UNCLASSIFIED

UNCLASSIFIED AD-450443

DEFENSE DOCUMENTATION CENTER

SCIENTIFIC, AND TECHNICAL INFORMATION
cameron station alexandria. virginia

$\mathbb{U N C L A S S I F I E D}$

This document contains
Best Available Copy blank pages that were not filmed.

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

\square
If this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.
 ON THE BLEIGN OF EXPERTMENTE 1 A APM

REST C^{\prime} DEVELOPMENT AND TESTTNG

Sponsored ly

U. S. ARMY RESEARCH OFFICE-DURHAM

Report No. 64-2 December 1964

FROCEEDINGS OF THE NINYH CONFERENCE ON THE DESIGN OF EXPERIMENTH IN ARMY REGEARCH LEVELOPMENT AND TEETING

Sponwored by the Army Mathematicis Steering Commitive
conducted at
Directiratie of Resonrch and Development
U. S. Army Miarlle Command

Redutone Armenal. Alabama
23-2. Detober 1963
U. S Army Resoarch Office-Durham

Box CM; Duke Station Durham, North Carolina

TABLE OF CON'EENTS

Page

Foreword 1
Program ix
Communication Theory
by Solomon Kullback 1
The Concept of Mongtone Fallure Rate In Reliabllity Theory
by Frank Pronchan 17
Unbiasod Eatimaten of Reliability When Testing at Only One Extreme Streas Level by A. Bulfinch 73
Commente on the Strength oi Real Structural Materials by Kenneth H. Abbott 93
The Collection, Procesaing, and Storage of Data on Serialized NW Item:
liy Manfred W, Krimmer 99
Probahility That Strese In Lees Than Strangth At Preseribed Confidence Levels, For Notrinaly Dintributed Data
by E. L. Bombara. 111
Statistical Teuting Techaique - Ijaed in the Development of the Pratit is Whitney RL 10 Rocket Engine for the National Aeronautice and Space Admilifatration
by Harold J. Ticedemann. 191
Computer simulation Study of Brucetion and Probit Methode of Senmitivity Teating
by J. B. Gayle. 205
The Impact of Aeminintrative Limitations On the Design of Experiments by Gerhard J. Isaac 229
TABLE OF CONTENTS (contd) Page
Thu Uno of the Milacherlich Equation in the Threc-Phase Experimental Denign ${ }^{*}$

 by Ardie Lubin
 Verification of Product Acceptance InspactionBy Variablea"by Henry Elluer
Vewification of Product Acceptance Inmpection by Altributes
by Joseph Mandelson 235
Additional Analysis of Minelle 'Lrajestory Men unring Syutem:
by Ollvar Lee Kingaley and Bernie R, Free 241
Aspecte to Control Liquid Fropellent Sloching
Based upon Existing Theory by Wermor R. Eulitz 255
Basic Conaiderations fur the Preliminary Deaign
Of a Shock Tube for the Investigation of the Action
'G' a Nuclear Explosion Wave upon a Misulle
by Diatrick E. Cludzent. 287
Rel ability Concepts for Miabile Baterien
by Nicholas Wilburn 307
Monte Carlo hrplicution for Developing a Deaign Reliability Goal Compatible with Small Suaple Requirementa
by Ray Heathcuck and Dale L. Burrow: 319
Exact Contingency Table Calculations
by Dorothy Berg, Morley Leyton, and Clifford Maloney 359
Thin proper war prenented at the conference It doee not appear in thuse Proceedinge.
TABLE OF CONTENTS (contd) Page
Microspectroscopy of Tisaues by Clonrge I. duvin 383
Relationghip of Aerosol Stability to Virulonce in Micro-Organiuma" by Heward C. Nielson
Designe for the Sequential Application of Factors by Sidney Addaiman. 385
2^{P} Factorial Experimento with the Factorn Applied Sequentially
by R, R, Praldie and W, J, Zimmer 395
Eatimation of Error-Spectra from the Grose- Autocovariance Functions of Differences by D. B. Duncan and W, T. Wells. 421
A Comparieon of Different Methode of Weapona Evaiuation ${ }^{*}$ by Andraw J. Ecklew, III
Thesign of a Data Ciathering Model for Evalueting Surfece-to-Air Mienile System Support Requireartats" by Leon Miller
An Analysis of Holicopter Ileconnalisance Tochniques** by Arthur R. Wnods
Realietic Evaluation of the I.ecteinn and Arcu.acy of Tristrument Calibration .ystema by Churchill Einenhart 469
Elatiatical Study of Rellability and Accuracy of Surface-to-Air Mianlles by Bruce Sterne: 537
*This papor was presented at the conforeace. It doen not appear in theno Proceedings.
TABLE OF CONTENTS (conta) Page
Notes on Fle et Homogeneity and Heterogenoity ${ }^{\text {** }}$ by G. E. Couper
Statintical Deciston Theory
by Lionel Weine 541
Panel Discustion on What Type of StatiuticianaAre Needed in Research and Developmant taboratomiewby Eoyd Harmbarger (Chairman), E, L. Cox, ChurchlllEifenhart, Donald A. Gardiner, Frank E. Grubba,John L. McDaniel, Paul R. Rider, and William Wolman . . . 547
An Analymin of Factorial Experimental Damigna by La, W, Kosting 569
Some Aupecta of Analywio of Partially Faclurial Experimente ${ }^{\prime \prime}$
by Scolt A, Krane
Reliability Eatimation tor Mulli-Comporent Syaloms
by Jamea R. Kniva 605
Stulintical Study of Ageing Charactoriatics of Arthlery Misolles
by Raymond Bell 623
Thie Meesurement of the Mivalo and Supprepeive Eificta Of Weaponi
by D. H. Chaddock 649
Commente by Panelis Boyd Harahbarger 653

[^0]
TABLE OF CONTENTS (contd)

The Design of an Exporimental Progrum to Investigate Buckling in the Hoop Direction of Partially Filled Bulkheads under Losding*
by Lenter Katz
Some Smuli Smmple Theory for Nomlinear Regrenaion Entimation
by H. O. Hartley 655
On the Simultareoun Eatimation of a Miseide Trajectory and the Error Componenta Including the Exror Power Spectra of Sevaral Tracking Syutem 3
by Devid B, Duncar, 661
List of Attondee: 603
*This paperwai prezenten al the conforence. It doen noi apparar in the ee Proceedings.

FOREWORD

Profisaor S, S. Wlike outlined the form of the firat conference on the Deaign of Eixperimonts in Ariny Research, Development and Tosting, Bagically, this menting wan componed of three parte: an invited speaker phase in which experts wexe invited to diacusa recont developments and epplications in the field of deaign of experimenti; the eecond phase con. sinter of technical papera presented with Army pormonnel diacuening recent auccessey in handing their probleme: nod finally the third phane conaisted of mo-called clinical seasiona. 'l'he upeakers for thame acesiona were also Army personnel, but now they ware presenting unsolvad problema. Nationally known acientiats uerveden panellats. These individuals, we well as membern of the audience, diecuased the unsolved design problerna and suggested mothods of attack on them. Profegsor Wilke agreed to erve an chairman of the first conference. It was such a auccoas that the Army han continued the meotinge on a yoarly basis. Dx. Wilks served an their chairman until his recent untimely death. The Army Mathematica Steering Committee, eponsore of the deaign eymposis, fully realise the debt they owe to Profeanor Samuel S. Wilka of Princoton Univeralty and havo auked that the noxt conference, the tenth in this exeriow, be decicated to him.

At the Ninth Conference on the Denigh of Exparimurits, Dra. David Buncan, Churchill Eiaenhart, H, O. Kartley, Solomon Kullback und Eyank Proschan deliverodinvited addronien. Hutimation of mianlle trajectorion, proctaion and accuracy, non-linaar estimation, communtcation theory, and monotone hazard ratea in ayatema rellability were, reapectively, the 1' ificetreated by these apecialiate. Dr, Craig Cronuhaw wan invited Ly the hont to be tho Aiter Dianer Spaake:, Boyd Harahbiaciar eerved as the Chalrman al the Panel Liscuasion on what types of Statiatictane are neaded in Research and Devolopmuat Laboratorion. fle netrat the followmus permone to eerve on thio panel and diecuas various uspecte of the tnpic: E. L. Cox, Churchill Elaenhart, Donald Gardner, Frank E. Grabba, John L. MoDaniol, Paul L. Rider, and Willam Wolman. In aidition to the oe phanes of the program, aix papers were givan in the Clinical Seselons and twenty-alx papora in the rechnicul Semetions.

In order to contribute to a wide dianemination of knowledge and ume of modern etatiotical principles in the deaign of experimants, the AMSC is making theae procerainga available to all internated Army personnel. The prement volumn contain twenty-nine of the papeas which were presented at this meeting.

Two hundred and twenty-nine registrants and participants from over eventy different organizations attended the Ninth Conierence. Speakers and paneliste came from the Atlantic Mianile Range; Atomic Encrgy Commiseion; Blometricn) Serviona, Agricultural Resoarch Services, Plant Industry Station; Boaing Scientific Renearch Laboratorlesi Brigham Young Univarsty; C-E-I-R, Inc, ; George Wamhington Univeratty; Goildayd Space Filght Canter; Johne Hopkina Univeraity; NASA Marahall Space Flight Center (Goorge C. Marshall Space Fight Center); National Bureau of Standardif National Institutea of Fealth; North Carolina State Univernity of the University of North Carolina at Raleigh, Oakridge Nutional Laboratorion; Pan Amorican World Airwayn; Patrick Alr Force Base; Pratt and Whitney Alrcraft; Princeton; Renearch Analyaif Corporation; Remearch Triangle Inotitute; Sandia Corporation; Texan A.M Univeraity; Univeruity of Winconain; War Office, United Kingtom; Wright Patteraon Aix Force Basef and ten Army factlities.

The membere of the Army Mathamatici Steering Committee take thie opportunity to exprese their thanke to the many apeakers and othor research workere who participated in the conference; to Pi Leidier General John Ziexdt for having the U. S. Armay Mianile Command aerve an host and for making ayallable the factitifor under lisa command at Redutone Arsenal for the meetingi and to W, H, Ewart Who served as Chairmun or Local Arrangementa. Those in attentance are andeed indebted to him for the excellent handing of tho many detaile neticid to make such a meoterg profitable and onjoyable, M_{r}. Ewart was ably auglated In hisue taskn by mombera of hic cummittea: \mathbb{E}, \mathcal{L}. Borrbara, Eleanor Colbert, Hemey A. Dinm, Doin Fulton, Slegtried H. Leimigk, and Clyde R. Ward.

A complete hiatory of the U. S. Army Minaile Command ox detall. of the work in progreas at Redstone Areenal wili not be given here, Lut the following information about the host of the Ninth Coniererice on the Destgn rif Experiments should prove very intereating to those in atten.iance. These remark and the folluwing plelure ware taken from the pamphlet entitled U, S. Army Minallen and Rockete.
"Redstone Arsenal, Ala, it the home of U. S. Army miselles and rockets where a dedicated military-civilian teain of highly trained specialiats see to it that American noldiers heve misalle and rocket wespons ready for use, wherever and whenever they may bn needed in the defense of lreedom.

The U, S, Army Mianle Command, which in major conmodity command of the U, S. Army Materiel Command, directa world wide frmy miasile activities from ita hamdquarter: here. Also located at Redutone Arsunal is the Army Ordnance Guided Mienle Sohool where troope of the U, S. Army, the Army' aister eervices, und allied countries, learn to be miasllemen. The Natiun's top priority program of perfecting an effective defenea agninat attack by intercontinental balliatic misailea is directed from Redatone Araenal by the Nike Zeu: Project Office. In logisthaal support of all thase organizntione is the Aimy Misullo Support Command, which is a major element of the Army Miusile Command.
U. S. Army misallen are the proud productu of the paople who atand bahind them - - Inore then 12,000 man and women in and out of uniform who are engaged in thi vital work at Redetone Arsenal. ? ?ey are reeponable for managing, developing and supporting the Free Woxld' most versathle misalle systemi. The Armerican coldier depende on the long experdance and know-how of theae sedantiate, technicians, enginesers, ecrateriou and whopman to buing a misnile gyetem mucceartully to life. They work in partner -
 industry tamin.

It takes money to provide up-to idate weapone for your modus Aciny. Orie of the major responabilities of the Army misulle team Is to mane sure that the taxpayer getr a falr return for the portior of hif tax dollar alloted Army miselles. 'Inis meane a billion dollar a yed.s investment which is split amore '口ivervities, private rusearch inmitutions and American indumtry and which involveare... that 10 prime contractors, 300 first tier subcontractore and more than 5,400 ubcontractors in almost every ntute in tho anton

Much of the work at Redatone if done behind closed loors under tight necurity wrapa. In the Misatle Commard's eight major research and development laboratorien, tomorrow'a mionilea are today's work. The Army calle it "in-house" research. It ranges acrosi the entire upectrum of mimalle tochnology including wuch activities at experimentation with new high energy rocket fuela, investlgation of new meana of stoering missiles and advanced work in metala, chemicale, and the physical eclences. The tools of the trade include masaive captive test atanda where minailea ara helu firmly to earth ay their rocket motore roar, lightning fast computore analyzing milo of test data In their olectronic braina, and evar present alde rule in the hand of engineers. The mingle word facdition is uead to describe land, buildinga, improvemente und apocialized equipment. The Army invomtment in "facilitien" at Redstane is approximatoly $\$ 300$ million dollays.

Misaile hariware in the end product of our reacources of people, know how, money und fucilition. These rusources combine to form the Army teum at Rutinone, which turns out auperior minadies und their nupporting equipmont that de a varicty of jobs for the aoldier.

This missile hardware covare the entire spectrum of the Soldier'e neede from a moulder fired, two-pound, tank killer to the two-atage Perahing balliatic minnile with a range of neveral hundred miles. It includes miesiles like Sergeant, equick reteling, widid fuel nucienr punch for the field Army, and the Nike Herculea and Hawk, which H:ard Army unite guevern and American cilles ai bome from ntr. craft atteck.

Their shapes may differ but their pedigree is the same."

ARMX'S MISSILE FAMILY

THE ARMY'S MISSILE FAMILY - - Here atande the end product of the Army'a rerearch, dovolopmont, and touting in miasile weapona. The darger mieailes, leit to right, wro: Nike Herculea, Sergeant, Nise Zoun, Parmhing, and Nike Ajax, in the bnckground is Lucrobue. In the foreground is Hawk, Soldiere in the foreground hold, left to right, the M-72 Rocket Orenade, the Redaye, and the ENTAC."

PERSHING:

NINTH CONFEREREE ON THE DESION OF EXPERIMENTS ARMY RESEARCH, DEVELOPMENT AND TESTING 23-25 Octobar 1963

U, S. Army Minalin Command Redutone Armenal, Alabame

Wedneaday, 23 Octobar 1963

```
0815 REGIGTRATION
            CALLINO OF GONFERENCH TO ORDE#R
```

Bldg. 7120, Lobby of Rocket Auditorium

Rocket Auditorium

```
Colonel Dandel F, Shepherd Director, Research und Development
U. S. Army Mienile Commana
WHLCOME
Brigadier Conaral John G. Zierat
Commanding General
U. S. Arnay Miaetil Command
```


MOVIE

```
"Thie Ia Redetone"
```


ANNOUNCEMANTS

```
Wade H, Eiwart, Chairman
Loocal Aryangomient Committee
0930 CENERAL SESSTON
Chalrman: Golonel Nilw M. Bangaton Commanding Cifiner, Army Raneanch Office, Durham, N. C.
"COMMUNICATION THEORY"
Solomon Kullback, Dept. of Staliaticw, The George Wanhington Univereity
(1040-1115 COFFEE BREAK - Lobby of Rocket Auditurimm)
"THE CONCEPT OF MONOTONE HAZARD RATE IN SYSTEMS RELIABILITY"
Frank Pronchati, Mathematica
Research Labormenry, Boaing
Sclentific Reseurch Lebaoratories
```

Chalrman: Kenneth H, Abbott, Army Material: Reaearch Agency, Watertown Arsenal, Watertown, Masa.
"UNBIASED ESTIMATES OF RFLLABILITY WHEN TESTING AT ONE EXTREME STRESS LEVEL"
A. Bulfinch, Quality Annurance

Directorate, Picatinny Armenal

"YHE COLLECTION, PROCESSING, AND STORACE OF DATA ON SERIALIZED NUELEAR WEAPONS ITEMS"
 Manfrod W, Krimmer Statistice and Analyoin Section, Reliablilty Branch, QAD, Picatinny Armonal

1330 TECHNLCAL SESSION II

Chalrmant Siegfried H, Lehnigk, Phyalcal Sciencea Laboratory Army Mienile Command
"PROBABILITY THAT STRESS is Y.FSS THAN STRFNOTH AT PRESCRIBED CONFIDENCE LFVELS, gOR NOPMALLY DISTRIBUTED DATA"
F. L. Bombara. Prupulaun and Vohicle Eingineering Divieton, NASA Marthall Space Fllght Conter
"STATISTICAL TESTING TECHNIQUES USED IN THE: DEVELOPMENT OF THE RLIO ROCKET ENOINE" Harold J. Tiedemann, Pratt \& Whitney Alreraft, representing NASA Marshall Spuce Flight Center
"COMPUTER SIMULATION STUDY OF BRUCETON AND PROBIT METHODS OF SENSIIIVITY TESTING"
J. B. Gayle, Propuision and Vehicle Engineering

Division. NASA Marshall Space Filght Center

"VERIFICATION OF PRODUCT ACCEPTANCE INSPECTIDN BY ATTRIBUTES"
 Joseph Mandolzon, Directorate firr Quality Assurance, Edgewood Arsene!. Md,

Chairman; Frank L, Carr, Army Matertal, Reseazeh Agency, Watertown Arsenal, Watertown, Mass.
"ADDITIONAL ANALYSIS OF MISSILE TRAJECTORY MEASURINO SYSTEMS"

Ollver Lea Kinguley and Bernio R, Froe, Range Instrumantation Syatemy Office, White Sundm Misalle Range, Now Mexico
"ASPHCTS TO CONTROL LIQUID PROPELLANT SLOSHING BASED UPON EXISTING THEORY" Werner R, Eulitz, Propulation and Vahicle Engineering Diviaion, NASA Marwhall Space Flight Center
"BASIC CONSIDERATIONS FOR THE FRELIMINARY DESION OF A SHOCK TUBE FOR THE EXFERIMENTAL INVESTIGATION OF THE ACTION OT A NUC:ITIAR WAVझ UPON A MISSILE:'

Dietrich E. Qudzeit, Structiaren and Mechanica Laboratory, Army ivilae! 1 Cummand

1530 GLINICALSESSION B Rocket Auditorium
Chairmant Henry A, Dihin, Advanced
Syatema Laboratory, Army Mianile Commund

Panelinte:

Proiesmor Dnvid B, Duncan, Johna Hopleine Univ. and Allantic Misuilo Range
Profeanur Schimon Kullback, Dept, of Statiatica. The George Warhington Univ,
Dr. Frank Proschan, Boeing Sclentific Remearch Laberatories
Profenaor G. S. Wateon, Dept. of S.atisticm, Johns Hopkine Univareity

"RELIABILITY CONCEPTS FOR MISSILE BATTERIES" Nicholas Wilburn, Army Electronics Reuearch nnd Devalopment Laboratory. Fort Monmouth, N, J.

"MON'TE CAKLO APPLICATION FOR DEVELOPING A DESION RHLIABILITY COA - COMPATIBLE WITH SMALL SAMPLE REQUIREMENTS'
 Kay Heatheock and Dale L, Burrows, Propulaton and Vehicie Engineering Divioion. NASA Maruhall Space Flight Center

Thurndny, 24 Ootober 1963
$0830 \frac{\text { TECHNLCAL SESSION V }}{\text { Chalrman: Lt. Colonel Stefano Vivona, Division of Confer, Rmi, }}$
"EXACT MULTIFLE CONTINGENCY TABLE ANALYSIG"
Dorothy Berg, Moyley Leyton, and Clifford Maloney, Diviaion of Blologion Standarde, National Inetituce of Hesith
"MICROSPFCTROSCOPY OF TISSUES"
Ooorge I. Lavin, Almy Ballietice Renearch Laboratotion, Aberdoen Proving Cround, Md.
(0950-1000 SHORT BREAK)
"RELATLONSHLP OF AEROSOL STABILISY TO VIRULENCE IN MICRO-OR.CANISMS"

ILu*utu U. Nielan, Dugway Finld Offica, C-m-i-R, INC., and Urigham Young "niv. . rep. Dugway Proving Ground
nita TEGHNLCAL SESSION VI Rocket Auditortum
Chalrnian: Badrig Kurkjian, Iarry Diamund Laboraturioe
"DESIGN FOR THE SEOUENTIAL APPLICATION OF FACTONS" Sidney Addelman, Reaearch Triangle Inut., rap. Army Reseurch Office, Durham
"2 2^{P} FACTORIAL EYPERIMENTS WITH THE FACTORS APPLIED SEOUENTIALLY"
R. R, Praitie and W, J. Zimmer, Sandie (jorp., rep. Atumic Energy Commission

(0950-1000 SHORT BREAK)

"ESTIMA'TION OF ERROR.SPECTRA FROM THE CROSS. COVARIANCE FUNETIONS OF DIFFERENCES'
 D. B. Duncan, Jehni Hopkint Univ., and W. T. Welle, Pan American World Airwaya, Gulded Minalla Range Div., Pafa, Fia.

0830 TECHNICAL SESSION VII Bldg. 7101, Control Rm.
Socurity Clualification: CONFIDENTIAL
Chairman; John Purtell, Watervilet Arcenal, Waterviliet. N. \mathbf{Y}.
"A COMPARISON CF DIFTERENT METHODS OF WEAPONS EVALUATION"

Andrew J, Eeklea, III, Reaearch Analyalis Corp.
"design of a data gathering modil for evaluating surfacento air missile SYSTEM SUPPORT REQUIRICMENTS"

Leon Miller, Research Analy ii Corporation, presented by N. Ray Sumner
10950.1000 SHORT BREAK)
-AN ANALYSIS OF HELLCOPTER RECONNAISSANCE TECHNIQUES"

Arthur P. Woodu, Research Analyal. Corp.
(1040-112G COFFEE BREAK - Lobby of Rocket Allit:~rium)
1120 GENERAL SESSION 2 Rocket inuditorium

> Chairman: Dr. Walter D. Foster, Biometrics Div, Army Biological Warfaro Laba, Fort Detrick, Ma.
"REALISTIC EVALUATION OF THE PRECISION AND ACCURACY OF INSTRUMENT CAIJBRATION SYSTEMS"

Churchill Eisenhart, National Bureau of Standarde, Waahington, D. C.

1230 LHSEH
1330 TECHNTCAL SESSION VIII
Security Claesiflcetion: CONFIDENTIAL
Chairman: Harold Fambarg, Research Analymin Corporation

"STATISTICAL STUDY OF RELIABILITY AND ACCURACY OF SURFACE-TO-ALR MISSILES'
 Bruce Sterner, Survelllance Group. Army Ballistica Research Laboraterien, Aberdean Proving Cround, Md.

1330 TECHNICAL SESSION IX BIdg. 710L, Confer, Rm,
Chairman: Miss Arla Weinert,
Research Analysis Corporation

"NOTES ON FLEET HOMOGTNEITY AND HETEROOENETTY"

C. E. Cooper, Reasarch Analyale Corporation

(1415-1450 COFFEE BREAK - Lobby of Rocket Auditorium)
1440 GENERAL SESSION 3 Rocket Audt torium
PANEL DISCUSSION ON WHAT TYPE OF STATISTICIANS ARE NEEDED IN RESEARCH AND DEVELOFMENT LABORATORIES

Chadrman: Profeneor Boyd Harahbergor, Virginia Polytecifnic Inatitute

Hevaing Sataion Chairman:
Mr, John L, MoDaniel, Technical Director of R\&D, Army Minalle Command

After Dinner Sposker:
Dr, Craig M, Cronuhaw, Chiof Selontiet, U. S. Army Materlel Command

Friday, 25 Octobur 1963

TECHNLCAL SESSION 2 Z
Rocket Auditorium
Chairmant Erwin Bleer, System Division, Surveillance Department, Army Electronics Reasarch and Deyolopment Laboratory, Fort Monmouth, N, J.
"AN ANALYSIS OF FACTORIAL EXPERIMENTAL, DHGIONE,
L, W. Keiting, Propulaton Labormtory, Army Mienile
Command
"SOME ASPECTS OF ANALYSIS OTP PARTIALJY FACTORIAL EXPERIMENTS"

Scott A. Krane, Dugway Field Office, C.E.I-R, INC., representing Dugway Proving Oround

Chalirman; Robart g. Welgle, Watervliet, Atsenal, Watervliot, N, Y.

```
"RELIABILI'TY ESTIMATLON FOR MULTI-COMPONENT SYSTHMS"
Jamen R, Kniss, Survellance Oroup, Army
Balliatics Rewarch Laboratorios,
Aberdeen Proving Oround, Md.
```

"STATISTICAL STUDY OF AGING CHARACTERISTICS OF ARTILLERY MISSILES"

Reymand Bell, Survellance Group, Army Ballistic Research Laboratories, Aberdeen Proving Ground, Md.

CLINICAL SESSION C

The papor by D. H, Chaddock carriaz a vecurity clavelfication of CONFIDENTIAL; the paper by Leater Kate Is not claseifiad.

Chairman: Fred Friohman, U. S. Army
Research Officu, Washington, D. C.
Fanelinta:
Dr, OP. Bruno, Gurvetlance Group. Army Balliatica Remearch Laboratoriee
Dr. F, E, Orubbi, Army Ballistice Remearch Laboratorie:
Dr, Llonel Welas, Army Mathematica Kesearen Conter, Univeraity of Wiaconalr:
Profeanor S. S. Wilka, Princeton Univeraity
"THE MEASUREMENT OF THE MORALE AND SUPPRESSIVE EFPECTS OT HEAPONS"
D. H. Chaddock, Eieq,, C. B. E., Director of Artlllery Research and Development, The War Offica, United Kingdom (prenenter by G. F. Komloay, presently atteched to the Research Analyail Corporation)

COMMUNICATION THEORY

Solomon Kullhack
Department of Statiatic:
The George Wanington Univaraity

Thit presentation will cover one aupect of communication theory and I shall try te relate some of the concept a intereft to the communication engineer with the genaral aubject of this confosence. In particular I shall talk about cartain facete of information theory, an important field of contemporary probability theory and etatiatica.

I ahall not take the time necessary to enguge in a detalled diacursion motivating the technical dulinition: of meatures of information and informa. tion theory, except to ramark that among the various definitiona which have been given is one that stater "information is a measure of time or cont of a sort, which is of particular use to the engineer in his role of deaigner of an experimant".

Suppose a syatem (or information mourca) ha: o different powible events or categories or mensagen $A_{1}, A_{2}, \ldots A_{c}$ with respective probabilities of occurrance $p_{1}, p_{2^{\prime}} \ldots, p_{c}, \sum_{i=1}^{c} p_{1}=1$,

$$
\left.\Leftrightarrow: \begin{array}{lll}
\left(A_{1}, A_{2}, \ldots,\right. & \left.A_{c}\right) \tag{i}\\
\left(p_{1}, r_{2},\right. & , & p_{c}
\end{array}\right)
$$

The expression

$$
\begin{align*}
H(\phi) & =-p_{1} \log p_{1}-p_{2} \log p_{2} \cdots \cdots p_{r} \log p_{c} \tag{2}\\
& =E(h)
\end{align*}
$$

where h is a random variable which takes on the values $\log \frac{1}{p_{1}} \cdot \operatorname{lng} \frac{1}{p_{2}}$, . . . , $\log \frac{1}{P_{c}}$, is called the entropy of the syetem ψ, by analigy with - aimilar concept and mathematical expresuion in statietical mechanics. The entropy is interpreted as the mean uncertainty about prior to an otecrvation, or the mean information about ϕ provided by an observation. The base of the logarithm is quite arbitrary and is juet a unit of measurement.

The fact that

$$
\begin{equation*}
n=b^{x}=a^{y}, x=\log _{b} n, y=\log _{n} n, \log _{b} n=\log _{b} a \cdot \log _{a} n \tag{3}
\end{equation*}
$$

permiti ready change from one logarithmic base to another. The following Table 1 indicatea the unit in which $H(\phi)$ dy measured for the more common banes of logerithrnn

Table 1

Bane	Unit
2	bit
0	nat, nit
10	dit, Hartley

Where the unit name Hartley is to honor the communtention onginear R,V.L. Hartley who in 1928 introduced a logarithrnic meaure of information for ues in communication enginecring.

Let wo consider come of the propertien of $H(\$)$.
(1) The value of $H(\phi)$ is indepondent of the numerical value, namo, qualit, category, wi wher dinignation of the evente A_{1}, but depende only on the probabilities of their accorrence.
(2) $\mathrm{H}(\mathrm{o})$ I: a eymmetric function of the probabilitios
(3) $\mathrm{H}(\phi) \geq 0$, with equality If and only if moma $p_{i}=1$ and all other $p_{j}=0,1 \neq 1$ (we define $0 \log 0=0$).
(4) Fior two oventa, that is $c=2$, with $\mathrm{p}_{1}-1 / \mathrm{C}=\mathrm{p}_{2}, H(\phi)=\log 2$ $=1$ bli, that in
one bit of information is the capability of resolving the uncerteinty
in a choice between two equally likely alternativas.
(5) H(ϕ) in a maximum if all the p_{i} are equal to $1 / \mathrm{c}$ in which cane $H(\phi)=\log c$, Hartley' measure.

The maximum value of $H(\phi)$ correaponde to the remolution of the granteat uncertainty and the eero value of $H(\phi)$ corresponds to no uncertainty. From thia we may infer an important principle. The detexmination of one of a group of oblects by a seguance of selections will bu most uficiently accomplished in the nenie of minimum moan ffort If onch selection Lu made Erom equally probable qroupinge that is, with maximum information, ax maximum uncertainty renolved for each selection.

Suppoed one of k objecta is to be determined by the anewere to m queationces to which group containe the object in quetition. The maximum information in provided by an anawer if the objecti are grouped into r groupe of equal tife ytelding $\log _{2} r$ bite of intormation per anower. The anawere to m Indepondent questione may be conadered as the analogue of a commundeation channal of eapacity $C \& m \log _{2} r$ bite. The maximum uncertainty in a cource of k objeate is $\mathrm{H}-\log _{2} k$ bite. If $H \& C$, a predetermined object ean be uniquely identifiad without error, that le, the uncertainty can be completely resolved. However, if $H>C$, the identification cannot be made without ome poandbllity of error, that ia, the uncertainty aannot be completely resolved. For example, unppose there are 27 colns of aqual value of which 26 are of the ame weight and one, a false coln, is heaviey than the othore. How many weighinge on a two pan balance, without wetghtu, are necesamy alway to determine the falee coin? The uncertainty that mut be sasolved is $H=\log 27$. Therc are 3 poneible outcomes at a waighing, the loft pan lo heavier, the right pan le heavier, both pans balance. Thus each weighing prowena Information of measure at most loy 3. To be aury iu deloamine to false coin at leant thrso wolghinga are therefore necusary sincen 3 log ? $=$ loy 27 . We leave it to you to develop the apprspriate equence of operation. What if there are 26 ininf?

Clozely re!nted th the preceding ldean is the gnding thenyorr which states that given a source of meun information of H bite pea observation it is posaible to encode or tranalate equerean of ubiarvationa into gequences of two elementu only, say the binary digits 0 and 1, musi inat on the average, a mequenca of N original obvervations (information content NH and information content NH blts. We note thie an a leve of conservation of information.

Suppose thereare k posedble obeervations with probabilities of oceurrence $P_{1}, P_{2}, \cdots, P_{k}, \sum_{i=1}^{k} P_{i}=1$. Each of the k ponalble obeervations could be rapresented by a nequence of r binary digita, where $k \not 2^{r}$ or $r \geq \log _{2} k$. A sequence of N observations would thus be translated into a nequence of $\mathrm{dN} \mathrm{N} \log _{2} k$ binary digits. The coding theorem whys in effect, that by taking advantage of tiaw difiureat prubabllition of occurrence of the obnervation aince $p_{1} \log _{2} p_{1}=p_{2} \log _{2} p_{2}$ "... $-P_{k} \log _{2} p_{k}=H \times \log _{2} k$, there exinte more economical translution, $\mathrm{NH}<\mathrm{N}$ $\log _{2} k \mathbb{N} \mathrm{~N}$, and that it 10 the buat ponsible tranelation. A aimilar notion underlien the technique of aequantial analyai in atatietics which achievos a teat of ecertain strength with a man number of observations wuller than atixed ined cample of aimidar etrength.

In particular, appone there are four poentble observations, way A, E, C, D, with respective probabilitien of occurrence $P(A)=1 / 2$, $p(B)=1 / 4, p(C)=1 / 8, p(D)=1 / 8$. For thic nource it in found that $H=-1 / 2 \log 1 / 2-1 / 4 \log 1 / 1-1 / 8 \log 1 / 8-1 / 8 \log 1 / 8$
$=1 / 2 \log 2+1 / 2 \log 2+3 / 8 \log 2+3 / 8 \log 2$
$=1.75 \log 2=1.75$ bite
A coding that will mohiore a watan of 1.75 binary digite pai wrighal obeervation ia givea by the Fano coding

$$
\begin{align*}
& A=0 \\
& B=10 \\
& C=1 \tag{5}\\
& D=1
\end{align*}
$$

Note that this coding is derived by a equence of groupingy into two equaly probable groupa, ldentuying the alemente remaining in earh group in each atep by the binary diyt 0 or $1:$ firet Into the grouping $(A),(R, C, D)$ then into the grouping $(B),(C, D)$; and finally into the grouping $(C),(D)$. This Fano coding will uniquely convert a eequence of A, B, C, D^{\prime} iniou mequence of binary digite and back to the $A, B, C, D^{\prime \prime}$.

As an examplo,
(6) $1011010100111010001110110 \ldots$
is grouped uniquely accurding to the given Fano coding into
(7) $10 / 110 / 10 / 10 / 0 / 11110 / 10 / 0 / 0 / 111 / 0 / 110 / \ldots$ and converted to

BCBBADABAADAC...
The mean number of binary digita per original observation de

$$
\begin{equation*}
1 \times 1 / 2+2 \times 1 / 4+3 \times 1 / 8+3 \times 1 / 8=1.75 \tag{9}
\end{equation*}
$$

of which
$1 \times 1 / 2+1 \times 1 / 4+1 \times 1 / 8=7 / 8=0.875$
aro "O", und 0.875 wre "1".
For the oinary coding.

$$
\left(i_{1}\right)
$$

$$
\begin{array}{l:ll}
A & = & 0 \\
B & 0 & 0 \\
C & = & 1
\end{array} 0
$$

The convirted binary sequence corresponding to N original objervations would conviul of 2 N binary digite rather than $1,75 \mathrm{~N}$ bazary digite.

Thie surt of ides is clearly oi importance in conadaretions of afrielency and economy not only in communicetiona but the atorme and rapid ecanning and retrieval of large volumes of data.

The facsimile transmicsion of typewritten material by two algnal levela, white or black, may be accomplished by dividing the typewritton material into elements by rowe and columns 100 to the inch. A particular smail ample of typewritten text yielded the following data on the four
posaible pairi of consecutive elemente:

Table 2

	Erequency	Probability	Binery Coding	Tano Coding
White White	14, 281	0.8204	00	0
Black Black	1,786	0.1020	11	10
Black White	709	0.0405	10	110
White Black	642	0.0366	01	111
	$\overline{17,518}$	1.0000		

The number of binary digite zequized to recoxd the enmple in binary coding, 2 digita for anch pair of alamanta is 2×17518. 38,036; for Fano coding the number of binmry digite required it

$$
\begin{equation*}
1 \times 14,381+2 \times 1,786+3 \times(709+642)=22,006 \tag{12}
\end{equation*}
$$

The numbur of binary dijite givon by the theoratical fis atill umaller, 16,320 , obtained from
(13) NHE17518(-0.8209 $\log _{2} 0.8209 \sim 0.1020 \log _{2} 0.1020$.
$\left.0.0405 \log _{2} 0.0405 \cdots 0.0366 \log _{2} 0.0366\right)$
$=17518(0.2335+0.3359+0.1875+0.1747)$
$=1751 \mathrm{~A}(09316)=16,320$.
For a grouping of the elemants into the dixteen sete of four conmacutive elemente, the data gave:

Table 3

	Frequency	Tables		Fano	
		Probability	Binary Coding	Coding	- $\mathrm{p} \log _{2} p$
WWWW	6,586	0.752	0000	0	0.3092
BBBb	387	. 044	1111	1000	. 1983
WWBE	295	. 034	0011	1001	. 1659
BWWW	283	. 032	1000	1010	. 1589
BEWW	282	. 032	1100	1011	. 1589
WWWB	264	. 030	0001	1100	. 1518
BBEW	211	. 024	1110	1101	. 1291
WBEB	171	. 020	0111	11100	. 1129
W Bew	105	. 012	0110	11101	. 0766
WWBW	54	. 006	0010	111100	. 0443
BEWB	34	. 004	1101	111101	. 0319
BWW B	31	, 004	1001	1111100	0. .0319
WBWW	31	. 004	0100	111110	1.0319
BWBE	19	. 002	1011	111111	0.0179
WBW8	3	. 000	0101	1111111	10.0000
BWBW	3	, 000	1010	111111	11.0000
	8,759	1.0000			1.6195

The number of blnary digite required to record the ample fa binazy coding, 4 digite for atach of the eixtoen ponaible groujo of olmmente is $4 \times 8759=35,036$. For Fano coding the number of binary digite raquirad im

$$
\begin{align*}
& 1 \times 0586+4 \times(384+295+283+282+264+211)+5 \times(171+105) \tag{14}\\
& \quad+6 \times(54+34)+7 \times(31+31+19)+8 \times(3+3) \cdots 15.997
\end{align*}
$$

The number of dyile given by the thooretleal H $12 \mathrm{B759} \times 1.6175=14,10 \mathrm{~J}$,
For a grouping of the pleture elemente inte the 256 seta of eight ennmecu. a: :e elemente binary coding would etill require 35036 digits, but t'ann coding requiree only 13251 digite, a figure thet more neerly appronchen the theoretic al NH for this situation, 12869 digite. Clearly, as the number of elements groupodincreanes, the rasulte of the Fano coding approach the theorotical value determined by H. This ia true because grouping into equally likely group can be more nearly accompliohed with the amaller probabilitiee. To
achieve the reaultant aaving in tranemiesion, unfortunately roquires extre complexity in the equipment for ntorage, scanning, and reconveraion.

In tranemitting equences of binary digita whether in a communication channel or a computer, errore do occur and it la therefore of interent to be able to detect and corract much arrora and moat desirably by the oquipment itself. The baidc principle in to limit the number of posalble aignale that may be tranamitted by the uae of particular patterme or varloun kinde of check or parity digitn. The following problem is mathematically equiva. lent with an error detecting and correcting code. Suppose that no more than one of seven electrical compunenta alay a reaintor may be defective, way shorted. How can the posalble defective one alway be detected in a minimum number of teute? Hare there are aight poaibilities, none defective or $R_{1}, R_{2}, \ldots, R_{7}$ defective, We thu need $\log 8=3$ blif of information. The teat can be accompliohed by three circuite with reaietora in ererion and teating each for operability.

$$
\begin{array}{lllll}
R_{1}, & K_{2}, \tilde{R}_{3}, R_{5} & G_{1} \\
R_{1}, & R_{2}, R_{4}, R_{6} & C_{2} \tag{15}\\
R_{1}, & R_{3}, R_{4}, & R_{7} & C_{3}
\end{array}
$$

The defective resiator, if any, is deduced in accordance with the following table:

Table 4

Nonngerible	Defect: ${ }^{\text {er }}$
C_{1}	R_{5}
C_{2}	R_{6}
C_{3}	R ;
C_{1} and C_{2}	${ }^{1+}$
C_{1} and C_{3}	k_{3}
C_{2} and C_{3}	R_{4}
C_{1} and C_{2} and C_{3}	R_{1}

Of courac if all the circuite are operable then there is no defective redintor.
 a parameter of this syatem of probablizties or of the correaponding multinomial diatribution were we to take a random sample of n observationc from the eccategory population. A miousure of the meandiverrence per observe. tion of the diatribution $\left(p_{1}, p_{2} ; \ldots, p_{c}\right)$ from the untform dietribution ($1 / \mathrm{c}, 1 / \mathrm{c}, \ldots, 1 / \mathrm{c}$) of the reduadeney of the communication onglrear in the elgnal: $A_{1}, \ldots A_{c}{ }^{16}$
(16) $\log c=H=\log c+\sum_{i=1}^{c} p_{1} \log p_{1}=\sum_{i=1}^{c} p_{1} \log p_{i} /(1 / c)$,
and for n indepandant obecrvationa it is

$$
\begin{equation*}
I_{n}=n \sum_{i=1}^{c} p_{i} \log p_{i} /(1 / c) \tag{17}
\end{equation*}
$$

We may verify thit an follows, There are c^{n} poandble emmplen, The entropy fox the ample distribution from the populution $\left(p_{1}, p_{2}, \ldots, p_{c}\right)$ $1:$

$$
\begin{align*}
H_{n} & =-\sum p_{11} \ldots p_{\ln } \operatorname{lug} p_{i 1} \cdots p_{n} \tag{18}\\
& =-2 \frac{n!}{n_{1}!\ldots n_{c}!} p_{1}^{n_{1}} \ldots p_{c}^{n_{c}} \log p_{1}^{n_{1}} \ldots p_{n}^{n_{c}} \\
& =-n\left\langle p_{1} \log p_{1}+\ldots+p_{c}^{\left.\log p_{c}\right\rangle=n_{n} H}\right.
\end{align*}
$$

where in the firat eummation ($i_{1}, \ldots, 1_{n}$) varies over all ponalble permutationa at $(1,2, \ldots, c)$ taken n at a lline and $n_{1}+n_{2}+\ldots$ $+n_{c}=n$ with n_{j} the numbar of ocearuncen of categosy 1 in a ammple 'I'he entropy for the ample dintribution for the uniform population is $\log r^{n}=n \log c$

Givan a sample of n oboervations, with $n_{1}, n_{2}, \ldots, n_{c}$ occursances reapectively in each of the cotageries, $n=\sum_{i=1}^{\sum_{i}} r_{i}$ wo may astimate the $p^{\prime} x$ and $I_{n} \ln (17)$ above by

$$
\begin{equation*}
\hat{p}_{i}=n_{i} / n, \quad \hat{l}_{n}=n \sum \hat{p}_{i} \log \hat{p}_{1} /(1 / c) \tag{19}
\end{equation*}
$$

It turne out that $2 \dot{I}_{n}$, using natural logarithma, anmptotically has a chi- equaze diatribution with c-l dogrees of froedom under the null hypotheain of a uniform dietribution. If the campio wa'c drawn from the population $\left\langle p_{1}, \ldots, p_{e}\right.$) then $2 i_{n}$ asymptotically has a noncentral chicequaxe distribution with c-1 degrees of freedom and noncentrallty parameter $a I_{n}$.

Lat us now consider the cane of the syatem ϕ in whloli aach ovant corromponde to the joint occurzunen of a palr of values any $A_{1}=\left(\alpha_{p}, \beta_{j}\right)$ $i=1, \ldots, r, j=1, \ldots, c$, with the correaponding joint probabildtion $p\left(\alpha_{1}, A_{j}\right)$, with

$$
\begin{equation*}
\min _{i}^{2} p\left(\alpha_{1}, \beta_{j}\right)=1 . \tag{20}
\end{equation*}
$$

There nuw enter into conalderation the marginal probabilition

$$
\begin{equation*}
\Gamma\left(r_{i}\right)=\Gamma p\left(\varphi_{1}, \beta_{i}\right), n\left(\beta_{j}\right) \times \sum p\left(a_{i}, \beta_{j}\right) \tag{21}
\end{equation*}
$$

and the conditional probabilition

$$
p\left(\alpha_{1} \mid \beta_{j}\right)=p\left(\alpha_{i}, \beta_{j}\right) / p\left(\beta_{j}\right): p\left(\beta_{j} \mid \alpha_{i}\right)=p\left(\alpha_{i}, \beta_{j} j / p\left(\alpha_{i}\right)\right.
$$

Wo dufine the entropy for each of the sete of joint, mingland end conditional probabllitiea by

Deeign of Experimentu

(23)

$$
\begin{aligned}
& H(\alpha, \beta)=\sum_{i}\left\{p\left(\alpha_{i}, \beta_{j}\right) \log p\left(\alpha_{i}, \beta_{j}\right)\right. \text {, } \\
& H(\alpha) \quad-\sum p\left(\alpha_{1}\right) \log p\left(\alpha_{i}\right) ; H(\beta)=-\sum_{j} p\left(\beta_{j}\right) \log p\left(\beta_{j}\right) \text {, } \\
& \dot{H}\left(\alpha \mid \beta_{j}\right)=-p\left(\alpha_{i} \mid \beta_{j}\right) \log p\left(\alpha_{i} \mid \beta_{j}\right) \\
& H(\alpha \mid \beta)=\sum_{j}^{y} p\left(\beta_{j}\right) H\left(\alpha \mid \beta_{j}\right) \\
& H\left(\beta \mid \alpha_{i}\right) \sim-\sum_{j} p\left(\beta_{j} \mid \alpha_{i}\right) \log p\left(\beta_{j}\left|\alpha_{1}\right\rangle\right. \\
& \text { II }(\beta \mid \alpha)=Y\left(\alpha_{i}\right) X\left(\beta \mid \alpha_{i}\right)
\end{aligned}
$$

It may be nown that

$$
\begin{align*}
H(\alpha, \beta) & =H(\alpha)+H(\beta \mid \alpha) \tag{24}\\
& =H(\beta)+H(\alpha \mid \beta)
\end{align*}
$$

that in, the moan uncertainty about the pair (α, β) is the moun uncertainty about α plus the mean uncertainty about β givan α, with a aimiler interpreta. tuon for the eecond aquation. It may also be nhown that

$$
\begin{equation*}
H(\beta \mid \alpha) \propto H(\beta) ; H(\alpha \mid \beta) \leqslant H(\alpha) \tag{20}
\end{equation*}
$$

with equality if and only if α and β are independent, that is $p\left(\alpha_{1}, \beta_{j}\right)=$ $p\left(\alpha_{j}\right) p\left(\beta_{j}\right)$. Note that (25) means that the mean uncertalnty ahout β b", wan α is lesin than the mean uncertainty mbout β and the two are uqual if and only if a is independent of β and contributea no information.
Erom (24) and (25) we wo that

$$
\begin{equation*}
H(\alpha, \beta)<H(\alpha)+H(\beta) \tag{26}
\end{equation*}
$$

with equality if and only if α and β are independent.

If α ie the input to a commundeation channel and β is the output, then

$$
\begin{equation*}
H(\alpha)-H(\alpha \mid \beta)=I(\alpha, \beta)=0 \tag{27}
\end{equation*}
$$

is a measure of the information transmitted via the channel or of the statistical dependence between output and input. It may be fen that

$$
\begin{align*}
I(\alpha, \beta)= & H(\alpha)+H(\beta)-H\left(\alpha_{1}, \beta\right) \tag{28}\\
n & =\sum_{1} p\left(\alpha_{1}\right) \log p\left(\alpha_{i}\right)-\sum_{j} p\left(\beta_{j}\right) \log p\left(\beta_{j}\right) \\
& +\sum_{j} \sum p\left(\alpha_{i}, \beta_{j}\right) \log p\left(\alpha_{i}, \beta_{j}\right) \\
= & \sum_{i} \sum_{j} p\left(\alpha_{1}, \beta_{j}\right) \log \left(\frac{p\left(\alpha_{i}, \beta_{j}\right)}{p\left(\alpha_{i}\right) p\left(\beta_{j}\right)}\right) .
\end{align*}
$$

Mathematically, the channel is characterized by the conditional probabditile $p\left(\beta_{j} \mid \alpha_{i}\right)$. We note that

$$
\begin{equation*}
I(u, \beta)=f p\left(\alpha_{1}\right) \sum_{j} p\left(\beta_{j} \mid \alpha_{1}\right) \log \frac{p\left(\beta_{1} \mid \alpha_{1}\right)}{p\left(\beta_{j}\right)} \tag{29}
\end{equation*}
$$

and tics capacity of the channel in defined ae

$$
\begin{equation*}
C=\operatorname{mp} I\{\alpha, \beta\} \tag{30}
\end{equation*}
$$

Where the sup la over all possible inputs $\left\{p\left(\alpha_{i}\right)\right\} \operatorname{givan}\left\{p\left(\beta_{j} \mid \alpha_{i}\right)\right\}$, and we rectal that $F\left(\beta_{j}\right)=\sum_{i} \Gamma\left(\beta_{j} \mid \alpha_{i}\right) p\left(\alpha_{i}\right)$.

Tho expression for $1(\alpha, \beta)$ an written in $\{2 A\}$ in a epaciul case of the more general result
(31) $\quad I(X, Y)=\int f(x, y) \log \frac{f(x, y)}{g(x) h(y)} d \lambda(x) d M(y)$
which dithelfa apectal came of
(32) $I(1: 2)=\int f_{1}(\xi) \log \frac{f_{1}(E)}{f_{2}(E)} d \lambda(\xi)$
whare $f_{1}(5)$ and $f_{2}(E)$ are the generaliaed densities curresponding to the diatribution of the random variable f under the hypothenea H_{1} and H_{2}. in the expreasion for $I(X, Y), H_{2}$ is the hypotheals that the companent random varimbles in $E(X, Y)$ are dependent and H_{2} is the hypothesia of independence. We note that may be random visctor of n componente or even a wtechestic procewe and the emme remark holda for X and $X \ln (31)$.

In the remainder of the diacuasion we limit ourselveat to natural logaythme. We mention two interesting particular cases of (31).
(1) If X and Y are normally diatributed, then it id found that

$$
\begin{equation*}
I(X, Y)=-1 / 2 \log \left(1-p^{2}\right) \tag{33}
\end{equation*}
$$

Where p de the correlation coefficiont of X and Y and we note that (33) doen not depend on the means or variances.
(2) Let Y be a parameter θ ranging ovar a apace 0 , so that $f(x, 0)$ in the joint probability denaity of x and $\theta, h(0)$ is the prior probability denulty of $\theta, g(x \mid \theta)$ do the conditional probablity denalty of x given 0 , and the marginal probability deneity of x in $g(x)$ " $10(x \mid \theta) h(\theta) d \theta$, An experiment it the oxdered triple $(x, 0)$,
 with prior knsiniedge $h(\theta)$ iv

$$
\begin{equation*}
I(g)=\iiint(x, \theta) \log \frac{f(x, \theta)}{g(x) h(\theta)} d x d \theta . \tag{2,1}
\end{equation*}
$$

We uhall not conadiex the many dateresting and uasul properties of $1(1 ; 2)$ in (32).

We mall now give a simple lllustration of the additlye analyais of the information meanures and ite application in teate of hypotheane. It may be easliy nhown that

$$
\begin{equation*}
I(X, Y, Z)=I(X,(Y, Z))+I(Y, Z) \tag{35}
\end{equation*}
$$

where
(36) $I(X, Y, z)=\int f(x, y, z) \log \frac{f(x, y, z)}{f(x) f(y) f(x)} d \lambda(x) d \mu(y) d v(x)$
and
(37) $\quad f(x,(y, z))=f(x, y, z) \log \frac{f(x, y, z)}{f(x) f(y, x)} d \lambda(x) d \mu(y) d v(z)$
that 1s, the measure of the mutual indopandence of X, X, and Z is analyued into a measure of the indepandence of X and the paiy (X, Z) and the moasure of the Indopondence of Y and Z.

For camplen of aize n from normal populationa the estimato of the valin.s in (35) lead to the analyais of information table 5

Table 5

Intorruation Component	D. F .	1^{2}
$-(n-1) \log \left(1-x_{y z}^{2}\right)$	1	3/2N
- ($n-1$) $\log \left(1-r^{2}{ }_{x, y z}\right)$	2	8/2N
	3	11/2N

where the degrees of ireedom are thone of the noncentral chi-square dintribution with noncentrality parameter,2 inder the null hypothesia of independence.

Fow a three-wiy rxcxd contingency table the correaponding analyais hecomes that in table 6 .

Trable 6

Information Component
D. F.
$2 \sum_{j} \sum_{k} f \cdot j k \log \frac{n f \cdot j k}{f, j, f, . k}$
(c-1) (d-1)
$2 \sum_{i} \sum_{j k} \sum_{i j k} \log \frac{n f_{i, k}}{f_{i, i^{i}} \cdot j k}$
$(x-1)(\leqslant 4 . .1)$

where $f_{i j k}$ is the feequoncy of occurrence in the cell at the $i-t h$ row, $j-$ in coluinn, and k-th depth with $f_{j k}=\sum_{i} f_{i j k}, f_{i, 1}=\sum_{j} \sum_{i j k} f_{i}$ $n=\Psi \sum_{j} \sum_{k} f_{i j k}$ etc., and the degruce of treedom are those of the anjmptoti : chi-square distribution under the null hypothneis of aud-rendence.

We remark that there are many othor applicatione ef thene lant concepta but we linalt ourselva to these two because of time Aleo that more uxienuive tables of the noncentral chi-sytaide dietribution have rmicntly rean computed than those flrat publiahed by R. A. Fiahas it ray be noted that ald the expreasions in the contingancy table analyaic may be expanded into sume and difierences of terme of the form $2 n \log n$. Tables of $2 \mathrm{nlog} n$ are avallable for $n=1$ (i) 10,000 so that the arithmatic is one of table look-up additior. and aubtraction.

If..... 1 at this exponition has atimulated nome of you to look further into theve matioy a possibly useful in your airas of application.

THE CONCEPT OF MONOTONE FAILURE RATE IN RELIABILITY THEORY

Frank Proechan Boeing Sciantific Rusearch Laboratorien

1. ZNTRODUCTION. Most anmlysea of reliabllity problems ansume that the form of the underlying failuro dietribution(a) is known the para. meter may be ainumed elther known or unknown. Popular familian of fallure distributions are the exponential, Weibull, gamma, normal, and legnormal.

The waknest of auch analymen it that the conolusions deached may be gronely'in orror if the aseumption an to underlying fallure distributiona is incorract. In tact, the irror la the original asamption may be grastly compounded in arriving at the timal concluaion, espucially lf the concluaion concerna a tall probability or if the yystom analyged is cumplax. A good example of the pitfalla of an erroneous ansumption at to the form of the underlying fadure alietribution is Aurniahed by Zelon and Dennamillar (196d), Thay invostigated the robustneye of four roproiantative accoptance sampling precedures derived from the axponential diatribution when in fect the fallure times followed a Weibull distribulion with the mame mean life. THis was done by constructing the operating oharacteristic (O. C.) curves fir these proceduros when the parent diatribution of tallure times. was the Walbull distribution with survivul probability expletP/E) for valun. of the chap parameter $p=3 / 2,2$, and 3. To illustrate how thoroughly er : jnujus a conclusion can be when based on an incoryent aesumpiton at to the form of the undimbibug fallure diatribuition, we. aproduce the O. G. nurven frem cencorad nonmeplureinent plan ($n=28, x=14$) basad on the exponential distribution whem the parent distribution in acturelly Weibull with aurvival probablity expl-tf/ θ). A cennored non-repaciryment plur conalata of placing n iterns on test aimultaneously and atopping the test after the $t^{\text {th }}$ failure.

Note thet while the probability of acreptance asaming an exponentiz: diucribution with man 500 is only. 10 , the correspoudlag probendity ansuming a Woibull dimtritution with the iame mean is escenticlly 1. Thum if a mean life of 500 hours wors unaccoptable, "bas" lote would alwaye be accepted under the sampling plan if the distribution were Wulbull with shape parameter 3, instead of boing rejected 90% of the time as they ahould be if the dietribution ware exponential with the eame mean.

A further embarraamment may face the rellability analy ut who attempte to make apecific acsumptions as to the form of the underlying fallury distributions. He just may not have oufficient rolevant infurmation, wince ingeneral many observatione are required to make ramemble inferences about the finm of a dintribution, as compared to the number reguirad to eutimute a parameter, auch an the mean. As an axample, we summariae the renult of an inventigation undertakan by Zelen and Damamallar (2961) to sen how well two etutistical test described by Eputeln (1960) would distinguish betweun the exponential and the Walbull dyatributions. Conalder a non-replacement cenvorud wiwation where the lite test atante with n iteme and ende an soon an the firnt f fallures occur. Aseuming failures nccur ut timen $T_{1} \leq T_{2} \leq,, \leq T_{r}$, the total time on teat up to the $i^{\text {th }}$ fallure d_{n}

$$
T\left(T_{1}\right)=T_{1}+\ldots+I_{i-1}+(n \cdot 1+1) \Psi_{1}, 1=1, \ldots x
$$

Then the conditional diatribution of $T\left(T_{1}\right), T\left(T_{2}\right), \ldots \ldots T\left(T_{1+1}\right)$ is anim form over $\left[0, T\left(T_{r}\right)\right]$ for fixed $T\left(T_{2}\right)^{1}$. Hence

is an approximate normal deriah. Ermedn's roat 3 calls for refoction at level α if $|\mathbf{Z}|>\mathbf{Z}_{\omega}$ where Z_{α} is the 100(1- $\alpha / 2$) perconingn polnt ui the atandard normal dietribution.

Epatein' Teal 8 uses the Earlett atatiatic
$W=2 r \frac{\ln \frac{T\left(T_{r}\right)}{r} \cdot \frac{1}{r}\left[\ln T\left(T_{1}\right)+\ln \left\{T\left(T_{2}\right) \cdot T\left(T_{1}\right)\right\}+\ldots+\ln _{n}\left\{T\left(T_{1}\right)-T\left(T_{r=1}\right)\right\}\right.}{1+\frac{r+1}{6 r}}$

a aymprotically diatibuted as a x^{2} variable with $r-1$ degrenen of trine: dom. The tent procedurn is to rejectat leval α if $w\rangle \chi_{\alpha}^{2}(x-1)$.

To determine the proportion of times the teste would diatingulah between the expenantiad and Weibull distributione, Zoien and Dannamiller ran an empirical ampling tudy on computar. Samples ware drawn from each of the Weibull distributions with thape peramater $p=3 / 2,2$, and 3 and from the exponantial dietribution, all having mean one. The two teste were applied at level of significance $\alpha \cdots, O 5$, The rosult weroi

PPropertion of times exponential anaumption rejected at . 05 level of ilgnificance

[^1]The concluation meemiclear that for umall eample sime it lo dificult to dietinguich between the Welbull and the exponential.

What in nueded then in reliability are anclyens based not on apecific families of underlying fallure distributions, but rather on broad asamptions concerning fallure correaponding to the actual physiasi altustion. One vary natural aseumption of this type if that corresponding to a fallura diatribution F with deneity I and aurvival probability $\bar{F}=1-\mathbb{F}$, the condition. al fallure r ate

$$
r(t)=\frac{i(t)}{\tilde{F}(t)}
$$

defined for $\bar{F}(t) \geqslant 0$ incrasaing (decrasaing) whth time $t, 0 \leq t<\infty$, Physically, $x(t) d t$ ds the conditional probability of tallure in t, fidt, givon survival untid time t. We may verlify by dilfarentiation, that undar the aseumption of inareasing (decreaning) fallure rate the quantity $\ln \bar{F}(t)$ is concave (convex) on $[0, \infty)$. More generally, whethara a denuity existe or not, we ghall way a distribution has an increaning
 failure rate (DTR) if in $\bar{F}(t)$ is convas on $[0, \infty)$,

Examples of IFR and DFR dietributionn are:
(1) The exponential:
$f(t)=\lambda \exp (-\lambda t), \quad t \geq 0$. Both IFR and DFR.
(ii) The gemmat
$\left\{(t)=\lambda(\lambda t)^{\alpha-1} \exp \left(-\lambda t^{d}\right), \alpha>0, t \geq 0\right.$.
1FR for $\alpha>1$, DPR for $\alpha \leq 1$.
(iII)

The Weibull:
$y(t)=\lambda x t^{\alpha-1} \exp \left(-\lambda t^{\alpha}\right), \alpha>0, t \geq 0$.
IER for $\alpha \geq 1$, DFR for $\alpha \leq 1$.
(Iv)

The truncated normrit
$f(t)=-\frac{1}{0 \sigma \sqrt{2 \pi}} \quad \exp \left\{-\frac{\left(t-(\theta)^{2}\right.}{2 \sigma^{2}}\right\} \sigma>0,0 \leq t<\theta d$
where a is a normalluing constant.

Phyaically, IFR might correspond to warrout, to that the oldar the itom gotin, the greater itif chance of fillure. Examples are rubber tiren, human beinge paet some initial period, and many mechandend parte which gradually weer out, thysically, DFR might correapond to work hardening, wo that the oldar the ltem getu the tougher it geta, and hance the lase chanee It has of falling. Certain matala act in thic fachion. In Prowehan (d963) In dimeuseed another commonly occurring procese produoing DFR distributions.

How far cen wo get in roliablity analymen asouming IFR (DFR) in the following ecetions wo hope to ohow that a rather eurpriaing number of uetul resulte and methode follow from thie modest and natural assumption,
2. BOUNDS ON QUANGTLFS OT INTEREST IN RELUALLITY THEORY Assuminalmi (DFR), A number of latoreating and informative bound can be obiainad on quanlitien ariaing irequently In wwllability problems If wo asisume IF'R (DFR) diutributions, in this nection we survey some of the more almple and useful bounde, The reader in raforyed to Barlow and Marchall (1963a and b), Barlow and Proschan (1963), and Berlow and Proechen (1964), for detaile and further bounde.

Since the exponential dietribution with constant fallure rate le boundary diftribution betweon IFR and DFR diatributions, it providee naturad wounds on the aurvival probabillty of IPR and DHR dintributiona.
 $r^{\text {th }}$

white

$$
\alpha=\frac{\ln i l-p l}{\xi p}
$$

Proof. Since $\ln \bar{F}(t)$ is conceive (convex) and $\bar{F}(t)$ is decreasing:
 $\{\bar{F}(t)\}^{d / t}$ is decreasing (increasing), Thu e $\bar{F}(t)^{1 / t} \geq(1-p)^{1 / \xi_{p}}$ for $t \leq \xi_{p}$, and $\left.\bar{F}(t)^{1 / t} \underset{\left(\underline{\sum}\right)}{ } 11-p\right)^{1 / \xi_{p}}$ for $t \geq \xi_{p^{\prime}} \|$

Thu y if we know a percentile of an IFR. (DFR) distribution we immadl. atoly have one-alded bound on the survival probability corresponding to each instant of time. What if wo know the man of an IPR distribution? Then Theorem 2.2. provide a lower bound on survival probability,
'Theorem 2.2. If F In IFR with moan μ_{1}, than

$$
\bar{F}(t) \geq \begin{cases}e^{-t / \mu_{1}} & t<\mu_{1} \tag{2,2}\\ 0 & t \geq \mu_{1}\end{cases}
$$

The inequality is sharp.
See Barlow and Marshall (1963a) or Barlow and Promehan (1964), Chapter [I, for the proof. Note that the exponential distribution with mar:. μ_{1} divine the lower bound for $t<\mu_{1}$ while the degenerate distribution concentrating at μ_{1} attains the lower bound for $t \geq \mu_{1}$ '

An obviour application of Theoram 2,2 is to ayatem conalating of n independent componente in werles with distributions $\boldsymbol{T}_{1}(I F R)$ with moans $\mu_{1}(1=1,2, \ldots, n)$. Thon using (2, 2) the ayetom durvival probabillty is

The bound is aharp. 'Ghie indicates why ayetem coliability is often butter then predicted on a parte count baria, Likawief for a parallel ayatom with component diatributions F_{i} with means $\mu_{i}(1=1,2, \ldots, n)$,

In fact, the application of Theorem 2.2 can be extonded to en-cellod monobuilc atructuras. (See Barlow and Proachari (1964), Chapter VIf, Thoorem
 the $i^{\text {th }}$ component of the strumture, with $x_{1}=1$ if the $i^{\text {th }}$ component is luisctioning and $x_{i}=0$ if the $t^{\text {th }}$ componont is not functioning, $\& \in!, 2, \ldots$ $\ldots n$. Let $\phi\left(x_{1}, x_{2}, \ldots, \ldots x_{n}\right)$ rupreeent the corresponding atate of the etructure, with 0 a if the structura in functioning and $\mid=0$ is the etructure is not functioning. The structure do an!d to to mouptonic if $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ le monotonic increasing in each argumone with $\phi(0,0, \ldots, \ldots)=0$ and $\phi(1,1, \ldots, \ldots)=1$. Intultively, a menotonic etmoture is one that performe at least at inell if falled componante are raplaced by functioning componants. Moat reamonable utructares occurging in practice will, of courue, be monotonic. see Birnbaum, Eary, and Saundera (1961) for a dincuision of monotonic atructures (called by them "coherent").

Naxt suppose atochancicully independent componente with the roliability of the th $^{\text {th }}$ component $P_{1}, 1=1,2_{1}, \ldots, n$. Then the rellability of the system will be rapresentet by $h\left(p_{1}, P_{2}, \ldots, p_{n}\right)$. In the spacial case $p_{1}=p_{2} \ldots, \ldots p_{n} p_{1}$ we whll write for convenienco $h(p)$, Barlow and Pronchan (1764), Chaptar VIf, nhow thut for monotanic atructuras $h\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ la monotonic in amch arguinaat.

Uaing this fact we may oblain tho following lower bound on yutem reliablaty for monntonic atructures.

Thoorem 2, 3, Let F_{1} IFR with mean $\mu_{i}, 1=1,2, \ldots, \ldots$ bs the fallure dietributions of the componcnti of monotonic wtructure: That for $1<\min \left(\mu_{1}, \ldots, \ldots \mu_{n}\right.$, the yatern mallability $h\left(F_{1}(t), \ldots, F_{n}(t)\right)$

Prool. Since $n\left(P_{1} \ldots, p_{n}\right)$ is monotondo incraaing in each argu. mont and by Theorem 2,2 sor $\operatorname{tam}_{\min }\left(\mu_{1}, \ldots, \mu_{n}\right), F_{1}(t) \geqslant 0^{* t / \mu_{h_{1}}}$ $1 * 1_{1} \ldots, n_{1}$ then it follows that fur $t<m \min \left(\mu_{1}, \ldots \ldots \mu_{n}\right)$
$h\left(\bar{F}_{1}(t), \ldots \bar{F}_{n}(t)\right) \geq h_{i}\left(u^{-t / \mu_{1}}, \ldots . . a^{-t / \mu_{n}} n_{1} . \|\right.$
We may apply Theorem 2.2 to the n-fold convolution $p^{(n)}(t)$, whern F Le IFR wath moar μ_{j}, u, abtain

$$
\left.F^{(n)}(t) \leq 1-\sum_{i=0}^{n_{n}} \frac{\left.\left(t / \mu_{1}\right)\right)^{i}}{\|} \text { oxpl }-t / \mu_{1}\right)
$$

fur $t<\mu_{1}$. Therofore, if $N(t)$ is the number of runcivale in $[0, t]$ of a rencwal procesis based on F,

$$
P[N(t) \geq n] \leq \sum_{j \omega n}^{\infty} \frac{\left(t / \mu_{j}\right)^{j}}{\|} \exp \left(-t / \mu_{j}\right)
$$

fox $t \rightarrow \mu$. Thus we have the elementary but important result that under the IPR assumption the Poisson distribution provider e coneervative estemate of the probability of in or more falluree in $[0, t]$ for t lens than the mean life of a ingle component.

This result has application in the following apare parts aituation. Assume that we have one type of tube in n socket e which is replaced immediately upon faldura, Let $N_{j}\left(t_{j}\right)$ denote the number of falluren occurring in the $j^{\text {th }}$ socket before time j_{j}, the time the $j^{\text {th }}$ enoket is to remain in operation. If the sockets are tochantieaily independent and the life distributions are exponential with parameter λ, then $N_{1}\left(t_{1}\right)+, \ldots+N_{n}\left(t_{n}\right)$ de a Poisson random variable with parameter $\theta=\lambda \sum_{j=1}^{n} y_{j}$ and

$$
P\left[N_{1}\left(t_{1}\right)+\ldots+N_{n}\left(t_{n}\right) \leq N\right]=\sum_{j=0}^{N} \frac{J_{0} \theta}{j 1}
$$

 mean $1 / \lambda$, end each $t_{1}<1 / \lambda$, then

$$
P\left[N_{1}\left(t_{1}\right)+\ldots+N_{n}\left(t_{n}\right) \leq N\right] \geq \sum_{j=0}^{N} \frac{\theta^{j}}{j 1} e^{-\theta}
$$

Using this bound, N, the number of spares to be mocked, can he chosen eu that wi will be protected with high probability aguinut a cartage wi parent.

The beat upper bound on $F(i)$ when F is IFR in given by the following theorem.

Theoram 2.4, If F is IFR with menn μ_{1} thon

$$
\bar{F}(t) \leq \begin{cases}1 & t \leq \mu_{1} \\ 0 . \omega t & t>\mu_{1}\end{cases}
$$

where ω, depending on t, natictios $1-\omega \mu_{1}=\bullet^{-\omega t}$,
Proof. Lut

 one for $0 \leq x<l$. Thus $\bar{G}(x)$ oronsun $\bar{F}(x)$ at mont once for $0 \leq x<h_{1}$ Sé Figure 2. b_{1}

 from shove tor $0 \leq x<t$. Therefore $T(t)<0^{-\omega t}$ unlese Y colntir

For $t \leq \mu_{q}$, the inequallty is ohvious. The degenerate diatrygidien conenntrating at μ_{1} providon the uppar bound for $t \leq \mu_{1} \|$

Note that as $t \rightarrow \infty, \omega \rightarrow h / \mu_{1}$. It can be uhown that the uyper buand

Figure 2.2 Illuatrates the buit upper and lower boundis on F(i) whon \mathbb{F} is IFR and μ_{1} M 1. Table I tubulateo the uppar bound

We can alac obtain bounde on perountlies in terme of the manin and vice varas:

Pigare 2.1

Figure 2.2 Bounds on survival probability for IFR distributions
$(\mu=1)$.

Preceding Page Blank

TABLE I

UPPER BOUNDS ON $1-F(\cdot t)$
$\left(F\right.$ is IHR, $\left.\mu_{1}=\int_{0}^{\infty} \operatorname{tdF}(t)=1\right)$

IFR	Markov		IFR	Markov
Bound	Bound	t	Bound	Bound
	$(1 / t)$			$(1 / t)$

$1.0 \quad 1.000 \quad 1.000$

1.1	0.820	0.909	3.1	0.053	0.323
1.2	0.637	0.833	3.2	0.047	0.313
1.3	0.577	0.769	3.3	0.042	0.303
1.4	0.488	0.714	3.4	0.038	0.294
1.5	0.416	0.667	3.2	0.034	0.386
1.6	0.358	0.625	3.6	0.030	0.278
1.7	0.308	0.588	3.7	0.027	0.270
1.8	0.268	0.555	3.8	0.024	0.263
1.9	0.233	0.526	3.9	0.022	0.256
2.0	0.203	0.500	4.0	0.020	0.250
2.1	0.178	$0.47 n$	4.1	0.018	0.21 .4
2.2	0.176	0.455	4.2	0.016	0.238
2.3	0.138	0.435	4.3	0.014	0.233
2.4	0.121	0.417	4.4	0.013	0.227
2.5	0.107	0.400	4.5	0.012	0.222
				4.6	0.011
2.6	0.095	0.385	4.7	0.010	0.21 .7
2.7	0.084	0.370	4.213		
2.8	0.075	0.57	4.5	0.009	0.205
2.9	0.067	0.34 .5	4.9	0.008	0.204
3.0	0.059	0.4 .7	5.0	0.0077	0.200

Theorem 2.5. Assume F is IFR. For $p \leq 1-e^{-1}$

$$
\begin{gathered}
\text { for } p \geq 1-e^{-1} \\
\quad[-\ln (1 \cdot p)] \mu_{1} \leq \xi_{p} \leq\left[-\frac{\ln (1-p)}{p}\right] \mu_{1} \\
\\
\mu_{1} \leq \varepsilon_{p}<\left[-\frac{\ln (1-p)}{p}\right] \mu_{1}
\end{gathered}
$$

where

$$
\xi_{p}=\sup \{t ; F(t) \leq p\}
$$

The inequalities are sharp.
See Barlow and Marshall (1963a) or Barlow and Proschan (1964). Chapter II, for a proof.

In life test samples: some items may not fail at all during the course of the test. Therefore the usual sample average cannot be used. However, some percentile estimates will always be available. Note th. : using Theorem 2.5 we can obtain bounds or the mean oi IFR distributions in forms of percentiles. For example if iv is the median, then

$$
\frac{M}{2 \ln 2} \leq \mu_{1} \leq \frac{M}{2 n 2}
$$

For \bar{F} DFR upper: bounds on $\bar{F}(t)$ an be given in terms of tie mean as shown in:

Theorem 2.6. If F is DFR with meant μ_{1} then

$$
\bar{F}(t) \leq \begin{cases}e^{-t / \mu_{1}} & t \leq \mu_{1} \\ \frac{\mu_{1}}{t} e^{-i} & t \geq \mu_{1}\end{cases}
$$

The inequality is sharp.
See Rar! Jw and Marshall(1963a) or Barlow and Proschan(1964), ChapterII, for a proof.

The following lemma will puro us with liseful moment inequinties and further comparisons with the expomenti,

Lemma 2.7. If $-x / \mu_{1}$ (a) $\quad \mathrm{F}$ is IFR with mean μ_{1}, $\quad(x)=e$, (b) $\quad \phi(x)$ is increasing (decreasing), then

$$
\int_{0}^{\infty} \phi(x) \bar{F}(x) d x \leq \int_{0}^{(2)} \phi(x) \bar{G}(x) d x
$$

Proof. Suppose $\boldsymbol{j}^{\prime} 18$ increasing and F is not identically equal to G. Since F is IFR and G is the exponentiai distribution with the same mean, \bar{F} crosees \bar{G} exactly once from above $a t$, say, $t_{0} ; \bar{F}\left(t_{0}\right)=\bar{G}\left(t_{0}\right)$. Then

$$
\begin{gathered}
\int_{0}^{\infty} \phi(x) \bar{F}(x) d x-\int_{0}^{\infty} \phi(x) \bar{G}(x) d x=\int_{0}^{\infty}\left[\phi(x)-\phi\left(t_{0}\right)\right] \\
{[\bar{F}(x)-\bar{G}(x)] d x \leq 0 .}
\end{gathered}
$$

mo obtain the conclusion for ϕ decreasing, replace ϕ by $-\phi . \|$
Note that a similar lemma is true for PFR distributions witil all inequilities reversed. From Lemma $\bar{c} .7$ we obtain an immediate comparison retween the moments of an IFR distribution and the corresponding momints of an expnnantiai distribution with the sarne mean.

$$
\mu_{r} \begin{cases}\frac{\leq}{(\underline{\geq}} \Gamma^{(r+1) \mu_{1}^{r}} & r \geq 1 \\ \frac{\geq}{(\underline{~})} \Gamma(r+1) \mu_{1}^{r} & 0 \leq r \leq 1\end{cases}
$$

$$
\left\|r=r \int_{0}^{\infty} x^{r-1} \bar{F}(x) d x \leq r \int_{0}^{\infty} x^{r-1} \bar{G}(x) d x=\Gamma(r+1)\right\|_{1}^{r}
$$

for $r \geq 1$. For $0 \leq r \leq 1, ~(x)=x^{r-1}$ is decreasing, so that the incquality is reverscd.

In particular, for an IFR distribution $\mu_{2} \leq 2 \mu_{1}^{2}$ so that tine vesiance $\sigma^{2} \leq \mu_{1}^{2}$, and so the coefficient of variation $\sigma / \mu_{1} \leq 1$. The inequalities are reversed for DFR distributioni

Lemma 2. 7 can also be used to show that the mean life of a series system with IFR components whose means are $\mu_{i}(i=1,2, \ldots, n)$ exceeds the mean life oí a series byotem with exponential components and means $\mu_{i}(i=1,2, . . ., n)$. Just the reverse is true for a parallel system.

Theorem 2.9. If $F_{i}(x)$ is IFR(DFR) with mean μ_{i} and $\bar{G}_{i}(x)=e^{-\pi / \mu_{i}}$ $(i=1,2, \ldots, n)$, then
(a)

$$
\int_{0}^{\infty} \prod_{i=1}^{n} \bar{F}_{i}(x) d x \underset{(\leq)}{\geq} \int_{0}^{\infty} \prod_{i=1}^{n} \bar{G}_{i}(x) d x=1 / \sum_{i=1}^{n} 1 / \mu_{i},
$$

(b)

$$
\left.\left.\int_{0}^{\infty}{ }_{j}^{\infty} 1-\prod_{i=1}^{n} F_{i}(x) \dot{x}\right\}\right\} \int_{\dot{b}}^{\infty}\left\{1-\prod_{i=1}^{I_{1}} G_{i}(x)\right\} d x .
$$

Proof (a) By Lemma 2.7

$$
\int_{0}^{\infty}\left\{\prod_{j=1}^{i-1} \bar{F}_{j}(x) \prod_{j=i+1}^{n} \bar{G}_{j}(x)\right\} \bar{F}_{i}(x) d x \sum_{(\underline{I})} \int_{0}^{\infty}\left\{\prod_{j=1}^{i-1} \bar{F}_{j}(x) \prod_{j=1}^{n} \bar{G}_{j}(x)\right\} \bar{G}_{i}(x) d x
$$

for $1 \leq 1 \leq n$. By recurnion wa obtain

(b) The utoofin aimdar.

Upper and lower bound on $\bar{F}(t)$ when F IGRR and $\mu_{1}=d_{1} \mu_{2}$ are given have beon tubulated by Barlow and Marahall (1963 b). Short tables are reproduced hore as Tablea II and IIf reapectively, Tabla IV, ruproduced from Barlow and Marshall (1963 b), tabulated the lowar bound on $F(1)$ whon,F is DER and $\mu_{1}=1, \mu_{2}=2(.1) 4$.

Rany additional bnundu havo boan obtained on the fatlure rate $r(x)$ (teelf and on the danaity $f(x)$ by Barlow and Muritall and will be presented in a forthonming report by thern.

We close thi enction by presenting bound conesming ranmwad proa eenter beted on underlying LFR(DFR) ditrabutlons. drus we yive a lower bound on $M(t)$, the expected iumber of remewala in $(0, t)$ true for all cenowal procesiet, and an uppms (lower) bound un M(t) when the under: lying dintribution of the zenewal procesele IfR(DFR). The proof may be fous in Barlow and Proechan (1963).
rhnoram 2. $1 . \operatorname{li} \mathrm{M}(\mathrm{t}) \geq+1 \int_{0}^{t} \bar{F}(x) \mathrm{d} x-1 \geq t / \mu_{1}-1$.
(ii) If I igTR(DFR), then

$$
M(t) \underset{(S)}{\leq} t T(t) / \int_{0}^{t} \bar{F}(x) d x \underset{(\underline{D})}{ } t / \mu_{1}
$$

for all $t \geq 0$.

UPPMR BCONDS ON $1=M(t)$
(F Is IFR, $\mu_{2}=\int_{0}^{m} t d F(t)=1, \mu_{2}=\int_{0}^{\infty} t^{2} d M(t)$)
$\begin{array}{llllllllll}\mu 2.1 & 1.2 & 1.3 & 1.4 & 1.5 & 1.6 & 1.7 & 2.8 & 1.9 & 2.0\end{array}$ θ

0.1	1.000	1.000	000	1.000	1.000	1.000	1.000	1.000	9	吅
0.2	2.000	1.000	1.000	1.000	1.000	1.000	0.965	0.911		0.819
0.3	2.000	2.000	1.000	1.000	0.994	0.969	0.873	0.824	0.780	0.742
0.4	1.000	1.000	1,000	0.970	0.901	0.84	0.791	0.746	0.706	0.672
0.5	1.000	1.000	0.957	0.8181	0.817	0.763	0.716	0.675	0.639	0.607
0.6	2.000	0.959	0.872	0.800	0.741		0.645		0.576	
0.7	0.9818	0.378	0.794	0.727	0.672	0.686	0.587	0.353	0.323	7
0.8	0.914.	0.805	0.725	0,662	0.610	0.568	0.532	0.50	0.474	0.450
0.9	0.850	0.740	0.662	0.602	0.554	0.515	0.412	0.453	0.489	0.407
1.0	0.797	0.663	0.605	0.548	0.503	0.467	0.476	0.410	0.30	6
1.1	0.756	0.632	0.555	0.499	0.457	0.423	0.395	0.371	0.352	0.383
1.2	0.633	0.509	0.509	0.486	0.415	0.384	0.350	0.336	0.318	0.308
2.3	0.412	0.555	0.469	0.416	0.37 \%	0.345	0.324	0.304	0.238	0.273
1.4	0.259	0.444	0.434	0.351	0.344	0.336	0.894	0.276	0.860	0.247
1.5	0.163	0.331	0.408	0.349	0.313	0.217	0.266	0.150	0.235	0.204
1.6	0.105	0.231	0.332	0.324	0.285	0.260	0.242	0.226	0.213	0.202
1.7	0.06	0.267	0.254	0.196	0.260	0.237	0.214	0.205	0.193	0.283
- ${ }^{2}$	0.046	0.122	0.194	0.259	0.236	0.215	0.198	0.185	0.275	0.165
1. ${ }^{\text {a }}$	0.031	0.009	0.149	0.208	0.218	0.196	0.180	0.16	0.135	0.150
2.0	0.021	0.066	0.19.	0.163	0.204	0.17	0.367	C.dy2	0.243	0.196
2.1	0.025	0.050	0.090	0.130	2.169	0.262	0.148	0.138	0.230	0.229
2.	0.010	0.038	0.010	0.105	0.298	0.24	0.134	0.125	0.11%	0.21J.
2.3	0.077	0.029	0.056	0.084	0.114	0.135	0.122	0.113	0.20	0.10.
2. 4	0.008	0.022	0.044	0.068	0.094	0.1219	0.111.	0.10\%	0.050	0.601
2.5	0.004	0.017	0.035	0.1086	0.077	0.089	0.101	0.093	0.007	0.083
2.6	0.003	0.023	0.028	0.046	0.0.04	0.083	0.092	0.084	0.079	0.435
2.7	0.002	0.010	0.023	0.037	0.053	0.070	0.0084	0.076	0.011	0.068
2.8	0.002	0.009	0.018	0.031	0.045	0.059	0.074	0.069	0.065	0.062
2.9	0.001	0.00%	0.015	0.026	0.037	0.050	0.063	0.063	0.059	0.055
3.0	. 0.001	0.005	0.012	0.021	0.01	0.049	0.054	0.057	0.053	. 0.5

TABLELIL

LOWRE BOUNDS ON $1-E\left(t_{1}\right)$

	$\text { (F Is IFF, } \left.\mu_{2}=\int_{0}^{\infty} \operatorname{tdN}(t)=1, \mu_{2}=\int_{0}^{\infty} t^{2} d F(t)\right)$								
	$\mu_{2}{ }_{2,1}$	1.2	1.3	1.4	2.5	1.6	1.7	1.8	1.9
0.1	0.9	0.935	0.941	0.	0.922	0.916	0,91?	0.908	6
0.2	0.949	0.913	0,886	0.066	0.851	0.840	0.831	0.88 .5	0.821
0.3	0.925	0.872	0.834	0.806	0.785	0.770	0.758	0.750	0.744
0.4	0.900	0.833	0.785	0.750	0.724	0.705	0.692	0.661	$0.67 / 4$
0.5	0.868	0.789	0.736	0.698	0.668	0.646	0.630	0,619	0.611
0.	0.819	0.7	0.677	0.640	0.643	0.5	0.575	0.562	33
0	0.747	0.655	0.605	0.573	0.552	0.534	0.521	0.510	50
0.8	0.640	0.561	0.524	0.501	0.486	0.475	0.464	0.459	0.453
0.9	0.501	0.159	0.441	0.430	0.423	0.418	0.414	0.411	0.408
2.0	0.367	0.367	n. 3877	0.367	0.36\%	0.367	0.367	0.367	367
1.1	0.269	0.294	0.306	0.314	0.319	0.323	0.326	0.329	0.330
1.2	0.000	0.235	0.235	0.269	0.277	0.284	0.285	0.294	0.297
1.3	0.000	0.189	0.213	0.229	0.240	0.249	0.25%	0.263	0.267
1.4	0.000	0.000	0.177	0.195	0.209	0.219	$0.22 *$	0.235	0.240
1.5	0,000	0.000	0.145	0.166	0.181	0.193	0.202	0.210	0.215
1.6	0.000	0.000	0.000	0.14	0.157	0.16	0.179	0,16a	0.193
1.7	0.000	0,000	0.000	0.1214	0.136	0.149	0.159	0,168	0.174
1.8	0.000	0.000	0.000	0.000	0.116	0.130	0.14 .1	0.150	0.156
1.9	0.000	0,000	0.000	0.000	0.098	0.114	0.125	0.134	0.140
2.0	0,000	0.07K)	6.000	0.000	0.076	0.058	0.130	U. 120	0.126
2.1	0.000	0,000	0.000	0.000	0.000	0.004	0.097	0.107	0.113
2.2	0.000	0.000	0.000	0.000	0.000	0.071	0.085	0.095	4.108
2.3	1,000	0.000	C. 0000	0.000	0.000	0.057	0.074	0.084	0.091
2.4	0.000	0.000	n,000	0.000	0.000	0.000	0.0 .64	0,017	0.88 ?
2.5	0.000	0.000	0.000	0.000	0.000	0.000	0.055	0.06\%	074
2.6	0.000	0.000	0.000	0.000	0.000	0.000	U.046	0.058	0×6
2.7	0.000	0.000	0.000	0.000	0.000	0.000	0.637	0.051	0.059
2.8	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.045	053
2.9	0.000	0.000	0.000	0.000	0.000	0,000	0.000	0.038	-
3.	0.00	0.000	0.0	0.	0.	0,000	0.000	0.033	\%

TABLE IV

LOWER BOUNDS ON $1-\mathbb{N}(t)$

TABLE IV (continued)

LOWER BOUNDS ON $1=\mathbb{F}(t)$

			DEH,	μ_{1}	$d P(t)$	$1,$	$=\int_{0} t$	$(t))$		
	μ_{2}									
	3.2	3.2	3.3	3.4	3.3	3.6	3.7	3.8	3.9	4.0
t										
0.0	0.645	0.625	0.606	0.588	0.571	0.553	0.540	0.526	0.512	0.500
0.1	0.585	0.567	0.550	0.534	0,519.	0.904	0.491	0.478	0.466	0.455
0.2	0.531	0.51.	0.479	0.485	0.471	0.458	0.446	$0.43 y$	0.124	0.424
0.3	0.481	0.467	0.453	0.140	0.428	0.417	0.406	0.396	0.386	0.377
0.4	0.437	0.484	0.411	0.400	0.354	0.379	0.369	0.360	0.351	0.343
0.5	0.396	0.285	0.374	0.363	0.354	0.344	0.336	0.327	0.320	0.912
0.6	0.360	0.349	0.339	0.330	0.321	0.313	0.305	0.298	0.291	\%
0.7	0.326	0.317	0.308	0.300	0.292	0.285	0.278	0.271	0.265	0.239
0.8	0.296	0.206	0.260	0.272	0.265	0.259	0253	0.247	0.244	0.236
0.9	0.264	0.261	0.254	0.248	0.241	0.235	0.240	0.224	0,219	0.215
2.0	0.244	0.237	0.231	0.225	0.219	0.214	0.209	0.204	0.200	0.195
1.1	0.222	0.215	0.210	0.204	0.199	0.199	0.190	0.156	0.182	0.176
1.2	0.201	0.196	0.191	0,186	0.101	0.174	0.173	0.169	0, 166	0.162
2.3	0.133	0.178	0.273	0.169	0.165	0.161.	0.157	0.154	D, 0.51	0.144
1.4	0.166	0.161	0.257	0.554	0.150	0.147	0.24%	0.140	0.197	0.135
1.5	0.151	0.147	0.143	0.140	0.136	0.133	0.130	0.128	0.125	0.123
1.6	0.237	0.133	0. 1.30	0.127	0.124	0.121	0.119	0.116	0.114	0.112
1.9	0.124	0.121	0.128	0.125	0.1 .13	0.11 .10	C.IL	0.106	0.104	0.208
1.8	0.173	0.110	0.207	0.10%	0.103	0.100	$0.0 \% 8$	0.096	0.095	09
1.9	0.108	0.100	0. 0.04	0.055	0.093	0.091	0.090	0.0.48	0.0 .6	0.095
2.0	0.093	0.091	0.069	0.687	0.085	0.083	0.082	0.080	$=.979$	0.0
2.1	0.084	0.082	0.001	0.079	0.077	0.076	n. 074	0.47%	9, 772	0.070
2.2	0.077	0.075	0.003	0.072	0.070	0.059	0.066	0.056	0.065	0.1024
2.3	0.070	0.068	0.007	0.065	0.064	0.063	0.062	0.060	0.049	0.058
2.4	0.063	0.062	0.061	0.059	0.058	0.057	0.056	0.055	0.0\%:	0.053
2.5	0.057	0.056	0.055	0.054	0.053	0.052	0.051	0.050	0.044	0.048
2.6	0.052	0.051	0.050	0.049	0.048	0.047	0.046	0.0461	0.045	0.044
2.7	0.047	0.046	0.045	0.04,	0.044	0.043	0.042	0.042	0.041	0.040
8.8	0.043	0.042	0.041	0.041	0.040	0.039	0.038	0.038	0.037	0.037
2.9	0.039	U.038	0.038	0.037	0.036	0.036	0.035	0.034	0.034	0.03,
3.0	0.036	0.035	0.034	0,034	0.033	0.032	0.032	0.031	0.031	09

Design of Exphriment

Note that as a coniequence, for an undeslying IFR diecribution the expected number of renewals li known within en wror of $1 / 2$ for asch moment of time. Note alen that in the Dra caen. the inequality (ii) in an improvemant over inequality (i) ance

$$
t F(t) / \int_{0}^{t} F(x) d x \geqslant \int_{0}^{t} F(x) d x / \int_{0}^{t} F(x) d x-t / \int_{0}^{t} F(x) d x=b
$$

Next we compare momente of $N(t)$, the numbur of remewals in [$0, i$] when the underlying distribution F is IFR(DFR) with the corresponding momenta of a Poisen prosean.

Thoorem 2, in. If F ig $1 F R(D F R)$ with menn μ_{1} than

(b) $\quad \operatorname{Var} N(t)<\operatorname{mN}(t) \underset{\text { S }}{ } t / \mu_{1}$

See Barlow and Proschm (1963) tor a proof
3. DUALITATIVE COETCEUSIONS ABSUMING UNDEALYING DYGRLEUTION is LPR(DFR). In a number of relinblity midein, thi saumption Wiat the underlylng fillure diatributione are IFR(DFR) yislde ueful qualitaive relationmilipe, and in optimisation problams, heifful infnrmation bout the form of the molution. In thie enction wy whill present a nelection of reliablitty modele that lliuatrate how the asamption of indurlying IFR(DFR) diatributione simplifies the solution.
3.1 Allocation of Spuren under Cunatrainte. A syotam in requifnd to operite for the period $\left[0, t_{0}\right]$. Whan a component fallu, it in immediately replaced by a epare component of the enme type if availeble. If no apare la available, aytom failure reaulte. Only the aparea oxiginally provided may be ueod for replecementsi 1. e., no rentipply of aparea can oceur during $\left[0, r_{0}\right]$. The cont of a angle epare of the $t^{t h}$ type $\mathrm{l}_{\mathrm{s}} \mathrm{c}_{1}$,
$\left(n_{1}, \ldots, \ldots n_{k}\right)$ and n_{k} = numbur of apares of type initially providen, 1*1, , , . k.

Wo now describe tha original eynem beforo any replacomante are mado. The nyutem conilate of d_{1} "pouitionn" or "sockatu" anch filled by a component of lype $1,1=1,2, \ldots, \ldots k$. The vacioue oomponente of a given type may be uand at diferent levnle of intenulty and may be uabfect to differentemerourinntal strenses, so that for full genarality we asuume the life of the $1^{\text {th }}$ component of type 1 loccupying porition i_{1} J, eay) has probahility dietribution $F_{i f} \mid=h_{1}, \ldots, d_{i}, 1=h_{1}, \ldots, k_{\text {. }}$

Each replacement hae the eame dife distribition asits predecespori somponent liven ase mutually Indepencunt. Position 1 , j ie not required to be in conatiment operation throughout [0, to], but wher le echeduled to opurate for a period of duration $t_{1} \leq t_{0}, j=1, \ldots \ldots d_{1}, 1=1, \ldots, \ldots$ This model is dincused in detall in Pronchan (1960).

We week a farnlly of undominatud epares allosationa, A parea allocation n is undominalud if $R\left(n^{\prime}\right)>R(n)$ implian $o\left(n^{\prime}\right)>c(n)$ while $R\left(n^{\prime}\right) \times R(\underline{n})$ iniplias $c(\underline{n})>c(\underline{n})$, whare n^{\prime} in uny other opures alloontion, arci $R(\underline{n})$ (culled ayotom rollability) is tha probeblity of no oyotom inut" duwn during $\left[0, t_{0}\right]$ vesulting trom ehortage of spares. That ia, a aparas allocation is undominated if for ite cont it achiaves maximum roliability. A family of undombated allucationu reprenentio a tremandoun reduction of posabilition that the deciainn muker needs to conolder in arriving at an mulimal apased allucation. we shall dovolop a moltiud tor ganerating
 in $R(\underline{n})$ baing concave. Wu hall vee below that $\ln \mathbb{R}(\underline{n}) \underline{\text { le }}$ comnave when oach of the $\mathrm{F}_{1 j}$ is IFR.

Fiast noto that since shortage in any puation deaulte in ayamm fulluro

$$
\begin{equation*}
R(\underline{n})=\prod_{i=1}^{k} R_{i}\left(n_{i}\right) . \tag{3,2}
\end{equation*}
$$

where $R_{1}(m)$ in the probability of no thortage of unite of type 1 manming m aparen of typa are initially provided, We can convert the objective function $R(n)$ being maximised into a fum of terma each depending on a elngle unknown only by taking dogarithma;

$$
\begin{equation*}
\ln R(\underline{n})=\sum_{l+1}^{k} \ln R_{1}\left(n_{1}\right) . \tag{3,3}
\end{equation*}
$$

Note that maximizing $\ln R(\underline{n})$ is aquivalant to maximising $R(\underline{n})$ alnce $\ln x$ id a monotone increaning tunction of x.

Next we ohall deacribe a procedure for gennrating a famlly of undome inmed allocatione which ie intultivaly quite reanonable. The underlying Idan is that we will conatruct euccessively larget aparoi allocationi by adding one apareana timel the upari wo add will be the one which providen greatest improvement in ayatem raliablity por doilar opent.

Procuduxe, 8 tart with the chapantallocetion $(0,0, \ldots, \ldots)$ obtain unceenolvely more expenaive allocation aufollowi if the presentallo. cation is n retermine the index, oall it for for which

$$
\frac{1}{c_{1}}\left\{\ln R_{1}\left(n_{i}+1\right)-\ln R_{i}\left(n_{i}\right)\right\}
$$

in maximum over $1=1,2, \ldots, k$. Then add a mingle unlt of tise $1_{0}^{\text {th }}$ lype to $\underline{3}$ to oblain the next larger allocation $\left(n_{1}, \ldots, n_{i_{0 . l}} n_{d_{0}}+\right.$ $\left.1, n_{1_{0}}+1, \ldots, n_{k}\right)$.

Nole that adding the most to $\ln R(\underline{n})$ per dodar epent is equivalant to multiplying $R(\underline{n})$ by the largeat factor poanible per doiler apant. We whall see in Thecrem 3.1 below that the Procadire generates only un. dominated allocations if $\ell^{\prime} n R(\underline{n})$ in concave.

Theoram 3. I. If $f_{n} R(n)$ is concuvt, than anch aparyw allocation peneralat by the Procedure in undorinntod

Proof. Lat n* be generotud by the Procedure, 1_{0} denote the Indux of the lat component type added in arriving at $n *$ by the Procedure, and

$$
\lambda=\frac{1}{c_{i_{0}}}\left\{\ln R_{i_{0}}\left(n_{i_{0}}\right)-\ln R_{i_{0}}\left(n_{i_{0}}^{\pi}-1 ;\right\} .\right.
$$

Let I: se any other allocation such that $R(\underline{n})>R(\underline{n} \#)$. Designate the eft
 by I_{2}. Then
$0<\ln R(\underline{n})-\ln R\left(\underline{n^{*}}\right)=\sum_{i \in I_{1}}\left\{\ln R_{i}\left\{n_{i}\right)-\ln R_{i}(n \dot{p})\right\}-\sum_{i \varepsilon 1_{2}}^{\left\{\left(n R_{i}\left(n_{i}^{*}\right)-\ln E_{i}\left(n_{i}\right)\right\}\right.}$
$\leq \sum_{i} \lambda c_{i}\left(n_{i}-n i\right) \cdot \sum_{i} \lambda \epsilon_{i}\left(n n_{i} \cdot n_{i}\right)_{1}$

 $\ln a_{i}(n+1)=\ln n_{1}(n)$ decreasing in n_{1} Thus

$$
0<\sum_{i=1}^{k_{n}} c_{1} n_{i} \cdot \sum_{i n!}^{k} a_{i n} n
$$

$\sum_{i=1}^{k} c_{i} n_{i} \sum_{i=1}^{i x} e_{i}^{n} n_{i}$.
Thus $\underline{\underline{*}}^{*}$ is undominated. ||
Note that Theorem 3.1 require thai in Ain as concave, If tuna out that $\ell_{n} X(\underline{n})$ is not concave for all component fallura distribution $F_{i j}$ but ae sown in Theorem 3.2 below, is vonceve if each $F_{i j}$ in FR. (A) usual, the very natural IFR assumption amplifies the fatution considerably. !

Firet we must establish the relationship between eyatem reliability $\mathbf{R}(\underline{n})$ and the F_{1}, The lives of the component \ln position $i_{1} 1$ and ita uncessives replacements conatituto a renewá procese (an long an opares are available). Lat $N_{i j}$ numper of failurenin ponition 1,1 during $\left[0, t_{i j}\right]$, Then $P\left[N_{i j}=n\right] \cdot F(p)\left(t_{j}\right) \cdot F(\eta+i)\left(t_{i j}\right)$. Also $R_{i}(n)$, the probability that no shortage of apuren of iype 1 occura during $\left[0, t_{0}\right]$ usiuming n upares of tyou 1 wre etocked, is given by

$$
R_{i}(n)=P\left[N_{11}+N_{12}+\ldots+N_{1 d_{1}} \leq n\right]
$$

or explicitly, by

$$
\begin{equation*}
R_{i}(n)=\sum_{n_{1}+\ldots,+n_{d_{1} \leq n \mid=1}} \prod_{1}^{d_{i}} p\left[N_{i j}=n_{j}\right] . \tag{3,4}
\end{equation*}
$$

Now wo may utate
Theorem 3, 2, If onch $F_{1 f}$ Ls IFR, then $\ln R(n)$ LE concave. The proofmay be found in Barluw and Proachan (1964), Chaptor V1.

Exponontial Palluro Disiributions. Suppose ouch falluse density if oxponentiuli epecifically, uppoie

$$
I_{i j}(t)= \begin{cases}\frac{1}{1 T_{1}} e^{-t / \mu} 11 \\ 0 & \text { ins } t \geq 0 \\ \text { fui } t<0\end{cases}
$$

I: follow / that
a Poioson frequancy function with peramoter $\frac{t_{i f}}{\mu_{1 f}}$ (Arrow, Karlin, Sourf (1958), puge 272), Hence

$$
\begin{equation*}
R_{i}(n)=e^{-\mu_{i}} \sum_{i=0}^{n} \mu_{i} j_{j} / j \tag{3.5}
\end{equation*}
$$

where

$$
\mu_{i}=\sum_{j=1}^{d_{i}} \frac{t_{i j}}{\mu_{i j}}
$$

since the convolrtion of Poisson frequency functions is a Poisson frequency function with parameter given by the sum of the separate parameters (Cramér (1946), page 205.).

Using (3.5), it is a relatively simple matter to apply the Procedure above for generating undominated allocations in the present case of underlying exponentia! failure densities. See Proschan (1960) or Barlow and Proschan (1964), Chapter VI, fcr worked examples.
3. 2 Cornparison of Age and Block Replacement. Among the most useful replacement policies currently in popular use are the age replacement policy and the block replacement policy. Under an age replacement policy a unit is replaced upon failure or at age T_{2} a specified positive constant, whichever comes first. Under a block replacement policy a unir is replacea upon failure and at times T, $2 \mathrm{~T}, 3 \mathrm{~T}, \ldots$ We assume tio:t units fail permanently, independently, and that the time required to perform replacement is negligibly small. Block replaccneni is easier to a trinister since the planned replacements occur at regular intervals and su are readily scheduled. This type of polify is commonly insed with digital computera ax山 stiter complex electronic sugiems. On the other hard, age =-islacement seems more flexible since under this polis: planned replacement takes into account the age of the unit. It is thereforc of some interest to compare these two policies with respect to th number of failures, number of planned replacements, and anmber of removals. ("Removal" refers to both failure replacement and pianned replacement.)

Diock replacement policies have been investigated by E. L. Welker(1959), R. F. Drenick (1960), and B. J. Flehinger (1962). Age replacement policies have been studied by G. Weiss (1956) and Barlow and Pro-schan (1962) among others. The results presented below are based on Barlow and Froschan (1963).

We shall compure block replacomant with age replacement, both using replucement interval T, For example, block replacement le more watead since, ae we shall show, moro unfailed componente ard dumoved than under a poliry bafed on age. Likewise, the total number of removale for both falled and unfalled components is greater. Howover, as ono would suppect, under the IFR aesumption the expected number of failuras will be leas under block replacement, Finally, uxactly $\mid t / T$] planned roplacemonte wild be made in $[0, T]$ under block roplacement, whil3 no more than $[t / T]$ can be made undor ags replacement.

We whall donote the number of removals in $\{0, T]$ under a bleck policy by $N_{B}(t)$ and the number of romovale in $|0, T|$ under andage pulicy by $N_{A}(t)$. An whow in Theorem 3, 3, $N_{B}(t)$ atuchastically larger than $N_{A}(t)$.

Theorem 3. 3, $P\left[N_{A}(t) \geq n\right] \leq P\left[N_{B}(t) \geq n\right]$ for $n=0,1,2, \ldots$
Proof, Lot $\left\{X_{k}\right\}_{k=1}^{\infty}$ danote a realination of the liven of accesesive comepronente. We thall compute what would have occurred under an age and under a block replacomont policy. Let $T_{A}^{n}\left(T_{B}^{n}\right)$ denote the time of the $n^{\text {th }}$ removal under an age (block) roplacement policy. Then

$$
\begin{aligned}
& T_{A}^{n}=\min \left(T_{A}^{n-1}+T, T_{A}^{n-1}+X_{n}\right) \\
& T_{B}^{n}=\min \left(T_{R}^{n-1}+\alpha, T_{B}^{n-1}+X_{n}\right)
\end{aligned}
$$

whare $\alpha(0 \leq \alpha \leq T)$ ie the remaining life to a acheduled replecest ant. Since initially $T_{A}^{1}=T_{B}^{1}$, wa heve by induction $T_{A}^{n} \geq T_{B}^{n}$. Thum ior any reilleation $\left\{X_{k}\right\}, N_{A}(t)$ is amallor than $N_{B}(t)$. \|

Next we ohall une Theorem 3.3 to entablinh a lowar bnund on th $=10-$ nuwal function quite indepenfent of repiacement. Let $\mathrm{N}_{\mathrm{A}}(\mathrm{t})\left(\mathrm{N}_{\mathrm{B}}(\mathrm{t})\right)$ denote the number of fallures in $[0, t]$ under age (block) replacemant at interval T. Theorem 3.4 below showe that the number of fallures per unit of time under block replacement at interval T is, in the limit, $M(T)$, where $M(T)$ if the renewal function $\sum_{k=1}^{\infty} F^{(k)}(T)$.
$(3,6)$
Theotion 3．a． $\lim _{t \rightarrow \infty} \frac{N(t)}{t} \quad \frac{M(T)}{T} \quad$ a．a．．
Proof．Lot $N_{B_{i}}(t)$ denote the number of tailurne in $[(1-1) T$ ，iTT］， Glearly the random variables $N_{B}(T)$ are indepandent，ldentically diatri－ buted，and for $k T \leq t<(k+1) T$ ，
（3．7）

$$
\sum_{k T}^{k N_{n 1}^{*}(I)} \frac{N_{n}}{k} \leq \frac{N_{B}^{*}(t)}{t} \leq \sum_{1}^{k+1} \frac{N_{n}(T)}{(k+1) T M \frac{k}{k+1}}
$$

Letting $t \rightarrow \infty$ ，we have $k-1 \infty 0$ ，and

$$
\lim _{t \rightarrow \infty} \frac{N ⿱ ⿴ ⿱ 冂 一 三 八 土 灬}{}(t)=\frac{M(T)}{T}
$$

by the etrong law of lurge numbars．｜｜
From（3．7）we nee that also
（： 3 ）

$$
\lim _{h \rightarrow \infty} \frac{\operatorname{EN}(t)}{t}=\frac{M(T)}{T}
$$

Since the number of removale winh block replafemont in atochevtically greater than the number of ramurala with age replacoment by Thoorem 3．3， wo se：that
（3．9）

$$
\lim _{t \rightarrow \infty} \frac{E N_{B}(t)}{t} \geq \lim _{t \rightarrow \infty} \frac{E N_{A}(t)}{t}
$$

But uaing（3．8）

$$
\lim _{t \rightarrow \infty} \frac{E N_{B}(t)}{t}=\frac{M(T)}{T}+\frac{1}{T}
$$

and

by the nlemontary renewal thooram, aince for age roplecoment the timau betwaen removal conetitite a ranewal procesin, Substituting in (3, 9) we have

$$
\frac{M(T)}{T}+\frac{1}{T} \geq \frac{1}{\int_{0}^{T} F(x) d x}
$$

01
$(3,10)$

$$
M(T) \geq \frac{T}{\int_{1}^{T} T(x) d x}-1
$$

We thus have the following lower bound on the renewal tunction, rea gardlese of the underlying diatribution.

