow

Fast

Over-all Fractional Factorial Analysis . After completing this extensive

preliminary analysis of sensitivity, sufficient information concerning

measures of variation and interaction terms should be available to generate

a fractional factorial of the complete simulation. It is at this point that

perhaps the previously mentioned "meta" variables should be introduced to

aid in the further reduction in the number of plays required in this final

design. An example of a possible meta variable is the use of the expected

time to pinpoint E(P) as a variable in the over-all analysis. The high and

low values and the interaction effects on the expected time to pinpoint can

be ascertained from the information-acquisition analysis. This fractional

factorial will provide estimates of the effects of the interactions of the

information-acquisition variab'es and the casualty- production variables

when in operation simultaneously.

It should be mentioned before concluding that this approach has been

established only as a quideline to a continuous process of analysis. Results

at any stage in the study can alter the nature of future procedure . Any

screening study of a complex structure, like Carmonette, is going to be
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difficult regardless of the method of attack, but it is the authors' hope

that this approach will facilitate getting the task accomplished.
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THE COMPLEX NATURE OF RELIABILITY

A. Bulfinch

Pica tinny Arsenal

INTRODUCTION. Many currently published articles on reliability

still include definitions, and rightly so. People can talk for hours about

reliability before discovering that they are talking about different things.

The present day applications of reliability are very complex.

The basic concept of reliability is not new nor complex. Reliability has

been used in a qualitative way in the form of safety factors for years. In

the past engineers have been satisfied with reasonably large safety factors

without calculating the reliability. They would simply conclude in a

qualitative implicit way that the probability of successful functioning is

directly proportional to the magnitude of the safety factor. The explicit

use of safety factors was strictly limited—usually confined to mechanical

or electrical loads. But nevertheless safety factors were used then as

now to assure success in use, which is now called reliability. Because

of the limited use of safety factors there was seldom any question con

cerning their interpretation. For example, if the applied stress was a

tensile load, the safety factor could only be calculated in those terms.

From this the only conclusion drawn would be concerning the probability

of success (reliability) with respect to tensile loads.

This limited qualitative use of reliability through the use of safety

factors was simple and clear cut. But the extensive use of reliability

in modern weaponry is quite another story. Safety factors are built into

missile components in many subtle ways. Quantitative measures of

reliability with respect to an endless number of environmental conditions

are now required. These requirements have created many problems although

the basic concept of reliability has not changed. Safety factors are

still the only way of creating reliability. Economic considerations have

made the solution of these problems very difficult.

The quantitative measure of reliability contains many pit-falls. The

technical difficulties and the high costs of testing make simplified short

cuts look very attractive. But all that glitters is not gold. Many measures

of probability are not measures of reliability.

DEFINITION AND RESULTING CONCLUSIONS. In order to obtain

quantitative measures of reliability we must be very specific and carefully
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define our terms and objectives. Reliability can be defined as follows:

Reliability is the probability of the successful functioning of a

measurable characteristic

1. Under specified conditions

2. For a specified length of time

3. After a specified period of storage.

From this definition the following conclusions can be drawn:

1. Every item has many reliability values simultaneously. There is

one for each condition, time, and storage period, and one for every com

bination of these stresses and every measurable characteristic. For ex

ample a TV tube can withstand heat but not vibration. That is, it has

a high reliability with respect to heat but a low reliability with respect to

vibration. It has even lower reliability with respect to vibration at elevated

temperatures than it has at ambient temperatures. Conversely a match

cannot withstand heat but can withstand vibration.

2. An item cannot fail unless the applied stress exceeds the strength

of the item. When the stress equals the strength there is no safety mar

gin and the safety factor equals one. Under this condition the reliability

is equal to 0.3678 when time is the variable (stress) and 0.50 when the

level of other environmental stress is the variable.

3. There can be reliability only with respect to some stress. A

stress can be applied by only an independent variable; such as, tempera

ture, voltage or a tensile load. A stress cannot be applied by dependent

variables, suchas, resistance, elongation, or hardness. These are

properites of systems or materials. A system or an item cannot be

stressed by its own properties. Therefore:

a. There can be reliability with respect to only independent variables,

b. Reliability can exist only with respect to some stress.

4. There exists for each item, a set of true but unknown reliability

values which remain constant for at least short periods of time.

PIT-FALLS IN RELIABILITY DETERMINATION. In reliability testing

there are many pit-falls and traps for the unwary experimenter. Those
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for which we have no answers are listed here as well as below under

problems to be investigated. These pit-falls are:

1. Determining reliability with respect to only one environment to

represent the over-all reliability.

2. Applying environments in sequence in the laboratory to simulate

flight conditions.

3. In determining a system reliability, mathematically combining

component reliability values that have been determined in different ways.

Pit-falls that can be avoided without further investigation are:

1. Testing without failure. The disadvantages of this procedure are

that it is:

a. Inefficient

b. Demonstrates reliability only in proportion to the number of

specimens tested.

c. Obtains reliability at the test condition only.

d. Does not measure the safety margin.

e. Obtains biased estimates of the true reliability.

f. Results cannot be mathematically manipulated when no failures

are obtained.

2. Testing without stress. Testing at ambient static conditions can

not measure reliability with respect to any environmental stress.

3. Using variable data. Measuring circuit resistance is a good

example, of a short-cut method to measure reliability. The reason given

for measuring circuit resistance is that variable data is more efficient

than attribute data. Unfortunately this kind of data contains no reliability

information since resistance is not a stress.

4. Using the lower limit of the 50% confidence interval. In an effort to

avoid the mathematical difficulties encountered when no failures are ob

tained, attempts have been made to use the lower limit of the 50% con

fidence interval as the "best estimate" of the true value of a binomial

proportion. The lower limit of any confidence interval cannot be taken

as the "best estimate" of the value the interval is expected to encompass

if the phrase "best estimate" is defined as follows:
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a. The average of all possible values of the estimator must equal the

true value. That is, the estimator must be unbiased.

b. The variance of the estimator must be less than that of any other

estimator. That is the estimator is efficient.

The lower limit of a confidence interval can never be an unbiased

estimate of the true value expected to be within the interval; and the

variance of any lower confidence limit of a binomial proportion, which

exceeds 50%, is always greater than that of any unbiased estimator.

5. Using life-tests for "one-shot" items. Life-tests cannot measure

flight characteristics of missiles or missile components. The important

stresses acting on a missile in-flight are the magnitudes of the induced

environments --not time. However, life-testing techniques can measure

storage characteristics, but only after the fact.

ONE APPROACH TO THE DESIGN OF A RELIABILITY EXPERIMENT. A

great deal of planning must to into any experimental program. We must

have assurance prior to data collection that the required information will

be obtained. That is, our objectives must be explicitly stated in operational

terms. It is easy to collect data that contains no reliability information

what-so-ever. We must also have assurance before testing starts that

the data will be collected in a highly efficient manner. The cost of

reliability testing is high at best. Every effort must be made to keep

this cost to a minimum by using the most efficient methods known.

In the development phase, the testing problem is usually one of deter

mining the reliability of several components with respect to a large number

of environmental conditions. Cost considerations immediately place a

very strict limitation on the number of conditions that can be used. As a

result the question of which conditions can be eliminated must first be

answered. After eliminating the conditions that are obviously of little

importance simply by using good engineering judgement, there usually

remains several conditions that should be evaluated by more objective

means .

The most efficient methods of screening variables such as environmental

conditions, are the factorial experimental designs. These designs can

determine the effect of several environments simultaneously with an

absolute minimum of test specimens.
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After having determined the effects of the several most important

environments in this manner, an objective decision can b e made concerning

the conditions under which to determine reliability. If cost considerations

limit the number of conditions to only one, the logical condition to choose

for determining reliability will be the most severe condition. This will

result in determining the minimum reliability of the several reliability

values with respect to separate environments. This approach then identifies

the most critical environment with a minimum of test specimens.

The second phase of this approach is to determine the reliability with

respect to the environment identified as the most critical. This can be

done most efficiently by testing to failure using tests of increased

severity. It is only in this manner that the following can be accomplished:

1. The measure of safety margins.

2. Conversion of safety margins to a measure of probability.

3. Furnish an unbiased estimate of reliability.

4. Measure ultimate reliability.

5. Measure reliability -in-use.

6. Furnish high precision.

7« Measure high reliability with small sample sizes.

LIMITATIONS. All of this is very good, especially when compared to

the disadvantages of testing without failure given above. We have

accomplished the objective of determining high reliabilities with sample

sizes within the limitations imposed by cost considerations. But the

reliability information contained in results obtained in this way is meager

indeed when the over-all picture is considered.

A complicated system of any kind cannot be fully characterized or

described by a single numerical value. Just as the "whole man" cannot

be fully described by an intelligence quotient, a whole missile system

cannot be fully described by a single reliability value. To fully characterize

the expected performance of a missile, all possible reliabilities should be:

1. Determined and weighed in accordance with:

a. Their engineering importance,

b. Probability of the various environments occurring,

c. Duration of the environments,
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d. Presence of interaction among environments and among com

ponents, and

2. Mathematically combined:

a. In accordance with the way the environments occur (that is,

simultaneously, in combinations, or in sequence,

b. In various ways to predict the probability of successful function

ing of the major and minor subassemblies,

c. In accordance with the system circuitry to predict the reliabilities

of the system from the components.

It is clear from this that the present state of the art leaves much to

be desired.

PROBLEMS IN RELIABILITY DETERMINATION. A little experience in

reliability testing raises many questions yet unaswered. A few of these

encountered in the determination of reliability in the development phase

of missile components are the following:

1. What is the relation between the reliability with respect to the most

severe environment and the reliability with respect to the combination of

environments occurring in use?

2. What is the relation between reliability values obtained by varying

the level of the environment and values obtained by varying the time of

application at a constant level of environment?

3. How can shelf-life be predicted from tests of a few weeks duration?

4. What is the relation between applying environments in sequence

and applying them simultaneously ?

5. How can system reliabilities be calculated using components whose

reliabilities have been determined in different ways? For example, how

can reliability values obtained by varying the level of an environment be

combined in the same system with reliability values obtained by varying

the time of application at a constant level of environment?

Comments leading to the solution of these problems will be appreciated.



PROBLEMS INVOLVED IN DEVELOPING AND ANALYZING DURABILITY

DATA FROM FIELD TESTS OF TEXTILE AND FOOTWARE ITEMS*

Virginia W. Perry

Quartermaster Research and Engineering

Field Evaluation Agency, U. S. Army

The Quartermaster Research and Engineering Field Evaluation Agency

is located at Fort Lee, Virginia, and is engaged in field testing of newly-

developed Quartermaster items and concepts. A good portion of the test

activity involves accelerated wear or use of the test items, while the

remainder attempts to reproduce normal use as closely as possible. The

problem to be presented derives from a normal wear test of women's

nylon stockings, which was run by this Agency in 1958. The purpose of

the test was to evaluate an experimental stretch-type nylon stocking and

the standard nylon stocking in regard to several characteristics, such as

comfort, fit, appearance, preference, and durability. Data collected in

regard to comfort, fit, appearance, and preference is subjective in nature

and generally our analysis is by non -para metric methods, whereas dura

bility data, being objective, should lend itself more readily to analysis by

parametric methods. This paper is concerned strictly with the durability

data obtained, and the problems encountered in using this data. Dura

bility data is collected in two forms. One is simply a description of

various types of minor failures that occur as the stockings are worn. The

other isa record of the number of days each stocking is worn before the

occurrence of a failure so severe that the stocking must be withdrawn

from the test. This is the basic data with which we are concerned. For

about 90 percent of the sample on a nylon stocking test, the failure causing

withdrawal is a run in the leg portion of the item.

Problems in connection with the analysis of this data are two-fold.

The first problem arises through inability to control the test and the

items completely, and concerns the proper method of adjusting data to

correct for a constantly changing sample size. The other problem con

cerns identification of the type of distribution involved, when data from

a truncated or restricted sample only is available. An analysis of the

first problem has been devised and will be presented for evaluation, but no

analysis of the second will be given.

*

At the Conference this paper was presented by Harold R. Rush.
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The test was run at Fort Sam Houston, Texas, utilizing 90 members

of the Womens Army Corps and a sample of 180 pairs of each type of

stocking. Each participant was issued four pairs of stockings, two

pairs of each type. Test subjects were not allowed to launder the items

themselves; stockings were to be turned in for commercial laundering

after each day's wear. Following laundering and inspection by the Agency

test team, they were returned to the test subject for a second day of wear.

Ail stockings were coded on the welt with a felt marking pen, for easy

identification of stocking type and test subject to whom issued. If one

stocking of a pair failed so that it was no longer wearable, the test

subj ect was issued a replacement stocking of the same type for use until

failure of the other stocking of the original pair. Test subjects would be

removed from the test when the last of their eight original issue stockings

had failed. Since the stockings were turned in after each day of wear for

laundry and examination, it was possible to maintain a fairly accurate

record for each failed stocking of the number of days worn before failure.

However, the test was terminated before all the test items had failed.

This is a standard procedure, given a previously determined criterion

for termination, and considerable work has been done in this field in

regard to estimating parameters from such restricted samples. Following

Cohen , restriction may be one of two types. A censored sample is

defined as one in which sample specimens with measurements falling

in certain restricted intervals of the random variable may be identified

and thus counted, but not otherwise observed, while the remaining samples

may be observed without restriction. Time is considered to be the random

variable within the content of our problem. A truncated sample is one

in which certain population values of the random variable are entirely

excluded from observation. In terms of the stocking test, then, the

sample would be censored if (1) the test were stopped after a pre-specified

number of days of wear on each test stocking; (2) if we knew the actual

number of days' wear before failure for all those removed for failure

prior to the pre-specified number of days; and if (3) we knew how many

stockings were still wearable at that point. The sample would be truncated

if we fulfilled the first two conditions for a censored sample, but not the

third; that is, the number of stockings still servicable at the time of

test termination was not known.

The first problem in connection with our data is that the first

condition for either a censored or truncated sample is not fulfilled,

this condition being that test termination will take place after a given

number of days of wear on each stocking. Decision to terminate was based
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on factors not related to the amount of use of each item in the sample.

Usable data at the time of test termination may be considered to fall into

two categories. The first is the frequency distribution of number of days

worn before failure, for those stockings that failed prior to termination

of the test. The second is the frequency distribution of the number of days

worn before test termination for those stockings that did not fail. This

latter distribution covers any number of days of wear from 2 to 35. Actual

frequencies observed for these two categories are presented in the Table

for the Standard sample up to 30 days of wear. Some word of explanation

is relevant at this point regarding the excessively large frequencies in

the non-failed categories. Stockings appear in this category for one of

the following reasons:

(1) Stockings lost during the test are entered as of the number of days

of wear for which records are available.

(2) When subjects are transferred to another duty station and their

stockings are turned in to the test team, it is not considered

feasible to reissue the stockings to a new test subject, so they are

carried as non-failed as of the number of days worn up to transfer

of the test subject.

(3) Stockings are still being worn at termination of the test, but,

because of test subject leave time or failure of test subject to wear

stockings on all scheduled testing days, they have not received

the maximum possible wear.

We would now define the expression, the t-th day of wear. This is to be

considered as meaning the t-th day that each individual stocking was

actually worn, and hence, timewise, could stand for several different

dates. Stocking SI could be worn for the tenth time on April 1, while

stocking S10 might be worn the tenth time in May. The information ob

tained from the t-th day of wear of each individual stocking comprises

a set.

On this test, the objective was to determine whether the standard and

the stretch -type stockings are equal in durability; that is, we are testing

the null hypothesis. A choice of analytical techniques is available, but

prior to such analysis, it is necessary to find some method of combining

into one distribution the information now contained in the two frequency

distributions. At one time we contemplated analyzing the data by the

following method. A cutoff point would be set arbitrarily, say 30 days of

wear. The original sample was considered then to be equal to the

number of stockings worn 30 days and not failing plus the number failed up
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to and including 30 days of wear. All other information on the non-failed

stockings was discarded, this data on approximately 30 percent of the sample

being considered as non-existent. It is obvious that with this procedure,

any calculated failure rates for days of wear less than 30 would be over

estimated because the sample size used to determine the failure rate is

smaller than the number of stockings we know were actually subjected to

wear. We then considered a procedure whereby a different sample size

would be used to calculate the failure rates from day to day. This sample

size for the t-th day would equal the number of stockings worn on that

day plus the number that had failed prior to the t-th day. This method

of adjustment, however, fails to give a cumulative failure rate of 100

percent when all items on test have failed by the end of the last test

day or are withdrawn for other reasons prior to the final day of wear.

Under such a condition, we would expect the cumulative percent failed to

equal 100. Therefore this method of adjustment was discarded as un

satisfactory.

At present we are using the following method to determine the percent

failed at each day of wear. We attempt to simulate the distribution we

would have obtained had no stockings been removed from the test except

for failure. In other words, we will attempt to turn our two observed

distributions into a truly censored sample as defined by Cohen, with a

cutoff point at 30 days. We are arbitrarily using 30 days as a cutoff

point because the number of stockings worn longer than 30 days is so

small as to cast doubt on the validity of estimates of the probability

of failure. The adjustment is best explained by using the idea of hazard,

as defined by Lehman and Anderson in reports of their work on the

Weibull distribution. Hazard is the instantaneous tendency to fail--

that is —it is the probability of failing in a given time interval after

having survived up to the beginning of that interval. If the hazard,

z (t), is defined as:

z(t) = ; t 2> 0

1 - F (t)

then the conditional probability of failure in the interval (t, t + dt)

given the individual has survived until time t, is proportional to z(t),
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It is obvious that z(t), or the hazard, can be obtained directly from

our data, since for each t, where t = 1, 2, . . .30, we know the number of

stockings failing and the number worn. Knowing z(t) for each value of t,

and knowing that F(t) = 0 when t = 1, we can calculate the desired probability

distribution values, f(t), and the desired cumulative distribution values,

F(t) successively for each value of t from 1 to 30. Some inaccuracy is

involved in the above because of the necessity for having to take one day

as the value of dt. This is an extremely large value in relation to the

entire span of test of 30 days, but the practical difficulties involved in

reducing it to minutes, or even to one or two hours,, are considered to be

insuperable in our test situation. Results of the above calculations for

the Standard stockings are shown in the Table, and the cumulative per-

cents failed for both samples are also shown in the graph.

In order for any analysis, either parametric or non-parametric, to be

performed on this adjusted data, knowledge of the correct sample size is

needed. Although we started with a sample of 360 Standard stockings,

we lost almost 40 percent of these before the 30th day of wear for various

reasons aside from failure. Therefore, the sample size as of the 30th

day must be some value smaller than 360. An average of the number worn

each day, which would give us a figure of 218 stockings as of the 30th

day of wear, would seem to underestimate the true sample size value.

An average of the set of 30 figures obtained by adding to the number worn

each day the number failed prior to that day would give us a value of 307

for the standard sample as of the 30th day. Averaging such values for the

first 15 days gives a value of 344 for the sample size as of that point.

We have used this method to arrive at sample size estimates for use in

testing the null hypothesis. This may not be the optimum solution of

the sample size problem, because we earlier rejected this method as a

preliminary step in arriving at the adjusted failure rates.

In the original analysis of this data, we limited ourselves to a deter

mination of whether or not the 95 percent confidence limits on the differ

ence between the cumulative proportions failed covered zero.3 Letting:

Ps = cumulative proportion of Standard stockings failed by the t-th day,

Pe = cumulativeproportion of Experimental stockings failed by the t-th

day,

Ns = adjusted Standard sample size on the t-th day,
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Ne = adjusted Experimental sample size on the t-th day,

Then:

gives the 95 percent conficence limits on the difference between the

cumulative proportions failed by the t-th day. We found that this

difference in cumulative proportions between the standard and stretch-

type samples was significantly different from zero from about the eighth

day of wear on to the end of the test, and we concluded only that the

stretch -type stocking is more durable than the standard.

Naturally this type of conclusion leaves a good deal to be desired.

Nothing is presented regarding the life expectancy of the two types of

stockings. Some information regarding this appears to be mandatory

before an intelligent decision regarding the importance of the difference

in durability can be made. The first step in this direction involves the

question of what type of distribution is involved. In order to investigate

this, we first developed a simulated distribution of number failing each

day using our adjusted values of f(t) and a sample size value of 300 for

both types of stockings. This distribution for the Standard sample is

shown in the Table. All tests yet to be described in this paper are

based on this set of figures, and on the corresponding set for the stretch-

type sample.

Our first effort was in accordance with Cohen's technique for deter

mining estimators for the normal distribution. * We assumed our simulated

distributions to be Type I Singly Censored Samples, with censoring on the

right at x0 =30 days. Estimates of the mean life for the Standard and

stretch -type samples were 26.5 and 30.9 days respectively. Both

standard deviations were close to 15 days. Using these values, the

expected frequencies were calculated for each of ten 3-day periods, and

the Chi-square values for each period calculated. Results indicated very

large deviations from expected in the first ten days. Actually it had not

been anticipated that this data would follow a normal distribution, and

our attention then turned to the exponential.
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A number of tests for the validity of the assumption that the underlying

distribution of life is exponential are given by Epstein. Certain of these

tests based on total lives were utilized and generally resulted in rejecting

the null hypothesis that the underlying distribution of life was exponential.

In applying total life tests for the exponential, the data in its original

form was utilized and not the simulated distributions. For those tests

based on total lives, items can be removed from testing at will and re

placed at will, if desired. Hence, a constantly changing sample size

is no problem within this framework, and the calculation of total life is

perfectly straightforward from the basic data. Estimates of mean life

using exponential theory were 38 and 51 days, respectively, for the

Standard and Stretch samples. These estimates seem far too large.

Intuitively, also, we would hardly expect this to be a straight exponential

situation. It seems much more reasonable to assume that there are

effects present which operate unequally at different phases of the life of

the items.

Efforts were next expended in estimating parameters using a Weibull

distribution. Here the work of Lehman and Anderson2 provided guidance.

Since their work postulates a censored sample, our adjusted distributions

were used as the basic data. Actually, their censored samples fulfill two

prespecified requirements—a given number of failures and a given amount

of use of each item on test, whereas Cohen's censored samples are

based on only one of these requirements.

The Weibull probability distribution may be expressed by

M-l лд

f(t) = : exp(- -£- ),

cK

and the cumulative by

tM

F(t) = l-exp(- -4— ),

When M = 1, we have the straight exponential probability distribution.

M is called the shape parameter and has been found to vary in life-

testing situations from values of less than 1 up to a maximum of
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approximately 2.5. We are not considering a two-parameter exponential

or a three -parameter Weibull as a possibility; with our data, we certainly

could postulate no guarantee time and the location parameters, A in the

exponential and ß in the Weibull, are considered to be zero. The

parameter, Q , in the exponential is equivalent to^l/m in the Weibull.

The shape parameter, M, is of course unknown for our data. Using

values of M equal to 2,1 1/2, andl 1/3, we estimated the scale parameter,

^ , and the mean life, to , for our samples. Chi-square tests for

goodness of fit indicated good results at M =1 1/3 for the Standard sample,

but no encouraging results were obtained for the Stretch sample at any

of the values of M utilized. Mean life estimates with M =1 \/Ъ were 32 and

39 days respectively for the two type stockings, with standard deviations

of approximately 24 and 30. A summary of estimates of mean life for all

the cases discussed is given below.

ESTIMATES OF MEAN LIFE (DAYS)

Underlying Distribution Standard Sample Stretch Sample

Absolute Minimum 22.1 24.5

Normal 26.5 30.9

Weibull M = 2 28.0 33.2

M = 1 1/2 30.9 37.2

M = 1 1/3 31.6 39.4

Exponential 38.2 51.4

The work of Kao in the field of mixed Weibull parameters may provide

the solution to our particular test problem. He is working with electron

tubes which can experience either of two types of failure--a catastrophic

or sudden failure and a wear-out or delayed failure. He postulates a

mixture of two Weibull distributions, each representing one of these types

of failure. It seems reasonable that the same factors are present in our

samples. However, Kao is able to assign his failures to one of the two

causes and develop the distribution for each cause. It is rather doubtful

that such an allocation of stocking failures to one of these two cause

categories could be performed with validity, although it may not be

impossible.

In conclusion, we would like to review the questions encountered in

handling the above data. Firstly, can we consider that we have a valid
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censored sample when the time of test termination is an arbitrary

decision unrelated to the status of the test items themselves? It appears

impossible for us to censor by either of the conventional methods.

Subjecting all items to the same amount of use is impossible for reasons

stated earlier. Termination of the test after a pre-specified number of

failures is meaningless in the context of a constantly changing sample

size. Within the limitations of our testing situation, it is conceivable

that we could censor by a pre-specified criterion of total life. Once the

test sample had accumulated this amount of total life, the test would

terminate and the data could then be adjusted as described above. Next,

it is necessary to determine an effective sample size different from the

original size sample, and, if so, is the method presented above satis

factory? When data from a censored sample only is available, how does

one attack the problem of underlying distribution? Chi -square tests of

goodness of fit can indicate rejection of the hypotheses, but would

acceptance ever be possible with censored sample data? Can a mixed

Weibull distribution be developed when the data cannot be validly

sorted into two cause -of-failure categories? And last, but far from

least, come the problems attendant on testing differences between two

samples. Little literature in the field of life testing seems available on

this subject. How does one set up censoring criteria for a comparison

test of two items? Would tests of differences between means of samples

from Weibull distributions depend on whether or not the two samples

have the same shape parameters, or the same scale parameters, or both?
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A PREDICTOR MODEL FOR STABILITY ESTIMATES IN THE ROTATING DRUM

Cecil O. Eckard

U. S. Chemical Corps, Fort Derrick, Frederick, Maryland

This presentation is a preliminary and purely empirical analysis of the

problem under discussion.

In biological aerosols which we at Fort Detrick are in the business of

testing, two types of decay are taking place. These are biological and

physical and the sum of these will be termed total decay. It is assumed

that

(1)
Y, - AeKt

where Yt = recovery at time t

A = recovery at t = 0

К = decay

is a model that adequately fits the aerosol recovery data. The value of К

is estimated from the experimental data by

(2) £ (tj - t) (y, - y)

z>i - t)2

where tj = time

y, = In recovery at t.

К = decay

If it is additionally hypothesized that biological decay is exponential

with time, the additive property of decays can be stated as

(3) кь = Kt - Kp

Kv = Biological Decay

К = Total Decay

Kp = Physical Decay.
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If К. and К are mutually independent and the factor of covariance is zero

the theoretical variance of K^ is

(4) V(Kb) = (c3Kb/ôKt)2 V(Kfc) + (ôVôV^V- ^*

The theoretical variance for equation (3) using the relationship that

exists in (4) is

(5) V(Kb) = V(Kt) + V(Kp).

If by some method or system one type of decay was negligible, it

would eliminate a laboratory assay and reduce the V(K ). An approach to

this is the rotating drum, where the enclosed air mass moves with the

drum and the physical decay becomes negligible.

Several rotating drums have been used by the Aerobiology Division at

the Biological Laboratories, Fort Detrick, Maryland, and a large amount of

data collected. The question was asked of the Biomathematics Division

if a predictor equation could be formulated and used in estimating physical

decay (Kp) given the drum dimensions, rotational speed and particle size.

Meetings were held with the experimenters and the design engineers to

formulate and discuss models and the variables which should be included

in the models. The experimenter, from his observations, suggested

relationships that existed between decay and single variables. These

relationships, with the addition of higher order terms, were used to

develop models. They are

(6) fU^ = aQx0 + a^j +. . .+ аихп

(7) f(xí) = a¿x¿ + a[x[ +. . .+ а[4х^4

(8) f(xj') = a£x"0 + a[x}+. . .+ а^х-ц

(9) fix!') = a£x'"+ al"x«i' + . . .+ a^x-Jj

See Literature Cited.
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where

X = x' =
Xй =

x- = 1
0 0 0 0

xl = x; = x" = V1" = 1/drum diameter (D)

1 1

Xй =
x"1 =X2 rotational speed (6))x2 = X2 = X2

X3 = X3 = x» = X3 particle size (r)

x = x' = X4" =
•V-lll —

Ы2

4 4

r2x = x' = x" = X"' =

0

5 5 5 5

X6 = x6 = x. .
V-Я! _ (Jr

6

x = x' = x" = x- = U)/D

7 7 7

x8 = x8e x8
и _

x8 r/D

x' = x"' =
ekL ,

where L is drum length

9 9

*Ю =
x¿ = (I/O) [l/(L + r>3

x =

11

X" = D2L

11

x' =
x"' = 1/DZ

x = x" = L

Ю ю 9 9

vih —

11

9

x' =
(ekL)2

L2

11

x' =

12

ekL/D vhi —
L/DX12

X13 =

ekL/r

vih —
x13 LO)

Lrx1 =
Xм' =

14 14

The к constant in the exponential terms was assigned values which were

suggested by the investigator.

The experimental data were collected from 175 trials in various sizes

of rotating drums. The variables and their limits were
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drum diameter (D) : 12" _<_ D _C 72"

drum length (L) : 10" _£ L _£ 60"

rotation speed (a)) : 0.5j£_ Q _<_ 10 . 5 rpm

mass mediam diameter (r) : 1д, IfJü, 4jLC

Aerosols of sodium fluorescein were aerosolized into a rotating drum

and sufficient time was permitted for establishment of laminar flow of air

within the drum before aerosol samples were taken. The sampler concentra

tion was measured in a fluorophotometer. In each trial samples were

taken at different times and the exponential model shown in equation (1)

fitted to the data. The value of К was determined for each trial and it

is this dependent value which we would like to predict given length

diameter, revolutions per minute and particle size. Other environmental

and physical variables were not considered in this analysis.

Normal equations were formed from the data for each model and the

resulting set of simultaneous equations solved by the Gaussian elimination

method. R , which is the proportion of the variation of у around у

that is associated with the x variables was computed for each model.

R was computed by

,2 Dy-y)2 - Ву-Y)2
(10) R ■ГлЪ

£ (У - У)

All R values were statistically significant (P <_ .05). The two models

(6,7) with the greatest R value were selected as best fitting the data.

The sum of squares and the F ratio for each variable adjusted for all

others were examined and the non-significant variables deleted from the

models. The new models are

(11) f(x.) = c^Xo + ajXj ♦. . .+ agx9

(12) f(x|) = a¿x^ + a[x'j +. . .+ a¿x¿
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where xo - xó =

xl

x
^2

x3 =

x4 =

x5 =

x6 =

- xi, -w2

*3

*5

*6

1

L

to

iL2
2

= r

= 60r

x7 = W/D

*3 =
(1/D)

x9 = D2L

x'7 = 1/D

*á = 1/D2

4 = L2

XiO = L/D.

[1/)L + Dj

A set of simultaneous equations was again solved for each model and the

value of the a/ s determined. The R values were computed and the loss

in the amount of variance accounted for by our new models was negligible.

Table of R2 Values

1st Run 2nd Run

f(x.)

f(x[)

0.7387

0.7616

0.7377

0.7590

A multiple F test was again run and all variables tested significant.

This left us with two unwieldy models which an investigator would

probably not be inclined to use. An examination of the sum of squares

associated with each model indicates that the first order term of particle

size and the first and second order term of rotational speed accounted for

a large proportion of the total variation.

A model

f(x.) = a0x0+ 3^+ 9^2+ a3x3

where x =
о

xl =

X2 =

X3 =

= 1

particle size (r)

rotational velocity (it))

U) 2 |
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was fitted to the experimental data and the resulting loss in R was .076,

Inserting the coefficients and the variables in (13) we have

In К = 0.46565 r + 0.035544 u)2 -0.33460i¿> -2.5946

(14) = 0.46565 r + 0.035544 ((J- 4.7068) -3.3820.

In canonical form (14) can be written as

(15) K' = 0.46565 r' + 0.035544 {¿)
,2

where K' = In К + 3.3820

r' = r

(16) U)' = U) - 4.7068

Examining equation (15) we see that our surface is a parabolic cylinder

whose generator is not perpendicular to any of the coordinate planes

(Fig. 1).

Cm/'

Fig. 1 Surface Generated by Equation (15)
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The minimum values of K' lie on a ridge that occurs at the vertex of our

parabola in the r'k' when the tú ' coordinate is equal to zero. Considering

the variable G) it is seen that the optimum rotational speed for minimum

decay is 4.7 revolutions per minute. This value is in agreement with

experimental results from other test facilities at the Biological

Laboratories. 2/
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DISEASE SEVERITY QUANTITATION

Clifford J. Maloney*

U. S. Army Chemical Corps

Fort Derrick, Frederick, Maryland

I. INTRODUCTION . The economic cost of an epidemic outbreak can be

divided into two portions; the first depending upon the number of deaths; the

second on the number and severity of cases of sickness. The deaths are to

be included among the cases of sickness prior to death.

Death is an abrupt change of state, but sickness is a continuously variable

condition, so that the economic cost will vary greatly from case to case.

A first approach to the problem of allowing for variation can be made by the

usual process of forming discrete classes. Some such series as the following

(Maloney [l959 1 ) might be attempted:

1. Normal health.

2. Able to perform normal duties, but at a reduced output and/or

restriction of off-duty activities.

3. Unable to perform normal duties, but able to perform lighter

activities.

4. Unable to work but able to provide own care.

5. Requires care, but not services of special personnel or equipment.

6. Requires "conventional" medical care or facilities.

7. Requires unusual degree or type of care or facilities.

8. Dead.

Items 2, 5, 6, and 7 might easily be separated into two classes. Other

classes might also be subdivided, or conversely several of the listed classes

might be consolidated. The desirability of doing so would depend upon the

Now at the Division of Biologies Standards, National Institutes of Health.
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purpose of any study of the cost of an epidemic or of the cost of disease

in general and might well be different under different circumstances. In any

case, it appears plausible that the listed classes or any modification of

them that might be considered can be viewed as forming an ordered or uni

dimensional series of "productivity" classes. Persons requiring care would

have negative "productivity".

II. THE DIMENSIONS OF ILLNESS. Membership in one of the listed

classes is a productivity characteristic. The present paper is not concerned

with this subject. In turn, productivity rests entirely on the state of the

individual's health, which latter is a physiological (and psychological)

condition. It is composed of an indefinitely large number of symptoms and

signs, including temperature, appetite, aches and pains, agglutination

titer, white and red blood cell count, opsonic index, microbial recovery

from blood and tissues, x-ray, fluoroscopic-and-percussive examination.

One approach to the allocation to the proper class of an individual pre

senting a given list of symptoms might well be to calculate the multiple

regression of the individual's "productive value" on a chosen sample of

symptoms. Such a procedure is subject to several limitations:

1. The dependent variable would need to be measured by some sort

of scoring system.

2. Generally speaking only a linear regression is manageable

(though meta meters could be used).

3. A different multiple regression would be needed to forecast

different dependent variables.

4. Missing or doubtful values are troublesome.

5. Calculations of the "productivity score", while not difficult,

would profit from simplification.

The limitations of the multiple regression approach of the last paragraph

would disappear if the complex of physiological signs and symptoms could

be summarized or ordered into a one-dimensional sequence of "degree of

illness". Many terms from ordinary language suggest that there exists an

underlying sickness gradation. We speak of "taking a turn for the worse",

of "relapsing", of "being placed on" or of "being taken off" the "critical

list", of being "much improved", and similar changes. Even if one master
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series of symptom classes cannot profitably be devised, such series for

each disease, and even for each phase such as initial attack, recovery,

relapse, or secondary attack would serve. But the difficulties of differ

ential diagnosis, the rareness of the "typical" case, the frequency of

"complications" and similar factors suggest that gradation may be no more

than qualitative—that attempts to render the sickness scale precise will

not be successful.

Four possible mechanisms of disease severity quantitation are conceivable:

A. Signs and symptoms may exhibit a strict gradation and errors or

observation may not occur;

B. Signs and symptoms may exhibit a strict gradation in every

patient or experimental animal; but errors of observation may lead to the

reporting of concurrences that may not exist in fact, or failure to detect

some that do;

C. Signs and symptoms may not exhibit a strict gradation but some

sort of stochastic model may be applicable, the expression of each symptom

in any one patient being uninfluenced by any other symptom or sign.

D. A stochastic model may hold in which the expression of two

or more signs or symptoms are mutually interdependent.

III. EARLIER DEVELOPMENTS IN SCALING. The possibility of applying

to medical research the vast amount of development of the theory of scales

in psycho-physics, intelligence, attitude, personality, aptitude, and other

fields of psychology was brought home to me by a paper of Clyde Coombs

at the 1958 Meeting of the AAAS at Washington, D. C.

A comprehensive summary of the work in the field of psychology has

recently appeared. (Torgerson Г 1958 J ) The work of Guttman in scale

analysis and of Lazarsfeld's latent structure approach are most completely

covered in Guttman [1950] and Lazarafeld [l950l .

Guttman's "pure scale analysis" involves a formalized, nearly mech

anical procedure for developing the scale of intensity from presence or

absence measurements on a number of criteria, in the strictly deterministic

case A.
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Scale analysis in psychological research has not escaped the necessity

of choosing between theoretical concepts constructed entirely in terms of

"observables" and of inferring a "reality" behind the "observables"

whose properties are inferrable from the observations and which in turn

ties the observations together. For further discussion, reference must be

made to the excellent first chapter of Torgerson [l958j .

The notion of scaling is not confined to psychology. The result of the

efforts of many workers on the subject of "value" and "utility" in economics

has been to reduce the structure of these topics to the same basic mathemat

ical model as those listed under A and В of Section II. Some aspects

of value theory arising from the present research on cases С and D will

be treated at the end of the paper.

Cases A and В can be adequately treated by a modification and an

extension of Guttman's scale analysis. Case С will be treated by

essentially new methods in Section VIII. Case D is not further discussed.

IV. SCALE PROPERTIES. A set of objects whether numbers, events,

human responses, or disease symptoms can only form a unidimensional

scale if the members satisfy certain conditions. The basic postulates

may take different forms but it is common to express the requirements in

the form of three conditions on an "ordering relation" between the elements.

The further characteristics of the relation will depend on the particular

field of interest but the three necessary conditions are that the relation

be (1) irreflexive, (2) asymmetric and (3) transitive. Further,

given any two elements in the set, the relation must hold between them in

one or the other order (not both). The abstract properties can be visualized

in terms of an ordering relation "precedes". Then, of any two different

elements in the set (or scale) one "precedes" the other. No element can

precede itself, if A precedes B, then В does not precede A, and if

A precedes B, and В precedes C, then A precedes C. In the appli

cation of these ideas to disease symptoms, no notion of temporal or

spatial sequence is relevant. Thus if A is a rise in Temperature, and В

a headache, to say that A "precedes" В merely means that (in a certain

disease transmitted to a certain population in a certain way) all patients

reporting a headache will exhibit a rise in temperature. The notion

"precedes" may accordingly be freed entirely of geometric or temporal

connotations by explaining it as an implication. That a temperature rise

"precedes" a headache means merely that possession of a headache
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"implies" or is always accompanied (whether earlier or indeed later) by a

rise in temperature. In terms of a four-fold table then, where lower case

letters indicate absence of the corresponding symptom and upper case

letters presence.

Temperature

Headache Absent Present

Absent th Th

Present tH TH

Figure 1

Hypothetical frequency of co-occurrence of disease symptoms.

Here the symbol th represents the number of patients showing neither a

headache nor a temperature and TH represents the number showing both.

The statement "temperature precedes a headache" is equivalent to the

statement that the condition tH = 0 in the four-fold table, i.e. , no

patients had a headache with absence of temperature. Any set of symptoms

which leads to one zero cell in all possible four -fold tables (if consistent)

forms an unidimensional scale.

This analysis provides a conceptually simple procedure for examining

any universe ( and in particular any symptom complex) for "scalability".

The set of symptoms may be examined in pairs and does not require any

over-all analysis. If, in this analysis, the proper off-diagonal cells

are void then the sample forms a scale. (The other off-diagonal cell must

be non-zero or the pair of symptoms would denote the same and not an

ordered pair of levels of illness. The system would then constitute a

semi-scale rather than a simple scale, but this contingency should be

rare in practice. Alteration in detail could be made in the model described

here if desired to allow for such contingencies.) While any sample what

ever is necessarily scalable if it meets this test, the set of elements may

not be "meaningful" in the sense of corresponding with any outside variable

or variables. Moreover, agreement with theory may be due to chance alone

so that while the sample is scalable the universe might not be.
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V. EXPERIMENTAL RESULTS. A study of respiratory infection of

B. tularense, strain Schu-5 in Osborne -Mendel rats, affords a small

amount of data; more by way of an illustration than as a test of the reality

of a "sickness continuum" or "morbidity scale". One hundred forty-four

rats weighing between 220 and 375 grams were exposed to varying doses

of aerosolized B. tularense in a Henderson apparatus. (Maloney 1959 ).

Following exposure, the rats were held 15-17 days in ventilated cages.

Measurements taken on the rats were recovery of the causative agent by

culture from the (A) spleen, (B) lung, (C) heart blood; gross pathology

of the (D) spleen, (E) lung, and (F) liver; (G) agglutination titer;

maximum body temperature during illness exceeding (H) 100°F and

exceeding (I) 101°cF and (L) death. Where "gross pathology" is indicated

for the spleen or for the liver, the observation was restricted to "enlarged"

or "normal"; for the lung, observations were made as "enlarged" or

"hemorrhagic" or "consolidated" and in a few cases combinations of these

three. It was usually not feasible to obtain an agglutination titer for

those rats which died spontaneously, since they usually died before they

could have developed antibodies. A number of other factors prevented ob

servation in many cases, so that all of the above observations were avail

able on few rats, though various combinations of smaller sets of obser

vations were available on larger numbers.

The ten qualitative disease symptoms listed above may be used to form

disease symptom pairs. A selection of 4 such pairs is set out below in

figure 2 .
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Agglutination

Titer

Temperature h 10 1 11

100°F or

Higher H 51 36 87

61 37 98

(a)

Agglutination

Titer

g G

Liver Gross f 42 27 69

Pathology

F 0 0 0

42 27 69

(b)

Lung Blood

Culture

b В

Spleen Blood a 71 6 77

Culture

A 11 54 65

82 60 142

(c)

Agglutination

Titer

g G

Lung Blood b 59 19 78

Culture

В 1 17 18

60 36 96

(d)

Figure 2 .

Four selected four-fold tables from an experiment on rats,

Most of the tables took the form of (a) and (d) figure 2. The two

other tables of figure 2 indicate some departure from the simple theory.

Fairly small numbers in one off-diagonal cell, such as the unit for hG in

figure 2(a) and for Bg in figure 2(d) can easily be accepted as con

firmation that the simple "Guttman Criterion" for scalability has been met.

Figures 2(b) and 2(c) will be discussed presently in detail. The observed
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results are given in Table 1 and all possible 2x2 tables in Table 2. It

was not difficult to determine by visual examination of the latter that the

symptoms scaled as:

(1) H<KGxA--B4C<L<D<E<F

The order for H and I is of course beyond doubt, since they are

physical measurements. The order of all other adjacent pairs depends on

a single 2x2 table and hence could have been reversed due to experi

mental error. The order of more widely separated symptoms is subject

to little doubt.

VI. MISCLASSIFICATION. If either of the two symptoms relating to any

ohe table is in error then the rat will be assigned to the wrong cell. This

is case В of Section II. Wrong classification can be due to (1) anomalous

behavior of the individual rat, (2) an experimental error, (3) extraneous

influence, (4) laboratory or diagnostic error, or (5) clerical error. One,

or at most a few, entries in the "forbidden" cell, as in figures 2(a) and

2(d) can be dismissed on these grounds. The other two tables require

fuller discussion.

Figure 2(b) relates one of the most sensitive symptoms (agglutination

titer) and one of the least (liver gross pathology). The zero frequencies

in the two cells which indicate presence of gross pathology of the liver

result because all these animals died—hence it was not possible to

obtain agglutination titers for them. It is thus possible to infer from this

table that, in the morbidity scale applicable to this experiment, death is

a "milder" symptom than liver gross pathology --for all animals which

showed liver gross pathology are in the table, and all died!

Figure 2(c) indicates a still different kind of departure from type.

Presence of the causative organism in an organ of the body is based on a

sampling procedure. Hence, it is quite possible for the organism to be

in fact present in an organ, but in sufficiently small numbers that it is

missed by chance in a sample. This is called a "false negative". If the

6 animals which show positive lung culture but negative spleen culture

are in fact false negative for spleen culture, then presence in the spleen

is a more sensitive indicator of disease than presence in the lung, since
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the entry in the aB cell would then be zero, and that in the AB cell 60.

The six observed aB entries accordingly suggest a 10 o/o incidence of

false negatives in spleen cultures as the experiment was actually performed.

On the other hand, the lung was the portal of entry in this experiment. It

would appear quite possible for a few organisms to survive on the lung tissue,

though no disease was really ever established in the animal. This would

constitute a "false positive" and could account for the six entries in the

aB cell of figure 2(c). This would still indicate that the spleen culture

is the more sensitive "disease" indicator. The frequency of "false

positive", if all six entries are such, would be about 8 o/o. Of course,

false positive lung cultures and false negative spleen cultures could hoth

be present at some lower numerical frequency. Mathematically, but not

biologically, a corresponding analysis would apply to false positives in

the Ab cell.

Figure 2(d) suggests however that false positive lung cultures are not

frequent, since if the disease does not occur, so that no agglutination

titer is produced, a false positive would fall in the Bg cell of figure 2(d).

Since only a single entry occurs, such an outcome seems to have a prob

ability of occurring at or below 2 o/o. The one entry that is observed,

however, showed no titer and a peak temperature of 100.5. As near as can

be judged, it is a bona fide false positive.

Examination of the records of individual rats in the aB cell of figure

2(c) confirms the inference that they represent false negatives for spleen

culture, except for the one rat of the previous paragraph, which seems to

belong in the cell ab. Of the remaining 5 rats, 3 died and were diagnosed

as having died from tularemia. It is felt that the spleen bacteria may have

been destroyed by decomposition products, or that they may have received

inadequate sampling. The other two rats both showed temperatures of

104°. One showed a titer of 1:40 and one a titer of 1:80. The latter

showed recovery of the organism from heart blood.

In summary, there is an indication that 2 survivors showed false nega

tive spleen cultures and one a false positive lung culture. The percentage

occurrence is hence 3.6 o/o and 1.4 o/o. The three dead rats would

raise the incidence of false negative spleen culture to 8.5 o/o, had none

been negative due to destruction of the bacteria by decomposition products.

This example represents the greatest incidence of misclassification in

the entire experiment, and involved the culturing of a very delicate or

ganism, effective in low concentrations. Accordingly, it is concluded
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that case В Section II is applicable to the observed data. The frequency

of misclassification indeed is so low that any formal estimate of misclassi-

fication error seems superfluous.

VII. EXPERIMENTAL CONCLUSIONS. The scaling of degrees of mor

bidity by the foregoing analytical procedure is in general agreement with

the opinions of pathologists. Thus, temperature rise (H) and (I) and

agglutination titer (G) are more sensitive indicators of onset of disease

than recovery of organisms from tissues of sacrificed animals. If these

conclusions regarding the appraisal of the relative states of severity of

disease are not new, at least, the analysis carried out in this example

serves to strengthen those based on professional opinion.

That tissue samples being taken for culturing of the organism were not

completely adequate is a further lesson learned from the analysis.

In general, the experimentalists felt that the results of the experiment

(which is of a type extremely difficult to carry out) were dissappointing.

The above analysis revealed that, on the contrary, the results were very

clear-cut, and the experiment well executed.

VIII. STOCHASTIC CASE. While the data of this particular experiment

seem to follow the deterministic model (with minor allowance for errors of

observation) in an entirely satisfactory way, the few non-conforming

readings suggest the desirability of extending the analysis to include a

chance component in symptom expression as an alternative. This situation

is listed under cases С and D of Section II.

Consider the "trace" for frequency of appearance of a specified symptom

over the full range of illness from perfect health (0) to maximum illness

(say - 1) in the deterministic situation.

If an animal presents the symptom, it yields a positive response. Now, if

s is the sickness level that always evokes the given symptom, then any

level of illness less than s will never evoke it, and all greater levels

always will. The profile of the functional relation between disease severity

and symptom occurrence is thus a step function.
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1

о/о

Response

x=s

Scale of disease severity

Figure 3 .

Graph of deterministic symptom dependence on level of disease severity.

To generalize this to a chance relation in the psychological context,

Lazarsfeld [l950j considers a series of polynomials of successively higher

degree. He finds the first and second degree curves particularly inter

pretable and helpful.

In the biological context, it is more natural to consider a relation

1

P

Per cent

Response

Disease severity axis

Figure 4.

Curve relating frequency of occurrence of a specified symptom on level of

disease severity

between illness severity and mean frequency of occurrence of symptom that

takes the form of an intergrated normal, a logistic, or some similar curve.

In a large population of animals all at an equal disease severity level, s,

the proportion that would show a particular symptom would be P. At other

sickness levels, the proportion showing the chosen symptom would be

greater or less. A separate curve would relate disease severity and fre

quency of occurrence for each different symptom studied. In the example

of this paper nine symptoms were observed (not in every rat), hence the

figure, to be complete, would contain nine such graphs.
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In a given animal any combination of symptoms might appear, depending

on those features that contribute the stochastic variation around the curve

relating mean frequency of occurrence and disease severity. A definition

of scalability is needed in these new circumstances.

Scalability at a fixed level of disease severity will be defined first as

holding, not between the actual symptoms presented by an individual

animal, but between the mean frequency of symptoms in the population of

animals at that fixed level of disease severity. As, on the basis of this

mathematical model, the proportions of animals showing the different

symptoms (being numbers between zero and one) necessarily form a scale,

scalability is necessarily exhibited at any fixed level of disease severity

when mean proportionate symptom occurrence in an animal population,

not the occurrence of symptoms in individual animals, is used.

Consider the next set of mean symptom frequencies at two different

levels of disease severity. The order of mean symptom frequencies at

the two different disease severity levels may or may not match. If they

do, the symptom complex will be said to scale at these two disease

severity levels. If this condition holds at all possible pairs of disease

severity levels, then the symptom complex for that particular disease

in that particular host will be called scalable without qualification as to

disease severity level.

Scalability is defined in terms of mean symptom frequency. Deviation

from expected frequencies will occur in small samples because of a num

ber of considerations. In this paper it will be assumed that such deviations

are independently distributed in the binomial distribution, i.e., case С

holds.
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IX. MATHEMATICAL FORMULATION. The set of expected probabilities

in case С can be expressed as a matrix.

1Д
Pl,2 "• Pl,i

l,K

2,1
P2 , 2 ' • ' P2 , j

2, К

(2)

1,1 2,2 * i, J

P.
i,K

L,l L,2 L,j L,K

where each column (indexed by the second subscript) contains the probabili

ties of each of the L symptoms (indexed by the first subscript) at a fixed

level of disease severity. The К columns represent a division of the

sickness scale into К levels. The successive entries across each row

yield the probabilities that the i'th symptom (or sign) will be shown by

an animal or patient at each of the К sickness levels. Choose an arbi

trary row of the matrix. Subject the matrix to column interchanges until

the entries in this one row are non-decreasing to the right. If the entries

in all other rows are also non-decreasing to the right, the matrix (and the

physical phenomenon underlying it, disease severity or something else)

is scalable in the sense of Section VIII. Next choose an arbitrary column

and subject the matrix to row interchanges until that one column is non-

increasing from top to bottom. It is a matter of common observation that

then all columns are also ordered, for otherwise symptoms would more

frequently appear for less ill animals or patients. This operation will

order the signs and symptoms from top to bottom in order of increasing

severity. Since the sickness levels at the left of the matrix are low, the
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probabilities here are small. At each of the successive columns to the

right, the sickness level increases, and hence these probabilities are

larger.

In practice, the population values in (2) would have to be estimated

from observation, and very large amounts of data and an adequate esti

mation method would be required for reliable estimates. Two simplifying

assumptions will greatly reduce the volume of such data required and yet

yield estimates differing little if at all from those derived from known

values of matrix (2).

Consider a single row of (2), say the i'th and assume that the sickness

level, z, is directly observabJe. Then, it would be standard bioassay

practice to assume that a metameter of z , say s, and another of P, say Y,

could be found, so that

(3) Y = a s + b 1< i <L

i i i

would yield the probability of exhibiting the i'th symptom at a sickness

level corresponding to a value of s. The К values of P. have here been

replaced by the standard two values treated in bioassay, a and b.

Since (3) is a linear equation, its graph is, of course, a straight line.

In Section VIII, we have defined scalability to mean that the greatest popu

lation probability of symptom occurrence at one sickness level is greater

at all other sickness levels. Together with the fact that each symptom

occurrence is related to disease severity by a linear relation of the form

(3), this scalability condition is enough to show that the several straight

lines relating the metameter of mean frequency of occurrence of each sign

or symptom to the metameter of disease severity are parallel, (9), the

system of lines being represented by the system of equations:

(4) Yi = a s + b. 1 < i<

where, now, a is common to the L equations.

Equation (4) relates a transformation of symptom frequency to the meta

meter of sickness level s. However, no "operational method" exists by
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which illness can be measured directly in terms of physical processes.

The present procedure of scaling by means of symptom complexes can at

most reduce the measurement of illness level to isomorphism with the real

number system. Hence, no metameter of disease severity is appropriate

in the adopted relation between disease level and frequency of occurrence

of a given symptom; the s in equations (4) will serve directly as the

measure of sickness level, as well as any other.

The choice of origin and scale in (4) is still arbitrary. The Ъ^ serve

to relate the severa 1 parallel lines relative to a chosen one. While greater

experience might lead to a different choice, convenience would seem to

suggest choice of one of the central lines, denoting one of the common, but

not the mildest, symptom. For this one symptom, the equation becomes

(5) Y = a • s

о

Now, in nearly all realistic applications Y ranges between 0 and 10.

If we choose the scale so that a = 1 , the sickness level for the base

symptom likewise will range between 0 and 10, and system (4) will become

(6) Y. = s + b l<i< L
i i

In the application of these equations to a particular complex of symptoms,

the Ц are considered known. How they may be estimated from accumulated

data will be considered in Section XII. The relation between population per

cent occurrence of the i'th symptom and its probit is

dt

Y.-5
l t2

2
(7)

! f

—

Pi =

^<rJ-Z

From which

(8)

dP.
i

V7<r\^

5)2

)
dY.

i

2
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X. AN ILLNESS INDEX. In practice, we do not start by being given the

sickness level and inferring the symptoms, but conversely, observe the

symptoms and seek to infer the sickness level. A specific patient might

or might not exhibit a "typical case".

A given individual, at any point in the course of an illness, will however

exhibit certain signs and symptoms. It is on the basis of this set of symp

toms that an index of illness must be constructed. The role of dynamic

factors can be accomodated, to some extent at least, in the usual fashion

by regarding shifts in readings over fixed periods of time as being them

selves readings. If a patient who showed any one of these symptoms

showed all milder symptoms, then case A would apply and illness would

scale in a deterministic fashion. The essence of the stochastic case is

that one or more milder symptoms may be absent when a severer symptom

is present. The discussion in this section is limited to case С of Section II.

