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INTRODUCTION. This paper attempts to answer two questions:
(1) What do we mean by the reliability of a piece of equipment (a
radio for example), and (2) in what senses can we assure this
reliability? The emphasis will be primarily on the logical and
philosophic aspects of the problem rather than on technic. This is
not, then, a "how to do it" manual onreliability but rather a pre-
liminary discussion of the foundations of the subject. In order not
to obscure the foundations, the examples have been kept very
simple; however, these illustrations have been adapted from the
author's own practical experience and hence have a basis in fact.

The problem of reliability prediction and control may be looked at
from several points of view. 1. Given an existing piece of equipment,
how can we analyze and/or test it in order to determine its reliability ?
2. What corrective actions may be initiated in the production process
which will improve reliability? 3. What testing and sampling methods
can we use which will prove to the customer that the equipment has the
reliability he asked for? Or from the customers point of view, what
methods can be used to monitor the reliability of equipment which is
being purchased? 4. What guiding principles (such as redundant
components) should be followed in order to design reliability into the
equipment? A first answer to the question of "What is reliability
assurance?"” is that it is the collection of all techniques which throw
light on one of the four preceding questions. We hope that the remainder
of this paper will show that the first answer is not the whole answer.

I. REILIATION TO SCIENTIFIC METHOD IN GENERAL. Before focusing
our attention on the details of reliability engineering it would perhaps
be advisable to examine the relation of the subject to scientific method
in general. It is the point of view of common sense that a piece of
equipment is real and that the properties which we perceive are in the
equipment. Thus a radio is a real object which has several qualities
in it. Examples of these qualities might be 1. being painted green,

2. being hard, or 3. being reliable. Adopting this common sense
point of view, we find that the circumstances surrounding the operation
of the equipment are usually too complicated to comprehend in their
entirety. Thus it is necessary to idealize the real radio and study a
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conceptual one instead. This conceptual radio is called a model. The
trick is to choose a model which is simple enough to work with and yet
complicated enough to describe the operation of the device to a desired
degree of approximation.

In short, knowledge about the reliability of a piece of equipment is
knowledge about an abstraction rather than knowledge about the real device.
Thus it will be important for us to distinguish between the real device which
common sense tells us is "out there" and the conceptual or abstract DEVICE
whose reliability we may study. As in the previous sentence we make this
distinction by using all capital letters whenever the abstract noun is intended.

The job of specifying the nature of the EQUIPMENT is not as easy as it
at first appears and careful study of this aspect of the undertaking is
frequently very fruitful. Quite aside from the question of representative
samples there is usually a difference between the universe of devices which
are investigated and the universe to which the conclusions are applied.

For example, one procedure in determining the average failure time of a
DEVICE is to test a single unit until it fails, replace the failed part and
inspect the unit to restore it to its original condition then test this repaired
unit until it fails, etc. The average failure time is taken to be the long run
ratio of total operating time to total failures. Here the universe of investi-
gation is the collection of all repaired states of a single unit while the
universe of application is surely the collection of all units which are
produced by a certain process. The validity of the entire study depends on
how closely these two universes approximate each other.

Without going into too much detail the DEVICE will be characterized by a
process of cross classification. Thus the DEVICE may consist of all devices
of a certain design produced in 1950 at a specific factory and to be used in
the continental United States. The possibility of classifying a set of objects
so that the set has properties other than those used in the classification is a
basic assumption and an observed fact of science.

One classification which deserves special attention is the class of
failures to be considered. Several possibilities are illustrated by the
following questions. Will the radio work when the customer first drops in
a battery? If it does work initially then how long will it give satisfactory
service? Does satisfactory service mean no failures or does it mean only
easily repaired failures? Must the radio work continuously or only for a
few hours each day? Are we interested in failures due to design faults,
the process being out of control, or only in workmanship failures ? Several
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different techniques would be needed in order to treat these different -
questions but in this paper we will be able to discuss in detail only those
situations where the device either fails or does not fail. In particular the
important literature connected with life testing is much too extensive to.be
reviewed at this writing.

Certainly there is no single scientific method which provides a simple
set of rules for "doing science"; however, complex activities are frequently
better understood by considering a simplified version of them. In this spirit
we present the following view of scientific method as a process of successive
approximation. Schematically this process may be shown as proceeding as
in H. C. Sweeney's diagram which appears here as Figure 1. An example
follows of how the diagram could work in a reliability situation. The
initial idea might be the reliability design specifications of a complex
industrial valve to be used in turning off a rocket motor at a preassigned
time. An experimental valve is then built and tested. It is found that with
sufficient adjustment this experimental unit can be made to work for short
periods of time in the laboratory. It is decided that if the design is altered
and care is taken in the construction then the equipment will be feasible.

A limited production run is undertaken to provide several units for test and
demonstration. All valves work well in the laboratory but when the items
are shipped for demonstration it is found that few of them work at all and that
considerable training is needed to adjust the valve for initial operation. If
the valve is designed more ruggedly and installation training is provided, it
is believed that the reliability will be satisfactory. The decision is made to
manufacture and promote the item. When the valve is mass produced and
user tested, anticipated failures did not materialize for those valves which
were carefully handled but very few of the devices receiving rough treatment
performed satisfactorily. The reader should not think of the example as
stopping at this point but as continuing on through cycle after cycle, each
new model of reliability depending on all the previous models and all the
previous data gathered. However, the general pattern is now clear. The
reliability of the DEVICE is an evolutionary thing with the universe of
investigation continuing to change and for the most part expand.

II. RELIABILITY AND PROBABILITY. The more advanced reader will want
to skip this and the next section. There are many aspects of reliability which
are not probabilistic in nature; for example, we might discuss with relevance
the industrial revolution, piece-work and management science. Though these
topics are interesting and important they do not fall within the scope of this
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FIGURE 1

SCIENTIFIC METHOD AS SUCCESSIVE APPROXIMATION
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article. As the title indicates this paper concerns itself with examining
that substantial portion of reliability which is related to probability. In
this section we take the point of view that the meaning of "the device
functions correctly" becomes clear as soon as the abstract DEVICE, whose
reliability is being studied, is specified. Remember that the abstract DEVICE
is determined by a process of cross classification where the criteria of
classification include such things as the conditions of operation, the kinds
of failures to be considered, etc. For the purposes of this paper, the
reliability of a DEVICE is then defined to be the probability that it functions
correctly. This definition is more general than some in that the role of time
to failure is not explicitly emphasized. Thus when time is a determining
factor it may be included in the definition of "functions correctly" but if
time is unessential the definition still applies. It is instructive to discuss
this meaning of reliability by recalling a few of the various concepts of
probability which have been proposed and specializing these to the
reliability situation.

Before discussing probability it is necessary to have in mind the
primitive concept of an experiment. For example, in studying the effect of
gravitation on falling bodies a ball is rolled down a prearranged inclined
plane and the resulting time required for the ball to make the trip is recorded.
It is customary to think of this experiment as being deterministic in that the
conditions of the experiment completely determine the result. For other
experiments there will be various possible outcomes and it will be
impossible to predict which of these will occur on any particular performance.
This latter kind of experiment is termed probabilistic.

The possible outcomes of a probabilistic experiment are called events.
Some of these events are thought of as being simple or indivisible while
others are considered to be compound in that they are composed of simple
events connected together by means of the words "and", "or", "not". If
the occurrence of the event A necessarily implies the occurrence of B
then we say that B contains A as a subevent. The compound event which
contains all possible outcomes of the experiment is worth naming, we call
it the universal event. The simple events are to be thought of as having the
following two properties: 1) they are exhaustive in the sense that when the
experiment is performed one of the simple events always occurs and 2) they
are mutually exclusive, it being impossible that two simple events will
occur on the same performance of the experiment. The illustration of a
valve which is to shut off the flow of a liquid at a given instant provides
an example which is typical of reliability work. Here the simple events :
are i. the flow of liquid is stopped and ii. the liquid continues to flow.
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A more complicated probabilistic experiment is provided by setting an
alarm clock (or fuze) and measuring the alarm timing error which equals the
actual time when the bell first rings minus the time for which the alarm is
set. If the measuring instruments are accurate to the nearest tenth of a
second and if we think of the alarm error, in seconds, as being plotted on
a line then the simple events will be all multiples of 1/10 within a certain
interval, say +300 to -300. Since the length of this interval is long com-
pared to the accuracy of the instrument (600 versus 1/10) it is convenient to
idealize this experiment to include all points on the line as simple events.
This kind of idealization is essential in many situations in order to obtain
a model which is of manageable proportions. The model is particularly
appropriate since if the measuring accuracy is improved to say a hundredth
of a second then all multiples of 1/100 between +300 and -300 actually are
possible outcomes of the experiment. In passing note that if the model is to
be an accurate approximation to the true situation it will be necessary to
assign a very small amount of probability to that portion of the line which is
outside the interval +300 to -300.

The historically first concept of probability is referred to herein as the
equally likely definition. This requires that we decide on m equally
likely simple events of which ¢ imply the occurrence of a compound
event of interest. The probability of the latter event is then taken to be the
ratio of ¢ to m. Thus if the six faces of a die are taken to be equally
likely and if C denotes the compound event of observing an even number
of dots on the up face then the probability of C, written P(C), is 3/6.

If B and C are two events then a third event, (C and B), may be
formed by considering their simultaneous occurrence. Further, if ¢ simple
events imply C and of these d imply (C and B) then the elementary
formula

(d/m) = (c¢/m) - (d/c)

yields the important multiplication rule:

P(C and B) = P(C) * P(B|C),,

where P (B|C) : stands for the probability of the event B if the occurrence
of C is made part of the conditions of the experiment.
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The most important objection of defining probabilities in terms of equally
likely is that many of the most interesting applications cannot be formulated
in this way. While the equally likely idea of probability works quite well
for the illustration of rolling a die; in both the valve and the alarm clock
examples it would be exceedingly difficult to intuitively fix upon m mutually
exclusive and equally likely simple events. The equally likely definition
originates from a time when it was thought necessary to base all mathematics
on "self evident truths" but there is nothing self evident about equally likely
for the reliability type of problem and hence it would seem that we must look
elsewhere for an adequate concept of reliability. If we adopt the point of
view that it is essential to be able to verify a probability by observation and
we ask what is available to check the correctness of a probability then we
are immediately led to the frequency definition. '

In order to talk about frequencies we must first discuss what is meant
by n performances of the same experiment. If n experiments differ only
in unimportant conditions then we will say that they are n performances of
the same experiment. The apparently necessary vagueness at this point
seems to be a drawback to defining probabilities as frequencies. We will
see that independence is what is needed here, but this concept will be
defined in terms of probability and hence a definition of probability in terms
of independence would be circular.

If, in n performances of an experiment, a specified event C occurs
s times then the frequency of occurrence of C is s/n. According to the
frequency definition, s/n is a measurement of a permanent numerical
property of the experiment; this property, if it exists, is called the probability
of C. In short, probability is that property of an experiment which is
measured by frequency. All measurements are inaccurate to a greater or
lesser degree; in the present instance we would expect the accuracy with
which s/n measures P(C) to increase with n. If in n trials, C occurs

s times and the compound event (C and B) occurs s, times then

sl/n = (s/n) - (sl/s) which again yields the multiplication rule:

P(C and B) = P(C) - (BC).

There is a difference however, in that the probabilities involved are now
probabilities in the frequency rather than the equally likely sense.
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We may try to interpret our concept of reliability in terms of frequency
probabilities; this yields something like the following: Reliability is that
property of a DEVICE which is measured by the frequency of correct functioning.
Though it is implied by our convention concerning the use of nouns with all
capital letters, it is worth emphasizing that a frequency probability statement
refers to an individual item only in so far as it is a member of a class. If we
choose a particular valve from an assembly line and mark an * on it, then we
should not speak of the reliability of the valve with the *, but only of the
reliability of a class of valves of which this particular one is a member.