Prupe. The firat inequallty hamalroady beon eatmbliohodin (3.10).
She second follows from $\int_{0}^{t} F(x) d x \leq \int_{0}^{\infty} F(x) d x+\mu . \|$

Naxt we shall compare the number of talluree under the two pollotes and at a concequence obtain an upper bound on the renewal function valld whon the underlying fallure distribution is IFR. Firat we sbtain the long run werage time between failures under a block raplacument policy.

Let $\left\{Y_{i}\right\}$ Cencle the auccessive times betweon failures undar a block raplacement pulicy having raplacemant interval T.

Theorem 3. 6. $\lim _{t \rightarrow \infty} \frac{Y_{1}+Y_{2}+_{1} \ldots+Y_{N W_{2}}(t)}{N_{B}(t)} \quad \frac{T}{M(T)} \quad$ A. ...
Proof. Note that

Letting $t \rightarrow+0$ and applying Theoram 3,1 we have the se bired reoult. ||
Theorem 3.7 below how that the number of faifured under an age replacement policy in atochantically greater than tha number of falluree under a block replacement polloy.

Theorem 3.7. If Fin IFR, then

$$
P\left[N_{A}(t) \geq n\right] \geq P\left[N_{B}^{*}(t) \geq n\right]
$$

The proof may be found in barlow and prubehan (1963).
iseing Theorem 3.7 wo obtain the following upper bounde for tiae : 3 newn : function $M(t)$ when the underlying fallute distribution in IFE.

Theorem 3. 8. If F IE IFR,

$$
M(t) \leq \frac{t F(t)}{\int_{0}^{t} \bar{F}(x) d x} \leq \frac{t}{\mu} \quad \text { for } \quad 0 \leq t<\infty
$$

Design of Ixperiment:

Proses By Theorem 3.7
$(3,12)$

By (3.8)
(3.13) $\quad \lim _{t \rightarrow \infty} \frac{E N_{B}(t)}{t}=\frac{M(T)}{T}$.

It if ruadlly verified that the moan time to an in-eervioe fallure under an age roplacemsunt policy with replacement interval T ie

$$
\frac{1}{\Gamma(T)} \int_{0}^{T} \Gamma(x) d x
$$

(See Burlow and Proschan (1964), Chapter ILL.) It tollowi by the olemon. tary ranewal theorem that
(3.14)

$$
M(t) \leq \frac{t F(t)}{\int_{0}^{t} \frac{t}{F}(x) d x}
$$

the firat of the deaired conclusione. For FIFR, it in roadily verlited that the mean time to an in-mervice fellure under an aye replecement pollcy with replacement interval $T, \frac{1}{\Gamma(T)} \int_{0}^{T} \bar{\Gamma}(x) d x$, le a decreseing
function O f T. (See Barlow and Proachan (1964), Chapter III.) Hence

the mecond of the desired conclunions.
Combining Theorem: 3,5 and 3,8 , we obtain very close bounds on $M(t)$ when the underlying fallure distribution IE IFR:
(3.25)

$$
\frac{t}{\mu}-1 \leq M(t) \leq \frac{t}{\mu}, 0 \leq t<\infty .
$$

Thu: for all non-negative valuca of $t, M(t)$ may be approximated with an error of at mont $1 / 2$.
4. PRESERVATION OF MONOTONE FAILURE RATE, Next we condelur operation under whioh a monotone falure rate lo preaurved. for example, what atructuren have the monotone failuro rate property when their individual componentin have thile property? is monotone fallure rate preserved under convolution or under mixture of distributione? 'liac reaultupresented in thil section are baesed on Eiary and Prosehan (1:63) and Barlow, Marahnll, and Prouchan (1963).

Ineorem in. ${ }^{1}$ If F_{1} atad F_{2} arc IFR, then their convolution H, siven by

$$
H(t)=\int_{-\infty}^{\infty} F_{1}(t-x) d F_{2}(x) .
$$

10alio 1FR.
Proof. Assume F_{1} han density \mathcal{f}_{1}, F_{2} has density f_{2}, For $t_{1}<t_{2}$, $u_{1}<u_{2}$ form

Dasign of Experimente
$D=\left|H\left(u_{1}-u_{j}\right)\right|_{i, j=1,2}=\mid \sqrt{F_{1}}\left(t_{1}-\alpha f_{2}\left(0-u_{j}\right) d e\left|=\iint_{1}\right| \bar{F}_{1}\left(t_{1}-u_{k}\right) \|_{I_{2}\left(a_{k}-u_{j}\right)} \mid d e_{2} d s_{1}\right.$
by problem 66, page 48, Pblya and Sueg̈ (1925). Integrating the innox integral by parto, we obtain

$$
D=\iint_{1_{1}<s_{2}}\left|\begin{array}{ccc}
F_{1}\left(t_{1}-I_{1}\right) & f_{1}\left(t_{1}-c_{2}\right) \\
F_{1}\left(t_{2}-I_{1}\right) & f_{1}\left(t_{2}-z_{2}\right)
\end{array}\right| \quad\left|\begin{array}{cc}
f_{2}\left(s_{1}-u_{2}\right) & f_{1}\left(m_{1}-u_{2}\right) \\
\bar{F}_{2}\left(u_{2}-u_{1}\right) & \bar{F}_{2}\left(m_{2}-u_{2}\right)
\end{array}\right| d s_{2} d a_{1} .
$$

The uign of the first detorminant in the anme as that of

$$
\frac{t_{1}\left(t_{2}-t_{2}\right) \bar{F}_{1}\left(t_{2}-t_{2}\right)}{\bar{F}_{1}\left(t_{2}-s_{2} \bar{F}_{1}\left(t_{1}-t_{1}\right)\right.}-\frac{t_{1}\left(t_{1}-a_{2}\right) F_{1}\left(t_{1}-a_{2}\right)}{\bar{F}_{1}\left(t_{1}-a_{2}\right) \vec{F}_{1}\left(t_{1}-t_{1}\right)}
$$

कlluming non-wero denominutore. But

$$
\frac{t_{1}\left(t_{2}-n_{2}\right)}{F_{1}\left(t_{2}-n_{2}\right)} \geq \frac{t_{1}\left(t_{1}-t_{2}\right)}{r_{1}\left(t_{1}-t_{2}\right)}
$$

by bypothenie, while

$$
\frac{\bar{F}_{1}\left(t_{2}-n_{2}\right)}{\bar{F}_{1}\left(t_{2}-a_{1}\right)} \geq \frac{\bar{F}_{1}\left(t_{1}-a_{2}\right)}{\bar{F}_{1}\left(t_{1}-t_{1}\right)}
$$

since, as puinted out insection $1, \bar{F}_{1}$ di dogerithmically concave. Thu: the firet determinant ia nonnagative. A aimilar argument holde far the eecond determinant, othat $D \geq 0$. But thie implies \bar{H} is logerithmically concave, and therefors H is IFR.

If F and/or G do not have donsition, the theorem may be proved in a aimliar fachion using limiting argumenteill

It is of interest to note that the DFR property in not proserved under convolution. A counterexample is obteined if wo convolute densities

$$
f_{1}(x)=f_{2}(x)=\frac{x^{\alpha-1} e^{-x}}{T^{-x}(\alpha)} \quad \text { for } x \geq 0 \text {. }
$$

with $1 / 2<x<1$, Howaval, it is true that a mixture of apa diutributions is also DER, we muwn in

Theorematin. if $F_{1}(t)$ in a DFR diationution in t for arah $1=1,2, \ldots, a_{1} \geq 0,1=1,2, \ldots$, and $\sum_{i=1}^{\infty} a_{1}=1$, then

$$
G(t)=\sum_{i=1}^{\infty} u_{i} F_{i}(t)
$$

LI An DFR dintribution.
Proof. Firut auppone that $F_{1}(t)$ has a differontiable donsity $f_{1}(t)$ Sinco the density of any DFR dietribution muat be a decrensing funchurn. we liave by Schwarz' inequality that

$$
\sum_{i=1}^{\infty} a_{i} \bar{F}_{1}(t) \sum_{i=1}^{\infty}\left[-a_{1} f_{1}^{\prime}(t)\right] \geq\left\{\sum_{i=1}^{\infty} n_{i}\left[\bar{F}_{1}(t)\right]^{1 / 2}\left[-f_{1}(t)\right]^{1 / 2}\right\}^{2}
$$

Since $f_{i}(t) / F_{i}(t)$ is decreasing in t we must have

$$
\bar{F}_{i}(t) f_{i}^{\prime}(t) \leq-\left[f_{i}(t)\right]^{2} .
$$

Hencm.

that is
$\bar{Z}(t) g^{\prime}(t) \leq-[g(t)]^{2}$
whore g in tue density of G_{1} so that G is DER.
If asch F_{i} down not have a differantiable denalty, the oame rasult may be obtmined by dimiting ergumente, \|

Mixturen of IJPR dintributione ase not necesuexily Lrini Tor example, a mixture of two diftinct exponentials is not ITrR aince it ia not axpomential, and by the wbove theoram it 10 DFR. Theorum 4, 2 togethior whth thio thite for. DFR dietributione in section 5 may be usad to pick up diftorenued thi the parameteri or paoled amples anch coming from an axponontinuly Alptributed population, sue Proschan (1463),

Theorem 4. 1 proves that a bymtem consiating of one unit anda.opure has incruasing fallure rate if the componante do. Aa nne would expect, tha fallure rate of the gotem is evorywhere lous than the fillure rate ci: aither component if both componente have ITR fallure dintribulions.

 fillute reter $x(t)$, then

$$
r(t) \leq \min \left[r_{1}(t), r_{2}(t)\right]
$$

Prool. By dofinition

$$
r(t)=\frac{\int_{0}^{t} f_{1}(t-x) f_{2}(x) d x}{y(t)}
$$

Thus

$$
r(t) \leq r_{1}(t) \frac{\int_{0}^{t} \bar{F}_{1}(t-x) f_{2}(x) d x}{F(t)}=r_{1}(t)
$$

the equality being clear from

$$
F(t) m \int_{0}^{\infty} F_{1}(t-x) d F_{2}(x)
$$

Similarly, $\quad r(t) \leq r_{2}(t) . \|$
Next we uhall obtadn conditions under which an dncresting fallure rate of like componente Implien an incranaing talluse zate for tho wytem. A nume than that the syntam conmiete of independent like componente, with each component life dintributed uccarding to the common probebldty dietribution $F(t)$. At a givan inatant of timn t anoh uumponent ha: roliability $\left.p=\overrightarrow{\bar{Y}}()_{i}\right)$ the cosreaponding wyotem rollability wid be denignated by $h(p)$. Then we may prove

Theorum 4.4. Ansume a atructure wlth raliability Anction $h(p)$, with anch compr it dife independently distributed aocording to dietributlon F havine don\#i f_{1} Than
(a) $\left.\quad \frac{R(t)}{r(t)}=\frac{p^{\prime}(p)}{h(p)} \right\rvert\, p=\bar{F}(t)$ wherg $r(t)=\frac{f(t)}{F(t)}$ cornponent falluxe rate at time t, and $R(t)=$ gyatam
fallure rate at time ${ }^{\text {t }}$

deciezing furction of p
(c) if $r(t)$ Is an increating function of t and $\frac{p^{\prime}(p)}{\left.h^{\prime} p\right)}$ If adegraasing
function of P, then $R(t)$ is an increaniny function of t.
Reault (s) y tivese simple sutficient condition on a atructure which will pruverye a monotona fallure rate whon a structure is conatructed out
of indepundent liko components. We ehall presentan important clay of structures which antiefy this oufficient condition.

To prove (a), let $\mathbf{S}(t)$ represent the probability of atructure sur. vival patitime t l.e., $g(t)=h(\vec{F}(t))$, By definition

$$
R(t)=\frac{-S^{\prime}(t)}{S(t)}=\left.\frac{h^{\prime}(p)}{h(p)}\right|_{p=\bar{F}(t)} \quad, \quad\left\{(t)=\left.\frac{p h^{\prime}(p)}{h(p)}\right|_{p=\bar{F}(t)} \frac{-(f)}{\bar{F}(t)},\right.
$$

so that

$$
\frac{B(t)}{r(t)}=\left.\frac{p h^{\prime}(p)}{h(p)}\right|_{p=F(t)}
$$

-atabliciling (a).
To prove (b), simply note that $F=\bar{F}(t)$ is a decrasing function of t,
Einally, (c) Is an Immadiate consequenow of (b) and the fact that pis a dacreasing Aunction of till

An important cines of atructuren for which the condition $\frac{\mathrm{Ph}^{\prime}(p)}{\mathrm{h}(\mathrm{p})}$ in a decreasing function of p are the su-called de out of n biruciuref. A K out of n etructure is onn that Aunctions if and only lf at leust k compoounte function. To prove that a k out of n etructure consiating of n independent romponents hy a ration $\frac{p^{\prime}(p)}{h(p)}$. decroasing in p, write

$$
\frac{h(p)}{p^{\prime}(p)}=\frac{1}{p} \int_{0}^{p}\left(\frac{t}{p}\right)^{k-1}\left(\frac{1-t}{1-p}\right)^{n-k} d t \text {, }
$$

nince

$$
h(p)=\sum_{l=k}^{n}\left(\begin{array}{l}
n \\
l
\end{array} p^{i}(1-p)^{n-1}=\frac{n!}{(k-1)|(n-k)|} \int_{0}^{p} x^{k-1}(l-x)^{n-k} d x\right.
$$

Mood (1950), page 335. Letting $u=\frac{t}{p}$, we heve

$$
\frac{h(p)}{p h^{\prime}(p)}=\int_{0}^{1} u^{k-1}\left(\frac{1-u p}{1-p}\right)^{n-k} d u .
$$

Since $\frac{1-u p}{1-p}$ is incrauning in p, so in $\frac{h(p)}{p h(p)}$. Thus if a k out of n ntructure is compoeed of independent like componente huving un increasing fallure rate, thon the etructura itnolf has an incramaing tatlure rate.

If we note that the time of fallure of a k out of n eyatom corren. ponde to the $k^{\text {th }}$ largest in aumple of n obnervationa, then an altarnate statement of this result is the following

Corollhry. Suppose $X_{1}<X_{2}<\ldots<X_{3}$ ara Δ gimplo of order Mtatiatics baced on indapandent obearyationa from a diatribution hevinv Incrinelng tilura ratu. Then the dietribution of X_{i} hat on increading falure rete $1=1, \frac{2}{2}, \ldots n_{1}$

Actually we can generato new otructurem which have the property that $\frac{\mathrm{ph}}{\mathrm{h}(\mathrm{p})}$ If a decreasing funation, by composition of atructurea haying thin froperty, Under composition we form a apparatructure onch element of which nonalate of copios of a givan atructure. if $h=(g)$ with $g^{\prime}(p) \geq 0$, then aince

$$
\frac{p h^{\prime}(p)}{h(n)} \cdot \frac{g(g)}{f(g)}, \frac{p g^{\prime}(p)}{\varepsilon(p)}
$$

the property ie closed under composition.
Tho following example showis that a etructure consisting of independent llke compunante oach having an exponential fallura diatribution nood litit have an increasing fallure distribution,

Example. Conaider a etructure composed of two eubiructures in parallel, the firit having k componants in serfen, the wecond coneluting uf a eingle component. Ausuming independent components each having expoxiantial distribution for failure

$$
F(t)=1-e^{-t}
$$

we compute the probability $S(t)$ of atructure survival past time to be

$$
S(t)=1=\left(1-\theta^{-t}\right)\left(1-0^{-k t}\right) \text {. }
$$

Thus

$$
R(t)=-\frac{S^{\prime}(t)}{S(t)} \frac{e^{-t} 1 k e^{-k t} \cdot(k+1) e^{-(k+1) t}}{0^{-t}+e^{-k t} \cdot e^{-(k+1) t}},
$$

and so

$$
\operatorname{mgn} a^{\prime}(t)=\operatorname{sgn}\left[-(k-1)^{2}+k^{2} a^{-t}+e^{-k t}\right]
$$

Note that for $k>1$, for $t=0$ the aign Ie ponitive, while for $t=\infty$ the elgn is negative. Thus the otriacture fallure rate $R(t)$ in not monotonio for $k>1$.

Thie ds also counterasample to the confocture thut k out of n dructurei with unlike IFR componontiare thamelvea necesuarily irR. (Simply conider the cerima aubitructure si a minglu oompoment.)
5. STATISTICA LTEST FOR MONOTONE TALLURN RATE. W
 pley in rallability theory, frerefore it would be of greet value to havea tasi to determine whocher a ampio (or eet of mamplen) comes froma pupulation with monotone fallure rate. The tent prasented in this usetion I based on Proschan and Pyke.

Let $X_{1}, X_{2}, \ldots, \ldots X_{n}$ be a mample of independent cherervatione
fiom the common diutribution F with density f, where $f(t)=0$ ior $t=0$, and fallure rate $r(t)$. We wiuh to choose between the following:

Null Hypothends $H_{0}: r$ is constant.
Alternative Hypothewit, H_{\mid}: F ie non-decreasing but not constant.

The test statistic is computed as follows. Lei $\mathrm{T}_{1}<\mathrm{T}_{2}<\ldots .<\mathrm{T}_{\mathrm{n}}$ be the ordered observations, $D_{1}=T_{1}, D_{2}=T_{2}-T_{1}, \ldots, D=\because_{n}-T_{n-1}$ the spacings, and $\bar{D}_{1}=n D_{1}, \bar{D}_{2}=(n-1) D_{2}, \ldots, \bar{D}_{n}=D_{n}$, the normalized spacings. For $i, j=1,2, \ldots, n$ let $V_{i j}=1$ if $\bar{D}_{j}>\bar{D}_{j}, 0$ ofinerwise.
The test statistic is

$$
v_{n}=\sum_{\substack{i ; j=1 \\ i<j}}^{n} v_{i j}
$$

We reject the null hypothesis at the α level of significance if $v_{n}>v_{n, \alpha}$ where $v_{n, \alpha}$ is determined such that $P\left[v_{n}>v_{n, \alpha} \mid H_{0}\right]=\alpha$. (It is obvious how to modify the V_{n} test if the alternative hypothesis in that r is non-increasing rather than non-decreasing.)

Heuristically we may justify the test as follows. Under the null hyothesis it may be readily verified that $\overline{\mathrm{D}}_{1}, \overline{\mathrm{D}}_{2}, \ldots, \overline{\mathrm{D}}_{\mathrm{n}}$ areindepen dent exponential random variables with common pararneter say λ. Hesce $P\left[V_{i j}=1\right]=1 / 2$ for $i, j=1,2, \ldots, i \neq j$. However, as shown below, under the alternative hypothesis, $P\left[V_{i j}=j\right]>1 i z$ for $i<j, i, j=1,2, \ldots \ldots n$. Tr foct, each $V_{i j}$ did \bar{V}_{n} tend to be larger under the alternative nypothesis, so that rejection of tine null hypothesis occurs for large values of V_{n}. Since under the null hypothesis the distribution of V_{n} is known. we have available $v_{n, \alpha}$.

Distribution under the Null Hypothesis. Since uncer $\mathrm{H}_{\mathrm{G}}, \bar{S}_{1}, \bar{\Sigma}_{2}: \ldots$ \bar{D}_{n} are independently distributed, each having density $\lambda_{e^{-}} \lambda_{t}$, all ordexings of $\bar{D}_{1}, \bar{D}_{2} \ldots \ldots \bar{S}_{i 2}$ are equally likely. Using this prone Kendall (1938) provides tables for $P\left[V_{n} \leq k \mid H_{0}\right], n \leq 10$; more convenient tables are available in Mann(1045). Mann shows that f_{n} and σ_{n}^{2}, the mear and variance of V_{n} under H_{0}, are given by

$$
\mu_{n}=\frac{n(n-1)}{4} \quad \sigma_{n}^{2}=\frac{(2 n+5)(n-1) n}{72}
$$

and that V_{n} it asymptotically normal under $H_{0^{\circ}}$
Unbiesednesu of Test. We now show that V_{n} ne uriblaced, 1. e., that

$$
P\left[v_{n}>v_{n, x} \mid H_{1}\right] \geq \alpha \quad \text { for } 0<\alpha \leq 1, n=2,3, \ldots .
$$

Make the transformation

$$
X_{i}=\ln \bar{F}\left(X_{i}\right)
$$

If follows that

$$
p\left[x_{1}>u\right]=e^{-u}
$$

Thus each X_{i}^{\prime} is distributed according to the exponential distribution with unit mean. Moreover, since the $X_{1}, \ldots, X_{\text {a }}$ are independent, se a re the $X_{1}^{\prime}, \ldots X_{n}^{\prime}$ Next let $T_{1}^{\prime}<T_{2}^{\prime}<, \ldots<r_{n}^{\prime}$ represent the ranked
 let

$$
\mathbf{D}_{i}=(n-1+1)\left(T_{i}^{\prime}-T_{i-1}^{\prime}\right), i=1,2, \ldots, n_{1}
$$

where $T_{0}^{\prime}=0$ by definition. It is easy to verify that the D_{1}^{\prime} wo independently, identically distributed according to the exponential with unit mean. See for example Epatein and Sobel(1953) or Rónyi (1953).

Note that T_{i}^{\prime} ia all increasing function of T_{i} Moreover T_{i}^{\prime} is a convex function of T_{i} as shown in Theorem 4.1, Chapter Il of

Barlow and Proschan (1964). It followe that $\bar{D}_{i}^{\prime} \geq \bar{D}_{j}$ implien $\bar{D}_{i} \geq \bar{D}_{j}$ for $\mathbb{1}\left\langle j\right.$. Thua $V_{i j} \geq V_{i j}^{\prime}$ where $V_{i j}^{\prime}$, 1 if $D_{i} \geq \bar{D}_{j}$. Hence $V_{n} \geq V_{n}^{\prime}$. where $v_{n}^{\prime}=\sum_{i<j} v_{i j}$, eo that $P\left[v_{n} \geq v_{n, \alpha} \mid H H_{1}\right] \geq \alpha$ for $0<\alpha \leq 1$, $n=2,3, \ldots$. . implying that V_{n} is unbiased, as olaimed.

Asymptotic Dietribution under the Altarnative Hypothoaia. Under the altornative hypothasia, the anymptotic diatribution of V_{n} ia normal under mild rastaictions. If followe that V_{n} in a consiatent to at.

The usyrnptotic rolative efficiency of the V_{n} tout compared with variou posaible competing tostitiontudied in Pronchan and Pyke. in general, the V_{n} teat comparea guite favorably.

BIBLIOGRAPHY

1. K, J. Arrow, S. Karlin, and H, Scarf (1958), Studies in the Mathematicad Theory of Inventory and Pxaduction, Stanford Univerity Preas, Stanford, California.
2. R. E. Barlow and A, W. Marahall (1963a), "Bounda for distribution: with monotony hazard rate," Boaing Sciontific Rewarch Laboratories D1-87-0247.
3. R. E. Barlow and A. W. Marahall (1963b), "Tables of bounds for dietributione with monotone hazurd rate," Booing Scientific Ruabach Laboratosio: D1-82-0249.
4. R, E. Barlow, A, W. Marahall, and F. Proschan (1963), "Properties of probability dietributions with monotone hasard rate, "Annule of Mathematical Statietics, Vol. 34, No. 2, pp. 375-389,
5. R. E. Baylow and F. Proschan (1962), "Planned replacement," appearing In Studies in Applied Probnbility and Manerament Science, adited by K. J. Arrow, S. Karlin, and H. Scarf, Stanford Unlverdity Prasi, pp. 63-87.
6. R. E. Barlow and F. Pronchan (1963), "Comparimon of roplacemert pulicies, and renewal theory implicationa, " Boeing Sclentific Re oerch Laboratories Dl-82-0237, to appear in the Annala of Mathomatical Statiatics.
7. R. E. Barlowand F. Pascian (1964), Zuatinematical Thoory of Roliability, John Willey and Sons, Nc: York, in preparation.
8. Z. W. Birnbaum, J. D. Esary, and S. C. Saunder (196)), "Multi.
 Vol. 3, No. 1, pp, 55-77.

4 if. Cramer (1946), Mathemutical Methods of Statintica Prineston Univaraity Pieas, Princeton.
10. R. F. Lrenick (1960), "Mathematical appects of the reliability problem," Journal of the Sociaty for industrial and A pplled Mathomaticn, Vol. 8, puges:125-149.
11. B, Epetein (1960), "Teuting for the validity of tue asoumption that the underlying dietribution of life ie oxponential, Part I, " Tochnometrion Vol. 2, pp. 83-101.
12. B, Epstein and M. Sobel (1953), "Lifo teating," Journal of the American Statieticai Association, Vol, 48, No. 263, 24. 486-502.
13. J. D. Eeary and F, Proschan (1963), "Relationehip between eystam failure rate and component failure dates, "Teghnometrics, Vol. 5 , No. 2, pp. 183-189.
14. B. J. Flehinger (1962), "A noneral modei for the reliability analysie of syatems under various preventive maintenance follelen, "Anngle of Mathernatical Statietice, " Vol, 33, pp, 137-136.
15. M. G. Kertin (1938), "A now maacure of renk correlation," Biometrika, Vol. 30, pp. 81-93.
16. L1. B. Mann (1945). "Nonparametrie testi painat trend, "Enonoytutrica, Vol. 13, pp. 245-259.
17. A. W. Mood (1950), Introduction to the Thoory oi Statintice, McGrawHil' Hook Company, Inc.
 Analyaig, Vol. 1, Springer-Voriag, Derinn.
19. F'. Pronchan (1060), "Oplimal ayatem aupply, "Naval Resaarch Lowistic: Quarterly, Voï. 7, No. 4, pp. 609-646.
20. F. Proschan (1963), "Theoretical explanation wiobserved decreasing falture rate," Teshnometrica, Vol. 5, No. 3, pp. 375-383.
11. F. Proschan and K. Pyke. "Teite formonotone fallure rate," in preparation.
22. A. Ranyi (1953), "On the theory of order atatiatice, "Acta Math. Acud. Science Huncher., Vol. 4, pp. 191-231.
23. G. Waise (1956), "On the theory of replacerient of machinery with a random fallure time," Naval Research Lopiatica Ouarterly, Vol. 3, pp. 279-293.
24. F. L. Welker (1959), "Relationehip between equipment reliability, preventiva maintonance pollcy, and uperating coats, "ARINC Menograph No. 7, Aeronautical Radio Inc., Washington, D. C.

25, M. Zelen and M. C. Dannemiller (196d), "rine robuatnene of life teating procedures derived from the exponential diatribution," Technometrics, Vol. 3, pp. 29-49.

UNBIASED ESTIMATES OF RELIABILITY WHEN TESTING

AT ONLY ONE EXTREME STRESS LEVEL

A. Bulfinch

Reliability Engineering Branch,
Nuclear Reliability Diviaion
Qumlity Aamurance Directorate
Picatinny Arsenal, Dever, Now Jereey

Abstract

Baned on the atressmetrength concopt of reliabillty for "one-ihot"Items, it is aseumed that an item cennot fall until the etresu equale or exceede the atrength. From thie premise and the following additional assumptions, methode are given for calculating unbiaced catimated of non-time depandent raliability: 1. The relation betweon the atress and utrangth standard deviatione are known approxdinataly. 2. A Eingle atrena loval if applied turing teating at approximately three standard daviationa from the average strese lovel.

3. The atress and atrength diatributione are normal.

Calculatione are included to show the effect of arroxa In tha arsumptions :oncerning the itandard deviations, applied etresa laval, and roinding-off orrore.

This approach further reduces the sample wize requirud tn demonatrate nigh non-time dopendent reliability in lahoratory tanating. It has the willad advantage of obtaining unblased eatimatea of reliability with the exmplect oiteating methodn.

1. INTRODUCTION: The pressure aitime and money In rellabilthy teating requires a never onding quest for aimpler methode and amaller emple iven. Recent work at Picatinny Arsenal hay auggented mother contribution to this effort.

The uouml interpretation of ampie resulte for the determination of non time dependent reliability, when only metribute type date can be
obtained, is based on the binomial dietribution. The usual laboratory method of testing is to apply a aingle level of strene to the sample. Under these condition very lierge dample niees are required to demonatrate reamorably high reliability valuen that may asiat. In addition, thia approach results in date very insenaltive to changes in rallability. Both of these characteriatica are contly whortcomings. However, the simple method of testing is an anoot.

The purpose of thif paper ie to deacribe a procedure that rotaing the simple teating method but requires ouly amall sample aises for any reliability lavel and produces data that is aeneitive to amall changen in rolimbility. Thi is accomplished by changing the'interpretation of the data and supplementing this, in a quantimbive way, with knowlodge grained from tho axperfence of working wilh an item bvai a period of time.

However, the mothod presented hure in limited to the laboratory datermimation of non-time dapenderit raliablifty when only eucoessfallure type of data can be obtained. Thin type of reliability is based on etrese-mtrength concept presented in an alalier papar (Ruforance l).

The procedurea proposind are an out-growth of recent work on Whi uvaluution of laboratory methoda by means of Morto Carlo sampling terhaiques. Thie work nowed that when only attribute date can be obtained that:

1. Tho olverved proportion of auccenses ir. a exmple obtained at a aingle ntrous leval is a blated entimatu oi the non-time dependent reliubility defined by the etrese-ntrength concept.
2. A ample obtained at aingle atress level cannot measure the average or etandard deviation of the atrengith distribution.
3. The obeerved fallure rate, obtalned at a aingle atress level measures the aren of the tail of the atrength curve to the left of (below) the applied atreen oxdinate.

From the above, it wan realieed that aample reaulta obtained at a eingle etresi lovel furnithed information about the utrongth diatribulion. Thin euggested the posebblity of making uee of thif lact for
obtaining unbiased estimates of reliability, with the very simple method of testing at atingle etrosis level, by changing the use made of ample results,
II. METHOD OF CALCULATION, The method of Calculation described below is bused on the normal deviate:

$$
T=\frac{x_{2}-x_{1}}{\sqrt{1_{1}^{2}+1_{2}^{2}}}
$$

Where: $\bar{X}_{1}=$ Average erose expected in use
$\bar{X}_{2}=$ Average strength
a_{1}^{2} - Variance of the areas distribution
$3_{2}^{2}=$ Variance of the strength distribution.
The previous work referred to above showa that precise and unbiased estimates of the true non-time dependent reliability can be olein. d by entering a table of areas under the standard normal curve with this calculated T-palue. This ie true of course only when the airway ard strength distribution u are normally distributed. The ionaltivity of this function to deviations from normality is yet to bu demonstrated.

Since tasting at a angle atman level cannot manure the wron"um and standard deviation of the strength distribution, the above formula was timepomed to in equivalent function an follows:

Let $X=$ Any applied treas level In
Luting. Then

Deaign of bixperiments

76

Whent mil $={ }^{2}$

$$
\bar{x}_{2}=\bar{x}_{1}=T_{1}
$$

$$
T=\frac{T_{1} I_{1}+m T_{2}{ }_{1}}{\sqrt{n_{1}^{2}+\left(m n_{1}\right)^{2}}}
$$

$$
=\frac{1_{1}\left(T_{1}+m T_{2}\right)}{1 \sqrt{1}+m^{2}}
$$

$$
=\frac{T_{1}+m_{2}}{\sqrt{1}+m^{2}}
$$

111. AgSUMPTIONS. The last formula can be used under the frillowing aswumberane:
112. The otrean and atrength distributione wre normal
113. Where mal $=a_{2}$ miaknown
114. The testing in done at a etresi of $\left.\left(X_{1}+T_{1}\right)_{1}\right)$ whare T_{1} in known approxinatoly.

$$
\begin{aligned}
& T_{1}{ }_{1}=X-\bar{X}_{1} \text { (for the atrese itatribution) } \\
& T_{2} * \frac{\tilde{x}_{2}-x}{i_{2}} \\
& T_{2^{\prime \prime}}=\bar{X}_{2} \cdot X \text { (for the atrenget dintribution) } \\
& \bar{x}_{2}-\bar{x}_{1}=\left(x-\bar{x}_{1}\right)+\left(\bar{x}_{2}-x\right) \\
& \text { - } T_{1}{ }^{a}{ }_{1}+T_{2}{ }^{\text {a }} \text { (by ouburitution). }
\end{aligned}
$$

Iv. DISCUSSION OF ASSUMPTIONS.

1. If there is ruason to question the ansumption of normality, appropriate diatribution free methode can be need. However, the form of the dietribution uhnuld be determined where pooplble.
2. Experience hae ahown that mis approximately two. The exmmpley given below show that the value of m can vary widuly before eerioualy affecting the accuracy of the remulting reliability value.
3. ($\bar{X}+T, y_{1}$) can be defined as the maximum atresa expected in uwe. Thin laval of triese la quadly known by the development engineer ox in apucified In the Military Characteriatica. Such a maximum gtrean can be defined statistically an the atrens occurring only once in a thousand or once in ten thousand times. An wuch, $T=3.09$ or $T=3.72$ respectively. The examplen given below nhow that T, can ilao vary widely before eeriounly affecting the ncouracy of the reaultant moliability valua.
V. USE OF MODIFIED T - FORMULA. In the above formula, T_{i} fe measurad by the observed failure rate of the sample teated at a single etrese level (X), Ite numerical value can be obtainad by entering a table of aroan under the atandard normal curve with the proportion of falluren in the ample, With this vilue determined and the velues of r, and at known or manigned, then alve formula cas be used witherat knuting X_{2} or σ_{2} the avorage and ataudard devation of the atrangth distiatribution.

The average and atandard doviation of the atroas diatribution mual $:$, aeparately determined. If thie information it not avallablo and rannot be determined, the determination of a numerical value for zeliability io imponsible.

V1. ACCURACY AND SENSITIVITY The Incentive for uning the proposed method of calculating reliablity is that it can furnieh consider ably more information about the exinting reliabllity than the usual way of uaing ample cuccese-failure reanlte. The uxamplea yiven in Table I show this quite well. Obtaininy 50% ample fallures in this method is not as bad as it might ieem. If the 50% point of the etrength curve in at the three $(\mathrm{j} .09)$ sigma point of the straes curve, the roliability equale .9162 (when mequals 2) - not 50%, the proportion of mecereese in the eample.

TABLE I

ACCURACY AND SENSITIVITY

"T-Formula reliabllity minue the obsurved proportion of nucceses in the sample.

The resulta in Table I show the sensitivity of the proposed method to changem in reliability values. A decrome of, 03 in the reliability at the upper end of the acale increases the number of failures in the ample of 22, from eero to alx. This in a angificant diference at the 95% confidence level.

The above cenaitivity ia to be compared with the inaenaitivity of the method of uaing the observed proportion of auccesane in the manple as the point entimaty of "reliahility". In thia method, where the binomial dietribution pertain", the euccese probability ("rellability") must decreage approxinately $0.23(1.00 .47)$ before the observed number of fatlures in the mample increamen a aignificant (0 to 5) amount at the 95% level of confidence.

The above comparimon of sensitivity showe that the propowed method ta menmitive to changes in rellability, That it, the propoued method can detect rolatively amall chanyea in reliability with mall emmple aizea, This is an important property for a laboratory inethod. It mana that emall differences between design modificationa and emall changea occurrling during storage can be readily deteoted.
VII. ERRORS DUE TO ASSUMPTIONS. The relative accuracien of the two mothad for determining reliability are shown by the "differences" given In Table I. These differencua are to be compared with the errori, reelliting from incorrect aseumptiona thown in rabie If. The aummption friors made here are the maximum oxpected in practice due to total - gnorance bbout the eyutem concerned. Any lenowledge gadned about a component $n \mathrm{~g}$ a $\because \because$ ytem through experionce will lhaprovo the aceuracy of the asemmpliung and thoreby reduce the rasultant errore. This kind of knowledge, from experlence, if nlways avallable and can be effertivibly whed in the proposed method of calculation.

TABLEII

EFFECT OF ASSUMPTIONS AS FALLURE RATE INCREASES

Seat Level:	$\mathrm{U}_{1}+\mathrm{T}_{1} \mathrm{~S}_{1}$
Standmrd Euviation:	$\mathrm{ms}=\mathrm{S}_{2}$

$\begin{aligned} & \text { FAILURE } \\ & \text { RA' } E(B / n) \end{aligned}$	m	T_{3}	$\underline{P}_{\underline{1}}$	T_{2}	\underline{T}	$\begin{gathered} \text { POINT } \\ \text { ESTMMATE } \end{gathered}$
. 02	1	2. 33	. 0100	2.05	3.10	. 99903
. 02	1	3.72	. 0001	2.05	4.08	. 99998
. 02	2	3.09	. 0010	2.05	3.21	. 99934
. 02	3	2.33	. 0400	2.05	2,68	. 99632
. 02	3	3.72	. 0001	2.03	3.12	. 99910

Man inum Exror:

Afnuming the most tavorable (highent reliability) condition when in fact the minat unfavorable, condilion actually exiate; $.99998 . .99632=+.00366$.

Median Errorst

As juming the median $(m=2 ; T, \sim 3.09)$ condition when the moat favorable (1) and Uniavorable (2) conditions exdat: (1) . $99934 . .99979$ $=-.00064(2) .99934-.99632=+.00302$

Effact af Asaumptions (continued)

$$
\text { Teut Level: } U_{1}+T_{1} S_{1}
$$

Stuadard Deviation: $\mathrm{ms}_{1}=\mathrm{S}_{2}$

FAILURE RATE $(\mathrm{b} / \mathrm{n})$	m	T_{1}	P_{1}	$\mathrm{~T}_{2}$	T	POINT ESTIMATE
.05	1	2.33	.0100	1.65	2.31	.99752
.05	1	3.72	.0001	1.65	3.80	.99993
.05	2	3.09	.0010	1.65	2.85	.99781
.05	3	2.33	.0100	1.65	2.30	.98927
.05	3	3.72	.0001	1.65	2.74	.99693
Maximum Error:						

Aseuming the mott favorable (higheat reliability) condition when in lact the most unfavorable condition actually exiets:

$$
.99993-.9892^{7}=+.01066
$$

Median Errore:

Assuming the modian $\left(m=2 ; T_{1}=3,09\right)$ conclition when the most favorable (1) and unfavorable (2) condition exist;
(1) $.99781-.99993=.00212$
(2) . $9978!\cdot .98927=+.00854$

Ftiect of Agsumptiona (cor*inind):

Tent Leval:	$U_{1}+T_{1} E_{1}$
Standard Deviation:	$\mathrm{mS}_{1}=S_{2}$

Donign of Experiment

FAILURE RATE $(\mathrm{b} / \mathrm{n})$	m	T_{1}	P_{1}	$\mathrm{~T}_{2}$		PONNT ESTIMATE
.10	1	2.33	.0100	1.28	2.55	.99461
.10	1	3.72	.0001	1.28	3.53	.99979
.10	2	3.09	.0010	1.28	2.52	.99413
.10	3	2.33	.0100	1.28	1.95	.97441
.10	3	3.74	.0001	1.28	2.39	.99157

Maximum Eryor:

Avouming the most favorable (higheat reliability) condition whan in fact the most unfavorable condition actually exints:

$$
.99979-.97441=+.02538
$$

Median Erross:

Asaming the median $\left(m=2 ; T_{1} a 3.09\right)$ condition when the mot favorable (1) and unfavorable (2) conditiona exiate:
(1) $.99413-.99979=-.00566$
(z) $.99413 \cdot .974+11=+.01972$

Efingt of Assumptions (continued):

Teat Leval:	$\mathrm{U}_{1}+\mathrm{T}_{1} \mathrm{~S}_{1}$
Standard Deviation:	$\mathrm{mS}_{1}=\mathrm{S}_{2}$

Denign of Experimente

FAILURF: RATE (b/a)	m	T_{1}	F_{3}	$\mathbf{T}_{\mathbf{2}}$	$\underline{2}$	POINT ESTIMATE
. 20	,	2.33	. 0100	0.34	2. 24	. 98745
. 20	1	3.72	. 0001	0.84	3,22	. 99936
. 20	2	3.09	. 0010	0.84	2,13	. 98341
. 20	3	2.33	. 0100	0.84	1.53	. 93700
. 20	3	3.72	. 0001	0.84	1.47	97558

Maximum Exxor:
Aasuming the mont favorable (highent raliablity) condition when in fact the mont unfavorable condition actually oxiuta:

```
.99936-.93700*.06236
```


TABLEIII

SUMMARY OF ERRORS

tailure R	ingrora Dur to Liaing Sampla Proportion of Successea ae Point Eatimate	Errore Jue to 	
. 02	+. 019	t. 004	+. 003
. 05	+. 048	4.011	1. 008
. 10	+. 094	+. 025	+. 020
. 20	+. 183	+. OH 2	+. 046

The sample errors in Table III were obtained by eubtracting ($1-b / n$) from the point estimates (in Tanle II) for $M=2$ and $T_{1}=3.09$, the median conditions. The assumption errors in rable Ill werc obtained by rounding off the corresponding errore in Table 1 H .

The data in Table lill show that both types of errori incrasio at the observad proportion of fallures (failure rate) increasen. Howaver, in each case the asaumption errore are lean than the ampling errora. The magnitude of the aseumption error: up through a failure rate of 0.10 is not groat enough to serioualy mifnct the reliabllity value. Some knowhedge of T_{1} or an will greatly reduce these errors in the calculated rellability.
VIII. EFFECT OF ROUNDLNG OFF TRRORS. When ample ainea are small, rounding off errore may be important. Thelr effecte at varioun fallure rates are ahown in Table IV and Table V,

TABLEIV

EFFHCZ OF ROUNDINC OFF ERRORS

(SAMHLE UALCULATMONS)

$$
\begin{array}{ll}
\text { Teat Lovel: } & U_{1}+3.09 \mathrm{~S}_{1} \\
\text { Standard Deviation: } & 2 \mathrm{~S}_{1}=\mathrm{S}_{2}
\end{array}
$$

b	n	b / n	T_{1}	P_{1}	T_{2}	T	Point EHEtimute
5	10	. 45	3.09	. 001	+,13	1.50	. 9332
		. 50	3.09	. 001	. 00	1,38	. 9162
		. 55	3.09	. 001	-.13	1.27	. 8979

b	n	$\underline{b_{1}^{\prime}}$	${ }_{1}$	E_{1}	$\mathbf{T}_{\underline{2}}$	T	Point E日timate
5		. 20	3.09	. 002	84	2.13	? m -1
	$7 n$	25	3.09	. 001	06	1.99	. 9767
		. 30	3.07	. 001	53	1.85	9678

$\underline{6}$	n	$\underline{b} / \mathrm{n}$	T_{1}	F_{1}	I_{2}	T	Puint Eatimate
5	50	. 05	3.09	. 001	1.65	2.85	. 0978
		. 10	3.09	. 001	1. 29	2. 54	. 4945
		15	3.09	001	1.04	2. 31	9876

Median Hyrora:

An ouming the madian $\left(m=2 ; T_{1}=3,09\right)$ condition when the moat favorable (1) and unfavorable (2) conditiona exist:

$$
\begin{aligned}
& (1) .98341-.99936=\ldots .01595 \\
& (2) .98341-.93700=+.04641
\end{aligned}
$$

TABLEY

SUMMARY OF EFFECT OF ROUNDING OFF ERRORS

Test Leval:
$U_{1}+3.09 S_{2}$
Standard Deviation:
$2 S_{1}=s_{2}$

EALLURERATE	MAXIMUMERROR
.05	.0006
.10	.0082
.20	.0128
.30	.0185
.40	.0250
.50	.0353

The errori ohnwn in Table Vare the differences between the max. imum and minimum reliability values for onch fallure rate (b / n). The method of calculating the maxinum and minimum values is baenci on the ansumption of rounding uff errorm of ± 0.05 in the fallure rate as shown in Table IV,

Although the sesumed zounding off error is the maximum expected, ite magnitude in not excesalve below a fallure rate of 0,30 . As shown in Table V, this type of orror also increases with the fallure rate.

1X. USE OF CHEBYSHEY'S INEQUALITY. There ie litte nY no Information available on the form of etrangth dietributions of moat misalles and miasile componentin. Furthermare, it is contly to obtain. It would be helpful if a dintribution free procedure auch ma Chebyohev' Irrequality could be uted. As uhown in Table VI, the uee of Chebywhev' inequality in the modified T-formula resulted in ridiculoue valuen.

TABLI VI

CHEBYSHEV'S INEOUALITY

Tent Level: $\quad U_{1}+T_{1} S_{1}$
Standard Deviation: $\quad 2 \mathbf{S}_{1}=\mathbf{S}_{2}$

Fatlure_Rate (b / n)			
0.50	T_{1}	P_{1}	T_{2}
31.62	.001	T	

The T Yiue of 15.4 shown in Tuble VI it to be compared with the Tivalue of 1.38 shown in 'rable 1 tor a fellure rate of 0.50 . From this, It is concluded that Chevyahev'e inequality cannot be ueed in this aiplication.
X. EXAMPLES. Previoun work (Raference 1) has shown thet tha true non-time dependent reliability of the aet of conditions uned in these wamplea can be obtained by mana of the following formula:

Where:

$U_{1}=$ True mean of the atsese diatriliation
$5_{1}{ }^{2}$ a True variance of tha atrean diatribution
$\mathrm{U}_{2}=$ True mean of the atrength diatribution
$S_{2}{ }^{2}=$ I'rue variance of the atrength distribution.

The reliability value obtuined by meann of the above formula was uned to determine the eecurecy of the following two mothode of uaing attribute data obtained from the application of a singlo atrese levali

1. Uning the obesrved proportion of nuccesses in the eampla as the reliabdily polnt eatirante
2. Uaing the obsorved proportion of fallures in the mample an a maneure of the area of the atrangth diatribution, bulow the appliad atrann, to abtain T_{2} in the T -formula.

The errore amoclated with the two mathods of using ample data are to be compared to how the practics) value of the method propesed here.

The condirions used in thim example are;

Strese	Strength
$U_{1}=10$	$U_{2}=42$
$S_{1}=5$	$S_{2}=10$

The true non-time dependent raliability tor thic eet of conditinne can be calculated as follow:

The true reliability essociated with thit envalue is 0.9979.

1. Firat Method

Using the obiesved proportion of auccesiet as the polnt eatimate;
If it ia aseamed that the toating la done at $U_{1}+3 S_{1}$, then the applied otrest will be equal to 25 undte, For the set of conditione dese eribed above, the portion of the atrength distribution below 25 unity an be found as follow:

$$
z_{2}=\frac{42}{T}=25=1.70
$$

Entering a table of areal under the ntandard normal curve with this Z_{2} valum, the following value is obtainudi

$$
P=.04 \times 16
$$

The earlier work reforred to above showe that this iutter vilua in the unpected fallure rate of the aingle-ntrese-leval method. The complement ci thin valuc (, 9554) wowid he taken at the "true" moun ralisebidty of this risthod. The diffirenco batwean 0.9979 and $0.95[4(u, 0425)$ is connidered the expected error of the aingle-atre: in-level method when the proportion of aucceases in the arapla is takion : the point entimate.
2. Second Mathod

Using the observed proportion of euccensee as a theasure of the wrea in the tail of the metrength curve:

The practical value of the method proposed hare can beut be demonatrated by calculating the magnitude of the exroze dae to the asoumptione made concerning m and Z_{1}. Uning the sot of conditione deseribad above, the variationy in m and Z_{1} usod below are the maxmum considered likely in practice. Therefore, the orroret in the rellabllity valuea caused by these variations are the maximum expected,

TABLE YH

VARIATIONS DUE TO ASSUMPTION BRRORS

Fallure Fallure Rate	${ }^{T}$	m	Z_{1}	\boldsymbol{P}_{1}	T	Point Eietimate
1/22	1.70	1	2.33	. 0100	2.85	. 9978
1/22	1.70	1	3.72	. 0001	3.83	. 9999
1/22	1.70	3	2. 33	. 0100	2. 35	. 9906
1/22	1.70	3	3.72	. 0001	2.79	. 9974

The following errare were obtained by calculating the differancal botween the true value and the point eatimaten ohown in Table Vil:

ERRORS

$\frac{2}{2}$	$\frac{2}{1}$	Differoncon
\vdots	2.33	.0001
3	3.72	.0020
3	2.33	.0073
3.72	.000	

Thede exrore are to be compared with 0.0425 , the error obtaiand when the nemple reault was used an the point entimate of iwh-time dependent rellability.

XI. CONCLUSIONS.

1. The proposed use of attribute data to eatiuate non-time dependent reliablity by the single-atress-level method is more accurate at all levela oi reliability then the unal method of using the proportion of accesaes in the sample a the rellability point estimate.
2. The proposed method is more menaltive to changes in reliability than the usual method.
3. The proposed method parmite the knowledge gainod through the experience of working with an Item to he usid in a quantiative way and. thereby reduce the ample size required to obiain an unbiamed entimate of rellabllity.
4. When the true reliability of an item in in fact an high an 0.995 (the unual value of Military Charncteriatica requirementa) and the strana in applied at the three-sigma level, the expected error in the proposed method in loun than 1.0%.

REFERENCES

1. Bulfinch A., "Evaluation of Varioun Lahoratory Mothode for Fיtermining Reliability", Proceading Fighth Confercnce on the Deaign me.

2. Lloyd, David K., and 'dpow, Myron, "Ruldability Management, Muthods, and Mathematic!", Prentice-Hall, Inc., Englewood ©ilsra, N. Y., 14 Ca .

COMMENTS ON THE STRENGTH OF REAL STRUCTURAL MATERIALS

Kenneth H. Abbott
Army Material Research Agency
Watertown Arnenal, Watertown, New Yark

[Kemarkn:] Following the talk by A. Bulinch the re was a lively Hiscuseion In the light of the queations posed the folluwing commenta should be of intereat to thowe attending Seanion I.

The moit common atrurtural materiale for military oquipment are metalu, Aa a reault, the following commence are apecifically related to atructural mutale and alloyil although they are applicable in a generic aense to other etructural matarialis.

The atrangth of an angineering alloy, or more genarally, the atrength diatribution for a apectile alloy and procesing treatment, is normally determined by tensile teating. During a tenalo test to determine the maximum atrean that can be lularated befora faliure occurs, the general heliavior of the alloy ie illuntratad achematically in Figure d, a typical etreaunetrain curve. The engineering yield etrength de defined as the strmas (load per initial area) after a predetermaned amount of plantic flow Lats taken place. The ultimate tenallo atrength is dofinnal as the atrons at thew maximum load, and norrably occurs after an addational amount of plentic fluw. After reaching the ultimate tonuilo atrengit, the applied load gencrally deceezef aus local nocking develope, hddicional plantic flow oceurs, and finally the specimen fractirpe. Strength, then, io normally determined by the plastic propertian of the matal and, per ne, in not related weacture.

Ideally, atructures should behave in a amilar fathion, i. s., ti: a mufficient load-carrying crosn esection ia available, the atructure mould ylad (undergo platic flow) before it fractures. Thin aimple approach, however, ia complicuted by the geometry of the utructure and asio-iared motrean flold, an woll an by falurication and proconming defecta such an small volis., inclualons, weld cracke, otc. In an actual atructure, the propagation of a crack from an esilating defect can reault in iructure of the metal before any appreciable general plantic flow taken place. An indicated schematically in Figure 2, fracture can occur at a atreas level
below the engineering yiold strength. Thim phenomenon of the occurrence of fracture without any general plastic flow if defined as "brittle fracture"

Hence, the assumption that component failure alwayd occurs when a particular atrength in exceeded (normally the yield strength) Is invalid. Numerous examples are reported in technical literature of both military and ctvilan structures that failed by fracture at nominal stress levela well below tho yjeld ntrength. Some instancos are reported where buch fracture fatluren of urrad at stess lovels of only 20% of the yield atrength.

Minuto defects from which brittle fracturea originate cunnot be eliminated by ron-destructive toating techniques for two reasons. The firat is that some auch defecti are below the resolution limit of the non-dentructive testing equipment. The eecond is that many defecte can originate mbequent to component manufacture by varioul time dependent processes wuch as corrosion, hydrogen embrittlement, ete. Hence, the design of structures which fall through plantic deformation rather than by fracture in a very difficult and complex procesa.

The following references a suggeated for adidiliusal datall.

1. American Society for Tenting Materialn, "Symposium on Effect of 'I'rthererature on the Brittle Behaviot of Metals," ASTM No, 158, June 1953.
2. "Conference on Brittle Fracture in Steel, " Weat of Scotiand Iron and Singl Inntitute, May 1953.
3. "Symponium on Preventica of Brittle and Lew Tomperature Failurea of Steed Componenta, " Watertowia Arannal Laboratories, May 1949.
4. Cottrell, A. H., "Theory of Brittle Fracture in Steel and Similar Metiols." Trumbactiona AIME, V 212, 195B.
5. "Fracture of Structural Metals," WAL MSS-48, Ju: 1962

TYPICAL STRESS-STRAIN CURVE

PREMATURE FRACTURE

THE COLLECTION, PROCESSING AND STORAGE OE DATA ON SERLALIZED NW ITEMS

Manired W, Krimmer*
Statistice and Analysia Section, Reliability Branch, OAD Pleatinny Areanal, Dover, New Jersey

The existence of a reguirement for atanderdised, unuble sieans of date collection and proceseing for Sexialiaed Nuclear Wapons Itema necesaltated the writing of a Quality Aseurance Instruction (RAI-PA-I) and two major computer programe, namely, an Error Program and a Summary Frogram. This papar will outhine the upplication of QAI-PA-1 to Serimlised NW Itemm, the fundmmentule of the Error and Summaxy Computer Programs, and the results obtained theretrom.

1. The Ouality Assurance Instruction standinrdises the methad of data collection for thoee werialised nuclear munition produced under the jurimdiction of the U. S. Army Munditone Commiand. The automatic data prow ceesing eyatem includem the wtandarbination of foxme, reeording mothoda, and converuion of dati to punch cards for trunumbum to Pleatinny Arsenal. Computation, anulytio and interpretation of the date for quality and rellability evaluation then takus place. The information collected for each itern includes meceptance data and performance renulta whell ma atockpile test information.
2. The OAI hat three primary purpoces.
a. The Reporting of Identitication Informmion and Teut Reavif.
h. The Eopurting nf Drawing Change Dercumente and Aasociated Sorial Numbe"e
b. The Reporting of Related Serial Numbern.

Following in a briaf explanation of the above reporte covering The Reporting of Identification Information and Tat Rowults lant, it being tha primary report of thim aystem, and diacusaion of the computer: yogreme and what is done with the results.
3. The reporting of Drawing Change Documente vuch es enginearing ordera and technical data change requaste and the seriallaed iteme pro-

[^2]duced under ench, was requetted by the reliability engineers at Picatinny Areenal to ald them in more accurately evaluating the atockpile reliability, This is done on reporting formi SMUPA NS-900 and NS-900A. The firat form (Fig. 1) SMUPA NS-900 is a 1 ecord of all Drawing Numberu, re. vistons andor EO'n or TDCR numbera. At the atart of production or production under a new contract, the contractor will limt all tide appropriate documenta under which proauction will begin. The ancond form (Fig, 2) SMUPA NS-900A lista all the aerial numbere of the components produced under the drawing, revimion and/or EO' or TDCR'a recorded on the firut form.

Upan recefpt of one or more EO' (or TDCR'由), another primary aurd form, SMUPA Form 900, in filled out liating these additional RO' (or TDCR'u), A listing of the nomponent uerial numbere for units produced under the new EO's (or TDCR's) le then recorded on a new eecondary eard, SMUPA Form 900A. When additional FO's (or TDCR'a) axe recelvad, enother primary card form it completed listing only the ade aditicnm, Simiderly, a listing of the component serial number, for unite produced under theme EO' (0. TDCR'm) is recorded on now mesondery card,

Thim procedure ie continued until three montha have elapeed. At a logiral point in production (1.4., prior to incorporation of a new EO (or TDCR)) all the preceding primary carda and their asociated secondary carda are formarded to Picatinny Areenal in punch oard format. The above prow cedura in then repated, beginning with an intial primary card linting all the denwing numbera with their up-towdate revialons, and Englacoring Ordes Numberm (or Technical Data Change Requeate) not yet asociated what a drawing change, under whio. production will be continued. ihie procens la reveated contirusully every three inowits or until the end of production. The information in then put on punched carde and abmitted by the producor.
\because The Reporting of Related Serial Numbere ie neceneary to maintain all accurate uputondate record of what allsembiy an ltem is a purt of throughout ite life cycle and what itums make up aponific assambly, Thie intirmation is required by MUCOM through direution of the Army Matoriml Command. The information is reported on SMUPA NS-901 (Fig. 3) and line the eerial numbere of all the componente making up x apecific aisembly. This information is aubmittad by the contractor ansembling the item and by field paraonnel whenever a component is removed or replaced.
5. The last report, but moat impozitint, in the aystern, is the reporting of Identification Information end Teat Resulte. Thic information is roported on SMUPA NS-902 (Fig. 4). This it the basic documont for recording the reaulte of all the innpectione for which information is required. It containg all. information necesuary to identify the item such as, contractor, contract number, epec, number and date of inspection. It also containa the variables test resulte at celled for in the prachase description, it identifies the defect. and gives the dieposition of the item. Thie information le recorded by the itam centractor and aubmitted on punched cards.
6. To aimplify the Identification of the tasts celled for \ln the purchase deacription, aix digit "tent ddantification code" wae developed through numerous conferences with enginetre concerned. Thie esde io contined in the PD and in made up at follows. Since all the teste in the PD are called out in paragraph 3 and are numbered, for axampla 3. $10.1,3$, the firat digit aignifying paragraph 3 li omitted and the code bagins with the next two digite migmifying the first ubbparagraph. The noxt aubparagraph in then designated by a ningle digit and the lamt threen digite of the code are individual teate in numerical eequence. For example, 10/1/002 Identifiee the above paragraph and the second test within that paragraph. The coden are unique within PD'n but not among the varioun PD'm,
7. During the gathering of thil data by the item conwator, monthly whipments of punched cardi containing Identitacation Information and Teet Reatulte come into our office. Thest cmrde must be bieoked for vaxioull wrork in recording andor keypunching. This it ancomplishod by meanm of an Error Program. The intormation on the carde ia put on majnetic twie and fed into ins computior and the Eryor Pyongain checke each card, columin by column, for information which doos not belongs if all the earde are correct, analysation of the data taker place. If there are " "rorn in the cards, the computer wiil print out what the errore are and where to tinc them. The cardiare then corrected by us if the volume of cirropa la net ton great or they are ent back to the contractor fuc corruction.
8. If tho date is good, it is analysed. Thic io done ueing our Fammary program which tako: the data and computen the tollowing:
a. Liate all readinge which are out of epmeification limitu.
b. Computen:
(1) Mean
(2) Standard Deviation
(3) (土) $10,2 \sigma^{\circ}$ and 30 imits.
c. Printe out the mex, and min. values and the range.
d. Liste all rendirge outelde of the sigma limits.
P. Prints out a irequency dintribution based on ? slgman Ilmitu,
(i. Indicaten nkewness, which tente the normallty of the ourve.
g. End indicaten kurtosis which moneurev the fatnons of the ourve.

This summary program in dun los each lot of data recelved on a monthly batio.
9. A aocond type of soarch and Summary Program, providing the same output an the onw above is zun for the entixe production or for any epecial canal whore opecific informution. tirequired.
10. The resulte obtmined are then utudiad and interprated and areport is wititen. The reporty are lasued and a follow up action io maintalned. untli replies to the reports recommendetions are received indicating yome actlon being takan.

Whe data ie then retainca n.. manter tepoe and mored fry future ute.
It in folt that this ayatem in a guod one and it is intended to increase ite caumbilition and acope as future developmente ariee.

Kequentif tor copias of QAImPA-1 or any further infurmation nbout inis syetem hould be directed tol

> Commanding Officur Picatinny Arsenal ATTN: SMUPA-NRZ
> Dover, Now Jerney

APPENDIX B
STMPA-KOES NS-900 MAT O.

KELATED SEALAL NOMBERS REPORT (Comparient to Assembly, etc.) contanctr Widget Corp.

元
.

SECCKDART CABD	
F ASSOCIATION NUSBRR 4^{2}	$2^{3} 7^{4}$

SMUPA TOPI MS-901 MAY 63
ASSEGII HMPRTED XM 99 AK $=$

-
ET ASSOCTATION $4^{4} 2^{4} 7^{4} 1^{8}\left[W^{6} D^{7}\right.$

APPENDIX D
-

號

Pace 1 or 15 PAGE_1_OF_15

TEM XM99 AK contrtctur Widget

$$
\frac{L}{\operatorname{SRCONDART} \text { CLPD }}
$$

(5) Coppitster A. Wilson inspecior_. Kelly covit inspector J. North PRIMARY CARD IDRATIFICAIION INFOFAMTION

rra -
DENITFICATION

\%o.

 1931

T97

इанаs: 3 sumas
SMUPA-FORM NS-902 MAY 63

$$
\square
$$ ExAEKS: 3 $4196{ }^{9} 9$ ERMARSS:

FRODADILITY THAT SERDSS IS LOSS TIAANS STRENGTH AT PRESCRIBED CONFIDENCE LEVELS, FOR NORMALLY distributed data

E. L, Bombara
Engine Projects Office, Maruhull Space Flight Center

SUMMARY. Under cognizance of Marahall Space Flight Center, the atrean va. etrength concopt is often ompluyed in amall-sample teating during dealgn of engine aubsyatems.
 samples of expensive items, this paper presents methodi for estimuting probabillty that utreis does not exceed utrergth, with a preseribed levol of confldence. Tablen are provided to amplify calculatione of such probablitities.

Input data are the moan and atandard deviation of operating atraes from $n_{a s}$ testa, and the mean and atandard deviation of atrength from $n_{\text {th }}$ testa. Preciaion of these methods, based on upproximate resultu by Welch and Aupin, is indicated vi, wample sizea and ratlon of variancan. By examination of Tebleci and Il, ample oive required for: atrees and atrength teate can be determined. As one rnight expect, if $\sigma^{2}{ }_{\text {in }} / \sigma^{2}{ }^{2}>1_{1}$ it in beat to select $n_{\text {th }} \geq n_{n a}$ in order to achievo highent preciaion, and conversely for σ^{2} al σ^{2} thll (men Figure III), Compario von of analytical reaultu with computer almulations (Table I) have been made to Illuatrate the amount of bian of the method when the number of iouta le very umall; nay, 5 .

ACKNOWLE: Gimandis: The huthos would like to exprens hie sinenreappreciation to Musara Ravmond Heathcock and Dale L. Burrown for their findinge in Monte-Cario simulation of the strene-ntanetit problem before the writing of this paper. Their resultu, conlainediri chase prormedinge, wern almo presented by Mr. Burrowe ot the fitnth "onference on the Deaign of Experimente in Army Renourch. Development and Tosting. Giratitude do expreaned to Mr, Jomie Nickle, Floride. Licmarch and Development Canter of Pratt \& Whitney Aircraft fi: Tablo III (thken from reference 8) and to Dr. George J. Reandkoff for Tuble IV (taken from referance 7). The author would also like to expreas hillindebtednean to Mr. William Moore for Monte Carlo programming, Mian Deanna DeBerry for calculatione and charta, and Mian Linda Dillardfor typing.

INTRUDUCTION, Under the concept promoted by Robert Luser of the Army Ordnance Miasile Command (refoience 1), a meanure of aubgystom reliability can be eatimaled through measuroment of afety margin. when date ie normally dintributed. For example, duppose thet in develop* ment tedt of a apace vehicle the yinld point (atrength) of several pressure vessele of the same design (e. g., fuel tanks, thrunt chambera, ote, is menaured and that the operating environmental lovols of these (atrese) are mesaured in actual clightw or in atatic tonts. Cortuinly it would be comforting to know thit all measuromentio of the latter type ere dewe than all of the yiold pointe, at shown in figure i. The bell-ahnped cuive indicaten the aemumption that atresi and etrength values are normally diftributed.

Yigure 1
Moasuroment: of Streme and Strongth
We mipht be contented with this altustion, op, dopendent on the vehiclmimelon, we might atild fam the not-tou-remote chance that atresn exceede etrength on the next equipment to be tested. Certainly, il we observe overlap of the atrumsea and atrangthe we nhould be concermed. On the other hand, If all atrengthe excead ald atressen by a large amount, the dosign
might be wiaxed (reference 2). We are therefore intarested in the probw ability that strese in leas than atrength in a aingle mimaion. We mould almo be concerned with confidence lavel, due to the necesearily amall ample sizes.

Let un define the ubserved ecatter of atresses and atrengthe in terms of their reapective uample standard deviations; and ath, with corresponding obverved meanm, X_{s} and $X_{\text {th }}$. The probibility that atresin lose than strength may be demonstrated at a given conilidence lovel under the asumption of normally dietributed utrenees and atrongthe, as a function of
 brevity'a sake, define probability that atreas in lemn than strength am "atrean-atrength reliability," As indicuted in the appondix, streusn atrength ralinblity, R, uan bu demonetrated (or not) at a preseribed con.. fidence lo vel, C, in terme of $n_{\text {th }^{\prime}} n_{n}$, and the atntistic

$$
\begin{equation*}
\mathrm{K}=\frac{x_{t h}-x_{y a}}{\sqrt{w_{t h}^{3}+v_{u c}^{2}}} \tag{1}
\end{equation*}
$$

relative to K If $\hat{K} \geq K, R$ is demonetrated at confidance lovel C.
Thi e paper denle primarily with methode of finding X an a function
 of atrongtim, wetimatad iny in from $n_{\text {th }}$ obmeryational $\sigma_{i n}^{2}$ in the propulation variance of atrear catimated by nai from nam bbeorvationm.

LLUSTRATIVI IXAMPLTS.

If the number of atrewe and wtrongth moanurumonte are the wame, the proundur: ia relatively aimpla:

It ia desirad that $R a .99$ be damonatrated at 90% confidence. Data is an followa:

$$
\begin{array}{ll}
\vec{x}_{\text {E }}=7.22 & \bar{x}_{\text {th }}=13.28 \\
s_{\text {aI }}=1.040 & n_{\text {th }}=3.120 \\
n_{\text {E }}=n_{\text {th }}=n=7 .
\end{array}
$$

From (1),

$$
\hat{k}=\frac{13.28-7.22}{\sqrt{3.120^{2}+1.040^{2}}}=1.843 .
$$

Next calculate
Effective Sample Sire $\approx\{+1$
(2)

$$
\begin{aligned}
& \approx \frac{(n-1)\left(w_{t h}^{2}+n_{n}^{2}\right)^{2}}{4}+1 \\
& \approx \frac{6\left(3 \cdot 120^{2}+1 \cdot 040^{2}\right)^{2}}{3.120^{4}+1.040^{4}}+1=8.32 .
\end{aligned}
$$

Enter table III using confidence $90 \%, R \equiv .99$, and conservatively, effective ample aleamb to find $K=3.78$.

Since $\widehat{K}<K, 97$ intrers-otrength reliability is not deniunstrated at the 90% confidence level. Fieading to the riant in table III, we see that for $K=1.83, R=.84$, In hide case $R>K$, and, 84 stressatrangth reliability le demonstrated at 90% confidence. The $50 \% \mathrm{con}$ fidence Kuvalue for effective sample ale 8 in table III of 1,83 gives $R \pm 50 \%$ confidence $=.96$.

Case 2: $n_{\text {th }} \neq n_{\text {ait }} ; b=\sigma_{t h}^{2} / \sigma_{a t}^{2}$ Unknown.
If the number of atreus maanzemente, n_{n-1}, and strength measure montes, $n_{\text {th }}$ are not equal, \hat{K} is defined an in case 1 , but the procedure fur finding K is more complex:

Ueiag the data of figurel,

$$
\begin{array}{ll}
\bar{x}_{14}=7.22 & \bar{x}_{\text {th }}=13.28 \\
\mathbf{n}_{n=1}=1.040 & n_{\text {th }}=3.120 \\
n_{y 1}=9 & n_{\text {th }}=5
\end{array}
$$

From (1) $\hat{R}: \frac{13.28-7.22}{\sqrt{3.120^{2}+1.040^{2}}}=1.843$.
(Agaln, auppose we wimh to determine whether $R=94 @ C=, 90$), Erom a table of the cumulative normal diatribution (e.g., reference 9) find the one-vided value of $\mathbf{Z}_{R}=2.99=2.326$

Calculate the parameter of non-centrality of the non-contral t itatiotlet
(3)

Calculate mitective degreen of freedoras
(${ }^{11}$

$$
\begin{aligned}
& i=\frac{\left(n_{t h}{ }^{2}+n_{n}+n_{m a n}^{2}\right)^{2}}{\frac{n_{t h}^{2} n_{t h}^{4}}{n_{t h}-1}+\frac{n_{m m}^{2}}{n_{m m}-1}} \\
& \approx \quad 5.647
\end{aligned}
$$

Calculate
(5)
$n=\frac{\delta \sqrt{2 f}}{\sqrt{1+g^{2} / 2 i}}$

$$
=\frac{5.320 / \sqrt{11.29}}{\sqrt{1+\frac{5.320}{11.29}}}=0.8452 .
$$

Find λ in table N for $\epsilon=1-C=.10 \mathrm{ag} \mathrm{a}_{\mathrm{a}}$ function of η and f . interpolate linearly on η, then interpolate on $12 / \sqrt{h}$, unless $f<9$, in which case linear interpolation on f is eufficient (see reference 7). In this example, for f . 5. 643, two-way IInear intorpolation is aufficiont, giving $\lambda=1,362$.

Then
(6)

$$
k \approx \frac{\delta+\lambda \sqrt{1+\delta^{2} / 21-\lambda^{2} / 2 f}}{\left(1-\lambda^{2} / 21\right) \delta / z_{R}} .
$$

Note wiet δ / Z_{R} in the radical in equation (3).

$$
K \approx \frac{5.320+1.362 \sqrt{1+5.3201^{2} / 11.29-1.362^{2} / 11.29}}{\left(1-1.362^{2} / 11.29\right) 5.320 / 2.326}=4.14 .
$$

Since $\hat{R}<K, 99$ atreses-strenyth reliability is not demonmetratad at the 90% conficiance level. By trial and error we may reduce Z_{R} enough that R iu demonairated at 90% confidence; 0 . g let $Z_{R}=.8779$. corzosponding ic $R=$ $0.81 \hat{\delta}=5.320(.8779) / 2.326 \div 2.008$. Then

$$
n=\{2.008 / \sqrt{11.29}) / \sqrt{1+(2 . \cos)^{2} / 11.29}=.5130
$$

for $\epsilon=0.10$, table IV gives $\lambda=1,357, K=1$. 324. Since $\hat{K}>K, 0.81$ strese-atrength reliability i demonetrated at the 90% confidence level. Similar calculations ahow that at the 50% confidence level (use $\in=.50$, table IV), the demonstrated F is 0.96 .

If the event that $f>9$, the interpolation procedure for λ may be accomplished by interpolating on η firnt, then on $12 / \sqrt{\text { I }}$. For example, suppose $f=15.0, \eta=0.8251$. For 90% confidence, find $\epsilon=0.10$ in table IV. Then interpolate In table IV as followis

$12 / \sqrt{1}$	4	3.873	3
π	1	9	15.0
0.8	1.3526		16
0.8251	1.3538	1.351	1.3395
0.9	1.3540		1.3398

After linear interpolation based on η, the horizontal interpolation is based on $12 / \sqrt{\text { R }}$, resulting in $\lambda=1.351$.

Cate 3: Equal or Unequal aample Sizes, b" $\sigma_{\text {th }}{ }^{2} / \sigma_{\text {as }}{ }^{2}$ Known. If the ratio of variancen, $\sigma_{t h}^{2} / \sigma_{\text {an }}^{2}$ is known, but the leved of anch varianco 1 unknow n, the procedure for finding \hat{K} ic the wame as in casey 1

If we aleo asame, however, that the ratio of population variancen, $u=\sigma_{t h}{ }^{2} / \sigma_{0 B}{ }^{2}=2.0$, K may be detorminod* as folluw s:
lisen
\qquad

* If $n_{\text {th }}=n_{a n}=n_{1} K$ is more eanily found by colving equation (2), sub-
 effective sample alae as explained in raae 1.

$$
\delta \leadsto z_{R} \sqrt{\frac{b^{2}+1}{b^{2}+\frac{1}{n_{B}}}+}
$$

$$
\text { FOR } R=.99, Z_{R}=2.326
$$

$$
\delta \approx 2.326 \sqrt{\frac{4+1}{\frac{4}{5}+\frac{1}{9}}}=5.450
$$

Waing equation (5),

$$
\eta \frac{5.450 / \sqrt{27.64}}{\sqrt{1+\frac{5.4502}{27.64}}}=.7201
$$

Linear interpolation on n with interpolation on $12 / \sqrt{1}$ (since $:>9$) in table IV ($E=0.10$) gives:

$$
K \simeq 4.65
$$

using aquetton (6), An before $\hat{K} \times K_{1}$ and $R=.99$ if not demonstratad. By tribe and error we may reduce R and the corresponding Z_{R} cutfi-
ciently to find hailfur $\bar{A}=85, \mathcal{Z}_{R}=1,036$ and $K-1,166$. Since $K>K, R=.85$ ix demonstrated \boldsymbol{R} the 90% confidence level. Similarly, $R=.96$ ti demonatrated at the 50% confidence level.
 If the level of each population variance, σ th and :- ${ }^{2}{ }^{2}$ la known separately, mamplitis variation in due only to $\overline{\mathbf{x}}_{\text {th }}$ and \bar{x}_{n}, the ample meana. Than

Denign of Exporimente

(9)

$$
\mathbf{R}=\frac{\text { \#th }^{-x_{0}}}{\sqrt{\sigma_{t h}^{2}+\sigma_{a s}^{2}}}
$$

Ansuming that $\sigma_{\operatorname{th}^{2}}^{2}=4.00, \sigma_{18}^{2}=2.00, x_{t h}=13.28, \%_{m a}=7.221$

$$
\hat{K}=\frac{13.28-7.22}{\sqrt{4.00+2.00}}=2.47
$$

Compute K from:
fobtained by oolving equation (15) after eubstituting $\sigma_{\text {th }}^{2}$ and σ_{0}^{2} for eth and a ${ }^{2}$, reapectively).

Where Z_{R} and Z_{C} are oritical valuee of the mandard normal deviste
axcoeded by $1-R$ and $1-C$, raepectively, fourd in a table of the chanulative normal diutribubion. Ansianing $R=, 99$ and $C=90$, den $Z_{R}=2.326$ und $Z_{C}=1,2.82$ (found in is normal distribution table ouch an raforence 9).

Then

$$
K=2.326+1.282 \sqrt{\frac{\frac{4}{5}+\frac{2}{9}}{4+\frac{7}{2}}}=2.510 .
$$

Since $\mathrm{K}<K, R=97$ is not demonetrated at the 90% confidunce level. Accordingly Z_{D} (and therefore K) may be raduced to 1.925 ($\mathbb{R}=973$), using equation (10) such that $K=\mathbb{K}=2.46$. Then $R=973$ is demonatrated at the 90% confidence level. In similer manier, $K=.993$ is demonetrated at the 50% coufidence leval.

PRECISIGN AND ACCURACY OF K. Preciuion in the critical value of K is dependent on whether the ratio of variances (or atandard deviationa) of atress and etrength is known. If this ratio is unknown ma in caseal and 2 above, the precieion is largely dependent upon the eample eivee uead in estimating the variances of atrese and atrength, maawured by the effective degrees of freedum, f. If the ratio in known, precibion in as good as the error in tablea III and IV. Accuracy of the critical value of K is a function of effective degrees of freedom, f, of the approximated $X^{2} ; L_{1}, i_{i}$ bles decreanesan fincreasen. It should be noted that K is a function of the ratio of $\sigma_{t h}{ }^{2} / \sigma_{; B}{ }^{2}: b$, not their levelu.

If the levels of each population variance are also krown, equation (10), case 4 above whow othat K is procinely and accuratoly determinad (no error, within limite of the tabulated cumulative normal diatribution). However, such knowledge in raie in practice. The remalader of this diacuasion will therefore be limited to caseal, 2 (unknown ration of variances), and care 3 (known ratio of variances) above.

ACCURACY FOR KNOWN RATIO OF VARIANCES (OR STANDARD DEVIATIONS. Whan the ratio b $\sigma_{\text {th }}{ }^{2} / \sigma^{2} A^{2}$ is linown, bian in the critical value of K, due to blasin f and χ^{2}, may be found by comparing ciritiral values of K as obtuined in case 3 above with the more accurate valise of K obtained by Monte-Carlo simulation of equacion (1) (see referen. ce in, In dlluntration, examine table if:

TABLEI

ACCURACY OF K, KNOWN RATIO OF VARIANCES (OR STANDARD DEVIATIONS) ${ }^{2}$
$R=.99$

1	5	5	8.0	3.64	2. 421	$3.79,2.40$
1	7	7	12.0	3. 31	2. 389	3,45, 2, 40
1	9	9	16	3. 14	2. 372	3,22, 2, 34
1	20	20	38.0	2.83	2,3B	2. 85, 2, 35
1	5	9	12.0	3.47	2. 40	3, 48, 2, 406
1	9	5	12.0	3.47	2.40	3, 47, 2.403
3	3	9	8.7*	3.67\%	2. 44*	$3.78,2.44$
3	7	7	9.6	3. 63	2.41	$\left\{\begin{array}{ll} 3.30, & 2.43 \\ 3.54, & 244 \end{array}\right\}_{(\text {rep, })}$
3	9	5	10, 5	3. 39	2.40	$3.41,2.42$
3	20	20	30.4	2. 87	2.33	2. $89,2.33$
9	5	9	5.6	4. 21	2.52	4.22, 2. 53
9	7	7	7. 5	3.67	2.45	3. $69,2.45$
1	50	50	98.0	2. 64	2.32	$2.64,2.32$

Comparisone with Monte-Carlo molutions indicates that when b>9 eample uiven for which $f \geq^{5}$ glve very high accuracy; when $b \geq 1, f \geq 20$ gives very high accuracy of the analytical molutions;
*Theec resulteare based on datm of ilgure If of ${ }_{i}^{2}$ ahould happen to equal $\sigma_{1}{ }^{2}$ 。

PRECISION OF K FOR KNOWN RATIO OF VARIANCES OR STANDARD

 DEVIATIONS). Whon the ratio $b=\sigma_{\text {th }}^{2} / \sigma_{\mathrm{si}}^{2}$ is known f, δ, η, and K in case 3 are uniquely determinud, within the precision of table III and IV. This in roadlly meon by examination of equations (7), (8), (5), and (6),
PRECISION OF K FOR UNKNOWN OR ASSUMEDRATIO OF VARIANCES

 LOR STANDARD DEVLATIONS). In the absence of knowledge of b in the relationship $\sigma_{t h}{ }^{2}-b \sigma_{0}^{2}$, lack of prectaion in K is due to the use of n_{1}^{2}, the sample estimater of σ_{1}^{2} in equation (2) in case 1_{1} and (3) and (4) in case 2. K wan also obtained through Monte-Carlo simulation of equationa (2) through (6), obtaining 2000 eatimates of K as a function of 2000 rundom values of both $t_{\text {th }}{ }^{2}$ and $s_{n}{ }^{2}$, where $x_{t h}$ and x_{a} ware ampled randomly from normal diatribution with variancen $\sigma_{\text {th }}{ }^{2}$ and $\sigma_{m}{ }^{2}$, respontively, Table II below fllustrates the over-all precision of the method for the uase $R=.99, C=90$, It in of intereut to examine equation (7), Trable II or Figure III regarding f vi. K. For $n_{t h}+n_{y n}$ constant and the aseumption $b<b$, fincreasen ay $n_{\text {th }} / u_{a s}$ incoanes. Further, under will of these conditions that increase f, K decreases, permitting demonatration of roll. alsility at a higher confidance level (or higher reliability at fixed confidence).

PRECISION FOR UNKNOWN VARIANCE DATIOS

$\sigma \operatorname{th}^{2}$	$\sigma a a^{2}$	nth	n_{38}	E*	Contral 90 Porcentilaa of:	Cuntral 90 Percentithes of K
					5\% 25\%	5\% 93\%
9	1	5	9	5.6	4.44,12.16	-***, 3.96
9	1	7	7	7.5	0.32,10.35	3.46.3.91
3	1	5	9	8.679	5.26, 11.84	-**, 3.98
3	1	7	7	9.600	$\begin{aligned} & 6.98,11.54 \\ & 6.90,11.43(r .0 \mathrm{pop}) \end{aligned}$	$\begin{aligned} & 3.39,3.80 \\ & 3.39,3.81 \end{aligned}$
3	1	0	5	10.516	8,32,11.08	3.40,3.59
3	1	20	20	30.401	24.47,37.06	2.85,2.96
3	1	15	5	16.368	14.48,17.95	3.17,3.20
3	1	25	15	32.342	27.84,37.18	2,95,2.91
3	1	30	10	34.433	31.28,37.64	2,87,2,88
1	1	5	9	12.973	7.87,12.00	3,39,3.70
!	1	7	7	22.000	7.96,12.100	3.38,3.68
1	1	2	5	12.943	8.00,12,00	3.39,3.67
1	1	20	20	38.000	32.22,38.00	2.85,2.98
$!$	1	15	5	17.921	12.17,18.00	3,17,3.74
1	1	25	13	37.996	31.79,38.00	2.43,2.90
1	1	30	10	37.969	31.93,38.00	2.87,2.0.
1	1	50	:0	98.000	90.46,98.00	2,63,2.64
F For Known Orthl reme						

Design of Experiments

Table II indicater that in the absance of knowledge of $b=\sigma_{t h}{ }^{2} / \sigma_{\mathrm{En}}{ }^{2}$, a minisum value of f of approximately 20 is requisodior reanonuble preciation of the 90% confldence entimate of R.

Figure III indicates what ratio of ample ines, $a=n_{\text {th }} / n_{\text {as }}$ might be nelected to obtain large ε and therofore high praciuion of K as a function of $b=\sigma_{\text {th }}{ }^{2} / \sigma_{a g}^{2}$ and $n e g$ 'The curvea in tigure III werd plotted by pulting equation (4) in the form

$$
\begin{equation*}
f=\frac{(a b+1)^{2}}{\frac{(a b)^{2}}{n_{a-1}}+\frac{1}{n_{n} a^{-1}}} \tag{11}
\end{equation*}
$$

Examination of this equation uhow the following limiting charactoriatices when $n_{m i}>1$;

Ae

$$
\begin{array}{ll}
b \rightarrow 0, & f \rightarrow n_{a \in}=1 \\
b \rightarrow \infty, & f \rightarrow n_{t h}=1 \\
a \rightarrow 0, & f \rightarrow n_{B E}=1 \\
a \rightarrow \infty, & f \rightarrow \infty,
\end{array}
$$

 fa2(n-1).

It is of interest to note that in figure III, If we can aswame only that
 levels of f, and thernitie consiatent precision for spectiod valuea of
 if $\sigma_{\mathrm{u}}{ }^{2}, \sigma_{\text {th }}{ }^{2}>1$, it 10 advantageouv to ielect $n_{w i}{ }^{2} / n_{\text {th }}{ }^{2} \geq$:

Tabla II nhowa the 5 th and 95 th percentilag of K for varlowe combinationm of $\sigma_{\text {th }}{ }^{2}, \sigma_{n-}^{2}, n_{\text {th }}$ and n_{n}, with correaponding f, For a ratio $e^{2} / \mathrm{s}_{\mathrm{an}} \mathrm{t}^{2}$, combinatione of $n_{\text {th }}$ and n_{m} may be eulected on the baeis of small differencen of the 5 th and 95 th percentlies.

If such cample sixey are prohibitive, a potable solution to the problern would be to determine rutios of variances of etrength end atyese din the bamif of experience. Determination of levele of each veriunce te unnacameary if the ration are known precisely. Then depondent upon $f, n_{\text {th }} n_{n}$ and b_{1} table I would indicate whether or not to une the Montan Carlo or analytical solution of K, as a furetinn of the permimable amount of bias in the malyti. cal mothod. As mentioned in raferonce (3), thil blat vanishell if ono of the variances is overwhelmingly larger than the other.

Appendix B

DERIVATIUN OF TIIE METHOD, Dennta $x_{t h}$ avatrongth, and x_{n} as utrenn, For bravity' sake, definm the probability that atresal lews than Htrongth an "streasmotrongth roliability, " E., Than

$$
\begin{align*}
R & =P\left(x_{11}<x_{t h}\right) \tag{12}\\
& =P\left(x_{t h} \times x_{11}>0\right) .
\end{align*}
$$

Asouming that $x_{t h}$ in diatributed normaliy with mann $\mu_{t h}$ and utandard devastion $\sigma_{\text {th }}$ that x_{n} is dintributed normally with mean $\mu_{\text {an }}$ and standarid deviation $\sigma_{i s}$, and that $x_{\text {th }}$ and $x_{g n}$ are indepundont, oquation (12) iniv bn writtan an (roferance 6):

Thi integral io whown in figure IV:

F'lgura IV
Strena-Strongth Reliability

In other worda quation (13) wtate that $x_{t h}{ }^{\prime} x_{\text {a }}$ In normaliy dive tributed with moan $\mu_{t h}-\mu_{\text {ar }}$ and atandard daviation $\sqrt{\sigma_{t h}^{2}+\sigma_{i u}^{2}}$, Actual etrenseatrength rellability in a function of the number, Z_{R}, of such atandard dovintions between 0 and the mean ($\left.\mu_{t h} \times \mu_{\text {ma }}\right)$. Cluaxdy, tho more standard deviationa by which $\mu_{\text {th }}$ - $\mu_{\text {as }}$ exceeda 0 , the higher the stressentringth reliability. When the population means and atenderd doviatione are known, etrenmentrength reliability io determined (100% conn fidence) from

$$
\begin{equation*}
z_{n}=\frac{\mu_{\text {th }}=\mu_{1}}{\sqrt{\theta_{\text {th }}^{2}}+o_{n=2}^{2}} \tag{1+4}
\end{equation*}
$$

i: which case R in obtained from Z_{R} (one-alded) uiling a table of the mormal diatribution

Unfortunately, we seldom know the popilntion mana and atundard deviation for use in equation (14). In such canes, wo can only easimate from namplea (but not leas than, say, 5) of $\mathbb{F}_{\text {th }}$ - Xen the eample entimate of the numerator of equation (14), and $\sqrt{e_{\text {th }}^{2}+\sqrt{2}}$, the ample evtimate of the denominator (\bar{x}, the wample rnean, denoten eutimate of $\mu ; m$, the eample atantin rideviation, denotea entimate of σ). Uaing auch nample
data, a procedure for demonstrating atrese-strength reliability at a given confidence level if an follow af Find a constant, K, large enough that
 etrengtheminumatrenn valuns $100 \mathrm{c} \%$ of the time. This may be eater mathematically an

$$
\begin{equation*}
P\left(x_{t: 1}-\bar{x}_{a t}-K \sqrt{a_{t h}^{2}+n_{t n}^{2}} \leqslant \mu_{t h}-\mu_{n a}-z_{R} \sqrt{\sigma_{t h}^{2}+\sigma_{n u}^{2}}\right) m C . \tag{15}
\end{equation*}
$$

 at loans R is demonstrated at confidence C,

Figure V
Reliabillty and Confidence

The approuch given harein for finding K is an application of theory developad by B. L. Welch and alwo invoutgetndiby dice A. Abpin. Mr. Welch developed a statistlc approwimataly dietributad ay- X^{2} (reforance 3, p. 31); which may be applied an followis in the blvasiate case:
(16)

Let

$$
m=\lambda_{1}\left\|_{1}^{2}+\lambda_{2}\right\|_{2}^{2},
$$

$$
\begin{equation*}
g \frac{\lambda_{1} \sigma_{1}^{4} / I_{1}+\lambda_{2} \sigma_{2}^{4 / i_{2}}}{\lambda_{1} \sigma_{1}^{2}+\lambda_{2} \sigma_{2}^{2}} . \tag{17}
\end{equation*}
$$

Ihen e/g in approximately distributed al X^{2} with 1 degrees of Areadom, where λ_{1} and λ_{2} aro conatante and

$$
\begin{equation*}
\therefore \simeq \frac{\left(\lambda_{1} \sigma_{1}^{2}+\lambda_{2} \sigma_{2}^{2} 1_{1}^{2}\right.}{\lambda_{1}^{2} \sigma_{1}^{2} / 1_{1}+\lambda_{2}^{2} \sigma_{2} x_{1}} \tag{18}
\end{equation*}
$$

(19!
Thu:

$$
\frac{g}{f} \simeq \frac{\lambda_{1} \mu_{1}^{2}+\lambda_{2} \sin ^{2}}{\lambda_{1} \sigma_{1}^{2}+\lambda_{2} \sigma_{2}^{2}}
$$

Ia sproximately distributed as $X^{2} / 8$. In e later pape. (referanin 4 , p. 245), Mr. Welch indicates that in the absence of knowledge of $\sigma_{i} i$ may tom netimated by raplacing each σ_{i} in equation (18) with ite antimates ${ }_{1}$.

The approximate non-central totatictic utilised heroin is defined in the usual mannor, gubethating $\gamma^{2} / f a \operatorname{dofined}$ above.

SOLUTION OF K, RQUAL SAMPLE SIZES, KNOWN OR ESTIMATED RATLOS (b) OE VARIANCES, If tho number of itrese ineanuramenth, n_{1} If equal to the number of etrength measurements, equation (15) may be written as:

By the method of raference 3 , equationn (23) - (26), the left alde of the inequality da approximately the non-central t ataliatio with parameter of non-centrality $Z_{R} \sqrt{n}$, which is the amme parameter used in caloulating table: of one-sided tolerance factori for normal distributions (bold-face values, table II of reference 5). Also, bectuse the right elde of the in equaldty is the same, K is obtained directly frem such a table, (table III) us a function of R, C, and affective sample aise. (Tabla III herein le the samo as the bold-face values of table II, referince B, but more com plete). Subetituting $\lambda_{1}-1$ and $f_{i}=n-1$ lnequation (18) above:

$$
\begin{equation*}
\left(\underline{\underline{i n}-i)\left(\sigma_{t h}^{2}+\sigma_{\Delta s}^{2}\right)^{2}} \underset{\sigma_{t h}^{4}+\sigma_{E B}^{4}}{ }\right. \tag{21}
\end{equation*}
$$

Which may be estimateduc deacribed in the nerraive following equatic. (19) as.

$$
\begin{equation*}
\pm x \frac{\ln -1)\left(0_{t h}^{2}+n^{2}\right)^{2}}{n_{t h}^{4}+n_{0}^{4}} \tag{22}
\end{equation*}
$$

$$
\left.\leq k \sqrt{\frac{\sigma_{t h}^{2}+\sigma_{n s}^{2}}{\sigma_{t h}^{2}} \frac{\sigma_{n s^{2}}}{n_{t h}}+\frac{\sigma_{n s}}{n_{n}}} \quad\right\}
$$

By definttion of non-central t, the quantity in breokets on the left wide of
 with parmmeter of nca-centralicy:

For $R>0.50,2_{R}$ in the poditive ono - mided atanderd normal deviato corresponding to R. If $\sigma_{t h^{2}}{ }^{2}=b \sigma_{n g}{ }^{2}$, equation (26) bucomed:
(26A)

$$
\delta=z_{2} \sqrt{\frac{0+1}{\frac{b}{n_{t h}}+\frac{1}{n_{n}}}}
$$

The effective degree of freedom, f, may also be obtained in the manner of equation (18), where $\lambda_{1}=n_{1}$

$$
\begin{equation*}
\frac{\left(n_{t h} \sigma_{t h}^{2}+n_{m s} \sigma_{s s}^{2}\right)^{2}}{t h^{4} /\left(n_{t h}-1\right)+n_{t s}^{2} \sigma_{s s}^{4} /\left(n_{n v}-1\right)} \tag{27}
\end{equation*}
$$

which may be estimated by:

An $n_{\text {th }}$ and $n_{s e}$ become large the approximation to the non-central distribution improves.

In the event that $\sigma_{\text {th }}{ }^{2}=b \sigma_{a s}{ }^{2}$, equation (27) becomes independent of the atmisdare deviations

$$
\begin{equation*}
t \simeq \frac{\left(b n_{t h}+n_{g n}\right)^{2}}{\frac{\left(b n_{t h}\right)^{2}}{n_{t h}-1}+\frac{n_{n g}}{n_{n_{2}-1}}} \tag{2BA}
\end{equation*}
$$

The cistucen now conical t value it now obtained frow while IV, an a function of $\hat{\delta}$ of equation (36) and f of equation (28), by the method of severance 7 as follow t:

First, compute
(24)

$$
n=\frac{81 \sqrt{2 i}}{\sqrt{1+\delta^{2} / 28}}
$$

Second, find λ in tribe If at a function of η, f and confidence $C=1=\epsilon$. Turn to the page corresponding to the appropriate value of \in. Then interpolate linearly between value of n. and linearly between values of i when $i<9$. When $i>9$, interpolate in $12 / \sqrt{1}$ between

Design of Experiments

value a of f . For constance levels between. 50 and, 95 and reliability level e of 50 or more, use only positive values of N (mae reference 7).

$$
\begin{equation*}
t_{1-\epsilon} \simeq \frac{\delta+\lambda \sqrt{1+\delta^{2} / 2 i-\lambda^{2} / 2 t}}{1-\lambda^{2} / 2 t} \tag{30}
\end{equation*}
$$

And, as indicated by equations (25) and (26), the critical value of K exceeded by 1 - Cis!
(31)

$$
K=\frac{t_{1}-\varepsilon}{\delta / Z_{R}}
$$

(Note that δ / z_{R} is the radical in equation (26), which has been come pouted in the process of calculation).

this table is reprodacod with germis ion tron tables ay Pratt 2 Whitaey Aitcraft Corperation

TABLE III: R-ت゙MCIORS											
SILE	$0.940 n$	0.9500	0.7800	0.9700	0.9800	0.9900	0.9950	0.9970	0.9990	0.4995	0.8978

thrie hil: r.factors
CORFDOENCE CEVEL $=0.1000$
 this inble is peproduced with permission from
Mable, ey prait \& whitney alrcraft corpolition
 fils that: is REPRODUCED with PERHISSION FROMtables ey prait \& whitney aircraft corporation

Targi III: X.factors

 this tafle is reproedced hith permission from
TABEIT: K-Factors

rame me li-factons

THIS TABLE IS IEPRODLCED WITH PIRMISSION FROLA
TABLES BY PIAAT \& YHITMEY AIRCRAFT CORPORATION:
TALIE III: R-Factors
 this tadite is reprcduced with peimisition from TABLES PY PXATT \& WHITNEY AIRCRAFY CORPORATION
Thate nl: K-Factons

sames fo machimate carcuaphom of a
$\varepsilon=.05$

$12 / \sqrt{1}$				4	3	2	1	0
	6	7	8	9	16	36	144	∞
-1.0	1.554	1.563	1.569	1.5744	1.5952	1．614：	$1: 6307$	1.6449
－． 9	1.553	1.561	1.567	1.5721	105923	1.6116	1.6292	1.6449
8	1.565	1.570	1.574	1.5787	1.5950	1．6：21	1.6289	1.6449
． 7	1.584	1.587	1.569	1.5910	1.0617	1.6150	1.6297	1.6449
6	1.608	1.506	1.607	1.6065	1.6109	1.6195	1.6313	1.0449
5	1.629	1.627	1062.4	1.6230	1.6212	1.0251	126333	1.6449
4	1.651	1.645	1.542	1.6391	i． 6322	1.6313	1.6359	$1.6 二 厶 卩$
3	1.668	1.662	1,657	1.6535	1．06428	1.6379	1.6387	－ 64449
2	1.680	1.674	1.670	1.6657	1.6525	incta	1.6417	1.6449
－0． 1	1.690	1.684	10679	1.6755	1.6610	1.6503	1．6448	1.6449
． 0	1.695	1.690	1．685	1.6828	1.6683	1.6558	1.6477	1.6449
$\bullet 1$	1.697	1.693	1.590	1.6875	1.8739	1．6506	1.6505	1.6449.
－ 2	1.697	1.695	1.693	1.6901	1.0790	1：0646	1.6529	1.6449
－ 3	1.594	1.693	1.693	1.6908	206806	1.6677	1.6550	1.6449
－ 4	1.690	1.691	1.691	1.6897	1.681%	1.6700	1．6550	1.64 .79
－ 5	1.685	1.687	1.687	1.6873	1.0618	1.6712	1.6581	1.6449
． 6	1.580	1.682	1.683	1.6839	106805	1.6714	1.6588	1.6440
－ 7	1.0574	11.677	1，67\％	1.6796	1.5782	1.6707	！ 0590	1.6449
－ 8	1.0668	11.672	1．674	1.6747	185.50	i 06691	1.6595	1.6449
－9	1.602	1.665	1．602	$1: 5694$	i． 06710	106667	1．6576	1.6449
1.0	1.655	1.660	1．0̂62	1.6638	1.6665	1.6634	1．655	$1:-4.449$

$$
\eta=\frac{8}{\sqrt{2 f} /} /\left(1+8^{2} / 2 f\right)^{1 / 2} \quad t=\frac{8+\lambda\left(1+8^{2} / 2 f-\lambda^{2} / 2 f\right)^{1 / 2}}{1-\lambda^{2} / 2 f}
$$

$$
t_{1-\epsilon}(\delta)=t_{\epsilon}(-8)
$$

tarles io bacharate calulation of a

$22 / \sqrt{2}$				4	3	2	1	0
	6	7	8	9	16	36	344	∞
-1.0	1.150	1.161	1.169	1.1765	1.2049	1.2319	1.2575	1.2816.
- 9	1.166	1.175	1.182	1.1877	1.2120	1.2358	1.2591	1.2816
-. 8	1.186	1.192	1, 198	1.2018	1.2209	1.2408	1.2611	1.2816°
. 7	1.208	1.212	$1-214$	1.2175	1.2310	1.2465	1.2635	1.2816
. 6	1.231	1.231	1.233	1-234.1	1.2418	1.2526	1.2661	1.2916
. 5	1.252	1.231	1.250	1.2503	1.2526	1.2591	1.2688	1.2816
4	1.272	1.269	1.267	1.2657	1.2634	1.2656	1.2718	1.2816
. 3	1.290	1.286	1.233	1.2801	1.2738	1.2720	1.2748	1.2816
2	1.305	1.299	1.296	1.2931	1.2836	$1=2784$	1.2778	1.2816
-. 1	1.318	1.313	1.304	1.3048	1.2726	1.2846	1.2809	1.2816
$=0$	$1-329$	1.323	1.319	1.3150	1.3009	1.2903	1.2638	1.2816
-1	1.339	1.332	1.328	1.3236	1.3084	1.2957	1.2866	1.2816
-	1.346	1.340	1.335	1.3309	1.3149	1.3007	1.2893	1.2816
- 3	1.351	1.346	1.341	1.3369	1.3207	1.3053	1.2919	1.2816
-4	1.354	1.350	1.345	$1 \cdot 3417$: $\cdot 3256$	1.3093	1.2043	1.28 .6
-	$1 \cdot 357$	1.353	1.349	1.3455	$1 \cdot 3297$	1.3129	1.2965	1.2816
.6	1.360 1.361	1.355 1.353	$1 \cdot 352$	1.3485	1.3331	i. 3159	1.2984	1.28! 6
. 7	1.361 $1.30<1$	1.353 1.359	1.354	1.3509 1.3526	1.3338 1.3392	1.3195 1.3207	', 2001	1.2916
109	1-353	1.350	1.35 1.35	1.3526 $:-3540$	1.3392 1.3398	1.3207 1.3220	1.3016 1.3028	1.2 .816 1.2815
1.0	1.364	1.361	1.358	1.3554	1.3413	1.3240	1.3028 1.3034	$\begin{aligned} & 1.2815 \\ & \therefore: 2516 \end{aligned}$

$$
\eta=\frac{8}{\sqrt{2 t^{*}}} /\left(1+8^{2} / 2 x\right)^{1 / 2} \quad t=\frac{8+\lambda\left(1+8^{2} / 2 p-\lambda^{2} / 21\right)^{1 / 2}}{1-\lambda^{2} / 2 f}
$$

$$
t_{i-\epsilon}(8)=t_{\epsilon}(-8)
$$

faeles to macmante chegiation of a

$12 / \sqrt{\text { P }}$				4	3	2	I	0
－	6	7	8	9	16	36	144	∞
－1．0	． 673	． 686	． 697	． 7055	27408	． 7753	． 8089	． 8416
\cdots	－シラッ	． 71.	0715	． 7261	． 7551	． 7841	． 8129	． 8416
－． 8	． 726	． 734	． 741	． 7460	． 7690	． 7926	． 8108	． 8416
． 7	． 750	． 757	． 761	． 7649	． 7821	． 8007	． 8206	． 84.16
6	－ 773	． 777	． 780	． 7824	07944	－ 8083	． 8242	． 8416
5	－ 794	． 796	． 797	－ 7987	－8059	－8156	－8278	－84：6
－． 4	． 814	． 814	． 813	． 8138	－ 8160	－8225	． 8308	－8416
－． 3	． 831	． 829	． 828	－．8278	－62\％	－8291	． 8340	－6436
－． 2	－848	． 845	． 843	． 8409	－8367	c 9354	．8371	． 8416
－． 1	． 863	－859	． 856	． 8532	－0359	． 8415	． 8401	． 8416
． 0	． 677	： 071	． 868	． 8648	． 8547	． 8475	．8431	． 8416
－1	． 890	． 884	－880	． 8759	． 8632	－8532	． 8460	． $841{ }^{\circ}$
． 2	． 902	． 895	． 890	－ 8864	． 8715	－8589	． 8489	． 84.16
$\cdot 3$	． 913	． 907	． 901	－8964	． 9795	－ 6005	．0519	－8．${ }^{-}$
－＊	． 924	． 916	． 911	． 9001	． 8873	． 8701	－ 850	－\because
． 5	－934	－927	－ 920	． 9156	．8950	－ 2.55	． 8576	．86．16
． 6	－945	． 37	－ 590	． 9849	－9020	－86i：	－2505	$\cdots+15$
.7	－ 555	－947	－900	－9342	． 9103	． 2067	． 0637	－80．36
－8	－ 955	． 957	－can	－9433	． 9180	． 8924	． 8663	． 3416
－ 9	． 976	－966	－959	－9526	－9260	． 8983	－2？00	－9416
1.0	． 986	． 977	． 969	． 9623	－934：	． 9044	．8734	－0．14

$$
\eta=\frac{8}{\sqrt{21}} /\left(1+8^{2} / 2 t\right)^{1 / 2} \quad t=\frac{\delta+\lambda\left(1+8^{2} / 2 r-\lambda^{2} / 2 f\right)^{1 / 2}}{1-\lambda^{2} / 21}
$$

$$
t_{1-\epsilon}(8)=t_{\epsilon}(-8)
$$

Tades 70 pachmate garcuanon or a

$$
\eta=\frac{8}{\sqrt{2 f}} /\left(1+6^{2} / 2 x\right)^{1 / 2} \quad t=\frac{8+\lambda\left(1+8^{2} / 21-\lambda^{2} / 2 p^{2} j^{2}\right.}{1-\lambda^{2} / 2 p}
$$

$$
t_{1-\epsilon}(0)=t_{\epsilon}(-\sigma)
$$

thbes to rachmate carchenton or a

12/ $\sqrt{1}$				4	3	2	1	0
η	6	7	8	9	15	36	144	∞
-1.0	-000	. 1375	.057	. 0954	. 1362.	$\cdot 1755$. 2146	. 2533
9	. 089	. 101	. 110	. 1197	-1534	. 1869	. 2202	. 2533
-. 8	. 116	. 126	. 135	.1411	-1692	. 1972	. 2252	. 2533
-. 7	. 141	. 149	. 155	-1607	. 1836	. 2065	. 2298	. 2533
-. 6	. 163	. 169	. 174	. 1786	. 1957	. 2151	. 2339	. 2533
5	. 183	. 187	-192	- 1948	- 2086	- 2229	. 2378	- 2533
-. 4.	. 201	. 204	. 207	. 2096	. 2195	. 2301	. 2413	. 2533
-. 3	. 219	. 220	. 222	. 2233	. 2297	-23̣́a	. 2446	. 2533
-. 2	. 234	. 235	. 236	. 2362	. 2392	. 2431	. 2478	- 2533
-. 1	. 249	-249	. 248	-2484	. 2484	. 2491	-250e	=2533
- 0	- 264	. 262	-262	. 2604	. 2573	. 2551	. 2537	. 2533
-1	. 279	. 276	+274	. 2723	-2ธธz	:2610	. 2567	. 2533
. 2	- 293	- 289	-297	- 2844	. 2753	. 2670	. 2597	- 2533
-3	. 309	- 304	- 300	. 2968	- 2845	.2753	. 2629	. 2533
. 4	. 324	. 318	. 314	. 3097	. 2943	. 2798	,2661	. 2533
. 5	. 341	. 334	. 328	. 3233	- 3045	-2865	. 2696	-2533
. 6	- 359	- 25 :	-543	- 3378	. 3155	. 2940	. 2.2733	. 2533
¢ 7	-379	- 368	-360	-3523	$43 ¢ 73$. 3020	. 2773	. 25.33
-8	- 397	. 326	-3\%7	- 5750	. 3400	. 3106	. 2818	. 25 :33
$\cdot 9$.418	. 406	. 396	- 3877	. 3538	. 3201	. 2860	= 25.33
1.0	.441	. 427	. 416	. 4067	-3686	- 3303	. 2919	. 2533

$$
\eta=\frac{8}{\sqrt{2 r}} /\left(1+8^{2} / 2 r\right)^{1 / 2} \quad i=\frac{8+\lambda\left(1+8^{2} / 2 p-i^{2} / 2 R\right)^{1 / 2}}{1-\lambda^{2} / 28}
$$

$$
t_{1-\epsilon}(8)=t_{\epsilon}(-8)
$$

fables to dachizate calcuramoin or a

$\sigma=.50$

$12 / \sqrt{8}$				4	3	2	1	0
\dagger	6	7	8	9	16	30	244	∞
. 0	.000	. 000	. 000	. 0000	. 0000	. 0000	. 0000	. 0000
-1	.015	.013	. 012	.0119	. 0089	. 0059	. 0030	. 0000
- 2	.030	. 028	. 026	. 0242	.0181	. 0120	. 0060	. 0000
. 3	. 046	. 042	. 039	. 0369	. 0275	. 0182	. 0091	. 0000
. 4	. 063	. 057	- 34	. 0504	. 0376	. 0250	. 0124	. 0000
- 5	. 080	. 074	. 697	. 0648	. 0483	-0320	. 0159	. 0000
. 6	.099	. 092	. 085	. 0804	. 0590	. 0397	. 0168	. 0000
, 7	- 120	-111	2104	. 0974	. 0726	. 0482	. 0238	. 0000
- 8	. 143	. 132	-123	- 1159	. 0865	. 0574	. 0286	. 0000
49	$\cdot 167$. 155	. 145	. 1361	.1017	. 0676	. 0336	. 0000
1.0	$\cdot 194$.179	.167	- 1578	.1182	. 0787	. 0393	. 0000

$$
\eta=(\delta / \sqrt{2 f})\left(1+\delta^{2} / 2 f\right)^{-1 / 2} \quad t=\frac{\delta+\lambda\left(1+5^{2} / 2 f-\lambda^{2} / 2 f\right)^{1 / 2}}{1-\lambda^{2} / 2 f}
$$

$$
\lambda(-\delta)=\lambda(\delta)
$$

REFERENCES

1. Lunser, R. Reliablity Throuph Safoty Marians, U. 3. Army Crdnance Miusile Command, Octoler 1938 .
2. Henthrook, R., and Burrown, D. L., Monte Carlo Application for Developing a Dasi rn Roliablity Goal Compatible with Smail Stimple Requiremonte, paper prosented at the Ninth Conference on the Dowign of Experiments in Army Reeearch, Development and Teating, October 23, 1963.
3. Welch, B. L, , The Generalization of "Studant "al Froblem When Several Differunt Population Variancoe ari Involved, Blomotrika, Vol. 34, 1947, pp. 28-35,
4. Abpin, Alice A., Tablen for Une in Comparisons Whone Accuracy Involve: Two Variances, Sopmrately \#inilmated, Biometriku, Vol. 36, 1949, Appendix by Welch, pp 293-296.
B. Bombarm, \boldsymbol{H}, L, ARGMA TR 2BLR, Rodablity of Complianco with Orie-aldad Specitioation Limite when Deti le Normally Diatributad. September 1B, 1961. Also conthinedin ARODR 62-2, Procueding of the Sevonth Conference on the Design of Eurerimenti in Army Recearah, Devolopment and Insting, August, 1962.
5. Norman, J. E., Eistimating Rellability as a Function of Stresu/Strendth Date, Army Rockot and Guided Miselle Agency, Pedstone Areanini, Alabama, Novempler 1961.
6. Reanikoff, George J., Techaical Repority5, Tablan to Facilitata the Computation of Percentare Point of the Non-Central $t=D$ whiL: $+i=n$, Applied Mathamatios and Statiatice Laboratorife, Stanford Univerolity, Callfornia, Oetnber 11, 1961.
B. Nickle, Dennis E., JWA FR 781, One-Sided Statietical Toioranre Factorg, Pratt \& Whitnmy Alrcraft Corporation, West Palin reach, Florida, October 1963.
7. Tubleg of Normal Probability Elinctions, National Bureau of Ennderde, U. S. Department of Cominerce.