To get a first feel for the situation, consider the mildest five symptoms

for a particular disease. Suppose a patient exhibits the first three, fails

to show the fourth, but does show the fifth. A little reflection will show

that this patient must be ranked as sicker than a second patient who shows

the four mildest symptoms and no others. Failure of the fourth symptom

in the presence of the fifth in the first patient is considered due to chance,

so that that level of illness is chosen which maximizes the chance of their

joint occurrence. This will be at some level of illness greater than a

50-50 probability for the fourth symptom and less than a 50-50 for the

fifth. But in the case of the second patient, the non-occurrence of the fifth

symptom and occurrence of the fourth implies that the level of illness is

estimated to be at (or even below) the 50-50 point of the fourth symptom.

An illness index can accordingly be set up by forming the maximum like

lihood criterion for the particular combination of symptoms exhibited by

each patient. Further discussion will be facilitated by reference to figure 5.
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Illness severity

Figure 5 .

Hypothetical relation between disease severity and frequency of several

symptoms.

For simplicity, curves of frequency of symptom occurrence versus disease

severity are shown in units of probit of response as straight lines, (see

Section IX) and only three lines are shown. In the experiment used to

illustrate this paper, nine symptoms were used. The position of one

patient is shown by a vertical line on the figure at sQ. The probability

of each symptom for this patient is given by the point of intersection of

its curve (line) with the vertical line at s .

If the various probabilities of the matrix (2) were known from prior

experience or otherwise than the probability of the whole set of symptoms,

for a sickness level j would be:

(9) -TÎ
ij

Q(l-x)

ij

l<i^k

where

(10) Q = 1 - PVij ij
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and

x 5 1, if the i'th symptom occurred, and

(11) x = 0, if the i'th symptom failed.

If the values from each of the j columns of (2) are substituted in (9) ,

then that column whose values led to the largest P would be from the

column at the most likely sickness level.

Taking the logarithm of equation (9)

= Z-x log P., + (1 - x) ¿_(12) L. = log P = ¿-x log P.. + (1 - x) L* log Q..

whence ,

(13) dL^ _ 0 = y _x_ dPtj _ y 1-х dPtj

ds ¿-J-' dY.. - L-q-'^

since

(14) dY..

ds

= 1 all i, j (from 6)

An exact solution of equation (13) employing the usual relation between

each P and its corresponding Y from equation (7) can be carried out by

successive approximations. However, since for L symptoms there are

only 2 possible outcomes, it would seem that a simple table would

always be used. In practice then a glance at the appropriate table entry

would immediately yield an estimate of illness severity as soon as the

appropriate symptoms occurrences were noted.
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XI. UNSELECTED PATIENT FREQUENCIES. The previous discussion

assumed either (a) that the illness level was known, or (b) that the b.

were known. Either situation relates to a later time in the sequence of

steps involved in developing an illness index. The raw data consist of a

mass of individuals exhibiting assorted symptom complexes at a variety of

unknown degrees of illness. The specific illness of each individual at a

specific time is not known directly, but further, not even the nature of the

distribution of illness in the population is known, though it appears very

plausable that it is non-normal, and even constitutes an extreme form of

a J-shaped distribution, most of the frequency residing at zero illness.

The first point to be established is that the order of symptoms in a large

group of patients unselected for disease severity is identical with the

order at any single level.

Let the distribution of the К disease severity levels in the population

be given by a set of К weights w,. . .w assigned to the successive

columns of (2), where ¿w, = 1, and each w.^0. For typographic

simplicity, let P" and P" be any two probabilities selected from the j'th

row of (2) .

Set

(15) p- = E w p'

and

(16) p" = Zw, p:

Р' and P" are row marginal probabilities of symptom combinations in the

population. If P' is to represent the more frequent combination, the more

common, hence the milder, symptom then
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P' - P" = ^ w. P'. - ' w P?
J i J J

(i7) = ¿V (p; - p")

Since the w. are arbitrary , equation (17) yields the requirement

(18) P' > P"

3 j

for each j. Conversely the condition is clearly sufficient for any one set

of w. , representing a distribution of illness in a population. Scalability

in stochastic model С then depends only on the reasonable assumption

that the more frequently appearing symptom at one level of illness will

also be more prevalent at each other level, and is independent of the

distribution of disease severity among the cases.

In a sample of data, symptom frequencies might not exhibit an order

thought to be appropriate, or two sets of data might exhibit conflicting

orders. Tests of order are discussed by Chassan [i960] .

XII. DEVELOPMENT OF THE EQUATIONS. The previous sections pro

vide a rationale by which the severity of illness can be inferred from the

complement of symptoms exhibited by a particular patient. So that this

may be done, the set of displacement constants d. must be provided.

For this purpose a set of symptom occurrences on a fairly large number of

patients will be required. In general, it should be easy to secure many

times the 140 records used in this small study--and hence the material

should be adequate.

Section XI indicates that the symptoms can be ordered on the over

all proportionate frequency of their occurrence in the data disregarding

considerations of disease severity. This being done, those records
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showing few symptoms and those records showing nearly all of the more

severe symptoms, may be temporarily set aside, in confidence that, of

the remaining records, (nearly) all pertain to intermediate levels of

disease severity. Now, it is well known (Finney [l947j) that, over the

range from 20 to 80 percent response, P is nearly proportional to Y.

Hence, we can put

(19) Y. = 10 Pt

since O^Yj^lO, and 0<P<1,

nearly always.

The dj are the differences between successive Y , when s = 5; for which,

for this first approximation., we substitute the Pj from those records

showing intermediate levels of illness in equations (9) . The resulting

equations can then be used as first approximations to obtain a measure

of disease severity for each case record, now using them all. These in

turn can now be used to obtain final values for the parameters in equations

(13), by a process of successive approximation.

XIII. REMARKS. Four possible mathematical models for the scaling of

disease severity were enumerated at the end of Section II. Data from a

controlled experiment on 144 rats were shown to conform closely to the

second model which postulates a strict scaling of the symptoms but pro

vides for instrumental and observational error. The theory for model С

was developed in Sections VIII to XII.

As indicated earlier (Section VII) the analysis showed that the results

of this experiment were clear-cut and illuminating, in constrast to the in

formed but subjective impressions of the experimenters. The latter were,

of course, cognizant of a variety of deviations from the strict experimental

protocol, and were inclined to see in these an explanation for the seeming

anomalies in the results. The role of statistics vis a vis clinical judgment

in medical practice is currently under discussion (Sarbin [1942] and Meehl

L1954J ). Perhaps the function of the development of a disease severity

index which transcends in importance even its service in day-to-day

application, lies in its contribution to the banishment of the mysterious
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and the occult from one more corner of medical practice by drawing atten

tion to a new class of statistical regularities and by providing a tool by which,

in any given case, the obscuring effect of chance can be minimized.

XIV. LARGER IMPLICATIONS. The study of the problem of scaling disease

severity had not progressed far before the analogy with the problem of pro

viding measures of value and utility in economics became obvious. The

problems of non-metric factor analysis (3) should be analogous, but have

not been fully examined.

In each of these cases, as in the cases of force and electricity in physics,

unobservable concepts are developed on the basis of (apparently) more

immediate observables. In the last generation (with roots going back at

least to Henry James) stress has been laid on the importance of the role of

a measurement technique in establishing the existence of a concept

(Bridgman [l927j ). In this sense, disease severity is necessarily

quantitative, since we have provided a means of measuring it. But one does

this for the fruits expected to follow from the concept. The anticipated

benefits in the case of disease severity are discussed in section II. An

elaboration of all implications in the larger context will have to await

another occasion.

XV. ACKNOWLEDGMENT. I am indebted to Dr. Eiglesbach, Dr. Guss,

Dr. Rooney and their associates for the experimental phases of this work,

and to Mr. Kennedy for help in the analysis of the data and in the pre
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RECORDS OF INDIVIDUAL RATS EXPOSES) TO AEROSOLIZED PASTEURELIA TULARENSIS

Щ THREE SEPARATE EXPERIMENTS

H SYMPTOM NOT EXHIBITED PsSYMPTOM EXHIBITED - =N0 OBSERVATION MADE

Rat Weight No. Organ-

Sex (gms) isms Inhaled

Symptoms* Survival* or

No. ABCDEFGHI Death (L)

First Experiment

1

2

3

k

5

6

7

8

9

10

13

12

KEY*

1. (A) Spleen (В) Lung, (C) Heart Blood. Readings of Cultures.

2. (D) Spleen, (E) Lung, (F) Liver. Observations of Gross Pathology.

3. (G) Titer of Serum Agglutinins. Titer of 1:40 or more - P.

k. (H) Maximum Body Temperature of 100°F or more -P.

5« (i) Maximum Body Temperature of 101°F or more —P.

6. (L) S — Survival to and of experimental period of l6 days. Figure(s)

in Column (l) correspond to day of death after treatment.

3 N N N - - - N N N S

3 N N N - - - N P N S

3 N N N - - - N P N S

3 N N N - - - N P N s

3 N N N - - - N N N s

3 N N N - - - N P N s

3 N N N - - - N P P s

3 N N N - - - N P P s

3 N N N - - - N N N s

3 N N N - - - N P P s

3 N N N - - - N P N s

3 N N N - m ш N P N s
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RECORDS OF INDIVIDUAL RATS EXPOSED TO AEROSOLIZED PASTEURELIA TULARENSIS

IN THREE SEPARATE EXPERIMENTS

N=SYMPTCM NOT EXHIBITED P= SYMPTOM EXHIBITED -=NO OBSERVATION MADE

Rat Weight No. Organ- Symptoms* Survival* or

No. Sex (gms) isms Inhaled ABCDEFGHI Death (L)

13 -

Ik

15

16

17

18

19

2i

22

2k

25

26

27

28 -

29

30

31

32

3k -

35

36 -

*For key see page 1 of this table.

First Experiment

30 N N N - - - N N N S

30 N N N
- - - P P P S

30 N N N
- - - N P P s

30 N N N
- - - N P P s

30 N N N
- - - N N N s

30 P P P - - - - P P 1+

30 N N N
- - - N P P s

30 N N N - - - - P N s

30 N N N
- - - N P P s

30 N N N
- - - P P P s

3000 P N N s

3000 N N N
- - - P P P s

3000 P P N
- - - P P P 9

3000 N N N - - - - P P s

3000 P N P
- - - P P P s

3000 P P P - - - - P P s

3000 N N N - - - P P P s

3000 N N N - - - P P P s

3000 P N N - - - P P P s

3000
— N P P s

3000 P P P - «• - - P P 15
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RECORDS OF INDIVIDUAL RATS EXPOSED TO AEROSOLIZED PASTEURELIA TULARENSIS

Ш THREE SEPARATE EXPERIMENTS

N= SYMPTOM NOT EXHIBITED P= SYMPTOM EXHIBITED -=NO OBSERVATION MADE

Rat Weight No. Organ- Symptoms* Survival* or

No. Sex (gms) isms Inhaled ABCDEFGHI Death (L)

Second Experiment

PPPNNN-PP 8

PPPNNN-PP 10

PPPNNNPPP S

PPPPNN-PP 7

NNNNNNPPP S

NNNNNNPPP S

NNNNNNPPP S

NNNNNNPPP S

PPPPPN-PP 7

PPNPNN-PP 12

NPNNNN-PP 9

PPPPNN-PP 6

PPPPPN-PP 8

PPPPPN-PP 8

PPPPPN-PP 8

NPPPPN-PP 6

PPPNNN-PP 7

PPPPPN-PP 8

PPPPPN-PP 6

*For key see page 1 of this table.

1 M 315 15-90

2 M 300 15-90

3 M 270 15-90

h M 2U0 15-90

5 M 330 15-90

6 M 280 15-90

7 M 300 15-90

8 M 250 15-90

9 M 335 16300

10 M 305 16300

11 M 280 16300

12 M 275 16300

13 M 305 16300

Ik M 290 16300

15 M 285 16300

16 M 292 16300

17 F 255 16300

18 F 215 16300

19 F 215 16300
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RECORDS OF INDIVIDUAL RATS EXPOSED TO AEROSOLIZED PASTEURELIA TULARENSIS

IN THREE SEPARATE EXPERIMENTS

N= SYMPTOM NOT EXHIBITED P=SYMPTOM EXHIBITED -=NO OBSERVATION MADE

Fat

No.

Weight No. Organ-

(gms) isms Inhaled

Symptoms*

С D E F G H

Survival* or

I Death (l)Sex А В

Second

P P

Experiment

P P N -20 F 235 I63OO P P N 9

21 M 306 2.37xl06 P N N P N N - P P h

22 M 315 2. 37xl06 P N N P N N - P P k

23 M 285 2.37xlC6 P P P P N N - P N h

2k M 280 2. 37xl06 N P P N N N - P P k

25 M 305 2.37X106 P P P P N N - P P k

26 M 290 2.37X106 P P P N P N - P P 5

27 M 290 2.37X106 P P P N N N - P P 6

28 M 295 2.37X106 P P P N N N - P P 5

29 F 225 2.37X106 P P P P N N - P N h

30 F 230

6
2.37x10 P P P P N N - P P 2

31 F 210 2.37x10 P N P P N N - P P k

32 F 2U0
6

2.37x10 P P P P N N - N N 3

1 M 265 11

Third Experiment

N NN P N N N P N S

2 M 330 11 N N N N N N N P N S

3 M 25О 11 N N N N N N N P P S

k M 26О 11 P P P N P P - P P 7

5 M 27О 11 P P P P N N - P P 6

6 M 350 11 N N N N N N N P N s

*For key see page 1 of this table.
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RECORDS OF INDIVIDUAL RATS EXPOSED TO AEROSOLIZED PASTEURELIA TULARENSIS

Ш THREE SEPARATE EXPERIMENTS

N=SYMPTOM NOT EXHIBITED P=SYMPTOM EXHIBITED - =NO OBSERVATION MADE

Rat

No.

Weight

Sex (gms)

No . Organ

isms Inhaled

Symptoms* Survival* or

ABCDEFGHI Death (L)

Third Experiment

NNNNNNNNN S

NNNNNNNNN S

NNNNNNNNN S

NBHNNNFPP S

PPNNNNPPP 3

NNNNNNNNN S

PNNNNNPPP S

NNNNNNNPP S

NNNNNNNPN S

PNNNNNNPP S

NNNNNNNPN S

NNNNNNNPP S

NNNNNNNPP S

NNNNNNNPP S

NNNNNNNPN S

NNNNNNNPP s

NNNNNNNPP S

NNNNNNNPP S

NNNNNNNNN S

NNNNNNNPP S

♦For key see page 1 of this table.

7 M 360 11

8 M 235 il

9 M 310 il

10 M 360 il

11 M 250 il

12 M 26O il

13 F 220 il

14 F 220 il

15 F 235 11

16 F 240 il

17 M 335 20

18 M 280 20

19 M 360 20

20 M 240 20

21 M 350 20

22 M 360 20

23 M 240 20

24 M 255 20

25 M 34o 20

26 M 300 20
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RECORDS OF INDIVIDUAL RATS EXPOSED TO AEROSOLIZED PASTEURELLA TULARENSIS

IN THREE SEPARATE EXPERIMENTS

N=SYMPTOM NOT EXHIBITED P = SYMPTOM EXHIBITED - =NO OBSERVATION MADE

Rat

No.

Weight

(gras)

No . Organ

isms Inhaled

Symptoms*

D E F G

Survival* or

Death (L)Sex A В С H I

Third

N N

Experiment

27 M 265 20 N N NN N P P S

28 M 230 20 N N N N N N N P P S

29 F 255 20 N N N N N N N P P S

30 F 2H8 20 N N N N N N N P P S

31 F 275 20 N P N P - - P P P s

32 F 235 20 N N N N N N N P P s

33 M 285 36 N N N N N N N P P s

3^ M 260 36 P P P P P P - P P s

35 M 335 36 P N N N N N P P P s

36 M 335 36 N P N N N N N P N s

37 M 275 36 N N N N N N N P P s

38 M 255 36 N N N N N N N P P s

HO M 350 36 N N N N N N N P N s

kl M 290 36 P N P N N N P P P s

k2 M 310 36 N N N N N N N P P s

H3 M 290 36 N P P N N N P P P S

kk M 280 З6 N N N N N N P P P s

H5 F 255 36 P N N N N N P P P s

k6 F 230 36 P P N N N N P P P s

*For key see page 1 of this table.
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RECORDS OF INDIVIDUAL RATS EXPOSED TO AEROSOLIZED PASTEURELIA TULARENSIS

IN THREE SEPARATE EXPERIMENTS

N = SYMPTOM NOT EXHIBITED P= SYMPTOM EXHIBITED - = NO OBSERVATION MADE

Rat Weight

(gms)

No . Organ

isms Inhaled

Symptoms* Survival* or

No. Sex A В С D E F G H I Death (L)

Third

P N

Experiment

N N N P47 F 230 36 p P P S

48 F 260 36 N N N N N N N P P S

49 M 350 111 P P P P P N - P P 5

50 M 375 111 N N N N N N N P P S

51 M 240 111 Р P N N N N P P N s

52 M 255 111 N N N N N N N P N S

53 M 285 111 Р P N N N N P P P S

54 M 285 111 N N N N N N N P N s

55 M 325 111 N N N N N N N P N S

56 M 380 111 N N N N N N N P P S

57 M 285 111 Р P N N N N P P P s

58 M 270 111 N N N N N N N P P s

59 M 300 111 , P P N N N N P P P s

60 M 355 111 P P P N N N P P P s

61 M 260, m •: P P P N N N P P P s

62 M 235 111 N N N. N N N N P N s

63 M 270 111 P P P N N N P P P s

64 M 285 1967 N N P N N N P P P s

*For key see page 1 of this tahle.
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RECORDS OF INDIVIDUAL RATS EXPOSED TO AEROSOLIZED PASTEURELIA TULARENSIS

IN THREE SEPARATE EXPERIMENTS

N- SYMPTOM NOT EXHIBITED P= SYMPTOM EXHIBITED - = NO OBSERVATION MADE

Rat Weight

(gms)

No . Organ

isms Inhaled

Symptoms.* Survival* or

No. Sex ABCDEFGHI Death (L)

66 M 380 1967

67 M 280 1967

68 M 2U0 1967

69 M 285 1967

70 M 305 1967

71 M 253 1967

72 M 285 1967

73 M 305 1967

7^ M 265 1967

75 M 290 1967

16 M 275 1967

77 M 240 1967

78 M £65 1967

79 M 295 1967

80 M 280 1967

Third Experiment

PPNNNNPPP S

PPPNNNPPP S

PPPPP--PP 11

PPNNPP-PP 7

PPPPP--PP 11

PPPPPP-PP 8

PPPNPN-PP 7

PPPPP--PP 11

PPPNNN-PP S

PPPNNNPPP S

PPPPPP-PP 9

PPPPPN-PP 7

PPPPPP-PP 12

PNNNNNPPP S

PPNNNNPPP S

*For key see page 1 of this table.
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COMBINATIONS OF PAIRS OF DISEASE SYMPTOMS

The Numbers in Each Cell of the Following 2x2 Tables are the

Totals Which Correspond to the Indicated Combinations.*

Culture of

Lung

Ъ В

Culture of a 71 6

Spleen

A 11 5^

Spleen (Gross

Pathology)

d D

Culture of a 45 3

Spleen

A 31 29

Liver (Gross

Pathology)

f F

Culture of a 51 0

Spleen

A 50 6

Culture of

Heart Blood

с С

Culture of a 73 k

Spleen

A 20 1*5

Lung (Gross

Pathology)

e E

Culture of a 50 1

Spleen

A 39 20

Agglutination

Titer

g G

Culture of a 59 Ik

Spleen

A 1 22

♦Lower case letters denote symptom not exhibited.

Upper case letters denote symptom exhibited.
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Temperature

100°F or higher

Temperature

101°F or higher

h H i I

Culture of a 10 67 Culture of a 29 hQ

Spleen

A 1 6h

Spleen

A 5 во

Culture of

Heart Blood

Spleen (Gross

Pathology)

с С d D

Culture of b 78 k Culture of о 51 h

Lung

в 15 ^

Lung

В 29 28

Lung (Gross

Pathology)

Liver (Gross

Pathology)

e E f F

Culture of b 55 0 Culture of Ь 55 0

Lung

В 3^ 21

Lung

В h6 6

Agglutination

Titer

Temperature

100°F or higher

g G h H

Culture of Ъ 59 19 Culture of Ъ 10 72

Lung

В 1 17

Lung

В i 59
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Temperature

101°F or higher

Culture of b 28

Lung

В 6

I

4h

Lung (Gross

Pathology)

Culture of с oil-

Heart Blood

С 25

E

1

20

Agglutination

Titer

g G

26Culture of с б0

Heart Blood

С 0 10

Temperature

101°F or higher

Culture of с 30 63

Heart Blood

С h lt-5

Spleen (Gross

Pathology)

d D

Culture of с 6l 5

Heart Blood

С 19 27

Liver (Gross

Pathology)

f F

Culture of с 6k 1

Heart Blood

С 37 5

Temperature

100°F or higher

h H

Culture of с 10 83

Heart Blood

С i k8

Lung (Gross

Pathology)

e E

Spleen( Gross

Pathology)

d 77

D 13

k

17
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Liver (Gross

Pathology)

Agglutination

Titer

f F g G

Spleen (Gros:

Pathology)

3 a 79 2

D 23 k

Spleen (Gross

Pathology

d kl 27

Dil

Temperature

100°F or higher

Temperature

101°F or higher

h H i I

Spleen (Gross

Pathology)

3d 5 75

D 1 31

Spleen (Gross

Pathology

d 17 63

D 5 27

Liver (Gross

Pathology)

Agglutination

Titer

f F g G

Lung (Gross

Pathology)

e 90 0

E 12 6

Lung (Gross

Pathology)

e k2 27

E 0 0

Temperature

100°F or higher

Temperature

101°F or higher

h H i I

Lung (Gross

Pathology)

e 6 83

E 0 21

Lung (Gross

Pathology)

e 21 68

E 1 20
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Agglutination

Titer

Temperature

100°F or higher

g G h H

Liver (Gross

Pathology)

f

F

k2

0

27

0

Liver (Gross f 6 95

Pathology)

F 0 6

Temperature

101°F or higher

Temperature

100°F or higher

i I h H

Liver (Gross

Pathology)

f

F

22 79 Agglutination g 10 51

Titer

Temperature

101 F or higher

0 6 G 1 36

i I

Agglutinatio:о g 28 33

Titer

G 2 35
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Death

1 L

Culture of

Spleen

a

A

7^

2k

Death

3

in

1 L

Culture of

Heart Blood

с

С

87 6

3811

Death

1 L

Lung (Gross

Pathology)

e

E

70

0

Death

19

21

1 L

Agglutination

Titer

g

G

61

36

Death

0

1

1 L

Temperature i

I

31

69

k

101°F

or higher

Death

1 L

Culture of b 79 3

Lung

В 18 in

Death

1 L

Spleen (Gross

Pathology)

d

D

69 12

2 29

Death

1 L

Liver (Gross

Pathology)

f

F

70 31

0 6

Death

1 L

Temperature h

H

11 1

89 h3

100°F or

higher
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STATISTICAL STUDIES OF PLAQUE RESULTS IN VIRUS ASSAY

Francis M. Wadley and Walter D. Foster

U. S. Chemical Corps, Fort Detrick, Frederick, Maryland

Animal disease viruses have not been successfully grown on artificial

media, and their evaluation presents many difficulties. Virus preparations

are commonly assayed by injection of each of several suitable dilutions

into a group of experimental animals. The proportions succumbing to the

dilutions are analyzed by dosage mortality methods, and the dilution to

which 50 percent (or the average animal) will succumb is estimated. This

indicates the concentration of the original undiluted material, measured

in animal units. The method is laborious and not very precise and involves

waiting some days for effects to show. Wadley (Proc. 3rd Army Exp.

Design Conf . , 1957) finds that with 40 to 60 animals precision is not

better than 1 1/2 or 2 fold; whereas with a moderate number of bacterial

plates, estimates within 10 o/o can be made. With the best technique

an occasional failure occurs with 40 to 60 animals per assay.

The plaque method consists in preparing plates with monolayer tissue

culture preparations, and after 48 hours incubation, counting the dead

spots or "plaques" which appear in the tissue. Lennett (Jour. Publ. Health

31 (4), 1961) reviews the technique. It is hoped that each living virus

particle will produce a plaque, and evaluation can be made on the same

basis as with bacterial plate counts. If this method can be made to yield

stable results, a considerable gain will be made.

The plates are made from several dilutions as with bacteria, and the

most successful dilution is counted. Plaques per plate are fewer than

bacterial colonies; under good conditions 25 to 50 per plate are secured.

It is obvious that great care is needed with this relatively new technique.

Even with every care taken there is some risk of failure. Tissues die,

plaques unaccountably fail to appear, or contamination occurs; plaques

may even be "too numerous to count." However, some successful assays

are being made. The technique should improve with practice, whereas

the animal injection technique has probably been pushed to as precise

a point as is feasible, since it has long been practiced.

A detailed experiment, by George Scott of Fort Detrick, in assay of

slurries of an encephalomyelitis virus preparation, has been studied.

The original slurry was made up in several dilutions, and the dilutions

assayed several times by both animal injection (using mice), and plaque
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assay using chick fibroblasts. Logs of dilution were 0, 2, 4, 6, 7. The

first result noted was surprising and somewhat disappointing; plaque-

forming units ("PFU") were consistently fewer than mouse units. This

obviously indicates that not every particle formed a plaque, as had been

hoped. It seems that a "PFU" requires more particles than a mouse unit,

or that not every particle is capable of forming a plaque. Mr. Scott

calculated the concentrations in log no. PFU' s per ml. They are shown

with the comparable figures derived by dosage -mortality methods from

mouse assays. Sixty -four mice per trial were used.

TABLE I

Mouse and Plaque Results, Averages

Log Dilution 0 2 4 6 7

Log Mouse units/ml 9.57 7.20 5.33 3.52 2.47

Log PFU/ml 8.84 6.70 4.37 2.46 1.28

Even if the exact measure is not the same, plaque results if consistent

can be used in various virus studies; hence further studies are made of

these results.

In making his determinations Mr. Scott used every available plate for

averaging, even some with only 2 or 3 plaques. In subsequent analysis,

the authors have used only the most successful dilution. In each unit

2 or 3 plates with favorable numbers were used. One of two technicians

was more successful than the other, and most of the results are his.

However, for one preliminary study, it seemed desirable to use all

possible plates. The variation between plates within a group is of much

interest. The counts were arbitrarily grouped as shown below. Variances

in each group of 2 or 3 plates were averaged and compared with the mean

of the plates. These individual variances and means were averaged and

compared with the mean of the plates. These individual variances and

means were averaged for each size group.
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TABLE II

Average Mean and Variance of Plates Within a Unit

Size Group, Plaques Degrees of Average Average

Per Plate Freedom Variance Mean

0 - 5

5 - 20

20- 50

64 4.09 2.86

71 16.96 10.37

22 46.43 26.98

Thus the variance of plates within group, for plaques, was but little

higher than Poisson expectation, and compares favorably in this respect

with bacterial plates. Of course, the greater numbers obtainable on

bacterial plates give some advantage in precision over the plaques.

For further analysis only the best set of plates in each trial was used.

There were 5 treatments (see Table I) in 6 trials, and 30 units should be

available. The mouse assay was unusually poor; only 18 units out of 30

gave standard dosage-mortality curves, while 4 more could be estimated

by interpolation. Thus, 22 out of 30 trials are available; the plaques

gave readings in 25 out of 30 trials.

These gaps in the data made a symmetrical analysis (5 dilutions by 6

replications) impracticable. Hence analysis was carried out first for

between and within replications, then with the same data for between and

within dilutions. Logarithms of estimated number of units for each were

used in analysis. Dilution showed large differences as expected. When the

log dilution factor was added to the figures to bring them all to the same

basis, no significant differences were found. With this procedure the only

difference to be expected among dilutions would be some secondary effect

caused by manipulation.
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TABLE III

Analyses of Variance of Log No. Units per ml.

Mice Plaques

Source of

Variation

Between Replication

Within Replications

Total

Degrees of

Freedom

5

16

21

Mean

Square

0.2596

0.0882

0.1290

Degrees of

Freedom

5

19

24

Mean

Square

0.0887

0.1114

0.1067

There is no indication of pronounced differences among replications,

dilutions, or between mice and plaques in variance, although with mice

replications reached the margin of significance. The latter fact may be

due to day to day variation in mouse susceptibility. Over -all mean

squares are: mice 0.1290, Plaques 0.1067.

This approximate equality of precision is not what would be predicted

from the low value of variance for plates within groups. Plaque plates

show variance similar to bacterial plates, and should thus give much

more precise results than the mouse injection assay. For 20 to 50 plates,

the variance is about 1.7 times the mean, and for a favorable condition

with 30 plaques per plate, a variance of about 51 would be expected.

This may be transformed into expected variance of log count by the

approximation of the "propagation of error" (Deming, "Statistical Adjust

ment of Data" N. Y. , 1943). If y = f(X), the variance of y may be estimated

dy \
as -г— • variance X, or 0.0107. Subsequent operations, in

going to log no. units per ml, will involve only addition of constants

and will not alter the variance. For the mouse assay, a simplification of

the formula for internal variance of log LD-50 is 1/b2 SNW where b is

probit regression, about 1.5 in this material; n is number of mice per

point; and w is probit weight, which usually averages about 0.4. This

may be further simplified into 1/0. 9N, where N is total number of mice.

For 64 mice this comes out 0.0174, as a variance under optimum conditions.

These approximations would lead us to think a single plate a little

better than 100 mice on a within-trial basis. However, in the analysis of
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variance between trials, 64 mice give about the same precision as 2 or 3

plates. This suggests a larger between-trial component of variance for

plaques than for mice. Since this is the preferred basis, an effort is

made to arrange the experimental material to study this question in more

detail.

Each individual plate count was converted to an estimate of log no.

units per ml. , and analysis was made of variance of groups and of plates

within groups. For the mice no such division is possible, but an estimate

of internal variance in each trial is given by the computed variance of

log LD50. These variances were averaged for the 18 trials that permitted

calculation. They were higher than the 0.0174 estimated as a theoretical

minimum above, though some approach it; a few large variances bring

the average up.

TABLE IV

Internal and External Variances

Mice Plaques

Source of Degrees of Mean Degrees of Mean

Variation Freedom Square Freedom Square

Between Trials 21 0.1290 24 0.1067

Within Trials 36 0.0996 43 0.0057*

* This is stepped down to mean value for comparison with variance of

group means; the value on an individual basis is 0.0156.

Thus it appears that plaques varied much less within trials than mice, but

showed a larger between-trial component of variance.

Work with the plaques on this agent is being continued, and has been

carried out as a supplement to several recent experiments. Recent results

appear somewhat like those already discussed. Plates as a rule are very

close together within a trial, and assay values are lower than those from

the mouse assays. In one recent experiment, however, plaques came near

mice in assay value. Plaques have given fairly stable results in assaying

stock preparations of "Controls", but have not so far been successful in

assaying aerosol samples. This is disappointing, but work is continuing

in efforts to solve the difficulty.
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To sum up; plaque technique has been carried out for this encephalo

myelitis virus with fair success. Plates within a group vary about as

much as bacterial plates, promising a gain in precision over animal assay,

but a large between-trial component of variance is found. Plaques give

lower assay values than animals, and have not yet been successful in

assaying aerosol samples. It is hoped that these weaknesses can be

improved with further work.



A CONFIDENCE INTERVAL FOR THE RELIABILITY

OF MULTI-COMPONENT SYSTEMS

John K. Abraham

Weapons System Laboratory, Ballistic Research Laboratories,

Aberdeen Proving Ground

INTRODUCTION . The reliability, P, of a device may be defined simply

as the probability that it functions correctly under specified conditions.

For many devices an interval estimate of this number P is desired. It is

sometimes impractical, if not impossible, to test many assembled devices,

and the suggestion has been made that parts be tested separately, and the

results combined to form an interval estimate. The present study indicates

a means of constructing an interval for P with any desired confidence

coefficient, preferably, however, greater than .90. As is the case with all

non-Neyman- shortest confidence intervals based on discrete variables, the

actual probability of coverage will generally be somewhat higher than the

selected coefficient.

For any given device with к distinct parts, P may be written in terms

of q i ... i 1 i where q. denotes the probability of the itn part failing.

The parts are assumed to function independently of one another within the

device in the same way and under the same conditions as when tested

separately. The problem considered here is that of finding a confidence

interval for P, given that n. Bernoulli trials have been conducted on the

i part (i=l, . . . , k) and that X. failures have been observed in the n.

trials.

The approach of this study is to consider the problem first for the simple

series case, and then extend the results to the general case.

For a simple series device consisting of к parts, P (expressed in terms

of the q.) can be minimized and maximized under the restriction ¿,n.q . = f
1> 1 1 *J

(Throughout this and the following sections, the range of all sums and products

is assumed to extend from i equals 1 to к unless otherwise indicated). Thus

P will be bounded on either side by functions of f . Since X = ]Tx. has

expectation ¿ and is approximately Poisson (or binomially) distributed, one

can easily find a confidence interval for F based on X, and by appropriate

computations, for the two bounding functions of F , and hence for P.
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The extension from the simple series to the more complicated devices

follows from factoring P into its series and non-series parts. Both parts

can be parametrically bounded, the series part as outlined above and the

non-series part using several approaches. From these bounds one can

write upper and lower bounds for P, and by using several independent

confidence intervals, a confidence interval for P may be obtained.

Numerical examples are given which illustrate the procedure and pro

vide comparisons with the results of some other currently used methods.

The reader who wishes to apply the results must be willing to perform

some numerical computations. Situations undoubtedly exist for which the

present approach is of little use, and in many other cases the experimenter's

supply of ingenuity may be heavily taxed to provide shortcuts peculiar to the

problem at hand. The present discussion is designed to suggest several

solutions to the problem, and to urge the reader to choose the best one

available. Most likely this choice cannot be made without first performing

trial and error calculations.

I. PARAMETRIC BOUNDS FOR P IN THE SIMPLE SERIES CASE. A very

simple case is a device consisting of к different parts connected in series.

Assuming that the parts function independently, the reliability P equals

IT (1-q.) where q. equals the probability of the i part failing. We

find (for reasons which may not yet be obvious) the range of possible values

that TT (1-qj) can assume given that ¿-i^q, equals ¿ , where the n.

are positive integers, and ¿ is a positive fixed number.

The problem of finding the range of P given ¿ can be solved several

ways, perhaps most easily by simple trial and error calculations. For

known n. and fixed f , the minimum and maximum values of P, expressed

in terms of functions of f and the n. , may be found by numerical trial and

error of various values of the q. . When P is near one (say greater than one

half), it is clear from the algebraic expansion of TT (1-q.) that 1 - L q,

will dominate, and it follows that the minimum and maximum of P (at worst,

approximately) will be attained when Lq</ subject to ¿-ni4i = r • is

respectively maximized and minimized.
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For example, if k=3, n,=500, n =250, n =300, f=l.S, the condition

12 3^

is 500q, + 250q + 300q„ = 1.5, and q + q + q is minimized when

1 2 3 1 2 3

q =1.5/500, q = q = 0, and maximized when q = q = 0, q =1.5/250,
• Li 1 3 L

A little arithmetic shows that P is indeed maximized and minimized,

respectively, at these points. Similar results easily may be seen to hold

for all values of Mess than 250. Hence for any fixed value of Mn this

range,

1 - £/250 < P< 1 - £/500

and P may assume any value in this interval, which has width r/500.

The general form of the bounds for P can be somewhat complicated,

sending on the values of the n giv

general cases are of greatest interest:

depending on the values of the n given. However, the following two

If n¿ = n = ¿_,п^/к for i=l, . . . ,k,

1 - £/ñ<P< (1- £/ñk)k

Ln - kmin n. and 0 < л <- min (min n , Ln - kmin n ),
i il -b i i 1 i i

В. If 0 <

1 - г /min п. < P < 1 - г /max n , where i=l, . . . , к.
Ь i i- - Ь i i

II. SAMPLING AND USE OF THE BOUNDS. Suppose that the results of

n. Bernoulli trials are known for the ith part of a simple series device.

If Xj denotes the number of failures observed, )G is binomially distributed

with parameters n. and q. . The variable X = LX. does not follow a

distribution having a simple form, but it is easy to verify that the

expectation and variance of X are £ , and
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S ~ ¿-.n.q. respectively. Using the method of Lagrange multipliers, it

is also easily shown that given Ç = 2_,n.q., ьп,а, attains its minimum
" о lili

value when q = f/ Ln. for all i, and hence the variance is largest when
i "Э i

all the q.'s are equal. But under the latter circumstances, X is binomially

distributed with parameters ¿n, and £ / ¿_, n. . If X were Poisson distri

buted with parameter ^ , then the variance would also be £ . Writing the

variance of X under the above binomial assumptions as V (X), and the

max

variance of X under Poisson assumptions as V (X), the following

inequality holds for all values of n. and q. , i=l, . . .k:

V(X)< V (X)<V (X) or

max P

£- ïW^-^/ïn^

Thus referring X to either the Poisson or the appropriate binomial

distribution, one should not be surprised to find greater probabilities for

the extreme tail values than under the true distribution If so, when using

binomial or Poisson confidence intervals with X, one may expect them to

be conservative in the sense that the probability of containing the unknown

parameter £" will be at least as high as the confidence coefficient of the

binomial or Poisson intervals. In the next section, comparisons will be

presented concerning these probabilities.

For the present, assuming that in referring X to the Poisson or binomial

confidence intervals one will not be led astray, it is a simple matter to look

up one or two-sided confidence limits for P, once the appropriate para

metric bounds have been chosen. For example, if the (X -level two-sided

Poisson or binomial confidence limits for £ based on X turn out to be t

t , t„, then whenever t. < £<£_t it is also true that (using the case of

nA = ñ here)

1 - t2/ñ < 1 - f/ñ" < P < (1 - £/ñk)k < (1 - ^/пк)к
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and the resulting confidence interval covers P with probability at least

1 - CX . There will be a growth in actual confidence coefficient in addition

to that due to "too-conservative" intervals because P is a fixed number

between two functions of £ , and the confidence interval covers both of

these functions.

In many cases, the q. will be known to be close to zero, and the

values of n. will be such that f may be safely assumed to be within the

range of case B, Section I, or preferably, case A. There is a way of

converting all cases into the equal sample size case, which unfortunately

throws away part of the available information and subjects the confidence

interval for P to additional fluctuation. This will be discussed further

in Section IV.

III. THE BINOMIAL AND POISSON APPROXIMATIONS. In this section

the distribution of X = ¿ X. is in specific cases compared to the distri

bution of X when referred to the Poisson or appropriate binomial distri

bution discussed in Section II. A comparison of the confidence coefficients

for С under these circumstances is also made.

For the following cases, the density of X has been computed to five

decimals:

(1) n = n = 15, n q + n q = 3 for q = 0, .01, .05, .1 and . 2 and
I ù i. x. ¿à ¿» X

the Poisson density with parameter 3.

(2) n=5, n =15, nq+nq =3, for q =0, .03, .15, .30, and . 60.

1 2 112 2 1
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TABLE 1

Density of X^^+Xg vhen X±: В(п±, ç^); n_ ■ i^ s 15,

nlql "+" "г^ = 3

X q1=0,.2 q1=.01, .19 q!=-05,.15 v1 Poisson density

0 .03518

.13194

.23О9О

.25014

. I876O

. IO318

.03646

. 13380

. 23046

.24741

.04047

.13908

.22868

.23952

.17949

. 10248

.04239

. 14130

. 22766

.23609

• 17707

.10230

. 04979

.14936

.22404

.22404

.I6803

.IOO82

1

2

3

4 . 18542

.102975

6 .04299

.01382

.00346

.00067

. 00010

.04389

.01468

.00390

.00083

. 00014

.04635

.01705

.00520

.04736

.01804

.00576

. 00156

. 00036

.05041

.02160

.00810

.00270

.00081

7

8

9

10

.00133

.00029

il . 00001 . 00002 .00005

. 00001

. 00007

.00001

.00022

.OOOO6

.00001

12

13

TABLE II

Density of X -1-Х vhen X : B(n , cl); ^ « 5, ng ■ 15*

Vi+Va*3

X q1=0, qgr.2 q^.03, qgs.19 q^q^-15 q^-3, q^-l q^-6, q^C

0 . 03518 . 03640 . 03876 .03460 .01024

1 .13194 .13371 .13680 .13183 .О768О

2 .23090 .23047 .22934 . 23200 .23040

3 .25014 .24753 .24283 .25089 .34560

4 .18760 .18554 .18212 . 18711 .25920

5 .10318 . 10300 .10285 . 10240 .О7776

6 .04299 .04386 •04537 . 04272

7 .01382 .01463 . 01601 .01394

8 .00346 .00388 .00459 . 00362

9 . 00067 .00083 .00108 .00075

10 . 00010 . 00014 . 00021 . 00013

11 . 00001 . 00002 . 00004 . 00002
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In the two tables, n q + n q is always three, and the frequency

functions may be compared directly with the approximating binomial and

Poisson frequency functions. In Table I, the maximal variance of X

occurs when q. = .1, and in Table II, when q = .15. It will be noted in

both tables that for the extreme tail values of X, the approximating

bionomial and Poisson probabilities are too large. It is also apparent that

since Prob (X=k) is a continuous function of q , that for all values of

q (and hence q ) in both tables, the binomial and Poisson probabilities

X £

will be too large in both tails, and for more values of X in the upper

than in the lower tail. Also, in the tables, the binomial and Poisson

tail probabilities are greater than the corresponding true probabilities for

nearly the same values of X (differing at most by one point), regardless

of the value of q . The actual probabilities in both tails increase as q

and q approach equality, although they are always less than the corres-

ponding Poisson probabilities, suggesting that for arbitrary k, the distri

bution of X when all the q 's are equal is "closer" to the corresponding

Poisson distribution than when two q^s differ. This is not surprising,

for in case the q.'s are all equal, X is binomially distributed with para

meters L,n., P/ Y. n/ and if с is small relative to ¿,n., the Poisson

approximation to the binomial is known to be very good.

In this optimum case, wherein X is binomially distributed, one may

easily compare the tabled binomial and Poisson densities. For a single

binomial variable X having parameters n, f= £/n, the tail probabil

ities have been compared with the corresponding tail probabilities of the

Poisson distribution (parameter n £ = £ ) in the following cases:

(1) n£=l; n=5, £= .2; n=10, £ = -1; n=100, £=.01

(2) n£=10; n=50, £=.2; n=100, £ =.1; n=1000, £=.01

(3) n£=50; n=100,£=.5; n=500, £=.1; n=1000, £ =. 05

In all cases, exactly the same remarks as made for the sum of two

binomial variables apply, with the obvious additional observation that

an n increases, the tail probabilities of the binomial distribution
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approach the corresponding Poisson probabilities • Both the binomial and

Poisson distributions are asymptotically normally distributed (i.e., as n

and f , respectively, increase) and hence if X is large, one may expect

the difference between the two sets of confidence limits to be relatively

small.

In any particular problem, the preceding indicates that one will achieve

narrower confidence bounds for £ and hence for P, by using the binomial

rather than Poisson limits. When С is small and ¿] n. is relatively

large, the difference between the two approximating distributions becomes

quite small. When ]T n. is large and X turns out to be small, the bi

nomial confidence limits are easily and quite accurately approximated by

the Poisson limits. In the following tables and remarks, comparisons are

made of the Poisson and binomial intervals for certain small values of

n = £n., CX , and X< 30. For large values of n, the Poisson limits

will be much closer to the binomial limits than for those values tabled.

These tables have been drawn from three widely available sources:

Tables III and VI are from the binomial graphs and Poisson confidence

limit tables in "Biometrika Tables for Statisticians", Volume I, edited by

E. S. Pearson and.H. O. Hartley. They are based on the equal-tails

approach, which chooses, for a given value of X (say c) the values of a

Poisson parameter A - such that, in the two-sided case,

i=c i=o

where ( A , Д ) is to be the (X-level confidence interval. The two-sided

intervals are tabled for Poisson X = 0 (1)30(5)50, ОС = -10, .05, .02,

.01, .002, and binomial X<n, for n<1000, ОС =.05, .01.

Tables IV and VII are based on tabled published by Crow and Gardner in

Biometrika , as follows:
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(1) Crow, E. L. "Confidence Intervals fora Proportion", Biometrika ,

Vol. 43 (1956), pp 423-435. (For binomial X< n, n=l (1) 30,

CX = .10, .05, .01)

(2) Crow, E. L. and Gardner, R. S. "Confidence Intervals for the

Expectation of a Poisson Variable", Biometrika , Vol. 46 (1959),

pp 441-453. (For X=0 (1) 300, (X=.20, .10, .05, .01, .001)

The system used, described in detail in (1), is optimum in a

geometrical sense and generally yields bounds of less width

than does the equal-tails method.

Tables V and VIII are based on tables published by Colin R. Blyth and

David W. Hutchinson in Biometrika, as follows :

(1) "Tables of Neyman- shortest Unbiased Confidence Intervals for

the Binomial Parameter", Biometrika, Vol 47 (1960), pp 381-391.

(For X-^ n, n=2 (1) 24 (2) 50, (X = .05, .01)

(2) "Tables of Neyman- shortest Unbiased Confidence Intervals for

the Poisson Parameter", Biometrika, Vol. 48 (1961), pp 191-194.

(For X=0 (1) 250, CX= .05, .01)

The optimum property of these intervals may be described as follows:

Among all unbiased CX-level confidence intervals, the tabled intervals

uniformly minimize the probability of covering false values. An unbiased

interval A is defined such that if P denotes probability when the

distribution parameter is Q , that

P C0 € A) >1 - (X for all 0 and P ( Q ' £ A) ^P (of A) for all &,Q*

и 9 0

In the binomial portions of each table, the entries are ne,, nc ,

where с,, с are the tabled (X -level, two-sided confidence limits for p.
1 2

When using the Neyman- shortest tables, it is necessary to choose a

random number between zero and one and add it to X and then read the

appropriate entry.
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TABLE III

Two-sided Poisson and Binomial Confidence Limits:

Equal Tails, a = .05

X n=l0 n=íЮ n=;JO PoisiЗОП

0 .00 3.1 .00 зл .00 3.5 .000 3.69

1 .02 ил .02 5.0 .06 5.2 .0253 5.57

2 .25 5.6 .25 6.3 .22 6.6 .242 7.22

3 .68 6.5 .65 7.5 .63 8.0 .619 8.77

4 1.2 7.4 1.2 8.7 1.1 9.3 I.09 10.2U

5 1.9 8.1 1.7 9.8 1.7 10Л I.62 II.67

6 2.6 8.8 2.4 10.8 2.3 LI. 6 2.20 I3.O6

7 3.5 9.3 3.0 11.8 3.0 12.7 2.81 14.42

8 4.4 9.8 3.8 12.8 3.6 1З.7 З.45 15.76

9 5.6 10.0 4.6 13.7 4.4 14.8 4.12 17.08

10 6.9 10.0 5.4 14.6 5.2 15.8 4.80 18.З9

И 6.3 15.4 5.9 16.8 5.49 19.68

12 7.2 16.2 6.8 17.8 6.20 20.96

13 8.2 17.0 7.6 18.8 6.92 22.23

1U 9.2 17.6 8.4 19.6 7.65 23.49

15 10.2 1Ô.3 9.4 20.6 8.40 24. 7^

16 И.З 18.8 10.4 21.6 9.15 25.98

17 12.5 19.4 11.2 22.4 9.90 27.22

18 13.7 19.8 12.2 23.2 IO.67 28.45

19 15.0 20.0 13.2 24.1 11.44 29.67

20 16.6 20.0 14.2 24.8 12.22 30.89

21 I5.2 25.6 13.00 32.10

22 I6.5 26.4 13.79 33.31

25 17.З 27.O 14.58 34.51

21* l8.4 27.7 15.38 З5.71

25 19.6 28.3 16.18 З6.90

26 20.7 28.9 I6.98 38.10

27 22.0 29.4 17.79 39.28

28 23.4 29.8 18.61 40.47

29 24.8 29.9 19.42 41.65

30 26.5 30.О 20.24 42.83
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TABLE IV

Two-sided Limits: Crow and Gardner, a = .05

X n= 5 n=10 n=£0 n==30 Poisson

0 .000 2.5 .000 2.67 .000 2.86 .000 3.00 .0 З.285

1 .050 3.28 .05 З.97 .06 4.44 .06 4.89 .051 5.З23

2 .380 4.06 .37 6.03 .36 5.86 .36 6.15 .355 6.686

3 .9^5 4.62 .87 6.19 .84 7.02 .84 7.З2 .818 8.102

4 1.72 4.95 1.50 7.33 1.42 8.22 1.41 8.76 I.366 9.598

5 2.50 5.00 2.22 7.78 2.08 9.З4 2.04 9Л2 I.97O 11.177

6 2.67 8.50 2.80 10.7 2.73 10.9 2.613 12.817

7 3.81 9.1З 2.86 11.8 5.00 12.1 З.285 1З.765

8 З.97 9.63 4.I8 13.0 3.93 13.2 З.285 14.921

9 6.03 9.95 4.44 14.1 4.89 14.3 4.46o 16.768

10 7.ЗЗ 10.0 5.86 14.1 5.25 15.7 5.З23 17.63З

11 5.86 15.6 6.15 16.8 5.323 19.050

12 7.О2 15.8 7.08 17.9 6.686 20.335

15 8.22 17.I 7.32 19.I 6.686 21.364

14 9.34 17.2 8.76 20.3 8.102 22.945

15 IO.7 17.9 9.72 20.3 8.102 23.762

16 11.8 18.6 9.72 21.2 9.598 25.400

17 13.О 19.2 10.9 22.7 9.598 26.306

18 14.1 19.6 12.1 22.9 11.177 27.735

19 15.6 19.9 13.2 23.8 11.177 28.966

20 17.I 20.0 14.3 24.8 12.817 30.017

21 15.7 25.I 12.817 З1.675

22 16.8 26.1 13.765 32.277

23 17.9 27.0 14.921 34.048

24 19.I 27.З 14.921 34.665

25 20.3 28.0 16.768 36.030

26 21.2 28.6 16.77 З7.67

27 22.7 29.2 17.63 38.16

28 23.8 29.6 19.05 З9.76

29 25.I 29.9 19.05 40.94

30 27.О 30.О 20.33 41.75
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TABLE V

Two-sided Neyman-shortest Limita: a ■ .05

X+Y n=5 n=10 n=20 n=30 Poisson

.0 .0 .0 .0 .0 .0 .0 .0 .0 .00 .00

.5 .0 2.2 .0 2.5 .0 2.6 .0 2.7 .0 2.8

1.0 .0 2.6 .0 3.0 .0 3.2 .0 3.3 .0 3.5

1.5 .0 3.4 .0 4.0 .0 4.3 .0 4.4 .0 4.7

2.0 .0 3.8 .1 4.4 .0 4.8 .0 5.1 .0
•5.4

2.5 .2 4.3 .1 5.2 .1 5-7 .0 5.8 .1 6.4

3.0 .5 4.5 .4 5.6 .4 6.2 .3 6.6 .4 7.1

5.5 .7 4.8 .6 6.3 .5 7.1 .6 7.4 .5 8.0

4.0 1.2 5.0 1.0 6.6 .8 7.6 .9 7.8 .8 8.6

4.5 1.6 5.0 1.2 7.2 l.l 8.3 1.0 8.6 1.0 9.5

5.0 2.4 5.0 1.7 7.5 1.6 8.8 1.5 9.3 1.4 10.1

5.5 2.0 8.0 1.7 9.3 1.6 9-9 1.6 10.9

6.0 2.5 8.3 2.2 9.8 2.1 10.5 2.0 11.5

6.5 2.8 8.8 2.4 10.4 2.4 11.1 2.2 12.3

7.0 3.4 9.0 3.0 10.8 2.7 11.4 2.6 12.9

7.5 3.7 9.4 3.2 11.4 3.0 12.3 2.9 13.7

8.0 4.4 9.6 3.6 11.8 3.6 12.6 3.3 14.3

8.5 4.8 9.9 4.0 12.4 3.9 13.2 3.6 15.0

9.0 5.6 9.9 4.6 12.8 4.2 13.8 3.9 15.6

9.5 6.0 10.0 4.8 13.4 4.5 14.4 4.2 16.3

.0.0 7.0 10.0 5.4 13.8 5.1 14.7 4.6 16.9
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TABLE V

Two-sided Neyman-shortest Limits: a = .05

(Continued)

X+Y n=5 n=10 n=20 n=50 Poisson

11

12

13

11*

x5

16

17

18

19

20

21

22

25

21*-

25

26

27

28

29

30

6.2 14.6 6.0 15.9 5.3 18.2

7.2 15.4 6.6 16.8 6.0 I9.5

8.2 16.1+
7.5 i8.o 6.8 20.8

9.2 17.0 8.4 18.9 7-5 22.1

10.2 17.8 9.3 19.8 8.2 23.З

11.2 l8.4 10.2 20.7 9.0 24.6

12.4 19.2 11.1 21.6 9.7 25.8

13.8 19.6 12.0 22.5 10.5 27.I

15.2 20.0 1З.2 23Л 11.3 28.3

16.8 20.0 14.1 24.0 12.0 29.5

15.З 24.9 12.8 ЗО.7

16.2 25.8 13.6 З1.9

17л 26.4 14.4 33.1

18.6 27.З 15.2 34.3

19.5 27.9 16.O 35.5

20.7 28.5 16.8 36.7

22.2 29.I 17.6 37.9

23Л 29.7 18.4 39.1

24.9 30.0 19.З 40.3

26.7 ЗО.О 20.1 41.5
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TABLE VI

Two-sided Equal-tails Limits: a - .01

X n==10 IX=20 n-3Ю Poisson

0 .00 4.1 .00 4.7 .00 ^.9 .000 5.30

1 .00 5.4 .00 6.2 .00 6.6 .OO5OI 7.43

2 .12 6.5 .12 7.8 .08 8.2 .103 9.27

3 .37 7.4 .1*0 8.9 .38 9.6 .338 10.98

4 .77 8.1 .74 10.1 .75 10.9 .672 12.59

5 1.3 8.7 1.1 11.2 1.1 12.2 I.08 14.15

6 1.9 9.2 1.7 12.2 1.6 13.3 1.5* 15.66

I
2.6 9.6 2.3 13.1 2.6 Ik.k 2.04 17.13

3.5 9.9 2.9 14.0 2.8 15Л 2.57 18.58

9 4.6 10.0 3.6 14.8 3-4 16.5 3.13 20.00

10 5.9 10.0 4.4 15.7 4.1 17.5 З.72 21.40

11 5.2 16Л 4.7 18Л 4.32 22.78

12 6.0 17.1 5.6 19Л k.9k 24. 1k

13 6.9 17.7 6.3 20.2 5.58 25.5О

14

8Í8

18.5 7.1 21.2 6.25 26.84

15 18.9 8.0 22.1 6.89 28.16

16 9.9 19.3 8.8 22.9 7.57 29.48

17 ll.l 19.6 9.8 23.7 8.25 30.79

18 12.2 19.9 10.6 2k.k 8.94 З2.09

19 13.8 20.0 11.6 25.3 9.6k ЗЗ.38

20 15.3 20.0 12.5 25.9 10.35 34.67

21 13.5 26.6 11.07 35.95

22 lk.6 27.2 11.79 37.22

23 15.6 27. k 12.52 38.48

24 16.7 2&.k 1З.25 З9.74

25 17.8 28.9 14.00 U.oo

26 19.1 29.2 Ik.lk 42.25

27 20Л 29.6 15.49 43.50

28 21.8 29.9 16.24 44.74

29 23Л ЗО.О 17.00 45.98

30 25.1 ЗО.О 17.77 47.21
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Two-sided Limits: Crow and Gerdner, a = .01
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X

0

1

2

3

4

5

6

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

n=5 n=10 n=20 n=30 Poisson

.000

.010

.165

.530

1.11

1.99

3.OI

З.89

4.47

4.84

4.99

5.00

.00

.01

.16

.48

.93

1.50

2.18

2.97

3.76

4.88

6.21+

3.12

5.12

6.24

7.03

7.82

8.5О

9.О7

9.52

9.84

9.99

10.0

.00

.02

.16

.46

.88

1.38

I.96

2.58

3.26

4.00

4.18

5.48

5.86

7.26

7.98

8.48

10.0

11.5+

12.5

14.1

15.8

4.18

5.86

7.50

8.48

10.0

11.5

12.0

12.7

14.1

14.5

15.8

16.0

16.7

17.4

18.0

18.6

19.I

19.5

19.8

20.0

20.0

.00

.00

• 15

.45"

.84

1.35"

1.89

2.49

3.12

З.81

4.53

4.53

5.9^

6.18

7.47

7.68

9.24

9.87

10.4

11.6

12.9

1З.9

14.8

15.9

17.I

18.4

19.6

20.7

22.3

23.8

25.5

4.53

6.18

7.68

9.ЗО

10.4

11.6

12.9

14.1

15.2

16.I

17.I

18.4

19.6

20.1

20.8

22.3

22.5

23.8

24.1

25.5

25.5

26.2

26.9

27.5

28.I

28.6

29.2

29.6

29.8

ЗО.О

ЗО.О

.000

.010

.149

.436

.823

1.279

1.785

2.330

2.906

3.507

4.130

4.771

4.771

5.829

6.668

6.914

7.756

8.727

8.727

10.009

10.473

11.242

12.347

12.347

13.793

13.793

I5.28

15.28

I6.80

I6.80

I8.36

4.77I

6.914

8.727

10.473

12.347

13.793

I5.277

I6.80I

I8.362

19.462

20.676

22.042

23.765

24.925

25.992

27.718

28.852

29.9OO

З1.839

З2.547

34.I83

35.204

36.544

З7.819

38.939

40.373

41.39

42.85

43.91

45.26

46.50
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TABLE VIII

Two-sided Neyman-shortest Limits: a = .01

X+Y n=5 n=10 n=20 n=30 Poisson

.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

.5 .0 3.1 .0 3.6 .0 4.0 .0 4.2 .0 4.4

1.0 .0 3.4 .0 4.1 .0 4.6 .0 4.8 .о 5.1

1.5 .0 4.1 .0 5.1 .0 5.7 .0 6.2 .0 6.6

2.0 .0 4.3 .0 5.5 .0 6.2 .0 6.6 .0 1.2

2.5 .0 4.'7 .0 6.2 .0 7.3 .0 7.6 .0 8.4

3.0 .2 4.8 .2 6.6 .2 7.8 .3 8.1 .1 9.1

3.5 .5 5.0 .2 7.2 .2 8.5 .3 9.2 .2 10.2

4.0 .7 5.0 .5 7.5 .4 9.0 .6 9.6 .4 10.8

4.5 .9 5.0 .7 8.1 .6 9.7 .6 10.4 .5 11.8

5.0 1.6 5.0 1.1 8.3 1.0 10.2 .9 10.8 .8 12Л

5.5 1.2 8.8 1.1 10.9 1.0 11.6 1.0 13.4

6.0 1.7 8.9 1.4 11.2 1.5 12.0 1.3 14.0

6.5 1.9 9.3 1.6 11.8 1.5 12.9 1.4 14. 9

7.0 2.5 9.5 2.0 12.2 2.1 13.2 1.8 15.5

7.5 2.8 9.8 2.2 12.8 2.1 14.1 2.0 16.4

8.0 3.4 9.8 2.8 13.2 2.7 14.4 2.3 17.О

8.5 3.8 10.0 3.0 13.8 2.7 15.0 2.5 17.8

9.0 4.5 10.0 3.4 14.0 3.3 15.6 2.9 18.4

9.5 4.9 10.0 3.8 14.6 3.6 16.2 3.1 19.2

10.0 5.9 10.0 4.2 15.О 3.9 I6.5 З.5 I9.8
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TABLE VIII

Two-sided Neyman-shortest Limits: a ■ .01

X+Y n=5 n-10 n=20 n=J0 Poisson

11 5.0 15.8 4.8 17.4 4.1 21.2

12 6.0 16.6 5.4 18.6 4.8 22.6

1? 6.8 17.2 6.3 19.5 5Л 24.0

lk 7.8 l8.o 6.9 20.4 6.0 25.3

15 8.8 18.6 7.8 21.3 6.7 26.7

16 9.8 19.O 8.7 22.2 7.4 28.0

17 11.0 19.6 9.6 23.1 8.1 29.3

18 12.2 19.8 10.5 23.7 8.8 30.6

19 13.8 20.0 11.4 24.6 9.5 31.9

20 15. ^ 20.0 12.6 25.2 10.2 33.2

21 13.5 26.1 10.9 3^.5

22 14.4 26.7 11.6 35.8

2? 15.6 27.3 12.4 37.0

2* 16.8- 27.9 13.1 38.З
25 18.0 28.5 13.8 39.6

26 19.2 29.1 14.6 40.8

27 20.4 29.4 15.З 42.1

28 21.9 29.7 16.I 43.З

29 23.4 30.0 16.8 44.6

50 25.2 30.O 17.6 45.8
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It is apparent from visually comparing the Poisson limits with the

corresponding binomial limits, that except for a few cases (a total of 16),

when ОС = .05 or .01, the former completely cover the binomial limits for

n = 10, 20, 30 and in four of the tables, for n =5. In Tables III and VI

the only discrepancies occur for X < 2, where the graphed values, multi

plied by n, may be necessarily too imprecise to compare meaningfully

with the Poisson readings. In Tables IV and VII, for the discrepancies

occuring when X < 2, again impreciseness of the binomial tables may be

reponsible. For the larger values of X the behavior of both intervals is

somewhat erratic, and this plus the fact that both the tabled Poisson and

binomial intervals generally cover the unknown parameters with probability

greater than .95 or .99, indicates that an occasional slight non-inclusion

for a particular value of X is not serious. The procedure of referring to

the binomial or Poisson limits will still be expected to yeild confidence

coefficient very near to, if not greater than 1 - CX .