In the previous two definitions we have taken probability itself to be
primitive. In the first instance we disguised this fact by using the words
equally likely and in the second we emphasized the measurement of probability
and ignored the nature of the concept. It appears that it may be necessary to
take probability, and hence reliability, as in intuitive and undefined
concept . If this is so then we might as well shift the emphasis from the
nature of probability to how we want it to behave. It is this line of reasoning
which leads to the axiomatic theory. According to this treatment a number
not less than zero and not greater than one is allowed to correspond to each
of the events of a probabilistic experiment; the number corresponding to the
event C is denoted by P(C) and is called the probability of C. We insist
that this correspondence have the following two properties: 1.) the probability
of the universal event is one, and 2.) if A, B, C ... are mutually exclusive
events then

PAorBorCor ...) = P(A)+ P(B)+ P(C) + ...

For axiomatic probabilities the logical status of the multiplication rule is
simply that of a definition. By analogy with the frequency and equally likely
theories we define conditional probabilities so that the multiplication theorem
will hold.

Two experiments are said to independent if P(C and B) = P(C) * P(B)
whenever C and B are possible results of the first and second experiments
respectively. From the multiplication rule we see that this is the same as
requiring P(B) = P(BlC) i.e., the probability of every possible result of the
second experiment is independent in the grammatical sense of what has
happened on the first experiment. If the potential results and their probabil-
ities are identical for a sequence of n independent experiments then the
sequence is said to consist of n independent trials. Earlier when we
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introduced the frequency definition it was the concept of independent trials
which was needed but unavailable. Of course, the idea of independent
trials could be developed in the above manner from either the equally likely
or the frequency definitions, but independence would be available only
after probability is introduced and hence could not be made the basis for
defining probability.

The main difficulty with the axiomatic approach is that at this point one
is tempted to say, "Yes, but what is probability?". This objection is
lessened somewhat by the law of large numbers [8] which shows that there
is a close relation between the axiomatic theory and the frequency definition.
The axiomatic development does not yield an exact counterpart of the precise
frequency definition. In fact, if fn is the frequency of occurrence of the
event C in the first n performances of an experiment and if the axiomatic
probability of C is 1/2 then it is conceptually possible that C could
occur in each of an infinite sequence of performances. In this eventuality
fn would equal 1 for all n and the sequence would approach 1 which is
not equal to 1/2. However, in the axiomatic theory it is demonstrable that
in a sequence of independent trials, fn approaches P(C) with probability
one. Thus the cases where fn does not approach P(C) forms a negligible
exception.

At first consideration the axiomatic theory seems to add little to an
understanding of the nature of reliability since it requires the introduction of
many events which are not clearly pertinent. However, the following
consequence of the law of large numbers (which in turn can be developed as
a consequence of the axiomatic theory) seems to give some real insight into
the nature of reliability: Except for cases having probability zero, the
reliability of a DEVICE is the limit of the frequency of correct functioning in
a sequence of independent trials.

We now return to the probabilistic experiment of observing whether a
valve does or does not shut off the flow of a liquid at a given signal. If
this experiment is performed on n identical valves and*if the probability of
correct functioning at each performance is P then it will often be appropriate
to think of the n performances as constituting independent trials. Under
these circumstances the probability of exactly s successful valves in
some particular order is PS (1-p)0~S,

Thus if (:) denotes the number of ways of ordering s successful

and n-s unsuccessful valves, then the probability of exactly s successful
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valves in an arbitrary order is
n s n-s
() PTa-p 7.

The entire series of n performances is called a binomial sample and s
is said to have the binomial distribution.

It is important to point out that 99% reliability does not mean that at
least 99 out of each 100 pieces of equipment do what they are supposed to.
The law of large numbers hypothesizes a sequence of independent trials
and the frequency definition requires n performances of the same experiment.
It is conceivable that each of 100 devices might have a 1% probability of
failure, but that if one fails then all the rest will fail also. However,
even if the 100 devices are independent, the reliability of a single device
must be at least .9995 'in order to insure that 99 out of 100 items will
function properly with an axiomatic probability of 95%"; and in fact, no
reliability less than 1 will guarantee that 99 out of 100 items do what they
are supposed to do.

III. TESTS OF SIGNIFICANCE. The logic of a test of significance is
patterned after that of proof by contradiction; the main difference being
that in certain places the word "false" is replaced by the phrase "very
unlikely". Thus to accept R as being true, provisionally assume that R
is not true. Next collect a sample and examine this sample using a
probability argument. If the sample is very unlikely under our provisional
assumption, then two explanations are possible. We may either believe that
R is false and we have observed a very unlikely event or we can believe
that R is true. Many people will prefer the second explanation, as the
first is akin to "believing in miracles". Of course it is possible that the
truth of R may be considered to be a "miracle" of higher order than the
above mentioned very unlikely event, but this would seem to indicate that
either the conclusion possibilities have been artificially restricted or all
explanations of the sample are unlikely and consequently that the sample is
not the whole of the available information.

1 99 100
Consider the equation 100p (l-p) +P = .95.
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A manufacturer agrees to supply one of his customers with radios which
have a 99% initial probability of working correctly. How may the customer
check to see whether the manufacturer is abiding by his agreement? The
only answer which immediately presents itself is to gather and examine
experimental evidence. We take the simplest case where this evidence
constitutes a binomial sample. Thus knowing that s out of n radios -
perform correctly we would like to determine whether p could be as large
as 99%. It is intuitively clear that large s values are consistent with the
belief that p exceeds 99% and that small s values are inconsistent with
this belief. Thus we may adopt a cut-off value, v, suchthat if s is
less than v we declare that p is too small and the manufacturer has
violated his agreement.

Applying the general procedure of the second previous paragraph we find,
from tables of the binomial distribution, that if an event which occurs with
probability .0138 is held to be very unlikely than 48 is an appropriate
value for v. More explicitly, if 3 or more radios out of 50 fail to work
initially then we declare that the manufacturer has violated his agreement;
however, if 2 or fewer failures are observed, then we say merely that the
data is consistent with believing that 2 > 99%. But the data would be
consistent with other beliefs as well. For example, 2 failures is even
more consistent with the belief that p=96%. Thus we cannot claim to have
proved that the manufacturer is living up to his agreement.

Before leaving tests of significance, it should be pointed out that this
theory gives no help in defining the expression "very unlikely" and experience
has shown that examining the specific situation only helps a little. The
difficulty of precisely defining the meaning of this expression is then a
noticeable weak point in the theory of tests of significance.

IV. DECISIONS AND HYPOTHESIS TESTING. Continuing the radio
example of the previous section, suppose that instead of desiring to monitor
reliability we want to make a "decision" concerning whether the reliability
is adequate or not. It should be pointed out that some writers would refuse
to recognize a difference in these two objectives. Here, we do not comment
on this point but discuss one possible rational basis for making such
decisions. Presumably, any rule for making decisions should take account
of the experimental evidence, s; hence we speak of the decision rule
D(s) which, for example, makes the decision D(n) when all tested radios
work satisfactorily. Also, there will be certain monetary or other losses
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associated with making any decision. The economist is more optimistic
and speaks of the gain in making a certain decision but this is, of course,
an equivalent point of view since loss is negative gain. The loss depends
on the decision which in turn depends on s so that LLp, D(s)], the
loss incurred in using the rule D(s) if p is true, is a quantity which is
subject to chance. For any particular rule the loss may be averaged over
the n+l possible values of s to obtain the expected loss, or risk, if
D(s) is used and p is the true reliability. With this formulation it now
seems reasonable to choose that decision rule which minimizes the risk in
some manner.

In order to explain one possible solution to this problem we pretend, as
a simplifying assumption, that there are only two possible wrong decisions
and only two different losses. More precisely we postulate that D(s) can
make only two decisions; the rule must decide either DO' that reliability

is adequate, or D,, that it is inadequate. Further, the reliability will be

1’
called satisfactory or unsatisfactory depending on whether p299% or
P<L97%. Theregion 97% < p < 99% is a zone of indifference where we

do not much care whether the reliability is pronounced adequate or inadequate.
As a notational convenience we will sometimes refer to the decision rule

D and write D = DO' for example, when we mean that the rule makes the

decision D0 . In addition we take the various possible losses to be as in
Table 1.

TABLE 1

LOSSES FOR THE SIX POSSIBLE DECISION-TRUE
RELIABILITY COMBINATIONS

true ecision

reliability Dy: adequate D): inadequate
adequate 0 Ll
indifferent 0 0
inadequate L0 0

Now write P(D = DJ P) for the probability that the decision rule, D,



Design of Experiments 305

makes the decision Dl when P is the true reliability and define

P(D= D0| p) similarly; then the risk equals Ll P(D= Dll P) or

L0 *P(D = Do'P) according as p 2 99% or p£97% and is zero when p is

in the zone of indifference. Hence we may speak of there being, effectively,
only two kinds of risk. The central idea of this method may now be stated,

it is that we should choose a decision rule which constrains one kind of risk

but minimizes the other. Or what amounts to the same thing, we demand that
P(D = Dll /0) should not exceed a given small but positive number a through-

out the region p2 99% and subject to this restriction we then seek to
minimize P(D = Ddip) in the region p < 97%. This method of minimizing
the risk is an interpretation of the Neyman-Pearson [19) hypothesis

testing theory from Wald's [24]) decision rule point of view.

A very important technical result, the Neyman-Pearson lemma [171,
may be used to show that if a’'is .0138 then the practical procedure of
the previous section accomplishes the Neyman-Pearson minimization. In
more detail, let D*(s) consist of deciding that reliability is adequate
when 2 or fewer out of 50 radios fail and otherwise deciding that relia-
bility is inadequate. Then P(D* = Dll p) does not exceed .0138 through-

out the region p299% and if Dl is any other decision rule satisfying this
requirement then

P(D*=DJp) < P(D = D0|P) for all p<97%.

Because of the way in which the Neyman-Pearson risk minimization is
carried out, it seems that tests of hypotheses are subject to two different
logical interpretations. First, of course, we may look at hypothesis testing
as a method of choosing wisely between two possible gambles. This is the
minimum risk point of view emphasized in this section. But secondly, since
the number & is:always taken to be small, the test of significance argument
would seem to apply as well.

It can be fairly argued that the previous paragraph fails to fully exploit
the power of the decision rule point of view. We may, for instance, be
able to proceed as follows. Any decision of consequence will result in a
course of action; here, the customers course of action might quite reason-
ably be to continue or cancel the manufacturer's contract according as
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reliability is decided to be adequate or inadequate. The consequence of
canceling the contract of a manufacturer who is producing radios of adequate
reliability would almost certainly be the permanent loss of a conscientious
supplier. On the other hand, if the contract is allowed to remain with a
producer of goods having inadequate reliability then the customer will acquire
a number of radios of poor quality. However, this error will presumably be
rectified at a later date and the damage is only temporary compared with the
permanent loss of a conscientious supplier. Accordingly we assign to Ll

and LO the somewhat arbitrary values of 10 and 1 respectively. The

risk becomes 10 P(D=D||p) for p299%, P(D=Dylp) for P£I7%

and 0 in the indifference region. It is very appealing to require that the
two kinds of risk be equal in some sense and subject to this restriction
minimize their common value. Because of technical difficulties we can't
quite accomplish this objective but we can do something very similar; we
can choose the minimax rule [24]). As is varied, each decision rule will
have a maximum risk; we choose that decision rule which minimizes the
maximum risk. Again it is almost obvious that we may restrict outselves to
decision rules which have a cut-off value, v, such that reliability will be
declared inadequate if and only if s¢< v . Table 2 shows the way in
which the binomial distribution may be used to compute the cut-off value
yielding the minimax rule. Once again we will decide that reliability is
adequate when and only when 2 or fewer out of 50 tested radios fail.