STATISTICAL TESSING TECHNIQUES USED IN THE DEVELOPMENT OF IHE PRATT \& WHITNEY AIRCRAFT RL 10 ROCKET ENGINE FOR THE NATIONAL AERONAUTICS AND SPACE A DMINISTRATION

Harold J. Tiedemann
Pratt \& Whitnuy Aircralt
Flarida Research and Dovalopment Center

INTRODUCTION Pratt \& Whitney Alrcraft' experience in the development of many uitferemi kinde of propulsion syateme has dhown cloarly the necernity of a compretenaive development program of three to dive yeara to bring a new power plant from proliminary dealgn to operational capability. Rellible operation of such 4 sybtem io achievad by integrated andexperienced engineoring dosign and developmant toama, proven matufacturing methode, rifid quality and vendor control, and a aupporting field servicu. Emphaile muat be placed on a comprohensive teat program involving periaps thousands of tests of both individual componente and full-ivale engines. There le no mean to ryalise the full potuntial and reliable operation of a power plant or aytem except by a comprohonsive development program which involves many oyclen of design, teating, corructive dealgn, and reteating. The element of time cannot be factored out of this development cyele.

During the courne of mont auch development programe a number of complex problemi arise where the time involvad in teat evaluation can be minimized and morn complete information nblained by the wete of statistical teating techniques, Soveral roprecentative examples of heee conting technique have been used in the RLIO Rocket Engine Develupment Program being conducted for the NASA - Mar whall Space Flighi Genter. These inrlude Full Factoriala, Latia Sauproa, and Randorn and Multiple Dalance techniquas. The parpone of this paper in to dincura these techniques in detal!, pointing out their best areay of apolication ais well as thoir advantages and dimadvantages, and to dencribe neve..' TLI 10 engine development problems which were succeanfully solved by the use of these methode.

These include a Full Factorial to determine thrust control nettr. repoatability, and a partiol Full Factorial to provide additioni fuch pump atall margin. Also included la the deacription of a Latia Square lest program designed to determine the principul factore in controlling tranient thruil overshoot. Finally, a Random Balance tertis described which was used to determine mothory to control thruat control hyateresis and non-iinearity.

STATISTICAL TESTING TECHNIQUES.

A. THE FULL FACTORLALTES'「,

In the full Facturial testing technique, teate are mede with all posalble combinatione of the indepandent variables, therefore, all interaetion be $=$ tween parameteri will be Identified. Thua, Full Fartorial might be described an fully expanded version of the step-by-ntep appromeh. A Full factorial expeximent is dlluatrated as followa:

Suppose that there arn diree independent variablen, eanh at two levall, of which either the main atieut of aingle variable or the intermetion of two, or even three, of the variables hal an effect on the reatalt. The three Independent variables are denoted by A, B, and C and the lavale by the subicriptal and 2. The number of pownible combinations is $2^{3}-8$. A matrix, or block tent-plan representation of the Full Factorlal tent in givon al follows:

Trereare meveral advantages in running a Full-Factorial-denigned tent program. These Inslucie coinnlate information on innividual maln effects as well u ecumplate information on all interictions. Furthermore, for tha same number of teste, the Full Factorial approach gives a more precium entimate of the main effects than the itep-by-step approach. Tha Full Fatorial in the only tupe of designed experiment that will positively identify all interactionnamong the variables in the experiment, none of which nay be identified by the stap-by -utep approach,

The tegta munt be run in a random or nearnandom mannar to avold dictorting the results. An affect might be faleely identided as aignificent if runn at the low level of a varieble were made at one time and the rune at the high level wera made later. A shift in the meagured output from the firat to the second time period could be caused by any factorichanging with time. Occasionally it may appear imposalble to finioh a Full Factorial,or nome
uuppicinn suay exiut that a main offect of a single parmater rather then the interaction of eeveral perameters is the true remen for a given roult. If so, it may be more judicious to run the firot few teats \ln a predetermiaod mequence to gain the greatent prediminary information,

Full- Factorial-denigned experimentm have been uad many times in the development of the RL 10 thie report will diecuse two typen of Full Factorial experimente. The first of thene, whicris designated Full Fantorial A, concerne a test made to determine the rather complex intex. rolationshipe that exist betweon anginen and thruat controle. The acocond, which is dealgnated Full Factorial B, concerne an anmlog program to deter mino the imperlant parameters in atuel pump etall situations. Although not alrictly an ongine test program, Full Fictorial E ropronente the use of a limited Full Fectorial experiment in the analyale of sevoral para. moters to ovaluate theis contribution to fuel pump atall.

1. FULL FACIORIAL A,

The Full Factorial A test program was run to determine the thrust control wetting repatability from ungine-to-engine and to show the effect of sunning a eeries of preset thruet controle on a givan aingle engine. In thi mannar individual control and angine aharacteriatics wore damonmeratedindepondently, Ae a turther varieble, both hot and cold thrust control housinge and thruat chambers were run. A reprasontation of the plan ia given bulow. The independant variablea ware angine number, thrued. cancrol number, and thrunt control and chamber temperatures.

	Thauvi Contrnd A			Thrist Cuntrol B		Thruat Control C	
Engine	Trim Hot	Repat Hot	Repeat Cold	Repeat Hot	Rapcat Cold	nonumt dut.	Repent cisld
Engine II	"	"	11	"	11	"	1

Tha Full Factorial test program was juntified because both individual engine and thriat control effecte on engino trim eetting roparability had to be known so that apacific atepe could ba taken to improva trim anting and trin repaatability. Also, it was known that a graat dael of corollary information of the affect of thrust control characteristice on other engine perforinance parameters would be made avilable.

In this teat, both ongines wese trimmod to rated thruat sonditions with Thrust control A on the first run of the serles and two repeat rune made with the came thrunt control. Thrust Control A wes then bench celibrated and Thrust Controln B and C were stt to thif callbration. The rimaiaing rune of the plan were then mado. The affent that each thrust control asting had on individual run-tomrun trim repoatability and ongindeto-engine rea peatability was demonstrated in thi manezi alaming that all other Influences ware known of approximated. From thit tent, it wat ohown thet custom setting of thruat contuols appears to be iesmible although tran aiont thrust control pariormance and steady oteto rapeatablidty need Aurther in finition,

Additional conclusions are that the trim engino propeliant mixture ratio hail ast etabilimation time and iumpparently indopondent of atart frim let tomparatura. Howevar, atabilimation time for trim thrunt is indicetad at difforent values for a chamber cold atart than for a uhamber hot utart, Oher impertant enclueion on the effect af control charactesifitics on thrust over shoot, wite of accoleration, tublity, and repeatability resulted from thit test. Thruat control bonch techniques required"to premet thruet control for field operation wire detesmined.

2. FULL FACRORLAL B

Early in tho RL 10 angine development program il wase aparant that fual pump stadl wal an oocasional phenomenon of the engise; lita uecurcnoc was degendert on sevaral onvironmental and operational fuctors. Test expertince end analytical atudies indicated that at lasit 15 of these factore appeared to have a boarine e: pump tall. Ohviously, ever: $L i$ ine mumber of veluat per paramater wore lirnited to jurt two, the number of posilible combinatione of all of these fectere in a Full Factorlal would he a lerge number of teut runs (2^{15}) or a large number of analog machine runa (as it wa: (n thly cane).

Thi 15 factorn that moul affected pump atall ware:

1. Fuel pump bleed valve area; pumpinteritage and diecharge blued valvesalim ueed on the RLlO.
2. Fuel pump bleed valve closing erhedula; that is, the pointe in the atert trangient whers the bleed valve starte to cloae and where it finiahes clowing.
3. Fuel pump blade characterietics; that is, the amount of awsep in the first and second utagea.
4. The fuel pump inlet premsure at the start Aignal and throughout the trensiont.
5. Engine thrust control gain ․ weundly expresesed in term of yoi of chambur preseure por unit of inixture ratio variation.
6. The maximum thrust control bypasa arae that opene near the top of the atart tranaient lo limit engine overahoot by paneing fued arcund the prepollint drive iurbine.
7. The Lox pump pressure at which the mixture ratio valve on the Lox alde of the onglae opans.
8. Lox pump inlot proseure at atmet and during the otart tranviont,
9. The jucket metal tumperature that determines the amount of anergy maparted to the turbine drive of the RLIO.
10. Vonturi area upitream of the fuel turbine.
11. Turbine to venturi area ratio.
12. Fuel pump dincherge orifice diamoter.
13. Turbine efficiancy.
14. Fuel pump officiency,
15. The amount of time the thrust controlie open during the uve:: shoot control period.

To reduce the number of runn required to complete null Factorial ruat on these parameters, it way decided to concentrate only on thome factore that ware conaidered most important for the resulte of ine experiment. Based on avatiable experience, the we we (1) fuol pump discharge orifice diameter, (2) fuel-aide venturiarea, and (3) the ratio of turbine area to venturi arear.

A Fiull fiactorial experiment of 24 runi was made an the firat part of the analog program with four pump diacharge orifice diamoter valuen, throu venturi area values, and two values of the ratio of turbine arae to venturi area. Bocaune this was an analog program, there was nomdvantage in running thesa teate in arandom order. Baeed on the Full Factorial of 24 runt, optimum values of fuel pump diecharge orifice diameter, venturl area, and turbine vonturi area ratio ware chosen to give maximum atall mmrgln finting the utart tranalent. Although thene wore the mont importani factorn as indicated above, they wern not necussaily the only onen that could contribute to a etall altuation.

The remainder ni the analog program consistad of (d) holding the values of fuel pump dieshargo orifle diamoter, venturi axes, and tho ratio of turbine to venturd area at the values found optimum from the $\mathbf{z 4}$-run Full Factorial and (2) Independentiy varying each of the romaining parametera over a twe or three-value rangu. For example, the fuel pump bleed valve closing presente way varted betwaen 100 and 300 patia, the fual pump bloud arome wero varied betwean 0 and 0.2 aquare inches for the fuel purnp diecharge valve, and between 0.2 and 0.5 equare inches tow the fuol pump interatage valve. Similar variations ware mado in the tomaining parametero at aithar two or lince levela and the affect of each of theac parametara was evaluated. Basod un this, grant daal of vaiueble information wall gainud on the effect of each of these factore on pump ntall.

Somo of the parametore are not nosouarily controllable, Fow exampla, turbir and pump offlicienciesare not indapondent variablow but rather are variablea that aro depanderit upon deaign conulifaratione. Einough information was gained to greariy incrasa the wiall margin of the RL 10 engine as a result of this and eseveral uther experimente conducted both in the analog program and in the actual test program.

B. THE LLATIN SQUARE TEST

If there is evidence thatintaractions are not aignificunt belween the unverui influencing parametern, and if information of the main effect. of the eqeral parameters is what le mont desired, Latin square teitt program can be eft up in which the parametera arearranged as lllustrated in the cable on the next page, with three parmetera.

Perameter $1(a, b, c, d)$ Hurmater 2 ($A, B, \quad O, D)$ Paramater, 3 (I, IL, III, IV)

Here the three paramntarti wach at four levalp, we arranged in a 16 -teat exparlinent, Note that nauh main effect of hach of the three paramotuza in capable of baing evaluited maparately by the meries of 16 leate, (A Full Hisctorial would require 64 testm.) However, allinter. action (If exintent) between thene sevaral parametura ara mikn, driwith the niain offoctm. The advantage of a Latin Square prograim to that nist only are main offecta eatmblimed quickly but they uta whon uatablimed with a minimum number of runu.

An additiona! paramator may be deantified with the name number of runs as with the Latin Square by adding another variable to the Latin' Squar!. Thi Ia knowis de a Graeso-Latin Squanai, ading twn varipblen (5 total) would reall Hyper-Craeco-Latin tquare. Thosendational
 untimate of experimental arrori $i, 0_{1}$, the total ingree of fenednmis the mame for all throw dealgne, and oneh main offect requaras number of degrees of fresedom thatia one leve than tice numbed of fin levale in eatiginted.
 to mate duidio the experimunt, a priori, whatior or not an interaction may uxiet. Many phenome am have demonstrated the exinience of intaractions. Intaractions, wo andy noglected in conventional piginemix." analyous, can be quite insidious. Thoreform, Full Factorimenes
 "mhortecit" experimenta.

Thu following curve demonatratest the danger of ot consideastry interaclinns. X_{1} is the variable buing inveatigeted, and $X_{i d}$ is the unknown variable.

Reault y

Whale changing X_{1} fiom a low leval to a high lovel, if the unknown variable X_{u} happane to be ata high levol, we geta very miguificantappearing main affect of X_{1}, On the other hand, $i f$, while ohanging X_{1} from a low loval to a high loveh, X_{u} wore conatantat ite low lavel, we would disened X_{1} as boing completoly undmportani. Slere we have a atrong ($X_{j} \times X_{u}$) interaction, with posaible modarato main effecta of $X_{h_{0}}$ mad X_{j}. An objective eearch technique salled "variation remearch" in atiallable for finding unkuewn variables to put into atmintirady deaigned expusiaseate. Thio seneth techniqua in not demaribed in this papar.

During the earlier phasell of the RL 10 devalopment progrem, thruat. oumpahoot dering the engine atart tranalunt wan higher than doatrod limits on some runs. Three parametera that appared to aftect overshort ware thruat chamber metal temperature (which decermine tura bine fower on accolaration in the $R \perp 10$ regenerative cycle), thruat. control time conutent, and thrust control body or eervo presure. it was nacuenary to ascertain the main effecte of each of thee parametera ie quick!y as ponilble to determine where maximum development affort ahould bo axpended. Therefore, a eimple fourwrun Latin Square program was bet up. Since only four rune ware involved, the order of teate was not randumiaed. The program conelved of the following:

Prramoter	Levela	
Thrust control time conutant, econde	0.30	0.53
Thrust combrol body pressure at thrust control actuation, paia	55	70
Thrust chamber metal temperature, ${ }^{\circ} \mathrm{R}$	300	570

Thyust Control Time Constant

Note that this program requized only four rumn, while a Full Factorim would have required aight runn $\left(2^{3}\right)$.

From the remulte of this program it way determined that both thriser control corstent and body presure had important muin offecte ha deteratining theret oicesivot. The role of thrust ohamiser melal tomperature in determining overnhoot wne vorlfied.

Subsequent to thie program, development was continued on the thrus: :ontrol to limit thruit overahoot. Thie development affort requied the it :uming of several Full Factorled programe along the lineu auggented by the reuulte of the original Latin Square pregram.

C. THE RANDOM BALANCE TEST

If a largo numbor of fartore are belinved to bn influential in obtaining a certain redull, aimple rull Factorial may involve an excesesive number of tonts. For example, if there are 10 fectori each at three levela, a Full Factorial would requiroe total of 59,049 teste.

A random representative unmple of auch a Fiuld Factorial an the Random Balanco-deaigned axparimant can be weed to revoal the atronger main affecta and interaction of the 10 variables. The combinationt of levaly of emeh variable for asch teatera then choaen at random. If 30 toste were parmittod in thie datgn, than ach of tho 3 lovele of ench factor would be testod 10 times. A Random Belance deaign mey be analyzed with McBee adge punch cards, graphioal regresion analyain, and tests of significance, including amalyale of varianow.

If there are aumpoctedinteractionn betwean auverad factorn, a Multiple Balance-denigned experimant would, with almout no lonm, more completely ovaluatis such muspected interactiona. For example, if 3 of the 10 fectore are expected to be interaoting, the 3 varlables are inid out In a Fuld Pactorid, $3^{3 \mathbf{3}} 27$ teats, with three of thewe colle (choonn at randumi) ruplicatad or ropuatad for a total of 30 tests. The teata of this factorial are thun líuted in the random order of running and the remaining sevon varlablen have thair levelo randomly but equally dietributad throughe out those 30 runc. The anmlyeed are the emme with the exception of the malyole of the factorial. Thi factorial cambyole poaltively identifiee nignificant interactions. Although in theory aroat dalal of infoxmation about the internations of all of the parameters is loet, most problems yiald to this test appronch in practice because the one or two most imporiant factorif or combinationa of factora are weparatod from the unimp.rhant majority, Thim ansumen, of course, that the factore conoldered for the random or multipla balanco experiment were walmated with good engineoring judgment,

 eviderced by Gilure of the thriet control to repeat, for wucenasion rume, a glven solung of thrunt and mixture ratio during ataedyatate operation.
 reduced to 10 iacturt, whichure diated below, Factorn A, $\mathrm{B}_{1} \mathrm{C}$, and D wnro suapectod st boing moat important, while factorn A, B, and C wern sunpected to inieract. The number in parenthosid after unch of the tactacy indizatey the levelu of amch of the factore.

A Sellowe Aummbilea (4)
B Refarence Spring (2)
C Eall or Race Tuides (2)
D Bypari Valvo Azsambly (2)
E Bypasa Yalve Spring (2)

1- Lower Housing (2)
Q Feedback Springe (2)
H Reforence Spring Guidee (3)
1 Garriage (bellowa) (a)
J Method of Thruat Control Assembly (2)
A Fuli Factorial of the 10 factora woulel require 3072 teate ($4 \times 3 \times 2^{8}$) to obtain complete knowledge of all interactions. Since factori A, B, and C were suepected to interact, a Full Fectorial of thene factors was built into \& Random Balance experiment, thue making it a Multiple Balance experiment. It was pointed out hat analysid could begin on about the tenth tent.

The 32 teste are shown as follown, it will be noted that the Full Factozial of factore A, B, and C, with two replicates per cell, wore actually run with tho remaining factorn aelected at random, thus a Multiple Balance denign, as shown on the next page,

MULITPLE BALANCE DESIGN

Test No.	A	B.	C	D	E	F	\underline{Q}	H	1	\pm
1	1		-	-	$+$	+	+	1	1.	\pm
2	4	+	-	$+$	$+$	$+$	$+$	1	+	$+$
3	3	-	+	$+$	+	$+$	-	2	-	$\stackrel{+}{+}$
4	4	-	+	$+$	-	-	-	2	$+$	+
5	4	-	*	-	-	-	-	2	.	.
6	3	*	t	+	-	-	.	1	$+$	"
7	3	$+$	t	-	+	-	-	1	-	$+$
8	2	-	+	+	+	+	.	3	.	-
9	1	+	,	-	-	+	+	3	-	+
10	2	1	"	"	+		-	1	4	+
11	4	+	-	+	+	+	+	3	+	-
12	2	-	+	.	-	-	$+$	1	$+$	$+$
13	1	+	-	-	-	+	$+$	2	$+$	4
14	4	+	+	$+$	-	.	.	2	+	$+$
15	1	-	t	-	-	*	.	2	+	$+$
16	3	-	-	$+$	+	+	*	3	-	+
17	2	-	.	$+$	+	.	+	1	.	$+$
18	2	+	-	-	-	-	.	2	$+$.
19	2	t	t	+	-	+	*	3	,	-
20	4	*	-	-	+	.	+	2	.	-
21	1	-	t	-	-	-	-	1	1	+
22	4	-	+	-	-	-	$+$	3	.	+
23	1	.	$\stackrel{ }{ }$	-	-	*	+	3	+	+
24	2	-	.	.	-	1		1	-	$+$
25	3	+	-	+	+	,	+	3	+	-
26	1	-	-	$+$	$+$.	,	3	$+$	+
27	1	$+$	t	$+$	1	4	+	2	+	-
28	3	+	-	+	+	+	$+$	2	+	-
29	3	+	+	-	-	$+$	$+$	3	+	-
30	2.	$+$	4	$+$	-	-	-	3		$+$
31	4	+	+	+	+	$+$	$+$	1	-	+
32	3	-	-	-	+	-	-	2	-	.

Factur A at 4 levals: $1,2,3,4$
Factor H at 3 levela: $1,2,1$
Factur' B, C, D, etc. at 2 levela: "4" "_"

The results of the se teate mowed that Factora I (earriage), J (asecably), A (beilowa), D (bypase valve aesembly), and F (lower houning) have the greatent main effects. Intereatingly, an interaction between Factore A, B, and C was not concluaively demonstrated. The combination of leveln of the factore which gave minimum thruat control hysteresis we.n wufficiently cemonstrated by this test to onable a satiafactory eolution of the hyaternuia problem to be found. Thus, the problem was aolved in a 32 -run program in a far shorter tame thma would have been posmihin with the conventional cut-and-dyy testing techniquem.

CONCLUSIGNS. Great advantagei ara ponalble with atatistical tosting techniques if cortain guide lines aro observed:

1. The urge to believe that mid-program resulta have molved the problem in strong and must be renisted. The program munt be caried through to lta concluaion.
2. The teste munt be run in a random fashion even though thia is not nocessarily the fastent approach, for example, running the firnt: half of a program excluaively on Stand A, and the second half of a program on Stand B, may add a degree of confounding that would not have occurred if random stand changea had been made. If such tante munt be run in a nonrandom fartion, or in blocki, the remulta must be amalyaed with this in mind.
3. Statiatical teuting in not a aubalitule for sotind engineuriag judyment but eimply a method for obtaining the mont efficient teating program 'lhere is no conflict between suund engineering judgnant and atatatical wating techniques.

COMPUTER SIMULATION STUDY OF BRUGETON AND PROBIT METHODS OF SENSITIVITY TESTING

John B. Gayle
National Aeronautice and Space Adminiatration
George C. Marahall Spano Filight Center
Hunteville, Alabama.

SUMMARY, A computer simulation techniqur hus been used to ovaluate the uitability of the Bruceton and Problt methode of aensitivity testing for launch vehicle applicalions. The resulta indicatod that eithar mathod permite atiafactory estimatea for the mean value of a normal distribution, However, for launch vehicle appliontions, estimater of the levela of stimum Lut corresponding to very high or very low percentage reactions usually are requiredi neither method permit reliable entimaten for much level. when the distribution in non-normal, condition which oceute with suffictent frequency that aswumption of normal distribution carnot be justilled a routine procedure.

INTRODUCTION, The rapid growth of a launch velaicle technology has resulted in the widespread application of a variety of materiale which are capable of reacting, oither alone or with some other material, in the form of an explosion when ubjected to a suitable atimulun. Test methods for determining the extent of the hagard aenociated with any particular material or material combination usually consiet of subjecting eamples co prodetermined timuli and noting the frequency of reactions. Because of thu a! - or-none nature of the realte, a eries of teate uswally is conducted ir which replicate eamples are subjected to difforent atimuli and the resuing subjected to nome form of statistical annlyais, the detailu of - thich may be dictated by the farticular teat procodure empleyte The mothod moot generall; uscepted in the explonive induat:y is the Bruceton up-anddnun method which epectifes both the experimental procedure ard the atatimtical analysia. An equally applicable mathod which is more genesait." asiof pted in the biological sciences is the Probit method which alse pectHan boch the experimental procedure and the ntatiatical unalysill.

The purpose of this investigation was to determine the aitabilitro 0° each of these methode for launch vehicle applications.

PROCEDURE: The amount of information which can be obtained from any laboratory study of a particular material isually la limited to that derived from the melected test method and no absoluta banis eximio for determining the extent to which thic information in actually dencriplive of the material being tented. Available information almo if sovarely Hmited by the nurnber of teate which can be included in any experimental study. This dimitation is particularly important tod all-or-riune type data for which a minimum of 10 to 100 individual teats are yequired to obtain even a proliminary dieull.

To efrcumvent theme and similar difficultion, the apprasch und in thim inveatigation conuieted of generating data for "nyathatic explosives" of rigorously definud characterintica and comparing the varioun population parametera with those determined by the Bruceton and probit methode of analysia.

A. BRUCETON OR UP-AND-DOWN METHOD

Thie method has been deacribed by everal Investigatore (Ref. 1), In practice, tha range of atimull which can be appifed in a given test apparatus in divided into discrete incrumente of undform spacing. Thus, Lut an imphet apparatu: for which the height of drop can be varied from n tw 60 inches, one cun define 31 leveli separated by distances of 2 inchuma.

To actunlly carry uat a teent, an initial level in melected which io guased to be clove to the mifar value and airgle sample trated at that level. It an explonion or cherereaction ia notad, a plus is recorded; if not, a minus. A second sumple thenis tested at the next lowes level if a plus was recurded for the previous sample, of at the next ligher level if a minul was recorded for the previous sample. A third ample then in tested in the same munner and ao on untia tho scheduled series of test in completed.
*
For sone applicationa, it ia adviable to convert all heighte ta \log units and separate the levels by uniform incremente measured in log unite. However, except for thin tranuformation of unite, the tedt is carcied out in the uaual manner.

Fry purposes of calculation, either the pluses or minuses may be used; however, the resulte for the firut fow teate are discarded up to but not including the result juat prior to the firat change in eign (plus to minus or minue to plun). Further detalis oi' the calculations have been adequately dencribed and, therofore, are not included,

The method yielde a mean value, corresponding to the level at which there is a $50 / 50$ probability of a reaction, atandard deviation which is used to compute the level corresponding to any other probabillty of a reaction, and a standard deviation of the menn. It should be noted that the up-and-down ampet of the test procedure tende to comprems the claba about the mean valua and, conesquently, yielde a biased (low) atimate of the tandurd deviation which is lubsequenlly adjustied to obtain an unblamed ontimate.

To carry out a oomputer eampling study, nynthetic explosives were defined for which the probebility of a remetion correeponding to any given level could be determined by use of a table of random digite. Conulder, for example, lavel for which the probabillty of a reaction is required to be 70 percent. A aimulated tast consiate simply of drawing a pair of random digitm and making test to wee whether or not the numerical value of the palir is equal to or dens then 69. If no, a plum is recorded; if not, a minus. The level fou the nexi teat is selected by adding or aubtracting one from the previous level (depending on the outcome of the provious test) and the series continued in the name manner an would be the case.in an actual experiment.

As a matter of convenitinse, all of the test data wera ined for computaiiunn, none of the frilial values betag diecarded. Howevar, ell initial tevte were madu at levele or which the probability of a reaction was in the range $0<\%<100$, and the affecte of entering the progann at random levele and at different fixed levelu wore considered. Each eories of towta, consisting of 100 samples, was repeated 50 timos and ecundary mathods of etatistical analysia wera used to determine the seproduci* bulity of the sample estimates.

The levela correaponding to a 5 percent probabillty of a rasetion were eatimated from the averages of the mean and utanderd devi. ation for each group of 50 series.

B. FRUEIT METHOD

The experimental portion of this mothod differs from the Bruceton method principally in that the individual testa are cmryied out at levale of atimuli melected by the inveatigator rather than those die tated by the preceding teat reault (Rof. 2) , Although both the particular levels selected and the number of teats made at ench level may be varied within wide limita, in practice, approximately 5 levele usually are selected which areguessed to fall clowe to and on aither wide of the mean, ard the number uf tevis at each loval ie constant, usually around 20.

The novel feature of thim method in the transformation of the nonlinear percantage raaction vernus mhmulua levol plots obtained diructiy from the data, to linear plote (asuming a normal diatribution) which is accompliahed by exprensing the reaction frequencies in standard deviation units referred to as "probits." Subeequent manipulation of the transformed date yiclde eatimates of the menn, etandard deviation, and mandard daviation of the masn.
'The computer sampling atudy for this method was carried out uning the same eynthelic explowive or populations that were used with S.1. Bruceton method, the levale for testing being varted to determine then extent to which the particular lavels eolected iniluenced the resaults. Again 100 amples ware uned for oach teat aeries, 20 being taken at each of 5 levels. Also, ach tent earies wan ropented a. Wht 1 of 50 times to permit direct estimates of the reproducibility of date obteined by thie riethod. The levele corresponding lo s purcent reaction ware again oatimated fam the avarage cieult for each group of 50 sertes.

C. RESULTS

Aa indirited above, each serfey of 100 i,wta, whether made Using the Bruceton or Probit method of analywis, provices coltmatas of the snean, etandard deviation, and atandard daviation of the mea. By repeating each meries 50 tamen, querage valuey were obtained for wach of these estimates baned on the calculations peculiar to each particulax method of teuting. In addition, application of conventional methode of atatistical analymin to exch group of 50 rosulta provided entimaten of the reproducibilly of theme values. Population values
for the mean, etandard deviations, and standard doviations of the mean were calculated from the frequency distribution in the usual manner; the levela correaponding to 5 percent reaction were interpolated from plote of the cumulative frequency dietributions for each population.

The resulta for the Bruceton and Probit methoda of analyain are not etrintly comparable because of the influence of the point of ontry for the Bruceton method, and the partloular levela selected for testing for the Frobit method. However, generel comparioons, such at thone glven in the following sectionm, are belleved to be indicative of the relative characterietica of the two mathode.

The ecveral population or "uynthetic exploeiven" aelected for testing are ahown graphically in Fia 1. Aleo, the probabilitias of a reaction at any given level are oummuriaed for each population in Teble 1. It mhould be noted that the extreme onde (1 to 2 percent) of each diatribution were truncated for convaniance in aimulating tent duta by uaing pairs of random digite. These populationn linclude both normal and non-normal (peaked, kewed, and bimodal) types,

Application of eliner the Bruceton or Problt method nasumes that the distribution of data in normal. Approximately cormal diatribution therefore were velected for the firet two populations to obtaln inter under ideal conditions of tenting,

Table 2 summmelwes the reault obtained by the iruceton mathod for population No. 1. Table 3 gives eimilar reaulta for population No. ? w'..sch differi largely in that the 50 percent level was ihlfted frem a proulation value of $4,0 n$, wich colncidea with one $5 f$ the lavels selected fin testing, in 1.5 which is inldway beiween tho of the levals selected fur teating.

The eatimated mean valuas are in excellent agreement wish in population values. Also, the estimated atandard deviatione and atandard deviations of the means are very close to the populition values with ucme allght blas in the diraction of low eatimates boing evidan, Ti.is blus resulte in slighlly high entimates of the lovelu corresponding to 5 percent reactions, but the discrepancy is of doubtful practieal aignificance.

Tables 4 and 5 summarize the reault oltained by the Probit method for population No. 1 and 2. When the levels iculected for welling arn cilowely grouped around the mean. all of the estimates are

LEVEL of stimulus

Table 1. Cumulative Frequaney Diutributiona for synthetie Explosives
Valuea in body of table indtcate reaction Exaquancy at sivan laval, cumulative percant

Penuhation tyng	Normed	Notmal	Pakad	Sketrod	BimoduI
population Mo.	2	2	3	4	5
Lavel					
0	0	0	0	0	0
1	2	1	4	2	3
2	9	4	5	12	8
3	25	15	7	30	23
4	30	37	10	30	33
5	75	63	18	68	68
6	91	85	32	82	73
7	98	96	50	90	76
8	100	99	68	93	76
9		100	82	95	78
10			90	96	83
11			93	100	93
12			95		98
13			96		100
14			100		

Table 2, Sammary of Brueaton Mathod Reaulta for Numal Diatribution (Popuiation No. 1)

	Level for Tlyat Tast in Serien	Roaust	gedRrror O\& Ragule
Mean or 50\% leve!			
Populasian value	*	4.00	*
Sampie astimate	4	3.99	. 03
do	6	4.05	. 03
do	2*6*	4.01	.03
gtandari Duviation			
Population value	-	1.49	*
sample oastimate	4	1.37	. 04
do	6	1,42	. 04
do	2-6*	1,43	. 04
standard Deviation of Mean Ropulation value	.	0.21	-
Bample eatimate	4	0.29	. 00
do	6	0.19	. 00
do	2-6*	0.20	. 01
3\% Leval			
Population value	\cdots	2.50	*
Sampla eatimata**	4	1.74	-
do	6	1.71	-
do	2-6*	1.66	-

* The level for the firac cent in each ueries wan eeleatad as rundom trom luvele 2 through 6.
** (M-1.045) computad from neverall avarage valume for mean and utandard deviation.

Tabla 3. Sumaury of aruceton Mathod Ranults for Normal Diatribucion. (Population No. 2)

	Laval Ior rinot Tase in sarias	Reund.	Bed. Brror of Result
Mean or 50\% level			
Population value	*	4.50	-
8 mplu artimata	2n7*	4.49	0.03
Scandard Deviation			
Population vatua	**	2.48	"
Sample entimate	2-7*	1.38	0.03
Standard Deviation of Mean			
Population value	**	0.21	. ${ }^{\circ}$
Sampla intimata	2.7*	0.29	0.00
5\% Leval			
Population valua	2*	2,08	-
Sampie urimman*	2-7*	2.22	-

* The laval for the firat teot in ouch serien wall selectad at randoa from lavala 2 through 7 excopt that the probability of ialecting levale 2 or 7 wan one-hals that of eleoting 3 through 6.
 -tandard deviacion.

Table 4. Sumbiary oi' Probit Mothod Reaulte for Normal Diatripution (Population No. 1)

* (M-1,645 or) computed from overall avarage valuea for mean and atandard daviation.
rable 5. Aummary of Probit Mathod Resule for Normal Dietribution (Population No, 2)

	Luvele at Which Tests wace madn	Resulte	Thed arror of Reault
Maan or $90^{\prime} \%$ leval			
population value	-	4.50	-
sample ontimate	2.6	+4.24	0.02
do	0.4	* 3.08	0.05
do	4-8	5,24	0.0
standard Deviation			
Population value	-	1.48	*
Iample antimate	2.6	1.46	0.04
do	0.4	2.72	0.45
do	4-18	1.44	0.35
Ptandard Daviation of Mean			
Population Value	2.8	0.21	. 00
lample do itimate	2.6 0.4	0.22 0.52	0.00 0.09
do	4.1	0.23	0.01
5\% Level			
Population value	-	2.08	*
Bample astimata*	2-8	1.84	-
do	0.4	-1.39	-
do	4.8	2.84	.

* (M-1,64! \%) computad Exnm overal: avaragt velung for man and atandard doviation.

Table 6. Summary of Brucaton Mathod Rewulte for Poaked Diacribution (Population No. 3)

	Lavel for Firet Teat in serias	Regult	Std. Ertor of Renule
Mean or 50\% lavel			
Population value	\cdots	7.00	
8 arip le entimate	3-11*	7.06	0.04
8 tandard Daviation			
Eopulation value	-	.2.69	- 0
8 mple entimata	3-11*	2.21	0.09
8 tandard Deviation of Mean. - . 0.38Ropulation valua			
Bample estimate	3-11*	0.29	0.01
5\% Leval			
Population value	-	2.00	*
8ample eatimatawt	3-11*	3.42	-

* The leval for the firat tast in each eartee wan salected at random from levels 3 through 11 axcapt that the probability of anlection of level 7 wan twice that for the other lavels,
** ($M-1.645 \mathrm{~s}$) computad from overall avarage valual for mean, and otendard deviation.

Table 7. Sumaly of Brusaton Mathod Reaulte for Ekewad Dietribution (Population No. 4)

* The leval for the expat teft in each merien wae mleated at random Srom leval: 1 throush 10.
** N-1,645 σ) camputiad from overall, everage values : ior mean and - atandard deviation.

Tabie 8. Siwnary of Probit Machod Ranulit for Pamad Dinctibution (Population $\mathrm{Nu}, 3$)

Table 8. Sumary of Probit Mathod Reaulsa for Bkawnd Distribution (ropulition No. 4)

	Levals at Which Tanteman_made	Heault	Etd Error
Mean or 50\% Leval			
Population value	-	4.3\%	-
Sample estimate	3-7	4.72	0.02
do	0,2,4,6,8	4.27	0.04
do	0.4	2.82	0.03
ytandard Daviation			
Population valum	-	2.20	$0 \cdot$
Sample astimate	3-7	2.22	0.07
do	$0,2,4,6,8$	7.00	4.10
do	$0 \cdot 6$.	1.81	0.00
Btandard Deviation of Maan			
Popujation value	\cdots	0.31	$0 \cdot$
Bample nitimate	3-7	0.31	0.01
do	0,2,4,6,8	1.49	0.98
do	$0-4$	0.3	0.01
5\% Leval			
Population value	\cdots	2.45	-
Eumie estimato	3-7	1.07	*
do	0,2,4,6,8	-7.25	*
do	$0-4$	-0.16	*

* (A-1. 845°) computed fruir ovarall avarage valuen for gan and atandard deviacion.

Tabla 10. Summary of Bruceton Mathod Renulta for Bimodal Diatribution (Population No. S)

	Lavol for Firat Tout in sories	Result.	5td, Erxor of Reaulea
Maun or 50\% Leval			
Population value	-	5.28	0.0
Smmpia cotimate	2	4.22	0.05
. い	7	4:40	0.04
	11.	4.84	0.04
do	2-12*	4.47	0.05
8tandard Deviation			
Population value	F	3.23	-
Sample ostimate	2	2.10	0.10
do	7	2.53	0.23
do	11 ${ }^{10}$	5.41	0.17
do	2-12*	3.2/4	0.23
standmad Daviation of Maan			
Population value	*	0.46	0.0
sampla untimate	2	0.28	0.01
do	7	0.32	0.02
do	$11 * *$	0.44	0.08
do	$2-22^{*}$	0.313	0.06
\$\% Lavel			
Pupulation valuan	2	1.60	-
Sanipla ascimate**	2	0.77	-
do	17	0.24 -4.06	-
do	2-11*	0.86	.

* The laval for the fhrst bum was molacted at tandom from levalu 8 chrough 11 .
** (M-2,645 o) computad trim ovarall avarage valuea for mean and atundard deviation.
in excellent ingreement with the population values. However, when the level velected for testing are distributed molely below the men n, the deviation between the sample estimates and population valuen for the mean and atandard deviation become appreciable, und the mample esti. meten of the levels corresponding to 5 percent probability of reactiona deviate markedly from the population values.

Tables 6 through 9 summariae resulta for two populations which are either paraed or skowed and thus denart appreciably from normality as shown in FIG 1, Fon the Bruceton method, the mean and atandard devfation for population No. 3 are in grod agreoment with the popu. lation values, whereas the deviation for the level corresponding to 5 percent reactions is somewhul larger. This diecreprency is caused by the decreasing lope of the cumulative distribution curve shown in FIG 1 for values below approximately 15 percent. For population No. 4 , the whpe of the distribution curve increases for this name range of values, and the agreement betwoon nomulation values and ample eatimates for the 5 percent leval is ellghtly bettef.

Probit method resulte for population No. 3 are eimalar to thowe for the Bruceton method when the levern nelected for testing are clocely grouped around the mean. However, when the levelu ware disperied over the cenderange of thome avallable, the agreenient deteriorated appreciabl: When the levele were limited to the lower half of the diatribition, the eample obtimate of the level corruaponding to 5 percent renctione was markedily in error in the opposite direction to that noted when the samples wert ; losely grouped around the maan. Resulte for population No. 4 exhibised nomewhat differont we.n with the 5 percent levols estimated from damples cionely grouped arioud the moin and thowe limited to the lower hall of the diatribution being in rloser agreement with the population aluen, than that for which the mampling levele were diapery -1 over the entire range.

Iables 10 and 11 summarize results for a bimodal populatien, No. 5 , (i. e. . the diatribution resulting from combinatica $n f$ two wher divtributioris) wuch an might be expected for the mixture uf diverae chomica? compounds used for proprietary materiele. Bruceton method estimates of the 5 percent leveli were particularly sensitive to the level velected for the firat teat. Inspection of some of the individual test data indicated that when the first teat of a coriew way made in that portion of the combined distribution corresponding to the larger of the two single dintributions, there was ar apprectable numbary of instances in which tho entire esties was confined to that portion of the
dintribution. For these erias, the characteristice of the smaller dif. tribution would have dittle influence on the results. Thi situation, did not oceur when the firnt level eolected for testing was in that portion of the combiaed diatribution corresponding to the maller of the two iningle distributions. However, tegurdlesi of the polnt of entry selected, the ample estimater of the 5 percent levela were not con. sidared to be in wallafactory agrement with the population values.

Probit method reault for thie dietribution also were extremely seneitive to the particular levela selected for testing with agreament ranging from poor, in some instances, to sidiculous in others.

DISCUSSION AND CONCLUSIONS. The remulte reported herein, an well es eimilar reaulie for meveral other populations which have not been included, demonstrate ononcluaivaly that teded at levele'lo. cated close to the mean value of n normmi diatribution provide excellent entimates of the charactesiatice of the population.regarilecie of whe ther the Bruceton or Probit mathod is used. However, whon the distribution ie non-normal, and, particulerly, when it is bimodal in character, the astimates provide only dough indioations of the popu-. lation paramntime, and in particular, the outimatee of the lavele euvresponding to very lurge or very mall percentage meactione be... eome extremely unreliable. These dincsepancina are the direct re" sult of linear extrapolations of non-lineme dath, No rellef from thio problem in ponsible with the Brucaton method, whith is apecificully intended to concentrate the testing at levele olose to the mann. How never, with the Probit mathod, the operator is frae to nalent the luvele at which tonte am casiled out and can thus conceriziate hle offorta on the particuide end of the distribution of greatent interest for hie appliwation. 'Ihe resulte obtained in thie investigmbion, howaves', to not indilate that even thie modification prowidee reliable eatimates of any fif the ntatietical parameters conaldered aince linear extrnjointion and interpolation are atlll used with non-linoar data.

Most launch rehicle applicatione are concerned with oither the nigh or low end of a diatribution. In fact, probably no point of the die. triburiun in ul less practical algnificance than the 50 percent point. Thus, an explosive of 50 percent response to a given stimulue would be unacceptable from alther a performance or anfoty point of view. Con. veraely, levele correaponding to very large or very amall percentuge reactions, usually 95-5 or 99-1, munt be considerad. Reuulte given in this report indicate that naither the Bruceton or Probit methode provide
relinule entimates of atimuli correaponding to very large or amall probw abilities of reaction unlens the papuiation is normally distributed, For many applicutiona, the requiroment of a "normal dintribution" may be atiefied if only that portion noar the mean approximates a nermal dia. tribution, However, for reliability and afety applicationa, the normality of the diatribution must include not only thac arca around the mean but also the area between the mean and the percentage frequency of inticinnt. Aseumption of auch normality does not appear juetiliable in viaw of the heterogeneous character of tho eyntems undergoing tent. Detarmination of the normality or lack of normallty of auch a ystem would require ex penditures of time and effort in oxcese of thone which can be justified. It ie recognixed, however, that valid comparieons of purametere for row lated distributions a somatimes posable ever whea tha auaumption of normallty is appreciably in error.

To obtaln additional information regarding the normality oi diatributions encountered in actual testing, resulte of LOX impect teate on a number of materials wero examined. Only u fow of thene materiale gave reault which could be reasonably interpreted mill normal, the dia" tribution for the other materiale varying widely, FiJ 2 prements typical curvee for one normaliy (titandum alloy) and two non-normally dien
 interest in that the slope of the curvechangeasign twice within a relaluvely nurrow range of impuct energies, Ordinmrily, eumulativn frem quency diatributions ade obtained by cumulating frequency of ocourrence dita. Tho nature of the cumulating procese do ach that changem in the sigu of the alope of the data are precluded. Convoreely, for menalitivity ten data, each point on the carve ie determined directly and no cuinum lating operation is invot:od. The changes in sign reted tor these data, a and aleo for deid reported bi other invuligatorn, auggent that the mech. aniam of the procene ie complex and varies with the leved of ettmulua
 cuididered to represent a frequency diatribution in any enner of the word.

In viow of these considerations, it appeary that the best method avallable at this time in to carry outa avatematic search for a ennitivily threwhold corresponding to mome acceplable frequency of roactionand to utlize graphical and atatiatical techniques to ovaluate the remulte. Such a procedure is usedin LOX Impact testing at thie Center. It ahould be noted that data for auch a procedure can be aubjected to the Probit calcuiationa, in the event that eatimaten of the meanand/or atandard deviationa are connidered esoentiad.

FIGUR: 2. TYPICAL RESULTS FOR LOX IMPACT YENSITIVITY TEGTS
Devign of Experimeala 227

REFERENCIS

1. Statictical Renearch Group, Princeton Univeraity, "Statistical Analymis for a now Procedure in Sensitivity Experimente," OSRD 4040, July 1944.
2. Finney, D. Y, "Prohit Analyein," Second Edition, Cambridge Univeraity Press, 1962.

THE IMPACT OF ADMINISTRATIVE LIMITATIONS on the design of experiminis

Gerhard J. Isaac
U. S. Army Medical Research and Nutrition Laboratory

Denver, Colorado

Abstract

Experiments often must be carr!ed out with less than (deal designs because of 1 mitations having thelr origin at administrative levels. Designs may be modified to reflect administrative decisions on the utilization of avallable rescurces of personnel, fiunds, and equipment in a research program. The nature and effect of some of these modifications is disoussed. An example is presented and some alternatives are axplored.

Experimenta! desigris often are influenced by administrative llmitations placed upon the experimenter or the reasarch unit. The result may be a frustrated researcher, or at least one whose ingenuity may be sorely tried as he searches for a feasible compromise between what he considers an ideal design for exploring the problem and the practical realities of the situation. This may algo place a heavy burden or the statistician-advisor in suggesting a statistioal design which will maximize the quantity and quality of information obtained !!ndor somewhat less than ideal conditions.

The limitations referred to are those having their origin at administratwe levels rather than at the research level. They may be in the nature of a.talfic direatives related to particular activitios, merely general statements of wulloy, or aven not specifically apeliad out at all. Tha !mpesitior: of time hmis may he nea finm of limation. The necessity for an early adminiatrative decistion may triud to a request for a quick answer to some rewearch probligm. Parhaps more often the avallability of funds or persennel is at ise"q. Closely ri. lated is the question of priorities for various projects. Or even the faciii!!ns asalabila are limited ancl expanaton la impossible. In other wids, wa are' uncerned with the impact on the design of researah projecte of administrative decisions on the utilization of avallable reacurces of persunnel, equipment ansl funds in accomplishing the mission of the urganization.

The thought mlaht be interpolated here that the experimenter himself also makes many simblar deolsions when he decides how he is to divide his time and effort among various projects or sugments of projects. Actually in practice there is a merging of these Influencos in the final docisions regarding upgratioma.

In his firat thinking about a problem an experimenter may feel that aniextensive experiment is required because existing knowledge about the problem is vary limited. A re-atatement of the problam may provide a setting fior developing, within the various dimitations present, a design which la both feasible and atatistically valid. It is, of course, always assumed that relem vant findings of others have been examinad to provide guldanoe in delimiting the scope of the project. Repatition of the work of otharim aimply to mee If you can duplicate their procedures can be a wastaful process. This ia not to say that thure mey not at times be rasesons to repeat eaperiments of others to see If the conditions can be reproduced and confirmatory renulte obtalned. But, repetition simply for the sake of repetition oan be wateful of resourcen.

Lat us then explore some of the consequences of the imposition of administrative limitations on the oonduct of experiments. Adjuating the desion to maet the altuation can be done in many difforent ways. It has already been mentioned that a reatatement of the problem may provide the bayis for modifying the original proposal. Some ohvious changes quickly come to mind. A smaller number of subjecta might be used or the number of treatment lovele reduoed. The experimental period might be shortened. Test parameters whioh are to be evaluated might be restricted. Somatimes a pllot atisdy is an economical way to entablish limits within which the finad study is run. With caraful planning a pllat study can be part of the Initiai ataçel of moro comprehensive study. With limita astablished for the axas of primary Intereat il may beyome pownibla to use a tairly simple design with atraight forward comparisons. This statoment la not Intanded to imply that it may not be desirable to use fatorials or other dealin forme which increase the information avallable more rapldy than the cost.

In making adjustments ir the destgn. oare must be axaroined to insure that the design doas not end up "unbalanced" and introduce complice' one Into thet atatistical analysis and the Interpretation of the results. Unbalances is nob necessarily fatal, but it could be if the implicatlons to the sialyain were not fuldy anticipated in radealgning the experiment. If not anticipated, the atatiatiolan might be faced with a "ralvage joh" or a grat lone of information hicause an Important part of the data became unanalyxable.

How will the atetistician meat thase problems? Mention has been made of the use of amaller numbers of sublucts. Standard atatistion text books contain disousulions of the effect upon the Inferences to be drawn of changes In the numbers of subjacts or observation. Bomwhere along the line it is alwaya pointad out that the amaction of the number of obsarvations
to be used depends in part on the varlability expected in the various parameters, and on the precision of the measurements. The probability that inferences about a population or unl verse drawn from sample observations are valld depends upon such factors as these. Important in the problem then is the probability level that is considered appropriate in the caso of a partioular experiment.

Except in the most unusual altuations replicate determinations should be pertormed. Usually duplicatas are enough, though if the particular procedure is known to lack precision it might be well to use triplicates. The dedision iests on the variablity expected to ocour in the individual measurements. The variability expected among the aubjects in turn has much to do with the number of sublects to be used. Equally important heie is the size of the differences between treatment groups which will be considered important. The sample sizo must be large enough to deteot differences that are important in the light of what is known or estimated about the variation in the population. It could lead to unfortunate consequences if decialons on these mattera, fus example, rested solely on the avaliablity of personnel, rather than taking into account varlations of the types just mentloned. However, to the extent that the presence of administrative limitations forcas harder thinking and more caraful planning, and thus leads to a "tighter" design, the results mey even be deneflolal in the long run.

I would now like to explore with you a apedito project, the de ilgn of which required taking into account some adminiatrative limitations of the typeg "have been talking about. Briefly, the purpose of this project is to tuei in the field five different rations designed for non-resuppl; situations of perhaps 10 days duration for small yroups of rian. study parameters include certain hiochemical prociadures on blood aud urine samples, performance tests, and 'the subjocts' evaluation of the rations. Out of this study will comu atraments regarding the nutritional adequacy and acceptability of the test rai.ions. Also, il is expected that suggestions will come up that might aid in the developmer: of improved rations for use in this particular type of field situation.

The Ideal design that immediately oomes to mind is to organise i patrol groups and set up a $5 \% 5$ latin square pattern for feeding the retions, In this way each man would he on each ration sometime during the test, and during each cycle each ration would be tested under the same prevaling environmental conditions.

The time required would be the 10 days in the field during each cycle plus a rest period between patrols. A rest pariod of this klud serves two purposes. One is a recovary from the prior test conditions bafore being subjected to a new test. The other purpose is to give time for remeasurement of basal study paramaters. Thls would permit reestablishment of normal values for each man iminediately prior to entering a new phase of the experiment. Inoidentally a morale factor is also involved. It would be difficult to maintain morale among the troops if they were on patrol continuously for a period as long as required by a projoct of this kind.

It was pointed out that a tull schedule on a 5×5 latin aquare pattern would the up the troops and test personnel Involved for nearly 90 days. This was considerad excessive and a 1 mit of approximately 55 days was set. In partial mitigation it was decermined that 60 men might be courted on, so that 6 test groups of 10 men each could be formed. With regard to the test rations It was noted that numbers 1, 3, and 5 were considered alightly more Important than 2 and 4.

With these speaificarions before us the problem was to set up a workable design for the fleld work. The plan established providad for 6 groups of 10 men each who were to be sent on 10 day patroly, three different times. Tho rethon to be carriged and consumed by each group was assigned by a random prosedure for each phase, with the modification that rations 1,3 , and 5 appear four times and 2 and 4 appear throe times (Table 1). After the patrol groupn are for ined they will be essigned to feeding sequences A through F by drawin; uul ur a hat or other randum pucess.
tagle 1. assignmert of rations to groups and phases

	Patrol Groul					
	A	$\underline{\text { B }}$	$\underline{\square}$	D	E	F
Phaso 1	3	1	2	5	4	3
Phase 2	5	4	\leqslant	2	3	1
Phase 3	1	3	1	4	2	5

How have we fared in ustting up our design? We have assured that no patrul group testa the same ration twice. During each phase all rations are tasted, with 3, 5 and deach duplloated in one of the thrate phasea. The overall time, including preliminary briafing, "hafore" and "after" tudies, 10 day patrola, and 5 day rest perlods, will be kopt to 55 daya. In.terms of the adminlatrative limitations imposed we have met the apecifications.

What about the analysis and the Inferences to be drawn from the rusulte? For any of the tont parameters where large differences appear there whould be no problem. It is in the area of the more aubtle diffarancen that there may be a problem. Will we have to say that we expect considerable variation among the men because of the nature of the teat? Any questions dealing with the aubjeots' evaluation of the rations will have all the abbjective elomente that ocuus in all 8 ood acceptabllity tests. The blochemicel procedures are reanonably precies and oisective, though variation amony normal mubjecti ofton is great. The performance teati also are asmentially objeotlve, but in this area there always is some question mbout the effeot of motivation on teat seores and about the physiologleal valldity of the thats as masures of responese to the various rations.
in this test our first interest is In the nutritional adequacy of the det is malntaining a soldier, operating under the preserlbed oonditions, as an mtficlent flghting machino. Next in importance if the acceptability of the ration becouse of the rolation of cooptability to adequate intake and to morale generally.

In couclusion ther, i slegest that in a teat of the lend dencribed, the design sinulu be developiti as far as poesible in accord with sound statistical piactices, but thet some deviations from the ldeal are not nosewedrily fatal since the interest in more in groas differences than in biavin of a inore subtle naturo.

VERIFICATION OF PRODUCT ACCEPTANCE INS PRCTION BY ATTRIBUTES*

Joseph Mandalson
Directorate ior Quality Aesurance, Chemical Corps Materiel Command Edgewood Artenal, Maryland

The framework of reference of this paper is tnat of Department of Defonee Handbook Hi 09, 6 May 1960, "Statiatical Procedures. for Determining Validity of Suppliar:'Atributea Inapnction." The purpoae of the peper is to roveal the thinking which guided the atatiatical resaarch perm formed and which must form the groundworth for the administrative usel to whirh tha Handbook can be put. fus 09 may be applied to an incrousingly popular contractual arrangement between consumer and suppller in in. duatrial and govarnmentel circlow. Thia axyangement now forme part of the proeuroment polloy of the Department of Defensi, mamely, thit the uppllar, prior to offering his product for accaptance, will parform the Inepectiona and teste neceamary to ascurtain that the material moetn all quallty requirements astablished by tha consumer and made part of the contract. To do this, the mupplier binds himself to establitha syotem of quality inepection over and abova his own syatem of quallty control, to cover all those quality charactexiution, dinepection procedures and toste required by the consumer to satisfy him that the product moute all contracilal requiremente which define material naceptable to him.

One aupect juat mantioned may be a bit confueing. It may not be immediatoly apparent why the supplier ohould inatitutu a yunlity incpuction syutem over and in addition to his quality control eyatem. It ia a mujor oojective in quallty control to watch the offect of the marnfacturing pjue cess on ramponient quaity inaracterlatics of hriterest to mindmine pro cuction of ncu-conforming itema. Whan euch material seems about to bn pioduced, euitabla changes are inatituted in the procesm to bring ft back fato statiatical control and to continue production of conforming matesim' Oir the other hand, the majur objective of the quality inapectian gyatem ir to determine that the material manufactured mect all gunlity ruquiromonte prescribed in the contract. In a menve, it ia a manare of the succese of the quallty control eybtem.
*This paper was presunted at the Conference on Rellablily Assurance Tecinniquer for Semi-Conductor Specification, and uppears in the Proceedinge of this conference. We wish to thank the editors of ald Pro. coudinge for permiesion to reprint thie peper.

To return to the policy of the Depurtment of Defunce and or many Induntriad concumose, for many practical rewiona, they inulathat the aupplier offer for accoptance only material witch he hae geonlerid lifite cient reason to bulieve conforms with all contraci raquirominti. The only way to gain such knowledge objactivaly is to parform conncientiounly and competently the various inepectiona and tente by which thin cohtrant denfines product acceptabillty. Thit, of course, ciearly requires thot the supplier eitablich a sytem of quality inapection for hiw Andichedproduct whith parallels the syatem which the consumer must plan to asaure that the quallty proviaione of the contract aro bilig honored. The inpplier will cortalaly include the cost of hie quality triepeotion byemi ingit oved-all item cost; the coneumer must expeet this, At the ammetime; ance the conaumer will eventually pay ite colt, he hein a epocinitught and interent in the supplier' quality inapection ayetem; one miditity
 product but a service .- the quality inspection syatum. The conioumer can uee the auppler's ayatam to raduce him own acceptance inupestion coat and yot lona littie, if anything, in anourance of productiqually.

This can le done through procedures collectively onlled "produet vorification" bued on the following philosophy: if the mupplierle quality inepuection syatom is competently embliahed and run en thist it yiolde valla, objective, deta, equivalent in all respoctif to the data the condumis himself would get by inepecting the eame lot, then the eupplicely data are juel an trustworthy asm bata for neceptonce as the conaumar'm. Hence if the lutter il ashured that the auppler's quallty inspention aystam yields vaid riate, he may sorthwlth accopi any matorial the oupplior offara for he ray confidently axpect it to sucet contractum sequiremorte ware he himoulf to in pect it fully. Thionsturares in ebiained by the proceduree collectively described ay produci verification.

The first step in product verification ia to determine that the eupplier has the organiantion und phyalcul meane in being or avaluble th him t . periorm all the inmpections and fasta zequixud by the contract to determine the eciceptabillty of the product. This maane not wily the eseveral gages and prawe of equipment involved, but the meana to calibrate or mentmartize them periodically as requirad.

The noxt atep ie to determine that the supplier has adefinite plun of program for uaing thio equipment as apecified and that tha personnel anaigned to do thie workare competent in all technical and adminlatrative
phasom. The consumer must particuiarly be satiofled that the applier han ostablaned a ruporting wyitem that will make nvailuble to both partien completa and timaly information as to the technical finding: of the quality inepectione.

Thlyd, the consumer must be sura that the eupplier' quality inepection parmumal and hif own accoptance personnel une the name inapoction and
 a givon ample. To avold differances, miounderatendinge, and diaputes, vicual quality etanderde should by entablished to the oxtent rasuitred so that, ideally, both partiee would adwaya agrae as, to whether a given item is dafective.

Fourth, wo onter upon valdation, the field of coverage of H109, The conoumar musi purdorm hi own Inppotions and teats of the matorial offorod for acceptianco. It le not the primury purpoio ut thil aetivity to determine the aceaptabillty of the miforial inapected. Rether, the objoative in to determine whether the resulth obtainad by the upplierts quallity inupection syotem are valid and ananthally the amen an thop obtalnad by the coneumer and may, therofore, be used to Jubtify acceptince of the material offered. In other wordn, the upplier offers for aceaptunce lote of matarial whioh hil quality inopoction fotarn hat lound, through abjective evidence, to meet all contractual requiremonts, If his rosulife. ore determined to be valld by the cundumer, then lin latter unould be willing to accopt the suppliur'a Innpestion data an eufficient ovidence of Lide mucuplablilty of the material. It is amrumed that the conmurner's bresection resulte area otandard. If the resulte generatad by the aupplierin Guallty inapaction syotem are oanantially the onme as the starderd, then acreptance mav falrly a:ad properly be basad upon thes.a.

The assence of the product varification whlch Departiscat nf Deferse policy requirns of the Govarnment inepector, then, le to detnrmine the osi itance of the phyaical means and organivation for quality ingpention, of the necesaary training and know-how on the part of tho suppllar's peraonnal using these moana, and continued aurvellanes of the apparatua and procedures amployed. Validation is the laut step and is a tool finm checking the affectivenese of the ontire ayatem of quality inopection which Is contantly under survellance by the coneumer' inspector, ili is plain, from the breadth of responaibilitias necesearlly ausociated with this pollcy, that the conaurner's Innpector's epan of ampubilltiea and competance nuat be far beyond thone of the gage-punhing inapector of yeateryear if he is to be expected to perform competently the duties laid upon him.

For one thang, he muet be thoroughly famdiar with the concepts lild down In this paper and equally with the now rosponglbilites he baete. He mumb racognize that the apeoific techniquee nocunsary to oxecute theme roipondiblitiol may be expected to vary, and therefore must be devoloped inuw, in ench applier'e plent; Thieprogram prosonte definite challenge to the old-lina inapector directed toward the upegriading of hie abilitien in the modarnigut

The purpose of valldation If to check the aupplier's system of impaction. Hence, it is dealrad to eheck ramulice on both acceptid and yojocted dpif for these whdl onter into computation of the procien iverade whloh, In MIL: STD 10S, controls reducod, nopmal, and tightaned inspaotion, It du the
 gowerated by the ouppliery quadity invpoction yotainf ho de notidyini, 60.
 diffeult for the nowcomer to validetion to grabp. Aa dong at the euppllor'a resultemre found vaild, hle dath may propirily be uend to juatify, edooptande
 rusulta appear to diffor dignificmetly from thodo of the mpplier, es Indieatid In applicestion of Table I ox Tabla III of HIO9, thon the oonoumior's repses: centative muat roviow the suppliws'a quadity Insjection eyoteth srom atom to atera to determine the quate of thi diacruphnedes notad. Adminditedityoly,
 datis do not jibe with those of the nonoumer unloven ha can be told why. In thie aren, one must keop hie caltedem convtructive but this deem not absolve the upplier from the respunibiblity of roviowing his own activity once ". is told the valldity othio duta is in quisetion.

Department of Dufenue Hanabook H109 wav prapared to fornt ah utation tical toole wheraby the validity of the gupplier'a dete may be adudgod in comfarison with deta obtained in validation anapaction. gince the Haus. book in intended for use by inapactors in the field, it wall deugned to requirea minamum of computation, both in quentity and apphistication, and the procedurae ware aimplitied to the degree posible. The purpose was to publith a procedure which would require no previous utatiutioal backeround on the part of the ular.

It Ie asaumed in Hl 09 that the supplier has wlrady inapeoted and teoted the lotin quention for all quality characterlatice listed in con. tractual requiraments and that the data generated have boen made uvaliable in detail to the conumer. It doon not matter whether the lot
was fiund accoptable or rejectable. In oither cease, the conournor may earriple and tent the amme lot for the purpose of veridying the validity of the datu surniwhed by the supplior. He takes a emmple of auch sime that the ratio of the aupplior's mample to hia la r, whete $m=1,2,3,5$, or 8 , as shown in Table 1, H109. The consumer inepecte the mample and ands a number of defecte or defectiven, ay d_{c}. He comparea d_{c} with d_{a} the number of defecte or defoctiver lound by the upplier in hia ommple. Thie comparimon ie mide in Table I which furniahem the limit for d_{c} for any d_{s} within the given aimple ration, s, if this limit is ofuallod or expeedub, the foncinier May proceed on the theory thet the suppllar! i: data sue invalid and that, therelore, hie quality inmpection eystam noule be reylewed to detect the whoxtcoming, reaponsible. If auch shortcoming is sound, the consumer mould rejoct the auppliarlu datm for the lat in

 Howevor, the posaibility otill romative that no ohottcoming rablly eimete, In this cane, thare ie as much reapon to truat one wot of data wathe other but it is perhaps most fas to requet the oupplise to gurforma reinupeotion of the que ationable lot under the drect aurvallance of the consumer' inspactor.

H109 also containe procedures to detect amall blaces or inairiou* disurepancies which catiee relatively amall blan in the reaulte and, therefore, would thow up only in a cort of hiatorical raview of the evi. wence from a number of consecutive validations. Thus, Table I indicates diecrepant ramulth Sruai aingle validation, but the tendency for diacrepant validation rueste to accuniulate in a eequance of validationa le picked up by Tables Il and III, H109. Thus, from Table II (which has Lisforent mections, one for each value of r) we can obtalna no-called "sheck rati.eg" wir uach peir of d_{c} and $d_{\text {e }}$ obearved from ench validellon jestinemed. The check ratinge obtained from Table Il are equmily valld when different r's are uned or for different defecte or defnct clabied. It omnibue nature ruakes it quite floxible and valuable. The chook ratinge are adduct tugether and thatr sum compared with the "median" valuee and the "werning" and "action" limite givan in Table III for the number of lote whose check rating, are aummed. The median value is what ie expected if the aupplier'e reault are commensurate with thase of the coneumer. If the ummed check ratinga reach the "Warning Critical Value" there la raaion to anak a diacrapancy in the supplier'a que!lty Inepection syotems. As belora, this limit wan
calculated at a 5 -percont devel of statisticsl ofgnificance and the action to be taken in that already deseribed. However, if the "Action Critical Vajue" Is reachad (at the 1 -perount devel of Adenideance) the consumer le justified in rejocting the supplior's datn, whother or not he has been able to locate the source o' trouble in the latteris ayatem.

Whenevar observed difforencen hi ve bean traced to some thorteoming in the aupplier' quality Inspection systern and the syatom has beon corrected to the conaumar' eatinfaction, he can start on how oyole of validation. Until some shortcoming has been found and corrected, there ie no reason for utarting a now cyole.

Cuite aside from the contractual nature of the agroament, the eupplier
 as a service to the consumer and, at ouch, must satiaty him as to the propriaty of ite atructuro, procoduren, and regilte, thio validity of which ie cheoked by hie product verifioution activithon, The mupplier muit always be willing to modily or improve his eystom as requentid by the consumar oo long as the validity of his raoulta in not adfoctodiadvernely thereby, The supplier'm willingnean to plense the consumer atems from recognition that the latter in paying for the syotem and uses the data it generates as a busif for acceptance of the product.

ADDITIONAL ANALYSIS OF MISSILE TRAJECTORY MEASURING SYETEMS

Olivar L. Kingsley and Bernie R. Froe Range Inatrumentation Byatemi Offlce White gands Misalle Range New Mexioo

1. INTRODUCTION. Four flight tente have bean condueted for the atudy of acouracy and procioion of milatile trajectory manaring ayntems at White sands Misalle Range. Date colleoted from the first two testa have bean analyaud, intertm reports have been published, and hlyh Hghtis of the reculte ware protented by Mr. Kingaley at preyioun aniforioncer on the dealon of exporiments. Data from the third fisght test in in the procons of being anmlyzed.

The purpone of this paper is to present a summary of the ranuitis from the third Ilight test and to compare them with reaults from the tirst two teats. The four traeking ayntema to be diacusiad are the balliatic camora, Ankanta olnotheodollte, DOVAP, and FPG-16 radur,

The ballatio canari, which in a fixad oamura, photographe a flaching light on the misalde againat a star-trall backeround The plate Arom atoh oamara yielde angulur data and mlasile position ta compured uating the method of ovar-determination.

The Askantu cinarhencolite la a traoking camwera. It photographe the misulle along with internal diale whioh show the astmuth and olevation anglos of the optical axis for eaun frame of the flam. Poaltion deta is computad uating the over-dotormination method.

DOVAP it a continuous wave electronto nyytum whith urihises the dupplar prinalple to determine position data.

Each PPS-16 radar muasures range and azimuth and alevation anglen. Date from ench radar can be usud to astimate the mianile trujeatory, or date from several radars can be combinod to give a componite estimate. The radara from which date is combinud form a componito radar spatem.

Although the torm "syatem" is somatimen uced in this analyala to rofor to one of the fur trajactory modeuring nyatome, in a broacler aenan it meana
the end-to-and process of colleoting, converting, reduelng and ruporting position dasa. It is in thim broadar ane that the entimates of pocurady and preolsion hava meaning, in othar words, the data on whichianalyses ware performad contain the offeete of final dave reductsen arid ruporting.

The analyale for the third tent oovered thrae asétion of the trajeatory as shown in Table I. Date were avaliable tror. all syatoms, axeopt DOVAP, for all three irajactory samotions, Data were avallable from the DOVAP syatem for soction I only. The dias arror analysis for enoh syitem will be presonted Irst. Then the precision analyais will be diacuased. Bignifiennt improvem monte in syotem performanee will be polnted out.

TABL: I

Guction	Date Point: Sumpled	Nominad Time Along Truloctory (weocondin).
1	48	. 341060
II	44	101 to 125
III	35	183 t0 192

ii. BIAR MRRORANALYAIG.
A. Ballistic Samara. Whan properly looutad the ballistic oamera syatam can yleld vary good unbla aed trajectory data. For thle ivamuin ? 1 m ballowto oamora aystem was chosan as the biay standard for WBMR and blas errors in the sustem are assumed to be zero. Uaing data from the balliptin camera gyatem, blacestimates for the other syatema wase obtalned au followas

A paramoter messured by the Jth Instrumentation sybem at the lit t!me may be expreseed as:
$x_{l j}=x_{t I}+b_{l j}+e_{l j}$
Where $x_{l l}=$ the true valuo of the paramoter at the Ith time,
$b_{1 j}$ the hias arror of the fth aystem at the ith time,
and $\quad i j=$ the random arror of the j th syatom at the Ith time.

Dasign of Expariments

An error for the fth syatem at the ith time in written as
$\Delta x_{i j}=x_{i j}-x_{i B C}$
where $B C$ represents the ballatio camara nystem. This can be rawrititan as:

since it is assumed that. IBC $^{\circ} * 0$. Noxt, It is ansumed that the inum of the n randomerrors associated with the measurementa made by the jth syatom goes to mero. This assumption is writtion'an:
$\sum_{i=1}^{n} e_{i j}=0 . \quad(j=$ any inatrumentation syatemi)
Now, if the $\Delta x_{i j}$ are aumined for the in masuremonts, we have
$\sum_{i=1}^{n} \Delta x_{i j}=\sum_{i=1}^{n} b_{i j}+\sum_{i j}^{n} n_{i j}-\sum_{i n}^{n} a_{i B C}$
The last two teruse on the right go to mero under the aboun ansumpilon, and the equation bucomes:

$$
\sum_{i=1}^{n} \Delta x_{l j}=\sum_{i=1}^{n} b_{1]}
$$

The sum of the left oan be computed diructly from data frum the th system and correaponding data from the balliatic campra syetem, It Is an citimate of the sum of the n blas orrors, $b_{i j}$, ansoctated with the n masuremants made by the jth systern. On taking the moan an follows

$$
\frac{1}{n} \sum_{i=1}^{n} \Delta x_{i j}-\frac{1}{n} \sum_{i=1}^{n} \Delta b_{i j}=\bar{b}_{j}
$$

the expression on the left yields a blas entimate for the jth nyatem.
H. Aakana Cinetneodolite. Tabla il preaents blas entimates, in terma of cartesian oumpenents, obtained from the first thrue teats. Thene esthmates

TAMLE II

	88A	Mrymurres for a	CINHTUBODOLITE
TlightTats	Askanda Compinent Manue I.C. Component (Enesmates in Fiots)		
	Jarh	Thimat	-110
1	6	-7	-29
2	3	-1	-30
3	4	-4	-21

gial matimatie ros dovap			
$\left\lvert\, \begin{aligned} & \text { Fitght } \\ & \text { Tast } \end{aligned}\right.$	DOVAP Comporant Mlnus B.C. Componant (Entimaten in Yaet)		
	Notil2	Wm	Un
1	46	-20	-80
2	24	7	-68
3 36.0 ma $(36.2 \mathrm{mc}$	23	-6 -8	12 13

were computed using trajectory data from all sections. For each oomponent the blas nulluites obteinad from the three teste are alike in olgn and simler In magnitude. Entimates for the North and flant components are reamonably. umall, wheroas they are oonsiatantly larger in the Up oomsonent. Apparently, the corrected elevation angles arls smaller than the true elevation angles. Perhaps a better approximation of the refraotion dorrection would ylald a destred Improvement of the negative blas in the U'p component.

For Teat No. 3 all three aomponent bles cetimaten ware algnliceant at the 5\% level ocmpared to an expected value of zero. Also, the analysia of variance of arror date revealed a significant ahift in the magnitude of ayatem blail over section I in the North cornponent, seation If in all three componenta, and Section III In the North and Up components.
C. DOVAP. Teat No. 3 was Invtrumented with two DOVAP aysteme: The standard syatem opermied at 36.2 mo . The meend symtem, whioh operated at 36.9 mo , was used to tont the Interntate Iraneponder, DOVAP data ware avallable in Seotion I only. Table III presente the eamponent blas eatimatea for the syatem for the firnt three teate.

Bach tunt revealad improved syatem blan. Electronic reading and digitifing equipment was introduced Into the raduction process on Test No, \%. For Tant No. 3 aignal propagation velocities wore estimated ualng table lookw ip tachnique which took into aonount the misalim helght above the tranamptor. The we changes in data reduotion graatly raduced the system bias. Further"rem duotion of aymium blas was Investigated through improvamenta in atat point determination and by making adjustmente for the tulallva lodations on the intaslle of the flashing lioht (ballistio camera yatem referenoe puint) and the LCVAP antenns.

The bies estimates for Tost No. 3 were ail mignifioant at the 5% lavel mimpared to an expected value of eero. Also, there was obenithunt phift In the magnitude of system bles ovar the aection in the North and East componbut
D. FPS-16 Radar. Blan ebtimates for three of the FHSm 16 radarm arm shown In Table IV. All of the radars operatad in the ukin track mode. Ithe estimntes are, In gunerab, lerger than those for the Aukania and DOVN nymtems.

The blas estimates for R-112 ara amaller for Tente No, 1 and 3 than for Test No. 2. They range in magnitude form 2 to 59 feet. For R-114 the astimatus are very good, except for the 66 feet in the Ehat component of the Test No. 3. They range in magnitude from 0 to 12 faet. Radars R-112 and R-114 are both logated at the southern end of the range and tracked the mianile an it noved north.

Radar	Plisht Tust	Redar Componant Msnus I.C. Component (Estimatel in Fint)		
		Noxth	Sint	H1.
R-112	1 2 3	-22 39 -24	24 30 2	33 35 20
R-114	1 2 3	$\begin{array}{r} -2 \\ 1 \\ 6 \end{array}$	8 0 66	$\begin{array}{r} 4 \\ -12 \\ 3 \end{array}$
R-122	1 2 3	-12 2 2	18 13 25	$\begin{array}{r} -27 \\ -34 \end{array}$

TABLE V

Flight Test	Composite Cmpoment Minul B.C. Compnant (Entimatin in Fint)		
\downarrow	12	17	4
2	21	14	is
3	-8	34	-6
Whaspertive comporants of $8-112,11 h_{\text {, }}$ and 122 avaraged,			

The bles estimates for R-122 are more consistent in mize for the three tests, partly beoause of its location near mid-range. On the avarage it was oloser to the trajectory sections analymad than alther R-112 or R-114. The eschences range in magnitude from 2 to 34 feat.

Table V prosents the blas estimates for a composite trajectory obtained by averaging the respective components of all three radars. These ostimates are very similar for those of R-122.

With allowances made for the akin track mode most of the radar blas estimates for the North and Up oomponenta ware algnificant at the 5% leval comparad to an expected value of zero. Also, there were significant uhifte in the magntude of system blas in all three components over Suction ifor R-112 and R-114, and in the Up componerit over Section III for R-122.

Singe thoir Inutallation at WBMR the radar syateme have bean used extensively. A serles of oalibration and evaluation tests have been proponedi these testa have been planned for the near future.
III. PRECIGIQNANALYSIS. Precision is dafined as a measure of varlability of random variable about ite mear value. For thil analyali it If nynonymous with the staidetical term, gtandard dovidtion. Three mathods were uned to obtain preclaion estimates for the four trajectory measuring ayntomi. A brief desaription of each method followe:

1. Ovar-determination Point Eistimate of Praoirion . Ovar-dotamination, hy the mathod of loast aquares, of apaca points on hajuotory yloldy, as a gate product, varlance entimates for each epace polint. When the variaice
 of preulation. A major disadivanteg of this method is that it la a eneltiva to syatem bias arrors in the input data. However, for this analysin there are ways io isolate a blased ayatem for Inventigation.
2. Multi-Inatrument Eatimate of Precision - Thin method, cometinneg referrod to as the Simon-Grubbs mothod, requires a mimulaneous anmple of trafectory apace points from each of three or more instrumentation ayath:ina, Tis method ylalde a preclalon astmate for eaoh syatam involvad. It in inseneitivo to oonstant eystem blas urrore in the input data, but shiftlug eyatem blan eirors will enlarge the estimates produced by this method.
3. Varlata Difference Eatimate of Preciaton - Successive differencing of a sample of trajectory space points determined by a alngle syitem proceeds untll the mystematic elements of the data become nerglifible and the randcin

TABLE VI

Flight Test	Component: standard Deviation (Pithmandin Fint)		
1	2	6	10
2	4	6	9
3	6	4	6

TABLE VII

PRECIETON EGYTMATES FOR ABMANLA CNNETHEODOLITHB

Filght Tent	Componane Standard Daviation (fitimetes in Pant)		
	North	Thit	10
2	12	11	8
2	10	15	12
3	8	8	12

- lement becomes dominant. The precision estimat for the aystem is baned on the residual random eloment. This method requiras a data asmple with points equally spaced in time and ascumes the data can be approximated by polynomial. I. All dinear trends, whioh are tiret degree elementa, are filtered out end thus the prealsion estimates by this method tend to be amaller than those obtained by the two mathodi mentioned above.
A. Balliatlo Camera. Preolaion estimates for the ballistia oumera gyistam are shown In Table VI. The catimater were obtainad by multi-inatrument method where variances were pooled over the three trajectory ections. The precision estimates are ten feet or lose in manifude and similer for the three luwit. These entimates correspond to an average bellintio camert enpular.: precision of $10^{\prime \prime}$ of are. The now BO-4 bellietic oumoran, of which four have boon inatalled at W8MR, are danlgned for an angular pruaision of I^{\prime} of aro. This will lower the precision atimatea by a fastor of ten. Hopefully, the BO-4 syatem will become the standard for the range in the naar future.
B. Aakenla Chietheodollte. Table VII presente precision estimates for the Aokanla alnotheodnlite syatem for tice tiral the lustu. Thene are also multi-Instrument eutimates with the variances pooled cuer the seotiona. in gonoral, theer entimetas ara about rwlos as large as thone obtained for tho mallatin carneri syatem. They are slmblar for the three teste and norreipend so a mytem ansular prenimion of approximately $3 t^{\prime \prime}$ of are. These pranimon entimaten agree vory well with those computed for the gystem over a number of years of operation.
C. DOVAP. Preciflet estimates for the DOVAP Eystem are shown in Table VIIh. I'hase werm robtaned by tha variate differenoe tenhnlque, lixoept for Test No. 2 the astimatesarg lus than 0.6 feat. The; are nomparable to preciaion estimates expected from the BC-4 ballistic cemers ayatem, ina ail thee tests the DOVAP has been the most precide mystem at WgMR. The multilistrument method wab also used to obtain estimates of precialon for this system. Howover, some of the variances wars negative in sign. ginne these are less meaningful for the purpose intended and more difficult to Intarprisi, they ara not Included in this paper.
D. FPS-16 Radars. Preolaion astimates for three of the FPS-16 radara are shown in Table LX . Those are multi-Instrument estimates. Veriability in the iadars is conalderably larger than im any of the othor ayatami. Generally, It Increased over the three teate, especially for R-112 in the East and Up oompunente. The estimates for R-114 are smaller than those fur R-112. The

TABLE VIIT

Tlight Tevt	Component Etendard Dnviviifon 		
	Wery	EME	Un
1	0.2	0.4	0.3
2	2.0	0.6	1.0
$3\left(\begin{array}{c}36.2 \mathrm{mc} \\ (36,9 \mathrm{mc})\end{array}\right.$	0.2 0.2		

TASLE' tx

Radis :	Flight Tent	Componat \qquad	andard $\ln \ln y$	
		Narth	datis	Un
R-112	1 2 3	18 25 34	46 68 154	34 92 76
R-114	1 2 3	13 16 21	30 63 44	29 28 73
8-122	1 2 3	29 21 32	24 18 44	21 20 27

largest change is in the Up component for Test No. 3. For R-122 the precision estimates are more consistant than for the other two radars. Bias estimates for R-122 also had this characteristic.

Radar system cartesian component variability, shown in Table IX, must be viewed in light of the variability of the measurnd parameters, namely range and azimuth and elevation angles. The computec artesian components depend, in various degrees, on these measured parameters. For instance, for both R-112 and R-1l4 the range measurement is essentially a measurement of the North component, whereas the azimuth and elevation angle measurements account mostly for the computed East and Up enmnnnonts resportively. This relationship arises from the fact that both R-112 and R-114 are located at the southern end of the range and the missile moved, in general, North. For R-122 the relationship is not so evident since it is located near mid-range. Table X presents precision estlmates in terms of measured parameters for the three radar systems.

A comparison of Tables IX and X shows that the precision estimate of 154 feet in the Last component for R-112 on Test No. 3 corresponds to the targe precision estimate (0.55 mils) obtained for azimuth measurements made by this radar. Likewise, the estimate of 73 feet in the Up component for R-114 on Test No. 3 corresponds to the estimate cbtalned for elevation measurements for this radar. The precision estimates of Table X reveal more directly the pertormance of the radars.

Following the installation of the first FFS-16 radar in 1958 a series of traluation tests were conducted. In a report covering these tests the genwro: conclusions were that the axpected variabllit; of the raders would wio on the
 precision estindies of Tabic X meet this expectation. One might suspect this larẹe angular variability to be caused by glinting since the radi: noerated in the skin track mode. However, for the three tests being considered the ma.:muln component in the precision estimates attributable to glintine is only about. 0.09 mlls and is therefore considered negligible. As statec in ihe section un bias errors a series of calibration and evaluation tesis have been planied for the radars. Hopefully, the angular variability will be reduced.

[^3]TABLE X

IV. AUMMARYANR GONOLIGIONF.

A. The DCUVAP gor.linuce w be the mont predise trajectnis maneuring syatein at WBMA, With improvanieite in tefhniques of start point determinatlon, and with nontinued refinement of prrpayatlon valoetty eatimates, the DOVAs an also become one of the least blased syeteme.
B. The presunt balliatia ammara syatem is the second mosi freclion ayntem at WaMR. The now BC-4 syntem is expeuted to bu ton timey more procise than the prezent yatem.
C. The angular precision of the Askania ainetheodolitos is entimared at $36^{\prime \prime}$ of arc. A large bias atill oxist: in the Up compotiont. Better approximation of the refraction correction will probably improve elevation determination.
D. The radara did not parform as wall as was expected. System blea neede to be roduced. Also, Improvomento are neaded In ayatem prection, eapecially in angular data.

REFERENCES

1. Simon, L. E., "On the Rolation of Inatrumantation to Quality Controd," Instruments, Vol.19, Nov. 1946.
2. Grubbe, F. E., "On Entimating. Predision of Measuring Inatrumenta and Produat Varlabllity," J.Ais.A., Vol, 43, (1848), pp, 243-264,
3. Davis, R, C., "Teohniquen for statiatica. Analyais of Oina-Theodollte Data;" NAVORD Report 1299, China Lake, Oallfornin, (Marah 22, '1081).
4. Davia, R, C., "Technlquea for statidtieal Analÿly of Oontinuoü Wive Dupplar Data," NAVORD Roport 1312, NOTS 383, Aprd 1981 ,
5. Kondall, M, G.; "The Advanoed Theory"of Etatiotion,"" Vol. IL, Thlrd Editlon, O. Grifín U0., Ltd., London (1951).
6. Puarmon, K, E., "Evaluation of the AN/FPS-16 (Syntem No. I) at White Sande Miesile Range," WBMR Taohnloal Momorandum \$506, Feb, 1959.
\therefore "Final Date Report No, 13,569, Ballintic Camers Data for Nike Hermulea Fit 85 HE MX 13538 In Gupport of Acouracy nid Procision of Trajealory Measuring Syatems Tent No, $3(\mathrm{U})$." Launchad 29 January 1952 , 17M-DRD, WSMR, NMex (. 2 August 1962). Classified Conlidentlal.
7. "Final Dale Repont No, 1.4001 , Askanla 'rrajuctory Du!s for Nike Hercules
 Meaguring Syatema Toat iNo, " (U)." Laumehea 24 Jamuary 1962, JRM-DRD. WSMR, NM \times (21 August 1902), Clasalfled Cunfidential.
\%. "「hai Data Repisi Na. 1416s, DUVAP Trajeatory Data for Mike deronlos Fll 85 HE MX 13538 In Support of Accuracy and Prodiaton of Trajectory
 WSMR, NMax (5 Saptember 1962). Clasulfiod Confidential.
8. "Fina! Date Report no. 14366 , Radai Date Ior Nike Hercules FIt 85 HE MX 1353 日 In Support of Adcurecy and Proctsion ior Trajeotory Measuring Syatama THat No. 3 (U)." Launuhed 29 January 1962, IRM-DRD, W8MR, NMex (4 Oatober 191i2), Olasaliteq Confidential.
9. Walen, J. E. and Kingaloy, O. L., "Itudy of Aooureoy and Prachaton of Trajactory Masaring Byatams," Interim Report of Oparation PRETtez Round No. 1, IRM-RIDD, WEMR, NMOs (30 June 1961),
10. Kingoley, O, L, and White, J, E., "An Anslyain of the Blas and Preaiston Estimatee of Trajectory Measuring Dyetoma," Interim Report on Operation PRECISE Round NO, 3, IRM-RIDD, WEMR, NMax (\$O April 1962),

Aspicts to control liouid propmllant SLOBHINO BASED UPON EXISTINC THEORY.

W, R, Fulita
Marahall Apace Flight Eenter
Hiantsville, Alabama

gUMMARY, Liquid propellunte usually carrled by a launch vahiele in cylindrieal containn re, reprement one partin a complex of eeveral coupled epring syatome (miealie bending, bulking, ete,). By axternal Coreas, the llquadepring systom can be eseltod to heavy Hquld mane motiona which oan be dectimantal to the perinsmanee of the launch vahdele. The vehiol contrul motion may be conuldared the motinfluantlal factor for exalting llquad onclliatiung.

During the last duende, many attompts have boen made to asaribe the reaponie of a llquad to axalting opolliationy. Although prinolpally a nonlinoar problem, the thaory has been confined to the firnt order terme only, due to mathematical difilesltas. This linemrimed theory has ban dincernad in antiefactory usreemant with many oxpesimontal rasulte at
 the most adverue nondition for the valusia control eyatem.

Tha interpratation of the oxisting theory leadin to dimanilonleus paster motere which, Incorporated in a nomograph, provide qulok orientation on Hquid buhaviar under varying onellatory conditions. Guch data heliy to dofine ortical voliele ilight perlode and to prodetermine propor dealgn parametori.

The eurvoy of the partinatara of oxclifatis'y liquici motion auganate posable mane of euppredubg liquid wlowing. The pres and cune of - overal methode are diecuesed and furthermore, tho provpecio inn pioper nasasuremente of liquid ourface motion arvindicated in the papne.

ASPECTS TO CONTROL LIQUID PROPELLANT SLOAHINO BASED UPON EXISTINO THEORY.

W, R, Eulliz
Murrbithll Spac.: Ml:ght Genter
Huntoville, Alabama

SUMMARY, Liquid propellante usually earried by a launeh whicio: In cyllindrical contalners, reprasent one payt in a complex of teveral coupled apring eystema (mieulle bending, bulking, ote.). By axternah sorses, the llquid apsing ayatem can be oxelted to heavy Lleuld mani motions which can be detrimental to the porformance of the launch vahlole. The valicle control motion may be conalderad the meat inlluantial fector for exelting liquid oncillations.

During the laat dncado, many attempte have bean made to andiribe the reaponae of a liquid to oxelting oseillations. Although prinelpally:
 only, due to mathomatical dithcultion. Thin llnearized theory hai bevin discorned in eatiafactory agreamont with many oxperimontal ranulta at
 the most adverue condition for the vehicie control byutem,

The interprotation of the oxioting theory lends to dimonuloniers patiomatere which, incorporated in a nomograph, provide quick neiontation on Hquid behavior under varying oscillatory conditione. Such data hal to dofine critical vahicle atght forlode and to predaterruine propar datien narametera.

The survey of the parinnetmy of onethatory Heuld motion suggonta positble meane of suppreacing liquid wioshing. The pron and cont of aevoral methods are diecussed and furthermore, the propacio ine aroper ineanuremente of liquid ourface motion are indicated in the puper.

DIFLNITION OF SYMBOLS

Symbol
5
b

Dafinition

Liquid amplitude
Liquid amplitude under splask condition
Forced amplitude of transvarse container motion
Forced Erequancy in rad/see
Firut rosonime troquenty in red/anc
Foroud trequancy in ops

$$
\mathbb{f}_{1}
$$

Fipat seconmant frequency in api

$$
\lambda
$$

$$
\frac{\omega_{2}^{2}}{\omega_{1}^{2}} \cdot \frac{f^{\prime \prime}}{f_{2}^{2}}
$$

Cuin
r. 6

4
1! ! ! !
α_{n}
$n=\frac{g_{n}}{80}$
$K=\tanh 2 \cot \frac{h}{d}$

Radlus of contalne*
Diameter of concaliner
Folar conedinated of polnte of the liquid urface
Longltudinal aceloration of containur
Bessel functione (B. F.)
Zoro' of firit derivative of $\mathrm{A}, 5$ of firat arder und first lind

Acceleration ratio (to ace. dus to gravity)

Duaign of bixjerimuntu
Symbut
h
F

W

Dofinition
Filling height of liquid in the container
Force axarted by the llquid toward the tank wall
Weight of liquid in the container

INTRODUCTION, in recent yeare, comprehemalve tudies, espitimentally and theoretioally, clariftud the reaponse of a llquid undar loroed ulbeations to euch an extent that the offoot of alopk motion is predictable ; y theory under uimplided conditiona, Nieverthelyat, the applieation of the theory for pxactical parponem his wiwas boon a dilicultundertaking. As the ounnequance of thene difitoultien, connested with nome ikepticinm In the depandence on theoratical predictionu In thle partaculay thelu. extrieme consurvatiom in vahicle design han sometimes buon practaced as thereltere. native.

This unourtalnty atimulatiod a ntudy on the limltations of the oxdicitis theory end on the effectlvanmen of the parmmetari ituvelved'ingider ted dise

 The ravulte of thie aludy are proannted in thie papos.
 \because ERNINCLEUIDOLOSH MOXTON The Problom oitigud oleillationce in princtadiy a nobllidir pictum like all problemn of liydrodynamion. Due to mathematioal dicficultion, the thoory haw been linearined in order to ablve the problem. The ancmalantion of the thoory in permiamble if the teicing ecceloration of the ryatem ($x_{0} \omega^{2}$) is vory amali comparad's the longltudinal accoleration (g_{n}) of tha liquid contalner, (ofe R Red 1 tirouth 4. This is one limitation of the exleting theory.

With these assumption (amall acolonation of axatation and lin... arisation of the theory!, It han been posalble to diduse the equation of the resonant fruquancies of the llquid wyutinm in a flat bottomed elroular cylindrical contalnor and the equation of the liquid aurface under forced lateral sinumodal oscillations.

The general form of the equation of the liquid ourface in motion ie (Ref. 1 and 5)

$$
\zeta=x_{0} \frac{a \omega^{2}}{\varepsilon}\left[\frac{E}{2}+\sum_{n=0}^{2 n} \frac{2 I_{1}\left(\alpha_{n} \frac{E}{2}\right)}{\left(\alpha_{n}^{2} \cdot 1\right) I_{1}\left(\alpha_{n}\right)\left(\frac{\omega_{n}^{2}}{\omega^{2}}-1\right)}\right] \cos \theta \cos \text { wt }
$$

The surface equation aloriben the elevation (b) of any point of the Liquid
 mbove the sato level.

From this theory, an well ac from the experimant, it followe rigorouely thati
(1) The maximum amplitudes of liquid oseus in the plane of medon at the tank wall during the fingit perlod of resonanie (wave longth about a tank diamotarel, At higher remanancos the mavimum Hquid amplitudes develnp at the interior of the llquad uariace (wave length imallor than one tank (lamatur),
(2) The larment liquid implitudes erer poonible in un ueclliating Hquin aytem also oecus during the tirat reconanoe period.
(9) The largeal iaquid nmplitudos are gerched when the longituadinal
 due to gravity (gol or thrust of the vehicie (ngo). Unaer the condicion the laquid atarti violontly eplaohing (alouh or aplanh condition, ane Ral. 1 and 3). Thic, eimultaneovaly, In the upper limitation of the valatity ne the -uxfaco equation following from the lineurisad theory (Raf. 1).
(4) The lower liniliation of the thaory concerning maximum liadiv mmplitudea is beyond any praticul consideration as diecuasad in dutall fin Ref, 1 (rory lurge oxelting amplitudan).
(5) The theory in atrungly valid for flat botomed cylindrioal conm talnera unly,

Since the maximum liquid amplitude ($\cos \omega t=1$) at the container
 resonant period (ω_{1}) are of most practical trierost because of the forces exerted toward the fink wall, and if the frequency ratio aquared is expressed by the Greek letter $\lambda=\omega^{2} / \omega_{1}^{2}, \omega$ designating the forced frequency, the liquid surface equation aimplition (Ref, 4)

$$
\zeta=x_{0} K a \lambda\left[1+\frac{2 \lambda}{\left(x^{2}-1\right)(1-\lambda)}\right]
$$

or dimenutonlesis
(1) $\frac{\zeta}{x_{0} R} \cdot \alpha \lambda\left[1+\frac{2 \lambda}{\left(\alpha^{2} \cdot 1\right)(1 \cdot \lambda)}\right]$

The first resonant frequency ω_{\downarrow} which is one factor of $\left(\lambda=\frac{\omega^{2}}{\omega)_{1}^{2}}\right.$) follow i from the theory an

$$
\begin{equation*}
\omega_{1}^{2}=\frac{3 n \sin }{d} \tanh 2 \alpha \frac{h}{d}=2 \alpha g_{0} \cdot \frac{n K}{d} \tag{i}
\end{equation*}
$$

where K thentifiea the hyperbolic tangent tom which depend n on tho fill. lug height - diameter ratio h / d. The term K. nppronche* unity $\mathrm{li} \mathrm{h} \boldsymbol{\mathrm { C }} \mathrm{d}$.

The liquid elate splashing, It the acceleration of liquid along the tank wall $\left(\zeta_{0} \omega^{2}\right)$ Is equal to the acceleration due to gravity (go) or thrust (E_{n} = n , gob, as pointed out earlier, or (Ref, 4):

$$
\zeta_{n}=\frac{n g_{0}}{\omega^{2}}=\frac{n g_{0}}{\omega_{1}^{2} \lambda}=\frac{1}{a \alpha \lambda} \cdot \frac{d}{K}
$$

and
(3)

$$
\frac{\zeta_{0}}{x_{0} K}=\frac{1}{2 \alpha \lambda} \cdot \frac{d}{x_{0} K^{2}} .
$$

The genermi equation for the net forver on the tank wall which is the integration of the presnure dintribution, (Rof. 5 and 6), aluo simplifiese If conaldered under the mont eritional conditions (aplash condition) and the andurnptione above. Then, forcea (F) can be oxpresinad in ternie of the total prapellunt waight (W) aceording to the following aquation (ees Appnndix):

Equantons (1) through (4) rupresent the fundar entad formalation of llquid propellant respones to ainutormat tank oacllations under the following conditiona of practical importance: Maximum liquid amplitudes (con wi
 firat remonint period $\left(\omega_{1}\right)$ under forced vibrations $\left(x_{0} \omega^{2}\right)$ in a cyunawieal flat ruttomed contalner (d) under varying conditione (n, K) and moceiaration equilibrium ($\zeta \omega^{2}$ z ngo). These equatione cover all enntainer mizen and all filght conditions.

Equation (1) indicaten that any frequoncy ratte λ in coupled with a opecial parameter ? $/ x_{0} K$ which may be denignated the "liquid ampli. tyde coefficient". Kniowhing thi" ooe隹ciont, the actual liquld amplitude ζ can be concluded by multiplying $\zeta / x_{0} K$ with the oxciting amplitude x_{0}^{5} arid the term K which il a function of the filling helght.

Liquation (3) showe that each parameter pair, $\zeta / x_{0} K$ and λ, in the uplash parameter pair for a "dowign parameter" $d / x_{0} K^{2}$ which watiaftos thia equation. Thin conalderation leade to a aomograph (Figure 1) which han been explained in detail in an emeller report (Ref. 4). The cotreaponding parametery, $\zeta / x_{0} K$ and λ, according to equation (1) , are plotided versum the curromponding design parameters, $d / x_{0} K^{2}$, following from equatlon (3).

For a contalnox of $d \approx 10 \mathrm{~m}(=400 \mathrm{ln})$ filled to a height largny thin the diameter $a(K m 1)$ and ouchliated with an oxciting amplitude $x_{n} \neq 1 C_{n} .$. w $\mathrm{cm}(=4 \mathrm{in})$, the dealgn parameter would be $\mathrm{a} / \mathrm{x}_{\mathrm{o}} \mathrm{K}^{2}$ - 100 , The nomotaph (Eigure l) indicmtes for $d / x_{0} K^{2}$. 100 an amplitude coefficient of $\zeta\left(x_{0}\right.$ - 29. At thie condition the liquid startis spianing if the frequancy simbio $R_{f}=\left(/ f_{1}\right.$ (equare root of λ) is about 0.975 . The ame altuation would exiet tor a tank with $\mathrm{d} \boldsymbol{\sim} 50 \mathrm{~cm}(=20 \mathrm{in})$ operated with an exciting angellitudd $x_{0} \approx 30.5 \mathrm{~cm}\left(a^{\circ} 0.2 \mathrm{in}\right)$. In the firint caue, the actual liquid amplitude would be $\zeta=29 \times 4 \approx 2.95 \mathrm{~m}$ (m 116 ln) In the uecond case $\zeta=29 \times 0,2 \neq 14,7$ ant (a 8.8 in). If the fruquancy ratio in both cases in maller than $0.97 . \mathrm{y}_{\text {, ther }}$ the liquid surface winge amoothly if the inequency ratio is larger than 0.975 , the liquid is violently splaching.
 ratios h / d and the nomograph gives the firut resonant frequancini f_{1} for any fight condition (right side double secla) in depondence of the pararieter H/nK according to equation (2), A atralght line froin the point indica*itor, Lue exciting frequercy f (luf: icale) to the firar remonan" traquency \mathbb{f}_{1} of the system (right acale) provides the frequency ratio $\mathbb{R}_{\mathbb{1}}=\mathbb{I} / \mathbb{I}_{1}$ (intersection with contral ecale). W!th this valuo the amplitude coefficient $/ / x, K$ for the partlcular condition can be found from the nomograph of Vigure 1 ,

In a atat'ar way, the largent forcen poasible on the tunk wall of an uscillating liquid aystem (aplach condition) are plotted in purcentage of the momontary propellant welyht (F/W) In Flgure 3 verauc the denip’ para= moter $d / x_{0} K^{2}$ for different filling ration h / d according to equation (4).

DESICN CRITERIA FOR LIQULD SLOSH CONTROL FOLL.OWING

 EROM THEORX. With the noinographs disuased above, the responso of liquid propeliant to any vehicle thight condition can be estimated with fait mpproximation, From the fundamontal equations (4,2 , and 3), wewell as from the nomograhp Figure l, it follows immediately that the liquid amplitude coefficient $/ / x_{0} K$ increases with increasing design parameter $d / x_{0} K^{2}$. The design parameter can increase eithur with the tank diameter d, or with decreasing exciting amplitude x_{0} or cecreasing filling ratio $h / d(K)$. However, since the amplitude coefficient curve is almost a straight line at least for the higher design parameters (see nomograph Figure 1), the effect of x_{0} and K on the actual liquid splash amrintudes ζ_{s} (highest liquid amplitudes possible in the system) is small because the amplitude coefficient is approximately proportional to the product $x_{0} K$. Thus, the most efficient factor on the design parameter is the tank. diameter d. The larger d the larger are the liquid amplitudes to be expected in the system, and consequently, the larger the forces on the tank wall.

The nomograph Figure 1 also shows that for design parameters $d / x_{0} K^{2}>70$ the frequency ratios $R_{f}=f / f_{1}$ are very close to unity $\left(R_{f} \geq 0.965\right)$. The differences in the critical frequency ratios (splash condition) are small among large container design parameters. This means, a slight increase of x_{0} which reduces the original $d / x_{0} K_{0}{ }^{2}$, would suddinnly create the detrimental splash amplitudes because the critical i: criency ratio under the varied condition is smaller than the applied frenuency ratio.

This suggests that frequency larger than 0,9 should be avoided in any case. A frequency ratio of $R_{f}=f / f_{1}=0.85$ may be considered "safe" for all practical cases in oudex to provide a smooth oscilletien of the liquid level. As the nomograph Figure 1 indisatef, ouch a frequency ratio corresponds to a design parameter of $\mathrm{c}_{1} \mathrm{Fo} \mathcal{K}^{2}=11.3$. The propeliants in a container of $d \approx 10 \mathrm{~m} /=400 \mathrm{in}$) would start splashing. (highest liquid ainf? tude rossible) at this frequency ratio if the evriting amplitude woule be $x_{0} \approx 00 \mathrm{~cm}(=35.4 \mathrm{in})$; $\left(\mathrm{di} \mathrm{x}_{0} K^{2}=400 / 35.4=10: 0.9=1 . .3 ;\right.$ Kassumed unity). However, such an extreme exciting amplitude is very unlikely in practice. For a $2.5 \mathrm{~m}(=100 \mathrm{in})$ container, the exciting amplitude x_{a} vorid be about $22.8 \mathrm{~cm}(=9 \mathrm{in})$ to acitieve the splash amplitude under the same extreme conclitions.

Fortunately, during vehicle flight, the frequency ratio decreases \therefore :ncomatically if the exiting frequency is mairitained constant. It follows from equatior (2), and the nomograph Figure 2 shows, that the first resonant
frequency $\omega_{1}\left(f_{1}\right)$ increases with increasing vehicle acceleration (n). Thus, the frequency ratio λ decreases and the liquid amplitudes decrease too (Equation 1 and nomograph Fig 1). The decreasing height of the liquid $(K<1)$ during drainage, however, increases λ again so that splashing toward the end of the powered flight is very likely.

On the other hand, the natural frequencies of the liquid system (first resonance) are small for large diameter containers; they are inversely proportional to the spqare root of the diameter d (Dquation 2 and romegraph Fig 2). This effect is aggravated if the vehicle acceleration ratio n is small (upper stages). It is easy to understand that small resonant frequencies are easier to approach by any vehicle motion than are larger resonant frequencies. In other words, liquids in large diameter containers are more sensitive to any movement thar those in small diameter containers, or, slosh control by vehicle control frequencies is more difficult to maintain if the tank diameter is large and if the vehicle acceleration is low (near zerog).

At higher exciting frequencies the situation changes. Figurc 1 shows the pattern of the curve of liquid amplitude coefficients versus higher frequericy ratios λ, the peaks indicating the resonances. The other curve intersecting the amplitude curve at the beginning represents the spiash condition for a particular parameter $d / x_{0} K^{2}$. Tris graph illustrates that, at higher resonances, splashing of liquid starts before the theoretical amplitudes of liquid are obtained. This means, at higher resonances, there is always splashing and the theory according to Equation (1) is in-- Efective. No theory exists yet which ascribes the liquid surface undus these conditions. The only fact we know is that liquid innplitudes at this stage are limited by the equilioriur. いf the accelerations acting on the liquid (splash condition).

Another important fact concerning the container design foliuws foum jirgure 3. It shows that the force - ratio increases considerably with decreasing h / d - ratio for a particular design parameter díx K^{2}. This Affect, of course, is fairly compensated by the decreasing propellnnt weight durirg the drainage process. Hewever, if an equai propenicnt volume is considered in two different tank configurations, first, in a long but small diameter tank, and second, in a short but large diameter tank, it can be concluded from Figure 3 that the forces the tank wall in the first case are much smaller than in the second case. This again suggests the design of long but small diameter containers rather than short but liarge diameter containers.

PRACTICAL METHODS TO CONTROL LIQUID SLOSH MOTION.

The interpretation of the theory of liquid slosh motion during the first resonance period in the previous section already illustrated that the basic container design is of importance for hendling this problem. Large but small diameter containers are preferable for two reasons; first, the very Low resonant frequency of liquid in large diameter containers, and second, the larger forces toward the tank wall to be expected in large diameter containers. These requirements following from liquid slosh characteristics, however, contradict (in most of the practical cases) design requirements which suggest containers to be built as short as possible in order to avoid bending, or for ther structural reasons. To serve both requirements, longitudinally compartmenting the large diameter containers might be considered a fair approach to an optimum. Attempts in this direction have been made by the design of so-called "scallop" or "multicell" tanks. Even though the first resonant frequency of the compartments will not correctly be in agreement with Equation (2) because Equation (2) applies only to cylindrical containers (Ref. 1), it will be higher thar in the single tank and thus, be more advantageous to control liquid slosh motion as discussed in the previous section.