In all the tables, as n increases, the end-points uniformly expand

towards the corresponding values in the Poisson case. For (X = .05 or .01,

the fit generally seems to be closer for the Neyman-shortest intervals,

which is not surprising since it is the only one of the three methods that

exactly attains its confidence coefficient for all parameter values.

For values of X and n other than those tabled, several approximations

to the binomial and Poisson distributions exist, a few of which appear in

"Biometrika Tables for Statisticians".

As a check on the inclusion properties of the binomial and Poisson

approximations one may for specific examples, involving known parameters,

compute the true probabilities of covering P using the appropriate binomial

or Poisson confidence limits ((X-level). If the Poisson limits include the

binomial limits, which in turn are "too wide" for P, then one would expect

in most cases that the Poisson intervals would have the highest confidence

coefficient, followed by the "binomial" confidence coefficient, both of

which would be expected to be greater than 1 - (X • Calculations, based

on the distribution of X under the various values of q. appearing in Tables

I and II, were made to obtain the probabilities that the Poisson limits and

the appropriate binomial limits (C(-level) cover n q +n q . These proba-

bilities are given in Tables IX and X.
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TABLE IX

ProbaMlity of the Poisson Limits Covering n^ + n^ ■ 3

Interval

Equal-tails

Crow and Gardner

Neyman-shortest

nx - n2 - 15 a - .05

ql = ° ql = ,01 ql = *°5

.99575 .99509 .99312

.98195 .9801+1 .97607

.970 .969 .96U

q-L - .10 Poisson

.99221 .98809

.97^17 .966U9

.961 .952 (.95)

Interval

Equal-tails

Crow and Gardner

Neyman-shortest

ni = n2

qx=0

.99921

.99921

• 99^

15 a - .01

qi = *01 ql = ,05

.99899

.99899

.99^

.99852

.99852

.995

qx - .10

.99797

.99797

.992

Poisson

.99619

.99619

.990 (.99)

5, n0 - 15 a .05

Interval qL-0 qx - .03 qx » .15 qx - .50 qi - .60

Equal-tails

Crow and Gardner

Neyman-shortest

.99575

.98195

.970

.9951^

! 969

.99^08

.97807

.966

.995^9

.98155

.971

1.00000

1.00000

ax e 5, n2 = 15 a - .01

.99*+

Interval qx=0 qx - .05 qx - .15 qx= .30 q « .60

Equal-tails

Crow and Gardner

Neyman-shortest

.99921

.99921

•99^

.99902

.99902

.99^

.99867

.99867

.99^

.99911

.99911

1.00000

1.00000

.99** .999
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TABLE X

Probability of the Binomial Limits Covering n^ + n^ = 5

ni = n2 = 15 a - .05

Interval 4-o qx = .01 qx = .05 4-.l

Equal-tails

Crow and Gardner

Neyman-shortest

.99575

.99575

.962

.99509

.99509

.960

.99512

.99512

.95^

.99221

.99221

.951 (.95)

n. 15 a - .01

Interval q-L - 0 qx = .01 q-L = .05 qx=.l

Equal-tails

Crow and Gardner

Neyman-shortest

.99921

.99575

.995

.99899

.99509

.995

.99852

.99512

.991

.99797

.99221

nx - 5, n2 - 15 a - .05

.990 (.99)

Interval ^-o qx = .05 q-L = .15 iftx ■ .50 qx = .60

Equal-tails

Crow and Gardner

Neyman-shortest

.99575

.96057

.956

.9951^

.95871*

.955

.99U08

.95552

.9^9(.95)

.995J+9

.96089

1.00000

.98976

.992

\ B 5, n2 - 15 a - .01

.956

Interval qi = 0 qx = .05 qx - .15 ■qx - .50 qx = .60

Equal-tails

Crow and Gardner

Neyman-shortest

.9992I

•99575

• 991

.99902

.9951^

.991

.99867

.99^08

.99911

•995^9

.991

1.00000

1.00000

•990(.99) .998
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Again, one may notice that the smallest probabilities occur when

q = q = .1 and q = q = .15, where the variance of X is largest.

1 2 1 2

Also, the Neyman- shortest intervals have the smallest probabilities of

all three systems, in most cases, which is due mainly to the exactness of

these intervals. Owing to the number of significant decimals published

in tables of the latter intervals, the probabilities of coverage may be in

error by a few places in the last decimal. For example, in the Poisson

case for CX = .05, n = n = 15, the computed probability using linear

interpolation turns out to be .952 whereas the true probability is exactly

.95. The corresponding probability when CX = .01 is correst to three

decimals.

When confronted with a value of X resulting from lengthy experimental

testing, the procedure adopted might be to select from the available tables

the limits which are narrowest for the particular value of X observed, and

not to choose the bounds with respect to any optimal mathematical property.

Such a procedure defines a kind of composite interval about which little

may confidently be said concerning the probability of coverage. Preferably,

a single type of interval will be decided upon in advance of the experiment,

or else the results using different limits will be presented.

IV EXTENSION TO COMPLEX SYSTEMS. Unfortunately, the case of a

system consisting solely of non-identical parts in series is relatively rare.

More often one is interested in systems having a mixture of series and

parallel-connected parts. The following diagrams illustrate some of the

possibilities:
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CDчмш-

C2)

C4)

-и-

The squares containing numbers denote parts of the i type, and natural

subdivisions within systems may be called components. For example, the

first figure represents a system of three parts in series and one component of

two identical parts connected in parallel.

In the following examples the methods used are those suggested for use in

more general models.

In the first illustration, suppose that for the i part, n trials have

been conducted. Then from Section I,
P = 4 U-

1=1

<L) (1-q. ).
i 4
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3

£ = E niqi' and a"q42) ib£/n) ^ P^ (l-£/3n)3a-q42).

i=l

Assuming that the numbers X. are available, it is easy to find two-

sided ОС-level bounds for £ , and JJ-level bounds for q^ based on

X, + X„ + X and X. respectively. These bounds are such that the events,

say c<£<c,d<q<d independently occur with probabilities

1- (X , 1- Û respectively. But if both occur at the same time, then

l-c2/n < TT (1-q.) < (l-Cj/Зп)3, and l-d2 < l-q4 < 1-d^

and hence

0-d 2) (1-е /n) < P < (l-c/3n)3(l-d 2)

2 2 1 1

with probability (1- ÇX) x (!-/})• If Zj is chosen small enough then

(l-do2) (1-е /n), (1-е /3n)3(l-d 2)

2 2 11

will form a confidence interval for P with coefficient very nearly 1- CC •

As П approaches zero, the interval d , d will, of course, widen. But

2 2
1-d , 1-d will change by a relatively small amount. Hence one may

choose JJ very near to zero, and the resulting confidence interval for P

will not be appreciably widened.
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It may be noted that one may also lower (X a bit in order not to make the

bounds so wide, at the expense of a slight widening of the entire interval,

to ensure the desired confidence coefficient. One is really free to choose

(X and П just so long as (1- (X ) x (1- ¡J ) attains the desired number.

In this example, the width will be found to suffer least if (X is lowered as

little as possible, and JJ is made nearly zero. If (1- (X ) x (1- Jj ) is

slightly below the desired coefficient, the probability of coverage will quite

likely be higher, due to the raising of the actual confidence coefficient

noted previously.

Д 4 2 2 4
For the second illustration, P = | | (1-q.) (l-q, ) (1-q, ) . Since q9

1=3

will generally be very small, one may be willing to ignore it altogether and

A 2 2
consider P = (I (1-q.) (1-q ) , in which case the parametric bounds are

i=3 * th

(assuming n, observations for the i part have been taken, and say

£ < ) n. - 2min n. and min n^,
1=3 X i=3,4 i=3,4

where

t - n„q + n q J
3"3 4^4'

(1-q, ) (1- f/min n.) < P < (1- £/max n ) (1-q, ) ,

1=3,4 ^ i=3,4

If с , с

1 2

and d , d are CX and м -level two-sided confidence limits

1 2 r

for л" and q respectively, then

(1-d 2)2(l-c /min n ), (1-е /max n ) (1-d 2)2

2 2 i 1 i 1



Design of Experiments 507

are two-sided confidence limits for P with coefficient greater than or

equal to (1- CX ) x (1- П ) . If one wishes to take account of q , then

* ù

I -level limits b. , b for q lead to

G-b 4) D-d V (1-е /min n ), (1-е /min n ) (1-d V(l-b 4)

2 2 2 i i il i

as the limits for P, with confidence coefficient at least (1- 00 x i\-ß )

x O- "Y) i where T is chosen to be very nearly zero.

In the third illustration, P = (1-q )2(l-q ) (1- il- (1-q ) (1-q ) 1 2).
1 4L 2 3 J

In this case there are several directions in which one can proceed, some

of which are listed below:

A. One can use the rather primitive inequality

(l-q)Vq 2) d-q ) (1-q )<P < (1-q )Vq *) (1-q 2) (1-q )

12 3 4 12 3 4

and find four independent confidence limits at low enough levels so that

the product of the four confidence coefficients equals 1- (X • The limits

will vary considerably in width according to the size of the X, , n , and

i i

the levels selected. If the q happen to be very close to zero, this may

i

provide narrow limits .

B. If for example 1- f/min n. < (l-q0) (1-q.,) < 1- £/max п.,
Ъ 1-2,3 2 ^ 1-2,3 l

that is 0 < F < min (min п., Y, ni ~ 2min n ), where
t 1=2,3 L i=2,3 1=2,3

5 = n q + n q , then it follows that
¿à ¿л О ó

о о 9 9

(1-q) (1-q ) (1- Г f/min n 1 ) < P < (1- Г F /max n ] ) (1-q ) (1-q )
1 4 Li> i-2,3 lJ Lb 1=2,3 iJ 1 4
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Using three independent confidence limits, one will in general be able to

arrive at narrower confidence bounds for P than by using procedure A.

C. If one is willing to ignore terms in the expansion of P which

involve products of three or more q , then one may write

i

P = l-(2q+q)+q2 + 2qq -q2-2qq -q2

1 4 1 14 2 2 3 3

and hence

2 2
1- (2q + q ) - (q + q ) < P < 1- (2q + q ) + q + 2q q .

1 4 2 3 ~ 14 1 14

With arbitrary n one will have difficulty finding confidence limits for

i

(2q + q ) and (q + q ). However in the special case that n, = 2n.
14 2 3 14

and n = n , the problem can be given a simple solution. For in this

2 3

case one may refer X + X and X„ + X to the binomial or Poisson

14 2 3

confidence intervals, using the following argument: X is distributed

2
binomially with parameters n and q and variance n q - n q . If

11 11 11

one refers X, to the binomial distribution with parameters n,/2 and
1 2 2 1

2q , which has variance nq-2nq <nq-nq , one will be

1 1111-1111

making a conservative approximation in the sense that (as in the case of

the Poisson and binomial approximations to X) the tail probabilities will

really be smaller than under the approximation. Thus a confidence

interval for 2q based on the approximation, will be expected to be too

wide. X + X may be referred to as binomial (parameters n /2 + n ,

g/ In, /2 + n I) or Poisson (parameter g = (n /2) (2q ) + n q ) fora

confidence interval for Ç . But n, = 2n means that from any confidence
о 14
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interval for £ one also derives one for 2q, + q, since л = n. (2q_ + q J
Ь 1 4 о 4 1 4

and one may divide the end points through by п.. Similarly for q + q ,

one may derive any level confidence interval desired. If с , с are two-

sided (X -level bounds for 2qf + q and d , d are two-sided P-level

bounds for q + q , then the event с < 2q + q < с and d < q +q <d

1 4 1-2 "3

2 2 2 2 2

implies -(q + q ) >-d and q +2qq <(2qq)/2<c /2

2 3 2 1 14 - 14 - 2

2 2

and 1-е < 1 - (2q + q ) < 1-е and thus 1-е -d < P < 1-е +c /2

occurs with probability greater than or equal to (1- Oí ) x (1- Q ). This

procedure also will generally yield shorter intervals than procedure A.

As an illustration of how B(n , q) compares with B(n/2, 2q ) the

following frequencies have been tabled:

X B(100, .02) b(50, .ok

0 .I3262 .12989

1 .27065 .27059

2 .273^2 . 27623

3 . I8227 .181*16

k .O902I .09016

5 •03535 .03456

6 .011U2 .01080

7 .OO313 .00283

8 .OOO74 .00063

9 .00016 .00013

10 .00002 .00002

11 .00001 .00000

D. Using the condition ¿] n.q = £ , one can find the minimum and

i=l x 1 Ь

maximum values of P. These will be functions of £ , and using X one

can find confidence limits for these functions, and hence for P.
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Unfortunately, there are several reasons why this procedure is unsatis

factory: First, the bounds are not simple to derive in many cases; and

second, their form depends upon the particular range of values within which

£ happens to lie and in instances this may be quite uncertain; and third,

the resultant parametric interval is wider than under alternative procedures.

In general, one can often find bounds for P which are almost as

narrow, and in many cases narrower, by considering groups of functions of

the q. such as illustrated in procedure В above, which are easier to

derive. Terms of the form | | (1-q ) are often the main contributors to the

value of P, while the remaining terms may be roughly bounded with little

cost in terms of width of the confidence interval. As to which of two or

more groups of parameters deserve the smallest confidence level, trial and

error calculations may best provide the answer.

One can see that with computation, values of n may be chosen to

i

minimize the length of the interval. If one also knows the approximate

size of the q , a better choice of testing procedure may be made,

i

In the fourth illustration, P= | | (1-q.) (1-q q ) (1-q ). Usually

i=l,4 * 2 3 5

q will be so small as to be entirely negligible, and P may be taken to
Э

be 7Г (1-q.) (1-q.q,).
i=l,4 * 2 á

If one tries to minimize and maximize the entire expression, subject to

the restraint, the result, even when all the n. are equal to ñ, is in many

situations unsatisfactory. The bounds for one range of values of

f = n q + n q are f/ñ, 1, which, if ñ is large relative to f , is
■b 1 1 4 4 о -Ь

much too wide to be of any practical value. In the general case, however,

one can often use the bounds for (1-q.) (1-q .) and q9q~ to provide bounds

for P. For example, if ^ = n^ + n^, ¿2 = n q2 + ngq ,

(1- £ /min п.) (1- g /4n n ) < P < (1- ( /max п.) is valid when

-r 1=1,4 1=1,4

£ < min ( Y, ni ~ 2min ni' min n<)' and Co < min (n9' no)-

1=1,4 1=1,4 1=1,4
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X + X gives bounds for F and X + X gives bounds for F , where

14 *i 2 ' 3 ^2

the product of the two confidence coefficients is 1- (X . In this case a

narrower interval will result if the confidence coefficient for F is taken

much closer to 1- (X than the coefficient for £ .

Ù

In summary, to find a confidence interval for the reliability of a given

system, the following approaches are suggested. Some numerical trial and

error may be necessary to select the most promising parametric interval.

¿1) The upper and lower bounds for P are found under the restriction

n q = £ . The upper bound for one range of values of F will be the

solutions of the equations bP/bq, = An, (i=l,.,.k), A/ 0, and

t, = Ln.q,. The bounds for other ranges of £ may be found from trial

and error of various numerical quantities in P. The lower and upper bounds

will both be functions of ¿Land the known constants. A confidence

interval for С based on ¿X can be appropriate algebraic manipulation

determine the confidence interval for P.

(2) Alternatively, P is separated into products of simpler functions,

■J*. n r_d_

such as d-q.)

Li=a ' .

TT a-v and the parametric bounds for each
j

Ll=C

product found, as in illustrations 3 and 4. Then by trial and error the

confidence coefficients of limits for the bounds of each product are deter

mined so that the probability of covering P will be at least 1- ОС , and

the interval will have small, if not minimum width. If there exists prior

information that certain q 's are small then one may be willing to neglect

i

powers of q greater than two, simplifying the computations. With a

i

small amount of trial and error and even a vague idea about the size of the

q., one may determine the various confidence coefficients in the product.

(3) If both (1) and (2) are unsatisfactory approaches, one may expand

P in terms of the q, , which may then be divided into homogeneous poly

nomials of ascending dimension . The first group will be a linear combina

tion of the q_, the second will be a quadratic form, etc. Often the q



с, 2 Design of Experiments

may be felt to be so small that forms of higher order can safely be neglected.

At any rate, the linear group will contribute most to the value of P, and by

the device illustrated in method С of the third illustration, one may obtain

bounds for this group, and rougher bounds for the other groups, and hence

for P. In this case one must have at least some of the n in certain known

i

ratios to each other. If the experiment has already been conducted and this

is not the case, one may pick a new set of n". such that the n1, are pro-

l i

perly related to each other and n'. <¡ n for all i. Then if one randomly

i i

selects n'. observations from the n. Bernoulli observations previously

obtained using a table of random numbers, the new total number of failures

in n' , say X' , will be distributed binomially with parameters n' and

i i i

q. . One may then proceed as before, using the approach of method C,

illustration 3, having thrown away some of the available information .

However, this method is a variation of an approach to the confidence

interval problem, due to Dr. D. H. Evans of Bell Telephone Laboratories,

appearing in Reference 2.

(4) If none of the previous attempts succeeds, one may search for

weaker bounds for P and use independent confidence intervals, such as

described in method A of the third illustration.

Prior investigation into the desirable sizes of the n in general will

often simplify computations, in addition to giving a narrower confidence

interval. All the remarks and examples given above also apply to the case

in which one-sided intervals are desired. The lower parametric bound of

P is usually easy to determine from a small amount of numerical trial and

error.

V. NUMERICAL EXAMPLES. In the following computations the Poisson

confidence limits were used in preference to the narrower binomial

intervals for the following reasons: (1) For sample sizes as large as in

the examples, there is little difference between the two; (2) The binomial

limits are not easy to compute, it being necessary to use approximating

formulas for the incomplete beta function in some cases; and (3) The

Poisson limits are immediately available.
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In problems where the sample size is, say less than 50, it is advisable

to use binomial limits.

Consider the first illustration in the preceding section, and suppose that

1 =n2=n3=n4n, = n „ = nn = пл = 500, and the numbers of failures observed are X = 3,

X =1, X =10, and X = 2 and hence i. X =16. If one fixes

2 3 4 £ i

i=l

4

£= £ n q. for various values and investigates the behavior of P, it may

1

be seen that for £<500, 1 - £/500 < P < 1 - (#500) , where

3 2

P = |T(l_qJ (l-q, )• In this case, the .05 level two-sided Poisson
. , i 4

1=1 С
confidence bounds for 500^ are 9.598, 25.400 (Crow and Gardner).

Accordingly, the confidence bounds for P are .9492, .9996.

Alternatively, one may make use of the inequality

(l-q42) U-f/500) < P < (l-£/1500)3(l-q42)

where E = £ n.q.. The .05 level two-sided confidence bounds for £ are

i=1 4

8.102, 22.945 (Crow and Gardner) and the .0 1 level two-sided interval

2
for q (equal-tails Poisson using the X distribution as tabled in "Bio-

4 5

metrika Tables for Statisticians") is (.0 6, .0345). The resulting .05

level interval for P is (.9530, .9839), appreciably narrower than before.

A third procedure in this illustration involves expanding P in terms of

the q. and ignoring the non-quadratic and linear parts . The result is that

P = 1- £ + Z.4.qi-q4# and maximizing £ 4.q. subject to

i<j i<j 1 J

3

500 Yj 4- = r • one an"ives at the inequality

i=l
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о 2 2

l-£/500-q < P < 1- £/500 + £ /3(500) .

In this procedure the one-sided .01 level upper bound for q may be

used with the two-sided .05 level bounds for f . The bounds for f are

again 8.102, 22.945 and the upper bound for q. is .0335 (using the

2
X tables in Biometrika "Tables"). Performing the calculations, the

,05-level bounds for P under the above assumptions are .9529, .9845.

From this example, it is again shown that the method of minimizing the

entire expression P(q, , . . . q, ) subject to ¿n q ~C does not necessarily

1 к i i Ъ

result in the shortest confidence intervals. For a particular set of n values

i

it will be advantageous to gain an idea of how wide the resulting parametric

interval will be under more than one of the approaches suggested. There is

nothing "illegal" about picking the method which yields the narrowest

parametric interval for a particular problem.

There have been various procedures suggested for finding confidence

intervals for P, two of which have appeared in Reference 2. The first

method described in the report depends on the Tchebycheff Inequality, and

for the previous values of X , n , yields two-sided .05 level bounds of

i i

.9393, 1.0000. Assuming that the mode equals the mean, the interval

becomes .9503, .9940. The second method, due to D. H. Evans, depends

on a randomization procedure and in the above illustration necessitates

using only 250 observations for each of the first three components. The

number of failures Y out of 250 complete systems constructed ranges

between 0 and 16. For a few of the values of Y (the expected value of

Y is approximately 7 ) the intervals are as follows:

Interval Bounds

Y (Poisson, Grow and Gardner)

CX= .05 3

7

10

15

968 .997

945 .987

930 .979

905 .968
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In comparing these results with the previous Poisson limits, it is to be

noted that the randomization approach suffers from the disadvantage of

being unable to utilize all the information available in the samples. On

the other hand, if n = n = n = 500 and n = 1000 one may obtain a

12 3 4

more meaningful comparison of the results of the two procedures. In this

case, Y may vary from 10 to 15, and gives the following table of

intervals:

TABLE XI

Confidence Interval

P(Y) (Poisson, Crow and Gardner) Length

a= .os

15 .0009 .9525 .9838 ,03 13

14 .9158 .9541 .9838 .0297

13 .0808 .9573 .9866 .0293

12 .0024 .9593 .9866 .0273

11 .0000

1 .0000 Expected Length

.0297

The previous Poisson limits, using the bounds

(1-q.2) (l-f/500) < P< (l-£/1500)3(l-q42)

give the .05-level interval (.9538, .9839), with length .0301. While the

randomization procedure almost always yields a slightly shorter interval

(with probability .9991), the Poisson interval is for any given data a fixed

interval. Only the interval corresponding to the most probable value of Y is

completely included in the Poisson interval in this example.

For more complicated models it becomes difficult to calculate the

probability density of Y even when the most favorable sample size relations

are attained, and hence to compare the resultant limits with the Poisson

limits. However the mean and variance of Y may be computed and confidence

intervals for values of Y reasonably near EY may be compared to the

Poisson limits with respect to width and centering. It appears that when



516 Design of Experiments

information must be thrown away to use the randomization approach, the

Poisson interval based on parametric bounds may be appreciably shorter.

In the optimum case for the randomization method, the interval seems to

be slightly shorter on the average than the corresponding Poisson inter

val, at the price, however, of an increased variability.

If in the same illustration, n = 500, n = 250, n = 300, n ■ 500

T 3 2 4 с
and X=X =X =X =0, then for ¿¡o<\r n - 3min n, , that is, tn< 300,

1 2 3 4 ¿.L^ i i=1/2/3 1 2

one can use 1- £,/250 < P < 1 - (£/500)2 or

(1- £ /250) U-q. ) < P < (1- £,/500) (1-q )
°2 4 d2 4

F 4 ? 3
where С, = У n q , с = Í nq . If a .025-level lower bound for P is

1 *-" 11 °? i ,1 i=l ! » ¿ i=l X 1

desired, one can use the upper bound in the Poisson equal-tails .05

confidence limits for f , y . For all X =0, the lower bounds for P

¿>1 >2 i

turn out to be (using the .01 upper Poisson bound for q ) .9852 and

4

.9847 respectively. In this system, the first inequality will provide

lower limits when X =0 and the second, when X is positive. As

4 4

remarked before, it is undesirable to select the confidence bounds on

the basis of the particular sample point observed, and hence the greater

lower parametric bound attained by the second interval (for q < . 7)

seems to make it preferable.
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ABSTRACT

This report describes the theory and application of demonstrating reli

ability of compliance with single specification limits. Two statistical

methods are used: the variables sampling plan method and the tolerance

limit method. These methods, respectively, determine sample size and

demonstrate reliability of compliance with specification limits at a pre

scribed confidence level. They may be applied to internal and external

ballistics data of weapons systems.

INTRODUCTION

This reliability report explains the use of two sets of tables for the pur

pose of demonstrating reliability of compliance with one-sided specification

limits when data is normally distributed. The variables sampling plan factors

presented in table I may be used when sample sizes are to be selected to

demonstrate such reliability. Factors for one-sided tolerance limits in

table II may be used when the purpose is not to select sample size, but

only to demonstrate reliability at a fixed confidence level. Both tables I

and II are prepared using two different methods:

1. The approximate method of one-sided tolerance limits (modern-type

values), and

2. The exact method using the noncentral t-statistic (bold -face -type

values).

Comparison of these data gives an indication of accuracy of the much-used

one-sided tolerance factors.



520 Design of Experiments

The best demonstration of reliability of a complete missile system is based

on the number of successes and failures of the system to accomplish its in

tended mission. The same also applies to component reliabilities; however,

in many instances it is economically impossible to obtain a sufficient sample

size for realistic demonstration. The problem does not appear to be resolv

able for a complete system,* but practical methods are available for partial

reliability demonstration; for example, demonstration of compliance with

specification limits. Such demonstration is based on a measurement that

characterizes each sample unit with respect to a numerical scale. Points on

the scale on one side of the specification limit should describe success, and

the other points should describe failure of the component characterized.

Sometimes extreme values (high and low) of a variable describe failure and

intermediate values describe success. At other times, failure is described by

just one extreme. This report is concerned only with the latter category.

The primary assumption for the variable measured is that it be normally

distributed. (Methods outlined herein give invalid conclusions if the dis

tribution is other than normal. )^ A specification limit should be set so that

values below the limit describe success and values above the limit describe

failure or vice -versa. The procedure, then, is to test the component to

determine whether its performance is or is not on the successful side of the

specification limit. Suppose that in hydrostatic testing 12 pressure vessels to

failure, all fail above the minimum stress level (2200 psi) specified in accord

ance with its expected environment. The success-to-trials ratio of 12/12 dem

onstrates a reliability of .825 at the 90% confidence level, but we have not

considered the distribution of the observed burst pressures as compared to the

specification limit. The reliabilities demonstrated in figures 1 and 2 are

both .825 at 90% confidence on the basis of success-to-trials, but is this a

fair or complete evaluation? Obviously, the probability that a burst will

occur below 2200 psi is much greater for the results shown in figure 1 than

for the results shown in figure 2. Thus, the reliability of motor cases des

cribed by figure 2 is superior to those described by figure 1.

^Where large sample sizes are available, system reliability is best demon

strated using attributes, the ratio of success to total trials. Small -sample

methods outlined in this paper cannot substitute for this method

Investigation of distribution should precede the use of methods outlined

herein to insure normality, particularly in the tail of the distribution.
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(Using the variables approach and table II, .90 reliability is demonstrated

at 90% conficence in figure 1, but more than .999 reliability is demonstrated

at this confidence in figure 2.) It is assumed, of course, that sampling

is random, that no shift will occur, and that manufacturing quality control

is rigid. This improvement will show up on a success -to-trials basis only

if sample sizes are very large. As a general rule, reliability demonstration

on a variables basis does not require as large a sample size as does demon

stration on the basis of success to trials.

Two procedures based on variables are outlined below, tables for which

are described in Discussion. Equations used in constructing these tables

are given in Appendix A, and derivations of these are presented in

Appendices В and C, for the two respective procedures. The first pro

cedure, using table I, is established for selecting sample size and

testing reliability hypotheses. It should be used when systems are tested

to determine whether reliability is or is not as high as a prescribed value,

with the power of discrimination from some lower minimum acceptable value.

The second procedure, using table II, is established to demonstrate

reliability at a fixed confidence level. The latter should be used for
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reliability demonstration when the number of tests has been previously

fixed. This procedure, using table II, permits demonstration of reliability

and confidence without power of discrimination; only the former procedure,

using table I, should be employed to select sample size.

DISCUSSION

VARIABLES SAMPLING AND TOLERANCE LIMIT METHODS. Tables I and II

were prepared to simplify computations using the equations of Appendix A.

These tables are applicable only when the data to be analyzed is normally

distributed. Modern type values in table I give the solutions to equations (3)

and (4) and in table II give the solution to equation (7). Values appearing

in bold-face type, computed from the noncentral t-statistic, are more

accurate than the modern type values. Illustrations of the use of the tables

are given below.

Variables Sampling Plan Method.

1. Suppose we wish to fire a number of rocket motors in static tests

for the primary purpose of deciding whether reliability of compliance with

a specification limit is higher or lower than specified values; that is, we

want to discriminate between two reliability levels. For example, suppose

that because of g-load limitations, thrust must not exceed a single upper

specification limit, U = 12,000 lbs. Suppose further that the absolute

minimum g-load reliability requirement (reliability here is the probability

of not exceeding U) is R, = .95, and RH = .9995 is set as a goal. We

will make one of these two decisions:

a. Reliability is at least .9995, with risk ß when it is actually .95.

b. Reliability is less than .95, with riskC&when it is actually

о *Э J J \J a

Suppose we let C6= .05 and ß>= .05. From table I, CX,- .05,

/3 = .05, R = .9995, and R =. 95 gives К = 2.47. If we do not know

H L

the standard deviation, С , from previous experience with the tested

motor or a similar motor, the number of motors to be tested is n = 17. If

we know (T based on a large amount of experience , the number of motors

to be tested is n' = 5. As a general rule, we recommend that /U. be

assumed unknown. After the motors are tested, compute the mean value of

maximum thrust, X. If the standard deviation is unknown, the quantity of

X + Ks is computed, where s is the sample standard deviation. If the

standard deviation, (f , is known, X + КС is computed instead, and
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utilized in the same manner as X + Ks to arrive at a decision (K is the

same in either case). Suppose the standard deviation is unknown, X

obtained from 17 static firings is 11,150 lbs., and s is 320 lbs. Then

X+ Ks = 11,150 + (2. 47) (320) = 11,940 lbs. Because this value is not

greater than the upper specification limit, U = 12,000 lbs, we decide

that reliability is at least .9995, but with 5% risk (100/0%) of making this

decision when it is .95. (The demonstrated reliability here is not .9995,

because there is a 100/5% = 5% chance of deciding .9995 reliability when

actually it is .95). If X + Ks should be greater than U, we would decide

that reliability is less than .95, but with 5% risk (100C6%) of this decision

when it is .9995. The two risks, 0i> and ß were both chosen equal in this

example. If the risk, ß , of accepting unreliable components must be less

than the risk, Ob , of rejecting reliable components we would choose £<.(X ,

and conversely.

3. Table I may also be used when the specification calls out a single

lower limit, L. Values of K, n, and n' are the same; only the decision

procedure is changed. If X - Ks ^ L we make a decision such as that in

paragraph la above. Otherwise, we make a decision such as that in

paragraph lb. Again, & is substituted for s when the standard deviation

is known. It is seen that if a normal distribution of variables data can be

assumed, it is possible to demonstrate high reliability using a relatively

small sample size.

4. It may be noted that n or n' = 5 is the smallest sample size shown

in table I. This is because it is considered poor practice to use a sample

size smaller than this. Also, the approximation for К using equation (3)

in Appendix A is very poor when n < 5.

Tolerance Limit Method.

1. Table II is provided for use when the number of test firings has been

fixed in advance, not on the basis of reliability hypotheses. It should not

be used for selecting sample size. It permits demonstration of reliability

at a given confidence level, but does not permit discrimination between two

reliability levels as is the case for table I.

2. Suppose that, in firing a rocket motor, reliability of .998 of not

exceeding the maximum allowable g-load must be demonstrated at the 90%

confidence level. Suppose the g-load limit corresponds to an upper thrust

limit of U = 28,8001bs. Thrust data is available from 15 motors of the

same type. From table II, 90% confidence, sample size 15, reliability .998
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gives the factor Kc = 3.9. Suppose the mean and standard deviation of

the 15 thrust values are 26,000 lbs and 620 lbs, respectively. Then

X + Kcs = 26,000 + (620) (3.9) = 28,400 lbs. Because this value does

not exceed U = 28,800 lbs, a reliability of at least .998 is demonstrated

at the 90% confidence level, assuming normally distributed average thrusts.

if X + Kcs had exceeded 28,800 lbs, it would have been concluded that

the .998 reliability was not demonstrated at 90% confidence. If the

specification were a lower limit, L, table II would be used in the same

manner to obtain Kc = 3.9, but the decision procedure would be modified:

only if X - Kcs were not less than L would reliability .998 be demon

strated at the 90% confidence level.

3, It is not good practice to use table II when n is less than 5

because approximations used in derivation of statistical tolerance

methods are invalid for such small sample sizes. Also from a practical

standpoint, it is dangerous to use such small sample sizes in making

decisions.

ACCURACY OF FACTORS USED IN VARIABLES SAMPLING PLAN. The

round-off in table I was based on a comparison of K-values in table I to

those in reference 3, table 1.2. The latter, available for CO = .05,

P = .10, were computed from tables of the noncentral t-distribution by

Johnson and Welch (reference 10). They are shown in bold -face type.

Comparison of these tables also indicated that n (not n') in table I might

be increased by one as a conservative measure. (Table 1.2 in reference 3

was constructed using an iterative procedure and the noncentral t-statistic.

A simplified iterative method is given in reference 9, pp. 10-16). Modern

type K-values in table I are more accurate than modern type Kc values in

table II, because division of two quantities biased in the same direction

(see equations (1.3) to (1.5), Appendix B) reduces the bias of the quotient.

The bias in n is not reduced because n is obtained by subtracting

equation (1.4) from equation (1.3), not dividing.

hi sample size (n) is 15 or less, it is recommended that n - 1 be used

to find Kc from modern-type values in table II (except at the 95% confidence

level.)
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ACCURACY OF FACTORS USED IN ONE-SIDED TOLERANCE LIMITS.

Data in table II was rounded off, such that although the error in the last

digit of values in modern type is at times as much as 3 or 4, it is usually

not more than 2. The round-off was based on a comparison of К -values

in table II to those obtained from noncentral t-values in reference 9. The

latter values are shown in bold-face type in table II. Round-off procedures

were extrapolated for reliabilities in the ranges .01 to .70, and .9991 to

.9999. Bold-face factors in table II are more accurate than factors in

modern type because the former were computed from the exact noncentral

t-distribution. They were obtained by using equations (10) and (11) below in

conjunction with reference 9. Reverence 9 indicates that bold -face values

are accurate to all three digits except for an occasional inaccuracy of 1 or

2 in the third digit. Some of the factors in bold-face type were checked

by comparison with reference 7 and also reference 6, in which a recursion

formula is utilized for computation of tolerance factors with confidence

coefficients of .90, .95, and .99. On occasions, differences were as

much as 2 in the third significant digit, but usually not more than 1. For

all levels of confidence in table II (except 95%), n = 5 to 15, it appears that

the K-factor for n-1 is a closer approximation to the true value than the

factor for n itself. Therefore, it is good practice in this region to sub

tract 1 from the sample size before finding the factor. This bias in the

tables is based on comparison with K-factors shown in bold-face type.

From equation (2.1), Appendix C, we see that for the case С = .50,

Zc = 0 when X + Kcs is assumed normally distributed with mean /Л-+ Kc С .

The value of K„ becomes К =¿rZ /E(s) , where E(s) is С times a function

R

of sample size, n, and the ratio of gamma functions of n. Thus, a large

portion of the bias of the sample standard deviation is taken into account

although some bias remains due to departure from assumed normality. The

larger portion of the bias is accounted for by the bias of the sample

standard deviation when one-sided tolerance factors are used. Note that

using equation (7), which is biased because of the bias in the standard

deviation, when С = .50, Zc = 0 and К = ZR. From a normal distribution

table such as reference 4, it is seen that the bias is greater between

modern type data and Zp than between modern type and bold-face type

data. (Modern type data for 50% confidence in table II was adjusted

for bias of the standard deviation as explained above in this paragraph.)
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Appendix A

EQUATIONS FOR OBTAINING FACTORS

GIVEN IN TABLES I AND II

EQUATIONS FOR FACTORS USED IN VARIABLES SAMPLING PLAN. l

Suppose that, in accordance with specifications, a measured variable must

not exceed a single upper specification limit, U. Suppose further that the

minimum acceptable reliability associated with this variable (for this purpose

"reliability" isdefined as the probability of not exceeding U) is R_ = .99, and

Rtt = «999 is set as a goal. Let us test the hypothesis, HQ that the true

reliability is R„ against the hypothesis, Hp that the true reliability is

R^. If we make the decision (based on our sample) that reliability is at

least R , we would like to be sure that only 100 ß% of the time will we

make this decision when the true reliability is RT . Conversely, if we make

the decision that reliability is less than Rx , we would like to be sure that

only 100 0L% of the time will we make this decision when the true reliability

is R . Decision procedure is as follows:

H

if

(1) X + Ks £ U, accept HQ (decide R£RH)

if

(2) X + Ks >U, reject H0 (decide R<RL)

X and s are the sample mean and sample standard deviation, respectively,

taken from a sample of size n, U is the upper specification limit and

О) к= ZrlZi-°° * Zrhzi-£

(3a)

When Ci= ß this becomes

(Z + Z ) /2;

RL RH

These equations were utilized to construct modern type data in table I ,

therefore, the results obtained by using them are no more accurate than

data in table I.
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(4)

n
2i-q ♦ zi-ß\ 2
-^ Г" I (1 + KZ /2)

All Z" s are one-sided normal deviates. In the event that the true

standard deviation (ff) is known from past experience, s in (1) and (2)

should be replaced by ö .# and the quantity (1 + К /2) in (4) is deleted.

К remains unchanged.

If the specification should call out a one-sided lower limit, L, only

the decision procedure is changed. Equations (1) and (2) become

(5) If

(6) If

X - Ks > L, accept Hg (decide R > RH),

X - Ks < L, reject H (decide R <. R ).

U Li

Derivation of this plan is presented in Appendix B. Theory and

applications are also presented in references 1, 3, and 9.

As an illustration of the equations above, let Rt = .99, RH = -999,

0t> = .10, ß = .05. From a normal distribution table, 2^=2.326,

Zj^jj = 3 .090, Z1-Ci/= 1.282 and Z1& = 1.645. Then

(2.326) (1.282) + (3.090) (1.645)

1.282 + 1.645

= 2.76

For sigma unknown,

n
1.282 + 1.645

3.090 2.326

1 +
2.76'

= 70.4 ~ 71

For sigma known (deleting right-hand parenthesis),

n' = 14.68 ^¿15.
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These are the same results as given by table I for OL, = .10. |2> = .05,

R = . ЭЭУ , К =.ЭУ.

H L

EQUATIONS FOR FACTORS USED IN TOLERANCE LIMITS.1 In review,

the equations for factors given in table I were applicable only when a

sample size was to be selected in advance for the primary purpose

of discrimination between a minimum acceptable reliability, R , and goal

reliability, R . One either decided that reliability was as good as Rtt

with risk ß when it was actually RL or decided that reliability was worse

than Rl with risk & when it was actually Rjj. Specifically, an inference

was made that the sampled population was "positioned" such that either

the proportion Rtt of the population lie on the acceptable side of the

specification limit, or the proportion R, lie on the acceptable side of such

limit.

Regarding equations for factors given in table II, suppose that a test

program has been designed for purposes other than reliability evaluation.

The number of firings in this case has not been established to test

reliability hypotheses. In this situation we desire only to demonstrate

reliability at a given confidence level. (Confidence is the probability

that we are correct when we say that reliability of at least R is demon

strated). The information obtained does not permit discrimination

between two reliabilities as in the former case. Also, the population

is not positioned with respect to a specification limit according to a

reliability hypothesis.

Suppose there is a single upper specification limit, U, above which

material is defined as defective. In order to demonstrate a given reliability

at a selected confidence, the quantity X + К s is computed such that

there is confidence С that this quantity contains at least the proportion

R of the true population below it. If X + Kcs < U, it may be stated

that reliability of at least R is demonstrated at confidence level C.

X and s are the sample mean and sample standard deviation, respectively,

taken from a sample size n. Kr is defined by

These equations were utilized to construct modern type data in table

II; therefore, the results obtained by using them are no more accurate

than the data in table II.
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(7) г

С IR (■Vi
Zc2

2(n-l)

Z.c2 1

1 -
2(n-l)

Where n is sample size and Zr, Zc are the respective one-sided standard

normaí deviates corresponding to R and C, available in a normal distribution

table.

As an illustration, it is desired that reliability of at least .998 of not

exceeding the maximum allowable g-load in firing a rocket motor be demon

strated at the 90% confidence level. Suppose the g-load limit corresponds

to a thrust limit of U = 28,800 lbs. When R = .998, ZR = 2.878 (look up

2.(.998) - 1 = .996 in reference 4). Similarly, when С = .90, Zc = 1.282.

Suppose funds permit that a sample of n = 15 motors of the same type are

to be fired under homogeneous conditions. From (7) above, Kc = 3.9.

This result is the same as that given in table II, for 90% confidence,

.99« reliability, n = 15.

If the specification limit were a lower limit, L, below which material

is classified as defective, equation (7) still applies, but decision

procedure is modified. If X - К s >_L, reliability R is demonstrated at

confidence level C. Otherwise reliability R is not demonstrated.

Derivation of equations for reliability estimates based on a one-sided

tolerance limit is presented in Appendix C. Theory and applications in

other areas are presented in references 2,3, and 6 through 10. Other

applications in ordnance engineering are presented in reference 5.

EQUATIONS FOR FACTORS IN BOLD -FACE TYPE IN TABLE II. Equation

2.1, Appendix C, may be written as:

(8)

p([(u, -Х)Уп~ + ^Vn"] /s <KcVñ~)= С.

The left-hand side of the inequality is the noncentral t statistic with

n - 1 degrees of freedom and parameter of noncentrality Zryn. This is

seen more clearly by writing the left-hand side of the inequality in the

form
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tn-i'Z^iTT

■/утг

R,M s /<r

Reference 9, tables of the noncentral t-distribution, gives the prob

ability integral

(10)

1п-гклДТГ^хл/Г) = с

Since Z^ = К , and f = n-1 in this case, the left-hand member of (9)eZR

:icaiis identical to the left-hand sides of inequalities in both (8) and (10). The

relationship between a one-sided tolerance factor and the noncentral t-

statistic tabulated in reference 9 is therefore given by

(U)

Kc =

-^

Appendix В

DERIVATION OF A VARIABLES SAMPLING PIAN

FOR TESTING RELIABILITY HYPOTHESES

STANDARD DEVIATION UNKNOWN. Suppose we have material which is

defective if a measure describing the material exceeds a single upper

specification limit, U. Suppose also that the hypothesized population

proportion of reliable material is R , so that p-R„ + Z^w °" = U. The

population standard deviation, С , and the population mean, \J~ , are

unknown. Based on a sample of n observations, we wish to test the null

hypothesis R = R„ against R = RT , where R < R
rl L L Jci

These sketches are intended for assistance in deriving the sampling

plan:
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U

(Drawn such that OL = ß „ )

Figure 3. - Distributions of X and X + Ks

This plan assumes that X is normally distributed with mean /L6. and

standard deviation (X and that X + Ks is approximately normally dis

tributed with mean /JL + К CT and standard deviation

4±
See reference 1.

2(n-l)
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The null and alternate hypotheses are

H0: R = RH

V R = RL< RH

or

or

¡Л ♦ КС »ybü

RH
+ КС

Г + K<r mftlL + ™

Then

(1.1)

(1.2)

X + Ks < U I R =

4
X + Ks < U I R - RL j

]- i -a,

Where X and s are the sample mean and sample standard deviation,

respectively. Substituting U = ¡Л + Z <r, and U = fjL + Z С '

the solutions of (1.1) and (1.2) are

<MRH ♦ W > " <^rh + "*" >

or

/1 \ к^

^Vn 2(n-l)

(1.3) «JTT — К ^^»

V n 2(n-l)

Jl -Où

(^RL + ZRLCr) - (^RL ! KCX)

7Г

cr\¡¥^T^W

•ß •

or

(1.4) ZrL " K

VE
1 + К

^ z

2(n -1)

Ï
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Dividing (1.3) by (1.4) and substituting Z^ _ л = -Za

When d/ = p, this becomes

(1.5a) К = (1/2) (Z + Z )

RL RH

Subtracting (1.4) from (1.3), squaring and substituting Z^_ a = -Z q ,

(1.6) / z.« + z. i,:

n
'-«■ 'l-Ь , . K2.

The procedure for testing the null hypothesis above is:

If

(1. 7) X + Ks >U, reject Hq with probability (X when Hg is true.

If _

(1.8) X + Ks <_ U, accept H with probability ß when H is true.

KNOWN STANDARD DEVIATION» By following the same type of deri

vation as above, but assuming the standard deviation, С , known, one

obtains К identical to that of (1.5) above (the denominators of (1.3) and

(1.4) become l/yñ) and effect on sample size is to eliminate the latter

parenthesis from (1.6). Thus, the sample size assuming a known standard

deviation becomes

°-9) n.J zi-*+ziV2

ZRH" ^L
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Procedure for testing the null hypothesis is the same except that O" is

substituted for s in (1.7) and (1.8). Computation of s, the sample

standard deviation, becomes unnecessary.

It is recommended that these procedures for testing reliability hypotheses

not be used for sample sizes (n) less than 5.

Appendix С

DERIVATION OF EQUATIONS FOR RELIABILITY

DEMONSTRATION BASED ON A ONE-SIDED

TOLERANCE LIMIT

Let /x. and С be the true population mean and standard deviation,

respectively, of some ballistic performance parameter, and let Zo be

chosen (from a normal distribution table) such that the proportion R of the

population will lie below U. + Z <T • Let X and s represent the estimated

mean and standard deviation, respectively, obtained from a sample of size

n taken from this population.

If a constant, Kc (greater than Zn when С ^.50), can be found such

that 100 C% of the time X + Kcs "¡> il* Z^tf, we have confidence, C,

that at least the proportion R of the population will lie below X + K_s.

Therefore, provided that X + Kcs is not greater than a single upper

specification limited, U, we have demonstrated reliability of at least R

at the 100 C% confidence level. The above reliability and confidence

may be expressed by

(2.1) P(X + Kcs > ¡л* Zj^r) = С

In order to find К to satisfy this equation, we must specify a dis

tribution for X + Kcs . As stated in reference 1, we may assume that, if

X is normally distributed, X + Kcs is approximately normally distributed

with mean LL + КС(У and standard deviation

when n > 5, say. Let Z be the number of
— ' с
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such standard deviations between the mean of this population, U- + К (У ,
. »с

and the value М- + %^<У . It is apparent that /^ + KC¿T must be greater

than /^ + ZpíT to satisfy equation (1) in the case when С is greater

than .50. This sketch on the next page shows the distribution of X and

the corresponding distribution of X + К s, as figure 4.

X + Kcs

Figure 4. - Distributions of X and X + Kcs

must be found such that the proportion of area under the curve above

+ ZrCT is C, the probability that X + Kcs >_ /x, + Zj^o" . The

solution to equation (2.1) is obtained from the standard normal deviate

К
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(2.2)

Zc =

which gives,

£Z K°a ~..(M~* Zr0')

C>J\/n + kJ /2(n -1)

2 i

1 -
2 (n - 1)

Zr

2(n - 1)
1 -

2(n-l)

(See reference 2.) Due to symmetry, equation (2.3) also applies to a

lower specification limit, L. If X - Kcs >_L, reliability R is

demonstrated at the 100 C% confidence level.

