UNCLASSIFIED

ARO-D Report 65-3

\cdots

PROCEEDINGS OF THE TENTH CONFERENCE ON THE DESIGN OF EXPERIMENTS IN ARMY RESEARCH DEVELOPMENT AND TESTING

[^0]Sponsored by
The Army Mathematics Steering Committee on Behalf of
U. S. ARMY RESEARCH OFFICE-DURHAM

Report No. 65-3
Octaber 1965

PROCEEDINGS OF THE TENTH CONFERENCE ON THE DESIGN OF EXPERIMENTS IN ARMY RESEARCH DEVELOPMENT AND TESTING

Sponsored by the Army Mathematics Steering Committee

Hoat

The Army Research Office, Office Chief of Research and Development Department of the Army

Washington, D. C.
4-6 November 1964
U. S. Army Research Office-Durham

Box CM, Duke Station
Durham, North Carolina

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

If this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.
Page
Foreword i
Programs iii
The Stimulus of S. S. Wilks to Army Statistics Major Gerseral Leslie E. Simon (Ret'd) 1
Initial Wilks Award Presented to Dr. Frank E. Grubbs Donald C. Riley 13
The Conception of the Wilks Award Philip G. Rust 16
Development of the Design of Experiments over the Past Ten Yeare
Oscar Kempthorne 19
Application of Dimension Theory to Multiple Regrestion Analysis
David R. Howes 47
The Use of Regreasion Analysis for Correcting of Matrix Effects in the X-Ray Fluorescence Analyees of Pyrotechnic Compositions
R. H. Myert, and B. J. Alley 61
Sampling for Deatruction or Expenaive Teating Joseph Mandelson 73
Total Sample Statistics from Subsample Statintice Paul C. Cox 95
System Configuration Problems and Error Separation Probleme
Fred S. Hanson 119
Comments by Panelist Frank E. Grubbe 145
Comments by Panelist Emil H. Jebe 147
TABLE OF CONTENTS (cont'd) Page
An Experiment in Making Technical Decisions Using Operations Research and Statistical Methods
Andrew H. Jenkina and Edwin M. Bartee 153
Improvement Curves: Principles and Practices
Jerome If. N. Selman 179
The Effect of Validity, Length, and Score Conversion on a Measure of Personnel Allocation Efficiency
Richard C. Sorenson and Cecil D. Johnson 189
A Quantitative Aasay for Crude Anthrax Toxins
Bertram W. Haines, Frederick Klein, and Ralph E. Lincoln 221
An Investigation of the Distribution of Direct Hits on Pereonnel by Self-Disperaing Bomblets
David M. Moss and Theodore W. Horner 247
Explosive Safety and Reliability Eatimates from a Limited Size Sample
J. N. Ayres, L. D. Hampton, and I. Kabik 261
Comparing the Variabilities of Two Test Methods Using Data for Several Populations Manfred W. Krimer*
Cyclic Designs
H. A. David and F. W. Wolock 283
Some Resulte on the Foundation of Statiatical Decieion Theory
Bernard Harris, J. D. Church, and F. V. Atkinson 299
Disinfection of Aerosolized Pathogenic Fungi onLaboratory SurfacesRichard H. Kruse, Theron D. Green, Richard D. Chambers,and Marion W, Jones:

[^1]TABLE OF CONTENTS (cont'd) Page
Pathophysiology of Indian Cobra Venon James A. Vick, Henry P. Ciuchta, and James H. Manthei 309
Computer Analysis of Rhesus Monkey in Visual Discrimination Testing John C. Atkinson 327
Fatigue-Limit Analysis and Design of Fatigue Experiments A. H. Soni and R. E. Little 331
Getting Regression Analysis Implomented W. H. Ammann 365
Assessment and Correction of Deficiences in PERT
H. O. Hartley and A. W. Wortham 375
Tequilap: Ten Quantitative Illusions of Administrative Practice
Clifford J. Maloney 401
Combat Vehicle Fleet Management
C. J. Christianson and G. E. Cooper 455
Application of Statistics to Evaluate Swivel Hook Type Crose
Chain Fastenera for Military Applications of the Tire Chains Otto H. Pfeiffer 491
Some Factors Affecting the Preciaion of Co-ordinate Measurement on Photogenic Plates Desmond O'Connor*:
Error Analyaia Problems in the Estimation of Spectra Virginia Tipton 539
Validation Problems of an Interference Prediction Model William B. McIntosh 549

[^2]TABLE OF CONTENTS (cont'd)Use and Abuse of RegressionG. E. P. BCX*
Optimum Extrapolation and Interpolation Designs Jack C. Kiefer*
Estimation for a Regression Model with Covariance Ingram Olkin*
An Operations Research Yarn and Other Comments W. J. Youden:
The Design of Complex Sensitivity Experiments
D. Rothman and J. M. Zimmerman 575
Factors Affecting Sensitivity Experiments
I. R. Kniss and W. Wenger 595
A Comparison of Reconnaissance Techniques for Light Observation Helicopters and a Ground Scout Platoon
Harrison N. Hoppes, Barry M. Kibel, and Arthur R. Woode 613
A Study of Probability Aspects of a Simultaneous Shock Wave Problem Edward C. Hecht 623
A Data Collection Procedure for Assessing Neuromotor Performance in the Prosence of Miseile Wound William H. Kirby, Jr., William Kokinakis, Larry M. Sturdivan, and William P. Johnaon. 643
Problems in the Design of Statistics-Generating War Games William H. Sutherland 685
Statistics and ManagementM. G. Kendall*

[^3]TABLE OF CONTENTS (cont'd) PageThe Future of Profegese $a \leq$ Date AnaiyoisJohn W. Tukey691
Sam Wilks as I Remember Him
Churchill Eisenhart*
Monte Carlo Techniques to Evaluation Experimental Design Analysia
M. M. Everett, D. L. Colbert, and L. W. Green, Jr. 731
List of Attendees 747

[^4]
FOREWORD

The Army Research Office, Office of the Chief of Research and Development, Department of the Army, served as host for the Tenth Conference on Deaign of Experiments in Army Research, Development and Testing. The Conference was held in Washington, D. C. during 4-6 November 1964.

The continued success of these conferences is a tribute to the foresight of Frofessor Samuel S. Wilks who conceived the idea of holding such conferences and chaired the Program Committee for the first nine conferences. Unfortunately, due to his untimely death, Profeseor Wilke could not participate in this Tenth Anniversary Conference. His effort in connection with these Conferences was only one of Profeseor Wilks' many contributions to the Army. His wise couneel and advice will be missed. Aa a small recognition for his eervices to the Army, thie Tenth Anniveraary Conference was dedicated to the memory of Professor Wilks.

Almost 300 statisticians, engineers and physicists from the Army, other government agencies, Army contractors, and universities attended the conference. This number far oxceede the attendance at any of the previous conferences and reflecta, in part, the esteem for Professor Wilks in the statiatical community.

One surprising feature wae the announcement that Mr. Philip G. Rust of Thomasville, Georgia, had contributed funde for a Samuel S. Wilke Award to be presented annually at the Design of Experiments Conference. It is especially gratifying that a long-time civilian omployee of the U. S. Army, Dr. Frank Grubbe, Aesociate Technical Director of the Ballistic Research Laboratories, was the recipient of the initial award. We are appreciative that the American Statistical Aseociation has accepted the reaponaibility for determining future Award winnere.

Because of the particular aignificance of thia Tenth Conference, the Program Committee invited several distinguished statisticians to deliver papers: Professor H. O. Hartley, Professor Oscar Kempthorne, Dr. M G. Kendall and Professor John W. Tukey. Professur Gerald J. Liebeiman served as chairman of the Panel Discl:ssion on Regression Analysis and arranged for Professor G.E. P. Box, Professor Jack C. Kiefer, and Professor Ingram Olkin to give pertinent papers and for

Professor Robert Bechhofer to serve as the invited discussant. In
 Sessions and 18 papers in the Technical Sessions. Additional highlights of the meetings were the after dinney presentations by Dr. Churchill Eisenhart and Dr. W. J. Youden.

It is fitting to give recognition for the particular activities of two groups with regard to these Conferencea. The Army Mathematice Steering Committee (AMSC), currently chaired by Dr. I. R. Hershner, Jr: is conmended for its strong support of these Conferences because of the actual and potential gains obtained by Army facilities. The members of the Tenth Conference Program Committee are commended for their work in obtaining apeakers, electing a location and planning the overall program. The members of this Committee were: Dr, F. G. Dreseel (Secretary), Nr. Fred Frishman, Dr. Walter D. Foster, Dr, Frank E. Grubbs (Chairman), Professor Boyd Harshbarger, Professor H. L. Lucas, Dr. Clifford. T. Maloney, Professor Henry B. Mann and Profesmor Geofirey S. Watson. Special credit is given to Dr, F. G. Dressel for performing all of the necessary detalls regarding the program, invitations and the publication of these Proceedings.

It is planned to have an Eleventh Conference at Picatinny Arsenal in 1965. As is well known, these Conferences have been held to assist Army statisticians and their parent organizations. It is hoped that Army statisticiana will continue to support these conferences both by the presentation of acientific papers and by their attendance.

WALTERE. LOTZ, JR.
Director of Army Research

TENTH CONFERENCE ON THE DESIGN OF EXPERIMENTS IN ARMY RESEARCH, DEVELOPMENT AND TESTING

$$
\therefore \leq N ? \because \because \pi=2=-1 n \leq 1
$$

Wednesday, 4 November

0800-0900 REGISTRATION - Mezzanine Floor in Foyer No. 3 of the Statler-Hilton Hotel

0900-0920 CALLING OF CONFERENCE TO ORDER -- South American Room, Fred Frishman, Chairman on Local Arrangements

0920-1200 GENERAL SESSION 1

Chairman: Major General Austin W, Betts, Deputy Chief of Research and Development

THE STIMUTUS OF S. S. WILKS TO ARMY STATISTICS Major General Leslie E. Simon (Ret'd), Winter Park, Florida

THE SAMUEL S. WILKS AWARD

Announcoment: Don Riley, American Statistical Association
Presentation: Philip G. Rust, Thomasville, Georgia

BREAK

DEVELOPMENT OF THE DESIGN OF EXPERIMENTS OVER THE PAST TEN YEARS

Professor Oscar Kempthorne, Iowa State University; Ames, Iowa

1200-1320 LUNCH

Technical Sessions I and II and Clinical Session A will start at 1320 and run to 1500. After a break Technical Sessions III and IV and Clinical Session B will convene at 1540 and sun to 1710.
 Army Missile Command, Hedstone Arsenal, Alabama

APPLICATION OF DIMENSION THEORY TO MULTIPI.E REGRESSION ANALYSIS
David R. Howes, U. S. Army Strategy and Tactics Analysis Group, Bethesda, Maryland

> THE USE OF REGRESSION ANALYSIS FOR CORRECTING OF MATRIX EFFECTS IN THE X-RAY FLUORESCENCE AN ,YSES OF PYROTECHNIC. COMPOSITIONS
> R. H. Myers anc B. J. Allcy, Virginia Polytechnic Institute, BlackBburg, Virginia, Rep. Redatone Areenal

1320-1500 TECHNICAL SESSION II - South American Room
Chairman: Henry Ellner, Directorate for Quality Assurance, Edgewood Arsenal, Maryland

SAMPLING FOR DESTRUCTIVE OR EXPENSIVE TESTING Joseph Mandelson, Directorate of Quality Assurance, U. S. Army Edgewood Arsenal, Edgewood Arsenal, Md.

TOTAL SAMPLE STATISTICS FROM SUBSAMPLE STATISTICS Paul C. Cox, Reliability and Statistics Office, Army Misaile Teat and Evaluation Directorate, White Sands Missile Range, New Mexico

1320-1500 CLINICAL SESSION A - - California Room
Chairman: Ira A. DeArmon, Jr., Operatione Research Group, Army Chemical Corps, Edgewood Arsenal, Md.

Panelists:
Dr. Frank E. Grubbs, Army Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland

Professor H. C. Hartley, Institute of Statistics, Agricultural and Mechancial College, College Station, Texas

Panelists (cont'd):
Dr. Emil H. Jebe, Institute of Science and Technology, The University of Michigan, Ann Arbor, Michigan

Professor Gerald J. Lieberman, Stanford University, Stanford, California

Professor H. L. Lucas, institute of Statistics, North Carolina State of the U.N.C., Raleigh, North Carolina

SYSTEM CONFIGURATION PROBLEMS AND ERROR

 SEPARATION PROBLEMSFred S. Hanson, Plan and Operations Directorate, White Sands Missile Range, New Mexico

AN EXPERIMENT IN MAKING TECHNICAL DECISIONS USING OPERATIONS RESEARCH AND STATISTICAL METHODS
Andrew H. Jenkine, U. S. Army Missile Command, Huntsville, Alabama, and Edwin M. Bartee, School of Ergineering, University of Alabama

1500-1540 BREAK

1540-1710 TECHNICAL SESSION III -- New York Room
$\begin{aligned} \text { Chairman: } & \text { Morris A. Rhian, Operations Research Group, } \\ & \text { Army Chemical Corps, Edgewood Arsenal, Md. }\end{aligned}$
IMPROVEMENT CURVES: PRINCIPLES AND PRACTICES
Jerome H. N. Selman, Stevens Institute of Technology,
Rep. the U. S. Army Munitiona Command, Dover, N. J.
THE EFFECT OF VALIDITY, LENGTH, AND SCORE CON VERSION ON A MEASURE OF PERSONNEL ALLOCATION EFFICIENCY
Richard C. Sorenson and Cecil D. Johnson, U. S. Army
Personnel Research Office, Washington, D. C.

 Army Research Office-Durham, Durham, N. C.

A QUANTITATIVE ASSAY FOR CRUDE ANTHRAX TOXINS Bertram W. Haines, U. S. Army Biological Labe., Fort Detrick, Frederick Maryland

AN INVESTIGATION OF THE DISTRIBUTION OF DIRECT HITS ON PERSONNEL BY SELF-DISPERSING BOMBLETS

David M. Moss and Theodore W. Horner, Booz-Allen
Applied Rescarch, Inc., Bethesda 14, Maryland
Rep. Biomathematics Division of Fort Detrick, Maryland

CLINICAL SESSION B -- California Room

Chairman: Henry A. Dihm, Advanced Systeme Laboratory, Army Misaile Command, Redstone Arsenal, Alabama

Panelists:
Dr. O. P. Bruno, Surveillance Group, Army Balliatica Research Laboratories, Aberdeen Proving Ground, Md.

Dr. Donald S. Burdick, Duke University, Durham, N. C.
Professor Clyde Y. Kramer, Virginia Polytechnic Inutitute, Blacksburg, Virginia

Dr. R. L. Stearman, C-E-I-R, Inc., Loe Angeles, Calif.
Dr. William Wolman, National Aeronautice and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland

EXPLOSIVE SAFETY AND RELIABILITY ESTI MATES FROM A LIMITED SIZE SAMPLE
J. N. Ayres, L. D. Hampton and I. Kabik, U, S. Naval

Ordnance Laboratory, White Oak, Silver Spring, Maryland

COMPARING THE VARIABILITIES OF TWO TEST METHODS USING DATA FOR SEVERAL POPUL,ATIONS
 Manfred W. Krimmer, U. S. Army Ammunition Procurement and Supply Agency, Joliet, Illinois

Thursday, 5 November

Technical Session V and Clinical Session C and D will run from 0830-1010. After the break General Session 2 will convene at 1050 . After lunch Technical Sessions VI and VII and Clinical Session E will start at 1300 and end at 1420. The Panel Discussion is scheduled to be conducted from 1450 to 1710 . Following the banquet, which starts at 1900, there will be two short talks.

0830-1010 TECHNICAL SESSION V -- South American Room

Chairman: R. H. Myers, Statistical Laboratory, Virginia Polytechnic Institute, Blacksburg, Virginia

CYCLIC DESIGNS
H. A. David and F. W. Wolock, University of North Carolina and Virginia Polytechnic Institute, Rep. Army Research OfficeDurham

SOME RESULTS ON THE FOUNDATIONS OF STATISTICAL DECISION THEORY

Bernard Harris, J. D. Church, F. V. Atkinson, Mathematics Research Center, U. S. Army, University of Wieconsin, Madison, Wisconsin

0830-1010 CLINICAL SESSION C - - California Room

Chairman: Dr. Erwin L. LeClerg, Biometrical Servicee Division, U. S. Department of Agriculture, Plant Industry, Belteville, Maryland

Paneliste:

Dr. Walter D. Foster, Biometrics Division, Arrny Biological Warfare Laboratoriea, Fort Detrick, Md.

Dr. Samuel W, Greenhouse, Biometrice Branch, National Institute of Mental Hexlth, Bethesda, Maryland

Panelista (cont'd):
Professor Clyde Y. Kramer, Virginia Polytechnic Institute, Blacksburg, Virginia

Professor H. L, Lucas, North Carolina State of the UNC, Raleigh, North Carolina

Dr. Clifford J. Maloney, Division of Biologics Standards, National Institutes of Health, Bethesda, Maryland

DISINFECTION OF AEROSOLIZED PATHOGENIC FUNGI ON LABORATORY SURFACES

Richard H. Kruse, Theron D. Green, Richard C. Chambers and Marian W. Jones, U, S. Army Biological Laboratories, Fort Detrick, Frederick, Maryland

THE EFFECT OF SNAKE VENOM AND ENDOTOXIN ON CORTICAL ELECTRICAL ACTIVITY

James A. Vick, Henry P. Ciuchta, Edward H. Polley, and James Manthei, Directorate of Medical Research, Chemical Research and Development Laboratories, Edgewood Arsenal, Maryland

COMPUTER ANALYSIS OF RHESUS MONKEY IN VISUAL DISC RIMINATION TESTING
 John C. Atkinson, Directorate of Medical Research, Chemical Rewearch and Development Laboratoriea, Edgewood Arsenal, Maryland

CLINICAL SESSION D .- New York Room

Chairman: Lee W. Green, Jr., Florida Research and Development Center, Pratt and Whitrey Aircraft, West Palm Beach, Florida

Panelista;

Professor R. E. Bechhofer, Cornell University, Ithaca, New York

Professor G. E. P. Box, the University of Wisconsin, Madison, Wisconsin

Panelists (cont'd):
Dr. T. W. Horner, Booz-Allen Applied Research, Inc.,

Professor G. J. Lieherman, Stanford University, Stanford, California

Dr. H. B. Mann, Mathematice Research Center, U. S. Army, University of Wisconsin, Madison, Wisconsin
fatigue - Limit analyses and design of fatigue EXPERIMENTS
A. H. Soni and R. E. Little, Oklahoma State University, Stillwater, Oklahoma. Representing Army Research OfficeDurham

GETTING REGRESSION ANALYSIS IMPLEMENTED
W. H. Ammann, U. S. Army Aviation Materiel Command, St. Louis, Missouri

BREAK
GENERAL SESSION 2 .. South American Room
Chairman: Dr. Walter D. Foster, Biometric Div., Army Blological Warfare Labs., Fort Detrick, Frederick, Md,

ASSESSMENT AND CORRECTION OF DEFICIENCES IN PERT Dre. H. O. Hartley and A. W. Wortham, Inatitute of Statiatics, Texas A and M University, College Station, Texas

1150-1300 LUNCH
1300-1420 TECHNICAL SESSION VI .- South American Room
Chairman: Leonard Pepper, Concrete Division, U. S. Army Engineer Waterways Experiments Station, Vickeburg, Mise.

TEQUILAP: TEN QUANTITATIVE ILLUSIONS OF ADMINISTRATIVE PRACTICE
Clifford J. Maloney

OMBAT VEHICLE FLEET MANAGEMENT
 Analysis Corporation, McLean, Virginia

TECHNICAL SESSION VII -- New York Room
Chairman: Eugene F. Smith, Concrete Diviaion, U. S. Army Waterways Experiment Station, Vicksburg, Miss.

APPLICATION OF STATISTICS TO EVALUATE SWIVEL HOOK TYPE CROSS CHAIN FASTENERS FOR MILITARY APPLICATIONS OF TIRE CHAINS

Otto H. Pfeiffer, Components Research and Development Labs., Army Tank-Automotive Center, Warren, Michigan

SOME FACTORS AFEECTING THE PRECISION OF CO-ORDINATE MEASUREMENTS ON PHOTOGENIC PLATES
 Desmond O'Connor, Research and Analyais Division, U. S. Army Engineer Geodesy, Intelligence and Mapping Research and Development Agency, Fort Belvoir, Virginia

Chairman: Joseph Mandelson, Directorate of Quality Assurance, Edgewood Arsenal, Maryland

Panelists:

Professor Donald S. Burdick, Duke University, Durham, North Carolina

Dr. Bernard Harris, Mathematics Research Center, U. S. Army, University of Wisconsin, Madison, Wis.

Professor Ingram Olkin, Stanford University, Stanford, California

Dr. H. M. Rosenblatt, Statistical Research Division, Bureau of the Census, Washington, D. C.

Professor G. S. Watson, The Johna Hopkins University, Baltimore, Maryland

ERROR ANALYSIS PROBLEMS IN THE ESTIMATION OF SPECTRA
 Virginia Tipton, Plans and Operations Directorate, White Sands Missile Range, New Mexico
 VALIDATION PROBLEMS OF AN INTERFERENCE PREDICTION MODEL
 William B. McIntosh, Army Electronics Proving Ground, Fort Huachuca, Arizona

1420-1450 BREAK

1450-1710 GEN ERAL SESSION 3-- South American Room
PANEL DISCUSSION ON REGRESSION ANALYSIS
Chairman: Professor Gerald J. Lieberman, Stanford Univeraity

Paneldats and the Titles of their Addresses:
USE AND ABUSE OF REGRESSION
Professor G. E. P. Box, The University of Wisconsin
OPTIMUM EXTRAPOLATION AND INTERPOLATION DESIGNS
Profeseor Jack C. Kiefer, Cornell Univeraity
ESTIMATION FOR A REGRESSION MODEL WITH CONVARIANCE
Profeasor Ingram Olkin, Stanford Univeraity
Diecuseant: Profeseor Robert Bechhofer, Cornell Univeraity

BANQUET

Evening Seseion Chairman: Dr. I. R. Hershner, Jr., ARO
SAM WILKS AS I REMEMBER HIM
Dr. Churchill Eisenhart, National Bureau of Standards, Washington, D. C.

AN OPERATIONS RESEARCH YARN AND OTHER COMMENTS Dr. W. J. Youden, National Bureau of Standarde, Washington, D, C.

Friday, 6 November

Teciancial Scasteng Y!! and IX as well as Clinical Session F run from 0830 to 0950. General Session 4 will start at 1020 and end at ľ́čú.

0830-0950 TECEINICAL SESSION VIII .. South American Room
Chairman: Donald S. Burdick, Duke Univeraity, Durham, N. C.
THE DESIGN OF COMPLEX SENSITIVITY EXPERIMENTS
D. Rothman and J. M. Zimmerman, Mathematic and Statistics Group, Rocketdyne, A Division of N. American Aviation, Canoga Park, Calif. Rep. George C. Marshall Space Flighi Center, NASA, Huntsville, Alabama

FACTORS AFFECTING SENSITIVITY EXPERIMENTS J. R. Kniss and W. Wenger, U. S. Army Ballistic Research Labs., Aberdeen Proving Ground, Maryland

0830-0950 TECHNICAL SESSION IX -- New York Room
Chairman: Ralph E'. Brown, U. S. Army Munitions Command, Philadelphia, Penneylvania

A COMPARISDN OF RECONNAISSANCE TECHNIQUES FOR LIGHT OBSERVATION HELICOPTERS AND A GROUND SCOUT PLATOON

Harrison N. Hoppes, Barry M. Kibel, Arthur R. Woods, Research Analysis Corporation, McLean, Virginia

A STUDY OF PROBABILITY ASPECTS OF A SIMULAT ANEOUS SHOCK WAVE PROBLEM
Edward C. Hecht, Nuclear Engineering Dlrectorate, Picatinny Arsenal, Dover, New Jereey

0830-0950 CLINICAL SESSION F ... California Room
Chairman: Dr. B. W. Haines, U. S. Army Biological Laboratories, Fort Detrick, Maryland

> Daneliats:

Professor R. E. Bechhofer, Cornell Univergity, Ithaca, New York

Mr. David R. Howes, U. S. Army Strategy and Tactics Analysis Group, Bethesda, Maryland

Dr. R. J. Lundegard, Logistice and Mathematical Statintics Branch, Office of Naval Research, Washington, D. C.

Professor Ingram Olkin, Stanford Univeraity, Stanford, Callfornia

Professor G. S. Watson, The Johns Hopkins University, Baltimore, Maryland

A DATA COLLECT ION PROCEDURE FOR ASSESSING NEUROMOTOR PERFORMANCE IN THE PRESENCE OF MISSILE WOUNDS
William H. Kirby, Jr., Willam Kokinakie, Larry M. Sturdivan and William P. Johnson, Ballistic Research Aberdeen Proving Ground, Maryland

PROBLEMS IN THE DESIGN OF STATISTICS-GENERATING WAR GAMES
William H, Sutherland, Research Analysis Corporation, McLean, Virginia

0950-1020 BREAK
1020-1220 GENERAL SESSION 4..South American Room

Chairman: Dr, Frank E. Grubbs, Chairman of the Conference, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland

THE FUTURE OF PROCESSES OF DATA ANALYSIS
Professor John W. Tukey, Frinceton University, Princeton, New Jersey

STATISTICS AND MANAGEMENT
Dr, M. G. Kendap, C-E-I-R, London, England

TUE STIMYIUS O「 S. S. WIMK゚ TO ARMY STATISTICS

Leslie E. Simon
Major General, USA (Ret.)

ABSTRACT. The stimulus of S. S. Wilks to the ocientific community is dibcussed briefly, followed by a more detailed account of his originating the idea of a series of Army-wide conferences on design of experiments in Army research, development and testing. The Army's rather satisfactory progress in statistical methodology prior to the conference series ie discussed, with comments on its limitations and less than ideal direction of procedure. Wilks' apparent perception of the altuation, his courage in undertaking a large and difficult task, and his aurpriaingly large moasure of success is discussed. The importance of carrying on the apirit of Wilks is emphasized, and the creation of The Wilks Award, as a measure to that end is mentioned.

ORIGIN OF THE CONFERENCE SERIES. Mr. Chairman, Fellow Conferees, Ladies and Gentlemen, Samuel Stanley Wilka wae my very good friend most of his professional life. Whereas lam aware of many of Wilks' dedicated and outstanding services at a national, if not a world level, I prefer to concentrate my remarke on an area of Wilke' career that is close to home to me: the very valuable services that he did voluntarily for the Army. I am sure that others more able than I will cover his broader eervices as a teacher, both academic and extra curricular; as a research worker, as an organizer, and as a competent and inopiring leader. Frederick Mosteller has presented an excellent outline of Wilke' worldwide work in the April, 1964 iesue of "The American Statistician", under the title, "Samuel S. Wilks; Statesman of Statiatics". Mosteller's paper mould serve as a guide for other papers on Wilks. However, I cannot help obeerving that although Mosteller's title ie justified, I hope that he will forgive me if I observe that Wilks was by hie own choice somewhat lacking in the formality associated with etatesmanship. Contraiy to one's concept of dignity, Sam was "just folks", whother he was talking with a first-rate ecientict, a neophyte in Applied Statietice or a man primarily a soldier. He knew and underatood people; and, by nature was over-ready to give any help within his competence to anyone who genuinely needed it. It was in the latter two capacities, that I had my entree to Wilks.

It \because as over fifteon years after our initial meating that Wilka made a proposal that has helped much in improving Army organization, doctrine,

[^5]tactics and weapons; and, at the same time contributed to improving the morale of Army personnel, and to saving time and expenoe is militaay research and development.