The cluster principle as experienced in SATURN I may be considered an incidental modification of the compartment concept. Here, in addition, the effect of long but small diameter tanks is advanced by a combination of :iquid systems of different resonances. If the center container with its lower resonant frequency is excited to the extreme splas:: ampitudes, the liqui \ddagger surfaces of the outer containers are still smoothly swinging because the fryuency ratio λ in the center container is high (low resonant frequency! while the freouonc; adio in the outboard containers is relatively small (higher resouant frequency). This combination certainly stablizes one pertion of the available tiquid propellants while the other portion is wistatie and the net furces on the tank wall are reduced accordingly.

Equation (2) shows that the resonant frequencies are esesntially deperrient on the n / d ratio, and at "shallow water" conditinns also on the h / d ratio (K). This means that the first resonance frequency is very iny if the vehicle asceleration is small ($n \rightarrow 0$), which concerns upper stages after separation. Since such stages usualiy are designed short (large diameters) for structural reasons, the ration/d and thus, the natural frequency of the licuid system is extremely small. Any vehicle motion will immediately create the critical splash condition: the liquid portions thrown up under these conditions, but dropping back to the liquid surface very sluwly. The consequence would be an enhanced heat tranafer from the iow tenferature liquid to the higher temperature ullage gas which could jropardize the ullagr yressure.

This consideration suggests the design of honeycomb containers for upper stages, the cells extending in longitudinal direction with diameters smaii enuigh ic provide a larger n /d ratio (higher resonance) for each cell in spite of the low vehicle acceleration (n). Such a honeycomb container could be made of very light-weight (small wall thickness) because the pressures toward the cell walls cancel each other except on the outside walls.

It should be noted that from another point of view the honcycomb concept is also advantageous for solving the problems of liquid behavior under low gravity conditions. It is known that, at low g, the influence of the surface tension becomes more and more effective on the shape of the liquid surface. J. T. Neu and R. J. Good, in an interesting study on this particular subject (Ref. 7), also arrive at the conclusion that a honeycomb container, according to their suggestion of conically shaped hexagonal cells, would be the proper solution for controlling liquid propellants under low gravity.

The characteristics discussed so far provide design criteria for preventing violent liquid slosh motion on a natural basis. They are deduced form the existing theory which is in good agreement with the exper!rient for the most critical conditions formulated oatier in this paper. Although there are many other effects, especialiy during vehicle flight, which can change the liquid motion considerably (interference by eng: ae vi’rations, bending, tank breathing, etc.), the conditions discussed above aro always actual.

In the past the proceht:re almost everyirne was to design a container which satisfies all structurai and $\because s i g h t$ requirements, and to consider idruid slosh motion as a secondary problem. This led to the instanatinn of so-called anti-slosh or slosh suppressing devices, which sometimes a: based un rather ccocntric ideas. Only few of thuse ideas aire somehow reiated to theoretical facts. One of them is the floating can-iype antialesin device (Ref. 8) which has been successinily flight tested some yer:s dro (Tig 5). The function of this device is based upon the pressci.e equation which shows that only the upper portion of the liquid down to a depth of about one-quarter diameter of the container is in motion, which determines the length of the cans, and based on the fact that the spring constant of the liquid system in motion is increased. The friction between the fioats and on the tank wall cannot be considered responsible for the damping characteristics as sometimes erroneously anticipated. This anticipation is disproved by the fact that can devices of too light weight where the
friction le supposed to bo the name, are not faselble. The lloating bull which covera the total liquid eurface can be consldeyed an axtonded can device. The goating IId whioh also covere the total Hquid aurface actually provide: for all llquid leveli a "full tank" condition. The Hquid is ancepa suled drainage and thus, acte like a solld body. These dovices, of currife, are feaulble only fise containern which are long compared with the dia. meter.

For concelvable remeonm, all tloating devices havo many oppononta partioularly mong designera. Bmphaisis le placed on so-ablled fixed devicus. Some of them are shown in Figuze 6, In most canas, thes devicea are ring-like, mnointed at thetank wall. Many teute proved that simple fiat ringe have the eane elloct as the othir more complicated devicen shown In Jigu:0 6. The finction of thowe devines actually has no corculation to the axiating theory because the damping eharactariatio of auch baifies in evidently a nonllnaar elfect, a problom which da not colved yet, As a itop-gap, a Inear damping iactor has been introduced into the liquid durface equation in a eimilar way at cuatomarily implea mented in equations for mechandeal vibrationt. The damping factor than, le delesmined by experiment, It hae been found that the yatio beite ween the ring width (w) and the radiue of the tank (5) provides a damping factor within a satistactory margin. The ratio of $w / r=0.15$ may be conudered a prictically useful everage. Thie mounn that the ring width in large diameter containera is conalderable, not to montion the nonesary atructural atrength of such ringe because they have to congunce all the fusces exerted by the liquid in motion.

The solld sruas duvicm phown in Figure 6 is 5 sompartanentation of the liquid buik which changen the natural frequency of the liquid within aarh compertinent, an divcueand arliex. It the wall of the ciamiarn furforated, the netural frequency of the liquid will not change conaderabi; bilt the darring will bo natiatactory ($\mathbb{R}+\mathrm{f}$, 9). All thane Axed devires ostiopt compartmentation are comparablo with "broak-watery" in the ocuan. They break the llquid waven which evalve withia the tank agourde ing in the theory. From this point of viow at followi agein that no risrolation betwen the lineariaed thoory and the buhavios of the Ifquid due to bafling can oxiat. The bafles actually disturb whet the theory describen.

In recont yeara, another offoct has been appliad for controlling llquid alooh motion. If a tube is aubmerged longitudinally along the tank wall in the plane of motion, the phase between the orchilating liquid aurfacen, inade and outaide the tube, changes, It the asbmerging depth of the tube opering is about one tank dameter, the phane ahdif in approxdmately 180 dagrees, Thio means, at thia siage tho liquid level inside the tube oecillaten luvereely to the lowel in the ectininer, The phaen whift tukes place whlle the oponirg of the tube pasied the apace betwoon a dapth of ond-quarter and throe-quartere of the timnil diumoter below the mero Hquid lavel. At a conatant axelting exaquonay the Hquid uurfaed in the cank osolliaten with amplitudon according to equation (1), white tho Hquid iovel inalde the tube is going up and down as in a totube:but whith diteront phase. The esquence is lldustrated in Figure 7. Hare, four wemigunnular tuben are attached to the contadner wall, one paly in the pliane of anotioni the other paly normal to the direction of motion. The longlitudinal orons section Indleato the diffarontly omolliating lovols in tha tank and dn the tuben, The rasion for the phane shlft has not been clardited yot, theoretio cally. Qualleativaly conaldored, this condiguration remamblea the anti. rolling tank principle which hai bene applled to lares ahipill by tahim, In 1902 (Raf, 10). The tuber shown in Thaure 7 may be donnidered the "aboorber syotem" which is attached to the "ahip" (vihiclic contahawr), In contrant to Frahm'e epncopt, the "was" in our acas in inade the "uhip" and excited by the "ship" motion. Thie prineipia han buen tuceenafully model-teated. It to quite different from the princlpies applied on fer, and should not be confused with compartmentiug the tank or with hafiling. Prentically no forces due to liquid motion aro acting on the tube walle The presares inside and outulde the tuben oancel onch other. Thus, Whe tube can be main of vesy thin, laghiwoight material, By thie mathod, the llquiclia dividadin at least two infurfering ooollinting ayatome which do not diaturb the cohereace af the liquald as Lafties do (viulemt aplaghing) and which can be applied to the mont cattical areas of the container,

The principle diluatrated by $\operatorname{Fig} 7$ also can be nombinud with a lloub. ing bell davice ai nown in Fig 8, The doubleawalled cylindrical puritun of the bell is compartmented so that ouch compartmont acta liker thio ar illuntrated in Figure 7. Due to tho phame uhift dimeuseod earlier, the Hquid flow in the open area within the bell and in the double-wall section of the bell, compenante each other as indlemed by the arrown in the oketch Figure B.

LIQUID SURTACE MEASURINO METHODS DURING BLOAH MOTION. Another problem elonely connectid with damping llauid alosh metioni is the meaduremont of liquid aurtace deformation partioularly during vehiole: fight. The mothade devoloped and utillied so car, howovim, five ohly poor, and oven misleading inforimation, The moat common mathode are differential presoure and capacitance menaurumonte. Since thase meas-, aremanta are only point-masuremante of the llauld ourface, a comper. henuive knowledge on the real shape of the burface at any inctinit, in mot positble.

This axparience atimulated a study, contruated radiantiy by MBro to SPACO, INC., Hunteville, on the feanbility of the biereontelovition principle for monitoring the whape of the lotal llquideuriace dusing eloals motion, Thic utudy came up with the interveting sumult that de will be poostble to sean the liquid surdace with a TVogansian and to mentity and. convert the data inte contour mapping of the ariace at any inatant, Such contour mapping of the liquid surface eharmeteriaed by contour linea. of equal liquid levol would providn roapectable Information on Hquiderbi. havior under varying cendilone which would halp not only is claydy the erequancy upoctrum acting on the Ilquld, but aleo could be uthined an an improved method to solve the problem of exact propellant loading.

APPENDIX

She general equation of the forces toward tho tank wall in (Raf. s and 6)1

$$
F=\omega^{2} x_{0} 0^{i \omega t} m\left[\frac{x}{a}+2 \sum_{n=1}^{\infty} \frac{\operatorname{conh} 2 \operatorname{mon}_{n} \frac{h}{2 a_{n} \frac{h}{d}\left(a_{n}^{h}-1\right)}\left(\frac{\omega_{p^{2}}}{\left.\omega^{2}-1\right)}\right]}{]}\right.
$$

 kofanh $2 \alpha_{n} \frac{h}{d}$, and the frat resonance of liquid $\left(\sigma_{n}\right.$ "al $\left.\omega_{n}{ }^{n} \omega_{1}\right)$.

$$
r=\frac{\frac{\omega}{2} x_{0}}{b} w\left[1+\frac{k}{a} \frac{h}{4} \cdot \frac{1}{\left.\left(a+\frac{1}{2}\right)\left(\frac{w}{w}\right)^{2}-1\right)}\right]
$$

$$
\begin{equation*}
\frac{f}{W} \cdot \frac{20 \lambda k x_{a}}{d}\left[1+\frac{k}{\frac{h}{d}} \cdot \frac{\lambda}{\left(a^{1}-1\right)(1 \cdot n)}\right] \tag{1}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\text { vanaixo }\left[1+\frac{\partial \lambda}{\left(a^{2}-\lambda\right)(1-\lambda)}\right] \tag{i}
\end{equation*}
$$

and under the splash condition

$$
b=\frac{n \cdot \ln }{\omega} \cdot \frac{n \pi g}{\lambda \omega 1} \cdot \frac{1}{2 \pi \lambda} \cdot \frac{d}{\pi}
$$

Equalling (2) and (3) and trancturming

$$
\begin{equation*}
\text { Tr-itron " } \frac{1}{4 \mu^{2} \lambda^{T}} \cdot \frac{d}{x_{0} k^{T}} \cdot \frac{1}{2} \tag{4}
\end{equation*}
$$

Subutituting in (1) and tranalorming

$$
\begin{equation*}
\frac{y}{W}=\frac{1}{2 \pi} \cdot \frac{d}{h}+\frac{x \cdot x^{2}}{d} \lambda\left(\frac{2 x}{k} \cdot \frac{d}{h}\right) \tag{b}
\end{equation*}
$$

Equation (6) is the bastin for the nomograph Fis $3 ; \lambda$ is a dunction of $\mathrm{d} / \mathrm{x}_{\mathrm{a}} \mathrm{K}^{\mathrm{d}}$ according to equation (4).

FIG3 nomograph to determine
forfes due to sloshing in percentage of propellant weight
vs.
DES:SA PAFRMETER $d / x_{0} K^{2}$
FOR DIFFERENT h/d-VALUES

FIOATING ANTI-SLOSH DEVICES

CANS

FIG. 7
-OPENING FOR GAS ESCAPE

FIG. 8

REFHRENCHS

1. W, R, Eulith and K_{i} F, Ginesy, Comparatua mapermental and Thanretical Conalderations on tha Mechaniam of Fluld Osalliations In Cylindrical Cnntmineri, NASA-MTP-PLVE-PF-61-111 1961:
2. W, R.' Eulte, Analyale and Control of Lipided Propellant Slowinig During Mionile Flight, NASA-MTP-PLVE-Fn61-22; 1961 ,

 1962.
3. W, R, Pulits, Practinal Conouquances of Llquid Puppollunt Sloph Charactertition Ditivid by Nomographic Mothods, NAEA -MTP-PhVEiPE 63:7, 196\%.
B. H. T, Bquer, Propellant Blowing ADMAnDA;TR-18-58, 1958,
4. H. F. Bauer, Thoory of the Fluld Onollatonis in a Clresulay Cylin. descap Ring Tank Partally Flued with Liquid, NAEA-TN-D.5B7, 1960 .
5. J. T, Nou and R. J. Good, Equilibrium Behaviol of Jilusde in Conn thinera at Zaro Gravity, AlAA Jotrinil, Vol. 1, No. 4, April 1963,
© W. R. Hullta, A Cen-Typo Anti-Blooh Dovico Derived from Banic Stuoh Studics, ABMA, Rpt. No. DSD-TR-E.58, 1958.
6. H. N. Abrammon, W. H. Ghu, ind L, R. Gnren, Liquil slowhay In 45° goctor Compartmentad Cylindrical Lanke. Technleal Repori Mm, 3, rontract NAs8-1588, Southweat Res. Init. Nov. 1962.

LU. J, P, Dan Hartog, Mechanacal Vibration, McGraw Hill, 3xd Ed, , Niaw York 1947, Page 136.

BASIO CONAIDERATIONA FOR THE PRELIMINARY DEBIGN OF A SHOCK TUBE FOR THE INVEGTIGATION OF THE AOTION OF A NUCLEAR EXPLOSION WAVE UPON A MIBEILE
 Diotrioh E. Gudmant*:
 struntures and Mechilinéa Laboritöry; Army Misalla Command ${ }^{\text {b }}$

Modern warfars makes it necessary to inolude all those onvironmental oonditions whioh are expected to be impoesed on ell typas of miatilas in flight and prior to leuagh during a nucluar attack. The ossential effecte of a nuclear explosion are:
(1) The blait,
(2) The hat radiation, and
(3) The nuelear radiation,

From the point of view of the Etrueturas and Meoharios Laboratory, Army Misalle dommand, will three offeota are important. The blagt and the haut radiation andangor the integitity of the insacile atruetural the nueloar radiation as wall as the heiat rediation can change the properticie of materialn to an unm beurable extent, Little is known as yot of the full offectis of ahook wavay and the ecoompanying extreme temperature gradient, the radiation of the fireball, and tho nuelaar decay on mianile atructurea, in order to moot the extreme environment of a nuolenr explosion, it appoars extramely hecessary to invostigate the fundumental characterintios of renponie of the minalle atructure uider auch elicumstancen.

Since the Dynamiud Analyyia Bramath of the Stricturew and Moohanion
 turea to a nuclear axplosion, ihte rapar is rentmoted to tha binat affeces.

The problem of predicting the charactaristios of dynamia louding on a misaile struuture, gives the peak uverpressure and the duration end anapu of t'se ponitive and negative phases of the blant wave, can be appruachari in four ways:
(1) Theoratical unalyalin,
(2) The une of high explonive charges
(3) The sull-acele nuclear toat, and
(4) The shook tube.

[^4]It would be likemarrying coal to Newoantle to quastion the usefulnasa
 matical model of the cuante whon a blast wave panmes over minalle and should also devalop model for the structure mathemationlly, besed on atruotural response oharaoterlatios. Howavar, the analytioad mothode are not yot developed enough to rellinquith experimental inveatigetions. Among the axperimentel methode the shock tube is admirably aulted to etucies of this narure. It provides a laboratory controlled aufe method for obtaining shook wavea of desired peak prossures in a relativaly inexpanatve mannerf these shook waves may be imposad on atructural modele of arbltrary mapes, and uf courne, of Umited dimensions. Asourate preneuro-time mousuremente can be made on each tace of the minalle model. Naturally, the ahook tube hia not only edvan= tages but aluo fow disadvanteges ouch all limited eontrol of the shape of the presmure pulie following the initial presaure, and a limited duration of the prosulure pulse. Howover, deaplte these amald disedvantegen, the shock tube has boen in the pant an extromoly powertul tool for the danion of blastmensiutent protective atructures and should also usefully serve in the future for the invesm tigation of the offecte of ahook waves on miselde metructures.

Please let mu glve you IIrat a briaf uurvey of the phenomana after a nucimar explosion in the choosphore. Almost immediately atter the datonation ooourn, the expansion of the hot geses initiates a pressure wave in the aurrou, Aing air. As the presaure weve propagates away form the oentor of the explosion, the following (or innar) part moves through a ragion which has been previenuly compressed and heated by the lesding (or outer) parte of the wave. The ditiurbance movol with the valoelty of sound and ince thi" veloeity inoreasea with temperature and presaine of the alr through whioh the wave is moving, the Inner pmrt of the wave moves mere raulddy and eatches up with the duter part. The wavafront thus gety ztenepar and ateopor and within a very ahort period it becomes abrupt. The advanaing shock dront providas a vai: sudder. Inerease of pressure from normal atmosphetio to the peak ehobk prosnure. The shaok front thus buhaves like e moving wall of highly uumpreaned alu.

As the expanaion proceeds, the preseure diatibution in the ragion behind the sheok iront gradually changen. The overpresaura is no longet cienatent but drope off continuounly toward the oenter. At leter times when the shock front has progrenesd some distance from the oenter, rarafaction wave davelops at the center causing a drop in prosmure below the initial atmonpherle value. Thus, auction phase develops. The shook wave weakons ac it progrosese outward and its volooity drops toward the valoolty of mound in the inm itial cooler alr.

If the bomb is detonated at a diatance h above the suriace of the earth, the shook wavo will have the general configuration indicated in Figura \& (Figurea are at the and on this arifole) ciuring the brial time Interval before it Impinges upon the surfine

A short time later the redius of the shock front becomen greatar than n, and that protion of the incident ahook wave which impinges upon the orth' surface is reflected back forming the rolleoted shock wave as lllustrated in Figure 2. The aymbol x reprasenta the angle of Indidenow of the mook wavo with the aarth' surtace. The reflected shock wave overprosaure P_{r} is a funotion of the incident shook ovarprassure P_{g} and the angle of incldenee but always

$$
P_{r} \geq P_{s}
$$

The reflected shook front travels through the atmouphere at a hiehor velooity than the incldent shook and gradually overtakey and morges with it to form a single shook tront called the Mach stam, as shown in Figuro 2. The fused shook; front thus formed is normal to and travela parallel to the arth' suriace. Ine Mach siem fimation la initlated when the angle of imetdenee of shook wave beoomen greater than approximately 45°. Onoe formed, the height Jf the Mach stem gradually ingreases as the radius of the shook wave becomas truater.

The importance of the Mach atem phanomena it that it caunen two s'gek waves to fuse into a aingle shock wave of higher everpressurn aizi of areater deatructive pnwal te: istructures loontod In ite ratha,

The peak overpreasure P_{n} exinting in tho shook wine adiacent to the frsuand surface is a tunction of the distance from the point of bursi anci i... gimid of the weaponi ite value is plotted In Figure 3 for four wenpnn sizes, $20 \mathrm{KT}, 100 \mathrm{KT}, 1 \mathrm{MT}$, and 20 MT . Theno curven are weapon hurfte at ground surface. The shoak front volocity U is a fisation of the pwak overpressure p_{m} (Figure 4). It: value le glven through the following equations

$$
u-C_{n}\left(\frac{\gamma+1}{2}+\frac{\gamma+\alpha}{2} \cdot \frac{P_{0}}{P_{0}}\right)^{1 / 2}
$$

whore
C_{0} wamblent apeed of sound
γ wratif of the mpecifio hoat of air
$P_{0}=$ amblent prosence (anead of the whock front) of the atmosphore. With

$$
\frac{Y_{0}}{C_{0}}=M_{a} \quad \text { (Shock Maul Number) }
$$

the uquation simplition to

$$
M_{5}=\left(\frac{6}{7}+\frac{f^{-} F_{1}}{7 P_{0}}\right)^{i / 2}
$$

where the volocity ni the inook front lis oxpiessed a multiple of tho amblent anund upsed,

Aster raflection, whe shock wave isecomaz itronger and the ratloeted ovarpranmure retio. T_{1} / F_{B}, is plotten in figura 8 an a function of anglo of Incirisisa, O, of tho shook tront, This figure aphlian to both an Inclined shock front atriking the sutice of the arth and a mock fiout atriking any subs fade at an angle of inc.dance or .

In the deoond part of my papar I want to dimouss the dasign oriteria of a shock tube in ordar to almulate a nuclear explosion. Pleane, let me glve yous first a krief anrvay of the elemoniary anoak tube theory.

Figure 6 nhows the mogt simple movk subu aseombly. The shock tube conaluts of a rigid oyllindor divided into two mections by gastight diaphnuya Cne-hul' of the tube, known we the compreasion chamber, containe a gas at a pressurn P_{4}, whioh is in oxerse of the prensura p_{4} of the ges in the oume half of tho tubse known as the expansion olambar. The gases on elther gide of the cilaphragm need not ricesasarly be of the seme ohamicul type

When the diaphrapm is oadsed tu harter, ahork wave travel Into the expanslon ohamber and a rarafaction weave trayels back into the compression chamha:. A flow of gas la buhind the whouk frout and, in ordar to avoid preseure
variation bullding up, the flow velocity is uniform I_{i} the ragion between the shook front and the tall of the rarsfaction wave. This in wleo reglon of gonstant presaure. The distribution of presaure alorig the tubo bofore and aftor the diaphragm has ahattered in also shown on the pieture.

The dotted dine denotes the potition oocupled by that gas which was originally at the diaphragm. The gun to the right has been compressed and haaled by the ahock wave but the gas to the Inft of this line hae expandad from the compresulon ohamber and has, therefore, been cooled. At this position there wild be, therofore, in general, ohange of type, temperature, and denalty, valibaltiot are the same on both aldes, Sueh a polar ia known as a cumbat disuontinulty.

Figure 7 show a plot in the $\mathrm{K}_{\mathrm{i}} \mathrm{t}$ plane (x correaponds to the lanoth of tue ahook tube with $x m 0$ at the diaphragm and t ls the time) of the prom ooswes oceurting in ahocle tube with both ande olosed. The mook front positlon is repretented by the Hine OA with lope $\mathrm{At} / \mathrm{dx} m \mathrm{~L} / \mathrm{U}$ (U voloct:' of the whook wave) and the contaet alanonkiniity by DB with slope $d x / d t=1 / \mathrm{U}$ (U'm velocity of the oontazt disoontimulty). Thim moete the rellected moek AB at B; where the ahock wave once apalin undergoan a rafleation (not nown In ths plot). The alope of the contact muface eurve in the x, t plane ds than rery stap beouse the llow voloelty in low ln this xagion. The haed of the rarafaction wave travelling from the daphragm if reptorented by the oharacturistics $O D$ and the peth of the rafleeted rarafaction wave ia denoted by $D E$

Fifure 8 shown the altuat on in a shock tube a short thine after the Ais.. inragm was removad. l'he ntrong line givas the presmuro diztribulion vergus distance, the dashoci inne the orlginal presaure disiabution, and the deaheddotted line the contact murform.

Finally, the next equation will yield tha metic preasure ratio \boldsymbol{f}^{\prime}, 4 asress the diaphragm necassary to glve a pressure ratio P_{12} actues the shoek front:

$$
P_{14}=P_{12}\left[1-A_{14} \frac{\left(\gamma_{4}-1\right)\left(1-P_{12}\right)}{\left\{2 X_{1} P_{12}\left[P_{12}(Y-1)+X_{1}+1\right]\right\}}\right] \frac{\eta Y_{4}}{\frac{\gamma_{1}-1}{}}
$$

For $\gamma_{1}=\gamma_{4}=7 / 5$ and $A_{14}=a_{1} / a_{4}=1$ follow:

$$
\left.\dot{P}_{11}=P_{12}\left[1-\frac{1-P_{12}}{\left\{7 P_{12}\left(P_{12}+6\right)\right\}}\right]^{1 / 2}\right]^{?}
$$

It la cowar from the tirnt equation that the atarting prosiurc ratio F required to produce a shook of prowisin ratio P_{22} la a function of three $\ln ^{24}$ dependent parametary, $A_{1 s}$, γ_{1} and $\gamma_{4}{ }_{j}$. A 4 in the ratio of the
 region 1 and 4. The theory may, st courso; be formulated in tafitit 4 other. parametor: nual at intornal energy, for example. The primary conditién for produeing a sheck la the differnoe in pressure acrosp the claphragm and, having tixed γ_{1} and γ_{4} by a cholon ot gesesi; one stilli'has a frac ptiramotar whith becomea fixad when the tumperature ratio ha paoifiad, in praotho it is found vary advantageous to uni a dight gan to drive a haívy one, suah as hollum on alr, beonule thin combination thives a maller value of without ohange in temperature, and reaulis in © atrongar ginock witheut incrnaning the prosaure ratio acrose the diaphragm.

Figure 9 hows the ralation botwown the aliouk Mach numbur M_{8} and the pressura ratio r_{4}, oroses the diaphragm in sevural valuen of $A_{\text {a }}$. For strong shook tho fullowing equat!on ylulds the aliock Me oh numbur:

Usimy a nerialn substitution yialda

$$
M_{B}^{2}=\frac{\gamma_{1}+1}{2 X_{1}}+\left[\frac{\gamma_{1}^{2}+2 \gamma_{1}+1}{A_{14}^{2}\left(\gamma_{1}-1\right)^{2}}+2\right]
$$

Figure 10 showa the variation of the ahook pressure ratio, f., , with the dinptheagm pressure ratio, P_{41}, and Figure 11 the vartation in the snoeh Much number, M_{9}, and pirticin veloeity H_{2}, with diaphragm pronnurh ratio, P_{11}. for the gai combination atr/alr, He/alr, ar. H_{2} H air.

Bofore any design data can be glven, it is noceasary to decide which apecilio condition shall he simulated. Any point around nuclear exploaton Is oherocterized by overpressure and duration of Ilow. Hence, It must be dotormined for what overpresture and flow duzation the nonk tuba shalit be dealenad, thouch the flow duration is oi ininor importance alnee ipacial instrumentation and theoratical osnaldarations elminate the noad to aimulate the full duration of flow.

Although prosent mionllea ean nuly ondurw a vary mall ovarprosaura, It appears reatonable that future misnlies should bear a much highor ovarpresaure in tha magnitude of $100 \mathrm{pal}, 100$ pal is almont aquivalant to a prasiure ratio of the ahock wave ot $1,8$.

Formarly given graph have shown immodiately that the dealred pressure ratio of the hook front $P_{21}{ }^{\prime \prime} 8$ is obtalned by prosisure ratio acrous the diaphragm

$$
\begin{aligned}
& \mathrm{H}_{41}=200 \mathrm{for} \mathrm{alr} / \mathrm{alr} \\
& \mathrm{P}_{41}=26 \mathrm{for} \mathrm{Ha} / \mathrm{alr} \\
& \mathrm{P}_{4 .}=16 \mathrm{frr} \mathrm{H}_{2} / \mathrm{alr} .
\end{aligned}
$$

Tho notation air/alr, $\mathrm{He} / \mathrm{alr}$, and $\mathrm{H}_{2} /$ alr muans thal mir, hollum, and i.ydrogen are unod an driver ganae in the high presturo chamber, respetively, and only a.ir hased as uriven gas in the low presurute chamber.

The praseure ratio k miag jieslda a valodity ratic of the ahoek wave $\mathrm{M}-2.6$. If the ahook tube fa deutgned to bear an ovarpressure of about 3000
 with halium and P_{21} " 23 with hydrogan inatead of ate at drlyat gai whion is equivalant to about 230 psi and 345 pal, reapantively.

The numbyre given above show elearly that in in eanlly ponabie o memulate the peak overprensure of a nualear blant with a whock tube bulli' with moderately atrony matarial.

The length of the ahook tube is a vary importent factor ainee the duration of the flow depends on $1 t$. Flgure 12 represents the course of avents by a timedialance plot which oan be used to determine tho length of a shock tubu. in the plecure the origin in tatean at the position nf the diaphragm and at the timu it breaks. The abscissa $x=x / \ell$ is dintance along the channel divided by the
length of the pressure chamber ℓ. The ordinate $Y m n, t / h$ is Hkowise dimensionless and, hence, the plot li f applicable to any shock tube. The velocity of the shook front is eonuldared as constant end has been previously presented in the equations. Its path ie raprasanted by the straight lune a. The contact surface ta represented by the straight lina b. The rarefaction wave is designated by d and after reflection on the closed and by e.

At any particular X the length of a vertical lina within a sone which It oroseve represents the duration of the flow in that zone tor an ideal shock tube. The vertical line through the point is extending from point B to the interaction with the lime at a' represents the longest posable time of flow ' τ between the shook front and the arrival of the contact surface before other disturbances given by the rarefaction wave may occur.
γ_{4}, a_{1}, and ord ar to calculate the very important point a

$$
\begin{aligned}
& x_{B}=\left(Y_{B}-Y_{O}\right)\left(\frac{3-r_{4}}{2} \cdot \frac{u_{2}}{a_{1}}+A_{41}\right)+X_{C} \\
& Y_{B}=\frac{Y_{0}\left(\frac{3-\gamma_{4}}{2} \cdot \frac{u_{2}}{a_{1}}+A_{41}\right)-x_{C}}{\frac{1-\frac{\gamma_{4}}{2} \cdot \frac{u_{2}}{a_{1}}}{}+A_{41}}
\end{aligned}
$$

where

$$
\begin{aligned}
& x_{0}=Y_{0}\left(\frac{\gamma_{4}+1}{2} \cdot \frac{u_{2}}{a_{1}}-\Lambda_{41}\right) \\
& x_{0}=A_{14}\left(1-\frac{\gamma_{4}-1}{2} \cdot \frac{u_{2}}{a_{1}} \cdot A_{14}\right) \frac{\gamma_{4}+1}{2\left(1-\gamma_{4}\right)} \\
& \frac{u_{2}}{\sigma_{1}}=\left(R_{21}-1\right)\left(1-\frac{\gamma_{4}-1}{\gamma_{4}+1}\right) \\
& \sqrt{\left(P_{21}+\frac{\gamma_{4}-1}{\gamma_{4}+1}\right)\left(1+\frac{\gamma_{4} \cdot 1}{\gamma_{4}+1}\right)}
\end{aligned}
$$

The following equation yfolds the length \mathcal{L} of the comprosuion thamber exprested in the same symum of units in which ad is glven:

$$
\ell-\frac{a_{2} \tau M_{B}}{Y_{B} M_{B}-x_{B}}
$$

Consequently, the overall langth L of the whole mock tuise is given by:

$$
\text { L } \quad l x_{B}+2
$$

Ansuming a prosisure ratio $P_{12}=0,25$, flow duration $\tau^{\prime}=3 \mathrm{sec}$, and a velocity of sound in air $a_{1}-332 \mathrm{n} / \mathrm{mec}$, the equations yleld the overall length of a rhook tube to 5.2 kilomoters, stronger ahocks as assumad ar use of hollum or hydrogon would load to svan longar tubua. From thoue reande it becomas obvious that it is practically imponsible to simulate the full duration of the ovorpressure phace, but as alrwady mentioned, the need for this ean ba allminaied by apeolal arrangemante.

If the equations are solved for τ, the thew duration bohind the shock wave in a shook tube of given leneth of the aomprension ohamber can ha computed.

Asmuminc agaln $\Gamma_{12}=0.15, a_{1}=332 \mathrm{~m} / \mathrm{meo}$, and thu length $L=30 \mathrm{~m}$, the equation italds $\tau=u$ ulfu seconds.

No princlpal considerations dan be given for the diameter of ste whook l:hes sinde no primary phymieal factors depond on thle paramater, Nevarthuta, is, in ordar to isvold boundary layor affecte and as tarian possitila to anme tha messurements, the diameter of the shook tube should bo as lareje a justifiatile from the etandpoint of general design afide eomumios,

It has been shown that from the environment of nuclear exploaton the most Important part, namely the blant wave, can be simulated with a shock tube. Other perameters as flow duration and the shape of the positivo phase of the overpressure are diffigult to simulate, yot the newd for this oan be ellminated by epeolal Instrumantation and theoretical comiderationa.

In order to meet future requirementis of mianle structures in reapect to blaut loading it is necussary to produce a pressure ratio aerons the shock front $P_{A 1}=8$ which is equivilant to ani overpressure $p_{2}=105$ pal. The aimplo shock tufe theory show that this requirement can esilly be achieved by a presmure ratlo $P_{A}=200$ (air/air) acrous the diaphragm of the shook tubn. Length and diametor of the shoak tube should be as darge as justitiable from the standpoint of general design and ecunomica.

REFERENCEB

1. Bloaknay, W, and R. J, Enrich, The Bhook Tube in "High Bpaed Aerodynamice and Jet Propulsion," Vol VIII, High speed froblome of Airoraft and Exparimental Methods, Princeton, N. J., 1961.
2. Bradloy, J. N., Shock Wayesin Chemintryand Phyileg: London. New York, 1962.
3. Glusatone, B., The Bifontiot Ni, exar Wagone: Wabington, 1962.
4. Qudzent, D. E., Banle Considarationn for the Preliminary Deilon of a Bheuk Tube for the Investigation of the Action of a Nuelear Blast fipor. ci Missl!?: AMO Report No. RS-TN-63-3, 1963.
5. Hansen, R.J., Wenpons-Effects Data Applicable to Blant-inutatent Deolgil tr. "Structural Design for Dynamlea Loadi"; Now York, Turonto, London, 1059
B. Hansen, R J., Disoussion of Labarator'; and Inmoretical Developments tor Improved Blast-Kesistant Dealon in "Btructurad Deaign for Dynamic Losds": N.aw York, Toronto, London, 1953.
Y. Murtin, W, A., A Review of Shock Tubes and Shook I'unne!s, Cor.vair Report No ZR-658-050, 1958.
6. Oertel, H., Expurimentelle Hypersohallforsohung; Raketentechi'h und Raumfahrtforsohung, 1959.
7. Wight, 1, K., Ghock Tubes; Iondon, New York, 1961,

FIOURE I SHOCK FMONY MAOM AGOVE-GNOUNO NUCLIEA EXPLOAION EEFOAE AND AFTEM REPLEUTICN ON THE SUMPACE OF THE EARTH,

> FIOUME 2 GHOCK-ABFLRCTIOY PNENOMENA IN REAON WHENE a I GAEAPER THAN 48'.

FIGURE $\$$ meak overipnitgunt vinilu distance foh divikhal FIELDE OF NUCLEAR EOMES.

PIOUNE 5 REPLECTEO OVERPNEEGURE RATIO VE ANOLI OF MNOIOTHEE pon vanlous peak ovenmmelunte.

(a)

FICURE 6 PRESSURE WAVES IN A SHOCK TUBE

- - IMOCK FRONT
- - - CONTAOT DISCONTINUITY
---- FRONT OF mAnEMACTION WAVE
floune 7. Dietance.tima mlot of evente in A BHOCK TUIE.

PIGURE 8 idEAL pREEGUAE DIETMICUTION IN A BHOCK TUES A BHONT TIME AFTER DISAPPEAMANES OF THE DIAPMAACM.

Floune an net afion metwern ahock mach numarn and pai for arvenal valuit of $A_{A 1}$.

FIGURE 10 VARIATION of shorck pREssune matio, pal WITH OIAPHRAOM PRESSURE RATIO

RELIABALITY CONCEPTE YOR:MISSILE RATMERIES

Nicholas' T, Wilburk
U. S. Army Electronios Remeareh and Dovolopment Iaboikibry Fort Monmouth, New Iorsos

This weswion prewant a longwawaited opportunity for a diseussiois of methoun of determining the raliablity of onewshot battery powar supplian for misalles. Approaches and angeontion are urgentiy requitrod to to appropriate tast dosigne; the natura, extont and ganmeal advisability of making re-: llability pradiarions based on analyale of limited amounts of teat data; and:
 ance of the battery remponses.

The battenles wa are dealing with are onamohot typen, Inatalled In , misulle tr "urni in power to quidanow, control, or' warhead ayatems. They are stot, in an inart condition in the misalie and, lupon command, muat be a ativated almoat Instantansusaly to provide powar. Dus to the inert atate prior to activation, thore if no way to test the oporational roadiness of an Individual battary. The necensary rellabillty munt be enginaerad inte the Lattory during its devolopment and maintained in produation by adequate quallty asaranon techniques.

The problem arean in making rellablity prediotions may bast be undere: od by flrut conaldartag a typlend mimelle battery and its electrion atiu environmental requiremente. Eleotrical raquiromentm aro abuatrated in Figure 1 (Figures are at the und of the urtiolel.

The shaded area is the time-voltage anvalope whioh defines the alectrical requirements. Following the activation tmpulse at time nero, the baltery veltage must ripe to the minimum under load by the end of the actvallun purtud, generally one wound or leas. Tho voltage under nominal repistance and undar high or low resiatance pulses inuat then remain het: wuen the minimum and masimum throughout the required marvige dife throughe out the apecified temperature range and whlle being subjected to dynamic envitonments suoh as shoak, vibration, acceloration, and upin. The battery dasion should of courus be invulnarable to environmerits much as temperature, humidity, and transportation and handling atresses during long storaga prior to ectivation.

Assuming that a battery har been developad for a apeciflo application and that there is reaomable ausurance, based on extenalva toitine during devalopniont, that the battery is capable of meoting all operating level olecttical raquirementi while being subjacten to the apeoifled thermal and dynamio envirouments, the question in, how can the batery rollabuity be tented for and thus assured? By rellability wa mean high probubility of the battery activating propurly upon command and then: fulfiling ite mianion whioh in, basically, meating all apacifiad requiremonts undor any and all apecified environmental atresies. The requiromenta am assumed to have beon aoeurately stated.

Figure 2 llata some of the major problem arean. First are the rellablity utandarse whioh must be entablished. Thene must, to be prgotioal, rapresent some compromise between the desires of the miasile people and the battury itate of the art. A reliability of 99.999% at a confidonce level of 99% may be datirable whorees a atandard of 99.9% with 95% confidance may be an achlevable goal.

Once the rellability standarda hava been detorminod, the denign qualifleation procedures must be eatablished. An adequate rellablitity tontw hag sisicapt ta the major consideration. This will be diboussed later at some langth. The capabilities of teat cquipmant must be conbldered, how wall thay will duplicate the misullo unvironmanta. Teat equlpment whioh will simultanecuäly almulate mora than one dynamio onvironmarib is normally not avalluible. The aingle teat concept is intriguing in this reapmet, aria artificial envinament which will onntaln the resultant forces of all of the ingjer dyname forces--shock, vibratici, acuoleration, oto. Unfortunataly this is juat a thought at present. And finally, what is the nature of the atatiatioal dietribution of the battery responsas to the environmenta? The sample thas rnsulta will her used to make rellablity prediations based on the reaponee distributione whioh are generally unknown, the nature of which must themalves bid deduced from tro sample results.

Finally when the design has beon qualified and is ready for production, thero are many important consideration to assure that no potentially defoctive units reach the fleld. These are, however, beyond the scope of this paper.

The major concern at prasent is the design qualification, teating a sample of batterien to determine if the rellability it aduquate in order to go into production and field use, or if additional development it required to
obtain the deaired reliablity, At this point I would like to dascrihe brisily the various approsehes that have beon proposed and, in some inetanous, used by the military to determine "reliubllity". These are outlinud in Figure 3.

The firut mothod, testing at the "four times oporating lovel", is a non-statiatloal approsich which avolved as an arly alternative to tastotom fellure and whioh has beon applled with oonmidarahle wuocess, it involvas testing a smajl sample (10 to 20) at four timen the sparifiad 9 level of a dynamio onvironment (shook, vibration, eto.). The method acarohen out mechanioal weakizesees which can be corrected through redealgn. The four thmes factor is arbitrary. It was falt that battorles oapable of meoting this requirement would eartalily have a high probabllity of mouting the apeolitind g torces. Only one dynamio environment la applien at a time. The totad sample size dopends upon the number of difforent aritical environmental conditions: high temperature shook, low temparature shook, high temperature vibration, etc. Temperature afoty factora are inventigated by tenting boyond the spacified temperature range in the unactivated condition. One serlous disadvantage of this method is the inablility to make a utatiationd prediction of the probable tallure rate of the battery. Rellability must be expressed somewhat vagualy as "hlohiengineering confidince in the donign". Jocoudly it may be argued that If adequate iafoty factors have bean considered in eatablishing the environmental requiremant., then foreing the battery design to oparate at higher streas levele may unneceasarily atrangthen the design, possibly inoreasing cost, weight and siee. Thirdly, tosting cuily one dynamio environment at a ilte overlook potentially destructive foces resulting from combinations of environments which are motual:'/ expertenced.

The seoond mathod, presently being applied In the davolenment of a musslie battery, containa all of the elements of the flrat plus an analysim c^{+} the variance of performance parameterm auch as eervice life, netivation time, minimum vodtagn, minimum voltage under puless, ote. It is abiumed that these responges are normally distributed. Therefore a atandard may be eetablished for the number of standard deviation unite whioh a mell tast sample (15 to 25) must domonstrate betwaen the asmple maan and lie operating requirement levol for eauh parformance paramator. Thie number, the k factor, is ralated to sample alee, the dealred maximum fallure rate, and the confidence level used in making the rellablity prediotion. Thia total program thus alves a high englineering confldence in the battery design from a meolianical atandpoint and also a high statistical confidence in the battery design
mesting that alectrical oparating requiramante while being eubjected to adon anvironment. Enchidynamio onvironment is ntuded maparatoly at withor high or low tomparature and at four tines the apaelited a lavol. The powable disadvantages of the method are those as itated for the previoun method plus the fact that an arronnour asauniption of normallty may weakan the value of the rollablifty predictiona.

The thirdimothod in mimilar to the one junt dasoribed axcopt that instoded of using an arbitrary multiple such ms four, the apecifiod g forces for the dymmide onviroimente are applled. The nidiod has the ame potential digadvantagon as the pravious one in ovarlooking poisible intereetions betwoon torves and in assuming normallity of responac distributions.

The fourth conoept approaches the proplem of rallability by datarmining thes actual inman failiure polites of the battery dealgn with reapeot to weoh onvironmonk, thatmal or dynamic, detnimining the variablity around the maan lallure point and making a prodiction of the batiory capability the requirem mont doved forithe individual onvirpament. A mathod of thin typa way discussed by Mr. H. J. Langlle of the Ford Motor Companyidt tha alghth conformoe at. WRALR lant yoar and'wa the dublact of much of Protiaser Chernotl's invioad talk. In thim approa oh the individual environmental teat conditions are inveatlgatod in sequanca. Thus interab́tions betweert environmantad alrosuan are not consldered. Thm ansumbtion of normality is made in regard to tho diatribution of faldure polnts in order for predictions to be mada with smali aumples in the order of 15 . Themethod oan be applied only if the teat sinlipmant range in capable of inducing talluras. This nas proved to be a problem in many inntiness.

The last mothod whiuh has boun propoaed is again besed upon determinhren mean fallure points aid, babed an analysts of varianoe, predtotho the piesability of callure at the requirement utress levele. The mothod visuelizes the detrimontal affects of increasingiy highor environmerna! wisese levely on the battery performanco responase such that asch porformance paramotar may be expresied as a function of the environment, thermal or dynamic, or as tunction of as many environmental variables as may bio studles ulmultaneoualy in acoordance with thu capablity of tent equipment, Toletance inturvals about the response surfaces thus generated can then be usad for prodioting the probablitiy of laldure at the requirement lavala or at any aettings of the vari,ables throughout the tent regton. Aetual fallure neod not be induced. The problems with thim method arw, ugain, making assumptions
of normality and of uniform variance throughout the environmental teat regions as well as the difficult problem of devaloping statistical tachniques for obtaining multi-variatr tolerance surfaces and belng able to raly on predictions mado from the testing of relatively small samples.

This general backgraund of the attempts that have been made to determine the reliability of one-shot items should serve to lllustrate seme of the problems confrunting us. The gond, basioally, is to develop techniques with which we aan comg up with meaningiul rellability prediction numbers from the testing of one-shot items where the sample sizes are necesuarlly small dile to the relatluely high cost of the individual ltems. An important question in doterming our approach is, if we can't dupllcate the specified misalle environments in the testing laboratory in all respects with all of the impacts, vibrations and accelerations ocouring in natural sequences or combinations, then are we deluding ourselves in the reliability statementi we make ard, in effect, playing a numbers gime? Or can the fatemente we make following testing of bite and pleces of the total environmental ploture have a real meaning which can be valuable in assesaing the adequacy of a given design and assuring us that we have procmeded far onough in its davelopment?

Next, If tho rellability numbers wo obtain can have some meaning, h.w do we get them? What la the best rellablitiy teatirig concept? Do wo, tor example, study thit varisbility of the ballety performance lovele at the spersfied environmorital stress lavels or do we find the tallure points with い. "ect to the environments and then determine that these fallure points are sultictently abow the raqיiterirnt levels? What statistlual ruthods do wa usu or dovelopf How do we tinicile the problem of the types of distributions we are dealing with, generaliy unknown particularly when dealing with high) ..vironmental stresses? What are the consequences of asoumi.ur mitin dimbibutions? How do we express the rellabllity? In facing these questio.as w.: nust buat in m!nd the: we don't want to ferce the doyolopment of : homat which is far heyond a reasonable and necessary sise and cont. find, in our testing programs, we must remember that sampio elieas musi bs limiled by cnet if the batteries, seldom less than one hundred dollars a plece.

These, then, are the general yuestlons abcut rellabllity whicin wo urgentli need anstuers to. If the answar is that thera is no answer, this iou is limportant to know.

Reiiability Problem Areas
Design Qualification Procedures
Testing Concept
Equipment Capability
Response Distributions
Production Considerations
-
Existing Approaches to Reliability
亿. "Four Times Stress Level" Concept
2. $4 \times$ Concept with PerformanceVariability
3. Perf. Var. at Speciified Stress Levels
4. Fest-to-Failure [Langlie Method]
5. Test-to-Failure [Response Surfaces]
Figare 3

MONTE CARLO APPLIOATION POR DEVELOPING A DESIGN RELLABLLITY GOA:- COMPATLBLE WITH SMALL SAMPLL: REQUIREMENTS

Ray Henthoock and Dals L. Burrow: George C. Marahall Space Filght Centor Propulsion \& Vehicle Enginaering Laboratory Tochnical \& Belentific Statt

SUMMARS. This report dasertbes the applieation of Monte Corlo almulation to the construation of ompirical mampling distribution of rellability ontimatas obtained by sampling from the olaseical atroisi and atrength (doad and fallura) distributions, which are assumed Gaussian. Typleal stress/atrength distributions, repretenting specifle values of relinbility, ware stored in a computer. From the diatributiona varloue sample sizes wore taken and the reauiting entimate of rellability computad, iteration of this procens reaultad in the conatruction of empirical sampling diatributions for apecific valuen of rellability and spoifio sample siess. Emphasis was placed on vary high values of rellabllity (. 99 to $.99989999 . \vdots$. and on vory mall ample alean (2 to 8) because a high roliability requiromant coupled with a llmitad number of tent articles is eommonly imposed on apace vahiele development programs.

Binee the sampling diatribution of roliability estimates was found to be
 ditsithetions, nampling dietributions wore construeted for apacific valure of the ratio. since the true ratio of atandard doviatione cill seldom be known, tit. variation in the sampling diatribution dun to this ralio introduces a cart: in: weaknens into the appliostich of the analyola. This wathems is disoussed fully in the body of this repori.

It is concluded from this invertigation that the sampling aratithutions, constructed by Monte Carlo aimulation, may be utillend to ald the designor in ustabliuning a dealgn rellablity gonl, place a confliunce gouflloiunt oli rellabllity entimatea, and to determinn if ample atrani and atrongth data dimionitrates a apecified rellability at a apectitud confidence level.

The primary purpose of this report is to present a method and examples of the use of the method. The ogives given in this report may be uded in actual application, however, not indescriminately, sinne the ogiven contein small inaccuracles due to the curve fitting procedure.

1. INTRODUCHON.

A. Background. In large npaoe vahiele development, and In many other fields es wall, a designer is oitun aiked to doilgin his oquipment knowing that later a very small sainple of items will be teated to determine if a specithed minimum reliablity is demonatrated at some fairly high confidence level. The designer is often quite perplexed as to the methode and rellability gouls he should utilize in formulating his dealgn. His own training and experience make him favor the afety factor approach, and yot atatietiolans and reliability angineers advociate afaty margins, atrows/atrength relationships and other utatistical approachos. The publlastlon of Robart lusser advoante the safaty margin approach, (Ref. 1) while ARINC Research Corporation undar contrict NABA (Ruf, 2) has advocated the use of strose/atrength relationships as a rellablilty prodiction technique. There are many other papers and publicatione which propose the use of atatiatical variations in atrese and atrongth in dealgn and subnequent analysis of the design. The application of a aingle distribution (atrongth) and a rallability boundecy (upper limit of atresa) in diecuysed in references 1 and 3.
B. Soope. This Inveatigation attompts to shed nome additional Ifght on problema concorning the use of atrase/atrength atatistion In design, relimbility demonatration, and confidence limits, It In primarily oonoarnad with the zolution of statatioal sampling problems which have no known theoretionl sobition and with the application of the data provided by these solutionn. in this analysis, vory amall sample aleas in the rango of 2 to 9 and hion rallaility valur from .99 to .99999999 have besn purposely uned because apoce vehlele devalument programs are restricted to emall samples and requirahigh rallabibity valuer

Thm authors wish to acknowladge the very capable asatntance of Mesern. Robert Orafts, Joe Medlock and Matt blue of the Computallun Lavï: atory, MSFC, for programming the Monte Carlo simulation saheme, and of Mr. F. L. Bombara, Engine Projecta Office, MAFC, whose technical advicu and suggeations were very helpiul.

II. DESERIPTIQN.

A. Analysis. The rellabillty of many trems in large apace vahides from plese parts to large structural alementa, can be appropilately considared to be a function of a strass distribution and a strength diatribution. A ntreme distribution is defined as a distribution of stresses to which the pupulation
of itema will be aubjected in actulase, and a strongth distribution la defined as a diatribution of stresees which will caune falluro of the thams. Thin analysis applias to the general problem of piting distribution of "what am Item will do" against a diatribution of "what it it required to do" in any performanoe parameter. The analysia is not retrleted to the more common applieatlon of structural stress/strength analyals.

An nxample of the rolationship between the stress and atrength distributions of a typlay situation is shown in Figure 1 (Fivuras araat the end of this article). The distributions are assumed to be normal, an assumption which is retained thruughout this paper.

A randomly chosen value of atress $\left(X_{2}\right)$ subtracted from a randomly ohosen value of strength (X_{1}) gives a variate from the atrength minus stress distribution. By repeating this prucess many times, a dietribution of strength minus atress may be tormed. It will appear an ahown in Figure 2. The mean of this distribution in the mean of the strangth distribution minus the moan of the stress distribution. The standard duviation of this distribution ia the square root of the sum of the variances of the strength and atresis distributions, At some point on this distribution, atresi equale strength and a earo point appars on the $X_{1}-X_{2}$ axis. Since any negative value of atrength minulatresa represents a faldure, the area below the zero polnt represents unrellability, and if'z area above the zero point representa rollablity. Mathematically thie may bu stated as follow, (Raf. 4):

$$
\begin{aligned}
& R=P_{r}\left(X_{1} \geqq X_{2}\right) \\
& R=P_{r}\left(X_{1}-X_{2}-M_{X_{1}}+M_{X_{2}} \geq-M_{X_{1}}+M_{X_{2}}\right) \\
& R=P_{r} \frac{X_{1}-X_{2}-M_{X_{1}}+M_{X_{2}}}{\sqrt{\sigma_{X_{1}}^{2}}+\sigma_{X_{2}}^{2}} \geq \frac{M_{X_{2}}-M_{X_{1}}}{\sqrt{\sigma_{X_{2}}^{2}+\sigma_{X_{2}}^{2}}} \\
& R=P_{r}\left(Z \geqq \frac{M_{X_{2}}-M_{X_{1}}}{\left.\sqrt{\sigma_{X_{1}}^{2}+\sigma_{X_{2}}^{2}}\right) \text { since } Z \text { is a normal deviate }}\right.
\end{aligned}
$$

In actual preotioe the parameters of the etreas and ntrength dintributions will rarely bo known and must be oatimatad from ample daba, small sample estimates of the parameters may be used to entimate reilability an follows:
$R_{e s t}=P_{r}\left(z \geq \frac{\bar{X}_{2}-\bar{X}_{1}}{\sqrt{8_{x_{1}}^{2}}+\varepsilon_{x_{2}}^{2}}\right)$ which can bo obtalned from the nurrial table of argat.

Since an estimate of the rellability of particular altuation can now be made, the next logieal atep is to deseribe the variations expeeted In this entimate due to samping. In order to make use of the strase/wtrangth atatistical ralationahip, the mampling diatribution of reliability ontimates, based on thi ralationship, muat be developed. Gince there was no known theoraticad solution to the desoription of thia variation, computer program was developed using Monte Carlo simulation to deriva the ampirisal sampling diatribution of the quantity

$$
\frac{\bar{x}_{2}-x_{1}}{\sqrt{s_{x_{2}}^{2}+s_{x_{2}}^{2}}}
$$

Very briofly, this almulation technique consiats of the following ateps:
(1) Btore hypothetion: a! Luss and strength dintribution: in the aomputer
(2) Genmraty a psaudo random number
(3) Use this random number tu jot a random value of strength $\left(X_{1}\right)$ reptalling this procouc N times
(4) Compute a semple mean and atandard deviation for mengent
(5) Repaat the process for strosa
(6) Compute

(7) Form a histogram of valins of K, which reprasents the sampling diatribution. As many values of K as desired may be obtalned from the program, dependent on the accuracy desired. 1000 values ware used to obtain the information for this papar. The sampling distributien may be put in a oumblative furm, terniad an oglve, in order to be ablo to raad K valies correnponding to selected values of $\mathrm{F}^{\text {rihhablilt: }}$.
B. Ramults. The factors whifi Influence the sampling aistributions of X will now be disoussad. First, mample alae, of course, will iniluanco it. An empiriosl sampling distribution must be ganeruted for ewof sample alin, that will be usad in aotuad practice. To give an ldea of how the sampling dimirter!! bution vartuf, as sample sige varias, aome ogives for varlous mample aleof have been daveloped.

The ogives in Figure 3, from laft to right, represent valued of relies' bility from , 99 to .99999999. In other worde, the flrwt eurve to the left rem promenta the variation inherent in atimatiag true .99 reliability uaing a specified asmple elzu. This fieure represante the gaceswhorw. $N_{x_{2}}=8$ and
 butions. The standard deviations of strass and atrength ore equal in this eese. The affent of varying these tendard deviations will be diecussed later. Obep ogives for varlous sample sizes and equal alomas appear In Figure 4 through 3.

As may be observed from Figure 3 through 8, the oglven vary quice radically with sample aize, eapecially in the very tmall nample mizen uned here. In ordor to use this type empirical data, ogives for the epeoidio enmple alzer uned in partidular applleation munt be developad.

The second important agotor whien causes the anmpling digeribution to Pary ta the ratio of the atandard doviations of atreas and atrength. This ratio il dafined as the smaller standard deviation divided by the larger stund"rd deviation. Early in this program Monte Oarlo resultis Indicated that the sigma ia*iohad an Important offect on the variation of the sampilng distribution. wilu latur, the theoratimal appilcalinn of refarenco 5 merved to visily this concluaton. The resulis of the theoretleal applicat!en nheivat that for equal sample ataen the degreas of freedom of the un-central t dietribution is a function of semple shre and the ratio of atandard deviations of the atress and atrangth diwirhutions. lifure 9 thows the variations in the ampling diatributions for varlous ration
 only the upper portion of the distributions ere whown efride mont applications W.ill be concernad with high confidenoe and begause the variation la meret prom ncuncod In thle area. Thase curvas ware nbtalned b: holdine all variebles in the computer program constant axsept the sigme ration. The sample elzes were equal for atiese and atrength. As the figure Indieatea by convergence of the curves, there is little variation in the sempling diatribution of " K '" atrributable to sigma ratios below the 80th percentlle point of "K". Above this point there is considerable variation; the higher ratior result in sampling
distibutions which, are skawed to a greater degree. Although ratios up to $1 / 100$ wert run on the Monte Carlo propram, the practical range is probebly. between 1 end $1 / 10$ for most appleations. Even at the $1 / 10$ ratio, howevar, there is a large varlailion; therefore, separate curves for the apecific ratio must he utilized in actual application. A waknean, howover, in this procodure is that in practice the actual ratio will seldom be known and therefore must be eatimated from asmple dasa. Ari F test for the ratio of two varianoes oould be used to establish if there is any significant differeme betwoen the algmas and possible, ocinfidence limits for the ratio of two variances could be utidead for estimeting the 1 mit ef of the ratios. Further work is desireble In devoloping an approach to stablining a ratio from sampla data which could be used for entering the appropriate set of curves.

Another important factor to consider is the onse of unequal sigmas (stress and atrength) and unequal sample mizes. The most skewed condition (long tall to the right) in the ampling distribution of "K" will ranult when the smaller ample is taken from the distribution which has the largor atandare devlation, For instanne, assume that the standard deviation of atrength is twioe that of etress and a sample of 8 in taken from the atrofe distribution and 5 from the strength diytribution, l.f., the mallar sample is takan from the distribution with the larger sigma. What would happen if a revarse proowdure $\cdot, w t$ used and the large sample taken from the distribution heving the larger :lgme?

2ho ogive for thls vase is shown in Flyure 10. The breken line repreneints the ogl"m for the large aample matchad with the large aigma, and the solld lirie reprowents a rerun of the same nase with the small sample with the darge
 It is onncluded, theretore, that this, is anothe: condstion whioh must be luulided
 This ptectinis no problem, however, if the sigma ratio is known sinoe Monte Caiso runts for the requirud conditions can be made. It is being prasenter merely ic llhistrate that it doen hava en influence.

The Hiscussion. thus far, hail dealt only with the mechanies of obtaining the sampling distribution of "K" and Its vartation as rolated tu wermic factors causing it. It is apprupriate to discuss the application of guch deta.
C. Application. The oriteria for determining whether mample data demonatrates a givon rellabllity at apectfied contidence will be doveloped lif turms of "K" which is unrmal deviata corramponding to a spenifiad aren under the normal curve.

The basia for doveloping the domunetration criteria is ghownin. Piouso il which dapiots the distribution of $X_{1}-X_{2}$ and $X_{1}-X_{2}-R_{c} \sqrt{8_{x_{1}^{2}}^{2}}+X_{2}^{2}$.
The Z nown in the igure is a normal deviate, the area above whichicobtalned from normal takies of areas) ropresente the rellability whloh it is requiruca to demonstrate. K_{C} reprosents a normal deviate greator shan z whloh musi be found and when appliad will assure damonatratad reliablity with conlidence C.

If a X_{C} that satisfies the following inequallty
$P_{i}\left(X_{1}-X_{2}-X_{0} \sqrt{S_{x_{1}}{ }^{2}+s_{x_{2}}{ }^{2}} \leq M_{x_{1}}-M_{x_{2}}-2 \sqrt{\sigma_{X_{1}}^{2}+\sigma_{x_{2}}^{2}}\right) \sim C$
(Rat, 3) oan be found and appled as a criteria, a dacimion san be made anto whathar or not the sample data demonstrates a apecified rellablilty (z), This inequality may be roduced to

In this nituation, because the Monte Carlo program was run on this beala. Manipulation of thin Inequality, is followa, mathomatioally, givan the oriterias

$$
P_{r}\left(x_{1}-x_{2} \leq K_{0} \sqrt{g_{x_{1}}^{2}+s_{x_{2}}^{2}}\right)=0
$$

nr

$$
P_{1}\left(\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{s_{x_{1}}}+s_{x_{2}}} \quad \leq K_{0}\right)=C
$$

Now K_{0} oan be found by refering to the Monte Carlo develuped
 Once K_{0} folound, the otteria for demonstration is as iollows:
 monstrated with the desired confidence. As an example, suppese samples
of $N_{X_{1}}-8, N_{x_{2}}=8$ yives $X_{1}=80,000, X_{2}=60,000, B_{X_{1}}-3000,8_{x_{2}}=3000$ and the problem was to determina if .9999 raliablity ($2=3,71$) wan dumonatrated at the 90% confidence level. The 90% polnt on the oglveif for $.9999, N_{x_{1}}=N_{x_{2}}=8$, $\sigma_{x_{1}}=\sigma_{x_{2}}$ is found to be 4.95 whioh is K_{c}.

- 4.7 therefore aince $4.7<4.95$ rellabldity .9999 is not
demonstrated at the 90% confidenoe level. The acouracy of the anawer obtained is dependent on how close the true sigma ratio isito unlty, since it was assumed that $\sigma_{x_{1}}=\sigma_{x_{2}}$ in this example.

Another appllation of the Monte Carlo resulte is the entabllahment of a lower donfidence limit on a rallability eatimate. The appropriate not of oglves is enterad with the rellabllity estimate (rellablity estimate expraned in terms of a K value) and a confldence is read tor each rellability valua reprasented by curve. If sample data $\left(N_{x_{1}}-N_{x_{2}}-B_{1} \quad \sigma_{x_{1}}-\sigma_{x_{2}}\right)$ gave a rollability antimate expresead in terme of $K=3,5$ for a given sigme ratlo and a glven sample sice, floneed at followe to arrive at a lower confldence limit:
(1) Rafer tu the arrien of ovives (figure 12) representing the algme ratlo and sample alzes applicable to the problem.
12) On the horizontal sonis lucato a K value of 3.5 which wats the sample wotlmatc and dravi a vertical !!ne through the point.
(3) Whero the vartical IIna intersects a curve, read a oonflaunse for the ieliatility represented by that curve, for the uxample, Floure 12 showa 95% onfidence in, 99 rallabllity, 70% confidence in, 999 rallablitiy, pic Ry ganalating a auffleient number of ourves, a conildence voalficivit for the rollability satimate in question, or at leant close arrmoh tu it for practical appliceition, can be obtainod.

If in the initial design of an Itam, a deslgner know exactly the atresa distribution and knew exactly what strength distribution he could get, demigning would iu a almple problem and tharo weuld ba no need for demonatrution. However, Hils te not the case, and the desioner has to make astimates of the distributions.
desuming that the dealgnur knew exactly the strength \& atrase diatributions and was to design, knowing that amall sample of hie Itama was to be" tested later for demonstration purposes, it would be to his benafit to overdealgn so that he would have good chanoe aty 90\%, of having the mall sample demonstrate the apeolfied rellability. In order to arrive at how much he should ovardesign, he can oonsult the Monto Carlo doveloped oglves and find a K_{E} wuch that if the sample K Is greater than K_{C}, the ample data has demonstrated the roquired rellablity at the desired confidence. Reference to Figure d3 will ald the reader in following thie approach. It the dealgnor wanta a 90% chance of having a mample demonatrate the required rellablity, hu must desion to a reliability rapresented by an ogive 90% of which lif above the Ka point. This logie semms to he non sensidal alnoe if a dasignar knows the dism tributions he could just design to the rollability he desires and there would bo no point in a demonutration programi howevar, thin loglo can be applied to the situation where the designar doas not know the dintributions but has some knowledge of them from experience or denign ealeulation. Ansuming a deaignor wants to design wo that he ham a 90% chance of demonetrating a seeffic roLlability with a upeolfied sample size, it can be conclitiad from the provioua discusion that he must design to a rellabllity above that whioh given him a 90\% chance of demonetrating it with the apecitied sample \#lat. Hew muen above is a mattor of engineoring fudgement, and dapende upon how well the designar thinks he oan estimate the diatributions. This concluaion vividly polista out the fact that a design goal (inherant dealon reliability) must be highar than the apeelfic rellablility which is to be damonstrated at a high degrave of conildence. There are, of courte, other factors whimi influence the entiblianment of rellability goals. Welght, cost and performanoe all should in'tionce design deelsion and must be properly co. sidured na traducht factors againat the statiatically des.aloped goal.

Since much of the forugoing diecussion of rellability haw Lisn in terma of tise normal deviale, Z, F gigure 14 has been provided to enable tho ruader . determine z dirsotly from a numerical value of unrellability ($1 \cdot \sim$ R).

III SONULUSIQNB \& RECOMMENDATIONS.

A. Conclusions. Thie Investigation has rovealed that tha statlatioal Information afforded by very amall samplas from a strese/strangth aituation (even as low as 2) can be usoful to the designer and the rellability engineer, It has also revealed that the sampling diatithution of rollablity astimatas made by taking wample data from the atreas/atrength diatributions ia very meneitivo to somple size and the ratlo $: 1$ lye ylunderd deviations of the strr en and stiongth diatributions.

It is conoluded that the empirioal sampling dintribution of reliablity oatimates oan be utillaed by the dentoner or the rellability enginuer a followa:

1. Rollablity Demonstration-Given ample data from atresa and strength diatributiona, a detarmination can bo made as to whethar the iample data domonstrates a spocified rellability at a chosen confidence leval.
2. Eutabllshing Confldence Coefflelenta-Given sample data froma stress/atrength aituatien, confidence coetitolents for various values of reliabillty aan be estimatod, limited only by the number of curvos that have beon generated by Monte Carlo.
3. Recommend Design Goal-One can establith and recommand to the dealgner a desion goal such that if he designs to it, a pre-chosen ample will demonstrate a spaeified rellability at a chosen confldence level, a mpeoffed peroent of the time.
B. Recommendations for Future Investigation. In view of the numbur of promining appllations diacovered during this Investipation and the weaknesses and 1 imitations that are Inherant in the nature and extent of thie nalyais, it is belleved that the following aroas are worthy of further investigation:
4. Since the ratio of atanderd deviations of the stress and wtrength distributions has a large alfect on the varianos of the rellabllity nampling diotribution (Diatribution of "K") and sinou in practice this tailu will seldom be knus:" but must be ostimated from amplo data, a mathod ahould be derived for estaulishing a ratio which coulch he used for entering the apnci priate ast of empirisal curves.
5. Exiensiun of the analysis to various combinations of differtil: + \because pen of distrikutions, other than normal, should be investigated hy tha Monte Ciarle. procese ainoe an these areas not avan approximation to thecratical entulune are available.

REFERENCES

1. Lusaur, Robert, Reliahility through Safety Margins, United Statey Army Ordnance Misalle Command, Rodstone Argenal، Alahama, 195日.
2. ARINC Rnsuarch Corporation, Saturn Launch Vehlele Rellability Study, Marahall Spawe Flight Center, Huntaville, Mlabama, 1960.
3. Bombara, Elwood L., Rellabllity of Compliance with Onemsided Speclfications Limits when Data is Norinally Distributed. Army Rocket and Gulded Misslle Agancy T'echnical Report 2B1R, Redstone Arsenal, Alabama, 1961.
4. Normel, J. E. . Estimating Rellablity as a Funotion of Btresa/ Strength Data. Army Rocket \& Gulded Missile Agency Redstone Armenal, Alabama, 1961.
5. Bombara, Elwood L., Probablity that Stress is lese than Strength at Prescribed Confidence Levels, for Normaily Distributed Data, 1963.

LIST OF ILLUSTRAMIONS

Figure

1. Relationship of Strength and Stress Distributions (Normal)
2. Reliablilty Computation - Etress/Strength Distributions
3. Sampling Dist of "K", $N_{X_{1}}=N_{x_{2}}=8, \sigma_{x_{1}}=\sigma_{x_{2}}$
4. Sampling Dist of "K", $N_{x_{1}}=N_{x_{2}}=5, \sigma_{x_{1}}=\sigma_{x_{2}}$
5. Sampling Dist of "K", $N_{x_{1}}=N_{x_{2}}=3, \sigma_{x_{1}}=\sigma_{x_{2}}$

万. Sampling Dist of "K", $N_{x_{1}}-N_{x_{2}}=2, \sigma_{x_{1}}=\sigma_{x_{2}}$
7. Sampling Dist u "K", $N_{x_{1}}-8, N_{A_{2}}=5 \quad \sigma_{x_{1}}=\sigma_{2}$
(3. Sampling Dist oi: "X", $N_{x_{1}}=5, N_{x_{2}}=3, \sigma_{r_{1}}=\sigma_{x_{\alpha}}$
9. Varlations in Dist of "K" due to sigma ratlo
! ! . Sampling Dist of "K", $\mathrm{N}_{\mathrm{x}_{2}} \not \mathrm{~N}_{\mathrm{x}_{2}} \sigma_{\mathrm{x}_{1}} \sigma_{\mathrm{x}_{2}}$
11. Distributions of $X_{1}-X_{2}$ and $\bar{x}_{2}-\bar{x}_{2}-x_{c} \sqrt{\delta_{x_{1}^{2}}^{2}+\mathrm{s}_{\mathrm{K}_{2}}}$
12. Sampliny Dist of "K", $N_{x_{2}}=N_{x_{2}}=8, \quad \sigma_{x_{1}}=\sigma_{x_{2}}$
13. Bampling Dist of " K ", $N_{x_{1}}=N_{x_{2}}=5, \sigma_{x_{1}}=\sigma_{x_{2}}$
14. Graph of Z va $-R$ (unreliebillty)

FIGUEE 1. RELATIONSHP OF STRENGTH-AND STRESS DASTRIBUTIONS (NORMAL)

Relisbility $=P_{T}\left(X_{1}>X_{1}\right)$
$R=P_{I}\left(\frac{x_{2}-x_{2}-M_{x_{1}}+M_{x_{2}}}{\sqrt{\sigma_{x_{1}}^{2}+\sigma_{x_{2}}^{2}}}>\frac{M_{x_{2}}-M_{x_{1}}}{\sqrt{x_{x_{2}}^{2}+\alpha_{x_{2}}^{2}}}\right)$

EXACT CONTINGENCY TABLE CALCULATIONS

Dorothy Berg, Murley Leyton", and Clifford J. Malonay
Divinion of Biologices Standarde National Institutes of Health

1. INTRODUCTION. The great Dane is known throughout the nivilized world for hie famoun rhatorical question: "To B or not to B p" But he had a predecessor, equally famous, who 2000 years ago and musc divided the unduaree not aurprisingly into the even prior dichotemy A and not- A, These pionearing efforts wero continued in many landm while Europe slept with the remult that not 200 years ago acience wan able to divide the univerue not only into A and not. A, but alme etmultaneounly lnto B and not- B. We show this model in table 1 , except that we have subutituted the lettera R and C (irom row and column) fur the Ariatotelian labela A and B, Every element of the undverse of discourse in presumed to be unambiguously assignad to one of the four celle in the body of the table.

We need not tell thi audience that the probabllity of any given wet of four cell frequencies among the ant of all four-fold table with apectfied row and column totale aiven by the hypergeometric dintribution

$$
\begin{equation*}
P_{i}=\frac{c!C!x!R!}{!!g!n!k!v!} \tag{1}
\end{equation*}
$$

Accordingly, reference (19) can be usod to obtalin aignificaner fevela for teating obmpred aesulta. Tableaferexalit probablition where

$$
N=R+Y \text { and } r \leqslant R \leqslant 30
$$

and luse completely where

$$
31 \leqslant R \leqslant 40, r \leq R
$$

[^5]have recently appeared, (6). More exact and moro completa tablen are available in the UMT file of Mathematica of Computation at the Devid Taylor Model Baein, Washingtor 25, D. C., covering with (6) the range
r r \quad K 45
With table entries to four place accuracy. Tablea for 2×3 contingency tablas in the apecial case that all two cell marginal totalis are equal, in the range 3 (1) 20 at levala of algniflcance $0.05,0.025,0.01,0.001$ have recently uppeared (3), Robertion (25) has pithliched a computer program by the use of which exuct probabilitios can be calculated tox my 2×2 contingency table. The computer program for handing the 2×3 cane preamably is available from the authore (3),

Freaman and Halton (7) have publiuhed a computing method for calculating axact contingency probablition for tables of uny dien. They treat also the calculation of intermetion probabilitios. Unfortunately the procadure in more theoretically than prastically adequate.

It was early roalized by Karl Pasam (23) that thla probabidly could he approximated by the chiusquare diatribution proulded the individual cull ontries were not too mmuld, Yates (32) supplem a correction which would make use of the chi-square approximatione appropriate for emaller coll entries than would otherwiae be posalble, but pointed out that, whire the cell entriee ware extremaly unequal, even this correction would not be udequate until the minimum cell entry of the table ahould become qui*" large.

A long eerien of authors, among whom Haldane (9) wat particularly prominent, have atudied the question of developing adequate apprua'matirna to exact contingency probabilities when the chi-aquare la nut ueeful. Othera have conpideraci various other aupecte includian atudies of the power function of the leal, chulle of teata for friteractione, and manmurea of the atrength of the aesociation between the ímior* when independence. im not prosent, Pirticularly important from the atandpoint of the xurt calculation of coistingency table probabilition is the paper of Kinsball (16) where it de uhown that the partition of contingency table chi-square can he reduced to the repeated calculation of 2×2 tablen. A selected lift of these paperi in provided in the bibliography.
2. FIRST APPROACH, A table which arome in our work and which actually gave rise to thif study in given in table 2 . A aet of date in which the reality of the three factor interaction was the point of interest is shown in table 3. The entries in table 2 are (aome of them) too smadt to apply the simple chi-equare tent bilndly; yot othera ara much too large for manual application of the Fremmanifulton procedure. The computar program for the 2×3 case (3) had not been announced (torms of avalh. nility were not atated) at that time, and computer program for the $2 \times 2 \times 2$ cmee has not yot appoared.
in an elfort to deviee a procedure for exact contingency table cal" culation which might be generalimed to the geneini RXC case and which would be adupted to computer calculation, formila (2) for the probablityty of the particular set of coll entries which appeasi in table (1) wat readem ranged in the form

$$
\begin{equation*}
P_{i}=\binom{n}{f}\binom{R}{h}+\binom{N}{c} \tag{2}
\end{equation*}
$$

Which bringe out amowhat mare clourly that the formula in a compoite of binomial cuefilciente. The generating function can hance be ohown in figurn (1). Figure 1 follows table 3 nuar the and of thie article]. It is well known that the exponent on X plue the exponent on Y is a conotant for all terma of a binomial expanaton, In fiqura (1)

$$
i+g \geqq y \text { and } h+k \Perp n
$$

Fiarther, if we madiply the wion blnomiale term by serm then for cerialn evime

$$
t+h=c \text { and } E+k=C
$$

nind the coafficient of thi tarm in precianly the numerator oi the probmbility of the table in question. For the particuler cane of a product of two bineminle the produnt nf ne term from the first, b, a unique term from the eecond yialdy the only puit whose axponents meet the marginal conditions, and hence is, by iteolf, (proportional to) the probabllity of that particular net of cull frequancles.

This augeste a very cimple computing rule for calculating axact probabllitial in a 2×2 contingency table. Ond wattel out the numaratere of the binomial expaniton of the amellast marginal total of the table whose probability is desirod, Lat thia smalleat total be doaignated by s. Thon the $r+1$ termi of the axpanaion of thin binomiad are written in a row, in our notation R will then se greater than c. Wonoxt write out in a row beneath the preceding term, the $r+1$ terms of $\binom{R}{h}$ in order, meartins with e. I as the value for h under the right mont dinmont of the proceding oxpanaion and procesdinge to the laft. These two rown are next multiplied olement by coxresponding element to dive the $y+1$ numeratore of the cornplete probablltey diatribution of the givan 2×2 tnble. Theme terme ayo summed and anch divided by that aum to yiald the numerical value of the probabilitien. The num of the probablilties for thene terme equal or morm axtrome than the observad table glve the dosirad exact probabllity by which the independence of ite main factors ie teated.

The procedure may be llluatrated by an axampla, Let $₹ \mathbb{B}$, $R=10, c=7, C=8$. Wo eat out the complete axpaiselon for the bt of nomial of the fifth degree and under it the alx terme from $\binom{7}{7}$ to $\left\{\begin{array}{l}\text { of } \\ 2\end{array}\right)$ trolualve.

1	5	10	10	1	1
$\frac{120}{120}$	$\frac{210}{1050}$	$\frac{252}{2520}$	$\frac{210}{2100}$	$\frac{120}{600}$	$\frac{45}{45}$

The reapective probabilitiee fis. arh tabla with 4 given value for fari:

i	0	1	2	3	4	5
$\therefore(1)$	$\frac{120}{6435}$	$\frac{1050}{6435}$	$\frac{2520}{6435}$	$\frac{2100}{6435}$	$\frac{600}{6435}$	$\frac{45}{6435}$

For a two-tallad teat, the probabilities for teating any obeervad table where tha marginal totale are $5,10,7$, and 8 te then a function of ite entry in the cell defined by the 5 and 7 marginal totele only.

i	5	0	4	1	3	2
$p(i)$	$\frac{45}{6435}$	$\frac{165}{6435}$	$\frac{765}{6435}$	$\frac{1815}{6435}$	$\frac{3915}{6435}$	$\frac{6435}{6435}$

A one-talled teat for a 2×2 table would be exactly analogous, Exact probability calculations are, of course, not needed if the entries in every coll axe large. If one marginal total in mel and one large (or the mme margin, way $r \ll R$) the calculationil can be greatly amplified by expresining each in terms of one of their number. For example, if

$$
\binom{R}{0-r}=x_{1}
$$

then
(3)

$$
\begin{aligned}
\binom{R}{c-r+1} & =\frac{C}{e-r+1} \\
\binom{R}{c-r+2} & =\frac{C-1}{c-r+2}\binom{R}{0-r+1} \\
& =\frac{C-1}{c-r+2} \quad X_{2}
\end{aligned}
$$

$$
\binom{k}{c} \quad=\frac{c-r+1}{c} X_{r}
$$

As an exam le of thence calculations, consider table (4). Herr $\Sigma=9, R=681,0 \notin 14 \%$. Since X_{1} will eventually cancel out , et it equal to one. The calculation e follow:

1	9	36	84	166	126	84	36	9	1
$\frac{342}{340} x_{8}$	$\frac{343}{339} x_{7}$	$\frac{344}{338} x_{6}$	$\frac{345}{337} x_{5}$	$\frac{346}{336} x_{4}$	$\frac{347}{138} x_{3}$	$\frac{348}{334} x_{2}$	$\frac{349}{333} x_{1}$	$\frac{350}{332}$	1

In systematically calculating the probebilities, a triple product is required each olement is multiplied by dte right hand noighbor ac woll as by the number junt above it in the precoding row. The term and cumulated frequancies an function of f, the entry with emalleat foint rnmeginal totale oan be axprenaed.

f	0	1	2	3	4	5	6	7	8	9
$P(f)$	0.002	0.019	0.075	0.171	0.251	0.244	0.157	0.068	0.018	0.002
$P(f)$	0.002	0.021	0.096	0.267	0.518	0.762	0.918	0.983	0.998	1

The procodure can be syatematically extended to $2 \times \mathrm{n}$ tables, though the work involved quickly increases with n. The generul formula for the probability of a mpecified $2 X$ n contingency table with fixed marisinal total an given for example by Freeman and Halton, can be ramranged, a
(4)

Where N is the table total; r, n, t, \quad, R are the n marginal totu: : in th. long direction; and C if one of the 2 marginal eotala in the other dirention. In thia form, it la obvious that the calculationiare of the camis type ne thowe required in the 2×2 came but that now the preduct of all appropriate lerm from each of n binomial expaniona will be requared. An oxtension of the generating function of (3) maken clear the torme from each binomial expancion anmiaembie in each produst.

For the 2×3 cave, the calculations procesd av follows. Asame again that f in the amalleat antry in the table and that r and c arm the emallent murginal totala for sowi and columna, (O f courne, thile te no restriction on the applicubility of the method). Now $\$$ will ranye from 0 to r (anaumadian thmer c). Ench value of $\{$ wild detormine one coll of the 2×3 table axactly and thua raduce the ramaining celle to the form of a $2 \times$ a table with adjusted marginal totale (on the 3 coll margin),

Conulder a 2×3 table* in which the 3 call margine are 5 and 5 and the 2 cell margins are 2,3 , and 5, Then 1 oan be 0,1 , and 2, We muat calculate a 2×2 probublity diatribution for each of thene values. Let now b play the role of f in tho reduced table. It may tako tho valuea $0,1,2$, and 3 (aince the amalleat remaining total in 3). Hence, in oxact priallolium with our provdous calculitione, when $f=0$, the qualifying marginal totala are 3 and 5 , so that for $i=0$, we b ranges from 0 to $3, h$ takes the valuen $5,4,3$, and 2 , In tabular form

b	0	1	2	3
$f(b)$	1	3	3	1
$f(h)$	$\frac{1}{1}$	$\frac{3}{18}$	$\frac{10}{30}$	$\frac{10}{10}$

ihene mre the numeratore of the probabilition as they suad, ulnce ti.e factor from thm binumial expanalon of $\binom{8}{f}$ is unity. Whera, naxt, f taken the valine 1 , the inarginal totul 5 de ruduced to 4 wothat the ealculation becomea

b	0	1	2	3
$f(h)$	1	3	3	3
$f(h-1)$	$\frac{5}{5}$	$\frac{10}{30}$	$\frac{10}{30}$	$\frac{5}{5}$

[^6]Now, howevar, the numerator in the expanaion of $\left|\begin{array}{l}T \\ f\end{array}\right|$ is 2, so that each of the above ontrien muat be doubled to yleld
$10 \quad 60 \quad 60 \quad 10$

Finally, when $f=2$, the only remaining value, the contribution from $\left(\left.\begin{array}{l}\text { F } \\ f\end{array} \right\rvert\,\right.$ fo again unity and wo have

h	0	1	2	3
$f(b)$	1	3	3	$\frac{1}{2}$
$f(h-2)$	$\frac{10}{10}$	$\frac{10}{30}$	$\frac{5}{15}$	$\frac{1}{1}$

Those innd producta mre proportional to the complete fiat of probabll. itiua for adminamble tublen. They may be eat out as in table (6). When divided by thaty total these entries are, of couran, the probublidilu: thamselven, Extonalon to 2×4 and highar tables, while incruabingly laborious, is utraightiorward, Another option exiats, however, From equation (4) it is obviou that the aquation, being a firaning product of binamial coefticianti cun be broken at any point in the raduction proceae rus ineraly after the firat column, we was done above. Thus, a $2 \boldsymbol{X} 4$ covid be "factored" Into two 2×2 tables rather thun susconalvily into two 1×2 and one 2×2 table, A computer routine ehould he way to dovine to handle all casen up to 5 X 6 . Further work Mlong hala Hinw his. buen temporarily held up, howover, eines the eppromeh seume lont promialng for tablen, thath dimencionis of which exc.nod two.
3. GENERALR X C TABLif The oppromeh udopted In Section II, whinh troated everal Inatmacel of the $2 X$ contingancy table erant probablitity calculations was to exploit the fact that the colculatione conici be rediced to the product of binomial coefficiente. The genaral $\mathbb{R} X C$ table may ha diacuesad in termi of a 3×3 table to almpilify the notation. An annignment of ambole in shown in Tanle (7). The probehility for any epacifle eat of numarical values of the eymboly in well known to be:

In a manner exactly analogous to the reaunning used in the 2×2 case, this can be reduced to

$$
\begin{equation*}
F_{1}=K \frac{R_{1}}{a!b \mid a!} \cdot \frac{R_{2}}{d!o!!!} \cdot \frac{R_{3}}{8!h!!!} \tag{6}
\end{equation*}
$$

wo that the genarating function becomus

$$
\begin{equation*}
a=\prod_{i}^{3}(x+y+z)^{R_{1}} \tag{7}
\end{equation*}
$$

Thi mpproach could warve as a btraightforward mothod of calculating all probablitifen for any 3×3 tablo, and could bo extonded in an obvioun manner to the generad $R X C$ cman.

The method aufiers irom two drawbacke. The nunibor ot poindule terme growe rapidly, wo that the amount of calculatione growa evan dater. Muet of these tablea whll have extramaly anall probabilitiew, due to thole verv number, ifonce, it seome wine te duvise a mothod of approarh in which ouly tablea of uppreciable probability will appear. This will be easy to ingure proviced (a) the rarioun tahlep nan be culculated in the ordar of decreaminy piobablilty and (b) a running a...m of the probuldition of all tahleo calculated mo far io maintained. By antting a criterion, nay 0.99999 , and terminating calelulatier, whun this total is reached, it is obvious that the dast crilerion de wany lo manare. Furthermore, even li a fow tablee ot low probability are calculated, no harm le done other than the lose of machine tinue sa that the method of ordering the calculatione need not be perfect. A drawback, if porfect oxdering is not achioved, is that additional
machine time muat be devoted to worting to make the inal output uneful.

The procedure adopted in our current nppronch if composed of two portions. Firat, aingle table, known to be of high probability is conatructed. Further tablea are conetructed an parturbationa in the entries of thil table so weluctad that the reduiting table fo alao likely to be of high probability, The terting information to the wot of row and column totaly. Hence the axact probablistion for an $R \times C$ contingency table ie a table of $R+C-1$ entry, Non-computing implicatione are diecunaed below. It is from thene $\boldsymbol{R}+\boldsymbol{C}$ given values that we conutruct three wote of tubles neaded in the calculationn and in the output. Firet, as noted above, the initial complete table of known high probability in conatructed an the only mamber of the firat net. It muat, howevor, alwaya be held in memosy whernas the membere of tha following sets may be sent to tape when calculations on them are complated. The calculation cf this banie high probability table in done by firut calculating tho "oxpectod" eoll entrian in the unual munner in applying the chl-aquare methort:

These entries are in general not integern. l'he noxt wrep ie to raduce Wll of tham to integral form, but in such mannor that they umm to thn pliven marglual totale. Tho necond clume of $\mathrm{R} \times \mathrm{C}$ tablen conoint of
 the apectilud row and colures total are formad by addition of the wifyutment matrix to the curiginal etarting oz besic matrix. Fne this puxpose the rowe and columne of the adjustment matyix iteelf must oum to cedo. Individinal untrius may be amall positivo or nagative lategare or zero. Tha third clane of matricen in cumposed at thase mum matricee themenlves, 1,0 , the ene of atminnmile matrices othe: than the atarting matrix ilesif. Thie im the eat of matrices that mivi appose in the output if it is to be in mout convenlent forin.

Thle approach hae juat now (July $19(4)$ been programmad for the general 3×3 came so that, together with the appromeh of the preceding eaction, we should now be in a pooition to give exact
cuatingency table probabilitien for any $2 \times n$ or 3×3 contingency table. An actual $3 X 3$ table requirod 10 eeconds of Honeywall 800 computer time so that, in thia range at loast, the approach looke hopeful. In the cursent program, even for the 3×3 nale, we compute all admisable tablea aizd have uo far made no attempt to ninimive memory requirementi or computer time. Al the pro. gram is extanded to higher values of R and C thin will become more neceasary, On the other hand, an the dimenoions of the table increate, the poasibilities of adequate approximating formulae increace. The list of referenien at the and of thia paper will indicate that no puesie bility of riodifying the ample chi-equare formula to axtend the lower range of tabular coll frequancies hau been overlooked. Unfortunately, no moane uxiet for choowing between them in the abience of exact probubilitien. One purpoes, which we hope our otudian will earve, In to parmit auch a definitive evaluation of the avallable approximating formula.

The nub of the present computer teohnique is the lormintion of the wat of adjustmant matricen in the order of decreaning probebldity, Thim lant is required if the caloulatinne are to be truncated when all tablas having appreciable probubllity have beon calculatedi, Now the rowi and columne of avary adjugtment matrix nuat arm to mero. Thie meane that the sum of the poaitive adjuatriente must be badanced by the aum of the nogativo adjuntmente. Thin, in turn, meana that the minimum number of adjuetmanti in any yow or column (di it cuatadnw an adjustment at all) munt be two. On the othor hand, any table formed by the minimal number' of mindinal adjuatmanta (± 1) would seam to be dteelf a high protability thilu. To exploit theae propusties systematic. ally it iv antended to no ucrange thn rowe and colums of the table that

for ald 1 and J, which in obviounly no rentriction on the genero'fty of the mothod. Thit can always he done nithe row and coluran wamm are the input to the calculation. Becond, all poasible correciluns of ± 1 In at moat two colla of any one row and column will be calculated
firat. Then will in most four, then alx and so on until every coll it adjunted up or down by one unit. If the probabilition of these tables do not sum to the cut off criterion, then all seseos in which one coll le adjuatad by two unite will be amilarly calculated ayatematically. During any one of theae minor cyclet it may prove worthwhile to intro. duce an individual table probabllity tent equal ay to 10^{-6} so that when a table with thic low a probabllity la oncountered the minor cycle (ahiftu in the row and or column of the adjuatment) in terminated and the next adjurtmont cormula applied. In the caee of the 2×2 tabla, it is not dififenit to distinguiuh batweon a one-talled and a two-talled test ... despite the fact that thin le eelciom done. In the general RXC tablo it becomes necensary to velect among the posuible definitions of a onetailed test, However, whatever the definition, from a com. puter atandpoint it reduces to deciding what termi to include in a rummation of probabilition. For thic reanon wo hope to print out probabilities for Individual tables and ptudy the sensitivity of changing the definition on acesptance levele. The reatita of this work will be reported aubereniontly.

Table 1

aymol abodgneme sor 2×2 contingancy table.
rable 2

Population	I	II	III
Treated	23,973	101,637	56,613
Infecced	3	49	25

Typleal actual cace of vaccine trial reaulta in threa tranted oftes.

Table 3

Actual $2 \times 2 \times 2$ contingancy table data

Pigura 1. Ganaratiny function for iudividual table frequancian of 2×2 contingency tabic.

Tuble 4

2	338	340
7	343	350
9	681	690

Hypothatical Table to diluntrate axaot probability caloulation for alymetric continguncy table. For explanation sae toxt.

Table 5

Hypothetical 2×3 table. For explaumtion, wee toxt,

Table 6

b	0	1	2
0	2	10	10
1	15	60	30
2	30	10	19
3	10	10	1

Tuble 7

ACKNOWLEDGEMENTS

We wre lidebted to Dr. Marshall Hall, Jr, and Clyde Kramer for conaultation, to Dr. Edward Batechelut for the procedire uned for the computer generation of all adminamble adjuatment matricea in the 3 X 3 case, and to Mr. Andres Zullweger for programming the 3 X 3 method for the Honeywull 800. It le hoped that adiveusion of tha mothod will ehortly appear in the computer literature.

सEFERENCES

: Bartlett, M. S. - "Contingency Tablu Interactions. ${ }^{\text {Stupp. T. of }}$ Koy. Stat. Soć, Vol. H, Miv. 2, 1735, pp. 248-25.
2. Bennett, D, M. and Hsu, P. "On the Power Punstinn of the Einact Teat for the 2×2 Contingency Table." Blometrika, Vol. 41, Firta 3 and 4, 1960, pp. 393-398.
5. Bennett, B, M, mu Nahandura, E. "Tablea for Testing Exgalicnace In a 2×3 Contingency Table." Technomitric., Vol. 5, No. \&, Nov. ? ?, pr. 301-511.
4. Brose, Irwin, D. J, and Komen, Ethel L. ${ }^{\text {M }}$ "Rapid Analyale of 2×2 Tables," J, Amer. Stat. Apgoc., Vol. 52, No. 277, March 1957, pp. 18-28.
5. Darwin, J. - "On Correctioni to the Chi-Square Distribution" J. Roy, Ftat. Soc., Vol, 20, 1458, pp, 387-392. Iffect of discontinuity on chi-mquare aignificance levela.
6. Finney, D. J., et, el. "Tablea for Tenting Significence in a 2×2 Contingency Table." Cambridre Univaraity Prani, 1963.
7. Freoman, \mathcal{G}, H, and Halton, J, H, "Note on an Maxat Treatment of Contingency Coodness of Fit and Other Problema of Bignificance." Binmatriku 38, June 1951, Pp, 141-149.
8. Good, 1. J. - "Maxinum Entropy for IIypothesid Formulation, E opecially fox Multi-Dimonaional Contingency Trbles," Tho Annala of Mathematical Statiatice, Vol. 34, No. 3, Sept. 1963, pp. 911-934,
9. Haldene, J. B. S. ."The Preoteton of Obeerved Values of Smell Frequencies," Blometrika Vol, XXXV, Parte III and IV, Dec. 1948, pp. ت'4'7-300.
10 Harter, H, L, - "A New Tuble of the Percentege Pointe of the Chi-Scuare Diatribution." 95th Central Regional Meeting, IMS, Madi. in, Wiacontin, Juna 14-13, 1963.
11. Hoel, Paul G. - "Un the Ciol-Equare Diatrithution ior Small Samples." Anmals of Math, Ste.6, Vnl. IX, No. 3, Sept. 1938, pp. 168-165. Second order approximation to the continuous dietridition.
12. Jrwin, J. O. - "Note on the Chi-Square Teat fur Gondnes of ril." J. Roy. Slab, Soc., Part II, 1929, pp. 264-266.
13. Ioinnon, N L. - "An Approximation to the Multinomial Dintribution: Some Propertion and Applicationa." Biometrika, Vol, 47. Partm 1 and 2 , June 1960, rp. 93-102. Uee of nbeerved rather than expected frequenctes in the denominator.
14. Kantenbaum, Marvin A, and Lamphiear, Donmid E. - "Caleult of Chi-Square to Test the No rhree Facter Internction Hypothesie, Biomotrics, Vol.15, No, 1, March 1959, pp. 107-115.
15. Khamia, S. H. - "Now Tables of the Chi-Square Cumulativa Diatribution." 34th Secwion, International Statiaticul Inatitute, Ottuwa, Canada, Auguat 21-29, 1963.
16. Kimball, A, W, "Short-Cut Furmulay for the Exact Partition of Chi-Square in Contingency Tablen." Blometric., Vol. 10, No. Dec, 1934, pp, 452-458.
17. Kullback, S., Kupporman, M, and Ku, H, H, "Tont for Contingancy Tablea and Markov Chaing," Tuchnomatrica, Vol. 4, No, 4, Nov. 1962, pp. 573-608.
18. Lancuster, H. O. "Complox Contingency Tablen Troated by the Partition of Chi-Square," J, Roy. Stat, Soc., Sorien B (Mothodolorical), Vol, XIII, No. 2, 1951, pp, 2X2-276,
19. Lieborman, Gayald, and Owon, Donuld B. " "Tables of the Hypergeometric Probablaty Diatribution." Sianierd Univernity Preiter 1961. Can be unad to obtain "exact" chi-equare probablatios.
20. Mainlend, Donald and Muyray, L, M, "Tablas for Uue in Fourfold Contingency Tume, ${ }^{\prime \prime}$ Solance, Vol, 116, Nov, 1952, pp, 591-594.
21. Maxwell, A, E, - "Analysing Vualitative Data," Methaun Monograph on Applica Probability and Statietica, 1961. Excwil-or, intermediate lovel murvey of oubject.
 In Contingancy Thhleo; with Spucial Reforance to Aceldenty and Abeantaniam, " Slomatrika, Vol, 46, Pact: 3 and 4, Dec, 194:", pp. 365-385. Second ordar apprexination for $K \times C$ tables.
23. Panrion, Karl... • On the Theory of Oentingency and itery to Asaociation and Normal Corsolation: ${ }^{\text {M }}$ '1404. Raprinted in: Pememon' early nentiatical paperra.
24: 'Poayson, D, S, und Elartley, H, O. . MBiomatike Tablea Stathoticianm, "Vol, 1, 2nd ad, ; pp, 188 i193; Tahlen for 2×2 tmble algnifieance toatn.
25. Robartson, W, H, "Programinding Tichar's Exact Mothod Comparing'Two Percontegeitil Tedinoinotrien, Vol, 2, No. d Feb. 1960, pp. 103~107.
26. Srilth, Hi Fairilald- "On Oomparing Contipgoncy Tablet

27. Taylos, Waltam F, " "some Peculdardties in Tonting fow Difforence betwoen' Propostionw, " Cleveland Meeting of Stetha Societiun, Boph. 1963.

 Computing Mechingey, Vol. 9, Noi 3, 1962, pp. 405.40 A.
30. Wincor, Charles P. - "Factoriad Analyaia of a Muriple Enapitomy " Kiuman Blology. Vol. 20, No. 1, Dac. 1948, pp. 195-204. Trythne

31. Wise, M. E. . "Multinomisi Probabilition and the Chi-Eqiare and X^{2} Diatributions. "Blometriku, Vol, 50, Partal and 2, pins 45. 154. Suggeate arbitrary adjutiment to the denominatur of chioraquere formula.
32. Yaten, F, - "Contingency Tablea Involving Enall Number fititad the Chi-Equare Teet, " Supp, J. Roy, Etat, Soc., Vol, 1, 1934p. pp. 217-235.

MICROSPRCTROSCOPY OF THSSUES

G. I. Lavin

Terminal Bulliatic Laboratory, Balliatic Reaearch Laboratoriee Aberdeen Proving Ground, Meryland

ABSTRACT,
A conalderation of non-deutructive analytical procedures for the asesement of offecta produced as the realt of onergy absorption by collular (blological) systomin.

NOTE,
This paper could not be released in time to eppaar in this publication. It in the hope of the editors of the Prucoedinge that thic article wid mppear in the next iusue of thia serien.

DESIGNS FOR THE SEQUENTIAL APPIICATION OF FACTORA

Sidney Addelman
Rusearoh 'Sriangle institute

Some experimental plans that are appropriate when the lavele of the factory of the 2^{n} fectorial experiments are applied esquentially are presented. These plans permit the estimation of the main effeete and two fuctor interactlons of the 2^{n} expertment and also the effecte of the different poeinible orderIngs of the factors.

INFRODUQTION. When an experimental procidure Involvey the datermination of the offett and interaotion of sevaral factori', a conilderable advantage is gained if the experiment is destoned so that the effeat of ohinging any on factor ean be assessad indapendently of the other factort, The affectil of all factoris on a characturiatic of intarsat may be invostigated simultancously by varying atoh factor so that all, or a suitable aubsat of all, posalble oombinations of the factorm are conaldered. An axpariment in which this proese dure is used is hnown as a fmatorial exparimont. A fiotorlal experiment consiete of applying the chosen combinations of faotors to the expentmental units in a random mannur and reoording the yluld of the renponie variable.

The standard atatistiond analysea of factorial experimants are appropriate whan the factor leval of any trantment evmbination are simultenmouely opipied to an experimental unit. There are many altuations when it it elther impousible or impractical to apply the factors almultanaunaly tn eneh exparimental un!t. in wiet abmatlun" the factor lovely may be applied uequantially. If ihere Is but wilk possible wav to order the asquence of faotorn, of if the ordior in which the faetorn are applied doen not affect the respuias. the oxpertmeat can be analyzed as lf the factorn ware applied aimultanously. Howwiar, It the factore can be appled in eevaral posalble orders, and if the reaponse due to the application of a combination of factors depande upen the particuler order in whioh the factora are applied, the expartment ahould be plennad no as to permit an evaluation of the order effects. The order in whioh factorn ain applied to exporimental unite may affeat the remponce due to differences in romedual

[^7]or carry-over affects, A residual affect will nceur when fator is applied to an expertmental unit before the affeot of a previously applied factor has worn off. Thus, it is quite poanible that the application of factor A before factor B wlll laad to a difforent response than the application of factor A aftar factor B.

This papar in concorned with the construotion and analysis of axperimental designa for the nequantial applloation of the factors of a 2^{n} factorial arrangament. Throughsut the paper it wid be assumed that realdual etfect! are parmanant, l.e., if tho affacts of two factorm are order dapendent, the applleation of one factor will influence the affest of the second factor, no matter how many othur factors are applied batween them.

The expurimental plans devolopad in this paper maybe quite uneful when the factor are onvironments. In laboratory aimulation axporimints it is ofton himponsible or uneconomical to ulmultanaously apply all the environments to which an Item may bu nubjeotedi In nctual une. It the feetori ard eppliad sequentially in a simulation experiment, important information on the residual aftecte oan be gained by varying the ordor of the sequance. It thare are alternative unquencen ot faetors to which an Item is mubjeated in motual use, one may dotermine the ordor of the sequenoe whioh is leand dotrimentel. te lici ltom under tast, by varying the ordar of the anquenoe in mimulation experimants. These plans may tho prove usaful in axpurimante where iteme are treated with a equence of ohemicale to improve mome charecteriatic (hardness, rust realetanon, ete.) of the ftems.

PHAN WHH TWC FACMEREDBPRNDENT ON ORDYE In tht soction we will conmidis experimental flans for the $2^{\text {ti }}$ factorial arrangemente where the erfer of only two of the in Isetern wlld afteot the rasponse. Some of the plan:- are construeted in auch m manner that all factor affeots ut ankent and the eridur dffect are orthogonally eatimable. For some plans the factor and erdor utfeat; and the interastions are partially correlated. It if ansumind that thu luw level of a factor (0) Indleates that tha factor wan apulind to the axparimental unit at a level lowar than the high lovel (d), (.e., tha low lovel of a injiur close not imply the absence of the factor, If is also amamnd that If a factor han a realdual affeat on any subuequant factor, thie offent will occur no matter which leval of the factors are appliad.

When only two factori are ordar dependent, the elfect of ordering oan be Introduced as another factor, If the two faotors that are order dependent are denoted by A and B, the ordaring iector, X, may be introduead as
followi. Lat the 0 leval of X indicate that factor A ia applied before factor B, and lat the 1 lovel of X indioate that factor A is appliad aftur factor B. The experimental plan for a $2^{\text {n }}$ factorial arrangement where two of the n factors are ordor depenciont may be daduced trom ifll or fractional repllate of $2^{\text {nhl }}$ arrangement. Consider, for axample, an axpariment on three two-lovel factor: A, B, and C, in whloh A and B are ordar dependent. Lat X be introduced as the order factor. An experimental plan may be obtained by utilieing the $1 / 2$ replloate of 24 arrangement with the dulining contrast $I=A B C X_{0}$. The traatment combinations for this plan arei

\mathbf{A}	\mathbf{B}	\mathbf{C}	\boldsymbol{X}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Hence, the elght truatment combinations of the 2^{3} urrengement in the urder in
 $a_{1} b_{0} a_{1}, a_{1} b_{1} c_{0}, b_{1} a_{1} a_{1}$, If the order factor; X, Loen not interact with A, B, or C, and all throe-factor intoractions are nogligible, orthogonal atilmalan of $\mu, A, B, C, X, A B, A C$, and $B C$ may be obralnad by atralghtinward analyala.

If X litidully with A, B or $C, A, 3 / 4$ rapicate plan dalined by the three dafining contrasty

$$
\begin{aligned}
& I=A B C_{0}=C X_{0}=A B X_{0} \\
& I=A B C_{0}=C X_{1}=A B X_{1} \\
& I=A B C_{1}=C X_{1}=A B X_{0}
\end{aligned}
$$

will parmit eatimates of these internctions, where, for axample, ABC, denotes the treatment dombinations for whioh the sum of the levels of the factorg A, B and O is equal to 1 modulo 2 . The twelve troatment combinations in the order in which each fadtor is applied arel
$a_{0}^{b_{0} o_{0}}, b_{0} a_{0} c_{0} a_{0} b_{1} c_{1}, b_{1} a_{0} a_{1}, a_{1} b_{0} a_{1}, b_{0} a_{1} c_{1}, a_{1} b_{1} c_{0}, b_{1} a_{1} a_{0}, a_{0} b_{0} a_{1}$ $b_{1} a_{0} o_{0}, b_{0} a_{1} c_{0} a_{1} b_{1} c_{1}$. The estimaten of the effect of interest are correlated in four sete of threa; $\hat{\mu}, \hat{C X}, \hat{A C} ; \hat{A}, \hat{B C}, \hat{B X} ; \hat{B}, \hat{A C}, \hat{A X} ; \hat{O}, \hat{X}, \hat{A B}$, The inethod of analynin for $3 / 4$ raplieate plans is prenented in Addelman [l'],

PLANE WHH SFPS QF TWO FACICORA DPPPNDRNE ON ORDPR. When the renponse la affected by the order within ench of k seta of two fuctors, the 2^{k} possible ordering may be aopommodated In a 2^{n} tactorial arrangemant by introdueing k ordaring factorn. The exporimontal plans will thon conalat of adectional replleate of a 2^{n+k} factorial arrangement. Considar a 2^{4} arrangemant with fectorm deneten by A, B, C and D, where A and B are order dependent and C and D are oraor dopendent, In thle altuation there are lour ponillole ordurs, $A B C D, B A C D, A B D C$, and BADC. Two ordering feotors may be introduced as followsi Let the 0 leval of X denote the order $A B$,
the 1 level of X denote the order $B A$,
the O level of Y denote the order $C D$, and
the 1 level of Y denote the order DC.
If nont of the factorn A, B, C and D intorast: with althar X or X, and If XY and all threo-factor Intaraetion are negligible, $1 / 4$ rapllate of the 2^{3} arrangement defined by $I=A B C X_{0}=A B D Y_{0}=O D X X_{0}$ wlll yleld orthoyonal ebinmater of $M, A_{1} B, O_{1} D_{1} X_{1} Y, A B, A C, A D, B C, B D$ and $C D$, The traalment combinations of the 2^{4} experiment in inelr anpropriate orders, as do:nt minad from the defining contrast, arn

$a_{0} b_{0} 0_{0} d_{0}$	$h_{ \pm} a_{u} e_{u} \mathscr{U}_{0}$	$b_{0}{ }_{1} d_{0} o_{0}$	$a_{1} b_{1} c_{0} H_{0}$
$s_{0} b_{0} d_{1} a_{0}$	$b_{1} a_{0} 0_{0} A_{1}$	$b_{0} d_{1} a_{0} d_{1}$	$a_{1} b_{1} d_{1} c_{0}$
$\mathrm{H}_{0} \mathrm{O}_{0} a_{1} \mathrm{~d}_{0}$	$a_{0} b_{1} d_{0} c_{1}$	$a_{1} b_{0} a_{0} a_{1}$	$b_{1} a_{1} v_{1} d_{n}$
${ }^{b_{0}} C_{0} d_{1} c_{1}$	$\mathrm{Cob}_{1} \mathrm{c}_{1} \mathrm{~d}_{1}$	$a_{1} b_{0} c_{1} a_{1}$	$b_{1} a_{1} H_{1} u_{1}$

If It In expouted that the treatment facturw inlurect with the ordur face tors, a/8 replicate of the 26 arrangement will permit the eatimation of these interections, as well as the main effects and two-feotor Interaotions that could be entimated with the $1 / 4$ replloate of the 2^{6} plan. For the itrugular fraailion plan to yield meaningiul entimatus, the interaotion $X Y$ and all three-factor Interaotiona must be negligible. The three $1 /$ e raplioaten of the 2^{6} yutem ara dalinged b';
and

$$
\begin{aligned}
& I=A B C D X_{1}=A B Y_{0}=C D X Y_{1}=A C D Y_{0}=B X Y_{1}=B C D_{0}=A X_{1}, \\
& I=A B C D X_{1}=A B Y_{0}=C D X Y_{1}=A C D Y_{1}=B X Y_{0}=B C D_{1}=A X_{0} \\
& I=A B C D X_{1}=A B Y_{1}=O D X Y_{0}=A C D Y_{1}=B X Y_{0}=B C D_{0}=A X_{1} .
\end{aligned}
$$

respectively. The twanty-four treatment combinations of the 2^{4} experiment in their appropriate orders of application are:

$b_{0} a_{0} c_{0} d_{0}$	$a_{0} b_{0} c_{0} d_{1}$	$b_{0} a_{0} d_{0} c_{0}$
$b_{0} a_{0} a_{1} d_{1}$	$a_{0} b_{0} a_{1} d_{0}$	$b_{0} a_{0} d_{1} c_{1}$
$b_{1} a_{0} d_{1} a_{0}$	$a_{0} b_{1} d_{0} c_{0}$	$b_{1} a_{0} c_{0} d_{1}$
$b_{1} a_{0} d_{0} c_{1}$	$a_{0} b_{1} d_{1} c_{1}$	$b_{1} a_{0} c_{1} d_{0}$
$a_{1} b_{0} a_{0} d_{0}$	$b_{0} a_{2} d_{1} c_{0}$	$a_{1} b_{0} c_{0} d_{0}$
$a_{1} b_{0} d_{2} c_{1}$	$b_{0} a_{1} d_{0} c_{1}$	$a_{1} b_{0} c_{2} d_{1}$
$a_{1} b_{1} c_{0} d_{1}$	$b_{1} a_{1} a_{0} d_{0}$	$a_{1} b_{1} d_{1} c_{0}$
$a_{1} b_{1} a_{1} d_{0}$	$b_{1} a_{1} a_{1} d_{1}$	$a_{1} b_{1} d_{0} c_{1}$

 $\hat{\mathrm{C}}$. and $\hat{\mathrm{BX}}, \widehat{\mathrm{AD}}, \hat{\mathrm{OX}}$, and $\dot{\mathrm{DX}}, \hat{\mathrm{CY}}, \hat{A D}$, and $\widehat{\mathrm{SX}}$.