TABLE 2

DETERMINING THE MINIMAX CUT-OFF VALUE

Maximum risk Maximum risk
v for p 2z 99% for p<« 97%
50 3.95 .22
49 .89 .56
48 .14 .81
47 .02 .94

46 .00 .98
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The minimax value of v depends strongly on the relative magnitudes of

L0 and Ll; if Ll and L0 equal 2 and 1 respectively then v would be

49 instead of 48.

V. CONFIDENCE BOUNDS. Again we consider the probabilistic experi-
ment of observing whether a valve does or does not shut off the flow of a
liquid at a given signal and we consider that a binomial sample is available.
By a well known technique, see Mood [17, p. 233] we may obtain Ic, a

95 per cent lower confidence bound, for p - In the derivation of rC we

contemplate the consequence of the occurrence of an event which has

probability .95; rC is determined so that p 1s greater then rc whenever

this event occurs. But according to the frequency interpretation of proba-'.
bility such an event will occur in 95 per cent of a large number of samples;

thus the statement "p is greater than rC " should, in the long run, be

correct 95 per cent of the time. This is the logical basis of the lower
confidence bound. The figure 95% was, of course, chosen for definiteness
and other confidence levels are possible.

At this writing the method of confidence bounds is one of the most
important techniques for "assuring reliability" but, as Wilson [26] indicates,
in perhaps a majority of the cases it is inapplicable. An indication of this
is the large sample size required to give a useful bound. From column 2
of Table 4 we see that even with 95 per cent confidence, which is fre-
quently thought to be inadequate, the confidence bound does not get to be
interesting until the sample size is in the neighborhood of sixty. This
requirement is frequently at odds with common sense.

For example no one would think it necessary to observe sixty consecutive
failures of a frosted light bulb before stating that the bulb is defective. If
the bulb does not burn for the first several trials then we reason that the
filament is broken and we throw the bulb away.. The reader may consider
the above example to be unfair since the various trials are not independent
and hence the reasoning used in deriving the lower confidence bound does
not apply. But this is exactly the point. We are not attempting to criticise
confidence bounds when they apply but to indicate that the knowledge of a
physical theory can override the statistical considerations in a way which -
will cause current statistical methods to be inapplicable. In a certain
sense the best way to assure the reliability of a device is to build it in
conformity with a physical theory which says that it should work.
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Following the line of reasoning of the preceding paragraph, it is tempting
to classify situations as being either deterministic or empirical and to main-
tain that statistical methods should be appropriate to the latter but not the
former. However, this is not typically the case; many scientific inference
situations will have a deterministic as well as a statistical aspect. Even
in the lightbulb example it is sometimes possible to "repair" a burned out
bulb by striking it sharply with the eraser of a pencil. Thus we might want
to try the bulb say three times before throwing it away rather than just once
as a completely deterministic approach would indicate.

If we are to make a completely isolated and purely empirical statement
about the reliability of a device then the sample sizes of Table 3 are
probably in fact essential. However, for most problems the situation is
quite different; the device is usually designed according to well tested
scientific principles and other similar devices will frequently be available
to help in appraising reliability. The difficulty is in formalizing the vague
but real evidence given by an analogous but not identical situation. What
the light-bulb discussion points out is that, even though they may be
difficult to develop, there is a definite need for statistical methods which
allow for the role of prior knowledge in reliability and other scientific
inference.

TABLE 3

NINETY-FIVE PER CENT LOWER BOUNDS ON RELIABILITY
IF NO FAILURES ARE OBSERVED IN A SAMPLE OF SIZE n

(1) (2) (3) (4)

n Confidence Bayesian Stable
Bound (prior beta Estimation
distribution
a=160, b=8.4)
2 .22 .92 L1b
5 <55 .92 .5k
10 T4 .92 STh
20 .86 .93 .86
30 .90 .93 .90
60 .951 .9%0 .951
90 .967 .9WT .967
200 .985 .963 .985
300 .990 971 .990
1000 997 988 -997

3000 -9990 9957 9990
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VI. SUBJECTIVE PROBABILITIES. The method of confidence bounds has
been called the blind man's approach to reliability assurance in that no use
is made of knowledge which may be available from previous results on
similar components. As we previously pointed out, the confidence procedure
frequently requires large sample sizes and yields uninteresting bounds.
Where smaller sample sizes and tighter bounds are justified it is because the
investigator has prior knowledge about analogous components. In order to
discuss the form which this prior knowledge might take, we return to the
example of determining P . the reliability of a valve.

From design considerations and a knowledge of the reliability of other
similar valves the investigator may believe that p 1is very likely to be
near .95 and that it is extremely unlikely that p will be smaller than .90.
If a complete and explicit statement of this prior knowledge about P were
possible then it might be representable as in Figure 2. g ( P ) is a function
defined for each P between 0 and 1 inclusive such that the area under

glp) is 1.

FIGURE 2

A REPRESENTATION OF PRIOR KNOWLEDGE

7

g([))ﬂ

)

AN
0—— 30 1 .95 ~

The strength of the investigator's hunch that p 1is in the interval I is
taken to be the area (shaded in Figure 2) under g(p) and over I. This
area is called the investigator's prior probability that p is in I. In order
to reflect the investigator's prior knowledge the bulk of the area must be
near .95 and almost all of it must be over the interval .90 to 1.
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One function which is versatile enough to yield a curve with the
general characteristics of Figure 2 is

g(p) = const. pa_l (1- p)b—l, a>0, b>0.

For this particular choice of g, p 1is said to have the beta distribution.
The average of the beta distribution is a/(a+b); hence the prior knowledge
tells us that it would be desirable to pick a and b to satisfy
a/(a+b) = .95. In order to satisfy the second hunch we choose a and b
so that the area under g(p) over the interval 0 to .90 is .0l. These
two restrictions are enough to completely determine a and b; we find
that a =160 and b = 8.4. With this choice of a and b the beta
distribution reflects the assumed prior knowledge that p is near .95 and
almost certainly greater than .90.

The prior probability of the previous paragraphs is a special case of
subjective probability. In the sense of Savage [21, 22], subjective proba-
bility if very much like what we have called axiomatic probability, except
that it is completely determined by the betting odds which an idealized
rational person would be willing to offer. "Though we are not quite like
that person, we wish we were, ...", and Savage emphasizes this by
referring to the idealized individual as "thou". Earlier we chose the para-
meters a and b of our prior beta distribution so that the area under g (p)
and over the interval 0 to .90 would be .0l. From the subjective point
of view this means that "thou wouldst barely" be willing to offer odds of
99:1 that p > .90 against p g .90.

In order to discuss the logical status of the multiplication rule for
subjective probabilities write P'(X) =P (XIC) for every event X which
implies C. In accordance with the frequency and equally likely theories
we should assign the probabilities, P'(X), to the events X so that the
multiplication rule will hold. But is it necessary to base the subjective
assignment of conditional probabilities on the frequency or equally likely
definitions? That the answer is in the negative is shown by an argument
of Savage [21, section 3.5]. We give a more elementary intuitive argument
due to Kemeny, et al. [11]. The universal event for the conditional probability
experiment has been reduced to C but no new information about subsets of
C is available. Thus, if X and Y are arbitrary subsets of C then thou
wouldst want the betting odds of X against Y to be unchanged by the
knowledge that C has occurred; i.e., P'(X)/P'(Y) =P(X)/P(Y), or
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PX)/P'(X)=P(Y)/P'(Y) =k, a constant. Hence P(X) =k P'(X) for all
subsets, X, of C. To determine k we note that P(C) =k'P'(C) =k*l=k
and finally P(X) = P(C) P'(X) for all X contained in C. Now let B be an
arbitrary event not necessarily contained in C. The compound event (C and
B) is, however, contained in C and hence

P(C and B) P(C) * P'(C and B)

P(C) * P(C and B|C)

p(C) - P(8|C),
which is the multiplication rule.

VII. MINIMUM EXPECTED RISK. "When subjective probability is taken
seriously decision, loss and other economic concepts, though they remain
important, become relatively uninteresting because in principle the solution
of every decision problem is simply to minimize expected risk with respect
to the subjective probability that applies at the moment of making the
decision." We illustrate this comment of Savage's "22] by considering a
method of estimating reliability which uses prior knowledge. Thus, to
continue the previous example, if n valves are tested and s of them are
successes then how would this alter our hunch that the reliability of the
valve is very near .95? Let r denote such an altered estimate of reliability.
If we decide to adopt the beta distribution representation of prior knowledge
then r should clearly depend only on a, b, s and n since these four
quantities determine the prior knowledge and the additional experimental
evidence concerning p . In the interest of simplifying the notation we
suppress the dependence of r on a, b, n and write r =r(s) to empha-
size that, because of chance variation in s, r is also subject to chance.

We now attempt to find a rational basis for choosing among the many
possible estimates of reliability. If p is the true reliability of the valve
then there is a certain loss in acting as though p 1is equal to r(s); denote
this loss by L [p, r(s)] . If r actually equals p then the loss would
presumably be zero. For any particular estimator, L may be averaged over
the n+l possible values of s to obtain the average loss if r(s) is used
and A is the true reliability. This average loss may be called the risk in
using r(s) if P is true. The reader will not fail to notice that this is
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another use of the decision rule idea which was first introduced in Section IV.
Now, taking account of the prior probability distribution of p , the expected
risk may be calculated to be a positive multiple of the sum of the n+l terms

1
-1 o
(I:)Jr L(p, r(i)) pa+1 (l-p)n+b ' ldp, i=0,1,...,n.
0

It would seem to be reasonable to use that estimator, r(s), which minimizes
the expected risk. We may find this estimator by separately minimizing each
of the n+l terms whose sum is the average risk. Taking the squared error
loss function, L(p, r) = (p —r)z, then the estimator having minimum
average risk is r(s) = (a+s)/ (n+b+a). In particular, if all n valves
function correctly then our altered estimate of p is r(n) = (n+a)/ (n+b+a).
The squared error loss function is one of many choices which has the

general properties desired; it is zero when r and p are equal and is an
increasing function of the error of estimation. There is a modestly valid
power-series reason for being interested in mean squared error [21, p. 233] .

VIII. BAYES' THEOREM. In order to illustrate how the next concept of
inference might work, we adopt the beta distribution representation of prior
knowledge concerning reliability. Again consider that n valves are tested
and that s of them work satisfactorily. In the light of the further evidence
given by the newly tested valves what now should be the state of the
observers mind? If B is the event that s out of n valves function cor-
rectly, then P(B) is computed by averaging the probability of B for given
reliability, p . Withrespect to'the prior distribution of reliability. Thus

1
P(B)=f (e ()" alp) dp .
0

Note that we have integrated over the entire range of p and hence P(B)
does not depend on p - Now define C to be the event that the reliability
is in the interval ( p, prap ) and use the multiplication rule.
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P(B) - P(C|B) = P(C and B) = P(B|C) * P(C) .

Hence in the limit as AP approaches 0

pc|B) =[1/P@] () £ (1-p)" ® alp lap .

Remembering the meanings of the events C and B we may write the last
equation as

h( p|s)dp = constant ps (l—P)n-S g(P)dP,

where the constant will be independent of ¢ . h(p|s) is called the
conditional probability density function of p given s and the meaning

of h is that if we know the value of s then we may graph h as a function
of p ; the probabilities of various conditional events are then calculated
by measuring areas under h. This is, of course, a special case of the
more general result known as Bayes' theorem. Allowing g(p) to be repre-
sented by the beta distribution we obtain as a special case

h( p| s) = constant Pa+s—l (1-p )n+b-s-1.