In late 1954 or early 1955, when I was Assistart Chief of Ordnance for Research and Development, U. S. Army, Wilks proposed that the Army establish a series of Army-wide conferences on design of experiments in Army research, development and testing. Dr. Frank E. Grubbe, who, under the authority of my office, had chaired an Ordnance symposium on Statistical Methods in 1953 [1], strongly indorsed Wilks' proposal for Army-wide conferences, devoted primarily to design of experiments; and, of course, I concurred. The Army Mathematics Advisory Panel* (later, designated as the Army Mathematica Steering Committee) operated under the Office $n f$ Ordnance Research (now Army Research Office-Durham); and consequently the responsibility for the conferences was asaigned to that office. Wilks' proposal was made pursuant to a survey made by the Army Mathematics Steering Committee in which they investigated over 30 Army facilities. They found that one of the most frequently mentioned neede expressed by the scientific personnel was for greater knowledge of modern statistical theory of the design and analysis of experiments. The Firat Conference on Design of Experiments, in Army Research, Developmerit and Testing was held on October 19-21, 1955 at the Diamond Ordnance Fure Laboratoriea and The National Bureau of Standarda. Wilke chaired all the conferences up to the present Tonth Conference.

I believe that oberving as best we cun the time-rate-of-change of the character of these conferences and the concurrent increase of basic understanding of the interrelationshipe of men, weapons, organization, doctrine, tacticm, and research and development, will throw 1. iht on the beneficial influence of Wilks on National Defence. I do not mean to infer that all Statistical progress is due to Wilka; but I am are that much of the progrese is due to the spirit of cooperation that he infueed, to hie influence and to his
*The Army Mathematics Advisory Panel, of which Wilks wat member wai operated by the Ordnance Corps for the Office of the Chief of Research and Development, U. S. Army. I am indebted to Colonel P. N. Gillon (Ret.), who was both the Commanding Officer of the Office of Ordnance Research (Durham) and the very able Chairman of the Army Mathematics Advisory Panel for the clear, curt minutes and records that he left, and especially for reference[2].
personal contributions. Similarly, I believe that the histerif fiwine in this reiatively small sub-field of his very active life is a close parallel to the fruitfulness of his activity in other fields to which he devotad far more time. Let us, then, observe the status of Array statistics up to 1953; trace, at least approximately, the conferences on Design of Experiments in Army Research, Development and Testing; and observe the present-day status of Army atatistice.

Incidentally, the Army was neither without statiatical sophistication in 1953, nor is its knowledge optimum today.

SUMMARY OF AR:AY STATISTICAL PROGRESS, BETWEEN WORLD WARI AND II. Historically, the application of probability theory to the dispersion cf shots on a target appears to be about the only Army use of Statistics, prior to World Warl. There was ε jump in mathematical sophiotication during World War I, due to A. A. Bennett [3], Fowler [4], Moulton [5], and othere in connection with progress in applying statiatics to Balliatic problems. Betweer. World Wars 1 and II, Kent, Dederick, McShane and othera developed further applications of Statistics in cornection with Bellistics. The staff of the Bell Telephone Latoratories, especially Dr. Walter A. Shewhart and Harold F. Dodge, was most iruitíul in the disccuery of Statiatical techniques, and the Army was a shameless plagiarist in adapting them to ite problems. Shewhart's work [6] led to the Army's first full-scale industrial use of Statistical Quality Control in manufacture at Ficatinny Aroenal, Dover, New Jereey, which also was certainly one of the first few of such uses in the world. The Army Ammunition Surveillance [7] (Stoskpile Reliybility) Syatem (circa 1939) was based lasgely on what was very recent work at that time. The Dodge-Romig Sampling Tables, not yet in book form [8], appeared just in time for use for ammunition inspection ard acceptance tests in World War II. Dusing the period shortly before World War II, the Army felt a bit smug about ite atatiatical competence.

ARMY STATISTICAL PROGRESS DURING WORLD WAR II. World VIar II saw great progress in the military use of Statistics, due primarily te the dvailability to the war effort of men of competence. The National Defence Research Council (later, Office of Scientific Research and Development), the staff of the BRL, and, to a lesser extent, the staffs oi Ordnarce Arsenale acquired many Mathematicians and Statisticians of competence. Procedures for specifications of materiel, sampling, testing and interpretation of data (both planned data and the salvaging of unplanned data) were greatly improved. Indeed, Operations Research was being born even then. The Army was not unmindiul of the possible adaptation of any new Statistical "tool" to its work.

[^6]In addition to the above uses of Statistical Methods substantial progrese was made by the Army during World War II of which there in little $=9.0$ record. Many new techniques such as Sequential Sampling and Reliability were actually used in the Army, at least in an empirical way, before they were later designated by appropriate specific names. Of course, needed theory was not worked out in a formal way at that time. For example, the formal presentation of sequential sampling had to await the work of Dr. Abraham Wald, which was not published in book form until 1947 [9].

ARMY STATISTICAL PROGRESS, WORLD WAR II - 1953. After World War Ii , proyress continued, although its rate was diminished due both to decrease in staff and to loss of some of the more competent people. Apparently, experimeats that involved Factorial Designs were the first instances of full use of Experimental Designs in the Army. Factorial deaigns were used at the Ballictic Research Laboratories in the study of armor plate (1946-47)*, in the mammoth experiment on Aircraft Vulnerability (1946-50)*, and even on Project Stalk (a tank-fire control study under field conditions)* circa 1953. In 1953-1954 Reliability [10], in its present day sense, was used by Ordnance Research and Development, in a full-scale organizational and technical way, as a means of rescuing the Country's first operational guided missile, the NIKE, from a serious threat of failure.

With this rather glowing account of Army progress and atatue, one might well question wherein was the Army laggard, and where was the failure or potential threat of failure? What great work was there left to be done by the series of conferences ondesign of experiments under W ilks? I shall show that a very great deal was wrong with the Army's use (or lack of use) of statistical methods; that the task of righting the wrong was formidable, both in magnitude and in potential obstacles; and that astonishing progrese has been made on the task during the nine years of the conferences.

From the survey of the 30 Army facilities, Wilks must have understood rather well what the Army needed, and have understood also the need for newly organized and sustained effort to supply the need. Hia skill as a teacher must have fortified him from fear of failure in undertaking to change the mode of operation of a large segment of the Army.

[^7]WHAT WAS WRONG. Let us observe that the origin, growth, and use oi Statintical Methods in the Army was not only unplanned, but actually tended to progress in the least advantageous direction; i. a., from endpoint to origin, rather than from origin to end. Roughly speaking, we can regard the military regime as consisting of the following steps or stages: doctrine, tactics, organization, selection of equipment, fabrication of equipment, test of equipment, and use of equipment. Logically, powerful medium for the improvement of a stage should be first applied to the preceding stage or scages to which it is applicable. Forexample, a big improvement in use of equipment, (e.g., accuracy of ammunition) loses much of its potentially beseficial effect if either the tactics, organization, $o=$ weapons system is poor.

Contrary to the above observation, the carliest use of probability theory by the Army was for use of equipment, viz, the adjugtment of artillery fire. The use of techniques based on the Gaussian Diatribution, or Normal Probability Law, in connection with artillery fire probably ie exceeded in antiquity only by the use of elementary probability theory in connection with games of change [11].

Decadee elapeed before the next major atep. In 1936, the Army began to use Statistical Quality Contro! in the manufacture of equipment, vis, the production of ammunition at Picatinny Araenal, Dover, New Jersey. Kindred techniques such as sampling theory and statiatical methode for analyeing data soon spread to improve specifications, inspections and acceptance tests.

During World War II almost all fabrication of military equipment was better, cheaper, and quicker, due largely to the te techniques. During World War II, one otrange reversal occurred in the inverse order of progrean. Operations Research was born out of military sponsorship and was actually used to a limited degree by the etaffe of high military planners in connection with the planning of the operatione of large combat forces.

After World War II, it began to be more and more realized that ince Statistical Methods improved the quality of equipment and reduced costs it would be a good idea to use similar techniques with the research, developing and teating in connection with new deaigns of equipment, thereby making better and more useful equipment designs at the out-set. Except for the invention of Reliability, which was a distinct child of necessity, this is just about where Wilks came in.
 Army Mathematics Advisory Panel, it was he who articulated, "the most frequently montioned needa expressed by the scientific personnel were for greater knowledge of modern statistical theory of the design and analyses of experiments." Thus, it is clear that Wilks recognized at least a major part of what was wrong with the Army; i.e., insufficient use of Design of Experiments in Research, Development and Testing. *

Certainly Wilks was not the first person to recognize the fact that an improvement in the early stages of the Army regime, i.e., doctrine, tactics, organization, etc., has greater leverage power than an improvement in later stages auch as selection of equipment, fabrication, and use. The trend toward "up-stream" improvement began long before he appeared on the scene; and ranged from such measures as advocacy of industrial preparedness, as an important measure towarde preserving the peace, to various stratagems for introducing sophistication in the upper stages of the Army's evolutionary process. Many persone deplored the fact that traditionally we had been forced to begin wars with the weapons left over from the previous war. Army Ordinance began to take measuren against this ill shortly after World War I, and the then infant Army Ordnance Aesociation (now the American Ordnance Aasociation) lent a patriotic and helping hand, pursuant to its slogan advocating industrial preparednese as an insurance againat war; i.e., a large production capacity should exiat to meat a war demand for munitions of the latest designs. Army Ordnance realized that it must have an eye to the future and an ear th the ground regarding the plana and needs of the combat soldier, and therefore sent selected Ordnance Officers to the Army Schools ranging from the Command and General Staff College to the National War College to give them a closa underatanding of the combat soldier. Liaison officers from the combat arme were asaigned to Aberdeen Pruving Ground, Maryland, to aasiet in the realization of combat viowpointa, and in the development testa of materiel. Shortly after World War II, a number of percons, including some Ordnance, advocated the establinhment of a scientific staff at Lieadquarters, Army Field Forces, Fort Monroe, Virginia, to assist in analyzing Army needs and in stating needs for new materiel in valid farm. Such a group was partially formed and extated for m year

[^8]or two * However, it was wilks who undertook systematically the task of greatly accelerating the spread of powerful and uscful statistical techalquea to the upper echelons of the Army regime, where the improvement. that they enhanced would have the greateat leverage power.

Even if Wilks recognized the full nature of the job that he was doing, certainly, he did not have opportunity to finish the job. Much remaine to be done. The real point in this discourse is the breadth and extent of the progress made in the nine years of Wilks' kindly and sympathetic leadership, effective persuasion, and his engendering of mutual cooperation and helpfulness between men of competence with whom he dealt. Let us try to note the progress, before any attempt to assese the remaining tank.

ASSESSING THE PROGRESS. I hope that by the foregoing discusaion I have led no one to believe that I have an objective method of measuring the progrese of use of atatiatical methode in the Army during the $1955-63$ period. I might say that the measuring of progress in afield of acience or engineoring is perhap: one degree more difficult than measuing the quantity and quality of output of research by laboratory; and whereas many have tried to do this. I know of no one who has really succeeded. The cold atatiatical facta are briefly these:

All the design of experiments conferences ware for three daye each, held in October or November, and conducted at a number of Army R\&D establifinments.

The number of registrants or conferees was alwaye of the order of 200. Attendance was by invitation and the number of invitations was undoubtedly conditioned by the available accommodations.

The number of papere presented at each conference was of the order of 30. This appeare to be about the number of papera that can be preaented in a three-day conferenca.

All conferences were of a three-part character: Invited papera by distinguished Statiaticians, technical sessione in which there were diecuesions of recent accompliched work, and clinical seseions in which work in progress was diecuesed from the viewpoint of inviting advice and criticiom.

[^9]It thus appears that based on documental evidence the progress of the conferences can be judged only by the kinds of acientific and technical fields covered by the papers and by the inherent quality of the papers.

CHARACTER OF PAPERS PRESENTED. By and large, the place at which the conference was held had a atrong influence on the character of the papers presenter. This is undoubtedly due to the fact that the program committee gave some degree of precedence to the host institution, e.g., more papers bearing on the field of medicine were presented at the Eighth conference held at Walter Reed Medical Center than at other conferences. However, in the statistical fields there was a constantly increasing emphasis over the the nine yeare on the more sophisticated phases of deaign of experiinents, screening theory, simulation stratagems, reliability, and techniques for evaluation of experiments. It is thu apparent that expertiee on the part of the participanta increased and also evident that the use of atatiatical experte in various fiolds of Army activities was increased both in number of experts and in variety of fields of activity.

Whereas, at the beginning of the conferences papers centered largely around items of Ordnance materiel, te the conferences proceeded the eubject matter of the conferences expanded to include more emphasis on eystem analysis. Similarly, with the penetration of atatistical methods into new fielde of activity, more papers were devoted to other than Ordnance equipment. With the broader ute of atatistical designs, papers appeared on the relation of equipment to organization, and to sew theoretical developmente having immediate application in Army use.

A further change in the character of the papere is the noticeable effect of learring to do by doing. It is apparent that whereas deaigned experimente gave greatly improved reaulte, the same experiments also howed deficiencies in understanding what one's work was really about, For example, biases in results could be detected that were readily attributable to repeated use of the ame personnel over the same terrain. Command exerciaes had to be altered and new stratagems employed (such as randomization techniques) to ecreen out the biases which passed unnoticed when experiments were of less sophiaticated character. In fact it was precisely the acquirement of such evidence that convinced even non-statisticians that there was need for more movement "up-stream". This was a very fortunate circumatance because it drew military commanders into participation in the planning of the experimente and resulted in a conntant movement of the ephere of
 policy, tactics, and dec rine. Thus, non-statisticians saw the gains made through experiments in which they, themselves participated.

It is quite one thing to make a presentation on the efficacy of a technique, and quite another thing to convince the hearer that the use of the technique is important to his job. Successful experimente in which one himeelf has participated (although a tep-wise process) are an effective method convincing one of the value of the methods used. By way of contrast, I believe that it would be quite impossible to auddenly inject into the military service (or into any other organizational sphere, for that matter) the concept and attitude which is expressed by the following quotation taken from a Combat Developmente Experimentation Center (CDCEC) pamphlet:
"The ability of the Army to carry out ite goals in the future depende upon the access it has in achdeving its combat developmente goala today ... of developing future concepte, doctrine, tactics, and techniques, and providing requirements for weapons, equipment, and appropriate organieationa."

It is indeed heartening to read euch a quotation. This Experimentation Center has an area of over a quarter of a million acres, a brigade of troopa, a contract with Stanford Research Institute for Statiatical Support, a variety of sophiaticated equipment, including facilitiea for computer imulation of field experimente. Nevertheless, we know well that the tanke expressed in the quotation are only beginning and that only the firat fruite have yet been achieved. From the foregoing example of CDCEC we can infer (a) that the advance of Statistical Methode in the Army, during the past nine yeara have been great, and (b) that the remaining part of the task, i.e., echieving the full nature of the job that Wilks undertook is atill iarge one.

WILKS' METHODOLOGY. If we hope to carry on in subatantial measure the task that lies ahead we should take a good look at Wilke' methods, Wilks was a acientiat far the sake of science, but he was also a realist and wished to see the practical results of applied ecience corse to full fruition.

This is a rare combination of qualties. " Despite his many high scientific achievements and the respect in which he was held by his colleagues, he never assumed an aisthoritative position. On no occasion did he attempt to do a whole job himself to the exclusion of others. On the contraxy, he always invited the cooperation of every person who could contribute substantially to getting the fob done. He could organize and delegate without being obvious about it. In this way he secured the enthusiastic support of the men around him. If anything, he waz more the servant of others than one demanding services. He had confidence in himself, but he also inepired confidence in others that led them to venture to cooperate, to work with him and to work together; and the work became an interesting enterprise to the point of preoccupation. In closing, I would like to give a brief example of how the spirit of Sam Wilks worked towards getting thinge done whether they were large or small.

AN EXAMPLE OF WILKS' WORK. About a year and a half agu, a gentleinan in Georgia, a former member of the war-time team at The Franklin institute, who is intensely intereated in emall arma fire asked several statisticians including Wilks eome queation about the inter-relationa of various measurements of central tendency and diepersion of shote on amall armstargets, although he did not express it in these terms, In order to answer his questions, one neaded to know the probability density diatributions of several atatistical measures whose distributions were unknown. These questione set off a kind of chain reaction. It was possible that answers to the amall arms problem could well be answers to other, and probably more important, probloms. Scientific men of good will, infused by the spirit of cooperation and acientific inquiry contributed what they knew to the general problem; but it bocame evident that a complete anawer could be achie ved only by some resoarch that would add a modicum of knowledge to our existing atore. Perhaps the most important contributione came (later) from Wilks, Grubbe, and one or iwo other colleaguea in connection with their work on the analyaie of tracking data on firinge of long range misslles at the

[^10]Atlantic Missile Range, The work turned out to be ou important that it hat been carefully written up by Grubbe in a forthcoming monograph. Thia illustrates the humbleness, the spirit and the methods of Wilks. First, he was willing to lend hie powere to anything that appeared to be a valid ecientific enterprise; second, he had a keen perception of what is fundamentally important even though the context in which it was presented made it appear somewhat of camual interest if not unimportant; third, he could engender the spirit of true scientific inquiry into his colleagues; fourth, he could bring a matter to a crux so as to make it a permanent addition to the useful knowledge of mankind.

THE WILKS' AWARD. It is important that the epirit of Sem Wilke be carried on, both for an unselfish reason and a selfish reason. Our firat reason is that of honoring his memory in gratitude for what he had done for ua. The second and selfish reason is that carrying on the spirit of his work will contribute much to advancing the colutione for the graat task that he loved and to which he devoted himeelf. We shall never achieve the task in full; but each solution or partial colution will contribute to the improvement of the military posture and eafety of our Country. I am aure that Sam would approve this eecond motive. Through the generosity of Mr. Fhillp G. Rust of Thomasvile, Georgia, and the good offices of the American Statistical Association, it appearis that meana has been found of achieving, at least in part, both of the above purposes. An award will be created which by ite character will help to carry on tho stimulue of Wilke to Army Statiatice.

REFERENCES

1. BRL Report No. 897, Proceedings of the Firat Sympoaium on Statiatical Methode; Sampling Techniques.
2. Summary Report on the Eatablishment of the Army Mathematica Center. 14 October 1955. Office of Ordnance Research (now Army Research Office - Durham).
3. A. A. Bennett, On the Accuracy of Sampling. 6 January 1918. Unpubliehed paper in the filea of the Balliotic Reaearch Laboratorien,
4. Fowler, Gallip, Lock, and Richmond, Aerodynamics of apinning Shell, Philosophical Transactione of the Royal Society of London, 1920.
5. F. R. Moulton, New Methode in Exterior Ballistics, University of Chicago Presв. 1920.
6. W. A. Shewhart, Economic Control of Quality of Manufactured Product. Van Nostrand, 1931.
7. The Proposed System of Surveillance of War Reserve Ammunition, Zornig and Simon, BRL Report No. 115, 1938.
8. Dodge, Harold F. and Farry G. Romig, "Sampling Inepection Tables .. Single and Double Sampling", John Wiley and Sone, New York 1944; 2nd edition, 1959.
9. Abraham Wald, Sequential Analysis. John Wiley and Sons, 1947.
10. L. E. Simon, The Relation of Engineering to Very High Reliability. Proceedings of the Tenth National Symposium on Reliability and Quality Control. January 1964. IEEE.
11. Games, Gode and Gambling, F. N. David, 1962, Hainer Publiching Company, New Yotk.

THE WILKS AWARD

Introduction of Mr. Donald C. Riley by Major General Leslie E. Simon

Mr. Chairman, Fellow Confereea, Ladie and Gentlemen, what the next two speakers have to say is so closely associated with my discourse on Wuks that I have been deaignated to introduce them.

As I implied at the end of my talk, the establishment of the Whke Award was a tri-partite undertaking: And involved the Army as principal beneficiary, The American Statistical Association as the bearer of the burden of administration, and Mr. Philip G. Rust who endowed the award. Secretary Hawkins has personally expreised to the ASA his gratitude for its competent and patriotic seryicea.

Mr. Donald C. Riley, Secretary-Tqeasurer and Executive Director of the American Statiatical Aseociation hae rendered invaluable asaistance in getting ewift solutions to procedural problems he has been ao kind as to agres to indicate to you the duties and obligations of the ASA in currying out the Wilke Award; and he will also announce the recipient of the initial Wilks award. Don Riley!

INITIAL WILKS AWARD PRESENTED TO DR. FRANK E. GRUBBS

Donald C. Riley, Executive Director, American Statistical Aesociation

Many memberi of the American Statiatical Ascociation, well as I, are glad to be present at this, the Tenth Annual Deaign of Experiments Conference. This is a very epecial occasion and the American Statiatical Aseociation it glad to participate during a uniquely auspicious time in its long hiatory. Thia year is the 125 th Anniversary of the eatablishment of the American Statiatical Aseociation which recent research at Stanford has found to be the eseond oldeat national profeseional society in the United States.

The American Statiatical Aseociation has alway worked clocely, although usually quite informally, with agencios of the Federal Government. For example, during the year it was founded, 1839, it began to prese for the improvement of decennial ceneuese and its representative played major part in the design of four of the aix census echedulea for the 1850 Census. As atatiatics and etatiatical methodology proliferated vautly aince that time,
aimost all areas of research have felt their impact. Certainly the whole area of design of experiments has had the closest association with atatiatics. The annual Design of Experiments Conference has become an institution. General Simon has reminded you of the close association of Professor Samuel S. Wilks with this Conference. Most of you know that relationship by heart. Sam lent his aid readily, unstintingiy and effectively in many areas. This was part of the genius of the man.

I should note also that Wilks was the President of the American Statistical Association in 1950 and that he hat always done much for the Association, He also helped to carry on in another area the close relation between the Association and the Federal Government. Juat the day before he died he participated as a member of the Advisory Committee on Statistical Policy to the Office of Statiotical Standarde in the Bureau of the Budget. The Office of Statistical Standards requires conaltation from time to time at a high level in ita work as the central atatiatical coordinating body of the Federal Government. Thie Advisory Committee consiete lergely of former ASA Presidents and Wilks was one of its "founding fathere."

As mentioned in General Simon's addrese, the ASA has recently had the opportunity to be of further eervice. By joint agreement between representatives of the Army, Mr. Philip G. Rust and the ASA, the Samuel S. Wilks Award has been established. The Award will consist of a medal and an honorarium. The ASA has accepted the obligation of adminiatering the Award in accordance with guidance and criteria which are consonant with law and with the wishes of Army representatives, Mr. Rust and the ASA.

Annually, ASA has agreed that an appropriate committon be aelected (or appointed) to select the awardee, baeed on the criterion that ho is a person whom the committee regarde as deserving of the award, based primarily on his contribution (either recent or pait) to the advancement of acientific or technical knowledge, ingenious application of exiating knowledge, or auccessful activity in the fostering of cooperative eciontific efforts which have only coincidentally benefited the Army. The award chall be made with the intent of recognizing the personal and intellectual accomplishments of the individual and thall not be given with the intent of applementing the individual'e salary, providing him with compensation, or advancing the intereate of the donor or truatee of the andowment.

The American Statistical Ansociation has been asked to invest the funds so generously turned over to it for this purpose and I am aure that ita Board
of Directors, which has given ite wholehearted approval, feels honored in being atked to join in honoring Sam Wilke. ASA will need to consult very closely with those of you who have helped to develop the annual Design of Experiments Conferences, in the selection of an Annual Sam Wilks Award Committee. I believe that Dr. Albert H. Bowker, the Preaident of the American Statistical Association this year, will be able to announce this Committee shortly.

As executive Director of the ASA, I have the honor to announce that Dr. Frank E. Grubbs of the Army's Ballistic Research Laboratories has been selected to rereive the "initial, " not the first, Samuel S. Wilke Award. As is not unusual in the initial award of an honor, Dr. Grubbs was selected not by the process governing the first and subsequent recipiente, but rather by unanimous agreement of those concerned with the establishment of the Award. He is 80 selected because of his close working relationship with Wilka, and especially because of his contributions along with Wilks to solutions and clarification of simple measures of dispersion, which are deemed useful to riflemein, ballisticians, and statisticians in general.

I have no medal to present to Dr. Grubbs, becausc the medal has not yet been otruck; but it will be presented at the earliest appropriate oppor tunity, after it is available.

Incidentally, I will not be able to attend the banquet here tomorrow evening because I agreed long ago to attend the inauguration ceremonies in New York of Dr. Bowker as Chancellor of the combined Uriversities of the City of New York which was organized a few years ago.

The American Statistical Association will want to continue to advise closely with the Conference and will be glad to ask its auditor to render a brief auditing report each year if this seems atisfactory to those who have been so close to Sam Wilks, General Simon and especially Mr. Philip G. Rust, who has been so generous and public spirited in making the award possible. Is hould like to join in thanking Mr. Rust most profoundly.

INTRODUCTION OF MR. PHILIP G. RUST BY MAJOR GENERAL LESLIE E, SIMON

Mr. Chairman, Fellow Conferees and Ladies and Gentlemen.
We now come to the third and last speaker in this phase of our honoring Sam Wilks, Mr. Philip G. Rust of Winnstead Plantation, Thomasville, Georgia.

Mr. Rust is a very modest man, and more adept at understatement than a typical Britisher. It was only under pressure personally exerted by Secretary Hawkins that we succeeded, first, in overcoming hie insistence that he remain anonymous, second, in getting him to attend this conference, and third, in persuading him to present the honorarium to the iritial recipient of the Wilks Award, Dr, Grubbs.

Mr. Rust purports to be practically innocent of theoretical and applied statistics; but if under pressure, he can cite statistical literature by page and paragraph showing each historical advance in statistical measures of dispersion; he professes no close assoriation with science and engineering, but I find that he was not only a research chemist for over ten years, but also returned to ecience and engineering during World War II; he lays claim only to being a Georgia farmer, but he has contributed to ASA the funds necesaary to establish the award commemorating his old friend, Sam Wilks, contributing to the welfare of the military services, and fostering acience in general.

With these cautionary remarks, I deem it a privilege and an honor to introduce Mr. Philip G. Ruat.

THE CONCEPTION OF THE WILKS AWARD
Philip G. Rust
Winnstead Plantation, Thomacville. Georgia

Mr. Chairman and members of the audience you have heard a most informative talk by General Simon on "The Stimulus of S. S. Wilks to Army Statistics." Then, on Thursday we may look forward to Dr. Eisenhart's "Sam Wilks as I Remember Him."

In view of the newly estatished Association's Wilks Award, concisely described to you by Mr. Donald C. Riley, the Executive Director of the American Statistical Association; it is appropriate that I briefly discuss the conception of this award.

Back in the dark days of 1944, Dr. Wilks and I were headed north from Washington, by train; he to Princeton, and I to my home in Wilmington. At the time, I was at The Franklin Institute, working on .50 calibre barrel erosion, and also as the un-official translator of pertinent technical works. In passing, I would state that the Institute work was less atatistical than of the ear drum rupturing variety.
 had bess. devifeu io certain statistical measures of shots on a target. After telling Dr. Wilks about the firing of hundreds of .22 calibre targets, from rest; to get an empirical measure of the distribution of "extreme epread", he asked if I had started any theoretical work on the subject. (Incidentially, "extreme spread" is defined as the separation distance of the two widest apart shots.) His intereat increased when it was mentioned that I had made a start by generating a few hundred artificial targete by uning pairs of rando: numbers in the well-known bi-variate circular distitibution. Equal likelihood of angular distribution was assumed, with no systematic errors.

The shots were laboriously plotted on cross section paper, and the extreme spread and other parametern examined. It is of interest to note that the fired targets and the plotted ones are extremely close.

About this time, my travelling companion aggested that he diaembark at Wilmington, also. I had the feeling that he wanted to explors thy applicution of these data to other, more vital matters. He etsted that he had an exceptional graduate student who might be given the job of finding the true distribution of "extreme epread".

Eight or ten yeara went by, and our contacta were largely by pinone. He assured me that he was still interested, and working on target problems; but that as yet, this distribution had not been discoverod. The poseibility of Monte Carlo methods on a to-be-aquired computer vere discliesed. Then on 10 Auguat 1963, I received a long-hand letter anying that 27090 computer was at hand, busily working on related matters.