PYANB WHERE ONE FACTOR IS ORDER PEPENDENT WIH K UTHER FACTOhw:
When the response to a treatment combination of a $\frac{2}{}$ factorial expert. mount ia dependent on the position of one factor relative to k of tho remaining $n-1$ factors, in the sequence of application, the 2^{k} pusuible orders may io accommodated by the introduction of k order factory. This type ot plan an be illustrated by an experiment on four two-lovel factors, A, B, C, and D, where A is order dependent with B, C, and D. The three order feotera x, y, and z may be defined an follows.
Lot the 0 level of X denote the order $A B$,
the 1 level of X denote the order $B A$,
the 0 level of Y denote the order $A C$,
the 1 level of Y denote the order $C A$,
the 0 level of Z denete the order $A D$, and
the 1 level of Z denota the order $D A$,

The aight possible ordarings are ABCD, BACD, CABD, BCAD, DABC, BDAC, CDAB, and BCDA.

The 2^{4} arrangement with three ordar factore may be consldered to be a $2^{?}$ arrangement. A 1,18 repligate 0 , the 2^{7} arrangement defined by $1-A B X Y Z_{0}=B C X Y_{0}=A B C Z_{0}=A B D X_{0}=B D Y Z_{0}=A C D Y_{0}=C D X Z_{0}$ conalot of the following 16 treatment combinationa with each factor applied in the approprlata ordar.

${ }^{a_{0}} b_{0} c_{0} a_{0}$	$b_{0} d_{1} a_{0} c_{1}$	$a_{1} a_{1} b_{0} o_{0}$	$b_{0} M_{1} c_{1} d_{0}$
$0_{0} b_{1} c_{1} a_{1}$	$\nu_{1} d_{0} a_{0} c_{0}$	$\mathrm{a}_{0} a_{2} b_{2} a_{2}$	$b_{1} a_{2} c_{0} d_{2}$
$c_{1} d_{0} a_{0} b_{0}$	$b_{0} c_{0} A_{0} a_{1}$	$c_{1} a_{2} b_{0} d_{2}$	$b_{0} c_{0} d_{0}{ }^{\text {a }}$ d
$c_{0} C_{1} a_{0} b_{1}$	$b_{1} c_{1} a_{0} d_{0}$	$c_{0} a_{1} b_{1} d_{0}$	$b_{1} c_{1} c_{1} a_{2}$

If all intoractions Involving at last one ordar factor and all thiep-factor and higner order intersations are negligible, the above plan purimits orth goonal estimation of $\mu, A, B, D, D, A B, A C, A D, B C, B D, C D, X, Y$, and Z.
 the 2^{5} arrangement on factuis A, A, C, D, and E where factor A ia order depenilant with factor: B, O. and D. This plan is derived frum .he ":natmani combinations of the $1 / 8$ replloate of a 2^{8} arrangoment dofined by $I=A B C H E E_{0}=A B C X Y_{C}=D E X Y_{0}=A D X Z_{0}-B C E X Z_{0}=B C D Y Z_{0}=A E Y Z_{0}$, whorm X, Y, and Z are the urdar lauturs. If it he importont to astimate all the twim factor interacinala, a $3 / 16$ replicate of the 2^{8} wuld provice those anti" mates, sume of which are partially confounded in setn of two or three. "itu generators of the defining contrast of the three $1 / 16$ repliontes whigh dafine such a plan are ABCDE, ABXYZ, AOY and BEY,

PIANS WITH THKFE FACMORS DEPENDENT ON GRDRR. In this section we considar plens for experimenie in which all ais permutations of the ordeinga of three factora may Inflienon the rasponoe to a tratmant oomination. If the
thres factors that are ordar dependent ars denoted by A, B, and D, the six orders In which these three factors cocur are $A B C, A C B, B A C, B C A, C A B$, and CBA. When there are more than thres factors influencing the responce, the factors other than those denoted by A, B, and C may oceur any place in the sequence without affecting the responss. The ely: orders may be ancommodated In the experimental plan by introducing three order factors X, X, and Z as follows:
Let the 0 level of X denote the orcier $A B$,
the 1 level of X dennte the order BA,
the 0 lavel of Y denote the order $A C$,
the 1 level of Y denote the order CA,
the 0 .level of Z denote the order $B C$, and
the 1 level of Z denote the order CB .
The order factors can be treated llke three two-lovel factors. Of the $2^{3} \mathrm{~m}$ treatment combinations of the thres ordar factors, two combinations, 010 and 101, give imposible orders. Whenover these ordera occur in the plan they must be changed. If the experlment consists of three factor: A, B, and C which arn all order dependent, an experimental plan may be obthined from the treatment combinations that comprise the $1 / 4$ raplicate of 2^{6} arrangement dafined by $I=A B X Y_{0}=A O X Z_{0} m B C Y Z_{0}$, namely:

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{X}	\mathbf{Y}	\mathbf{Z}
0	0	0	0	0	0
0	0	0	1	1	1
0	0	1	0	0	1
0	0	1	1	1	0
0	1	0	0	1	0
0	1	0	1	0	1
0	1	1	0	1	1
0	1	1	1	0	0
1	0	0	0	1	1
1	0	0	1	0	0
1	0	1	0	1	$0 *$
1	0	1	1	0	1
1	1	0	0	0	1
1	1	0	1	1	0
1	1	1	0	0	0
1	1	1	1	1	1

The four treatment combiriullons marked by an asterisk lead to impositble orderings and hence, the combination of the X, Y, Z levels must be changed in these treatment combinations. This can imply be accomplished by reversing the levels of z in the four treatment combination n. The resulting treatment combinations of the 2^{3} arrangement with appropriate orderings of the factor levels are:

$a_{0} b_{0} c_{0}$	$c_{0} a_{0} b_{1}$	$a_{0} a_{1} b_{0}$	$a_{1} c_{0} b_{1}$
$a_{0} b_{0} a_{0}$	$b_{2} a_{0} c_{0}$	$b_{0} a_{1} a_{0}$	$b_{1} c_{0} a_{1}$
$a_{0} c_{1} b_{0}$	$c_{1} a_{0} b_{1}$	$a_{1} a_{1} b_{0}$	$a_{1} b_{1} c_{2}$
$b_{0} c_{1} a_{0}$	$b_{1} a_{0} c_{1}$	$b_{0} a_{1} a_{1}$	$o_{1} b_{1} a_{1}$

This pion permits orthogonal intimates of all treatment affects, the order effects X and X each being partially confounded with Z. The antimate of the treatment affects are simply:

$$
\begin{aligned}
& \hat{A}=\frac{1}{B}[A], \hat{B}=\frac{1}{8}[B], \hat{C}=\frac{1}{8}[C], \hat{A B}=\frac{1}{8}[A B], \hat{A C}=\frac{2}{8}[A C], \\
& \hat{B C}=\frac{1}{8}[B C], \quad \hat{A B C}=\frac{1}{8}[A B C],
\end{aligned}
$$

> sum of traalmint combluations with factor A at 0 level),
> $\mid A B]$ (nun of treatment combinations whose expectallare contain $A B$ positively - aam of treatment combinations whwas expectations contain $A B$ negatively), and so on.

The estimates of the order effects are given by

$$
\left[\begin{array}{l}
\hat{X} \\
\hat{Y} \\
\hat{Z}
\end{array}\right]=\frac{1}{16} \cdot\left[\begin{array}{rrr}
3 & -1 & 2 \\
-1 & 3 & -2 \\
2 & -2 & 4
\end{array}\right] \quad\left[\begin{array}{c}
{[X]} \\
{[Y]} \\
{[z]}
\end{array}\right]
$$

The above estimates are vald li all intermetions involving at least one order fector are negligible. if the iwdeiadter fiteractions involving one order factor are not nagliglible, the nixteen traatment combinations of the proviolis plen are nut udequate. When all two-fector interactions among the order facm tors and all throo-factor and highar urdari Interaationeilnvolving at leagt one ordor
 of tho remalning paremetern, From the thres $1 / 8$ replicates dofined by

$$
\begin{aligned}
& I=X Y_{0}=Y Z_{0}=X Z_{0}=A B C_{1}=A B C X Y_{1}-A B C Y Z_{1}=A B C X Z_{1}, \\
& I=X Y_{1}=Y Z_{0}=X Z_{1}=A B C_{0}=A B C X Y_{1}=A B C Y Z_{0}=A B C X Z_{1}, \text { and } \\
& I=X Y_{0}=Y Z_{1}=X Z_{1}=A B C_{0}=A B C X X_{0}=A B C Y Z_{1}=A B C X Z_{1}
\end{aligned}
$$

the treatment combinations of the 2^{3} arrangement in tho appropriate equences of application may be deduced, somo care we taken in selucting the three $1 / 0$ replleatem so that no trantment combination that resulted from the neleotion of the deining contraste would involve imposible ordaringe. The 24 treatment combinations in their appropriate ordera ara:

$a_{0} b_{0} c_{1}$	$c_{1} b_{1} a_{0}$	$b_{0} a_{0} c_{0}$	$c_{0} a_{0} b_{0}$	$b_{0} c_{0} a_{0}$	$a_{0} a_{0} b_{0}$
$a_{0} b_{1} c_{0}$	$c_{0} b_{1} a_{0}$	$b_{1} a_{0} c_{1}$	$c_{1} a_{0} b_{1}$	$b_{1} c_{1} a_{0}$	$a_{0} a_{1} b_{1}$
$a_{1} b_{0} 0_{0}$	$c_{0} b_{0} a_{1}$	$b_{0} a_{1} a_{0}$	$o_{1} a_{1} b_{0}$	$b_{0} c_{1} a_{1}$	$a_{1} b_{1} b_{0}$
$a_{1} b_{1} c_{1}$	$c_{1} b_{1} a_{1}$	$b_{1} a_{1} c_{0}$	$a_{0} a_{1} b_{1}$	$b_{1} c_{0} a_{1}$	$a_{1} c_{0} b_{1}$

The catimatenc:ugivan by

$$
\begin{aligned}
& {\left[\begin{array}{l}
\hat{A} \\
\hat{B C}
\end{array}\right]-\frac{1}{32} \cdot\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{c}
|A| \\
|B C|
\end{array}\right]\left[\begin{array}{l}
\hat{B} \\
\hat{A C}
\end{array}\right]=\frac{1}{32}\left[\begin{array}{ll}
3 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
{[B]} \\
{[A C}
\end{array}\right] \text {, }} \\
& {\left[\begin{array}{l}
\hat{C} \\
\hat{A B}
\end{array}\right]=\frac{1}{32} \cdot\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
C 1 \\
{[A B]}
\end{array}\right] 1}
\end{aligned}
$$

Addelman, 8. 1961. Irvaular fractiona of the 2^{n} factoriad experimentif, Technometrios 12:479-496.

$2^{\text {P FAC'TORIAL EXPERIMENTS WITH THE FACTORS }}$
 APPLIED SEQUENTIALLIY

R. R. Pralrie and W. J, Zimmer Sandia Corporation

ABSTRACT, In the application of factorial experimente in induatry, it la often nucesmaty to apply the factors equentially, for 2^{p} experimente in which (a) multiple teating on each experimantal unit is posalble and not degrading, (b) the iffecte of the factory are nalmanent, and (c) the low level of a factor in the absenco of that fartor, a doaign and an analyala are prosented which allow the outimation and teating of order effeote well as the unual main and interaction effecte of the factora,

INTRODITCTION. In the uaun application of factorial exparimunta, the fuctor lavele are mpplied nimultaneously to the unita and a reaponae in recorded from each unlt. However, when the facturs are onvironmonts (E, g, , vibsation and mechanical aook), it in often imposolblo to npply the
 apphed in asquence.

When the factor lovela raust be applied equentially, the ors:n of application becomea a matter of importance. It is posalble that thes final performance of a unit that has boen uubjectet to two imetora may be very ennitive to the order in which the fietora are mppliad.

In thid paper 2^{P} experimente are conuldured where:

1. Fach untt may be tented $(p+1)$ timas (whare p de the number of factors) without the taiting itaslif having a degrading offect on the unit,
2. The high levol of the factor is the mpplication of the factor and the low level of the factor mana the lactor ia not applied, and
3. The effecte of the factori are permanent.

Thus, the magnitude of the reuponce from a apocifte tout will be affected by the factore applied to the unit up through that teat plue the specific order of application of thon factors. A daaign [ralled the Factor Sequancing Design (FSD)] and an analysis are presented, which allow the estimation of thene order effectas wall an the unual main and intaxmetion effecte of the factora.
 [V_{l} bue been appliad] and 4 low laved [V_{0} hae not heen iupplied. Thus, when a unll has the high level of V_{f} applied bit, wo shall way that it ha recelved the V_{n} factor or that the V_{f} factor has been applied. since the affecte of the factora are ausumed to be permanent, a undt which hae racaived this V_{f} factor at some point must be considered from that joint on ais having the hifh level of V_{l}. Further, each unit will eventually rective, in colize order, each of the p factora.*

[^8]The tijp of deaign comidared is on vhare remiti are aubjected to enoh of
 arplind in sequance and eah unit is tontad $(p+i)$ timat, once pritor to the application of ary factor and opce following the application on each of the p factors. Thus a notation for the respence on the $j^{\text {th }}$ tuat ($g^{\prime} \sim 2, \ldots$,
 ubjected to the $k^{\text {th }} p$-way ordar $(k=1, \ldots \because, p l)$ ist

$$
x_{1, j x}\left(a_{B_{2}}, \ldots, 0_{B_{j-1}}\right)
$$

 the $j^{\text {th }}$ tunt and the ordar of apploation. If $I=1$,

 whon desoribias the enelyasts As examin of the dasien io given for a a^{3} oxporiment in Table I.
maxi 1

 Order is

UnIt 2 Nose $x_{121}(1) \quad v_{2} \quad x_{121}\left(a_{1}\right) \quad v_{2} \quad x_{132}\left(a_{2} a_{9}\right) \quad v_{3} \quad x_{242}\left(a_{2} a_{2} a_{3}\right)$
$\vdots \quad \vdots \quad \vdots$

order 81
Unit 2 Howe $x_{218}(1) \quad v_{2} \quad x_{219}\left(a_{2}\right) \quad v_{3} \quad x_{139}\left(c_{2} y_{3}\right) \quad v_{2} \quad x_{142}\left(a_{2} a_{3} a_{1}\right)$

$\begin{array}{lllllllll}\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\end{array}$

Order 61

UnIt r Mane $x_{r 16}(1) \quad v_{3} \quad x_{746}\left(a_{3}\right) \quad v_{2} \quad x_{r 36}\left(a_{3} a_{2}\right) \quad v_{2} \quad x_{846}\left(a_{3} R_{2} a_{2}\right)$

Dewign of Experimente

The modes that is uned to maresont a tant for the 2^{5} YeD is

$$
\begin{align*}
& \left.x_{i j k}\left(a_{1}, \ldots, a_{A_{j-1}}\right)=m+u_{i(k}\right)+k_{a_{i}}, \ldots \because a_{A_{j-1}}+a_{i j k}^{\prime} \tag{1}\\
& 1=2,2, \ldots, r \\
& j=2,2, \ldots, y+1 \\
& k=2,2, \ldots, p!
\end{align*}
$$

whore
the $1^{\text {th }}$ whate eventuality anherated to the $x^{\text {th }}$ manay oxdar of the ractera where
 $j^{\text {th }}$ reen.

 $x^{\text {Li }} \mathrm{p}$-way ordar of the P factore.
$x_{u_{1}}, \ldots, a_{a_{j-1}}$ atruot of the appiluation of J-I Imotosm in the apecitice arcars $a_{A_{2}}, \ldots, a_{A_{j-2}}$ " for $I-1$, the aymbil used is $4(1)$.
-1,jk mandom arror mesoatatod with $\mathrm{j}^{\text {th }}$ tent on the $4^{\text {th }}$ unit evartualiy subjeosed to the $x^{\text {th }}$ ordar of y fagtors.

Wor the 2^{3} FSD same apootfic examples of the form of tho moded asel

$$
\begin{aligned}
& x_{121}(1)=m+u_{2(1)}+x_{(1)}+a_{11} \\
& x_{121}\left(a_{1}\right)=m+u_{1(1)}+x_{a_{1}}+a_{222} \\
& x_{132}\left(a_{1} a_{2}\right)=m+u_{1(1)}+x_{a_{2} a_{2}}+a_{132} \\
& x_{242}\left(a_{1} a_{2} a_{3}\right) m+m+u_{1(1)}+x_{a_{2} a_{2} a_{3}}+a_{241}
\end{aligned}
$$

$$
x_{123}(2) \quad=m+u_{2(3)}+x_{(2)}+x_{12!}
$$

$$
x_{123}\left(a_{2}\right) \quad-a+u_{2}(3)+x_{a_{2}}+a_{223}
$$

$$
x_{133}\left(\mu_{2} a_{1}\right)=m+u_{2(3)}+x_{1_{2}} y_{2}+e_{233}
$$

$$
x_{243}\left(a_{2} a_{2} a_{3}\right)=m+u_{2(3)}+x_{a_{2} a_{2} a_{3}}+1243
$$

$$
i_{316}(1) \quad-4+u_{2(6)}+x_{(1)}+0_{216}
$$

$$
x_{126}\left(a_{3}\right) \quad= \pm+u_{2}(6)+x_{3}+e_{3} 26
$$

$$
x_{336}\left(a_{3} a_{2}\right)=m+u_{1}(6)+c_{a_{3}} a_{8}+a_{236}
$$

$$
x_{246}\left(a_{3} a_{2}^{a_{2}}\right)=4+u_{1}(6)+x_{u_{3}} a_{2}^{a_{1}}+{ }_{2} 46
$$

It vill be anoumad that

$$
u_{1}(k) \sim x \operatorname{DD}\left(0, \sigma_{u}^{2}\right), a_{1, j x} \sim x \operatorname{mol}\left(0, \sigma_{i}^{2}\right)
$$

 With the saotora involvod and one with the ordor of the zaoturs, 1.e.,

$$
x_{a_{A_{2}}}, \ldots, a_{d_{j-2}}=\eta_{a_{2}}, \ldots, a_{A_{j-2}}+s_{a_{d_{1}}}, \ldots, a_{d_{j-1}}
$$

 $\left(A_{1}^{\prime}, \ldots, A_{j-2}^{\prime}\right.$ are thm a_{1}, \ldots, A_{y-2} ordored from tine melleatt through the
 oxder of application of the $\mathrm{y}-1$ tentors.

It is alao annumed that the fric awa to sose.
Frou Equation 1 it aen be soen that

$$
\begin{aligned}
& \left.\operatorname{cov}\left[x_{i j x}\left(a_{j_{1}}, \ldots, a_{\mu_{j-1}}\right), x_{i^{\prime} g^{\prime} k^{\prime}\left(a_{1_{1}}\right.}, \ldots, a_{\alpha_{j-1}}\right)\right]
\end{aligned}
$$

Anedyalie

 than the nuaber of paramatera. Since the aumber of antimble parambore is
 this now veotor \mathcal{C}^{+}in cortmod. Then $Z(X)$ + $A^{*} M_{C^{+}}$; whem

$$
\begin{aligned}
& \xi^{+1}=\left[m+c_{(2)} x_{2}-4_{(2)}, \ldots, s_{a_{2} a_{a}}, \ldots, a_{y}-\xi_{(2)}\right.
\end{aligned}
$$

 rasile $\sum_{1-6}^{n} \frac{10}{(p-1)!}$.
It is not yot nosaibid to obtats the bent ontimate ot fitm

$$
\boldsymbol{\xi}^{+} \cdot\left[\left(A^{*} M\right)^{\prime}\left(A^{*} M\right)\right]^{-2}\left(A^{*} N\right)^{\prime} X
$$

 indopandantly dilutributad (seen Equ:bicy a).

In matidx notation Equation 2 la wnittom:

$$
\begin{equation*}
\operatorname{var}(x)=\sigma_{u}^{p} x+\sigma_{u}^{2} d a s\{v\} \tag{3}
\end{equation*}
$$

Where I is the 1 dentity matyly of ordar ($p+1$)xpl and dian $\{u\}$ is aquare diagonal matrix of order $(p+1) r p l$ for whion each diugonne olemmet is the submatrix U, a muase matrix of ordar $(p+1)$ ali of mose alumante arm 1.

Design of Expuriments'

$$
2=\mathbb{E x}
$$

oun be found auoh that var (2) - σ^{2} (2, whexe

Binee

$$
\begin{equation*}
\operatorname{var}(z)=a[\operatorname{var}(x)] s^{\prime}=a\left[\sigma^{2} x+\sigma_{u}^{R} \text { anc }\{v\}\right] s^{\prime} \tag{4}
\end{equation*}
$$

 If a rop $x x(p+1) p l$ matrix a whene

and whare

Then

$$
F(z)-\mathbb{x}[x(x)]=x^{t h} x x^{+}
$$

$$
\mathbb{E}(2\rangle=A K
$$

 whioh is a column of serce, deloted and 4 id the parmmoter voeter f^{\dagger} maduoud by deleting the firat elamat.
 Z'a are normaily diatributad. an vir (Z) mof the z'a matiafy the oonditiona

$$
\begin{equation*}
\widehat{x}=\left(A^{\prime} A\right)^{-1} A^{\prime} Z \tag{5}
\end{equation*}
$$

 of variance appery in Table ix.

MARES IT

Source of Variatitan (EV)	$\begin{gathered} \text { Dagrean ot Irandom } \\ \text { (Diy) } \end{gathered}$	Bun of gquaran
Itreaturanta (inactor: and ordines)	$\sum_{i=1}^{P}(n-1) i$	$8 s_{V+B}=z^{\prime}\left(A\left(A^{\prime} A\right)^{-2} A^{\prime}\right) z$

By wegleating order, now peremater vaater is ennoruted, Dancte thide am vert.se at η. For exumple, bith a 2^{3} jad

$$
\begin{aligned}
& \eta^{\prime}=\left[\eta_{x_{1}}-\eta_{(1)} \cdot \eta_{a_{2}}-\eta_{(1)} \cdot \eta_{a_{3}}-\eta_{1}\right)^{\prime} \eta_{a_{2} a_{2}}-\eta_{(1)} \\
& \left.\eta_{a_{2} a_{3}}-\eta_{(1)} \cdot \eta_{a_{2} a_{3}}-\eta_{(1)} \cdot \eta_{a_{1} a_{2} a_{3}}-\eta(1)\right] \text {. }
\end{aligned}
$$

The best entimate of η is

$$
\begin{equation*}
\hat{\eta}=\left(A_{1}^{\prime} A_{1}\right)^{-1} A_{1}^{\prime} Z, \tag{6}
\end{equation*}
$$

whero A_{2} is \mid rppl $\left.\times 2^{P}-1\right\rangle$ matrix and is $E A_{2}^{*} M_{1}$ With the rirat column daleted, whera A_{2}^{*} is the demagn matrix associated with η and M_{1} is the matrix of raparamatarization assvoiated with η.

The corresponding anciypis of variance is given in Table III.

MABLI III
 Prodiniluary Armivala of Variatoce DLasegeraing Ordar Parmaturs

SV	D\%	88
Fe.tusiml erfects	$e^{p}-1 \times \sum_{1=1}^{p}\binom{p}{1}$	$\left.z^{\prime}\left[A_{2}\left(A_{2}^{\prime} A_{2}\right)^{-1} A_{1}^{\prime}\right]^{\prime}\right]$
Rejidual	$\text { rppt } \cdot \sum_{i=1}^{p}\left(l_{i}^{p}\right)$	$\left.2^{\prime}\left[I-A_{\perp}\left(A^{\prime} A_{1}\right)^{-1} A_{2}^{\prime}\right]^{\prime}\right] 2$
7ntal	23pp:	$z z^{\prime}$

Then, iyy mans of the principle of onnditional orrer, the avme or muares, due to the factorial effecta, the order effeots, and the arror, ans be obtaingen and shown in Table IN.

Ma3y Iv

Analyals of Varianoe for Fectorial and ordor mapeote

 by wive T-tent.
 would be eatimated by

$$
a_{v}=a^{\prime} A=o^{\prime} x
$$

Whose ì is givan by Equation 6 und d^{\prime} is the vaotor which given the apregersate
 that afteot in $\left(O^{\prime} R\right)^{2} / 0^{\prime} 0$.
in the cose whar the order of application of the factors hus alenifiaunt offact, one would prosumably inventigate dixforont acotrunty among pamamatars or ξ, an oatimated by Eiluation 5, to determing whion are contributing to the order effoct. This can bo done by oaloulatiag expresations of the rorm of Whoro G to a vector dotinings a spacitic order oontrast of interest. If ordar
 arrante.
 FGD (p !, or 24 when $p=4$) is greater than the number (2 p, or 16 when $p=4$) neoded for the unual \mathbb{R}^{P} factorial. In thil cese, howover, the advantuge of the FSD over the unual raotoxial is the information obtained on the ordan offects, and the inoxtaced orriaciency of antimetiou due to the removal of yait variation frcm the owror. Funthermore, it is bellevod that a fratidonal
 provide estimates of both the ractorial offootn and the ordar atfeote. This

Alsu, for tho cuse where thare is no order affect, it is posaible to comatrunt a dosien which require onily p unita and for which it is posaible to eatimate
 each unit is tosted $p+1$ tinus.

The ceneral PSD technique desoribed above will now be illuatrated by two examples of a 2^{3} axper inent.

Merexple 1 of a 8^{3} TED

Mani V

Renults Fram one Roplication of a E^{3} wad
 crider 1
$\begin{array}{lllllllll}\text { Unit } 1 & \text { None } & 56.058 & V_{1} & 56.579 & V_{a} & 52.661 & V_{3} & 51.319\end{array}$
Order 2
$\begin{array}{lllllllll}\text { Unit } 1 & 53.500 & V_{2} & 57.462 & V_{3} & 5 T .475 & V_{0} & 50.396\end{array}$

024e: 3
$\begin{array}{lllllllll}\text { Unit } 1 & \text { Non } & 58.525 & V_{2} & 56.923 & V_{1} & 62.003 & V_{3} & 62.673\end{array}$

Oxdex 4
Unll 1 None $56.583 \cdot V_{2} \quad 56.924 \quad V_{3} \quad 56.121 \quad V_{1} \quad 08.085$

Orders:i
$\begin{array}{lllllllll}\text { Un:t } 2 & \text { None } & 54.217 & V_{3} & 55.914 & V_{1} & 53.974 & V_{2} & 49.754\end{array}$
Uxder 6
$\begin{array}{lllllllll}\text { Unit } 2 & 56.034 & V_{3} & 57.895 & V_{2} & 55.440 & V_{1} & 69.663\end{array}$

The modol uned to ropronent any renponce is given by Irquatidua 16

$$
x_{1 j k}\left(s_{s_{1}}, \ldots, a_{A_{j-1}}\right)=m+u_{1}(k)+x_{a_{1}}, \ldots, a_{e_{j-1}}+\theta_{1 j k}
$$

Whare $1=219=2,2,3,4 ; k=2,2,3,4,5,6$,

HicN,

$$
4=2 x=\left[\begin{array}{c}
\frac{1}{\sqrt{2}}(56.258-56.579) \\
\frac{1}{\sqrt{6}}(56.058+56.579-2(52.661)) \\
\frac{1}{\sqrt{12}}(56.858+56.579+52.651-3(51.325)) \\
\vdots \\
\frac{1}{\sqrt{12}}(56.034+57.895+55.440-3(68.863])
\end{array}\right]
$$

and

$$
\begin{aligned}
& \mathbb{Z}^{\prime}=\{-0.127,3.068,3.335,-1.387,-0.812,5.556,1.550,-3.739,-2.355, \\
& -0.241,0.524,-4.803,-1.200,0.852,4.285,-1.326,1.245,-5.548\} .
\end{aligned}
$$

.Then the Leat ectimate of

1* [seo Equation 5]

$$
\begin{equation*}
\xi=\left(A^{\prime} A\right)^{-1} A^{\prime} Z_{1} \tag{r}
\end{equation*}
$$

and

$$
\begin{aligned}
& \boldsymbol{i}^{\prime},(12.241,-0.955,2.779,-3.287,4.142,1.565,-0.800, \\
& \quad-1.105,-0.635,-4.533,-5.544,3.791,4.869,-4.420,6.788) .
\end{aligned}
$$

An analyale of variance eunoodatod with Iquation ' γ and oosronpoadine to that of Table II is givea in Table VI.

MN: VI

Prolturnary Amazyis of Vardance for - 2^{3} yid Inoluding All Paramatorn

Total

92
18

3

18
$R^{\prime}\left(A\left(A^{\prime} A\right)^{-1} A^{\prime}\right)^{\prime \prime}=151.50$

$$
\frac{\varepsilon^{\prime}\left|I=A\left(A^{\prime} A\right)^{-2} A^{\prime}\right| z=P .08}{A^{\prime} z=2 y^{\prime} 4.18}
$$

By maglecting erdar, an enalyais of varianoe oorceaponding to thit af Mable ITI osin be onsried out, as shourt is Mable VIT,

MABY VIT

 and order andruet is miven.

> manex varis
> Andiyale of Variance tor Feotorial

SV	N\%	M
Fuotoril	7	$2^{\prime}\left\|A_{2}\left(A_{2}^{\prime} A_{2}\right)^{-1} A_{2}^{\prime}\right\| z=36,98$
Oxdays	8	$E^{\prime}\left\|A\left(A^{\prime} A\right)^{-L_{A^{\prime}}^{\prime}} \cdot A_{1}\left(A_{2}^{\prime} A_{2}\right)^{-1} A_{1}^{\prime}\right\|^{\prime}=54.91$
44yror	3	$g^{\prime}\left\{I=A\left(A^{\prime} A\right)^{\omega \mathcal{L}^{\prime}}\right\}=$ m.08
Totel	18	$2^{\prime}{ }^{2}=254.48$

The buct or cicnifiaance for ordar eifecta is

$$
z_{8,3}=\frac{3(94,90)}{8(2.28)}=25,60
$$

Which is oignifiuent at the 0.005 lovel.

If ordar effectio are judged migntiticant, one could make aceparisons amons the
 comperisons wowld yiada information on $V_{2} V_{2}$ versus $V_{0} V_{2}, V_{2} V_{3}$ varans $V_{3} V_{2}$, and
 respeotively, where

$$
0=\left[\begin{array}{c}
u_{1}^{\prime} \\
a_{2}^{\prime} \\
c_{3}^{\prime}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccccccccccccccc}
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 1 & 1 & -1 & 11 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 1 & -1 & 0 & 1 & 0 & -1
\end{array}\right]
$$

ritu computed velue or $0 \hat{\$} 10$

$$
o f=\left[\begin{array}{l}
-8.954 \\
-0.234 \\
0.469
\end{array}\right]
$$

With ontinnted varianoe-oovarianat matrix

$$
\left.\operatorname{Q}(\hat{Q})=\alpha A^{\prime} A\right)^{-1} \alpha^{\prime} \theta_{0}^{0}-\left[\begin{array}{lll}
1.097 & -0.253 & -0.253 \\
& 1.097 & -0.053 \\
& & 1.097
\end{array}\right]
$$

Tasts of algnificance for these partioular ordar effacta could be parformed by tha "y" tant or, equivelantiv, by the unal "t" tort whase.

and n, it the number of dogrean of treadom ansoaiated with oxror. The tonte axm

$$
\begin{aligned}
& V_{1} V_{2} \text { versua } V_{2} V_{1} \cdot t(3)=\frac{-8,554}{\sqrt{1.097}}=-0.352 \\
& V_{1} V_{3} \text { veraus } V_{3} V_{1}\left(t_{(3)}=\frac{-0.1 .34}{\sqrt{1.097}}=-0.187\right. \\
& V_{2} V_{3} \text { varoue } V_{3} V_{2}^{t t}(3)=\frac{0.469}{V_{1.097}}=0.448 .
\end{aligned}
$$

It is upparent that thax is a jarge esteot resulting incon $V_{2} V_{2}$ vasaus $V_{2} V_{2}$. With the large ordar affuot, the intomidutation of the teotorial offacta is diffioult.

Manclate 2 of a 2^{3} TAD

mate mx
Ranults From Ona Ropisoation of a Ω^{3} mo
 Oxder 1
$\begin{array}{lllllllll}\text { Unit } 2 & \text { None } & 9.219 & V_{1} & 25.061 & V_{2} & 24.950 & V_{3} & 27.550\end{array}$
Ordar 2
UnIt 2 Nota $24.095 \quad V_{2} \quad 25.964 \quad V_{3} \quad 25.790 \quad V_{1} \quad 24.033$
Order 3
Unit 1 Now $9.542 \quad V_{2} \quad 8.517 \quad V_{1} \quad$ 15.213 $\quad V_{3} \quad$ 13.932
Ordar 4
UnSt 1 None $9.204 \quad \boldsymbol{V}_{2} \quad 21.404 \quad V_{3} \quad 9.209 \quad V_{1} \quad 14.153$
Ordin: 5
Untt 2 Jone $9.045 \quad V_{3} \quad 9.273 \quad V_{1} \quad 24.836 \quad V_{0} \quad$ I4.701
Order 6

$$
\begin{array}{lllllllll}
\text { Unity } 1 & 2000 & 29.596 & V_{3} & 9.896 & V_{2} & 20.592 & V_{1} & 15.806
\end{array}
$$

The tranatarmation

$$
\mathbf{E} . \mathrm{XX}
$$

y101du
$21,(-4,131,-2.294,-3.814,-3.443,-1.798,0.200,0.744,-5.040,-2.458$,
$-1.683,0.968,-3.484,-0.092,-4.676,-3.490,8.503,0.263,-4.331$.

Then the best meninate of

$$
\xi^{\prime}=\left\{\xi_{a_{1}}-\xi_{(1)}, \xi_{a_{2}}-\xi_{(1)}, \xi_{a_{3}}-\xi_{(1)}, \cdots, \xi_{a_{3}} a_{2} a_{1}-\xi_{(1)} \mid\right.
$$

is [see Equation 5]

$$
\begin{equation*}
\hat{\xi}=\left(A^{\prime} A\right)^{-1} A^{\prime} Z \tag{8}
\end{equation*}
$$

and

$$
\begin{gathered}
\xi^{\prime}=[5.356,0.678,-1.621,5.488,6.523,4.580,4.916,-0.846, \\
-1.130,8.088,3.181,5.232,4.198,4.781,4.085] .
\end{gathered}
$$

The analysis of variance corresponding to that of Table IV for factorial ana order effects is given in Table X.

TABCE X

Analysis of Variance for Factorial
ard Order Efticts from 2^{3} RsD

SV	DF	S8
Fector:	7	$2\left[A_{1}\left(A_{\sim}^{i} A_{1}\right)^{-1} A_{1}^{\prime}\right]^{\prime \prime} \times 141 . \alpha 00$
Ordera	8	$z\left[A\left(A^{\prime} \cdot A\right)^{-1} A^{\prime}-A_{1}\left(A_{1}^{\prime} A_{1}\right)^{-7} A_{1}^{\prime}\right] z^{\prime}=11.001$
Error	3	$2\left[I-A\left(A^{\prime} A\right)^{-1} A^{\prime}\right] Z^{\prime}=6.393$
Total	18	$z^{\prime} z=158.394$

Design gif Experiments

The vest oi sicnjifinance for order effects,

$$
F_{8,3}=\frac{3(11.001)}{8(6.193)}=0.666
$$

indicates that the effect of order is negligible.

Since the order effect is concluded to bo negligible, the beat estimate of

$$
\begin{gathered}
\eta^{\prime}=\left[\eta_{1}-\eta_{(1)}, \eta_{2}-\eta_{(1)}, \eta_{a_{3}}-\eta_{(1)}, \eta_{a_{2}}-\alpha_{2}-\eta_{1},\right. \\
\left.\eta_{a_{1} c_{3}}-\eta(1), \eta_{2} \alpha_{3}-\eta(1), \eta_{2} a_{2} a_{3}-\eta(1)\right]
\end{gathered}
$$

is

$$
\hat{j}=\left(A_{1}^{\prime} A_{1}\right)^{-1} A_{1}^{\prime} 2,
$$

and

$$
\hat{\Pi}_{1}^{\prime}=[5.150,0.584,2.331,5.380,5.225,-0.694,4.921] .
$$

nine estimates of the factor effects are then provided by

$$
\hat{\varepsilon}=I \hat{\eta}
$$

or

Whe variance of it is ontamutad by

$$
\theta(A)=x\left(A_{2}^{\prime} A_{2}\right)^{\prime L_{2}}{ }^{\prime} \hat{C}_{0}^{\prime}
$$

$\left[\begin{array}{ccccccc}0.636 & -0.189 & -0.289 & 0 & 0 & 0 & -0.006 \\ & 0.636 & -0.289 & 0 & 0 & 0 & -0.006 \\ & & 0.636 & 0 & 0 & 0 & -0.006 \\ & & & 0.479 & -0.328 & -0.214 & 0 \\ & & & & 0.479 & -0.217 & 0 \\ & & & & & 0.479 & 0 \\ & & & & & & 0.130\end{array}\right]$

Tectb of algnifioance for the factorn and inteructions are

$$
\begin{aligned}
& v_{1}: t(3)=\frac{5.534}{\sqrt{0.636}}=6.939 \\
& v_{2}: t(3)=\frac{0.285}{\sqrt{0.636}}=0.357 \\
& v_{3}: t(3)=\frac{-0.748}{\sqrt{0.636}}=-0.938 \\
& v_{1} v_{2}: t_{(3)}=\frac{-0.326}{\sqrt{0.479}}=-0.471 \\
& v_{1} v_{3}: t_{(3)}=\frac{0.556}{\sqrt{0.479}}=0.803 \\
& v_{2} v_{3}: t(3)=\frac{-0.117}{\sqrt{0.479}}=-0.269 \\
& v_{1} v_{2} v_{3}: t(3)=\frac{-0.144}{\sqrt{0.430}=-0.220}
\end{aligned}
$$

 be the main effect V_{1}.
 With an Fis, $6 x$ units, whoxe, for ach dasign, wit in tasted four timen. The variance of the mein and intermotion effecta for an FD ac deseribed is

$$
\because u^{\prime}(F D)=\frac{0.125}{r}\left[0^{2}+40_{u}^{2}\right] \text {. }
$$

The variance of main effacte tor an TAD ia $\frac{2,308330}{Y} \sigma_{0}^{2}$. Honce, the reletive asficieney of the ISD to the $7 D$ tor main affeots in

$$
g_{x}=\frac{\operatorname{var}(\operatorname{HD})}{\operatorname{var}(\operatorname{FDD})}=0.405410\left[1+4 \frac{0_{4}^{2}}{0_{0}^{2}}\right]
$$

Hence, if $\sigma_{4}^{2} / \alpha_{4}^{2}>0.37$, the 7SD is moxe ofrioient. The variances of the iutor-
 tho advantege of the TaD is even more manounced. for the ivteraction atfeoth.

ESTIMATION U" ERROR SPEOTRA FROM THE CROSS-AUTOCOVARIANCE FUNOTIONS OF DIFTERENCES

D. B. Duncan
Johns Hopkins Univeraliy
and
W, T, Walls
Pan Amerlcan World Alrways
Guided Missiles Ranga Divivion
Patriok Alr Force Base, Florldo

I. IMTRODUCIIQN. The problem here is that of eetimating the arror (noise) speotra of several tracking gyetems all of which are aimultensounly observing the same trajectory (elgnal). It extends the work of a provious memorandum (Duncan and Carroll, [2]) from procesces of one dimenaion to processes of sevaral dimenaions, The hawic prinoiple is uimilar in that the estimates are obtained under the ruquirement that they be independent of the trajectory, A slight change in approach is madef the autimatas are obtained through differences between the proceases rather than through their avarage procespeg. Either way leads to a mathematioally Identioal eati'mate; the change hes been inade nis a matter of convenionce.

The basio ideas can be formulated In a ralatively almple onntey as follows. Lat

$$
y_{1}=m+e_{1}, \quad y_{2}=m ; e_{2}, \quad y_{3}=m+a_{3}
$$

Le three uncorrelated observations, all with the same expected maan m and with errors having the variances

$$
v_{1}=v\left(e_{1}\right), \quad v_{2}=v\left(e_{2}\right), \quad v_{3}=v\left(e_{3}\right)
$$

In this simple context the problem is that of estimating v_{1}, v_{2}, v_{3} without knowledge of m .

Form the diffarancus

$$
a_{12}=y_{1}-y_{2}=a_{1}+a_{3}, d_{13}=y_{1}-y_{3}=a_{1}-e_{3}
$$

and then the product

$$
\begin{equation*}
P_{1}=d_{12} d_{13}=\theta_{1}^{2}-a_{1} \theta_{2}-\theta_{1} \theta_{3}+\theta_{2} \theta_{3} \tag{1.1}
\end{equation*}
$$

Sinoe the orrora are uncorrelated it in immadiately apparant that p_{f} is an unblesed estimator of v and is not dependent in any way on the oommon axpeoted mean m. Similarly

$$
p_{2}=d_{21} d_{23} \text { and } p_{3}=d_{31} d_{32}
$$

where $d_{j j}=d_{i}-d_{j}$ provide correspuruling unblaned eatimates of v_{2} and v_{3}.
This approsch, the ossence of whioh ta dus to Grubbe [3] , Is the basta fuabre of the mathod huie considered for outhating the nolee speatre of three or more eyatems Indepandently of the underlying common oirnal.

Lhe varlances or atandard arrors of the spectral eatimates obtainer Indiroe! !y through the difforgneas ary naturally not as low as thum of the estimaies whith wedid be obtaineci diroctly from the error proceanes themselves if the latter were known frese of the trajectory. The varlanees of the indirect natimatad can be obtained by a technique which in the simple convexi work as "ollows.

Bince the errorn themselves are uncorrelated, the tarmu in the right. hand aida of (1.1) are all incorrolated and hence

$$
v\left(p_{1}\right)=v\left(e_{1}^{2}\right)+v\left(e_{1} e_{2}\right)+v\left(e_{1} e_{3}\right)+v\left(e_{2} e_{3}\right) .
$$

Working further with each term

Design of Expersmenta

$$
\begin{aligned}
& v\left(\omega_{1}^{2}\right)=m_{14}-v_{1}^{2} \\
& v\left(e_{i} \theta_{j}\right)=v_{1} v_{j}, \operatorname{sach} L_{1} l
\end{aligned}
$$

and thus

$$
v\left(p_{1}\right)=m_{14}=v_{1}^{2}+v_{1} v_{2}+v_{1} v_{3}+v_{2} v_{3} .
$$

If the errars are Gausalan, the fourth moment m_{14} is $3 v_{1}^{2}$ and $v\left(p_{1}\right)$ and the othar corresponding variances become

$$
(1,2) \quad v\left(p_{2}\right)=2 v_{2}^{2}+v_{1} v_{2}+v_{1} v_{3}+v_{2} v_{3}
$$

$$
v\left(p_{4}\right)-2 v_{3}^{2}+v_{1} v_{2}+v_{1} v_{3}+v_{2} v_{3}
$$

II. THEPROBLEM. Tha main problem will ise now ntatad in more datall. Let $t=1, \ldots, n$

$$
\left\{y_{1 t}=m_{t}+g_{d t}\right\},\left\{v_{2 t}=m_{t}+\theta_{2 t}\right\} \quad \text { ind }\left\{y_{3 t}-r_{i_{t}}+u_{3 t}\right\},
$$

 oifpeoted means $\left\{m_{t}\right\}$. The arror procosses $\left\{\mathrm{c}_{1 t}\right\}$. $\left\{e_{2 t}\right\}$ and $\left\{e_{3 t}\right\}$ ha:n means aerc (as their name implies), are tationary with uptotrel daifition $S_{1}(f), S_{2}(f)$ and $S_{3}(f)$, and are uncorrmlated one with another. Fach proonse $1 a$ a veotor provess with k componentis. That $i=$

$$
y_{1 t}=\left[\begin{array}{c}
y_{11 t} \\
y_{12 t} \\
\cdots \\
y_{1 k t}
\end{array}\right], \quad m_{t}=\left[\begin{array}{c}
m_{1 t} \\
m_{2 t} \\
\cdots \\
m_{k t}
\end{array}\right]
$$

eto., which without loes of genarallty, wo will often disause with $k=2$ or $k=3$. For $k>1$ the spectral denaitios at each frequency form kxk nomplex matrices which we shall write as
$(3.1) \quad s_{1}(j)=R_{1}(j)+1 Q_{1}(1)$,
$1=1,2,3$
or, in more detall for say two-dimenaional proceas with

$$
\left[\begin{array}{ll}
s_{111}(t) & s_{112}(t) \\
s_{121}(t) & s_{122}(t)
\end{array}\right]=\left[\begin{array}{ll}
R_{111}(f) & R_{112}(t) \\
R_{121}(t) & R_{122}(t)
\end{array}\right]+\left[\begin{array}{ll}
Q_{111}(t) & Q_{112}(t) \\
Q_{121}(f) & Q_{121}(t)
\end{array}\right]
$$

The i coefficient for the imaginary inatrix $Q(f)$ ls not to be confused with the subsorlpt 1 for the $1^{\text {th }}$ eystem.

The problom le to get unblased entimatar

$$
(3,2) \quad \widetilde{g}_{1}(t)-\mathbb{R}_{1}(t)+1 \mathbb{Q}_{1}(t), \quad 1=1,2,3
$$

for thin denilties (3.1) which depend in no way on the mean procesa $\left\{m_{t}\right\}$. A eacuidary problem is that of entimating the variances or atandard errof of the almments of the estimmtos ' $\mathrm{H}_{1}(t)$ and $\boldsymbol{\sigma}_{1}(f), 1=1,2,3$.

ILI. THE MYTHQR. Th method for the main problem is Itret to get the disterence procesces

$$
d_{12 t}=y_{1 t}-y_{2 t \prime} d_{13 t}-y_{1 t}-y_{2 t} t=1_{1} \ldots, n
$$

and then to compute the crose-autosovariances,

Design of Experiments

$$
\begin{aligned}
& c_{11 h}=\frac{1}{n-h} \sum_{t=1}^{n-h} d_{12 t^{d^{\prime}} 13(t+h)} \\
& c_{12 h}=\frac{1}{n-h} \sum_{t=1}^{n-h} d_{13 t d^{\prime}}^{12(t+h)}, h=0, \ldots, m
\end{aligned}
$$

each of which is a $k \times k$ matrix.
Then following a k-variate generalisation of the Blackman-Tukey [1] spectral density estimation method (with Fanning smoothing) the autocovariances are next transformed to raw spectral danalty estimates

$$
\hat{s}_{1}(j)=\hat{R}_{1}(j)+1 \nabla_{1}(1)
$$

where

$$
\begin{aligned}
& \hat{R}(j)=2 \Delta t\left[C_{110}+\sum_{h=1}^{m-1}\left(C_{12 h}+C_{12 h}\right) \cos \frac{\pi h 1}{m}+\cos (r(j)],\right.
\end{aligned}
$$

The real parts are then :nocitied to the final form

$$
\begin{aligned}
& \widetilde{R}_{1}(0)=\frac{1}{2} \tilde{R}_{1}(0)+\frac{1}{2} \widetilde{R}_{1}(1) \\
& \widetilde{R}_{1}(j)=\frac{1}{4} \widetilde{R}_{1}(j-1)+\frac{1}{2} \tilde{R}_{1}(j)+\frac{1}{4} \widetilde{R}_{1}(j+1), \quad j=1, \ldots, m \cdot 1 \\
& \widetilde{R}_{1}(n)=\frac{1}{2} \widetilde{R}_{1}(m-1)+\frac{1}{2} \tilde{R}_{1}(m) .
\end{aligned}
$$

The imaginary party are soothed in the same way. The combined forms

$$
\tilde{s}_{1}(j)=\tilde{R}_{1}(j)+1 \tilde{R}_{1}(j)
$$

at $\mathrm{j}=0, \ldots, \mathrm{~m}$ oyolea per racord length of n pointe estimate the apactral danstites

$$
s_{2}(f)-R_{1}(\xi)+1 Q_{1}(f)
$$

at $\mathrm{f} \because \Delta \mathrm{tj} / 2 \mathrm{~m}$, cycles per sncond, where $\Delta \mathrm{t}$ is the time interval betwoen data pointa.

Similar astimates are noxt obtained for $\mathrm{B}_{2}(f)$ and $\mathrm{B}_{3}(f)$. The utarting differonce processes using the wame notation are $d_{21 t}, d_{23 t}$ and $d_{31 t}, d_{321}{ }^{\prime}$ the croas autocovariances are $\mathrm{C}_{2 \mathrm{~h}}, \mathrm{C}_{22 \mathrm{~h}}$, ind $\mathrm{C}_{3 \mathrm{~h}}, \mathrm{C}_{32 \mathrm{~h}} \mathrm{~h}=\mathrm{O}_{1} \ldots \mathrm{Am}$ and the final metimaton are

$$
\Psi_{2}(t)=\widetilde{R}_{2}(t)+1 \widetilde{\sigma}_{2}(t) \text { and } \widetilde{S}_{3}(t)-\widetilde{R}_{3}(t)+1 \widetilde{\sigma}_{3}(t)
$$

renpeotively.
IV. AN BXAMPLE, Three indopendent atationary Gausalan orror 3xl vaetor procesilay $\left\{n_{d t}\right\}$, $\{2 t\}$, \{e3t\}, of $n=2,010$ time pointe each were generated uning the recuraive formula

$$
\begin{array}{cccc}
A_{t}=A w_{t} & B_{2} a_{t=1} & \cdots a_{2} \theta_{t-2} & -B_{3} a_{t-3} \\
3 \times 3 & 3 \times 3 & \because: 3 & 3 \times 3
\end{array}
$$

The procemsas w_{t} from whioh theme ware derivad consistad of Indmpenient Gausulan mbandard white nolse 3×1 vectors. The values of the doefilolent matrices for each process were an ahown in Table! .

TABLE 1

Cooftiolont for Ganorating
Error Processen

	Proces: (1)			Prochan (2)			Proces: (3)					
A		0			0.	0	1	0	0			
	0	1	0		1.1		0	1.1				
		0	1	0	0	1.2	0	0	1.2			
B_{1}	0			-. 6	0	0	- . 4	0	0			
				0	-. 7	$\ldots .1$	0	- -4	- .08			
				0	0	-. 5	0	0	-. 35			
B_{2}	0			0			-. 4	0	0			
				0	-. 1	$5 \cdots .05$						
					0	-0.0						
B_{3}	0						0			.16	0	0
				0	. 1	.n?						
				0	0	. 15						

Error procens 1 is itself simply ctandard white nolse. The other two :ie autoragressive procesises of order 1 and 3 mspectivaly. Tu get things started In the lattor two cases, values of a_{t} for $t \leq 0$ ware filled with white nolse. To ellminate transient affect as much an seemad desirable, 40 vactor observations worn disarded from the beginning of the procussens. The computing work for genurating tha white nolse, the arror procasaem, and subsequent caleulations will be writimn up in mporten by D. B. Duncan, E. E. Megehee and S. B. Butkett, and by L. B. Collins and A. Rinaldi who have keen cooperating
in the programming work. (As currently plenned, these reports will appear as Pan Anerican Tuchnical Staff Memos and RCA Data Reduction Programming Memos respeatively.)

Threo sets of opectral densily wallmateal $\mathrm{S}_{3}(f), \mathrm{s}_{2}(f)$ and $\mathrm{S}_{3}(f)$ wera obtalned by the orose-spectrum-of-dyfarences method duforibed in seation IIt, (In the example no meari process $\left(\mathrm{m}_{\mathrm{t}}\right)^{2}$ was added to ado of the orror procensas since the differences could be and ware obtained just an woll dilreatly from the errors, a.g. $\left\{d_{12 t}=y_{1 t}-y_{2 t}=\varepsilon_{1 t}-a_{2 t}\right\}$,) The maximum lag takan in the axatriple way $m=20$; the time interval ausumed was Δt - . 05; entimaten of denaity were thus obtained at $\mathfrak{f}=0,5, \ldots, 10$ cycles per, asponq. The reaults are ahown in nine tablem for each of the procesmes $\left\{0_{1 t}\right\},\left\{e_{2 t}\right\}$ and $\left\{0_{31}\right\}$. Tablen $1,1, \ldots, 1,9$ show the remults for the spactral dansftites of proores one, Table 1.1 is for the 1,1 element, Table 1.2 for the 1,2 element, and so on up to Table 1,9 for the 3,3 mlement. The columne marked (5), Indiract Eatimates, 82 , show the real part of tho estimate $\mathrm{R}_{2}(\underline{q})$ under the Fortran notation $8 R 2$ and the imaginary part $\mathcal{\delta}_{2}(t)$ uilder 812 , for ach of the frertuanoy f, denoted in Fortran under f, Column (1), Tables 2,1,..., 2.9 and $3.1, \ldots, 3.9$ in Column (5) whow the corresponding renulte for procensen two and three.
for comparisun, the columns hasdad (2), Expected Valuan, 8, show the coal, 8 R , and imaginary part, 81 , of the apoctral dunsity, $8(\mathrm{l})$, boing estimated; the columns headed (3), Direot Betimates, sl, eliow the real, $\mathbf{a k 1}$, and imnainary part, sil, of the estimateg obtained directly from the individual procestuas, whioh are avallable in aimulation atudy like this, hut which, of course, wouk nut iue availabie in n real problem. The dirocl estimaten represent an optimum which one could not hone to impiove upor.. The atandard arrors fer the roal and lingginary parts of both the direct entimates and the fidelrari estimates have been computed by the formulate devaloped in the subsequant esetions and are shown in columns (4) and (6) under the Fortran notations ERI, EII and ER2, EL2 relupudively.
v. EXPECTATIONAAND VAMIANCEB OF BBTIMATYB. In this mootion we derive the expectations (ahowing that they are unblagad) and the approximave variances oí tha spectral donsity estimates obtalnod through the difference provecsen. In so dolng, to help introduce the methods, we also trist derive the well-known expeotations and approximate variances of the diract detimatea, In each. part the work if considered in detall for the cane $r=1$, where r is the ratio $r=n / m$, in which case a apectral denaity antimate can be regarded approximately as the equared modulus of a single complex random variable.

The resulta then ourry over to the case $r>1$ by virtue of the fact (fankins [ff) that an eatimate In this case can be expressed approximately an the mean of r unoorrelated astimates of the oase $r=1$ form. Thus the axpectation is the same and the variance ta obtalned simply by dividing by r.
5.1 DTRECT ESTIMATES, UNIVARIATE PROCBGS, AIm: To whow that
$E[\hat{S}(i)]=s(f), v \hat{B}(f)=\frac{1}{r} s^{2}(f)$
whert $\hat{\mathrm{S}}(f)$ represonts a diroot, alay, Blackman and Tukey [d] ontimate of any one of the error apactral dansity funetions.

Gla_rm: Herg wo can write

$$
\begin{gathered}
\hat{B}(f)=\varepsilon \bar{z} \\
\text { apprnx, }
\end{gathered}
$$

where

$$
z=\frac{1}{\sqrt{2}}(x+1 y), E(x)=E(y)=0, v(x)=v(y)=\delta(f)
$$

Γ

$$
\text { and } o(x, y)=0,(u s i n g \text { o(}, \text {, }) \text { for } o(\cdot, y) \text {. }
$$

'Note in passing: This \{mplles
$E(z)=\frac{1}{\sqrt{2}} E(x)+1 E(y)-0$,
$V(z)=E(z-E(x))(\overline{z-E(z)})$, by dafinition
$-E(z z)=\frac{1}{2} E\left(x^{2}+y^{2}\right)$
$\left.=\frac{1}{2}(s(t)+s(t))=s(t).\right]$
Thus,
$E[\hat{S}(f)]-E(z=2)-v(z)-S(f)$
which established the threat result, Next,

$$
v[\hat{X}(s)]-v\left[\frac{1}{2}\left(x^{2}+y^{2}\right\rangle\right]
$$

If x and y (and thus z) are Gaussian, which we shall! also assume, wo have

$$
v\left(x^{2}\right)=v\left(x^{2}\right)=2 s^{2}(f)
$$

Also x, y apo independent from which $c\left(x^{2}, y^{2}\right)(l, 0.0$, Hence

$$
v[8(t)]=\frac{1}{4}\left(2 s^{2}(t)+2 s^{2}(t)\right)=s^{2}(t)
$$

which establishes the second and final result.
Surg $\mathrm{r} \geq \mathrm{L}$ Here the expectation in the same as for case $r=1$, the variance is obtained approximately by dividing by $i^{m} n / n_{1}$, thus

$$
E[\hat{B}(t)]=g(t), v[\hat{g}(t)]=\frac{1}{r} g^{2}(t)
$$

 denali $s_{i j}(f) * R_{i j}(f)+1 U_{i j}(f)$ for any one of the error proceasell. Than it is desired to show that

$$
E\left[\hat{R}_{1 j}(f)\right]=\hat{R}_{1 j}(f), \quad E\left[\hat{Q}_{i j}(i)\right]=Q_{1 j}(f)
$$

and

$$
\begin{aligned}
& v\left[\hat{R}_{i j}(f)\right]=\frac{1}{2}-(A+B) \\
& v\left[\hat{Q}_{i j}(f)\right]=\frac{1}{2 r}(A-B)
\end{aligned}
$$

where

$$
A=R_{11}(f) R_{j j}(f) \quad \text { and } \quad B=R_{1 j}^{2}(f)-Q_{i j}^{2}(f)
$$

[Note: Strictly speaking, the development hare for $r=1,10$ not correct for the extreme frequencies $i=0$ and $f=m / 2$, At asch of thence frequencies the spectral variable z is real and may bo written an $z m x$.

From this

$$
E[\hat{S}(t)]-v(z)=S(t)
$$

and $\hat{\mathbf{G}}(\mathrm{f})$ In unblased an before, However, for the variance

$$
v[\hat{\mathrm{~s}}(\mathrm{t})]=v\left(x^{2}\right)=2 \mathrm{~s}^{2}(t)
$$

which is double the previous value $s^{2}(f)$. The standard error is $\sqrt{2} s(t)$,
Because of the mooching used in the more general type of spectral estimate for the cases $r>l$, the standard errors $(1 / \sqrt{7}) S(\Omega)$ fist $f=0$ and $m / 2$ are not low by nearly as much as the factor $1 / \sqrt{2}$ and this formula has bon used for all frequencies.

Remarks of this type apply to tho derivations of all standard errors in thy report at the extreme fraquencien $f=0$ and $m / 2$, in looking at fables $1.1, \ldots, 3.9$ the standard errors shown for both the direct and Indre at wit! nate at $f=0$ and $m / 2$ are on the low side for this reason.]

CABArele Here we can write

$$
\hat{s}_{i j}(f)=z_{1}{ }^{2}
$$

where

$$
\begin{aligned}
& z_{k}=\frac{1}{\sqrt{2}}\left(x_{k}+1 y_{k}\right), E\left(x_{k}\right)=0, \quad v\left(x_{k}\right)=v\left(y_{k}\right)=R_{k k}(f), \\
& o\left(x_{k}, y_{k}\right)=0, k=1, j ; o\left(x_{1}, x_{j}\right)=c\left(y_{1}, y_{j}\right)=R_{1 j}(1), \\
& -c\left(x_{1}, y_{j}\right)=c\left(x_{j}, y_{i}\right)=Q_{i j}(f),
\end{aligned}
$$

Thu:

$$
\begin{aligned}
& \hat{R}_{i j}(f)=\operatorname{Re}\left(\hat{S}_{i j}(f)\right)=\frac{1}{2}\left(x_{i j} x_{j}+y_{i} y_{j}\right) . \\
& \hat{Q}_{i j}(f)=\operatorname{Im}\left(\hat{B}_{i j}(f)\right)=\frac{1}{2}\left(-x_{i} y_{j}+x_{j} y_{i}\right) .
\end{aligned}
$$

Now
whloh entablishos the result on unblesodnoss.
Nex:-

$$
v\left[\hat{R}_{i j}(f)\right]=\frac{1}{4}\left(v\left(x_{i} x_{j}\right)+2 \sigma\left(x_{i} x_{j} \cdot y_{i} y_{j}\right)+v\left(y_{i} y_{j}\right)\right)
$$

 by Riackman end Tukey $b, p, 100$: $1 i a, b, j, d$ are tour Gausian vaplablay with zaro moany, then

$$
a(a b, o d)=E(a \sigma) E(b d)+E(a d) E(b d) .
$$

Firat,

Dasign of Expariments

$$
\begin{aligned}
& v\left(x_{i j} x_{j}\right)=c\left(x_{i} x_{j} \cdot x_{i j} x_{j}\right) \\
& =R_{l i}(f) R_{j j}(f)+R_{i j}^{2}(f), \\
& \sigma\left(x_{i} x_{j}, y_{l} y_{j}\right)=0-Q_{l j}^{2}(f), \\
& v\left(y_{i} y_{j}\right)=R_{l j}(f) R_{j j}(f)+R_{i j}^{2}(f) .
\end{aligned}
$$

Combining, we get

$$
v\left(\hat{R}_{i j}(f)\right)=\frac{1}{4}\left(2 R_{i 1}(f) R_{i j}(f)+2 R_{i j}^{2}(f)-2 Q_{i j}^{2}(f)\right)=\frac{1}{2}(A+B),
$$

which establishes the first result on varianoes.
Next,

$$
v\left[\hat{Q}_{i j}(f)\right]=\frac{1}{4}\left(v\left(x_{i} y_{j}\right)-2 c\left(x_{l} y_{j}, x_{j} y_{i}\right)+v\left(x_{j} y_{l}\right)\right)
$$

if which

$$
\begin{aligned}
& v\left(x_{1} y_{j}\right)=R_{1 j}(f) H_{11}(f)+Q_{1 j}^{2}(f)=v\left(x_{j} y_{1}\right) . \\
& c\left(x_{1} y_{j}, x_{j} y_{1}\right)=R_{1 j}^{2}(f)+0,
\end{aligned}
$$

urfing

$$
v\left[\hat{Q}_{1 j}(f)\right]-\frac{1}{2}(A-B) .
$$

which concludes case $r=1$.
the adjlional $1 / \mathrm{r}$ factor in the variancas, establishing the desired results. Dlagonal terms: For these it is noted that

$$
\begin{aligned}
& v\left[\hat{R}_{I I}(f)\right]=\frac{1}{2 r}\left(2 R_{I L}^{2}(f)-\frac{1}{r} R_{I I}^{2}(f)\right. \\
& v\left[\hat{Q}_{I I}(f)\right]=0
\end{aligned}
$$

which agree, as they should, with the univariate case resulta,

5.3 INDIRECT PSTLMATSB: XK-VARIATE PROCESSRS. Alm:. Putting

$$
\tilde{s}_{i j k}(f)=\tilde{R}_{l j k}(f)+i \tilde{\gamma}_{i j k}(f)
$$

for the indirect estimates defined in section 3 , for the $\mathcal{J} k^{\text {th }}$ spectral estimate
 show that

$$
\begin{aligned}
& E\left[\tilde{s}_{i j k}(f)\right]=s_{i j k}(f), \\
& \text { (i.e. E } \left.\left[\tilde{R}_{i j k}(f)\right]=R_{i j k}(f), \quad E\left[\tilde{Q}_{i j k}(j)\right]=Q_{i j k}(f)\right),
\end{aligned}
$$

and that

$$
\begin{aligned}
& v\left[\widetilde{R}_{i j k}(f) \left\lvert\,=\frac{1}{2 r}(A+B+C)\right.\right. \\
& v\left[\widetilde{Q}_{i j k}(f)\right]=\frac{1}{2 r}(A-B+C)
\end{aligned}
$$

where

$$
A=R_{i j j} R_{i k k} \quad B=R_{i j k}^{2}-Q_{l j k}^{2}
$$

and, for $1=1$.

$$
C=R_{1 j j} R_{3 k k}+R_{2 j j} R_{1 k k}+R_{2 j j} R_{3 k k}
$$

for $1=2$

$$
O=R_{2 j J} R_{3 k k}+R_{1 j \jmath} R_{2 k k}+R_{1 j j} R_{3 k k},
$$

and for $1=3$,

$$
C=R_{3 j j} R_{2 k k}+R_{2 j j} R_{3 k k}+R_{1 j j} R_{2 k k}
$$

$$
\begin{aligned}
\tilde{S}_{1 j k}(f) & =z_{12 j} \bar{z}_{13 k}-\left(z_{l j}-z_{21}\right)\left(\frac{z_{l k}-z_{3 j}}{}\right) \\
& =z_{l j} \bar{z}_{l k}-z_{1 j} z_{3 k}-z_{2 j} \bar{z}_{1 k}+z_{2 j} z_{3 k}
\end{aligned}
$$

where

$$
z_{h j}=\frac{1}{\sqrt{2}}\left(x_{h j}+i y_{h k}\right), z_{i j}=\frac{1}{\sqrt{2}}\left(x_{i j}+i y_{l k}\right)
$$

and the real x 's and $y^{\prime} s$ have the same mans, vartinces and covailunces within each system ($1 . a^{\circ}$, for $h=1$) as given in the previous subse:tiun. In addition all covarlances across systems (1. e., for h, i) are zero.

First, dealing with real and Imaginary parts together,

$$
E\left(\tilde{S}_{1 j k}(f)\right)=E\left(z_{1 j} \bar{z}_{1 k}\right)-0 \cdot 0+0=S_{1 j k}
$$

which establishes the result un unblasednesa. Next,

$$
v\left(\tilde{S}_{1 j k}(f)\right)=v\left(z_{1]} \bar{z}_{2 k}\right)+v\left(z_{k j} \bar{z}_{3 k}\right)+v\left(z_{2 j} \bar{z}_{1 k}\right)+v\left(z_{2 j} \bar{z}_{3 k}\right),
$$

all cross product terms baing zero because of the zern crossproduats between systems. Dealing with Just the coal parts of the right hand side, term by term, we have

$$
\begin{aligned}
& \left.v\left(\operatorname{Re}\left(z_{1 j}\right)^{\bar{L}_{1 k}}\right)\right)=W\left(\widetilde{R}_{1 j k}\right) \quad \text { (af. previous subsaction) } \\
& =\frac{1}{2} A+\frac{1}{2} B_{1} \quad(1=1), \\
& v\left(\operatorname{Re}\left(z_{2 j} \bar{z}_{j_{k}}\right)\right)=v\left(\frac{1}{4}\left(x_{2 j} x_{3 k}+y_{1 j} y_{3 k}\right)\right) \\
& =\frac{1}{4}\left(R_{1 j \jmath} R_{3 k k}+2(0+0)+R_{1 j} R_{3 k k}\right) \\
& =\frac{2}{4} R_{1 j j} R_{j K k} .
\end{aligned}
$$

31 mi urly

$$
\begin{aligned}
& v\left(\operatorname{Re}\left(z_{2 j} \overline{\bar{z}_{1 k}}\right)=\frac{1}{2} R_{2 j J} R_{2 k k}\right. \\
& v\left(\operatorname{Re}\left(z_{2 j} \overline{\bar{z}_{3 k}}\right)\right)=\frac{1}{2} R_{2 j J} R_{3 k k} .
\end{aligned}
$$

Collecting terms

$$
v\left(\tilde{R}_{l j k}\right)=\frac{1}{2} A+\frac{1}{2} B+\frac{1}{2} C
$$

This esiablishas the reault for $v\left(\tilde{R}_{1, j k}\right)$. Similar ateps lead to the correaponding results for $1=2,3$.

Finally, for the imaginery torma

$$
\begin{array}{rlr}
v\left(\operatorname{Im}\left(z_{1 j} \overline{z_{1 k}}\right)\right. & =v\left(\hat{Q}_{1 j k}\right) \quad \text { (cf. previous subiection) } \\
& =\frac{1}{2} A-\frac{1}{2} B, \quad(1=1), \\
v\left(\operatorname{Im}\left(z_{1 j} \bar{z}_{3 k}\right)\right) & =v\left(\frac{1}{2}\left(\sim x_{1 j} y_{3 k}+y_{1 j} x_{3 k}\right)\right) \\
& =\frac{1}{4}\left(R_{1 j 1} R_{3 k k}+2(0+0)+R_{1 j j} R_{3 k k}\right) \\
& =\frac{1}{2} R_{1 j 1} R_{3 k k}, \text { atc. }
\end{array}
$$

Collacting terms

$$
v\left(\tilde{Q}_{1 j k}\right)=\frac{1}{2} A-\frac{1}{2} B+\frac{1}{2} C, \quad(i-1) .
$$

 in variances.

Cass $r>1 ;$ The $(r=1)$ - oase result on expeotations togein.ar with the variance results divided by r, establish the full ($r>1$) - sase resulte.
5.4 SUMMARY OF RESUITS ON VARIANCES. The result of this seo." tion which have been used in computing the miandard errors (square rooln of the varlances) in Tables $1.1, \ldots, 1.9$ may be summerized as follown:

For direct estimates

$$
\begin{aligned}
& v\left(\hat{R}_{l j k}(f)\right)=\frac{1}{2 r}(A+B) \\
& v\left(\hat{Q}_{l J k}(!)\right)=\frac{1}{2 r}-(A-B)
\end{aligned}
$$

whare

$$
\begin{gathered}
A=R_{l j j}(f) R_{l k k}(f), \quad B=R_{l j k}^{2}(f)-Q_{l j k}^{2}(f) \\
\quad 1=2,2, \ldots j, k=1, \ldots k
\end{gathered}
$$

For a diagonal term $(j=k)$ or a univartate $(k=1)$ process these appear as

$$
\begin{aligned}
& v\left(\hat{R}_{i j J}(f)\right)=\frac{d}{r} R_{i j j}^{2}(f) \\
& v\left(\hat{Q}_{i j j}(f)\right)=0
\end{aligned}
$$

the latter being reasonable aince $\hat{Q}_{1}=0,1=1,2,3$
For the indiregt eretimates

$$
\begin{aligned}
& v\left(\tilde{R}_{i j k}(f)\right)=\frac{1}{2 r}(A+B+C) \\
& v\left(C_{1 j k}(i) i\right)=\frac{1}{2 r}(A-B+C)
\end{aligned}
$$

whers A and B are as already defined and for $i \times 1$,

$$
C=R_{1 j j} R_{3 k k}+R_{2 j j} R_{1 k k}+R_{2 j j} R_{3 k k} .
$$

for $1=2$

$$
C=R_{2 j j} R_{3 k k}+R_{1 j j} R_{2 k k}+R_{1 j j} R_{3 k k}
$$

and for $1=3$

$$
\begin{array}{r}
C=R_{3 j j} R_{2 k k}+R_{1 j j} R_{3 k k}+R_{1 j j} R_{2 k k^{\prime}} \\
1=1,2,3 ; j, k=1, \ldots, k .
\end{array}
$$

For a diagonal term $(j=k)$ or a univarlate $K=1$ process these appear as

$$
\begin{aligned}
& v\left(\tilde{R}_{i j j}(f)\right)=\frac{1}{r}\left(R_{I j j}^{2}(f)+\frac{1}{2} C\right) \\
& v\left(\tilde{Q}_{i j j}(f)\right)=\frac{1}{2 r} C
\end{aligned}
$$

where

$$
O=R_{2 j j} R_{2 j j}+R_{1 j j} R_{3 j j}+R_{2 j j} R_{3 j j}
$$

VI, DISCUSSION AND CONCLUDING REMARKS. The numerion' renults In Tables $1.1, \ldots, 3.9$ sarve to Illustrate and emphasize the properties of unLiamedness and the theoretical variances for the Indireot entimator qbtaliou in saotion V. Thase bear out the oonclualens ut the previolis uludy [2] In the unlvariate enso $\%=1$, showing that they also apply lit the more general cases K >1.

The indiract eatimatce \mathbb{S}^{\prime} (or $\$ 2$ asl they appoar in the tahian) are prod (have a relativaly low standard arror) at most peints and eqpuatedly ab fraquencles at which powers in the other eystems are lower than the one beling estimated. They are not so good however at fraquencies it which the revarese is trues At frequencles at which the pownes in the other aystems. re minh larger than the one being estimated. The noine added to the speactral eathinate from the other systems by having to work through the differences involvinci the jatter can be serlously large at such points.

Work is proceeding on an iterative approach to minimize this difficulty. This can be briefly indijated in pinciple as follows. After une atep densisting
of the above procedure and on the basis of the knowledge so galned about the error speotrum in each case, each system la flltered to olve individually optimum independent estimates of the trajectories

$$
\left\{\tilde{x}_{1 t}: \quad t=1, \ldots, n\right\}, \quad 1=1,2,3 .
$$

The indirect spectrum astimation procedure can then be repeated in a second step based on the differences

$$
\begin{aligned}
& \left\{d_{12 t}=Y_{1 t}=\tilde{Y}_{2 t}, d_{13 t}=\underline{Y}_{1 t}-\tilde{Y}_{3 t^{\prime}} t=1, \ldots, n\right\} \text { for system } 1, \\
& \left\{d_{21 t}=Y_{2 t}-\tilde{Y}_{1 t} \quad d_{23 t}=Y_{2 t}-\tilde{Y}_{3 t^{\prime}} t=1, \ldots, n\right\} \text { for system 2, } \\
& \left\{d_{31 t}=Y_{3 t}=\tilde{Y}_{2 t^{\prime}} d_{32}=Y_{3 t}-\tilde{Y}_{2 t^{\prime}} t=1, \ldots, n\right\} \text { for systam } 3,
\end{aligned}
$$

If the new upectral estimates show much cha ige, the same step can be rapented again and several tlmee thereafter lf noussary.

The name method expressed in terms of residuals (as in [2]) extendu reanll: tn cases with more than three systems. The grater tho number of gyster: the less the cross transmirgion of noise to the indirect ensutral uatimate.

To sum up, the given mathod will. In itaelf, provida a good apaotral estimilu, In many eltuations, In most of the remainder It promisn, to picoide a valuable first stop in iterations leading to a good astimator.

BIBLIOGRAPHY.

1) R. B. Blagkman and J. W, Tukey, The Moagurement of Ppwor Segorin. Dever, Naw York, 1958.
2) David R. Dinomn ant Charles L. Carroll, If. "Studies in the Simultaneous Eatimation of a Tralectory from Several Tracking Systema". No. 1. Entimatias
 MTV-TM-62-13.
3) F. E. Grubbs. "On'Eatimatina Preai ion of Meaguring Instrumanta and Product Variablity", Journal of the American Statiatical Asavciation, 43, pp 234-264, 1948.
4) G. M. Jonkina, "General Conalderations in the Analyols of Speotra", Teghnometrian, 3, 11, 133-166, 1961.

$\begin{array}{ll} \text { HREQ: } \\ \hline \end{array}$	$\begin{gathered} \{2] \\ \text { EXPECTEB: } \\ \text { VALLES } \\ S \end{gathered}$	$\begin{gathered} \text { (i) } \\ \text { ESTMEGT } \\ \text { ESAESS } \\ \hline \end{gathered}$				SJ IRECT MATES MaTES			$*$ + + \ddagger	
	5 Sl	5 SI 518	ER1	EII	582	512	ER2	E12		
c.	0. 5	-0.00117 -0-00017	-20671	0.0671	-2.6034	C. 085	-0.035	0.0850		
0.5	0. n.	-0.0642 $=0.0039$	c. 6371	0-2671	-0.63\% 6	9.8279	S.0719	2.3719		
1.5	\%-	-0.acin \because-0iol	6- 3071	0.0671	-0.045c	c.es26	F.2594	C.05.4		
1.5	号-		C.CET1	C.597!	-G.0148	C. 02316	$\frac{3.0355}{2025}$	C. 3350		
2.5	C.	0.9017 0.00ct	E.3071	0.giri	$\underline{E}-1147$	${ }_{0} 0$	0.0250	-0.e2es		
3.4	c. $\mathrm{E}_{\text {- }}$	-0.ciss -0.ecis	0.0371		-5-6058	c-6e5	-.E15s	9.c155		
3.5	c. 3.	-6. 2051 - 0.0053	-0.9071	0.6071	¢. 0519	- 0.0134	2.014	-36154		
4.0	E. F-	-0.E014-0.0.032	c. $0^{0} 7$	0.5 cti	E-0965	-0.0122	- 0.5135	0.0130		
4.5	0.	-0.253j 0.6.325	0.5971	$0.0{ }^{\text {0, }}$	S-ges2			0.012		
5.	0.	-0.5Exk 0.ce73	c.0371	0.0671	-3.0675	0.2151	E.7114	S. 2114		
5.3	0. 2-	-0.0ibr c-815s	-20011	c-ccil	- -3182	0.024\%	-0.elic	C-211:		
6.0	c. \quad -	-0.2534 i.0157	c. 6271	0.6971	- 0.9157	C-0253	0-01:?	¢-E3:7		
6.5	c.	-0.0cte oceces	ceeat	0-6771	-065	3-n162	D. 0165	0.01:5		
7.9	c. $=$	-c.053 - 6.0323	[-207	c. 2371	0.0 Ctc	-i.fões	¢. 3125	シ.91\%6		
7.5	0	-8-gins-c-nez?	E. 5871	0.3671	C. 095	-0.2907	E.01r7	2.217		
E.	¢	$0.0012-0.0223$	E-COT1	0.5071	G.0153	-3.0026	S.cll1	¢.9111		
8.5	?.	0.69321-3.4¢25	c-0.71	0.681	C-92s	-c.eol	C.F1:7	2. 3117		
9.2	\bigcirc	$0.0025-5067$?	a.i-7i	0.5671	C-0C27	- 2936	C.2125	C.2126		
9.5	\because	c. 9329 -t.035?	-3731	0.0071	- 0 -cr 34	C-6132	-.c13:	C.0135		
10.5	\because -	c. $133-6.005$	ع-s.7:	ecent	3.085	c. 6169	0.314:	C.0110		

TABEE i. 3 ERRGR SPECIRAA DEKSITY- PROCESS 1

JAble 1. 4 ERROX SPECIRAL DEMSITY: PROCESS 1

table l.s error spectial oensity. presess 1

TARLE 1.6 ERRCR SPECTSAZA DENSITY: PROCESS

TABLE 1.7 ERPCR SPECTRAL DENSITY. poccess 1

(11)	$\begin{gathered} (2) \\ \operatorname{EXP} i(T E S) \\ \text { VALUES } \\ S \end{gathered}$				(5)		(b) stasditro tR80R5 52			*
	SR SI	5? 1 S11	\ER 1	EII	SR?	512	ER:	E12		+
0.	0. 0.	$0.0335-0.005$	6.3071	0.0971	9.2257	-0.0244	T.C543	C.0543		
C. 5	C. C.	c. $2023-0.0020$	0.057!	0.0071	=0.cil27	-c.c279	.0.csu2	c.05:2		*
1.0	c) 0 .	0.0005 2.00t:	0.0071	0.0071	-C.i466	-0.0272	0.0414	C. $\mathrm{CH}_{4} \mathrm{P}_{4}$		+
1.5	0.1		necol?	0.5071	-2.c1175	- 0.8153	8.0326	C.6326		
2.0	c. ${ }^{\text {a }}$	$0.3010-0.0145$	C.E07I	0.6071	-0.3c90	-0.0535	0.025	C. 25.29		
2.5	0. 0.	0.0050 c. 0.588	2.0.711	-.cert	-2.0236	-0.0039	0.0212	-.c212		\pm
3.3	0. c.	C.COB4 C.Cl32	C.C07)	0.6071	-c.ecil	-0.0019	c.ele	c.e. 180		
2.5	$0 . \quad 0_{-}$	$0.0019-6.0092$	0.0271	0.5 .391	c. 0.115	c.006?	c.c15e	2.6158		\ddagger
4.0	\cdots - \quad -	-0.024 C.007e	c. 0071	0.0871	c. 620 C	0.0690	G. 0143	c. 0143		
4.5	2.	-0.2.12 casiat	ce:971	De271	-	-2. 2023	2.2132	$\because 1: 2$		1
5.0	0.30	$0.6018-2.0361$	c.ce7t	0.0671	c.elss	-c.0193	-2124	0.5124		4
5.5	0. $0^{\text {c. }}$	C.S037-E.COi.2	C-9071	0.C071	-0.0.020	-0,0161	1;0119	\therefore ¢19		*
6. 0	G. 5.	0.0045 c.0.068	cosmi	0.0071	0.0908	-0.co13	6.0116	0.7116		1
6.5	c. \quad.	-2.0031 - 2.0006	E.cn?	0.0071	- 0.0 .966	C.0.046	17.0114	¢.Elts.		*
7. C	C. 6.	-6.c36s -i-c.06	C.e.071	0.0071	-c.0゙143	-0.093s	0.0113	0.c113		\#
-. 5	$0 . \ldots$	0.ctis3-6.cne3	Cer071	0.3071	C.eoun	-0.20094	n-2114	C.E114		\#
B. 0	c. J.	0.0979 c.ec73	c. 271	0.0971	C.0140	C.czac	0.0117	C.211?		t
E. 5	\cdots ¢	S.1017 . 3.0055	c.071	0.0671	C.0096	C.cill	-.c122	C. 122		+
9.0	c. c.		$0 . c o 71$	0.6071	C.i3l 16	c.007	0.2129	c.cl29		*
?.5	c. 0.	0.063! 0.coir	coral	0.0c7	c.ecs 3	C-E12]	6.6137	i. $21 \geqslant 7$		*
1c.e	2.	$0.005 \mathrm{E}_{\text {e }}$ O.ceil	$\because 871$	0.6071	-0.0c:7	0.0155	6.0141	-. 3141		*

tacle 1.s error spectral oensity. pićcess ?

TABLE I.9 ERROR SPSCTRAL OENSIT: PNOCESS 1 *

table 2.1 error spectral density: process 2 ;

TABLE 2.2 error spactoal vensity. process 2

table 2. 3 erró spectial dersity. process 2

$\begin{gathered} \text { fRES } \\ f \end{gathered}$									stiticazo errérs Z?			\#
		5 S	SR1	511	E21	EII	SR2	512	ER2	E12		
0.	0.	-2.	c. $33 \leq 8$		0.5424	C. 0424	C.02ci	-0.0731	0.0693	c. 2683		
9.5	0.	c.	C.J2ic	-6, 606	c. C 378	0.0396	c.0162	-0.0935	0.9639	-.0639		
1.5	\bigcirc	c.	-c. 3174	-8.8542	$0 \cdot \mathrm{C} 332$	0.0332	3.3051	-5.3514	2.0537	C.737		
1.5	0.	c.	-c. 3164	-0.604 ${ }^{\text {a }}$	c. 3263	0. 0263	0.0096	2.0158	0.0427	0.0427		
2.6	0.	${ }^{\text {c- }}$	- $-.32: 1$	O.6219	S.6205	0.1205	C.frcl4	0.0066	0.0336	0.0336		
2.5	0.		$=0.22 \%$	0-cot3	0.c1ot	c.ent	-0.0123	-0.0:15	0.0267	0.3257		
3.0	c.		-0.0233	0.0ces	0.6129	c. 3129	-0.0374	0.5112	0.3215	0.5218		
3.5	-c.	c-	-0.221s	0 -0c17	0.0105	c.c105	- -CO 49	0.0475	-0.0183	0.1183		
$4 . c$	-6.	c.	-0.0695	-0.0603	c.eas	0.5088	c. 0100	-0.3136	$\therefore .0158$	0.0158		
4.5	$-{ }^{-0}$	c.	-0.0315	$\underline{0.0 .346}$	0.0975	$0.3 C 75$		-9.0127	0.0193	0.0145		
5.0	-0.	2.	0.3316	0.065	0.0065	C.2065	9.0178	0.1126	0.6127	0.6127		
5.	-c.	${ }_{6}$	C. 3015	0.0833	0 -03s5	0 0.scss	cones	c.a34	2.0117	0.2117		
6.0	-3.	c.	G-00?2	-4.0312	3.332	0.3652	0.0039	0.3246	0.0115	0.2115		
6.5	-0.	0	c-acel	- 4.6055.	C-537?	0.3041	C-005	-n-0.21	0.0156	$0 . c 106$		
7.0	-2.	2.	c. 3074	-0.0055	Catas	c.ecti	c. 6032	-0.317	0.0154	こ.cに4		
7.5	-0.	c_{0}	0.6011	-0.c¢23	Q.fin	$0 . C 041$	coses2	-0.3cel	2.0125	0.015		
E.0	-0.	c.	-0.30:2	-3.0714	5.6.33?	J.0038	0.2128	G.632?	C.0105	0.¢1:3		\#
8.5	-c.	E.	-0.ci35	-t.0012	c.gist	0.6637	0.9152	0.0021	c.0114	$0.611{ }^{\text {a }}$		\pm
9.0	-0.	\%	-c.0946	c.ccis	c.fa36	C.6235	cocgut	-s.010,	0.2122	0.5128		
9.5	-c.		-000679.	c. cois.	0.coss	0.0336	0.0053	-90005	2.¢13?	0.^131		;
10.0	-	-c.	-c.0167	c.coit	0.t.33	0.0035	C.0164	-0.501:	0.0135	0.3125,		\ddagger

table 2.4 erficr spectal density. process 2 t

table 2.5 error spectrai density. process 2

$\begin{gathered} 111 \\ \text { FREQ. } \end{gathered}$	$\begin{gathered} (2) \\ \text { ExpEçiec } \\ \text { valves } \\ s \end{gathered}$		(4) ramors EI		EST	5) IPECy mates 2	$\begin{gathered} : 61 \\ \text { SYA:YCARD } \\ \text { cRiors } \\ \because 2 \end{gathered}$	
	SR SI	5 ST SII	ER1	EII	SR?	512	ER?	F12
0.	1.5596-0.	1.1273-0.	0.1569					
6.5	1.3001 C.	1.4:50-0.	0.1300	.	1.10001	0.0358	3.202 0	-. 1224
1.5	0.8646	. 7233 - 0	0.1865	0.	C.7C72	0.0054	0.1087	0.10579
2.0	c. 36830.	5.378.0-0.	0.0. 553	0.	C. 52.42	-0.040\%	0.0674	. 3.0410
2.5	0.2389-6.	0.215790.	0.6259		\bigcirc	-0.0672	C. 0466	0.0235
3.0	0.1916-6.	$0.1367-0$.	0.0192	.	0.1929	- -5085	c. 0333	3. 3238
3.5	c. $1401-0$.	0.13530.	0.0148	0.	0.1524	-0.0014	0.0252	0.0162
. 5	0.1098 -0.	$0.1083-9$.	0.0117	.	6.1191	0.0013	0.0165	9.011s
5.0	$0.08311-0$	$0.079 \%-50$	0.0098	.	0.0937	0.0085	0.0142	0.8173
5.5	c. $0724-0$.	0.07190	0.6083	-	$0.07: 18$	0.0042	0.0125	0.0097
6.5	c.c642-i.	$0.3738=0$.	0.0864		C.0674	-0.0033	0.0113	0.8037
6.5	c.c579-C.	6.0627 0.	0.0953		0.0645	-0.0011	0.cres	c. 0003
7.0	c.c53? -0.	$0.0464-0$.	0.0053		0.6493	0.0007	c.corb	0.00 .1
7.5		0.048600	0.005 c	.	0.0475	0.0061	0.0096	C0002
ع. 5	C.C468 -	$0.2531-9$.	0.6247	.	3.6423	0.6025	C.0089	6.0307
9.0	0.0.0134-0.	6.6469	0.0rls	.	0.0295	-0.0049	0.3105	0.0295
9.5	c.çice -0.	0.6302%	$0 \cdot 6.143$		C.0290	-2.0035	c.0111t	C.3105
10.0	c.0424 0.	$0.9285-0$.	0.0342		$0 \cdot 3$	$\underline{-10005}$	-.J13	

TABLE 2.6 ERROR SPECTRAL DENSITY. PROCESS 2

TABLE 2.7 ERROK SPECTMAL DENSITY. PROCESS $2 \cdots$

TABLE Z-E ERRCR SPECTRAL OENSITY- PSOCESS 2

(11) F	$\begin{gathered} (2) \\ \text { EXP }=C \text { CTE } \\ \forall A L U E S \\ S \end{gathered}$						$\begin{gathered} \text { S5 } \\ \text { IMDIRECT } \\ \text { ESTIRATES } \\ \text { S2 } \end{gathered}$				*	
	5\%	SI	521	311	E31	EII	582	512	EX:	E12		
0.	0.352 c	0.	0.1361	c. 0.079	0.8715	6.c622	C. 6954	- 2.0579	0.1109			\ddagger
c. 5	c. 2879	0.1668	$0.15: 2$	$0 \cdot .3301$	3.5627	0.0567	c. 1493	0.0031	9.0261	$0 . r 223$		
1.0	0.1820	0.1252	$0.15=2$	T. 3649	0. 2466	0.0447	C-1870	0.0775	- ¢fict	0.0692		
1.5	0.1690	C. 100 c	C.0924	1, 12713	0. 03335	C.0332	C. 14.37	C. 0567	C. 0503	0.0 - ${ }^{\text {c }}$		
2.0	c.cett	C-E713	9. 6539	0.5697	c. 5235	3.c243	U-3925	T.0251	c.este	2.03s7		-
2.5	C.Ont 7	0.0585	0.745	0.c6h 2	20.0185	C.E180.	S-0629	0.0248	3.02\%	$=-02 \pm 1$		
$3-\mathrm{C}$	c.f.31k	cens52	0.6361	c.e27e	0-2144	0.2155	C-0355	$0.03 \% 4$	3.0222	0.0222		
3.5	$0 . \operatorname{ca32}$	0.0252	0.6212	-C.0035	2.C116	-4-0.11c.	C-E135	c-seso	-6.61:2	c.01:2		
4.5	0.6130	0.5124	0.6105	0-6032	C. 2375	c.ecys	C.01?	C.0162	$=.0154$	C.2154		
4.5	0.6145	+2.c136	0.6 .355	C.C123	Exices	ceiper	C.ECCie		0.01%	0.01天		
5.3	0.0520		0.0 .51	C. 3259	c.es69	C.C069	-c.cied	C. 6262	B-Ctic:	c.912\%		
5.5	C.C? CO_{2}	$\mathrm{Cb} \mathrm{ca}^{2} \mathrm{C}$	9.6143	c.0n2E	E-5¢0]	-2.086!	-0.c.a 3	0.0186	3.0109	0.01- ${ }^{\text {c }}$		
6.0	C. 5069	coest	G. 2145	C-uct	6.ch55	3.2054	$\bigcirc-C 0 \equiv 4$	0.0143	E-c1:2	0.0102		
6-5	$0-\operatorname{cose}$		$\mathrm{O}_{2} \mathrm{C23}$	C-CCh1	Covis	C-cris	$0.01-6$	0.0139	¢. กça	0.0075		
7-0	$0.5 c 72$	G-2037	0.2127	-ccer	5-0.76	V. 0345	Cotos:	$\underline{-0143}$	9.0.7s	0.¢? ${ }^{\text {¢ }}$		
1.5	c.ecot	c- 2025	0.6587	L.ceio	$5 \cdot 1043$	J.0042	c.0c83	C. 045	C. C0¢7	0.cost		
8.0	$0 \cdot \mathrm{ccs} 3$	0.0.j21	0.0117		$0 \cdot \mathrm{cst}$	E-C2us	c.0ct	C.cos3	0.c109	0. 100		
8.5	c.cces	0-8r15	$0-6091$	c. 5051	O.CE39	C-0c39	-0.EVI	C-C264	0.0157	$0 . E 107$		
9.0	c.esse	$0 . c 010$	J0006	0. $382 i$	3-5036	C.9337	C.0.017	- -20055	0.0118	0. 113		
9.5	C.CEST.	Co.00:5	3. 000	0.1223	E.cc37.	0.0637	C-064	-roilics	D. $21 \leq$	0.013 ?		
10.6	C. 5636	C.	3.0009	G.co31	0.5037	0.0037	$0.0: 41$	-6.6084	0.cles	c. 6.15		

táte 2.9 error spectidal ónisity. process 2

fibie 3. I ERROR SPECTRAL DENSITY. Process 3

fable 3.2 error spectral density. procëss 3

table 3． 3 error spectral density paceess 3

Cll F		$\begin{gathered} \text { (2) } \\ \text { EXPCCTEL } \\ \text { VALUES } \\ \text { S } \end{gathered}$	$\begin{gathered} \{3 ; \\ \text { cirect } \\ \text { CSTIFATES } \\ \text { S! } \end{gathered}$								\pm	＊
		58 51	SR 1	SII	E： 1	EII	SR2	S12	ER？	EI？		＊
c.	c．	－2．	c． 0592	0.0133	0.6524	2．C524	6． 3456	－C．OC4 4	0.0749	0.679		t
c． 5	c.	6	C．049？	a．c18	c．0475	0.5475	0.2738	－9．2125	9．c6s7	0． $36 \% 7$		
1.0	c．	？．	C．036：	c 0254	O－C3s	0.0368	C－N\％？	－c．5191	－．6．552	0.0559		t
1.5	5.	\therefore	0.224.	c．atab	2． 2251	2.2261	2．2634	C．C314	n．9417	Q．cill		＋
2.0	－c．	\therefore	0.2327	0.5184	0.2135	0.6130	－2\％${ }^{\text {a }}$	c． 3303	2．0315	0.1315		＋
2.5	－0．	6.	－c．octe	－c．cols	0.2124	$5=[128$	－．t：52	－$-.35: 2$	c． 22 t 3	5． $22: 43$		＊
3.6	5.	j－	－G．－3）2	－0．0075	5－5：81	E．8091	－6ここ0	－6．－5127	C．0190	－ 2173		
3.5	c．	2．	－6．038\％	－0．0357	0.01969	0.0569	－ 1.220	－0．0067	2．c163	C．0163		1
4.8	c．	\because	－c．act	－0．005s	0.0954	G．ies	－C．0223	0.0 Cr 7	¢－514	－ $51: 10$		
4.5	6.	c．	-2.3635	－0．co：3	2－1：25	0．02h 5	－2．0285	C．cic74	C．ctes	E．017s		
$5 . \mathrm{C}$	－3．	\cdots	－c．004）	S．0318	305337	0.0039	－\％－E239	－0．0ube	c．0．115	O－C1！5		
5.5	－c．	c．	－0．0うに	C．cces	c．r93t	3－ce3s	－：．n507	－－－21；3	n．alce	C． 0.108		1
6.0	－3．	－	c． 2529	0.006	3．r3E	$0 . C 035$	$0.06=1$	－－6．154	C．0104	0．E：04		
6.5	－C．	\because	c．－223	－0．ccer	¢－6．3t	． 0 － 0 ¢	$2-\mathrm{CH} 3$	－3．2012	T． 2162	0． 3102		
7.6	－2．	－i．	－9．03：5	－6．r042	5． 3 E	$0.00 \geq 0$	C．coz5	－2．0．09		0． 2102		
T－	－	．	－ 2.0 － 30	－c．cot？	6.208	C－2C4，	－i．0479	－E．00，	S0010s	0． 210		
8.0	5.	\therefore 。	－－．0．643	－2．0036	0.5053	2．3c53	－2．0162	－2．0．55	2.0114	0.311%		
と．	0.	6	－c．2．53	－？C0．0．4	C．r．36？	O．fr67	－C． 174 $^{\text {c }}$	－6．00？？	9.3127	0.0127		
9.5	－2．	\bigcirc	－0．025 ${ }^{\text {a }}$	1．cose	－．-237	3．3097	－2． 2145	C－6153	2．2147	0.0457		＊
4.5	-r ．	c．	－9．9：41	c．ccs	3．rios	．0．E148	－\％－：112	S．203	「－01tr	c． 015		t
$10 . c$	－c．	－	－0．0．35	O．cici	¢－：117	6.6119	－こ．2599	2.2137	－017	c．01：3		\ddagger

TABLE 3.5 ERROQ SPECTRAL Density. PrCcesss

TABLE 3.6 ERRGR SPECTRAL OEMSITY. PRCCESS 3

Théle 3.t akror spectrail demsity. process 3

TABLE 3.8 ERROR SPECTRAR CERSITY. PROEEEE

REALISTIC EVALUATION OF THE PRECISIUN AND ACCURACY OF INSTRUMENT CALIBRATION SYSLIZMS*

Churchilil Eisanhart
National Buremu of Standards, Wabhington, D. C.

Abstract

Calibration of instrumants and standards la a relined form of messurement. Measurement of anme property of a thing in an operation that yields ar an ond result a number that indicates how much of the property the thing has. Measurament is ordinarlly a repeatable oparation, so that it is appropriate to regard meansurement ais a production proapan, the "product" beiny the numbers, l, e., the measurementa, that it yioldmi and to apply to measurement processes in the laboratory the conoept and technlques of statistical process control that have proved so useful in the qualliy control of industrial production.

Vlewed thus it becomes evident that a particular measuroment operation uannot be regarded an constituting a messurement procesa unlens matiatioal stabllity of the type known as a atate of atatiatioal oontrol has bann attalned. In order to determine whether a particular measurement operation Is, or is not, in a state of statisical cuntrol it is nedessary to be deflifte on what varlationa of procedure, apparatus, envirnmmental conditions, observers, operators, Atc., are allowable in "rupartan anplloationt" of what will be annaldered to be the rame medsurement process applied to the measuremult of the bame quantity under the same conditions. To be ruallotic, the "allowable varlatione" must. be of aufficiant scope to brackut the circumaterices likely to be met in practioe. Hirthermore, any experimental program that alma to dislarmine tio wiandard duviation of a medsursment wiress as an Indication of tiv rrocision, must be based on approprate randoli sampling of thls likaly range of olroumatunces.

Ordinarily the accuracy of a measurement process may warneterized ir giving (a) the standard deviation of the procosi and (b) credible bounde i.: the likely uversll syetematio error. Determination of aradible bounde to the vombinod affect of recognized potential sources of aystematic error alwhys involves some arbitrariness, not only in the placing of ressunable bounds on the systematlo error llkely to be contributed by each particular ap innable

[^9]cause, but also in the manner in which these individual contributions ary combined. Consequantly, the "Inaccuracy" of and ranults of measurement cannot be axprasied by "confidenca llmits" corresponding to a definite numarical "confidence lovel," except in those rare inmtances in which the positble overall systematic error of a final result is negligible ir. comparison with ite imprectaton.

1. INRRODUCNON Calibration of instruments and standards is besically a rafinga form of masarement. Measurement la tho asmienment of nuntbutis to material things to rapreaent the ralaticna axisting among them with respegt to paricular porpertien. One always mesures properties of thinga, not the thifis themesivea. In practice, menaurement of some pruperiy of a thing ardina:dly takes the form of a sequence of staps or operations that yleldese an enci rasuli a number that indicates how much of this proparty the thing haa, lor so ane to use for a specific purpose. The and result may be the outcome in a single readiny of an instrument, More ofton it is some kind of average, e.g., the arithmetic mean of a number of Independent determinations of the same magnitude, or the final result of a laast equares "reduotion" of meesurnments of a number of differant quantition that bear known relations to each uthar In accordance with a definite experimantal plan in general, the purpose for whioh the answar is needed det.jrmings the acouracy roquired and ordinarlly alsi thin method of meesuramant employed.
speoification of the apparatus and auxillary hquipment to he useri, try oparat'rna to be performed, the sequance in which they are to be exuculed, and the wonditions under which they are respuotivaly to be carried out-othase
 ment procesa is the renlization of a method of riodsurement in terms of particular apparatus and equipment of :he preseribed kinds, partieular conditione that ell hef only approximate the conditions preseribed, and particular prosong as ope:a:ors and observers.

It has lang bean recounkien that, in undertaking to apply a bartioular method of measurement, a degree of consistency among repeated nieasuremente of a cuiglo yuantity nuede to be attained before the method of meenurembit. conomrnad can be regarded a meaningfully raalized, l.e., before a masurement process gan be said to have been establiahed that ia a roallzation of the mothod of mesurement concorned. Indeed, conslatency or atatistical stability of a very apectal kind is required: to quallfy as a measuremant procesa a messurement uperation must have attained what is known in industrial quallty control languago as a stai inf statistical anntrol. Intil a meamurament npmeration has been "dobugged" to the extent that it has attained a state of statiatioal
control it cannot be regardod In any logical sense as measuring anything at all. Alsu when it has attained a state of statistical control there may stlll remain the question of whethar it is falthful to the mothod of measurament of which it Is Intonded to be a realization.

The syetematic error, or blas, of a maasurament procese refarm to its tendeay to measure somathing other than what wan 1 andmdi and la determiried by the magnitude of the difference $\mu=T$ between the proweas avaride or 11 mlt ing mean μ asmociated with measurament of particular quantity by the masuresment procese doncerned and the trix value r of the magnitude of this quantity, Onfirst thought, the "true value" of tho magnituda of a paitcular quantity appeari to be a simple stralghtforward concept. On careful analymia, howovar, It becumes ovidant that the "true value" of the maynitude of a quantity is inlimatoly linked to the purposes for which knowledge of the manitude of this quantity in naeded, and cannot, in tho tinalenalyals, be maaninubully end usefully definod in lachation from theae naedis.

The prealinion of a measureinent procena refera to, and is datarmined by the degree of mutual agrement oharacterintic of independent meanurements of a aingle quantity yielded by rapated applications of the provese under apalifiad oonditions; and its accuracy reters to, and is datermined by, the degroe of acroament of auch measuremente with the true value of the magnitude of the quantity concerned. In brial "accuraoy" lase to de with closenese to the truth; "prection," only with closelitse together.

Syatematic error, proalsion, sid acouracy are Inherent charactarlation if a masarement proceas and not of a particular measurement ylalind by the process. We may also jpeak of the syatematio urror, pieatalori, and ancuracy of a particular method of mossurement that has the capability of atatiatival enntrol. But these terma are not detined for a masurement oparation that da wit in a state of atatistical control.

The prealsion, or mare correctly, the lmprecision of a ninesuraman process is ordinarlly summarized by the atandard deviation of the process, which axprosses the sharacteristic disagreament of repaated masuremerin us a aingle quantity by the process concerned, and thus serves to indioase by how mich a particular measurement is likely to differ from other values that the same measurement process might have provided in this inatanoe, or might yield on remeasurement of the same quantity on another occasion. Unfortunately, there does not exist eny aingle comprehensive masare of the acouracy (or inaccuracy) of a measurement procose a aidogous to the standard doviation as a meabure of its imprecision.

To characterize the accuracy of a measurement procass it is nigosiary, therefore, to tridicate (a) tta syatematio error or blas, (b) te preation (or fimpracision)--and, atrictly apeaking, also, (c) the form of the dintributivin of the indivirual measuremants about the process average. Such is the unavoldable situation if une is to concern one gself with individual maaurem menta yle!ded by any particular measurement process, Fortunately, however, "final rasults" are ordinatily some kind of avaraçe or adjusted value derived from a not of independent measuremerte, and when four ot more Independent minamomont!s aro involved, such adjusted valuea tend to he normally distribited to a very anod wuroximation, an that the gocutacy of such final realta san udinarlly be characterized satizfactority by indicating (a) thatr Imprectaton aH exprensed by their atanderd error, and (i) the aystematic orror of the prooesh by which they wute ubtalried.

Tho error of any sirigla mesurament or adjusted value of a partloular quantity is, by delinliton, the differenoe butwoen the measuremant or adjuded value concerned and the true valje of the magnitude of this quantity, The umbr ul any particular meanurement or adjuntad value ito, therafora, a fixed rimioer and this number will ordinarlly be unknown and unknowable, beoane tha true value of the magnitude of the quantly conserned is ordinarily unknown and anknowable. Limite to the error of a single measuramant or adfubli.: inlle may, however, he inferred from (a) the prectsion, and (b) bounds on the systematic arror of the mensurement procesa by whith it was produond-. but not without risk of being inoorrect, bacause, quite apart from the ingxadtfore with which bounds are cummonly placed on a systemathe error of a maseuremsill process, ach limits are applicable to the enor of the aingle mesaurement al adubled value, not as on uniqua Individual jutooma, but only aea
 quantly that might nave beet, or mingly be ylaldeat by the same maazurem mont pricesa under the oume comnitions.
inco tho precialun of a measurement procese is dotarminod by tho
 ments ul a alngle magnitude generated by sepeated apollcaicon of tha procees under sperifled conditions, and its bias or ayotematio error is determinent; tite direction and amount by which such masarements tend to difer from the true value of the magnltude of the quantity concerned, It la necassary to be olear on what varlations of procedure, apparatus, envirunmental condilions, obsorvors, ete., are allowable in "repsated appllcations" or what will be considered to be tho sane mensuroment procesn applied to the meanurnmont of the bamo quantly under the same condilione If whatevar measures of the preation
and biam ot a masaurement proceves wo may adopt are to provide a realistlo Indation of the accuracy of thi proceso in piactioe, then the "allowatile variallone" must be of afficlant soope to bracket the range of circumstances commonly met in practica. Furthermore, any experimental program that aima to datermine the pradialon, and thence the accuracy of a mamurament proassa, must be based on an appropriate random sampling of this "rango of circuinstancen," If the usual tools of statifical analyals are to be wtrlatly applioable.