The observers su&jective probability concerning the true reliability is again
given by the beta distribution, but the parameters have been altered by
further experimental evidence. This altered distribution is called the post-
erior distribution of reliability.

A very impressive fact concerning Bayesian inference in the present form,
is that it fits nicely into the successive approximation scheme of scientific
method, Thus in Figure 1, the initial idea is the prior beta distribution of
Section VI. If a =160 and b= 8.4 in this prior distribution and if the
experimental data consist of observing ten additional successful valves then
the data and the prior distribution combine to yield a posterior beta distribution
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with parameters a =170 and b= 8.4. In Figure 1, the posterior distri-
bution of the first cycle becomes the new idea and hence the prior distri-
bution of the second cycle. If fifteen further successes are observed,
then the third "idea" of reliability is that it has a beta distribution with
parameters a =185 and b = 8.4.

The Bayesian concept which is analogous to the 95% lower confidence
bcund would seem to be to calculate that value of p . say rB , such that

95% of the posterior distribution of p is greater than rg . The practical
matter of actually evaluating Iy is not quite as easy as it at first appears

but when rB is near one, as we would expect in the reliability situation,

we may write

ry=1-x% (.05)/(2a + 2b' - )

where a' and b' are the parameters of the posterior distribution and
X 2 (.05) is such that a chi-square deviate with 2b' degrees of freedom will

exceed Xz(.OS) with probability 5%. This method of evaluating r, is

B

based on an approximation due to Tukey which, however, appears in a paper
of Kimball and Leach [13]. It is interesting to compare the Bayesian bounds
obtained in this way with the confidence bounds in the second column of
Table 3; column three of this same table has been prepared to facilitate
such a comparison. Note that if the sample size becomes much larger than
about 60, the confidence bound is more strigent than the Bayesian bound;
this is because the experimental evidence indicates a greater reliability
than the prior opinion would warrent. Finally, the observer's posterior
opinion of the exact value of reliability is obtained by integrating the post-
erior distribution over the interval (0, 1) to obtain (a+s)/ (n+b+a) =r(s),
the minimum mean square error estimate of Section VII. r(s) when derived
by the method of the present section may be called the average posterior
estimate of reliability to distinguish it from the numerically equal but
conceptually different estimate of Section VII.

IX. STABLE ESTIMATION. The reader will not have failed to wonder
whether it is often possible to formulate prior knowledge specifically enough
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to describe it by means of a beta distribution or for that matter any specific
prior distribution. In many instances prior knowledge will be a hazy, fuzzy,
ill-defined thing which an individual feels but is unable to specify. At first
consideration this seems to severely limit the cases in which Bayes' theorem
can be applied; however, sharp peaks in the prior density function, g,
correspond to relatively precise prior opinions and hence if prior knowledge
is ill-defined then g must be broad and relatively flat over small ranges

of p . Savage [22]points out that if the distribution is flat over narrow
ranges it matters little how it is defined. For this reason, the method to be
explained below is called the theory of stable estimation.

To illustrate for the type of problem under consideration remember that
Bayes' theorem gave the result that h(p|s) is proportional to b(s| p)ale)
where h, b and g arerespectively the posterior density of p given s,
the binomial distribution and the prior density of p . Now, in those
instances where the prior knowledge is ill-defined it seems that though we
would not know g specifically, we would know some of its properties. It
seems that sometimes g should be taken to be a wide flat curve with no
marked peaks. In contrast, when considered as a function of p,. b would
usually be sharp and pointed in the neighborhood of s/n and would be
quite small for values of p which are much removed from s/n. Under these
circumstances b(s|p) g(p) is well approximated by b(slp) g(s/n). There-
fore h is a probability density which is well approximated by a constant
multiple of b(s|p) considered as a function of p , i.e., h(p|s) =

constant p S (1- e) N-5 {5 a good approximation. Again the posterior
distribution is of beta type but this time the parameters are s+l and n-s+l.
In fact the results are the same as if we had assumed a prior beta distribution
with parameters a=b=1 but surely the method of obtaining the result is more
satisfactory. '

Much of what was said in the previous section would now apply here as
well. For example, h( p| s) may be taken as the prior probability for the
second stage of a successive approximation and we may calculate average
posterior estimates and lower Bayesian bounds just as we did before. The
results of several sample computations of such lower bounds appear in
column four of Table 3. It is interesting to compare columns two and four
of this table since the prior knowledge is assumed to be imprecisely known
for both the confidence and the stable estimation bounds; the agreement is,
in this instance, remarkable. In general for large s the agreement will be
good since the stable estimation lower bound is the corresponding confidence
bound with sample size and number of successes each increased by one;
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see for example Mood [17, P. 235]. Stable estimation seems to describe
the situation in which the experimenter finds himself in a large number of
practical situations and once accepted the theory has far reaching
implications.

We now mention an interesting related idea which may be referred to as
Anscombe's prior distribution [1] We are asked to consider a "unique trial
for which there is no clearly relevant past experience" but where "every
effort will have been made, in design and production, to prevent failures."
What prior density function g (P ) would represent the initial opinion of an
open-minded unprejudiced observer? Such an observer's initial opinion
about p would presumably be diffuse and hence g would be continuous
and would change only slowly with p , except possibly in the neighborhood
of p=1. "There is little loss of generality in assuming that (g) is of beta
type, . . ." In view of the assumed considerable effort to prevent failures
it most unlikely that © will be really small. Hence in the prior beta
distribution, a will be large relative to b and at least as large as 1. The
behavior of g(p ) near p =1 will then, depend mainly on b. For b <1,
g ( p) becomes infinite at p =1 and to choose b > 1 implies a definite
belief that p is bounded away from 1. If we choose b=l then g(p) will
be a slowly increasing function for all p , so that over any short interval
g (p ) is not far from uniform. For the experimental circumstances envisaged,
it is accordingly proposed that the prior density function should be taken to
be of beta type with parameters b=l and a large relative to 1. Though
Anscombe has in mind a particular kind of sequential acceptance procedure,
his prior distribution could presumably also be used for the purposes
explained in our section entitled Bayes' Theorem.

X. CONCLUSIONS. We have seen in the preceding sections that,
starting with prior distributions, we can build up a fairly elaborate mathe-
matical theory of inference. We are able to "get answers" and these
answers are appealing in that they make use of prior knowledge. But does
this mathematical theory describe the physical situation? Should we want to
do the job for which this theory provides the foundation?

Some would answer these questions in the negative on the grounds that
the reliability of a device is not subject to chance variation but is a fixed
although unknown constant. Thus, they continue, it is foolish and mis-
leading to assign a probability distribution to reliability. Further the
whole idea of subjective and prior probabilities is incorrect since the
probability of an event would differ from person to person and it would be
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impossible to empirically check the correctness of a probability. Finally,
the investigator will merely have some vague feelings about reliability
which he will be unable to formulate in the precise manner indicated in
Section VI and even if he were able to formulate his prior knowledge it
wouldn't take the form of ascribing a beta distribution to /O .

The last criticism has been anticipated in the discussion of stable
estimation. There it was pointed out that under certain circumstances the
prior distribution will be broad and if it is broad then it matters little how
the prior distribution is exactly defined. In general this final objection will
be met if Bayesian procedures can be found which do not depend too strongly
on the precise nature of the prior distribution.

To discuss the first objection intelligently it is necessary to recall the
distinction that we made in Section I between the device of common sense
and the DEVICE whose reliability is capable of being studied. Remember that
the DEVICE is an abstraction; it is the common sense device as seen by the
observers measuring instruments and interpreted with respect to his precon-
ceived ideas. Even if the reliability of a concrete device (which we haven't
defined) is a fixed but unknown constant it is not completely clear that the
same is true of the reliability of the abstract DEVICE. It might be that, in
the transition, reliability assumes a distributional character due to the
lack of accuracy of the process of observation and interpretation. We
hasten to re-emphasize that the reliability of a common sense device can-
not be studied empirically since as soon as it is formulated and observed it
interacts with our senses and preconceived ideas and becomes a DEVICE.

As regards the second objection it does seem that a situation in which
there is no agreement among individuals about basic scientific questions
would come close to destroying the character of physical science. Thus
prior distributions which are the results of whims or hunches may form a
proper subject matter for psychology or sociology but in the physical sciences
prior distributions should not be used unless they have some sound basis.
Except where we are studying how the mind itself works we should not use
prior distributions which are pulled out of thin air, but should insist that
they be advanced as the consequence of some more or less valid argument.
Such a valid argument could be a physical theory or a development along the
lines of stable estimation for example. If a valid prior distribution is not
available then the confidence bounds and tests of hypotheses of classical
statistics can be used. Thus the second criticism of subjective probabilities
leads to a clarification of the practical cases to which Bayesian inference can
be applied rather than a refutation of the method.
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It is to be expected that many objectivists would maintain that there
are no practical situations where a valid prior distribution would be
available while the subjectivists would tend to claim that their techniques
are almost universally applicable. If the reader is interested in the details
of this controversy he may consult the insightful and valuable works of
Lindley[15], Savage [21], Edwards [7]and Tukey [23].
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we show how the ideas of this paper have been derived from and are related
to the other literature. Where possible, this has been done by a direct
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AN EXPERIMENT ON AIRCRAFT VULNERABILITY

Bruce Taylor
Garth McCormick
Research Analysis Corporation

The problems involved in the conduct, data reduction, and analysis of
data from a large scale field experiment are not always fully recognized by
designers and planners of such experiments. It is the intention of this
paper to present the history of one such experiment including some of the
results, and to draw from it some general conclusions about the practicality
of conducting experiments on that scale.

The experiment was conducted during October and November 1958 at the
Hunter Liggett Military Reservation, California. It was a US Army Combat
Development Experimentation Center (USA CDEC) experiment in which ORO
participated. Experimentation was conducted concurrently but independently
by both agencies. Data was collected by ORO only during October 1958 and
this paper is concerned with the ORO experimentation.

The problem was to determine the effectiveness of some light antiair-
craft weapons and small arms against low-flying tactical aircraft in the
forward battle area. At the time of the experiment many new aircraft
systems were under study by different Army organizations. Because of the
missile threat at medium and high altitudes most tactics envisioned low-
flying aircraft. In the region below 600 feet only light arms presented a
threat to aircraft in the forward areas. There was however very little known
about response and detection capabilities of an antiaircraft crew under
alert and non-alert conditions. Furthermore aiming error and hit probability
data did not exist for effectiveness of small arms against aircraft flying
below 600 feet. The experiment was designed to obtain these basic data
from the field.

It was considered important to relate these data to measurable variables
which were thought to be instrumental in determining weapon effectiveness
(Fig. 1). The specific problem then to which the experimental results were
addressed was the following. What is the effect of target velocity, altitude,
crossing range, terrain mask angle and gun-crew alert status upon single-
weapon vs. single-aircraft engagement kill probability and upon related =
quantities such as gun-crew detections ranges and number of rounds fired?

The experiment consisted of a series of single aircraft passes over sites
containing antiaircraft units. Four sites were selected to give a variety
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of terrain features (Fig. 2). For any aircraft pass only three sites were

occupied. Each of these contained the group of weapons shown in Table 1.
Table 1

WEAPONS USED

1 Twin 40 AA

4 M-1 Rifles

2 BARS

2 50 Cal MG (mounted on APC's)
1 Quad 50 AAMG

In addition a Redeye simulator was placed in each of two sites.