While waiting for promised data from Dr. Wilks, I approached General Simon about the aubject. He later discuesed it with Dr. Frank Grubbe of Aberdeen, who ubsequently brought forth an extremely useful manuecrift, soon to be published.

Finally, on Dr. Wilk's 1963 Christmas card, he stated that the target problem wan tied in with tracking work on the Atlantic Misaile Renge.

General Simon; with his very orderly mind, and sense of the fitting, then alggested the iden of the annual A. S. A. Wilke Award. This idea mat greeted enthusiastically by all concorned.

What, then could be morefitting, than that Dr. Frank E. Grubhs thould be the recipient of the initial award.

And now, it gives me great pleasure to hand Dr. Grubbs the initial honorarium and the assurance of its accompanying medal on ito completion,

DEVELOPMENT OF THE DESIGN OF EXPERIMENTS OVER THE PAST TEN YEARS*

Obcar Kempthorne
Iowa State University, Ames, Jowa

INTRODUCTION. The main aspecte of experimentation on which progreas has been made in the past 10 yeare appear to be the following:
(a) the analysis of experiments
(b) the development of incomplete block designs
and (c) the investigation of multifactorial systems.
I shall have just a few words to say about the first two items and hall spend practically all my time on the third ftem.

THE ANALYSIS OF EXPERIMENTS. In the lat 15 yeare or eo, etatif. ticiane have become concerned about the aseumptions that are commonly made in the analyeie of comparative experiments. The common analysie is to use the matrix model

$$
y=X \beta+e
$$

in which y is the vector of observations, X is a matrix of known elemente, β is a vector of unknown parameters, and the vector e of orrors is aseumed to consiat of components which are normally and independently dietributed around zero with constant variance. The obvious questione about auch a model are:
(1) why use y, and why not a defined function of y, uch at log y or l / y, or any of a host of other posabilities?
(2) is the model linear in the parametere, that is, is the expectation $\mathrm{X} \beta$, correct?
(3) is the aseumption about the errore correct?

In recent years there has been considerable attention to these quentions, primarily by Anscombe (1961), Tukey (1962) and Anscombe and Tukey (1963), the work dating back to Tukey'm one degree of freedom for non-adidtivity. This has led to the topic - residual analysis - which ts now an every day phrase.

[^11]Brâtieso unreiaied to residuai analysis but part of data analysis, are topics such as the question of multiple comparisons, the effects of preliminary test on conclusions, random, mixed and fixed models, and randomization theory of experimental inference. I shall not discuss these.

THE DEVELOPMENT ON INCOMPLETE BLOCK DESIGNS. Incomplete block designs were developed to control variability among the experimental units. The original incomplete block designs were given by Yates in the 30's, and in 1939 Bose and Nair developed a fairly general class of auch deaign. Since that time there has been a development of blocking theory with regard to
(a) The structure and existence of incomplete block plana
(b) the arrangement of factorial deaigns in incomplete block deatgne.

Such development is very deairable, but it is agroed by moat, I imagine, that the impact of this work on the conduct of experiments is not great. Roughly speaking we have had for many years an array of incomplete block designs which provides an adequate basis for choice for most experimental situations.

THE INVESTIGATION OF QUALITATIVE FACTORIAL SITUATIONS. It is easential to differentiate between multifactorial situatione in which the factore are qualitative and in which the factore are continuous or quantitative. In the former case the structure of the totality of posable information conaista of the true yielda and variability for each of the poesible factor combinations. In the latter case the totality of poasible information is a functional relationahip of yield to the level of the factori or variablea. So in the qualitative case, if one has factors say a, b, c, \ldots with levels denoted by $a_{i}, b_{j}, c_{k}, \ldots$, the underlying formula for yield will be of the form $y\left(a_{1}, b_{j}, c_{k}, \ldots,{ }^{\prime}\right)=$ $f(i, j, k, \ldots)+.e r r o r$ where the function is defined only for the factor levele i, j, k, \ldots, in the situation. In other worda, the model has to be a claseificatory model. Classificatory modela can be linear as exemplified by

$$
y_{i j k}=\mu+a_{i}+\beta_{j}+(a \beta)_{i j}+\gamma_{k}+\text { etc }+ \text { orror }
$$

or can be non-linear, as for example

$$
y_{i j k}=\frac{a_{i}}{\beta_{j}+\gamma_{k}}+\text { error. }
$$

Essentially no theory exists for non-linear classificatory models, and I am of the opinion that this is a real gap in our knowledge.

In the case of study of the full set of factorial combinations, one of the basic problems is error control and systems of confounding were developed for symmetrical systems in the 30 's. There have been a few developments in recent yeara with regard to confounding for the asymmetrical case, and also some clarification of the mathematical structure of factorial experiments [o.g. Kurkjian and Zelen (1962)] . I imagine, however, that examination of the full set of factorial combinations is rarely appropriate except poseibly
(a) When most of the factors have 2 -levels, with perhaps two threelevel factora,
and (b) in the case of experiments, like in agronomy, for which there is a long esentially unalterable intervel of time from executing the deaign to obtaining the experimental resulta, on the basis of which to plan another experiment.

There has been one development of analysie which eeeme to be very informative, when the totality of treatment degrees of freedom can be partitioned into meaningful orthogonal aingle degrees of freedom, the half. normal plot of Daniel (1959). The idea of half-normal plotting is the very elementary one of looking at the diatribution of the totality of aingle degree of freedom contraste, and to observe which ones are outliers. The halfnormal plot is a convenient way of doing this. In general tight rules of aignificance for examining the realized half-normal plot do not exiat. The procedures of half-normal plotting have been generalized to the case of a multivariate responee by Wilk and Gnanadesikan (1963, 1964).

In the case of the linear classificatory model: it la obvious that the aimplest deaign problemis to estimate the effects under the aseumption of no interactions. Elfective designa for this case have now been avalleble for ecveral years. The earliest example of euch a design was given by Tippett and is described in Fisher's "Deaign of Experimente" for the testing 5 factors in 25 trials. In the 1940^{\prime} g the following oete of main effect plans were developed:

[^12]the Fisher series:
\[

$$
\begin{aligned}
& 2^{n}-1 \text { factors at } 2 \text { levels with } 2^{n} \text { trials } \\
& \frac{p^{n}-1}{p-1} \text { factors at } p \text { levels with } p^{n} \text { trials }
\end{aligned}
$$
\]

the Plackett-Burman series (related to Mood's weighing designs)

$$
4 N-1 \text { factors at } 2 \text { levels in } 4 N \text { trials. }
$$

An additional series was developed by Addelman and Kempthorne (1961) for

$$
2 \frac{\left(p^{n}-1\right)}{(p-1)}-1 \text { factors at } p \text { levels in } 2 p^{n} \text { triala. }
$$

In all these cases p is a prime number or a power of a prime number. Tukey (1959) and Addelman (1962) Bhowed that these eymmetrical main effect plans can be used to develop very reasonable main effect plans for asymmetrical factorial situations.

In the 1940's Finney (1945) formulated the general ddea of fractional replication, which is closely related to the idea of confounding. It is interesting to note, in passing that Fisher was primarily interested in systeme of confounding, and it was not adequately reallzed for some yeara that he had in fact developed incidentally the series of main effect plans mentioned above. The idea of fractional replication is to use a subset of the totality of treatment combinations chosen on the basia of the definition of effecte and interactions. Obvious candidates as useful designa in this classare the main eifect plans, and the designe which permit estimation of all main effects and two-factor interactions.

Also in 1946, Rao (1947) formulated the idea of orthogonal arraye. An array (N, k, s, t) is a collection of N treatment combinatione out of the totality s^{k} of treatment combination possible with $-k$ factorseach at a levels, such that every combination of every aubset of t factors occurs equally frequently. The value t is called the sirength of the array. An array of atrength 2 is an orthogonal main effect plan. With an aryay of strength 3 , no main effect is confounded with two-factor interactione, but
 strength 4 enables the orthogonal estimation of all main offects and twofactor interactions, and so on. Clearly the enumeration of main effect plana, two-factor interaction plans etc. is related to the enumeration of orthogonal arrays. Box and Hunter (196la, b) have given a rather detailed account of the possibilities of fractional replication with 2-level factors, using the term degree of resolution invtead of the atrength of array of Rao. A design of resolution III: gives main effecte estimates, which will be biassed by two-factor interactions, A design of resolution IV gives main effects unconfounded with two-factor interactions, but with the two-factor interaction somewhat interconfounded and a design of resolution V is a two-factor interaction - clear deaign. They show that design of reson lution III repeated with reversed signe gives a dealgn of resolution IV. They diecues extenaively the arrangement of fractionally replicated plane in blocks. They also examine the poasibility of plane which entimate interactions among all of a subset of the factors with the effects of another subeet of factore, the former, being regarded ae major variables and the latter at minor variables. For exmmple, they divo a 2^{16-11} plan which enables the estimation of all effects and interactione among 4 major variables and the main offecte of 16 minor variables. Box and Hunter (1961b) give the posaible two-factor interaction clear fraction in blocke for up to 1 l factors. The posibillites are as follows;

No. of factor:	5	6	7	8	9	10	11
No. of observationa	16	32	64	64	128	128	128
No. of block:	1	2	8	4	8	8	8.

Addelman (private communication) has found a 2^{17-9} recolution V plan in 8 blocks of 32. These plans enable orthogonal eatimation of all the offecte and two-factor interactions and appear to be the minimal deaigne which allow orthogonal eatimates.

If one is propared to relax the orthogonality requirement, one can obtain reasonably precise estimates with incegular fraction (Addelman, 1961 and Whitwell and Morbey, 1961). For inatance Addelman gives a
fraction $\frac{3}{8}$ of a 2^{7} factorial, $\frac{3}{16}$ of a 2^{8}, and $\frac{3}{16}$ of a 2^{9} to eatimate all main effecte and 2 -factor interactione. Whitwell and Morbey give a design uaing 96 obeervatione which allowe the oatimation of the main offecte and all but 3 of the two-factor interactions of ll factore.

Fractional replication of the 3^{n} factorial systemis much more difficult, $2 s$ soon as one wishes to estimate two-factor interactions. In the case of 5 factors, for instance, the smallest plan which allows estimation of two-factor interactions is a $1 / 3$ replicate requiring 81 observations. The problems of enumerating two-factor interaction clear plans for the $3^{\text {ri }}$ factorial system appear to be rather difficult. Bose, Bush, Seiden and others have worked on the enumeration of orthogonal arrays and on the maximum number of factors which can be accommodated with a given number of observations, but the situation is still quite unclear. Obviously, the main experimental interest is in array of strength 4 .

One possible way of examining a multifactor situation is by some use of random sampling of the totality of treatment combinations. This idea was first put forward, it appears, by Satterthwaite (1959) and attempts have been made to develop a theory of inference from ach eampling, e.g. by Dempater (1960,1961). It appears that the situation is very difficult. Ehrenfeld and Zacks (1961), Zacke (1963) and Ehrenield and Zacke (1963) have examined two procedure of random sampling the totality of treatment combinatione which are based on fractional replication. It would appear that considerable further development is needed of way of ampling the totality of treatment combinations and of analyzing the resultant ample.

The general moral to be drawn, then, with regard to multifactor (qualitative) experimente, is that it is easy to examine for main affocte, more or lese regardlese of the number of levels, hut that examination for interaction can in general be done at all easily only with two level for each factor. It is likely that if the requirenient of orthogonality is waived, plans requiring reasonable numbers of observationa can be developed.

THE INVESTIGATION OF DEPENDENCE OF A YIELD VARIABLE (y) ON

 k CONTINUOUS CONTROL VARIABLES $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$. It would eeem thatwhile there are many aspecte of the dependence of a yield variable on k control variables which can be varied continuously, one can "apin off" ono problem which is quite different in nature from all the others, and that is the optimization problem, namely to determine the values of $x_{1}, x_{2}, \ldots, x_{k}$, euch that the yieldis a maximum (or minimum). Of course there are situ. atione in which there are everal yield variables, say, $y_{1}, y_{2}, \ldots, y_{m}$ and the problem may be more complex, auch as to deterinine the combination $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ for which y_{1} is a maximum, subject to restraint of the type $y_{2}<k_{2}, y_{3}>k_{3}$ and so on.

UKLLMUM SEEKLNG.
 at a time experimentation, until the work of Box and Wilson (1951) to whom great credit is due for tacking the problem with eome degrse of sophistication. I shall enumerate briefly the atepe of the Box-Wilson procedure. They are:
(1) local exploration around a gueseed optimum by means of a design which onablea the fitting of the relationahip

$$
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{k} x_{k}
$$

(2) proceeding along a line in the direction of ateepest ascent in the unite chosen to an optimum on that line;
(3) local exploration eround this newly obtainer optimum as in (1) ;
(4) proceeding along a new ateepeot ascent direction as in (2);
(5) repetition of steps (3) and (4);
(6) when there casecs to be pay-off from this procese, perform local experimentation around the achieved eub-optimum to enable the fitting of aecond degree dependence of y on the $x^{\prime}{ }^{\prime}$;
(7) do mathematical analysia of the achieved second degree relationihip. That is, if one has found the relationehip
then one can make a linear transformation of $x_{1}, x_{2}, \ldots, x_{k}$ to eay $\varepsilon_{1}, \varepsilon_{2} \ldots, \varepsilon_{k} 00$ that

$$
y=\gamma_{0}+\lambda_{1} z_{1}^{2}+\lambda_{2} \varepsilon_{2}^{2}+\ldots+\lambda_{k} \varepsilon_{k}^{2} ;
$$

(8) this representation enablea one to sec the form of the relationehip of y to the $z^{\prime \prime}$ in the neighborhood of the ab-optimum achieved earlier. If all the λ_{i} arenegative, the optimum is at the point Where all the z's are zero. If some are zero there is a abbepace of optima. If for example λ_{1} ie zero and the others are negative
the optimum (maximum) is achieved wherever z_{1} which is a linear function of the $x^{\prime} s$ is zero. If of course any. λ_{i} is positive the maximum is not at all defined by the fit.

Apart from steps (6), (7) and (8) this is the standard iterated steseat ascent. Obviously the procedure was developed for the optimization of a production process in which only local experimentation is possible so as not to disrupt production.

The procedure suffers from the well-known disadvantage of steepest ascent in that progress may be excelient for the first few steps but then becomes very slow. Of course steps (6), (7) and (8) were inserted by Box and Wilson to take care of this.

A line of attack on this froblem, which is closely related to the BoxWilson approach, consiste of trying to develop algorithm which will give rapid convergence to the optimum if the variable to be optimized y, eay, is known without error and is of the form

$$
y=b_{0}+b^{\prime} a+x^{\prime} C x
$$

in which C is negative definite, so that a unique optimum exists. One then attempts to determine the properties of the algorithm if the relationship of the y to the x 's is not of the postulated form, and if y is known only with erro. . The methode I know of which have this structure are the following, the method of parallel tangent due to Shah, Buehler and myself (1964), and the method of Fletcher and Powell (1963). The method of Fletcher and Powell is based on guess of the matrix C. which would ordinarily be taken as the unit matrix, and on succesaive line searches, the directione of which change on the basis of previously determined gradients and on the stepe to the optima on the lines. The method of parallel tangente is really juat an acceleration of the initial steps of the Box-Wilson procedure which removes the necessity of fitting a second order relationship. One variant of the method of parallel tangents has a particularly simple structure:

in which the lines labelled S. A. are steepest ascent lines and the dashed lines are acceleration lines. In the abeence of error and with k dimeneional ellipsoidal yicld contours the maximum as reached at the point labeled $2 n$.

There are other intiotive methods such as pattern search of Hooke and Jeeves (1962), and methods using sectioning of the factor space on the basis of tangent planes to the yield contours (Wilde, 1964).

These methods appear to use with some degree of effectiveness, the information that is accumulated b; the separate local experiments. A real difficulty from a theoretical viewpoint is to evaluate the properties of all these methods, including the Box-Wilson method, in the presence of error.

Just how important it is from a practical viewpoint to establish tight clean mathematical results about the performance of these strategies in the presence of error is, I believe, a mnot point. It would of course be valuable from an aesthetic viewpoint to have such information, but the difficulties of obtaining information of practical value seem to be tremendous. It is clear that the strategies deacribed above are so loosely defined that they cannot be subjected to precise mathemaical evaluation, Answera to such questions as (a) how does one explore lucally? (b) what is the "mpread" of the local design? (c) how does one search for the optimum on a line? (d) how does one decide when to terminate? are not given by th procedures. They are, however, questions which the user will be able to make choices which must, of course, be somewhat arbitrary but which will be modified as information accumulates. If the local experimentation does not.indicate clearly that there is a direction in which improvement can be made, more local experimentation will be done, presumably by either repeating what was done before or by "pulling in" the local design and repeating. Also, it is obvious that the experimenter will survey the totality of information obtained up to any particular point in the process and will modify the algorithms if he can spot a pattern in the response relationship.

A direct attack on the optimization problem with error was made by Kiefer and Wolfowitz (1952) with work related to that of Robbins and Monro (1751) who developed a stochastic approximation acheme for finding the value x, at which the expected value $M(x)$ of a random variable $y(x)$ takes a partic. ular vilue. The Kiefer-Wolfowitz procedure is as follows: for the catae of optimization in one dimension choose two equences of positive numbers, c_{n}, a_{n}, such that $\lim c_{n}=0, \Sigma a_{n}=\infty, \Sigma a_{n} c_{n}<\infty$ and $\Sigma a_{n}^{2} c^{-2}<\infty$, as, for example $a_{n}=\frac{1}{n}, c_{n}=\frac{1}{n} \frac{1 / 3}{n}$; take an arbitrary z_{1} and then use

$$
z_{n+1}=z_{n}+a_{n} \cdot\left\{\frac{y\left(z_{n}+c_{n}\right)-y\left(z_{n}-c_{n}\right)}{c_{n}}\right\}
$$

Then z_{n} converges stochastically to the point z at which $E y(z)$ is a maximum. Kiefer and Wolfowitz (1952) state that there remain the probleme of choices of sequences a_{n} and c_{n} which will be optimal in some sense, and the opecification of a stopping rule. This line of work has been developed considerably by Blum (1954), Dvoretsky (1956), Kesten (1958) and by Sacke (1958), and others to the multidimensional case.

It is not clear at all what the attitude of the practical statistician should be to these very different approaches. Kiefer (1959) states that methods such as the Box-Wilson one or the others of the same flavor, "cannot in their present state have any role in satiafactorily solving these problems, sinct they have no guaranteed probability properties and are not even welldefined rules of operation. " Barnard, however, in discusaion of Kiefer's paper, disag:eed and took the view that rules of operation which are not well-defined inay be preferable to the rules which are. It would seem that the guaranteed property of convergence with probability one with an infinite number of observations is small comfort to the practical man, even though it was obvioualy not easyto develop procedures for which one can prove the property.

What we really lack are accounts of actual experiencea with the various methods. Perhaps a good practical atrategy is to use the "doterminiatic" schemes at first, and then turn to the atochastic schemes when the former cease to give advances.

RESPONSE SURFACE EXPLORATION. I now turn to the problem of studying the dependence of a yield variable Y on continuous control variables ($x_{1}, x_{2}, \ldots, x_{k}$) which has been termed a resporise surface exploration by Box and his co-workers.

The great bulk of the work on this problem has been by Box and his associates, stemming back to the famous Box-Wilson paper (1951). The background for the work is the paper by Box (1952) on first order multifactorial designs, which I have to review even though it was done more than

10 years ago. Here Box specified the amount of variation of each variable ar factor by defining the acale unit S_{i} for the i-th variable as

$$
S_{i}=\left\{\begin{array}{ll}
v & \frac{\left(x_{i u}-\bar{x}_{i}\right)^{2}}{N}
\end{array}\right\} 1 / 2
$$

Where $X_{i u}$ is the level of the $i-t h$ factor in the u-th observation. He defined the otandardized variable $x_{i u}$ as

$$
x_{i u}=\left(X_{i u}-\bar{X}_{i}\right) / s_{i}
$$

He then took the design problem to be as follows:
(a) the experimenter is to specify \bar{X}, , the "center" of the deaign and acale multiplier S_{i} for each variable,
(b) the deaigner of the experiment is to choose an array of standardized levels, $x_{i u}$, at which the observations are to be taken, the actual level: being

$$
x_{i u}=\bar{X}_{i}+x_{i u} S_{i}
$$

In other words, the "center" of the design and the "spread" are specified by the experimenter and the only problem of the deaigner is to choose the $x_{i u}$ which, of course, satisfy

$$
\underset{u=1}{N} x_{i u}=0, \quad{\underset{v i n}{N}}_{N}^{N} x_{i u}^{2}=N
$$

I shall comment on this basis later, but, for the present, will indicate the subsequent developments. In the case of the first order designe, the criterion was optimum estimation of the coefficiente in the equation

$$
y_{u}=\beta_{0}+\beta_{1} x_{l u}+\beta_{2} x_{2 u}+\ldots+\beta_{k} x_{k u}
$$

and tine optamum design is one in which the $x_{i u}$ are given by the columns. after the first, of a matrix $N^{1 / 2} O$. where O is an orthogonal matrix whote first column consists of unit elements. Box then noted that if the number of observations is $k+1$, the experimental points are the vertices of a regular dimensional simplex. He also noted that any rotation of this regular figure would satisfy the conditions. Box and Hunter (1957) developed in considerable detail the concept of rotatability. A design is said to de rotatable if, when the levels of the variables are standardized as stated above to be $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$, the variance of the predicted y at a point $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is a function of these $x^{\prime} s$ only through $\sum_{1} x_{i}^{2}$. In other words if one were to construct contours of variance of the predicted y they would be spherical with center at the 'center' of the design, when plotted in standardized levele. They stated their aim to be 'to develop arrangements which generate information (equal to the reciprocal of the variance of prediction of y) symmetrically in those coordinates regarded as most relevant to the experimenter." Box and Hunter developed second order designs in 2 dimensions by taking two or more concentric ringe of points, with each ring being a regular figure, for example a pentagonal design with extra center pointe. For 3 dimensions, they took points equally spaced on a aphere, for instance, by combining a regular tetrahedron, a octahedron, and a cube with additional center points. For moje than three dimensions they euggested the combination of the points of a 2^{k} factorial, and 2^{k} points of an axial set and additional center points. Throughout attention wa paid to the problem of blocking, that is, of arranging the totality of points in subsets to enable the eliminacion of heterogeneity between the units. Box and Behnken (1960a) developed designs by operating in a simple way on first order aimplex designs. If the points of the simplex design are regarded as vectors, one can develop additional points by forming sums of the original vectore two at a time, sums of the original vectors three at a time, and 80 on. The configurations so developed are then scaled to satisfy the scaling and rotatability conditions. In this way they obtained, for instance, designs to examine 4 variables in two blocks of 22 observations, 5 variables in two blocks of 26 observations, 6 variables in two blocks of 34 observations, 7 variables in two blocks of 33 observations. The last one in this list is quite impressive in that it uses only 3 levels of each factor and enables all 36 coefficients of a second degree fitting to be evaluated reasonably. It is curious that all the points except the center points be on a hypersphere of radius $\sqrt{3}$ (in the standardized units). Box and Behnken (1960b) developed
another series of 3 -level rotatable designs by utiliaing incomplete block configurations. The simplest example was the follnwing wa have the balanced incomplete block configuration

"Block"		x_{1}	x_{2}	\mathbf{x}_{3}	x_{4}
	1	x	x		
	2			x	x
	3	x			x
	4		x	x	
	5	x		x	
	6		*		x

If a "block" contains x_{i} and x_{j}, it is replaced by the 4 treatment combination on x_{i} and $x_{j},(-1,-1),(-1,1),(1,-1)$ and $(1,1)$, the other variables being taken at the zerolevel. Bose and Draper (1959), Drapar (i960a) and others have conetructed classes of second order rotatable designe. Gardner, Grandage and Hader (1959) and Draper (1960b, 1961, 1962) have developed third order rotatable designs. Throughout it appears that the designs are based on the combination of aymmetrically placed pointe on apheres in the standardized factor apace. The ideas of Box have led to the development of a coneiderable array of designa, all based on the concept of rotatability. Many of the designs are remarkable in that they allow the fitting of functions of the second or third degree with relatively low redundancy of experimental points. Also by choosing odd momenta up to particular order equal to zero, one can prevent blas in the regresaion coefficiente from third order coefficients in the polynomial representation.

The motivation for the development of the array of rotatable denigne seems to be aummarized by Box and Behnken (1960a, page 840) in the following quotation,
"At a particular stage we are interested in the behavior of the response function 'in the neighborhood' R of some particular point P. We have in mind that the operability region O, that is the region in the space of the variables in which experiments could be conducted, ia fairly extensive and that P ia not close
to the boundary of 0 . We suppose that the neighborhood of
 boundary of O and that scales, metrics and transformations are chosen either implicitly or explicitly such that R is very approximately spherical and is centered at P."

Essentially all the designs whose development I have mentioned earlier were aimed at controlling the variance of the prediction based on the fitting of a polynomial of the first second or third degree. There had been some attention to the bias in estimated polynomial coefficients from higher polynomial terms that were ignored in the fitting. Box and Draper (1959) made a direct attack on the problem of bias, within the framework of previous developments. The situation considered was that a function $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is fitted, when the true functional dependency is $g\left(x_{1}, x_{2}, \ldots, x_{k}\right)$. The mean square error of a prediction consists of the variance plus the square of the bias. Box and Draper consider the average over a region of interest R in the $\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ space of these two components, for the particuler case when $f\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is linear and $g\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is quadratic. They conclude that the optimal design is very nearly that which would be obtained If variance is ignored and only bias is considered. If this conclusion is accepted, it would appear that the whole clase of rotatable designe based on variance considerations, need careful re-examination from the viewpoint of bias. The development depends atrongly, it would appear, on the choice of the region of interest a being sherical in the atandardized variables, and on equal weighting over the interior of the "sphere" of interest. The reamons for choosing this framework appear to be mathematical, in that with this framework, integrals can be evaluated. Box and Draper prove a theorem that is highly indicative of the nature of the problem. The theorem states that if a polynomial of degree d_{1} is fitted by least squares over any region of interest R in the k variables, when the true function is of degree d_{2}, greater than d_{1}, then the average squared bias over R is minimized by making the moments of order up to $d_{1}+d_{2}$ equal to the corresponding moments of a uniform distribution over R. So if one knew nothing about the true function except that it can be represented oy a polynomial of indefinitely large defree one should apread the observations evenly over the region R. Clearly the definition of the region R should be made in terme of variables for which cine could hope that a low degree polynomial would give a good fit.

The whole line of development appears, however, to suffer from some defecta which are illustrated by the simplest designs that were developed -- the simplex first order designa. For the case of 3 variables with 4 observations, Box exhibited two designs which he claims to be equally good:
$D_{a}=\left[\begin{array}{ccc}x_{1} & x_{2} & x_{3} \\ -1 & -1 & -1 \\ 1 & -1 & -1 \\ -1 & 1 & -1 \\ 1 & 1 & 1\end{array}\right] \quad D_{b}=\left[\begin{array}{ccc}x_{1} & x_{2} & x_{3} \\ -\sqrt{2} & \frac{-\sqrt{2}}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\ \sqrt{2} & \frac{-\sqrt{2}}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\ 0 & 2 \frac{\sqrt{2}}{\sqrt{3}} & \frac{-1}{\sqrt{3}} \\ 0 & 0 & \frac{3}{\sqrt{3}}\end{array}\right]$
with

$$
D_{a}^{\prime} D_{a}=D_{b}^{\prime} D_{b}=4 I
$$

where I is the 3×3 identity matrix. These two designe have the ame center and have equal apread with the definition of Box. However, if design D_{b} can be used, x_{1} can be varied between $-\sqrt{2}$ and $\sqrt{2}, x_{2}$ can be as large as $2 \frac{\sqrt{2}}{3}$, and x_{3} can be as large as $3 / \sqrt{3}$, whereae in dealgn D_{a} the limits for each x are from -1 to +1 . If however, the eituation is such that one can vary the x's over the ranges epecified in design D_{p}, one would be foolish in not varying them over the ame range, with the first order design D_{a}, and if one does, the resultant design D_{a}^{*}, eay, is clearly better as a first order design than the design D_{b}. The asme criticiem has been made by Kiefer (1961b).