When adequate random sampling of the appropriste "range of olroumstances" Is not fasible, ne evon posalblo, then it is neveswary (a) to compute, by axtrapulation from avallablo data, a mure or las subjeotivo eatimato of tha preainion ot the measuramont process conoarned, to yarve an a subutitute for a direot exparimental measure of this characteristic, and (b) to asalgn morn or lesembjective bounde to the aystomatic orror of the measuramant procena. To the extent that a who al least parially subjeotive computations are involved, the resulting evaluation of the overall acoursoy of a measurement prooess "is besed on aubleot-mattor knowledge and akif, general Information, and Intultion-but not on statiatioal mathodology" Oochran ot al, 1953, p. 693] Consequently, In auch oasen the ntatistically proalso wuncopt of a fainlly of
 fidano sofficient" is not applleable.

The foregoing pointn and curtain other relaced matters ara disounesed in yraater dolall In the mucceoding mections, togother with an indioation of procedures for tho raellatic ovaluation of prectalion and nocuracy of whitulishad procedures for the callbration of liviruments and atandarde that minimize an mush as posable the suhjective eloments of euch an oviluation. To the extent
 the rempenability for an imporcant and anmatimee the mont diffioult part of the ovaluation in ahifted from the shouliary of the atatiolioion in the shoulders of the subject matter "expert,"

2. MEASUBEMEIVA.

2.1. Natury and Objoct. Measurensent is tho amignment of numb:as to miserial thinge to represent the relations exiating among tham wini rampat to partoular properties. The number assignad to some particular proneity unven to represent the relative amount of this property assoclated with the oblecit conoernad.

Measurement always pertains to propertios of thinga, not to the thines themafivas. Thus we carnot measure a mptar Lar, but can and usually do,
moesure its length; and we could also mesasure lts mass, its danity, and perhapa, also its hardness.

The object of measurament la twofold: first, wymbolio representation of propartios of thing as a basla tor comceptual analyala; and second, to effoot the represontation in a torm ameriable tu the powerfid tools of mathomatioal analysis. The dactive leaturo la aymolic representaticn of propertios, for which and numerals are not the only uabie symbola.

In pration the assignment of a numeriosl magnifudo to a partioular property ol a thling is urdinarily accomplishod by uomparison whlli a met of stendards, of by comparison cilhif of the quantly lisulf, or of mome transform of $1:$, with a proviously callbrated some. This, length meanurementa are uswally mada by direotily oumparing the lanoth concermad with a callbratad bar or tape; and masis measurements. by directly comparing the weight of alven mass with the wolght of a sot of standard masses, by moans of a belanon; but foren ineasurementi are usus:ly corried unt in torms of wome trasiorm, wach as by raseding on s ofllbrated soale tho extension that the forve producen in a spring, or the defleotion that it pruduces in a proving ringi and temparitura mosruramenta are usually periormed In terms of wome traneform, wah as by luading on a calibrated vuale the expansion of a cullimn of maroury, or the

2.2. Quadhativa and Quanltativa Aappepta. Aa Wultar A. Showhart, fathor of atetiatioal oontrol charts, has ramartad;
"It Is importani to realiza. . that there are two appota if an oparntlon
 of numbers or pointos readinge auch as the obgurved langthe in n meanurmante
 of phywiral thinga by fomegne. In acoord with inmtruction that wo shell asaume: to lw devoribable in words constituting a paxt." [Showhart 1939, pi 130.]

More spactically, the quallativa factors invulved In the mapiuremorit of a quantity ara: the emparatys and auxlleary equpmejt (e.g., reagents, batterim; or other source of electrical onergs, ulo. 1 omployed; tho pperators and gepervers, If any, Involved; the eperallun performod, topether with tho leguenge in which, end the gonditiong, under which, thay are rospectively carriad out.
2.3. Correction and Adjustmant of Ohuervations. The number ubtained as "readings" on a calliraton amain are ardinarlly then mat product of evaryclay minasurement in the trades and in tho hone. In seluntilic york there are usually
two limportant odditional quantitative aspects of measurement: (1) correction of the readings, or their transforms, to compensate for known deviations from ideal execution of the prescribed operations, and for non-negligible effects of variations in uncontrolied variables; and (2) adjustment of "raw" or corrected measuremerts of partic:lar quantities to obtain values of these quantities that conform to restrictions upon, or interrelations among, the magnitudes of these quantitles imposed by the nature of the problem.

Thus, it may not be practicable or economically feasinle to take readings at exactly the prescribed temperatures; but quite practicable and feasible to bring and hold the temperature within narrow nelghborhoode of the prescribed values and to record the actual temperatures to which the respective readings correspond. Insuch cases, If the deviatlong from the prescribed temperatures are not negligblo, "temperature corrections" based on appropriate theory are usually applied to the respective readings to bring them to the values that presumable would have been observed if the temperature in each instance had bean exactly as prescribed.

In practice, however, the objectlve just stated is rarely, if ever, actuaily achieved. Any "temperature corrections" applied could be expected to bring the respective readings "to the values that presumably would have been observed if the temperature in each instance had been exactly as prescribed" If and $\therefore \therefore$ if if these "temperature corrections" made apprositate allowances for all af the effects of the deviations of the actual temperatures from those prescribed, "Temperature corrections" ordinarily correct only for particular effects if the deviations of the actual temperatures from their prescribed values; not for all at the effects on the readings traceable to deviations of the actual + mperatules from those prescribed. Thus Michelsen utilized "tobuparature serrections" in his 18\%y investigation of tie speed of llyht; put his results exhibit a depondence on temperature alter "temperature corrcotion." The "temperature corections" applled corrected only for the effects of therinal expansion ...u. to vartations in temperature and not also for changes in the index of refraction of the alr due to changes ill the humidity of the air, which in juna and July at Annapolis is highly correlated with temperature, Garrectiongappliedin proctice are usually of moro limited soope than the names that they aro a!iv-in aprisy to ind cate.

Adjustment of observations is fu:idamentally different from their "correction." When two or more related quantities are measured individually, the iesulting measured values usually fall to satisfy the coristralnts on their magnitudies implied by the given interrelations among the quant!ties concerned. In
such cases these "raw" measured values are mutualiy contradictory, and require adjustment in order to be usable for the purpose intended. 'Thus, measured values of the three cycllc differences $(A-B),(B-C)$, and $(C-A)$ betwean the lengths of three nominally equivalent gage blocks are mutually contradictory, and strictly speaking are not usable as values of these differences, unless they sum to zero.

The primary goal of adjustiment is to derive from such inconsistent mensurements, if possible, adjusted values for the quantities concerned that iu satisiy the construlnts on their magnitudes imposed by the nature of the quantitics themselves and by the existing interrelations among them. A second objective is to select from all possible sets of adjusted values the sel that is the "bual"--ul, al leáal, a set that la "Jood enough" for the intended purpose--In some well-defined sense. Thus, in the above case of the measured differences between the lengths of three gage blocks, an adjustment could be effected by ignoring the measured value of one of the differences entirely, siny, the difference (C - A), arid taking the negetlve of the sum of the other two as its adjusted value,

$$
A d j(C-A)=-[(A-B)+(B-C)]
$$

Thir will certainly assure that the sum of all three values, $(A-B)+(B-C)$ + Adi (C - A), is zero, as required, and is clearly equivabent to asoribing all vi the excess or deficit to the replaced measurement, (C - A). Alternatively, one inight prefer to distribute the necessary total adjustmenlil - $(A-B)+$ $(B-D)+(C-A)]$ equally over the individual measured difterences, to obtain the forowing set of adjusted values:

$$
\begin{aligned}
\operatorname{Adj}(A-B) & -(A-B)-\frac{1}{3}((A-B)+(B-C)+(C-A)] \\
& =\frac{1}{3}[2(A-B)-(D-C)-(C-A)] \\
\operatorname{Adj}(B-C) & =\frac{1}{3}[2(B-C)-(A-B)-(C-A)] \\
\operatorname{Adj}(C-A) & =\frac{1}{3}[2(C-A)-(A-B)-(B-C)] .
\end{aligned}
$$

Clearly, the sum of these three adjusted values must always be zero, as required, regardless of the values of the original individual meesured differences. Furthermore, most persons, I belleve, would consicer this latter adjustment the better; and under certaln conditions with respect to the "law of error" governing the original messured differences, it is indeed the "best."

Note that no adjustment problem existed at the stage when only two of these differences had been measured whichever they wers, for then tho third could be obtained by subtraction. As a general princlple, when no more observations are taken than are sufficient to provide ono value of each of the unknown quantities tnvolved, then the results so obtalned are usable at leagi-they may not be "best." On the other hand, when additional observations aro taken, leading to "over determination" and consequent contradiction of the fundamental properties of, of the basic relationships among the quaritites concerned, then the respective observations must ba reyarded as contradleting one another. When this happens the observations themselves, or values derived from them, must be replaced by adjusted values such that all contradiction is removed. "This is a logical necessity, sincc we wamot acoept for truth that which is contradictory or ieads to contradictory results," Chauvenet 1868, p. 472 .]
2.4. Scheduling the Taking of Measurements: Having done what one can to remove entraneous sources of error, and to make the basic measuraments as precise and as frat from systematic error as possible, it is frequently possible not only to increase the precision of the end results of major intereat but also to simultaneously decrease thair sensitivity to sources of poanible systematle error, by careful schedulling of the measurements required. An Instance is provided by the traditional procedura for calibraling ilquid-in-alase thermometers Waidner and Dickinson 1907, p. 7U2, NOL 1957, pp. 29-30; Swindells 1959, pp. 11-12 : Instead of attempting to hold the temparature of the comparison bath constant, a very difficult oblectivn to achieva, the haat :aput to the bath is so adjusted that its temperatura is alowly Increading at a -ready rate, and then readings of, say, four test thormometers and two standards gra taken in geceremaitu with the schedule

$$
S_{1} T_{1} T_{2} T_{3}{ }^{T} T_{4} S_{2} S_{2} \mathrm{~T}_{4} T_{3} T_{2} T_{1} S_{1}
$$

 two readings of any one thermometer will correspond to the tenperature of the: nomparlson bath at the midpoint of the periou. Such scheduling of meas'remant taking operations so that trie effects of the specific types of depn :urze from perfect control of conditions and procedure will have an opportuntty to balance out is one of the principal alms of the art and science of statistical desinnof experiments. For additionaf, physical science examples, see, for instance, Youden [1951a; and 1954-1959].
2.3. Mearuramentas a. Productipn Process. Wie may summarize our discussion of measurement up to this point, as fnllows: Measurement of some property of a thing in practlce always takes the form of a sequence of steps or operations that yield ac an end cesult a number that serves to represent the amount or quantity of some particular proparty of a thing--a number that indlcates how much of this property the thing hes, for aumene to use fur a spectic purpose. The and result may be the outcome of a single reading of an Instrument, with or without correctlons for depertures from prescribed conditions. More uften it is some kind of average or adjuated value, e.y., the arithmetio mean of a number of independent determinations of the same magnitude, or the final result of, say, a least squares "reduction" of meosuremesta of a number of different quantities that have known relations to the quantity of Intereat.

Measurement of some property of a thing is ordinarlly a repeatable operation. This ts cortainly the case for the typen of measurement ordiarlly met in the callbration of standards aid instruments. It is instruative, tierefore, to revard ine asurement as a prodigtion progest the "product" being the numbers, that is, the mensuremente that it ylelds; and to compare and contrast measureman: provessas in the laboratory with mass production provessas in industry, For the momant it will suffice to note (a) that when succeanlve amounts of units of "raw materlal" are processod by a partloular mase production procosa, the mitrut is a sarles of nominally identical feems of product-. of the partioular type produced by the mess production oparation, b, o, by tha method of prodychion. concerned; and (b) that when succosalve oblocte ara measured by a particulai measurement process, the individual itema of "projuct" producad consis: of the numbers apigned to the respective objects to represent the relatlve amount a that they possess of the property datermined by the methud of meagremant Involvad
3.6. Mothois ol Mos mucementand Messurentnt Proconges: Enudfication of the apparatus and auxlliary equipment to be used, the operationa to be piriormod, the sequence in which thes are to be carrled out, aric the conditions under which they art respectivaly to be carried out--theae lingtructiona collenti\%ely aurve to define a mathod of measurement. To the axtent inat correctiona may be required they ara an integral pert of measurement. The types 0 . dorrections that will ordinarily need to be mada, and specillo prooem dures for making them, shnuld be included amony "the operalions to be performed." Likewise, the essential adjustmants required should bu notod, end spectic procedures for making them lucorporated in the spectication of a mothod of measuremont.

A medencemert process. Is the reallzation of a method of measurement In terms of particular apparatus and equipment of the prescribed kinds, particular conditions that at best only approximate the conditiona presoribed, and particular pegsons as operators and observers ASTM 1961, p. 1758; Murphy 1961, p. 264 . Of course, there will often be a question whether a particular measurement process is loyal to the method of measurement of whioh it ia Intanded to be a realization; or whether two different meaburement processes can be considered to be reallzations of the same mathod of measurement.

To beyin with, witten speciflcations of methods of masurement often contaln absolutely precise instructions which, however, cannot be carrien out (repeatedly) with complete exactitude in praotice; for example, "move the two parallel crose hatrs of the micrometer of the microscope until the graduation line of the standard is centered between them." the acouracy with which such instruations can be carried out in practios will alwaya depend upon "the ciroumstances"; in the case olted, on the akill of the operator, the quallty of the graciuation line of the standard, the quallty of the sorew of the micrometer, the paralleliem of the cross hairs, etc. To the extent that the written apecification of a method of measurement involves absolutely preet ese instructions that cannot be carried out with complete exactitude in practice there are certain to be discrepanclen between a method of measurement and its reallzation by a particular measurement process.

In addition, the spectileation of a method of maesurement often includes u number of imprecise inatructions, such as "raise the temperature alow, ly," "stir well before taking a reading," "rade gure that the tubing is clean," ete. Not only are such instructions inherently vague, but aliso in any given insbance they must be underatrod ta is, mis of the genaral level of relinement oharacteristic of the contoni at whoch they sucur. Thus, "bakes sure that the tubing is clean" is not an absolutaly definite histruction; to som paopla this would mean sinply that the tubing should be clean enough to drink liqulds througui L : some laboratory work it imight be interpreted to mean machanically washod anf scouivi so as to be free from dirt and other ordinary solici metine (but not cicunsed also with chemical solvents to remove more atubborn contaminanta); in an advanced experimental phyatulst it may niean not merely mechanicalij wentiod and chomicaliy cleonsed, but also "out gasese" by holng huatod to and held at a high temperature, near the softening point, for an hour or so. All will agree, I belleve, that it would be exceedingly difficult to make such Instructions absolutely difinite with a convenient number of words. To the axtent that the specification of mothod of masuramentincludes instructions that are not absolutely definite, there will be room for diffarences hatween masurement processes that are fintended to be realization of the vary same liethod of measurement.

Racognittion of the difficulty of achieving absolute definiteness in the specification of a mathod of measurement does not imply that "any old sat" of Instructions will serve to define a method of measurement. Quite the contrary. To qualify as a spacification of a method of measurement, set of Instructions must be sufficiently deflifite to insure statistical stablitity of repeated measurements of a single quantity, that is, derived measurement processes must be capabie of meeting the criteria of stetistical control Shewhart 1939, p. 131: Murphy 1961, н. 265; ASTM 1961, p. 1758 . To elucldation of the meaning of, and need for this requirement we now tuin.

3. PRUPERTIES OF MEASUREMENT PROCESSES

3.1. Bequirement of Stathetical Gontrol. The need for attalning a degree of consistency arnong repested mieasurements of a single quantity befors the method of measurement concerned can be regarded as meaningful has certalnly beun reoognized for a long, long time. Thus Galleo, desoribing his famous expariment on the accelaration of gravity in which he allowed a ball to roll different distances down an anclined plane wrote:
"... il lasctava (como dico) scendere per il detto canale la palla, notando, nel modo che appresso diro, il temp che consumava nello acorrerlo tutti", replicando 11 medasimo atto molte volte per ansicurarsi bane della quantita dal temp, nel quale non si trovava mal differenze ne anco della decime phite d'una battuta di polso. Falla a stabilita precisamente tale operazione, facemmo scender la medisima palla molamente per la quarta nart dolfo lunghzza dl essu canale ..."l [Galleo 163甘, Third Day; Nat'l. ad., p, 213.]

Somathing mare than merv "uonsistency" is required. henaver, as Shewhart pulnts out wloquently ip hie vary liporiant ghapter on "The Spaolliostion of Accuracy and Precialon" [Shewhaw 1939, oh IV]. He beqins by noting that the description given by R. A. Millikan [1903, pp. 195-196] of a mati. $=1$ for detomining the suiface tension T - of a liquid from meadurements of the

[^10]force of tension E of a fllm of the llquid contains the following instruction wlth regard to the basic readings from which measurements of \mathcal{I} are derived: "Continue this operation until a number of consistent readings can be obtained," Shewhart then commants on this as follows:
". . . the text describing the operation does not say to narry out such and such physical operations and call the reault a masarement of T. Instead, it says in effect not to call the result a measurement of I untll one has attained a certain degree of consletency among the observod values of E and hence among those of T. Although thif requirement ts not always explioltly stated In apecifications of the operation of measurements as it was here, I think it is always timplied. Likewise, I think it is always aseumed that there can be too much consistancy or uniformity among the observed values as, for example, if a large number of measurements of the surface tension of a liquid were found to be ldentical. What is wanted but not expllaitly deeribed is a spectific kind and degree of consistency.
"... It should be noted that the edvice to rapest the operation of measuring surface tension untll a number of consistent readings have been obtained is indefinite in that it does not indloate how many readinge whall be taken before applying a test for consistency, nor what kind of test of consletency is to be applled to the numbers or pointer rasdings.... One of the objecte of lita chapter is to seg how far one can go toward improving this situation by providing an operationally definite criterion that preliminary observations must meat before they are to be considered consistent in the sense implied in the instruction oited above.
". . . Befors dulna this, however, we muat give atteniton not mo much In the consistenny of the n eoserved values already obtained by n rapatitlons of the operation of measuronicit as we do th the reproduelbulty of the genfatlon as determined by the numbers in the potentially intinite eequanem enr:esponding to an infintte number of repatitions of this oparation. No ene winld rare very much huw consistent the first a preliminary obbiervations were if nothing could be validly inferred from this as to what furiore obeervathone would show. Hence, it seems to me that tine characteriation of the minnerical aspacts of an operation that ls of greatest practical Intorast la ite reproducibility within tolerance dimits throughout the infinite soguence. The limit to which we may go in this direction is to attain a state of statistical control. The attempt to attaln a certain kind of consiutenoy within the firat I observed valuas is merely a means of attaining reproduolbllity withly limits throughout the whole of the gequence." [Shewhart 1939, pp. 131-132.]

The point that Shewhart makes forcefully, and stresaes rapeatadly later In the same chapter, is that the first n moasuremente of a given quantity generated by a particular measurement proceas provide a luvical buisis for predioting the behavior of further measurements of the same quantity by the same measurement process if and only if these a measurements may be regarded as a random semple from a "population" or "unlverse" of all concaivable measurements of the given quantity by the measurement procese concerned; that is, in the language of mathematical atatistina, if and only if the I meanurements in hand may be regarded an "obeserved valuea" of a aequenee of random variables characterized by a probability distribution Identified with the measurement process concerned, and raiated through the values of one or more of its parameters to the magnitude of the quantity measured.

It should be noted especially that nothing is sald about the mathematlcal form of the wubiblity distribution of these random varisbles. The Important thing is that there be one. W. Edwards Deming hall put this olaarly and torcefully in these words:
"In applying statistical theory, the maln considaration is not what the shape of the universe is, but whethar there la any unlverse at all. No univorso can be assamed, nor ... statistical thoory ... applied unlese the cbaravations show atatiatical control. In this atate the amplea when cumuintad over a sultable interval of time glve a diftribution of a partioular shape, atid this shape le reproduced hour after hour, day after day, so long as the process rumalns in statintical control--1,e., uxhlblts the propertios of randomiliss. In a atate of cuntrol, n observations may be revardad as a sampla from thin unlverse of whatever shade it Is. A blg anough wainpla, on enotigh small camplaa. anmho thu datistinian to make meanineful and useful predictions ajout futuer samples. This is as much as utatiatioul theory oan do.
". . . Vary offen the experimenter, instead of rualing in to apply [statimepal methods] should be more concerned about attaining atatiotical controi and asking himself whether any predictions at all the only puspose of his experiment), by statiatical theory or otherwlue, dan bo mada." [Deming 1950, pp. 502-503.]

Shewhart was well aware of the fact that from a aet of ineanureinents In hand it is not possible to doolde with absolute certalnty whether they do or do not cunslitute a random sample from some definite statistical "pupylation" characterized by a probabllity distribution. He, therefore, proposed Shewhart 1939, pp. 146-147] that in any particular instance one should "decide to at
for the presont as if" ${ }^{2}$ the measurements in hand (and their immodiate succesacors) were a simple ranclom sample from a definite atatistioal population--1. A., In the language of mathematical statistics, were "observed values" of indepengent identleally difributed random variables-only it the measurement in hand met the requirements of the smill-samples version of Criterion I of haprovious book Shewhert 1931, pp. 309-318 and of certain additional teat of randomnasa that he deacribed expliattly for the first time In his contribution to the University pf Penneylvania Bicentennlal Conference Ln Soulember ly40 Showhart, 1941. In other words, shewhart proposed that one should oonslder a measurement process to be-l. A., should "decide to act for the present as [f" the process were--Ina state of (simple) itatiatlag_control only if the measurements in hand show no ovidence of lack of atatiatical onntrol when analyaed for randomneas in the order in which they were taken by the control chart techniques for averages and standard deviations that he tound wo valuable in induatrial procese control and by certain additional tests for fandomnese besed on "runu above and below average" and "runs up and down.""

Simpson ${ }^{3}$ did not prove that taking ol the Arthmetlo Mean was the best thing to do but merely that it is good. However, in acoompliehing this goal he did something much more importent: he took the bold step of regarding errors of measurement, not as unique unrelated magnitudes unamenable to

2 rhis very expllait phreseology ie due tu John W. Tukuy [1960 , p. 424).
3 inhomas Simpson, In his now famous letter (Slimpson 1755] to the president of the Royal Soclety of London "on the Advantage of taking the Moan ui Number of Obaervationa, in practiciu! Aatronomy, " was the flrat to considar repeated nieasurements ui a single quantity by a yiven masurement process as observed values of independent randon variables having the wame probabili:if fistributhon. His concluation is of interest in itsulf:
"Upon the whole of which it appears, that the taklny of the Meari of a number of observations, greatly diminishes the ohancos for all the samler orrors, and cuts off almost all possibllity of any great oner: which inet consideration, alone, suem sufflelent hereommend lite use of the methud, not only to astronomers, but to all others concerned in making of experimente of any kind (to which the above reasoning is equally applicable). And the more observatiuns or experiments there are mede, the less will the conelualon be llable to err, provided they admit of being repeated under the same elrcumstances."
mathematical analysis, but as distributed in aecordance with a probabllity distribution that was an intrinsic property of the messurement process itself. He thus uibined the way to a mathematleal theory of meanurement besed on the mathematical theory of probability; and, in particulas, to the formulation and developinent of the Method of Lenst Squares in essentially its present day form by Gauss (1809. 1821) and Laplace (1812).
"Student" (Wlllam Sealy Gossel 1875-19371 ploneer statistioal consultant and "fathor" of the "theory of anall samples," was cartainly among the first to stress the imprortance of randomnosi in mesearement and experimantation. Thus, ha beqan his revelutionary 1908 paper on "The probable error of a mean" with these remarks:
"Any experiment may be regarded as forming an Individual of a 'population' of experiments whish might be performed under the eame conditions. A neries of experiments is a sample drawn from this population.
"Now any series of experiments is only of value In an tar as it enables us to form a judgment as to the atatistical censtants of tho population to which the exparlmonts belong." [Student 1908, p. 1.]

None of these writers, not any of theit contemporarlas, however, pro?d.al "an oparationally definite criterior. that piellminaiy ohsorvations murt meet" uefore we take it upon curselves "O act for the present as if" they and thatir lmmediate successurs ware random samplats tion a "pupulablen" ur "wilverige" of ald conenivalule measurement of the glvan quantity by the measuremert:, of the given quantlty b: thet measurement plocess cancarned. Provibiun

Exparience shows thet in the case of measurement procesesa the ldaal of stilat statistical control that Shawhart preseribes is usually very diftioni: pr. attain: Just a in the cespe of industilal praducion processes, Indeen, many musiurement processen simply do not and, it would sacm, cannot he made to conform to this ideal of producing auccessive manstiementg of a mingle quan'ity litat can be collsidered to be "observed valuer" of Independent Idention:a'
distributed random variables. 4 The nature of the "tiouble" was atated sucainatly by Student in 1917 when, speaking of physical and chemical dotorminations, he wrote:
"After considerable experience I hava not encountered any detormination which is not influenced by the date on which it is made; from this it follows that a number of determinations of the same thing made on the same day are likely to lle more closely together than if the repettions had been made on different days." [Student 1917. p. 415.]

In other words, production of masurements seams to be like the production of palnt; and justas in the case of paint, if one must cover a large aurfacie all of which ia vielble almultaneourly, one will do well to une paint all from the sama batch, so in the case of medsurementa, if a scientigt or metrologlat "wishes to Imprese his olients" he will "arrange to do repotition analyies as nearly ae possible at the same time." [Stıdent 1927, p. 155.]

Fortunately, |ust as one may blend palnt from several batches to obtain a mere uniform color, and one which te, presumable, closer to the "process average," so also may a solentist or motrolpalint "lf he winhen to diminIsh hie real error, . . separate [his mqasurements] by a wide an interval of time as possible" Student, lod, clt. and then take an appropriate avarage of themas his deterimination. Consequintly, if wa ate to permit such avoraging as an allowable step in a fully speafied manuremont procees (aee nec. 2.6 shove), then we are obliged to recognize both within-finy and beiweon-slay rismponents of varintion, and accept such a complex measurement procesi as b.ing in a state of statistinal control ovarall, or as we shall say, in a mata 4! COMPLEX stotlstirel denkul, when the componenta of within-day and batweenday variation w:u both in a state of stalistioal control in Shrwhart's atriot sense, which we shall term SIMPhtiniatistical control, la more amplex altuai. Liris, wne may bo obliged to recugnize more than two "layers" of variani.:
${ }^{4}$ luoking at the matter from a fundamental viowpolnt, perhaps wo mould say, not that Shewhart' ideal of striat statistioal control is unattainable in tiou case of such measurcmont proccoseg, but rather that the degree of approximalion to this ideal can be made as clowe as one chooses, if one le willing to pay the price. In other words, huw close one chooses to bring a meanurement progas to the ideal of strict etatiatical control in, In any olven initance, basically an economic matter, taking Into acoount, of course, not unly the Iminediate purpose(s) for whish the measurementa are intended but alpo thei other useg to which they may be put. (Compare Simon $[1946, ~ p .566]$ and Eibenhat (1952, p. 554$]$).
and, sometimes, more than alingle component of varlation within a glven "layer."

Adopting this more goneral concept of statiatical control, R. B. Murphy of the Bell Telephene Laboratorias in his essay "On the Meaning of Precision and Acouracy" Murphy 1961], publlshed In advance of the lavuance by the Amerlcan Society for Testing and Materlole of its Tentative Recommended Practice with respect to the "Use of the Terms Precision and Aoguracy as Appliad to Measurement of a Propery of a Material" [ASTM 1961], remarka:
"Following through with thie linn of thought borrowed fromi quality ocntrol, we shall ade a requirement that an effort to follow a tuat method ought not to be known ada madsurement proceas unless it is capable of atatistioal contrnl. Cinnability of control means that alther the measuroments are the product of an ldontifiable utatistical universe or an orderly array of such unlversen or, if not, the phyical oauses proventing sueh Identification may themselves be identified and, if denired, isolated and muppressed. Incapability of control Implien that tha results of measuremant are not to be truntad as indiontions of the physical property at hand-in short, wo are not in any varifiable sence measuring anything.... Without thie limitation of the notlof of ineasurement procens, one le unable to go on to glve meaning to those statictial measures w.'. ©ha basto to any diecusalon of precision and accuracy." Murphy 1961. pD. 264-265.]
3.2. Pantulate of Masurament and the Conouptisi a Uiming Manu A ermapicuous characterlatic of mesiurement is disagruement of rupeated meas irements of the same quantity. Experiance shown that, whan hioi aocurecy is sought, repcatid measurements of the ame que atily by a partcular moasurement prosuss does not giald uniformly the uama numbar." Whex. plalin these dilacordances by saying that the individued measurement mare
"The qualifioation "when high acouracy ta sought" is ensential; for if uathy an ordinary two-pan chemical balance we measure and reoord the masa of a small metallic objeot only to the neareat ylam, then we would expeot abl of our meaburements to he the eame--except In the equivocal case of a mese equal, or very nearly equal, to an odd multiple of $1 / 2 \mathrm{~g}$, and such equivocal cases oan be resolvad auslly by adding a $1 / 2 \mathrm{~g}$ masi to one pan. Full aociardance of messuraments olearly cannot be taken as incontestahle evidence of high accuracy: but rather should be ragardod as avidence of limitod accuracy.
affent a by errore, whioh we interpret to be the manlfestations of variations In the axecution of the procesas of masarement reaulting from "the imperiectiens of instruments, and of organs of wense, " and from tha difficulty of achlevm ing (or even epeolfying with a conventent number of worde) the ideal of perfeot control of conditions and procedure.

This "cussedness of mensuremente" bringe ua face to isoe with a fundamental questions In what aense can we say that the measuremente ylolded by a partloular measument process merve to determine a unique magnitude, when axperiunce annw that rapeated meanurament of alngle quantity by thia procese ylelde a sequence of nonidentioal numbers. What li the value thus determined?

The answer takes the form of a portulate about measurement procennen that has been expressed by N. Ernest Doresy, as followat
"The moan of a family of manauramenta-of a number of meamuraments for a glven quantlty carrlad out by the name apparatua, procedure and obaerver-approaehes a definita value as the number of masurementa in indefinitely increased. Otherwise, they could not properly be called meanurements of a given quantity. In the theory of errori, thin limiting mean le frequently called the 'true' value, although th beare no neowasary relation to the true quas altum, io the ectual value of the quantity that the observar doalres to maapura. Thle has often confused the unwary, Lot wa call it tho limiting mean." Doriey 1944, D. 4; Dorsey and Elwenhart 1953. p. 103.

In my lecturen at the National Burmau of Standards, and alsowhere, : iave termed thiswor rather alightly raphrased vorulon if ! ! - - the Rontulath. git Megotriment. A mathemetical basiefor it: in provided by the Strong Law of Large Numbera, a theorem in the mathemation theory of probability diacuvered during the precant century. Seo, for example, Feller [wü, po. 243245, 374]. Gnedonko [1962, pp. 241-243], or Parzen [1960, p, 420].

Needless to way, by a "famlly of meanuementy" Dormey means, not a suocesation of "raw" roadings, but rather a sureession of adjusted or oorrooted "alues whloh, by virtue of adjuntment or correction, can rightfully El conm sidared to be daterminationu of ainglo magnitude.

a. Mathamatical Formulation

The foregolng can be expresied mathematioally as followas on some particular oocalion, say the 1 th, we may take a number of mooesalve measurements of a single quantity by a given measurement procesa undar certain
sponified clioumstoncen. Let

$$
\begin{equation*}
x_{11}, x_{12}, \ldots, x_{11}, \ldots \tag{1}
\end{equation*}
$$

denote the sequence of measurements so genersted, Conceptumlly nt laast, thle sequerioe could be continued indelinitely. likewise, on different oocesions we might metert a new maquence, using the name meamurement prooedure and applying it to moasurement of the same quantity under tho same flxed set uf circumatenoes. Each mush fresh "start" would correspond to a different value of 1 . If, for example, the measuremen' procena conoerned is matintloally atable in the egnse of buing in a thate of atatifical control as defined by Shewhart [1939], then the Strong Law of Large Numbers will be applicabie and we may expert the uequince of oumulative arithmetio meann on the jth occasion, namely,

$$
\begin{equation*}
X_{\ln }=\left(x_{11}+x_{12}+\ldots+x_{1 n}\right) / n,(n m 1,2, \ldots) \tag{2}
\end{equation*}
$$

to converge to μ, a number that constitutea the llniting maan aspoolated with the quantity measured by this masauremont procesis under the obroumstances onnnerned, but independent of thm "occeston," that is, independent of the value of " $!. "$ The Strone Law of Lare Numbers does not quarante that !!! waquince (2) for a particular value of " 1 " will converge to μ ag the nuibber of obsmrvation if on this oocemion tand to infinity, but almply states that among the family of suoh sequenoes correaponding to a lerge number af
 be tedg axgeptiong in other worde, if the meadurement proceni. with whion one is cuncerned watiafiep the conditiona for vallality of the strona iaw of Large Numbers, then in prautioe ofi Is almont nertaln to we worklrig with a "quod" sequencen-one for which (2 : would oonverge to, μ if the number of obaerveitons wera contimued indufinitely-but "bad" oocesionim oan ulatr. though sarely. Thus, the Postulate of Measurement expresmes momething botter ti'an an "uifthenavorago" property--it axpranaes an "In-almum-milcagts" property. Furthermore, this limiting mean μ, the value of winton each imdividual mea surument x he trying to expreas, nign iut regarded not only ap the masn or "conter of oravity" of the infinite ooncuptual populetin n of all meanurenients x that might concelvably bo generated by the masaurement prodess concerned under the spublitod olrcumetanoes, but alno ar the value of the quantity concerned ab detarinined by this measurement prodeme.

u. Alm of the Pollulate

The sula aim of the Postulate af Measurament is axiomatlo acceptance of tho existence of a limit approacheat by the arlthmetio man of a linite numbar
n of measurements generated by any measarement process as n $\rightarrow \infty$. It says nothing about how the "best" estimate of this limiting mean ts to be obtained from a finite number of such ohservations. The Postulate is an answer to the need of the practical man for a justification of his cesite to conslder the sequence of nonidentical numbers that he obtalns when he attempts tn measure a quantit, "by the same method under like clrcumstances" as pertaining to a single magnitude, in apite of the evident dlscordance of its elements. The Postulate aims to satisfy this ueed by telling him that if he were to continue taking more and still thore measurements on this quantity "by the same method under llke circumstances" ad infinitum, and wero to calculate their cumulative arithmetic means at successive stages of this undertaking, then he would find that the successive terms of this sequence of cumulative arithmetic means would settle down to a narrower and ever narrower nelghborhond of some definite number which he could then accept as the value of the maynitude that his first few measurements were striving to express.

c. Importance of Limiting Mean

The concept of a limiting maan assoclated with the measurement of a given quantity by a particular measurement process that is in a state of atatigtical control is important because by means of statistical mathods based on the mathematical theory of probability we can make quantitative inferential statements, with known chancus of error, about the magnitude of this limiting mean from a sct of measurements of the given quantuty by the measurement process concemed. The magnitude of the limiting musan assoctated witn the measurement of a given quantity by a particular measurement process must "a carefully distinauished from the true magnitude of the quantit: neavured, ubout which :\% may be temintad to make almilar infciential statements Insofar as we make statisticel inferences from a set of measurements, we make iiem with respect to a property of the measurement procesis inva'ved under the circumstances concerned. The step from quantitative inferential stai:irents about the limiting mean associated with the measuremoit of a alvan fuantity by a particular measurement process, to quantitatlvo atatements sbout the true magnitude of the quantlty concerned, may be based on subject matter knowlerige and skill, generul information and Intultion-mut not on statistical methodology. (Compare Cochran, Mosteller, and Tukey [1953, pp. 632-693|.)
3.3. Definltion of the Error of © Measurement and of the Systematic. Error, Procision and Acclurtio ofa MaAsurament Progess.

a. E'rror of a Singla Measurement or Adjusted Value

The error of any measurement of a paricular quantity ia, by definition, the differatice between the measurement concernted and the true value of the magnituda of this quaritity, taken positive or negative acocordingly as the measurement is greater or less than the true value. In other words, if \underline{x} cienotas a single messurement of a quantity, or an adjustaci valua derived from a specific set of individual neasurements, and T is the trueyalue of the magnitude of the quanilty concerned, then, by definition,

the error of x as a measuremant of $\tau \times x-\tau$.

The error of ariy particular measurement or adjuated value, x, la, therefore, a fixed number. The numerical magnitude and sign of thes number will ordinarlly be unknown and unknowable, because the true value of tho magnitude of the quantity concemed is ordinarily unknown and unknowabia. Limits to the error of a single measurement or adjusted value may, however, be inforred from (a) the pregifion, and (b) bounds on the gyetematicerren, oi t!c ineasurement process by which it was produced--but not without risk whing incorract, because, quite apart from the inexusiness with which bounda are commonly placed on the systematic error of a measurament procest, such limits are applicable to the error of a single measurement or adju:ifd value, not as e unique individual outcome, but orly as a typlcal case of the errors characteristic of menesurements of the same quantity that right have been, or migit be, yielderit; the game measurament process under the same conditiuns.

b. Systematic Error of a Measurement Process

When the limiting mean μ assuclated with mazsurement of tho magnitude of d quentity by a partlcular measurement procese $20 e s$ not agree with the true vine tof the magnitude concerned, the measurement provese is ald to have a sysiematic error, or bias, of magnitude $\mu-\boldsymbol{T}$.

The systematle error of a measurament process wlll ordinarlly have both constant and variable components. Consider, for exampla, measurement of the distance between two points by means of a graduated metal tape [Holman 1892, p. 9]. Pcssible causes of systematio error that Immediately

come to mind are:

(1) Mistakes in numbering the scale divisions of the tape;
(2) irregular spacing of the divisione of the tapo;
(3) saq of tape:
(4) stretch of tape;
(5) temparature not that for which the tape was callbrated,

For any sinale distances the effects of (1) and (2) will be constant; and the effects of (3) and (4) will undoubtedly each contain a constant somponent characteristic of the distance concerned. Sume of theso effects will be of one slgn, some of the other, and their a!gebroic sum will determine the gonstant arror of this measuroment process with respect to the particular distance conoerned. Furthemory, lite "constant error" of this measurcment procesis will be different (at leasi;, conceptually) for different clastences measured.

In the case of repeated measurement of a single distance, the affect of (5), and at last portions of the elfects of (3) and (4), may be expected to vary from one "occasion" to the next (e.g., from day to day), thus cuntributing veriable compenents to the eystematiogerer of the procese.

A large fraction of the variable contrlbutions of (3) and (4) could, and in practice no doubt would, be removed by atretching the tape by a sping balance or other means so that it is always under the same tansion. Tho stretoh corresponding to a particular distance would then be nearly the same at all times, and afixed correction could ba mede for most of the: gay corresponding to this distaroo. Furthermore, the effoct of (G) wurd, and in practius puiuably would, be reduced by detprmintig the temperature of the tape at varlous points aluris its langth and applying a temperature correction. Ty comparison of the tapa with a gtandard, the error arising irc... 11 could bo climinated entirely, and corrections determined as a basin for ellminatinn, ar at least, roducing the effect of (2).

As in the foregoing example there aro waubly vertaln obvious scurces of systematic error. Unfortunately, there are generally fricitlonal sources of systematic error, the detection, diegnosis, and uredication of which call for much patience and acuman on the part of the observer. The work invulved in their detection, dlagnosis, and eradication often far exceeds that of taking the final measurements, and is sometimes allecouraging to the expeitenced observer as will as to the beginner. Fortunately, thare are various siatiatical tools that are helpful in this comection, and Olmoteud [1952]
has found that of these the two most effective and univeisally useful are the average (x) and range (R) charts of industrial quality sontrol. (For detalls on the construction and use of \bar{x} - and R-charts, see, for example, the ASTM Manual on Quality Control of Matariais ASTM 1951, Pp, 61-63 and p. B3]; or American Standards Z1.2-1958 and 21.3-1958 [ASA 1958b, ASA 1958a].)

c. Concept of True Value

In the foregring we have defined the error of a measurement x to be the difference $x-\tau$ between the measurement and the truevalue τ of the magnitida of the quantity concerned; and the uystematicietror, or blan of a measurement process an the ditterence $\mu-\tau$ between the limiting mean as soclated whth the measurement of a particular quantlity by the measurament process concormed, and the trafe yolue τ of the magnitude of this yuantity, This immediately ralses the question: Just how ts the "true valua" of the magnitude of a partloular property of snme thing dafined? in the final analyaic, the "true value" of the masnituda of a quintity is defined by agroement among experts on in exemplarimethod for the measuremant of its magnitude-it is the limiting maan of a conceptual axempiar progese that is an ideal realization of the agreed-upon exemplar method. And the refinement to whion one should go in apecifying the exemplar process will depend on the purposes for wisch a determination of the magnitude of the quantity concerned is needed--rot figt tha immediate purpose for which measurementa are to be taken but aiso the other uses to which these measurements, or a linal adjusted value derivad therefrom, may pousibly be put.

Consider, for example, the "true value" of the length of a particular gage bloak. In int mintis we gaviange the gage block: an a reviongular paralloleplped, and its lenath is, of courne, the distance batween ita two "and" faces. But it is practically certain that the paiticular yage block in question Is not an exact rectangular paralleleplped; and that it.e two end fagen are ..0t planer, nor even absolutely smooth surfaces. Shall we define the "truc lengti" of this gage block to be the distanse between the "tops" of the highest "mountains" ot each (nd, lie., the diatance batween the two "outermost molnts" at each end? if so, is this distance to be measured diagonally, If necessary, or parallel to the "lengthwise axis" of the gage bleok? Iit th: latter, then we have the problem of how this "langth-wise axis" is to be defined, especially in the caso of a thin gage block whose length corresponds to wisat would ordinarlly be considered to belle thlakness. Or shall wo be, perhaps, more sophistlcated, ard envisage a "meen piane" at each end,
whirt. An general will not be parallel to each other, and detine the \therefore ijth of this gage block to be the distance between two particular pointe on these planea. If we choose the "outermost points" we again have the problem of the direction in which the distance is to be measured. Alternatively, we might define the length of thit gage block to be the dietance between two etrictly parallel and conceptually perfect optival flata "just touching" the gage blook at each end. If so, then is the "true distance" betwoen these flats delined In terms of wavelengtho of light via the techn!ques of optcal Interferometry the "true length" of the gage block appropriate to the purposes for which the gage block is to be used, namely, to palibrate gages and to dotermine the lencths of uthor objects by mechanigal comparinons? Furthermore, it is clear, that the Intrinule difficulty of defining the "true value" of the lenoth of a particular gage blook is not ellminated If, instcad, we undertake to define the "true value" of the difference In length of two particular gage blocks, one of which is a btandard, the eccepted value of those length 1 s , say, mmiorolnches exaotly, by industry, national or international agreenent.

Similar difficultien arise, of course, in the definition of the "true value" of the mane of a mase standard, one of which has been rasolved by International agreement. In defining the "true valua" of the mare of a particular metallic masi standard, shall tha mass of this partioular standard be envisaged as the mass of its metallo substance alone, relative to the International Prototype Kllogram, or as the mass of its metallic substance plus the mass of the alr and water vapor absorbed upon ita surface under atandard conditions? The difference amounts to about 45 $\mu \mathrm{g}$ in the case of a platinum-iridlum standard kilogram, and bacomes critical In the cane of 500 mg standards. Themace of n mase atandard 18 , therefnre, spocited in manourement selemes to be the mass of the metallio substance ut the standardi flus the mass of the average volume of alt absorbed upon its surlace under stendard conditions. Definitiou winn "true value" of the mass of a mass standard, and afortion, of tha difforance in mase of two mase standards 15 , therefore, a vaiy eumplex: matter.
W. Eriwards Deming uses the expression "preferred procedure" ar what we have termed an "exemplar method," ana vary eagely remark that "a preferred procedure is distingulshed by the fact that it supposedly gives or would give results nearest to what ars needed for a partcular end; and also by the fact that It in more expentive or more time consuming, or even impossible to carry out," adding that "as a preferred prooodure is
always subljeit to modifleation or obsolescence, we are forced tu conclude that nelther the accuracy nor the blas of any procedure can ever be known in a logloal sannes" [Deming 1950, Dp, 15-17.]

It should be evident from the foregolng that the "true value" of the magnitude of some property of a thing or syitem cannot be defined with complete absolule axaotitude.

As Casslus J. Keyser has remarked, "Absolute oertainty le a privilege of uneducateo minds-and fanation, It is, for sutentific folk, an unattalnable ldeal." Keyser 1922, p. 120. The degree of refinement to which one will or ought to go in a partiaular inatance will depend on the uses for whien knowledge of the magnitude of the property concerned in neaded. The "true value" of the length of a plece of cloth in everyday commeroe is certainly a fuzzy sonoept. "Certainly we are not golng to epecify that the oloth shall he measured while suapanded horizontaily under a tomsion of x pounds, at on arnblent temperature of y degraes and a relative humidity of a parcent" [simon 1946, p. 654]. On the other hand, a moderate degree of refinement ts necessary in defiring the "trus length" and "true width" of the recoseed uise In a window ash to which a pane of glaes in to be fitted. Conaiderably greater refinement le needed in tue defintition of the "truc value" of the langth of a page blook, of the mall of a mass mandard or of the frequncy of a furjisenny mandard-and in the lant mentionad case there in not today, i understand, complete agreement among axperta on the mattor.

Indeed, as is evident from the foregolng, the "true talue" of the magntudet we particular quantity is Intimately linked to the purponen for which a valua if the magnitude of this quantity la needed, and it e "true value" rannet, in the final enalysin, be dusiugu maningfully and useful!' in taolation from these neads. Theiefore, ac this fat beootina more widely reoognized in selence and angineering, I hope that the traditional term "true value" will be cliscardea in measurement theory and practice, and replaced by nome inoll.
appropisate term such as "target valua" ${ }^{6}$ that oonveys the idea of being the value that one would like to oblaln for the purpose in hand, without any Im plloation that it is some sort of permanent constant preexisting and transcendIng any use that we may have for it. I have rutained the traditional expression "true value" in the sequel because of te greater familarity but shall always maan by it the relevant "target valua."

d. Concepta of the Prectation and Accuraoy of a Mousurament Procens

By the preglalon of a measurement procase we mean the degree of mutual agreement characteristic of independent mensurements of a aingle quantity ylelded by repeated applications of the proceme undor apeoifind conditiona; and by its sccuracy the degree of agreament of such measuramente with the true value of the magnitude of the quantity concerned. in other words, the ageuracy of a moasurement procese refare to, and le determined $k y$ the degree of conformity to the truth that in characteristio of indopendent measuremente of a single quantity produced (or producible) by the repeated applioutions of the process under upeolfied conditiona; whereas It preainen rufera tolely to, and in dutormined solely by the degree of conformity pencheother charactertutio of suoh measuremente, Irraspoctive of whether they tand to be close or far from the liuth. Thus, manuragy has to do with glomenemite the

[^11]Iruth; rriolulon only with glongonastogether.
This dietinction between the meaninga of the termn "accuracy" and preasion" as applied to measurment prooseses and measuring Inatrument is conalstent with the etymologionl roote of these worda. "Etymologically the term 'agcurate' has a Latin origin meaning 'to take paina with' and refers to the cara bestowed upon a human affort to make such effort what It ought to be, and 'sucuracy' in osmmon dictionary parlance implies freedom from mistakes or axact conformity to truth. 'Prwalme,' on the other hand, has its orlyin in a term meaniny 'cutoff, brief, concles'; and 'prodision' is eupposed to imply the property of determinate limitations or being exactly and sherply dafined." Shawhart 1939, p. 124. Thum one can proparly apeak of a national, state, or loea! law as baing "pradse," but not aa baing "accurate"-ato what truth cen it conform? On the other hand, if one apore of a partlouler translation as being "accurata" this would imply a high degrae of fidelity to the orlginal "attained by the exercise ot aare." Wherean, to speak of it as being "prealse," would Imply marely that it is unamblguous, without indlcating whather it le or is nut correct.?

In spite of the distinot difference betwean the etymological meaninge of the torms "acoursoy" and "prechalon," they ara greated as mynonyine in many standard diationarion; and Murrian-Wabater [1942], after drawing the helptul diatinationi quoted in the foragoling footnote, pitmptly topples the intucture so anrafully built by adding "sorupulous axactnene" at an altarnative meaning of "preolse." Consoquently it le not surprising that "Therc ate ; cobobly few word an loosely used by actentintw as pregilion and
 writinge." [Sohrock 1950, n. 10.]

[^12]Cll the other hand, as Shewhart has remarkad;
"Caraful writers in the theory of errors, of course, have alwaya insisted that accura oy lnvalves in some way or other the difference between what is observed and what is true, whereas precision involves the concept of reproducibility of what is ubserved. Thus Lawe, writing on alectrigal meanurement:, Eayw ${ }^{8}$ 'Every experimenter muat form his own eutimate of the acouraoy, or approach to the absolute truth obtained by the use of his Instrumenta and processes of measurement. He must remember that a high pracimion, or agremment of tho remulte among thamalvas, is rio indioation that the quantity under measurement has beon accurately determined.' An another example we may take the followigg oomment from a reoent and authortative treatise on chemical analysisi 'The analyat enould form the habit of entimating the probable accura of of him work. It is a common miatake to confure adecuracy and predision. Accuracy la a measure of the degree of correctness. Preolstion is a muasure of reproducibility in the hands of a glven operator.'" [Shewhart 1939, Dp, 124-125.]

More recently, Lundell, Hoffman, and thelr asoocintes at the National Buraau of Standards have re-emphasized the importance of the elatinotion between "prealalon" and "acoursay":
"In discussiona of chamical analysis, the terms prectelon and accuracy mre often used Interchangeably and thersfore incorractly, for precislon is a measure of raproducibility, whereas adouracy la measure of corractnome. The analyat is vitally interested in beth, for his reaulic must be aufferently ancurate for the purpose in mind, and he cannot aohieve doouracy withnur piselation, evpecially slnce the reportud result in often basid in one determination andiately on more :'.ain thre daterminalions. The roolplent of the analyain is lutarpated in acivisoy mione, and only in acouracy afticient for Hi purposen." Hillebrand at al., I953, p. 3.]
© Frank A. Lown, Flectrlcal Measuramente, p. 593 (Mociraw Hill, Now York, N. Y., 1917).
${ }^{9}$ G, E. F, Lundell and J, I, Hoffman, Outlines of Methode of Chemical Analyals, p. 220 (John Wiley and Sona, Now York, N. Y, 1938).

It is mont unfortunate that in everyday pariance we often apeak of "acouracy and preciston," because accupagy requires preselion, but precibion. does not neonsarlly imply aceurecy.
"It ia, in tact, Interesting to cimpare the measurement aituation with that of a marksman aiming al a target. We would oull him a precise markaman if, in ifring a sequence of runade, he were able to place all hie shote in a rather small clrcle on tur tarest. Any other rifleman unable to group his shots in auch a mall circle would naturally be regarded as less prealue. Must paople would aocupt this charactarization wnether elther rifloman hita the bull's-aye or not.
"Surely all would agree that if our man hits or nearly hite the bull'ueye on all vocasions, he mhould be alled an accurat markaman. Unheppily, he may be a vary predie merksman, but if hie rifie is out of adjustment, parhaps the emall oirule of ahote ls eentered at a point nome distanoe from the bull's-aye. In that oase wo might legard him as an inaocurate marksman. Perhapa we should say that he ia a potentlaliy acourate markeman firing with a iaulty rifie, but ipeaking eategurioally, we shquid haviy to any that the resulta were Inacourate." |Murphy 1961, D. 265.

It follown from what has been eald thus far that "if the preasions of two pooenses alo the name but the blasen are differunt, the process of Finather blad may be naid to have higher accuracy while if tho blanela are both negligible, the procesin of highar precision may be asid to have highor socurngy." Unfortunately, "in other casea auch a mimple domparison may be iminiastble." [ASTM 1961, n , 1760.$]$

To fully appronate the preceding atatament-and especially the ditfldult:/ af comparing accuracien in some vames-lat un consider figure: I and 2, If winch the orlgins of the males correspond to the true value of t. .wi the quentity measured, so that the curven shown may be regarded an depleting the dietributions of errers of the measuremente yielded by a meleotion of diftermit measurement provesses. Consider flrat the three symmetrical dietributions in tho top half of figure 1 . All thrae of theme diatributionw are centerad on zero, so that these measuremont processas hava no blac, it is uvidont lhat tha procese of highent prectation, 0, la aleo the process of higheat arcuraoyl and that the plocese of lanat prodetion, n, is almo tho process of leest ancuracy, since aurve t in the upper half of figure land curve d in the lower half have identical size and thape, thm correapending procesues have the sane prealition but procese b is without blas, whersan

procens dhas a poattive blas of two units, so that process bis olvarly the moro gefyinte. (In particular we may note that whereas it is practioally certain that procese b will not yiuld a masaremant doviating from the truth by more than two units, exactly one-hall of the measilinments yiulded by process d will devinte from the truth by thie muth or moru.) Slmilar remarka olearly apply to processes 0 and ecorreaponding to ourve o in the upper half and ourve e in the lowar half of figure 1 , but in this instanoe the mupariorlty of procose c relotive to procesie with respect to acuyragy is uvan more marked. (In particular, wa may note that whereas it is prectically certaln that no moagurement ylelded by procesen c will deviate from the truth by as much as one unit, it is practioally carteln that every meaguremont ylelded by produls o will doviate from the truth by more than one unit.)

Eigure 2, which to essentially the deme as cne given by Ganeral simon [1946, fig. 1], portray thres meanurment proceswes A, B, and O. differing from ach bther with reapact to both prectsion and bian. Comparison of these three procesues with reapeot to acquraoy if not quite no eimple. Firmt, it is evident that, although procene A has gruatur prweision than proEuna B, progess B in the more accurate of the two. (In partioular, it in practically certein that none of the measuramente ylolded by procens a will deviate from the truth by morn than 4 unita, whareas 30 paroant of the maaniremente drem procesa A will deviato from tho truth by four unlte or more.) Noxt, in procesn B more (or loses) gegurate than procinn C whioh is ynblarnd, jut han a very low greahion? Procenim B has a poaltiva blay, of two unity, but has aufflolently greator precpion than procese C to alac have ureater sgerimey than procesi O. (While approximately 30 percent of tho measurement. ylalded by prooest O will deviate from the truth by mure than two unis (in elthar dirootion). Alit ywisetly 30 parepit of the meanuramonty yielded by procees B will deviate froin the tiath fy two unite or more (in the positive diraction only), it aannot be lgriured that about 10 percert of the maasuramente yloided by procans C will deviate from the truth by four unin" ar more wherean it In practloally certain that no measurement ylolded by brom ceos B will deviato from the trith by an much an four unite.) Bimalarly, it may be argued thot procene A, in apite of its biaw, hay grmater asefuragy then poosos: O "uince the range in poasuremente of 0 mpre then oovers the worrasponaing rangen of A or $B . "$ Eimion 1948, $p, 654$.$] While thio$ onnclusiun that of the throe manaurgmunt procesmen doploten in fiquren 2 , process O han the least mosuragy, may not be entirely acoeptable to some pormons, it is conmistent with Gausis dictum, in a letter to F. W, Bessel, to the offeot that maximiaing the probability of a aro arror la lewe important than minimizing the "avarage" injurluan efteote of errerm in general. [O.F. Gauna, 1839, pp. 146-147.]

Before leaving figure 2, we must not fall to join General Simon in remarking that "the average of a large number of measurements from process C will be more accurate than a simliar average from elther A or B" ${ }^{\text {S }}$ Simon 1946, p. 654]. This point is actually illustiated in our figure $1:$ the three curves in the top half of figure 1 portray the distributions of errors of single measurements (curve a) of averages of 12 measurements (curve b) and averages of 144 mea surements (curve c) from process C; and curves d and e in the lower half show the distributions of errors of individual measurements (curve d), and of averages of 12 measurements (curve e.) from process B, respectively, It is evident that averages of 12 measurements from process C (curve b in upper portion of fig. 1) have not on!y greater accuracy than Individual measurements from process B (curve d in lower portion of the ficure), but also greater accuracy than averages of 12 measurements from process B (curve e in lower portion).

On the other hand, it is obvious that, if our cholce is between Individual measurements from process C (curve a) and averages of 12 measurements from process B (curve e), the latter will clearly provide greater accuracy. In brief, a procedure with a small bias and a high precision can be more accurate than an unblased procedure of low precision. It is important to realize this, for in practical life it is often far better to always be quite close to the true value than to deviate all over the place in individual cases: but strictly correct "on the average," like the duck hatiter who put one swarm of shot ahead of the duck, and one swarm behind, lost his quarry, but had the dubious satisfaction of knowing that in theory he had hit it "on the average." This we must remember: in practical life we rarely make a very large number \therefore measurements of a given type--we can't wait to be right on the rverage---ur measurements must ständ up in individual cases 25 viton as possible.

Desplte the foregolnc, freeaom from blas, that is, freadom from "large" hias, is a desirable characterlstic of measurement process. After aii $\cdots=$ mint our medsurements to yield us a determination that we can use as a substitute for the unknown value of a particular magnitude whose vaiue we need for some purpose--we don't want a determination of the value of some etier magnitude whose relation to the one we need is indefinitely knowr.

In view of the difficulty of comparing with respect to accuracy measurement processes that differ both in blas and precision, so:ne writers have elected to take the easy way out by defining "accuracy" to be equivalent to absence of blas, saying that two measurement processes having different btases:, the process of smoller bias is the more "accurate" regardless of the
relation of their rampeative pruciglons, (See, for axample, Bame [1953, p. 4], Ostle [1354, P. 4 , and Schenok 1961, P. 4, P. 14].) While the adoption of the concept of "acouracy" certhinty maken the diecuision of "aoouraoy" and "precision" simpler for the authors conoerned, this practioe le contrary to the prinolple of "conservation of linguistlo tesources," as R. B. Murohy pute $1 t$, adding " $f t$ seoma to mo that the terms 'blea' and 'siatemetio orror' are adequate to cover the situation with whioh they are ooncierned. If, neverthelosa, we add the term 'accuracy' io apply again in this rantrioted sense, we are left wordearmat the moment at leaut--when it cumen to the idea of over-all error. From the puint of vinw of the need for term it is hard o defend the viow that asouracy should coneern itself solely with blas... and there overwhoiming ovidenoe that we nood a term at leant for the Eoncrapt of ovor-all error." Murphy 1861, Pp. 265-286.]

3.4. Mathematical Specification of tha Pictiginn of a Masarament Proange.

a. Simpla Statiatloal Control

Let us now consider the mathematical definition of the grecinion of a measurement procoss under a fixed at of olroumstanoen. By dafinition, line, mortalon of a moasurwment procesa has to do with the "olonenasa togothmr" that in typical of sucoenalve masurements of a mingle quantity genmrater by applications of the precesa undar theae fixed oonditions. Ctherw wise uxprased, it has to do with the typidal "alosemesa tonather" of the two liditvidual measuremente conatituting an erbitrary pair, if the expres-
 ganerthed by ropeated epplivallon of the prooens to the moseuramient of a shogle quantity mum be homogenonis in some esone. Tharofors, for the inoment, let usasame that the masurement process la in a wtale of mimple..
 sequencon (1), (1-1, 2, 3, ...), generated by the procesu may all be lum garden as "obeervad" valuan of Independent Identioally diutributed pindom variablas.

Juat an we may regard oach individual meagurement $x_{i j}$ in a partioular sequance (1) as striving to oxprose the value of the llmiting moan μ, , wo also wa may regard eatindividial differenoe $x_{1 j}-x_{i k}, i \neq k$, an atriving to express the oharacteristic aprend between an arbitray palr uf mesuremants, x^{\prime} and $x^{\prime \prime}$, say. For this purpose the migne of thase differenowa are claarly irrelevant. Therefore, by analogy with our use of a anquence of
cumulative arithmetic means, (2), to achievs a mathematical formulation of the concent of a limiting mean assoclated with messurement of a given quantity by a particular incasurament process, let ua adopt the sequance of cumu-
 arnong the first n measurements of a particular sequence (1), for oxample, the sequence
(3)

as the basis of a matuematical cormulation of the concept of the prectation of a measurement process.

The necessary and suffictet:c condition for almost sure nonvergence of the sequance (3) is a finite limit, way Δ^{2}. Is that the Strong Law ci Large Numbers be applicabla to the sequence.

$$
\begin{equation*}
x_{11}^{2}, v_{12}^{2}, \ldots, x_{1,}^{2} \ldots \tag{4}
\end{equation*}
$$

consisting of the aqueres of the correspunding terms if the original affuence ?1). (Bounderiness of the x 's in addition to statistical control is, for example, Miffelent to ensure that the sequance (4) will also obey the Strond Law ui Large Numhera.) if tite stiong Law of Lorge Numbern ! E uppillcable to the sequence of iuluares (4), and if the mesasurement process is in a state of stmple statiatical control, then the cumulabive witimetic means of the squares of the meacuremerits, thet is, the sequence

$$
\begin{equation*}
\left(\overline{x^{2}}\right)_{i n}=\sum_{j=1}^{n} x_{i j}^{2} / n, \tag{5}
\end{equation*}
$$

$$
(n=1,2, \ldots),
$$

will almost surely tend to a 1 mlt , say S , the magnitit to of which will depend on the quantity measured, the measurement procese involved, but not on the "occasion" (Identified by the subscript "i"). By virtua of an algebraic identity that is well known to students of mathematical inequalities, namely,

$$
\begin{equation*}
n \sum_{j=1}^{1} a_{j}^{2}-\left(\sum_{j=1}^{n} a_{j}\right)^{2}=\frac{1}{2} \sum_{j=1}^{n} \sum_{k=1}^{n}\left(a_{j}-a_{k}\right)^{2} \tag{6}
\end{equation*}
$$

and of the fact that the right-hand side of (6) Is always positive except when the a's are all equal, it is easily seen, on dividing both alden of (6) by n^{2}, that S wlll ilways exceed $1 h^{2}$, the aquare of the (almost sure) IImit of the sequence (2), so that we may write $s=\mu^{2}+\sigma^{2}$, with $\sigma^{2}>0$. fiurthermore, applying tile algebraic identity (6) in reverse to the right-hand side of (3) yields the following relationahip between the corresponding lerma of sequences (3), (5), and (1):

$$
\begin{equation*}
\left.\overline{\left(d^{2}\right.}\right)_{\ln }=2\left(\frac{n}{n-1}\right\}\left\{\left(\bar{x}^{2}\right)_{\ln }-\overline{\left(x_{\ln }\right)^{2}}\right\}>0, \quad(n \geq 2) \tag{7}
\end{equation*}
$$

Hence, if a measurement process is in a mtate of simple statietioal control and the Strong Law of Large Numbers is applicable to a sequence of squared Mr:arurementi (4), then the sequence (d^{2}) in defined by (3), will, in viow of (7), tend almost surely to a finite limit $\Delta^{2}=2 \sigma^{2}$, Thus wo soe that σ^{2}. termed the veriance of the meesurement process, is the misinn value of onehalf of the aquared difference between two arbitrary maserroments x ' and :n", that 13 ,

$$
\begin{equation*}
\sigma^{2}=\frac{1}{2} \overline{\left(x \cdot x x^{\prime \prime}\right)^{2}} \tag{8}
\end{equation*}
$$

and hovides an indication of the Lmprealeion of the proceas. The equare roo: of the varlance, σ, is tarmed the tandard deviation of the procenc.

It is matural, therefore, on the basis of a single gequenca of it meassurements of a single quantity, to take

$$
\begin{equation*}
s^{2} \equiv \frac{1}{2}\left(d^{2}\right)=\frac{1}{n(n-1)} \sum_{j=1}^{n=1} \sum_{k=j+1}^{n}\left(x_{j}-x_{k}\right)^{2}=\frac{\sum_{1}^{n}\left(x_{j} \cdots \bar{x}\right)^{2}}{n-1} \tag{9}
\end{equation*}
$$

as the mampla estimate of the underlying variance σ^{2}; and the square root, s, as the sample estimets of $\sigma^{\circ} .10$

From (9), since $\bar{x} a \ddot{x}_{n}$ terdy (almost gurely) to μ It (n ovident that σ^{2} le also the meen value of the squared deviations of individualmeparements from the limiting mean μ of the process, that is $\left.\sigma^{2} \mathrm{~m}(x-\mu)\right)^{2}$, so that the standard deviation σ may be regarded, in the language of mechanion, as the radius of gyration of the distribution of all ponsible measuremente \underline{x} about μ, the limiting mean of the process.

Remerk: Mathomatically the foresoln.s discuasion can be carried out equally well in terms of the absolute (unmigned) values of the differences Instead of in terma of their equares. Such an approsin is, mathematicelly speaking, somawhat more general in that it requirua for its validity meraly that the Strong Law of Large Numbers be applloable to the zequence $\left|x_{11}\right|,\left|x_{12}\right| \ldots, x_{1 \mid} \mid \ldots$ of absolute yalun of the $x_{1 j}$ rather than to the sequancs (4) of their equares. From the practioal viewpoint, however, this greater generality is entirely Illusory, and tis mathemation of absolute values of variables is always more cumbersome than the mathematice of thair squares. For example, the arithmetio mean of the absolute values of the $n(n-1) / 2$ diftinot differences amony in measuremente, l.e..

$$
\begin{equation*}
T_{n}=\frac{2}{n(n-1)} \sum_{j=1}^{n}=1 \sum_{k=1+1}^{n}\left|x_{j}-x_{k}\right| \tag{10}
\end{equation*}
$$

is not expressible as a multiply of the suin at the niosolute daviations of the meanurement from their mean $\sum\left|x_{1}-X\right|$, and for inrge values of n the
$\mathbb{N}_{\text {Fiom the algebrate identity (6), it is evident that the practiae !: noma eireles }}$ of dividing $\sum_{j}^{n}(x-x)^{2}$ by a. Instead of $n-1$, a mounte to includiry waoh of the difilnct squarsd differences $\left(x_{j}-x_{k}\right)^{2}, j \notin k$, twice in the summation, together with η identically mero terms $\left(x_{j}-x_{k}\right)^{2}, j=k_{1}$ wach included once, and then dividing by n^{2}, the total number of terms (real and phantem) involved. Viewed in this light it would seem that division by $n-1$ ls more reasonable, in thet the inclumion of identially zero terme in the formulation of a mesure of yarlaticill ls a bit unrenscnabla.
evaluation of (10) presente computational difficulties. The approach in torma of the absolute velues of the differences also has the disadventage from the practical viewpoint that, as wo thall see in a moment, eomponintile of dmpreclagon are additive in terms of aquaiod quantitiea such as σ^{2}, so that in this sense the yariance σ^{2} is a more appropriate masaure of the dieperiton of the x^{\prime} about thoir limiting mean μ than is oitself.

Ordinarliy, the magnituda of σ^{2} (and, henee, of σ), unllke that of μ, depends only on the measurement process concerned and the circumstancen under which it is applied, and not almo on the magnitude of the quantity measured-otherwise we could not mpeak of a measuremunt procese having a variance, or a itandard deviation.

Since the preplaten $i f$ the procans obviously decreauns as the valuu of σ (or, of σ^{2}) inureases, and vige varse, it is necessary to take mome invarae function of σ as a measure of the prectalon of prusese. To conform with traditional unage it is necessary to regard the prodelon of a measurement procene as inverach proportional to itn gtandard deyiation σ whioh I., thereiore, a measure of the Impreghan of the progess. Thum, Gause, writing in 1809, remarked that his oonstent $h=1 / \sigma \sqrt{2}$ oould properly be considerest to be a measure of the preaision of the observations beonuse if, for exampio h ' = $2 h$, that 1s, if $\mathcal{O}^{\prime \prime}=1 / 2 \sigma$, then "a double urror can be commitiod in the former bystem with the same faclity as a bingle eiror In the intte, In whish dasa, actording to the common way of apaaking, a double degren of prealuion la atributed to the latter observatione."11
onhe fact of the matter is, however, thet
". . . difterent fielda have jrirtioularly faverite way of expresalng predelion. Mont of these meanures are multiples of the atandard deviation; It is nut always olear which muitiple is meant....

[^13]"Some conider tt unfortunate that preolston should be atated as a multipie of atandard deviation, aince precision should inereann as atandard deviation decresese. Indeed, it would be more exact to say that atandard deviation is a measure of imprection. However, aenaltivity, an we have previously indlaated, euffers irom thi logical Inversion without hurt. Perhape we oan best avold this by saying that standard deviation In an Indox of preoision. The habit of eaying 'The preaision is ...' Is deeply rooted, and there would be understandable impatience with the notion that atandard deviation should be numerically Invaried before being quoted in a atatemant of proetsion." [Murphy 1961, Pp. 266-267.]

In consequence the ASTM has, at laast tentatively, taken the following positlon:
"The numarical value of any commonly used Index of prealstan will be amaller the more closely bunched ars the Individual measurements of a prodes. An more aauses are added to the aystem, the greater the numesional value of the index of precialon will ordinarily become. If the sama indax of precision is uned on two different processes based on the same method or intercied to messure the same physical ploperty, the procese that has the smaller value of the index of preetelon ia cald to have higher precticion. Thus, although the more usulal indexes of prealelon are really direct masurva of imprealsion, thia invaration of referenoe has been firmly establl thad by cuntom. The value of the seleated index of precteion of a process if refornad to almplyan lte pruclation or lte stated prectaion." [A8TM 1961, p. 1759.]

As we have remarked previously, in practical work the ond result of masauring ame quantity or callbrating an instrument for a standard rareiy cunsists of a angle mensuremant of this quantity of intersat, More often It is some kind at avernge us adusted value, for axample, the arthmatic mean of a number of indepanuent hicaaurementa of the quantity nt interabt. Last us, therefore, sonsider the atatistical properties of a eequence oi mish-: tivilc meane of succesalve nonoverlapping groupi of n measuramente ash from a asquanoe (1) of individual measuremente yielded by a meagurement piocest on a partioular occasion. In other worde, let us consider the mequence

$$
\begin{equation*}
\bar{x}_{i 1}, \bar{x}_{12}, \ldots, \bar{x}_{i m}, \ldots \tag{IL}
\end{equation*}
$$

of diatinct aritnmetlo means of n masurements each

$$
\bar{x}_{1 m}=\frac{1}{n} \sum_{j=(n-1) n+1}^{m n} x_{1 j} \quad(m=1,2, \ldots)
$$

derived from a mequence (I) of individual measurements of a singla quantity produced, or at leant conceptually produolble, by the meanurement process concerned on, say, the th ocoasion. If the "underlying measurement process" giving risu to the individusl measurements $x_{i j}$ is in a state of simple atatistical control, then the "oxtended measurement process" giving riae to the averages $\bar{x}_{\text {Im }}$ will also be in a atate of simple ntatistical control. Consequently, the mathematical analysis of section 3.2, but with the avarages $\bar{x}_{\text {im }}$ in place of the individual measuremente $x_{i j}$, will oarry through without orner ohange. Let $\mu_{\bar{x}}$ denote the limiting moan thus assoolated with the "oxtended measurement process" glving rlse to the avarages $\boldsymbol{K}_{\text {Im }}$ as lts "individual" measuremente. Since the cumulative arithmetic mean of the first m terme of the sequeno (11) is the mame at the oumulative arithmatio mean of the first mn terme of the saquanoe (1) of individual measuremente, it is clear that the limiting mean, A_{y} ansoolated with the sequence of averages (11) Is the wame as the limiting mean assopiated with the original eequanoe (1) of individual measuremente, that in.

$$
\begin{equation*}
\mu-\mu_{x}=\mu \tag{13}
\end{equation*}
$$

Similerly, the mathematical analyaie at the baginning of the prasent suetion, but with the Individual measuraments $x_{j 1}$ in (3) thru (9), replaced by the avarages $\bar{x}_{1 m}$, oarries through oseantialiy as belors. IJet, σ^{2} denote the varlanoe thue aseociatiod vith the "extended meanurement procese" giving rime to the suqualace of averizos (11). As In the cumo of the variances σ^{2} of Individual measurnmente, $k=$ almo may r_{2}^{2} be intarproted at the overall mean value of the aquaried duviation of "Inalvidua!" averages $\overline{\text { i }}$ from tho llmiting moan μ_{8} of the "extended procens," that la,

$$
\begin{equation*}
\sigma_{\bar{\eta}}^{2}=\overline{\left(\bar{x}-\mu_{X}\right)^{2}}=\overline{\left(\bar{x}-\mu^{1}\right.} \tag{14}
\end{equation*}
$$

By virtue of the algebrale identity

$$
\begin{align*}
& (\bar{x}-\mu)^{2}-\left[\frac{1}{n} \sum_{j=1}^{n} x_{j}-\mu\right]^{2}-\left[\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\mu\right)\right]^{2} \tag{15}\\
= & \frac{1}{n^{2}}\left[\sum_{j=1}^{n}\left(x_{j}-\mu\right)^{2}+2 \sum_{j=1}^{n=1} \sum_{k=j+1}^{n}\left(x_{j}-\mu\right)\left(x_{k}-\mu\right)\right]
\end{align*}
$$

it is readlly wean that

$$
\begin{equation*}
\sigma_{-}^{2}=\frac{\sigma_{x}^{2}}{n} \cdot \frac{\sigma^{2}}{n} \tag{16}
\end{equation*}
$$

(The maan valua of a mum is always tho aum of the mean valuas of Ily individual torme, so that the overall man value of the ifret aummation Inside the brackots in the la at line of (1s) Is eimply $n \sigma_{x}^{2}$. Furthermore, In the cane of independent identleally dietributed measuremente, the overall mean value of the term lnvolving the double summation 1 © 0.)

Since, from (18), $\sigma_{x}=\sigma / \sqrt{n}$, it il mann that the predsion of
 Hence the arithmetio mean of 4 independent measuremonts nas soubla, the preclaton of a aingle mimasurement; the mean of if indupendent madauramenta, thrice the precielon of a single measurement; and 122 Independent mann"tm
 in prectesen ever a anigle manaurement. (But te ayk for a 12 -zold Ineroase In proolsion is to auk for e "ary conadarable imprevemant indaed, as oan be ween from a comparisoin of curves a and a in the tos half of fiv. i)

Tn eerve an a reminder of the diatinction between the standard devia. rion ot an Individual measurainent and the atandard daviallun di a mean \bar{x}, It is oustomary to rafor to σ a the "ntandart davidifon" of a mingle ineane. uremunt x, and to σx as the "etandard error " of the (arithmatiri) mean \bar{x}.

b. Within-Ocasaionn Control

In the foregoing it has been asmumed that the individual measurements comprising the esequances (1) corresponding to the resoeotlve "oueasions," ($i-1,2, \ldots$, could 311 be regarded as "observed valuen" of indejendent lderitically dietributed random variables, that is, that the maseurement process concerned was in a atate of simple atatiatical control. When auch is the case then any subsot of n measurement is atriotly comparable to any other aubset of n moasurements, and any two suoh aubnets can be combined and regarded valudly as a eingle net of 27 measurements. Unfortunately. an Student's comment quoted on page 484 abova olearly Implies, wah complete homogenalty of meaburement ia reroly ll ever met in practice. More often the situalion is as desoribed by Sir George Biddell Alrly, Britiah Astronomer Royal 1835-1881, In (to my knowladge) the firet elemantary book on the theory of arrori and combination of obiervations in the Engliah language $[$ Alry 1361, P. 92]'
"When shoceselve sarias of observations ore made, day aftor day, of the eame measurable quantlty, which ta olther Invariable... or admiti of belig roduced by ealculation to an Invariable quantity...i and when svery known Inatrunastal correotion has been applied. . . ntill it will sometimes be found that the result obtained on one day differs from the result obtained on allotiur day by a larger quantity than sould have bane antiolpatad. The lifs thiun presents itsoli, that possibly there has been on mome one day, or on evary day, some eause, speolal to the day, whith hal prorluced a goone. stant Errey in the meamuren of that day."

Sir Geurge, however, dauthare upehist jumping to eonoluslone on the basin of only faw obsarvations:
"The axistence of a dally constant error. . . ought not to be lightly assumed. Whan mbeervation are made on only (wo or three deys, and tho number or obearvation: on eavi, day is not extrumely great, lie mora fact, of aocordance on each day and dispordance trom day to day, ily not sulficlent to prove a constant orror. And we should intusject here that under such ciruumatanoes apparent ovar-all adcordance ie not mutticient to prove the absence of daliy conatant errors alther. The existance of an ecoordance analogous to a 'round of luok' in ordinary ohanges is auffaiently probable.... More extensive experionce, however, may give greater oonfldence to the assumptic. of conatant arrors....tirut, it ought, lil general to be atablished that there is poesiblitiy of error, constant on one dey but varying from day to day...." [Alry 1861, p. 93.$]$

Design of Experimenta

The most uneful atatiation toole for this purpase are the controlohart techniquas of the industrial quality control onginent. If In tuch a sitm wation, a nertes of measuremants obtalned by messurement of a single quantity a number of timse on ash of sevaral different daye or "occa aions" by a partionlar mas qurement procese is ploted in the torm of a gontrolenet forindividual ASTM 1981, Pp, 76.78, and pp. 101, 105], the Individual musaurementa mó plotted will be soen to consiat of "sections" Identifiable with the subiequenoes (1) oorrasporiding to the respective "oooastons," ($=1,2,3, \ldots$.$) , with the measureinents within sections palr-wise eloser$ togethar on the average then two mosaurementa one of whieh comer from ons maction and the other from another. Such a serias of measuramente is clearly "out of control." If now parallel \bar{x}-and R-aharte are construated from thene data, based on a caries of amples of aqual alse from whithin the raspective "nosastions" or "seotions" only, $1.0 .$, oxcluding means K and ranges R of any samples that "ntreadle" two oncontons, and the pointe on the resulting X -chart are elearly "out of control, " thon we may infor the exintence of daymby-day componanti of error, condant, perhaps, on one day, but varying trom day to day.

If pointa on the R-ohart conatruoted an desaribed are "out of oontrol" also, then the meanurament operation concerned ia in a completely unstable condition and oannot be desoribed valldly us a "moamurement process" at all. On the other hand, if the 8 -chart in "out of control," but the R-ohartia "118 control," then wo may regard the meanurement procesen as being in a state of withlo-ogeraloneogntrol. ("Lt Ia unally not safe to ennolude that a atrate of control exinte unleas the ploted points for at least 25 suocesalve whingoupi fall within the 3-algme control limite, in adition, If not me:". than 1 gut ot 35 bucceesbive peante, or not mare then 2 nist wi 100 , fall outside the 3 -plama control limut, a atate of wuliul may ordinarlly be anaumad to axiat." ABA $19580, p, 16$,]) in much a mituation wo pnatulate the axiatenve of (at least, concoptually) differont limitinit maana μ, for the icennctive

An unblased ostimate of the with-gegentions atanderd dovintion. $\sigma_{\text {.w }}$ cen be ohtalned, if denired, from the avirage lange R uised in constructing the R-chart, by means of the tormula

$$
\begin{equation*}
\text { unblased estimate of } \sigma_{w} m \pi / d_{2} \tag{17}
\end{equation*}
$$

where d_{2} is the factor given in the de column of table B_{2} of $\{189 \mathrm{M} 1981, \mathrm{p} .115]$ corresponding to the wample or subgroup siza n uned in coniztructing the R-chart.

Alternatively, if desliad, an unblamed oatimate of σ^{2} oan be obw talnad direotly from the maasuramente Involvad by means of whe formula

where x_{h} denctes the 1 保 masurmment and \dot{x}_{h} the mrithmotio man of the in mea murments of the hti mubroup, respotivaly, and k is the number of abo groupl involved In oonstruoting the R-chart.

o. Oomplex or Multistage Cantrol

Whon mexuuremont procese is not in atate of impla matistiond control that satiafies the oriterla of within-ocoa ions control, that le, when the ' x . shart (and control ohert for Individuals) are olearly "out of control," hut tha 25 or morn aubgroup ranges ploted on the R-ahari axhiblt oontrol, then it Is umually of importanoe to a soortaln vi'sther the measurement prooen e
 For thin purpose four or mora measurements from anh of at laest 25 difforent. oocsuluns will be needad. Takina one eample of n eudgesmive man moremente,

 moramyiments sonetruot oontrof ohart for theae "individualie" apd parallei 8-and R-charte an donoribed In (ASTM 10SL, Example i2, D. ICI, If the points plotted on thema three control ohartr uxhlbit control, then we "set firr the proment de $14^{\prime \prime}$ the measuremant prooest conoerned is In a tate of

 Aithple ataliftioal control with limiting maan μ and variane σ b b termed the betwengegagatens eomponent of variance.

If In ajoh a struation wa ware to form oumulative arithmatio meana wuch as (3) of the aquares of all distinet difforences betwan arbitrary pairs of masaurements from withing auh of the respective "ocositonm," then suoh cumulative arithmeties meana of squaral of diffurenoes would almost auraly tend to $2 \sigma_{w}^{2}$ In the limit as the number of pilra inoluded tonde to infinity, where σ^{2} In the "withla-oceualone variance" mentioned above in oonncotion with "within-oceselons oontrol." If, on the other hand we ware to form aimliar cumulative arithmatic maans of the squares of diffarances between arbitrary paira conmiating If each instance of one measurement from woh of two different efections, then ach a oumulatiya arthmatio mean of squared dilfurences would tend almont cortainly to $2\left(\sigma_{w}^{2}+\sigma_{b}^{3}\right)$ ie the number of "enoasions" rampled tende to infinity, where σ_{b}^{2} is the above mentionad "betwen-ogosalons varianos," l.e., the variande of the limiting mana $\mu \cdot \mathrm{for}$ the respective "ocnamions" about their limiting maan μ.

If In utillaing meaturomenta from moenuroment procest that in woh a atate of complex atabletieal control, one forme an averace \bar{X}_{N} that Ie the arithmetio mean of a total of $N=k n$ measurements, compoted of n measurement: from each of k different "ooessionn," theni the varianee of X_{N} will ba

$$
\begin{equation*}
\alpha_{x_{N}}^{2}=\overline{\left(x_{N}-\mu\right)^{2}}-\frac{1}{k}\left(\sigma_{b}^{2}+\frac{\sigma^{2}}{n}\right) \tag{18}
\end{equation*}
$$

" $\operatorname{Iom}(19)$ It is olear that, If σ_{b}^{2} is at all sinable compared to σ_{W}^{2}, then, fur tixud $N=k n, \bar{x}_{N}$ will have groator proainlon ana dplgruination of wh. when based on large numburk of ditfnrant vagantons, with only a mall number n at masurumanta from ach vecamion. Finally, setting $k m a$, Wd sise that the mean x_{1} of n measurements all teken on the same oecesivin:

 the limiting mean for the fth odcasion, its variarice is only σ ($/ \mathrm{N}$. It other words, the "atandard orror" of a mean auch an \mathbf{X}_{1} in not uniquo, hut depanda on the purpose for which it is to be uned.

An unblased atimate of the overall etanderd deviation σ_{n}; of the arlthmetic mean of n meamuramente taken on a aingle "oocasion" may ba obtained by the procedure of formula (17) above, If denired, using the average range T employed in constructing the Reohart oorresponding to the groupe of avaragen \bar{x} / n.

Alternatively, en unblaned catinate of the overall variance of a dan be obtained directly frein the micant x_{1} used in construeting the x-ohart, by using the formula

$$
\begin{equation*}
=\frac{2}{x} \frac{\sum_{\operatorname{lol}}^{k}(x-x)^{2}}{k-1} \tag{20}
\end{equation*}
$$

where X_{f} Is the arithmetic mosh of the n eypaesalve obervationa from the ith "occamion," (1-1,2, . ., k) and k in the arthmetle mean ot these k means.

The foregoling concept of a atate of gomples or multiningentetintigal gontrol van be extondad readily to more complex truly "multitage" eituatione in uriving thres or more "lavala" or random varlation.

Firelly, it ie evident from the foregoing that whan a mas aurmment proceas In In atate of complex or multiatage atatiatioal nuntrol, then the difiarance betwuen two individual measurements for the arithmatio meane of n meusuramente) corresponiling to two ditierant "ocou alune" wll inglude the differance μ_{1} - μ_{1}, uetwaen this Umiting muama ceiresponding to the two particular occeasione involved. Lu so far an auch a comparison la regardadan a unitive individual cane, the differenoe $\mu_{1}-\mu_{1}$, In fixed consunt and henue saytematio arror affecting this eomparison. On the other hand, if the nifference batween thees two individual maamuremente for thase two aifthmotle mana) Ia regariad only as a typloal Instanon of the butoonne that might be yloldad by the enme meamurement prociea an ather patrin of onomainnh, then the difterence μ, μ_{1}^{\prime} niay be ragarded an a random componari' having a mero moan and varlunce $2 \sigma \frac{g}{G}$.

If gooe without saying, of oourme, that it a oontrol-chart analyaia of the type deseriksed above ta undertaken for the nurpose of ascertaining whether the procese is in a atate of complex control, but the pointe plotted on the 8 -chart are clearly "out of control," then the meanuremant procuan
concernad cannot be rejardad an atatiationally atable from oceation to occaalon, and hould be uned only for gomparatiye masarement within-ocacalone. Even when wuch a measuramont procese is used solaly for comparative mamyurement within "occeatuns," It need to be ahown that comparative maseurements or thed differengen are in a state of (aimple or complex) atatistical control, If this meadurement proouna is to be genarally valid in any absolute senve. Thus In the oase of the thermometer oallbration procedure mentioned in section 2.4 above, one neede to examino the remulta of repeated measuremant, occasion after occasion, of the difference between two elandard thermomaters \mathbf{S}_{1} and \mathbf{S}_{2} of proven atability in order to determine whetiser the procese is or la not in a atate of uimple or complax etatiatical control.
3.5. Duticuity of Charactarining tha Agguragy of a Moanuremnat
Frogail. Unfortunatoly, thare does not exlat any aingle comprahenalve
menabre of the aocuracy (or Inseobraey) of a masarement procena (analogous
to the atandard daviation as a measure of itm impratsion) that is really
satinfactory. Thia diffloulty eteme from the fact that "aeouraoy," likg
"true Valun," meems to be reasonably definite eonoept on firat thought,
but as soor au one attempts to apsolfy exactly what one maans by "ecoursoy"
In a pertloular eltuation, the concept bacomes lllusivel and in attempting
to renolve the mattor one comes face to faen, nooner or later, with the
queation "Acourate" for what purponis?

Gausi, in hie seoond development (182)-1423) of tho Method of Least Squaren clearly recognized the diffloulty of cheracterizing marply tha "acourady" of any partioular procedure:
"Qutppe quasatio ranc par rel naturam allquid vaal implluab, quod
 neque demonmerationibus mithematicin decicienda, aed libero tantum arbitrin rimittende, "h2 Gausis 102\%, Part I, Art. 6.]

[^14]Gaums himeslf propongd loc. alt, that tho man squarearror of a procedure $=-$ that is, $\sigma^{2}+(\mu-T)^{2}$, where σ is its anandard doviation 1 and $\mu=$ (t, ita blat be uned to oharacterise it acouracy, Whilo finan nepara error la a useful eiterion for oomparing the ralative acouredies of measurement procesises diffaring widely in both piecicion and bian, it alearly does not "tell the whole ntory," For oxample, if one ware to acopt the principie that measuromant procasese having the aame mean equare arror wore nquelly "aocurate," then on would bu obllged to consider the meanuremant procensen corrasponding to the three ourves ahown in figure 3 an heling of equal accuraoy, whereat for matiy purposen one would regard procesi C (portrayed to the rlght) as the "mont aceurate." In nplte of the fact that the chaneas of sooring a "bull' ayo" or "noar misa" are greator in the dane of procusa A shown in the uppar left.

Alternativaly, ff one ware to say that two measurement procenses ware equally acourate whan exaetly tha aame proportion P of the maaurement of enoh lay within $\pm \sigma$ unlt from the true valua, then for $P=0.5$ one would be obliged to asy that the measuremant plocusean corrouponding to nurvee and din the lower half of tigure 1 ware equally auourate, and that the measurement procens correnponding to ourve a in the uppor half of tho ame figure was ellghtly more acnurnte than elther or d. Or, taking $P=0.05$, one would be obliged to way that the measurement prooesses corm resposiding to the three ourves ahown in tigure 4 wery hqually acourate. From thene, andiother ofacen eanily conetruoted, it is rearlly ween that it is uncatimactury to reyard two meamurement broneeses an being nqually a ocurate if the mame apeolfied fraotion P of the measurnmentes produriad by garlilla within the same distance from tha true valus.

- Thus one is ind by the forces if neenneity to thu Inemoapable econolusion that ordinarily (at leant) two numbue arm naeded to adequately gharauterize the accurecy of a measurement procesel. And this has been recognlama $:=$ the Amwitoan Socioty for Teating and Matorials in thoir recent reoommonemLIon" (ASTM 19GL, Pp, 1759-1760):
"Ganerally the indax of avcuracy wldl gonsiat of two or more dllferment numbers. Sinee the eonoept of aceurncy ambraces not only the concept if preanion but also the ldea of more or leas conmiatant deviation from the roference lovel (eyatematio error or bias), it is proferable to doaeribe neauraoy by separate values indleating protation and blay."

The fact of tha matter is that two numbars ordinarily suffice only because the "end results" of measurement and callbration programs are usually averages or adjusted values based on a number cf Indepencient "primary measurements," and such averages and adjusted values tend to be normally distributed to a very good approximation when four or more "primary measurements" are involved. This is lliustratec by figure 5, which shows the distributions of Individual messurements of two unblased measurement processes with identioal standard deviations but having uniform and normal "laws of error," tespectively, together with the corresponding distributions of arithmetic means of 4 indepencient measurements from these respective processes-these latter two distributions are depleted by a single curve because the differences betwaen the two distributions concerned are far less than can be resolved on a chart drawn to this scale. Since both of the processes concerned are unblased, "accuracy" thus becomes only a matter of "precision"-or does it P --both curves for $\mathrm{n}=1$ have tho ame standard deviation, do they reflect equal "accuracy"? Would not the answer depend on the advantages to be gained from the small errors balanced egalnit the seriousnesa of large errors, in relation to the purpose for which a single fieasurement from one or the other is needed? But "ther woblem" disappears nlcely if averages of 4 measurementa are to be tren.

4. EVALUATION OF THE PRECISION, AND OF CREDIBLEBOUNDSTO THE SYTEMATIC ERROR OF A MEASUREMENT PROCEGS.

An we hava just seen, two numbere are urdinailly needed ti chaiactorize the accuracy of m measurement process, the one indiontine its preginion,
 frocess is unknown and unknowable because the "true values" of quintities mossured arn almost alvajo unisnown and unknowable. The prinolple excoption is when one 15 measuring a difference that is by hypotheala identically aero. If the blas of a measurament procese could be, and were known exnotly, then ons would of course aubtract it off as a "correction" and thun dinpose u' ! er:! rely. Since ordinarlly we cenmit axpect to know the exact magnitude if ihe blas of a neasureinent process, we are forced in practioe to settle for credible bounds to its likely magnitude-much as did steyning and the thite in chapter VI of Kipling's atory, Centaine Ceuragequs; "Steynina tuk, himifor the reason that ting thlef tuk the hot ntove--bekaze for fiers was nothing else that season". Consequently, nelther the blas nor the agcuracy of any measurement process, or method of measurenient, can evgr be known in a logical sense. The precision of a messyrement procesa, however, can be measured and known. (Compare Deming [1950, p.17].)
4.1. Eisication of the Precinton of a Meanurement Procese. In the foregoing we have atressed that a measurement operation to qualify as a measirement proceril muat have attained a atate of statistical control; and that untll a measurement operation has been "clebugged" to the extent that it has attained a state of atatiutical control, it cannot be rogarded in any logical sense as measuring anything at all. It is alac clear, from our discuasion of the control-chart techniques for datermining whathar in any given instance one is antitied to "act for the present as if" a atate of atatiatical control has bean attained, that a fairly large amount of expertence with a perticular measurement process is needed bafore one can rasolve the question in the affirnative. Once a measurement procest has attained a atate of statistical control and so long as it ramains in this state, then an estimate of the diandard deviation of the procesa can be obtained from the data employed in estebliahing control, as we have indicated above.

Since the precision of a neasurement procosas refers to, and is detarmined by the characteristic "closeness together" of succesalve independent mesaurements of a eingle mapnitude generated by repeated application of the procesa under specified conditions, it la clearly nocesary in determining whether a measurement operation is or is not in a atate of atatistical control. and in evaluating its precision to be reasonably definite on what vartations of procedure, apparatus, environmental conditions, observars, operators, et.e., are allowable in "repeated applications" of what will be considered to be the same measurement procesis applied to the measuroment of the uame quantity under the mame conditions. If whatever moanure of the preolston and bounds to the blas of the masurament process wo liay adopt are to provide a realiatic indication of the accuracy of thia process in practice, hen the "allowable variations" must be of sufficient seope to brajket the range of eircumatanone sonimonly met In practicis. setaniata and onginecrs commenl; בppend "probable errore" or "stendard errorn" to the resulte of their experimenta and tasta, These measurus of tmpreetaten are supposised to indicate the extent of the reproducibility of these experiments or tests under "essentially the same conditions," but there are grest doubs whethor the "probable arrors" and "standsrd errcrs" generally pressatod actuelly have this meaning. The fault in most canes is not with the atatistioni formulas and procedures used to compute such probahle errors or standart error, from the measurements in hand, but rather with the limited soofe of the "conditions" sampled in taking the meanurements.

a. Concopt of a "Rapetition" of a Meenurement

Ae a very minimum, a "repetition" of a meanurement by the aame meapurament progene thould "leave the door oben" to, and in no way inhibit changen of the sort that would occur 14 , on termination of a given maries of measuraments, the data sheeti were stolen and the experimenter were to repeat the series a closely es possible with the neme apparatus and auxiliary equipment fullowing the same instructions. In contraat, "repotition" by the came method of meanurement thould parmit and in no way inhibit the natural ocourrenen of auch ohangen as will ooeur if the experimenter were to mall to a frlend complote detalls of the apparatus, auxiliary equipmant, and experimental procedure employed--1.e., the written text ape-ification that defines the "mothod of masurnment" concorned-and the friend, ualng apparatus and auxillary equipment of the same kind, and followirig the procedural inatuctions recelved to the beat of his ablity, were then, after a little practioe, to attempt a repetition of the measurement of the same quantity. Such are the extremes, but thare is a "gray ragion" botween in whioh there is not to be found e sharp line of demarcation betwean the "areas" corresponding to "repatitton" by the eame_reaturnment_prognes and to "repetition" by the ammemethod of meaturement.

Lat us consider "repatitions" by the same manurement proen more fully. Such tepetitions will undoubtedly be oarried out th the asme place, l.9., in tho asme laboratory, because If it le to be the same mease urement process, the very same apparatus must ho used. But a "repettion" cannot be carried out at the same sime. How great a lapse of time should Do allowed, nay required, betweun "repatitione"p Inis io a orucial quallion. Student gives an answar in a pasaage from which wh guoted above [Student !917, w. A15]:
"Perhape I may be permitted to reatate my oplaton as tu oha bant wiay of judging the noguraoy of phyalcal or chomioal determinations.
"After considerable oxperience I have not encountered eny dotarmanstion which it not influenoed by the dete on whioh it is made; from this it tollows that a number oi detorminations of the ame thing made on tha ame day are likely to lle more olosely togather than if the repetitions had been made on different days.
"It also follows that if the probable error in caloulated from a number of observations mado close together in point of time, much of the secular error will be left out and for general use the probsble error will be too small.
"Where then the materials are aufficlently atable it is well to run a number of detarminationt on the ame material through any eeries of routine determinations whien have to be made, apreading tham over the whole period."

Another limportant question is: Are "rapotitiont" by the aame meanurement proonst, to be limited to rapatition by the samm obaervers and operatore, uning the same auxiliary equipment (bottleg of reagente, ete.); or enlarged to include repetition with nominally equivelent ausillary equipment, by varlous but equivalently trained observers and operators? ibem lleve that everyons wlll agrae that subutitution, and eortalnly rep ecoment, of bottles of reagents, oi batteries as sourcen of eleotrionl energy, ate, by "nominally aquivalent materialy" must be allowed. And any calloration laboratory having a large amount of "businasa" will cartainly, in the long run at any rate, have to face up to allowing changes, oven raplecwment of obsorver and operatore-and, ultimately, even of apparatus,

A vory aruclal quanition, not alwaye taced wquarely, ist in complate "repetitions" by the admu measurement procesy, are such "rapatitiona" to Wo llmited to those intervale of time over whish the apparatus is uned "as ia" and "undiaturiod," or axtended to Inoludo the additional variatione that almont always manifest themeolvee when the apparatus la disassembled, oleanad, roasuembled, and readjusted? Unleas auch diesomombly, oleaning, reamnombly, and readjuatment of apparatue is perinitteci among the allowable ariations affeoting a "ropetition" by the same measurumont procesa, then there is very little hope of achloving eatiafactory agreament between two or mary measuremont processes in the same laboratory that diffor only in their identification with different pleces of apparntul of the same kind. In prautice It is found that etp+istical control use be aitainert sici inaintained under auch a brnad noncopt of "rapetition" only therough the use of raforenoo standarde of provan atablity. furthermure, by thus more squarely facing the ts:sue of the soope of varlations sllowable with reapeot to "repetitione" by the same meanurement process, we shall go a long way toward narruwing the gap between e"repetition" by the same measurement proansa and by the same method of mrasurement.
\therefore so have sald bafore, if whatevar measures of the preolaion and blas of a measurement process we may adopt ore to provide a realiaties indication of the accuracy of thic process in practice, then the "allowable variations" mist be of sufficient senpe to bracket the range of circumstancen commonly met in practice. Furthermore, any experimental program that almg to determine the prectaion and syatemetic grrar, and thence the accuracy of
a measurement procesa, must be based on an appropriato random sampling of this "range of olroumstances," if the usual tools of atatiational analysia are to be etrictly applicable. Or an Student put $1 t$, "the exparimenta must be eapable of being considarea to be a rendoln sample of the population to which the concluaions are to be appled. Neglect of this rule hay led to the entimate of the value of statintion whioh in expresied in the eresoando 'Hes, damned lles, stathatio'." [Studant 1926, D. 711.]

When adequate random sampling of the appropriate "range of ciroumstances" is not fisasible, or even poselble, then it is neonnsary to compute, by extrapolation trom avallable date, a more or lass aubjectlve entimate of the "preciston" of the end reoults of a masaurement operation, to serve as a substifute for a direct experimental measure of their "raprodueibldity." Youden. [196"d] calla this "approach the 'paper way' of obtaining an eatimate of the [prealaion]." Its validity, if any, "ls based on aubjeat-matter knowledge end ekill. general information, and intultion-but not on atatiatical methodology" [Cochran et al. 1953, p. 693].

b. Some Examples of Reallatio "Repetition"

As gtudant remarked [1917, p. 415], "The basp way of judging the accurasy of physical or chemical determination ... when the matertals dre sufficiently stable... It ... to run a number of detarminations on the same material thru any serien of routine determinations which have to be made, eprading them over the whole period." To thin and, an well e:to provide an overall oheok on procedure, on the etabillty of rofarence standarde, a.ad to guard against mistaken, it is oomnion practioe in many oallbration. procedures, to utllize twor ei more reference standarde an fart of the regular enlihration prosidure.

The calibration procedure for hauld-in-glate thermomaters, :ainrtad tri in section 2.4 above, is a case in point. A measuremert of the differencu between the two etandards S_{1} and S_{2} is obtained as Ly-product of the celimation of the four test thermometerif $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}$, and T_{4} fr: tarme of the (corrected) readinge of the two standarda. It is auch remeamurementer r ! the difference between a palr of atandard thermometere from "socasion" to "oocasion" that constitutes reallstic "repetitions" of the sallbration promedure. The date ytelded by these "rapetitions" are of exactly the type needed (a) to ascortain whether or not the procesin is in a atate of atatistical control: and if ao, (b) to determine its overall standard daviation.

8imuarly, in the callbration of labonatory ntandardiofman at the National Bureau of Standards, "known, standard weighte are cellbrated alde-by-side with the unknown welght:" Almer ot al., 1962, 1. 33]. Indeed, welghte whose values are otherwise determined "are not sald to have been 'callbrated'. That term ia resarved for meanuremanta based on at least two mase mtundards." [100. elt., p. 43.] In the apeelmen work ahects axhibited by Almar ot al., the auxillary standdrds Involvad are thowe from the Bureau'a "NH meries" of roference mandards known by the designatione NH50, NH2O, NHIO_{1} reapectivaly. It is the measurements obtained in routine calibrationa
of the differences between the values of these atandards and thair acoupted valuen that not only provide valuable chacki on day-to-day procondure, but also serve at the basis for determination of the overall atandard deviation of this callbration process.

A third example is provided by the mathod followed at the National Buraau of Standarde for teating altematingmourrant whithourmetere, which has been desoribed in some detall by Splrike and Zapf 1054 . Four reforence wathour metters are involved. One of these, tormed the Standard Wathour Meter, " is located In the devioe portrayed in figure 1 of the paper by Spinka and Zapf. The other three are located in a terparature-controlisd obbinat. A "teat" of a wathour mater sent to the Burmau Involvae not only a runtparison of thle watthour moter with the Standard Watthour Meter, but alec comparisons of each of the Comparison Standard Wiatthour Metera with the Stendard Wathour Mater. It La from the date ylalded by these intercomparInons of the Standard Watthour Mater and the Comparison Etandard Watthou. Metars that the atandard deviation of thia tent prorsfiure is evaluated. Spinke and Zipl's mection of "Practalion and Acouracy Attalnable" la notable for ite exoeptional luctdty as woli as ior its completoness with rejuent to relevant detalle.

Some additional examplen of realiatic "repetitiona" are disousenu by Yunden [19670].

 Origine but ot Unknown Mnanltudat. As we remarked in neotion 3.36 abovu. the aystematio efror of a measurement proonas will ordinarily have both constant and variable componenta. For conventence of exposition, it is oustomary to regard the individual components of the overall ayatematio orror of a measuremont or calibration process as olemental or conatituant "eyetomatic arrors" and to refor to them almply an "syatematio errorn," for thort. included among auch "syatamatio errors" aftecting a particular measurament or calibration process aro: ". . . all those eirors which cannot be regarded as fortuitous, as partaking of the nature of chance. They are charaterisliu of the symtem Involved in the work; they may arime from errore in theory or In standarde, from Imperfections in the apparatur or in the obsarver, from false assumptions, to. To them, the atatiatioal thoory of error, does not apply." [Dorsey 1944, p. 6; Dorsty and Elsenhart 1953, p. 104.]The overell syatematio error of a measurament procese ordinarlly conalste of elemental "syatomatic orrors" due to both aesignable and unasalgnable causen. Those of unknown (not thought of, not yot Identified, or as yot undiecoverad origin are alweys to be fearedi allowances oan be made only for thone of recognised origin.

Binoe the "known" eystamatio arrore affeoting a meacurement proces: asoribable to apecific origins are ordinarily determinate in origin only, their Individual values ordinarily baing unknown both with reapedt to aign and magnitude, it is not poselble to evaluate thoir algebralo sum and therwby arrive at a valua for the evarall systematic urror of the measurement procean ooncomed, In consequence, it is necesmary to arrive at bound fur each of the individual componente of aystematic error that ma; be oxpeeted to yiold nemnnagiglbis cuntributions, and theri frem those bounds errive at oredible beunds to thair combined efipect on the masuremont prooens concerned. Both of thase stepi are Iraught with alffleulties.

Determination of reasonable bounde to the syatemetde arrne likniv to be contributed by a particular origin or anslgnable cauen naeosearily Involves an element of judgment, and the limits asnnot be sint in exaotitude. By aselgning ridiculously wide limite, one could be praotically dertatia that the actual error due to a partioular cause would nevar lie outside of these limits. But euch limite are not likely to be vary helplul. The nerrower the range between the asslgned limits, the greater the uncaniness one teels that the asigned limits whll not include whatevor aymtematic orror is contributed by the onuse in quention. Sut a dealaion has to be mada; and on
the base of theory, other related masuremants, oaroful otudy of the aituation in nand, espedally ite senaltivity to amell ohangas In the faetor concerned, and so forth, "the experimenter presently will iael justified in saying that he feele, or believet, or is of the opiniun, " that the sytematie error due to the partioular source in quastion doea not exeeed auch and auch limits, "moaning thersby, mince he makes no claim to omniselonet, that he has found no reason for belleving" that it exoeeds these limite, In other worde, "nothing hat oome to light in the course of the wark to indigate" that the syatematle arror concemad lles outalde the itated range. [Dormey 1944, pp, 9-10; Dorsay and Elsonhart, 1983, pp. 108-107.

This being done to each of the recognised potential souroes of syitematio orror, the problem remaini how to datermine orndible bound to their combined elfect, Before conaidering thile problem in detail, it will be helpful to digrese for a moment, to considar an instruative example ralating to the combined affeat of constant errors in an everyday situation.

a. in Instructive Example

Consider the hypothatioal aituation of an individual who is amparing his cheokbook balance with his bank utatement. To this and he neade to know the tolal velue of hit ohocks outatanding, Loathing addition, or perher, wimply to seve time, he adde up only the dollars, noglooting the contm, and thus arrives at a total of, acy, $\mathbf{8 3 1 2}$, for 20 oheoks outstanding. Adding a corration of 50 annt par cheak, or $\$ 10$ in all, he takes $\$ 322$ as his estimate. Within what limita should he consider the error of this estimate to lles:

The round-cit tuor cannis exceed 480 oent pal oheck, so that barring miwtakes in addition, he can be absolutely oertain that the total arror of his entimate dose not usoced $\pm \$ 10$. Bui these are axtramaly yosalmiatio limitu: they correspond to evary ohook being in error by the max:imum pusaible emount and all in the ame direction. (Aotually the maxirium posatblu poultive error is 49 oents per check or $+\$ 0.80$ in all.)

To be conservative, but not so pesilinistio, one might "ellow" 6 maximu:" ertor of ± 50 cents par oheok, but conmidor it rasanable to regard their aigna as belng equally likely to be plue or minub. In this way ona would be led to conolude "with probability 0.95 " that the total error lies between $\pm \$ 7.001$ or "with probabllity 0.99 ," between ± 88.00, as shown in
the column headed "Llnomlal in table 1 , for $n=20$, whe "saving" by this prosedure ia claarly not great.