The targets for all weapons were the Army L19 observation aircraft flying
at a velocity of 75 KT, the Air Force T37 jet trainer flying at 200 KT, and the
Air Force F100 fighter flying at 325- and 450-KT. During the experiment the
aircraft flew straight and level courses with respect to the ground weapons.
It was planned that these targets be generalized to other aircraft of the
same general size and velocity class by using the average vulnerability
characteristics of these and related aircraft.

The operation of all weapons was simulated in the sense that camera film
records were obtained from the experiment rather than actual target damage
from real rounds fired. Two of the weapons were further simulated. The
Redeye was a mock-up, or specially designed dummy to simulate to the
Redeye operator some of the more important characteristics of the weapon.
The Twin 40mm was also simulated in that the gun crew did not use its
computing sight.

DESIGN OF EXPERIMENT. Each aircraft flight was carefully controlled
so that with respect to each weapon site pre-specified values of the
independent variables were taken on. A factorial design with two replica-
tions was originally intended. That is, every combination of the values of
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the independent variables shown in Table 2 would be taken on during two
aircraft-site passes. Because of equipment and time limitations only

one replication was possible, and after data reduction the factorial design
was incomplete. Where possible these gaps were filled by standard
statistical techniques.

Using a regression analysis it was planned to determine the functional
relationship between the dipendent and independent variables. The basic
method described by Milne”, is that of approximation by orthogonal poly-
nomials. This requires that the independent variables take on values at
equally spaced intervals; and this requirement was met by the selection of
values as seen in Table 2.

Table 2
Velocity Altitude Mask Crossing Range Warning
(In knots) (In feet) (In degrees)
75 0 No Overhead Surprised
200 200 0-5°
325 400 5-10o Crossing (300 meters) Warned
450 600 10-15°

Having explained the intention and design of the experiment, it is still
necessary to describe some of the details of instrumentation, troop training,
and data reduction in order to give some notion of the limitations of method
and hence applicability of the results of the experiment.

INSTRUMENTATION - SOURCES OF DATA

There were four major sources of data from the experiment, gun, cameras,
radars, phototheodolites, and pen records.

Two types of gun cameras were used (Fig. 3). The first, used only for
the Ml rifle, was the Robot Star 35mm still camera. This was mounted on

1 Milne, Numerical Calculus, Sect. 71, Princeton University Press,
Princeton, New Jersey.
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the rifle and instrumented via its trigger. When the trigger was pulled a
picture would automatically be taken and the film advanced by one frame.
All the other weapons were mounted with the AN-N6 movie camera. During
tracking of the aircraft the camera took a movie of the aircraft while the
trigger of the weapon was depressed.

Two M-33 type radars were used to track the aircraft and record its
instanteous positions. The aircraft range, azimuth, and elevation were
read directly on dials which were photographed every half second by
cameras.

To insure adequate aircraft tracking data at all altitudes, four photo-
theodolites were stationed about the test site. Cameras recorded at inter-
vals of very half second the azimuth and elevation angles of the aircraft
as well as its relative position to the phototheodolite crosslines as seen
through the optical sights.

The cameras, radars, and phototheodolites were synchronized by pen
recorders. Twenty pens operated for each site during an engagement.
Each of 14 of the pens was wired to a weapon and recorded the trigger
movements of the weapon. One of the pens was activated by a button
pressed by an ORO observer on the site who indicated when the aircraft
came into view, when it was first observed by the troops, and when it
disappeared from view. Two other pens were controlled by Twin 40 and
Quad 50 observers who recorded by pushing a button when the first turret
motion occurred, when first tracking started, and when tracking ended.
In addition to measures of crew responses which could be gotten directly
from the pen records, the pen records made it possible during a later phase
of data reduction to assign real times to gun camera pictures and radar
observations.

For one month prior to the experiment an extensive training program for
the gunners was conducted. The men were given instructions on how to lead
moving aircraft and how to estimate range properly.

A firing doctrine was established for each weapon and the gunners were
trained in using their weapons in accordance with this doctrine. Effective
ranges were set for the different weapons:. The effective range for-the Twin
40 was 1,500 yards, for the Quad 50 and Single 50 800 yards, for the Ml
rifle and BAR - 400 yards, and for the Redeye 2,000 yards. The Ml riflemen
were not to fire more than 8 rounds during one engagement. Redeye gunners
were instructed to fire continuously as long as the aircraft was in range.
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For all other weapons the gunners were instructed to fire in simulated
bursts as long as the plane was within range of their weapons.

During and after the experiment the "raw data", that is, the pen records,
gun camera films and pictures of radar dials, were read-out on to IBM cards.
It was decided not to reduce the phototheodolite data to cards because of
the prohibitive cost and because most of those data duplicated the radar
data. The result of this reduction was approximately 200,000 cards. The
data from these cards were then put on magnetic tapes.

The next stage in the data reduction consisted of a series of computer
programs (using the 1103A Univac Scientific Machine) which eliminated a
considerable amount of bad data (about 30% of the total) and by sorting
and other techniques associated the pen record data with the gun camera
and radar data. This provided a means for assigning a real time to each
radar and gun camera observation.

The data were thenin shape so that the model used in determining measures
of weapon effectiveness could be employed.

The most important measure of weapon effectiveness is the probability
that during an engagement, fire from the weapon will result in the "kill"
of the aircraft. This measure is called "Engagement Kill Probability" (EKP).
The bulk of computations were directed toward computing this quantity for
each weapon-aircraft engagement.

The first step was to simulate the path of the bullet as indicated for
each gun camera frame and to determine the closest approach of the bullet to
the aircraft during its flight. The distance to the aircraft at the closest
approach of the bullet was called the "miss distance". Necessary to this
simulation was the capability of determining the bullet position at any point
in time. This was accomplished by a series of curve fits to ballistic data
found in firing tables. Orthogonal polynomial methods were used to do this.

The main results of each bullet-aircraft simulation were the co-ordinates
of the bullet at point of closest approach in the miss distance plane. This
plane is that which has its origin at the center of the aircraft and is perpend-
icular to the line from the gunner to the aircraft. For each weapon-aircraft
engagement the bullet co-ordinates in the miss distance plane provided a
dispersion pattern which was found to be approximately normally distributed
in each direction. The center of the pattern was always found to be biased
about the aircraft. The bias tended to be proportional to the velocity of the
aircraft.
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Aircraft vulnerability data were combined with the dispersion pattern
in order to compute the probability that a single bullet would "kill" the
aircraft. The vulnerability data were gotten from BRL publications. The
vulnerable areas of typical aircraft were averaged and that area assumed to
be one standardized vulnerable square centered at the aircraft. The single
shot kill probability (or the probability that a single bullet would strike the
vulnerable portion of the aircraft) was simply the double integral of the
bivariate normal distribution function determined by the bullet dispersion
patterns over the vulnerable square in the miss-distance plane.

The number of rounds fired by each weapon during an engagement was
gotten from the known firing rates of the weapons and the experimentally
measured time during which the gunners fired at the aircraft. The engage-
ment kill probability then was simply:

No. of ds Fired
Ekp = 1 - (1 - Single Shot Kill Probability) O+ °f Rounds Fired)

In addition to Engagement Kill Probability other measures of weapon
effectiveness and crew response were computed. These were associated with
the independent variables. As mentioned previously each engagement was
designed to correspond to different values of the independent variables.
However, after the experiment the radar data were examined to determine the
actual altitude, velocity, and crossing range of the aircraft. This resulted
in a reclassification of about 10% of the aircraft-site engagements with
respect to the independent variables.

The original method of fitting orthogonal polynomials was not used because
of the form in which it was apparent that some of the dependent variables
were influenced by the independent variables. For example, the single shot
kill probability varied as the inverse square of the velocity. An approximation
to this statement using a polynomial whose variables contained positive
powers would have been misleading and not very useful.

The relation of the independent to dependent variables where it was
found to exist was gotten by straight-forward methods. Most of these
results can be tabulated and presented but no explicit meaningful formulas
given. Several examples of results will show that more clearly.
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RESULTS. DETECTION RANGE. One useful measure of the ability of
ground observers to visually detect aircraft is the slant range at which
the aircraft is first observed. The variables of warning, crossing range,
and velocity appeared to have no measurable influence on the detection
range in this experiment. The two most important variables were terrain
masking and target altitude.

Figures 4, 5, and 6 show the large difference in detection range
cumulative probability as a result of the different mask angles. There is
a gradual decrease in the difference between the 0-5 degree masks and no-
mask cases as altitude increases. At 600 feet the difference disappears
entirely.

Figure 7 shows the detection range probability when the data are
averaged over all controlled variables except altitude. Each mask group
contributes an unequal amount of data to each altitude and the effect of
altitude is not as regular as it is when taken by mask case.

FIRING TIME. The firing time for a weapon is the time between start-
fire and end-fire times for a given engagement. It was recorded automati-
cally from a trigger pull switch. Firing time is useful as a rough experimental
indication of the number of real rounds that could be fired during an
engagement. As was expected firing time was an inverse function of
felocity. The variables of mask and altitude were also important as shown
in Figures 8, 9, and 10.

Figure 1l contains a plot of the bullet dispersion pattern means for the
Ml. Pre-experimental calculations had assumed that bullet dispersion
patterns would always be centered at the target and that the effect of the
different variables would be in the variance of the distributions. However,
as indicated in this figure the centers are displaced roughly proportional
to the velocity of the aircraft. This statement was true for those weapons
which required the gunners to lead the aircraft. In the case of the Twin 40
and Redeye which aimed directly on the target, however, the dispersion
means were very close to the center of the aircraft and showed little if
any effect of velocity. Figure 12 demonstrates this for the Twin 40. These
patterns include range effects. In an effort to mask out all but angular
aiming errors a new quantity was introduced called "miss angle aiming
error”" and was computed as the ratio of the miss distance divided by the
slant range to the aircraft. Figure 13 shows the mean of this quantity plot-
ted against velocity for all the weapons. This demonstrates quite clearly
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the advantage especially at high velocities that weapons not requiring lead
have over those that do.

Single-shot kill probabilities seen in Figures 14 and 15 show similar
sharp decreases as velocity changes from 75 to 200 knots. The single shot
kill probabilities for the M1, BAR, Single 50 and Quad 50 seemed to vary as
the inverse square of velocity. Other variables were important in some cases
but no regularities were found.

Finally, engagement kill probabilities as shown in Figures 16 and 17 were
most strongly influenced by velocity. The data for the cases at higher
velocities were scarce but the general trend for the weapons which required
some lead by the gunners was for engagement kill probability to vary as the
inverse cube of velocity. The Twin 40 Ekp was approximately a slowly
decreasing function of the inverse of the velocity although data at higher
velocities is incomplete.

One particular assumption which determines the results is the size of
the vulnerable area. Different areas other than the standard one were tried
but the general shapes of the curves remained the same.

The flow of data from the field was such that at no single point in the flow
was there raw data which was recognizable as such. The flow started with
undeveloped film and pen records. The information on these media was not
digitalized until a later time, and then only in very large amounts. The
film had to be developed and then its information transferred to IBM cards
and listed before any numerical data could be seen. There was an analogous
set of steps for the pen records . . . The data handling was something like
real-time data processing of the kind that is used during missile tracking
and testing. It was quite different from the classical procedure of experi-
mentation in which an observer records in numerical form what he sees on
an instrument dial or number of objects he counts, the small amount of
recorded data then being inserted in explicit mathematical formulae for
computation of final results. Hence, the report on this experiment does not
contain any raw data, nor a set of formulae which when applied by them-
selves to the raw data will yield the results contained in the report . . .