This simple example brings to light one of the basic problems of exploration, as opposed to optimum seeking, namely, that the region of possible experimentation must be defined if one is to attempt to develop
a good design. The simple example above shows that the standardisation of variables in terms of root mean square devistinn nf levele resulte mpeevid=: restrictions. It would seem more natural and appropriate to define the region of possible experimentation in terms of the original unstandardized variables. If one is exploring the relationship of a yield variable y to a single control variable X, a natural restriction would be that one can experiment at X values in a prechosen interval of X, say from $X=a$ to $X=b$. If one has two control variables X_{1} and X_{2}, a possible specification of the region of permissible experimentation would be X_{1} in the interval (a_{1}, b_{1}), and X_{2} in the interval $\left(a_{2}, b_{2}\right)$. It is, of course, quite likely that as soon as one has more than one variable, the region of possible experimentation will not be rectangular in the variablea originally thought of. It is inconceivable that one will be able to develop a useful theory of experimentation for an arbitrary region of possible experimentation. It does, however, seem reasonable that one can choose "new" control variables that are functions of the originally thought of variables so that the region of posible experirnentation in the 'new' variablea is approximately either a hypercube or a hypersphere. At least in this way one can set up a mathematically defined problem for which one can hope to get an answer. One might hazard the guese with the emphasis on sphericity that resulta from conaiderations of rotatability, that the rotatable designs will prove to be good designe in the case when the region of posaible experimentation can be defined to be spherical. Some problems of allocation for polynomial regrestion within a sherical region have been considered by Kiefer (1961b) and are discussed below. It appears that a few of the Box-Hunter rotatable deaigns of very specialized nature are oftimal with respect to two of the posible criteria. However the implications of the scaling in the Box-Hunter rotatable designs are obscure.

It appears, ther, that a more fundamental approach to the problem of design would take as its base a definition of region of possible experimentation, provided by the experimenter. It is then neceseary to formulate the aims of the experiment, and it is at this point that one opens a Pandora's box, because of the multiplicity of partially conflicting aime that always occura.

Since the beginning of the formai deveivinicat of designa there has been some attention to optimality of design. In the simple case of linear regression on an interval it has been known for decades that the beat disposition of resources for estimation of the slope is to place half of the observations at each end of the interval. In the case of comparisons of two groups it is obvious that for maximum precision of the group difference one should have equal numbers of observations in the two groups. It is also obvious that if one has several groups, and one has the came interest in all posable differences of pairs of groups, one should, with homoscedasticity, have each group equally represented. Indeed the requirement of equal interest forces equality of representation. The classical symmetrical designs for error control, such as randomized blocks, Latin squares, balanced incomplete blocks, were considered good, because the prime interest of the experimenter was conaidered to be estimation, with equal interest in all the treatments, which were taken to be fixed. They were also baeed on the diea that the main difficulty of experimentation was to control variability between experimental units, and that variability within a group of experimental unite was a monctonic function of group size.

Work on optimality of design was done early by Plackett and Burman who howed that the orthogonal 2^{n} plane or fractions of theae, ach an those based on Hadamard matrices were optimal in a useful cence for qualitative main effects of two-level factors. Indeed they resulted in ae efficient eatimatior for each ingle parameter, as one could obtain if one used the whole of the experimental resources just to eatimate that eingle parameter, and this, really, is much more than one was ever entitled to hope for. A few yeare later optimality of design wat attacked frontally by Elfving (1952), Chernoff (1953) and Ehrenfeld (1955). The topic was taken up very extensively by Kicfer and Wolfowitz (1959) and Kiefer (1958, 1959, 1961a, b, 1962).

The whole probiem of optimal design is of course, to decide what to optimize for. Kiefer (1959) liete eeveral posaibilities:
(a) maximizing the infimum of power of test of a null hypothesis againet a class of alternatives (M-optimality),
(b) maximizing the limiting power of test in the neighborhood of the null hypothesis (L-optimality),
(c) minimizing generalized variance nfeatimaten of narametere (D-optimality),
(d) minimizing the maximum eigenvalue of the variance-covariance matrix of estimates, used by Wald (1943) and Ehrenfeld (i955) (E-optimality),
(e) minimizing the trace of the variance-covariance matrix of estimates (A-optimality),
and
(f) minimizing the maximum variance of prediction over the experimental region (G-optimality).

These criteria can be applied to the totality of parameters or to chosen subset of the parameters.

It needs to be emphasized, I think, that all these criteria are related to the problem of control of error with model which ie asamed to be true. It is not clear that designa which are good for error control are also good for detection of blas of model, as Box and Draper showed in work that I mentioned earlier. In the incomplete biock problem, for instance, I am inclined to the view that designs which have some repetition of treatmente within blocke are deairable. Such designs will be inefficient with regard to any of the above optimality criteria, if balanced incomplete block designe are posuible, but will enuble better examination of the adequacy of the usual additive model.

Kiefer (1958, 1959) hae proved that balanced block designe, Latin aquares, Youden squares, orthogonal arrays, are optimal with regard to criteria A, D, E and L. These reaults are, I suppose, of some mathematical interest, and suggest that if one has a balanced array of experimental unita one should try to une the reatictions of the array. However they do not answer questions like whether one should uae t Latin square design rather than a complete block design. The Latin square result states that if one is going to use the Latin square model for analysia one should use the Latin square design, and as such is not at all surprising.

Kiefer (1958, p. 676) characterizes M-optimality as 'the atrongest and least artificial of the four' criteria, D, E, M and 1 . and ! $\because \because=\approx$ ztiaition tu tesiing oi nypotheses that led Kiefer to give the oxamplea which generated, apparently, much unneceasary heat ut the Royal Statistical Society mooting. Kiefer pointed out that if one had 6 observations to be split among three populations which are $N\left(\theta_{i}, \sigma^{2}\right), i=1,2,3$, then different designe were optimal for the three problems:
(a) point estimation of $\theta_{1}, \theta_{2}, \theta_{3}$
(b) testing the hypothesis $\theta_{1}=\theta_{2}=\theta_{3}=0$
(c) testing the hypothesis $\theta_{1}=\theta_{2}=\theta_{3}$,
where in (b) and (c) one is interested in alternatives near the null hypothesis. For problem (a) one should take 2 observations from each population, for problem (b) one should take one of the populations at random and use all 6 observationa on it , while for problern (c), one should take two of the three posaible populationa at random and then take 3 obeervations from each. This example howa very elearly that different criteria of optimality can give radically different deagne.

The work of Klefer and Wolfowite is more informative, I think, in the area of polynomial regresaion than in the area of qualitative experimenta. tion. The history of optimum allocation for polynomial regreasion appeare to be as followe. In the one-dimensional case for which the unita can be chosen so that the interval of experimentation is ($-1,1$), Guent (1958) considered the G criterion above, the maximum variance of a prediction, and ahowed that this was minimized by placing $\frac{1}{k+1}$ of the points at each end of the interval and at the zero of the derivative of the k-th degree Legendre polynomial. Hoel (1958) showed that if one wioheato minimise the generalized variance of the coefficients of a k-th degree polynomial the optimum allocation was the same at that obtained by Guest. Kiefer and Wolfowitz (1959) showed that the beat eatimate of the coefficient of x^{h}, when a polynomial of degree h was required for the x-interval ($, 1,1$), was to place $1 / 2 \mathrm{~h}$ of the observations at each end of the interval and $1 / \mathrm{h}$ at the points cos $(j \pi / h), 1 \leq j \leq h-1$, which may be termed Chebychev spacing. In experimentation on the equare $-1 \leq x_{1} \leq 1,-1 \leq x_{2} \leq 1$, the
best test of interaction term $x_{1} x_{2}$ is obtained by placing $1 / 4$ of the observations at each corner. Of course all the above olutiona depand un the total number of nheevテatauns being appropriately divisible. Kiefer (1959) gives the example that with 4 observations, the best placement for cuble regression on the interval $(-1,1)$ is at the value $\pm 1, \pm 1 / \sqrt{5}$, and with 5 ubservations the best placement is at tine values $0, \pm \mathbf{-}, 511, \pm 1$. The dependency of optimum design on the specific value of N is avoided by Kiefer and Wolfowitz who consider how best one wo uld place an infinite number of observations. Such placements can be regarded as approximate designs, and they proved (1960) a rather remarkable theorem that the design using a large number of observation which minimizes the generalized variance of the coefficients of a polynomial fitting would also minimize the maximum variance of a predicted value over the experimental region. It is not clear just how useful this result is for ressonable numbers of observations, and how one should use the approximate placing given by the theorem to arrive at a placement for a reamonable number of observatione.

With this proviso, however, this later work of Kiefer and Wolfowite gives an indication for the choice of deaign in "response eurface exploration," at least if one views the matter as a problem of polynomial approximation. The fact that the generalized variance of coefficients de minimized wo uld tend to indicate (though it does not guerantee) that all the coefficiente of a polynomial are being eatimated with reanonable precision, and the fact that the maximum variance of a prediction is minimized ehould to a moderate extent permit the discovery of lack of fit by the polynomial.

In the cace of quadratic regresion on a hypercube bounded by -1 and 1 in each direction, in $q(=2,3,4$, or 5) dimensions, Kiofer (1961) how: that the beat "infinite" design is to asalgn a proportion a of the experi. mental pointe to each of the 29 corners, a proportion β to the mid point of each of the $q 2^{q-1}$ edgen, and a proportion γ to the center of each of the $q(q-1) 2^{q-3} 2$-dimensional faces of the hypercube. In the cane of q equals 5 , the valuea of a, β, γ are

$$
\begin{aligned}
& a=.01928 \\
& \beta=.0003125 \\
& \gamma=.004475
\end{aligned}
$$

However, in view of the fact that the a eet contains 32 points, and the β and γ sets contain 80 points each, this "infinite resources" anawer is not really useful, It does not tell us, ior instance, how we should place say 50 or 60 observations. It does appear to indicate, however, that if the G criterion, which seems a somewhat superior one for exploration, is adopted, then the experimental points should be placed near the corners and edges of a rectangular experimental region. This is in considerable contrast to the rotatable designs discussed earlier, which seem to devote much attention to the center and interior of the region.

Later Kiefer (1961b) examined polynomial regression when the region of experimentation and interest is the hyperephere or"ball, " $\boldsymbol{\Sigma} \mathrm{x}_{\mathrm{i}}^{2} \mathrm{~s} /$ It might be expected that the deaigns he would get would be related to the rotatable designs in that the latter seem to be almed at a pherical region of interest. Kiafer considera the approximate case, that is, the "infinite resources" case, so that D-optimality and G-optimality are equivalent. He was able to characterize partially the approximate optimal design, and showed that it 1 s yotatable. In the case of linear polynomial fitting, the best design has equal weight at the vertices of an inceribed reguler aimplex or the vertices of any other inecribed regular polygon. So for thin cate the maximally epread simplex design of Box (1952) is optimum with these criteria. Also in two-dimensions with quadratic regreseion, the design with one observation at the center and one at each vertex of an inecribed regular pentagen is D-optimal and hence G-optimal. However, apparently most of the rotatable deaigns do not have these optimality properties. I cannot regard the lack of optimality properties as aeriously as apparently Kiefer does. Klefer (1961b, p. 398), ieels that he duetified for the firat time the use of rotatable designs but I regard his resulta as mathematicolly rather elegant, and not totally relevant to the problems of the experimenter. The repiesentation of yield as a polynomial in the control variables de unaesthetic and uneconomical of pararacters, xcept in the optimization problem Even in the optimization problem it is highly questionable whether one should do local experimentation other than to get gradients. I agree with Klefer that the framework within which Box and his associates have worked has serious logical deficiencies, but almo have the view that they developed some very useful designs and design ideas.

CONC LUSIONS ON THE EXPLORATION PROBLEM. The problem of studying the dependence of a yield variable on control variables is not welldefined. Experimenters with this problem will have a multiplicity of aims
such as to obtain reasonably precise estimates, reasonable strength of evidence against particular null hypotheses of interest, ability to select a functional form that represents the data well and is economical of parameters, and so on.

The theoretical statiatician can obtain optimal designs only by forcing the problem into a highly idealized simplified form, and there is a tendency to regard the optimal design for idealized simplified form as the design the experimenter should use. This attitude seems to be exemplified by Kiefer's remark (1959, p. 316), "Why not think in terms of the right space of decisions irom the outset?" I have yet to meet an experimenter whose aims can be represented by a space of decisiona, which is -ufficiently well-defined to be ausceptible to auch an attack.

The work of the optimizers is, however, valuable, because it gives us suggestions of respecte in which a plan may be weak. The upohot for me of the work I have reviewed is exemplified by the following caies. In the case of 3 factors in a cubic region ($-1,1$), I would do the following:
(i) with 4 observations I would take a 2^{3-1} factorial at the corners;
(1i) with 9 observations I would use a $1 / 3$ replicate of the 3^{3} with levels $-1,0$ and 1 for ach factor;
(dit) with 15 points I would use the corners and center of each face and the center which is essentially a central composite design but not rotatable;
(iv) with 27 points I would use the full 3^{3} factorial with levels $-1,0$, and 1 .

If the problem is really one of studying the dependence I would try to persuade the experimenter to do the full factorial (iv), because it would enable me to think, to some advantage, about representations other than by a polynomial. In the case of 4 factors, I would think with a low number of possible observations in terms of main effect plans with observations at the corners. If more were possible I would consider the sets of points:
$S_{1}:(\pm 1, \pm 1, \pm 1, \pm 1)$
$S_{2}:(\pm 1, \pm 1, \pm 1,0)$ with permutations
$S_{3}:(\pm 1, \pm 1,0,0)$ with permutations
$S_{4}:(\pm 1,0,0,0)$ with permutations
and $S_{5}:(0,0,0,0)$.
I would take a combination of these sets. For instance, if 1 were allowed 24 pointa, I would u ese S_{1} and S_{4}, and with 40 pointe I would use S_{1} and S_{3} and so on [cf. De Baun, 1959]. Obviously my views have been influenced by both Box's work and by Kiefer's work.

It is, however, also obvious that a realistic procedure should take account of sequential plans. Consider, for example, the investigation of the dependence of a yield variable y on a control variable x in ($-1,1$), Suppose that the information on y for each chosen x is available as socn as the experimental run has been made. A rational procedure is not to uee Chebychei spacing or Legendre spacing, but to take an observation at $x=-1$ and at $x=+1$. One would then take one at $x=0$, and try to connect three points by a quadratic, or seek a reasonable tranaformation (non-linear) of the x scale so that the 3 observations fell on a line. One would then probably take additional observations in the middle of the gape of the best picture one has obtained up to the time of planning new observations. One would, of course, have prefaced the whole matter by obtaining a rough idea of experimental error. It ds very difficult to see how the concepts of decision theory and testing of hypotheses can be brought to bear on such a process

It is clear that practical optimum designing depends on more ingredients than have so far been incorporated in the theory. What one ehould do deperds crucially on:
(a) what use will be made of incomplete information?
(b) what is the rate of ieed-back of experimental information?
(c) will the experimenter be able to do additional experimenta to fill in gaps in information?
(d) how valuable is information to the experimenter in relation to time? [What is the present value of future information? This will of course depend on what the future information is.]
(e) what is the cost of experimentation? The simple idea of a fixed cost per observation appears to be relevant at best only in some technological st.लies.

The difficulties of constructing a theory which incorporates these asects appear to be very great, but should not dissuade us

FINAL NOTE. It is unavoidable that I cannot describe the results of every paper in the ileld. The reference list gives only papers referred to and much good work is not discussed. A notable example is the work of Scheffé (1963) on experimentation on a implex.

REFERENCES

Addelman, S. (1961). Irregular fractions of 2^{n} factorial experimente.
Technometrics 3: 479-496.
(1962). Orthogonal main effect plans for asymmetrical
factorial experimenta. Technometrica 4: 21-47.
\qquad and O. Kempthorne. (1961), Some main effect plana and
orthogonal arrays of strength two. Ann. Math. Stat. 32: 1167-1176.
Anscombe, F. J. (1961), Examination of residuals, Pror, fourth Berkeley Symposium on Mathematical Statistics and Probability l,: 1-36.
and J, W. Tukey. (1963). The examination and analysis of residuals. Technometrics, 5: 141-160.

Blurn, J. (1954). Multidimensional stochastic approximation methods. Ann. Math, Stat. 25: 737-744,

Bose, R. C. and N. R. Draper. (195y). Second order rotatable deaigne in three dimensions. Ann. Math. Stat. 30: 1097-1112.

Design of Experiment:

Box, G.E.P. (1952). Multifactor designa of first order. Biometrika, 39: 49-57.
and D. W. Behnken. (1960a). Simplex aum designs: A class of second order rotatable designs derivable from those of fir it order, Ann. Mäth. Stat. 31: 838-864.
and \qquad (1960b), Some now 3 level designs för the study of quantitative variables. Technometrice 2: 455-476.
and N, R, Draper. (1959). A basis for the elaction of a response surface design, J. A, S, A. 54: 622-654.
and J. S. Hunter. (1957) . Multifactor experimente for exploring response surface日. Ann. Math. Stat. 28: 195-241. and \qquad (1961a). The 2^{k-p} fractional factorial designs. Technometrics 311-352.
\qquad and \qquad (1961b). The 2^{k-p} fractional factorial designs. Technometrics 3: 449-458.
\qquad and K. B. Wilson. (1951). On the experimental attainment of optimum conditions. J. R, S. S., B. 13: 1-45.

Chernoff, H. (1953). Locally optimal deagna for eatimating parametera, Ann, Math. Stat. 24: 586-602.

Dandel, C. (1959). Use of half-normal plots in interpreting two-level experiments. Technometric: $1: 311-341$.

DeBaun, R. (1959). Reaponse iuyface designs for three factoriat thres levels. 'Technometrics $\mathrm{L}: 1-8$.

Dempster, A, P. (1960), Random allocation designs I: On general clasees of estimation methods, Ann. Math. Stat, 31: 885-905.
(1961). Random allocation designe II: Approximate theory for simple random allocation. Ann. Math. Stat. 32: 387-405.

Draper, N. R. (1960a). Second order rotatable designe in four or more dimezsions. Ann. Marn, Stat. 31: 23-33.
(1960b). Third order rotatable designe in three dimensions. Ann. Math. Stat. 31: 865-874.
(1.961a), Third order rotatable designt in three dimensions. Ann. Math. Stat. 32: 910-913.
(1962). Third order rotatable designa in three factora analysis. Technometrics 4: 219-234.

Dvoretsky, A. (1956), On atochaatic approximation. Proc. third Berkeley Symposium on Mathematical Statistirs and Probability, 439-455.

Ehrenfeld, S. (1955), On the efflciency 0 : experimental deaigne. Ann, Math, Stat, 26; 247-255.
and S, Zacks. (1961), Randomization and factorial experiments, Ann. Math. Stat. 32: 270-297,
and \qquad (1963). Optimal strategies in factorial experimente. Ann. Math. Stat. 34: 780-791.

Elfving, G. (1952). Optimum allocation in linear regression theory, Ann, Math. Stat, 23: 255-262.

Finney, D. J. (1945), The fractional replication of factorial experimente. Arr. Eug. 12: 291-301.

Fletcher, R, and M, J, D. Powill. (1963), A rapidly convergent descent method for minimization. The Computer Journal 6: 163 -

Gardner, D. A., A. H, E, Grandage and R, J. Haden, (1959). Third order rotatable deagne for oxploring reaponee eurfacen. Ann, Math. Stat. 30: 1082-1096.

Guent, P. G. (1958). The opacing of obervations in polynomial regresion, Ann, Math. Stat. 29: 294-298.

Hoel, P. G. (1958). Efficiency problems in polynomial eatimation. Ann. Math Gtat 20.1134 -114h

Hooke, R. and T. A. Jeeves. (1962), Direct search olution for finding stationary values of a function of several variables. J. Asmoc. Comp. Mach., 8: 212-229.

Kesten, H. (1958). Accelerated atochastic approximation. Ann. Math. Stat. 29: 41-59.

Kiefer, J. (1958). On the nonrandomized eptimality and randomized nonoptimality of symmetrical designs. Ann, Math. Stat. 29: 675-699.
(1959). Optimum experimental designs. J. Roy. Stat. Soc. B, 21: 272-319.
(1961a), Optimum designs in regression problems $\mathbb{L}_{\text {. }}$ Ann, Math. Stat. 32: 298-325.
(1961b), Optimum experimental designe V with applications
to rotatable and systematic deaigna, Proc. Fourth Berikeley Symposium on Mathematical Statistics and Probability $1: 381-405$;
\qquad (1962). Two more criteric equivalent to D-optimality of designs. Azn. Math. Stat. 33: 792-796.
\qquad and J. Wolfowitz, (1952). Stochastic estimation of the maximum of a jegreseion function, Ann, Math, Stat. 23: 462-466.
and \qquad (1959). Optimum design in regreasion problems, Ann. Math. Stat. 30: 271-294,
and \qquad (1960). The uywiderus of two extromum problems. Canad. J. of Math. 12: 363-366.

Kurkjian, B, and M, Zelen, (1962), A calculua for factorial arrangemento. Ann, Math, Stat. 33; 600-619.

Rao, C. R. (1947). Factorial arrangemento cierivable from combinatorial aryangements of arrays. J.R.S.S. B, 9: 128-139.

Robbins, H. and S. Monro. (1951). A atochastic approximation method. Ann. Math. Stat. 22; 400-407.

Sacke, J. (1958). Asymptotic diatribution of stochastic approximation procedures. Ans. Math. Stat. 29: 373-405.

Satterthwaite, F.E. (1959). Randum balance experimentation, Technometrics l: 111 -138.

Scheffé, H. (1963). The simplex-centroid design for experiments with mixtures. J. Roy. Stat. Soc. B, 25, No. 2; 235-263.

Shah, B, V., R, J. Buehler and O. Kempthorne. (1964). Some algorithma for minimizing a function of eeveral variables. J. SLAM 12: 74-92.

Tukey, John W, (1959). Diacuasion of papers by Mesara. Satterthwalte and Budne. Technometrics 1 : 166-174,
(1962), The future of data analyade, Ann. Math. Stat. 33:1-67.

Wald, A. (1943). On the efficiogt design of atatiatical inveatigationa, Ann. Math, Stat. 14: 134-140.

Whitwell, John C, and Graham K, Morbey, (1961). Reduced designe of resolution five. Technometrice 3: 459-\$78.

Wilde, D.J. (1964). Optimum seokingmethodi. Prentice Hall Irc.
Wilk, M. B. and R. Gnanadestkan. (1963), Graphical analyade of multireaponse experimental data uning ordered distancea. Technometrice 4: 1-20.
and \qquad - (1964). Graphical method: for internal compariaonain multiresponae experimenta. Anm. Math. Stat. 35: 613-631.

Zacke, S. (1963). On a complete clasa of linear unbiassed estimatora for randomized factorial experiments, Ann. Math. Stat. 34: 751-768.

APPLICATIONS OF DIMENSIONAL ANALYSIS TO MULTIPIEE REGRESSION ANALYSIS

David R. Howe:
U. S. Army Strategy and Tactice Analysis Group Bethesda, Maryland

INTRODUCTION. The thary of dimensions which I will discuss, is concerned with the relations that may be found between quantities occuring in nature as a result of the operations which muat be performed in order to measure them. Dimensions are things like inches, pounds, minutes, or volts, or rather, the characteriestics which standard measurement units such as inches, pounds, minutes, or volts characterize; namely, length, masa, time, or electrodynamic potential. Physiciata and engineera have been making an analysis of these dimenaions, as a phase of every problem for many years. The point I want to make today is that a dimenaional analyais of a problem should be even more important to a atatiatician, aince auch an analysis can reduce both the siee of an exporiment and the work required to analyze ft. Aa it la not hard to ahow, a dimenalonal analyaia coud, in a given problem, reduce the ample aize by more than half, in fact, in the present stage of development of the design of experiments, dimensional analyais offeri greater hope for reducing the cont of experimente than any further refinemente in construction of blockn, replleatea, and so forth, in addition to dia promine toward reducing the cont of an experiment, dimenalonal analyais has another virtue almost equally important. That ia, a dimenaional analyais carefully conducted can yield a great deal of information, which would otherwice be unobtainable, about the type of model which should be adopted in planning and analyaing an exporiment.

Althoughthe basic deasin dimensional analyais have been in use among phymiciati and ongineere for over a century, they are apparently almont unknown among atatiatictans; at least there de no reference to the abject in the index of the Journal of the American Statiatical Ansociation or any other statiatical publication or textbook that 1 am acquainted with.

Howevar, the theory of dimensione hai profound implicationa in the study of statistical problems. The theory, onginated by Joseph Fourier [1] ds based upon the obecrvation that; to quote Fourier:
"Every undetermined magnitude or constant has one dimenaion proper to dtself, and the terma of sne aird the amo equation could not be compared df they had not the same exponent of dimenaion."

Thus, if a group ot variables are connected in a mear equation involving coefficients to be determined by a multiple regression those coefficients must represent quantities whose dimensions are such as to give the zame overall dimenaion to every term in the equation. Similarly also, for equa. tions of higher degree.

Therefore, when linear or polynomial expressione are selected as models for the deaign or analyais of an experiment, it should be required that any coefficients postulated in these expressions have a dimensionality which bears a reasonable interpretation in context. However, one might justly criticize a model in which one of the coefficienta were required to assure the dimension of cubic tons per square degree dollar (and i have seen such an example). If we apply the theory in a more detalled way wo can arrive even more exactly at the type of model which chould be appropriate, and obtain information concerning those interactiona which are to be expected and which can be ruled out.

An example will serve to illustrate what dimenaional analypis can provide the statiatician, In Duncan, 2, one finds an experiment in which cotton yarn specimens are tested for yarn atrength, yarn length, fiber tonalle atrength, and fineneas. Slide No. 1.
X_{1} : Yarn Strength, Pounds
X_{2} : Fiber Length, Inches
X_{3} : Fiber Tenalle Strength, Pounds per square inch
X_{4} : Fiber Finenena, Micrograms perinch.
Thle problemis discussed and analyzed as one involving one dependent, anu three independent variables. However, as a reault of dimensional analyain, one is able to postulate:

$$
f\left(\frac{x_{1} x_{3}}{x_{4}^{2}}\right)=\frac{x_{2} x_{3}}{x_{4}}
$$

where an univariate relationship exists between the quantities on the right and left. An analysis of the data is shown in figure 1 . Using the method of least squares, and the data on page 674, one obtains the ragression line:

$$
x_{1} x_{3} / x_{4}^{2}=.05872\left(x_{2} x_{3} / x_{4}\right)-3.90
$$

with a coefficient of correlation of $r=.955$. Applying this formula to another set of data from the same source given on page 699, and comparing predicted with actual values of X_{1}, one has a sum of reoiduals of 107 , and a standard error of 9.86. Comparable results using the multiple regression equation given on page 693 are li4 for the sum of rcsiduals and 8.22 for the atandard error.

The value of the dimensionless equation is appreciated by considering that it contains only two fitted constante as against four for the multiple regression equation and yet precicts approximately as well. Moreover, the calculation were vastly simpitfied. Finally, by keeping the number of fitted constants to a minimum, one avoids the danger in complex predictive hyper surfaces that wild contortiona may occur in regions which do not happen to be represented in the data, yet which are auperficially interpolative. This aimplifies and improves the situation from overy point of view. In general, the insighte provided by dimensional analyais are valuable, and the method is exay.

THEORY OF DIMENSIONS. As is shown in Murray [3], any primary dimension which is effectively presant in an experiment or process can be used to reduce the number of variablea by one. This fact is explained as follows: External standards of measurement, ach as an international motric unit are not necessary to describe a process. Any quantity within the process itself could. ve as a standard of measurement for other variables measured in the, ne dimension. in any formulae, table: or charts deacribing a process measured in this way, the aymbol of the variable taken as the mensurator would not occur, since, being the standard, its value would always be unity. However, an outade observer could convert these same formulae, tables or charte for use with external measurement unite, by supplying the aymbol of the mensurator as a denominator under the ambol of each variable to measured.