It is recommended that this procedure for obtaining reliability estimates

not be used for sample sizes n less than 5, due to inaccuracy of

approximations assumed in writing equation (2.2).
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VARIABLES SAMPLING PLAN
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Factor« for Testing Reliability Hypotheses

о » .01

p = .01

RH RL К n n'
«H

RL К a h'

.70 .50 0.26 81 79 .999 .60 1.97 13 5

.70 .60 0.38 317 295 .999 .85 2.06 17 6

.80 .50 0.42 33 31 .999 .90 2.19 23 7

.80 .60 0.54 72 63 .999 .95 2.37 40 11

.80 .70 0.68 265 216 .999 .99 2.71 174 38

.85 .50 0.51 23 21 .999 .995 2.83 411 82

.85 .60 0.64 43 36 .9995 . 50 1.6 5 5

.85 .70 0.78 108 83 .9995 .60 1.8 7 5

.85 .80 0.93 825 573 .9995 .70 1.9 8 5

.90 .50 0.64 16 14 .9995 .80 2.07 12 5

.90 .60 0.76 27 21 .9995 .85 2.16 15 5

.90 .70 0.90 54 38 .9995 .90 2.29 20 6

.90 .80 1.06 175 112 .9995 ' •95 2.47 33 8

.90 .85 1.16 598 358 .9995 .99 2.81 115 24

.95 .50 0.82 11 8 .9995 .995 2.93 225 43

.95 .60 0.94 17 12 .9995 .999 3.19 3262 5 36

.95 .70 1.08 28 18 .9999 .50 1.9 5 5

.95 .80 1.24 60 34 .9999 .60 2.0 6 5

.95 .85 1.34 HI 59 .9999 .70 2.1 7 5

.95 .90 1.46 341 165 .9999 .80 2.28 10 5

.99 .50 1.2 7 4 .9999 .85 2.38 12 5

.99 .60 1.29 10 6 .9999 .90 2.50 16 5

.99 .70 1.43 14 7 .9999 .95 2.68 24 6

.99 .80 1.58 23 10 .9999 .99 3.02 63 12

.99 .85 1.68 32 14 .9999 .995 3.15 99 17

.99 .90 1.80 53 20 . 9999 .999 3.41 372 55

.99 .95 1.99 139 47 .9999 .9995 3.51 844 119

.995 .50 1. 3 6 5 . 99999 .50 2. 1 5 5

.995 .60 1.4 9 5 . 99999 .60 2.3 5 5

.995 .70 1.55 12 6 . 99999 .70 2.4 6 5

.995 .80 1.71 18 8 . 99999 .80 2.6 8 5

.995 .85 1.81 25 10 . 99999 .85 2.65 10 5

.995 .90 1.93 37 13 . 99999 .90 2.77 12 5

.995 .95 2. 11 81 25 . 99999 .95 2.96 17 5

.995 .99 2.45 137 347 . 99999 .99 3.30 38 6

.999 .50 1.5 5 5 . 99999 .995 3.42 52 8

.999 .60 1.7 7 5 . 99999 .999 3.68 122 16

.999 .70 1.8 9 5 . 99999 .9995 3.78 186 23

. 99999 .9999 3.99 652 73
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• TABLE I. -(Continued)

Factors for Testing Reliability Hypothese«

a = .01

f> = .05

R
H «L

К n n' Rh RL К n n'

70 .50 0.Z2 59 58 .999 .85 1.89 11 5

70 .60 0.37 229 215 .999 .90 2.03 15 5

80 .50 0.35 24 23 .999 .95 2.24 27 8

80 .60 0.50 52 46 .999 .99 2.64 122 28

80 .70 0.66 191 157 .999 .995 2.79 292 60

85 . 50 0.43 17 15 .9995 .50 1.4 5 5

85 .60 0.58 31 26 .9995 .60 1.5 5 5

85 .70 0.74 77 61 .9995 .70 1.7 5 5

85 .80 0.92 595 418 ,.9995 .80 1.9 8 5

90 .50 0.53 11 10 .9995 .85 1.97 10 5

90 .60 0.68 19 15 .9995 .90 2.11 13 5

90 .70 0.84 38 28 .9995 .95 2.33 22 6

90 .80 1.02 124 82 .9995 .99 2.73 80 17

90 .85 1. 14 430 261 9995 .995 2.87 159 31

95 .50 0.7 8 6 .9995 .999 3. 17 2356 391

95 .60 0.83 11 9 .9999 .50 1.5 5 5

95 .70 0.99 19 13 .9999 .60 1.7 5 5

95 .80 1.17 42 25 .9999 .70 1.8 5 5

95 .85 1.29 78 43 .9999 .80 2.0 6 5

95 .90 1.43 243 120 .9999 .85 2. 1 8 5

99 .50 1.0 5 5 .9999 .90 2.29 10 5

99 .60 1.1 6 5 .9999 .95 2.50 16 5

99 .70 1.3 9 5 .9999 .99 2.90 43 9

99 .80 1.46 15 8 .9999 .995 3.05 69 13

99 .85 1. 57 22 10 .9999 .999 3.35 264 40

99 .90 1.71 36 15 .9999 .9995 3.47 604 87

99 .95 1.93 98 34 . 99999 .50 1.8 5 5

995 .50 1. 1 5 5 . 99999 .60 1.9 5 5

995 .60 1.2 6 5 . 99999 .70 2.1 5 5

995 .70 1.4 8 5 . 99999 .80 2.3 5 5

995 . 80 1.56 12 6 . 99999 .85 2.4 6 5

995 .85 1.67 16 7 . 99999 .90 2.5 8 5

995 .90 1.82 25 10 . 99999 .95 2.73 11 5

995 .95 2.03 56 19 . 99999 .99 3.13 25 5

995 .99 2.43 997 253 . 99999 .995 3.28 36 6

999 .50 1.3 5 5 . 99999 .999 3.58 85 12

999 .60 1.4 5 5 . 99999 .9995 3.69 131 17

999 .70 1.6 5 5 . 99999 .9999 3.95 465 53

999 .80 1.8 9 5
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TABLE I. -(Continued)

Factors for Testing Reliability Hypotheses

Q = .05

P = .01

Rh Rl К n n' Rh RL К n n'

.70 .50 0.31 61 58 .999 .85 2.24 14 5

.70 .60 0.41 233 215 .999 .90 2.34 19 5

.80 . 50 0.49 25 23 .999 .95 2.49 31 8

.80 .60 0.60 54 46 .999 .99 2.77 131 28

.80 .70 0.71 197 157 .999 .995 2.88 307 60

.85 .50 0.61 18 15 .9995 .50 1.9 5 5

.85 .60 0.71 33 26 .9995 .60 2.0 6 5

.85 .70 0.82 81 61 9995 .70 2. 1 7 5

.85 . 80 0.96 608 418 .9995 .80 2.28 10 5

.90 .50 0.75 13 10 .9995 .85 2.36 12 5

.90 .60 0.86 21 15 .9995 .90 г. 46 16 5

.90 .70 0.97 41 28 .9995 .95 2.61 26 6

.90 .80 1.10 131 82 .9995 .99 2.89 88 17

.90 .85 1. 18 443 261 .9995 .995 3.00 170 31

.95 . 50 1.0 9 6 .9995 .999 3.21 2399 391

.95 .60 1.07 13 9 .9999 .50 2.2 5 5

.95 .70 1. 18 ¿2 13 .9999 .60 2.3 5 5

.95 .80 1.Э1 46 25 .9999 .70 2.4 6 5

.95 .85 1.39 84 43 .9999 .80 2. 5 8 5

.95 .90 1.50 254 120 .9999 .85 2.61 10 5

.99 . 50 1. 4 6 5 .9999 90 2.71 13 5

.99 .60 1.5 8 5 .9999 95 2.86 19 5

.99 .70 1. 58 11 5 .9999 .99 3. 14 49 9

.99 .80 1.71 18 8 .9999 995 3.25 76 13

.99 .85 1.79 25 10 .9999 999 3.46 279 40

.99 .90 1.89 41 15 .9999 .9995 3.54 626 87

.99 .95 2.04 106 34 . 99999 . 50 2. 5 5 5

.995 .50 1.5 6 5 . 99999 .60 2.6 5 5

.995 .60 1.6 7 5 . 99999 •70, 2.7 6 5

.995 . 70 1.73 10 5 . 99999 .80 2.8 7 5

.995 . 80 1.86 15 6 . 99999 .85 2.9 8 5

.995 . 85 1. 94 20 7 . 99999 .90 3.03 10 5

.995 .90 2. 04 30 10 . 99999 .95 3. 18 14 5

.995 .95 2. 19 62 19
. 99999 .99 3.46 30 5

.995 .99 2.47 1024 253 . 99999 .995 3.57 41 6

.999 . 50 1.8 5 5
. 99999 .999 3.78 93 12

.999 .60 1.9 6 5 . 99999 .9995 3.86 141 17

.999 .70 2.0 8 5 . 99999 .9999 4.04 485 53

.999 .80 2. 16 11 5
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TABLE I. -(Continued)

Factors for Testing Reliability Hypotheses

a = .05

P = .05

Rh
»L

К n n' RH RL К n n1

.70 .50 0.26 41 40 .999 .85 2.1 9 5

.70 .60 0.39 159 148 .999 .90 2.19 12 5

.80 .50 0.42 17 16 .999 .95* 2.37 20 6

.80 .60 0.55 36 32 .999 .99 2.71 87 19

.80 .70 0.68 133 108 .999 .995 2.83 206 41

.85 .50 0.52 12 11 .9995 .50 1.6 5
■5

.85 .60 0.65 22 18 .9995 .60 1.8 i 5 5

.85 .70 0.78 54 42 .9995 .70 1.9 5 5

.85 .80 0.94 413 287 .9995 .80 2.1 6 5

.90 .50 0.6 8 7 ' .9995 .85 2.2 8 5

.90 .60 0.77 14 11 .9995 .90 2.29 10 5

.90 .70 0.90 27 19 .9995 .95 2.47 17 5

.90 .80 1.06 88 56 .9995 .99 2.81 58 12

.90 .85 1.16 299 179 .9995 .995 2.93 113 22

.95 .50 0.8 6 5 .9995 .999 3.19 1632 268

.95 .60 0.9 9 6 .9999 .50 1.9 5 5

.95 .70 1.09 14 9 .9999 .60 2.0 5 5

.95 .BO 1.24 30 17 .9999 .70 2.1 5 5

.95 .85 1.34 56 30 .9999 .80 2.3 5 5

.95 .90 1.46 171 83 .9999 .85 2.4 6 5

.99 .50 1.2 5 5 .9999 .90 2.5 8 5

.99 .60 1.3 5 5 .9999 .95 2.68 12 5

.99 .70 1.4 7 5 .9999 .99 3.02 32 6

.99 .80 1.58 12 5 .9999 .995 3.15 50 9

.99 .85 1.68 16 7 .9999 .999 3.41 186 28

.99 .90 1.80 27 10 .9999 .9995 3.51 423 60

.99 .95 1.99 70 24 . 99999 .50 2.1 5 5

.995 .50 1.3 5 5 . 99999 .60 2.3 5 5

.995 .60 1.4 5 5 . 99999 .70 2.4 5 5

.995 .70 1.6 6 5 . 99999 .80 2.6 5 5

.995 .80 1.7 9 5 . 99999 .85 2.7 5 5

.995 .85 1.81 13 5 . 99999 .90 2.8 6 5

.995 .90 1.93 19 7 . 99999 .95 3.0 9 5

.995 .95 2.11 41 13 . 99999 .99 3.30 19 5

.995 .99 2.45 694 174 . 99999 .995 3.42 26 5

.999 .50 1.5 5 5 . 99999 .999 3.68 61 8

.999 .60 1.7 5 5 . 99999 .9995 3.78 93 12

.999 .70 1.8 5 5 . 99999 .9999 3.99 326 37

.999 .80 2.0 7 5



TABLE I. -(Continued)

541

Factors for Testing Reliability Hypotheses

a = .05

(Number!

К

in bold -face ty

0"

pe computed

RH

from non

RL

-central t)

К

Э = . 10

RH R
L

n n n'

.70 50 0.23 32 32 .999 .70 1.6 5 5

.70 60 0.37 125 117 .999 .80 1.8 5 5

.80 50 0.37 13 13 .999 . 85 1.9 6 5

.80 60 0.51 28 25 .999 .90 2. 1 9 5

.80 70 0.66 104 86 .999 .95 2.3059 16

5

.85 50 0.5 9 8

.999 .95 2. 28 15

.85 60 0.60 17 14

.999

.999

.99

.99

2.6725 61

67

15

2.66

.85 70 0.75 42 33

.999 .995 2.80 160 33

.85 80 0.93 325 227

.9995 . 50 1.4 5 5

.90 50 0.6 7 6

.9995 .60 1.6 5 5

.90 60 0.70 11 9
.9995 . 70 1.7 5 5

.90 70 0.86 21 15

.9995 . 80 1.9 5 5

.90 80 1.03 68 45

.9995 . 85 2.0 6 5

.90 85 1. 14 235 142

.9995 .90 2.2 8 5

.95 50 0.7 5 5

.9995 .95 2.37 13 5

.95

.95

60

60

0.9162

0.9

6

5 .9995 .99 2.75 44 10

7

.95 70 1 0386 11

7

.9995 .995 2.89 87 17

.95 70 1.02 11 .9995 .999 3.18 1283 213

.95 80 1.20*7 24
14

.9999 . 50 1.6 5 5

.95 80 1.19 ¿i

.9999 .60 1.8 5 5

.95

.95

85

85

1.3129

1.30

44
24 .9999 .70 1.9 5 5

43

.95 90 1.440S 133

66

.9999 . 80 2. 1 5 5

.95 90 1.44 133 .9999 .85 2.2 5 5

.99 50 1.0 5 5 .9999 .90 2.3 6 5

.99 60 1.2 5 5 .9999 .95 2.6 9 5

.99 70 1. 3 5 5 .9999 .99 2.94 24 5

.99 80 1.5 9 5 .9999 .995 3.08 38 7

.99 85 1.60 12 6 .9999 .999 3.37 145 22

.99 90 1.7643 21

8

.9999 .9995 3.48 330 47

99 90 1.74 20

. 99999 .50 1.9 5 5

.99

.99

95

95

1.9527

1.94

54

19 . 99999 .60 2.0 5 5

54

.995 50 1. 1 5 5

. 99999 .70 2.2 5 5

.995 60 1.3 5 5

. 99999 . 80 2.3 5 5

.995 70 1.4 5 5

. 99999 .85 2.5 5 5

. 995 . . 80 1.6 7 5

. 99999 .90 2.6 5 5

.995 85 1.7 9 5

. 99999 .95 2.8 7 5

.995 90 1.85 14 6

. 99999 .99 3.18 14 5

. 99999 .995 3.32 20 5

.995

.995

95

95

2.0723 |

2.05

32

31

10
. 99999 .999 3.60 47 7

.995 99 2.4359 547

138

. 99999 .9995 3.72 72 10

- . 995 99 2.44 544
. 99999 .9999 3.96 254 29

.999 50 1.4 5 5

.999 60 1.5 5 5
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TABLE I. -(Continued)

Factors for Testing Reliability Hypotheses

a = .05

ß = .20

Rh RL К n
■• RH RL К n n1

.70 .50 0. 18 23 23 .999 .85 1.7 5 5

.70 .60 0.35 90 85 .999 .90 1.9 6 5

.80 .50 0.29 10 9 .999 .95 2.13 10 5

. 80 .60 0.45 20 18 .999 .99 2.59 46 11

.80 .70 0.63 74 62 .999 .995 2.75 112 24

.85 .50 0.4 7 6 .9995 .50 1. 1 5 5

.85 .60 0.52 12 11 .9995 .60 1. 3 5 5

.85 .70 0.70 30 24 .9995 .70 1.5 5 5

.85 .80 0.91 231 164 .9995 .80 1.7 5 5

.90 .50 0.4 5 5 .9995 .85 1.8 5 5

.90 .60 0.6 7 6 .9995 .90 2.0 5 5

.90 .70 0.78 15 11 .9995 .95 2.2 8 5

.90 .80 0.99 48 32 .9995 .99 2.65 30 7

.90 . 85 1.12 167 103 .9995 .995 2.82 61 13

.95 .50 0.6 5 5 .9995 .999 3.16 917 154

.95 .70 0.9 7 5 .9999 .50 1.3 5 5

.95 .80 1.11 16 10 .9999 .60 1.4 5 5

.95 .85 1.24 30 17 .9999 .70 1.6 5 5

.95 .90 1.41 94 47 .9999 .80 1.8 5 5

.99 .50 0.8 5 5 .9999 .85 1.9 5 5

.99 .60 1.0 5 5 .9999 .90 2.1 5 5

.99 .70 1.1 5 5 .9999 .95 2.3 6 5

.99 .80 1.3 6 5 .9999 .99 2.80 16 5

.99 .85 1.5 8 5 .9999 .995 2.96 26 5

.99 .90 1.64 14 6 .9999 .999 3.30 101 16

.99 .95 1.88 37 14 .9999 .9995 3.44 233 34

.995 .50 0.9 5 5 . 99999 .50 1.4 5 5

.995 .60 1.0 5 5 . 99999 .60 1.6 5 5

.995 .70 1.2 5 5 . 99999 .70 1.8 5 5

.995 .80 1.4 5 5 . 99999 .80 2.0 5 5

.995 .85 1.6 6 5 . 99999 .85 2.1 5 5

. .995 .90 1.72 10 5 . 99999 .90 2.3 5 5

.995 .95 1.96 21 8 . 99999 .95 2.5 5 5

.995 .99 2.41 387 99 . 99999 .99 3.0 9 5

.999 .50 1.0 5 5 . 99999 .995 3.15 13 5

.999 .60 1.2 5 5 . 99999 .999 3.49 32 5

.999 .70 1.4 5 . 5 . 99999 .9995 3.62 50 7

.999 .80 1.6 5 5 . 99999 .9999 3.90 179 21



TABLE I. -(Continued)

543

Factors for Testing Reliability Hypotheses

a = .10

p = .01

Rh Rl К n n' Rh Rl К n n'

.70 . 50 0.34 51 48 .999 .85 2.36 12 5

.70 .60 0 43 194 178 .999 .90 2.45 16 5

.80 .50 0.54 22 19 .999 .95 2.58 27 7

.80 .60 0.63 46 38 .999 .99 2.82 111 23

.80 .70 0.73 164 130 .999 .995 2.91 258 50

.85 .50 0.67 15 13 .9995 .50 2. 1 5 5

.85 .60 0.76 28 22 .9995 .60 2.2 5 5

.85 .70 0.85 68 50 .9995 .70 2.3 7 5

.85 .80 0.97 506 345 .9995 .80 2.4 9 .5

.90 .50 0.83 11 8 .9995 . 85 2.49 11 5

.90 .60 0.92 18 13 .9995 .90 2.58 14 5

.90 .70 1.01 35 23 .9995 .95 2.71 23 5

.90 . 80 1.13 110 68 .9995 .99 2.95 75 14

.90 .85 1.20 369 216 .9995 .995 3.04 143 26

.95 . 50 1.1 8 5 .9995 .999 3.22 1993 323

.95 .60 1.15 12 7 .9999 .50 2.4 5 5

.95 .70 1.23 19 11 .9999 .60 2.5 5 5

.95 .80 1.36 39 21 .9999 .70 2.6 6 5

.95 . 85 1.43 71 36 .9999 . 80 2.7 8 5

.95 .90 1.52 213 99 .9999 . 85 2.8 9 5

.99 .50 1. 5 6 5 .9999 .90 2.85 12 5

.99 .60 1.6 7 5 .9999 .95 2.98 17 5

.99 .70 1.69 10 5 .9999 .99 3.22 42 7

.99 . 80 1.80 16 6 .9999 .995 3.31 65 10

.99 .85 1.87 22 8 .9999 .999 3.50 234 33

.99 .90 1.96 35 12 .9999 .9995 3.57 S24 72

99 .95 2.08 90 29 . 99999 . 50 2.8 5 5

.995 . 50 1.7 5 5 . 99999 .60 2.8 5 5

.995 .60 1.8 7 5 . 99999 .70 2.9 5 5

.995 .70 1.8 9 5 . 99999 . 80 3.0 7 5

.995 .80 1.96 13 5 . 99999 . 85 3. 1 8 5

.995 .85 2.03 17 6 . 99999 .90 3.2 9 5

.995 .90 2.12 26 8 . 99999 .95 3.33 13 5

.995 .95 2.25 53 16 . 99999 .99 3.58 26 5

.995 .99 2.49 853 209 . 99999 .995 3.67 36 5

.999 .50 2.0 5 5 . 99999 .999 3.85 80 10

.999 .60 2. 1 6 5 . 99999 .9995 3.92 120 14

.999 .70 2.2 7 5 . 99999 .9999 4.07 406 44

.999 .80 2.29 10 5
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TABLE I. .(Continued)

Factora for Testing Reliability Hypotheses

a « .10

В « .05

Rh RL К n В' Rh Ru К n n'

.70 .50 0.29 33 32 .999 85 2.2 7 5

.70 .60 0.41 127 117 .999 .90 2.30 10 5

.80 .50 0.47 14 13
.999 .95 2.46 17 5

.80 .60 0.58 29 25
.999 .99 2.76 71 15

.80 .70 0.70 107 86

.999 .995 2.86 166 33

.85 .50 0.58 10 8
.9995 .50 1.8 5 5

.85 .60 0.69 18 14
.9995 .60 1.9 5 5

.85 .70 0.81 44 33
.9995 .70 2.1 5 5

.85 .80 0.95 330 227
.9995 .80 2.2 5 5

.90 .50 0.7 7 6
.9995 .85 2.3 î 5

.90 .60 0.83 II 9
.9995 .90 2.4 9 5

.90 .70 0.95 22 15
.9995 .95 2.57 14 5

.90 .80 1.09 71 45
.9995 .99 2.87 48 10

.90 .85 1.17 240 142
.9995 .995 2.98 92 17

.95 .50 0.9 5 5
.9995 .999 3.20 1300 213

.95 .60 1.0 7 5

.9999 .50 2.1 5 5

.95 .70 1.15 12 7
.9999 .60 2.2 5 5

.95 .80 1.29 25 14

.9999 .70 2.3 5 5

.95 .85 1.38 46 24
.9999 .80 2.5 5 5

.95 .90 1.49 137 66 .

.9999 .85 2.5 6 5

.99 .50 1.3 5 5

.9999 .90 2.7 7 5

.99 .60 1.4 5 5
.9999 .95 2.81 10 5

.99 .70 1.5 6 5

.9999 .99 3.11 26 5

.99 .80 1.68 10 5

.9999 .995 3.22 41 7

.99 .85 1.76 14 6
.9999 .999 3.44 151 22

.99 .90 1.87 22 8
.9999 .9995 3.53 339 47

.99 .95 2.03 57 19
. 99999 .50 2.4 5 5

.995 .50 1.4 5 5

. 99999 .60 2.5 5 5

.995 .60 1.6 5 5
. 99999 .70 2.6 5 5

.995 .70 1.7 5 5

. 99999 .80 2.8 5 5

.995 .80 1.8 8 5
. 99999 .85 2.9 5 S

.995 .85 1.90 11 5
.99999 .90 3.0 6 5

.995 .90 2.01 16 6
. 99999 .95 3.1 8 5

.995 .95 2.17 34 10

.99999 .99 3.42 16 5

.995 .99 2.47 555 138
. 99999 .995 3.53 22 5

.999 .50 1.7 5 5
. 99999 .999 3.75 50 7

.999 .60 1.8 5 5

. 99999 .9995 3.84 76 10

.999 .70 2.0 5 5
. 99999 .9999 4.03 262 29

.999 .80 2. 1 6 5



TABLE I. -(Continued)

545

Factors for Testing Reliability Hypothese«

a = .20

p = . 10

RH
*L

К n n' Rh Rl К n n'

.70 50 0.32 18 17 .999 .85 2.3 5 5

.70 60 0.42 67 62 .999 .90 2.4 5 5

.80 50 0.5 8 7 .999 .95 2.52 10 5

.80 60 0.61 16 14 .999 .99 2.79 38 8

.80 70 0.72 57 45 .999 .995 2.89 89 18

.85 50 0.6 6 5 .9995 .50 2.0 5 5

.85 60 0.73 10 8 .9995 .60 2. 1 5 5

.85 70 0.83 24 18 .9995 .70 2.2 5 5

.85 80 0.96 175 120 .9995 .80 2.3 5 5

.90 50 0.8 5 5 .9995 .85 2.4 5 5

.90 60 0.9 6 5 \ 9995 .90 2.5 5 5

.90 70 0.10 12 8 .9995 .95 2.6 8 5

.90 80 1.11 38 24 .9995 .99 2.91 26 5

.90 85 1.18 127 75 .9995 .995 3.01 49 5

.95 50 0.10 5 5 .9995 .999 3.21 688 112

.95 60 1.1 5 5 . 9999 .50 2.2 5 5

.95 70 1.2 7 5 .9999 .60 2.3 5 5

.95 80 1.33 14 7 .9999 .70 2.5 5 5

.95 85 1.40 25 13 .9999 .80 2.6 5 5

.95 90 1.50 73 35 .9999 .85 2.7 5 5

.99 50 1.4 5 5 .9999 .90 2.8 5 5

.99 60 1.5 5 5 .9999 .95 2.9 6 5

.99 70 1.6 5 5 .9999 •9? 3.17 14 5

.99 80 1.7 6 5 .9999 .995 3.27 22 5

.99 85 1.8 8 5 .9999 .999 3.47 81 12

.99 90 1.91 12 5 .9999 .9995 3.55 180 25

.99 95 2.06 31 10 . 99999 .50 2.6 5 5

.995 50 1.6 5 S . 99999 .60 2.7 5 5

.995 60 1.7 5 5 . 99999 .70 2.8 5 5

.995 70 1.8 5 5 . 99999 .80 2.9 5 5

.995 80 1.9 5 5 . 99999 .85 3.0 5 5

.995 85 2.0 6 5 . 99999 .90 3.1 5 5

.995 90 2. 1 9 5 . 99999 .95 3.2 5 5

.995 95 2.21 18 6 . 99999 .99 3.5 9 5

.995 99 2.48 294 73 . 99999 .995 3.60 12 5

.999 50 1.9 5 5 . 99999 .999 3.80 27 5

.999 60 2.0 5 5 . 99999 .9995 3.88 41 5

.999 70 2. 1 5 5 . 99999 .9999 4.05 140 16

.999 80 2.2 5 5
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TABLE I. -(Concluded)

Factors for Testing Reliability Hypotheses

a = .20

ß = .20

«H
RL К n n' Rh Rl К n n'

.70 .50 0.26 11 11 .999 . 85 2. 1 Ъ 5

.70 .60 0.39 43 39 .999 .90 2.2 5 5

.80 .50 0.4 5 5 .999 .95 2.4 6 5

.80 .60 0.55 10 9 .999 .99 2.70 23 5

.80 .70 0.68 35 29 .999 .995 2.83 54 11

.85 .50 0.5 5 5 .9995 . 50 1.6 5 5

.85 .60 0.6 6 5 .9995 .60 1.8 5 5

.85 .70 0.78 15 11 .9995 .70 1.9 5 5

.85 .80 0.93 109 75 .9995 .80 2. 1 5 5

.90 .50 0.6 5 5 .9995 .85 2.2 5 5

.90 .60 0.8 5 5 .9995 .90 2. 3 5 5

.90 .70 0.9 7 5 .9995 .95 2.5 5 5

.90 .80 1.06 23 15 .9995 .99 2.81 16 5

.90 .85 1.16 79 47 .9995 .995 2.93 30 6

.95 .50 0.8 5 5 .9995 .999 3.19 428 71

,95 .60 0.9 5 5 .9999 .50 1.8 5 5

.95 .70 1.1 5 5 .9999 .60 1.9 5 5

.95 .80 1.2 8 5 .9999 .70 2. 1 5 5

.95 .85 1.34 15 8 .9999 .80 2.3 5 5

.95 .90 1.46 45 22 .9999 .85 2.4 5 5

.99 .50 1.2 5 5 .9999 .90 2.5 2 5

.99 .60 1.3 5 5 .9999 .95 2.7 5 5

.99 .70 1.4 5 5 .9999 .99 3.0 9 5

.99 .80 1.6 5 5 .9999 .995 3.15 13 5

.99 .85 1.7 5 5 .9999 .999 3.40 49 8

.99 .90 1.8 7 5 .9999 .9995 3.51 HI 16

.99 .95 1.99 19 5 . 99999 .50 2. 1 5 5

.995 .50 1.3 5 5 . 99999 .60 2.3 5 5

.995 .60 1.4 5 5 . 99999 .70 2.4 5 5

.995 .70 1.6 5 5 . 99999 .80 2.6 5 » 5

.995 .80 1.7 5 5 . 99999 .85 2.7 5 5

.995 .85 1.8 5 5 . 99999 .90 2.8 5 5

.995 .90 1.9 5 5 . 99999 .95 3.0 5 5

.995 .95 2.11 11 5 . 99999 .99 3.3 5 5

.995 .99 2.45 182 46 . 99999 .995 3.4 5 5

.999 .50 1.5 5 5 . 99999 .999 3.68 16 5

. 9QP .60 1.7 5 5 . 99999 .9995 3.78 25 5

.999 .70 1.8 5 5 . 99999 .9999 4.00 86 10

.999 .80 2.0 5 5
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A GENERAL APPROACH TO ENGINEERING

TOLERANCE SPECIFICATIONS

Sheldon G. Levin

Diamond Ordnance Fuze Laboratories

INTR ODUCTION . When a complex device or a system composed of a set

of components is to be mass produced, the limits within which the com

ponents are to be made must be specified in order to have assurance that the

system will function as intended. These limits are called either "tolerance"

limits or "specification" limits and a lack of proper distinction between the

two terms causes confusion. Both express uncertainty, but statistical tol

erance limits are a precise statement associated with the uncertainty of in

dividual observations, usually based on the variance of the underlying

population, while specification limits are merely instructions to the component

maker and convey the range of values within which all components must lie

to be acceptable.

This discussion will provide techniques for estimating the limits within

which a given percent of the systems responses will fall for a specified set

of Engineering Tolerance Specifications (ETS) . While none of the techniques

is new, the assembly of methods which lead to the selection of the set of ETS

on the individual components, either to achieve minimum ETS in the system

for a given cost or to minimize cost for a given set of ETS, should be a use

ful contribution.

Given a set of nominal requirements Ri# i = 1, . . . , n, on the individual

components, there is usually associated with each R4 a symmetric interval

Rj ±. 6 i within which the values of the component must lie to be acceptable.

The interval length for the R± component* is 2 6 i and the limits will be

written as Lr = R. - S . and L9- = R. + b . . The limits on the system are
11 1 1 wl 1 1

not necessarily symmetrical and will simply be written as L. and L2 ;

they will be specified in advance with the requirement that a fixed percent

of the systems produced fall in the interval, or they will be selected to cut

off equal percentages from the tails of the distribution. An illustration for

n = 3 is given below.

Component refers throughout the discussion to measurements of a

characteristic of the component.
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Figure 1. Component and system distributions and ETS limits.

Each of the components X. is assumed to be a random variable with distri

bution overlapping part of the ETS limits. The response Y is a function of

these random variables and is, therefore, itself a random variable. The

first part of this discussion will be an attempt to find the distribution of Y,

given information about the distribution of the X^ and about the response

function.

When the distribution of the X^ and the response function

(1) Y = f(X
Г 2'

X )
n

are known, an exact expression for the distribution of Y can often be

obtained by the method of characteristic functions described in Kullback

In most practical situations, the exact form of the distributions of the

X, is not known nor is there available an explicit expression for the

response function; hence, a true statistical tolerance interval cannot be

obtained. Instead, the moments of the Y must be obtained from estimates

of the moments of the X¿ and estimates of the derivatives of the response

function. The resulting Pr. (L < Y <L ) is an estimate based on
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mathematical approximations described herein.

The present discussion considers the cases in which the distributions

and the response function are not known.

PROPAGATION OF MOMENTS —LINEAR FUNCTION. Assume a response

function of the form

(2) Y = SXl + K2X2 + '•• + KnXn

and that the X. are normally distributed and mutually independent random

variables. In this case we can write

(3) E(Y)=K1^1 + K2/x 2 + ... +.Kn/¿n

and

(4) VAR(Y) = K12 ox2 + K22 022 + ... + Kn2 &* -

Here the I^'s are really (dY/UX^, i.e. the change in Y produced by a

change in component I. Equation (4) is sometimes called the classical

propagation of errors formula and can be used asa first approximation to a

more complex function, as will be shown later.

Since the first two moments determine the normal distribution, and a

linear function of normally distributed variables is also normally distri

buted, the requirements for the complete specification of the ETS interval

in this case are simply:

1. Knowledge that the functional form is linear as in (2)

2. The set of values jul. and O ¡

3. The set of values bY/ЪУ^

4. Tables of the normal distribution



558
Design of Experiments

The requirements for the more general case will be developed subse

quently.

PROPAGATION OF MOMENTS -- GENERAL METHOD. The response

function will now be permitted to be any function in n variables that can

be represented by an n variable Taylor series. For the two-variable case

this can be written as

Y = f(X1,X2) = f(xi,x2) + £Л + f2x2 +|j (£llXl + f22x2 + 2f12¥2)

(5)

+ 3! (flllXl + 3f112Xl x2 + 3f122XlX2 + f222X2 }

+ 7 (fllllXl4 + 4f1112Xl3x2 + 6f1122Xl2x22 + 4f1222XlX23 +

f2222x2 ) + • • •

using the derivative notation where for example

f _ Ъ f(Xi,X2, . . . ,Xn)

12 - -—

ЪХ-y bx2

and
[U23

ç. f (Xj, X2 ; • • • /Xn)

è2x1bx2 öx3

Mi

The derivatives are to be evaluated at the appropriate X. = ¡J-..

This series represents the response function in terms of its components

and can be operated on as a power series. Taking the expected value

gives

+ EKx(y) = E(Y) = E f(X1,X2) = E [f(x1,x2)]

(6) \x E [f^2 + f22x22 + 2fl2Xlx2] +...

flxl + f2X2]
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The following notation puts the expression in more familiar terms

O-^EtX.2) - ^.2

Tijk = E [(x. - fx.) (x. - ^.) (xk - цк)] /criCrjak; 1= e[(Xí -/^)3]дг3

^jke =E [*t - гЧ> (Xj - h} ** - he) *e -PJ] ^1*1 °k ^e

r;-E[oq-^)4] /erf

xij=xij - /*v E<xij> = °

Using this notation equation (6) becomes

Kl(Y) = f(o,o) +7,[f11o-12 + i22a22 4 г^ц^^]

+ Í! Kll \cr3 + 3f112^112°'f <^2 + 3il22y 122^2 + f222^1 ^ Í ]

+ "l! t fllll lT0ri* + 4f1112 ГШ2 V' 2 + 6f1122 ^122^2

(7) + 4f1222 ^1222 ^l + f2222 П> ff2 4 termS of order ^
5

(У

The extension of this formula to the case of n variables is now apparent.

A detailed discussion of the propagation formulas will be found in Tukey [ 2 1.
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K1(Y)= E(Y)=E [ffc^Xj Xn)] = f(0.) ♦-^ [ï.i.^1 + E^ij^ij^OrJ

(8) + Í» [^F^-YiCrf + 3lViiJ^ + ^VlJk^^J

+ T! [^fiiü Пт^14 + 6^*fiijj íTijj^i2^]2 + 4^*fiiij Tiij^i^

+12^*fiijk TljIcO-lVjO-fc + 24E*fijke ^.0^ ¿Ъ^] + terms of order

-></

By a similar argument, expressions for all the moments or cumulants can be

obtained.

The second moment can be written

K2(Y) = E [(Y-E(Y))2] = VAR(Y) = Ef2CT2 + 2 Z*ftfj А>1} 0^ <Tj

+ ^ii^i + ^i'jj^j^i^ + ^Vl^iiJ^J

(9) ' 2 4

+ ^Mjk^ijk^i^k + T^fii ( Г4 - Do- + lE-fufjj ( Гад, - 1)

10 additional terms of order <^5 + terms ^&
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In equations (8) and (9), the ¿] * notation means that each distinct symbol

appears once and only once in the sum, and that subscripts with different

symbols are always different. Thus

Z2 2 4 2 _2
* СУ С excludes (Ул and includes & .<j_ once. i.e. notas

iL 4 Ь

2 2 2 2
(Y CT ♦ (У Cr • On the other hand"4^5 U 5 4

3 2 5 "\ 7 "\ о

Y.*0'i0', excludes <У . but includes both &. & + & О*

The formulas for propagating the first four cumulants will be found in

Tukey [3].

It can be seen that these propagation formulas are very cumbersome and

even with large-scale computing equipment, the complete evaluation of all

the terms required would be difficult. There are several ways of reducing

the number of terms in these formulas, and probably the most useful is the

assumption of independence of the components. In any manufacturing

operation it is difficult to conceive of a situation where two separate com

ponents could be manufactured so that their distributions would not be

independent, except possibly for the case where several different character

istics of a single component are considered to be the random variables

Xj; thus it is entirely possible that the several characteristics of an electron

tube would not be independent. If the response function includes more than

one of the nonindependent random variables, then the more elaborate formulas

as given in Tukey [з] are required. When the components are assumed

to be independently distributed, all the covariance terms drop out and

the expressions for the first four cumulants become

V> = E(Y> = f(0i'°2» + 1 £fiiO-2i + i&tiiY,«-3,

<"» + ft Dim fi »"I ♦ -?£*%)] «f °f * te«"s °f "der > O-5
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к2М -в [Cr - EM2] = Ef2<r2 ♦ Evitai0-' + T^Vin T«!

terms of order >_ qt

Several of the terms in formula (11) are among those not included in (9).

KgM - E [(Y - E(Y))3] « E^t^l + fSff fii( l~¡ - \)ff\

(12) + 6Ü*f.f.f. . (?-?<У2 + terms of order > £-5
i J ij i j

(13) K4(Y) = E [(Y - E(Y))4] - 3K2(Y) = Iff ( Г\ - 3) <y\ +

terms of order > <y .

These are the formulas that permit evaluation of the first four cumulants

of the distribution of Y in terms of the moments of the distribution of the X.

and the derivatives of the response function. Examination of the formulas

shows the assumptions required to obtain the sample propagation of errors

formulas that have been used for many years, see Shewhart [4]. These

assumptions are:

(1) Independence of the X. components permits deletion of the cross

product terms.

(2) Linearity of the response function in each of its variables deletes

all but the first term in each of the formulas.

(3) Distribution functions of the X^ determined by the first two moments,

as in the case of the normal, rectangular and exponential, deletes formulas

(12) and (13); and the resulting propagation formulas are then identical to

equations (3) and (4).
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(4) Normal distribution function of Y allows the evaluation of

Pr Г L, <Y<TL? ""] from existing tables. Burr [5] shows that this

assumption is valid if \N$ /A*?\ ¿ .03 and if 2.6 <(^4/^2) < 3.4.

The remainder of this discussion will be predicated on the more general

propagation formulas 10 to 13 and will show how to obtain the quantities

required for their application.

MOMENTS OF COMPONENT DISTRIBUTIONS. If the exact distribution

of the X. are known*, as may be the case when the components have

been produced for a long time by a controlled process whose history is

known, then the moments can be estimated from the parameters of the

distributions. Usually, however, sample data from production must be

used to estimate the moments of the component distributions. If the

distributions of the X. are of a known form, or forms, then it is necessary

to compute only as many sample moments as would be required to evaluate

the parameters, e.g. one for the exponential, two for the normal distri

butions. Most standard textbooks develop the formulas for unbiased

estimates of the moments from sample observations (See Cramer 6 ).

THE RESPONSE FUNCTION AND ITS DERIVATIVES. If the response of

the system can be expressed as an explicit function of its components,

as in the case of simple electrical circuits or mechanical linkages, then

the partial derivatives of the function are required for use in the propa

gation formulas. When the response function is not known, it is necess

ary to determine the derivatives experimentally. A factorial -type experi

ment is most appropriate, since the main effects and interactions are

directly the required estimates of the partial derivatives. The number of

levels will be one more than the order of the highest derivative required,

and the experiment should center about the nominal value of each of the

components. Fractional factorial designs can be used effectively here to

reduce the number of observations, since only a few cross derivatives, i.e.

interactions, are required.

It may be possible to use the parameters directly if a mathematical

expression for the response function is available.
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ESTIMATES OF P(L1 ^ Y —T2K of the several methods for determining

the required probabilities, given estimates of the first four moments, the

two involving a minimum of computation will be described. The first is an

outgrowth of the Pearson method of moments.

Pearson and Hartley (7) have tabulated the .5, 1.0, 5.0, 95, 99, 99.5%

points for values of 0^: (5. ^=. 1 and 1. 8 — /69 — 5.0 where

^1^>2 » [КзМ] 2/[k2(Y)]3

^2=^| = K4(Y)/[k (Y)]2 + 3

From these tables, 1, 2, and 10% confidence intervals can be obtained

directly. The wide spacing of the f-> entries, the limited number of per

centage points and the fact that the percentage points, not the integrals,

are listed, limit the usefulness of the tables. However, the values that

are given make these tables very easy to use, since the required com

putations are minimized.

The alternative to the Pearson system is the Edgeworth Series. The

distribution function of Y is obtained as a power series in terms of its

cumulants and the derivatives of the normal distribution function Cramer (6).

(14) F(Y)=<£ - |l VJ/Í2) + 2l yjyO) + J^hi ^(5) +_

Terms involving cumulants above the fourth have been dropped because

of the magnitude of the sampling errors of their estimates.
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/ 3/2 2

Here Y1 = /XJll2 and 7 2 = (/¿4//¿- 2> " 3

.2
M/ <n> _¿L ( ехр(-У /2) )

T ~ dyn Ч irr

This series is easy to apply since only a few terms need by computed and it

can be used in many situations where the Pearson tables of в are not

applicable.

INTERMEDIATE RESULTS. Up to this point, the techniques for making

probability statements about the values of Y have been presented. This is

as far as one need go in a wide variety of applications. With these techniques,

use can be made of the production records of the distribution of the X ,

and the experimental results showing the response Y to the factors JC,

and the probability that Y will be in the interval (Liy = Y - L2 ) can be

computed; or alternately, the limits can be found within which Y falls

for a given percentage of the systems manufactured. This can, for

example, demonstrate the manufacturer's ability to produce a particular

system within required tolerance, i.e. to determine whether the specifications

on the end item are realistic. It will also permit the engineer, on paper, to

"juggle" the types of components in an effort to reduce the system tolerance.

ECONOMICS OF ETS. For most products, the cost of manufacture in

creases when the engineering tolerances decrease; hence, unless a system

is to be made having "smallest possible tolerance regardless of cost", as

in vital subsystems of missiles, it is desirable to minimize costs and still

meet specifications on the system or alternately minimize the system

tolerance for a given cost. To find the combination of component limits

that will minimize the total cost of the system it is first necessary to ex

press the cost Cj of the Xjth component asa function of the interval size
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Ь. of the ith component.

(15) Ci-C^ôj)

The cost of the whole system can then be written

(16)

il

с =У с +c
y Y i ¿

where Ca is the cost of assembly, This information can often be obtained

by fitting a polynominal to cost data, supplied by the manufacturer or by the

production department of an "in-house" item. A simple relation should

suffice since the function must be monotonie decreasing; if not, the cheaper

item with smaller 6 would always be made.

и

(Л

о
о

O.I 1.0 5.0 10.0 15.0

SPECIFICATION LIMITS Bf

20.0

Figure 2. Component cost as a function of ETS interval length.

Figure 2 illustrates such a situation, which could be expressed by a

function of the form
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Ci " кц + V¿ i

If it is possible to express

(i?) ôy=7t^(6.)

i.e. the Y interval length as a monotonie increasing function of the in

dividual Ô | interval lengths, it will be possible to minimize С or

Ô y. In general it is very difficult to obtain an expression for 0 „.

However, the first term of the Taylor series may sometimes be used, if

the response function can be approximated by a linear function in the

vicinity of the required 0 . limits. See Scarborough (8).

When it is assumed that the X, are n independent, normally distrib

uted, random variables and that the response function is linear in each

variable, the optimum set of 0"", can be obtained. An application of

this method to machine design can be found in Pike and Silverberg (9).

The response function is

n

(18) Y =£ X.

i

and the variance of Y is

(19) (T2 = î(Uj2Cr2
v T oxi 1

In this case the cost Ct can be related to (J . rather than Ö. since
2 1 ■ i

minimizing G . will minimize C., and the total cost is

Д 2
(20) С = У С {Cí ) + Ca

У i i i
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The method of Lagrange Multipliers, found in Shewhart (4), yields the

nimum total cost subject to the constraint (J = K,y where К is the
9 Ус/

mi ~" *" ~- '--" " '~ * * " ■ ■ ■ -'-*■

2
specified value of О . The function

(2D Ya = Cy +Ла M) -V),

where ^ is the Lagrange multiplier, will be differentiated with respect

2
to ¿7 . to obtain the necessary conditions for a minimum C„:

ôàf ~ à of а 0<Г? - °

i = 1, . . . , n

2
Now using equations (19) and (20) for С and С , equation (22) becomes

b(lciio\) + ca) aB-jfr2^2 - y>

OCT2 a ^^2

The differentiation results in the Lagrange equations

(23) л с (a )2аЧ'' —X, <-À42

îïT-"""» ,_5sr

and the constraint is

(24) С -К = 0,

У er

This set of n + 1 equations is then solved simultaneously for the set

СГ . which will yield a minimum total cost C„

i У-

of
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„2

The alternate method is to find a set of и , , 1 = 1,..., n, which will
1 2

minimize the tolerance on Y or equivalently minimize Cf • for a specified

~>2 y

cost Cy. In this case О is treated as the variable which is to be

minimized and the Lagrange equation can be written as

(25) ¥\- (Г2 + Ab (C -KJ

where Kc is the specified cost. Substitution of the values of Cv and

9

(У from equations (19) and (20) and performance of the differentiation

у
yields the following set of equations

(26) (-|4r) 2 = -X

and

i i = 1, . . . ,n

(27) С -К =0
У с

*2
which must be solved simultaneously for the (У ^. These equations

differ from (23) and (24) only in the Lagrange multiplier A and the cons-;

traints. The set of values С z , i = l,...,n will differ from the (У'.

set, and will be that set of values which minimizes the variance of the

system for a fixed total cost С .

SUMMARY. If the performance, i.e. response, of a system can be

expressed as a function of its n components, it can be approximated by

a Taylor series. When a mathematical expression for the function is not

available, experiments must be performed to obtain estimates of the partial

derivatives of the function. The Taylor series in n variables is used to

obtain expressions for the moments of the system's distribution in terms of

the moments of the component distributions. The Edgeworth series is then

employed to obtain the probability limits for the system distribution using

estimates of the moments previously obtained. Finally, using Lagrange
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multipliers, it is possible in some cases to find the set of ETS limits for

the components such that the cost is minimized for given system limits,

or alternately, such that the system tolerance interval is minimized fora

given cost.
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A FURTHER ANALYSIS OF MISSILE RANGE TRACKING SYSTEMS

Oliver Lee Kingsley

Integrated Range Mission

Range Instrumentation Development Division

White Sands Missile Range, New Mexico

I. INTRODUCTION . One objective of the Range Instrumentation Develop

ment Division has been the calibration of range instrumentation tracking

systems. At last year's conference I enjoyed the opportunity to speak to you

of our first attempts at evaluation of range tracking systems. We have now

completed our analysis of the second flight test and are prepared to embark

on a third flight test to study improvements in the tracking systems and

reduction procedures. The third test should include one of the new systems

being installed at the Range. It is called the Integrated Trajectory System

(ITS) and obtains space position estimates by computations based on

angular (phase) and range measurements (phase also) at two instrument sites

spaced about 20 miles apart.

Today, I intend to briefly cover some of the high points of our analysis

work during the past year. The discussion will cover results obtained

from four tracking systems, namely: Askania cinetheodolite, Ballistic

Camera, Doppler, Velocity and Position (DOVAP), and the FPS-16 radars.

The first results presented will be a comparison between the data of

flight tests one and two. Then the results of flight test number two when

handled by a new technique will be presented. The final results presented

will be concerning precision estimates for part of the Askania cinetheodolite

system and part of the DOVAP system.

The coverage for the first flight test consisted of four tracking systems

obtaining simultaneous data for 28 seconds of the missile trajectory. The

second flight test coverage consisted of four tracking systems obtaining

simultaneous data for three segments of the missile trajectory. The segments

I, II, and III included 18, 17, and 19 seconds of trajectory data respectively.

II. DISCUSSION OF RESULTS.

COMPARISON OF THE TWO "Operation Precise" TRACKING TESTS

The first set of contrasts I would like to present are for each of the

tracking systems individually. The analysis involved a study of the shift
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in the bias error as the tracking proceeds. This was performed by using a

one-way classification of trajectory sub-segments. The error data used

in the analysis were derived by comparison with data from the Ballistic

Camera for each respective system. In all but the DOVAP analysis, this

technique should give an error term based essentially on the particular

system.

For the Askania system, the first test results indicated a significant

bias shift along the trajectory for each coordinate studied, whereas, for

the second test, only the X-component of segment II indicated a signif

icant shift. The reasons for more variability in first case can be attributed

to many possible sources none of which has been isolated as the source.

The Askania bias error indications for each component studied in the first

test were only dominant in the Z-component for the second test.

The DOVAP system indicated significant sub-segment variability in X and

Z during the first test and significant sub- segment variability in X, Y, and Z

during the second test. These tests indicate that the DOVAP systems needs

improvement. There have been changes in the data reduction procedures

that have not been completely evaluated and the needed improvement may

well be accomplished. Our next flight test should affirm or deny this

conjecture.

The over-all bias error inherent in the reduced data from the first test

was as inherent in the reduced data from the second test. Again the changes

in data reduction may have removed the significant bias error inherent in

the reduced data.

The Radar system consisted of data from four radars, three of which were

the same for the two flight tests. Significant sub-segment variability was

indicated in the Z component during the first test and some significant X

and Z component variability during the second test.

The Radar system data for X and Y components exhibited bias errors that

were significant during the first flight tests. There was a significant bias

exhibited for all components during the second flight tests.
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The table below summarizes some of the precision estimates obtained

from the two tests. In general, the results are quite similar.

Table 1

Standard Deviation Estimates by Simon-Grubbs Method

^"""--—_^_^^ Coordinate

Tracking System and Test

X Y

(ft)

Z

(ft)(ft)

Askania

First Test

Second Test

11

10

11 8

14

Ballistic Camera

15

First Test

Second Test

2 6

6

10

9

DOVAP

4

First Test

Second Test

0

0

4

0.1

8

7

Radars

(N=3) First Test

(N=4) Second Test

15

17

21

19

12

26

NOTE: Pooled estimates over the trajectory are presented for the

second test.

COMPARISON OF TWO TECHNIQUES FOR BIAS ESTIMATION .

We have explored some new data reduction techniques. One technique as

suggested by an RCA report by Dr. Duncan was for the study of short term bias

error estimates and another by H. Dibble and C. Carroll, jr. suggest a way

of combining trajectory data.

Dr. Duncan's suggestions have not been fully explored on the second test

because the data to fit the complete model was not obtained. For the third

test, this data will be obtained and the method applied.
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The Dibble and Carroll report was used to combine data from three of the

systems, viz. Askania, DOVAP, and Ballistic Camera. The value of the

technique depends on the adjustment of the tracking systems for bias.

Adjustment of the data by a standard for bias was not accomplished. Also,

the radar data was not included in the computations because of computer

limitations .

Tables 2, 3, 4, and 5 exhibit data for the two methods of bias estimation.

The Ballistic Camera bias estimates seem reasonable except for the Z com

ponents for Segments I and III using the B.E.T. There is more to learn about

the application of this technique for obtaining a best estimate of trajectory.

TRACKING CORRECTIONS, DIAL READINGS, AND CYCLE COUNTS

Where possible, each of the tracking systems were explored in detail.

Three detailed studies are summarized, (1) the tracking corrections for the

Askania cinetheodolites, (2) dial readings for the Askania cinetheodolites,

and (3) the DOVAP cycle counting methods.

The dial readings were expected to have a standard deviation of about

0.001 degrees. This was verified by having three operators read the same

set of films and applying the Simon-Grubbs technique (Table 6). The effect

of film reader (machines) was not expected to contribute to the variability

and was confounded in the test.
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Table 2

Ballistic Camera System Mean Bias Error Estimate

Coordinate
Bias Estimante '— _____^ X Y

(ft)

z

Cft)

SEGMENT I

(ft)

Direct Method

B.E.T. Method

0.0

-3.8

0.0

0.7

0.0

26.7

SEGMENT II

Direct Method

B.E.T. Method

0.0

-2.3

0.0

-6.3

0.0

-1.4 i

SEGMENT III

Direct Method

B.E.T. Method

0.0

0.0

0.0

-0.2

0.0

76.8
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Table 3

Askania (Mode 7 Instruments) Mean Bias Error Estimates

-—-.Coordinate

Bias Estimate *—-—______

X Y

(ft)

Z

(ft)

SEGMENT I

(ft)

Direct Method

B.E.T. Method

7.9

4. 1

-2.0

-1.5

-41.6

-14.8

SEGMENT II

Direct Method

B.E.T. Method

0.6 1.9

-4.6

-17.9

-19.3

•

-1.5

SEGMENT III

Direct Method

B.E.T. Method

-1.0

-1.2

-9. 1

r9.2

-29.6

47.3
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Table 4

DOVAP (Seven Receivers)

Mean Bias Error Estimates

___Coordinate

Bias Estimate " *—•—-________^

X Y

(ft)

Z

(ft) (ft)

SEGMENT I

Direct Method

B.E.T. Method

23.5

19.7

-1.8

-1.2

-51.2

-24.4

SEGMENT II

Direct Method

B.E.T. Method

20.0

17.9

15.3

8.6

-51.1

-49.6

SEGMENT III

Direct Method

B.E.T. Method

27.6

27.4

8.6

8.5

-101.2

-24.5
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Table 5

Radars (N=3)

Mean Bias Error Estimates

—■—-______oördinate
X Y

(ft)

Z

(ft)Bias Estimate " -—______ (ft)

SEGMENT I

Direct Method

B.E.T. Method

-0.7

-4.6

4.3

4.5

-17.7

0.4

SEGMENT II

Direct Method 17.0

14.8

16.3

9.6

48.0

26.8B.E.T. Method

1

SEGMENT III

Direct Method

B.E.T. Method

44.0

43.9

21.3

21.5

12.0

76.4

The bore-sight readings from the first flight test exhibited a standard

deviation of about 0.003 degrees which was approximated during the second

flight test (Table 7). These were obtained using the same technique as for

the dial readings above.

As part of the editing of the above data for analysis, estimates of gross

reading error was made. An example of a gross error would be that a dial

reading differed from the other two by one-half degree—the two close

together are assumed correct and the other is then the anomaly. The reader

is mechanized so that a one-half degree recognition must take place by the

operator and so recorded. Errors of this kind ranged from a low of zero

percent to a high of one-half percent for the sets of dial data. Similar per

centages were derived for the bore-sight data analyzed.
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Table 6

Standard Deviation Estimates for Dial Readings (in degrees)

Azimuth Elevation

\ G-39 .0016 .0015

G-75 .0013 .0011

Table 7

Standard Deviation Estimates for Bore-sight Readings

(in degrees)

Azimuth Elevation

G-39 .0027 .0032

G-75 .0019 .0023

The DOVAP cycle count has been read by three methods. The most recent

method is by a DOVAP digitizer which replaces the Putman reader. The

initial method for reading was observing the cycles recorded on film.

Test data indicated that the digitizer data is, indeed, the best;

Putman next; and the hand reader last (Table 8).
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Table 8

Standard Deviation of DOVAP Cycle Count

~~ "—-—^Station

Method ~—~-^_ D-13 D-16 D-350■

Hand 0.06 0.05 0.05

Putman 0.04 0.04 0.04

Digitizer 0.00 0.03 0.02

Converted into loop range a standard deviation of 0.02 cycles

means about 0.26 feet.

III. SUMMARY. The results are quite similar for both flight tests though

there were definite changes in flight trajectory, instrumentation system

instruments, and many other day-to-day changes. The data reduction

procedures were essentially the same. Changes are to be made in the

DOVAP data reduction procedures for the data to be obtained in test three.