A corollary of this view is that, like missile testing data handling, this
experiment cannot efficiently yield results with just one trial. It requires
more or less repeated runs in order to obtain an efficient operation. Since
the ORO part of the aircraft vulnerability experiment was a one-of-a-kind
event, data was lost, time was consumed, and some inefficiency resulted.
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APPRAISAL OF THE EXPERIMENT. It has become apparent during the
period of data transfer, reduction, and analysis that this experiment was
entirely too large a scale for the results that were desired. The concept
of divide and conquer is as applicable here as in war itself. This field
test was really a set of 5-10 smaller experiments that could much better
have been performed serially so as to yield a set of principles and a body
of field testing experience at each stage to be fed into the next experiment.
Thus separate experiments on detection ranges, response time, aiming
errors, and individual weapons taken alone, would have been appropriate
and would have made it clear and feasible that originally planned experi-
mentation should be expanded or reduced in scope. .By carrying out a
very large scale test it was hoped to conserve resources, especially
expensive aircraft operations. This result did occur but only at the price
of a 2 to 3 year waiting period for results, loss of significant results from
recognition of corrective measures long after the experiment was run, and
a large turnover in the needed experimenters during the critical data
transfer, reduction, and analysis phases.

Similar experiments in the future should be broken down into components
and run separately, and/or incorporated into a continuing program of
experimentation and data treatment.
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A METHOD OF WEAPON SYSTEM ANALYSIS

H. G. Smith
Picatinny Arsenal

ABSTRACT. A method of determining optimum weapon system parameters
using the optimization criterion of minimum weapon system weight is
discussed.

Secondly, means of obtaining the probable error in range due to probable
errors in ballistic coefficient, muzzle velocity, and angle of elevation is
discussed.

Also, the possibility of determining optimum weapon system parameters
using the optimization criterion of maximum ballistic accuracy is presented.

The purpose of this paper is to present a method of optimizing weapon
system parameters for minimum system weight and a method of approximating
the ballistic errors of projectiles. Also, the concept of designing weapon
system parameters to achieve maximum ballistic accuracy is presented.

In many applications, a weapon system of minimum possible weight is
highly desirable, especially where high maneuverability is required.
Since the weapon system weight is approximately proportional to the
kinetic energy of the projectile at the muzzle, the criterion of minimum
kinetic energy is used in this analysis for simplicity.

In order to determine the optimum point of minimum kinetic energy
required to obtain a given range, the following procedure may be used.
First, one may select various values of ballistic coefficient. For each
ballistic coefficient selected, one may find the muzzle velocity required
to obtain the desired range from the appropriate ballistic tables or other
suitable solution of the trajectory equations. One may then compute the
product of the ballistic coefficient and the square of the muzzle velocity
which is proportional to the kinetic energy as long as the shell diameter
and form factor remain constant. By plotting a curve of this product, one
can readily determine the optimum ballistic coefficient by finding the
ballistic coefficient corresponding to the minimum point of the curve.
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An alternate method of determining the optimum ballistic coefficient
which involves slightly more calculations but may be easier to visualize
may also be utilized. As before, one starts by selecting various values of
ballistic coefficient and finding the corresponding muzzle velocities re-
quired to obtain the desired range. One then can compute the shell weight
corresponding to each ballistic coefficient using the appropriate shell
diameter and form factor. Using the shell weight and muzzle velocity,
one may compute the kinetic energy and plot a curve of the kinetic energy
versus the shell weight. The optimum shell weight can be determined
from the curve at the point where the kinetic energy is a minimum. The
optimum ballistic coefficient can be computed using the optimum shell
weight and the appropriate shell diameter and form factor.

Once the optimum ballistic coefficient and corresponding muzzle
velocity required to obtain the desired range are known and the projectile
acceleration limit and piezometric efficiency are either known or estimated,
the length of travel (length of gun tube) can be calculated from the following
expression:

\' 1
2g (P.E.) a

where: L - Length of travel
V - Muzzle velocity
g - Acceleration due to gravity
(P.E.)-Piezometric efficiency
a - Acceleration limit (G's)
This equation is easily derived by equating £he work done on the projec-

tile by the propellant gases throughout the travel of the shell in the gun
tube to the kinetic energy of the projectile at the muzzle.

Work Done =P A L
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1w 2

Kinetic Energy =73 g

where: P - Average pressure
A - Bore area
L - Length of travel
W - Projectile weight
g - Acceleration due to gravity

V - Muzzle velocity

2
Pa v2
——W— . L = —z—g—
(P.E.) = 'Pl (by definition)

kel

where: Pp - Peak pressure

(P.E.) - Piezometric efficiency

P - Average pressure

P = (P.E.) Pp

P A 2
(P.E)_P .1 =V
w 2g



356 Design of Experiments

PA
However: P_ = Ppeak acceleration in G's = a
w
2
Vv
(P.E.)al-= 29

Therefore, the length of travel is:

2
\'A 1

L=25 " (P.E.a

As an aid to the design engineer, system analysis charts for the
projectile types most encountered can be compiled. A separate chart is
required for each range of interest. A typical chart would include curves
of kinetic energy required to obtain the desired range versus shell weight
for several shell diameters with constant form factor, curves of ballistic
coefficient versus shell weight for several shell diameters with constant
form factor, a curve of muzzle velocity required to obtain the desired range
versus ballistic coefficient, and curves of length of travel versus muzzle
velocity for several acceleration limits with constant piezometric
efficiency.

Figures 1 through 4 (to be found at the end of this article) are typical
examples of these charts. The charts were compiled for Type I Projectiles
for ranges of 5,000, 10,000, 20,000, and 30,000 meters using a form factor
of .5 and a piezometric efficiency of .5. Kinetic energy and ballistic
coefficient curves are shown for shell diameters of 4, 6, 8, and 10 inches
and length of travel curves are shown for acceleration limits of 2,000,
4,000, 6,000, 8,000, and 10,000 G's. The charts can be used for form
factors other than those used in the compilation of the charts by multiplying
the shell weight and kinetic energy obtained from the chart by the ratio of
the form factor desired to the form factor used in the chart. Similarly, the
charts can be used for piezometric efficiencies other than those used in the
compilation of the charts by multiplying the length of travel obtained from
the chart by the ratio of the piezometric efficiency used in the chart of the
piezometric efficiency desired.



Design of Bxperiinents 357

These charts can be very useful to the design engineer, not only in the
optimization of a weapon system, but also in visualizing the relationships
between the parameters required to obtain the desired range.

In the design of any projectile, the design engineer is concerned with
the attainment of acceptable accuracy with preliminary designs. The accuracy
of a newly designed projectile should be estimated in the preliminary stages
of design in order to avoid the situation of discovering that the accuracy of
a new design is unacceptable after a great deal of time and effort has been
spent in the design of the projectile.

In order to approximate the accuracy that might be expected from the pro-
jectile, the design engineer must decide on the variations that might be
expected in the parameters that determine the projectile's trajectory and
determine the effect of each of the parameter variations on the range disper-
sion before the total range dispersion can be computed. The effects of the
major parameter variations on the range can be obtained from the appropriate
exterior ballistic tables by selecting a convenient change in a parameter,
finding the corresponding change in range due to the parameter change, and
dividing the change in range obtained by the change in the parameter to find
the change in range due to a unit change in parameter. This procedure should
be followed for each parameter at each range of interest.

As an aid to the design engineer, these differential effects can be com-
puted from ballistic tables and plotted so that the Besign engineer can pick
the differential effects off a graph and thereby simplify the task of estimating
the ballistic errors.

The following factors have been found to be convenient in describing the
major differential effects. They are the range-velocity sensitivity factor
(the percent change in range due to a one percent change in muzzle velocity at
at constant ballistic coefficient and angle of elevation), the range-ballistic
coefficient sensitivity factor (the percent change in range due to a one percent
change in ballistic coefficient at constant muzzle velocity and angle of
elevation), and the range-angle of elevation sensitivity factor (the percent
change in range due to a one percent change in angle of elevation at constant
muzzle velocity and ballistic coefficient). The major parameter variations
considered, for convenience since they are independent of each other, are
velocity variation at constant weight, weight variation, form factor or drag
coefficient variation, and angle of elevation variation. When the parameter
variations and the sensitivity factors are known, the probable error in range
can be determined from the following equation.
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2 2 2 2 2
Pr = (SVPV) + (Scpw + nSva) + (ScPi) + (S¢P¢)

where: Sv - Range-velocity sensitivity factor

S - Range-ballistic coefficient sensitivy
factor

S ¢ - Range-angle of elevation sensitivity
factor

Pr - Probable error in range in percent

P - Probable error in muzzle velocity in
percent (not including any error due to
variation of projectile weight)

P - Probable error in projectile weight in
W percent

P - Probable error in form factor (or drag
coefficient) in percent

P, - Probable error in angle of elevation in
percent

n - Logarithmic rate of change of muzzle
velocity with projectile weight.

The Ordnance Engineering Design Handbook, ORDP 20-140, TRAJECTORIES,
DIFFERENTIAL EFFECTS, AND DATA FOR PROJECTILES, gives the following
approximate values for n.

Rifled gun with multiperforated propellant grains - n=-.3
Rifled gun with single-perforated propellant grains - n =-.4
Smooth bore mortar with flake propellant - n = ~.47

Recoilless rifle with multiperforated propellant grains - n = -.65
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Figures 5 and 6 show typical plots of the three sensitivity factors for
Type I Projectiles. Figure 5 consists of curves of range-velocity sensitivity
factors versus muzzle velocity for several values of ballistic coefficient
at an angle of elevation 30° and curves of range-ballistic coefficient
sensitivity factor versus ballistic coefficient for several values of muzzle
velocity at an angle of elevation of 30°. Figure 6 consists of curves of
range-angle of elevation sensitivity factor versus angle of elevation for
various values of ballistic coefficient at a muzzle velocity of 440 meters
per second.

Since the curves are functions of the ballistic coefficient, the curves
may be used for any form factor as long as the ballistic coefficient used
is computed using the applicable form factor. It should be noted, however,
that the curves may only be used for projectiles which have drag functions
similar to the drag function of the projectile type for which the curves were
compiled.

These curves can be useful to the design engineer, not only in
estimating the range dispersion, but also in visualizing the parameter
changes that may be necessary to improve the accuracy.

Once the various parameter variations are known or assumed, it is
possible to optimize the parameters using an optimization criterion of
minimum ballistic error or, in other words, maximum ballistic accuracy.
This may be done by selecting several values of ballistic coefficient,
finding the corresponding muzzle velocities required to obtain the desired
range at the desired angle of elevation, computing the probable error in
range using the various parameter probable errors and the appropriate
sensitivity factors, and plotting a curve of the range probable error versus
ballistic coefficient. The optimum ballistic coefficient can be determined
from the curve at the point where the range probable error is a minimum.

This procedure is particularly useful in the design of projectiles for
existing weapons or any application where the primary design consideration
is accuracy.
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SUMMARY. The purpose of this project was to determine how the
amount of intelligence available to the artillery officer affects his ammuni-
tion expenditure. An experimental procedure consisting of a map exercise
was designed to solve this problem. The exercise was pre-tested by 37
artillery officers to test the effectiveness of the design.

PROBLEM. The purpose of this project is to develop a method for
determining the relation between target intelligence level and artillery
ammunition expenditure. In this study target intelligence was defined as
the percentage of the total number of enemy targets on the battlefield
detected by friendly forces.