The ratio of a simple or compound variable to themenarator is referred to as a dimensionless term. Since we reduce the number of variables by one for each primary dimension, m variables in n dimensions can be represented in the form of $m-n$ dimenaionless terms provided an adequate aystem of mensuration can be found.

Each variable may be saic to have a vector of dimenaion

$$
P=\left[\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{m}
\end{array}\right]
$$

where each U_{i} represents the exponent taken by the i th dimension in the dimensionality of the variable as a whole. Thus, if $i_{1}=$ mass, $i_{2}=$ length and $i_{3}=$ time, the dimensional vectors of apeed (metersi min. ${ }^{-1}$) and presaure ($K G^{1}$ meter ${ }^{-2}$) are;

The dimensional vectors of all variablea that can be relevant to a problem forme a set which has the property that if a vector P belonge to the aet so does $C P$ where C is selected arbitrarily, and if P_{1} and P_{2} belong to the set, so does $P_{1}+P_{2}$, the vector of the product of the variables. These properties dafine a linear vector space which is a cloeed set.

If we can find n variablen with linearly independeat vectore in this space, these variables are aid to apan the vector space. The vector of any variable can be duplicated from the n independent vectora by ecalar multiplications and vector additione. Theae independent vectore are a basis for the vector epace and a menaurator for any varlable can be conatructed by combining the variables having these vectors. Any n vectora can be tested for independence by forming the determinant vinch hat these vectors as columna. If it in not zero, they are independent.

Prouded then, that a basis of n independent vectori exinte, all m-n variables can be measured by menaurators conatructed from the n variables having those vectors. Thus, the procese can be represented

$$
\begin{equation*}
f\left(\Pi_{1}, \Pi_{2}, \ldots, \Pi_{m-n}\right)=1 \tag{1}
\end{equation*}
$$

Where each term is composed of the ratio of a variable to its mensurator.
The theorem above is referred to at the Buckingham Theorem after Buckingham [4]. For practical methods of constructing sets of termesee Langhaar [5], or Murphy [6].

The completely general functional expression (1) is as far as the theory of dimensionality can take us. The explicit function must be determined by experimentation and statistical analysis, or from aubject matter theory, or both. When $m-n=1$, the problem is solved by dimensional analysis alone, and wher $m-n=2$, simple statiatical techniques will uavally suffice.

MIXED DIMENSIONAL AND DIMENSIONLESS EXPRESSIONS. Previous texts have considered only cor etetely dimensionlesa representations and have ignored the posability ci a nittia.ly dimensioniass formulation, Under these circumstances no guide nem provided icu tie analyais of problema in which the vectors of the variables given are insufficient to span the vector space. Thi occurs wher a complete apecification of the forces acting in a procesa cannot be made. Such incomplete dimensional pecificatione do not necessarily negate the advantages of dimensional analysis. Some of the variables may atill be reduced to a common mensurator, thus, permitting some reduction in the number of variables. For example, conaider a chemical experiment with the following variables:
X_{1} Amount of Yield, Mols
X_{2} Amount of Reactant, Mols
x_{3} Amount of Acid, Mola
X_{4} Temperature, Degrees, C
X_{5} Length of Reaction, Minutee,

Obviously, no mensurator can be found for $X_{\text {, or }} X_{F}$. Therefore, a completely dimensioniess expression is impossible - unknown forces have been omitted from the apecification. However, X_{3} can serve as a mensurator for X_{1} and X_{2} permitting the formulation

$$
x_{1}=f \quad\left(x_{2}, x_{4}, x_{5}\right)
$$

where the unit of length is the length of X_{3}, or

$$
\frac{x_{1}}{x_{3}}=f\left(\frac{x_{2}}{x_{3}}, x_{4}, x_{5}\right)
$$

in any unite,
Therefore, an incomplete dimensional specification reducea our ability to condense the number of variables, If the variables are all incomensurable we can make no condensation. If, however, some of the variables are commensurable, we can reduce their number to the extent that commensurability exiats.

A CHEMICAL WARFARE EXAMPLE. Thu: fra, we have described a theory which offer: a clear-cut reduction in the number of variablea required in an experiment. It implications are so plain that only akepticiam concerning its validity would be ground for lanoring the thoory and benefite to be derived from Dimensional Analysif.

In order to diapel skepticiem concerning the theory, I have applied Dimensional Analyais to a number of problems in various fielde from which data was available; probleme in Chemical Engineering, Agricultural Economics, and Quality Control. In every case, the Dimensional Analysia accomplished a succeasful reduction in the number of variablen with a predictive value equal or superior to any previous analysis made using the raw variables.

One application was in the field of assessment of the coverage capability of toxic chemical ammunition againet military targeta. I am gratified by the resulte obtained sofar, since for many years I was active in this field
and am aware of the high potential eavinge that would result from any simplification in the problem; eapecially any model which would eliminate or reduce requirements for testing ammunition over wide ranges of meteorological conditions.

I am aware that much theory has been evolved which purporte to describe behavior of toxic clouds in the atmosphere, but also am aware biat the mathematical complications of these theoriea are euch that actual model for purpose oi prediction rest on approximations whose accuracy is uncertain, and which do not, in my experience, match up with teat data obtained in the field, Dimensional Analysis cuts acrose this theory and leads to an empirical model which accounts for meteorologlcal factore more satisfactorlly than extating models.

To dllustrate thia analyais, Figure No. 1 shows the varimbles generally agreed to be pertinent to the problem under the assumption of ieotropic diffueion. You will note that n, the Sutton turbulence parameter enters into the problem not as a variable, but at the exponent of dimenaion in which the diffunivity is expressed.

The temperature is omitted from this list since there is no completely agreed manner tor conaldering it and tt does not fit into the dimenalonal picture heie. Sutton's theory ignorea it and jt is eustomary to conalder it as a component of source strength; varying the effective source atrength.

Figure l shows a set of three dimensionlesa I terma which according to our theory nhould be able to roplace the six variables ahown on the pre. vioun alide. A study of these termi how that the data from one oxperiment in the fleld could be uaed to predict the results of other experimente under different meteorological conditions. Also, it implies that the resulti of all conceivable experiment could be reprefented by aingle eurface in three dimenaional epace, or as a family of curves in two dimenaional apace.

Figure 2 shows the results of two fiold trial plotted in the apace of the dimensionless variables shown previously. The two trial were conducted with the same type of ghell, and ap aproximately the same temperature. However, the wind and atabllity conditione were considerably different, and therefore, the coverage figuree obtained were also conaiderably different. In the 202 trial on the left the wind apeed wat meter/eec an correspond with 3.23 meter $/$ /eec for the trial 203 the right. Stabllity was moderate inversion for the trial on the left and moderate lapse for that on the right.

The Sutton parameters n, and C were calculated form from the windheight profiles given in the test reports using the Barad-Hilat equationa,

As the chart ahows, the two trials were afficiently difierent to prevent any overlap between the two familles of curves. However, the critical point is that the two sets of observations are recognizably members of the same family and that the curve - 8,6, which occurs in both sets of data matches up very well: in fact, a line projected through the two points obtained in trial \# 202 passes exactly through 4 of the 6 points shown for trial \#203. This is highly encouraging since it was only in metcorological conditions that the iriala were different, implying that the analysis given did, in fact, satisfactorily account for the changea in the area dosage curve, and did so for every time interval.

We infer from this example that additional tests could be analyzed to fill in the blank epots on our chart and an empirical equation fitted to this data with ease, eince only three variables are involved, and the curves obtained are approximately colinear.

DIMENSIONAL ANALYSIS AND MULTIPLE REGRESION ANALYSIS.

Dimenalonal Analyat in a great hilp in molving the difficultien encountered in multiple regreasion analyais. It has everal advantages:
a. The number of variabies, and therefore the oxtent of the calculations required, de reduced,
b. The freedom with which alternative repreaentations of the data can be fornied facilitated the diecovery of collinear repreaentations which aimplify the aralysis.
c. The predictive equation partakes of atructural validity not entirely dependent on atatistical eatimation.

The value of the dimensional approach may be appreciatedin relation to the Bean Ezekiel graphical method of multiple curvilinear regreseion analyois, [7], in that procedure, no explicit mathematical form need be aucribed to the relationship among the variables but by an iterative graphical process an increasingly accurate approximation to the curvea Involvedia obtained, and the result do a set of charta which can be used directly for predictive purposes, or, If desired, converted to tablea,
 an entimate of error. The principal drawback of the method was the frequent inability of the analyst to isolate recognizable "draft lines" at the outset due to non-collinearity of response. The freedom of dimensional representation should largely overcome thi difficulty and increase the scope of the method.

CONCLUSION. The foregoing exposition has shown that the application of dimension theory to atatistical problema can result in valuable insight and savings in experimental design and analysis and should, therefore, become part of the equipment of statistician generall. Objectiona to the theory have at times been advanced, usually on the basis of special examples wherein functional invariance under change of unite prevalle without dimeneional homogeniety (obtained by Dimensional Analysia are obtained also from the theory of partial differential equations as applied to physical probleme (see Langhase, Chapter 10); the theory has accosafully upported the researcher of Maxwell, Rayleigh, Helmholta, and others, and neither the literature nor the experience of the present writer offers an instance wherein the upponed relationships have been found absent in fact.

It is also unclear to what extent the standard statisticaldesignm, tests, and techniques cuatomardly applied to dimenalonal variablea can be applied to dimenaiondous variables. Thus, it is recognized that many devolopmenta in error analysis and the theory of sampling will be required to exploit Dimensional Analyais to ita fullest (a recent paper by Halperin and Mantel, [9] would appear to be $0:$ value in this connection). An obvious case requiring attention is that of setting confidence limita on dependent variable which is a constituent of one or more terms, although setting limitif for the term themselves would be atraightforward.

It ia hoped that boing made aware of the advantagen of Dimenelonal Analyais, atatisticians will bend it to their needs with the necesarary developments.

REFERENCES

1. Fourier, J. The Analytical Theory of Haat Dover Preas, 1955 Ch. Il, Sec. 9.
2. Duncan, A. J. Quality Control and Induetital Statistice Richard Irwin Co. 1959, p. 674.

Deaign of Experiments
 Preas 1961, p. 229.
4. Buckingham, E, On Physically Similax Systems Phys. Rev. Vol. IV, No. 4, 1914, p. 345.
5. Langhaar; H. L. Dimensional Analyais and the Thoory of Modela Wiley \& Sons 1951, Ch. 4,
6. Murphy, G, Similitude in Engineering Ronald Press, New York 1950. p. 23.
7. Ezekiel, M, and Fox, K. Methods of Correlation and Regresion Analysis Wiley and Sona, 1951. Ch. 16.
8. Bridgman, P. W. Dimenaional Anelysis Yale Univeraity Prean, 1922, pp. 41-43.
9. Halperin, M, and Mantel, N. Interval Estimation of Non-Linear Parametide Functions, JASA, Vol, 58, No, 303, 1964, pp, 6Il-627.

CHEMICAL WARFARE PROBLEM

Figure 1

THE USE OF REGRESSION ANALYSIS FOR CORRECTING FOR MATRIX EFFECTS IN THE X-RAY FLUORESCENCE

Raymond H. Myers
Virginia Polytechnic Institute: Blackaburg, Virginia
and
Bernard J. Alley
U. S, Army Missile Command: Redstone Arsenal, Alabama
I. INTRODUCTION. X-Ray fluorescence methods are widely used in industry for the analysis of a variety of materials. The non-destructive nature and exceptional speed of these methods are largely responsible for their widespread use and increasing acceptance. The direct analyees of many materials, for example can be accomplished 20 to 50 times faster than by conventional chemical procedures. This allown ufficient time after an analvis to permit the correction or rejection of aubutandard batch of material before procesing is completed.

The actual X-Ray fluorescence method of analysis may be briefly deacribed as follows: the primary beam from an $X-R a y$ tube impinges on the turface of a specially prepared sample. The componenta in the ample auriaceare immedately excited and emit their characteriatic emianion linea in all directione. Qualitative analyses are rade by determining the angles at which the characteriatic omiasion lines from the ample occur. Quantitative analyaes can in general be performed on particular component of a mixture, of aty K components by positioning the radiation detector at an angle which correoponde to the characteriatic omicaion line for that component and meanuring the emiasion line intenaity. The intenalty ia then related to the component percentage by a suitable calibrarion procedure.

The intensity of a component' characteristic radiation is not a ample function of the concentration of that component alone in the ample. The intenaity depends almo on the concentrationa of the other componenta. This is caused by the absorption and enhancement mong the componente, of the primary and excited radiation. The existence of these interelement or "matrix" effects if one of the more ceriou probleme encountered in X-Ray fluorescence analysis and hence inhibits, to a great oxtent, the use of this technique as a quantitative analytical lool.

Many non-mathematical methods have been devised to either minimize or correct for these metrix effects. However, they have been found iu be either too costily or too time consuming on samples from large scale production of multicomponent mixtures. It is the purpose of this paper to discuss the use of regression analysis in the correction of these interelement effects for the estimation of concentration of individual components in a mixture and to emphasize the application to a particular solid rocket propellant mixture in current use by the U. S. Army at Redstone Arsenal, Huntsville, Alabama.

Effect of Solid Particle Size

A problem which may be encountered when one is analyring slurry mixtures containing sclid constituents is the influence of solid paiticle sizes on the X-Ray intensities. It might be necessary that any analytical procedure contain some type of correction for this effect, unless of course the individual particle sizes always remain constant throughout production. Part I of this paper gives the analytical technique for the situation in which the particle sizes were experimentally held constant. Part II extends the analytical procedure to the case of variable particle size.
II. ESTIMATION OF CONCENTRATION (Particle Size Constant). Samples of a five component solid propellant mixture were prepared and analyzed for four of the components. (The actual ingredients are classified and hence we shall denote them in the text as components $1,2,3$, and 4 respectively). These samples were taken from the twelve different batches in a narrow concentration range in which the product is usually manufactured. The particle sizes of the solids in the slurry mixture were held essentially constant. The number of seconds for a fixed count intensity measurements were recorded in rapid succession for each component. The same was done for a synthetic standard sample. The response variable used was $R=t_{s} / t_{c}$, where t_{s} is the number of seconds for the standard and t_{c} the number of seconds for the component in question. This is standard procedure used in this type of X-Fay work. The purpose of the standard and the subsequent use of the ratio of the standard reading to the unknown reading is to correct for electronie and mecinanical changes in the spectrograph. The data is found in Table I.

Consider the model;

$$
\begin{equation*}
R_{i j}=B_{i, 0}+B_{i, 1} X_{1 j}+B_{i, 2} X_{2 j}+B_{i, 3} X_{3 j}+B_{i, 4} X_{4 j}+c_{i j},(i=1,2,3,4) \tag{1}
\end{equation*}
$$

where R_{i} is the intensity ratio for component $1, X_{1}, X_{2}, X_{3}$, and X_{4} are the concentrations of the individual components, the B'sare regression coefficients, and ${ }_{i j}$ is the random error associated with $R_{i j}$. Note that the concentrations of each component appear in the model despite which of the four ingredients is being detected. Least squares entimates of the regression coefficients were found forthe four regression lines. These estimates are shown in Table II along with the error mean equares for the regression lines. The intensity measurements are not in general linearly related to concentration but in the reasonably narrow range of interest shown in Table 1, a linear relationship appears to hold quite well.

TABLE I. Intensity Ratio Measurementa and Composition of Mixtures
(Compositions in weight percent)

Batch	R_{1}	${ }^{\mathrm{R}_{2}}$	R_{3}	R_{4}	X_{1}	X_{2}	X_{3}	X_{4}
1	1.1240	0.8980	0.8219	0.9906	0.5514	70.18	12. 53	15.04
2	0.9285	0.8872	0.9308	0.9944	0.4426	68.84	14.26	14.75
3	1.1214	0.8030	0.7668	1.1221	0.5631	67. 51	12.79	17.39
4	1.1635	0.8706	0.9272	0.9832	0.5624	67. 52	14.83	15.34
5	0.9415	0.8064	0.9026	1. 1127	0.4505	66.10	14.52	17.03
6	0.9039	0.8314	0.7596	1.0994	0.4425	68.86	12. 30	16.72
7	1.0712	0.8404	$0.866{ }^{\circ}$	1.0836	0.5290	67. 34	13.95	16.35
8	0.7561	0.8731	0.8206	1.0290	0.4702	69.00	13.07	15.68
9	1. 0186	0.8431	0.8346	1. 0591	0.5001	68.07	13. 51	16.02
10	1. 0744	0.8124	0.7432	1. 0967	0.5379	68. 52	12.24	16.64
11	0.9005	0.8320	0.8606	1.0798	0.4321	67. 26	13.93	16.34
12	0.9318	0.8913	0.8126	0.9880	0.4498	69.96	12.49	14.99

TABLE II. Regreasion Coefficients and Error Root Mean Squarea

Ingredient 1
$\mathrm{B}_{\mathrm{e}}=0.00768$
$b_{1,0}=0.15411$
$b_{1,1}=1.8573$
$b_{1,2}=-0.00074$
$b_{1,3}=0.00919$
$b_{1,4}=-0.00832$

Ingredient 2
$a_{e}=0.00776$
$b_{2,0}=-1.4370$
$b_{2,1}=0.01832$
$b_{2,2}=0.03020$
$b_{2,3}=0.02561$
$b_{2,4}=-0.00790$

$$
\begin{aligned}
& s_{e}=0.00776 \\
& b_{2,0}=-1.4370 \\
& b_{2,1}=0.01832 \\
& b_{2,2}=0.03020 \\
& b_{2,3}=0.02561 \\
& b_{2,4}=-0.00790
\end{aligned}
$$

Ingredient 3	Ingredient 4
$s_{s}=0.01130$	$\mathrm{s}_{\mathrm{e}}=0.01265$
$\mathrm{b}_{3,0}=-1.51670$	$b_{4,0}=0.60788$
$b_{3,1}=-0.07426$	$b_{4,1}=-0.13257$
$b_{3,2}=0.02008$	$\mathrm{b}_{4,2}=-0.00442$
$b_{3,3}=0.08024$	$\mathrm{b}_{4,3} \mathrm{a}-0.00641$
$b_{3,4}=-0.00328$	$\mathrm{b}_{4,4}=0.05605$

We can ase the equations in (1) to develop a set of working exprestions for estimating the concentrationa, i.e.,

$$
\begin{equation*}
\underline{R}=\underline{b}+B \hat{X} \tag{2}
\end{equation*}
$$

where R representa the vector of intensity ratios and b the vector of intercept terms.- The $b_{i k}$ element of B is the coefficient oi $X_{k} \overline{i n}^{\text {in }}$ the ith regression line. $\hat{\underline{X}}$ ts the vector of unknown concentrationa that one seeks to estimate in practice, Inverting (2), we have:

$$
\begin{equation*}
\underline{\hat{x}}=B^{-1}(\underline{R}-\underline{b}) \tag{3}
\end{equation*}
$$

Here we have a case of the use of a set of simultaneous multiple linear regreasion linea in reverae, i.e., inverting the regresaion linea to estimate the X's i.e., the concentrations. Williams [3] gives a diacusaion of the general problem. it might be noted that the concentrations were used as the independent or concomitant variable since the error in the X^{\prime} is is very amall as compared to that for the X -Ray intensity ratios.

Equation (3) represents a working set of equations for entimating the concentration from samples from running production. The four equations given by the matrix expression in (3) are as follows:

$$
\begin{aligned}
& { }_{k}=-0.14381+0.54061 R_{1}+0.07935 R_{2}-0.08034 R_{3}+0.08670 R_{4} \\
& \hat{\mathbf{X}}_{2}=38.2619-0.5767 R_{1}+42.5690 R_{2}-13.1116 R_{3}+5.1478 R_{4} \\
& \hat{X}_{3}=8.9016+0.6984 R_{1}-10.4829 R_{2}+15.6926 R_{3}-0.4547 R_{4} \\
& \hat{\mathbf{X}}_{4}=-7.1523+1.3131 R_{1}+2.3448 R_{2}+0.5705 R_{3}+18.4010 R_{4}
\end{aligned}
$$

The residual errors of estimation, calculated from the original data, are shown in Table III.

TABLE III. Residual Errors of Esiimation of Concentration

Batch

1
2
3
4
5
6
7
8
9
10
11
12
$\mathbf{X}_{1}-\hat{X}_{1}$
-0.0035
0.0026
0.0013
-0.0026
-0.0026
-0.0026
0.0027
0.0046
0.0016
0.0011
-0.0014
-0.0012
$\underline{x_{2}-\hat{X}_{2}}$
0.02
0.43
-0.01
-0.04
0.16
0.03
-0.30
-0.42
0
0. 39
-0.17
-0.14
$\underline{X}_{3}-\hat{X}_{3}$
-0.19
$\mathrm{X}_{4}-\hat{X}_{4}$
-0.09
-0.14
-0.23
0
0.14
0.10
0. 30
-0.24
0.07
0.06
0.07
0.01
-0. 31
0.24
0.13
0.12
-0.11
-0.06
-0.13
0.11
-0.02
0
0.19

CONFIDENCE INTERVAL ESTIMATES ON THE CONCENTRATIONS. BOX and Hunter [l] discuss the problem of joint confidence interval estimates on the solution of a set of aimultaneous equations when the coefficiente are subject to error. Their work was actially a part of a more specific problem of finding a confidence region for a stationary point in response surface analyais, However, the procedure also applies to our problem of attaching confidence limite to concentrations. Suppose that in general we have K simultaneous equations of the type;
$\sum_{j=0}^{K} D_{i j} \bar{X}_{j}=\dot{0} \quad(1=1, i, \ldots k j)$
where the $b_{i j}$ are subject to error (fnr our case $X_{0}=1$). Consider the quantities,

$$
\sum_{j=0}^{K} b_{i j} \xi_{j}=\delta_{i}(i=1,2, \ldots, K),
$$

where the ξ are the values of the X's that would satisfy (4) if the actual regression coefficiente were used in place of the $b_{i j}$. If we consider a vector of the δ 's, say 5 as having a multivariate normal distribution with mean vector 0 and variance-covariance matrix $E\left(\underline{6} \underline{6}^{\prime}\right)=V$, then the expression $\underline{g}^{\prime} V^{-1} \underline{g}$ follows a X^{2} distribution [2] with K degreen of freedom. For our case, the lth element of $\underset{\underline{S}}{ }$ can be written as $R_{i}-\hat{R}_{1}$, where \hat{R}_{1} de the eatimate of the intenalty ratio in the the regreasion line. For entimate of the elements of V, we can write

$$
\begin{aligned}
& \operatorname{Var}\left(R_{i}-\hat{R}_{1}\right)=n_{i 1}\left[1+\frac{1}{n}+\sum_{h 1} \sum_{n 1} \xi_{n} \xi_{i}\right] \\
& =\mathrm{I}_{\mathrm{ii}} . \mathrm{H} . \\
& \text { and } \hat{\operatorname{Cov}}\left(R_{i}-\hat{R}_{i}, R_{k}-\hat{\hat{R}_{k}}\right)=\boldsymbol{s}_{i k}\left[1+\frac{1}{n}+\sum_{h 1} C_{h b} \xi_{h} \xi_{1}\right] \\
& =1 \mathrm{Kk}^{\prime} \mathrm{H} \text {. }
\end{aligned}
$$

where:
*id $=$ ample estimate of the variance of R_{i} for particular value of $\xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}$
$s_{i k}=$ sample estimate of the covariance between R_{i} and R_{K}.
$C_{h l}=(h)$ element of the daverse of the matrix of corrected aum of equaree and product of the X^{\prime} for the calibration ample.

Desigr. of Experiments
If we replace the elements in V by their corresponding antimatea and divide by the appropriate degrees of freedom we arrive at the ratio

$$
\frac{n-8}{4} \underset{i}{ } \underset{k}{ } \frac{\delta_{i} \delta_{k} w^{i k}}{H}
$$

which is didtributed as F with 4 and $n-8$ degrees of freedom, where $w^{i k}$ is the (ik) element of the inverte of the matrix W, the matrix of reaidual muma of squares and products of the $R^{\prime} s$. We can write

$$
\begin{align*}
\delta_{i} & =R_{i}-\hat{R}_{i} \\
& =\Sigma_{j} b_{i j} \hat{X}_{j}-\boldsymbol{\Sigma}_{j} b_{i j} \xi_{j} \tag{5}
\end{align*}
$$

$\hat{\mathbf{x}}$
where the \mathbf{X}, are the estimates of the concentration obtained from equation (3). If we replace δ_{1} by the expresaion in (5), we have

$$
F_{4, n-8}=\left(\frac{n-8}{4}\right) \frac{\sum \sum \Sigma \Sigma\left(\hat{X}_{j}-\xi_{j}\right)\left(\hat{X}_{1}-\xi_{1}\right) b_{i j} b_{k 1} w^{j k}}{H}
$$

(6)

$$
=\left(\frac{n-8}{4}\right) \frac{\sum \sum\left(\hat{X}_{j}-\xi_{j}\right)\left(\hat{X}_{1}-\xi_{1}\right) q_{j 1}}{H}
$$

where $q_{j l}$ is the (jl) element of the matrix;

$$
\theta=B^{\prime} W^{-1} B .
$$

Here $b_{i j}$ is the (ij) element of the matrix B.
Equation (6) represente simultaneoue joint confidence interval estimates of the setual concentrations $\xi_{1} \xi^{\prime} \mathcal{F}^{\prime} \xi^{\prime}$, and ξ_{4}, Thus if we are given values of the estimates $\hat{X}_{1}, \hat{X}_{2}, \hat{X}_{3}$, and \hat{X}_{4}, we can substitute particular values of the concentration $\xi_{1}, \xi_{2}, \xi_{3}$, and ξ_{4} into equation (6) and if the resulting
expression is leas than $F_{0,4, \eta-8}$ (upper tall), then those values of the ξ 's fall inaide the $100(1-n) \%$ =anfidence $上=ะ \pm$.

The elemente of the W^{-1} and Q matrices are:

III. VARIABLE PARTICLE SIZE, An experiment wae conducted in a manner mimilar to that describedin II except that the particle elve war allowed to vary. Componenta 2 and 4 are the only ones for which the particle aize in an important factor in its effect on the intenaity ratio measurement. The point hould be made here that it is assumed that the particle aizes are known in a practical aituation, i.e., fora sample of the propellant from running production one can determine, from the phyalcal source of componenta 2 and 4 , at leat the mean particle ine. The degree of difficulty here would depend upon the precision with which these two components are menufactured, No attempt wae made here to consider such probleme as particle size diatribution. Likewise no mternpt was made to constder the degree to which the particle nizes of componunis 2 and 4 are altered by the mixing procese itself.

A $1 / 8$ fraction of a 2^{6} factorial deadgn was used with four replications at each point and in the center of the design. The factorn are the concen. trations $X_{1}, X_{2}, X_{3}, X_{4}$, and particle sizec W_{2} and W_{4}, Table IV givea the deaign matrix and the defining contrate.