The most dominant feature of the test is the large bias present in the

data for the Z component. In general, the standard deviation is larger for

the Z component for a given tracking system.
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PANEL DISCUSSION ON SIMULATION

Chairman: Dr. Robert M. Thrall, The University of Michigan

Panel Members: Colonel Alfred W. DeQuoy, Chief,

Strategy and Tactics Analysis Group, Department of Army

Dr. John Hammersley, Oxford University and Princeton University

Mr. John Moss, Research Analysis Corporation

Dr. Gustave Rabson, The University of Michigan

Colonel Alfred DeQuoy, John Moss and Gustave Rabson were each asked

by Professor Robert Thrall to talk on various aspects and applications of

simulation. Dr. John Hammersley commented on each of these addresses,

and then added several pertinent remarks on some applications of Monte

Carlo methods. Following these comments, the Chairman opened the meet

ing to questions from the floor. The papers by DeQuoy, Moss and Rabson

are made part of this publication

U.S. ARMY STRATEGY AND TACTICS ANALYSIS GROUP

THE U. S. ARMY'S WAR GAMING ORGANIZATION

Colonel Alfred W. DeQuoy

MISSION, TASKS, AND FUNCTIONS. In July 1960, General George Decker,

then Vice Chief of Staff and now Chief of Staff, directed the establishment of

the U. S. Army Strategy and Tactics Analysis Group (STAG) with the mission

of "supporting Department of the Army operational planning and evaluation

activities by war gaming and allied techniques. "

The reasons for creating STAG were twofold:

1. The ever-increasing complexity of land warfare and cost of new

weapons and equipment required that operations research techniques be

used in attacking Department of the Army problems and that a digital com

puter be utilized to the maximum extent possible.

2. It was considered desirable that the Army have an "in-house" war

gaming capability in the interests of greater efficiency and lower costs.

STAG is a Class II field activity operating under the control and super

vision of the Deputy Chief of Staff for Military Operations. It is located
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in Bethesda, Maryland, adjacent to Washington, D. C. Its tasks and

functions are stated in AR 15-14, dated 11 September 1961:

1. Develop a land combat war gaming model for testing Army plans.

To the extent feasible, the model will be developed for application to a

large scale computer.

2. Conduct studies of Department of the Army problems using war

gaming and allied techniques as feasible.

3. Advise and provide technical assistance to other Army and Army

supported agencies in war gaming matters on request.

4. Provide Army participation, to include war gaming models, in

joint war games as required.

5. Maintain liaison with other agencies engaged in war gaming

activities as required in furtherance of STAG'S mission.

6. Perform other duties as directed.

Three terms mentioned in STAG'S mission, tasks, and functions may

need more detailed explanation:

1. War gaming. An operations research technique whereby the various

courses of action involved in a problem are subjected to analysis under

prescribed rules of play representing actual conditions and employing plan

ning factors which are as realistic as possible. (FM 101-51, p. 44)

2. Operations research. The analytical study of military problems,

undertaken to provide responsible commanders and staff agencies with

scientific basis for decision on action to improve military operations.

Also known as operational research, operations analysis. (AR 320-5)

3. Model. A mathematical representation of the most important

elements of a problem, their inter-relationship, and their logical sequences.

ORGANIZATION . STAG'S authorized strength for Fiscal Year 1962 is 92

personnel—41 military and 51 civilians. Plans call for a phased increase in

both military and civilian strength during the next few years. The military

consist of 26 Field Grade Officers, 1 Warrant Officer, and 14 Enlisted Men.
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The Officers possess a wide variety of backgrounds and experience, and

represent both the Combat Arms and the Technical Services.

Most of the civilian personnel in STAG are in the professional category.

They are either Operations Research Analysts or Mathematicians. As the

demand for such personnel is extremely competitive both within and without

the Government, the acquisition of personnel has been slow and an under-

strength exists. Many applications are received—few can meet the exact

ing qualifications.

Although highly trained in their individual fields of military science,

mathematics, physics, engineering, etc., it is necessary that all personnel

receive additional training in other fields associated with computerized war

gaming after joining STAG. Initial training consists of 85 hours of class

room instruction covering computer familiarization, formula translation,

operations research techniques, and probability theory. More advanced

training for selected individuals in some of these areas is given as necessary,

To accomplish its mission and objectives, STAG is organized functionally

to provide the military, scientific, and computer integration necessary for

solving operational problems.

Over-all direction is furnished by the Office of the Chief, which includes

the Chief and Deputy Chief, both colonels, and a civilian Technical

Director. A small administrative office handles the housekeeping functions

and performs the necessary administration. In addition, there are three

divisions, each consisting of two or more branches.

The Plans Division makes feasibility and applicability studies of DA

problems to determine the advisability of using war gaming techniques for

their solution. This Division advises and provides technical assistance

to war gaming activities throughout the Army, and also furnishes Army

participation in joint war games. It develops and recommends the policies

andover-all procedures governing the general methods and techniques to be

used in war gaming by STAG itself, and develops the analyses, evaluations

and supporting information to be furnished the Army Staff. In addition, it

evaluates, interprets, and appraises reports on the rules of play developed,

the approach and method being used in constructing war game models as

well as the conduct of the play itself.

The Operations Division has as its primary function the development of

a land warfare model capable of encompassing all types of land combat

operations. Here, as elsewhere in STAG, the "team" system is used in

which a military officer is paired up with a civilian operations analyst. The
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military officer provides the military logic and works with the civilian in

developing the mathematical equation translation for communicating with

the computer. This land warfare model will be accomplished through the

preparation and integration of submodels developed by various teams such

as Infantry, Air Defense, Nuclear, Logistics, etc. The Operations Division

also is charged with the development of models for miscellaneous DA

programs designated by the Plans Division through its feasibility and

applicability study procedure as suitable for computerized war gaming.

The Computer Division is responsible for the operation of an IBM 7090

and 1401 computer system and a newly designed visual data display

generating system which will be used in conjunction with the 7090. It has

the additional responsibility of analyzing various programming systems,

computer operating systems, and mathematical and statistics techniques, and

of implementing those which could be most effective . The Division must

program and code data and provide programming support for the various teams

engaged in developing war gaming models.

PHYSICAL SITE. Specialized facilities are required for STAG. It occupies

five floors of a new eight-story building. The seventh floor houses the 1401

and 7090 computer systems. The computer room was specially designed for

the 34 components comprising the systems, and includes a raised floor which

serves both asa cable-way for the interconnecting circuitry and asa floor

plenum to distribute conditioned air throughout the room. Since the system

generates considerable heat, an air conditioning system separate from the

building cooling system is required for the computer room in order to main

tain the permissible ranges of temperature and humidity, which are extremely

limited.

The entire eighth floor is devoted to war gaming. The Control Room is a

two-story facility containing two 15x15 foot screens. These screens reflect

the situation maps and statistical data as processed and updated by the

computer. The displays are electronically generated by a display generator

unit upon impulse from the computer, printed by cathode ray tube on selenium

discs, and projected as color symbology and alphanumeric characters over

background reference maps being projected simultaneously. Each of the

other two war rooms (Red and Blue) will be similarly equipped except with

smaller 7x7 foot screens. The Controller can, at any time, project the true

game situation on one screen and either the Red or Blue operations map on the

other. Or, by selective switching control, he can show the Red or Blue

commanders on their own screen the true situation or their opponent's oper

ations map. He can also recall on the screen within a few seconds any
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information previously shown. Direct inputs to the computer are possible

from each of the war rooms and the Control room making possible the play of

of either free or controlled games. An audio system provides the capability

of briefing and discussion without the necessity of assembling the players.

LAND WAREFARE GAME - CENTAUR. STAG'S major task is the development

of a model which will permit computerized war gaming of land warfare

sufficiently well to allow various analyses to be made and eventually to be

used to test the Army's operational plans, including the Army portion of

joint plans. This is a tremendously complicated task and will require many

years before it is complete. While the game will be computerized to the

maximum extend practicable, it must allow for human decisions to be

interjected whenever necessary or desirable. This has given rise to the

name "CENTAUR"—half man, half beast. The use of the computer is not,

of course, to replace the commander or his staff. It merely provides the

planners with speed in calculation (the 7090 can add up to 240,000 ten

digit figures a second), a tremendous "memory" (millions of items) and

reliability in performance infinitely superior to man. Instead of having the

results of only one long hand-played game, the game can be played over

and over on the computer in relatively brief periods of time until statistically

reliable results or at least a better understanding of the problem is obtained.

Changes can easily be made in the many variables to determine their criti-

cality and to perform other worthwhile analyses.

The complete land warfare game will be the largest and most complicated

computerized game ever constructed. While it will take years to complete

it, a less detailed CENTAUR game will be completed within a comparatively

short time so that initial work may be performed on some of the problems

confronting the DA staff, CONARC and the field commanders.

FIELD ARMY BALLISTIC MISSILE DEFENSE SYSTEM - (FABMDS) SIMULATION.

The Army recently awarded contracts to various civilian organizations to

determine whether it was possible to defend a field army against ballistic

missiles, and if so, the nature of such a system. An operational evaluation of

of these contractors" proposals was necessary in addition to R&D's technical

evaluation. STAG undertook this assignment since the model could, when

completed, be capable of expansion into a simulation of other air defense

systems of the field army and could thus be incorporated into the land war

fare game. The FABMDS simulation is now being run on the computer and an

operational evaluation of the proposed FABMDS is being made.
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RELATIONSHIP WITH OTHER WAR GAMING AGENCIES, since STAG has

been established as the DA's operational war gaming agency, the question

might arise as to its relationship with other Army agencies presently

engaged in war gaming and with civilian Agencies under contract to the

Army. Studies are now going on to determine which agencies should engage

in war gaming concerning National Defense. Insofar as the Army is con

cerned, the Chief of Staff has assigned this responsibility to STAG. Whether

some civilian agencies will be given authority to war game operational plans

under certain circumstances has yet to be determined. CONARC, the Army

Electronic Proving Ground, and other agencies, as well as some of our

service schools, are also interested in war gaming. Some for analytical

purposes, some for training, others for both. However, they have different

spheres of interest than STAG. CONARC, for example, is concerned with

the development, testing, and evaluation of doctrine (AR 10-7). STAG is

concerned with the Army's plans in the event of a war occurring anywhere in

the world. No other war gaming agency has been assigned this task.

One of STAG'S functions is to assist other agencies in war gaming. In

addition to providing technical advice, STAG will acquire information

regarding all Army war gaming and will serve asa focal point for the dis

semination of such information, thus helping to prevent unnecessary dupli

cation. No such facility has previously existed. STAG will also recommend

certain courses of action so that installations may prepare models in a

form usable by the others .

It is not desirable that all war gaming be concentrated at STAG. It would

be ideal if, in addition to other research, the Service Schools and other

agencies could devote some effort to maintaining the portion of STAG'S land

warfare model pertaining to their specialties (Artillery, Communications,

Logistics, etc.). These agencies have a vital interest in these portions of

the problem and are best qualified to analyze them. Some of the outputs of

these agencies would be inputs to STAG and vice versa. To some extent,

this will serve to integrate the war gaming being done by many different

organizations and will assure a steady forward progress rather than a series

of disorganized efforts. What is of even greater importance, a composite

picture rather than glimpses of isolated areas will thus be made available.

STAG is also studying means of establishing direct contact with various

major overseas commands, CONARC, the Army War College, etc., through

the Signal Corps' Data Link Transmission System for the purpose of exchang

ing data during the play of war games. STAG could process the data on its

computer and furnish required information directly to the co-participating

agency on which the latter could base its decisions.



Design of Experiments 591

Thus, STAG does not replace any existing war gaming activity. It

complements them. There are today throughout the Army so many problems

suitable for war gaming that the difficulty is not one of discovery, but

rather of selection. There will always be more requests for war gaming

than it will be possible for all existing organizations to perform.

STAG'S POLICIES AND FUTURE OPERATIONS. It is essential that STAG

be highly respected in both military and scientific circles. This objective

can be attained only by turning out a superior product.

In order to attain and maintain the highest standards, STAG has adopted

the following policies:

1. It will attempt to be completely objective in its work whether the

results are favorable to prevailing view points or not. It will then be up

to the DA staff to determine how the finished product should be used.

2. A close working relationship will be established with the DA staff

and other agencies, so that they may observe STAG'S work as it develops

and assist it with their comments.

3. STAG will prepare parametric models, i.e. , models which can be

expanded, contracted, or changed with comparative ease and simplicity.

As a general rule, models are developed for only one particular purpose,

e.g. , to test NIKE HERCULES. To change such a model to one capable of

handling other weapons systems or other factors is such a time-consuming

task that war gamers usually prefer to construct an entirely new model.

Preparation of a parametric model is difficult. One has to think of all

possible eventualities and provide for them in the program. The results,

however, are well worth the extra time and effort.

4. STAG plans to have the computer analyze the results of games in

certain cases rather than have the analysts do so. This will take much

thought and much time to formulate and program but will end up in a net

gain in time and effort.

5. All models will be documented, i.e. , STAG will prepare a detailed

explanation of the thinking which went into each model, what the various

courses of action were and why a particular one was adopted, why some

elements were incorporated and why some were not. Although this will be

time-consuming, it will enable others to provide constructive criticism and
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will permit STAG replacement personnel to understand, modify and improve

the models. Bases for war gaming models prepared by various other

agencies have not usually been recorded. When the original designers of

such models departed, their successors, lacking the time to analyze the

models in detail perpetuated errors in, or failed to improve the models

which they inherited. Rather than spend considerable time analyzing

existing models, agencies have considered it preferable to develop new

ones. This has led to unnecessary duplication of models and much

unnecessary expense. Undocumented models are not subject to criticism

because only the builders know their failings. No one will undertake the

task of examining them in detail because of the terrific amount of time

needed to do so. In its documentation, STAG will present its thoughts

and approach and will point out the limitations of the model as well as

its capabilities. This policy appears to be a novel one.

6. Most reports given the DA staff by civilian agencies are written in

highly technical form. The great majority of officers who receive these

reports for review have been away from mathematics too long to understand

readily the calculations leading to the conclusions and recommendations.

STAG proposes to issue reports in two parts. One for the military stressing

the logic involved and another in technical form for the scientific community.

In conclusion, STAG is a field activity whose primary interest is in

operational planning as distinguished from research and development. In

the accomplishment of its mission, both hand-played and computerized

games will be used as tools, but the productive force will stem from the

military and scientific knowledge and experience of its personnel.



NOTES ON THE SELECTION OF A COMPUTER FOR SIMULATION PURPOSES

John Hunton Moss

Recently, in a small group undergoing instruction in simulation techniques,

a portion of the course was devoted to simulating the queuing characteristics

of the Baltimore Tunnel. Various approaches to simulation were considered,

and it was decided to exploit an "interval examination" method, examining

the system at regular periods according to the resolution required in the

problem. The conventional approach toward defining the problem was

employed, empirical data being gathered to provide insight into the nature

of the arrival and service distributions (both were found to be negative

expotential in respect to interval between events). A time resolution of one

second was employed, again consistent with the assumptions requisite to

exploiting the Poisson curve, and the perturbations that might be expected

in the system asa function of time of day, day of week and other such

variables, were duly taken into consideration.

As is meet and proper, a flow chart [see Fig. 1 for general form] was

drawn up to the satisfaction of the class; the problem then arose concerning

the choice of the computer to be employed in the simulation. As is cus

tomary, the requirements imposed by the simulation were listed and the

consequent problem was simply to match these requirements to available

computers in the area. The characteristics of simulations which define the

variables involved in selecting the computer are as follows:

1. Arithmetic requirements

2. Logic requirements

3. Timing requirements

4. Storage requirements

5. Special requirements (random number generators, special

read-out devices, etc.).

Also pertinent but not directly characteristic of the simulation were:

1. Programming characteristics (learning time, etc.)

2. Time available (deadline of problem)

3 . Economics .
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Available in the area were computers running the gamut from desk models

up through the largest available digital computer facilities. Obtaining short

periods of time on these computers does not usually pose serious problems

for educational institutions, and accordingly the economic aspects were not

critical as they might have been for a commercial activity. Accordingly, it

might be worthwhile to list what turned out to be the real variables in select

ing the computer. These were as follows:

1. Availability of bootleg time

2. Geographic placement of the facility

3. Nationalities of the participants in the program (red tape associated

with classified facilities and foreign nationals)

4. Ease of programming.

Consistent with the limitations imposed by these restraints, a small,

nearby limited instruction, relatively slow, limited storage, drum-type

computer was selected, and the above problem was programmed for it. The

results were interesting in several respects. First, the real time mean

interval between arrivals at certain hours was on the order of three seconds;

the computer time interval for simulating the same period was on the order

of three minutes. The ratio of real time to computer time was approximately

1:60, which is to say that it would have taken a week and a half* to simulate

one hour of traffic flow through the system, or well over a half a year to

simulate a day in the life of the Baltimore Tunnel. Secondly, if such a

day had been simulated, it would have cost about $6,000 for one run of

one tunnel-day. Thirdly, the resolution of the output left a great deal to

be desired. Fourthly, changes in the parameters in the simulation would

have required radical reprogramming.

The same program had previously been put on one of the high-speed,

large-capacity digital computers; running time for a comparable tunnel day

was on the order of 30 minutes. Based on a $320-an-hour rental, the cost

per run was on the order of $160; the output had high resolution and the

program was easily subjected to changes in parameters. A third and still

larger facility actually required a longer time (42 minutes) at a cost per

run of $295.

The moral here lies not in the inadequacy of small computers per se,

but rather in the choice of computer to meet the requirements imposed by

the type of problem. Other types of problems might have been more

efficiently and more effectively handled by this small computer than by

Based on an eight-hour day, five-day week.
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larger. This particular simulation, as can be seen in the flow chart, is

top-heavy with random number generators, access to random variâtes, and

logical manipulations. The computer selected by the class group was

designed primarily for arithmetic exercises and was woefully inefficient

when exploited for this particular problem. It was selected, as might have

been expected, according to the variables that affected the decision; the

computer was not selected to match the problem but rather to match some

artifactual but pertinent restraints unassociated with the problem itself.

In general, the problem characteristics initially defined should be taken

into consideration in evaluating the proper choice of computer for a

problem and further discussion and clarification of these characteristics

might profitably be undertaken. Generally speaking, it is possible to

combine timing and storage. Computers of the large- scale digital type

may be described as having four types of storage capacity, rapid access

(usually a core), medium access (usually a drum), slow access (usually

tapes), and very slow access (punch cards). If a computer has relatively

high-speed operation times but relatively limited rapid-access storage

capacity, a large percentage of the operating time will be devoted (in a

normal healthy program) to moving segments of the program in and out of

rapid-access storage for manipulation; the apparent gain in efficiency

because of the speed of the operations is cancelled by the limitation on

rapid-access storage space. The relationship between these two variables-

speed of operation and storage capacities--will, on consideration, be seen

to hold for most types of programs, and accordingly these two variables

may not be held as being independent when considered in the light of

operational efficiency.

A second factor that must be taken into consideration in evaluating

computer selection is the weighting of the arithmetic operations to bring

about a reasonable estimate of the effective arithmetic timing of the

computer. In general, the operations of a computer may be broken down

into five categories:

1. Simple arithmetic (addition, subtraction)

2. Complex arithmetic (multiplication, division)

3. Logical (greater than/ less than, positive or negative, etc.)

4. Housekeeping operations (starts, stops, jumps, etc.)

5. Special (shifting operations, masking operations, etc.).
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Many computer operations are, of course, combinations of the above,

depending generally on the sophistication of the computer logic. In

general, however, it is possible to examine a program and obtain per

centages of the various types of operations employed in the problem and

on this basis to derive weighting factors which result in a more realistic

evaluation of the capability of the computer to fulfill the operational

requirements imposed by the problem or simulation.

In respect to logical requirements, generally it is possible to simulate

the most complex logical requirements with the most elementary capability.

For example, a computer having only one logical operation—a sign test—

can be programmed to use this test asa device for testing for equality,

zero, relative magnitude and the like. The larger computers have these

manipulations as separate commands, thus in some respects simplifying the

programming, albeit not adding significantly to the potential versatility

of the equipment. The mere number of logical operations does not

necessarily reflect increased capability, but rather programming ease.

Another example of programmable versatility may be applied to those

computers not having direct Boolean* capability. Almost without exception

it is possible to program such computers so that they may operate in

Boolean mode, despite the fact that the initial list of commands does not

include this capability.

It has been suggested that timing and capacity can be related, arithmetic

operations can and should be weighted to fit the program requirements and

that the logic in a computer can be expanded at some cost in programming

time and ease; the effect of these factors is that differences between

computers are not so significant as might appear at first glance. (Interest

ing in this respect is the capability given to computers by manufacturers

to simulate much larger, more versatile and technologically improved,

newer models.) Computer manufacturers tend to play leap frog such that

one after another comes out a little bit ahead of the rest in terms of speed,

capacity, and versatility, but in many cases a computer which might be

rendered obsolete for certain types of operations might be more than

1

In arithmetic addition one plus one normally equals two; in Boolean

manipulation, the conjunct of two unities cannot exceed unity (one plus

one equals one). It can be seen that a purely Boolean capability would

be inconsistent with effective arithmetic operation and the consequent

necessity for having this capability only as ancillary to the arithmetic

capability.
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adequate in other respects. In other words, the state of technological

advance is not always a valid criterion in selecting a computer.

In selecting a computer for simulation purposes, two sets of variables

should be introduced and are here restated for discussion purposes.

PROBLEM-ORIENTED VARIABLES.

1. Capacity requirement of problem

2. Timing requirement of problem

3 . Versatility of operation requirements

4. Programming requirements

5. Time frame

6. Special requirements in output, special manipulations

and the like.

ARTIFACTUALLY-ORIENTED VARIABLES.

1. Location of computer facility

2. Cost (based on integrating capacity, operation times

as well as programming costs, etc.)

3. Availability of access to facility

4. Availability of qualified programmers.

In fact, in most cases the artifactual variables will tend to be over

riding. In respect to cost it has been possible to compare two rather

different simulation programs, the first having quite different operational

requirements from the second, to run them on different computers and to

compare the operating costs. The table below shows these relative costs;

programming costs are not included.
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Table 1

RELATIVE COSTS AND RUNNING TIMES

Program I Program II

Computer Cost/Hr Time/Run Cost/Run Time/Run Cost/Run

A

В

С

D*

$ 5

$320

$420

$760

72, 000 min

30 min

42 min

1 6 min

$6000

$ 160

$ 295

$ 212

52 min $280

$225

$ 89

32 min

7 min

♦Program timed but not run; therefore figure is approximate— +10 percent.

The first computer is the facility referred to earlier; the second, third

and fourth computers are "popular", high-speed digital computers, all of

them scientific types . The significance of the above figures lies in the

fact that where one computer may better fulfill the programming requirements

of a given type of problem, it may be relatively inadequate for a different

problem. These differences may seem relatively slight at first glance, but

consideration should be given to the fact that each of these simulations may

be repeated numbers of times for changes in parameters and variables, and

this can result in significant differences in costs.

In general recapitulation, simulation requirements and computer charac

teristics would under ideal circumstances be matched against an economic

or other criterion to provide optimal computer/simulation rapport. In fact,

other factors enter into the selection of a computer in most cases, these

being of the artifactual quality previously described. Inasmuch as it is

rare that the simulator can afford the luxury of an assortment of computers

to select from, he is usually subject to the "Craps Game Restraint" .

Accordingly the foregoing notes are directed toward providing criteria not

for optimizing the computer selection procedure, but rather for suboptimi-

zation. Perhaps the ultimate approach to selecting a computer for a

simulation would be the design of a computer program which would have

1

A scientific computer generally has different and more logical capability

than a business-type computer and is designed for handling a much

larger variety of problems than a business computer.

2
If one wants to play craps and there is only one game in town, the choice

of where one plays is academic.
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appropriate decision rules and could evaluate the effectiveness of various

computers in meeting the requirements of the given simulation. But how

would one decide on the proper (and unbiased) computer to accomplish

this task?



REMARKS ON STOCHASTIC SIMULATION

Gustave Rabson

1. WHY SIMULATE?

1.1. Let us consider a relatively simple problem. How fast does the

population of a primitive organism increase under ideal conditions? Let

us assume that reproduction is by fission: i.e. , after a certain amount

of time each organism is replaced by two new organisms. If we assume

that each organism splits after one unit of time, we have

„(О-ргМ-Р.С'И*

О о

n(t) is the population after t units of time« [t] is the greatest

integer less than or equal to t, Mi is the natural logarithm, P is the

о

initial population and e is e.

If this seems too simple, we can make it look deeper by applying

differential equations in the classical way:

An ■ knД t

for which we argue

n = P e

о

Although this approach looks deeper it really is not. The solution

suffers from the same defect when we consider it as a model for the true

situation. The length of time to fission is really a random variable in

the first formulation and к is a random variable in the second formulation.

If we want to apply this to life, we must ask the question:
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Does the solution represent an expected value for the population oris

it only an asymptotic value?

1.2. We may attack the problem analytically by means of some

simplifying assumptions. Let us define:

x(t) = size of population at time t

v (t) = E |x(t) | x(0) = n}

we then have

v (t + dt) = EJx(t + dt) | x(0) = n\

Let us divide our interval t + dt as follows:

H

dt t + dt

and, assuming that the probability of a birth in the interval dt, given

population n, is Andt, we have

v (t + dt) = v (t) Andt + v (t) (1- Andt)

n n + 1 n

From this we obtain

dv

n = An (v , - v ), n = 1, 2,

dt n+1 n

with
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v (0) = п.

n

But

v (t) = nv (t) .

n 1

So

dvi = A(v -v)= Av.

1T~ 2 i l

From which we obtain

/пч At At

v = v (0) e = e

and

u\ At
v (t) = ne

n

So we see that ne is actually the expected population at time t.

It may be possible to continue this type of analysis in order to try to

answer such questions as: Is there a limiting distribution of ages in the

population and, if so, what is it? However the analysis becomes more

and more complicated. Furthermore, the use of such analytic techniques

is rather chancy. We may be able to solve the problem after a few days

—but then again we may not be able to solve it at all. Furthermore, what

about the assumption that the organism is equally likely to split at any

time? This is certainly unrealistic. We may be able to develop a theory

about when an organism is likely to split but until then we will probably

want to use laboratory data.



604 Design of Experiments

1.3. While a solution by simulation methods is often unsatisfying, in

the sense that Alexander's cutting of the Gordian knot was unsatisfying

nevertheless, it is extremely powerful and can be based on experimental

data. For the problem discussed above we may assume that we have lab

oratory data giving the distribution of ages at which splitting occurs,

P(Cf) representing the fraction which split before reaching age <X .

The flow chart in Figure 1 will enable us to study the growth of the

population and the changes in the distribution of ages.
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Start

Enter initial population
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©

Select entry from TSR with

least first coordinate, t.

For each entry (t , C( .)
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TSR and delete (t) .

Figure 1.
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1.4. The situation can easily become much more complicated. Let us

consider for example the problem of growth in a limited environment. The

classical approach to this problem is by means of the Verhulst-Pearl

logistic curve:

dN K-N

sr - aN T-

where К is the maximum number of individuals that the population can

support .

This seems to have the desired properties that as N approaches К

the growth rate decreases and that N = К is stable. However, this

approach ignores the stochastic nature of the problem so that, as in the

first approach to the problem of the unlimited environment we do not know

how to interpret the solution. Furthermore many other functional forms

have the same qualitative properties, e.g.:

dN

dt

■ aN( К )

dN

dt
= aN cos Т7Г

1.5. Of course we have only scratched the surface of useful complex

ity. In order to study problems of parasitology and epidemiology we will

certainly need to be able to handle at least the problem of a prey and a

predator. This can be studied in a natural way by means of the following

model.

A model such as this can be used to study such questions as

(1) The types of conditions under which both systems can coexist.

(2) Conditions that lead to oscillations in the populations.

(3) Distribution of ages.
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This model represents a computer simulation of a laboratory experiment

performed by С. B. Huffaker (Reference 2) in which he took two species of

mites a prey (Eotetranychus sexmaculatus) which ate oranges and a predator

(Typhodromus occidentalis) which ate the prey. Huffaker placed several

oranges on a tray and separated them by barriers (vaseline lines) which

were semi-permeable to the mites. Although such a laboratory experiment

has the advantage that the biological constants involved are reasonable

approximations to those found in nature it has the disadvantage that after

a while the oranges grow moldy and that we are limited to studying only

species which actually exist and can be grown in the laboratory. Experi

ments with a computer simulation can be validated by comparison with

laboratory experiments, then used to fill in many more points on the curves

showing how the population size varies with the biological parameters.
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1.6. My point, so far has been that, while analytic solutions to

complicated stochastic models are highly desirable when they can be

found, searching for them is somewhat chancy and they often involve

assumptions which are made simply to make the mathematics more tract

able. Furthermore, the solution is likely to involve gamma functions,

definite integrals, etc. , which we find acceptable only through familiarity.

A flow chart is a function also, it is admirably suited for calculation,

and deserves to be recognized as a legitimate analytic technique.

2. Technique of Modeling

One idea that is very useful in modeling and which perhaps has not

been exploited as fully as it deserves is the idea of the time status

record (TSR). In an air traffic control system, for example, it is possible

to update time by an amount. At and estimate the position of each air

craft. However, the system operated only at discrete points and we will

find that the computer is not really doing anything until the aircraft

reaches one of the critical points. A program based on the time status

record would not update time regularly but would keep a list of critical

events (the time status record or TSR). The earliest event is selected

from the list, processed, the list is modified on the basis of the processing

and the earliest event is chosen again. I have illustrated the two methods

in my two flow charts using the TSR for growth in an unlimited environment

and the time update method for the prey-predator relation.

3 . Purpose of the Model

In the above discussion we have introduced models for the purpose of

determining desired distributions with a given degree of confidence. This

implies that the model will be used with an experimental program to deter

mine the distributions. This fact should be kept in mind throughout the

course of the construction of the model since the experimental design will

determine which factors must be varied (and therefore present) and which

numbers are to be collected. It is obviously very embarassing to develop

a model that does not include certain factors which it is desired to vary—

but it is also embarassing to have a model which includes many more factors

than one really wants to consider in the experimental design.

In determining the experimental design one needs to have some insight

into the number of experiments that will have to be performed. It is a

simple matter to estimate the number of runs required to determine
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— with 95% confidence by means of Buffon's needle experiment. We have

400 trials for 1 decimal accuracy and this goes up by a factor of 100 for each

additional decimal place so 40,000 are required for 2 decimals and

4 x 10 for 3 decimals.

Several years ago I read a letter in one of the professional journals, by

a well known psychologist who had tried the experiment 100 times to obtain

a value of 3 for ir . But no matter how many times he continued, he could

not improve the estimate. He argued that this was due to lack of control

of the initial conditions and that the Buffon needle should be dropped

through a staw properly aligned with a plumb bob onto a sheet of paper

which was flat and horizontal, etc. While he may be right in his require

ment for more accurate controls, he really missed the basic point which is

that the number of trials required goes up by a factor of 100 for each addi

tional decimal point.

It appears then that Monte Carlo simulation of very simple problems

may require an exorbitant number of runs. I have heard the remark made

that for more complicated problems the law of large numbers can be

invoked to reduce the number of runs. This may be true but I have not

seen any mathematical justification of the remark. However by invoking

certain variance reducing techniques, like the method of antithetic

variables introduced by Hammersley and Morton * ' or the techniques

discussed by Herman Kahn* ' in his report, we may be able to cut the

number of runs down to something manageable. I do not believe that

modelers have made as much use of these techniques as they should.

One technique that can sometimes be used to reduce the size of the

experiment is to examine only the worst cases. This is sort of a minimax

principle. We are not interested in winning an average war but a particular

war. Consequently, perhaps we can assume that everything goes right

for our enemy and wrong for us and see how badly we will do. In air

traffic control, we would not be satisfied with a system that works well on

the average, we want one that is adequete under the worst conditions—so

perhaps we should assume Murphy's law "if anything can go wrong it will"

to determine what will happen.

Sometimes a model is so large that it becomes out of the question to

run any extensive experiments with it. I once asked a man who had built

such a large model what its purpose was if he could not use it to perform
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experiments and he answered that "he just wanted to see the kind of thing

that could happen". That is to say. that the purpose of the model was not to

determine a distribution but to "educate". It seems to me that this is a

legitimate purpose of a model but that, if this is indeed the purpose, the

model should be prepared with that purpose in mind. Who is to be

educated? Is it the computer, the programmer, the systems engineer or

the administrator? Perhaps a semi-automatic type of model is best

suited for educational purposes, that is a model in which the person to

be educated plays a role in the simulation.

4. Validation

The most obvious remark about validation is that it is impractical. This

is so obvious that it need not be said at all, however, if I do not say it,

everybody else will.

A model is a function with an input and an output. To validate a model

we would have to examine every input and show that we get the correct

output for it. In a digital computer there is only a finite number but a big

one.

The fact is that it is not easy to know what the "correct value" of the

output should be. "Reality" can be approached only through models. Even

in relatively simple cases the best that we can do is to use a statistical

reduction of some simple data in lieu of reality. Consequently, we should

probably never say that a model is valid but only that one model is a valid

interpretation of another.

One approach that can serve to give us more confidence in our model

would be to compare two conceptually different models. For example, a

computer model and a field test.

Once we have obtained validation at some points by comparing the

model with one that is acceptable as a standard, the problem of complete

validation may be looked upon as a problem in interpolating or extra

polating the model (which is really a function) . It may be that some

classical results from interpolation theory would be applicable.

In a way perhaps we are taking the, problem of validation too seriously.

The canonical situation is that the modeler has complete confidence in

his model because he understands it, but the administrator does not. The

administrator doesn't admit that he doesn't understand it so he find a

horde of objections about things that the modeler ignored. The modeler
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duitifully runs out to add these factors to his model in such a way that they

have the least effect possible. But the administrator is still not satisfied

and adds more factors. Finally, the model and the modelers are so con

fused that nobody believes in the model anymore, and the administrator,

if he is so unimaginative that he cannot think of any more factors raises

the issue of validation.

Perhaps a more realistic approach would have been to do a more

thorough job of transmitting the modeler's confidence to the sponsor in

the first place. "Briefings" are not enough. In-many cases an educational

type of model in which the sponsor can actually play a role might be more

convincing.

5. Some Problem Areas

I would like to close by summarizing some of the admonitions and

problems on which I have touched.

5.1. When is a deterministic model, or an expected value model

adequate? When do we need a stochastic model?

5.2. Do we want to use the time update method of modelling or the

time status record? Are there general theorems that would enable us to

make this decision? This is, of course, related to the question of

estimating the time and storage capacity required.

5.3. How can we write our program in such a way that the scientist

has as close contact as possible so that he can monitor it and make

changes while it is running? This is related to parallel programming and

time sharing.

5.4. How can variance reducing techniques be used in simulations

of large scale systems? Are we really interested in studying the entire

distribution or only the worst cases? Is there some sort of law of large

numbers that saves us if our model is complicated enough?

5.5. Would a semi-automatic model better serve our purpose?

5.6. Another problem that should be mentioned, although I have not

touched on it, is the problem of generating functions and distributions.
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At the present time a great deal of storage and input of our models is

devoted to this. However, various recent advances indicate that there

are many clever techniques that can be employed to effect considerable

reductions.

5.7. A final problem of considerable interest and importance is

the problem of debugging. We must develop efficient and accurate

methods for discovering codeing errors.
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PICATINNY ARSENAL TRAINING PROGRAMS IN STATISTICS

A. BuIfinch

Picatinny Arsenal

Early in our effort to further the use of statistics in the R&D work at

PA, it was realized there were two major problems in attaining this end:

1. Selling the value of statistics.

It was decided that the basic approach would be one of selling, not one

of executive order or decree. Since the project engineer is the responsible

party for the development of hardware and the solution of problems, he

should decide whether statistics is needed in any particular program.

Otherwise he is reduced to a technician or an errand boy. This is not to

say that the engineer should not have help. He should have. But we

feel the help should be in the form of a training program. Not for the

purpose of converting engineers into statisticians but for the purpose of

using the training as a form of selling. A man responsible for completing

an assignment in any field of endeavor will not use methods he is not

familiar with and does not understand. In this sense we use training pro

grams to give engineers an understanding of the new subject through

systematic study and demonstrated application.

2. Communication between statistician and engineer.

Engineers and statisticians look at problems from entirely different

viewpoints. The engineer focuses his attention on the concrete item and

what it can do, while the statistician views the item in the abstract, and

focuses his attention on the numerical values of measurable character

istics and what they represent. As a result engineers and statisticians

have difficulty understanding each other. Our training programs are

intended to alleviate this difficulty by teaching the engineer statistics

rather than vice versa since the engineer holds the prime responsibility.

We feel training of this kind can help the problem of communication in

two ways: (a) Statistical training teaches the engineer how statistics

can help him in his work and makes it possible for him to recognize situ

ations in which statistics can be usefully applied. When situations of

this kind occur the trained engineer can determine whether he needs a

statistician; (b) If he calls on a statistician for advice he knows how to

present his problem. This is most important since to exploit the value of

experimental statistics, a close cooperative effort is required between the

engineer and statistician.
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Nearly a year was spent trying to find outside help to teach statistics

at PA during working hours. The large number of people we planned to

train made consideration of holding classes outside of PA impracticable.

Holding classes after hours would add transportation and other personal

problems to workload and absentee problems during hours. It is intended

that every reasonable effort be made to encourage interest and partici

pation by those people who are directly responsible for conducting experi

ments. We are especially interested in training first line supervisors

since they are in a position to make greatest use of statistics.

Our effort to find outside help failed. In desperation we started the

training program without outside help. This approach proved to be

successful as shown by questionaires answered by the students and their

supervisors and by the dollar savings made. In one instance, a testing

program was planned without the use of statistics and then revised using

experimental design techniques. As a result more information was obtained

and a direct dollar saving of $360,000 was affected. This was accomplished

in a testing program for only one component of a single missile system.

A training program has been started for reliability. Initially more than

25 government, educational, and industrial installations were contacted

seeking help to conduct a course in reliability at PA during working hours.

Again we were unsuccessful. We are now planning to conduct this train

ing, without outside help.

We feel the need for training our engineers in the statistical aspects of

reliability is more urgent than teaching the general subject of statistics.

The problems in realiability are completely insurmountable without

statistics. Since the technology of reliability is too new to be included in

many engineering curriculums we cannot expect to hire reliability engineers.

As a result we feel that PA must continue to furnish this supplementary

training until more schools include this subject in their engineering courses.



A REVIEW OF A STATISTICAL WORKSHOP

Walter D. Foster

U. S. Army Chemical Corps, Fort Detrick, Frederick, Maryland

and

Theodore W. Horner

Booz-Allen Applied Research, Inc., Bethesda, Maryland

This statistical workshop was conceived and executed as a joint pro

ject by the Biomathematics Division at Fort Detrick and Booz-Allen Applied

Research, Inc., Bethesda, Maryland. It was the purpose of this work

shop to arouse interest in statistical methods as applied to specific pro

blems arising from the subject matter field of Aerobiology . As such, the

entire program was oriented clinically towards problem solving. The

conference was arranged four afternoons in a working week, with emphasis

on consecutive meetings lest the continuity from one session to the next

be diminished by increasing the intervals of time between sessions.

The overriding principle underlying the presentations of each afternoon

was the simplicity of approach, stressing non-technical aspects of statis

tical principles. In no case was any speaker allowed to become involved

in an extensive derivation of statistical theory or probability underlying

the methods described. Nor was the session allowed to become merely

a recipe of sterile methodology with illustrated examples of application.

Rather, it strove to depict the principles of statistics as applied to an

experimental situation in terms both appealing and attractive as well as

understanding to an audience whose formal statistical training was

assummed to be near zero.

The session on the first day was opened by a message from the Chief

of the Aerobiology Division at Fort Detrick, followed by a message to

workshop participants by the Chief of Biomathematics Division. To set

the stage for the first technical session, an experimenter from whose

field of application this particular problem was taken gave a fifteen

to twenty minute presentation describing the background of the problem

from current results, and the need for this particular unit of experimen

tation, indicating objectives of this experiment in his presentation. The

second speaker was a statistician. It was his job to synthesize the

problem from the subject matter terminology into statistical terminology

as simply and directly as possible. Ten to fifteen minutes were allowed

for this.
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Adhering to the criterion that no uninterrupted session should proceed

more than an hour without a break, two or three coffee breaks were

scheduled per session. At this point, a coffee break intervened.

The third speaker was also a statistician whose purpose was to des -

cribe in non-technical terms, the principles and basic concepts of certain

applicable and appropriate statistical methodology primarily aimed to

answer the questions of the second speaker who had synthesized the

problem to a statistical one. This presentation of the concepts of statis

tical methodology was given a full hour with a question period scheduled

afterwards.

After a second coffee break, the second speaker, the statistician who

had synthesized the problem, returned to give the application of the

statistical methodology to the specific questions raised by the experimenter

and to give his interpretation of the results. The example chosen was

specifically selected to illustrate the principles involved in the analysis

of variance techniques. After the finish of the presentation by speaker

No. 4, the floor was thrown open to discussion. This was the end of

the session for the first day.

The second session was centered about linear regression as a statis

tical methodology, introduced again by means of a particular problem in

the subject matter field. The first speaker presented a problem from the

subject matter point of view in a ten minute speech. A statistician was

asked to translate the problem from the subject matter field to statistical

questions susceptible of specific answers. A third statistician then gave

an outline of the concepts and fundamentals in the statistical methodology

of linear regression for answering these questions raised by the second

speaker. After the break, a third speaker again a statistician, undertook

to apply the principles to the specific questions and endow his results

with interpretations in terms of subject matter terminology. A surprise

was in store for the audience at this point, for the data, as data often do,

failed to conform to the expected behavior indicated in the initial state

ment of the problem and the following synthesis to a statistical question.

After a coffee break, the third statistician indicated the nature of this new

problem to the original synthesizer, explaining ramifications involved in

the data and asking for a re-synthesis on the basis of the information

provided by the data through the analysis as far as it had been carried.

An additional synthesis was accorded the data by the second speaker.

The synthesis then required additional methodology from the third speaker,
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who then expanded his original remarks to include a prescription, again

in conceptual and simple terms, for the difficulties indicated by the first

inspection of the data. The opportunity for describing model building was

not lost and even though some of the derivation and procedures used in

model building were taken for granted by the audience, it was worthwhile

re -presenting these to show that a statistician must ever be alert to create

models and to use existing ones which are appropriate for a given situation.

As usual, there were periods for discussion either after each presen

tation, or if a speaker desired during a discussion for clarification of cer

tain points. It was gratifying to discover a rather spirited discussion in

the presentation of the problem involving the linear regression method.

Since it was the avowed aim of the entire workshop to arouse interest

in the statistical methodology, the high point of the entire workshop ■

centered around a statistical game which for a catchy title used the phrase

"Ye Olde Confidence Game." A full description of this game and its results

are not given here but separately by Dr. Horner in a paper with this as a

title. The playing of this game and the interpretation of the results, while

not occupying a full three hour session, was considered sufficient for a

session without adding additional material.

The final session of the fourth afternoon involved a major presentation

by a statistician who described additional statistical tools in their con

ceptual form as opposed to either theory or derivation. Very brief appli

cations of each suggested tool were included even though these applications

may not have been appropriate for the particular subject matter field of

Aerobiology. Nevertheless, this particular presentation was very well

received by the members of the audience.

A second topic for the last session involved a panel discussion by

five statisticians on a series of questions originating from the subject

matter field. The questions had been collected, described in a short

paragraph and circulated to the panelists well- before the session itself

in order that they might have cogent and appropriate remarks without the

need to investigate the problem during the session itself. Another

panelist was "planted" in the audience to stimulate discussion from the

audience during the panel discussion itself. A moderator for the panel

at the close of the discussion for each problem then summarized the degree

to which each problem had been answered and suggested the completeness

of each answer as possibly applied to the particular situation which gave
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rise to the question. The workshop was then summarized by the Chief

of Biomathematics Division at the end of the fourth session.

In order to make the entire workshop as attractive as possible, each

speaker came prepared with hand-outs covering the gist and extent of his

own presentation. Each hand-out was given to members of the audience

at the beginning of each speaker's presentation as a visual reference for

the material as the speaker progressed. A notebook was provided each

member of the audience with spacers included to help organize. the

several sessions. In this way the members of the audience were able to

take away from the workshop, a notebook of some hundred pages together

with their understanding of the material as it was presented.



YE OLDE CONFIDENCE GAME

Theodore W. Horner

Booz, Allen Applied Research, Inc.

Walter D. Foster

Biomathematics Division, U. S. Army Chemical Corps

A scientific investigator throughout the course of a lifetime may have

occasion to examine many sets of data. In some of these, real treatment

differences may be present; while in others such treatment differences

may be either nonexistent or sufficiently small as to be without interest.

In some sets of data the investigator may wish to form an opinion as to

the existence of real treatment differences. He may do this simply on

the basis of a visual examination of the data, or he may employ some form

of statistical methodology. In regard to visual examination there are

undoubtedly individuals who have a "feel" for numbers either natural or

acquired. In order to obtain a somewhat objective measure of this

ability, a game entitled "Ye Olde Confidence Game" has been designed.

A confidence game is generally the name of a game (e.g. , the 3-shell

game) which looks attractive to the taker but in reality is fixed to "fleece"

him. The "victim" obviously feels he can beat the game, but seldom does.

The title of this game was suggested by the confidence interval, which

plays such an important role in statistical methodology.

The purpose of the game is to enable participants to compare intuitive

conclusions drawn solely on the basis of visual examination of data

items and treatment means with correct conclusions known from the way

the data were constructed. Each game participant is asked to examine

eighteen sets of data which are different for each player; Exhibit 1 shows

a sample. Each data set has ten observations on each of two treatments,

an A treatment and а В treatment. The observed means for each treatment

also accompany each data set. In some sets, the true treatment difference

is zero, in others there is a small difference, while in others there is a

large difference. The three types (1, 2, and 3) do not occur with equal

frequency. The sets examined by each player constitute a random sample

of the three types. Each player has a different random sample. The

player is asked to decide whether the true treatment difference is zero

or non-zero and to record his conclusion for each set as A = В or A^B.

The participant with the highest number of correct answers is judged the

winner of the game.
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In addition to competing with each other, each player also competes

with the statistical F-test at the five per cent level. Like the participant,

the F-test for any particular set of data may indicate an erroneous

conclusion. However, in those sets in which the true treatment difference

is zero, the F-test should enable the correct conclusion to be drawn

95 per cent of the time. In those with a small treatment difference, the

correct conclusion should be drawn about 76 per cent of the time, and

in those with the large treatment difference, 100 per cent of the time. In

the present game, data sheets are available for 100 players.

This game was first used at a Statistical Workshop for a department

composed primarily of biologists. The percentages of correct answers

from participants in the Workshop are shown below:

Type of difference Percentages of correct answers

Workshop Expected onparticipants basis of F-test

1 73.6 95%

2 74.4 78%

3 88.4 100%

In constructing the game, the following model was used to generate

the sample observations:

yij =

u - D/2 + e¿j for j = 1

u + D/2 + ei t for j = 2

where y is the it" (i = 1, 2, . . . n) observation on the j treatment,

u is a constant, D is the true difference between the treatments, and

e^j is a random error deviation. The e's for both treatments were random

observations from the same normal population, this population having a

mean of zero and a variance of б . The parameters u, D, and С were

randomly chosen for each data set within the restriction of the type of

true difference (none, small, and large) assigned at random to the data

set according to certain probabilities.
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The computations needed in developing the game were performed on

the Remington Rand Solid State 90 Computer at Fort Detrick. The authors

are indebted to Mr. Arthur J. Dukes of the Biomathematics Division at

Fort Detrick for programming the calculations.

For the benefit of the reader who would like to try the game, the key

for the data sets of Exhibit 1 is attached as Table 1.

The game is a simple one to administer and score, and a set of data

sheets and an instruction booklet can be made available to interested

groups by writing to Dr. Foster.
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3 k 6:
/™

1
сi

A в А В А В А в А В А В

593 484 674 468 250 318 462 631 157 186 443 447

491 564 553 525 318 273 526 597 1бО 136 469 563

657 621 461 641 333 253 551 583 lí+7 144 412 562

510 573 685 775 291 239 622 573 115 146 384 550

595 568 477 623 335 314 595 489 117 152 338 488

51З 632 622 662 284 275 540 629 165 133 458 406

624 670 655 682 276 314 527 711 151 155 423 51h

605 6 50 600 674 275 ЗЮ боб 576 179 156 489 436

579 570 590 582 383 326 533 58о 145 16 5 436 588

566 474 685 541 295 374 бзо 652 190 151 491 510

573 581 600 617 304 300 559 602 153 152 4з4 512

е
t

I7 9 1С 11 12i i
1

A в А В А в А В А в А В

245 125 130 196 230 209 253 299 486 372 157 330

240 l8i 209 161 250 321 191 278 609 562 1б2 300

2jk 192 186 217 259 282 237 312 476 461 176 291

34l 244 191 207 202 230 237 296 461 397 . 196 329

244 200 189 184 2Р7 219 240 252 387 554 201 321

195 203 210 203 240 224 229 259 боб 443 216 283

193 188 202 162 228 157 242 282 531 387 154 216

243 ЗО7 171 170 261 238 245 216 567 551 211 304

207 193 115 186 225 234 195 294 400 272 199 266

253 184 128 162 ЗЮ 243 213 277 боб
№

168 256

244 202 173 1Ô5 250 236 22Ö 276 513 441 184 2Ô9

12
< II» И 1É 17

•
18

A В А В А в А В А в А В

61O 484 492 653 531 477 174 215 319 350 294 456

579 411 637 543 449 399 Пб 239 452 173 347 496

1+57 373 6о4 632 368 6о8 195 201 645 447 353 443

537 398 645 551 626 714 182 204 408 565 288 438

611 569 531 624 799 470 203 203 386 477 326 344

642 390 599 638 боб 485 230 228 369 547 415 566

517 446 550 445 512 650 164 187 496 461 441 387

596 373 620 593 405 509 197 259 417 410 428 436

687 304 476 503 525 353 216 205 373 525 357 517

528
4T6

562 525 475 бзо 148 216 6.3.5 546 313
ÏÏÎ

57¿ 422 572 572 530 529 1Ö4 216 450 450 356 448
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Key for Page 1 of "Ye Olde Confidence Game"

F test result at

0.05 Significance Level

Non-significant

Non -significant

Non-significant

Non-significant

Non-significant

Significant

Non-significant (Type II error)

Non -significant

Non-significant

Significant

Non-significant (Type II error)

Significant

Significant

Non -significant

Non -significant

Significant

Non-significant

Significant

Data Set Correct Ctinclusions

1 A= В

2 A = В

3 A = В

4 A = В

5 A= В

6 А /В, 2

7 A^B, 2

8 A = В

9 A= В

10 А /¿В, 2

11 A^B, 2

12 A^B, 3

13 A^B, 2

14 A = В

15 A = В

16 A^B, 2

17 A = В

18 А /В, 2





ON LINEAR REGRESSION SYSTEMS

William S. Mallios*

Booz, Allen Applied Research, Inc.

I. SUMMARY. Methods are given for the joint estimation of the co

efficients in a system of (a set of simultaneous) linear, "predictive, "* '

regression models, where the predictor (independent) variables are at

least controlled but not necessarily the same from one model to the next,

and the errors are correlated between, but not within, models; e.g. , let

there exist, say, q models which correspond to q characteristics of an

experimental unit; if q response type variables are measured from each of,

say, n randomly selected units, then it is assumed that the q measured

variables are correlated within, but not between, experimental units.

When the correlations are known, joint or weighted least squares is

applied in increasing the precision of some or all of the coefficient esti

mates (except the intercept terms) relative to the precision of the separate

least squares estimates, separate with respect to each model. In the

likely case where the correlations are unknown, an iterative estimation

scheme is proposed along with a sufficient condition for convergence and

an approximate covariance matrix for the resultant estimates. With un

known correlations, the precision of the estimates is possibly increased.

The foregoing is then discussed with regard to its practical implication

in not only multivariate problems, but also in those of a univariate nature.

II. GENERAL ASSUMPTIONS. Suppose the mechanics of an event or

phenomenon of interest are to be studied through q of its characteristics.

Let "T}1 = (t)i/ Tlo' *••' "Л-* •••/"П ) denote a vector of uncontrolled,

random (from one occurrence of the event to the next) variables with TQ

being a true measure of the characteristics for a particular occurrence of

the event. Denote by _£' = (^,, *§,' •••/ &i# •••/ |D) a set of

controlled variables associated with the event, and suppose that only a

subset of | need be used as a predictor for any particular 7) ..

*

Formerly at North Carolina State College
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By specifying the f. in

(i) Y^j = fj(!l(sj)' ¿r h + e\

there results a set of hypothesized structural regression models where

t\ (s.) and £ are either identical to or a subset of Л and $■ respectively;

- J J _

3 . is a vector of unknown parameters; and G is the model error which

~J j

is assumed additive for all models. With the models in (1) being linear,

the reduced form of the models is, say,

Pj

(2)

Г %> +Z *«*и + ¿r

Example 1. If q - 2, p = 3, £' = (£j, £ v £ J = (è {l £ v £3),

and the hypothesized structural models are

<3> ^1- ¿01 + Ml + ¿21 *î + ¿31*3 ♦ ¿«^ + '¿1

W) ^2 = ¿02 * ¿12*1 + '¿2

then by substituting (4) into (3), the reduced models become

<5> Л1 - *bl + *11E1 + *2l*î + ^31*3 + ¿1

and (4) where *Ql = ¿Q1 + ¿31¿02, /3 ц = ¿ц + ¿31¿12,021- ß 21'

A31= ¿31# and êlm ё + ^31e2.
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Let the 1\ . be measured with error by, say, y. = t) + 6 . Since

the Je. , measured by x. , are controlled, the difference x - \ is neglected

and x is set equal to £. Assume the availability of n independently

distributed vectors (ylk, y2k, ..., yjk, ..., У^), К" 1,2, ..., n,

stemming from, say, n randomly selected experimental units with the

corresponding x vectors being the n row vectors of X(nxp) =

Cik/n£c i^, ...,*, ..., ¿). Setting x = ¿ik jr3- x and

:=1

\o) л ^Xj , Xo , • • • , .Xj , • • • , X— /

then with у = 1\ + b , , (2) becomes
JK jk JK

(7)

y.. = b

pj

oj 4—í 1J ч jlik - ,-i

where €.., = С + 6 , and the sample form of the models in (7) is

Jk jk jk

Pj

(8)

yik = b • +

JK oj

1=1

., = b + ) Ь.,х.. + e .
Jk oj L^ ij iJ jk

Next assume that ¿_k (lxq) = ( €. €^k' ••" ^ik' **" ^ak^ is

distributed with expectation 0 and that

var ¿k = E( ¿k e^j = E(qxq) - (¿Г^,) for к = к'

= O(qxq) for к = к' ,
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j, j' = 1, 2, . . . , q, where it may be noted that the off diagonal elements

of Y, ere nonzero

(i) if the measurements (ylk, y2k, ..., yjk, ..., yqk) = ¿k

stem from the same experimental unit (rendering the model

errors dependent),

(ii) if the 0"s or measurement errors within yk are correlated,

(iii) or if certain parameters such as Д-. in (3) are nonzero.