Alternatively, one might conaider it to be more "realistia" to regard the individual errors as independently and uniformly dintributed betwoen -50 umita and +50 centa, conoluding "with probability 0.95 " that the total arror does not exceed $\pm 2,53$; or "with probabillty 0,99 , " is not greater then $\ddagger \$ 3.33--a s$ ohown in the columns under the haading "uniferm" in table 1. It lo olear that a conulderable reduotion in the estimate of the tolal orror is achleved by thif approach.

Strictly speaking, the foregolng analyses via the theory of probability are both inapplicablo to the problem at hand: each round-nif arror is a fixed number between ± 50 cents, and their uum le a fixed number between $\pm \$ 10$. If it ware true that round-off errors in much oanem ware uniformly diatrlbuted between ± 50 cente, then, if one made a hablt of evaluating limite of error acoording to this procedure, one could expect the limits of error so calculatod to include the true total arror in 95 percent, or 99 parcent of the Instancies in whloh this procedure was used In the long run. Rounde off errors in much cases are almont certalmly not uniformly diotributed between ± 50 ounts. (Many iteme are prioed theas daye at $\$ 2.98$ oto., and this will distort the distribution of the conte-portion of onw's bllis but added sales thises no doubt have a "smonthing" eifout.)

Neverthaless, I belleve that you will agree that If, in the hypothetloal caso under discuesion, the checkbook balance, with an allownes of $\$ 322$ to: nhecki outstanding, fallad to agree with the bank statement to within $\$ 2.53$ (or \$3.33), our "frlenr." would do well to oheck 1 nto the matter mors thoroughly. Arit, alternativeiy, if hia chaokbook, bolanoe so adjusted, and the bank statement, agreed to with $\$ 2.53$ (or $\$ 3.33$), It would ba reasonably "belfe" for him to "act for the prenent an If" hin balaneg and the bank wu: n inent were in agreoment. (See Elsunhart [1947a, p. 218] Ior discusaion of a sinilar exampla relating to computation with logarithme.)

b. Combination of Allowanoos tur systematio Errore

The foregoing example suggest that a similar procedure be used for arriving at cradible limita to the likely overall sffact of symematio errors due to a number of different origina. A number of additional difficulties confront us, howeve:, in this case. To begin with, in rlew of the inexactnase with which bounde can ordinarliy be placed on sach of the individual
Table 1．Limits of error of a sum of n items indicated by various methods of evalualion

	$\begin{aligned} & H \\ & \underset{O}{H} \end{aligned}$	
	$\begin{aligned} & H \\ & \text { H } \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	タサineraxicisinq：Rioms cosociocoomminniond
	$\stackrel{+}{8}$	 öniniminnindimmvi
	$\begin{gathered} H \\ \stackrel{H}{8} \\ \stackrel{\leftrightarrow}{c} \end{gathered}$	
	＋	ダド8： ciceniminiminidadNmmす
	$\stackrel{8}{8}$	OOOCOOM－MinimindNadm
$\begin{aligned} & \text { E } \\ & \text { 亳 } \\ & \hline 口 \end{aligned}$	H	
	H	（
$\begin{aligned} & \text { E } \\ & \text { 曾 } \\ & \text { } \end{aligned}$	$\begin{aligned} & +1 \\ & 8 \\ & 8 \\ & \hline 8 \end{aligned}$	08： 98805888888888
	$\begin{aligned} & H \\ & \text { H } \\ & 0 \end{aligned}$	
$\begin{aligned} & \frac{9}{3} \\ & \frac{3}{6} \cdot \mathrm{H} \\ & \frac{1}{4} \end{aligned}$		5898\％888889858888
F		－

components of syatemacto error, it Le not poesible to aay with absulate certainty that their combined effect lles between tho aum of the poaitive bound and the sum of the negative bounds.

Sacond, aven if it ware possible to scals the situation so that the bounde for aach of the componente of ayatematic error wat the wame, say, $\pm \Delta$, there would atill remain the problem of tranalation into an appropriate probabllity caloulus. Mont persone would, I balleve, regard the "binomial" appros (corresponding to equal probablity of maximum arror in elther dirocition), as too pussimiatic; and the approsoh via a uniform distribution of arror, as bit oonsorvative, on the grounde that ollo intuitivoly feels that thu individual errors are Bomewhat more likely to lie near the aenters then near the ands of their respeotive ranges. Theretore, one might attempt to aimulate this "fealing" by absuining the "law of arror" to be an lsosceles triangle ountored at soro and ends at $\pm \Delta$; or, more daringly, by aseuming the "law of error" to be approximately normal with Δ oorresponding to 2 " σ " or even 3 " σ "

Untortunatwly whatevar "probubllity llmits" may be placed upon the combined offect n^{\prime} eseveral independent syotematic arrors by the ae procedures ard quite : . altive to the aseumption mede at this atage, en is evidont from table 1 . Therefore, anyone who uses one of thase mathode for the "combination of errori" ahould indioate explielty which of thene for an altemative mothod) he has uaed. Whan (a) the number of wystamatic arrora to be combinod ie larae, (b) the respectiva ranges are approximately equal In aise, and (c) one feele "fairly gure" that the individual urrore do not fall outsira of their reapective ranges, then my personal foeling is that tho "unificm" mothod is probably a wien bit sonservative but "mafe"; the triengular method la a bit "bru dasing"; the :iormal mothou with " σ ". a $\Delta / 3$ ordinarlly "much too daring"; but the normal mothed with "0" $\quad \Delta / 2$, probably "not soo waring." Whan (b) and (c) hold but II 1 minall, then it will probaioy' be aato to use the "unitorm" method with " Δ " takan equal to the avorage of the individual ranges. Nothor cases, $0 . g$., when n is limge but, way, one us two of the ranges is (are) much larger than the ethern and harids) to domitite the situation, requires apeolal consideretion whicic is beyond the soope 0^{*} the present paper.
4.3. Expramion of tha Ingequrapy of A Minnurement Proonal. By whetever meann uredible bound to the likely uvarall syntematio error of the mesaurement prooess are obtalned they should not be combined by almple addicion, by "quadreture," or otherwise) with an experimentally determined
measure of its atandard devialion to obtain an oveirall index of ita acouracy (or, more correotly, of its ingecuracy). Rather (n) the atandard deviation of the procose and (b) oredible bounds to tit systematit orror should be stated eparately, bwouse, as wo ohowed in tigure 3, masuiomant process having atandard doviation $\sigma=0.25$ and blaa $\Omega=\sqrt{15 / 18}=0.97$ is for nost purpowes "more acourate" than a mosaurwnent procoes heving eero bles and atandard doviation $\sigma=1,40$ that a procese with $\sigma=0.25$ and a blas leferthan 10.97 will gioriorl bo "more acourate."

Finally, if the uncortatntion in ihe asalgned value of ancilonal standard or of some fundamental conatant of nature (6.9 .1 in the yolt, He maintained at the Natignal Burumu of Btanderdt or in the apeed of light g, or In the acceleration of gravity ion the Potadam bawid) is an important potential dourge of syatematic error affeoting the measuramant prooess, no allowanoe for posible systematle error from this souroe should be inoluded ordinarlly in evaluating overall bounde to the aymematio arror of the measurement proeems. Since the wror cencorned, what ever it la, affegte all racult obtained by the mothod of measurement involved, to include an allewance for thic error would be to maks everybody' remult appear unduly inacourate relative to eachother. inutand, in such inmtanose one should utate (a) that results obtained by the measurament proaess concorned are In terme of the volt (or the wathour, or the kilonram, ote.) "an maintalnad at the National Burwau of standards" Molisioh and Cameron 1960. D, 102], or "correspond to the spead of llght $c=2,997925 \times 1010 \mathrm{~cm} / \mathrm{eac}$. sxactly," say; and (b) that the indicated bounde to the ayntematio orror of the pruceas ars exclusive of whatever errora may be preeent from thle (or these) souroe(s). Civen moh information, axpert gan make much additional all wanconn, as niay be needed, In fundamenisal solentifio worki and eommarative measuromente within solence and Industry witnin the Urilted states will not appear to be lese acourate than they vary likaly are for the purpouns finp whioh they are ts be uned.

It is a pleasure to acknowledge the tephnioal absiatance of janace A. Speokman in several phases of the preparation of this paper.

5. MHLLIQGRAPHY

Alry, George Bidelol (1861), On the Algobralcal and Numerical Theory of Errore of Obaervation and the Combination of Observations (Manmilian and Co., Cambridge and London).

Almar, H, E., L, B, Maourdy, H, S. Palear, and E, A, Wan (1062), Weight aallbration sohemes for two knife-edeg direot-reading balances, J. Rusearoh NBS 66C (Eng, and Inatr.) no. 1, pp, 33-44,

Amertcan Estandarde Amnooletion (1988a), Guide for quallity anntrol, Amertean standard 2 1.1-1958. (Amarican Standardi Aymoolation, 70 Eant Forty-flfth St., New York 17, N, Y.).

Amerioan Standards Ansoctation (1988b), Ountrol chart mothod of analyeing data, Amorionn Standard Z 1.2 m .1050 . (Ammrican Btandarde Assoolation, 7-East Forty-fifth Et., Now York 17, N, Y. Do

Amarioan Standardi Assoolation (1959e), Control chart method of controlling quality during produoticn. American Standard 21.3 m 108 B, (Amorioan Standard Assoolation, 70 Eant fortymilith git., Now York. 17, N, Y.).

American Soelaty for Tenting Materiala (1981), AsTM Menual on Quality Sontrol of Matarlals Speolal Techniael Publicution 15 me (Amarican Soclety for Teating Matarials 1916 Raoe St., Philadelphia 3).

Amarican Socloty for Testing and Matorials (1961), Wee of the terin: prosiston and accuracy ma applied to masurement of a proporty at a maieriab, AS' Ni Danigicuthini: [i77-bl'I, Feprinted from AsTN Stundarda, Pt 11, pp. 1758m 1766.

Batrd, D. C. (1062), Experimaniationi An Introduction to Masarement :'heory and Experiment Deagn, (PrentloemHall, Ino., Englowoud Clifta, N. J.).

Raers, Yardley (1953), Introduction to the Theory of Error, (AddiarinWesley Publinhing Co., Cambridge 42, Mass.).

Bleking, Oharles A. (1952), The rellability of meanurad values-an Llluatrative example. Photogrammathlo Enghouring XVIII, Pp. 584-858.

Cameron, J. M. (1951), The use of componenta of varlance in preparinz schodules for the sampling of beled wool, Blometrice ,2, pp, 43-96.

Chauvenet, William (1868), A Manual of Spherioal and Praotiona Aatronomy Vol. II, dith adition, (J. B. Hipplncott and Oo., Philadelphis).

Coohran, Willlam G., Fradariak Monteller, and John W, Tukey (1983), Statiatloal problems of the Kinyoy ruport, J, Am. Stst. Asseo, 19, PD, 673-718.

Cochran, WIlliam, G., Frederiok Montuller, and John W, Tukey (1854). Principles of ampling, J, Am, Stat. Assoo. 48, pp, 13-35.

Crow, Edwin L. (1960), An analyals of the aceumulated arror in e hierarchy of oalibrations. IRE Trans. Instr, Ime, pp, 105-114.

Deming, W, Edwards and Raymond T, Blrge (1937), On the Statietion Theory of Eirors, reprinted from Reviewi of Modern Phyalar 8, pp, 119-161 (1934) with additional noter dated 1937 (The Graduate Sehool, U. 8. Department of Agrioulture, Washington 25, D, C.).

Deming, W, Edward (1943), statiutical Adjuntment of Data (John Wiloy \& Eons, Ino., Now York, N, Y,).

Deming, W, Edwards (1990), Some Theory of sampling (John Wilay G Bons, New York, N. Y. .,

Dorsoy, N, Ernest (1944), The velooity of light, Trananations Amartoan Phllosophical बrictaly $2 \mathrm{zXXIV}, \mathrm{pp}, 1-110$.

Dorsay, N. Ernent and Ohuruhill Eimenhart (1983), On ohmolute maasliremant, The Solentific Munthly Loxyil, pp, 103-109.

Elsenhart, Churahill (1947a), Effeore of rounding or grouping data, Ohapter 4 of Techniquas of Statiatioal Analyain, ailtad by 0 . Bisenhart, M. W., Hastay, W. A. Walls (MoGraw-Hill Bock Co., Now York, N. Y i,

Elsenhart, Churchill (1947b), Planning and Interproting experiment for comparing two standard doviations, Ohapter 8 of Tschniquee of Btatiatioal Analyala, edited by O. Elnonhart, M. W, Hastay, W, A. Wallin (MoCraw-Hill Book Co., Now York, N. Y.).

Elsenhart, Churchill (1949), Probabillty center lines for atandard devia:ion and range charts, Industrial Quslity Control yi, pp. 24-26,

Eisenhart, Churchili (1952), The rellability of measured valuea-furidamental concepts, Photogrammetric Engineering XVILI, pp, 542-554 and 558-565.

Elisenhart, Churchill (1962), On the reallstic meesurement of precision and accuracy, ISA Prorsedings of the Eight Notional Aero-Space Instrumentation Symposlum held in Washington, May 1962, pp. 75-83.

Feller, Willam (1957), An Introduction io Probabillty Theory and its Applications, Vol. 1, 2a edititon (John Wiley \& Sons, New York, N. Y.).

Galliel, Galleo (1638), Discorsi e Dimostracionl Matematiche Intorno a Due Nuove Scienze, Leiden.

Galliel, Galiteo (1898), Discoral e Limoatrazioni Matematiche Intorno a Due Nuove Sctenze, Le Opere di Gallleo Gallel (Edizione Nazionale) VIII, pp. 39-448, Firenze.

Gallel, Galleo (1914), Dtalogues Concerning [wo New Sctences, translated by Henry जrew and Alfonso du Salvio, with in introduction by Antonio Favaro (The Macmillan Co., Now York, N, Y.).

Gauss, C. F. (1809), Theorla Matus Corporum Coelestlum in Seationtbus Soniela Solem Ambientlum. Frid. Porthes et I. H. Bessar, Hamburg; reprinted in Car: !ricdich ت̈duas Werke, Band VIL, Gotha, di\%.

Gauss, C. F. (1823), 'Theorla Combinationia C'bservationum Erroribis Mimmis Obnoxiae Commentationes societatis reglae sclentlarum Gotthesar ala reveriores, V, pp. 1-104, Gottingae; reprinted in Carl Friedrich Gaus: Weit.e, Band IV, Gottingen, 1873.

Gauss, C. F. (1839), letter to F, W. Bessel dated Feluruary 2B, 18.30 reproduced in "Kritische bemerkungen zur methode der kleinaton quadiult." pp. 142-148 in Cirl Friedrich Gauss Worke, Band VLII, (B. G. Teubner, Letpzig, 1900).

Gauss, C. F. (1857), Theory of the Motion of the Heavenly Sodies Moving About the Sun in Conic Sections; English translation by Charles Henry Davis (Little, Brown and Co., Boston).

Gnedenko, B. V. (19C2), The Theory of Probabllity (English tranulation by B. D. Sechler), (Chelsee Phublishing Co., Now York, N. Y.).

Hermach, F. L. (1961), An analysas of errors in the callbration of eleatrim ingt:uments, Communication and Electronica (AIEE) 54, pp. 90-95.

Hillebrand, W. F., G. E. F. Lundell, H. A. Bright, J. I. Hoffman, Applied Inorganic Analysis, 2ded. (1953), (John Wiley \& Sons, Inc., New York, N. Y.).

Holman, Sllas Whitcomb (189"), Discussion of the Preclsion of Measurements, (John Wiley and Sons, New York, N. Y.).

Keyser, Cassius J. (1922), Mathematical Philosophy, (E. P, Dutton and Co., New York, N. Y.).

Kline, S. J, and F. A, MoClintock (1953), Describing uncertalnties in eingle-sample experiments, Mech. Eng. 75, pp. 3-8.

Laplace, Plerre Simon (1886). Theorie Analytique Des Probabllitea; 3d odition, Vol. 7 ot Oeuvies Complotes do Laplace publiees sous leas ausplees de l'Academie des Sciences, (Gauthier-Villars, Imprimeur-Llbraire de l'Ecole Polytechnique, du Bureau des Longtudc 3 , Successeur de MalletBachellor, Qual des Grande-Auguatina, 55, Parla).

McNish, A. G. and J. M. Cameion (1960), Propagation of error in - chain of standards, IRE Trans. Instr. [-9, pp, 101-104.

MHHikan, R, A. (1Eids), Mechanics, Molecular Physics, and Heat, (Ginn and Co., New York, pp. 12J-196).

Murphy, R. B. (1961), On the meaning of precision and accuracy, iviaterialy Research and Standerds 4, pp. 264-267.

NPL (1957), Callbration of temperature measuring inatruments, Nutlonal Physical Laboratory Notet on Applied Sclence, No. 12, pp. 29-30, (Her Majesty's Stationery Office, Loudonl

Qatle, Bernard (1954), Statistics in Research, (The lowa Stote College Press, Ames, Iowa).

Parzen, Emanuel (1960), Modern Probabillty Theory and Its Applications, (John Wiley \& Sons, New York, N. Y.).

Proschan, Frank (1953), Confidence and tolorence intervals for the normal distribution, J. Am, Stat. Assoc. 48, pp, 5:50-554.

Rossini, F. D. and W. Ëdwards Deming (1939), The assignment of uncertainties to the data of chemistry and physics, with speolfic recommendations for thermochemistry, f. Wash, Acad. Sol. 29, pp, 416-441.

Schenck, Hilbert, Jr. (1961), Theorlas of Engineering Experimentation, (MeGraw-Hill Book Co., Inc., New York, N. Y.).

Schrock, Edward M. (1950), Quality Control and Statiatical Methods, (Reinhold Publiahing Corp., New York IB, N, Y.).

Shewhart, W. A, (1931), Economic Control of Quallty of Manufactured Product, (D. Van Nontrand Cempany, Inc., Now York, N. Y.).

Shewhart, Walter A. (1939), Statiaticel Method from the Viewpoint of Quality Control, (The Graduate School, U, S. Department of Agrioulture, Wachington, D.C.).

Shewhart, Walter A. (1941), Contribution of statisties to the selence of engineering, Univeraity of Pennsylvania Bicoitennisl Conferenco, Volunus on Filid Mechanice and Statiotical Methods In Engineering, pp. 97-124, (Univisalty of Penneylvania Press, Philadelphia).

SImon, Licita E. (194i), An Enyinue:'s Manual of Statiatical Methods. (John Wilay \& Sons, Inc., Naw York, N. Y.).

Sinon, Lesile L. (1942), Application of statistioul inethods to orcinance engineering. J. Am, Stat. Assoc, 32, pp, 313-324.

Simon, Leslie E. (1946), On the relation of inatrumantation to quality cuntrol, Instruments 19, pp. 654-656 (Nov. 1946); reprinted in Thisio. grammetric Engineering XVIIL, pp. 566-573 (June 1952).

Spink s, A, W, and T. L, Zapf (1954), Precise comparison method of teating alternating-current wathour meters. J. Research. NBS 53, pp. 95-105.

Student (1908), The probable arror of man, Blometrika YI, No. d_{1} pp. 1-25.

Student (1926), Mathemation and agronomy, foumal of the Amerioen Soclety of Apronomy XYILI, 703-719,

Student (1927), Errorm of routine analyal., Blomatrika, XfX, pp, 151-164.
Swindelle, James F. (1959), Callbration of llquid-in-glasil thermomoters, NBS Circ. 600, pp. 11-12, (U. S. Government Printing Office, Whahington 25, D. C.l.

Tukey, J. W. (1960), Conolusions vs, dealatons, Technomolrlan 2 , No. 4, Pp. 423-433.

Waldner, C. W. and H. C. Dickinson (1907), On the whandard soale of temperature in the intorvel 00 to 1000 C , Bul. Bur, Stde. 3, ini, 663-728.

Webater' $\operatorname{Diotionary~of~Bynonyma~(1942,~lat~ed.),~lG,~and~C.~Marriam~}$ Co.on Springitold, Mans.).

Youden, W. J. (1950), Comparative teats in aingle luboratory, AcTM BulletIn No. 166, pp. 48-51.

Youden, W. J. and I. M. Cameron (1950), Use of Etetiatios to deterinine prealsion of test methods, gymposium on Appileation of statiatien. Snmalal Technloal Publloation No. 103, pp, 27-34, (American Roolet; for Tauting Materiala, Palladip!nia).

Youden, W. Y. (1951a), Statiotical Mothoda for Chamiate. (Yohn Wilay Gonn, New York, N. Y.).

Youden, W. J. (i951b), Loeathy Eouroen of varlabllity in a prooess, Ind. Eng. Cham. 43, PD. 2059-2062.

Youden, W, J. (1053), Sete of three meazurementes The Boientilio Monthly LXXVIK Pp. 143-147.

Youden, W, J. (1954-1959), stati tical Design, Industrial and EngineerIng Chemiatry, Feb, 1954 to Dec, 1959, Bimonthly articles colleoted in a alngle booklet avallable from Reprint Department, AOA Applled Publioations, 1159 Sixtaenth 8t., Washingtori 6, D. C.

Youstan, W. J., W. S. Connor, and N, C. Severo (1959), Moasurements made by matching with known standarde, Technometrice $1, \mathrm{pp}$, 101-109.

Youden, W. J. (1860), The mample, the procedure, and the laboratory, Anal. Chem. 32, po. 23A-37A.

Youden, W. J. (1961a), How to evaluate accuraoy, Mat. Ren. \& Std. d. pp. 268-271.

Youden, W. J. (1961b), What ia the beat value? I. Wash, Acad, of Sol. 51, pp. 95-97.

Youden, W. J. (19610), Statistioal problems ariaing In the establishm ment of physical standardi, Proceedings Fourth Berkeley Gymposlum on Mathematical Statistice and Probsbility III, pp, 321-33E (University of Calforna Pross, Berkeloy and Loa Angeles.),

Youden, W, J, (1961d), syatomatic errore in physical conatents, PhyE. Today 14, pp. 32 m 42 (1961); almo In Teuhnometion 4, pp 111-123 (1962).

Youden, W. Y. (1962a), Experimentation and Meawuremont, National Sclense Teachors Aasoclation Viatat of Scionce Sarles No, 2, (Soholantio B. ik: Services, New York 36, N, Y.).

Youden, W, J. (1962b), Measurement Agreament Comparimona, prosentad at the Stendards Laboratoiy Conforence, National Buranu of Btandaran, Bouicier, Colo., Auguat 8-10, 1962.

Youden, W. J. (156iu), Ungertaintles in calibretleli, IRE Trane. Instr, l-11, pp. 1s'3-138 (1962).

Youden, W. J. (1962d), Reallatio eatimates of errora in measuremenio, ISA joumal 9 , No. 10, pD, 57-59.

STATISTICAL STUDY OF RELIABILITY AND ACCURACY

OF SURFACE.TO-AIR MISSXLES

Bruce W, Stermer
Survallance Group, Army Balliatice Research Laboratoriea, Abordeen Proving Ground, Marydand

INTRODUCTION, The original paper presenter at the Ninth Conferance on the Design of Experiments in Army Research, Development and Teating conaleted of the presentation of a progeam for the atatiatical atudy of data derived from troop training ilighte of Nike Herculon and Hawk mlesiles, followed by adecusilon and interpratation of the reaulte of this etudy with particular emphasia on reliability, fallure modes, and the analyais of mies diatance data. The major portion of the papor contained claselfied informetion which cannot be presentnd here. For accese to the clasalfied materiad, which coneiate primarily of the reaulte of the atatiatical atudy, the reader If referred to Balliatic Rascarch Laboratorias Memorandum Report No. 148\%, July 1963, Ralisblitity and Performance of the Nike Harculey Mieaile Syatem; and Balliatic Ruasarch Laboratories Momorandum Report No, 1513 , October 1963, Raliability and Performance of the Hawk Miaille Syatem; both of which are clacelfied conildential. Some clasified information which wan presented at the conference on the analysie of mise dietance data for Nike Herculea has not been publiahed but will appasy In a forthcoming BRL Memorandum Report, The material which followi in an abridged papar including the unclavaified portione of the original paper.

PURFOSE. The otatinyral study of reliability and acrutacy od aurface-to-ale micedies lo part of tha overall aurveillance progrant to ovaluate the atockpile of Azmy surface-tin-air mianiles. The data used in this portion of the progrem is derived irom the Army's Package Training Isacram and Annual Sorvice Practice Program. The resulte of thie ntudy will be inte Rrated with other phanef of the aurvalliance program for the mecumplish. irsant of the following objectives:

1. To provide continuing evaluation n the odety, wellability. and pertormance of the atockplle of mianlles.
2. To provide advance information concerning any degradation in the mufoty, reliablity, or performance of thesa miasiles so that timoly action can be taken to maintain the required inventory lovela and performance standurda by either repalr or replimeement.

Other benofiti which can ba ralized from the analysid of tronp training firinge are euch thinge at:

1. The accunmation of baric knowledge of the characteriatica of current aurface-to-air misilies,
2. An increate in our general fund of knowledge about mianile cyateme reliability, and
3. A bagif for the prediction of expected reliablity of future minalie yateinn.

All of the ee benefis: will be valuable In formulating teat programa and aublyain programe for future misalle ayatema.

DLiCRAM EOR STATISTICAL, ANALXSIS. The firwt utep in the analyale of the datn consiate of atablifing atanderde for claenifying each minaile firing as alther auccenaful or unauccesiful. With such a defintion th hand, an overall rellability figure for the entira time poriod under conalderation can be obtained. Howevar, in order to atudy raliability es a function of time, it is helpful to conetruct a control chant for the percent of aucceaful tighte. The data it divided into groupa, oxdered in time, of n mballos each and the percent auccona le computed for each group. The number of misalles to include in cech group in arbitrasy, but should be iarge anough so that random runs of eucceasea or falluren will not advarasly affect the group rolimbility, Group aisel of 20 to 40 minalles
 this data in ploteded on a contrid chayt it ta relatively masy to observe whother any algaificant changer in raliabality have occurred with reapect to time. Groupe out of control or trending up oi down, will dndicate a noed for a cloter examination of the data to determina the cause. Ae adeltural data beesmen avaliable it may be meeosatary to rocompute the control limito atite empute diffarant control dimine for Alfiorent groupe depending on the asctore involved for etch particuler group. Differences. augenented by the control chart can be teated for indepandence hy the wee of contingency tables and the X^{2} diataribution.

In the malyuie of falluye mudou for a mientle yytom, it it sumerally entiniectory to clesifif fallures, we a percent of total minellen launched, in 14 twn-way table of fallure catogorloc and tine intervali. With such a clasolfication it may be posedble to show aignificant ehanges in fablua e modes corremponding to changen in rellablitity eugented by the comerol chart for percent access. This table will also show the partioular faid. ure categotiea or nub-categories which contribute the mont falluiee to the mianile syatem in any wivan time interval. The mugnitude of the timn Intervale will depend upon the quantity of data avaliable for analy ala but
the intervals do not necessarily heve to be equal. The exietence of adgnificant differencea in fallure ratee between two time intervals or batween eqveral time intervalis can be teated by the uec of contingency tables and the x^{2} dietribution.

The analyaie of misu diatance data for a miesile aystem generally conslete of presenting a frequency dictribution of mise diatance and a control chart for tho mean miae diatance and for the etandard deviation of mina distanen. For the control chart the misa dintances are orternd in time and dividod into groupa of n mianile: each. Group aimea of 10 to 25 mianiles with 3σ control limite have been atiafactory for this application. Whan group meany and atandard daviations are plotted on the control chart, it will be readily obiervable if any of the groups are out of control. Dliferances between groupe or among meveral groupa can be teated for aignificance through the uwe of a tetent or one-way clandification analyale of variance.

In addition to the above anaydie of mine dietance, it la deairable to examine the frequency diatribution of raleo diatance to determinc if it can be characterieed by some thenratical irequancy diatribution, Several typical diatributions are fitted to the obnarved datm. Tha "goodneas of fit" toat la used in the comparian of the obasived diataibution with the ineoretical diatribution to teat the hypothosia thal a particular distribulion its the obenrved data.

Another point recently considered in connection with the analyade uf re.ise dintance data was the poesible exiatance of a ralationehip betwee: mise diatance and the targst juranetera at the time or taturcept. This problom in inveatigated through a linenr jugranaion analyais of mian diatancesac function of the ranye, altitude, and velocity of the target at intorcept. The equation used in this utudy is of the furm

$$
y-\alpha+\beta_{1} x_{2}+\beta_{2} x_{2}+\beta_{3} x_{3}
$$

where y in misi distance, X_{1} is range, X_{2} it eltitude, and X_{3} is velocity. The parametera $\alpha_{1} B_{1}, B_{2}$, und B_{3} nretrus valuen, to be eatimated by a, b_{1}, b_{2}, and b_{3} reapectively. The method oi leant equares is employed wich minimizes the mum of squares of the doviation of the y_{k} from the hyperplane

$$
y=a+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}
$$

The b valuen are then lested for aignificant effecte through the une of at-test.

RESULTS OF THE STATISTICAL ANA! Y SAS. A mentioned oaslier in thia document, the reaulte oi the atatiotical analyain are clacoified and cannot be presented hare. However, it uhould be pointed out at this time that the atatintical techniques amployed in thif prosiam made a subntanital contribuison toward the accomplichment of the objectiven of the overall survellance prograns to avaluate the stockpile of Army aurface. to-air minalles. Furthermore, the reault of the atatiotical analyaie wore most valuable in providing weveral clues for improving the analyele program.

CONCLUSION. In conclusion, th should be emphaniend that the current program for the analyair of date derived from troop training thights of Nak Herculee and Hawk misilles, and the projected improvemente in the piuxram, will not necessarily luocomn the final program to be followed for thesen or any other aurface-to-mir misalle nyateme. No doubt there are ame factora due to aging, dosign improvementa, atc,, which have not yat occurrad and whirh will affect the program. All of theoe fartors will have to be integrated into the program. Constantly changing data wid improved me hode of analyein make it necessary that the analyain program ramain flexible, so that the maximum ammuri of triformation cun be geriorated itoin the basic input dat.d.

Lional Walse
Mathematics Rosearch Cunter, U. S. Army The Unlvarsity of Wimoonsin

Statistioal decision theory can he applied to the following type of problem. $X_{1}, \ldots, X_{m}, Y_{1}, \ldots, Y_{n}$ are jointly distributed random varlables, whose jaint distribution is not completely known, but in known to ba one of a givan set of possible joint distributions. Atter observing X_{1}, \ldots, X_{m}, but before observing Y_{1}, \ldots, Y_{n}, acmabody hen to make decision. After the dealation is made, Y_{1}, \ldots, Y_{n} are observed, and a doss in incurred which depends on the decialon uhomen and on the observed values of $X_{1}, \ldots, X_{m n}, X_{1}, \ldots, Y_{n}$. The problem is how the deoletun is to be based on the obervea values of $X_{1} \ldots, X_{m}$. As an oxample of auch a problam, aupwise we have to deolde how large a factory to build to produce a oertain suinmudity, The X 's mayht be the reaulte of a survoy laken to axamine po(watial demand, and the \because is are the demande that will be ubeoruat in the va loun morountirig periods after the factory is buld.

A decision rule attachos a partioular ramalou to asch possible aet of X's that might bu obsarved. For example, fin the oase of the tactory, we might use the decialon rule that makes weokly oupacity equal to 1000 multiplied by the sum of the X 'a . More ganerally, dealaton rule may use
randomization: that is, it acsigna a set of probebilities of choosing the various decisions to each possible set of X^{\prime} a that might be observed.

We introduce the following notation. We abbravlate X_{1}, \ldots, X_{m} by X, and Y_{1}, \ldots, Y_{n} by Y. We use the symbol θ as an index for the pusalble junt distributions of X, Y: that $1 a$, a partioular value of θ ploks out a partoular distribution. We use the symbol D as an index for the posisible deolatons: a partioular value of D pleks out a particular dadalon. The loss we incur when X is olsserved, D is chosen, and tho Y is observed, If denoted by $W(Y ; D ; X)$. When X, Y are discrete variables, $f(x, y ; \Theta)$ denotes the probablilty that $X=x$ and $Y=y$ when the Joint diatribution in givan by θ. When X, Y are continuous variables, $f(x, y ; \theta)$ denotes the joint density function, A decision rule a defined by nonnegative numberm $a(D ; X)$, whare $a(D ; X)$ dunotes the probabllity assigned by the duciston rule to onocaing the dem als'in D when X is observad, and tharafore $\sum_{0}(D ; X)=1$ for anch X. We dencta hy $l\left(\begin{array}{l}\text { fig }\end{array}\right.$) the axperitad value uf the lous when the decteton rulin a If hasd ama the true joint diatribution le given by θ. Then it ta uasliy asea that whan X, Y are diserate variablea, $r(\Theta ; 日)=\sum_{X} \sum_{Y} W(Y, D ; X) f(X, Y, \theta) u(D ; X)$. Whan X, Y are continuous, we teplace aummation with reapeot to X mar Y by integration.

As numerical Illustration of the ubove, suppose we have to deolde whether or not to buy a nonguaranteed devion for $\$ 500$. If we buy the davion
and It falle, wo mat then buy a guarmanted devioo for $\$ 1000$. If we doinot buy the nonguaranteed deviee, we buy the guarantued device for $\$ 1000$. The proparthon of defectives tu:ned out by the factory whioh produned the nonguaranteed devioe it unknown, but before making our decinton we oan obuarve two elmilai devices fromithe ume factory to was whethar or not asoh falled. We introduoc tho following notation. Y le dofined to be 1 the nonguarunteed device talle, and 0 otherwise. X_{1} le defined to be 1 If the firat of the two stmllar devides to be observed falla, and 0 otherwise, with almilar definition for X_{2} in telma of the ausond devioe to bu obierved, e denotes the unknowin proportion of defectives turned out by the faetory produghe the nonguarantead dovicea. Then X_{1}, X_{2}, Y are independent and Idontionlly dintributed random varlables, ouch with probability e of being equal to 1 and probability ($1-\infty$) of boling equal to 0 . We label the deoision to buy the nonguaranteed device an decision number 1 , Gud the dacision not to hup it as deolation numbar 2. The: the lowe funetion Le seen to beglven as followa. $W(1,1, X)=8500, W(1 ; 1 ; X)=81800, W(0 ; 2 ; X)=$ $W(12 ; X)=\$ 1000$ no matter what X LE . Then it the dedalon rule aj is gluan by

From the above, it is olear that in each deoisinn problem there are infinltaly many deolalon rulen, and wo need nome way of oomparing the goodnene
of one deciston rule to another, If s_{1} and 1_{2} are two deciston rules, whare $r\left(\theta ; n_{1}\right)<r\left(\theta ; A_{2}\right)$ for all possible valuen of θ, and $r\left(O A_{1}\right)<r\left(\theta ; \|_{2}\right)$ for at least one possible value of θ than we sey that "s! bettor than s $z^{\prime \prime}$ and we would not use the decision rule n_{2}. For example, In the numeriond lllugtration of the preonding paragraph, it aen be verified that il is better than a_{2}. We amy that deolsion rule 10 "inadmisaible" If there is a better deoluion rule than . If a dealaion rubla not inadmiathle, we atll it "admisable". How can we tind admiatible deaiaion ruler $?$ For simplielty, let 119 dimit ourselven to the onse where thare le a finite number h of positio joint diatibutions of X, Y so that we may aseume that the possible valuan of O are the integers from 1 to h inolusive. If $b_{l} \ldots \ldots, b_{h}$ ere nennegative qualititas adding to unity, the dealsion rule n is called a "Bayas deatalon rule rolative to $b_{1} \ldots \ldots b_{h}^{\prime \prime}$ If $b_{1} r(1 ; s)+\ldots, b_{h} r(h i s) \leq b_{1} r(1 / t)+\ldots+b_{h} r(h / t)$ for unary deabalon rule t, If a is enllad simply a Bayes deotation rula.rat. means that thery is nome at of nonnagative quantities $b_{1} \ldots \ldots b_{h}$ adding to uniry, such that © is a Bayes doolalun rule relative to b_{1}, \ldots, b_{h}. A basie theorem staten that evary admisuible dealeion rale is a layes dociulon

 otolon rules, it if aay to find admisable doviaton rulea.

In most problems there ara indinltoly many admisible decialon rulen, only one of which will be chosen for use. What princlples can be usad for seleoting one partioular deolaton rula fiom all the admisalble decision rulen $?$ Thare is mueh diagraemant about this, and we marely mantion two of the varlour prinelplos that have been propesiad. One prinolple calle for the asignment of "aubjective probabiditios" or "degreas of bellef" to the varloun possible valuas of θ, and thon using a Bayon deolalwil rule rolative to $b_{1}, \ldots . b_{h}$, where b_{e} (a ast equal to the aubjective probmbllity asaigned to the value © Another princtpla dofinua $M(a)$ as max $r(\theta)$, and then proposes using a deatsion rule whith minimises $M(4)$, whioh deolsion rule Is oullad "minimax".

WHAT TYPE OF STATISTICIANS ARE NEEDED IN RESEARCH AND DEVELOPMENT LABORATORIES

Chairman: Boyd Harahbarger, Departraent of Statiatica, Virginia Polytachnic Institute

Paneliats: Dr. E, L. Cox, Biometrical Servicen ARS, Plant Industry Station
Dr. Churchill Eisenhart, National Bureau of Standarde
Dr. Frank E, Grubbs, Army Ballistice Research Laboratories Aberdeon, Md.
Mr. John L. McDaniol, Directorate of R and D, Army Misaile Command
Dr. Paul R. Rider, Cifice of Auro-Spaze Resaarch, Wright. Patterion AFB
Dr. William Wolman, Goddard Space Flight Center, NASA
Dr. Donald A. Gardiner, Mathumatica Division, Oakridge National Laboratories

INTRODUCTORY REMARKS BY THE CHAIRMAN

Boyd Harahbarger

Matheanatical statisticm, including the etatiotical design of experiments, it a new diecipline. It was in the late 20 uthat R. A. Finher began his work in the design of experimente. In 1933 he moved to the Iniveraity of Londun where the field of design was greatly axpended. indiutry was . low to adopt many of thu idess devaloped by Fiuher, Yates, and others.

Dr. Walter Shevinari uf the Bell Laboratorien magist to considered the "Fatiner of Statiatics in Industry" in this country, but it was the orgenin zation and promotion ability of General Lealie Simon that Enallo cained tho proper recognition of atatistice. Many of us remenber the tenudi, Nionder colireen of World War II which were directed by Dr. Holnrook Working and Dr. Edward Olds.

Industry und governmant inatallationa movad quickly from quelity control to the denign of experiments. In thts aren government inatiliationa appear to have developed their own pettern for the organization and application of statiatice. On the other hand, companies like Bell Laboratoriea developed large etatietical departmente whes'e consulting le concentrated and where statiatical resuarch ie highly devaloped. Aa an example of an indue. trial company engaged in government activitien, Hercules Powder Compuny has been active in the application of atatiatics to propellant resesch. As early as World War II, clases were set up at the Radiord Arsenal and soon after full-time utatiaticians were employed.

Steel companies, like U. S. Steel, oil companien, chemical Induatries, automobile corporations, and most of the defence induetrine row employ statisticians. Some companien in certain industries hava been more auccese ful in the introduction of statistical mathode than others.

It is fair to point out that statiatice would n theve developad as rapidy or an aucceasfully if it had not been for the interente of government agencies. In this connection it is well to note that places like Aberdeen Proving Grounde have been moat uucceafful in tire use of statiuticu. The Army Resararch Center at Durham gave some of their earlient grants in supporifor research in the deaign of experimente. Redatone Araenal and White Sands Proving Grounds have used atatiatical methode aince their inception. The auccese of these two installations in atetistion han beon limited somew at by their ability to escure competent etatieticians.

What I have sald about the Army is true of other milltary inetallations, includir. the Navy and Air Force, 48 well an apace programe.

I am hoping that the panel will outline the moit efficient method for the use of statiatics and atatistical designa. I am suggesting that they outline the best method of approach an well an to where atatietice should be located in an organization. This will vary from organisation to organizatinn and from inctallation to installation. I fo feel, howevar, that the panel should tell ue wat they are doing in thoir particular activitics and what they might think would be beat for them to do.

I lave anked each of the panelista to give us a ten minute, and only ten mirutes, summary of their suggestions. When this if completed, we will then throw the programi ipen tor diecussion.

STATISTICAL PERSONNEL ASSOCLATED WITH AGRICULTURAL RESEARCH

Edwin L. Cox

Statiaticians are active in many phases of the work of the U. S. Department of Agriculture. The remarke which follow will be concerned with statistice and statisticians principally from Statiotical Reporting Service (SRS), Foreat Service (FS), and Agriculturnl Research Service, (ARS). It is probably correct to nay that the main involvament of
utatisticians with R and D problems will be locnted in these above mentioned organizational unite.

Eefore commenting specifically on tome of the differencell in needs and practices as exemplified by these different organisntionul units some overall generalizatione will be presented. The statiaticlans presently employed will be found in the main to have had educetion and training in a field of apecialization othar than mathematice or etatiatice. Of necuseity through experience or further training thie prior beckground has been edded to in the pursuit of profesitonal activity in statistice. The remson for this finding lo not entirely dise to ohortages of graduates with tation tical majors. It has bearing on variouy otier factors; historical, permonal, ete.

The Statictical Reporting Service conducts and auperviees a program of Sample Surveys. Communication with the Cenaue Bureau has beentrequent. The Research and Development Branch of the Standards and Reearch Division has a program of interpreting and developing the practice of ampling mathods for production and other aetimates. 6 RS has a definite program of cending etatistical personnel whora they can pursue a program of graduate training in atatiotica. As might be expected from the miacion of the organisation. the training recelvedie mainly in theory and mothodology of ampling surveyo and cenuacs.

The Foreat Survice han placed or intend to place etatiatical parsonnel at all regional laboratores. The policy han generally been to expect that preh statiatical personnel have training in forestry. Additional training in atacintics has in the past been accompliahed in part by the provivica of apecial coursea by forestedrvice statiaticians. The distitical contributions from the Forcsi Service have been typically in the areas of technique und methodology. Rathar eperialized techniques of vampling have recoived etatietical eveluation.

In the Agricultural Research Service most of the atatiatical personnel are organizationally located in a unit called Zsemetricel Services. Except for those assigned to the four utilization laboratories, the manera of Biometrical Services are etationed in the Waghington, D. C. area. Theif statistical consulting aervice to field atations is provided by correspondence. In addition to atatiutical aid to ARS ecientists in Washington and Belteville and in the field a computing laboratory in maintained as an integral part of the unit. Blometrical eervices pertonnel In the main have not rectived theif primary graduate training in atatiatice. Some have pursued
additionel sudy in statiatice or have galned compatence by experiance. The scope of the subject matter which may come under conalderation with respect to problema of deaign and analyaie of experimente covers the come plete range of agricultural experimantation, Statiotical contributione from this group havo come princlpally in asiociation with mubject matter apecial. isti. Sevaral bulletins of specially statiatical interw at have been produced.

It would asem from the experience of the ee werking organiastions that a firm acquaintance with abjoct matter is important for atatiotical pervonnel masociatec with agricultural research. A coordination of atatiatical techniques with this foundation seems to produce a pereon who has rapport with the ecientiete and can ald mad adine them on nunce rical problems. It may be that some areae deacrving atatistical tools hays beenignored but until there to a felt neod for attention, these arean are likely to remain uninvertigated.

THE NEEDS OF THE STATISTICAL ENOINWEHING PROORAMS OF THE NATIONAL BUREAU OF STANDARDS

Churchill Einenhmrt

I wolcome this opportunity to review the utaffing neede and recrudtmert difficultiea of the otatiotical enginen ring progrann of the National Buremu of Standarde becaune 1 feel that they are aymptomatic of the nends and recrultment froblems of many of the etatiaticul sutiaser; and suneulting grouf: in Govarnment laboratories, To provide the eetting for my atory, let met begin with a few words atoit thu programe and functiona of the threo etatiaticui groupg at the N:Cional Burenu ni Stanciarda.

I'se major atatiatical pruyram of the National Bureau of Standua te Is that of the Statistical Engineering Laboratory of the Applied Mathematic. Dlviniou, c: the muln "cempua" of the Buraau, ir Wabhington, 7. C. Thie group, of which I was the Chlef trom Ite tormal establishment on July 1. 19147 until Jume 30, 1963, is now unds $=$ the diruction of Joweph M. Cunceron, Chief, and Joan R, Rosonblatt, Aasiatant Chief. The reliacipal function of the Stutistical Enginecring Laboratory in to serve in an advilory and aupporting capacity to the Bureau' acientific and technical personnal on the application of modern probability and atatiutical methods in the phyoical sciences and engineering. Ite staff also conducte research on the theory and techniques of atatiatical inference and itatiatical design
of experi., ente, with mpecial referenct to problems that arise an phymiond ecience and engineering experimentation; and to e lesser extent, on mathes matical and atatiatical aipecte of the definition, measurement, and specification of the reliability of components and asoumblies, with particular attention to the evaluation of the reliebility of electronic componente and eystemb.

There are two other, muck maller, statiatical p supa at the National Bureau of Standarda. One of these is locased in the Polymers Divimion, on the Washington campus; the other, in the Officy of the Managor of the Boulder Laburatoriea of the National Buradu of Standarda, in Boulder, Colurado. Both of these groupa nperste independently of the Statistical Enginearing Laboratory. The Polymari Diviaion group concentratea on development of utatistical techniques for the dealgn, analysis, and interpretation of phyasal and chemical data pertinent to the ovaluation of the measurement techniquas in the field of polymers; ame. In recent yeare, has been actively engaged in atudian of moasurement procesaca doaling with pulymeric materiala from the viewpoints of interlaboratory atandardization and the need for standard reference muterials. The Boulder Laboratories group specializen in adapting existing general statistical mothodu to the experimental work of the Boulder Laboratories, and to developing mathomatical modele of etochatic phenomena of interest in ecientific and engineering programe \therefore ihe Bouldar Laboraturiea.

Both the eervice and the reaearch activities of all three of thene groupe would bendit from additional personnel. I shall, however, restriat my commente principally to the neede of the Statiatical Engiueering Laboratrir., ar hile is the groug with which I am most familiar.

To begin whith, the Statisti-al Engineuring Laboratory' eervice acrintiea - its provisiotiof advice and assintance to NBS etaff mantham on a:atistical anpects of their calibrations, remearch, and development progtame -- ie continually hampered by shortage of yczaonnel. Tha available "consultante" are irequently involvad in four or five major consulting projecte at one time, and therefore sceced to reduce the time upent on any one project. The Laboratory has continual need for miditional upecialist in experimental statintice to enable it to tive some projects the detalled thorough atudy they wargant. The background of the epecialiatu should include at a minimum a etrong MS in atatistice with some firathand experience in the design and aamyait of experimente. Sucond, both tho selvice and the research activition of the Statiatical Enginesting

Laboratory would benofit if the Leboratory were mble to attract a succeasion of topnoteh young Ph, D's in muthematical statintics who deatre to gain some firsthand contact with applications in the phyalcal sciences and engineering before devoting the remsinder of their cavears to teaching in a univeralty or college, or to working in induatry or in one of the ever-increating numbar of non-profit research inetitutes. The scientific and technical programi of the National Rureau of Standards, ombracing almost avery arta of the phyalcal ecioncea, afford unueual opportunition for gaining experience in the application of modern atatiatical tools.

Unfortunately, beth from the Bureals viewpoint and from the longrange view of application of statistical methode in the physical uciences and ongineering in thi country, the number of quallfiod applicante for ponitions In the Statistical Engineering Laboratory at all levele is almost nilh. There are everal reasone for this altiation, Lat us conaider firat the Laboratory's "red carpet" positione, Its Postdoctoral Resident Research Aasociateshipa in probability and mathematical itatistica,"

A recipiont of one of the de Research Associateahipi ls expected to devote hil efforts entigely to advanced tralning and raseerch in some aspoct of probability and mathematical statiatices related to the work of the Statiatical Engineering Laboratory, In recont yeara, reaearch activitiou of the Laboratory have beon directed toward the evaluation of exiating and this development of now statistical techniques of value for the appications in phyalcal ecience and ongincering experimentation, with apecial attention to "practical properties" of atatietical techniques, including quastione of power. afficiency, robustness, consequences of misapplications. The "advanced training" may conalet meraly of pasilvely obneyving nature, and tho manner in which we cas*y out, our conoultative and rdylaosy wesvices in prulatidioy and mathematical etatiatica The Research Ansociute inay elect to participata in ane of theae consultmive and advisory
*Thesu awaids are part of a broad program eponeored by the Nationa! Bureau of Standarda, in cooperation with the National Acadamy of Sciencea - - National Reaearch Council. Their purpowe is "so provide youns ecientiut of unusual abllity and promise an opportunity for fur the mental research in various branchen of the phyaical and matiomatical acience:". Intended principally for recent Ph. D'and Sc. D's, the awarde carry an annual groes atipend qual to the CS-12 entrance aslary in the U. S. Givil Service. Applicante' qualifications are evaluated by a board of aelection appolnted by the National Academy of Sciences .. National Research Councll.
activities to gein insight, inapiration, and some practical experience -- but he fa under no obligation to do so. In spite of the hoaor acoruing to the recipianle of the sa Researeh Aasociatenhips by virtice of the adminiatration of the program by the National Academy of Sciences - - National Reaearch Council, and of the definitaly preferential atatus accorded them in the Statiatical Enginaering Laboratory, in 4 out of the 7 yeari of the progrun's existence there wore no applicants for the Research Associateship in probabillty and mathematical statiatice in the Statiatical Engineoring Laboratory, the present year veing one of the "dry" years, and in only one year were there ae many as 2 candidates. In contrast, each year there have been ample applicantis in "pure" mathematics, and in many branches of phyaice and chomistry.

There are, I belleve, at least four reasonm for thle dearth of appllcante for these Postdoctoral Renident Research Ausociateahipa in probability and mathematical alatiotics: Firnt, there are far fewer Ph. D'e upecializing in probability and mathumatical etatistice than in the other branchea of mathematicu - . and, a fortiorl than in the moro popular branches of phyeice and chemistry. Second, although the Statietical Enginesing Laboratory of the National Bursau of Standards is one of the principal centera of research in the application of atalistical theory and mothode in the physical and engineering aciences in thie oountry, its activities are primarily of interest to groups angaged in masuramont, calibration, and teating in the phyaical and angincoring sciancea, and are wi very little intereat to -- and carry no apecial authority in - - the de partmonts of mathematics, whare the majority of cournes in mathemadical nentistica are laught. In contrast, the work of many divisions of the Nasional Bureau of Standards ia vital to research and development proyiams in the physical-acionce wid ongineering departmente of wiliogea and univesation. Thlrd, the predent-day training in atatiatios at mout of the universities or colleges in thie country is so atrongly neiented toward theory, with little attantion to applicationa, that the majority of the s:ceceaful candidates for MA and PhD degrees in probability and tuathe.. matical statiotics have alraady devoloped a strong distaste for applicationn. partly frum the exprebeed contempt of "mathomatician's mathomaticians" towards anything "applied" in contrant to "pure", and partly from laok n: exporience with applications and resulting fear of the unkrown. Conveyuently, even explicitly research-orionted "pomitions" in a government laboratory ara ahied away from, boing regardod as having an applied "ialint". Fourth, the small number of individuals who no have the requinite training and interest are, for the moat part, either lured into induatrial mpplicationa by the much higher alarie otfered by induntry and the over-growing number of "non-
profit private research inntituten, or take poditions with univernities where they oan engage simultaneounly in teaching and research uncer the contract arrangemente now generally available, for the most part with Government funde. The ae latter are able to offer the ual induce. mente of university appointments and titles, leaf otringent working houra, opportunity for teaching and private consulting, ior extra muney from tho "outaide", and now almo in many cases equal or higher amiaries as well.

Let us now consider the mituation at the lower profesmional leval in the Statistical Engineering Laboratory. In compariaon with other eectione of the NBS, and in reliation to customary management norma, the Statistical Engineering Luboratory hav always been "top heavy", thatia, has alway had an unurually large fraction of its ataff in the upper profescional bracketa. This, i believe, Is characteristic of most conmulting groups, In the 1950's ("the good old dey"") when our recruiting at the PhD-level was more aucceaful, the Laboratory waseapecially top-heavy with PhD'a; and the median Civil Service grade ot the 11 profenetinnal membere of the year-around itafi was GS-12, i, e, one grade above the entrance level for brand-new PhD'a In Mathomaides and Mathematical Statiotice. Today (October 1963) the correaponding median arade of the yasr-round ataff, including myoelf at en "honorary member", is QS-13; 1. e. one grade above the entrance lnvel for "quallty" PhD's in mathematice and mathematical statiutice ... and only "quality" PhD'e soem to be avallable.

Thi: Statitical Enginearing Laboratory has alwaya managed to get along with far fuwer personnel in the lower professional lovela than mot. statiatical consulting and advisory groupa becaume it han naver neseded a miscahle computing group within the Laboratory iteelf on account of the axisitence and general avallability within the Hureau of the complitiag eervices of the NBS Computation Linuratory. The sento staff oi the Statiatical Engineoring Laboratory, un we other hand, have been obliged for many yeare to do for themselves various "chores" that normally would bu the absipued work of "graduate annistants" at a large university and of GS-5 anc GS-7 lavel prufesional aseiatantein many other laboratexiea. Our phortage of support staff at these levels has etemmed from the almout complefe lack of qualifiod candidates for lower-and-midelo resk prufestonal positions in analylical and mathematical atatiatice, a eltuation which, in turn, somm: from the fact that in the United Stated itatiotice is Largely a post-gradusten field of apecialization. Aua reoult there are vory few applioante for statiatician positionu at the bachalorlandegree (GS-5 or GS-7) entrance lavele who have training in statistica that is comparable In scope and depth to the training in phyales or chemiatry that is roquired of applicante for Phymeist and Chamiat positione at the same entrance levele.

In other aections of the Bureau, where the work Involves the traditional tialds of chemistry, physics, and engineering, there in a continual influx of "new young blood" directly out of collegoe and univerulties, at the bachelor's and mamter'u degree levele. These junior profestionale asisist the higher-ups with the more straightforward phasea of the day-to-day operations of the groupa concerned, and a few, througn on-the-job-experience and In-service training, rise In due couree to higher positions in the organizntion. To date, the Statietical Engluevring Laboratory hav been obliged to gat along without the "normal" complement of lower level ansistante on account of the peculiar circumetances of the statistacal profesalon. It may be, howaver, that in time the current trende in the undergenduate mathematice curriculum will produce mincremerd number of qualified applicante for junior positiona.

The ataff of a consulting group liko the Statiatical Engineoring Laboratory will, nevertheleas, always tond to be top-heavy because of the nature of its work. A statiethial cunsultant has to be prapared to hendle a wide variety of probloms: when a phyelciet tolephones to way he has a problem in least-squares analyaid, it may turn out that his reat prubirm (from lise professional ntatiatician'a point of view) is in experiment design, or numerical analyals, or componente of variance. The conaultant who ia alaluned to provide advice mast hava a afficiently broad background to identify tha problem corractly and to be able to apply the relevant theory and methods. An eapecially Important part of the requiaite beckground in the ther wugh adrunced t:aining in probability and diatribution thoory that enablea the atatiaacian to teer a safe courne through the adaptation of atandared tochniquea for appliontion in we almoet untvorandif non. whandard edrcumatances that indse in phyalcal acionce iventigations.

While it is not necesuary that each consultant be an expert in eyts; fiald of atatistics (this would be absurd), it iv mino true that conyulting work will not audt the tasten of a narraw specialiut who deesn't care to know about any field oxcept hie own.

In summary, our effort to recrult brand-now college grardaten MA's, und PhD's has bean diacourasingly unsuccosnful in rewent yeare. I have ammarized aome of the factors contrinuting te this
altuation. Fortinataly wa have been a bit more aucceasfui in recruiting MA's and PhD'a who have been "out' for a year ar two; und some of our MA's hava grown into fuil PhD's right on the job, through on-the-job experience and "outeida" job-related course work; and at least two of our present ataff are headed in the same direction. We just winh that more promiang young men and women would "cive ua a try" onroute to thoir ultimate careora.

SOME THINGS THE STATISTICIAN SHOULD KNOW

Frank E, Grubbi

In continuing this completaly unrohearsed program, perhaps the first remark that ehould be made concarning what types of atatistaciane are neided in R \& D laboratorien is that they should be good netinticianal The next remark is that the atatiatician should know quite woll or leasn as tho :oughly as posible the field of application. Thielu especimily denirable or neceuaary in the angineering and ecientific fields, or other fieldm, where phyaical, mathematical, biological, atc, modela are in many cases already available. To speak only in statinateal terms is a lost causo Indeed Also, the atistician in many $R \& D$ laboratories iu a rrember of a tommenis methodare woll worthwhile and needed, althnusii it seem: to be a rather natural fact that tha athtiotician is mo:e prone to criticiem than ary silu* colleaguea. But this is wis in the game of thinge, and we riust romumber that the non-statistical Inveatigator in oftena bit jealous of the power and usafulnese of statistical methodn in momm probloms, on tha other hand, atatiatica cannot help.

The typus of atatiaticiane neaded depend very much on what they actually do in $R \& D$ laboratories, so wo must examine this momentarily. Thare is the obvious need for occasional otatiatical enalyala of data (including the comnion teste of algnificanco, jegresuion analyais, otc.) and the atatiatical
denign and analyais of acientific experiments, Factorial experinentation, incomplete block deaigns, Latin and GrancouLatin Squaree, latticem, etc. are all of considerable importance, as is alno the aearch for optimum operating conditions utilizing Box tachniques. Interpretations of the data, however, munt always be in termi of the physical picture involved, an this ta the basic raquirement originally deatred.

At the Balliatic Research Labosatorles (and no doubt R \& D labora. torlea generallyl, curvefitting id of importance. 1 dintinguis h between the fitting of "physical" laws or curves in general and the fitting of fre: yuency diatributions, in ordinary curve fitting, the physicist or ongin= eer is oftentimes trying to linearise hil data in addition to trying to get the "best" ift. He plote data on a logarithmic acale, ote. The statistician could be eepecially helpful (if he can get his hands on the data!) aince he la uitually adept in the une of traneformatione, leaet equarea and teating the aignificance of puramelera. (Iteration it often required to edtimate firamoters.)

There 16 also the need for fitting frequency distributions. The Panyson syetem of irequency curvesis quite general (including even the Welbull dietribution of much current interest) and the method of momente very ue oful in practice at compared to maximum likelihnod eatimatlon, which although theoretically elegent and afficient, is often not ac uatisty iny proctically. (L must romark that etatinticians coming out : $\{$ the graduate schoole now have most likely nol atudied the Pearaon eyutem of frequency curven or the Gram-Charlier Staine, cte. 1)

The big, now field of endeavor in Army R \& D work ta thet of Operations Renearch, arid in intul include the very haporiant ficled at Weapon Syutem, evaluation, In the later cand, at in much OR work, we often get somawht away from asenticance leating, experiniantal dealgne, etc, and come face-to-face with the requirament for probabilin cie modela. We predominantly epaak of "hit probabilitios," "kill plobabilities, " coverage probleme concerning the overlap of wappon "fethal areas" on the target area, diatribution of the range of angagement, chance of winning an engegument, etc. But again, the otatim. tician le badly needed. The calculation of many probeblititios of hitting, for example, is clonaly tied in with the distributlor of quadratic formu in normal variablen, the diatribution of range of ougagement io often of the Pearion Type LII or Gamma clana of frequency diatribution, ete. Alao, for waspon eyatema evaluation problerns, there in evar-present the requitement for coinbining eeveral frequency distributione to
obtain the siagte or ovorall characteriantion of weapon sytom parform. ance, If poinible, Kollabllity atudiea reprenent a vary importent facet of the fiold of waspons evaluation and the atatistician can be very valuable hore too. Some reliablity theory ahould be in the piedent curricula for statistica. Thut, the properly quallfied statistician ean do min \% for this new field and he la a neceanary part of it.

Finally, my time it getting ahort, but i mut mention that a very epecial, highly quallited type of atatiaticlan ill vory often needed. He ie the type that must bo right up-to-date with the mast recent advances in the atete of the art theoretically. He le the one who in pushing the frontier forwardin many arenn, combining devalopment! from many arean aud, for example, includiny time eerias atudies, varianeo-componant analyese, multi-variate normal theory, the treatment of errerm of meanurement, prectaion and accurncy, atc. The prectical typen of prublems lapak of aremiready with un and the demand la mos turgent for acourate estimation pooccdures. 1 refer to the tracking data analyais problem for miswilo crafectoriee, which Dr. Devid Duncen will discuse at the geveral easeion tomorrow. For aush problema, we see the need for the mant highly trained atatiatician and the requirament ia likely to grow conalderably.

I atomark and obnerve that many of the paperi presented in this confercinco indicate the typer of atathaticiane needed In R \& U Inboratorion.

In nummary, therefore, in R\& D laboratorian we need both the appliced otatistioian who will analyme deta atatistically, carry ous design
 the lieuretical atatiatician for ciany very nomplan problems orupping up on the frontiers of knowledye, ith either caue, however, the stetistician mual haow tha phymical or engineering flold quite woll in order that in. may make the beet contribution poealble.

DESIRABLE ATTRIBUTES OFSTATISTICLANS LN \& \& LABORATORIES

John Lu McDaniel

The word "laboratory" in the Defonee ountext has many meaninge. Used loonely, as we all tand to do, it encempleses the full spoctrum of weapon technology from bualc research linrough prodisction. Further, each sarvice hac probluma unique to their mise ioas, and thua have discreet requirements for its laboratorien. Naturally, my ramarki whil be alaged toward our Army laboratoriay in general and our mitalile laboratorlen of the Ariny Miaile Command In particular. I believe however my ramarke will be autficlently genaral to be ueaful in our broad diecrimion at Research \& Devalopment Laboratorion.

The R\&D leboratories of the Army Minalle Command are an organie phrt of a Commodity Command. The commodity in miselfas, therefore it le an Intringle responalbilley of our laboratoriae to concern themeelves with a milution which covers first, researchi second, the generation of new mil stle concepte to fulfill the requiremente of the Cuture Armyi and thiril the technical aupport required in the fiolding of midedie syetume now in devolopmant. In carrying out this brome mission the laboratorles must be constantly mindful of the syatem enaracteristice which ausure that the weapon will lunction rellably in the environment anywhere in the world that the Army in required to fight.

The formula for discharging thil ranponabldity contains many terma. One of the terre is inen and it in thit term this we will die. cuss. The enscesiful onarution of N \& D aboratories requirey teamwork of the men. The team is rade up of peraone trained in the phyaloal aciences and in the various fielde of engineering. The otatinticimat: "iw a mujor rathor than a canual partner of this tham.

My firat dea irable attributo then for the statiaticlan for R \& D Inboratorien is an Individual to work ai a tamm member in proyisioni. suliable wopon yotems. To operate effectivoly ara acmbet of chis team the otatistician muat have a falr amount of formal educestion in bive field and egreat mount of appreciation for the phyaleal adenany and for engineering.

The atatiatician playi a key role in the area of reliability. Reliability in a function of the Arrny' duciuion from buginning to and. Men expariunced In thi unique buainese can look objectively at a devalopment program, almont bafore it beglas, and identify the reliability problems we can expect to encounter: Reliability must bo buititinto all the dociaions which wre made through an an. tire program, through dealgn, teate of succoasive atagos of deaign, through correction made during deaigh, through further tenting, through production and the anfurance of quality production, through supply and protection of quality in the supply network.

My wocond ceairable chatacteriatic of a atatiatician in the R be D Laboraturios then io an individual trained in tho tochniques of relimblity an thie reliability relatan to a weapon gyntem throughout itilife cycle.

Dectaions regurding the misaile eyuteme generated by the R \& D luboratorien musi be made by mon who havo to ntandeup and be counted. Stand up and be counted by the man who must anewer to the combat eoldier who takea the miesile gatemi into the battlafiold with hia life in hia handa. We cannot have those decisiona made by other peopla for us. These declalons must be made on the banis of our knowledge, ielnforced by the knowledye of othere in equally objective positions. In dealing with the computilive commercial world wo must be in a position truly to control our mianle businena. We muat have technically competent people in our laboratoricu who law to conflieting intereate and who therefore cariaffurd to be objective.

Third, then the atatiotician in the R \& D laboratorion munt bo tonhuicully competent In minilo technology end muthava a full moanure of objuctivity.

Thure are those who ballev- linat rellable minalle syatema rea io provided to the umer without governmant compatence in in-house R \& D laboraturies. This bellafignoren oomer very late principles.

Fipnt, the competitive commercial industry engaged in miseile system englaearing requiren contrul. To apply thil control a capability to subu" trol 10 raquirad, not junt by augeation but by diraction whon neceasary.

Ser: \sin, the capability to control requiren knowledge and exporienc*. Without this experience une must rely on faith and hopoful truat. The onglues r cannot know whether hia faith is well placed unlese ho has firut hand knowledge.

Engipering and aciencific knowledge deteriorated In a vacuum. Unless the enginest has the responsiblity for actual hardware work, for gettirg his hands dirty, he will become the kind of engineer who looke over drawinge and hopea he is right, but has a manaure of doubt a to hia wise dom since he is not current with the state of-the-art.

My fourth premise then is that the etatiotician in the R \& latesaturies. must have confidence in his own knowledre, This knowiedqe mut come from working with the hardware, not just sittingin a itaf position and walting for a problem to be brought to him.

In order to efford to the ecientiats and engineare the requi: ed knowindge a emall amount of our bueinesp mast be done in-house. Enou, h to allow us to controi the rest of our missile buniness. I have heard that a good many yeare ago whon Henry Ford started to build a emall ateel plant a committee of the Congrese called him and questioned him abuat monoply, "Ian't there onough ateol in the country for you", he was anked. "yes Sir" Ford anewered, "well then", the committee asked, "why do youbuild a steel plant?" Henry Ford's anewer is alid to have beeli .. "Gentlomen, to learn onough about making ateol to know what I'm buying from the ateelmakers."

Gentlemen, I subrnit finally we raquire atatiaticians in the R \& D laboratoriea as a key mombor of the team to holp un remain leadera in misilles 10 we cen influence what we're buying from the minallemakors

STATESUCIANS IN ALR FORGE ORCAULZATIONS

Paul R. Rider
In the firat place let me tell you about nome of the Air Porce organizatione that are concerned with statistical mothods. How these organiatations originated and developedis ably described by my colleague and nificemate H. Laon Herter, in an article, "Statiatics in the Air Frece Hesearch Prograns," which appoered in the Amorican Statiotigian for October, 1962 (Vol. 16, no. 4, pp. 23-24) and was reprinted ae Appendix B in Harry J, Eisenman's Hintory of Mathematical Statintics Roanarch at the Aeronautical Rasearch Laboratorien, Office of Aeronpace Rosearch, United Siates Alr Force, Washington D. C., 1962. Conaequently I ahall not go into historical matters here.

Two lemonte of the Office of Aerospace Rasearch handle practically all of that organization'w banic research program in atatiotice. One of those elemente is the Air Force Office of Scientific Reteareis, alsolochted in Wiachington. It has as lte principal function the awarding and monitoring of contracte and grante for basic research. The aubject mattor of the atatistice contracte includes nonparametric methode, order atatiatice, eatimation theory, dietributions of atatiatical functione, deagen and analyaia of experiments, deciation theory, foundations of probability, litnit theorems, atochantic procesens, Markov processos, and combinatorial analyale, as well as applications of probability and uratiatica.

The other element is the atatistica group of the Applled Mathematice Reaearch Laboratory, a component of the Aerospace Research Laboratorien, located at Wright-Patterion Air Iorce Bace, Ohio. Thic aloment performe most of the in-holse basic research in statistica; it alvo does a mull amnunt of conoulting work and monitors a few contracte in areas closely related te the internal work. Theaceareas include design and analyele of exporimente, stimation uf parametern, and probability theory. Specific toples being studied are traneformations in the analyale of variance, multiple comparisons teats, multivariate analysin, the uae of order etatiatices and function of order atatiatica (e.g., range and quasi-range) to obtaln estinntes of parametera, mixed and truncated distributions, information theory, circular error probabilitias, and probabilistic modele for applied maitumatical problems. Members of this group have conducted courees in watiatics and eponsored musters' theses by students in the Air Force Institutn of Technology, elthough they art not at present engaged in any formal inetructional activition.

The Operation Analyain OLitce at Headquarte:n USAF ueen atatietical metnode exteneively and performs a certoin amount of research in applied otatiutics.

The Air Eorce Syateme Command makes axtenulve use of atatiatice as a renearch tool and purforme a fair amount of rasearch in appiled mtalle = tics. Among the varioul divisions of AFSC, probably the one having the most mxtenaive progrem of atatistical reacarch ie the recentiy formed Bioastronautice Division; particular mention whould be made of the wurf of the Sehool of Aviation Medlcine located at Brooke Air Force Bane, Taxas, and the Aerospace Medical Research Luboratorio at Wright-Patterson Air Force Base, Ohio. At tha School of Aviation Medicine, reaearch in being performed or monitored on the atatictical theory of epldemics, the sampling distribution of the characteristac rould of Wiahart matricea, the analyais
of ropenton measuremente, clasalfication statistics, and non-parametele several-ammple tests. At the Aeronpace Medical Research Laboratoriva rnsearch has been performed on diatribution-free teste and considerable use ha: been made of the design and analyaie of experimente in their testing of materiale, equipment, rations, phyaical endurance, ate. In the Balliatic Misaila Diviaion of AFEC some applied statiatical rasarch has beon administured by the Air Force Mianlle Development Center at Holloman Alr Forco Baee, New Mexico, and by the Air Force Miealle Teat Conter at Fatrick Air Force Base, Florida, Naturally, much of the work at thede two centers is concerned with reliability.

The Alr Force Logintica Command employs atatistical quality control and acceptance sampling techniques.

Contract groupa arw the Rand Corporation at Santa Monica, Calliornia and the Institute for Air Weapone Research at the Univeralty of Chicago.

I have tried to aketch a. plocture of the present atate of atatiatica in the Air Force reeearch and development puogram, and now 1 shall attempt to any how I think the aituation can be improved. I would not urge any change in the overall organization. I do beliove that many more atatiaticiane could be used in all of our fiolde of ondeavor. We could use more rasearch statiaideians. Of course, it in imposible, or at least diffecult, to force the direction of basic researeh, but some effort could be made to asemble groups of etatieticianis with common interests in probleme that would likely heve some useful application to Alr Force problema nome time in the future. I would not, however, throw out any project simply because no poseible whlleation canke imagined fer it, even in the far-dintant furure, it if well known that ounse thourien whelt at one tims we:"! zunaidered of acadonic Interest only have ubsequenc!; been found to be of great practical utility. Fur oxample, group theory, once regarded wit of no concolvable we hel beceme extromely important in the deaign of experimente.

But mainly I should like to wee more statiaticiansemployod as coneultante in various fields. These persone ahould be fumiliar with the particular fielde in which their eervices are employed, whether this be the phytical scionces, the biological, logistic, or other. Ideally, a strong group of auch persons with practical knowledge and sound theoretical training should be attached to avery important reaearch or development or caniaation. This would probably not be feacible because of the diffeculty of getting a sufficient nurnber of qualified statieticians. The nextebest plan would
doubtlesel. f to have a central buremu of consultants whose aervicen would be avallable to those organizatione desiring them. I do not want to bring up the question of unifying the armed services, but I see no reason why the advice and assiatance of auch a buroau should not be available to any organization within the Department of Dafense.

In uummary, I think we need more atatiaticiane of all kinde, and although I am connected with agroup whoee primary masion in besic research, l believe that the greatest need is for statiatical consultants, those who can give practical ald on important research and development problema needing immediate molution.

DESCRIBABLE CHARACTERISTICS IN A STATISTICIAN

William Wolman

"What type of physiciet is needed in a laboratory" or "What type of astronomer is needed for an obeervatory" are quastiona which are raruly asked. Why? Because the prime and overciding requirement in for a ecientiat with the highest technical qualifications. In concidering the queation as to what type of atatiatician ie needed, we are dealing with siftewhat of a differant problem. What make it a different problem? To enumerate a fow characterinticieragerding a atatistician, the following pointa come to mind:

1. He must deal with other ecientiate and angineesa.
2. The fividionew and is a relatively unknown suientific diselpline.
; Thure are many paple in the profeanion who got in throuf: the back door and who are technically not up to par.
3. He inust be willing to communicate und liaten to ather people's technical problema.

As a basic requirement the statisticimn must have adequate technical qualificatione. I would include a nound foundation in the dealen and analyais of experiments -- the Analysis of Variance, Multiple Comparison Methode and knowledge of some of the more exotin designs, auch an, "eplit plot", "fractional replication" and responwe surface techniques. The leval of
underaticadag should be that which is describud la auch nxcellent books as Kempthorne, Brownlec, Sochran and Cnx, and Scholif, raferancen 1, 2, 3, and 4. A knowledge of the theory of entimation including condidence interu vala and the determination of annircea of variation an manured by variance companente le another technical area of importance for the laboratory etatiatician. Furthermore, some knowledge of the various types of fixed and random modela for the Analyais of Variance is important, I would like to recommend that if a laboratory dasires a atatiatician that they hire a profestional. Tuday, there are at leasta dozen tirst-clasa univeraities which have programsin modern etatietical theory and ite epplication. It is not aufficiont to laneform a member of another diecipline into a statieticlan. The common practice of using a "warmod over" ongineer as a statiatician can only lead to undeshzable coneequences. I would like to reilerato that I am not apeaking about many fine atatiaticiane whone original training was in some other discipline and who later in theis carear driftad Into atatistica. I have frequently encounteredindividuale who make the otatement, "I am not a etatistician" and then enter lnto a lengthy diecourie on some atatiatical questiona and consider their opaning dieclalmer a licenee to commit every concelvable kind of technical and logical error. In clouing thia paragraph I would like to point out that the technical requirementa which I have anumerated above are only examplea and ahould be supplomented with a sound foundation In atatistical inference and probability. Furthormore, I mm referring to a consultunt atatiatician and not a research mentietician, namely, one who doan reacerch in the theory and methode of mathematicel etatistice.

Having sound technical qualifications in not aufficiciat for a conaulian* ctratiatician in the lahoratory He must be able to commuhtiate and apack the langumy of hie sellow aci:atisto and engineera. Some underatandiny of the aubject ratter is also me.aiatney. He muat certalnly find out what the iaveatigator whom he in trying to halp wante to uncover or deteiande. For example, if it is a problom of determining which of two procuaven are aupts 1or. thon he muat rocommend to the exparimenter a procedurn whith will pruvide at least a $50: 50$ chance of detecting alderenees of a rragnitudo which are considered to be of conmequence. A linowledge and underataneling of leboratary technigues and metrology la certalnly a most deairai lo know. ledgo for the atatistician in the laboratory. Wilson'a book, raferanee y, given an account of some of the functionm und requirementa for the expayi. monter and atatistician in the laboratory.

An a conaultant, the statiutician must aluo have certain paraonal characteriatics it he to to perform hie job ouccenafully. He must have a deaire to help his dellow ecientiate and ho munt be able to commundeate with
them freely. Hia attitude ahould not be antagoniatic or domineering. He whould realize that he is performing a technical apport function which is usually not !n the limelight of an operation. I have found that if the experimentere In the laboratory foel that you huve something to aell, namely, that you are able to help them in their work that you will soan be in a poisition of having more to do than you can posaibly handle.

Some closing remarks an to the organizational lonation for a statistician In a laboratory follow: The atatistician hould have easy accese to the experimentere and ehould not be hindered by any organieational harriors. It is usually dealrable to deal with the experimenteri in an informal manner. Conarrainte in terms of raporting and approval procedures should be hald to an absolute minimum, For instance, kesping track as to the number of contracti a statintician has with his colleagues is virtually meaningless. The contributions of e consultant atatiatician are often very dificult to meanure and may conalat of an acknowledgmant at the ond of an experimenter'e papar in a technical journal, or a etatement of appreciation made at a meoting, I do not conaldar the formal orgunizationul location of the etatietician to be particularly important if he can perform hid functiona in a manner at i have nutlined above. It If only if the organiational location is concorned with the remuneration that the individual iu to receive that it may be an impurtant queation.

RHEERENCES

1. Kumbthorne, O. (1952), "The Design and Analyais of Experimenta." W:ley, New York.
2. Blownlee, K. A. (14y60). "Stitistical Thenry and Methodology in Science and Engineering." Wiley, Now Yurh,
3. Cochian, W. O. and Cox, O. M. (1997), "Experimentel Denignu," Wiley, New York.
4. Schafte, H. (1959). "The Analyale of Variance." Wiley, New York.
5. Wileon, E. B., Jr. (1952). "An Introduction to Scientifle Research." McQraw-Hill, Nuw York.

TYPES OF STATISTICIANS N\&EDTL

Donald A. Gardinor

The research and development laboratory needs two types of atatisetician to occupy throc kinde of position on the statie'ical consulting ataff. I would call the two typan of statistician the externa coneultant and the internal conmultant. The external consultant is the it distician who talke with the aciuntiat or abjoct matter specialiat about his problem and attempte to work out a solution. The internal consultent is the statistician who conaula with statioticiang and mathematicians. The three kindis of position may bast be explained by reforencen to the eccompanying diagram.

The diagram how what I think the etructure of a statietical coneulttng staff should look like. The circled portion ropresente a banic "module" or building block of the organization. I have ahown two modules, but a largu organieation may need more. A mallur laboratory winy neod one module si only a part of one. The lotter aymbole wrwinterpreted an follown:

$$
\begin{array}{ll}
\text { MS } & \text { Mathamelibid or theoreticul utatietician } \\
\text { ES } & \text { Iaperimental on mpplied siatietician } \\
\mathbf{S} & \text { Statitician, etichar mathomatical or axperimentel } \\
\text { PR } & \text { Programmer }
\end{array}
$$

Although 1 conaider the programmer basic urd very dinportant part of the organdation, a dimeusion of hif role and hin cidaracteriatice le suot pertinent to this panal.

The external consultants are the S and ms utatiaticiana. Both of these people treat directly with the custismer. Therefore, they ahould be personable, they should mat poople wali, and have the abillty to expreat themselva clearly in a non-mathematical manner. Theen qualities are dealrable in the internal conaultant, too, but they are not absolutely naceesary. While
we are consiferiag the internad convultant, it might be well to point out how his position could be filled in the case of the laboratory which doen not have a full statiatical ataff. I think that In thie case the wervices of an MS atatiatician might be obtained on a partetine bisie-operhapa by haring a consultant from a univerulty for a fow daye each month.

The S and $E s$ atatiuticiane should have a acionce background. This is probably beat obtained by taking anchulor of Science degree at a univeralty, The mathematical acientiotician would need mathematies training equivalent to a masteri dugree in mathematice. More impurtant, however, is their oducation in atatistics. Both the 8 and MS atatistician should have utatife tacal training at the Fh. D, luval and the ES atatiaticlan at the mantara laval. I do net want to asy that these degrose should be required. Howavar, the levela of training I have in mind can be obtained today only in the graduate achoolu by courics of atudy luading to the Ph. D. and masteri degreed.

I do not auseribe to the Idea that a atatiatician working with atiemiate should have intensive training an a chemist nor that a atatiatioian working with engineere whould have tralning as a engineer. To paraphace George Box* In thie rugerd, there would then be little point in training chemiata or enginaeri.. only etatieticiand. But \mathbb{I} would require that the atation ticiana be willing to whow their ignerance in the field of application. To be able to holp the coientiat they must be inquiaitive even to the point of asking atupid quoutione.

[^15]
AN aNALYgis or factorial EXPERIMENTAL DESIGNS

L. W, Keoting

U. S. Army Miandie Command Redatono Arounil, Alabima

ABSTRACT. A aimple technique Involving the analyole of variance ia proponed for thi inftial evaluation of data obtained from a iactorial experimental deaign. The application in presanted for a ganaral awo-factor rwetangle that could rebult from any factorial denign, Equatione were developed that parmit the usc of a uniform, implified work ehent. An experimental dasign using the technique le proposed for atudying the effectic of heat on the inoulation barriori eoparating auxlitary rockete from other minalie componente. A factorial denign la augented with four factori et levale $4,3,3$, and 2 , "confounded" In the multiple interactions. The type, thdeknesi, and poaitione of insulation matariale and the type of etsuctural material supporting the inaulation are conaidered. More tant Intommation and graater pracialon for loan toft time and equipment are the advantages of factorial designs of the type euggested. A numerical example diluatrates the application of the analyala of the warlance technique at marginal conditione of algnilicance.

SYMEOLS

A, B, C, D	Positions
F, n	Inculation typu
$0, a, b$	Intulation thicknasa
k, m, n, p	Levels
0	Combinationa
8	Bum of equaren
'	Tolal
v	Variance
x	Data point or menauramant
$x_{1} y_{1}=$	Support material type os thicknens

SYMBOLS (CONT.)

d. 1.

I, II,
(1), (2), ...
σ

SUBSCRIPTS
C
\mathbb{E}
-
1
j
R
s
T
w

Degreas of freedom Factor:
Material entn
Eatimated atandard deviation of a population

Column
Erior
Combination meaularament
Column meanurement
Row measurement
Rows
Subtotal
Total
Within sroufe
Variable $1, J$, or u

INTRODUCTION The use ot efactstial deuign with confounded multiple interactione can improve precivion and ruduce the cont of pating. The variuun combinatione, when collected dito groupe, form natural partitiona of the whole program. Teate on the parte can aften be pepformed indupeniently, 'l'hus, differont batchen of raw materlale. plecer of tient equipment, and experimental environmente can be asadgned to the parte. Aa factors are shown to be indignificant, the asociared reaulte and deyreep oi freedom can be combined with other factors to more pre. cleply determine theis effect. The inveetigator, in consequence, can arhirve a yatamatia examination of the data avallable.'

Factorial deaigns are applicable to many fielde of atudy in which obearvations arn made. The principlat are uaed extonetwoly in biolopy, medicine, paychology, economict, and sociology. In certain fielda chemistry and ongingering the yse if morn limited. To quote Dr. Yeiuden (Reforence 1): "Amone chaminte. the reception to far secorded this experimental device in rominiesent of the dilomme of the young man eaking employment. No one will hire him untll he has oxperiance, and he cannot get thie experience until someone gives him a job."

The conflict between the use of formai expermental dealyne mud the "ohotgun" approach to research probleme is well known. Formul deuigne will unually be attempted if time is available to select or oriydnate them and proparly treat the reaulta. For the average nciontiet or enginetr, who han only a nodding acquaintance with itatieticel principles, the diging from toxt booke for a mathod to analyse a apecialiaed factorial dealga in no amall task. If boile down to a matter of cont, time, and ability, but not necesearily nalvenens on the part of the inveatigator.

The purpoce of thil paper is to show in dotadl a simple application of the analyall of vaziance to a genaral factorial experimental design. This papar de intended for the eciontist or engineor who can see ad. vantages in confounding but has limited time and roonurcet for an malyale of this sype. Detailed atope are presented lnoluding a work thet and prosortation form. Tho method of applleaiben de based upon iundamental expreselone dorived in uevaral texte (Referances $\mathbf{2}, 3,4$, and 5) and upon the colution of numerical axamplea in Raforance 1. An uxample la given !!at biduatraten the mothod for apacitic resourch problem.

METHOD, In mome eefentilie invertigatione an attomplis mude to hold all tactore conatant excopt the one under dmmediute atudy. Teatm bry zun on the variable under Immediate atudy, which to then heldicon. arant while a iecond tactor in varied. The procadure is coatialied until ull portinant variables have bean Inveatigatad. Tach fector (i, II, III, and IV) may be varied at two or more levele ($k, m_{1} n_{1}$ and p), The total number of different expeximental combinetions, θ, is

$$
0-k m n p
$$

Tenta on avery posetble comblnation ase uatly prohibitivaly expendive and time consuming or posalblis outelde the scopa of the inveatigation.

An investigation that includes the atudy of the effecte produced by varying two or more factors simultaneously providen the eetting for a factorial experimental design. Thene desiene otten have advantages over holding conatant all variables oxcept one. For example:

1. The number of teat rune can uaually be reduced without encrificing important data.
2. The precition of the inveatigation can bn improved.
3. The cont and complexity of test aquipment can be reduced.
4. Inveatigations can be undertaken for which it Ie imposible to hold conatant aeveral important variablew.

The advantagea acerue from confounding factors and levele and aliminating certain combinations on the luale of prior knowledge or enginearing judgment.

A goneral factorial experimented design to shown in Table 1 . Since the dosign if prasented primarlly to illuntrate the application of a method, no combinatione have yet been eliminated. Under the hoading Fi:cumple, to be found a fow pagen later ont, the denlgn ie' expanded and certain combinatione are ellminated.

The analyaia of variance is uaually amployed Initially to ovaluate thm ciata taken in n factorial experimant. The varlanee, on ueed here, to the equare of the eatmate of the etandard deviation of the populntion ; ${ }^{2}{ }^{2}$) ropresented hy the eypajiduanral riata. Variances are caiculaved of groupe of data asaciatmi with the factora and levels. If the groupe are all from the iune population, the reallen will be essentially the same. Tha groups showhg a eoperate influence on the data will have higher variancoa, F tables indic , the mugnitude of the differences at various conddonce or probabllity levola. The theory undurlying the unalynia of varianca and the F tables is precented in detail in Referances 1 and 3 , and a developmont will not be attempted here. However, formulas and proceduren are given to alrupllfy the computationa. Fundamantal exprasion. are given in Table II.

VARIANCE RECTANGLE

4 * manen or ceveis for colums

* - munetit of levels foe mons

$T_{\cdot j} \cdot\left\{_{i=1}^{T_{i j}}\right.$.

$\bar{x}_{. j}=\frac{r_{i j}}{k}$
$T_{i} \ldots=\sum_{j=1} T_{i j}$.
$r_{i j}=\sum_{i=1} X_{i j e}$
$X_{i j, z} I_{i j}$
$\bar{x}_{i} . .=\frac{r_{1}}{n}$
$T_{\ldots}=\sum_{j=1}^{i} r_{1}-\left\{_{-1} T_{i} \ldots=\sum_{i=1}^{k} \sum_{j=1}^{\sum_{i=1}} x_{i j e}\right.$
$\bar{x} \ldots=\frac{T \ldots}{\ln m}$

BASIC EOUATIONS FOR THE ANALYSIS OF VARIANCE

Suras oi squares for rows, subtotals, and totals can be treated in the same manner to obtain the expressions in Tables III and IV.

Table III
WORK SHEET FORM

ANALYSIS OF VARIANCE PRESENTATION FORIVI

SOURCE	SUM OF Squares	d.f.	variahce	F Ratio
COLUMN MEANS	$S_{c}=\sum_{=1}^{k} \frac{T_{i} \cdots}{n m}-\frac{T \ldots{ }^{2}}{k n m}$	$k-1$	$V_{C}=\frac{S_{c}}{\frac{1}{c-1}}$	$\frac{V_{C}}{V_{E}}$
ROW MEAHS	$S_{R} \sum_{j=1}^{n} \frac{T_{\cdot} j^{2}}{k m}-\frac{T_{1} \cdot{ }^{2}}{k n m}$	$n-1$	$V_{R}=\frac{S_{R}}{n-1}$	$\frac{V_{R}}{V_{E}}$
Interaction	$S_{V}=S_{S}-S_{C}-S_{R}$	$(k-1)(n-1)$	$V_{I}=S_{(k-1)(n-1)}$	$\frac{V_{x}}{V_{w}}$
SUBYOTA!	$S_{S}=\sum_{i=1}^{k} \sum_{j=1}^{n} \frac{T_{i j}{ }^{2}}{m} \cdot \frac{T \ldots{ }^{2}}{k n m}$	$n k-1$		
WIIHIN GROUPS	$S_{W} \times S_{T}-S_{S}$	$n k(m-1)$	$V_{w}=\frac{S_{w}}{n(m-1)}$	
TOTAL		nK m-1		

Table IV is the conventional form for presenting the results of an analysis of variance. The F ratios are the final computations and are compared with criticsl values found in F tables in many references on statistics (References 1 and 2). If an F ratio exceeds the critical value, a aignificant effect from the factor is proved at thr confidence leve. selected.

The analysis of wriance is applicable to aris réing for experiments at two or more levels provided the following assumptions are acceptable:

1. There is no interaction between row and column factu: = at the levels investiga;ed.
2. The data relative to the factors have a homogeneous variance and are from populations with normal distribi.tions.

However, moderate violations of these assumptions change the analysis very little and the validity of the assumptions can be checked from the data to be treated.

The firat ratio to teat is "interaction" over the "within groupa" variance. The presence of aignificant interaction invalldates further tratment by the analyale of variance, and other methode muat be uead. When the critical F value is excesdad indicating intaraction, the following conditions exist euparately or in combination:

1. The row or column factore are producing elfocte when tested together that do not occur when the factorf recelve the aamo teat exparately.
2. An additional factor is of eufficient importance to be included in the analyels.
3. The items in the subgroupe are not drawn at random.

If no interaction i" prosent, the surin of equares for the "Interaction" and "within groups" sources can be added and divided by thalr total degrees of freadom to provide A more incluaive errorterm, V_{E}, where

$$
V_{E}=\frac{S_{T}-s_{C}-s_{R}}{n k m-k-n+1}
$$

The F ration for rows and columna, V_{C} / V_{E}, we now more mennitive. A soault higher than the eritical value for F tables indicatus a significant fifluance from the row or column factor. The prosence $=r$ abumete of intet icition is in itself un important roault of many inventigations.

Tha teat for homocerio:tiy ui variance requires the enisoputation of the rutio of S_{C} aini $S_{\mathcal{S}}$ to S_{W}. A critical E value is computed, and the result: are compared (Reference 2).

An exaniple dlustrating this method of applying the enalyels ot variance to factorial deuigne follows. One cave of interaction batwern two fuctors la given.

EXAMPLE. A factorial dewign is presented with four factoras one at four levalu, two at three luvele, and one at two levele. The enalyaie of variance techniques are used to compute the de irired probubilition. Hypothetical resulta are used to illuatrate the analywis at marginal conditions of aignificance.

Precent maneilo deadge uevally include mall auxiliary rocketa that perform varioul functions within the overall misaion. Gall generatora oxhuuting through turbines are umed to rotate propellant puxnpa and electrical generatora. In come designm, the ceneratore directly preaum urize propellant tanks and hydraulte syateme. Small: ket motore are used to mpin cortain atagea of the minalle for axial s ablity, Vernier motora are fired to adjuat apeed and direction, Retzorocketa usisd on planet probes decresime the apied of the ditellite whon entering the dealrad orbit. The auriliary rockete, located at many polnic on the misaile, vary in mine, thrust, and burning time and operate from soldd, liquid, and geseous propellante.

Firing auxiliary rocket often caused severe environmental ahanges around adjacent mianile componenta. High temperaturea reault from exhaugt gases and hot motor eurfaces, Corroaton and erosion are sometimes caused by the discharged gmaen.

This axample ta a pronoad for calculating the probablaty of an influence from materiale of adjacent componante in comtrolling the hant from auxiliary rocknte. The influance could originate from nither type, thickriosis, or position of irisulating materiale or the type of eupporting etructure.

The proposed deaign may not be optimum when fren cholea of iactore and levela in permitted. In this case, the number and arrangement of the factore and lavele dapend upon the acopa, preciaion, method of :osting, and future teat programe. Factora and lovels arm undque fo. a pasticular experiment, In general, devigns with all fectort at the ame lovel ara mimploz, Uther poasible combinations are enumarated In Referances 6 and $\%$.

ASEUMPTIONS. The proposed denign applies to a pertleuler irverifgation characterined by the following asaumptionst

1. Eight ate of insulating and supporting mararial aamplos are the maximum that can be placed around a single roctet motor. (The arrangement may be implar to that shown in Figures 1 and 2.)

Figure 1. SATELLITE ANTENNA KODS GROUPED AROUND A VERNIER ROCKET MOTOA

FIgure 2. EXAMPLES OF MATERTAL SETS
2. Thermocouplea met unlformly inatalled on the unface of the aupporting material on the niue away irom the motor (Figure 3).

Figure 3. 'SHERMOCOVHLE LOGATION ON A MATERIAL SET
3. Thermocouplew ure located at the ame four ponitiona on each et of matnilul aemples.
4. Only one rocket motur will bu chices with a glvan eet of material namplen. Thermocouple outputa will be reen aroed until the samplew reach thermal stability.
5. Four factore at levele 4, 3, 3, and 2 , we given in Table V will be investigated.

ARRANGEMENT

For an inveatigation based upon the above auaumptions, the danign In Table V ie propowed for the arrangement of factiors and levele.

Tabla V

PROPOSED FACTORIAL DESION

FACTRARAMD_LEMLS ASEMGMO
pactof

pactop	8YMCh	WVIT
POSITIOM - THEULATTOM AND SUPFOAT MXTERIAL	$A, 0,0,0$	4
TYPE - INSULAFIOH MATEAIAL	F, R	2
THIGKNESS - IMBULATIOM MATERIAL	$0,0, b$	3
THICNUEES On TYPR - suppont matirlal	$x_{1} y_{1} 8$	1

			x			y			1	
		0	1	b	0	0	b	0	1	b
β	4	$x^{(1)}$		X 2)		${ }^{\prime}(1)$				$X_{(1)}$
	-	${ }^{x}(1)$		$n(2)$		$x(3)$				$x(4)$
	0	$x_{(1)}$		$x(2)$		$x(1)$				$x(4)$
	0	${ }_{(1)}$		$x(1)$		${ }^{\prime}(8)$				$x(1)$
n	7	$\begin{aligned} & x_{(1)} \\ & x_{(1)} \end{aligned}$			(1)		(1)		${ }^{x}(0)$	
	\cdots				(1)		(1)		$x^{(0)}$	
		P(B)			(1)		$x(7)$		$x^{(10)}$	
	0	$x(8)$			(1)		(7)		${ }^{\prime}(0)$	

The numbers in parenthesia refor to the aight sete of inaulation and support material samples grouped around the rocket motar (Figuras 1 and 2). Four thermocouplen are unlformly located on each eet repre. eenting the four poiltions, A, B, C, and D (Figure 3).

The analyais of variance for the factorial deaign shown in Table V is aummariaud in Tuble VI.

Table VI

ANALYSIS OF VARJANCE

NUMERICAL COMPUTATIONS

The following numorical example (Tahine Vil through XIII) is givon to llluntrate the initial mathod of analyaia for a factorlal axperiment, The composite deaign is broken down into eimple two-factor rectangles uultable for the analyair of varience technique. The hypothatical data are thermocoupla reading in dagreea F.

Table VII
WORK SHEET FOR ABCD VS xyz
proposed factorial experiment
$4 \times 3 \times 3 \times 2$ NUMERICAL EXAMPLE

Table VIII
ANALYSIS OF VARIANCE FOR ABCD VS $x y z$

	READIMGS	12 TOTALS DUPLICATES	$\begin{aligned} & \text { ROW } \\ & \text { TOTALS } \end{aligned}$	$\begin{aligned} & \text { COLUMN } \\ & \text { YOTALS } \end{aligned}$	GRAMD TOTAL
square ANO SUM	2,992.894	5.982,380	22,889,370	17,916.460	71.605.444
OIVIDE EY	1	2	8	6	24
Quotient	2,992,894	2,991,190	2,986,171	2,986,076	2,983,560
SUBTRACT	2,983,660	2,983,560	2,083,550	2.983.560	
SUM OF SQUARES	9, 334	?.320	2, 6 ! 1	2.516	

SOURCE	$\begin{aligned} & \text { SUM } \\ & \text { OF SOUARES } \end{aligned}$	d.f.	VARIANCE	f
$\begin{aligned} & \text { COLUMNS } \\ & \text { ABCD } \end{aligned}$	2516	3	338	3.59
ROWS xyz	2611	2	1305	5.80
INTERAETIOM	2493	6	4:5	2,0?
SUBTOTAL	? 290	11		
WITMIM	1714	12	142	
TOTAL	9334	23		
$V_{E}=\frac{2493+1714}{6}=\frac{4207}{18}=233$				
1.P CONFIOENCE LEYE				
	-1\% O5 PERCEN O PESCENI			
	$6-12$ 3.00 18.92 $3-18$ 3.16 5.09			
	2-18	3.55	5.09	

THE EFFECTS OF ABCO ANU XYZ AKE SIGNAFIGANT AT THE CONFIDENCE LEVEL OF O Q BUT NOT AT 099 SINCE $3.96<399<5.09$ ANO $3.55<5.80<5.01$.

Table IX

EXAMPLE OF INTERACTION BETWEEN ABCD AND XVz

dateraction is sigmificant aboye the o9-percent confloence level since $4.91>4.82$ FOR O AND 12 DEGREES OF FREEDOM.

Tabie X

WORK SHEET ABCD VS oab

PROPOSED FACTORIAL EXPERIMENT $4 \times 3 \times 3 \times 2$ NUMERICAL EXAMPLE

		x			y			2		
		0	,	b	0	.	b	0	$\underline{0}$	b
F	A B C D	($\begin{aligned} & 330 \\ & 337 \\ & 333 \\ & 320\end{aligned}$		361 355 320 357		361 375 359 310				373 372 350 370
R	A B C 0	\bigcirc	329 351 315 327		370 330 340 300		375 361 358 329		379 360 359 347	
			\checkmark							
A			-			C		D		
0	$\begin{array}{ll} \hline \bar{r}_{x} & \frac{3}{3} u^{2} \\ \frac{\overline{3}: v}{700} \\ \hline \end{array}$		$=-\begin{array}{r} 337 \\ \frac{330}{667} \end{array}$			$\begin{array}{r}533 \\ 340 \\ \hline\end{array}$		$\begin{array}{r}320 \\ 300 \\ \hline\end{array}$		2660
』	$F_{y} 301$$R_{\text {F }} \frac{329}{690}$		$\begin{array}{r} 375 \\ \frac{351}{726} \end{array}$			369 3.15 674			$\begin{array}{r}310 \\ .397 \\ \hline 337\end{array}$	2727
\bullet	$F_{x} 361$$R_{y} 375$		$\begin{array}{r} 385 \\ 361 \\ \hline \end{array}$			358			329	
736			716			678			686	2816
		26		2109		2025			1943	8203

Table XI
ANALYSIS OF VARIANCE FOR ABCD VS $a \mathfrak{b}$

	BEADIMES	$\begin{aligned} & 12 \text { TOTALS } \\ & \text { Of } \\ & \text { DUPLICATES } \end{aligned}$	$\begin{aligned} & \text { ROW } \\ & \text { TOTALS } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { COLUKH } \\ & \text { TOTALS } \end{aligned}$	$\begin{aligned} & \text { GRAMD } \\ & \text { TOTAL } \end{aligned}$
Splane	2,814,227	6,020,071	22,441.605	18,843,631	67.289.200
divide ey	1	2	8	6	24
quotiemt	2,014,927	2,810,036	2.805.248	2.807.271	2,803,718
Sustanct	2,103,718	2,803,7.18	2,803,718	2,003,718	
Stur of	10,509	6,317	1,530	3,553	

Sounce	SUM Of SQUARES	d.1.	VARIAMCE	F
colums	3653	3	1164	3.63
ABCD				
nows onb	!59n	2	765	2.84
Interaction	1234	6	208	0.80
sulfotal	6317	11		
VITHIM				
moups	M192	12	349	
TOTAL	10509	23		

$Y_{E}=1284$ to $\frac{1102}{}=301$
the factor abco is sigmificant ay the os- to og-percent comfioemee range. WOUS AND IMTERACTIOM ARE NOT SIGMIFICANT.

Table XII
FROPOSFD FACTORIAL EXPERIMENT
$4 \times 3 \times 3 \times 2$ NUMERICAL EXAMPLE

Table XIII
ANALYSIS OF VARIANCE FOR ABCD VS FR

	$\stackrel{16}{\text { REAOIRGS }}$	$\stackrel{8}{\text { DUPLICATES }}$	$\begin{aligned} & \text { ROW } \\ & \text { TOTALS } \end{aligned}$	$\begin{aligned} & \text { COLUMA } \\ & \text { TOTALS } \end{aligned}$	GRANO IOTAL
SQUARE AND SUM	1.727.069	3,845,939	15,363,829	7,891,073	36,724,849
OIVIDE EY	1	2	8	4	18
QUOTIENT	1,927,089	1,922,969	1,920,478	1,922,768	1,920,303
SUGTRACT	1,920,303	1,920,303	1,920,303	1,920,303	
SUM OF squares	6,780	2,066	175	2,465	

SOURCE	SUM OF 59	d.f.	VARIANCE	F
COLUMWS	2468	3	822	2.19
ROWS	175	1	:75	0.47
Interaction	26	3	8	. 02
SUBTOTAL	2666	7		
WIthin				
GROUPS	4100	8	512	
TOTAL	6766	18		

$V_{E}=375$
THE CRITICAL F VALUE FOR 3 AKO II d.f. 153.59 AY 95 PERCENT.
\#e SIGMIFICANCE OF AMY FACTOR IS SHOWK BY THE F RATIO.
In the proposed design, two to four data poinis are available at each combination of the factors. The points can be used as replications to check for interaction. However, the points are not true replications until the secondary factors in the combination are proved insignificant fior instance, F, R, O, a, and b in the analysis of the primary faciors ABCD ve xyz). Wheii zecondary factors are significunt, the test for interaction :s valid but iegf sensitiue.

As factors are shown to be insignificant, the associated results aniv 'legrees of freedom can be combined with other factors to more precisely detcrmine their effect. For example, in the proposed design, if the insulation thickness factor at levels o, a, and b is shown to be insignificant, threc data points for each combination instead of two becrme ivailable for analyzing the remaining factors. Insignificance of $\%, y$. and z must also exist to provide extra data points fur ADCD ys FR.

The probability of an influence from materiaif of adjacent components in controlling heat from auxiliary rocket motors can be determined from the F tables. Valucs selected irom the tables that bound the F ritio are computed for the material factor. The probability is then absained by interpolation of the corresponding headings of the F table.

CONCLUSION. Since the use of formal experimental dealgue and other statistical principlen is limited largely by funds, time, and capabilities of the investigator, eimplified methods of anulyuia should be daveloped for those not thoroughly acquainted with atatistice. One appromeh hai been attempted by oxienting a computational procedure with fundamertal exprosuions fur the analysia of variance and applying the tecnnique to factorial designs. An example is presented dlustrating the technlque for a research problem.

The use of auxiliary rocket motori on misalle: often creater apace and waight prodeme in ingulating adjacent compnnente from hot motor surfaces and extarint ganen. An expurimental de e!gn la proposed for computing the probability of in effect from materlal factors, such an insulation type, thicknesi, position, and eupport material type.

The arrangement of factorb and levele de baned upon limited teat conditions, including elght aete of materlals, four thermocouple positions, two types and three thicknerses of insulation, and thres typea of aupport material. The arrangement providen the following characteriatice:

1. The four factore can be varied elmultanenusly.
2. Two to four date points at asch combination of primary factors are avaliable ae replicutions to teat for interaction.
3. Ae fretora are proved ineignificant, the ansociated roaulta car be combinod with other factors to increase the aunaltivity of the remaining analyals.
4. The inherent advantager of genaral factorial designs mpply, such as a natural partition of the whole test proganm, redaction in the number of test runs, and an improvemen. in scope and preciaion.

REFERENCES

1. W, J. Youden: Statiatical Methode for Chemista. John Wiley and Sons, Inc., New"York, 1951.
2. Wilirid J. Dixon and Frank J. Masaey: Introduction to Statiatical Analynie. (Firat Edition), McGraw-Hill Book Company, New York, 1951.
3. F. E. Croxtor and D. J, Cowden: Appliad Genaral Statiaticn, Prentice Hall, N. W., 1939.
4. S. S. Wilka: Elomentary Statiatical Analyais, Princeton Univeralty Prese, 1951.
5. William Volk: Applied Statintice for Enqineers. MaGraw-Hill, New York, 1958.
6. Ronald A. Fisher: The Dasign of Experiments. Oliver and Boyd, Fidinburgh, 1949.
'7. William G. Cochran and Gertrude M. Cox: Exparimental Despas. John Wiley and Sons, Inc., Now York, 1959.

RELLABILITY ESTIMATION FOR MULTI-COMPONENT SYSTEMS

J. K. Knise

Ballistic Research Laboratories Aberdean Proving Ground, Md.

INTRODUGTIION. The U. S. Army muet mairitain a worid-wide atockpile of war reserve ammunition for both combat and training. This ammundtign must be kept in a convtant atate of readinesel and it in, thereforf, Important that the quality and reliabillty of the atockpila be ostimented periodically.
,
The Survellance Group of the Balleatic Retearch Laboratorien perlodipally analyzes the reaulti of tente conducted on samples taken from the atockpile. In the case of conventional ammunition the iteme are unually teated ballietically by meant of eome type of atatiotical danign, and the samples are destroyed or conuumed in the toats. In the case of nuelear ammunition, it is usianly impractical to ovaluate the quality and roliabillty of the atockpile through balliatic teate. Thorofore, Laboratory test data are obtained, where the major componente of the partioular Item are tested atatically and uaually non-deatructively. In thene toste each component is tested at an indlvidual item, and it la asoumod that the functioning of one component in indepandent of the functioning of the remaining componente, once it has bean removed from the nyitem sor testing (i, e., dithough it is true that the functioning of one componant will ganerally dopead upon the functioning of other componentin, the inherent capability of tie funcotoning as a component wiumin ithelf atill oxista).

The reaulte of the individual component teate muet then ba anelymud and combined in ordar to eatimate the relisblity of the ayatem and also to place an intarval about this astimate which will ylold sonie opecified degree of confidence that the true reliawlity lien within this interval. A number of colutions for rellablity estimation have been developed and appear in the literature. Howevar, nnne of thee molutions ie antisfactory for the type of problem with which this orgenteation is confronted. It was, therefore, necesalivy to deviee a syatem for eatimating reliability that in highly flexible, fat and aimple; and it is talt that the method outlined In this paper uatiatiee theev conditions. Although this aystem depende upon access to a high upwed algitml computer, It dqes have the advantage of flexibility, upead and simplicity unce tho uriglagal problem has been programmed.

12ISCUSSION. Determination of the reliability of each type of component ${ }_{1}$ is relativeiy straightforward. It is first required that a decision, based on the teat results, be made on each item tested as to whether it is a success or a failice. Once a decision has been reached on each item, the number of successful components of a particular type (\hat{x}) follows a binomial distribution. The point estimate of reliability (f) for each type of component is $\hat{\mathrm{p}}^{\prime}-\frac{X}{n}$ where n is the number tested. A confidence interval may then be placed or p using statiencal procedures.