TABLE IV. Design Data and Defining Contraats

Batch	Treatment Combination	X_{1}	X_{2}	X_{3}	X_{4}	W_{2}	W_{4}
1	abef	1	1	-1	-1	1	1
2	cdef	-1	-1	1	1	1	1
3	(1)	-1	-1	-1	-1	-1	-1
4	ace	1	-1	1	-1	1	-1
5	bde	-1	1	-1	1	1	-1
6	abed	1	1	1	1	-1	-1
7	adf	1	-1	-1	1	-1	1
8	bef	-1	1	1	-1	-1	1
9	midpoint	0	0	0	0	0	0

Defining contrasta: $1, A D E, B C E, A C F, B D F, A B C D, A B E F$, CDEF, (Particle Size Unita are per cant íne fraction on total lngredient besia)

A set of multiple regreasion equations of the type

$$
\begin{equation*}
R_{1 j}=\sum_{k=0}^{4}\left[B_{i k} X_{i j j}\right]+B_{15} W_{2 j}+B_{16} W_{4 j}+i_{1 j} \quad(1=1,2,3,4) \tag{8}
\end{equation*}
$$

were fit to the design data, where a before X_{0}.l, Table V hows the entimates of the coeficient: of the regression line in (8), (8) can be written a.

$$
\underline{R}=E_{1} \hat{X}+B_{2} \underline{W} .
$$

We can then "correct" the intenalty ratio vector for particie aize and oolve for the vector X;

$$
\begin{equation*}
\hat{X}=B_{1}^{-i}\left(\underline{R}-B_{2} \underline{W}\right) \tag{9}
\end{equation*}
$$

$13.5897 W_{2}-2.2816 W_{4}$
$\hat{X}_{2}=8.84359 F_{-1}+3207.192 R_{2}+439.287 R_{3}+2109.9897 R_{4}=5226.75124=$
74. $7551 W_{2}-114927 W_{4}$
$\hat{X}_{3}=1.653744 R_{1}+867.2777 R_{2}+137.368 R_{3}+578.007 R_{4}-1437.2059 n$
$19.37799 W_{2}=3.02207 \mathrm{~W}_{4}$
$\hat{X}_{4}=3.0437 R_{1}+1238.126 R_{2}+175.7089 R_{3}+847.6307 R_{4}-2073.6127$.
$28.46016 W_{2}-5.32504 W_{4}$

The equation in (8) could also be uied to eitimate paricie aiee when elther the particle aize cannot be determined or one feela that the mixing procean has caused usficiant "grinding" that there hai been a change from the particle nimes of the pure componerti. Of couree this would require a chemicel analysis of two of the component of the mixture, which of course, is time consuming.

TABLE V. Eatimates of Rempesion Coeficienta and Eryon Root Means Squares foz Equation (8)

Ingredient 1
$=0.02005$
$b_{10}=-4,8413$
$b_{11}=1.9320$
$b_{12}=0.05104$
$b_{13}=0.06237$

Inqredient 2

- $=0.01199$
$b_{20}=2.82710$
$b_{21}=-0.03948$
$b_{22}=-0.01436$
$b_{23}=-0.02355$

Incredient 3
$=0.00830$
$b_{30}=-8.4503$
$b_{31}=0.11398$
$b_{32}=0.09337$
$b_{33}=0.15847$

Ingraddant 4
e $=0.02298$
$b_{40}=-8.19592$
$b_{41}=0,08438$
$b_{42}=0.08200$
$b_{43}=0.08462$

		$\begin{aligned} & \text { TABLE V } \\ & \text { (cont'd.) } \end{aligned}$	
Ingredient 1	Ingredient 2	Ingredient 3	Ingredient 4
$b_{14}=0.05010$	$b_{24}=-0.05424$	$b_{34}=0.07888$	$b_{44}=0.14812$
$b_{15}=-0.00582$	$b_{25}=0.01072$	$b_{35}=-0.00682$	$b_{45}=-0.00815$
$b_{16}=0.00024$	$b_{26}=-0.00218$	$b_{36}=-0.00245$	$b_{46}=0.00417$

Table VI shows the residual errors in estimation of the concentration using equation (9).

TABLE VI. Residual Errora in Estimation of the Concentration Using Equation (9) (Unitn in wt. \%)

Batch	Ingredient 1 $x_{1}-x_{1}$	Ingredient 2 $X_{2}-x_{2}$	Ingredient 3 $\left(x_{3}-x_{3}\right)$	Ingredient 4 $\left(X_{4}-x_{4}\right)$
1	-. 006332	. 2216	. . 1006	. .0196
2	.. 008813	. 3308	-. 1491	-. 0373
3	-. 013621	5426	-. 2567	.. 0684
4	.003560	-. 0692	. 0417	. . 0485
5	. 008362	-. 2675	. 1365	-. 02.93
6	-. 0001603	. 0227	-. 0061	.0097
7	.004032	. .0966	. 0539	.. 0513
8	.007943	-. 2583	. 1234	. 0.280
9	. 007812	. . 8720	3427	. 3712

SUMMARY, A aet of equationa is glvan for eatimating the component concentration in a certain solid propellant mixture in terms of the X-Ray intensity readings of each component. The method ueed involvesinverting a set of simultaneous multiple linear regresaion equations. The concentration of each ingredient appoars in oach equation in order to correct for "matrix" conditions which do effect the X-Ray intenaities. The aignificance teate on
individual components indicate that these interelement conditions do, in fact, exist for the mixture in question. Joint confidence regions were developed for the concentrationa.

Since it was suspected that the particle size of pure components 2 and 4 also effect the X-ray intensity, a linear model involving particle aize was fit to the data froma $1 / 8$ fraction of a 2^{6} factorial design. This did indicate that particle size was in fact a necesaary consideration and resulted in a get of equationa for eutimating the concentration of each component in terms of an intensity reading which is adjusted for particle size.

ACKNOWLEDGEMENTS. Thanks is given to Mr, Robert Davie who helped with the calculations and Mr. Robert Tankersley of the U. S. Army Mianile Command Computation Center, Redstone Arsenal who performed the necessary regression anelysen.

BIBLIOGRAPHY

(1) Box, G. E. P, and Hunter, J. S. (1954), A Confidence Region For the Solution of a Set of Simultaneoua Equatione With an Application to Experimental Design. Blometrika, 41; 190-199.
(2) Graybill, Franklin A. (1961). "An Introduction to Linear Statiatical Models, " McGraw-Fill Book Company, Inc.
(3) Williams, E. J. (1959) "Regreasion Analysia", John Wiley and Sons Inc.

SAMPLING FOR DESTRUCTIVE OR EXPENSIVE TESTING

Joseph Mandelson
Quality Evaluation Division, Quality Ansurance Directorate Edgewood Araonal, Maryland

INTRODUCTION. In recent years the engineer has been impressed with the fact that the principles of sampling are essentially atatiatical in character because the effect of sampling can only be appraised in terms of operation of the lawe of chance. Consistent with this revelation, the engineer by and large has been content to retire from the field of sampling and abdicate his responsibilities in this area to the statisticians. A few hardy souls, confirmed do-it-yourselfers, took it upon themselves to invade the statistical field and learned to aequit themselves creditably in the area oi sampling. They even branched out into other aspects of statistica germane to engineering. However, the influx of engineers into the statistical preserve wan not suficiciently large to be able to handle the relatively heavy volume of activity required. Then, too, number of working tools were prepared by statiaticians, presumably for use by quality engineers and inspection personnel, to cover a multitude of ampling probleme as these occur in quality assurance. Some of these tool are quite complicated; for thelr complete comprehenaion they demand more in the way of atatistical knowledge on the part of the would-be uaer than the authors are prepared to admit. As a consequence there is a degree of obscurity in the field. The engineer is urged to consult the otatistician whenever his state of coniuaion or the importance of the matter in hand appeara to warrant. However, the engineer should long algo have risen in wrathfui protest againet statistical tools aupposedly prepared for his use but which he finde elippery and elutive to the point of unintellgibility.

Actually, is it co important that comprahension of the mathematicad derivation of atatitical methods be made an eseential prerequisite to thedr eficient use? Would not an explanation of the basic factors, in nonmathematical terms followed by a detalled by-the-numbers procedure to use in the given context suffice? At any rate, I propose to try this approach.

SAMPLING RISKS, The layman has long regarded the field of sampling with healthy suspicion; he hes felt in his bones that ampling is a risky business at bent. The well-publicizer failures of public opinion polle in predicting the resulte of crucial olectiun weaken hia conidence in atatistical methode, Hia instinct in regard to riukitis, of course, entirely
correct as his everyday experience with matters governed by the law of chance illustrates. Allusion may be made to games of rhange, insurance
 sider examples from games of chance auch as bridge, etc.

A well shuffled card deck is analogous to a lot of material from which a sample is taken, with one important difference: the exact composition of the deck is known, that of the lot is not. Each hand in bridge is a ample of 13 from a lot of 52 . A hand of exactly average strength would contain one card of aach of the 13 values and a 4-3-3-3 distribution in ulta. Our exporience tells us that such a hand is almost never observed. Inetead we find that some hands are stronger and, by the same token, others are weaker than the average. This should teach us that a sample is very rarely truly indica. tive of the composition of the lot. Instead, we find that the ample sometimes appeara to be better, sometimes worse than the average, if by average we mean a sample whose composition de exactly proportionate to that of the lot. Further, we find that small vasiations from the average-strength hand are quite frequently encountered, large variations are rolatively rare.

In real life, the composition of the lot da almott never known, the purpose of the ample is to permit us to make inferences and deciaions rogarding the accoptability of the lot sampled. Since we recognize that the ample rarely reveal preciaoly what the true quality in, it must be accepted that some of the decisions at which we arrive, based on results obtained in teating the sample, may be in error. There are two typen of such error.

PRODUCERIS RISK, The Type I error, ocallod, le the deciaion to reject a lot which is really acceptable. This occura when the sample, through chance variation, indicates a larger proportion of defectivea than that which is really present in the lot. It ts the equivalent of the bridge hand which containe almost no trength. These hands occur occasionally, with predictable frequency. In the eame way lote of acceptable quality will produce a ample of given size which, with predictable frequency, will indicate the lot to be unacceptable. It chould ve noted that, whlle the frequency of auch occurrences can be predicted (ayy once in twenty amplea) the actual event (which one, if any, of the twenty) cannot be foreaeen; it occure at random intervals, In any case, the rejection of an acceptable lot occurs with a certain probability equivalent numerically to this predicted frequency of the Typelerror. Since a rejocted lot will require 100% inapection of the lot,

TOTAL COST OF SAMPLING, If one is realiatic he will recognize that the total cost of sampling includes not only the cost of taking and testing the sample but also the losses occasioned by the operation of the riaks already discussed. It may appear strange, perhaps unbelievable, that there should be any who will not accept the fact that thereare risk lossen to evaluate and will not agree to include these in the reckoning. But these doubting Thomases are like their predecessor - unless they see little green bills passing over a counter from one hand into another they cannot agree that a cost or loss has been suatained. It is particularly unfortunate when such short-sighted persons get into a position where they are able to influence the sampling plan to be used. When, in consequence, losses are sustained from defectives regarding which complaints are received from users, and from lots unnecessarily screened or reworked, such people eloquently display newly washed hands as tokens of their freedom from sin and learnedly dircuse the poor inspection job turned out by that overly-large and over-paid ataff of inspectors. Now, say these management experts, if we really want to arve money, here is some fat which can be advantageously trimmed. It will never occur to them that inaistance on minimum sample sizen reduces a relatively small cost but incura much larger riaka which require the piper to be paid in large and repeated installments.

The true total cost of sampling is determined by several parametera, chief among which are the sample atie, the apectfied quality level, and the consumer's and producer's riaks. There are other parameters involved in the final result auch as the cost of making a test, the true quality of the lot, the cost of reworking an item declared defective, etc. For our purpose, it is desirable to earch out the interrelationshipa among the four parameters first mentioned.

Clearly, the larger the sample, the more costly the test. At the ame time, the rioks and their attendant costs are reduced by large amples. Thia situation leada naturally to the suppoition that there may be some point at which the aize and coat of the ample are so happily related to the conta of the corresponding risks that the over-all coat is a minimum. The size of sample which, within the stated conditions, bringa about such a desirable result may, with propsiety, be designated the optimum sample size. The existence of auch an optimal solution can easily be demon. otrated arithmetically (2). However, there are some matters which we whould clarify before venturing further. These inciude the meaning of and ways to handle the cost of the risks.
 already been described as the risk that the sample may indicate the lot to be unacceptable when it is, in fact, quite acreptable. If the test is nondeatructive or the cost of making the teat in not prohibitively high, it is econemically posible to test or examine each item in all rejected lote. In this way the original erroneous decision will be corrected at a pricethe cost of such test or inspection is the cost of rejecting the lot and, under these circumstances, the price pald for the Type I error ts relatively low. But if the test is quite expensive, particularly if it damages or destroys the item tested, it is not feasible to test each item in the lot. Hence a rejection, whether right or wrong, is practically an order to ecrap the lot or raworkit. In this case, the cost of the producer's riskis painfully ovident especially when one recalls that the producer's ribk causea rejection of acceptable lots which, due to a sampling quirk, give the false impresion of being rejectable. In any case, the cost of rejecting a lot is easy to calculate and it is given in the following symbolic form: (The meaning of the symbols in provided in the Gloseary appended hereto.)

$$
C_{R}=(N-n)\left(C_{U}-V_{S}\right)\left(P_{P}\right)
$$

It should be obvious that C_{R}, the cost of rejection, can be computed to the last penny; very few approxdmatione are necesary.

COSTING THE CONSUMER'S RISIK. It is otherwise with the task of calculating the coat of the conammer's riok in dollara and centa. We will recall that the conaumer' risk ia the chance he takes that the sample may represent an unacceptable lot as acceptable material. This causes him to pay for and take possession of merchandise which contains an undesirably high proportion of defective material. There the difficulty begins to assess the cost of accepting a defective lot one must solve the problem of fixing the cost of a aingle defective item and follow this by discovering the actual percentage of defectives in the lot. If the latter information were at hand, it would have been unnecesaary to teat the lot for acceptability in the first instance and, had the teat revealed the true percent defective in the lot, it would never have been accepted. This difficulty pales to insignificance compared with the problem of determining the cout of an item found to be defective when it is used. This is particularly true of exotic iteme such as space rockets and military material where fallure in use may have strong adverse effect on national preatige and/or aecurity, may cause casualties or even lead to tactical defeat in situations of varlous degrees
of aignificance. Almost always the loss due to the defective unit dependa upon the circumstances aurrounding the malfunction. These are unpredictable. Thina, a pumaiure cheil burst may cause no casualties or damage in certain aituation or it may result in several deathe and a ruined gun. Chance, completely unforeseenable, will determine the lose in each cas. Again, how can we compare the cost of a dud hand grenade on the practice feld with the loss suatained when a grenado, thrown into an enemy machine gun emplacement, is a dud and the brave soldier who had to expose himielf to the gun to make the throw, is cut down? Someone elae will have to make chat throw and who can tell how mary casualties will be sutained to silence the gun which would have been destroyed had the grenade functioned in the first place? The additional casualties are part of the loss associated with the dud. How can anyone predict the course of such eventa? If one wishes to dramatize this problem he may say that his objective ${ }^{\text {a }}$ to put a price on human blood and look into his cryatal ball to determine, on the average. how much will be poured out on each defective item.

We must not tuke the attitude that the cost of the beta riak can nevar be ascertained. If the ltem involvedis a component and the dafect is one that will be caught in attempting to assemble it in the end item then the nuisance loss of this type of defect can be determined. In that case, the method described in Referonce (1) can be used for determining sample aise while minimiang the total cost of both riaks and of sampling.

As we thall see later, the coat of the two raks atrongly influence the ample size determined to the oftimum in the eense of reducing the total cost to a minimum. If the contassesaed therefore ia very high, the optimum sample size calculated to reduce the total cost to a minimum will be unrealistically high as will the minimum total cost computed in these clrcumatances. in a democracy such as ours. grat value is placed on human life. It io commonly regasded as pricelesi and any attempt to aet a monetary value on blood or on life ituelifa considered a particularly obnoxious form of eacrilege, Yet if ach matterameto enter in to the calculation of optimum sample rize in a apecific case, a monotary value muat be set. The engineer seema to be impaled on the horns of an ineoluble dilemma.

HOW TO HANDLE THE CONSUMER'S RISK. Yet a solution is possible. The price of blood or $11 f$ must aimply be equated to zero. in other words, it must be eliminated from conalderation in monetary terma a augeated
in $\overline{\text { keierence (3). Such a atep makes the problem coluble, In this case, the }}$ casualty-producing defective can better and more appropriately be handled by prescribing a suitable quality level for acceptance. To adopt this course dr equivalent to a decision to ellminate the casualty-producing defective in ite role of a sample size determinant and to direct ita infuence into another path, so that it will act to determine the pertinent quality level instead.

LOT TOLERANCE. One way to handle the problem of determinlig the optimum sample size for destructive tests, without asscasing any cost for the consumer's risk (this is the same as ignoring it or satting it equal to zero) ta provided in Reference (2). There the required quality lovelis -et at a figure appropriate to the protection denired as an LTFD (: Lot Tolerance Fraction Defective; see Glosuary) which in a lovel of quallyy 10 poor that the engineer would take to has aick bed at the thought of haviry to accept conaidently material of LTFD quality though, once in a long while, to prevent shutting down the line or for some other noble purpose, he might be willing to accept auch a lot. By aetting the Conaumer's risk at come low figure (e.g. 0.10 or 0.05) the engineer inaurea that only one lot of LTFD quallty out of 10 or 20 aubmitted will be accepted, the others being rajected. Obviously no producer can stand the economic pronsure of wholesmio rejection, so the quality he muat produce to atay in buainesi will have to be a good deal better than the LTFD, which in what our engineer wanta. Fiaving decided on a proper LTFD the paper goes on to show how the optimum campling plan is computed which will yield the dealred protection againat material of LTFD quallty.

Reference (1), on the other hand, is a much moze sophisticated approach. Howevar, as hat already been noted, it can be applied only where the coat of the beta rink can be computed with reasonable corractness, at least to the extent of knowing in what ball park the doubleheader will be played. Our concern, however, if with the area within which the coat of the beta riok cannot be approximated. It in intereating that the solution he rein delineated can be used equally well whether one car or cannot eatimate the beta rick cost because in aither case the coat can be ignored, if denired, and the acceptance or survelliance quality level may be at at a figure which will keep the outgoing lot percent defective at some desirod limit with given probability given lome information as to diatribution of lot quality. That is, wo at the level to take a calculated siak. Then we figure the amphing plan that will insure that outgolng material accepted thereby will conform to that level within the opocified riak.

Now we shall consider how this purpose may be accomplished by the engineer without the need to become a statistician, amateur or professional. To do this, we propose to outline the procedure "by the numbera" and auk the englneer to accept an an article of falth that the procedure if, in fact, valid and will do the thinge and afford the protection attributed to $1 t$. It is not our purpose to provide mathematical theory or proofa here and demand that you grapp them before we will permir you to touch the procedure. Rather, we want te preaent a method which you can grasp in hands grimy from contact with your work and responsibilities and from a knowledge of your problem and needs, proceed to calculate a sampling plan tallored to do what you want to to do.

COMPUTING ACTUAL COSTS. If we consider the case of almgle ampling (iee Globsary) wheretn we tix the conamer'e risk (i.e. by establiohing eome desired lot tolerance fraction defective with a 10% chance of accoptance - the conaumar'a riok), the total cost of the inapecthon la expresned by the equation

$$
T=n\left(C_{U}+C_{T}\right)+(N-n)\left(P_{V}\right)\left(C_{U}-V_{S}\right)
$$

Since this equation la basle to understanding what we are about to de, it is well to explain it without going to the Glosiary. T te the total cont of teiting including the Producer'g Riak the coat of which ta the expresition to the right of the central plus aign. To the left of that sign is the cost of teating: n, the ample size, times the sum of the coat of one unit (which the teat will deatroy) and the coat of teating $1 t$. Thas, tif the ample alee is 35 and we chall deatroy an ftem coating $\$ 3$ and spond $\$ 2$ to do It , then the teat alone will cost $35 \times(3+2)=\$ 75$. Now, as for the Producer'e Risk, the reat of the lot, $N=n$, is aubject to the probability (P_{P}) that at will be rejected even though the lot ia really acceptable. The iymbol P_{P} It the Producer's Risk; it in computed as 1 . Lp by aubtracting from unity the chance, Lē, that a lot of procesa average quality (\bar{p}), prosumably better than LTFD, will be accopted. If unity represents all poseiblifites and Lp is calculated as adecimal fraction, bay, 0.95 then 1 - Lp 10 the chance of rejection: in this casel-0.95=0.05. Now $(N-n)\left(P_{P}\right)$ gives the number, on the ruarage, which we will lose from the lot by the action of the Producer's Risk, We may not lose thia lot but when we do lose a lot and ita N - n la prorated over all the loti we do rot lose, each lot will
loat about ($N-n$) (P_{F}). It ymaina only to cost thia losa. This ia doice by multiplying $(N-n)\left(P_{P}\right)$ by the cost of one item less it salvage value, if any, $C_{U}-V_{S}$ if an item costs $\$ 0$ and can be reworked for $\$ 3$, then $C_{U}-V_{S}=$ $\$ 3$ so that ($C_{U}-V_{S}$) may also be called the cost of reworking the item,
When the appropriate values are illled in, the total coat T of using any proposed sampling plan againat material of the quality being produced (o) may be calculated. A bit laborious but, as you can see, not too difficult.

The calculation, from scratch, of an optimum sample aize would require quite a bit of work. First, as inaicated in (2), one would have to determine a succession of different sample sizeit and an associated allowable number of defects (c) for each. Each plan muat be designed to furnith the ame protection (ame Conoumer's Risk) againat material of lot tolerance (LTFD) quality. Then, the total coat of each plan would be computed, using the above equation, it would require facility in ualing a table of probabilities. While thit would not be difficult to learn, such a table in, after all, a atatiatician'a reference. Happlly, Ellner and Savage (4) have developed short-cut mathoda for calculating optimum aingle and double (sese Glosary) ampling plans utilizing graphical methode and graphe devoloped by Dodge and Romig (5), These graphe are raproduced and appended hereto with the kind permisition of the originatore and publiohers and, in any caie, can be conaulted in (5).

THE WORK OF DODGE AND ROMIG, it is generally acknowledge that Dodge and Romig are the fathers of atatiatical sampling as used in quality asaurance work. it ia atoniohing to see how sophlaticated thetr thinking was, even in ite earliest publifhed form in the Bell Telephone Technical Journal. Their methodi are intensaly practical but that should act aurprise anyone aince they were ongineera faced with the eminently practical problem of ampling. While their rejected lots would be inapected 100%, they recognized that the coat of auch 100% inapection ie an ecoromic losa. Thelr aampling plane were calculated to minimiee the over-all. coat of the inapection operation incl ding the 100% inapectiona caused by the Producer's Risk. Therefore the diea of optimizing ample sive for minimum coat originated with Dodge and Romig. The wae of the ame principle for deatructive or expenaive testing where 100% inapection of rejected lote was patently impracticable was urged by (2) and (4), abbatituting $C_{U}-V_{S}$ for the Dodge and Romig's 100% inspection of rejected lote. With this great aimilarity in basic ideas, it io not too aurpriaing that we can use Dodge
 which might be not oniy laborious but confusing to the non-mtatistician. To avold the latter, we propose to develop aingle and double ampling plans using the Dodge-Romig graphs and to proceed otep by otep explaining only as required to fachitate achlevement of the final objective - the ampling plan.

CONTROLIING THE PROCESS, In their eagernese to inaure receipt of high quality material, engineers can easily fall into the trap of apecify. ing acceptance criteria so high as to increase production and inepection costs beyond reason and hamper production of a smooth flow of acceptable material. For the dubionn advantage of an exceedingly low outgoing proportion of defective material, the consumer pays through the nose There are other ways to do this whthout incurring prohibitive costa and atrangling production. Perhaps the moat effective way is to engineer production and establish effective quality controls at the right pointe on the production line so that production of the molt critical or aignificant types of defecte will be almout impoasible. Another way, not as affective and more costly, but easier and more convenient for the purchaier $\ddagger \mathrm{f}_{\mathrm{t}}$ to eatablieh an LTFD at euch a level that, to avoid a coutly high proportion of refections, the producer will have to maintain an average quality output well above the LTFD.

ESTABLISHING THE LTFD, In ostablishing the LTFD we nall menme a Consumer' Riak of 10% or 0.10 for two reasoni. First, ever since Dodge and Romig first calculated their tables thit has been the riak conventionally accepted for the LTFD. Second, their graphs are based on an 0.10 risk. The engineer should sot his LTFD at some fyaction defoctive such that, even If a lot of LTFD quallty ware accepted on rare occailon, it would cause no insurmountable problem in the field. Since ampling plans devoloped by our method with reject lote of LTFD quality nine times out of ten, If the contractor would regularly produce materdal of thin quality he would aurely face economic diaster. If the applier' Producer's Rlak la to be at a tolerable devel he munt produce material by procese which la atatistcally controlled to give a procese average (\bar{p}) proportion dafective vary roughly $1 / 3$ or $1 / 4$ of the LTFD. Thus, if the LTFD is 0.08 , the aupplier should produce a p of about 0.02 or 0.03 to avold exceasive lose due to the Producer' Riok, If the oupplier' fis much lower than the LTFD the optimum ample aize will be relatively low.

The engineer should choose an LTFD that will give him what he needs at an acceptable price. From the facts already indicated, he must have a reasonable expectation that the supplier will be able to produce a controlled \bar{p} which is $1 / 3$ LTFD. If he cannot, his prices wili have to be raised to cover the excessive rejections he is sure to experience. The engineer must avoid demanding material of prohibitively high quality solely for the purpose of bolstering his reputation for designing items which work all the time. He must remember that, if the supplier is trying to make material at a controlled $\bar{p}=1 / 3$ LTFD, very rarely will the process make a lot of LTFD quality and, even if it does, the chance of its being accepted is only one in ten, so the engineer can rest assured that, for practical purposes, almost all accepted lots will be much better than LTFD quality. With this in mind, he can afford to be fairly generous in setting the LTFD.

Perhaps as good a way as any is to assume some realistic $\overline{\mathrm{p}}$ which the engineer feels a qualified supplier can maintain under statistical control when producing the item in question. Then the engineer multiplies \bar{p} by 4 and 3 and asks whether a product of quality $4 \bar{p}$ or $3 \bar{p}$ can, on rare occasion, be accepted without causing excessive trouble to the user. Using this as a criterion he sets his LTFD at $4 \bar{p}$ if possible, at $3 \bar{p}$ otherwise. The engineer should realize that, if the supplier maintains control over his quality a lot of LTFD quality will almost never be produced, much less accepted. The supplier should recognize that if a sampling plan is computed on an LTFD basis he would bc well advised to get his process under statistical control at a \bar{p} no greater than $1 / 3$ LTFD and keep it there. If, for some reason, the LTFD must be set at some figure noticeably less than $3 \bar{p}$, the angineer should expect higher prices, uncertain deliveries or repeated requests for waivers or changes in contract requirements. The supplier can anticipate occasional, even frequent rejections and organize with this possibility in mind. The above procedure is only a useful rule-of-thumb. By making a number of trial calculations, the engineer can satisfy himself that when $\overline{0}$ is very small compared with LTFD, the sample size required will be relatively small and rejections will be few. As \bar{p} approaches the LTFD, sample size will be at a high and rejection will tend to occur in 9 cases out of 10 .

DESIGNING THE OPTIMUM SINGLE PLAN (EXAMPLE 1). To illustrate how to design a single sampling pian, we shall use the example furnished ir (4). First we shall list by symbols the things we need to know,
quantitatively, If any of this information is lacking, it is advisable to
 indicates to be suitable.