Withy! = (y , y . . ., y ,...,y ), it follows that

-J jl J2 jk jn

У =

II

^

^q

»<
1*

ßoi

3 .

oq

"6 г

ÊJ

ê,
-

i*L

or

0)

i.e., у is distributed with expectation _1*j6 + T^and variance l*¿,,

4

where * denotes a direct or Kronecker product, T(qnx p.) is a

pseudo diagonal matrix with typical element X (nxp,), A ( \ px1)



Design of Experiments 633

is a vector with typical pseudo element $_ (p xl), and Y. " wC .

III. ESTIMATION OF й WHEN CO IS KNOWN. Letting p}'2 be the

square root of A = I*Ub then the transformed vector

-1/2' -1/2' о

(10) A (2 -i*£0 - T£) = A e: (p_, I Cf^)

where e'(lxnq) = (fe ', e^, ..., e;,
..,£.■) and e;(lxn) -

J q J

( e,,, & , . . . , £- , . . . , & ). If e is the sample form of & as in

jl j2 jk jn - —

(8), then (10) directs one to minimize e'A e (e = (y_ - 1*1^ - Tb)) with

respect to bQ and b. Doing so, the joint least squares estimates of

the £> . and ß> are b = y. and
roj — oj j

(11) b_= (T'A_1T) Va"^.

Example 2. Let q = 2 and

I- U)*2=И (У

Then (11) becomes

V >1 -
р*?г

-1
Xi(Il

- ^2>

4 -JW\ X?2 .
3<l2 - Pli



634 Design of Experiments

Example 3. Let X. ■ X for all j. Then (11) reduces to

b.» [x'X*u)-1]~ [х'лиГ1

= [(X'x)"1*^] [хчсо-1

= (X'Xj'bc+Iy

У.

У

so that

b. = (x-xfW .
~~J -J

(See reference (1) for an alternative derivation.) Thus when the models

contain precisely the same independent variables, the weight matrix u) offers

no information in the estimation of the ß., and the separate least squares

estimation of each ß . is in order.

The intuitive arguments underlying the foregoing developments become

apparent in the following examples.

Example 4. Consider the models

v = ß + ß,x + €.y2 о M т 2

2 2
under the assumptions that E(G) = 0, E(£- ) = С ,and

^uSc* = p*2 ifk - k-

=0 if к ^ k'.

with p known, the joint least squares estimate of the coefficients are

a = у , b = у ando 'i' о y2
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,i"Zxy2/Zx2 " pE xyi/Z x2

with corresponding variability

1/n

var b_ ~ p/n

ao

bo
—

bl

-

P/n 0

1/n 0

0 (1 - p2)/I
j

<T

Consider Figure 1 where y, = aQ and y„ = bQ + b,x are the best unbiased

prediction lines for y and y9, y = âix is an unbiased prediction line for

1^11 _

y, which is obtained by regressing y, on x, and y2 = b + b,x is the

unbiased prediction line for yo determined by least squares independently

of y.. But if, as in Figure 1, a'j>0and, say,p > 0, then it necessarily

follows that yo - b + 1э,х is "overly steep." Consequently, estimation

through joint least squares accounts for the sampling error, utilizes the

information of known positive correlation and об■ = 0, and corrects b.

by an amount -pH,, making b, = b, ~Pa-, tne best unbiased estimate

of ß under the given system of models.
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h = \ Vbix

y2 = b0 + bjx

y. =an + a.x

£.'-
о ur

L
yi = ao

FIGURE I

Unbiased and Best Unbiased Prediction Lines

Example 5. Consider the models

у, - ao ♦ ал ♦ e

*2 = /So + ß2x2 * в2

under the same assumptions as the previous example. Let x and x be

functionally independent with \ x,x2 = 0. From (11) the joint least squares

estimates of the slopes are
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2

x2ai= Y, xiy/bi " pLx*y/L

b2=Y_ *^г/ ¿Л ~p¿^ xiy£/ Z, xi

Although in the population У,(у0) remains constant along the x_(x )

12 ¿ 1

dimension, in the sample, \ x2y. and \ Х]У9 will be nonzero.

With a known p ^ 0, joint least squares accounts for the information

supplied by the population and adjusts the slope estimates for sampling

error, thus increasing their precision.

It was seen in example 3 that the correlations do not enter in least

squares estimation of the coefficients. From examples 4 and 5, the

correlation was used in adjusting slope estimates when a type of con

straint (viz. , that certain coefficients be zero in the population) was

placed on one or more of parameters. However, when the models in

clude the same independent variables, no constraints are available.

Hence a knowledge of the correlations offers irrelevant information in the

estimation of the coefficients.

The following theorem now becomes apparent.

Theorem: If under (9), со is known, X, / X~ / . . . ? X. / . . . ф X ,1 z J q

and XiG X0 О . . . Ox. С ... Cx. i.e. , X is contained in
i ¿ j q j

X ., then y, enters in the joint least squares estimation of

some or all of the elements of the vectors El , @_ # • • • /3 ,

3 j+1 ^q

but does not enter in the joint least squares estimation of

■ûj-1' ö-j-2' "" ^-r

Corollary: Under the assumptions of the previous theorem, the best un

biased estimate of iß, is b = (X'Xj'bc'y .

(Proofs are given in reference (4).)
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Finally, it is easily shown that

(12) var b = (T'A l1)~la2

(13) = (X'X)"1* E

if X. jl X for some j

if X = X for all j

( (12) and (13) are derived in (4); an alternative derivation of (13) is given

in (1).) In (12), (У is estimated by

q

s2 = (y - l*b0 - TbVA"1^ - l*b0 - Tbj/(nq -V Pj - q)

j=l

and the element & , in Y. by

jr= (Zj-b^-XbJ-^-b^.I-Xb^.J/n-p-l.

IV. ESTIMATION OF £. WHEN u> IS UNKNOWN. Assume normality in

(9) with no a priori knowledge of со . If an attempt should be made to

find estimates of j5 , £, and £ such that the likelihood function

L« (2*ГПЧ/2 lEK2 exp j-1/2^ [yk -E(yk)] ■ £Ч [yk - E^)]j

^ k=l

is maximized, the nonlinear system of equations resulting from equating

to zero partial derivatives of L is irresolvable except possibly in simpler

cases. As such, it is the intent to estimate 3 through an iterative

scheme where u)(= £ # ¿) is estimated from the data on hand.

First estimate through separate least squares each ß. by, say,

by3'; or there are numerous other ways by which initial estimates of the
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ß. are attainable. Then from the b stems an estimate, say. W ,

-J -j

of со, where the matrix of residual sums of squares and cross products

(SSE..,) =

JJ'

(y -b .1 -X.bfo)) ' (y4l -b .,1 -X b.^)

L-J oj- Л ^j' oj'~ j—J'

is proportional to w'°'. But what is the proper divisor for SSE (j-fj1)

if at least an unbiased estimate of cr , is desired?

JJ'

JJ

,th
To answer the latter question, equate (7) and (8) for the j model so

that

(14) e|o)= ^(Y. -Ç<°>) + e

(o)' (o),
where è, - (llX),^ I «= ( 5 ., 50 and С = (b ., b}°'). Since

r) ~ ] J Koj с у —j oj =j

,(o) -1

Çj ~(0]Ф)) Ф\Ц

(15)
1 j rj j j

by equating (14) and (15)

<*- 11-*/*; *,>"'*;] в,

= (I - U.) в. (say)

J ~i
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where U.(nxn) has rank P, + 1. For the expectation of e e ( ,

E(e(0,,e'°' -E

n -y

e'(i -u.)'(i - и.,) e

-J j J j'

no-jj, - OJj.trUj - Ojj.trüj, + (Tjj.trWjU,,)

where tr denotes trace. But

tr U.=tr [ф.(р\фУ1ф'.] -tr \ф\ф\ф\Ф^\ -Pj>

and similarly, tr U., »P., + 1. Also if 0 is contained in 0 ,

then ф may be written as an augmented matrix

0J1[nx(pji + 1)] = < ^[nx(Pj + 1)] I ^,[пх(рг -Pj)]

and

tr (UjUj() = tr[ ф.{ ф'_ фУ1 0j ^,(0j, ^.Г1^,]

= tr

Ф\(ф\Ф?лф\(ф\\р -i

I

j
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Ф;Ф, Ф;$У

= tr

ФгЪ ФуФ,1Фfifty¡Фу

Ф\Ф, Ф\Фу
-1

= tr

(pj + i)'

(Pv - P¡)x(p.+ 1)

O

(p + 1) x (p.,-p )

(р. - рГ

J 3

= p+l

j

where

„.- [¡уф - Ф\.ф^\Ф^Ф,Фу%ф/Ф\.Ф) Ume!

[0;0j - <ЗФ/Ф;.ФГ> ^J

Hence, if <р.С_ф ft then

E(e(0)" e(,o)) = (n-p., -1)<Г...

J J J JJ

so that an unbiased estimate of (У is
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s = where p = max(pp)
JJ n - pm - 1 m J i

(о)' (о)

n - p - 1

if Xj = X. , or j = j '

That is, to obtain an unbiased estimate of О , when X. ¥ X,t

PJJ j J /

,., j* 0, and X- X,, , divide the sum of the residual cross products

by n minus the larger number of coefficients occurring in the j and

j' regression lines. In general

(o)' (o)

^3 »J'

jj' n-p-p - 2 + tr(U U )

Having now determined a proper divisor for the residual cross pro

ducts, W*°' is then calculated and substituted into (11) which results

in a new, improved estimate of ß, say tr ' , improved in the sense

that the off diagonal elements of Y are now being accounted for.

(1) *- (1)
Using b_ , a new weight matrix, W , is determined and substituted

into (11) resulting in b^2^ . This process is continued until V\r '

and w(N+1) ( and consequently bJN+1) and b(N+2) are identical to a

desired decimal place which assumes convergence to take place at

some stage of the iteration cycle.

An alternative, stepwise (from model to model) iterative process is

(4)
given by the writer for cases when the conditions of the theorem are

fulfilled except that U) is unknown. Here, the calculations are
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simplified though the slope estimates may have a larger dispersion

(relative to the first iterative scheme) except for b, .

V. A SUFFICIENT CONDITION FOR CONVERGENCE AND AN APPROXI

MATE COVARIANCE MATRIX OF THE RESULTING VECTOR ESTIMATE.

Consider now the question of convergence when using the first iterative

scheme of the last section to estimate ß_ .

(11) is rewritten as b =l(y; T, Gl)) or bi. = f¿ (у;Т, ф),

X. = 1, 2 , . . . , \ p, =c t. It was seen that

J-l

b 1 =_f_(W(o); T, y)

= h(b(o); T, y)

where the latter defined a general recurrence relationship,

(16) b(N+1'=h(b(N))

or

^(N♦1) £(№,,

which is used in solving the t nonlinear equations

(17) b.= h(b)

in the same number of unknowns.

Let

(18) b(N) = b* + S (N) ,
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where b_* is a solution of (17) and 6. is the error of the N + 1

iterate. Substituting (18) into (16 ( yields

(19) b£N+1> « yb* + 6 W) ) .

Expanding the right-hand side of (19) in a Taylor's series about b*, we

have

Чр*0 - ь. <W ♦ [(ôh /йь)| к-ь«] ■ 6<N> ♦ o(62)

or generally,

(20) b(N+1) = h(b-) ♦ H6(N) ♦ 0(ô2),

where

H - [(Ôh./ОЪ) | b_= b*J .

Noting that _b* = h(b*), then (20) takes the form ¿(N+1) = н &(N) + 0(¿2),

or, neglecting 0(62), L = H^N, where the Q 's are the character-

* (o)
istic roots of the matrix H, and H is determined from b . Clearly,

if the largest Q in modulus is less than unity, then £>»") * Q_ as

N increases indefinitely. This, then, is a sufficient condition for the

iterative process to converge to a solution b*, assuming that 0( ¿ )

may be neglected. (The preceding argument is taken from reference (2).)

Next consider the spproximate variance of such an estimate. Let

(18) be rewritten in the form

(21) b<N> =b + £<N> = ( ß + Л) + б (N)

where 6} is the error distance of the N + Is iterate from the best

estimate b_, and t = Ъ- ß. Substituting the middle term of (21) into

(15) and expanding in a Taylor's series about b results in
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(22) b^^íb) + [(ôh^/ôb) I ¿ = b ] ¿(N) + 0(<52).

Further, since b_= ß + С

(23) h^(b) = h^ê + £)-h¿(£) + [(ôhj/db) J b = ¿J/¿+0(>2).

Substituting the expansion of ly (b) into (22) and using (21), we have

^(N+1)«hx(b)-b, + [(öhx/öb)|b = b] 6(N)

+ [(öh^/db) |k-ß] ¿ + o(62) + о(£2).

2 2
Neglecting 0(6 ) and 0(Л ), the result in general is

(24)
ö(N+1> = h(£) = b_+Glö(N) + G2C,

where G{= [( à h¿ / ô b) | b = b] and G2 = [( à h^ /à b) | b - §] .

Rewriting (24) in the form

6(N>=h(ê) "b + G^N + G2Ç ,

where the и 's are the characteristic roots of G,, and G, is determined
(o) -il

from b_ , then if the largest Q in modulus is less than unity, then

§(N) ¿h(ß) =b + G2S for N sufficiently large. Further, as n

increases, h(£) rapidly approaches b. (The latter statement is based

on the following intuitive argument. If W = SSE..,/(df) 1 , where df

implies degrees of freedom, then when P. is known, (df).,, = n-1

rather than n - pm - 1, pm = max(p , p.,). Clearly, as n increases,
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then W should be very close to CO so that the difference between h(£)

and b is negligible.) Then assuming convergence and n sufficiently

large (which presupposes 0(S2), 0(£2) negligible) we have

(25) 6(N) = G2Ç,

and by substituting (25) into (21),

b* = b + 6(N)^b + G2£ = A+ (I + G2)Ç .

Since E(£) = 0 and E(b*) = $, then

(26) var b*=(I + G2)(T'A"1T)"1a + G^'CC2.

Assuming convergence, it is proposed that b* is approximately

N(ß, var b*) where var b* is estimated by substituting b* for P.

and v\rN~" = W for to (with convergence occurring at the Ntn

iterate) in (26).

It should be noted that we have neglected in var (b*) the variability

of b_g which arises in repeated sampling. As such, var (b_*) in (26)

will tend to underestimate the true small sample variance of the iterated

estimate b*.

VI. GENERAL COMMENTS ON ESTIMATION IN THE PREDICTIVE REGRESS

ION SYSTEM. Unless the off diagonal elements of Y are not "nearly

zero, " one should go from the restricted regression system (the system in

which the independent variables are not the same from model to model)

to the unrestricted regression system, i.e., X. = X for all j. After

regressing each response type on all the independent variables, the

anticipated result is that the coefficients not appearing in the restricted

regression system have near zero estimates in the unrestricted system.

A test of significance can be made to determine whether the matrix,
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В' (pxq) - (b,, . . . , b , . . . , b_) (the estimated coefficient matrix of

the unrestricted regression system), differs significantly from Вд, which

is the matrix BTT with zeros replacing those b 's not appearing in the

restricted system. Unfortunately, methods such as the likelihood ratio

test used for testing Hn:BTT = В are not usually not sensitive to small
и и к

departures from the null hypothesis whereas we are particularly interested

in detecting small departures.

If Bn is "sufficiently close" to В , then the coefficients in the

models of the restricted regression system may be estimated by separate

least squares and from these estimates, say, b** , the matrix (SSE..,)

may be determined. The b** will be unbiased, consistent, and efficient

enough not to warrant a search for alternative estimates.

If those coefficients not appearing in the restrictive regression

system have "decidedly" nonzero estimates in the unrestricted system,

then one should either

(i) question the models of the restricted regression system, or

(ii) make adjustments by using some iterative scheme to estimate ¿ .

With the models having strong theoretical justification, there may be no

other choice than to make adjustments through iteration. Then assuming

convergence, there is the formidable task of evaluating (26). The likely

resolution will be the use of the estimated asymptotic variance of b*,

namely,

(27) [t^W^t] _1s2 ,

even though the variances of the b*'s may be considerably under

estimated, particularly if there are many parameters to estimate through

iteration. For more simple systems, it is seen in the forthcoming nu-

metical example that (27) is very close to the estimate of (26). This

is due possibly to the fact that iteration is required in the estimation of

only one parameter, and that the estimate of the zero population para

meter is not significantly different from zero.

In general, if there are rery few parameters which must be estimated

through iteration, the estimate of (26 ( and the estimated asymptotic
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covariance matrix (2 7) may be close, particularly if those coefficients

in the restricted regression system have nonsignificant (from zero)

estimates in the unrestricted regression system. If there exist many

parameters and if adjustments need by made, then one should be well

aware that the variances of such estimates increase, possibly by very

large amounts.

Example 6. To illustrate a numerical example of example 4, the data

were as follows:

y¡: 8.8, 9.6, 10.6, 8.3, 10.4, 10.1

_y_':3.7, 12.5, 19.8, 24.4, 31.6, 40.1
ma

x.' : -5 , -3 , -1 , 1 , 3 , 5

Intercept estimates were aQ = 9.6333 and bQ = 22.0167. Even though

a ■ .0943 was not significant, an adjustment was made by means of

ьГ-1»/1>-р"У>; x

where

P(N)= (SSE<N - ^/(SSE^-W/S)

(9/4)

LVao)(Wbi(N"1)x)

2 V" (N-l) 2
.W +ZJy2-b0-bl ">

2 2

since <У = (T . Three iterations were required to converge to the

У1 У2

third decimal place of b* and second decimal place of Q*:
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Then

b «3.4843, b =3.4190, b*2) = 3.4119, ,. (3) » 3. 4114;

P(0) = 0.6930, pW = 0.7677, p(2) » 0.7729, pW = 0.7703.

а^+1)/Ьъг
-(Vxy/^HôpM/ôbj

b, = b*
1 1

0.0639

so that the approximate variance of b* is (1.0639) ■ 1.1319 times the

asymptotic variance of b* . Hence

var

bl

1/n p*/n 0

P*/n 1/n 0

0 0 (1.1319)(l-p**V2"I*2

.222 .170 0

.170 .222 0

0 0 .008

Note that the zeros in the preceding matrix are fictitious, since b* is

dependent on a and bQ, i.e., bí depends on Q* which in turn de

pends on a« and b .

0 о

VII. THE PRACTICAL IMPLICATIONS OF LINEAR REGRESSION SYSTEMS.

In practice, linear regression systems may arise from two rather distinct

considerations: (i) the multivariate problem and (ii) the univariate

problem

(i) The multivariate problem. When an attempt is made to study

relationships between different types of dependent responses, one is

usually, whether directly or indirectly, investigating the mechanics of a

particular phenomenon or event of interest. More often than not, this

should lead to some consideration of the events causal network (at least

with regard to the characteristics of interest), i.e., a network inherent
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to the event which states whether or not one characteristic causes or is

instrumental in the occurrence of another characteristic. As such, an

initial step is to hypothetically sketch the workings of the event in a

path diagram. Such diagrams may be described hypothetically in terms of

linear and/or nonlinear regression models which are deduced possibly

from one or more differential equations. Thereafter comes experimentation

designed to either support or discount the hypothesized models, and

finally, inferences are drawn. The process of hypothesized models--

designed experimentation—inferences describes, in general, the

scientific cycle of investigation. The inferences gained in the first cycle

then dictate changes in the structural models so that the entire process is

repeated with the revised models. The cycle is continued until a struc

tural regression system is determined which adequately describes the me

chanics of the phenomenon and hence adequately predicts the event.

Obviously, a lesser effort need be exerted if interest is centered only in

prediction.

If estimable, the structural parameters at each cycle can be estimated

through the reduced models (or the predictive system) such as in example

1. When the structural parameters are over-identified'**) # (7) ^ a recourse

is the application of the Hood-Koopmans method of limited information'^).

For the case of under-identification, the statistician is forced to postulate

whatever the required number of relationships from physical considerations,

provided he has a sufficient knowledge of the subject matter and/or the

aid of a mathematically inclined experimentor.

Though an adequate structural system is obviously preferable to an

adequate predictive system, the current tendency to neglect the latter

in favor of the former is particularly dangerous. Firstly, any one of

many structural systems may bead to the same predictive system or

approximately so; e.g., the structural models

(28) 7/ « jô +j5£2 + ô£ +и + eV ' ll 01 21 1 31 2 M41 l2 C 1

and (4) lead to the same predictive system as do models (3) and (4);

further for the models given by (3) and (4), the structural parameters

are under-identified with there being six equations in seven unknowns;

in (28) and (4) there is "just identification" with six equations in six

unknowns. And while the hypothesized structural system (hypothesized,
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say, in the first or early cycles of investigation) may be totally inadequate,

the predictive system may lead to valid inferences for certain problems.

Further, the experimentor is often reluctant to carry through many cycles,

thus possibly preventing the statistician from ascertaining the adequacy

of an hypothesized structural system. Secondly what is to be done if

there exists under-identification and no further relationships are known ?

Thirdly, a predictive system may be sufficient to answer many oft -occurring

questions regarding relationships between dependent response types,

e.g. , problems of extrema and constrained extrema'4'. And finally a pre

dictive system of one cycle may offer invaluable aid and/or insight in

the revision of the models to be used in the next cycle of investigation.

Consider problems where the predictive system is sufficient. Here

it is often the case that structural models are not or cannot realistically

be hypothesized, whereupon a system of linear predictive models is

hypothesized. Due to the nature of the errors, the latter are assumed

correlated between but not within models. However, much of the literature

voids itself of practical use by assuming each model to contain precisely

the same independent variables. In the latter circumstance, it has been

shown (example 3) that no estimation difficulties are encountered. It was

originally on the premise that the models did not necessarily contain the

same independent variables that this research was instigated.

(ii) The univariate problem. When interest is centered on the pre

diction of one uncontrolled variable, Ц., by means of a set of fixed or

controlled variables (say x,), the parameter estimates can be easily and

most efficiently attained, at least for linear models. But as was seen in

examples 4 and 5, if another (several) uncontrolled variable '(9 is

found which can be adequately predicted by x„ ^ x., then it may be

possible to increase the precision of the predicted variable of interest.

The foregoing sheds a somewhat different light on the usual regression

prediction. Any experimental unit has associated many (possibly an in

finity of) measurable characteristics. If the intent is the prediction of one

of these characteristics, it is intuitively evident that there exists a

second ( a third, a fourth, . . .) characteristic which is "correlated"

with the first and which can be adequately predicted

(a) by a set of controlled variables containing at least one variable

which is different from all those variables used in the prediction
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of the first characteristic, or

(b) by a set of controlled variables which is a subset of that set used

in the prediction of the first characteristic.

Note further that while Ц and ¡\ may be independent (stemming, say,

from different experimental units), a correlation between y. and y may

be induced through the measurement device.

With the correlations being known, then the prediction precision is

definitely increased. If not, the precision is possibly increased. In the

latter case, the loss in introducing an additional, uncontrolled variable

(to be predicted) is the entry of a nuisance parameter or the unknown

correlation. However, it is possible that the loss is more than offset

by a gain which is not only an increased prediction precision, but also

an automatic future detection of large sampling error assuming the

system of linear predictive models is adequate.

Vin. CONCLUDING REMARKS. These developments are applicable

to wider ranges of problems than hitherto mentioned. For example, not

only does the approximate variance given by (26) apply to the variability

of estimates obtained through iteration in certain nonlinear models, e.g.,

the rational regression model *>' , as is shown in reference (4), but also,

one or more linear models, introduced simultaneously with a nonlinear

model, may act to increase the precision of the predicted nonlinear

response.

In a sense, the methods here described are somewhat analogous to

the estimation of parameters in functional or structural relationships

(with independent variables uncontrolled) by introducing instrumental

variables * '. Further retrospect reveals the possibility of estimating

these same parameters through the joint prediction of the functional or

structural variables, though in this case, the parameters are often

overidentified. The writer hopes to illustrate these facets at a future

date.
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SOME RESULTS CONCERNING THE REDUCTION OF PRODUCT

VARIABILITY THROUGH THE USE OF VARIANCE COMPONENTS

R. R. Prairie*

Sandia Corporation

In many situations in which a result from an experimental unit is

subject to several sources of variation, the problem is to identify the

sources and to estimate the variation associated with each. Generally,

estimation and identification are accomplished through the use of

experimental procedures. While considerable effort has been devoted to

the efficient design of experiments for the estimation of treatment con

trasts and regression parameters, little has been done on designing experi

ments for the estimation of variance components. Crump (1954) proposed

designs for the two- stage nested classification that provides optimal

estimates of the between-class variance component, the within-class

variance component, or the ratio of the two components. Gaylor (1960)

presented optimal designs for the estimation of components of variance

and certain functions of the components for the two-way crossed classi

fication. Anderson and Bancroft (1952) and Anderson (1960) introduced a

staggered design for the estimation of parameters from a three- (or

more) stage nested classification. No known work has been done on the

problem of designing experiments for the estimation of variance components

with the objective of using the estimates for the efficient planning of

future experiments or courses of action.

This investigation is concerned with the design of experiments for the

efficient estimation of functions of the components of variance with the

objective of reducing product, or process, variability. Only the case in

which a result is subject to two sources of variation will be considered.

It will be assumed that a single observation can be presented by

1 = 1, 2, . . ., a

(1) x. . = m + A. + В., j = 1, 2, . . . , n.
i] i ij i

En. = N

Where m is a constant, A. and В., are both normally independently

♦Formerly at North Carolina State College, Raleigh, North Carolina
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distributed (NID) with means zero, and variances, 0\ and CJC ,
А В

respectively. Under this model, the product variance, i.e., the variance

of an observation, may be represented by

2 2 2

An analysis of variance for data obeying (Equation 1) is given in

Table I.

TABLE I

*K = N -
ЪЛ

N

/ (a - 1)

An Analysis of Variance for a Two-Stage Nested Classification

Source of

Variation

Degrees of

Freedom

Mean

Square

Expectation of*

Mean Square

Classes a - 1 MA
2 2

В a

Within classes N - a MB

2

B

Total N - 1

If one is given the task of reducing O" , he could quite conceivably

T

proceed by affecting individually the sources that give rise to er and <T .

А В

In the usual circumstance, only a limited amount of funds would be available

for reducing a , and one would attempt to devise a program that would

2
yield the greatest reduction in & for a given expenditure of funds. The

crucial matter here is the proper apportionment of funds toward reduction

of the two sources of variation.
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Two factors would determine the specific apportionment of funds. They

2 2
are: (1) the relative rate at which a can be reduced compared to ¿/ ,

and (2) the magnitude of Q=u/¿r. In many experimental situations,

'AB.

2 2
the relative costs of reducing <r and a may be adequately known, but

А В

p may not be. Often the estimate of p is obtained by performing an

experiment with a fixed sample size, with units arranged in a specified

design.

The primary purpose of this work will be to investigate, under a given

cost model, the influence of the design of the experiment on the apportion

ment of funds and, therefore, on the effectiveness of the reduction of the

total variance. It will be assumed that the cost of sampling for the

experiment is directly proportional to the sample size N.

In order to arrive at an explicit solution for the optimal apportionment

of funds, it is necessary to adopt a model which relates funds expended to

reduction in variance .

There are several different models that could be used to express

reduction in variance as a function of funds expended. One of the simplest

is the additive model. Under this model the variance obtained after

expending d units is equal to the original variance minus an amount

proportional to d. For the situation at hand, the reduced total variance,

2
symbolized by 0" , attained after expending d units on source A

i- t\

and d units on source B, is given by

В

°-т- 'b-Vb+^a-Va

where К and К are constants of proportionality.

А В

Such a model is quite unrealistic for depicting an actual real-world

situation. According to this model, the amount that a variance is reduced

does not depend on the magnitude of the variance. Generally, more effort

would be required to reduce a small variance a given amount than to reduce
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a large variance by the same amount. Also, the model indicates that if

enough funds are made available, a variance can be reduced to zero and

even made negative, a circumstance which is quite absurd.

The basic model that is proposed here is of the power-function type.

Under this model it is assumed that the expenditure of one unit of funds

2
on source A reduces С by 100 A1 percent and, on source B, reduces

2 A

(/"n by 100 B' percent. Hence, the reduced total variance attained,

after expending d units on source A and d units on source B, is

А В

2 ? dB 2 dA

(2) (Г* = СГ(1 - В1) + a (1- A') .

ТВ A

In order to eliminate one parameter, the model proposed above will be

slightly modified. If it is assumed that one unit of funds expended

reduces (f by one percent and reduces tf by 100A percent, the

В A

reduced total variance may be written as

d d

(3) ¿r,2 =¿¿.(0.99) B+¿72(l-A) A.

ТВ A

Because it is more convenient to work with an exponential than with a

power function, Q- ' will be expressed in exponential form. By

setting к = -ln(0.99) and к = -ln(l - A) we have

/y.» /v.2 Л "kldB Ml "k2dA

(4) (У ' = о* e + ¿Г ^e

T в A

The model, as given by Equation 4, shall be the model used throughout.

2
When the total amount of funds is fixed at, say, D units, ру may

be written as
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(5a)

(5b) (У '

T

2 "klD

«В* + ¿V
dR = 0(d = D)

А В

-к (D-d ) -к d

<r\ e A + <r\ e 2 A, 0< dR<D

В A — A-

(5c)

-k D

< + <r2* 2
В A

d = D(d = 0)

А В

In determining the optimal allocation of funds to minimize ^ ■ , we

T

first find that value of d. which minimizes Equation 5b. This value is

A

(6) dl =

Dk + Ink - Ink + lnp
1 2 1 г

kl + k2

(7)
-Vc

lnp

If d, < 0, we set dA = 0; and, if d, > 0, we set d = D. Hence,

1 A 1 A

the complete solution is

0,

In,
(8) d, = C+^,

1 °o

D,

0<P < Pt

?x± P± P2

P> Pn
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where

and

-С С к -к D

2

V

C2(D-Cl) kl k2°

ТГ e

2

л 0 0

For this work, it is more convenient to use the ratio ¿т ■ à / or ,

2 2

rather than tf-_ . Since d, , as given by Equation 8, also minimizes (Г ,

T 1 R

and since the statistical properties of both are the same, working with CT

0 а 9

is equivalent to working with fr , and С will be used in all future

T R

i 2

development. The quantity Û" will be referred to as the reduced total

К

variance ratio.

As was mentioned previously, A is often known, but an estimate of

p is required before the allocation of funds can be completely specified.

If an estimator of p , say ^ , is substituted into (3.7) for p , then as

an estimator of d, say d, we have

il

(9) dl ■

0, L< ^< P
1

1 A

С +—, P < ? < P

1 C2 1 - - 2

D ,

/"4

p > p

where L, which may be negative, depends on the particular estimator of

P used.
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Therefore, the true reduced total variance ratio that exists, after

expending D-d on source В and d on source A, is

/ e

-k D

1

-kjiD-C^yCg

L< P < Px

(10) &
R

d.

-к С, -k /Cn

+ p* 2 V 2 2.

-k D

V 1 + pe 2 ,

P 1</P < P2

/s

P > P.

It is important to realize that <T I d ,

R I 1

where d is obtained by

experimental methods, may be considered as either a random variable or

asa constant, according as d, is considered as a random variable or a

constant. The reduced total variance ratio is a random variable in the

sense that, if we were to perform a large number of experiments, they

would yield differing values of £" and, hence, possibly differing values

.21/^
of ut d . Conversely, once the experiment has been performed, the

I

allocation determined, and the funds actually expended on the two sources

contributing to a* and

В

л* , ^ Id is a constant associated with

A R 1

/ 2|/n

the product or process. We shall be concerned with (У d as a

R I 1

random variable.

The situation shall be considered in which p is to be estimated from

an experiment where N units may be arranged in a two-stage nested

classification with a_ classes. The model that represents the data

collected according to such a scheme is taken to be of the form given by
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Equation 1. As previously stated, it will be assumed that the cost of

sampling the units is proportional to N regardless of the type of design.

Further, it will be assumed that for any a_ the N units are allocated as

equally as possible to the a_ classes. Specifically, for

N/a = p + s/a(0 ^ s < a), there are p + 1 units assigned to each of

s classes (referred to as A ) and p units to each of a - s classes

(referred to as A„) .
Ù

In Table II an analysis of variance is given for such data. It should

be apparent that the partition of the class sum of squares as given in

Table II is relevant only for situations in which 0 < s <^ a.
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TABLE II

An Analysis of Variance for a Two-

Classification with p + 1 Units

Classes and p Units in Each of a

-Stage Nested

in Each of s

- s Classes

Source of

Variation

Degrees of

Freedom

Sum of Mean

Squares Square

Expectation of*

Mean Square

~2 - 2ГClasses a - 1 S

A

M

A

& - /У 1 + Кр

1 *B

*i
s - 1

%

M

Al

2 2

<?- = о*

11 В

1 + (р + %

A

2

a - s - 1 S

A2

M

A2

2 /г-2

12 В

1 + Pf

л- г 2
ар(р+1)л1

1+ N ?
A, vs . A „ 1

\

U = /г

Аз 13 ^в

Within N - a S M

2

Total N - 1

в в

1

*К = [n(N - 2р - 1) + ар(р + 1)] /N(a - 1)

It may be noted, for this particular allocation of units to classes, that,

N = (p + l)s + p(a - s) = s + pa.

Also, when s = 0; then a = N/p, ap(p + 1)/N = p + 1 and the expectation

of the mean square for classes becomes E(M.) = о (1 + pp ).

A B '
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From the manner in which the units are assigned to the classes, i.e.,

p + 1 units are assigned to each of s classes and p units to each of

a - s classes, it is realized that designating a_ completely specifies

the design. Therefore, varying the design would be accomplished by

varying a_.

As was previously stated, the concern of this work is where p and

hence d must be estimated. The estimator of p that we shall consider

is

(11) ?-(M. - MJ/KM.

в

This estimator will be considered because it is the one that is used most

extensively in practice.

From Equation 1 1 it is noted that

, i M - M

pm Mab

m.в J

1
м

-A-l

l_M,

and therefore a study of the properties of 2 becomes a study of M./M .

2 2 2
Now, M is distributed as ¿к ^ /(N-a), where "X is

distributed as chi square with v degrees of freedom. If the design is

ballanced, NT is distributed as ¿Г2 1+1г»у2 4/(a-l). Hence, if
А В [ a i J* (a-l)

N/a is an integer,

F =
M,

N
M-tt+T-p)
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follows Snedecor's F distribution, and the distribution of fa can be

linearly transformed to that of F so that all the known properties of F

can be utilized. However, this work will not be limited to considering

only balanced designs. When N/a is not an integer, M is not dis-

2 Г N 2
tributed as (X. 1 + —p X (a_n/(a"l)' anc^ it is not possible to make a

*■ /\

simple transformation from the distribution of p to that of F. To circum

vent this difficulty, use was made of an approximate distribution of a

linear function of chi-square variables (studied by Satterthwaite (1946)] .

The approximate distribution is set up such that its mean and variance

are equal to the mean and variance of the linear function of chi-square

variables.

Consider the weighted sum of independent chi-square variables

q= IX. x2, . ■

2
Let Q be represented by Z = g")t . where g and h are chosen such

that E(Q) = E(Z) and var(Q) = var(Z) . It is easily seen that E(Q) = Lx v ,

v" 2 2 i i

E(Z) = gh, var(Q) = 22Д. v., and var(Z) = 2g h. Setting E(Q) = E(Z) and

var(Q) = var(Z), we obtain

g =^Л V^ivi

h = (Ix.v{)2/I\2v.

Hence, Q = ¿Л *y , .is approximately distributed as g"ï- where
i K (vi) *" (h)

g and h are given above.
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From Table II we see that p may be written as

r К

M.

M

- 1

в

(12)

1

Т

SA + SA + SA /(а " 1)
А1 А2 3

М.
- 1

В

к

Q/(à - 1)

M

- 1

в

From 0 < s < a, it is observed that

2.2 2 2
SAi ■flil"*Vl)* SA2 =¿ri2 X(,-s-i)' "A3 " "13 *<1)e -^22

and

MB - °-2B *(N-a)/(N - a) '

where

"и - ^в2 [' + (p + "P. [l + Pf>]
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and

„ 2 2

13 ^B

1 + ap(p + 1)

L Ñ г

Therefore, Q in Equation 12 can be written as a linear function of chi-

square variables,

2 2 2 2 2 2

1 11 *(s-l) 12 * (a-s-1) *13 Л(1)

Using the result concerning the approximate distribution of a linear

function of chi-square variables, it is seen that Q is approximately

2 2
distributed as tf g "5c where

В 1 ^Oij)

. (s - 1) [q¿]2 : (a-s-1) У/ : [a¿]2

э1

[(s - 1)оп ♦ (а - s - 1)аи ♦ а13] о2

(13) (s - ï) [l + (р ♦ 1)р] 2 ♦ (а - s - 1) [l ♦ рр]2 ♦ [l ♦ ар(у 1}pf -

— - ———_________________________________________________________________ — 1
(s - i) [i ♦ (р ♦ i)p] ♦ (а - в - i) [i ♦ рр] ♦ [i ♦ -^--^а] Sri

hi = Rî/Tr
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The substitution of & g v
В 1 X(hl)
2 2 for Q, and a 2 a2 /01 -a) for

1 В (N-a)

M in Equation 12 gives

P - 1

(15)

К

«i Xíb/Í3"1)
'1 (h/

- 1

A(N-a)

К

9Л X(hl)/(a - 1)hl . !

*Va/(N - a)

where » means approximately equal. Recall that

rr-^A
X2 /v

(v/ 2

follows Snedecor's F distribution with v and v degrees of freedom.

Let l 2

(16)

*(h/hl

F, - 1

1 *W<N - a>' '
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which is distributed as F with h and N - a degrees of freedom.

Hence,

(17)

'"ÍС a - 1

It may be noted that when N/a = p = К is an integer, h = a - 1,

N
gl = (1+^РЬ and

?*t
N

i+^P
V1

j 2 л

The reduced total variance ratio, o- d , has a distribution whose

R 1 1

lower limit is the minimum attainable variance ratio; namely,

(18) min ( о „ I dj = e + p e

R

"k2dl

1

Therefore, it is reasonable that one would seek a design or estimator which

/ 21 ~

would generate a distribution for o I d that has the largest possible

i i R I 1

/ 2 i ^ 1
<T Id I. The first criterion that is suggested concerns

R 1/

density near min

the expectation of d
; 2

d . Ostensibly, the best design or estimator would

be one that yields the smallest expectation of a
l2

R

d . Therefore, an

1

i г
expression will be developed for the expectation of <T

R

d .

' 2
From consideration of &

R

d , as given by Equations 10 and 11, it

1

is apparent that the expectation of &

i 2

R

л

d is

1
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/ /, 2
d Ie ^pjf í{P)d?

(19) ■ f'\

Р,Г -kl(D-Cl'ák/C2 -k2°l *VC2 I ......

e p +pe p Jf(p)dp

1

+ 1 + pe

"k2D|í;(?)dp

Making the linear transformation

ä.JL
r к

g1h1F1

â - 1

-=1,

the expectation may be expressed as
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-k.D

Е{&к\^1]-{е 1 +P 4 gtFi>dFi

(20)

+ r 2[-VD-Ci, V°2

К

glhlFl

a - 1
- 1

+ p e

-к С

2 1
!| gihlFl

К a-1

-1

к /G ^

2 2

vg(Fi)dF1

where

g(F1)dFi ,

/. = a-1

nT(K^l + 1)

'1 1

gj h j '2

and g(F ) is the density function for the F statistic with h and N-a

degrees of freedom.
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Ideally, one would carry out the integration required in Equation 20 and

then specify numerical values for p , A, D, and N. The effect of the

design would be determined by substituting various values of a_ and

observing the numerical results of E( <r ** I d ) . A major difficulty with

using this procedure concerned the evaluation of the second integral on

the RHS of Equation 20. Numerical integration could have been used;

however, a simpler criterion was selected which may be even more use

ful than that involving the average variance ratio.

This criterion concerns the quantity

(21) P = prob

L R

d) <

1 ^ß

, 2
d ) and max ( er

1 R

■V-where ff is a fixed number between min ( er

By careful selection of ß , such a criterion should do well to pinpoint the

effect of design and estimator. Obviously, extreme values of я , either

small or large, would yield P quite insensitive to variation in design or

estimator, regardless of their effects on the distribution of

/ 2

R 1

An expression for P is now developed.

First recourse is made to investigation

Consider the function

cr_ S as a function of
f

v?>- *V г

Referring to Equations 10 and 11, it is seen that V takes on three forms,
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' -lt-D
71 - e X ♦ p ,

(22)

V2 = e

-ki(D-cilVc;

v = {
о '

-к2С1л.-к2/С

♦ pe p 2f' "2

V3 = 1 ♦ pe

-k2D

T^ p ^ p]

P, <P<P,

^>P2

where

pl = e

-C1C2 kl "klD

m—- e

K2

and

P2 = e

C^D-C^ kx k2D

Let

% =11 - e"klD|/il - e"^01

An inspection of ^ and V_ shows that

(23) V, < V if p < p .
X> 3 ^ °
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In addition, we see that

(24) V2(P1)=V1;V2(p2)=V3

Also, it is apparent that V„ is continuous in \p ., p I . The continuity

of V„ plus the equalities given by Equation 24 establish that V is

2 о

continuous over its entire range.

Next, consider the behavior of V in \p , p . First, consider V

at its end points. To do this, the first derivative of V with respect to

p is needed. The derivative is

, -k (D-C ) л (krC )/C -к С A-(k +C )/C
(25) V(p)-le X 1 p x 2 2_JÇ2_ 2 ip 2 2 2

2 С С

2 2

From Equation 25 it is easily verified that

VM)$0 ifr£pi; v2(p2) >° ifp ?p2'

It is well known that a necessary, but not sufficient, condition for a

function f to have a relative extremum at a point x is that f'(jc ) = 0.

о о

Using this result for Equation 24, we note that V if*) is zero when

■£(k +k )/C . к D-C (k +k )

P 1 2 2 =.k2 e 1 112

P-

k

1
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Since

and

this reduces to

С = Dkj + Ink, - lnkj

1 к, + к

1 2

С = к + к ,

2 1 2

(26) Р = Р

Hence, V (р) has at most one extremum; namely, V (p).

¿л ¿ '

The second derivative at p = pis

v>> -

V2 e""'^0' P "(2G2"kl,/C2

(27)
kovko+Co)

-к С -(к + CT )/C

e 2 1 p 2 2" 2

(k -2C )/C к (С -D)

klk2 n 1 2 2 e 1 1

9 Г

k2 + C2 - 1
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The second derivative will always be positive because к , к >0 and

[(к + С )/k ] - 1 = С /к = 1 + к /к >0; hence, f'(x ) = 0 is a sufficient

as well as necessary condition and the extremum will be a minimum.

Collecting these results, we see that V can be characterized by three

о

different profiles, depending on the value of p , as shown in Figures 1,

2, and 3. These three ways in which V behaves are described below:

о

1. When p < p , V increases from a minimum of V = V to a
r ~ rl О Ol

maximum of V = V .

0 3

2. When p > p , V decreases from a maximum of V = V to a
I — ;i 2 о ol

minimum of V = V .

о 3

3. When P. < P <r P . V decreases from a value of V - V, to a
1^- ' ^- 2 о о 1

minimum of V = V (p) and then increases to a value of V ■ V .

о 2 r о 3

In Figure 3 it is noted that V, > V. if . p- > p , V\< V if p <. p ;

regardless of whichever V. or V is the smaller, V_ reaches a minimum

value which is less than the smaller of V and V . The minimum of V

equals V or V only when p= P or P= p .

Therefore, if V were graphed and then a horizontal line were drawn at

Г ° Г
V = ß, min [v (p)l <0<- max I V (p)l , the line would intersect the graph

of V at either one or two places. In Figures 1 and 2 there would be

exactly one point of intersection. In Figure 3 the line would intersect the

graph of V at exactly two places if both V >ff and V > ß , and would

intersect at exactly one place if Vi>f? and V-, <* ß or V, < в and

V« >ß . It should be observed that, in Figure 3, if V =ß and V > ß ,

the lower point of intersection is taken to be P = -1/K ; and, if V. > ß

and 4=6, the upper point of the intersection is taken to be at

positive infinity.
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Figure 1. Profile of V when p < p.
о — 1

V

V,

Figure 2. Profile of VQ when p > p2

V

Figure 3. Profile of Vn when p^ < p < p2
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Also, in each of the figures (1 through 3), the line V = Ç is shown, and

the values of p , p *■ , and p * , at which V (p) = ß are indicated.

Using the information regarding the behavior of V {p ) = </

о " R

d , it

is found that P may be expressed as

Рх = prob (p < рц) if p < Px or if p1 < p < p2 and ^ < ß, 4^ >ß

P = < P2 - prob (p > p*) if p > p2 ór if px < p < p2 and 4± > ß, V3 < ß

/s *

P - prob (p < P < Рц) if Px < P < P2 and Ух > ß, V3> ß

where P and p are the smallest and largest roots, respectively, of

the equation

(28) v2(¡S) = f?

P is expressed in integral form as D*

/ ru

(29)

(30)

(3D

P =

/Лч , ^

-к

= / f(^)d
/^

-P*

U

P =1 f(^)d^
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To evaluate the integrals (equations 29 through 31), use is made of the

relation given by Equation 17. Then, using the density function of F, the

general form for P can be approximated by

(32) p ±

a - 1
(hf 2,/2 (a - m

= (»J , П yo - 1/ГУ

(N-a)gi lKP +1) (N - a) 9l

L N - a

2 ' 2 1 + Щ-'аЦ %f + «

(hj + N - a)/2

where R* is the appropriate domain of integration. Note that P, as

given by Equation 32, is exact when N/a is an integer. By making the

transformation of variable

a - 1 . /\
,—^Bf» -Ti_.

Equation 32 is transformed into the incomplete beta form

(33) P =

- 1
N-a

- 1

tt-x)
dx ,

Il N-a

вт~'—-г-

where R is the transformed domain of integration,
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Each of the integrals (Equations 29 through 31) can thus be approximated

by incomplete beta functions, and P can be expressed as

(34)

(35)

(36)

P. = I _L , N - a

1 U \ 2 2

P = \ P = 1 - I IZL. • N - a

2 L 2 2

v P ■ I —L » N - a

V 3 u\ 2 2

- I __L • N - a

M2 2

where

(37) U =

^Ji(KPu+1)

1 + 5^)-(KPu +1)

(38)

a - 1

L =■

gx(N - a) ^PL
(Kp * + 1)

1+ д/ы'Л) <KP£ + 1>

x

(39) I (n, n) =
x

x^Q - xf"

B(m, n)

dx
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After we have an estimator and a value for ß , and have selected a set

of values for the system parameters D, A, and О , the Influence of the

design can then be ascertained by varying the number of classes a_ for

fixed N, over a specified range and computing for each value of a_ the

quantity P as given by use of the forms (Equations 34 through 36).

Hence, as experimenter could determine for himself which design he

should use for his particular situation, i.e., for a specific D, A, p ,

and sample of N. To make the results of this report more useful, it was

decided to present some numerical results.

, 2

Using the results concerning the behavior of tf

R

tables of value of P were prepared. It was hoped that consideration of

some numerical results would aid in understanding the effect of design and

estimator on the specific objective considered, viz., reducing product

variability.

To compute P, it Is necessary first to specify the system parameters

p , 100A, and D; the design parameters N and a_; and the fixed

number Q . Unfortunately, one is not able to examine all the combinations

of system and design parameters that he would like. A set of parameters

were chosen that should represent many situations encountered in actual

practice. The values of p selected were 1/10, 1/4, 1/2, 1, 2, 4, and

d , a series of

1

10. The values of 100A «elected were 1/10, 1/4, 1/2, 1, 2, 4, and

10. Note, for example, that P ■ 10 means that o^ is 10 times larger then

v _ , and 100A ■ 10 means that С is reduced at 10 times the rate at

2 A

which 0* is reduced. For D, the value D - 100 was selected.

В

The sample size considered was N « 72. The values of a used were

2, 4, 8, 12, 18, 24, 36, 48, and 60.

The value of R used was

£(0.90)- 9 min (о«2|сЬ+тах( tf*2^) /10.

The value of ß (0.90) represents a reduction in total variance of 90

percent of the maximum attainable amount.
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For the 49 combinations of p and 100A, the values of P are presented

in Tables III through IX.

TABLE III

Prob 1 ((>¿2I
Values of P ■ for 100A = 1/10

p

a 1/10 1/4 1/2 1 2 4 10

2 1.00 1.00 1.00 0.96 0.87 0.76 0.39

4 1.00 1.00 1.00 0.99 0.91 0.76 0.53

8 1.00 1.00 1.00 1.00 0.96 0.79 0.63

12 1.00 1.00 1.00 1.00 0.98 0.81 0.68

18 1.00 1.00 1.00 1.00 0.98 0.83 0.73

24 1.00 1.00 1.00 1.00 0.99 0.84 0.76

36 1.00 1.00 1.00 1.00 0.98 0.83 0.79

48 1.00 1.00 1.00 1.00 0.96 0.79 0.78

60 1.00 1.00 0.99 0.98 0.89 0.71 0.76

TABLE IV

'^

Values of P = Prob | for 100A = 1/4

p

a 1/10 1/4 1/2 1 2 4 10

2 1.00 0.99 0.94 0.83 0.75 0.40 0.52

4 1.00 1.00 0.98 0.87 0.75 0.53 0.73

8 1.00 1.00 0.99 0.91 0.76 0.63 0.88

12 1.00 1.00 1.00 0.93 0.78 0.68 0.93

18 1.00 1.00 1.00 0.95 0.79 0.73 0.97

24 1.00 1.00 1.00 0.95 0.80 0.76 0.98

36 1.00 1.00 0.99 0.93 0.78 0.78 0.99

48 1.00 0.99 0.98 0.89 0.74 0.77 0.99

60 0.97 0.95 0.91 0.79 0.66 0.74 0.97
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TABLE V

Values of P = Prob

$k%)<- >]
for ÍOOA = 1/2

a 1/10 1/4 1/2 1 2 4 10

2 0.99 0.94 0.84 0.77 0.14 0.45 0.61

4 1.00 0.98 0.88 0.77 0.26 0.63 0.85

8 1.00 0.99 0.92 0.80 0.38 0.76 0.96

12 1.00 0.99 0.93 0.81 0.45 0.83 0.99

18 1.00 0.99 0.94 0.82 0.50 0.87 1.00

24 1.00 0.99 0.93 0.82 0.52 0.90 1.00

36 0.99 0.98 0.90 0.80 0.52 0.92 1.00

48 0.97 0.94 0.85 0.75 0.47 0.90 1.00

60 0.89 0.83 0.74 0.66 0.36 0.86 1.00

TABLE VI

Values of P = Prob

[ИИ
for ÍOOA = 1

a 1/10 1/4 1/2 1 2 4 10

2 0.96 0.86 0.80 0.15 0.45 0.52 0.66

4 0.99 0.90 0.82 0.27 0.63 0.74 0.90

8 0.99 0.93 0.85 0.38 0.75 0.88 0.98

12 0.99 0.93 0.86 0.44 0.81 0.93 1.00

18 0.99 0.93 0.87 0.48 0.86 0.96 1.00

24 0.98 0.91 0.86 0.49 0.88 0.98 1.00

36 0.94 0.87 0.82 0.47 0.89 0.98 1.00

48 0.88 0.76 0.76 0.41 0.87 0.98 1.00

60 0.76 0.69 0.66 0.30 0.82 0.95 1.00
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TABLE VII

Values of P = Probfi*\ty <- >] for 100A = 2

a 1/10 1/4 1/2 1 2 4 10

2 0.91 0.85 0.26 0.28 0.52 0.59 0.69

4 0.94 0.88 0.45 0.48 0.73 0.82 0.92

8 0.95 0.91 0.59 0.65 0.87 0.94 0.99

12 0.95 0.92 0.65 0.72 0.92 0.98 1.00

18 0.93 0.91 0.67 0.77 0.95 0.99 1.00

24 0.91 0.90 0.67 0.78 0.96 1.00 1.00

36 0.85 0.85 0.62 0.76 0.97 1.00 1.00

48 0.77 0.78 0.52 0.69 0.95 1.00 1.00

60 0.66 0.68 0.38 0.53 0.91 0.98 1.00

TABLE VIII

К A) S'Values of P = Prob. i for 100A = 4

о

a 1/10 1/4 1/2 l 2 4 10

2 0.92 0.40 0.37 0.44 0.58 0.67 0.75

4 0.96 0.62 0.60 0.70 0.83 0.90 0.96

8 0.97 0.73 0.75 0.86 0.95 0.98 1.00

12 0.96 0.76 0.80 0.91 0.98 1.00 1.00

18 0.95 0.76 0.82 0.93 0.99 1.00 1.00

24 0.93 0.74 0.82 0.94 0.99 1.00 1.00

36 0.88 0.68 0.78 0.93 0.99 1.00 1.00

48 0.80 0.58 0.69 0.89 0.99 1.00 1.00

60 0.68 0.43 0.53 0.78 0.96 1.00 1.00
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Values o£ P e> Prob

TABLE IX

[НЧИ for ÎOOA » 10

■

а 1/10 1/4 1/2 1 2 4 10

2 0.99 0.56 0.57 0.63 0.70 0.77 0.84

4 1.00 0.76 0.79 0.86 0.93 0.96 0.99

8 1.00 0.84 0.89 0.95 0.99 1.00. 1.00

12 1.00 0.86 0.92 0.98 1.00 1.00 1.00

18 1.00 0.85 0.93 0.99 1.00 1.00 1.00

24 1.00 0.84 0.93 0.99 1.00 1.00 1.00

36 1.00 0.80 0.91 0.98 1.00 1.00 1.00

48 0.98 0.75 0.86 0.97 1.00 1.00 1.00

60 0.90 0.67 0.78 0.92 0.99 1.00 1.00

It Is also obvious that the magnitude of P depends on the specific combina

tion of p and 100A.

For situations where 100A and p are both very large, or both very small,

the values of P are near one. The reason for this may be understood by consid

ering a specific case. Consider the combination p " l/io and 100A « 1/10.

With 100A в 1/10, we would want to allocate all our funds to source В unless

P were quite large. This condition is reflected in the value of p., which

is 3.67; i.e., we would want to allocate all our funds to source В unless p were

greater than 3.67. Hence, prob F¿2|<M S P \ " prob (0 < 4.39) |(p = 1/10)

is very large, no matter what design or estimator is used.
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From general consideration of the manner in which P varies as a

function of a_, it appears that, if one uses a design that is moderately

near the optimal, he will do quite well in achieving his objective of

reducing total variance.

The results seem to indicate that, for most situations, an intermediate

value of a_, say N/4<a< N/2, will give results that are quite close to

the optimal. If one value of a_ were to be recommended, it would be

a = N/3 .
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USE OF STATISTICAL DESIGN IN LABORATORY ENVIRONMENTAL

TESTING OF ADAPTION KITS

D. J. Taravella

Pica tinny Arsenal

1. This presentation will attempt to give you an idea of the complexity,

cost, and problems associated with conducting a laboratory environmental

test program for a large ballistic missile adaption kit. The use of a modi

fied fractional factorial design is a method being utilized to assess the re

liability of an expensive and complex item with some degree of assurance.