However, for stockpile reliability testing it is of primary interest to determine the reliability of the entire system. This relationship can be expressed in the form of a block diagram where each block represeith a specific component or part tested. (Two ur more blocks could repré sent the same type of component where redundancy is built into the system.)

For instance, a system of components might be arranged in the following manner

wheic B_{1} and B_{2} are the same types of components. If the reliabilities of these types of components were established at P_{1}, p_{2}, and p_{3} respechively, $\dot{\text { iten }}$ the reliability of (R) of the system would sirnply be

$$
\mathrm{R}-\mathrm{p}_{1}\left(\hat{1} \mathrm{o}_{2}-\mathrm{p}_{3}^{2}\right) \mathrm{p}_{3}
$$

Nuclear warhandy, of courso, are much more complicated than the above uxample; and it is not alway pounible to write the seliability equation throug!, 'viapection of the block dagram. The following is a rample of a blook diagram whone reliability uguation cannot be raudily obtained.

In order to compute the rellability of this syatem of componante it is
 for components B through E. Letting a auccese be rapresented by a 1 And a fallure by a 0 the reliability of the oyatem may be computed in the following manner:

Componente

$\begin{array}{lllllll} & C_{1} & C_{2} & D_{1} & D_{2} & E_{1} & E_{2}\end{array}$ 11111111
11111110

1111101

Probpballity

 Falure$$
\begin{array}{ll}
P_{B} P_{C}^{2} P_{D}^{2} P_{E}^{2} & s \\
P_{B} P_{C}^{2} P_{D}^{2} P_{E}(1-P I) & s \\
P_{B} P_{C}^{2} P_{D}^{2}\left(1-P_{D}\right) P_{E} & s
\end{array}
$$

1	1	1	1	1	0	0
1	1	1	1	0	1	0

$$
\begin{aligned}
& P_{B} P_{C}^{2} P_{D}^{2}\left(1-P_{D}\right)^{2} \\
& P_{B} P_{C}^{2} P_{D}\left(1-P_{D}\right) P_{E}\left(1-P_{E}\right)
\end{aligned}
$$

$P_{B}\left(1-P_{C}\right)^{2}\left(1-P_{D}\right)^{2}\left(1-P_{D}\right)^{2} \quad E$
$\left(1-P_{D}\right)\left(1-P_{C}\right)^{2}\left(1-P_{D}\right)^{2}\left(1-x_{E}\right)^{2}$

All probabilities that yleld succasies ohould be added, and the rellebility of the syotam can then be written

$$
\begin{aligned}
& R=P_{A} P_{D}\left\{P_{D}\left(2-P_{D} P_{D}\right)+P_{B} P_{C}\left(2-P_{C}\right)\right. \\
&\left.+P_{D} P_{C} P_{D}\left[2 P_{D}\left(P_{D}-1\right)+P_{C}\left(2-P_{D}\right)-2\right]\right\}
\end{aligned}
$$

The reliablity of the syatem can now be computed frum the above equation. This esminple ie one of the least complex syotems that hae been encountered in practice. Most aystame require theusande of onumerations zomiting in reliability equations covering eaveral pages,

The problem of placing a confidance interval on R is diffoult. The number of aucesares (\hat{x}) asiociated with anch value of $\boldsymbol{\beta}$ hain a binomial diutribution and a contidence interval may be placed on each true p uing thil diatribution. In order to place a conflemee interval on R, however, It is alwo necessary to utilize the distribution of the individual R's, eince R is a Aunction of xis.

If it can be ausumed that f is random variable and that the dietri. bution of \mathcal{P} in known, then random eamples can be drawn from thees distributione and aubatituted into the raliablidty equetion and random velues of. R cen be obtained. The diatribution of \mathbb{R} cen be estimated, and a confidence interval can be conetructed which will produce mome mesure of aseurance that the true roliability, R, lles within the intnrval.

The distribution of \boldsymbol{f} (givin p) may be sepseconted an

$$
g(\hat{p} ; p)=\binom{n}{n p} p^{n \hat{p}}(1-p)^{n(1-\beta)}
$$

where $p=0,1 / n, 2 / n, \ldots, \ldots$, However, it it not posidble or doairybly
 utituted for p and, for the wase where $8=0$ ur $\&=n, 8(f \mid n)=0$. This is a reault of the asousuption that $p . R / n$, and, of course, If p equall either 0 of 1 there can be no eampling error. in tact, iny nny wilue of \hat{x} the variation introducad would be entirely due to manspling, und any cuntidence intorvale generated wuld not be realivticialnco the error Involvad in estimating p would be ignored.

Confidence Intervale may he pleced on an indipidual p at the anvel of condadence by uning the binomial diatribution in the iollowing manner.
(1) $\sum_{x=0}^{0} \left\lvert\, \begin{aligned} & n y p_{1}^{x}(1-E)^{n-x}=(1-a) / 2 \\ & \left.x\right|^{n}\end{aligned}\right.$
(upper tail)
(2)

(lowar tail)
$x=0,1, \ldots, n$,
By eolving the abuve equation at opecified levale of α, it is poseibla to conatruct an interval such that $100 \mathrm{O} \%$ of all interval conetructed in such a manner will contein p. It to also poialble to generatn values of $\hat{\beta}$ over a continuour range from the abnve equation by varying \propto. Howevar, it do not posibible to constructintervals in the vielnity of $\$ / \mathbf{n}$ where α la emall or whare ($1-\alpha$)/2 la near or equal to $0, B$. In feet, for ($1-\alpha) / 2=0,5$, where one would expect the interval to be a point, two values of $\$$ are obtained depending upon the equation used. This reault becomes intudtivaly apperant when it is convidared that equation (1) gives value of ρ_{1} for which ($\left.1-a /\right) / 2(100) \%$ of the detribution wili be 2 or lese and equation (2) gives a value of \& for whioh (1-a)/2 (100)\% of the dietribution wild be \hat{x} or more. Thoralore, where $(1-\alpha) / 2$ I $0.5,50 \%$ of the distribution muat be k / n or more in ane case and 50% must by $\$ / n$ ar lase in the othar. Thie, or course, is m. conicudiation couned by the fact that tha binamial diatribution in deacrete with :reapect to x, but p taleem on continuous values.

Sineo equations (1) and (2) arp socisrate at the tally, it way deolded to conctruct a distribution Anclion uning these taile and completing hise center with a rectengular distribution. This diotribution function io in offect a function of "erositod" random variable and ha a the propirty that the probability of aulecting a eample between certain limitm fuom thie distribution is equal to the probability that p liee within that interval, or

$$
\begin{equation*}
\left.P\left(\hat{P}_{1} \leq P \leq \hat{p}_{2}\right) \cdot \int_{\hat{p}_{1}}^{\hat{\hat{p}_{2}}} \| \hat{P}\right) d \hat{p} \tag{5}
\end{equation*}
$$

Wo shall cell this function \& (β), and the variable, of course, is δ which ia now a continuous variable ranging from 0 to 1, It is now possible to generate values of $\hat{\rho}$ and substitute them into the reliability -quation.

Once specific values of \mathcal{S}_{1} and β_{2} are substituted late equation (8), the ralatlonahip, of course, bocoman noneenia alae obviously peatier Hen within specific limits, or it does not. However, although (B) in net In this sense a true probability, it in aa measure of confidence in the truth of the statement on the loft of (5); and, therefore, the relationship ia considered to be sufficient justification for the use of the diatribution described above.

Actually equation (2) may be used to select asmplon of ganging from 0 to (8 - 1)/n and equation (1) may be usenet for amplest of β ranging from $(\mathbb{Q}+1) / \mathrm{n}$ to l . The interval from $(\hat{\Omega}-1) / \mathrm{n}$ to $(\hat{\mathrm{K}}+1) / \mathrm{n}$ may be covered by a rectangular distribution whore height must be determined to that the aras under the entire distribution will be 1. Figure i le an example of asch a distribution function for a particular value of \hat{x} and n.

This distribution ia actually the combination of two beta diatributlona aud a rectangular distribution. It is a realist of the tact that the beta distribution integrates to the binomial.
u. g. $\frac{1 \alpha+\beta+1)!}{\alpha \mid \beta 1} \int_{0}^{y} d\left(1-t^{\beta} d t=Y(y) \alpha, \beta\right)$

Uoing standard notation the binomial distribution may be written

$$
\begin{equation*}
\sum_{x=0}^{\hat{x}}\binom{n}{x} p^{x}(1 \cdot p)^{n-x}-1 \cdot \vec{r}\left(p_{1} x_{1} n-x-1\right) \tag{3}
\end{equation*}
$$

Similarly ance

$$
\sum_{x}^{n}\left(\frac{n}{x}\right) p^{x}(1-p)^{n-x} \cdot 1 \cdot \sum_{0}^{\sum_{0}-1}\left(\frac{n}{x}\right)^{x}(1-p)^{n-x}
$$

then
(4)

$$
\sum_{\pi}^{n}\left(x^{n}\right) p^{x}(1-p)^{n-x}-P(p i x-1, n-x) .
$$

Therefore, oquation (4) may be used for the lower tall of the distalbution using only that portion of the ourva trom 0 to $(\hat{8}=1) / \mathrm{n}$, and equation (3) may be uand for the upper tall uaing unly that portion of the curvo from $(\hat{Q}+1) / n$ to 1 . The interval from $(\hat{Q}-1) / n$ to $(\hat{x}+1) / n$ will be aovaran by a roctangular dietribution whose huight will be dotermined so that tha total area undor the distribution will be equal to one. (If only the lower llmit on R is donlrad, quation (4) may be wand for the ontive dietiliuthoni eimilarly, if only the upper limit in denised, equation (3) may be uned.) Therefore, a diatribution can be at up for ach compon* ert or part depending upen the number tosted and the obourved number od nuccanem.
 componente, it is ponelble thar the point antimate of relisbility (oflll $^{\text {w }}$ fall outhlde the condidence satervah, Thie reandem from the blamial dicurbution where, for inotance, if $\hat{p}^{\prime} \equiv 1$ any twonsided conflence interval (wesmgt where α. 1) will notinclude 8^{\prime}, ghould thit nituation occur, only a one-alded intervad hould be clvan. fit ie quite powible that a one-nidod intorval may in any ovent be of more intoreut than a two-alded luterval.)
 tributiona dan he randomly wampled and thouanda of values of P_{1} can be ganarated for the $1^{\text {th }}$ component. 18, for Inotanee, 1,000 valuen of F_{i} are randomly melected for each f_{i} in the reliability equetion, and if these values are randomly placed in that equation, then 1,000 valuea of $\$$ can be generated.

A Anetion of \hat{R} cen be approximated by plotting thace 1,000 velues on a histoyram. Coulidance Hmite can then be placed on R olther by fitting a curve to the hiategram or by uning the generated values of \hat{k} directly. The nampling errorinvolvad can be deareaned by increasing the number of valuen genarated. It is no problem for the BRLESC (Balliatc Reacarch Laboratoriea Bloctronic selantific Computer) to genarate oven 10,000 valuee of \hat{S}_{1} for anah diatribution.

A number of teial runs for the previour example have bean generatod by the computer and Figure 2 shows ample hiatograms that have roulted for both individual \mathcal{P}^{\prime} and for $\hat{\mathrm{K}}$ using $\&=90$ and $n=100$. Figure IIts and IIIb are hiutogrami generated where $\$ 412$ and $n=20$ and where R represente the reliability of a wimple gyutem of three componenta in parallel. It Is enticipated that the eyatem can be Improved in the future by programming the machine to fit curver to the hiatogram and to integrate undor these curvar in order te produce confidence intervale.

CONCLUSION.

1. The objective of flexibility hav beon aatisfied in that a point -atimate of raliublifty and a condidence duserval about that entimato cen be obtained for almout any eyotem regardese of the number of teste performed on the individual componente or of the euccene ration obtalned.
2. The objective of apead and aimplicity hava been aatiafled aince it te juasible for the machinc to conatruet an inturval in a fow minuten. Tha only manual operation repuirad in to punch tha estimatas of p on 1. rade and place these cards in the machine.
3. It io undayatood thar coxiain Hbortiow have been taken in creatlug - random wasiable auchas \dot{p}. hivever, it ip foll that thie wasuripion da juntified by the rasulte and by equation (8).
4. Obviously the dietribution ueed for there eumames if not the best, particularly in the vicinity of \mathbb{K} / m, An is generally the cate, thie dicticulty is most pronounced for amallinr sample sisua. However, the importhri" poitions of these digtributione are initrumiontal in dotermining the vilis of the dietribution of R_{1} Therefore, in only rexe cavee would tha rectunguler portion of the diatribution be important, igpeoinl instruetions to the machine are anticipated where $\ell-1$ in or wharn $\&$. n_{1} Thees inetruetions will oliminate the rectangular distribution for thone casel.)

ACKNOWIJTHGEMSNT, The author withee to expreas his appreciation to Mr. Werron Wanger of the Survailiance Group and to Mr, Olen Beck and Mr. John Clouse of the Computing Laboratory for thal valumble acsiatance in completing this atudy.

Mr. Wenger antud an a llatson between the tetieticel and machine conuderations of the problem and offored many helphi ungeations, Mr, Back and Mr, Clouse programmed the problom for the machlne computations.

STATISTICAL ST UOY OF ACING CKARACTERISTICS

OF ARTILLERY MISSILES

Raymond Boll
Survelliance Group, Balliwtic Research luboratoriea, Aberdecn Proving Ground

INTRODUCTION. Amang the various methode employed by the
 Miasiles are rockut motor atatic tent chemical and phytacal tent of propollant, iully inatrumented froving ground flight tutte und evaluatior. of cervice practi a f : :inch.

As indicated, valuation of serviea prncuter Lirings to on of the methode employed by the Sirvellence Group in invertigetion agag charactaziotica Theae firinge are conducted by troop unitu for training plarpoles. Although thene firinge ari not fully hatrumented filghta, uificient date in obtained lor performance undyais purpoacs.

This paper presente a typical malyale of eervice practior firing
 r'regram. An example of the evaluation of the ancual eorvice practice firingy for the Honeat John Rosket will be preeented

DISEUSSICN, In this waluation 424 firings of Rocket 764 MM : M if Surlue, conducted ior trncip terining and other purposen by bub United Siaien dud ixsTO itrins uititn huso been considared. The purpean of this study waf to inveatigiat = the overn! accuracy parformance of the
 any indicarion of a deteriozution of tha acrurnay performance with

In inveatigating the effect of age on accurwey firxixumanre, two puasible typu uf changes whre convidered; firnt, ciangeo in that anter of ir pact (C.I.) of the rocketn ec a function if age and sucind, ciangef in the die. pertion of the rockete about the C. l. as a function oicege Far expmpie, if the cota! impulse of the rockst motor which in m memeurement n the total thruat uf the rocket decreased with increasing mye, then the inean range of the rocket should almo decrenee witn sucreaaing age. It in almo
ponulble that a.e the age of the rocket moter increases, ite performance could bocome more erratic thus increaning the range diaparaion of the Honent John Rocket. Although the offect of age on both range and deflection mius-diatancet was inveatigated, in general it is expected that detarioration of rockat motor performance will be raflected primarily in charges in the ratige performance of the M3l eariea rucket. In order to inveatigute the offert of age, aimple and multiple lineur regrasion techniquea and analyole of variance techniquen wora uned.

In investigating the affect of age on monn range and deflection performn ance, sll tiringe waru greupad according to the type of burat and type of launcher aystem employed, Separate analyoue were carried out for each of thean yroupe for both range and deliection mien-diatances. The ren greasion model used in these analyoen asames range and deflaction misandistanene for each fixing are linear finctione of the age of the rocket motor and the launcher to targat range. Tha launchar to target range was included in the regression model since any age wifecte would probably be range depondent.

In the divialion of the rockate according to type of burat and type of launchur yatem, the majoxity of the rockate (848 of the 924 considerad) fell into three maln grouph. Theao ware firinge with the M289 Imunched iv: ily burnt (211 sockete firad), M386 daunchar for air burat (473 ruckets (irud) and the M289 launcher for ground buret (164 rockete tired). in addition, there were 49 rackete fired with the 1.133 launcher for air burat, 21 (iringe with the M386 launcher for ground burat and 6 Ifringe with M33 luunsher for ground burat. The regreesion malysen which weru earried out with all these grouru exiept for the firinge with the M3 lnurcher for ground burat due to only alx rociets heing firent in thic group indieatad that after $71 / 2$ yaarn of shelf liio thme appeara to be a aignificant age effect. Thia in indicated by aignlficant age affect (. Oi levol) in vise anulywie of range mioedidance in the M 386 Launcher firinge for alr burit. Although none of the other groupe indicated a digntilcant age effect at the 01 level, the other two large groups of rockete ware nemr significarice at this level. For oxamplo, for the group containing rocketa firen whithe M289 launcher for ground burat $t=-2.25$ which in re" eignificant at the . Ol level ant. 995×2.61 but is uignificant at the .05 level wheret; $975=1.97$, With the group contalniag rockete firod from M289 launcher for air burut $t=-1.95$ which is just whort of tho 05 level of ingnificance. Thus, it appeare that there le an indication of a
decreuse in the mean range performance as a function of age of the rocket motor of the M31 rocket. No aignificant (, OL level) age offect wat found in the annlyais of deflection mies-diatance ma a function of age.

In the analyais of the M386 launcher firinge for atr burat in which a algnificanc (0 ol level) age affect was indicated, a agnificant (. O level) launcher to target range effect was also noted. To further inventigate these aignificant resulte the rockete within this group were further subdivided into four lmuncher-to-twrget range groups. Thene groupe were rockets with a launcher-to-targat range of $<10,000$ motera, 10,000 to 14,000 muter4, 14,001 to 18,000 metera and $>18,000$ materm. A regraseion analyale of range mien-distance ay a linear function of rocket motnr age way purformed on each of the four launcherutnetnrget range groupa. The ragransion analyala for the 10,000 to 14,000 meter group which conlalnad the largeat number of rockety fired indicatod a aignifleant (, 01 lovel) age effuct, A ecatter diagram of the range mius-diatance for the four leunchay-tontargot range groups in peesented on Figures 1 thru 4 . 2igures 1,3 and 4 indicate the range mies-diatancon veruui the M6 aerien motor age for the three range group $1,<10,000$ metern, 14,001 to 18,000 metery and $>18,000$ motern in which no ulgnificant (. 01 leval) agn effact iv indicatad. Since therw was no signiflomat age affert for thene throe groupi the mean mive-diatance for wach group la also Indicated on thees Ifquran. A ecatter diagram of the range misin diatances versua the M6 anries motor agd for the rucketa fired in the 10,000 to 14,000 range group in presented on Figure 2 . An
 in thin group. Indicated or thin tigure io the aegreanion line derivad from the reyraesion analya' $=$ parformed with tha group. Thia pegren. aton line indicates that the average rangr of each rockal for the perfod covered has been decreasing at the rate of 18.6 materu/year auch that the arorage rangemialediatance for $7 \mathrm{l} / 2$ vear old motora was 80 metara (80 metese whort of the target).

As previously indicuted, in addition to an age effect with the M 48 s iauneher firirge for air burat, a eignificant launcheratotargot range offect way noted. An indicuted on Figuras 1, 3 and 4 the average range mise-diatance was -50 nuters for the $<10,000$ meter ranye group, +27 muters for the 14,001 to 18,000 meter group and +104 motere for the $>18,000$ meter group. Theie resulte seem to indicate that for the thorter range targetn the zocketemen falling short of the target and an the target range increates the rocketa begin going over the target wo that wt the long ranges ($>18,000$ metera) the rocketm are talliny on the average 104 meteru beyond the targe!. This occurrence in probably due to a small bian in the
firing tabla. Table l containa a aummary of the raported mien-ditancee for the M386 launcher firinge for air burst. Thaee firinga are grouped according to age and according to the range groupa previounly mentioned, On Table I_{1}, it in noted that for rockete fired at rangea< 10,000 meter: the reported mean mise-dintances for all ages are nagatipe oxcept tho 6 to 7 year old rockete. This ic also indicated in the 10,000 to 14,000 moter gronn excopt in thle group the 3 to 4 year ol it rockete mean miesdiatances are poedtive. Wherean In the 14,001 to 18,000 meter group all the mean mberediatances ure puative with the axception of the 4 to 5 year old rockete, Similarly in the $>18,000$ meter group all the man miss-distances are positive.

In inventigating the posilble effect of age on range and delluction dien peraion regresition techniques were uibu employas. In order to remove the dependence of the variance of celle on the true population variance of the coll a logarithmic tranaformation of the range and daflaction eample variance was made prior to carryling oab the regretaion analyees. Due to the limited number of ground impact firinge, thene analyoen were Himited Lo the alr buret rounds. Soparate malyees were carried out for uncuh ealendar year's tiringe with anch launcher as woll an a combinad anclyale over all calendar yours for each launcher. Those malyana dieclosed no stanificant (, Ol levol) age effect for oithez rango or dulection diegertion,

Tablea 2 and 3 present a summary of the meant and atandard deviations of range (K, S_{R}), deflection ($D_{i} s_{D}$) and height of burat (A, S_{μ}) minndistances: Table 2 summariees those rounde fired foy air burst and Table 3 summarises those rounds fired for ground impact., Eiach tablo enrtainn a veparate wumblady ior the firinge conductad during each calendar year and a combined ummary ovar all firinge. The firinga for each calendar yoat: are grouped according to the age of the M6 sertee motor in noeyear intervale. Thaee groupinge are furthar aubdividad according to the typu of lanche: Eyatem employed, 1.e., M289, M386 and M33. Priar to computing the sample meane and etandard deviationa in theae tablen, the conaintency of the data was inveutigated by testing the evtreme values using e critarion for outlying observationa, Any outlying valuen (at the . OL lavel of uignificance) vieru not used in computing the meano and standard deviationa of the mian-dintancua, but were tabulated individually al footnotes to the tables.

SUMMARY. In aummarizing, the resulte of these analysea have indicated that there appeara to ba a agnilicant age affect on the functioning rasults of the M31 Sories Honent John Rockut. Thia in indicatod by the regreveion analyses carried out with the M386 launcher firinge for air burat and with the M289 launcher firluyn for ground and air burst. With the M386 buncher firinge for air burst, the avarage range appearu to be decreasing at the rate of 18.6 melura/yr auch that for $71 / 2$ yoar old motori the avarage range mian-diatance is -80 moters. It thould be poinied unt that the decrasee in range of 18.6 matere/yr ie conalderad as the rate of decrease for rockete 1 to $7 \mathrm{l} / 2$ yoars old and ohould not be conatrued as indicative of a rate of decreave for rockete older than $71 / 2$ yeare. Extrapolation of thle zate of decrates to older motore may be hasardous as the rate may change as the motore age. It might also be polnted out that the decrease In renge observed for older motore appeaya to be ubbetantiated by rocket motos atatic testi. It wan also noted with this group of firinge that thore wal a ilgnificant launcher-totargot range effect, Thie effect appeara to indicate that the shorter range rocketn ($<14,000$ metera) are impacting ahort of the target while the longer range rockete ($-14,000$ moters) are impacting bayond the tasget. Thls appeare to be due to amall blay in the firing table.

CONCLUSION, In conclunion, we might conalder the effeet of the wigntileant age and launchar to target range effect on the current atatua e2 the M31 stockpile. Firat, it should be pointed out that the bulk of the stockplle conalate of rocknta thati vary in agea fromi 3 to 6 years. Fris rockets of the en ages, wilh the age effect Indicated by the M386 lameher firinge for air burat an avarage miesadistanee of 0 to -50 metera due to age may he expected. Thuy, the bulk of the otockplle does not an yet apperp to be adveraely aflected by thin age offent.

If at eone later date, it le determined that the age effect in rf clucing the effectivanese of the Honest John Rocket Syatem it would be pouslble to correct for thly age offect by establiming a propellant welght correction fantor to be used with these rocketa.

In relation to future aralyses, the Surveillance Group de continualy reviewing all service practice firing for incluaion in thesu analywen. At mentioned earifer, the valuation of eervice practice firing: la only a part of an integrated program which has bean initiated to determine the ruliability and balliatic characteriatice of the artillery misalle atockpile.

Fr:Jpr 1

vacut oicrianenco.

Launcher r.) Target __Bagre(Meters)	Parameter	- Age of 46 Series Motor at Tine of Firing						
		$\begin{array}{\|c\|} \hline 1 \text { yr. Ejt } \\ \hline \text { under_2-in } \\ \hline \end{array}$	$\begin{array}{r} 2 \text { yre but } \\ \text { funden_3 yn } \end{array}$	3 yr. but under 4-ye	$\begin{aligned} & 4 \mathrm{yr} \text { - but: } \\ & \text { under } 5 \text { yor } \end{aligned}$	$5]$ r. but undic_heyr	${ }^{6}$ 6 yrder but	Cunc. but
<, 10,000	\square	1	18	2 -	18	1	2	
		. 10	-54	-199	-40	.. 20	+3	
	S_{R}		107	69	'32		4	
	$\overline{0}$	L280	122	R451	R16	:30	R251	
	S_{p}		240	380	123		69	
	H	H156	H16	142	131	L2	L7	
	No. SHitiers		45	10	${ }^{7} 1{ }^{\text {b }}$	-	55	
10,000 to 14,000	n	8	478	77^{1}	114	20	39	5
	R	-17	-19	+21.	-28	-25	-54	-182
	3	37	170	121	144	115	135	136
	D	145	R13	L10	1.31	L8i	217	R151
	${ }^{5} 0$	267	179	170	198	190	161	253
	d	H25	1.12	H 19	Ll	L19	0	245
	${ }_{\text {So miliese }}$	87	89	$6{ }^{6}$	82 h	112	74	58
24,001 to 18,000	n	2	14	16	18	9	5	4
	$\overline{5}$	+10	+23	+36	-16	+73	+103	+8
	s_{R}	99	113	165	160	171	129	243
	$\underline{3}$	K88	L66	L55	F21	R98	1.80	R8
	Sp	39	121	233	255	249	86	427
	H	H90	123	L38	448	H15	H44	41
	Sy	6	125	130	113	55	145	225
		0	0	0	0	0	0	0
718,000			13	12	7	9	3	
	E		+171	+106	+26	+55	+138	
	SR		140	311	125	139	366	
	5		L8	R225	R54	R50	R43	
	S_{5}		84	462	232	358	209	
			226	487	15	L34	17	
	$\stackrel{\mathrm{SH}}{\text { No. }}$		108	196	132	104	290	

TABLE: 1 CONT'D
$n=$ turiour of rockets
$\mathfrak{z}=$ avenge range miss-distance
I: stancard deviation of ramge missmilistances
$\hat{D}=$ avonge luflection missalistance
$\underline{E}=$ standard deviation of deflecticn ilis-dis

$F^{\prime \prime}=$ average hoight of burst miss-dist inses
$S_{H}=$ standard deviation of helght of burat miss-distan
$i s$, outliers-number of sutliers based on H. J. Dixon's
Sn = standard deviation of deflecticn il:ss-distances
8. Range Outlier (4477 meters)

Deflection Outiler (R670 teters)
Height-of-burst outlier (High 4Cs meters)
Range Outlier (-670 meters)
 four rockets
e. Range Outlier (+1355 meters)
f. Mean height-of-burst miss-distance bised on a gmple size of 76. The height-af-burst miss-distance was not-reported
for one rocket.
Helght-of-burst outifer (High 352 meters)
Deflection outlier (R1323 meters)
Deflection outlier (R1323 meters)
Six Range Outliers (.. 1500 weters,

1o. outliers-number of outliers based on H. J. Dixon's Criteria (. Cl levai of significance)
10. outliers-number of outliers based on W. J. Dixon's Criteria (. $C 1$ levai of significance)
b.
c.
d.
-
\&.
h.
TABLE IT

thate if (cosit 'd)

TABLE II CONT'D

	eight-of-Burst Outiler (Sow 325 metart). leas height-of-Burst Miss-Distance basud on a sample size of 14. Height-of-burst miss-distances were not reported for four rockets. lean height-of-burst miss-distance basel on a sample size of 44. The heiglit-of-burst misti-distance was not reported for ne rocket. Mean height-of-burst miss-distance bases on mample size of 92 . Height-oi-burst miss-distances wert not reported for four rockets. fean height-of-burst miss-distance insec: on a sample size of 106. The height-of-burst miss-distance for one rocket was not eported.										

[^16]TABIE III
Sumary of Reported Mis:3-Distances (Meters) for Troop Firings o: Rocket, 762Mr: H31 Series

D. H. Chaddock

G. B. Fi., M.Sc., M. I. Meoh E.

In the lant decade considerable proyrast hail been made in aeooseing at un early stage the probubics performence of proposed weayon eyoteme in terms of thaif chance of a hit, and giver, hit, the axtunt of the damage they will inflict. Information of this kind in froquantly used to compare one weapon aystem with another or to decide whetiner a particular projeut in worth pursuing further. The methodi uned are rabinly atatintical and ase based upon monsuramente made duriug controlled triale, nr oxtrapolation from such data.

In co far an phymidal rammge to equipment or mon la concested the banle dath, although not all that could be deatred, in autiaiont for a reanonably watisfactory manesmant to be made of the orerall effectivenean of the weapon eyatom, ta cases where this is high (for oxample, over 80\%)
 anme value, and other thinge being equal, whould receive further developmant. in other canes, due elther tio the uxtrame difficulty oi the taek that has been propoed or limitationm imposed on the aseesmment (for example, in wetght and alse) it in not ponible to show that a proposed wotem wisuld hive more than a very amall effectiveneen, perhaps of the oxder of a fow parcent. in tiede cases it in natural to reject the propoanl as valueleos for military purpotes.

A deciation of this nort, while valld in ralation to the materlal dariage which is being discusied, adinittedly completely dunoren any other affome which the uae of the weapon might produce. Typlcal examples, wiull known to Service permonnel ure ..

1. "Rataing the morale" from the point of viaw of the man thring the weapon.
2. "Deterring the attucker" from the polint of vin"t wi the wan boing fired at.
3. "Keupirg their heude down" frem both pointe of vlew.

A brief axanifation of three typical wivoe might sarve to illustrate the type of siluation in which, although the probablidty of maierlal damage

[^17]might be amall, the "Morale" value of deliveang an nttack conid be quite hagh.

INFANTRY ANTI-T/NK WEAPONS. Beraule of limitationa in weight and aize mont infantry anti-tank wrapons, wuch au the Bazooka, the Panveriaust and the Garl Guntuv, delivar their uttuck on tmpact by neane of a bollow charge warhead. The hollow charge produrea high velocity jet which, although it can penetrate a coneiderable thicknoes of etenl, produces only a relativaly mall hole. Inesde the target the remnante of the jet and the fraymente from the hole are confined to a relutively narrow cone having en axie in prolongatius of the light path. Within the cone the fragments have conidderable damaging power, which can be soaddy aseeveed in terms of material and men. Outride the cone the resulta appear to bo very diappointing, ovon when anoathetisod animale aro aubjocted to attack.

Therefore, soring only on the medurable physicul damaga, aseesen menta lead to a rather low probubility of "kdiling" a tank by thie meane. Howover, wach atmamments aro nat univerwally aremptuble. Fronch experte, ior example, coneider thal when a tank is penetrated by a hollow charge, the crew will bu no demoralized that they will be unable to continuo to fient. Direct evidence of this de hard to come by. Some Baitioh crewa report boing unaware of having boen hat until after the batile when they have diacoverode hole in thelr tank.

ATTACK OF LOW FLYING AIRCRAE'T, Ever aince aircraft thew in battle liture has been a problem of attacking thom from ground baced wapelin. Owing to the funtamextai difficulties of detecting, 3tjinting and alming at a moving target, und ir apite of a greal doal of ingenuity expendod in the development of aighting aystems und weaponn, the problum haa never been anilafuctorily solved, Currant ausenamenta, for axample, bhow hi.at for a rimple 20 mm machine gun, eyo alghted and manually latd, the chancea of nuccuasfully engaging a low-flying target arn very small even undor favorahle rifreumatenem Technically eophiaticated volutions involving the uso of radar for early warning, range finding, atc. ient to wapon ayteme too couplicated to anviagge all an millarma anti-alrcraft wapon.

The current range of armoured fighting vehiclen are therefore bolng produced without any mean of defending thaneelven from low flying air.. craft, of the grounds that evon if they had a weapon it would be ineffective. Thls eituation, although accepted, we causing nome dinquiet. Ueere with battle experience remember the timea whan they fired their weapone at
inquisitive enemy dircraft and believe they deleited them from carrying out the purpoes of thair sortie by dising 80 . The reaction of alrcruft pilote to being fired at no doubt varied, but the general impresulon seeme to be that although "ank" from heavy anti-alreraft gune was frightening to unfeciloned crews, and a nulaance, it was never a real detertent. Small urme fired from the ground semn to be ignored by mot pllots. This ruight not be the case, however, with relativaly unprotected and lowio moving helicopters.

ARTILLEEY SUPPORTING EIRE. One of the clasaical roles of Artillery in to provide upporting ifre for other armi in both defnnce and attack, in general this involven bringing indirect fire to bear upon an area target. Excopt in certain apecific canen, for example counter battery ilia, no attempt is made to enguge individual targete within the area, the volume, rate, and weight of fire being judged as likely to produce some casualtiay and genoral dieruption of the enemy' activitice, In the paut, whion Infantry could only move by exponing themselven, they were vulnerable to attack by high explonive shell fragmente, particularly when VT fuaen were uned, and the afficacy of thie sort of fire ie unqueationed. Ite very eficacy han lead to the duvelopmont of the armoured parionnel carriex and malf propelled and asmoured gunu, in whowe miditary apacification there in a requiroment that they shall protect their occupants from the effects of near burst, hifh oxploaive ohella. Assesiment tharefore of the matarial damage likely to be inflicted on a highly mechanised army, such at the Rusaian Asmy, by indirect fire with conventional wapons is depreasingly low. The utais, 'uwover, is not propared to accept the conclusion that his fire is therafore fueffective and poini to the morale effect of aubjecting the troop, to fire rf any mort. In thin it is a widely hold bollof that a atiuia large explomion a very much more effecll pe than the amo wainht of fire dalivarad in a number of emaller explonione-the philosophy of the "hig ryump".

These are typical cases, and in them and others it is quite ulviou* that experienced unarm believe that their weaponn oun mad de produce an affect over and above the matarial danage that can be obeerved. So far, no means of measurement or aseaument has been found for this ao-cilled deterrent or neutrallzation effect. Asauming that such an effeci dess in fact exiat, li it is emall then no graat harm will be done df, munw, weapons are eseesed solely on the material damage thay can inflict. If, on the other hand, the deterrent effect ia large, then it might materially affect the cholce of weapon eystem and armemeat with which the Forcen aro provided.

To investigate and measure these efincts is obviously going to be difficult, if not imposeible by direct exparimont, because unless there in real danger the abject'e raction may not be representative. Simulated battle ae provided in "Battle Indoctrination" couranm Is unlikely to be a satisfactory ubbiltute for the real thing aince however wall done it de, the participante retain conidence that their inatructora and uafaty officeri would allow very little seal danger. An analyale of paut battle axparience might produce eomm uastio data, although debriefing now on the memory of eventa more than a desate age could be very unreliabla. A poadbility liai auggeate deenlf la whe uee of experimente ueing druge or hypnosie to purguade the participants that they really are in denger, and that, for examiple, the aimulated onema lo really shooting to kill, then thair reaction to m"raal" eltuation can perhapa beaoneased,

Pertonally, as alayman, lbeliove that troopy in battle very rapidly make their own asmesment of the lethallty, imagined or real, of the aituation in which they find themeolves, and act accordingly, Belowa certain threahold the riak is acceptable and they procead, if with some caution, in the norinal mannar. Above thif thraahold the riak de intoler. able and action is taken to avoid it. Thie suggenta that a clue might be found in other dangerolu notivitien, auch as mountain climbing, working on high bulldinge, or even crosing the road. A city dwaller will crose the roud "jay-walking" in the fact of oncoming traffic becauee he bellevee that the riak is negligible. A country-man or alderly purwon will not eceept the risk and aithor crosese at lighta or walta untll the road la clasy. In the conatruction of high buildingi normal ratea are paid to workory below a cerrain height, above it they receive a bonus of danger money. If conditions are bud with high wials, teo and now etc, all worle ceanes, the risk is intolerable to mployas and employen allio. Many similar examplee could be drawn from uider metivitien; in all nf them we find the accaptance of a certain degree of riak but a threshold above which ive riok is intolerable. If a thrachold value really doea exiat and can be fuund, then it bhould be pesible to relate it to the probablity of mate:d. al or phyaical dumage.
$A=$ to what the threshold value might turn out to be, I belfeve th'st it will be found to be much amalier than genarally muppued. The Romane, who knew a great deal sbout the conquent and subjugation of foraign countrien, geve us the word "decimate" which according to the dictionary maane to kill a tenth. I believe that now, as then, if one tenth of a group of infantry, tankm, weroplance or what have you are killed and een to be killed, the
morale of the eurvivora will deteriorate very rapidiy. Thia is in aharp contraet to much current military thinking and might wall revolutionice some of our curyent military requiramenta, and make much more attractive proposale for waponis uytems that would now be throvin Into the waste paper banket. For thin renaon I think it important to direct melantific thinking and research into this usea. I hava given an eccount af come of the dificulties that will be mat with, and made a fow suggentiona ragarding posible avenues of approach, I would now be mout internated to hatr the biew of any mamber of the audiunce on thle ubject, purticularly with rogard te uny actiml experimentution that may have been performed.

COMMENTS ON THE PAPIRR BY D. H. CHADDOCK

Clinical Sataion 6

As a momber of thle panel, Boyd Harimbarger uagested that under the tople "The Meseurement of the Morale and Suppraseive Efiuets of Weaponal many diacovarles in thia wren could pownibly be darivad by linving paychological etudies mucis ut the rmantione of the personnal employed at munition inatullationa and manufacturera in which they have had axplosiona. For inatance, at the Alleghany Ballantic Labormasian a aroup of prychologinte might have been able to evaluate many of the charactesiodis thisi aitect resrale bv obearving the action of the peraonnal atter a major axplonton that happencd there about a var Ag. Peychological designe could be set up for activitiea at various areas in dangerous aectione to estudy human reactione to mineriencien. These dealgne ehould be eet up prior to may aretdent.m for varlous fidaten met inatallations, and should be ready to be exocuted immadialely upon a catentroplic.

SOME SMALL GAMPLIE THEORY FOR NONLINLAR תEORESSION ESTIMATION

H. O. Hartley
Inatitute of Stutiatice, Agriciltural and Mechanicad College of T'exas, College Station, Toxan

NOTS: The paper read at the Ninth Conforence by H. C. Hartley under the titie, "Non-Lineur Exitualion" pasenived cewtin, both publlahad and unpublifhed, on the generul topic of least nquares eutimation af tho para." metere on non-linemr regresalon lawi. For matertal already punliahed or about to be publiahed in thin aran] reference is made to:
H. O. Hartley (1961), "The Modified Gauen-Nawton Mathod for the fitting of Non-Linear Regration Functions by Luat Squarea, " Technomatric: 3, 269.
H. O. Hartioy, "Exact Conidence Repione for the Parameter" in Non-Linaar Regraealon Lawe," (shortly to be publlohed \ln Blometrika.)
H. O. Hartley and A. Booker, "Non-Linear Loeat Squares Entimation", Accepted for publleation to the Annale of Mathomatical Statiaticn.

Tha note reproduced below represente as yet unpublimhed material,

1. INTROUUCTION AND SUMMARY. Weara givede in eot of N

$$
\begin{equation*}
y_{L}=f\left(x_{i}, \theta\right)+e_{t} t t=1,2, \ldots, N \tag{11}
\end{equation*}
$$

Jure x_{t} fenctes the $t^{\text {th }}$ "riced" input vactor of k elementu giving rise to y_{t}, whilst θ la an meelement unknowi parmineter vector with riments θ_{1} and the ofen aret of N independent error roolduals, from $N\left(\theta, \sigma^{2}\right)$ where of ${ }^{2}$ will be assumed alther known or unknown as indicated in the varfous eections. The expectintion of the y, are thereforo the $k+m$ variable function $f(x, 0)$ whicn will be assumed to aatiefy certain regularity conditions. The problem ie to atimate θ notably
by "loust "qיqua" which in the preaent ecse in identical with "maximum likalihooci". Whilst compatational procadures to obtain the nonlinear lonet squmen estimators and thedr large ample propertion have recaived some consideration in the literature, we are in this note concerned with deriving some small emmple renulte for the above eatimation problem.
2. A THEOREM UN THE SUFFICIENCY IN NONLINEAR REORISSION ESTIMATION, in what followa we ahall be pradominantly üing vector nutation $4 n d$ hall denote by $y, f(\theta)$, and θ vactora having alemente y_{t}, $f\left(x_{t}, \theta\right), c_{t}$ and θ_{1}, ranpectively. The 11 net three of thena are N-vectura, the late an m-vector. The $N x k$ matrix of input valuen $\left(x_{k}\right)$ will n ot bet apectically rafareded to in this anction and thene matrix oldmenta morely enter as fixed ergumente into the functione $\left\{\left(x_{t}, \theta\right)\right.$. The nunlinear model (1) can then be writton wa

$$
\begin{equation*}
y=t(\theta)+ \tag{2}
\end{equation*}
$$

and the joint diatribution of y_{i} l.e. the ampla likelihood at

$$
\begin{equation*}
L(\theta, y)=\left(i \pi \sigma^{2}\right)^{-t N} \exp \left\{-\frac{1}{2 \sigma^{2}}\left(y^{\prime} y-2 y^{\prime} f(\theta)+\left\{^{\prime}(\theta)\{(\theta)\}\right.\right.\right. \tag{3}
\end{equation*}
$$

Whest the denoten traneppation of colurtin vectore and where we ansume that, for the time being, σ^{2} to known. Adopting clamaifal dofintiona $O_{\text {. }}$ atutictical sufficioncy we any the $L(\theta, y)^{\prime \prime}$ armitn a not of p-atatistice $\theta(y)$ junily uaficient for the estimation of $\theta^{\prime \prime}$ if

$$
\begin{equation*}
L(\theta, y) \equiv[(f(y), \theta) H(y) \tag{1}
\end{equation*}
$$

Where the p-vector (y) has as ite elamenta the p-atatiation $f_{j}(y)$ which a se mithcinatical in-variable function of the N elemente $Y_{l} \ldots y_{\text {if }}$ oi the eample vector y wo that F is a $p+m$ variable function of the alemants

[^18]of ly) and θ, whilet $H(y)$ if an N-variable function of y. Comparing (4) with (3) wn note that the condition for joint sufficiency can be written al
\[

$$
\begin{equation*}
y^{\prime} f(\theta) \cdots f f^{\prime}(\theta) f(\theta)=J(\theta(y), \theta) \tag{5}
\end{equation*}
$$

\]

where w o have introduced the p in vardable function g by the aquation

$$
\begin{equation*}
F(\theta(y), \theta)=\exp \left\{\sigma^{-2} J(u(y), 0)\right\} . \tag{6}
\end{equation*}
$$

We now wate the following thuorein which, under certain reguiarity condi. dors, is moro or lene obvicus: -

Thogram lim
 forcmatiof p parameterfunctions $g_{j}(\theta)(J=1,2, \ldots, o)$ it io curliciont and under cymulardy condition C, nomeney then

$$
\begin{equation*}
f(\theta)=U g(0) \tag{7}
\end{equation*}
$$

 elemant $g_{j}(\theta)$.

The regulaxity cosdition C mantioned in Theorem 1 is as follows;
 ilrat partial differentikip mi $y=\eta$ and the function t ineflnota by ((6) has firts partial diferentialy with ragord to the at $T \in(i)$ tor all θ in Ω.

Exacint Thoram 1

The eufficiency of (7) is trivial. We have from (7)
(B)
and

$$
\begin{align*}
& 2 y^{\prime} f(0)=2 y^{\prime} U g(\theta) \backsim 2 g^{\prime}(\theta) U^{\prime} y \\
& f^{\prime}(\theta) f(\theta)=G^{\prime}(\theta) U^{\prime} U g(\theta) \tag{i.}
\end{align*}
$$

Subutituting (0) and (9) in (3) we have the form (4) for the parameter
functong $B(\theta)$ and thm p utatiatics $e_{i}(y)$ which are the clemente of the puractor

$$
\begin{equation*}
\Delta(y)=U^{\prime} y, \tag{10}
\end{equation*}
$$

To prove that (7) 20 neconasty we arg glvan a likellhond function which hatinfiu: (4), (5) and (6) and which wo reatract to autiefy the regulariliy cundition C. In view of the latter condition wo ara able to apply to the function $f(n(y)$. θ) the atandard olfferentsation rules at the polnt y a η and $m(y)=s(\eta)=T$, We thereforw oitain by difierantiating (s) with rogurd to y_{t} the rolation

$$
\begin{equation*}
f\left(x_{t}, \theta\right)=\sum_{j=1}^{v} \frac{\theta j\left(T_{1} \theta\right)}{A_{i}} \frac{\theta_{j}(\eta)}{\partial y_{t}} \tag{11}
\end{equation*}
$$

or the vactor form (7) if we dufing the N a f matrix U by

$$
\begin{equation*}
U=\frac{\theta_{j}(\eta)}{\theta y_{t}} \tag{12}
\end{equation*}
$$

u.d the p-vector $\quad(\theta)$ by

Theorem 1 whown that we ennot axpect to obtain a uufficiont aet of
 form By esaentially linear we mean that it is lineme in n wet of pperametc. functiona ε_{j} (θ), $j \geqslant 1,2, \ldots, p$.
The eatimabillty of the linear paranetere $f_{(}(9)$ deponde on the wank of the matrix (S, in accordance with linear entration theory. The apecial csuo of p. m and rank (if) a m in ofintoreat an the number of $g(\theta)$ ia thus equad to the numbur of the criginal parametere $\theta_{\text {. }}$. In wuch altuation it may beasked inder which circumatancem the mappting of the Ω apace

Deaign of Experimentw

of 0 to the f^{\prime}-npace of the $g_{j}(0)$ In a one-to-one mapping. Whil at the clanisicul condition of a full tank Jacoblan only aamures thia one-to-one mapping "in the mmall" we prove the following unique-mapping theorem "In the large".
Thunrem 2:-
If for a iot of mifunctiong $g_{j}(\theta)$ deponding on m vatiablea θ_{j} w. anume continudty of the firnt partiad derivatyonand_dafitenneainthe quadratic lorm.

$$
\begin{equation*}
\sum_{1, j=1}^{n_{1}} \frac{b g_{1}}{\partial \theta_{1}} u_{i} u_{j} \geqslant 0 \quad \text { for } u \neq 0 \tag{14}
\end{equation*}
$$

formald θ inthe convax $\left(Q_{\text {aphe }}\right.$ thun themepplag af Ω to Γ by

$$
\begin{equation*}
\gamma_{j} m g_{j}(\theta) \tag{1B}
\end{equation*}
$$

Pugf:-
We haye to how that two different θ vectors manye generate two
 wo find

$$
\begin{equation*}
g\left(\theta^{\prime \prime}\right)=g\left(\theta^{\prime}\right) \text { fos } 0 \pi \neq 0^{+} \tag{16}
\end{equation*}
$$

Wwin the function $q(x)$ of tho ecalar argument atwen by

$$
\begin{equation*}
q(x)-\sum_{j=1}^{m}\left(\theta_{j}^{\mu}-0_{j}^{+}\right), g_{j}\left(\theta^{+}+n\left(\theta^{+}-0^{+}\right)\right) \tag{17}
\end{equation*}
$$

would have identical values at $m 0$ and $m=1,1, a$.

$$
q(0)=q(b)
$$

Therefore for nome value of k with $0<i<1$ wo have $\frac{d y}{d \pi}(x)=0$ and hence

which would contradiet (14).

ON THE SIMULTANEOUS ESTIMATION OF A MISSILE TRAJECTORY AND ERROR COMPONENTS INCLUDING THE ERROR POWER SPECIRA OF SEVERAL TRACKING SYSTEMS (Prellminary Report)

David B. Duncen
Johns Hopkins University and
Pan Anerican World Airways Gulcued Missllas Ronge Division Patrick Alr Force Basa, Floridy

1. INTRRDUCTIQN. The probiem uriar consideration te that of eathmating the trajectory of a missile in poward flight using the data of eaveral tracking syatems nbserving it yimultaneously. At the same ume, tits also desired to estimate error components princlpally in the tracking wyatame and, In addition, the spectra of the sutocorrelated errors of the observations. The discupsion civides trito two parts: The development of a linoar mixad model up through soction 4 and the development of modele with atationary processes In sections 5 through 8 .

Many of the Ideas disoussed in the earlier part ar baslo ones being used In the current reductions of traleatory data in prograins ineluded under the names of "beat estimate of trajectory" and "Glatrac". In the seend part, similar ideas are extended to include the additional premence and eetimation nf stationa ry autocorrelated arrors in the tracking ebservations and, briefly In section 8 , in the trajectory itself.

The early part is discuased in the notation and atyle of regrassic:
 fer exarupie, Andurson and Eaucroft (1] and Craybull [10]. The lattor part involving spectral analyses and álterting is developed, more than is usual, In ihe regression-theory-and-meth ds style of the first part. This :s wiole in the incpes of better bringing out how it all can fit together with the methode of the filist part in complete unified analyses, Many feferences ha'ke kaen at heip is,re, Including tor esample Whitila $[15]$ and $[16]$, Eannan [16]. Jenkins $[14]$ and Durbin $[9]$, no to mention blackman and 5 wiay 2 j to which further refrances sfe miven. This brief list, of course, does not even begirila mentiull all ot the many articies pertinent in this area.

Ne attenpt is miade here to discuss many dotails of methodology invoived in writiar compuilng programs. These will be written up in reporta hy
the author, E. E. MeGehee, and 8. B. Burkett and by L. B Coldina and A. Rinaldi who have been cooperating in the programming work. (As currently planned, these reports will appear as Pan Americari Technical Stafl Memos and RCA Data Reduction Programming Menos respeotively.)
2. LINEAR MODEL WITH_PARAMETERS ALH YLXED. A aimple firat-approach model for tralectory data may be willten as

$$
\begin{equation*}
v=x \beta+i \tag{2.1}
\end{equation*}
$$

where $y=\left(y_{1}, \ldots ., y_{n}\right)$ is a vactor of n ohservations, x ia an $n x r$ matrix of known constants, $\boldsymbol{\beta}$ is an rx : vactor of fiked parameterg (regression cs. officlents) to be astimated, and e is an nxl vector oi erroris to be eatimated with, as the name implies, all zero expectalions.

The norinal equations for atimating β are

$$
\begin{equation*}
A b=g \tag{2,2}
\end{equation*}
$$

or, more fully,

$$
(x \cdot w X) b=x^{\prime} w y
$$

where the soiution b is tha $r \times 1$ vector eatimating β, and $W=V^{-1}$ where " is the variance (variance-novariance matrix) of $a, V=$ var (0).

Actually, in trajectory applications, the pioblam is initially of a nonllnear form, such as,
(2.3) $\quad y=f(\beta)+e$
which is handled iteratively in the fam'llar form

$$
\begin{equation*}
y^{*}=x \beta^{*}+0^{*} \tag{2.3}
\end{equation*}
$$

where β^{*} reprosents deviations $(\beta-\beta$) of the parametere of interes: β fromintial values β_{0}, similarly $\left.y *=? y-y_{0}\right)$ whers $y_{o}=1\left(\beta_{0}\right)$ nd x

Deston of Experiments

Is thit matrix of partial derivallves $\left(x_{i j}\right)=\left(\partial f_{i} / \partial \beta_{j}\right)$ of the elemente A_{1} of $f(\beta)$ with raspect to the elamenta β, of β_{1} taken at $\beta=\beta_{0}$.
In most of what follows the distincilon bolwaun (2.3) and (2.1) is relatively unimportant. Except where diatinction wie Impertant y^{*} and β^{*} will be wiatui to as the obacriations wani bin umpuasy parameters respoctivaly and the star notation will not be carried.

In a typical trajectory atimation problam the olements of y, β and 6 will be aubveciors and submatrices. For a sytem with a observables the elemonts y_{t} of y will be $q \times 1$ subvectors for atach sat of observations at each point t in time, $t=1, \ldots, n$. Thus with Mintram, asy with the obeurvations $P_{1}, Q_{1}, P_{2}, Q_{2}, R$ we havo $q=5$; with an Azusa, day with the observations $1, m, r$ wo have $q=3$, and $s o$ on. For a trajectory in d dimenlions, the olemente β_{1} and b_{l} of β and b will bm $d x l$ vectors, and of course In powarad misslle filght $d=3$. In conformance with thease, each alement $x_{t 1}$ of X is a $q x d$ submatrix (usually of partial derivatives). In paseing it will be noted that wo have referred to the dimensions of γ, X, β and is In counts of those subvector and aubmatrix clements and not in terma of the ultimets acalar alementa. It will be convaniont to oontinue in these terms unless otherwise indicated.

The most popular forms of models in currant une for the reduction of position data have squara diagonal X matrices

with as many ($r=n$) trajectory points to be astimated as there are obucrvations. ('line aubmatilices comprising the elements of course are not necessarliy squars or diagonal). These we will rofer to as single-point-in-time modele beceuse they estimate mathematically inciependent parameters at each point in time and einoloy no constralnts for tho trafictiory.

In the first-approach model the errera aro ansumad uncorralated gyor time making the varianco and welght limtrix diagonal

In each of theas the elemartete 4×4 submatrious which are often aspumed diagunal.

In a singlu-point-in-time problem with time unoorrelated errora, the normal equations $A b=g$ also dingonal, kelng of the form
(2.6)

In whith the solution for eacit waknown by wall be made separately in $a_{t} L_{i}=g_{t}$ and in which

$$
a_{t}=x_{t}^{\prime} W_{t} x_{t}
$$

$$
\begin{equation*}
3 \times 3 \quad 3 \times 9 \quad 9 \times 3 \tag{2,7}
\end{equation*}
$$

4×9

$$
g_{t}=x_{t}^{\prime} W y_{t}, \quad t \cdots i, \ldots, n .
$$

$3 \times 1 \quad 3 \times q \quad q \times 1$
4×4

In a casa with p tacking yatems working simultaneous!y, the complete ciata can we thought of as titting the 50 me model (2.1) in the form, with $p=3$ say,

Design of Experiments

(2.8) $\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \beta+\left[\begin{array}{l}\theta_{1} \\ \theta_{2} \\ \theta_{3}\end{array}\right]$
where y_{1}, X_{1}, e_{1}, and corrempondingly V_{1} and W_{1} are for the ${ }^{\text {th }}$ nystem $1=1, \ldots, p$. If the arrors are takan to be uncorrelated hetween syetems, the normal equations are readily saen to reduce to the ame diegonal form (2,6), in which now,

$$
a_{t}=\sum_{i=1}^{p} a_{i t} \quad g_{t}=\sum_{i=1}^{p} g_{i t}
$$

and $a_{i t}$ and $g_{i t}$ are the submatrices and wubvoctore defined as In (2,7) for the $1^{\text {th }}$ aystem at time $t, 1=1, \ldots, p, t=1, \ldots, n$.

All of the above are well-known and disolissed In a multitude of raferences, a typloal examply for a singh syatem baing Davis'a devulepment of the reduction of Cinatheodolite data 4 . Hare, it is hoped that the reviyw has served pilmarlly an relatively simple introduction to the rotation and baokground sontext of work in the following mections.
3. A MNEAR. MIXPD MODPL. A blg weaknees of the alasslo modal 0^{*}. sketion 2 thet themes no allowances for eltocorrelation of errors within byetems, b. e., time anrialeticias in the errers at one pulat in the trajoctory to another. A bia atep forward in this resurd cen be made with the une of mixed model of the form

$$
\begin{equation*}
y=X \beta+z \gamma+e \tag{3,1}
\end{equation*}
$$

where y, X, β, θ aro as already defined, and $\delta=\mathbf{Z \gamma}$. or more fully,
(3.2)

$$
\left[\begin{array}{c}
\dot{\delta}_{1} \\
\dot{\delta}_{2} \\
\cdot \\
\cdot \\
\delta_{n}
\end{array}\right]=\left[\begin{array}{c}
z_{1} \\
z_{2} \\
1 \\
\cdot \\
z_{n}
\end{array}\right] \gamma
$$

is a gxi subvantor δ_{4} of errors in y which can be expressod as known linear furietion $\boldsymbol{u}_{t} \boldsymbol{\gamma}$, (k_{t} being $q \times k$) of k orror componente $y^{\prime \prime}\left(\gamma_{1}, \ldots, \gamma_{k}\right)^{\prime}$
common to all point in time $t=l_{1} \ldots, n$. For example, for a given aystem with say $q \mathbf{m} 3$ observables it might be desired to make allowence for a at
 a_{21}, n_{31}. In such an axample 2_{1} (x would bes

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & t & 0 \tag{3.3}\\
0 \\
0 & 1 & 0 & 0 & t \\
0 & 0 & 1 & 0 & 0 \\
0
\end{array}\right]\left[\begin{array}{l}
a_{10} \\
a_{20} \\
a_{30} \\
a_{21} \\
a_{21} \\
a_{31}
\end{array}\right]
$$

Botter mululw, if avallable, are onen whioh expreas the errorn δ_{t} in y_{t} a phyalcally identifiable error components y_{f} in the tracking aystam, such an, 1.11 anors, refract.on errors, ste.

The important point that dietingulahea the alemonto of from the trnm jentory paramotars in β la that the γ 's ara regarded as random varlablen (whleh vary form fllght to flight) with a vector of meapn 8 , and a variance (varimice-covariance) matrix V_{y}. (The error components of and the remalning errors a are unvoirglaled.j"

For p gyatems working simultaneously the complete data fito inn samo hodel (3.1) In the aform, with $p=3$ say,

$$
\left[\begin{array}{l}
y_{1} \tag{7,4}\\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \beta+\left[\begin{array}{lll}
z_{1} & 0 & 0 \\
0 & z_{2} & 0 \\
0 & 0 & z_{3}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]+\left[\begin{array}{l}
a_{1} \\
y_{2} \\
0_{3}
\end{array}\right]
$$

where, In addition to lie terms alroady dieoussed for (2.8), 7_{1} and γ_{1} are the $z^{\prime} s$ and y^{\prime} s for the $i^{\text {th }}$ system.

In connection with the general dinear mixed mudel (3.1) a vary uauful result can be readly obtained which may be atated as follows : The maxinumlikellhood estimates b, c of B and γ. (assuming that σ and e are Gausian) are the same as theugh wo assume the linear-withmall-fixed parameteri moded

$$
\begin{equation*}
y * x_{1} f_{1}+x_{2} \dot{z}_{2}+\epsilon \tag{3,5}
\end{equation*}
$$

with tarma defined as in

$$
\left[\begin{array}{l}
y_{1} \\
y_{0}
\end{array}\right]=\left[\begin{array}{l}
x \\
o_{k}
\end{array}\right] \beta+\left[\begin{array}{l}
z \\
I_{k}
\end{array}\right] \gamma+\left[\begin{array}{l}
\epsilon_{1} \\
\epsilon_{0}
\end{array}\right]
$$

where y_{1} and 1 are the glven $n x d$ vectors y and ϵ, O_{k} and I_{k} ara the null and idantity matrices $u f$ order k, the additional obiervations γ_{0} ard $y_{0}=\bar{\gamma}$ and ϵ_{0} contalne the k deviations $\bar{\gamma}=y$. In othar words wo dan
 varlance $V_{0}=V_{i j}$ bstaken for ϵ_{0} as was givonfor γ. The full varlance and wolylat malisices for ϵ in (3.5) are thus

$$
v=\left[\begin{array}{ll}
v_{1} & 0 \tag{3,6}\\
0 & v_{0}
\end{array}\right], w=\left[\begin{array}{cc}
w_{1} & 0 \\
0 & w_{0}
\end{array}\right]
$$

where V_{1} sate W_{1} are the V and W of the oriybinal $E \ln (3,1)$ and $w_{0}=v_{0}^{-1}$

From this pasudu model with psoudo-observations and all fixad paramater (ri, in nther ways) the matimateg $h=h$ ant $n=h$ are anen to be alvan by

$$
\left[\begin{array}{ll}
A_{11} & A_{12} \tag{i,7}\\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
g_{1} \\
g_{2}
\end{array}\right]
$$

with terma as defined lit
(3, 7a)

$$
\left[\begin{array}{cc}
x_{1} w x_{1} & x_{1}^{\prime} w x_{2} \\
x_{2}^{\prime} w x_{2} & x_{2}^{\prime} w x_{2}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}^{\prime} w y_{1} \\
x_{2}^{\prime} w y
\end{array}\right]
$$

whinh, in terms of the given mixed model (3.1) reduce to

$$
\left[\begin{array}{ll}
x^{\prime} w_{1} x & x^{\prime} w_{1} z \tag{3,7b}\\
z^{\prime} w_{1} x & z^{\prime} w_{1} z+w_{Q}
\end{array}\right]\left[\begin{array}{l}
b \\
0
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}^{\prime} w_{1} y \\
z ' w_{1} y+w_{0} y_{0}
\end{array}\right]
$$

It the underlying model is nonelinear in the error components γ, the matrix Z will consint of partial darivativas, the $\%$ lil the model equations will conslat of increments $\gamma^{*}=\left(\gamma-\gamma_{0}\right)$ to be made te γ_{0} a aet of valuev reached in a previsus iteration. The pseudo-observations y_{0} in tise equations will consiut of deviations $\gamma=\left(y_{0}-\gamma_{0}\right)=\left(\bar{\gamma}-\gamma_{0}\right)$. In the firet iteration It is natural to take γ_{0} as thus $y_{0}^{\prime \prime} 1 a$ zero and the torm $W_{0} y$ y dropis out on the right hand aldo of (3,7b). In all aubuequant itorations it will appacr as $W_{0}\left(\bar{\gamma}-\gamma_{0}\right)$.

In most work a vector of expeated f ixed errora as is represented by $\%$, fan be callbrated out and thie is usually dene. Thus more often than not the oftective γ is 0 . Thus in a problem linen: In γ we have $y_{0}=8$ ond and W.y navor appaars, in the right hand alde of (3.7b). In a non-llnear probinm Wyf will only appear as beforo ufter the first itaration and thon as $W_{0}\left(\gamma-\gamma_{n}\right)$ --W ${ }^{\prime}$. Detalla like these can he reworked and cheoked very aimply bierting from the peseuan-model (3.5) or ite non-1inear probiem equivalent.

Many trajectory estimation probleme are molved using tha mixad :azear model (0.1) ansuming that the variance matrices $V_{1}=$ var (a) and V_{0} var (uu) ars disgonal. The $n \times n$ inatrix A_{21} and the corresponing $n \times 1$ vactor V_{1} are tho same an the A and of the atancard model of nection $\%$. (A_{12} is
 subvectors). With p syateme, the elementa of λ_{11} and q_{1} from uaoh aystem add together to give an overall A_{1}, and g_{1} of the same $n \times n$ and $n \times l$ dillanstone.

Fur a ingle ystem $A_{22}=X_{2}^{\prime} W X_{2}=z^{\prime} W_{1} z+W_{0}$ is $k x k$ and symmerrio though not diagonal. $A_{12}=X_{1}^{\prime} W X_{2}=X^{\prime} W_{1} Z$ ly uorrumonelnaly
 error eomponent vactors ' Y_{1} entering with ash syatem A_{22} ia $k \times k$ where now $k=\sum_{i=1}^{p} k_{1}$ and k_{1} ts the size of $x_{1}, 1=1, \ldots, p . A_{12}$ widens correapondine!!.

To take an example, tor 300 seconde of data at say 10 polnts par eeennd, $n=3,0 n 0$. With $p=6$ gyatema nay with $\quad \sum k_{1}=60$ arror componanta in all, $k=60$. Thuy A_{11} would be $3,000 \times 3,000$ and dlagonal with 3×3 suls: matrices as elements. A_{22} would be aymmetrio and 60×60 with evalar alemente, A_{12} would be non-null $3,000 \times 60$, with 3×1 subvectors an elements and $A_{21} * A_{12}$.

Purther dinciautions and "pplicatiens of this model are avallable In many ratorences including krown $[3]$, Dunuen $[5]$ and $[0]$ and Henderacn et al [12].

4. PARTILONLNG OFTHENORMALEQUATLQNA TWO BTEP REGRFE-

 Sif: N. Becalise A_{11} bbuve in $(0,7)$ la diagonal, it ta casily invartible: large though nay be ito slizo. As rasull of this it is onnvontent to solu, for b_{n} firat in the "roduced" normal equations$$
\begin{equation*}
\left(A_{22}-A_{21} A_{11}^{-1} A_{1}\right) b_{2}-\theta_{2}-A_{21} A_{11}^{\cdot 1} \sigma_{1} \tag{4.1}
\end{equation*}
$$

anct then for b_{1} by substituting b_{2} in

$$
\begin{equation*}
A_{11} b_{1}=q_{1}-A_{12} b_{2} \tag{4,2}
\end{equation*}
$$

Both of these equationa follow direcily from (3,7). In this way the largest non-diagoral matrix to be inverted is the leit hand side one $\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)$ in (4.1) whiah is only $r \times k$.
in whis connection it is ofton usaful to noto the following developinent of (4,1) and the subsequent use of (4,2). Subutituting for the is torme from (3.7a) we get

$$
\begin{equation*}
\left(x_{2} w^{1 / 2} D w^{d / 2} x_{2}\right) b_{2}=x_{2}^{\prime} w^{1 / 2} D w^{1 / 2} y \tag{4,3}
\end{equation*}
$$

Whero $L=\left(1-W^{d / 2} X_{1} A_{1}^{-1} X_{1} W^{1 / 2}\right)$ Lu readily seen to be liempotent and aymmetric. Frem this wo can write the reduced normal equationa as

$$
\begin{equation*}
X b_{2}=T \tag{4,4}
\end{equation*}
$$

In this way b_{2} may L_{4} requrged as the "fit" (or tha result of "fitting") d ragression (unwoighted) of \tilde{y} un \bar{x} where \tilde{F} in the woighted realdual vector

$$
\begin{align*}
& \tilde{y} \cdot D W^{1 / 2} y=w^{1 / 2} y-w^{1 / 2} x_{1} A_{1}{ }_{1}^{1} x_{j} w y \tag{1,1}\\
& =W^{1 / 2}\left(y-x_{1} b_{1}\right) \Leftarrow W^{1 / 2}(y-9)
\end{align*}
$$

 residual vectors from fitting racicasinns of the columns of X_{2} on X_{1}.

The subsutution step (4,2) may be rewritten os $b_{2}=A_{1}^{-1} g_{1}-A_{1}^{-1} A_{1} 2^{\text {in }}$
anit then

$$
\begin{equation*}
b_{1}-b_{1}^{*}-k b_{2} \tag{4.8}
\end{equation*}
$$

and may be regarded as one of "ocrmating" $b_{1}^{*}=A_{1}^{-1} g_{1}$ to give b_{1} by subliacting the "eurrootion" $K b_{2}=A A_{11}^{-1} A_{12} b_{2}$. In the sequel this will be referred to as the two-ates reurausion method, the first atop comprising the solution giving \widetilde{y} and \widetilde{x} in which b_{1}^{*} Is obtalned, the soond the molutini for b_{2} ard the una of this to cortuet b_{1}^{*} to b_{1}.

5. LNEARALLGELERMPARAMETERSMOTEI WITH STATISNABY ERRORS,

 A turthar improved model for trajectory asimation would appaer to be the ame a the linear mixed model of seotion 3, but with allowanan for stationary autom corrulations amony the prrors within systomn. The linear terms z y would take aare of large non-stationary iftecta. All allowance for atationary autocorrelations among the eubvectors $(0, t \approx 1, \ldots, \ldots n)$ of the onorn e would take oare of a lot of the rumaining correlations. Butore pasaisig on to conalderation of a model of thle type in the next aestion, wa will liret deal here with atationary atocorrelationa enong the errors in an all-fixad paramaters model of the type considured lin saotion 2.In the notation

$$
\begin{equation*}
y=x \beta+0 \tag{5,1}
\end{equation*}
$$

Or, :ncire fully for $p=3$ systems, say,

(or (3,4) bolora), the variance aubmatrice in $\operatorname{var}(\epsilon)=V$

are now of the atationary Laurent form

$$
\left.\begin{array}{l}
(5.10) \\
n \times n \\
v_{1}= \\
v_{11}^{\prime} \\
v_{10}^{\prime} \\
v_{12}^{\prime} \\
v_{10}^{\prime} \\
v_{12} \\
v_{11} \\
v_{10} \\
v_{11} \\
v_{12} \\
\cdots
\end{array}\right)
$$

Each olement v in in a lag-h autooovarianoe matrix for therrore at time t and time $t+h, t=1,2, \ldots$ and $h=1,2, \ldots$

In goteing almultanoous entimares of a frajectory over several aystemy It comer out that more cimple solution is provided if we assume that appropriately welghted forma of trajectory estimatos oblained aeparatoly for aach aystem wre the observations with the atationary errora, rather than the original eystom obeurvation themeolves.

Thus, for che $1^{\text {th }}$ syatern wa may choode to take

$$
\begin{align*}
& y_{1 t}=D_{11} b_{1 t} \tag{5.2}\\
& 3 \times 13 \times 3 \quad 3 \times 1
\end{align*}
$$

as the $\mathrm{t}^{\text {th }}$ elament n^{f} thu jumervation varator, where lit is a single-polnt-In-time ontimate (without aseymiag gilivoorrobated enium) of the individual
 Is a cilagonal matrix with $d_{j f}$ put equal to the reolprocal of the stenderat devintion of the $j^{\text {th }}$ aloment of $b_{i t}$. (in this way $d_{j j}$ le ponitive and $\sigma_{j]}$ is the $\int^{\text {th }}$ diagonal ulement of

$$
a_{\text {it }}^{-1}=\left(x_{i t}^{\prime} w_{i t} x_{1 t}\right)^{-1}
$$

for the $t^{\text {th }}$ syatem ol timo t in (2.9).

Deslon of Expariments

Witn the obvorvations defined Ir thia way, the matrix X_{f} becomas a $3 n \times 3 n$ identity matrix, or in keeping with our pravioul notalion, an $n \times n$ identity matrix in which each diegonal element is a 3×3 identity submatrix $I_{3}, 1=1,2,3$. From this the normal nquation: for $p=3$, way aynteme apalr, are

$$
\begin{equation*}
\left(W_{1}+w_{2}+W_{3}\right) b-W_{2} y_{1}+W_{2} y_{2}+W_{3} y_{3} \tag{5,3}
\end{equation*}
$$

where $W_{l}=V_{l}^{-1}$ for each aystain and is of the approximate Laurent form

$$
(5.4) \quad w_{1}=\left(\begin{array}{cccc}
w_{10} & w_{11} & w_{12} & \cdots \cdot \\
w_{11} & w_{10} & w_{11} & \ldots . \\
w_{12} & w_{11} & w_{10} & \cdots \\
\vdots & \vdots & . & \cdots \\
\vdots & . & . & \cdots
\end{array}\right)
$$

We can then writo

$$
\begin{equation*}
b=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} \tag{5,5}
\end{equation*}
$$

where $X_{1}=\left(W_{d}+W_{4}+W_{a}\right)^{-1} W_{1}$ is approximatelu Laurent, or, in the y it
of filtering,

$$
t=1, \ldots n
$$

whore

$$
\begin{equation*}
k_{1}+\left(k_{1(-m)} \ldots \ldots, k_{(0)} \ldots . . k_{1 m}\right)^{\prime} \tag{5,6}
\end{equation*}
$$

is a typloal column, except for aetos fore and aft, of K_{1}, with $k_{1(-12)}=k_{\text {in }}$ $h=1, \ldots, m i=1,2,3$.

A aimple matrix-and-regreanton-theory approcoh for Iinding K_{d} whioh is buing tried and rehich may be uaful in oxtending to more oomplex modela nay bu putas lulluws.

Suppoue for the moment that the number of Eucliden eoordinates is only $d=1$ linethad of $y_{\text {, and }}$ anat the alemonte $w_{10}, w_{11} \ldots$ of the waight matrices W_{1} are thus aoalari instasd of 3×3 submatrions. Aalume n ls odd, aay, and Introdues a F'ourier matrix $F(n \times n)=\left(f_{t j}\right)$ eomprised of the fourior terma

$$
\begin{equation*}
f_{t j}=\frac{d}{\sqrt{n 1}} \cdot e^{\frac{2 \pi}{n}(t-\bar{t})(j-J)} \tag{5,7}
\end{equation*}
$$

wharo $T=T=(n+1) / 2$, it la readily establuhed that thit matrix is orthogonal, 1.0: $F^{-1} n=-1$, and that $F V_{1} F^{-1}$ approx whare is diagonal with

$$
\mathrm{F}^{T}
$$

diagenal elementa compriand of the mont-cetalled simmetric powar apootirum

Thus wo may writa

$$
\begin{aligned}
& \left.F K_{1} F^{-1}=F W_{1}+W_{2}+W_{3}\right)^{-1} F^{-1} r W_{1} F \\
& =\left(F W_{1} F^{-1}+F W_{2} F^{-1}+F W_{3} F^{-1}\right)^{-1} F W_{1} F^{-1} .
\end{aligned}
$$

Dut
$(5,8)$

$$
r W_{1} F^{-1} \cdot\left(F V_{1} r^{-1}\right)^{-1} \stackrel{\text { apprux }}{s_{1}^{-1}}
$$

 fonde matrices is the yalime as tial uf uelaia.

Hence

$$
\begin{equation*}
\mathrm{FK}_{1} \mathrm{~F}^{-1} \quad \text { approx } \frac{1 / 8_{1}}{1 / 8+1 / s_{2}+1 / 8_{3}} \tag{5.9}
\end{equation*}
$$

where R_{1} is a diagonal matrix with diagonal teims of the form
$1 / s_{1}(f) / 1 / s_{1}(f)+1 / s_{2}(f)+1 / s_{3}(f), f=-(n+1) / 2 \ldots 0_{1} \ldots(n+1) / 2$, and from this

$$
\begin{equation*}
K_{1}-F^{-1} R_{1} F \tag{5,40}
\end{equation*}
$$

By assuming a certain degree of smoothness in each spectra, the K_{l} can be obtained as much smaller matr!cins with $f=-m, \ldots, 0, \ldots, m$, the rourier matrices can ba correspondingl; :aduand, and the required filter elements glven $b_{j}(5.10)$ are found by tite stmple finlte rourier tranaforms of the form

$$
\begin{equation*}
k_{i h}=\frac{1}{N} \sum_{j=m}^{m} e^{i \frac{2 \pi}{N} h j} r_{i j} \tag{5.11}
\end{equation*}
$$

where $r_{1(-m)} \ldots, r_{1 m}$ are the diagonal elements of the reduced k_{1} in whion $!j=\left(1, s_{1 j}\right) \cdot\left(1 / s_{1 j}+1 / s_{2 j}+1 / s_{3 j}\right)$ and the $s_{j 1}$ are spectral estimaten (except for a constant) from, say, a Blackman-Tukey (2) method, $N=2 a+1$ and the imaginary I In the exponent of o is not to be confused with the other 1 : for the $1^{\text {th }}$ systam. Because of symmetry (5.11) reduces to the simile cosine expansions nf th: :rim

$$
k_{i h}=\frac{1}{N}\left[r_{i o}+2 \sum_{j=1}^{m} r_{i j} \cos \frac{2 \pi}{N} h j\right]
$$

In the cast of $d=3$ dimenaions the same approach extends tr the construction of three-dimensional filters. The filoments $t_{t j}$ of F are replaced by 3×3 scalar matitioes $f_{t j} I_{j}$, the diagonal scalar elementw $i_{i j}$ of the spectral matrices S_{i} are replaced by 3×3 cumplex apectral aubmatrices $s_{i j}=c_{i j}+i q_{i j}$ and the elemants $k_{i h}$ of the filters are 3×3 submatrices
6. EBTIMATION OF BRILOR BPECTRA. Trajectoryfreo estimatos of the spectra required for the construction of the filiers in seation 5 can be obtained ny the cives-spectrum-of-differences method already digcussed by Dr. Walls In aftearler paper on this program, (Duncen and Walls [8]). Once a procens $\left\{b_{r}\right\}$ of trajectory estimatas obtainad by the method of reotion 5 la available, the Initial apiactral estimates can be improved by iterations of the sem form of proceadure.

To explatn this, the method based on differences can pe identically re-represented as a method based on residuala
$i=1,2,3$ where

$$
\left\{\sum_{t=1}^{3} y_{l t}, t=1, \ldots, n\right\}
$$

 $a_{3}(f)$ can be obtained (in the case of $d=1$ dimension) hy solving the normal equations.

$$
\begin{align*}
& a_{11} \tilde{z}_{1}(f) \quad 4 a_{12} \tilde{\pi}_{2}(f)+a_{13} \tilde{\sigma}_{3}(f) \quad \hat{X}_{u_{2}}(f) \\
& a_{21} \tilde{\sigma}_{1}(f)+a_{22} \tilde{\sigma}_{2}(f)+a_{23} \tilde{\sigma}_{3}(f) \quad-\hat{s}_{u_{2}}(f) \tag{6.1}
\end{align*}
$$

where the right-hand atde valuga are, say, estimates of the apootre $u_{11}{ }^{(t)}$; $s_{u_{2}}\left({ }_{j}\right), s_{u_{j}}(f)$ of the residual processes, and where
(6. ت) $\quad\left(a_{i j}\right)=\left(\begin{array}{lll}4 / 9 & 1 / 9 & 1 / 9 \\ 1 / 9 & 4 / 9 & 1 / 9 \\ 1 / 9 & 1 / 9 & 4 / 9\end{array}\right)$

The solulion is carried out at each Irequency f.

After an estimate $\left\{b_{1}\right\}$ of the trajectory has been made with filters K_{1}, K_{2}, x_{3} the residuals can now be recomputed as $\left\{u_{i t}=y_{i t}-h_{r}\right\}$. The equations (6.1) are then solved again with

$$
\begin{equation*}
a_{i j}=\left(\delta_{i j}-r_{2 j}-r_{2 j}-r_{3 j}\right)^{2} \tag{6,?}
\end{equation*}
$$

where $r_{i j}$ to the th frequency element of $R_{f}=F F_{j} F^{-1}$. Stops like these interspersed with the iterations for getting $\left\{b_{t}\right\}$ ultimately yield gond estimates of both the spectra and the tralectury. In the case of $d=3$ dimensions, the same approach extends to the estimation of 3×3 namplex spectra! matrices. (Note: in the discussions of nections 5 and $G,\left\{b_{t}\right\}$ mometimes refers lo devaHons $b_{t}^{*}=b_{t}-\beta_{\text {to }}$ as previously indicated, and sometimes to $\left\{b_{t}\right\}$. If this is kept in mind, no trouble should arise in distinguishing which is which.)
7. LINFAR MIXFD MCDEI WITH AUTDCORRSIATADERRORS. The same ideas can be adapted to the mixed model

$$
\begin{equation*}
y=x \beta+2 \gamma+\epsilon \tag{7.1}
\end{equation*}
$$

in ivhloh the errors \mathcal{C} are autocorraleted as in infection 5 .
 X_{i} of X can enoch be reduced to $n \times i$ for $3 n \times 3 x$) identity matrices. (the ariel for the system observations in linear in γ, the modified music l will . ic lim-linear in x. The vector 's will thu il represent deviations $\gamma^{*}=\left(y^{\circ}-0_{0}\right)$ ali $\mathbf{2}$ will! consist of partial derivatives.

Rewriting the model in the peoudo all-sized parameters form

$$
\begin{equation*}
y=x_{1} \beta_{1}+x_{2} \beta_{2}+\epsilon \tag{7.2}
\end{equation*}
$$

which, In more detail represents

$$
\binom{y_{1}}{y_{0}}=\binom{x}{o_{k}} \beta+\binom{z}{I_{k}} \gamma+\binom{E_{1}}{\varepsilon_{0}}
$$

with terme defined in before (cf (3.5)), the fitat sieps, talking in terms ot the two-step riligression approach (section (4)), te to fit regresalons of y on X_{1} and of $X_{2}\left(1,0\right.$, of the columns of X_{2}) on X_{1} forming the remduala

$$
\begin{equation*}
\tilde{y}=D w^{1 / 2} y \text { and } \tilde{x}=D w^{1 / 2} x_{2} \tag{7,3}
\end{equation*}
$$

where

$$
D=I-w^{1 / 2} x_{1}\left(x_{1} w x_{1}\right)^{-1} x_{1} w^{1 / 2}
$$

This will reduus to almpla flitering operations on y and on z ine detalla of whian oan be readlly devaloped by the mathed of seotion 5 . In this step a first-atep tratectury entinate $k_{1}^{\prime \prime}$ is also obtained by Elitering.

In the macond step the equations

$$
\begin{equation*}
\tilde{X}^{\prime} \tilde{X}_{b_{2}}=\tilde{X} \tag{74}
\end{equation*}
$$

are golvad for b_{2} and b_{2}^{*} is correctoci uning a

$$
\begin{equation*}
\left\{u_{i t}=y_{i t}=b_{1 t}-z_{i t} b_{2 t}\right\}, \quad i=1,2,3 . \tag{7.5}
\end{equation*}
$$

The desired patimates of the respoctive error procestes oould then ba rbtioned by solving equations of the form (6.1) where the right hend side terms are based on these residugls. This would involve Ignoring the effect in the reslduale of $z_{i t} b_{2 t}-\beta_{2 t}$) which would not causa any problem alince $b_{2 t}$ is fitted over the whole itme eman of date and $b_{2 t}-\beta_{2 t}$ would have relatively Jow variance. To start the process the initial trajectory outimates in the firut
twomstep solution would be obtained uniny filtere from pievious axperience, or at the very worst, using ldentity filters.

The estimation procedure, in summary, would consiat of sevaral thrusestep tterations, two giving closer estimates of the trajectory parameteris in β and the error componente in γ, the third giving oloser astimetea of the error spectra.

8. CQNCLUDINO HEMARYS.

(1) in connection with the mpectial astimstes, the emphasis here has bean placad on the role these play in laading to better trejectory estimalex. The error spectia however, and aspeolally thoese of the inllal tracking system ubservalions, are of considerabile intorest la themsalves. With this in rind, when a set of estimates in the trajectory codrdinate system have converged, It will then be desirable to projact the trajectory estimates lnto the coordinates of each of the tracking syatemy. The residuals of the initial obsuriations froin these will then provide a basis for gettiny good estimates of the apeotra of the arrore in the initial obearvationt. Each will consiat of alingar vombination or the apootral estimate of the resldual cunuetred and the apectral estimate of the error in the trajectory eatiuate.

In the ovant that tha varianos matrix of the initial observatiens turns oul at this point to be much diffarent from that initially assumed in tranaiorminu to the trajectory ooordinates, it may be oonsidorod destrable to mako anuther ffelation starting with the jatest waighto.
(2) A direstlun far tripiuvement is that of allowing ior epactra f: 1 filterg which ran ohange wilt. soine flexiblilty over time. It is hoped to divelop methode for handling this along wlin ihe devalopmant of a promising mode' 6 which wa now rofer vary briefly.
(3) Perhaps the most interesting and usoful features of the foregulite mixed-nodel-plum-filtoring mathods are their potential usofulne:s in the alialygis of data in more advanoed model. This model is the same as the lituar mixed model with stationary arrors in meotion 7 exuept thet the spectilcation for the trajectory itealf is no lenger of the aingle-point-in-time from (with a dlagenal X matrix for achi system). The trajeetory is now represented at the centers of progreselve medium-quath intervala by a low dagree polyizomial (say a quadratic) plus a devlation $\delta_{t}, t \ldots 1, \ldots, n$ for meeusaive intervidis are assumed to form a stationary time serias.

Simllar steu-by-gtep-regression-plus-fitiesing methoda can be usad to glve estimates of (1) the polynomial component and (it) the stationary componeni and thue the combinad components of the trajectory, (ili) the error components in the tracking syatamn, (iv) the apectra of the erior processan and (v) the spectrum of the atationary trajuctory componente. A model with polytomial plus ntationary components in a signal la suggested in similer contexta by several writers, e.g., Zadeh and Ragazzint [17], and Ifunziger [3].

The prospect here of also simultanoously eptimating the apectrum of the stationary trajectory component has special appeal. Rüghly apaaking, the traieulory dala, In thls approsich, will be fitted under conatralnts as lignt as the data themselves will condone. The artimatas will have an appreolable part of the low-variance advantages that can be added by amoothing without having lost muen ot the reaponsiveness which is thown by the data to be needed. Curreit work is in progress on these aspacta,

REFERENCES

1. Andersun, R. L, and I'. A. Bancrośt, "Statiancal Theory In Research," MicCraw Hlll, New York, lysis.
2. Blackman, R. D, and J. W. Tukey, "The Measurament of Powar Spectra", Lovar, New York, 1958.
3. Brown, Duane C., "A 'tieatinent of Analytioal Fherogrammetry with Empiasis un Ballistic Ciamera Appllcatione" RCA Data Reduction Tuchnical Report in, 34, RCA AFMTC.TR-57-72. ASTIA DOcument NO. 1'44141, 1957.
4. Davis, K. O., "Technir!ues for the Gtatasticad Analyals of Cinethevilulite Data", Navord Meport 1:99, NOTB 369, China Lake, Caífmrnia. 22 Marci. 1951.
\therefore Duncan, Devid B., "On the Oprimum Estimation of a Nitesile
 Report Ne. 12, RCA AFMTC-TR-60-16, ASTIA Dooument.
5. Duncan, David B., "On Some Theory of Mixed Linear Models and Its Applloation in the Estimation of a Misalla Trajectory", Paper No. 332 from the Dept, of Blcatatistice, Tha Johns Hopkins University, Deoember, 1961.
6. Duncan, David B. and C. L. Oeiroll, "Studies In the Simultanoous Estimation of a Trajectory form Several Tracking Byatems", PAA Toohnical 8taff Terhnical Memo No. 4, MTV-TM-26-13، 7 September 1962.
7. Duncan, David E. and W. T'. Welle, "Eatimation of Error Epentra from the Crons-Autucovariunce Funstions of Ditiorances", PAA Tarhnical Staff Technical Memo No. L1, MTV-TM-64-2, 30 January 1964.
8. Durbln, J., "The Fitting of Time-Sarien iniuselu", Invited Keview Paper, Eeonometric Soclaty Mly., Washington. D. C., 1959.
9. Graybill, Franklin A., "An Introduction to Linaar Etatistioal Models", Volume I, MoGraw Hill Book Company, Inc., Naw York, 1961.
10. Hannan, E. J., "Time äaries Analyatu", Methuan, London, 1960.
11. Hondersen, C, R, Onoar Kemthoine, 8, R, Searle, and C. M Knosidk, "The Entimation of Environmental and Genetic Trends from Recorde Sublect to Culling", Blamatrics 15 po 192-218.
12. Huncigar, R, R., "Irajactory Eatimation from Radar and Inartial Guldance Deta", RGA Syuteme Anelyif TN 20 ArMTC, 31 August 1962.
13. Jenkins, G. M., "General Conulderations in the Analyals of Speotra", Tachnometrias3, 11, 133-166, 1961.
14. Whittle, P., "Hypothesia Testing In Time Serien Analyila", Almquent and Wilkaelds, Uppsala, 1951.
15. Whittle, F., Eredigtion and Regulation, Engllsh Urit"aration Piqsa, Jamdon and Van Noutrand, New York, 1963.

1". Zadeh, L. A. and Jokn R. Ragazzini, "An Extension of Wianor's Theory of Prediction", I. Appl. Phys:, Volume 21, No. 7, July, 1950.

OFF-POST ATTENDEES

Abbott, K H.
Addelman, Sianey
Balley, RoberiJ.
Bell, Raymond
Bungaton. Nil: M.
Bimer, Erwin
Bombrira, E. La,
Breaux, Harold J.
Bruno, O. P.
Bultimeh, A.
Carr, FrankL.
Caser, Fredrick L., Ir Cogan, Eugerve A

Coizen, A, C. J J.
Cox, EdwinL.
Cox, Fand C.
Cwie, Williams
Grenchaw, Craig M.
Grewn, George C.
Del Priore, Hrancis R. Di.versplke, Charles A. Dressel, Francia Dreneler, E'sederick Duncan, David E . Ewyer. W, . Fi.kard, Gecil O. Eckler, Andrew J., IIl Eisenhert, Churchill

Ariny Matoriala Komedrch Agency, Watertown Masil.
RTI, Durham, N. C.
ERL, Aberdeen PG, Md.
ERL, Aberdeen PG, Mid,
Army Research Cifice, Durham, N, C. USAELRED D.GU., Ft. Monmouth, N.J. NASA Mar Ehall Space flight Contar. Huntoville, Ala.
BRL, Aberdeen PG, Md,
BRL, Aberdoen PG. Md.
Picatinny Atrenal. N. J.
Army Maturials Rewenrch Agency, Watertown, Masi.
U. S. Aimy Blological Lnbw, Ft. Detrick, Md.

Human Resourcey kerearch Office, Alexandria, Va .
Univeraity of Georgia
Rlometrical Servicue ARS, Plant indiatry WSMR, Now Mexico
Ariny Natick Laba, Muan.
Army Material Commend. Washington, D. C. BRL. Abecleen pl. Md.

LTV Dlv., Warren, Mich.
Army Resenareh Office, Durharn, N. C.
MRL, Aberdeen PG, Md.
Johne IIcpletre Univ., Baltimure, Mid.
Boeing Compuny, Seattla. Waulhington
Ft. Douglas, Utah
RAC, Mclecal, Va.
National Bureau of Standarda,
Wamingion, D. C.

Ellans, Han: Foster, W, D. Freo, Bernid R. Furea, Alex Gabriel, RiwimadF. Galbrith, A. S. Gardizer, Donald A. Gayle, J. B.

Grani., Roy L.
Grim, Waltor H.
Grubbn, Frank E. Hallo, Rulph S. Hainer, B. W. Henumoto Hen Harshbarger, Boyd Hartiey, H, O. Huathcock, Ray

Helviy, Thomas Noble
Holtiat- Fredarick B. Hoppe:. H. N. Lsaac, Gerhard J.

Jonsup, Gorton L., Js. juhrisun, iterome Johriston, Frisd J.

Katumatm, David J.
Kearma, Jarnes L.
Knius, James Kirkdand, Jewsee L.

Komlony, C: F. Krane, Scott A Krimmer, Manfred W. Kullback, Solomon Kurkjan, Badrig M. Langlie, H. T . Lavin, Goarge 1.

Ëdgewood Ageemol, Ma.
E't. Detriok, Md.
WSMR, New Mexico
Hughed Alrcraft Cio., Fulleston, Callf.
Dublatadixatt Co., Sunramento, Calli.
Army Research Office, Dllrham, N ©.
Oak Ridge Nationnd Lab. . Tann.
NASA Marmall Space Flight Canter, Hunteville. Ala.
bureau of Mines, Pitteburg, Pe.
U. S. Army Materiol Command,

Warhington, D. C.
RRL, Aberdeen PG, Md.
Bialdwin Eleritronicn Inc, , Little Rock, Ark.
U. S. Army Biological Labs, Ft. Detrick, Md, USATAC, Warren, Mich,
Virgima jolytachisic inatitute, Blackaburg, V_{a}.
Texay A-M Univeraity
NASA Marahall Space Flight Center, HIuntuvilic, Ala.
Minneapolin. Honsywell Regulator Co. , Hoplcina, Mian.
Went Sacramento, Callf.
RAC, Mclean, Va.
U. S. Army Medical Remendeh \& Nutetion Lath, Filzelimmonn General Hoaplat,
Denver. Coloradis
U. S. Army Biological firthe. Ft. welirick, Md日RL. Abe, deun FrG. Md.

Callformia
Frankioxed Areanal, Philedolphia, Pa.
Herculea Powder Co.
ERL, Aberdeen PCi, Md.
U.S. Army Enge Waterwaye Experimant

Station, Vickeburg, Miss.
War Office, Unlted Kingdom
Dugway Proving Ground, Dugwey, Utah
Picatinny Arsewel, Dover, N. J.
Fieorge Wamhington Univ, Washington, D. C.
Harry Dinmond Labi, Waihington, D. C.
Philco Corp. Nowport, Calif.
MRL, Aberdeun PG, Md.

Leing, Willatd C.
LeManter, Vaugin
Lung, Lunin J.
Lubin, Ardie
Lucen, H. L.
Lundy, Hazal E Mallios, W, S.

Malunmy, Clifford J. Mandelison, Joseph Mararglia, Genrge Marmhell, Jack A. Mellinger, T. U.

Mountjoy, Garrard Midelson, Howard C. Noreiko. Hurbert E. Olkin, Ingrnm Puterson, Tonald Piorce, Rruce

Fodolaky, Banjamia Polunecely, Roburt Praitia, RichardR. Pruachan, Frank
yurmul, John C. Hindolph, Mze Lalin n. Lechuchatinar, R, L.
Rusinic, Eurton
Rider, Paul L.
Lisge, Charlea W.
Rolle, Sylvan D.
kyan, inhn
Sabon, John C.
Scamuria, Robert
Sihlenker, George
Schmidt, 'T', W,

Bechtel Corp. , Huntsville, Ala.
APSA, Joliot, Ill.
U. S. A rmy Engr, Ren, \& Dov, Labe, Et. Belvoir, Va.
WRAMC, Wawhington, D. C.
North Ciarolina Stute College
Springiteld Armory, Springfinld, Maym.
Booz, Allon Applied Rastarch, Inc.,
Bethesda, Mel.
National Inatitutes of Health, Betheada, Md.
Edpmoood Arienal, Md.
Boeing Co., Seatha, Wamhington
Undv, of Chlcago, Chiemgn, Ill.
U. 5. Army Permonnel Research \& Conoulting Branch, Wabhington, D. C.
Baldwin Eilectronice Inc., Little Rock, Ark.
Dugway Froving Giounda, Dugway, Utah
USAADEA, Ft. Mesdo. Md.
Stanfiord Univeraity, Btaziford, Callf.
Sandia Corp., Albuquerque, N. M.
Lake City Army Ammunition Plant, Indeperdence, Mo.
Frankiord Arsemhl, Philadolphia, Pn.
Frankford Araranh. Phlladelphia, Pu.
Eandia Corp., Alburuerque, N. M.
Boaing Stientitic Kozearuh Laka, Seattha Washington
Watervliet Areema, Watabviet, N. Y, Food h. Drug .ím, LDA, Wath, D. C.
 USAEIRDL, Ft. Monmoulis, iv. *
Wright-Pattermon Air Force Bage, Ohaco Ft. Detrick, Md.
FrankierdAranal, Philadulphin, P a.
LTV Div., Warren, Mich.
International Reaintarea Co., Thaindalphia, Pa.
Co:ncll Aeronauticel Lab., Butfalo, N. Y.
U. S. Army Weapons Commiand, Rock Island, Lulinols
U. S. Army Remearoh Ofixe, Durham, N. S.

Sclinell, Raymond \mathbf{B}.
Selig. Saymour Sclman, Jerome H. N. Sloane, Harry S. Smith. R, S Storner, Bruce Sumner, N. R., Jr. Suta, Eenjamin I: Tledemann, Harold J.
Tietjer, Gary L. Tingey. Henry B.
Unigar. Andraw
Civena, Stefano Wampler, Roy H Weaver, L. A. Weinert, Minc Arla Weinstein, Joseph Weintraub, Gertrude Welem, Lionel Wells, Willam T. Wilburn, Nicholan Wilk 5. S. Williarneon, Arthur C Wolman, Williain

Wright. Mrs. Julia B.
Pammai, W, J.
Zundel. i.min B.

ON-TOE?, ATTENDERH

Alley, Fhenardy Andestion, Jarnua B Anderilon. M. 3. Alchiman, Martin W. Baylieq, tamar R. Beckoel, Samuel E. Black. Robert O. Bowers, Dandel E. Brocieway, Stanley J. Hurrowa, Dalo L.

Edgewoun Areenal, Mé.
 U. S. Army Muntiona Command, Dover, N. J Dugway Proving Crounds, Dugivay, Utah RAC, McLean, Va.
ERL, Aberdeen PG, Md,
RAC. Mcleiti, Va.
Hercule: Powder Co. Salt Lake City, Utair Pratl. \& Whitnoy Aircraft, Fla.
Hercules Fowder © So., Salt Lake City, Utah BRL, Aberdoen FGi, Md.
ilt Research Inititute, Chicago. Ill.
WRAMC. Washington, D. C.
National Bureau of Standarim, Washington D, C.
Honeywell, st. Petersburg, Ela,
RAC, MeLean, Va.
USAERDL, Ft. Munmouth, N. J.
Picetinny Aruenal, Dover, N.J.
Winconsin

UBACIRDL, Ft. Monmouth, N.J.
Princeton Univ., Princeton, N. J.
Appliad Phytico Lab, ,Glver Spring, Md.
NASA Goddard Space Flight Genter, Greenn berlt, Md.
U. S. Navul Propellant Plant, Md

Snndia, Albuquerquat, N, M.
Jingway Provirg Grelta's, Duywny, Utala

Prop, Lab, 13 \& D
pas
SKM DIN.
MSFC
Dir. of Mal Intel
Dir. of Mel Intel
P\&F Dir.
Zeue Project Office
Zoun Project Office MSFC

Desigr：of Experime：：

Camp，Dennis iv．
Carter．A．L．
Carter，William W．
Cason，F．A．
Clinton，Hankin
Clugston，Finui j ．
Coniliter，B．D．
Cuibert，Eleanor
Comins，N．L．
Conàd，RobertG．
Cox，Charles D ．
Cremin，John D．
Crowson，Herbert
Cummings，Robert E．
Daniels，Glenn E．
Davis，Alonzo J．
Dean，H．A．
DeBerry，Deanna
DeJonge，Clark
Dickey，Lyle R．
Dihm，Henry A．
Dillard，Richarn A．
Essick，Martir．
Eulitz，Werner R．
Ewart，Wade
Fagan，Tames ：．
Fisher，Perry
Foshee，Charles E．
Fiulton，Don
Fultz，James M
Gale，John B．
Garrard，Philliplij．
Graham，Donald
Gudzent，Dieuricr，E
Hadevay，William M．
Finamatt，C．E．
Harks，\＃iiliam R．
Harderburgh，Miles K．
Harreil．Willam B．
Herris．Robert A．
Thasclume，Carroll L．
Heitherleer．H．A
Henrecken．Hovard ：

MSFC

Fi\＆D
MICOM
Zeus Project Offi：c
Dir．of Misl Intel．
R\＆D
$R \& D$
R\＆D
$\mathrm{R} \varepsilon_{2} \mathrm{D}$
R\＆D
R\＆D
Zeus Project Office
Zeus Project Office
MSFC
MSFC
MSFG
R\＆D
Brown Engineering
Zeus Project Office MSFC
F\＆ 1
R\＆：
Rohm－Haas
MSFC
R\＆D
R\＆D
AMSC Calib－ation Center
Biuwn Engirncerirg
R\＆D
Zeus Project Cifice MSFC
$R \& D$
R\＆D
RED
R\＆D
Lance Projert Office
Zeus Project Oifice
上\＆Dir．
MSFC
F＇\＆P Dit．
MSFC．
にもら
i．\＆ D
Best Available Copy

Hewitt, H. H.
Hill, Harry L.
Hoard, Eerl G.
Howerton, John W.
Hussey, C. W.
Jaincs Robert E.
Johnson, Lloyd J.
Johnson. W. B.
Katz, Lester
Kesting, Lawrence W.
Keyserling: Ben H. Kittleberger, Kenncth
Lingston, Russell L.
Lehnigk, Siegfricd H.
Lewis, Will A.
Lifsey, J. David
Link, D. T., Jr.
Lishman, Sidney
Lura: - Kirk S., Jr.
Lynch, Johnmie A.
Mayfield, W. K.
McClay, JeRoy
McCombs, Guy C.
McDaniel, John L.
Miller, James C.
Miller. James R., III
Miltewede, Edgar
Moore, Thomas M.
Morgan, Michael T.
Morrow, Miian B.
Mulder, John H.
Murray, Hubezt. Jr.
iNordstrom, A. H.
Olszewski, Joseph V.
O'Neil, Thomas D.
Onkst, James R.
Persons, Harold P.
Hees, Diniel M.
Rhodes, S. E.
Ross. J. M.
Shinnon. R. E.
Snepherd, Daniel F. Shriver, Eeward L.

R\&D
MSFC
MSFC
R\&D
R\& I)
R\& D
R\&D
R\&D
MSFC
Prop Lab, R\&D
Lance Project Office
R\&D
R\&D
$R \& D$
R\&D
MSFC
Zeus Project Office
Thiokol
MSFC
Dir. of Mel Intel
Lance Project Cifice
Mauler Project Office
Lance Project Office
R\&D
R\&D
AMSC Calibration Center
Thiokol
MICOM
F $\propto D$
R\&D
S\&M Dir
R\&D
MSFC
Zeus Project Office
K\&D
Mauler Project Office
R\&D
P\&D
Dir. oi Msl. Intel.
Zeis Project Office
MSFC
2\&D
MSFC

Design of Experiments

Smack, K. B.
Smith, Norrnan H.
Smith, Thomas D.
Spears, L. S
Steple, William
Steinberg, Alvin
Storey, Billy M.
Sullivan, H. D.
Taylor, James M.
Thoman, Charles A.
Themson, John D.
Vincert, Harry F.
Ward, Clyde
White, Charleo E.
White, Niis
AMSC Calibration Center P\&P Dir.
Zeus Project Office MSICC
Thiokol
MSFC
R\&D
Zeus Project Office
R\&D
Dir, of Msl Intel.
R\&D
R\&D
R\&D
Zeus Project Oifice
R\&D

[^0]: * This paper wat presented at the conterence It does not appear in these Procetedinge.
 whe The athor was unable to present his paper at the conforence. It dome not appeare In thit technical manual.

[^1]: *Stired values are based on 600 amples or simulation. All other values are based on 300 amplen.
 † Reproduced from M. Zelen and M. C. Dannemiller, "Che robustney: of life testing procedures derived from the erponential diatribution," Tuhnometricy, Vol. 3, No. 1, February 1961.

[^2]: *At the present time the authnr is with the Ammunition rrocuremant and Supply Agency, Joliet, Illinoin.

[^3]: I See Reference 6

[^4]: FThe author la now at the NAGA Marahall Apaca Flight Conter,

[^5]: *Now at the School of Public Hygreno, John Hopkinu Univeraity

[^6]: *Tables.

[^7]: Thie researah way dupported by a grant from the U. S. Army Research OfficeElurham.

[^8]: *The remalnder of thle paper hes buan reproduced photographically from the author'm copy.

[^9]: *Presented at the 1962 Standards Laboratory Conference, Natlonal Buresu of Standards, Boulder, Col., August B-10, 1962. Published in the Joumal of Research of the National Bureau of Standards-C. Enginearing arid Instrumentation, vol, 67C, No. 2, Aprll-June 1963.

[^10]: ${ }^{1}$ I amgiaterul to my collegue Ugo Fano for the following literal tianslation: "... wa let, as I was saying, tha ball desce:d tifrough anid channal. .uEcrding, in a manner presently to be dasoribod, the time it took in travering it all, repeating the same action many times to make really gure of the magntiude of thilie, In which one never found a difference of even a tenth of a pulaebeat. Having done and established precisely such operation, we let the same ball descend only for the fourth part of the lerigth of the same channel; ..."

[^11]: b"Wo admit the oxistenoe of systematic error--of a difforonce butween the quantity measured (the meanured quantity) and the quantity of Intereat (the ti"get quantity). We ask the obeervationa about the measured quantity. We ask our subject mattar kmiviludge, intuition, and gene:3d ansormation goout the reletion between the measured quabulty and the terget quantity." CCochran, et al. 1954, p. 33.]
 ".... Some poople prafer the term 'true value', although athera excorlate it as philosophlcally unmound.
 "We could aleo call the reference level a 'target value'. In a way bise If a bad torm bacaune it implies that it is momething wo want to firid tirough the measurement procese rather than sonething we ought to find beoause, like Mt. Everest, it in thare. Unfortunately our desires oan influence our notion of what is trun, and we dan even unconsalously bring the latter into agrement with the former; my use of the term 'target value' is not mant to imply that L think it legitimate to equate what we would like to nee with what (4) there." [Murphy 1961, p. 265.]

[^12]: ${ }^{7}$ It Le sometimes helpful to distinguteh hetween "curreat," "accurate, "ane "exnul": "COPRECT, the mont coloriens torm, impltis sarooly morm than fraedenn from the fault or urror, as Judged by some (ustally) convantlonal or acknowledged standardi. . . ACCURATE Impllen, more puettively, Itdellty tri laot or truth attained by the exereise of cara; . . EXACT amphasires the striotnesu or rigor of the agreement, whoh nelther oxcoeth nor falle unort of the fact, etendard or truth.,. PRECISE etresees rather eharpnean of definition or delimitation..." [Merriam-Webuter 1942 D. 203].

[^13]: 11
 "Chterum constans b, tamquain mensure preechalon!s observationum considerati poterit. ... Quodal igitur e.g., $h^{\prime}=2 h$, aeque fadie in motmirite priorl error duplax committl poterit; ac mimplex in postariort, in quo casu observationi ibus posterioribus secundum vulparmal loqwend morem prancialo duplex tribultur." Gauni 1809, Art. .178; 1871, p. 233; Englioh translation, 1857. pp. 259-260.?

[^14]: II umurateful to may colleague Frank Alt for the dolluwing literal trunslation of these phranem:
 "For thi questlon implins, by the very naturo of the mattion, somathing vague whioh cannot be clonely delimited axcopt by aomewhat arbitrary prinolple ... nor aan it lie deoldad by matiomatioal damoarrationif, but must be left to mere arbltrary judgment."

[^15]: *G. E, D. Box, "The Exploration and Explotation of Rempones Sixpfuces: Soma General Considerations and Examples, " p. 16-60 In Blomatrica, vol 10, (1954).

[^16]: $n=$ number of rowkets
 P = average range raiss-distance
 $S_{R}=$ standard deviarion of rarge miss-d'stances
 $D^{2}=$ average deflection miss-distance
 $G_{\text {a }}^{2}$ standard deviation of deflection mis:-distances
 it average height of burst miss-distance
 \therefore. outliers-number of outliers based on E. E. Grubbs' Criteria (. 01 level of significance)

[^17]: M Thit pa!me hy D. H. Chaddock, Director of Arillery Resenrer nnd Development, Jte War Offic 3 , Unted Kingdom way paneentoc at the conferance by G. F. Komlosy.

[^18]: "Distidbution functiona and statiaticy are here asaumed to bo at loaet plecewiee continuuus functione of theirargments, i. w. for all γ_{t} and all θ in a convex n dimenulunal apace Ω.