$N=5000$	$C_{U}=\$ 5$
LTFD $=P_{t}=0.07$	$C_{T}=\$ 0$
$\dot{p}=0.02$	$V_{S}=\$ 3$

We calculate the qualtitie $A=C_{U}+C_{T}=\$ 15$ and $B=C_{U}-V_{S}=\$ 2$.
Unually A and B can bedetermined quite accurately but they are not as important as the ratio $\frac{B}{A}$. Uning these figures, we calculate the follown ing:

$$
p_{t} N=0.07 \times 5000=350
$$

$$
\frac{B}{A}=\text { approximate equivalont lot aize }=\frac{2}{15} \times 5000=667
$$

$$
p_{t}=\frac{0.02}{0.07}=0.29, \text { and }
$$

$p_{t} \frac{B_{N}}{A}=\left(p_{t}\right)$ (approximate equivalent lot uize) $=0.02 \times 667=46.7$.
We enter Figure 2 with $p_{t} \frac{B_{N}}{A}: 46.7$ and $\frac{\dot{p}^{\prime}}{p_{t}} 0.29$ and get an acceptance number $c=4$. Now going to Figure 3, we follow the curve for an acceptance number of 4 and we find it leaver the chart at $p_{t} N$ of 200 . Our $p_{t} N$ is 350 but elnce the curves force 0 to $c=10$ remaln parallel to the horisontad axi past $p_{t} N=200$, we read $\left(p_{t}\right)$ (ample siee) or $p_{t} n=8$, Since $p_{t}=0.07$ we find $n=\frac{8}{0,07}=1 i 4$, We ubstitute 114 in the expreanion for the exact equivalent lot aize, $p_{t}\left[\frac{B_{N}}{A}+\left(1-\frac{B}{A}\right) n\right]$ which converta to $0.07\left[\frac{2}{15} \times 5000+\right.$ $\left.\left(1-\frac{2}{15}\right) 144\right]$. 53.6 , We could not calculate the oxact equivalant lot ade before this because we need to know n, the eample alre. That we obtulned by ilrat uning the mpproximute nqulvalent lot aize. We re-onter Figure 2
 get $c=5$. Now we re-enter Figure 3 with $c=5$ and $p_{t}^{\prime} N=350$ and read 9.2 (by uaing dividers and a scale). Since $p_{t}=0.07,0.07 n=9.2$ whence $n=131$. The optimum aingle sampling plan, then, is $n=131, c=5$. We can check thit by recalculating the long expression above and getting 54, 5 which when used to onter Figure 2 again with $\frac{b_{i}}{\rho_{t}}=0.29$, findic $c=5$ unchanged. That is all there is to it.

INFLUENCE OF THE PROCESS AVERAGE, \bar{p}. To insure that the optimum in sampling economy is maintained, the process average should be recomputed every 5 or 10 lota, If any eizeable change in noted, it would be wise to recompute the sampling plan, which is not an oneroun taik as you have seen. The quation may be put as to what value to une for \dot{p} when calculating the original nampling plan, when no quality history existe for the production inne. At such a time, your beat guess as to the everage quality the line te expected to produce is adequate or you may prefer to eatimate p coneervatively at about $0.3 p_{t}$. It probably will not make too much difforence oither way since, oven if the eatimate in off somewhat, it will not be too far away and will be changed as soon as a quallty histroy becomes avaliable. As an exercise, one might vary the procean average, uaing some figures much higher and much lower than $\bar{p}=0.02$ and notice the effect on the sample size which roalta from the change.

DOUBLE SAMPLING. Some time ago, double sampling and the related multiple shmpling were regarded as way to reduce the over-all coat of ampling aince, for sampling plans giving the anme protection the total number of ample dtema needed for aingle campling was normally noticeably more than what double eampling damanded which, in turn, was greater than what multiple ampling required. Thus, if the amount of rateating could be kopt down, at when quality io either very good or very poor, appreciable avinge appar poisible. Since the aystem for calculating optimum aingle ample plane takes into account changes dn sample aleen when p changes, it possesies 10 me of the advantages of double and multiple eampling without the disadvantages. Again, many like the idea of getting a second chance with double sampling, everal chances with multiple sampling. One does not feel so tied down to the one chance of the single sample. This is, of course, purely paychological for, mathematically, there is a price to pay. Additional costa muat be borne in electing recond and other damplea that
are ueed only infrequently. There is the physical burden and inconvenience
 parent lots. Then, too, when retesta become more frequent than originally anticipated, heavy work loads are experianced leading to over-work, fatigue and, eventually, to error. These factors have cauled double and multiple sampling to lose some of their popularity and led to greater dependence upon and use of aingle ampling plans. Neverthelesa, we chall inchude a method for computing optimum double sampling plans.

DESIGNING THE OPTIMUM DOUBLE SAMPLING PLAN (EXAMPLE 2). For this example we shall use the figures used in Example l. To spare you the trouble of looking them up they are listed below:

$$
\begin{array}{ll}
N=5000 & C_{U}=\$ 15 \\
L T F D=p_{t}=0.07 & C_{T}=\$ 10 \\
p=0.02 & V_{S}=\$ 3
\end{array}
$$

Agein we calculate $A=C_{U}+C_{I}=\$ 5$ and $B=C_{U}-V_{S}=\$ 2$, Uaing thene figures we calculate

$$
P_{t} N=0.07 \times 5000=350
$$

$\frac{{ }_{A}^{A}}{N}$
a approximate equivalent lot aize $=\frac{2}{15} \times 5000=667$

$$
\frac{\sum_{1}}{p_{t}}=\frac{.02}{.07}=0.286 \text { and }
$$

$P_{t} B_{N} / A=\left(p_{t}\right)$ (approximate equivalent lot $\left.12 \theta\right)=0.02 \times 667=46.7$.
To determine the reapective c numbers for our double ampling plan we use Fig 2-7 which is analagous to Fig l-2. We enter Fig 2.7 with $p_{t} B_{N} / A=46.7$ for the ordinate or vertical component und $\bar{p} / p_{t}=0.286$ for the horizontal component or absciatia. We find $c_{1}=1$ and $c_{2}=7$, almont inside $c_{2}=8$.

Now we use Fig $2-8$ and, at $p_{f} N=350$, the curve for $c_{1}=1$ gives a reading of 4.5 on the ordinate which represents $p_{t} n$ or p_{t} times the first ample size. Since $P_{t} n_{1}=4.5$ anc $p_{t}=0.07, n_{1}=\frac{4,5}{0.07}=64$. Simuariv we look up c_{2} for $p_{t} N=350$ and we find an ordinate of 12,8 which now represent $p_{t}\left(n_{1}+n_{2}\right)$. Now if $p_{t}\left(n_{1}+n_{2}\right)=12.8$ and $p_{t}=0.07$ then $n_{1}+n_{2}=\frac{12.8}{0.07}=183$. Since $n_{1}=64, n_{2}=183-64=119$. As before, this is a firet approximation to the sampling plan we want. Substituting in the expresion

$$
\frac{{ }^{B} N}{A}+\left(1-\frac{B}{A}\right)\left(n_{1}+n_{2}\right)
$$

we get $667+(1-2 / 15)(183)=826$. Back we go to Fig 2-7, uslng $p_{t}(826)=$ $0.07 \times 826=57.8$ and we get $c_{1}=1$ and $c_{2}=8$. Again we enter Fig 2.8 with $p_{t} N=350$ as the absciasa and for $c_{1}=1$ we get $p_{t} n_{1}=4.5$ so that $n_{l}=64$ as bafore. However for $c_{2}=8$, we get $p_{t}\left(n_{1}+n_{2}\right)=14.0$ whence $n_{1}+n_{2}$ $\frac{14.0}{0.07}=200$, from which $n_{2}=200-64=136$. The ampling plan then is $c_{1}=1, c_{2}=8, n_{1}=64, n_{2}=136$. If desired, the ample sizes can be rounded to $n_{1}=65, n_{2}=135$ without too great a change in the effect of the plan. As you can see, the calculations are a bit more involved for the double sampling plan as compared with the single rampling plan but the principie ts the eame.

The deare to keop the presentation almpie raquires omianion of several facete which might be useful such as an easy way to calculate the expected total cont of a given ampling plan if p is known. However, if this information is required it can be obtained from other graphe in (5).

In all the previous discussion, it was assumed that the only iniormation avallable regarding the qualliy of the lot to be teated waf that developed from the sample. In an actual production situation a substantial amount of engineering information is developed during the production
cycle which, properly interpreted, can indicate whether the procoss is in statiatical control and, thereiore, may be considereci to be pandicing substantially homogeneou maierial, If the materjal ie homogencous from lot to lot then the reauls of teste generated in previous lote may be considered to have eignificint bearing on the results expected fn the latest lot. Hence when statistical control has been established, the jample ife, lot by lot, can be ieduced ubstantially and ramain reduced provided no evidence is obrained indicating loss of control.

Basically, if advantage is taken of available enginesring knowledge of previoul experience with the process sampling, testing, and their attendant coats may be reduced. This notion lendu fteelf readily to eiatiatical ingenuity but the engineer will reguire the assibtance of a statistician to take acivantage of ths possibilitien. A number of ingeniout scneme to permit useful employment of existing engineering data can be devisec to reducs the sample aize and test costs below the "uptimum" coiution just described.

The author desires to express hi appreciation and gratitude to Ellner and Savage for permission to uwe the resulta of thotr resarch and most particuiarly to Profesmor Harold F. Dndge, Dr. Harry G. Romig, and John Wiley and Sons, Lnc. for their unselfish generoaity in allowing reprinting of their graphs without which this work would have been imponaible.

REFERENCES

(1) Barnard E, Smith, "Some Economic Asperts of Quality Control", Applied Mathematics and Statistics Laboratories, Stanford University, Technical Report No. 53, 3 July 1961.
(2) Joseph Mandelson "Estimation of Optimum Sample Size in Deatructive Teating by Attributes", Industrial Quality Control, Novamber 1946.
(3) E. G. D. Paterson "Quality Control Engineering in Product, Evaluation'", Industrial Quality Control, May 1960 wherein the authof indicates that cost cannot intelligently he asigned to the beta risk and that this factor can best be governed by ". . the employment of acceptance criteria and procedures which will, to the extend practicable, obviate their presence in the accepted product." Paterson was vice-president of Bell Laboratories in charge of quality control.
(4) H, Ellner and I. R. Savage "Sampling for Destructive or Expen-
 Symposium at Army Chemical Center, Md., in April 1956 and at the Army Science Conference, Weat Peint, N. Y., in June 1957.
(5) H. F. Dodge and H. G. Romig, Sampling Inspection Tablen, 2nd Ed. John Wiley and Sons, New York, 1959.
(6) Joseph Mandels on "Lotting", Industrial Quality Control, May 1962.

GLOSSARY

$C_{R}=$ Cost of rejection
$\mathrm{N}=$ Lot size
$n=$ Sample ine
$C_{U}=$ Cort of a aingle unit
$V_{S}=$ Salyage value of a ingle undt or lts vaiue at rework matexial
$\nu_{P}=$ Producer's risk; probability (expreseed ail dectmal fraction) that the ample will, on tent, represent the lot to be unacceptable when it is, in fact, quite acceptable
$C_{S}=$ Cost of ample item
$C_{T}=$ Cont of teating a aingle unit
$A=C_{U}+C_{T}=$ The cont of destroying one item in testing
$B=C_{U}-V_{S}=$ The value of one rejectod itera
c Acceptance number, the maximum numbar of iniectives that will be permitted in a sample of aize n irnm an acceptable lot. If more than c defectiven iure observad in tine asarple of n items the lot will be rejected.

ローソロ

$$
\begin{aligned}
n_{1} & =\text { Size of first sample } \\
n_{2} & =\text { Size of second sample } \\
n_{1}+n_{2} & =\text { Size of combined first and second asmples }
\end{aligned}
$$

$c_{1}=$ Aceeptance number for first ample，n_{1} ．If c_{1} or fewer defec． tive are found in n_{1} ，the lot is accepted stralght－away，If the number of defectives found in n_{1} in greater than c_{1} but equal to or leas than c_{2} ，the second eample，n_{2} ，is tented and the number of deiectives in n_{1} and $\ln n_{2}$ is totalled，If that number in greater than C_{2}（the number of dafectiven per－ mitted in $n_{1}+n_{2}$ ）the lot is rejected．If c_{2} or less defectiven are found in $n_{1}+n_{2}$ on reteat，the lot in accepted，

DEFINITIONS

Singlo Eampling－A ybtom of ampling whereby a aingle sample de drawn from a lot and the acceptability of the lot is determined from the reablts obtained in teating the sample．No reteat in porinitted if resulte are unfavorable．

Procusa avarage（Ri；The apparent proportion of percent of defec－ tives mandfactured by the production proceas．It is generally computed by dividing the total number of defectives found th the samples taken from the laut few lots teated（ 5 or 10 ）by the am of the cample gizes．This gives $\$$ ar a decimal fraction．

Lnt Coleraice Fraction Defective（LTED or Br）－Lot quality，expreased as a decimal fraction defective，ac poor that we want to permit only a small chance or probability（the Consumer＇a Risk，say one chance in $10=10 \%=$ 0.10 probabllity）that the sampling pian will permit acceptance if auch a lot to qubraitted．

Double Sampling．－A system of sampling wherein two samples are taken and one set oi acceptance and rejection criteria are furnished for each sample．If the reaults obtainod in testing the first sample meot neither the acceptance nor the rojection criterion for that eample，the second sample is teated（called the reteat）and the deciaion is made using the second set of criteria．A deciaion is alway posible uning the afcond set of criteria after the retest．

Reprinted trom amplina INAPECTION TABLES

Reprinted from SAMPLING INSPECTION TABLES

Copyright 1944, 1959 by Bell Telephone Laboratories, Incorporated

FIG. 2.* CHART FOR FINDING ACCEPTANCE NUMBER OF SINGLE SAMPLING PLAN. (COHSUMER'S RISK, 0.10).

fig. 3. Curves for finding size of single sampling plan. (CONSUMER'S RISK, 0.10).
-Reproduced in part, by permission, from "Sampling Inspection Tables'" by Dodge \& Ramig, published Ey john Wiley \& Sons, Inc.

$p_{t} I$ MIN.

FIG. 4. CURVES FOR FINDING THE MINIMUM COST OF INSPECTION PER LOT (SINGLE SAMPLING PLAN - CONSUMER'S RISK, 0.10)
*Reproúuced in part, by permission, from "Sampling Inspection Tables" by bodge $\hat{\text { a Romig, published by John Wiley \& Sons, Inc. }}$

PROCEDURES FOK FINDING TOTAL SAMPLE STATISTICS FROM SUBSAMPLE STATISTICS
 Paul C. Cox
 Reliability and Statistica Division Army Minaile Test and Evaluation Directorate White Sanca Misbile Range, New Mexico

Abstract

While procedurea for obtaining the variance for a total sample from subample statistice ds fairly woll known, there appear to be very few instances in which euch procedures are found in print. Therefore, twenty-five formulas are presented which are in one way or another, related to obtaining the inean and variance for a total sample from aubample statiatics. In addition, techniques are demonstrated for uaing these formulas to determine the mean and variance for a ample in which a portion of the obeervationa have been modified, some have bean added, or a few have been deleted.

The discuasion includen: applicatione of these formulas; precautions Which ehould be observed; methods for deriving the formulan; and, procedures for their use.

1. INTRODUCTION, Thin raport prosente techniquea and formulas for determining the menn and variance of a total ample if thia ample hai been partitioned into a et of non overlapping and mutually exhauative absamplea; and the mean, vaxiance, and ample size are known for each subsample.

Simblerly, techniques are discused for changing the varlance when obeervatione are added to, deleted from, or changed in a ample. Procedurei for deriving these formulas are discuated and some of the derivationsare included in thia report,

Most poople know these formules exist, and they are not, for the most part, difficult to derive. However, thoy are often useful and it in uoually difficult to find them in print. To liluatrate this point, a total of elghty-aix etatieticn, design of experimente, probability, eampling, and quality contral texts were revicwed and of that number, only two included a diccusion
m(1) Sampling Inapection by Variables, Bowkar and Goode, pp. 62, 63, and 92.
(2) Techniques of Statiatical Anmlyain, Eisenhart, Hastay, and Waliia, pp. 42-43.
on how to determine the total variance from ubsample statistics. From
 here may be well known, fow authors seem to have bothered to put them in print. Forthermore, it has beun obeerved thet many people have needed certain of these formulae and not being able to locate them in print have found it necessary either to spend conalderable time deriving them or aim. ply to do without.

One obvious method for obtaining the mean and variance for a tetal sample is to gather the raw data from all the ubamples and compute these statistics by conventional procedures. It is equally clear that use of raw data will be unsatisfactory if the subsamples are quite large bacause of the amount of work involvedi and the raw data certainly cannot be uned in those frequent casee is which it is no longer avaliable.
II. APPLICATIONS AND PRECAUTIONS. The following are uees of the procedures and formulas of this section:
A. After eitimating the mean and varlance for a number of diferent populations, a research worker may want to know the mean and variance for a population composed of a combination of these populations. This would be accomplinhed by combining the amplea from the ub-populatione to obtain a total ample.
(1) An axample of this would be the case of production lota, The mean and variance will be known for a sample from eoch lot, but an atimate of the mean and variance for the ontire production may be deaired. To obtain thisit would lae naceseary to combine the lot amples to obtain a total ample.
(2) A second example: After conducting an analyais of variance to detormine the effect of certain treatmente, the research worker may want to eatimate this mean and variance for population compoeed of everal abpopulations, each dentified by a certain teeatment level, For this, abb. amples could be combined to form a total population.
B. Sarnple data may come irom many aources, for example, from ueveral paris of the country, from several agencien, or from aeveral perioda of time, and it may frequently be desirable to combine the data to form one total ampla. Obvioualy, it may be that only the mean, variance and sample aice for cach absample are available or can easily be transmitted rather than the cormplete raw datu.
C. Frequently, sample data has been completely analyzed when it becomes evident that a few observations must be added, certain observa. thene shouhd te deifieu, us a iew sinuli ive corrected. Ine procedures of this report may be very useful in changing or correcting the original entimates of the mean and variance as a result of chenging or correcting the basic data.

In this connection, these formulas may be useful in computing statistics associated with moving averages.
D. As a final application, those who teach statiatics at the Sophomore or Junior level might find the derivation and application of some of these formulas an interesting asaignment.

The main procaution to obeerve when uning these formulas to that the total sample may represent a population with such atrange or unknown characteriatics that an eatimate of the variance would be usolers when obtained. For example, a total population componed of k normal aub-populationa, cach with a different mean and variance, is not likely to be normal or even clone to normal.

On the other hand, it is quite poasible that the characteriatics of the total population will be known and the estimates of its parametera useable. For example, the sub-populations may not be normal, but it may be posifble to comblng them to form a normal total population. Slmilarly, the variance for the total population may be needed to deacribe the distribution of ample nacane, and thit dutribution ahould approach normality regardleas of the diatribution of the total population.

Another precaution ta that one should observe whether the ratio of each abample size to the total ample aize is about the same as the ratio of the corresponding oub-population, If this la not the case, weighting factors should be introduced to obtain the correct ration.

Aa a final precaution, before combining subsamples to form a total sample, one should alway observe whether it ia inherently reanonable to combine such data. That is to say, the absamples may contain such difierenr types of obervations that combining them would be nonsense.

The estial diffeceacou beiween a total catimate and a pooled eutimate of the variance should be discussed at this point.

A total variance is the variance of one complete sample, which hat been broken down into two or morn subsamples. No asoumptione sereme cose cerning the populations corresponding to each mbiample. More specifically, no assumption is made concerning the vardances of these populations. How ever, it is asmumed that when the total variance has been obtained, ite corresponding total sample correspond to a population with known characteristics. If this were not so, there would be little purpose in a total variance.

The pooled estimato of the variance can be obtained from eubasmple statiatics, juat as a total variance. It differi, however, in that it is in no way related to a total sample or a total population. Therefore, no asumptione need be made concerning total population. The aseumption ia made; however, that all ubsamplea come from the same population, or at least from populations which have equal variances. The pooled entimate is then an improvement over each of the eatimate obtained from any aingle abe sample.
III. DEFINITIONS.
A. $k=$ Number of absamples.
B. $n_{1}=$ Sige of the $i^{\text {th }}$ aubample $(1=1,2, \ldots k)$,
(If all n are equal, ween)
C. $N=S I z e$ of the complete ammpie.
(1) $N=\sum_{n_{1}}(i=1,2, \ldots k)$.
(2) $N=k n$ if all n_{i} are equal.
D. $\tilde{x}_{1}=$ Mean for the $i^{\text {th }}$ oubsample.
E. $\boldsymbol{F}^{\prime}=$ Mean for the total ample.
F. s^{2} = Variance for the complete sample
$s=$ Standard deviation for the total ample.
G. ${ }_{s_{i}}^{2}=$ Variance for the $i^{i 2}$ subsample.
H. ${ }_{5}{ }_{p}^{2}$: Pooled astimate of the variance.
IV. PROCEDURES.
A. The overall mean \bar{x};
(1) If the n_{i} are unequal:

$$
\overline{\bar{x}}=\frac{\sum_{n_{i}} \cdot \bar{x}_{i}}{N}
$$

Formula (d)
(2) If the n_{i} are equal:

$$
\begin{equation*}
\bar{x}=\frac{n \Sigma \dot{x}_{i}}{N}=\frac{\Sigma \dot{x}_{1}}{k} . \tag{II}
\end{equation*}
$$

B. Pooled Eatimate of the Variance ${ }_{p}{ }^{2}$.

The pooled estimate of the variance is actually an average of the subsample variances, and should be computed only if there is reasona e assurance that all absamples were selected from populations with equal variancea.
(1) If the n_{i} are unequal:

$$
\begin{equation*}
e_{p}^{2}=\Sigma\left(r_{i}-1\right) \cdot \frac{s_{i}^{2}}{N-k} \tag{III}
\end{equation*}
$$

(2) If the n_{i} are all equal:

$$
\begin{equation*}
e_{p}^{2}=\frac{(n-1) \Sigma i_{i}^{2}}{N-k}=\frac{\sum_{i}^{2}}{k} \tag{IIIa}
\end{equation*}
$$

C. Determining the Variance from an Analysis of Variance Tabla.

One methni fex =enmiotiag boin the total variance and the poslad estimate of variance is by preparing a aingle variable analyais of variance table. In addition to determining the variancas, it will also be posible to test the null hypotheri of the equality of ubsample means. This is described by Table 1 .

TABLE 1 - The Analysis of Variance Method

Sources of Variation	Degrers of Freedom	Sum of Squarea	Mean Square	F
Treatments	$k-1$	$T R$	$t x$	F
Error	$N-k$	E	$\mathrm{~F}^{2}$	
Total	$N-1$	T	V^{2}	

Table 1 is completed as follows:
(1) Complete all entries under degrees of freedom,
(2) Compute and enter:
$E=E\left(n_{i}-d\right) e_{i}^{2}$, or if all n_{i} are equal $E=(n-1) \Sigma n_{i}^{2}$,
(3) $T R=\Sigma n_{1} \cdot \dot{x}_{i}^{2}-N_{\bar{x}^{2}}^{2}$, or if all n_{1} are equal $T R=n \Sigma \bar{x}_{i}^{2}-N \bar{x}^{2}$ $=n\left(2 x_{i}^{2}-k x^{2}\right)$.
(4) $\mathbf{T}=\mathbf{E}+\mathbf{T R}$.
(5) ${ }^{2}=\frac{T}{N-1}$ This is the desired Eolution.
(6) The pooled estimate $E_{p}^{2}=\frac{E}{N-k}$,
(7) If it is desized to test the nuld hypothesis for equality of meana:
$t r=\frac{T R}{k-1}$, and
$F=\frac{t r}{g_{p}}$ with $(k-1)$ and $(N-k)$ degreet of freedom.
D. Formulas for the Variance of a Total Somple.

It is simple to obtain the desired formulas for the veriance (and standard deviation) for the total sample by following the procedures of the analysis of variance given in the previous section. 'These mrmulas are given below:
(1) The general formula:

$$
\begin{equation*}
s^{2}=\frac{\Sigma\left(n_{i}-1\right) \dot{B}_{i}^{2}+\Sigma n_{i} \cdot \dot{x}_{i}^{2}-N \bar{x}^{2}}{N-1} \tag{IV}
\end{equation*}
$$

(2) If all n_{1} are equal:

$$
\begin{equation*}
e^{2}=\frac{(n-1) \Sigma i_{i}^{2}+n\left(\Sigma x_{i}^{2}-k E^{2}\right)}{N-1} \tag{V}
\end{equation*}
$$

(3) Ii a pooled estimate of the variance is avallable and the n_{i} are unequal, formula IV may be written thus;

$$
\begin{equation*}
\varepsilon^{2}=\frac{(N-k) p^{2}+\Sigma_{n_{1}} x_{i}^{2}-N \mathbb{R}^{2}}{N-1} \tag{VI}
\end{equation*}
$$

(4) If a pooled estimate of the variance is avallable and the n_{i} are all equal, formula V may be written thua:

$$
\begin{equation*}
v^{2}=\frac{(N-k) p_{p}^{2}+n\left(\Sigma g_{i}^{2}-k k^{2}\right)}{N-1} \tag{VII}
\end{equation*}
$$

(5) If $k=2$ and $n_{1}=n_{2}$, formula V may be further simplified:

$$
\begin{equation*}
e^{2}=\frac{N-2}{2(N-1)} \cdot\left(\theta_{1}^{2}+2_{2}{ }^{2}\right)+\frac{N}{4(N-1)} \cdot\left(\bar{x}_{1}-\bar{x}_{2}\right)^{2} \tag{VIII}
\end{equation*}
$$

 may be used for formula V :

$$
\begin{equation*}
s^{2} \cong s_{A}^{2}=\frac{\Sigma_{i}^{2}+\Sigma \bar{x}_{i}^{2}}{k}-\bar{x}^{2}=s_{p}^{2}+\frac{\Sigma \bar{x}_{i}^{2}}{k}-\bar{x}^{2} \tag{IX}
\end{equation*}
$$

In Appendix II, it is shown that the error in formula IX is as follows:

$$
\begin{equation*}
\text { Error }=s_{A}^{2}-s^{2}=\frac{1}{N} \cdot\left(\sum_{s_{i}}^{2}-s^{2}\right) \tag{x}
\end{equation*}
$$

The error described in formula X is always positive.
(7) Formula XI is offered as a substitute for formula IV and formula XII as a eubstitute for formula V. Actually, formulas XI and XII may require more labor than the original formulas, but they will uavally involve amaller numbere and may frequently result in greater accuracy.

$$
\begin{align*}
& v^{2}=\frac{\Sigma\left(n_{i}-1\right) i_{i}^{2}+\Sigma n_{i}\left(x_{i}-\bar{x}\right)^{2}}{N-1} \tag{XI}\\
& E^{2}=\frac{(n-1) \Sigma E_{i}^{2}+n \Sigma\left(\dot{x}_{1}-\bar{x}\right)^{2}}{N-1} \tag{XII}
\end{align*}
$$

E. Formula Associated with Changea in Data.

(1) Frequently, after computing the desired statictics for a ample of bize n_{1}, the worker is faced with the necesalty of adding an extra group of n_{2} observations to the ample. If n_{1} is large and n_{2} relatively small, it would appeas to be deairable to compute the mean and variance for the n_{2} additional observations and determine the statistics for the entire ample from formulas I and IV. This technique is illuatrated in Appendix 1, Section D.
(2) In the event only one new observation (y) has been added to the
 desired mean and variance. Similarly, formulan $X V$ and $X V I$ may be used if two observations, (y) and (w) are to be added.

$$
\begin{align*}
& \overline{\bar{x}}=\frac{n_{1} \cdot \bar{x}_{1}+y}{n_{1}+1} \tag{XIII}\\
& \mathbf{a}^{2}=\frac{n_{1}-1}{n_{1}} \cdot s_{1}^{2}+\frac{\left(\bar{x}_{1}-y\right)^{2}}{n_{1}+1} \tag{XIV}\\
& \bar{x}=\frac{n_{1} \cdot \bar{x}_{1}+y+w}{n_{1}+2} \tag{XV}\\
& e^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+y^{2}+w^{2}+n_{1} \cdot \bar{x}_{1}^{2}-\left(n_{1}+2\right) \bar{R}^{2}}{n_{1}+1} \tag{XVI}
\end{align*}
$$

(3) Similariy, after computing the mean and variance for a sample of sife n_{1}, it may be neceseary to diacard n_{2} observatione. If the mean and variance are computed for the n_{2} observation which have been diecarded, formina: XVII and XVIII may be used to obtain the mean and variance for the remaining observations.

$$
\begin{equation*}
\mathrm{g}=\frac{n_{1} \bar{x}_{1}-n_{2} x_{2}}{n_{1}-n_{2}} \tag{XVII}
\end{equation*}
$$

$a^{2}=\frac{\left(n_{1}-1\right) a_{1}^{2}-\left(n_{2}-1\right) a_{2}^{2}-\left(n_{1}-n_{2}\right) \bar{x}^{2}-n_{2} \bar{x}_{2}+n_{1} \dot{x}_{1}^{2}}{\left(n_{1}-n_{2}-1\right)}$.
This ia dlluetrated in section \mathbb{E} of Appendix I.
(4) Diacarding One Term

If there de only one term (y) to be discarded, formulas XIX and XX may be used.

$$
\begin{equation*}
\bar{z}=\frac{n_{1} \bar{x}_{1}-y}{n_{1}-1} \tag{XIX}
\end{equation*}
$$

$s^{2}=\frac{n_{1}-1}{n_{1}-2} \cdot s_{1}^{2} \cdot \frac{n_{1} \cdot\left(\varepsilon_{1}-y\right)^{2}}{\left(n_{1}-1\right)\left(n_{1}-2\right)}$.
(5) Replacing Observations

If a group of n_{2} observations in a eample of bize n_{1} should by changed, one may follow the stepi diecuseed in sectiona (1) and (3). If it is only one obervation, formulas XXI, XXII and XXIII may be uesd, Asame y it the value to be removed and replaced by w.

$$
\begin{align*}
& \vec{x}=\frac{n_{1} \dot{x}_{1}-y+w}{n_{1}} \tag{XXI}\\
& s^{2}=n_{1}^{2}+\frac{w^{2}-y^{2}-n_{1}\left(\bar{x}^{2}-\dot{x}_{1}^{2}\right)}{n_{1}-1} \tag{XXII}
\end{align*}
$$

or:

$$
\begin{equation*}
e^{2}=a_{1}^{2}+\frac{(w-y) \cdot\left[\left(n_{1}-1\right) w+\left(n_{1}+1\right) y-2 n_{1} \cdot \bar{x}_{1}\right]}{\left(n_{1}\right)\left(n_{1}-1\right)} . \tag{XXIII}
\end{equation*}
$$

F. Variance and Mean for a Total Population Composed of k Normal Populationa

It appeart appropriate to conclude with a brief diecussion of population parametern. Aesume a total population is composed of k normal sub populations, with mean μ_{1} and variance σ_{1}; and each contributing to the total population in the proportion f_{1}, with $\boldsymbol{\Sigma} f_{i}=1$. Formula XXIV gives the mean (μ) for the cotal population and formula XXV for the variance (σ^{2}) of the total population.

$$
\begin{equation*}
\mu=f_{1} \mu_{1}+f_{2} \mu_{2}+\ldots+f_{k} \mu_{k} \tag{XXIV}
\end{equation*}
$$

$$
\sigma^{2}=\sum_{i i_{i} \sigma_{i}}^{k}+\sum_{i}^{k} I_{i} \cdot i \mu_{i}-\mu j^{2},
$$

(xXv)

The derivation of these formulas is given in Appendix ILI. The chief reason for including this section is to point out the similarity between formulas XXIV and I and between XXV and XI, which is juet as would be expected.