2. The primary function of Picatinny Arsenal in the special weapons

area is the development of adaption kits for use in nuclear applications.

An adaption kit is the equipment required to adapt a nuclear bomb for use

with a missile or a projectile. This equipment furnishes the arming,

safing, and fuzing signals to the warhead, and includes the necessary

ground support equipment for handling and checkout of the warhead

section. The type of fuzing used includes electronic, contact, inertial,

timers, and altitude sensing devices. The safing and arming devices are

generally a collection of "g" weight systems, switches, timers, and

solenoids. The ground handling equipment must be capable of handling

warheads and warhead sections weighing up to several thousand pounds.

The checkout equipment must be capable of checking simple continuity, to

setting and checking of any of the complicated fuzing systems. The

reliability requirements, as stated in the Military Characteristics, and

Stockpile-to-Target Sequences, are usually 99% with certain safety or

functioning requirements as high as 99.99%. The environmental require

ments are normally high and low temperature (+160° and -65°F), sand and

dust, humidity, ozone, salt atmosphere, fungus, rain, sunshine, thermal

shock, transportation and handling (all forms of transportation, such as

airplane, railroad, truck, tracked vehicle, helicopter, and boat) plus

the flight or firing environments of acceleration, shock, temperature-

altitude, and vibration.

3. The following photographs are examples of a ballistic missile

adaption kit hardware which will give you an idea of the size, complexity,

and cost of an adaption kit and its required ground support equipment.

♦Photographs can be found at the end of this article.
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Photograph 1* - This electronic fuze is a pulsed radar fuze which has

г dual altitude sensing system that is commonly referred to as a Target

Detecting Device. Each Target Detecting Device has a separate power

supply. The outputs of both systems are cross-coupled to both arm-safe

devices. The system utilizes a common transmitting and receiving antenna.

The fuze contains the following type of circuits or parts: RF amplifier,

klystron and converter, AFC, magnetron, synchronizer, modulator, IF

amplifier, and firing circuit. This fuze weighs 400 lbs. and costs approxi

mately $30,000, including a self-contained power supply.

Photograph 2- This photograph shows the location and arrangement of

the impact fuzing system. This system consists of two electrically in

dependent fuze sets. Each fuze set consists of an impact crystal, T-

connectors, and cabling.

Photograph 3-The impact crystal consists mainly of the piezo-electric

ceramic elements, a weight, a spring, and a coaxial connector. The im

pact fuzing system costs approximately $1,200.

Photograph 4- This safing and arming device is a programming mechanism

which consists of the following parts:

a. Three "g" sensing weights, accelerometer, "g" weight, and

decelerometer.

b. Four micro switches.

с Two modified T3 Timers; a 140 -second and a 4-second clock.

d. Three banks of wafer switches.

e. Two solenoids.

f. Arming cam, spring loaded.

Photograph 5- All of the above are housed within a cylindrical aluminum

housing with a connector to the fuze in front and the cable at the rear end.

This item costs approximately $2,000; two of these items are required.

Photograph 6- This cabling connects the safing and arming devices to

the warhead. It is approximately 276 inches in length. This cabling

costs approximately $200.

Photographs have been placed at the end of this article.
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Photograph 7- Two mechanical support structures are used to support

and mate the nuclear warhead to the missile skin structure. This is the

forward payload support.

Photograph 8- This is the aft payload support. These structures cost

approximately $2,500.

Photograph 9- This is the bleeder tube assembly which is used to vent

moisture and gas from the warhead. This assembly costs approximately

$325. All of these components are the flight components of the adaption

kit.

4. The following are the ground handling equipment:

Photograph 10- This is the warhead stand which is used to assemble

the warhead into the missile structure.

Photograph 11- This shows the fuze cone handling tool which is used

to assemble the fuze cone assembly (400 pounds) to the warhead section.

Photograph 1 shows this tool with the fuze cone assembly.

Photograph 12- This shows the fuze cone stand which is used during

checkout of the fuze cone assembly prior to assembly.

Photograph 13- This shows the warhead section sling which is used

to handling the warhead section which weighs over 7,000 pounds.

The ground handling equipment costs from $250 to $3,000 for each item.

5. Six testers are used in the checkout of the adaption kit compon

ents and the warhead section. They are as follows:

Photograph 14- XT-4000 Fuze Tester is a GO NO GO tester which

programs the air burst fuze through a simulated flight. Certain test

points such as magnetron, IF, crystal current, noise, AFC, and con

tinuity are checked.

Photograph 15- XT -4004 Tester - This tester checks the capacitance

of the networks and contains a device which is used to check the T53

crystal.
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Photograph 16- XT -4005 Cable Tester - This tester is used to check

the continuity of the cable.

Photograph 17- XT-4006 Assembly Tester - Checks the various circuits

of the warhead section to assure continuity and to ascertain that certain

switches are in the prescribed position.

Photograph 18- XT-4007 Control and Monitor Panel - This tester is

part of the missile Prefire Control and Test Truck. The burst option is

controlled by this tester. It checks certain continuity circuits and

activates a safing switch within the warhead.

Photograph 19- Warhead Installation Simulator - This tester is used

to assure that the T-4006 and T-4007 Testers are in proper working

order. This tester can also be used to introduce simulated malfunctions

for troop training . These testers cost approximately $300 to $12,000

each.

6. Due to the high cost and complexity of special weapons hard

ware and the high cost of flight testing, considerable time and effort are

being devoted to the laboratory testing activity. One group within the

Long Range Atomic Warheads Laboratory, of which I head, has been

established with the principle function bo organize, establish, and

conduct the laboratory environmental portion of the qualification pro

gram for certain adaption kits. The term qualification applies to the

demonstration to all concerned that the adaption kit is capable of

being exposed to the Stockpile -to-Target Sequence environments and

still perform satisfactorily. The normal storage life requirement is

five years. These environmental tests are considered to be acceler

ated aging tests.

7. Within the Special Weapons Development Division at Picatinny

Arsenal, the environments to be encountered during the Stockpile -to-

Target Sequence have been standardized and separated into three

categories: Transportation and Handling, Field and Storage, and

Flight or Firing. These, in turn, are divided for convenience as

follows:
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a. Transportation and Handling

(1) Vibration

(2) Packaged Drop

b. Field and Storage

(1) Field Vibration

(2) Shock (impact)

(3) High Temperature

(4) Low Temperature

(5) Temperature -Shock

(6) Temperature -Altitude

(7) Sand and Dust

(8) Salt Spray

(9) Immersion

(10) Rain

(11) Sunshine

(12) Fungus

(13) Ozone

(14) Humidity
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с. Flight Environments

(1) Temperature -Altitude

(2) Shock

(3) Vibration

(4) Acceleration

8. Laboratory simulation of the flight environments is often diffi

cult to achieve. The most significant flight environments are Tempera

ture, Altitude, Mechanical Shock, Acceleration or Deceleration, and

Vibration. Equipment for the simulation of the combined environments

of temperature, altitude, and vibration is readily available. The com

bination of temperature, altitude, vibration, and acceleration is avail

able for small test specimens. True simulation of these combined en

vironments is not available with present-day equipment. Of all of the

most significant environments, vibration is the most difficult to re

produce. Most vibrators simulate sinusoidal vibration; some others

can simulate random vibration. However, the vibration experienced

during missile flight is usually a combination of both intermixed with

mechanical shocks. Valid flight vibration data are the most difficult

to obtain. Some of the contributing factors in not being able to secure

valid flight information are: capabilities of the telemetering systems

and transducers, priorities of desired flight information, time, and

economics.

9. The REDSTONE Missile was the first large ballistic missile

developed by the United States Army. Hence, this adaption kit for the

warhead section was the first ever to be laboratory tested. In the

planning and organization of the testing program, economics and

availability of hardware must be considered. Except for the safing

and arming devices, only a limited amount of test samples were avail

able for the laboratory testing program. The test program was con

ducted with a limited number of test samples being exposed to a large

number of environmental exposures. Only four of the twenty samples

of safing and arming devices were subjected to the same testing
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sequence. Analysis of the resulting data was often difficult and in

conclusive.

10. Mindful of this experience in the first ballistic missile pro

grams, more consideration was given to hardware allocations for en

vironmental testing. This permitted the allocation, scheduling, and

justification of a larger number of test samples. After consultation

with our statisticians at the Arsenal, the use of bi -level fractional

factorial design was recommended for our use in the laboratory test

program. This statistical design was modified in order to obtain maxi

mum engineering information. This approach is being used for the

PERSHING and NIKE ZEUS Adaption Kits.

Photograph 20 shows this application for the flight components for

PERSHING Adaption Kit. Originally, sixteen adaption kits were

scheduled for the program. However, due to a major design change,

the allocation was reduced. By another re-allocation, a group of

twelve units of the same design will be used.

11. The principal modification is the use of an upper and lower

level of severity in place of an absence of an exposure. These upper

and lower levels are as follows:

Test Lower (0) Upper (X)

7 Temperature Shock -40 to + 135°F -65 to + 160°F

16 Humidity 5 cycles 10 cycles

17 Temperature -Altitude -40 to 135°F. -65 to 160°F,

at 50,000 ft. at 100,000 ft.

18 Shock 20 Gs 30 Gs

19 Vibration 10 Gs 15 Gs

20 Acceleration 10 Gs/5Gs 15 Gs/7.5Gs

Checkouts will be conducted after exposure to the Temperature -

Shock and Humidity environments, and during the flight environments

of Tempera ture -Altitude, Shock, Vibration, and Acceleration. The
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Flight Vibration environments will be a combined environment of vi

bration and temperature; 8 at ambient (+77°F), 4 at -65°F, and 4 at

+ 160°F.

The upper limits of the firing environments of shock, vibration, and

acceleration are approximately 50% above the required levels. So,

this is somewhat of an overtest.

12. The cost of the hardware and testing is $100,000 per adaption

kit; hence, the cost of this design is $1.2 million.

Photograph 21 shows this same application for the NIKE ZEUS

Adaption Kit. The upper and lower levels are similar.

13. From an engineering point of view, the plan will feature a

"larger" sample size undergoing the same and the most significant

or severe environments to be encountered in the Stockpile-to-Target

Sequence. The effect of each environmental exposure will be more

readily discernible. This also applies to the combination of exposures,

The desired goal of this application is to be able to assess the relia

bility of an adaption kit with some degree of assurance. One short

coming of the plan is flexibility.

14. In summary, this presentation has attempted to give you an

idea of the cost, complexity, and problems associated with con

ducting a laboratory environmental test program for an adaption kit.

With this as a background, the use of a modified fractional factorial

design is a method being utilized to assess the reliability of an ex

pensive and complex item with some degree of assurance.
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A SERIES OF TWO-PHASE EXPERIMENTS*

Emil H. Jebe**

The University of Michigan

In pursuing a program of modeling and simulation, it is desirable to

obtain from time to time some "real world" data on the performance of

systems being studied in order to check and validate mathematical

models used in the simulations. If properly designed experiments are

carried out during the conduct of engineering tests, sound and useful

interpretations may be obtained for validating a model. Among the

systems studied have been various combat surveillance sensor sub

systems. For one of these sensors, (hereafter referred to as sensor

ANZ) which was to be simulated, it appeared that a program could be

proposed for conducting engineering tests and obtaining data for

sensor model validation. In exploring this problem, a series of two-

phase experiments was designed. A description of these experiments

and some explanation of their design and analysis provides the moti

vation for this paper.

For the investigation of a situation of interest to combat surveillance,

sensor ANZ provides only a film record. When the film record has been

interpreted, information is available for assessing the situation under

surveillance. Instead of going directly to the design and film inter

pretation problems it will be useful to give some background of the

sensor responses to be studied, parameters to be varied for the en

gineering evaluation tests and the environmental circumstances to be

investigated.

This paper is based upon work conducted for the Information Processing

Task, Project Michigan, under Department of the Army Contract

DA-36-039 SC-78801, administered by the U. S. Army Signal Corps.

**

Research Mathematician, Operations Research Department, Institute

of Science and Technology, The University of Michigan.

The author wishes to acknowledge the aid, the stimulation of and

the interchange of ideas with Professor I. Copi, Research Logician,

Dr. Thomas S. Lough, Research Associate and John H. Wyman,

Research Assistant, Institute of Science and Technology, The

University of Michigan, which helped develop this series of two-

phase experiments.
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From sensor responses to be observed during engineering tests a

total of 13 characteristics could be evaluated for describing its perfor

mance. Examples of these 13 items are:

R : Probability of show (proportion of total number of moving

targets detected in area of search),

R : Number of false targets reported in areas where targets

might be expected,

R3: Proportion of total number of parked vehicles detected

in area mapped,

I: Proportion of total number of parked vehicles correctly

identified in area mapped,

D: Distance errors (distances between reported and actual

locations of targets),

PQ: Photographic qualities of the radar map.

Examples of parameters that are subject to experimental control in

tests are the following:

r: slant range between aircraft and target,

TT: target type, e.g., jeep, truck or tank,

V : velocity of targets,

d : distance between targets,

V* : velocity of aircraft,
a

h : altitude of aircraft,
Q

R : sensor range setting.
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Environmental conditions which may affect the sensor outputs are:

Foliage density,

Density of targets when uncontrolled as to speed and distance

separation,

Turbulence of the air,

Interference from other radars,

Variation associated with the experimental units, e.g., an air

craft flight over a given path or a group of such flights.

It may be of interest to present a list of tests specified for investi

gating this complex of responses, parameters, and conditions and the

list of corresponding experiments which were designed to implement

such tests. The list and the experiments are given in Tables 1 and 2.

With this general picture of the test program before us we may return

to the sensor's output, the film record and its interpretation. At this

stage, we may ask, "What are two-phase experiments ?" A definition

that has been given by Curnow is, "These are experiments in which the

effects of the various treatments on the experimental units cannot be

assessed directly and a further experiment is needed to estimate them"

(Reference 3, page 60). Mclntyre (Reference 1) has given examples of

various combinations of First Phase and Second Phase experimental

patterns. In our case, for any single experiment a film strip is obtained

as output from the sensor for the observation of each experimental unit.

If a machine could be used to interpret such a set of films or if a single

highly reliable and accurate film interpreter not subject to fatigue could

be used to interpret the film strips then a second phase experiment would

not be required. Since a number of interpreters would be used to interpret

the film outputs from the seven experiments shown in Table 2, it seemed

wise to set up a series of carefully arranged film interpretation schedules.

Problems of fatigue and unknown accuracy and reliability may then be

avoided or assessed. Each combination of a field experiment with its

film interpretation schedule then comprises a two-phase experiment;

the First Phase is the field program and the Second Phase is the schedule

of film assessment which is to be carried out 'in a Photo Interpretation

Section.
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LIST OF TESTS

Test

No

1. Probability of show as a function of traffic density

See Experiment A

2. Probability of show as a function of target speed

See Experiment С

3. Radial resolution - Included in Experiment D

4. Lateral resolution - Included in Experiment D

5. Minimum range determination and range calibration

Included in Experiment D

6. Comparison of radar map with conventional photography

See Experiment E

7. Vehicle Identification - See Experiment A

8. Coordinate accuracy of radar photo map

Included in Experiment D

9. Interference from other radars - See Experiment F

10. Accuracy of navigation radar compared with beacon or skin

tracking - Included in Experiment D if needed equipment becomes

available

11. Effect of roll and yaw stabilization

Included in Experiments A and С

12. Foliage penetration - See Experiment G

13. Human Factors Evaluation - See Experiment H and **

14. Vulnerability to countermea sures - Refer ***

15. Maintenance evaluation - Refer **
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LIST OF EXPERIMENTS

A Stationary and Uncontrolled Moving Vehicle

Experiment - Implements Tests 1, 7, and 11

В Altitude Experiment - Tests Optimal Altitude

Hypotheses

С Controlled Vehicle Experiment - Implements

Test 2 and is relevant to Tests 3, 4, and 11

D Resolution, Fidelity, and Accuracy Experiment

Implements Tests 3, 4, 5, and 8. If a sufficiently

precise tracking radar is available test 10 may also

be implemented.

E Radar Mapping Experiment - For comparison with

Photography. Implements Test 6

F Radar Interference Experiment - Implements Test 9

G Foliage Experiment - Implements Test 12

H Photo Interpretation Experiments - Needed for imple

mentation of most of the tests.

**Experiment Log Book will be maintained during the entire period

of experimentation by the Project Engineer and the officer in

charge of each day's activities. This record will be supported by

a maintenance log and reports from personnel involved in the

program. Implements Tests 13 and 15.

♦♦♦Vulnerability Experiment

It is understood that implementation of Test 14 will be the respon

sibility of another department.
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The literature on two-phase experiments is limited. Only three

references are available (References 1, 2, 3). It is curious to note that

all of these papers are by non-U. S. workers. Perhaps, this situation

may be partially accounted for by the lack of recognition of the problem

or the incomplete description of some complex research problems.

Professor Kempthorne, Iowa State University, first called my attention

to the two-phase problem in my consulting work there. I found that I

had actually designed (without so labeling them) a number of two-phase

programs at Iowa State (a report on one of these has been published,

Reference 4).

In discussing the problem, Mclntyre set forth a number of principles

to be followed in designing the two-phase experiments. These are

paraphrased as follows:

a. Replication in the first phase is needed to measure consistency

of performance and provide a basis for a valid test of signifi

cance,

b. The results from each experimental unit of the First Phase

should be separately evaluated in the Second Phase,

c. Replication in the Second Phase is not necessary but is highly

desirable in order to cope with

(1) Large uncontrollable variation in the Second Phase

relative to expected First Phase treatment effects,

(2) Analytical mistakes,

(3) Expected small treatment effects in the First Phase.

For this situation, Mclntyre also suggested a high

degree of "local control" in the Second Phase,

d. Results from experimental units of the Second Phase shall

permit direct analysis in terms of the design of the First

Phase experiment.

e. Replication in the Second Phase should be the same with

respect to all elements of the First Phase so that errors of

measurement for all experimental units of the First Phase

will be uniform.



Design of Experiments 745

I have no criticism of Mclntyre's points. They are sound principles

in the design of experiments. Most statisticians would try to carry out

these concepts in designing experiments of this degree of complexity.

Curnow's paper (Reference 3) advances no new principles but makes the

contribution of showing that Mclntyre's analysis of a complicated example

was incomplete. The total variation was not broken down into all of its

component parts. This point is highly relevant and in designing this

series of two-phase experiments for sensor ANZ I have aimed at securing

information on the interesting components of the total variation.

Thus, in following Mclntyre's and Curnow's lead it seemed desirable

to set up the structure of these two-phase experiments so that:

a. The numerical results of the Second Phase can be subjected to

a direct statistical analysis in terms of the design of the

First Phase experiment,

b. Analysis will provide unbiased estimates of the sources of

variation in both the First Phase and the Second Phase

experiments,

c. Estimates of experimental error can be obtained for comparing

interpreters,

d. Estimates of the repeatability of photo interpreters in reading

the same film may be computed.

It was not found practicable, however, to set up the structure of all 7 ex

periments so that a, b, c, and d could be completed. As a minimum, item

a can be carried out for all although in some cases a modified analysis

has been set up. Items с and d were built into some of the designs.

Essentially, the material presented so far has been an extended intro

duction. We now come to the actual presentation of the experimental

designs as they were worked out. In this paper I shall try to describe

several of these structures. Experiment A in the First Phase is a ran

domized complete block in two replicates for three factors each at two

levels in factorial arrangement on the whole plots of the experiment.

In addition, a split -plot feature was introduced with one factor at four

levels. Thus, this experiment is designed to produce 64 film strips

from 16 aircraft missions. If the film strips provided data for immediate

analysis, the schematic analysis of variance shown in Table 3 could be
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obtained. A review of the symbols in this table will help us understand

the nature of the experiment. V=, is the speed of the aircraft carrying
a

the sensor, R is a range control setting of the sensor itself, and D
S t

is the density of the moving targets on a segment of highway to be ob

served. These three provide the three factors each at two levels to be

imposed in their eight treatment combinations on the whole plots. It

should be noted that the factor D could not be randomized since ordin

ary vehicular traffic in and out of a military installation was to be ob

served at different times of the day when high and low densities would

occur. The split-plot feature is the Flight Path treatment which actually

gives four sensor-target aspect angles by means of the aircraft carrying

the sensor flying at four different angles with the road segment to be

observed.

With this pattern for the First Phase of experiment A, it was not easy

to set up a good pattern for the Second Phase. For these photo interpre

tation experiments it was assumed that a minimum of four interpreters or

interpreter teams consisting of two men working together would always be

available. This is not exactly a modest assumption when one is dealing

with military personnel who may be absent on any given day for one of a

myriad of reasons. Since it was desired to obtain considerable infor

mation on film interpretation from this first experiment choice of an experi

mental pattern was approached from this, point of view. The number four

for interpreters seemed to suggest some form of Latin square arrangement

A single 4x4 square would permit the reading of only 16 film strips.

Thus, four such Latin squares would be required as a minimum. How to

distribute the 64 films among the four squares was a real problem. After

some struggle, a pattern was obtained, but its analysis is not in accord

with the analysis of Table 3. The films from one replicate of the First

Phase experiment were artitrarily separated into two groups and each

group assigned to one 4x4 square. The arbitrary division was made

by confounding the three -factor or second order interaction with square.

If an entire square is thought of as a block, the procedure for making this

sub-division is described in detail by Professor O. Kempthorne

(Reference 5) and I shall not go into it here.

In the Photo Interpretation Section a set of four stations would need

to be set up for carrying on the film interpretation work. Then the inter

preter teams are randomly assigned to the stations (columns of the Latin

Square) and the four whole-plot treatment combinations to the rows.

Within the cells of each square the split-plot treatments, i.e. , the four
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ANALYSIS OF VARIANCE FOR OBSERVATIONS

ON UNCONTROLLED VEHICLE MOVEMENTS

Source of Variation

TOTAL

General Mean

Replications

Va x R
a s

va * Dt

s t

V x R x D
a s t

Degrees of Freedom

64

Experimental Error (a)

Flight Aspect Angles, L

Flight Aspects x Main Plot Treatments

Error (b)

7

3

21

24
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Flight Paths, were then randomized. Finally, one of the four squares

was duplicated, or a total of five squares used, in order to obtain a

measure of repeatability of the same observer reading the same film strip

twice .

Anyone of the five 4x4 Latin Squares could be analyzed, of course,

by itself but this would provide only information for comparing Flight

Paths. The two duplicate squares could be combined to give the analysis

presented in Table 4. By omitting data for one of the duplicate squares

an analysis of data read from the 64 film strips may be made as shown in

Table 5.

After struggling with the complexity of experiment A we turn to a

smaller experiment designed to test a simple hypothesis, "What is the

effect of aircraft altitude on the output of the airborne sensor ?" It

was believed that there might be an optimal altitude for employment of

the sensor at each of its range settings. Eight altitudes were selected

for study and these have been arranged in two randomized complete

blocks with R (the range setting) completely confounded with blocks
s

since there was no interest in the interaction of altitude with R . Such
s

an arrangement does not provide a proper estimate of experimental error

so four of the eight altitudes in each block were duplicated. In a sense

then, two estimates of error are provided by the selected pattern, an esti

mate based on deviations from regression and an estimate based upon the

duplicates (refer Table 6, below).

The introduction of the duplicates makes each block rather large, i.e.,

12 passes or flights over the same flight path are required to be completed

within one aircraft mission (mission = take-off, flying the required

passes and returning for landing). With experimental equipment and

modified aircraft, it is often difficult to secure a desired set of success

ful passes in one mission. For this simple experiment В , it was assumed

that the 12 passes could be obtained during one aircraft mission.

For this experiment В a convoy of nine military target vehicles was

to operate on a selected straight road segment at a specified fixed

speed and fixed spacing. Aircraft speed, V , was also to be controlled
a

with only the altitude to be varied. The altitudes selected were 500,

1000, 1500, 2000, 2500, 3000, 4000 and 5000 feet above the ground level.

It may be asked, "Why this peculiar choice of unequal spacings?"
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ANALYSIS OF VARIANCE OF TWO LATIN

SQUARES FOR EXPERIMENT A

(Analysis of Duplicate Film Interpretations)

Source of Variation

Total

Mean

Squares

Stations (Columns)

Rows

Flight Paths

Remainder

Duplicates

Degrees of Freedom

32

1

1

3 (Equals interpreters)

3 (Sub-set of treatments)

3

6

15
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ANALYSIS OF VARIANCE OF FIRST AND SECOND

PHASE PATTERNS FOR EXPERIMENT A

Source of Variation

Total

Mean

Sessions (based on 4 Latin Squares)

Blocks of Phase 1 Experiment

Squares within Blocks

Stations

Interpreters

Remainder (for comparing interpreters)

Rows in Sessions

Treatment Combinations

Treatment Combinations by Blocks

Columns in Sessions

Interpreters (given above)

Remainder (confounded with other effects)

Flight Paths

Flight Paths by Blocks

Flight Paths by Sessions in Blocks

Remainder (within square error for Flight Paths)

Degrees of Freedom

64

1

(3)

1

2*

3

3

6

(12)

6

6

(12)

3

3

6

24

Includes the three -factor interaction used for forming the

squares by dividing the main treatment combinations into

two groups .
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ANALYSIS FOR EXPERIMENT В

INVESTIGATION OF ALTITUDE EFFECT FOR EACH RANGE SETTING*

Source of Variation

Total

Mean

Rs (equals block)

Altitudes

500' Spacings—Linear

Quad.

Rem.

1000' Spacings—Linear

Quad.

Rem.

Altitudes by Range Setting*

Duplicates in Range Settings

Degrees of Freedom

24

1

1

7

1

1

3

1

1

2

7

8

Alternate Analysis

If Altitudes by Range Settings is a large effect (which

is to be expected) then the spacings analyses should

be carried out separately for each Range Setting.
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ANALYSIS OF VARIANCE FOR STUDY OF INTERPRETER TEAM

VARIABILITY USING EXPERIMENT В FILMS

Source of Variation

Total

Mean

Squares

Altitudes

Altitudes by Squares

Rows and Rows by Squares

Interpreter Teams

I. Teams by Squares

Exp' tal Error in Squares

Degrees of Freedom

32

1

1

3*

3

6

3

3**

12**

* May be separated into Linear Quadratic and

Remainder effects

** May be combined for assessing Interpreter

Teams.
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Again, these choices are a compromise. You will note that the set of eight

altitudes contains two sequences, one at 500' spacings and one at 1000'

spacings. The closer spacing was considered relevant to one range setting

and the wider spacing for the other range setting although some information

on the complete range of altitudes was desired for both range settings. The

altitudes selected for duplication were 1000, 2000, 3000, and 4000.

Analysis of the 24 film strips to be obtained from experiment В would be

as set forth in Table 6 if no Second Phase experiment were required. For the

Second Phase of В two designs were suggested. The simpler pattern merely

assigned one photo interpreter team to each block with film interpretation to

be carried out in the same order as the randomized field arrangement of the

First Phase. Thus, interpreters are completely confounded with the blocks

and range settings. Analysis would then follow exactly the scheme of Table 6,

The purpose of the additional design was to obtain more information on

interpreter performance. The four altitudes duplicated in each block make

it convenient to employ two 4x4 Latin Squares and four teams. Altitudes

are randomly assigned to the columns in each square. Rows are formed by

arbitrarily setting up two groups of four films containing each of the four

altitudes within each block of the First Phase. The total of four such groups

are randomly assigned to rows in each square. The interpreter teams are

assigned to the cells in each square by a separate randomization. Analysis

of this added design then would follow the scheme of Table 7. I do not con

sider this last pattern a wholly satisfactory design but it does provide more

information on photo interpreters. At present I am not aware that adequate

statistical studies have been made of the photo interpretation process. ' '

Even if such studies were available, I should note that film strips produced

by a sensor such as ANZ are sufficiently different from the usual aerial

photographs interpreted in a Photo Interpretation Section that some studies

of the interpretation of these film strips should be conducted.

It will be of interest to take a look at another of the experiments in the

series. Our experiment С has some interesting features. First, the Phase

One experiment is a fractional plan. The pattern is a one-half replicate of

a 2^ factorial arranged in four blocks, each block comprising eight passes

by the sensor aircraft at a constant altitude along flight paths described

as near (in range) to a road segment to be observed. Within each block

requires 10 passes and the whole experiment a total of 40 passes. This

pattern may seem like a rather large experiment. It does require four days, one

day for each block, but it is expected that only four successful aircraft missions
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will be required. In terms of the amount of information to be obtained from

the experiment, the plan does not seem large to the statistician.

The complexity of the First Phase plan and the desire to keep the Second

Phase program from becoming too large led to selection of a simplified film

interpretation schedule. Each block of the First Phase experiment was

assigned to one photo interpretation team so that teams are confounded

with blocks. Such a program still permits analysis of the interpretations

directly in terms of the First Phase design. For convenience, two inter

pretation schedules were set up, one for the one -half replicate of the 2^

factorial, and one for a sub-set of the experimental units in each block

not involving the near range setting of the sensor. This last schedule uses

film strips obtained using the far flight paths already mentioned and two

additional passes from each block. The total of sixteen treatment com

binations from the four blocks provide data for securing partial information

on near vs. far flight paths and two other factors.

Analysis of the fractional replicate is presented in Table 8. It is seen

that the six factors ere Target Speed, Target Spacing, Aircraft Speed,

Sensor Range Setting, and Aircraft- Vehicle Path Angle which make only

five, but the last factor occurs at four levels so it is sub-divided into 2

factors each at two levels (Refer 6, Sec. 6A 33, pp. 273-4 for explanation

of this procedure). Thus, E and F are designated the pseudo-factors

for the single factor at four levels.

For this experiment C, the aircraft with sensor is to be flown at a con

stant altitude and the targets consist of a convoy of nine military vehicles

whose speed and spacing is controlled. Since the convoy is restricted to

a single straight road segment, the aircraft Flight Paths are varied with

respect to the road.

For the second interpretation schedule, analysis of results is outlined

in Table 9. Again, interpreters are confounded with blocks and block

assignment for the teams is the same as for the fractional replicate.

How Table 9 is obtained is not immediately obvious. It was actually

worked out from first principles after careful choice of the treatment com

binations on the far flight paths to be added to each block. A larger First

Phase experiment was not considered feasible so the information obtained

here is a sort of minimum compromise.
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PRIMARY ANALYSIS OF VARIANCE FOR A SINGLE RESPONSE FROM

EXPERIMENT С INVOLVING CONTROLLED VEHICLE MOVEMENTS

Source of Variation

Total

Mean

Blocks (includes ВС)

Factors (main effects)

A Target Speed

В Range Setting (of the sensor)

С А/С Speed

D Target Spacing

E&F A/C -Vehicle Path Angle

Two-factor Interactions

Remainder

Degrees of Freedom

32

1

3

7*

1

1

1

1

3*

13**

8

Explanation of the Pseudo -factors E and F:

Flight Path Angle

Factor 0° 30° 60°

Factor Level

90

E El E2 El E2

F Fl Fl F2 F2

Contrast Contrast Vector

(Here! + and - indicate +1 and -1)

C(E)
- + - +

C(F)
- - + +

C(EF) + - - +

**
There are 15 degrees of freedom for the two-factor interactions but ВС

is confounded with Blocks and EF is a part of the Vehicle Path Angles

effect; hence, only 13 remain here.
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It may be noted from what I have just described that some of the film

strips, eight in total, will be interpreted twice. That is, each team will

have made duplicate interpretations of two films. These data can be

analyzed as shown in Table 10. Thus, a little more information is secured

on the film interpretation process.

It would be of further interest to describe the two-phase experiments

set up to investigate the effect of foliage on the film strips produced by

the sensor and the comparison of the sensor film strips with information

furnished by standard aerial photographs over different types of terrain

conditions. For these experiments some special procedures had to be

worked out for the film interpretation. In order to limit this paper no de

tails on these experiments are given at this time.

It is feared that the account given thus far is rather sketchy. There

are too many things that have been glossed over, not mentioned or in

adequately conveyed to the reader. The reader can understand, however,

that a great many details on organization of the field test program, in

strumentation of test sites and road segments, programs of the aircraft

flights and vehicle convoys, film interpretation schedules and many other

aspects of experiments of this type have not been mentioned at all or

merely noted. All this office work and planning and much more is required

to complete experiments of this kind. Even so, revisions may have to be

made after the field program and/or film interpretation work gets under way.

If the First Phase and Second Phase experiments and associated procedures

have been carefully worked out in advance of any testing, then it will be

clear what effects necessary changes or modifications will have and how

they should be made.

No discussion of the power or the sensitivity of these experiments for

detecting differences of specified magnitudes has been given. Nor are any

educated guesses available on the magnitudes of the experimental errors

that will be obtained from experiments that have been described. The

seven experiments are considered to be minimal in size for their intended

objectives. Only two of the experiments may be considered really large,

A, producing 64 film strips and C, a total of 40 film strips. Until

experimental results from such trials become available, it has not seemed

worthwhile to give further attention to the sensitivity of the experiments.

In development work it may often be best to complete a number of small

experiments that provide some information and possible guides to further

investigation.
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SECONDARY ANALYSIS OF VARIANCE FOR A SINGLE RESPONSE FROM

EXPERIMENT С INVOLVING CONTROLLED VEHICLE MOVEMENTS FOR

STUDY OF NEAR VS. FAR FLIGHT PATH AT THE FAR RANGE SETTING

Source of Variation Degrees of Freedom

Total 16

Mean* 1

Blocks 3

Factors* (4)

G Near vs. Far Flight Path 1

A Target Speed 1

D Target Spacings 1

E and F (combined): Vehicle Path Angles 1
*

Interactions (3)

GA 1

GD 1

AD 1

Error Components (5)**

G by Blocks 3

A by Blocks 2***

*

С is combined with blocks E and F confounded or not separable.

В at the upper level equals the mean vector.

These two components may be combined to form a five degree of

freedom error team.

***

One of the A by blocks and all three of the D by blocks are not

orthogonal to E and F.
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ANALYSIS OF VARIANCE FOR INTERPRETER PERFORMANCE

ON A SUB-SET OF EXPERIMENT С RESULTS

Source of Variation Degrees of Freedom

Total 16

Mean 1

Blocks (equals Interpreters) 3

Trial 1 vs. Trial 2 1

Trial by Interpreters 3

Duplicates 8
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In closing, appreciation is expressed for this opportunity to present

the subject of two-phase experiments. Some principles for the design of

these combined patterns have been reviewed and problems encountered in

setting up a series of such experiments have been described. Comments,

criticisms and suggestions from readers will be most welcome.
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FITTING THE MODIFIED EXPONENTIAL FUNCTION

BY THE METHODS OF MULTIPLE REGRESSION

Willis L. Hasty

U. S. Army Chemical Corps

Fort Detrick, Frederick, Maryland

The function

(1) y=A[l-e^<X+C>]

is variously known as the modified exponential function, Mitscherlich's

equation and the law of diminishing returns. It has a rather long history

as a proposed model in economics and agronomy, and has been a source

of frustration to the applied mathematician who was responsible for esti

mating its parameters by a least-squares fitting to data.

The obvious source of difficulty is the non-linearity of (1) in its para

meters and the consequent non-linearity of the system of normal equations

of least-squares. This situation cannot be avoided, as it can in the case

of the simple exponential function, by the logarithmic transformation.

An early modification did, indeed, admit the logarithmic transformation:

one made an independent estimate of A and fitted the function

(2) -In (1 - y/A) = Bx + С

This, however, requires the exclusion of observations of greater magni

tude than A.

The general problem of fitting sums of exponentials has been discussed

extensively; in this note, however, we limit ourselves to consideration

of (1) and to a method of fitting which uses the technique of multiple

regression analysis.

If (1) is written in the form у = A -be~cx and expanded in Maclaurin' s

series, terminating with the kth power of x, we have
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(3) y = A - b + be x - bc2x2/2 !+...+ (-l)k+1 ЬскхкД ! .

By identifying x with x. and proceeding as in multiple regression

analysis, we can obtain least-squares estimates of the regression co

efficients b (i = 0, 1, . . . ,k) which can be identified with the para

meters in (1) as follows:

b0 = A-b =A(l-e"BC)

b - be = ABe

(4)

b = (-l)k+1bckA! = (-l)k+1ABke*BC/kL

к

It appears that the ratios of regression coefficients give estimates of

powers of В according to the expression

(5) b/bi= ("1)J "^l/Jl)^"* (i< L i = 2, 3, ..., k) .

Two difficulties stand in the way of using (5):

a. The b's are in general correlated and have unequal

variances.

b. We have estimates of powers of B, whereas we require

В itself.

The second of these obstacles does not in itself appear insurmountable.

We have the relationship
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n

Е<*П> - И-п "I {'l)i Фа1 Е(хП"^

1

(6) ^ = E(x)

^k = E(x - Ob )k

which, used recursively, allows us to exhibit E(xn) as a polynomial

in 00 with the central moments figuring in the coefficients. The

к + 1 regression coefficients generate k(k - l)/2 estimates of the

powers of B, so there are k(k - l)/2 equations and к - 1 quantities to

be determined {00 and the/X^, i = 2, 3,..,, к - 1).

Thus the system of equations for determining 06,, (and thel^-J is

overdetermined and the equations of the system are non-linear and do

not have equal weights.

These difficulties may be eliminated by forming the weighted sums

of the groups of equations which estimate the same power of 00 ( = B).

For example Ob is estimated by each of the (k - 1) ratios -ib /b ,

i = 2, . . . , к. So the weighted sum provides a single estimate of Ob,:

a\ = -Ziwi ьл = i

where the W. 's are functions of the variances and covariances of the
i

Ц, and к Continuing this procedure with the к - 2

2

/ 2
equations which estimate /j^ + OU , and so on, we have finally

the system shown below, in which there are к - 1 equation and к - 1

unknown quanties: Ob and the ¡JL ., i = 2, 3, ..., к - 1. The first
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column shows the b's from which the equations in the second column

are derived:

к

2

* i-1

1 Ù f • f • | It

2 k

(?) b¡, ь._2 /¿2 +a-i „£, d -i)Wl b,/bt..

1 " J; •••/ К

' k_1 i к 1

v bi ^k-i ♦¿>i)k"l< i"4.i/i = И) ~lkl wkw

The system is such that oC and the X/'s can be recovered in

succession: the first equation gives (%., whereupon the second gives

J/ and so on. The value of (У*., as determined from the first equation,

is an estimate of В in (1). This estimate permits (1) to be linearized

in the form

(8) у = A - DZ

where „,-, „i,

„ л -ВС „ -вх
D = Ae , Z = e

The least-squares solution of this equation gives A, and С =(l/Bjln D/A.

The /W^'s, which are available from the last к - 2 equations of (7),

are formally identified with the central moments of the distribution of

B. No investigation of the properties of these estimates has been made.
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The weights appearing in (7) are to be determined such that the

variance of the weighted sum of estimates of В shall be a minimum .

Let b./b. . = г.; denote a Lagrange multiplier by Л and the mean

, . 2
squared deviation from (3) by S . Then the function

к k-1 к к

(9) ^i2Wt var (rt) + 2^ iWi £ jWj cov (ri#rj) + ^(Б^Щ - S2)

2 i=2 j=i+l 2

is to be minimized with respect to W. .

The system obtained by setting the partial derivatives equal to zero is

4 V2 + 6 C23 + 8 C24 +. . . + 2 KC2K + 2 = 0

6 C23 + 9 V3 +12 C34 +. . . + 3 KC3K + 3 = 0

(10)

2 KC2K+ 3 KC3K+ 4 KC4K +. . . + K2VK + К = 0

2+ 3 + 4 +. . . + К =1

where V. = var (b./b. ,), С = cov (b./b, ,, b/b. ,).
i i 1-1 i] i i -Г j j-Г

Using a well-known approximation for the variance of the ratio of

random variables
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(И)
bi cii

V bi-l bii

'i-1' i-1
2ci' i-1

bi bi-i

where c.. is the element in the ith row and ith column of the inverse

11

of the matrix of the system of normal equations of least-squares corres

ponding to (3). In a similar manner one may develop the expression for

the covaria nee of two ratios b/b._., b /b :

(12)

С =

ij

bib,

bi-lbJ-l

С

ij

bibJ

"i-l.J

bi-lbJ

С

l.J-1

bibH

°1-1J-1

bi-lbj-l

• S

It seems clear that the applicability of this method would be limited

to cases in which a large body of data was available for the estimation

of the parameters. This, however, is the case of interest here, since

the use of an electronic digital computer is assumed.



PROBLEMS RELATED TO A BIO-ASSAY FOR SPORE -GERMINATION

INHIBITORS ASSOCIATED WITH UREDOSPORES

K. R. Bromfield and Marian W. Jones

U. S. Army Chemical Corps Biological Laboratories

Fort Detrick, Frederick, Maryland

I. INTRODUCTION . The uredospores of Puccinia graminis tritici , the

organism causing stem rust of wheat, have associated with them a water-

soluble substance that at certain concentrations inhibits their germination.

Since the chemical identity of the inhibitor has not yet been established,

we are compelled to rely solely on a bio-assay (the response of test indi

cator spores) to indicate the presence and relative amount of inhibitor.

The bio-assay procedure is as follows: Two hundred mg of uredospores

are weighed out and agitated for 5 minutes in 20 ml of distilled water in a

Potter-type tissue-homogenizer. The liquid containing the inhibitor (crude

extract) is filtered from the spores and diluted with distilled water to give

a series of concentrations. Each portion of diluted crude extract is mixed

with an equal volume of liquefied 2% water agar, distributed among 3

micro-dishes, and permitted to gel.

The solidified test substrates are then inoculated with "indicator spores"

and placed under standardized conditions conducive to spore germination.

At the conclusion of the germination period the indicator spores are ex

posed to formaldehyde to prevent further development. Individual plates

are then observed under the microscope and the number of germinating

indicator spores in each of 2 groups of 100 spores is recorded.

With the procedure outlined briefly above we are attempting to attain

the following objectives:

1. Find the relationship between inhibitor concentration and per

cent inhibition of indicator spores.

lots.

2. Make quantitative estimates of inhibitor content of various spore

Generate variances of estimates of inhibitor content.

4. Investigate the behavior of estimates of inhibitor content in res

ponse to various experimental treatments.
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II. GENERAL METHOD OF ANALYSIS. The tests to be discussed were

made to determine assay reproducibility. Test substrates were prepared

from random spore samples from the same lot of "donor spores" and care

was taken to use comparable "indicator spores." *

In preliminary experiments it was found that relative concentrations of

crude extract in the range from 0.1 to 3.0 covered the effective range of

per cent germination of indicator spores. The relationship had the general

form shown in Figure 1.

However, because the inhibitor effect is the factor of interest, it is

desirable to measure response in terms of per cent inhibition rather than

per cent germination. For each level of inhibitor concentration, per cent

inhibition is computed as follows:

у _ % germination of Indicator Spores on test substrate

% Inhibition = 100 I % germination of Indicator Spores on control plates

The search for a linearizing transformation of the response of per cent

inhibition to relative concentration led to the tentative conclusion that the

log-probit transformations meet the requirement. It will be noted that

per cent inhibition is identical with Finney's adjustment for natural

mortality using Abbott's formula. Therefore the usual probit with adjustments

for natural mortality seems appropriate. See Figure 2.

If this method of analysis is valid it will 1) establish the relationship

between inhibitor concentration and per cent inhibition of indicator spores,

2) permit quantitative estimates of inhibitor content to be made from para

meters of the probit regression, 3) permit the calculation of internal and

between-trial variances of parameters, and 4) permit treatment compari

sons to be made using one or more of the parameters as an index of in

hibitor content.

III. PROBLEMS ENCOUNTERED. To date three major problems have

arisen in using the log-probit method of analysis.

The first is concerned with the appropriateness of the model. Are we

justified in assuming a linear model in the transformed data over the entire

range ?
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Plots resulting from the current series of tests are shown in Figure 3.

Plots 2, 5, 7, and 8 hint that curvature still exists in the transformed data.

In all plots except 3 and 5, responses at the lowest concentration lie above

the probit line. It is tentatively assumed that this deviation may be asso

ciated with some lack of precision in the laboratory procedure employed

for obtaining low doses.

The second problem concerns the selection of a parameter indicating the

best quantitative measure of inhibition. Initially the EDr0 seemed to be

the logical parameter to use as an index of inhibition. However, this

parameter is positively associated with per cent germination of indicator

spores on control plates as shown in Figure 4. If this association is real

how can we then make treatment comparisons among tests conducted on

different days ? Would some other parameter, perhaps slope, be a better

index?

The last, and perhaps most vexing problem, is locally termed the

question of the "bouncing" controls. Although care is taken to use com

parable "indicator spores" in a given series of tests and to maintain stand

ard germination procedures, the level of germination of indicator spores on

the control plates varies more from day to day than one would expect from

sampling variation alone. Apparently some uncontrolled, and as yet unidenti

fied, factor is operative.

The necessity for a control value with stability can be appreciated from

examination of the expression for percentage inhibition given previously.

Any factor operating to depress or increase the check values could insert a

bias that might be mistaken for experimental error. With low control values,

especially, the adjustment currently used seems to have the effect of over

estimating percentage inhibition . Specifically then, would some other

adjustment for check values be more accurate?

TM. SUMMARY. Although work is underway on the chemical characteri

zation of the germination inhibitor, its identity has not yet been established.

When the chemical is identified we will then be able to assay for inhibitor

by chemical techniques. Until that time, however, we must rely on the

behavior of indicator spores to indicate the presence and relative amount

of inhibitor.
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Per cent germination asa function of concentration of a water-soluble germination-

inhibitor obtained from uredospores.
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Figure 1
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Probit of per cent inhibition of spore germination as a function of inhibitor concentration.

Figure 2

с

О

15

с

с

í 5и

-о

о

-L -L

2 .4 .8

Relative Concentration

(.6 3.2





775

Figure 3
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Regression of ED _ on per cent germination of spores on check plates.
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The present technique is to germinate indicator spores on agar substrates

containing a range of concentrations of crude inhibitor extracted from donor

spores. The per cent inhibition of germination of indicator spores is cal

culated and plotted over relative concentration of crude inhibitor extract

to give a dosage-response curve. A log-probit transformation appears to

linearize the response of per cent inhibition to relative concentration.

The following questions or problems have arisen and must be answered

before we can rely on the bio-assay procedure:

1. Is the log-probit transformation appropriate?

2. Is the ЕБгл the best parameter to use as an index of inhibition?

3. What adjustment can be made for day-to-day variations in level of

germination of indicator spores on control plates?





DESIGNS FOR ESTIMATING VARIANCE COMPONENTS

R. L. Anderson

Institute of Statistics

North Carolina State College

1. INTRODUCTION . The science of statistics is essentially the

application of the mathematical theory of probability to the study of

variation in experimental and operational data. In a paper prepared for

the 1958 meeting of the International Statistical Institute in Brussels, I

discussed the "Uses of Variance Component Analysis in the Interpretation

of Biological Experiments. " Some of this discussion is repeated here.

The identification of the sources of variation and development of

methods of estimating the separate variances and testing hypotheses

concerning them is one of the statistician's important tasks. In most

experiments, some variation is imposed by the experimenter, in the form

of different treatments, varieties, or practices. Often inferences are

desired concerning only the particular treatments used in the experiment;

it has been the custom to label these as fixed sources of variability.

In other cases, it is assumed that the variability among the sources used

in the experiment is representative of the variability in a much larger

population; these are usually labeled as random sources of variability.

Admittedly the particular representatives used in the experiment some

times are not selected in an accepted random manner; however, the

experimenter can often justify the assumption that order of selection is

of little importance. Most experiments have a combination of fixed and

random sources of variability; the mixed category. Often an experimenter

will want to examine a given variable from both the random and fixed

point of views.

In this paper I will discuss only situations in which all sources of

variation are essentially random. Some examples are presented on the

next page. There are two experimental and operational procedures to be

considered: the nested or hierarchical type and the classification type.

To illustrate the basic differences between these two types, suppose we

have a large number (b) of batches of some material. These are to be

processed by one of a large number of more or less identical machines.

Suppose material from the first batch is subdivided into m, sub-batches

and each sub-batch processed by a different machine; the second batch

is processed by m machines, all different from the first m ; and so

forth for all batches. Hence there are m = > m. machines used

i=l
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for processing. The processed material from each machine is tested,

assayed or inspected by a corps of technicians, a different corps for

each machine. The material is subdivided into samples, each sample

handled by one technician. Let us assume there are t, technicians

for the j machine processing the i batch, so that the total number

of technicians is t = ¿_, t . In the following example of two batches,

we have assumed that each m = 2 and each t., =2.

i ij

Now suppose that there are only, say 4 processing machines and,

say 2 technicians at a given plant, but that these machines and tech

nicians are "representative" of large populations of machines and tech

nicians. Let us further assume that every batch is subdivided into

4 sub-batches, one for each machine. Then the product from each

machine is divided into 2 parts, one part for each technician. This

operation for two batches is also exemplified on the following page.

In general, the first operation will be a combination of the two types,

since subsequent batches will be allocated to machines 1 and 2, 3

and 4, etc.
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EXAMPLES OF RANDOM OPERATIONS

Batch 1 Batch 2

Mach 2 Mach 3 Mach 4Mach 1

Tech 1 Tech 2 Tech 3 Tech 4 Tech 5 Tech 6 Tech 7 Tech 8

Nested or Hierarchical-Type Operation

************************

Tech 1 Tech 2

Mach 1

Mach 2

Mach 3

Mach 4

Batch 1

Mach 1

Mach 2

Mach 3

Mach 4

Batch 2

Classification-Type Operation

********************

Streptomycin Experiment

Initial Primary Secondary

Incubation > Inoculation ■> Inoculation —^ Fermentation-^ Assay

********************

Rubber Sampling

Producer'j3_

Estate

Day at

Estate
->

Bale on

Given Day

Sheet of

Rubber

from Bale

Sample

from Sheet
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A better example of the strictly nested-type operation might be one I

used for the International Statistical Institute paper: A pilot study was

considered to assess the various sources of variability in the production

and assay for streptomycin before conducting an experiment on the

efficacy of various molds. There were five stages in this process: an

initial incubation in a test tube; a primary inoculation period in a pétrie

dish; a secondary inoculation period in another pétrie dish; a fermentation

period in a bath; and the final assay of the amount of streptomycin pro

duced. Newton, et al. (1951) in a study of the variability of rubber con

sidered the following sources of variation: producer's estates, days at

a given estate, bales on a given day, sheets from a given bale, and

samples from each sheet, Technicians then took measurements on the

samples. In this paper I shall discuss only purely nested and classifi

cation-type operations but the same methods are applicable to the

combination.

Returning to our batch problem, the final measurement made by the

technician is designated as the process yield, Y. We are here interested

in the variability of the Y's. Such variation is a result of variable batches,

variable batch sampling and subsequent machine processing and variable

product sampling and measurement. The variation in machine processing

results from machine-to-machine differences and failure of a given

machine to perform in the same manner on different batches, and similarly

for the variation in the measuring process. The failure of a given machine

to perform similarly on different batches is called a machine-batch

interaction and similarly for the technician-batch and technician-machine

interactions. We are assuming that only two-factor interactions need be

considered; however, one might also be interested in a technician-machine-

batch interaction. Interactions can be detected only with the classification-

type operation.

It is assumed that the sources of variability act independently and

additively; hence, one can write the mathematical model for the final

yield as follows:
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where there are v sources of variability, the /e > assumed independently

Ы
2

distributed random variables with zero means and constant variances, <T* ;

hence, /ьс is the product average. The variance of the final produce is

(У = у (У. ". It is assumed that the experimenter or manufacturer is

i=1 2i=l

interested in reducing the magnitude of 0*" . In order to do this, a pre

liminary experiment is to be set up to estimate the individual variances, o* .

9 x\ 9

The estimates of the (f will be designated as O* . In studying the

adequacy of these estimates, it will be assumed that the random variables

(the e.'s) are normally distributed. Hence the observed yields are assumed

normally distributed with the same mean ¿¿ and variance с = j 0*. .

However, if there is more than one source of variation, the Y's (in general)

will be correlated. Consider the nested process with 2 batches, 2

machines per batch and 2 technicians per machine. One might represent

the measurements as follows:

(2)

Ylll = /*+ bl + mi + V YH2 = ^+ bl + ml + V

Y123=/^ + bl + m2+t3 Y248 = ^+b2+m4 + V

The usual short cut notation is to renumber the technicians within each

machine, the machines within each batch, etc,; i.e. ,

Y = z¿ + b + m + t ,Y = z¿+ Ъ + m +t

111 ^ 1 11 111 112 ^ 1 11 112

(3)

Y121 = /^+bl+mi2+t121 Y222=^ + b2+m22+t222'
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The latter notation is much simpler for complicated designs and will be

used here. In any case, it is easy to see that the covariance between

Y„ and Y„„ is (У 2 + СУ 2; between Y and Y is ¿У 2; and

111 112 b m 111 121 b

between Y and Y is 0. Hence it is possible to write the likeli

hood of the sample in the familiar multivariate normal form, with a constant

2 2 2 2
mean (¿c) and variance (¿Г = <У + ¿у + ¿у ) but with correlations

7 b m t

2 2 2 2 2
of either ( ¿?" + ¿у )/ ¿У , <У /О* or 0 . The method of estimation

b m b

would be the familiar maximum likelihood (ML) .

The model for the classification-type process might be

W ^-jk =/¿ + bi + mj + (bm>ij + \ + (bt)ik + (mt)jk + eijk'

where e may be a three-factor interaction effect or technique error or a

combination of the two. In this case we have variance components:

n. 2 " 2 2 ^1 -, 2 2 2
" b ' ^m ' *bm • ^t ' ^bt < ^mt ' ^e '

Again if the components are assumed to be normally distributed, one

can set up the normal multivariate likelihood function, which will be

considerably more complicated than the nested one.

The usual estimating procedure for variance components is based on

the familiar, I hope, Analysis of Variance table. For balanced designs,

the analysis of variance (ANOV) and maximum likelihood (ML) estimators

are essentially the same; I will not take the time to discuss this difference

here. For non-balanced designs the ML equations are complicated

functions of the estimators; iterative methods are usually needed to solve

them. There is no unique ANOV estimating procedure for non-balanced

designs. The usual procedure is based on a pooling procedure first pre

sented by Ganguli (1941) and summarized in Anderson and Bancroft (1952).

This procedure produces unbiased estimators, but of uncertain efficiency.

The total sum of squares can be subdivided into orthogonal sources but
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there remains the problem of how to best combine these sources. One

probably would prefer unbiased estimators which are linear combinations

of these mean squares in the ANOV table. Hence one solution to the

estimation problem would be to select that unbiased linear estimator

which has the smallest variance. In all discussion which follows, a

linear estimator of a variance component will refer to a linear function of

the mean squares; obviously this is a quadratic function of the observations.

Much theoretical work has been done on the construction of best quadratic

estimators for balanced designs, but the results have been rather sterile

for non-balanced designs.