BACKGROUND. Ammunition supply is a critical problem in any theater
of operations, particularly during the months immediately following the out-
break of a war. Indeed, it has been estimated that in a general war a period
of twelve months would be required to attain maximum munitions production.
It is therefore necessary that ammunition stockpiling be sufficient to insure
adequate supply during the initial period of production adjustment. In 1958
a study was conducted at C &GSC, Ft. Leavenworth, which attempted to
determine supply levels which conform with modern war requirements. How-
ever this study assumed perfect intelligence, a theoretical level never
attained on the battlefield. In 1961 the Operations Research Office was asked
to study this problem. In their study the battlefield was divided into seg-
ments and a weighted probability of detection was assigned over these seg-
ments. However still no attempt was made to study how a wide variation in
intelligence might affect artillery ammunition expenditure and therefore it is
desirable to make such a study.

METHODOLOGY. Artillery ammunition expenditure varies as a function
of several factors: target detection, ammunition supply rate, terrain, phase
(attack, static, retrograde), type of war (nuclear, nonnuclear), support (air,
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naval), target identification (location, size, and type of target), and TOE
(table of organization and equipment). The problem was evaluated by holding
all of these variables constant with the exception of the first two. The
interaction between these variables is evaluated by a three by three factori-
al experiment employing a two-way analysis of variance.

In the specific design of the experiment several other variables may
indirectly affect the results of the exercise and must be taken into account.
These variables include the rank, general background, training, combat
experience, and status (Regular Army or Reserve Component) of the artillery
officers. Because these variables can affect the results of test subjects in
such a way as to mask the effects of the main variables, it is desirable in
designing the details of the experiment to allow for these effects and to
attempt to control them. This can be done by careful subject selection or by
a distribution of subjects such that the effects of these variables can be
taken into account in the analysis and true relations between the main
variables may be found.

In evaluating the problem, it is desirable to utilize the experience and
judgement of artillery officers. Two experimental procedures are possible:
a full-scale war game, and a static map exercise.

The advantage of a war game is that is allows the problem to be evalu-
ated over a long period of time in a dynamic situation. However, this
superior yield is obtained at the expense of the sampling. Because of the
large individual variances among, a large sampling is necessary to obtain
significant results. Such a large sampling can best be obtained by means
of a map exercise, which requires a short period of testing time, and can
be administered to many subjects simultaneously.

The validity of the experimental design was tested by applying the
method to a specific situation - a nonnuclear attack against hastily organiz-
ed defenses. Employment of nonnuclear weapons is based on the Ft. Leaven-
worth study, which assumed the continuing importance of conventional war,
and conducted studies based on both nuclear and nonnuclear weapon employ-
ment. In subsequent applications, the procedure could easily be modified
to include nuclear armaments.

An attack situation was chosen because the scheduling of attack fires
(preparation, counterbattery, harassing, and interdiction) demands more
individual judgement on the part of the commanding officer than scheduling
of other types of fire. The importance of the four types of fire considered
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is demonstrated by statistics on artillery usage in World War II. Studies
show that, in the attack phase, preparation, counterbattery, harassing,

and interdiction fires constituted 43.1 percent of all 105mm howitzer missions,
70.6 percent of all 155mm howitzer missions, and 8l.6 percent of all 8-in.
howitzer missions.

Several situations were considered for the exercise: engagements from
World War II and the Korean conflict; school problems from the AMS, Ft. Sill,
and the C&GSC, Ft. Leavenworth; and an original situation. The situation
selected was taken from the Battle of the Bulge - the attack on the 28th U.S.
Infantry Division by German forces on 16 December 1944. This particular
engagement was chosen for several reasons. It was felt that an actual
tactical situation would yield the most significant data, and of the units
considered, the 28th Division had the most nearly complete after action
reports. In addition, the high dispersion of the 28th Division over its
sector closely approximates the deployment anticipated in future wars con-
ducted under threat of nuclear employment.

Because of the completeness of data concerning 28th Division positions,
the U.S. deployment is assigned to Red (enemy) forces in the exercise.
Moreover, the officers' familiarity with U.S. tactics and deployment makes
a detailed description of enemy tactics and deployment unnecessary.

Blue (friendly forces) were organized according to ROAD 65 specifica-
tions. ROAD 65 was employed because it represents an estimate of the type
of tactical organization which may be employed in future warfare, and
because it deploys friendly artillery in homogeneous groups (i.e., no
"mixed" battalions, such as rockets/howitzer or 8-in./155mm).

Division artillery is equipped with six battalions; three 105mm howitzer
battalions, one 155 howitzer battalion, one 8-in. howitzer battalion, and
one Honest John battalion. Each 105mm and 155mm howitzer battalion has
three batteries of six guns each; the 8-in. battalion has three four-gun
batteries. Three artillery battalions are attached to division artillery; two
155mm howitzer battalions, and an 8-in. howitzer battalion.

Although a nonnuclear situation is considered, the war is assumed fought
under threat of nuclear weapon employment. A battalion of Honest John
rockets equipped with nuclear warheads is included in division artillery to
conform to ROAD 65 specifications, but it was not employed in the exercise.
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Enemy target deployment down to the company level was based on 28th
Division positions as given in after action reports for 16 December 1944.
Positions were broken down to platoon level by the study's military advisor.
Support units not listed in division records, such as supply points, were
added. Positions were then plotted on a 1:50, 000 map of the combat area.

In the exercise three representative levels of the target intelligence
parameter were used: 25 percent, 50 percent and 75 percent. The proba-
bility that any individual target would be detected was determined from
data giving probability of detection as a function of distance from the FEBA
(forward edge of battle area). A mean probability of detection was then
determined for each intelligence level and type of target. The number of
each type of target, weighted in proportion to the mean probabilities of
detection selected for use in the exercise, was determined for each
intelligence level and a random number generator employed to determine
the actual targets detected for each intelligence level.

Statistics were obtained on quality of visual-contact report information.
These probability were then employed in conjunction with a random number
generator to determine the type of identification assigned to each target.
Some of the targets were identified perfectly as to size and type of target;
some were identified only with respect to size; some only with respect to
type of unit and some only as enemy.

Three levels of ammunition supply were considered. Figures were
obtained for artillery ammunition expenditure in an attack against hastily
organized defenses. Additional values of 3/2 the mean level and 1/2 the
mean level were also employed.

Since artillery ammunition expenditure is dependent to a high degree
on available supply, three levels of supply covering a wide range were
employed to avoid having the results prejudiced by too extreme a value.
The use of three supply levels also permits the evaluation of a second
variable - the effect of supply on artillery ammunition expenditure for a
constant intelligence level.

The exercise was pretested by giving it to 37 test subjects. A ten-
minute verbal briefing was given subjects to acquaint them with the pro-
cedure and to answer any questions which might arise. Subjects were
given test materials, consisting of a written set of instructions, a scenario,
a map and intelligence overlay, a work sheet for preparing the schedule of



Design of Experiments 379

fires, and an officer questionnaire form. As much time was allowed as
was necessary to complete the exercise.

The scenario was designed to acquaint test subjects with the background
information which they would have acquired as commanders in the field.
Three forms were appended to the scenerio. The operations order describes
task organization, situation, mission, and execution. The administrative
order provides the subject with his available ammunition supply rate.
Division SOP (standing operating procedure) for numbering concentrations
is employed by subjects in the preparation of target lists. Subjects were
also given a 1:50, 000 map of the combat area and an accompanying overlay
showing the friendly positions and enemy targets. Each subject was given
one of three different overlays, depending on the intelligence to which he
was assigned. The officer questionnaire form was designed to help deter-
mine any factors in a subject's background which might prejudice his
results in the exercise.

RESULTS. The experimental procedure was tested on 37 subjects, of
whom 24 were able to furnish usable data. It was apparent that, because
of the deviations among subjects in each cell of the experimental design,
a significant analysis of variance between cells could have been obtained
only is sufficient subjects had been placed in each cell to establish a
significant mean, or to determine that deviations among subjects were too
large for a significant mean to be established by this method.

A sample of the results obtained in the pre-test are shown in Figure 1.
This is one cell containing the 50 percent intelligence level and the mean
ammunition supply rate. The figures shown are for the sum of the
expenditures for the three weapons each corresponding to one test subject.
Shown in Figure 2 are the means for each cell of the experimental design.
Again the numbers shown are for the sum of the three weapons.
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Figure 1
Ammunition Expenditure for All Weapons Combined

Ammunition Supply Level
Mean
2466
Target Intelligence 3766
Level 1914
50% 1002
5670

Figure 2

Ammunition Expenditure for All Weapons Combined

Ammunition Supply Level
1/2 Mean Mean 3/2 Mean

Target 25% 2460 3366 1578
Intelligence 50% 1960 2964 4195
Level 75% 4295 3363 4770

Usable data were furnished by all test subjects of rank lieutenant
colonel or above, whereas only 58% of other subjects supplied employable
results. Since subjects were asked to assume the position of a brigadier
general commanding division artillery, a greater familiarity with division
artillery fire planning techniques was necessary than was generally
encountered among test subjects below the rank of lieutenant colonel.
Moreover, deviations among test subjects of rank lieutenant colonel or
above were less than those among other subjects. Although it was
possible for subjects unfamiliar with division artillery fire planning
techniques to complete the exercise, the criterion employed in determining
artillery ammunition expenditure was the experienced judgment of the test
subjects. It was therefore found that the exercise could provide valid
results only if artillery officers of rank lieutenant colonel or above with
training and experience in fire planning had been employed as test subjects.
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CONCLUSIONS.
1. The amount of data obtained was not sufficient to allow a significant
analysis of the validity of the experiment.

2. Based on experience in conducting the experiment and on the comments
of test subjects, it is the opinion of the authors that the procedure designed
is valid and applicable to the solution of the problem.

3. Because the test subject is asked to assume the position of division
artillery commander, subjects should be experienced artillery officers of
rank Lt. Col. or above with recent training in fire planning techniques.
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AN APPROACH TO SENSITIVITY ANALYSIS OF CARMONETTE
(A Small Unit Combat Monte Carlo Simulation)

Richard J. Matteis and William C. Suhler
Research Analysis Corporation

SUMMARY.
Problem. To develop an approach to the sensitivity analysis of the
Carmonette model, a small-unit combat Monte Carlo simulation.

Facts. The Carmonette model has been designed to simulate brief
intense battles between tactical units of approximately company strength.
The model contains a large number of variables to simulate in detail the
combat activities of such elements as individual tanks and infantry squads.
A sensitivity analysis is required to isolate critical variables and to deter-
mine whether the simulated environment is consistent with existing know-
ledge of combat situations and the assumptions on which the model was
constructed.

Discussion. The approach presented in this paper is an attempt to
screen a large number of variables in the Carmonette model under two
contradictory constraints. The number of input variables coupled with the
time requirement per play imposes an economic constraint, which forbids
the use of a full factorial statistical design. Conversely, the lack of a
priori knowledge concerningthe interaction effects of the input variables
and the known existence of large experimental errors prohibits the use of
a less rigid design. Essentially the approach is divided into two distinct
phases. The first phase is devoted to generating some estimates of effects
and variances; the second phase will use these generated values to develop
a fractional factorial of the overall model.

The first phase is accomplished as follows: (1) A list of the input vari-
ables that may be important is developed. (2) Through study of the structure
of the overall simulation, the model is divided into two logical parts and the
input variables grouped with respect to these parts. (3) From study of pre-
liminary runs some of the variables are shown to have so much individual
effect that they may obscure effects of other variables in the statistical
analysis, so these very important variables are studied individually.

(4) The remaining variables within each group are then studied simultaneously
by a complete factorial.
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The second phase consists of taking the variables that have been found
to play a statistically significant role and placing them in a fractional
factorial of the entire simulation to study the interactions between parts.

Applications. The restraints which determined the nature of this
approach are common to the analysis of most Monte Carlo simulations.
Consequently, the method of analysis presented in this paper should be
applicable as a guide to the sensitivity analysis of Monte Carlo simulation
in general.

INTRODUCTION. To acquaint the reader with the simulation to be
analyzed a brief description of the objectives and structure of the
Carmonette Model is presented. The Carmonette Model was developed to
accomplish the following:

"Military planners need techniques that may be
used to test new ideas for Army equipment, organization,
tactics, and doctrine early in the development cycle,
prior to substantial investments in prototype equipment
or in reorganization or retraining. The development of
the Carmonette Model was therefore undertaken to pro-
vide a method for testing these ideas operationally in
an environment of simulated combat." !

Carmonette is a Monte Carlo model of small-unit ground combat that has
been programmed for the Univac Scientific 1103A digital computer. It has
been designed to simulate brief intense battles between tactical units of
approximately company strength. To accomplish this task the model simu-
lates in detail the combat activities of such elements as individual tanks
and infantry squads. Each combat unit is able to maneuver on the battle-
field, acquire combat intelligence, select and fire on targets, and communi-
cate certain information to other units. The activities of the individual
units are guided by a tactical scenario, which may be varied from battle to
battle. Since it is difficult to state fixed relations for the complex inter-
actions of ground combat, many of the rules of play in Carmonette are
probabilistic. This results in an extensive use of the Monte Carlo method
in the simulation.

The structural flow diagram of the Carmonette Model is shown in Fig. 1.
The sequence of events that occur within the simulation is determined by
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a clock system contained within the control routine, as shown on the flow
diagram. The clock system will determine whether a combat-unit operation,
new tactical missions, intelligence acquisition or neutralization will be
actjvated. The sub-routines shown on the flow diagram, such as target
selection and moving, will be referred to as "submodels" throughout the
rest of the paper.

It should be emphasized that, although the statistical designs are
necessarily oriented to the particular variables of the Carmonette Model,
the primary interest is to present a proposed approach for the sensitivity
analysis of Monte Carlo simulation in general.

GENERAL DESCRIPTION OF THE PROBLEM.

Sensitivity Study Requirement. To establish the necessity of a sensi-
tivity analysis, the basic reason for a simulation approach to problem
solving should be examined. Simulation techniques should be utilized
only when the problem cannot be feasibly approached by analytical or
experimental methods. Of course this does not preclude the use of ana-
lytical and experimental techniques to supplement the simulation effort.
In the case of small-unit combat there exists no satisfactory analytical
approach to determine the "outcome" of an engagement, and naturally an
experimental approach is not feasible. The point is that the simulation
approach is often used when the functional relation between some or all of
the variables is unknown.

In the construction of the Carmonette Model particular input variables
have been included. This inclusion has been prompted by several motiva-
tions:

1. Certain variables have been included because of their known
importance, at least at the submodel level.

2, Other variables have been included because intuitively they
are adjudged important within the structure of at least one of
the submodels.

3. Finally there are variables included for which only a conjecture
can be made as to their importance to the phenomena being
simulated.
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Having incorporated these three categories of variables within the simu-
lation, the purposes of a sensitivity analysis become clear.

1. To verify that the important known variables play their expected role.

2. To determine the relative role of the variables that were adjudged
important.

3. To ascertain which members of the third class of variables have
any significant effect within the structure of the completed model.

4. To determine interactions between variables.

The model was constructed based on some known facts and assumptions
concerning the environment to be simulated. The sensitivity analysis
should generate a list of the important variables and interactions within
the simulation. It is necessary for the analysts and military advisors
associated with the simulation to study this list, to decide whether the
simulated environment is consistent with these known facts and assump-
tions. Anomalous results that deviate from the analyst's conception of
the simulated environment should constitute a guide to parts of the simu-
lation that require improvement. (Improvements can take the form of

either simplifications or refinements of certain parts of the simulation.)
Having determined a list of important variables and interactions that is
considered appropriate and consistent with the existing knowledge of
combat situations, the developers should present this list to any poteatial
users of the simulation. Even if no knowledge exists by which the analyst
can validate the importance of a particular variable, the user should be
aware of the environment in which his hypotheses are being tested. Also
the user may wish to examine the effects of variables that play an insignif-
icant role in the simulation, and the model would be inadequate to measure
differences in performance based on variation of these variables. The
sensitivity analysis of a model is not a new concept, any discussion of
model construction states the necessity of testing the relevance of the
variables included. However, there is a tendency to jump from model
construction to problem solving without checking model to determine what
it can measure with any confidence.

Measure of Effectiveness. As discussed earlier Carmonette was devel-
oped to test new ideas for Army equipment, organizations, tactics, and
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doctrine for small military units in given situations. Given this objective,
a basic question arises at the outset: how does one measure the effect-
iveness of competing systems? In simulations based on analytical models
there usually are well-defined measures of effectiveness, such as, mini-
mization of operating cost and time.2 In attempting to evaluate competing
combat systems in Carmonette measures of effectiveness are not easily
identified. The analyst might consider one or more of the following measures
to base a decision as to which combat system is most effective.

1. The ratio of the casualties produced as a function of time.
2. The amount of ammunition expended per casualty.
3. Weight of ammunition per casualty.

4. Percentage attainment of final terrain objective by ratio of
casualty production or by time or both.

Of course, the costs of competing systems are paramount and decisions
should be based on a cost-effectiveness analysis of the competing systems.

Any analysis of combat systems based on the above-mentioned measures,
or any other measure of effectiveness, would have to be related to a
thorough sensitivity study of the effect of the input data on the measure of
effectiveness within the simulation. The input data can be grouped into
six major categories of information:

1. Information Acquisition Probabilities.

2. Hit and kill probabilities of a particular weapon system.

3. Terrain.

4. Mobility.

5. Organization.

6. Tactics.
The user must know the sensitivity of the measure of effectiveness to the

input data to determine any real differences between the various combat
systems studied by use of the simulation.
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STATISTICAL APPROACH.

Discussion. Sensitivity analyses of computer simulations based on
specific functional equations may utilize at least two different approaches,
perturbation analysis and derivative analysis .2 Since no analytic measure
of effectiveness function exists in the Carmonette simulation, the avenue
of attack must be through the more difficult and tedious perturbation
approach.

A major restriction should be emphasized at this point. This analysis
is being carried out on a specific piece of terrain and with a specific
tactical meeting engagement of tanks. No attempt should be made to
generalize which effects will be most critical given a different tactical
situation within the Carmonette model. For example, playing dismounted
infantry would require a different resolution, as well as a different tacti-
cal situation. For this new situation, the interactions within the simula-
tion might be quite different.

The requirement of perturbation analysis, coupled with the large number
of input variables, immediately suggests the use of a large statistical
design. The next step is to consider which statistical design is best
suited for a sensitivity analysis of the Carmonette model. The constraints
on such a design are as follows:

1. Only a limited number of runs can be made due to cost and time
limitations. The simulation requires, at the very minimum, one
hour of computer time per run, in addition to the analyst time
needed to reduce the data.

2. Limited a priori information about the interactions of the variables
within the simulation is known.

3. It is known that the experimental error is large. For example, an
analytic study of the growth of information within the intelligence
submodel indicates a large variance, on the order of the square of
the mean, in the time to attain various levels of knowledge.

Keeping these constraints in mind, a thorough literature search of the
available statistical designs was made. This included a review of designs
ranging from Satterthwaite's Random Balance3 to a full factorial design.
Owing to the economic constrain, a strong emphasis was placed on selecting
one of the less rigid designs. It was hoped that such a design would be
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sufficient to show at least the large effects with a minimum number of
runs. However, as the literature search proceeded it was found that the
assumptions required to use the limited designs were very restrictive.
Davies states:

". . . .When the experimental error is large and/or when
higher order interactions are expected to be appreciable,
then there is no satisfactory alternative to the complete
factorial design."4

The above is just one statement among the many such restrictive state-
ments that may be found throughout the literature. These statements
demonstrate that, in view of our particular constraints, there are no
feasible alternatives to a factorial approach. Any results obtained from
the limited designs would be of questionable value.

This leaves only a full factorial design for consideration. Unfortunately,
the minimum number of variables that must be considered in studying
sensitivity of the model is on the order of 10, requiring for a two-level

factorial, 210 or 1024 runs for a single replication. This clearly exceeds
the economic constraint on the study. Through a careful study of the
model the list of variables, shown in Table 1, were chosen for consider-
ation in the analysis.
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Table 1

BASIC VARIABLES TO BE CONSIDERED

Levels
1. Terrain roughness 2
2. Umpire-information-gain probability tables 4 2
3. Umpire-information-loss probability tables 2
4. Firing-disclosed-position probability tables 2
5. Movement 2
6. Move missions 2
7. Move speeds 2
8. Organization 2
9. Hit and kill probability tables 2
10. Rates of fire 2

PROPOSED APPROACH.

General. It becomes obvious at this point that a pure statistical
approach is not completely satisfactory. Fortunately this is a simulation
not a physical experiment. Since it is a simulation, the analyst can turn
to the basic model itself, and through study and control of the model,
reduce the size of the analysis to a workable level within the constraints
placed on it. Instead of considering the simulation to be a "black box",
the relations of the various submodels and their corresponding input
variables, can be ascertained. From these relations a grouping of the
listed variables can be developed. Once these groups have been derived,
they can be studied as units to find their internal effects. After these
internal effects have been studied each unit grouping may be treated as a
single secondary variable to study over-all effects. Jacoby also suggests
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this use of secondary variables in the Project OMEGA Air Battle simulation
and denotes them as "meta variables" .5

The original list is divided into two logical groups. One group consists
of those variables directly associated with information acquisition and the
second group with variables directly associated with casualty production.
Table 2 shows the five variables to be considered in the information
acquisition analysis. Even with the division of the variables into two
groups, to cover all combinations of the remaining five variables would

require a 25 factorial, or 32 plays per replication.

Again, by appealing to the ability to control a simulation, certain
variables can be approached individually, both analytically and experi-
mentally during the rather extensive check-out period of the simulation.
Much experimental data can be obtained from a series of runs that must be
made to verify that the input data has been encoded correctly and that the
simulation is working properly.

Table 2
INFORMATION ACQUISITION VARIABLES
1. Terrain roughness: Line-of-sight Distribution
2. Umpire-Information-Gain Probability Tables
3. Umpire-Information-Loss Probability Tables
4. Firing-Disclosed-Position Probability Tables
S. Movement-Either Stationary or Moving Targets

Finally, some variables will have to be held constant simply to force
the number of remaining variables to a reasonable size. Of the list of
variables in each grouping, this final requirement was imposed only after
some preliminary analysis was carried out.

Information-Acquisition Analysis. To study the five variables included

in the acquisition analysis a major requirement is to select a measure of
effectiveness. The measure chosen is the average time to pinpoint, E(P).
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(Pinpoint defines the level of knowledge about an enemy unit necessary for
casualties to occur in direct-fire engagements.)

Of the five variables, perhaps the most basic is the terrain. The
characteristics of the terrain determine the existence of line of sight (LOS)
between units. Because of its precedence over the other variables, it has
been the subject of a thorough preliminary investigation. Terrain is repre-
sented in CARMONETTE by a 36 by 36 array of grid squares. Each square is
provided with a numerical measure of several characteristics: elevation,
height of vegetation, and cover and concealment. In the particular simula-
tion being carried out, a tank meeting engagement, fairly rough terrain is
being approximated. The grid-square size is 100 meters.

Several related sets of LOS calculations have been performed. 6 The first
of these computations is the probability of LOS by range. The values for
the probability distribution for the entire battlefield are presented in Fig. 2.
Tactical considerations rule out random location of the units on the
terrain. An additional curve representing the specific area with a high
probability of containing a unit of either side d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>