2. SOME SIMPLE EXAMPLES. To illustrate the complexity of the

problem, let us consider a two-stage nested process with only 8 final

measurements, coming from a = 2, 3, ... , or 7 classes, with the model

(5) Y., = ¿t+ a, + b..; i = 1, 2, . . . , a.= /£+ a, + b..; i = 1, 2, . . .
ij r i Ц

The object of the investigation is to obtain a minimum variance unbiased

2
linear estimator of СУ . One possible design has a = 4 classes and

a

2 samples per class. The analysis of variance would be as follows

(/> = <y¡ /al )2J

Table 1. Analysis of Variance for 4 Classes (N=8)

Source of Degrees of Mean Expected Value

Variation (SV) Freedom (DF) Square (MS) of Mean Square (EMS)

Classes (A) 3 MSA ¿r* + 2 (Г2 = (Г (1+2^)

a

Samples (B) 4 MSB

V

2/ It is assumed that the reader is familiar with ANOV procedures. If not,

reference is made to Anderson and Bancroft (1952, Chapter 22).
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2 2
The ANOV estimates of <T and & are

a b

(6)
g>2.MSfr-M8B. Ä». MSB,

a ¿ b

Under the normality assumption, MSA and MSB are distributed as

2 2 2 2
multiples of independent X -variâtes. In fact MSA=X [01 + 2 (Г )/3

9o 2 2

and MSB = X & /4, where X and X are independent

2 b 12

"X -variâtes with 3 and 4 respective degrees of freedom. Hence

(7) Var (^2)

a

fc£2 + 2<) t*b
= 2^b4[7/48 +/?/3 +/»2/з],

In comparing designs and estimators, we will consider

(8)

Var^2)

V = u-_

a 2^4

- 7/48 + уо/Ъ + p /3,

(9) Var(<£ ) = 2 <r /4; Vu = 1/4.

b b b

Another plan would have a = 2 classes and 4 samples per class, with

the results given in Table 2 and equations (10). A comparison of these

two designs shows that the one with 2 classes will be superior (in esti-

2
mating ¿У ) only when p is quite small. But we could consider 3,5,6

or 7 classes. Unfortunately all of these will involve non-balanced designs.

As an example, consider the design with 7 classes, one sample per class

for 6 classes and 2 samples from the seventh class; the ANOV is in Table 3.
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A represents the variation among the 6 classes with one sample per class.

A represents the comparison of the sum of these first 6 observations and

3 times the sum of the two observations from the seventh class. In esti-

2
mating (У , one must decide how to weight MSA. and MSA0. If these

a i í

are weighted directly as their DF, we have the results in equations (11).

Using estimators of this type, the values of V and V have been

a b

computed when a = 2, 3, ..., or 7 classes are used, for p =.05, .1, .2,

.5, 1, 2, 5 and 10 (Table 4). As expected, one requires more classes to

2
estimate (Г efficiently as p increases; at the same time, the variance

of o* increases. Hence for large p , if one wishes good estimates of

b

2 2
both (Y and C. , a compromise is necessary. This will be discussed

a b

in more detail later.

Table 2. Analysis of Variance for 2 Classes

SV DF MS EMS

В 6 MSB (Г

b

2 л ^2 _2
+ 4 ef

b a

2

A 1 MSA СГ, +4^ = (У (l + 4p)

^\0o) ¿»a. MS^MB ,*»-„,», v = ^ + 4+P2; v-f
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Table 3. Analysis of Variance for 7 Classes

SV DF MS EMS

4

в

5

1

1

MSA
1

MSA,

MSB

a D 'b

b
¿^2 + 1.75^ = ¿^2a + 1.75>,)

1 ab/

*b

(11) ¿r 2 = 5 MSAj + MSA 2- 6 MSB ;y = . 922 + . 2963/? + .17695/? 2;V=l/(8-a),

a 6TF5 a ^ b

*********

Table 4. Values of V and V, for Various Designs, N = 8
a b

a/

V for given n

No. Classes (a) .05 .10 .2 .5 1.0 2.0 5.0 10.0

2 .100 .133 .213 .573 1.57 5.07 27.6 105

3 . 121 .145 .198 .419 .993 2.90 14.8 54.9

4 .163 .182 .226 .396 .812 2. 15 10. 1 36.8

5 .255 .274 .3 14 .467 .829 1.96 8.60 30.5

6 .430 .447 .485 .623 .941 1.90 7.43 25.4

7 .937 .953 .988 1.1 1 1.40 2.22 6.83 21.6

.167

200

.250

.333

.500

1.000

ТГ Var( a 2) = 2V ¿Г 4; Var( <r 2) = 2V & l

a ab b b b

Underlined values are minima

for a given p = (7 2/ СУ 2

a ь
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3. Selection of Best "Linear" Estimators. As stated earlier, for non-

balanced designs the choice of even the best linear unbiased estimator is

not obvious. We might use an iterative weighted least squares procedure,

using the mean squares as the dependent variable and the variance compo

nents as regression coefficients. Since the mean squares are multiples of

2
X -variâtes, they have unequal variances, both due to EMS and DF;i.e.,

Var (MS) = (EMS)2/DF.

For the above 7-class problem the least squares equations are given in

equations (12), with limiting values for p = 0 and p -> м in equations

(13) and (15). In the latter two cases, explicit estimators of С and (?.

a b

are available. These and their variances are presented in equations (14)

and (16), For the general case (12), a suggested procedure is to use a pre-

2 2

liminary estimate of p , such as <r / <r\ from the pooled ANOV results;
г ab

~ 2 ~ 2
then resolve for 0" and (У. using the least squares equations;

a b

continue the iteration until two successive sets of estimates agree.

Unfortunately, it is almost impossible to obtain the variance of the final

л 2

estimate of Cf ; hence , a comparison of designs becomes very difficult.
a

Very little research has been pursued along these lines; the ideas are

merely tossed out here for consideration.

A comparison of the limiting estimators with those of Table 4 is pre

sented in Table 5 for p = .05, .1, 1 and 10. The first two estimators are

about the same for all p but the third one is good only for very small p .

It appears that one does not lose much information by use of MSB to

2 2
estimate (У and the pooled MSA to estimate (У , except possibly

b i a

when p is very small. In subsequent discussions, it will be assumed

that the estimators will be of the type used in Section 2.
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Least Squares equations for 7-class problem.

5 (1.75)

+

2 1

(1 + p)2 0 + 1.75p)2J

(f +
a

1.75

(b-p)2 (1 + 1. 75p)2
b „ . . 4 2

1.75A,

(1+p)' a+1.75p)

Г

(12)

5 1.75

(1+p) 0 + 1. 75p) _

л2

С +
а

1

2T ?+1

|_(1+р) (1 + 1. 75p)

л2 5А.

т+В.

(1+р) 0+1. 75р)

Р'О

[5 + 0.75)2)

03)

^2 ~2
<Г + 6.75 (Г = 5А + 1.75А

а b 1 2

6.75 ¿?2 + 7¿£2=5A+A +В

ab 12

04)

(У *

bo

10А1 + 44А2 - 54В ^ 20(1+р)2 + 1936(1+1. 75Р)2 + 2916

87 ' ао 7569

3 5А1 20А2 + 43В ^ ^ = 245(1+р)2 + 400(1+1. 75р)2 + 1849

58 ' bo 3364
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P =

a 2 ~2 лл2 ' lv^2 СЛ1А2

(У = В = a ; 6 & + 5 + —— ) ó = 5A + ——

b,oa b a 1.75 b 11.75

06) 35A + 4A - 39B
/» ¿ l 2

¿Г = 4 —* ; V
a,«» 42 a,.

2 2

_ 245Ü+P) + 16(1+1. 75p) +1521

1764

Table 5. Comparison of Variances of Estimators (N=8)

V . .05
.5 j

1 10

Va .94 1. 11 1.40 21.6

V
a / о«

1.03 1. 21 1.49 20.8

V

a, о

.69 1.29 2.32, 88.2

V

b

1.00 1.00 1.00 1.00

V .77 .80 .87 1. 13

b,o

These methods could be extended to any design with any number of

variance components, provided independent mean squares can be computed.

In general let M, represent the h mean square, with n, D.F. and

E M, = ) к (У , where there are v variance components (some of the

n f—' hi i —
i=l

k, . will be zero; none will be negative). The i normal equation will be

07) ZSfw к к 1 .

h hi hjJ
г?2

j

S |w

h I h

к M 1

hi Ы
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where w = n /(EM, ) . One can simplify the weights (w ) by using

h h h h

ratios of variance components, as above.

4. OPTIMAL T?EflIfiN& FOR A TWO-STAGE NESTSP PROCESS. P. P, Crump

(1954) considered these two problems for the two-stage nested process:

(1) Given N, the total sample size, find the best design for use in

2 2 2 2
estimating //. , (У. , & or p = (у / (К , using the pooled

ANOV considered in Section 2.

(2) For certain selected designs, compare some alternative estimators

2

a
of ^and <У

Only (1) will be discussed at this time.

The best design for estimating /a. i s a = N classes with 1 observation

2
per class and for cK is a = 1 class of N observations; the results for

2 b

°" and p are intermediate. Given a_ classes, Crump proved that for

2
both (У and p , the optimum allocation of N was to have _r classes

with p+1 observations per class and a_-_r classes with ц observations

per class, where N = ap + r, r (an integer)<a. However, the optimal

о

a_ would be different for estimating С and p . It could not be proven

rigorously but it was conjectured (and shown to be correct for all computed

examples) that the following procedure should be followed to determine

the optimal a_:

(1) If a_ did not have to be an integer, it has been shown by several

authors that the optimal a_ (the one giving an unbiased minimum

variance estimator based on the pooled ANOV) is

i) for ¿r 2: a = a, = Щ^л
a 1 NiP+n+iN(p+1)+1 '

(18)

ii) forp : a = a, = 1 + (N-5)(NP+1) .

'2
2Np + N - 3
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(2) Since a and a will not, in general, be integers, select the

1 2

integers just larger and just smaller than a (or a ); compute

1 2

the exact variance for each; then whichever variance is smaller,

compute the variance for the next adjacent integral value of a_;

continue this process until a smallest variance is obtained. In

all examples computed, this was found for one of the two original

integers. These calculations usually can be omitted since the

variance profile is quite flat near the optimum; hence, I suggest

using for a the integer closest to a (or a ).

- 1 2

(3) The true variances of (У and p for a given a_ (N = ap + r) are:

Var(<?2) = 2 d 4(Ap2 + Bp + C),

Var(p) = 2(A'p2 + В 'p + C).

A ■ NV 2NS3 + S22 ; в -_Щ_. С . N2 (N-l)C-l) ;

(N2 - S2)2 N2 - S2 (N-a)(N2 - SJ2

(19)

д.". (N-a-2)A+l; B, - (N-3)B Q, , (N-a)(N-3) g.

N-a-4 N-a-4 (N-l)(N-a-4) '

S2 = Np + r(p+l) ; S3 = Np2 + r(p+l)(2p+l).

Crump presents values of A, B, C, A', B\ and С for selected

values of a for N = 10, 20, 30, and 100.
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Crump compared the minimum variances for (f and p following the

a '

above procedure with the theoretical minimum disregarding the fact that

a_ and the number of observations per class must be integers. Some of

these efficiency ratios of variances (E ) are given in Table 6 for a .

о a

2 a/
Table 6. Values of E {& ) =*(Г

о a

N 0 .50 1.00 2.00

10 .988 .981 .980 .940

20 .997 .987 .995 .943

100 1.000 .998 1.000 .947

a/
—' £ _ min, hypothetical variance .

о min. realizable variance

These results indicate that the procedure outlined above must be quite good.

Recognizing that the allocation which produces a good estimator of one

parameter may be poor for estimating some other parameter, Crump computed

the efficiency ratio (E ) for all four parameters, for various allocation

plans. These are presented in Table 7. This table presents (for each

parameter) the ratio of the variance for the optimum allocation to estimate

that jparameter to the variance for the given allocation. For example with

2 2
N = 10 and p = 1, the best allocation plans for a , (t , Of and p are ,

respectively, a = 10, 1, 5, and 3. The minimum respective variances

are ¿7f2/5; 2 <Г4/9; 2 a 4(. 6125); 2(1.98775). The respective variances

b b b

for a = 4 are <T 2(. 36); 2 <T*/6; 2 ¿r4(. 6950); 2(2.32285) . The ratios of

b b b

the minimum variances to those for a = 4 give the respective efficiency

ratios, E : 5/9 = .56; 2/3 = .67; .6125/. 6950 = .88; 1.98775/2.32285 = .86.

f
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/ ч ^ л 2 С 2 /ч 1/

Table 7« Efficiency Ratios (Е ) tor tx , (У , б ,p .

N

10

£_ j_ улуу

0.5

1.0

20 0.5

У

2

3

4

2

3

4

5

Y

8

10

.43

• 56

• 65

•75

.89

• 78

.67

• 56

.61

.89

•99

1.00

• 33

M
• 56

•78

.67

50

.61

.65

Л

• 79

.68

.63

• 71

.88

1.00

• 90

1.00

• 99

M.

V
Variance for optimum allocation at optimum a

Variance for optimum allocation at given a

.88

1.00

.78

•79

.00

.86

l59_

1.00

•95

• 87

1.0 5 .40 • 79 .70 • 96

7 •51 .68 .87 1.00

8 •56 .63 •92 .96

10 .67 • 53 1.00 .82

11 • 70 .47 • 98 • 69

2.0 5 .33 .79 .54 .90

7 .44 .68 .72 1.00

10 .60 • 53 • 95 .89

il •63 .47 • 97 .82

14 .71 .32 1.00 .36

100 0.5 10 • 25 •91 .50 • 71

20 A3 .81 .88 •97

25 .50 • 76 • 96 1.00

33 .60 .68 1.00 • 96

35 .61 .66 • 99 .94

50 • 75 • 51 •91 • 74

1.0 25 .40 • 76 • 77 • 96

33 .49 .68 •89 1.00

ko • 56 .61 •94 •97

50 .67 • 51 1.00 .88

60 .71 .ko .95 .72

2.0 25 • 33 .76 .61 .90

38 .47 .63 .81 1.00

50 .60 • 51 • 97 • 97

66 • 69 • 34 1.00 .72

75 .82 •25 • 98 • 54
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An examination of Table 7 indicates that large gains can be achieved in

2
the efficiency of estimates of ff and p by suitable choice of the

a '

sampling plan, for fixed total number of observations, N. For N = 20,

p =1.0, one should use 7, 8, 9, or 10 classes depending on the

relative importance of the two parameters, assuming u. and C.* were of

secondary importance. Similarly if p =2.0, one should use between

7 and 14 classes. And if ,0 = 0.5, use 5, 6, or 7 classes. It is

important to note that if one thought that 0. 5< p < 2.0, he might logically

choose 7, 8, or 9 classes without departing too far from the optimum.

For N * 100 and p somewhere between 0.5 and 2.0, he could choose

around 40 classes without much risk of departing far from the optimum.

One can use the results in Table 7 to study the effects of using the

incorrect p in making his allocations. Some of these comparisons plus

2
others regarding the estimation of ff have been made in Table 8. In

a

general it appears that if the true p is 1 or less, one will not lose more

than 10% in efficiency even if he uses 2p or p/2. The loss is considerably

less when p is as large as 2.

5. OPTIMAL DESIGNS FOR A TWO-WAY CLASSIFICATION MODEL.

5.1 Introduction . D. W. Gaylor (1960) considered methods of sampling,

under certain restrictions, to minimize the variance of certain estimators of

variance components for a two-way crossed classification

(20) Y = и + r + с + (re) + s .**'**•••'*<*■

iik ^ i j ij ijk j = 1, 2 c<N,

where the effects are assumed normally and independently distributed with

2 2 2 2

zero means and respective variances, ff , ff ', ff and ff and n

r Q re s ij

observations are obtained in the (ij) cell. It is assumed that a total of

N = y ) n^ samples are allocated to the re cells. The problem is to

make the allocation so that the variances of the estimates of the variance

components will be as small as possible. This again poses the problem of
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2
Table 8. Effect of Incorrect Estimate of p on the Efficiency of Estimates of &

Optimal No. No . Classes

N e Classes (a) Estimated P Used (a) Efficiency

20 0.5 7 0.22

0. 31

0.68

0.85

1.06

5 .903

.964

.985

.960

.897

6

9

10

11

1.0 10 0. 41

0.53

1.32

1.66

2. 12

7 .869

. 918

.957

. 9*21

.869

8

12

13

14

2.0 14 0. 41

0.68

0.85

1.06

7 .725

.868

.947

.969

. 951

9

10

11

3.70 16

100 0.5 33 0. 14

0.26

0.59

0.97

1.46

14

22

38

50

60

.739

.911

.986

. 912

.775

1.0 50 0. 31

0.47

0.64

1.46

1.90

25

33

40

60

66

.772

.893

.944

.946

.894

2.0 66 0.64

0.97

2.95

3.94

40

50

75

80

.832

.969

.976

.935
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deciding which parameters are most important. Gaylor studied optimal

allocations for individual components and for certain combinations

Given any quadratic estimator

(21) Qj-Z'M^

where y is the (N x 1) vector of observations and M ■ M an N x N

i i

matrix of coefficients. In vector form, we can write

(22) y_(N x 1) - ¿£(N x 1) + e(N x 1),

where e_ is the error or random effects vector. The variance-covariance

matrix of the e's is

(23) V = E(ee').

The diagonal elements of V will be

2 2 2 2

(24) С + гу +7 + (У .

г с re s

The off-diagonal elements will be

2 2 2 2 2

(25) >r , ry , <f + с + rr or 0,

г с г С ГС

depending on whether the two corresponding observations are in the same

row but different columns, the same column but different rows, the same
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row and column or in different rows and columns. It is easy to show that,

for unbiased estimators,

(26) ECQ ) = tr(VM ) = (Г2) Var(Q ) = 2tr(VM )2,

i i i i i

2
where СУ is the variance component to be estimated and "tr" refers to

the trace of the matrix. The lower bound to the variance is

(27) L.B.Var(Q) = 2 ¿^4/(N-l).

i i

For the following cases, this lower bound can be realized; for others, it

usually is not possible.

Function estimated r с n.
1

<r2 1 1 N
S

er 2 + a 2 + ¿y2 N 1 1

s re r

a2 + a 2 + ff1 in i
s re с

^2 + CY 2 + (У2 + ¿r 2 N N 1 or 0*

s re г с

*each observation from a different row and column

_ о

The estimator in each case is S(y - y) /(N-1). The last design is also the

optimal design for estimating /л. . The variance of у is then

(29) ( о-2 + <T 2 + ¿У2 + ¿k2)/N.

s re г с
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2
One special case is of importance. If (y = 0, the optimal design

re

2 2 2
for estimating (У or P e (У / & consists of one column; in this

r ' r r s

2
case the results by Crump apply. Similarly, if only <r or p is of

с 'с

interest, use one row and apply Crump's results.

2 2

5.2 Estimation of <y or p when (У > 0. It was not possible to

r r re

2 2 2
develop a complete general class of designs to estimate (y or p = С /О ,

r r r

2 2 2
where <y » О' * + О* , which could be proven optimal for all situations.

It was first shown that if the design were limited to a class in which each

п.. = 0 or n(an integer) observations per cell, n should equal 1. Hence

each cell should either be empty or contain one observation. The sums of

2
squares used for estimating <r and p were those given in an ANOV

r r

table based on the method of fitting constants (Table 9). The estimators of

2
& and p and the variances of these estimators are given in equations

(30) and (31). These results are based on the fact that (r-l)R* can be sub

divided into r-1 independent quantities.

Table 9. Analysis of Variance for 2-Way Classification Data

S\/ DF MS EMS

2 2 2 2
Columns c-1 С <Г+<Г+с, (У + i /у

s re l r oc

2 2 2
Rows (adjusted for cols) r - 1 R* cr + <y + с ¿у

s re Or

Interaction (adjusted N-r-c+1 I* С + 0"

for rows and cols.)

Total N - 1

s re
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(30) <Г = (R* - I*)/c ; p

г or

N-r-c-1

N-r-c+1
F' - 1 /c ,

о

where с = (N-c)/(r-l) and F' = R*/l*.

C31a)

Var(<?2) in p 2 p2 M

10
,4 m(N-c) N-c 7-1

(N-c)Z fe x
(CL - d)2;

2Г

(31b)

Var(pr) ^ (r-DU+^pp (m+r-3) + (m-2)p ¿^ (d. - d)

Co2(r-l)2(m-4)

where m = N-r-c+1 (>4 for ? ), Cr1 = <y2 + ¿y 2, p = ¿y 2/ ^ 2 and

r-1

(r-l)R* = or У (1 + d. p ) X ,
Z—* 1 Г l

2,2 2

r s re r r

2

i=l

If N = re,

(32a) Var( <? 2) = JlSL
r r-1

i ,2er
сТсЧГ + ~c— + Pi

C32b) Var(pr) = 2(l+cpr)2(N-c-2)/c2(r-l)(N-r-c-3)
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All statements refer to the above estimators. Admittedly other estimators

might be more efficient for a given design.

If for a given N and r, N is an integral multiple of _r, N ■ re, then

2
the best design with n,, = 0 or n to estimate /P or P consists of r

ij r r ~

rows and с columns with one observation per cell. Graybill and Wortham

•s 9

(1956) show that the resultant ff is a minimum variance unbiased quadratic

estimator. In this case in Table 9, c, = 0, с ■ с and r = r, and d, =d = c.

1 o o i

The variances of the estimators are given in equations (32).

In general N/r will not be an integer. Suppose N ■ r(k-l) + s, 0<s<r.

2
For a given _r, a design of the type n = 0 or 1 which minimizes Var( fr )

based on the above ANOV table consists of _r rows by k-1 columns (using

only N-s observations) or _r rows by k-1 columns plus one column with s_

of the _r rows. The variances are given in equations (33). This leads to the

interesting result that a balanced design may lead to a smaller variance than

an unbalanced design with more observations; this situation arises when p

is large and indicates that presumably the estimators used are not the best for

the unbalanced situation.

In order to find the optimal value of jr, one should minimize (33a) or

(33b). This is quite complicated because k_ and s_ are functions of _r.

Because of the near balance of the design, a good approximation to (33) is

available by replacing each d, in (31) by <3 = с = (N-c)/(r-l) and с by

i о

с + 1/2 (since с < с < с +1). These approximate variances are given in

о о " " о

equations (34). Setting the derivative of (34a) with respect to с equal to

0, we have

2 /~~2

P (N-l/2) + 2 p -1 + /P (N-1/2KN-3/2) + 2p (N-3/2)+l

»OCX \ \Г ' Г V Г [f

(35) с » ту

° Pr<N- 1/2) + 2pr
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This is approximated by (36a) with the approximate value of _r in (37a).

Corresponding results for p are presented in (36b) and (37b).

If N = r(k-l) + s, 0< s< r

(33a) 2

Var(£ )

4~

1er

[p 2 + 2p /(k-1) + l/(k-l)(k-2) /(r-1), using k-1 cols,

=

p 2 er2(s-D(r-S) 2f

+ + ——i- +
r-1

r-1 (N-k)2(r-l) N_k (N-k)(N-k-r+l)

.usin;gik cols .

(33b)

VaV(£r)

[l + (k-l)pf(rk-r-k-l)/(k-l) (r-l)(rk-2r-k-2)# using k-1 cols.

<

(N-r-k-l)(s-l)(r-s)p +[(r-l) + (N-k)p ]2(N-k-2)

(N-k)2(r-l)(N-r-k-3)

, using к

cols,

Using all N observations,

(34a)

2 2 2 2

Var( ¿г) 1 + 2CO+C p - 2p - с p
r _. o'r or rr or

2cr (c -l)(N-c -1/2)

о о

(34b)

Var(Л . (1 + с p Г
' r - о' r

2 (с -1MN-C -1/2)

о о
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л 2

For <У ,

г

(36а)

с = с =

fV

с = с =

о о

р (N-1/2) + (N-1/2) + 1

1 .-> 1 + 1/р for large N,

р (N-1/2) + 2о о о ÍN-1/2) + 2 г

and

(37а) г » г ■ (N - 1/2)/? .

о

For л

(36b) 2 pr(N-1/2) + (N-1/2) + 1

: гтг: ~ > 2 + 1/р for large N,
р (N-1/2) + л + 2 rr

(37b) г ¿г - (N - 1/2)/с" .
о

Again one can consider integers above and below r or r as the optimal

r, testing by insertion in the true variance formula (33). As in Crump's

case, the variance profile is so flat that the integer closest to _r will

probably be sufficient. Once _r is determined, the number of columns will

be found from the fact that N = kr or N = (k-l)r+s, where s< r. In the

latter case, the experimenter presumably should check whether to use a

balanced design with (k-l)r observations or an unbalanced one with s_

rows in the ktn column; since it requires a very large p to prefer the

smaller balanced design, the unbalanced design usually will be better. In

the latter case, the experimenter might wish to consider the use of enough

more observations to have a (kxr) balanced design; matters of this kind

need further investigation, such as maximizing the information per observation

rather than the total information.
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Gaylor also investigated the loss of information due to an incorrect

estimate of p , as given in Table 10. These results are of the same

r

order of magnitude as found by Crump. As before, losses due to use of the

incorrect p are less serious for large p . Gaylor checked some of these

results against those found by use of exact variances; the agreement on the

efficiency factor was very good; e.g., E = .907 instead of .909 for

f2

N = 30, p =1.0, p' = 2.0. It should be noted that Gaylor considered

r r о

ratios of 4 : 1 for p and only 2:1 for ¿Г «hence, some of these

r ^2 r

efficiencies are lower than for a .

Table 11 presents the efficiency of various designs used to obtain

information on д and p for N = 30. This table shows that extreme
r rr

departures from the optimal design results in a considerable loss of

efficiency; however, moderate departures usually result in small losses.

Where pr is small, a balanced design in the neighborhood of the optimal

design has high efficiency for estimating both parameters. However ,

even for p = 1, the efficiency of each estimator is less than 90% when

the optimal design for the other is used. On the other hand, one is able

to find an intermediate design which is quite good for estimating both

parameters when p is no larger than 2.



808 Table 10. Approximate Relative Efficiencies, E of the Restricted
_

£

Optimal Designs for (У and p Based on Incorrect Values of p .

Results for ar

Design Based on True Pr I

P/-1

)esign Ba sed on Incorrect p

г

N
?r

С E£l

П-2
С' E

о ol o2 f2

30 .25 4.04 . 125 6. 01 .928 .50 2.70 .905

1.0 1.90 ...50 2.70 .920 2.00 1.47 .909

4.0 1.24 2.00 1.47 .943 8.00 1. 12 .939

100 .25 4.67 Л25 7.82 .907 .50 2.90 .900

1.0 1.97 .50 2.90 . 912 .2.00 1.49 .909

4.0 1.25 2.00 1.49 .942 8.00 1. 12 .936

Results for

True
P

of Used

r

N = 30 N = 100

0.25

r

1.00 .849 .829

1.00 0.25 .847 .823

0.50 2.00 .900 . 891

2.00 0.50 .907 .896

2.00 8.00 .970 .976

8.00 2.00 .993 .983
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Table U. Efficiency of Some Designa for Estimating a and p , N » 30 ▼

.25

1.0

2

3

5

6

7

7»

8

9

10

15

.50 5

6

7

7*

8

9

10

11

15

6

7*

9

10

11

lb

15

16

19

As
О 8 Ef(ÔJ) Eftfr)

15

10

6

5

5

L*

U

Ц

3

2

0

0

0

0

2

0*

6

3

0

0

.U22

.687

.9U8

.999

.98U

.9Ш*

1.000

.959

.965

.732

5

5

U*

U

h

3

3

2

О

2

О*

6

3

О

8

О

.833

.882

.857*

.938

.95U

1.000

.986

.933

5

Ц*

U

3

3

3

2

2

2

О

О*

3

О

8

2

О

Ш

11

.877

.899

.957

1.000

.981*

.907

.UU6

.739

.975

1.000

.9U7

.889*

.9U3

.871

.862

.557

.889

.96U

.968

.922»

1.000

.967

.986

.927

.732

.852

.862*

.956

1.000

.968

.833

.8ЦЦ

г с е Bf(Ç) Eftfr)

2.0 6

7*

i?

11

12

15

18

19

20

2U

5

ï
3

3

2

2

2

2

2

О

О*

8

6

О

12

11

10

6

.7Ц0

.822

.97Ь

.997

1.000

.998

.902

•Р6
.81U*

.938

1.000

.987

.969

.9Л

.631

Ц.О 6

7*

9

10

11

12

15

20

23

2Ц

25

28

5

Ь*

Ц

3

3

3

2

2

2

2

2

2

О

О*

3

О

8

6

О

10

7

6

5

2

.586

.837

.9U3

.99U

1.000

.993

.658

.735

.788*

.927

1.000

1.000

.99U

.991

.527

MÍO only fer pr - 8 and 16

г с в Pr - 8 Pr - 16

10 3 0 .97U .955

11 3 8 .981 .965
• 12

3 6 .982 .970

13 3 h .977 .969

ib 3 2 .963 .960

15 2 0 1.000 1.000

16 2 11* .9U5 .9U8

20 2 10 .63U .6U6

У
r - No. rows J с ■ No. columns. If s - о, N ■ rej if s >o, N ■ r(c-l) + s,*

* designs have only 28 observations.
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The two sets of restricted optimal designs begin to diverge considerably

as p increases beyond 2. One notes that the limiting value of ç_ is

1 + 1/p for a and 2 + 1//D for p . For p =1, the optimal

designs have 2 and 3 columns, respectively. However, for p> 1, the

2

optimal design for <y is nonbalanced with 2 columns, whereas that

for p approaches a balanced design with 2 columns.

1 r

The particular case of с = 2 has been investigated more thoroughly for

d c . Consider a two-column restricted optimal design with N-r' rows

r

in one column and _r' of these same rows occupied in the second column;

i.e., s = 0 if r' = N/2 or 2 < r' = s<N/2. From (33a),

C38)

Var( ¿2)

r

2<TA

N +2r' - 4 p 2 + 2 - ■ Ш---1.—-А

N-2

Pr +
r' - 1

/(N-2),

If r' =N/2, (38) simplified to {? + P + 0 . 5)/(r'-l) . The value of r'

r r

which minimizes (38) is

C39)

r' = <

2 p > (Л-2)Л/2~

l+(N-2)/pV2~ Ыг< p <(N-2)/VT

N/2 <V2"

Hence when p > Л/2, a two-column design with one column shorter than

r

the other is better than two columns of equal length.

These results suggest the following procedure for finding a nearly optimal

design for <r :
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(i) If p >v2, use one column with r = N - r' rows and a second
rr

column with r' of these rows, where r' is the integer (>2)

which is nearest 1 + (N-2)/ p ~у/1~.

(ii) When p < V2, use a balanced design with с as the integer
rr- —

above or below

Cq = [pr (N-l/2) + N + I/2] / [ p (N-l/2) + 2 ] ,

which minimizes

(40) V(c)- J m +2Pr+Cpr2

lN-c)(c-l) +TFc- + ,FFc-

and where _r was set equal to N/c. Presumably little information

is lost by simply using as c_ the integer closer to c* .

Another approach to (ii) above is to determine intervals of P

1 r

for which с = 3 is best, с = 4 is best, .... This is

accomplished by determining p = p(c) in the equation

(41) V(c) = V(c-l) .

When p <p>(c), с is preferred to c-1 columns. The solution

to (41) is

<42> ft'01 '^цшт ' N - кJrb + ^m + °v*2>]
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For N = 30, the following are the first three separation points:

p<3)-.62. P1(4) = .33/ p(5)-.22.

Hence

с = 2 for .62<p <^p¿;

с = 3 for .33< p < .62

1 r

с = 4 for .22 <p < .33.

r

Note that for p = .25 in Table И, с ■ 4 is slightly preferred to

с = 5.

Table 11 indicates that for p there is a considerable range of p for
rr r

which the best allocation plan will have 3 columns and N/3 rows. If N

is not divisible by 3, some gain may be obtained by using an extra row with

one column not filled. It appears that the best plan would be to either

increase N or reduce N by enough to have it divisible by 3. As p
rr

increases, only 2 columns should be used with N/2 rows. Again add or

subtract one to make N even.

The following general procedure is suggested for p ;

(i) Use a balanced design with ç_ as the integer above or below (36b),

с =(2pN + N-p + l/2)/(p N + p/2 + 2),

which minimizes (32b):

Var(£) 2 2

(43) L = (1 + cp ) (N-c-2)/(N-c)(Nc-N-c -3c),

о r
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(ii) Choose _r so that re = N.

The same procedure of finding separation points on p could be used

on (43) as was done above. The equation comparable to (41) is considerably

more complicated; hence, all I am reporting here is the asymptotic result

Cfor large N). In this case the solution is

глл\ o i ^ 1+ V(c-l)(c-2)

(44) p (c) =

¿ с - Зс + 1

Some of the separation points are:

p (3) =1+V2"=2.4, p (4) = (1 +^5)/5 = . 7

PAS) = (1 + 2V3)/11 = .4, p (6) = (1 + 2V5)/19 = .28.

Hence

с = 3 for . 7< p < 2 . 4

с = 4 for . 4 < p < . 7
rr

с = 5 for .28<p < .4

Note that in Table 11, с = 5 is slightly preferred to с = 6 for P = .25.

The above separation points would be altered slightly if the adjustments

of 0(1/N) were made.
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5 . 3 Estimation of cf or

с с

Use the results in Section

5 . 2 by reversing the roles of _r and c_. In Table 9, one computes mean

squares, R and C*, for Rows and Columns (adjusted for rows) . The latter

can be computed quickly by use of the identity:

(45) (r-l)R* + (c-l)C = (r-l)R + (c-l)C*

2 2

5.4 Simultaneous Estimation of (У and <y . Gaylor obtained onlyr c_

some tentative results for this case but they are indicative of the problem.

2

Since efficient estimation of <J requires many rows and efficient esti-

2 Г

mation of С requires many columns, simultaneous estimation requires

с

many rows and columns. Gaylor considered two special designs, called

the L-design and the Balanced Disjoint Rectangles (BDR)-design, and

2 2
compared them for the case (Y - ff

г с

The L-design is as follows:

ri

Rows

Г2

r rows in 1 col,

Cg cols, in 1 row

с с
2 Columns 1

Figure 1. The L- De sign
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2 2
For ¿P = CT , one should use r=c, г = с , r =c. The total rows

re 112 2 3 3

and columns used are r = r. + rn and с = с + c„. N=rc -r observa-

12 1 2 i 2 3

tions contain one column with r (0< r < r ) empty cells and N - cr - с

J О 1 Ù ¿m о

observations contain one row with с (0 < с < с ) empty cells. The N

observations are of the form of a restricted optimal design for Cf and the

2 r

N observations for ff . In general с and r will be small.

2 с 2 2

The BDR design consists of c¡_ distinct rectangles, each consisting of

_r rows by c_ columns, with one observation per cell. The rectangles are

distinct in that each rectangle samples a different set of _r rows and c_

columns. The ANOV for this design is given in Table 12.

2

If the component of variance for the rectangle effects is zero, tf = 0/

g

then a unique solution for the estimators of the components of variance is

not obtained by equating the mean squares to their expected values. Then,

there are five mean squares (equations) with which to estimate four

components of variance. Since the best procedure in this case is unknown,

the case will not be considered here, but this certainly warrants future

investigation.

If G is neglected, the estimators and their variances are quite simple,

as given in equations (46).

2 2

The two designs have been compared for the special case (f - (У

л2 л2 re

and Var( С ) = Var( <j ). Some specific examples are given in Table 13
í С

2 2 2 2 2 2 2

for P = (X / СГ = Or / СГ , where <j = cr + <T . The total

re s re

number of observations, N, was allowed to vary slightly in order to obtain

balance if desired. Thus comparisons were made on the basis of

2 2
NVar( (Г ) = NVar( <y ) which is the reciprocal of the amount of information

г с 2

per observation. The estimator for cr for the BDR^-design is given in (46)

r

and for the L-design in (30). The variances in the last column of Table 13,

« 2
NV, are based on the estimator, ¿r , in which the last с columns in

r 1
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Table 12. ANOV for a Balanced Disjoint Rectangles Design

sv OF MS EMS

2 2 ,2 2 2

Rectangles g-1 G СУ + ef +c^ +r^ frc^
s re г с g

2 2 2

О* +- ¿^ + C¿^
s rc г

Rows g(r-l) R

¿^2 + ^2 + r^2
s rc с

Columns g(c-l) С

2 2

Interaction g(r-3Xc-l) I

s rc

(46)

<?2

r

= (R-I)/c; a - (C-I)/r;

Var(<r2) =

r

2r

N(r-l)c

(¿Г 2 + ¿Г 2 + c<r2)2 +

rc

(<r2+ ¿r 2)2
s rc

Ô4

■)

Var(<Tc2)
2c

N(c-l)r

2 2 2

((Г + a )
{<r2+<r 2 + rc?2)2+ S

s rc с r_i
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Table 13.

,л2,

Comparison of BDR and L-Designs -with Var( & ) « Var( (у

2

), Where

2 2

i

o- - o-

BDR-Design

r с

•

L-Design

P
s r«c N

a/

r»c Г "C r»3c-. N NV NV
О

2 2 3 3

•5 U 3 36 З.38 10 2 0 36 4.24 5 00

•5 2 4 32 З.11 7 3 0 33 З.29 4 12

•5 1 6 36 3-24 6 6 0 36 3-24 3 24

1 9 2 36 10.00 10 2 0 36 10.89 10 00

1 4 3 36 8.25 7 3 с 33 9.46 10 08

1 2 4 32 8.44 6 6 0 36 9.84 9 84

2 9 2 36 26.0 14 2 8 36 26.8 25 6

2 4 3 36 24.8 10 2 0 36 34.8 26 0

2 2 1+ 32 27.1 7 3 0 33 31.6 30 2

4 9 2 36 82.0 16 2 12 36 72 79 8

4 " 3 36 84.8 10 2 0 36 125 82 0

У V - Var(^2)/2<r^ and V - Var(¿r- )/2(Г .
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2

Figure 1 for the L-design are ignored. The estimator, (У , could be

improved slightly by pooling the error sum of squares from both legs of

the L-design.

Several observations can be made from Table 13. When p is small,

BDR-designs are better than the L-designs. When p is large, the L-design

2 V " 2
is better. Forthose designs where f> ) (d - d) is large, see (31a),

• 2 *

the estimator, <T , which discards the last c. columns is often better

л 2

than the estimator, <f , which uses all of the observations. This is a

r

result found previously where it was shown desirable to keep the numbers

of observations per row nearly equal. Also, as was shown in Section 5.2,

the L-design is desirable which has less than two complete columns in the

N observations and less than two complete rows in the N observations

when о > YY.

For an L-design with r = с = 2, r = c, and r = с =0,

(47) Var(¿.2) = 2cr (2 + 4pr + 4pf2)/N,

2 2
where p = or /& • For a BDR-design with r = с = 2 and g = N/4,

a. 2

from (46), Var( & ) is the same as (47). This result is borne out in

• 9 . 9 9 9

Table 13. Similarly, Var( (X ) = Var( ¿f ). No restriction that ¿r = &

с с re

has been imposed here.

When p > 2.87, the best BDR-design, has r = c = 2 and g = N/4.

Since p> V~2~, the L-design with r = с = 2 can be improved upon by

letting r. = с > 0. Hence, whenp> 2.87, for the L-design

• 9 " 9 » 9

Var(c ) < Var( Cr ) for a BDR-design. Var( <y ) could be reduced still

Г " r r 2

further by using the observations in the last с columns to estimate o1

and pooling this with the estimate of С 2 from the first с columns.

2
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Also, when r = с is small for a BDR-design, the number of rectangles, g,

2
becomes large. If & = 0, considerable information may be lost here by

g

not making use of the mean squares among rectangles.

A few tentative observations can be made. In general, as p increases,

2
the L-design is favored over disjoint rectangles if (y > 0. Also, the

g

analysis which ignores the observations in the other leg of the L-design

in order to achieve balance sometimes reduces the variance.

6. ADDITIONAL COMMENTS AND SUGGESTIONS FOR FUTURE RESEARCH.

6.1 Extensions of Nested Sampling to More than Two Stages. One

important research problem is to extend Crump's results to more than two

stages of sampling. In Section 1, two five-stage problems were mentioned.

In the Anderson-Bancroft book and in my International Statistical Institute

paper, I proposed a so-called staggered design, which consists of a

number of balanced designs but with incomplete sampling at some stages.

For three stages, two different groups (I and II) would be used with a

first-stage samples for I and a for II, as follows:

1(4 a obsejvations) 11(2 a observations)

1 ¿л

В

С
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ANALYSIS OF VARIANCE

EMS

2 2 2

с bb a a

2 2 2

<У + 2(/ + 4<T

с b a

с b a

(У2 + КУ1

**+**

SV DF MS

Groups 1 MSA,

3

Ai

V1
MSA

\ V1
MSA

2

Bi al MSB

B2 a

2

MSB

2

С 2. MSC tf-2

where MSA = (T /4a - T /2a )2/(l/4a + l/2a ), к

2(al + a2)

3 112 2 1 2 b 2a + a

1 «

4(a. + a )

ka = S 2_ t T = SY and т2 = SY
2a + a x LL

1 2

One might consider using an additional third plan with a„ first-stage

samples, only one second-stage sample per first-stage and one third-stage

sample per second-stage, giving a observations.

R. R. Prairie is studying another plan, which would attempt to equalize

the total number of observations at each stage. In this case there would be

a_ first-stage samples, with each followed by the following second- and

third-stages:
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ANALYSIS OF VARIANCE

SV

A

В

DF MS EMS

a-1 MSA

^2 5 2 2

с 3 b a

a MSB

2 4 9

с 3 b

a MSC

2

С

с

The variance of (У for this design is complicated by the fact that MSA

a

and MSB are positively correlated. This is a feature of non-balanced

designs which we were not anticipating . It indicates a fact which many of

us often forget; namely.- that the usually accepted concepts regarding the

analysis of variance are based on a regression and not a variance compo

nents model. Naturally if one uses the ML approach, he does not start

with such preconceived ideas. Also one never has any trouble when the

design is balanced. Note that my staggered design is balanced within

groups; the major difficulty there is how to use the between-groups mean

square.

6. 2 Other Suggestions.

1) (a) Develop numerical methods, suitable for high-speed computers,

to obtain, under normal theory, the ML estimates of variance

components from unbalanced data.
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(b) Study the small sample properties of the ML estimators by

empirical means, and, where possible, by analytic means.

(c) It might be possible to find approximate formulas to estimate

the biases and variances of these ML estimates. A comparison

of asymptotic variances and empirically determined small sample

variances would be useful.

(d) Compare the small sample properties of the ML estimates

with those of more convenient estimates, e.g. , ANOV or

iterated least squares.

2) Study the effect of non-normality on estimating procedures.

3) Introduce unequal cost factors into the problem.

4) Develop suitable criteria for use in simultaneous estimation of

several parameters.

5) Develop a sequential estimation procedure in which the first

stage (or stages) would be used to estimate P ( or various p 's )

needed to design the remaining stages.
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LECTURE ON HAZARD ANALYSIS

G. S. Watson ■

University of Toronto

INTRODUCTION. Suppose that the time X to failure of some article,

randomly selected from a large batch of supposedly identical items, has a

probability density and distribution functions f(x), F(x) with f = F'.

Naturally ХгО. Then the time rate of failure of items on test at time x is

lim

Д->о

Prob \x<X^x + A /X>x) c Prob Í x<X^x 4 A }

Л
ДРгоЬ (X>x)

■ f(x)4 - F(x))

= h(x), the Hazard Function

ч 1 _ /v. x

For f= Ae~ ^x, h(x) = 1 _ ц _ e- Дх) =A (0^x*oo).

A, "A:

In this case failures occur at the same rate, no matter how long the test

is run. More typically in practice

Manufacturing errors random failures deterioration

To understand the interpretation of hazard curves better, suppose that

an item fails from either of two independent causes so that
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X = min (Y , Y )

1 2

where Y has hazard h and Y has hazard h_. Then it is easily proved
1 I Z ù

that

h(x) = ^(х) + h2(x).

Thus, if in practice, we observed the curve

T Г

we would be tempted to suppose that it is the sum of

and

T T'

An examination of the items failing near time T might then show a different

failure mode than those at, say T1 . Further examination of all failures

might substantiate this guess. Again the "typical" curve drawn above may

well be composed of

and examination may reveal three failure modes.
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Of course these decompositions are not mathematically necessary,

since to any h(x) there is a unique distribution given by

F(x) = i - exp ( - / h(t)dt)

Jo

since h(x) = - — [log (1 - F(x))]

dx

They are merely sensible in the light of what may be expected in practice -

different failure modes at different times. For this reason the hazard

function seems to be fundamental for reliability -studies made in the develop

ment of a device. There are occasions when the hazard itself is required.

For an item that is only required to operate successfully for a short time

(like a rocket motor), it may be wise to run it on a test stand until the

hazard has reached a minimum.

Thus we have made a practical case for estimating the hazard function.

The usual approach in life-testing is to assume, sometimes without sound

reasons, a specific form f(x, 9) for the density of x and merely to fit the

parameters 9. If the hazard is then required it would begin as

f(x, 9)

1 - F(x,"S)

This is particularly unsound when dealing with a new item. Our approach

is to estimate, from a random sample of lives, h(x), without making any

prior assumptions about its form or the form of the density f(x). We will

refer to this approach and its ramifications as "Hazard Analysis'
. ii

There is an analogy in the history of the statistical analysis of stationary

time series. Once the procedure was to assume specific models (such

autoregressive and moving average processes) and fit the parameters. Now

most writers press first for a spectral analysis of the data, i.e. they seek,

without further assumptions, to estimate a function

Г* ?
s(w)>0, 0<w^Tf/ 2 ls(w)dw=¿r: (called the

■Л-i
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spectral density function) with the property that

Г
E(X. X. ) - s(w) cos jw dw

i 1+]

Jo

where X. and X... are the ith and (i + j)th observations. Clearly s(w)
i i+]

determines the covariance matrix of the process and conversely, so are

mathematically equivalent (like h and f above). But s(w) is more

suggestive in practice because one may write

xt = / cos tw du(w) +| sin tw dv(w)

Jo Jo

where var(du(w)) = var(dv(w)) = s(w)dw, cov (du(w), dv(w)) ■ 0.

In other words, 2s(w)dw represents the variance of x. in the frequency

range (w, w + dw). Thus peaks in s(w) should correspond to favored

frequences in the process generating xfc and so throw light on its nature—

just as peaks in h(x) throw light on the failure mechanism.

The two problems are also mathematically similar in one very basic

respect - in both cases we are trying to estimate a function. In statistics,

we usually try to estimate a point in a finite dimensional space. Here it is

a point in a function space. There are other such problems, the most re

lated one being the estimation of a probability density. This latter problem

is mathematically a fundamental one and by studying it, we will see how

to solve our original problem, the estimation of the hazard function.

The remarks of the last few minutes show us the place of one problem

in mathematical statistics and give us a theoretical interest in its solution,

regardless of the practical utility of our answer.

The work I will now report was carried out with O.N.R. support by

M. R. Leadbetter of R.T.I, and myself.
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2. MATHEMATICAL CONSIDERATIONS. Let X, ...X be a random

1 n

sample from a density f(x) then for any function q( . ),

(1)

■oo

-oo

q(x) f(x) dx.

Suppose that we want to know the value of f at y, f(y). The most

primitive method is to form a histogram from the sample and if I is the

У

interval containing y, and n„ the number of X. f I . and to use
У i '- у

n

(2)

n I
as dst f(y)

the expectation of this estimator is

f(x)dx ~ f(y) if f(x) is "smooth" in I for I

y У

small. This is the average of f in I . Thus (2) is an example of (1)

У

with

q(x) = l/||Iy|| , x£ly,

= 0 ■*t\
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In order that this estimator (2) should be consistent it is necessary to have

I Iy > 0 at the right rate as n ^- oo .

It is well known to anyone who has ever made a histogram of some data

that

too many intervals gives a histogram that is too rough or variable,

too few intervals * * и пи» smooth or lacking in

interest.

The vaguely expressed balance that is required in practice can be expressed

here mathematically.

If, instead of (1) , we write

n

L 6n(yi-xi> )

E ? (y) = -1=1
n n

•oo

n
'-oo

Ón(y-x)f(x)dx,

(a "smoothing" of f)

(3) > f(y) ,

if f is continuous at у and f ( . ) tends to the Delta -Function. Now

n

(4) var(ên(y)) - 1 / 6n2 (y - x)f(x)dx - ^[f 6n(y-x)f dx] 2.

-OO

The last term tends to zero as n » °° if (3) is true so that

л

var (fn) > 0 provided

(5) 0n (y -x)f (x)dx- <r(n).
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Thus 0n( ) must not tend too quickly to 0( ) e.g. L.H.S. of (5)

is, for the usual forms of Ô ( ), less than ¿) (°) ffr) approximately

<- n n

so that ôn(0) ■ <У(п) will suffice. This still leaves a large class of

admissable sequences /)(•)• An attractive criterion that leads to an

^n

"optimum" sequence is

J = E( (f(y) - f(y))2dy)

(6) J

~ l\(p* (0 - 0f(t) | 2dt,

by Parseval where

</>f= Teiyt f(y)dy, 0^ = le^ fn(y)dy.

It may be shown that the characteristic function of the Q ( ) which

minimizes J is given by

I0£<t>

(7) фс (t) =

n n

Thus ó ( • ) is symmetric about zero. Examples show that ön( . ) is

n A

not always positive. The important point is that the optimum 0 ( . )

depends on the unknown f. However, for n — »oo, the optimum

6 ( . ) depends only on the rate at which | 0f(t) | > 0 as

|t| >oo. Our results in this direction are analogous to those of

Parzen (1958) for the spectral density. To see how spectral analysis has

a similar form mathematically, we have only to take the relation I

mentioned before



832 Design of Experiments

E(Xt Xi+.) = / cos wj.s(w)dw

3nd form

i J

r

I [na« cos wO + (n-l)a. cos w+...+ a , cos w(n-l)J s(w)dw

r

= / q (w)s(w)dw,

J n

where the coefficients a, will be chosen to make the trigonometric poly

nomial q (w) resemble J r)(w - w) in order to estimate s(w_). In this

n *r" о °

problem the choice 0n( . ) is very restricted compared with ones pre

viously considered.

Familiarity with the results above enables us to proceed quickly to

3. The estimation of the Hazard Function . Referring to the equations

(1) and (3), we want a function q( . ) such that

n Г«*°

(8) E(l[ q(X.))= Ón(jr-*) -тЭД-у- dx

i=l -J- со

which implies that

8n(y-x)

(9) q(x) = 2

l-F(x)
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which is no good because of the presence of F(x). However at X . , the

rth smallest observation, an estimate of F(x) is r/n and so

is an estimate of 1 - F(x). The latter occurs in the denominator and
n

may be zero so we suggest

'n(y) = - L n-r+'l

r=l n

i.e.

(10)

n Ón(y-X_ i J
n/ y^ n r n

h (y) = ) >— •

n <Ц n - г + 1

r=l

This then is a most natural estimator, following along the path of Section 2

Since the probability density of X i is given by
r n

n! r-1 /, _ г. лП-Г

(r-D! (n-r)! V1 (1-FX) fW'

n f°°

E<^»=I (r-l)!(n-U \ &nb-*Kl a-Fx)n-rfWdx,

■oc

<5n(x-y> / nl
1 - F(y) (l - F(y)nj f(y)dy,

-> h(y) ,
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with some mild restrictions on Q ( . ) and f( . )• Several more mild

conditions ensure that

n

var (hn(y)) -> 0 as -^oo

The arguments and conditions are rather lengthy and I will omit them. The

initial simplicity of our problem is seen to be deceptive - it seems to be

due to the fact that we are dealing with a ratio.

It is again true that many sequences С ( • ) will suffice, and, for

n

theoretical completeness, one would like to see a criterion that would

select an optimum sequence. So far however none of the obvious tactics

have yielded a solution. One cannot use

oo

(h" (y) - h(y))2dy

because the integral will not converge in cases of interest, in contrast to

the probability and spectral density problems. A convergence factor could

be inserted but this means more arbitrariness; however a solution along

these lines is surely possible. Work in this direction has been temporarily

suspended in order to examine in more detail estimators of this and other

types. For practical applications this seems more useful since, as we

have seen in $ 2 for the probability density, the optimum /) ( . ), for
w n

any criterion, will depend strongly on the unknown h(x), at least in

small samples and that is what we always have in practice.

The most primitive estimator of h is again that formed from the histogram.

Let (0,o«) = Ij + I + . + L and
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п. = number of X. У I.
J i L J J

{

Z^n = n

J ■»•/ •■•/K

and define

(12) h*

I.

J

n.

n - n, - . - n. , +1

j-1

Then if I -^ 0 as n -* oo , E(h* ) -> h.

However this estimator can be closely matched by one of the form h . If

n

(13) I. = (x | x i (y -|g y + 4-6 )J <

6 (z) = б if 4Л<«^42Ô-Z-T6

then

0 otherwise

(14) h

n r^R n-r+1

with

R =|r ranks of X, | y - Tfi— Xr < У + -,
i 1

'26j
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However if

r^ = least member of R

r = greatest member of R

(14) may be rewritten as

Г2

V<5E n-TTTT
ri

Approximating the sum by an integral we find

6n - r* + 1 ^, r n-r.+2

ioge пЦ > \>Ô ioge n - г ■ + 1 .

These bounds could also be used. In this way a number of estimators,

connected by inequalities, can be devised that are based on data that are

contained in the histogram.

A graphical estimation method can be based on the relation

h(x) = "4 (loge <1-pW)}.

For let Г (x) be the sample distribution function and plot log_ <1 - F (x)V
П " \^ n J

against x. If a smooth curve is drawn through these points and its slope

determined, perhaps just with a straight edge, we obtain an estimator

that might be called

(16) hg(x).
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This estimator, by its construction, does not come with formulae for its

mean and variance.

4. NUMERICAL EXAMPLES. To test out the various methods, samples of

50 were drawn from 4 populations with respectively, constant, never

increasing and (2 cases) never decreasing hazards. While in practice we

will often be concerned with the detection of peaks, the hazards here are

all smooth. Since the class intervals (histogram type estimates) and

(5 ( . ). which we call the "hazard window" are at our disposal, it

is possible here to vary them so that we get estimated functions that are

as close as possible to the known functions. In particular since we know

there are no peaks, we can use broader intervals and hazard windows than

one might dare to use in practice.

On looking at the graphs' of these experiments, it is clear that the

simplest histogram estimators h* , h** are the worst. The
J,n ] , n

graphical estimator h does very well because it involves heavy smoothing

(and we have smooth hazards), h was computed using a triangular window,

since we had no reason for choosing anything more complicated. It too

does quite well and has the advantage of being treatable mathematically

and amenable to automatic machine calculation. The results suggested

that h was unreliable at any point depending on too few observations.

We are therefore now considering a more general form of íí where 0 ( )'s

form depends to some extent on the observations.

In conclusion it is evident that we have just begun this investigation.

We are a long way from the reliable detection of peaks and from confidence

bands for h(x). The long investigation of probability density estimation

was a necessary preliminary.

t
Graphs are on the following pages.
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