APPENDIX I - Examples

A. Example One - (All n_{i} equal)
(1) Conaider the example given by Table 2 in which there are four equal subsamples, each of size ten.

TABLE 2

	SS(1)	SS(2)	SS(3)	SS(4)
	350	300	300	300
	340	295	310	275
	335	310	340	280
	345	315	330	310
	300	305	290	305
	325	325	285	290
	330	285	295	260
	335	310	300	325
	325	325	305	290
	335	330	290	280
n	10	10	10	10
\bar{x}_{1}	334.00	310.00	340.50	291,50
si^{2}	243.33	205.56	319.17	361. 39
				$N=40$
				$\overline{8}=310$

(2) Using the raw data in this example, the value ${ }^{2}=503.85$ may he exsily rampinted. However, it ia the purpose of thit example to demonstrate techniques for obtaining 2 if the raw data is unavailable or if N is so large that it would not be feasible to use the raw data. The firet step will be to use formula II to obtain $\overline{\mathbf{x}}$.

$$
\overline{\bar{x}}=\frac{\Sigma \dot{x}_{1}}{k}=\frac{1240}{4}=310 .
$$

(3) Table 3 demonstrates the application of the analyaia of variance, as described by Table 1 , to obtain s^{2}.

TABLE 3

Sourcea of Varjation	Degreat of Freedom	Sum of Square:	Mean Squaxe	F
Troutment	$(k-1)=3$	TR= 9,485	$t=3161.67$	11.20
Error	$(N-k)=36$	E-10,165	${ }_{p}{ }^{2}=282.36$	
TOTAL	$(\mathrm{N}-1)=39$	$T=19.650$	$\mathrm{c}^{2}=503.85$	

Where:
$E=(n-1)\left(\sum_{1}{ }^{2}\right)=10,165$
$T R=(n)\left(\Sigma \bar{x}_{d}^{2}\right)-N^{2}=9,485$
$T=E+T R=19,650$
$n^{2}=\frac{T}{(N-1)}=503.85$
$=\sqrt{503.85}=22.45$.
If a pooled eatimate of veriance ia deaired;
$\omega_{p}^{2}=\frac{E}{(N-k)}=282,36$.

Deaign of Experimenta

$t r=\frac{T R}{(k-1)}=3,161,67$
$F=\frac{t_{r}}{s_{p}^{2}}=11.20$ with 3 and 36 degrees of freedom. The value of F indicates that the difference in meana is highly aignificant.
(4) Applying the formulas from Section III-D, one obtains:
(a) $s^{2}=\frac{(n-1) \sum_{\varepsilon_{2}}^{2}+n\left(\Sigma \bar{x}_{i}^{2} \cdot k \overline{\bar{x}}^{2}\right)}{N-1}=$

$$
\frac{(9)(1129.45)+(10)(385,348.50 .4 \times 96,200)}{39}=503,85
$$

(b) If a pooled natimate of the variance is avallable, one may use formula VII.

$$
\begin{aligned}
& =^{2}=\frac{(N-k) p_{p}^{2}+n\left(\sum x_{1}^{2}-k R^{2}\right)}{N-1}= \\
& \frac{(36)(282.36)+(10)(385,348.50-4 \times 96,100)}{39}=503.85 .
\end{aligned}
$$

(c) If it is desired that the numbera be kept amaller, formula XII may be ured.

$$
\begin{align*}
& \mathbf{a}^{2}=\frac{(n-1) \Sigma_{1}^{2}+n \Sigma\left(x_{1}-反\right)^{2}}{N-1}= \tag{XII}\\
& \frac{\text { (9) }(1129,45)+(10)(948,50)}{39}=303.85 .
\end{align*}
$$

(d) If an approximation is desired, one may use formula IX.

$\frac{1129.45+385,348,50}{4}-96,100=519.49 ;$
giving a positive error of 15,64 , exactly what formuia X would indicate the error to be.
B. Example Two - (n. unequal)
(1) Conaider the following example in which there are four abamplea and a total vample aize of 32; Table 4,

TABLE 4

	SS(1)	SS(2)	SS(3)	SS(4)
	350	300	300	300
	340	295	310	275
	335	310	340	280
	345	315	330	310
	355	305	290	305
	300	325	285	290
	325	285	300	
	330	310		
	325	325		
		330		
${ }_{1}$	9	10	7	6
${ }^{x_{1}}$	333.89	310.00	307.86	293.33
${ }^{2}$	273.61	205.56	415.48	196.67
				$N=32$
				$x=313.125$

(d) If an approximation is desired, one may

$$
s_{A}^{2}=\frac{\Sigma_{i}^{2}+\Sigma \bar{x}_{i}^{2}}{k}-\overline{\bar{x}}^{2}=
$$

$$
\frac{1129,45+385,348,50}{4}-96,100=519,49 ;
$$

giving a positive error of 15 , 64, exactly what formula X would indicate the error to be.
B. Example Two - (n_{1} unequal)
(1) Consider the following example in which there are four subsampies and a total sample nize of 32; Table 4,

TABLE 4

	$\mathbf{S S}(1)$	$\mathbf{S S}(2)$	$\mathbf{S S}(3)$	$\mathbf{S S}(4)$
	350	300	300	300
	340	295	310	275
	335	310	340	280
	345	315	330	310
	355	305	290	305
	300	325	285	290
	325	285	300	
	330	310		
	325	325		
		330		
n_{i}	9	10	7	6
\dot{x}_{i}	333.89	310.00	307.86	293.33
\mathbf{Z}^{2}	273.61	205.56	415.48	196.67
			$N=32$	
			$\bar{x}=313.125$	

(2) Eram the eamnle of 32. the value $\mathrm{s}^{2}=452.82$ can easily be computed.
(3) Table 5 gives the analysia of rariance.

TABLE 5

Sources of Variation	Degrees of Freedom	Sum of Squares	Mean Square	F
Treatments	$(k-1)=3$	$T R=6529.68$	$t r=2176.56$	8.11
Error	$(N-k)=28$	$E=7515.15$	$\mathbf{E P}^{2 \times 268.40}$	
TOTAL	$(N-1)=31$	$T=14,044.83$	$\mathbf{c}^{2}=453.06$	

Where:

$$
\begin{aligned}
& E=\Sigma\left(n_{1}-1\right) e_{1}^{2}=7515,15 \\
& T R=\Sigma n_{1} \mathbb{K}_{1}^{2}=N X^{2}=3,144,042,18-3,137,512,50=6529,68 \\
& T=\mathbb{E}+T R=14,044,83 \\
& E^{2}=\frac{T}{(N-1)}=453.06 .
\end{aligned}
$$

(Note that there is a alight difference between this estimate and the one obtained from the basic data, due to rounding errora,)
$\leq \sqrt{453.06}=21.29$.
If a pooled eatimate of variance de desired;
$p^{2}=\frac{E}{(N-k)}=268.40$.
If it is dealred to teat the equality of the mans for the four abbamples:
$t r=\frac{T R}{(k-1)}=2176.56$
$F=\frac{t r}{e_{p}^{2}}=8.11$ with 3 and 28 degrees of freodom. This indicates that the difference in means da highly significant,
(4) Appiying the formulas from Section III-D, one obtaina;

$$
\begin{aligned}
& \text { (a) } a^{2}=\frac{\Sigma\left(n_{1}-1\right) s_{i}^{2}+\Sigma \Omega_{i} \bar{x}_{i}^{2} \cdot N \bar{x}^{2}}{N-1}= \\
& \quad \frac{7515,15+3,144,042,18-3,137,512,50}{31}=453.06 .
\end{aligned}
$$

(b) If a pooled eatimate of the variance is avaldable, formula VI may be used.

$$
\begin{equation*}
s^{2}=\frac{(N-k) p_{p}^{2}+\Sigma n_{1} x_{1}^{2}-N_{2}^{2}}{N-1} \tag{VI}
\end{equation*}
$$

$$
\frac{(28)(268,40)+3,144,042,18-3,137,512,50}{31}=453.11 .
$$

(c) If it is desired that the numbers be kept mall, formula XI may be used.

$$
\begin{equation*}
n^{2}=\frac{\Sigma\left(n_{i}-1\right) i_{i}^{2}+\Sigma n_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2}}{N-1} \tag{XI}
\end{equation*}
$$

$\frac{7515.15+6523.42}{31}=452.86$.
(Note that this ia much closer to the true value than those liated under a or b).
C. Example Three - $\left(k=2, n_{1}=n_{2}\right)$
(1) To illustrate formula VIII, the first two columns from

Table 2 will be used. From this:

$$
\begin{aligned}
& n=10, N=20 \\
& \dot{x}_{1}=334, \bar{x}_{2}=310 \\
& \varepsilon_{1}^{2}=243.33,2^{2}=205.56 \\
& \overline{\bar{x}}=322, \varepsilon_{p}^{2}=224.44,8^{2}=364.21 .
\end{aligned}
$$

(2) Applying finrmula VIII:

$$
\begin{aligned}
& s^{2}=\frac{(N-2)}{2(N-1)} \cdot\left(s_{1}^{2}+s_{2}^{2}\right)+\frac{N}{4(N-1)} \cdot\left(\bar{x}_{1}-x_{2}\right)^{2}= \\
& \frac{9}{19}(448.89)+\frac{5}{19}(576)=364.24 .
\end{aligned}
$$

D. Example Four: (Add n_{2} obsorvations to a sample of aire n_{1})
(1) Conolder the sample of 40 , given by Table 2. It may be obsorved that:

$$
\bar{x}_{1}=310, \varepsilon_{1}^{2}=503.85
$$

(2) Suppove it in necessary to add the five additional items: 310, 293, 314, 280, and 300
$n_{2}=5, \dot{x}_{2}=305.40,{ }_{2}^{2}=374.80$.
(3) One may proceed by using formula I and then either IV or XI. For this formula, XI wat used.
$N=40+5=45$
$\overline{\bar{x}}=\frac{(40)(310.00)+(5)(305.40)}{45}=309.49$
by formula I.

$$
\begin{aligned}
8^{2} & =\frac{(39)(503.85)+(4)(374.80)+(40)(.51)^{2}+(4)(4.09)^{2}}{44} \\
& =482.42
\end{aligned}
$$

by formula XI.
(4) Actually, the value for s^{2} using raw data $1: 482,80$.
E. Example Five: (Remove n_{2} observations from a mample of size n_{1}.)
(1) The data of example four will be used for this,

$$
n_{1}=45
$$

$\bar{x}_{1}=309.49$
$\mathrm{g}_{1}{ }^{2}=482.80$.
(2) Remove the 5 observations which were added in example four.
$n_{2}=5$
$\bar{x}_{2}=305.40$
$5_{2}{ }^{2}=374.80$.
(3) Use formula XVII and XVIII, giving:

$$
\bar{x}=\frac{(45)(309.49)-(5)(305.40)}{40}=310.00
$$

$:^{2}=\frac{(44)(482.80)-(4)(374.80)-(40)(310)^{2}-(5)(305.40)^{2}+(45)(309.49)^{2}}{39}$
$=504.64$.

APPENDIX II - DETERMINATION OF THE ERROR IN FORMULA IX
Using formulas V and $I X$, the following error is observed:
$E=A^{2}-E^{2}=\left\{\frac{\Sigma g_{i}^{2}+\Sigma x_{i}^{2}}{k}-\bar{x}^{2}\right\}-\frac{(n-1) \Sigma s_{i}^{2}+n\left(\Sigma \bar{x}_{i}^{2}-k{ }^{2}{ }^{2}\right)}{N-1}$
$=\frac{(N-n) \Sigma e_{1}^{2}}{N(N-1)}-\frac{n \Sigma \bar{x}_{i}^{2}}{N(N-1)}+\frac{z^{2}}{N-1}$
$=\frac{\Sigma_{i}{ }_{i}^{2}}{N}-\frac{(n-1) \Sigma_{s}{ }_{i}^{2}}{N(N-1)} \cdot \frac{n \Sigma \bar{x}_{i}^{2}}{N(N-1)}+\frac{k n \bar{x}^{2}}{N(N-1)}$
$\operatorname{Errog}=A_{A}^{2}-a^{2}=\frac{1}{N} \cdot\left(\sum_{i}^{2}-a^{2}\right)$.
Inasmuch me \int_{1}^{2} ds larger than ${ }^{2}$, the erior will alway be on the positive ilde.

APPENDIX III - DERIVATION OF THE MEAN AND VARIANCE FOR A POPULATTON COMPOSED OF K NORMAL POPULATIONS

A. Ansume each of the k normal populatione have mean μ_{1}, variance σ_{i}^{2}, and contributes to the total population in the proportion f_{i}, with $f_{1}+f_{2}+\ldots+f_{k}=1$.

$C . m(\theta)=f_{1} e^{\left(\frac{1}{2} \cdot \theta^{2} \sigma_{1}^{2}+\theta_{\mu_{1}}\right)}+\ldots+1_{k} e^{\left(\frac{1}{2} \cdot \theta^{2} \sigma_{k}^{2}+\theta_{\mu}\right)}$
$n \cdot \frac{\partial m(\theta)}{\partial \theta}-E_{1} i \Delta \omega_{1}^{2}+\mu_{1} j \cdot\left(\frac{1}{2} \cdot \theta^{2} \sigma_{1}^{2}+\theta \mu_{1}\right)+$

$$
\ldots+f_{k}\left(\theta \sigma_{k}^{2}+\mu_{k}\right) \cdot \theta\left(\frac{1}{2} \cdot \theta^{2} \sigma_{k}^{2}+\theta \mu_{k}\right)
$$

E. The mean of the totel population:

$$
\mu=f_{1} \mu_{1}+f_{2} \mu_{2}+\ldots+f_{k} \mu_{k}
$$

$F \cdot \frac{\partial m(y-\mu)^{\prime \theta}}{\partial \theta}=f_{1}\left[\theta_{1}^{2}+\left(\mu_{1}-\mu\right)\right] \cdot e^{\left(\left.\frac{1}{2} \theta^{2} \sigma_{1}^{2}+\theta\left(\mu_{1}-\mu\right) \right\rvert\,\right.}+\ldots$,
$\theta \cdot \frac{\theta^{2} m(y-\mu)^{0}}{\theta^{2} \theta}=f_{1}\left[\theta \sigma_{1}^{2}+\left(\mu_{1}-\mu\right)\right]^{2}\left(\frac{1}{2} \theta^{2} \sigma_{1}^{2}+\theta\left(\mu_{1}-\mu\right)\right)$

$$
\left.+i_{1} \sigma_{1}^{2} \cdot e^{\left(\frac{1}{2} \theta^{2} \sigma_{1}^{2}+\theta\left(\mu_{1}-\mu\right)\right.}\right)
$$

H. The variance for the total population:

$$
\sigma_{y}^{2}=f_{1}\left(\mu_{j}-\mu\right)^{2}+f_{1} \sigma_{1}^{2}+\ldots+f_{k}\left(\mu_{k}-\mu\right)^{2}+f_{k} \sigma_{k}^{2}=\Sigma f_{i} \sigma_{i}^{2}+\Sigma f_{i}\left(\mu_{d}-\mu\right)^{2}
$$

APPENDIX IV - SUMMARY OF FORMULAS

A. $n_{2}=n_{2}=\ldots n_{k}$
(1) The Mean for the total ample

$$
\bar{x}=\frac{\Sigma \dot{x}_{i}}{k}
$$

Formula It

Design of Experiment:

(2) Pooled Estimate of the Variance

$$
z_{p}^{2}=\frac{\Sigma_{z_{i}}{ }^{2}}{k} .
$$

Formule In (a)
(3) Variance for the total sample

$$
\begin{aligned}
& s^{2}=\frac{(n-1) \Sigma_{i}^{2}+n\left(\Sigma \bar{x}_{i}^{2}-k \bar{x}^{2}\right)}{N-1} \\
& s^{2}=\frac{(N-k) s_{p}^{2}+n\left(\Sigma \bar{x}_{i}^{2}-k \bar{x}^{2}\right)}{N-1}
\end{aligned}
$$

Formula V

Formula VII

$$
s^{2}=\frac{(n-1) \Sigma \varepsilon_{i}^{2}+n \Sigma\left(\bar{x}_{i}-\overline{\bar{x}}\right)^{2}}{N-1}
$$

Formule XII
(4) Approximation (Use only if n IE large.)
$s_{A}^{2}=\frac{\Sigma z_{1}^{2}+\Sigma \bar{x}_{1}^{2}}{k}-\bar{x}^{2}=E_{p}^{2}+\frac{\Sigma x_{1}^{2}}{k} \cdot \bar{x}^{2}$.
Formule IX

The error in Formula IX
$E_{r r o r}=\|_{A}^{2} \cdot s^{2}=\frac{1}{N} \cdot\left(\Sigma_{s_{i}}^{2}-s^{2}\right) \geq 0$.
Formula X
(5) $k=2, n_{1}=n_{2}$

$$
e^{2}=\frac{N-2}{2(n-1)} \cdot\left(s_{1}^{2}+\varepsilon_{2}^{2}\right)+\frac{N}{4(N-1)} \cdot\left(\varepsilon_{1}-\bar{x}_{2}\right)^{2}
$$

Formula vill
B. Tho n_{1} are unequal
(1) The mean for the total sample
$\overline{\bar{x}}=\frac{\sum_{n_{1}} \mathrm{X}_{\mathrm{i}}}{\mathrm{N}}$.
(2) Pooled estimate of the variance

$$
s_{p}^{2}=\frac{\sum\left(n_{i}-1\right) s_{i}^{2}}{N-k}
$$

Formula III
(3) Variance for the total ample

$$
\begin{array}{ll}
s^{2}=\frac{\Sigma\left(n_{i}-1\right) s_{i}^{2}+\Sigma n_{i} x_{1}^{2}-N x^{2}}{N-1} & \text { Formula IV } \\
e^{2}=\frac{(N-k) s_{p}^{2}+\Sigma n_{i} \dot{x}_{i}^{2}-N x^{2}}{N-1} & \text { Formula VI } \\
\varepsilon^{2}=\frac{\Sigma\left(n_{i}-1\right) i_{i}^{2}+\Sigma n_{i}\left(\bar{x}_{i}-\bar{x}_{x}\right)^{2}}{N-1} & \text { Formula XI }
\end{array}
$$

C. Formulai asiociated with changes in data
(1) Add an observation y to a ample of alve n_{1}

$$
\begin{aligned}
& 8=\frac{n_{1} x_{1}+y}{n_{1}+1} \\
& 0^{2}=\frac{n_{1}-1}{n_{1}} \cdot n_{1}^{2}+\frac{\left(x_{1}-y\right)^{2}}{n_{1}+1}
\end{aligned}
$$

(2) Add obeervations y and w to a ample of aire n_{1}

$$
\begin{aligned}
& =\frac{n_{1} \bar{x}_{1}+y+w}{n_{1}+2} \\
& =\frac{\left(n_{1}-1\right) \dot{e}_{1}^{2}+y^{2}+w^{2}+n_{1} \bar{x}_{1}^{2}-\left(n_{1}+2\right) \overline{\bar{x}}^{2}}{n_{1}+1}
\end{aligned}
$$

Formula XV

Formula XVI
(3) Discard n_{2} observations from a sample of size n_{1}

$$
\begin{aligned}
& \bar{x}=\frac{n_{1} \bar{x}_{1}-n_{2} \bar{x}_{2}}{n_{1}-n_{2}} \quad \text { Formula XVII } \\
& s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}-\left(n_{2}-1\right) \varepsilon_{2}^{2}+n_{1}\left(k_{1}^{2}-\bar{x}^{2}\right)-n_{2}\left(k_{2}^{2}-\bar{x}^{2}\right)}{\left(n_{1}-n_{2}-1\right)} \text { Formula XVIII }
\end{aligned}
$$

(4) Discard the obeervation (y) from a ample of aize n_{1}

$$
\begin{aligned}
& \overline{\bar{x}}=\frac{n_{1} x_{1}-y}{n_{1}-1} \\
& n^{2}=\frac{n_{1}-1}{n_{1}-2} \cdot n_{1}^{2}-\frac{n_{1}\left(x_{1}-y\right)^{2}}{\left(n_{1}-1\right)\left(n_{1}-2\right)}
\end{aligned}
$$

Formula XIX

Formula XX
(5) Raplace the obervation y by w

$$
\begin{aligned}
& \bar{x}=\frac{n_{1} \bar{x}_{1}-y+w}{n_{1}} \\
& n^{2}=a_{1}^{2}+\frac{w^{2}-y^{2}-n_{1}\left(\bar{x}^{2}-\bar{x}_{1}^{2}\right)}{n_{1}-1}
\end{aligned}
$$

$$
s^{2}=s_{1}^{2}+\frac{(w-y)\left[\left(n_{1}-1\right) w+\left(n_{1}+1\right) y-2 n_{1} \ddot{x}_{1}\right]}{\left(n_{1}\right)\left(n_{1}-1\right)}, \quad \text { Formula XXIII }
$$

D. Formulas associated with a total population composed of k normal populations

$$
\text { Let } y=\frac{f_{1}}{\sqrt{2 \pi \sigma_{1}}} \cdot e\left(-\frac{1}{2 \sigma_{1}^{2}} \cdot\left(x-\mu_{1}\right)^{2}\right)_{\left.+\ldots+\frac{f_{k}}{\sqrt{2 \pi \sigma_{k}}} \cdot e\left(-\frac{1}{2 \sigma_{k}^{2}} \cdot\left(x-\mu_{k}\right)^{2}\right)\right)}
$$

$$
\begin{aligned}
& \text { Wrivie } i_{1}+i_{2}+\ldots+i_{k}=1, \text { then: } \\
& \mu=f_{1} \mu_{1}+f_{2} \mu_{2}+\ldots+f_{k} \mu_{k} \\
& \sigma^{2}=\Sigma f_{i} \sigma_{i}^{2}+\Sigma f_{i}\left(\mu_{i}-\mu\right)^{2} .
\end{aligned}
$$

Formula XXIV
Formula XXV

SYSTEM CONFIGURATION PROBLEMS AND ERROR SEPARATION PROBLEMS*

Fred S. Hanson
Plars and Operations Directorate
White Sands Missile Range, New Mexico

ABSTRACT. Practical geometric criteria and optimization methods are needed for laying out, or selecting, multi-instrument configurations for flight measurement. The problem is to discover - and demonstrate some priyciplee that are at least in the right direction. A general solution should be possible for the variation of uncertainty of intersection location as a function of angles-of-intersection of lines-of-sight. It might also be posaible to calculate the optimum ground-pattern for a given station density and misaile trajactory. The aecond problem is to develop - in detail - analytical tools for eeparating position-measurement error, time-measurement error, and lack-of-fit ef a given polynomial -. as these errore exist in undesigned, but redundant, data, Questions concern: the validity of linearization of data for his purpose; procedures for calculating lack-of-fit of polynomials of degreeagreater than one; limitations in conversion of regreusions to anslyses of variance.

INTRODUCTION. This paper is clinical - - especially in the senae that it is not completed work.

BACKGROUND. Figure 1 is a White Sanda Missile Range briefing chart. It shows: the principal Range (heavy line); the part-time extension (at the top); and the White Sands Monument (small internal area). Headquarters - and the main launch areas - are at the lower end of the Range.

The distinction between optical and electronic tracking instruments has been lost in this black-and-white print. Optical inatrumente include: cinetheodolites, telescopes, fixed cameras, and balliatic cameras. Not every atation is shown. For inatance, there are several hundred prepared sites where fixed cameras can be set up. Electronic tracking instruments include: radars, dopplers, and miss-distance systems. Again, not every atation is shown. (There are several hundred prepared sites where DOVAP receivers can be set up.) The gray - and part-gray dots are telemetry receivers.

Comments on thls paper by some of the panelists can be found following the figures at the end of this article.
 any rigorous basis.

CONFIGURATION HYPOTHESES. MOre than three yeare ago (Ref. 1), the writer asserted two hypotheses about instrument layout, or selection .to initiate action toward solution.

Firat, it was asserted - intuitively - that the most favorable elevation angle for observing a misaile is 45°. Second, the writer stated in opimum ground-conflguration - for each Integral number of stations - with reepect to a single point in space. This was done on the assumption that the best intersection of lines-of-sight from two statione is - when conaidered by itself - 90°. Conversely, it was assumed that the worst intersection occures when one station looke over another' shouldor, or they look down each others throata .. 0° or 180°, parallel. Referring to Figure 2, the most iavnzable ground-configuration for optical stationa was asserted without proof - to be; two-atation - right-ieosceles triangle with miseble at apex; three-station - equilateral iriangle with miscile at center; (in all subsequent cases, missile at center) four-station = any four corners uf equilateral pentagon; five-station - asid pentagon; six-atation - any Hix corners of equilateral heptagon; seven-atation - that heptagon; etc. ?he (corresponding) intersection anglea are: $90^{\circ}, 120^{\circ}, 72^{\circ}$, and 51.4°. For twelve or thitreen stations - a tridecagon - the angle would be down to 27.7°.

DEMONSTRATION OF HYPOTHESES. After proposing this paper, the writer made a crude approach to demonatrating (the validity of) these imple hypotheses.

Figure 3a show the asserted two-station optimum. This can be any plane through both utations and the missile. The diagram represente the 900 intersection - together with some disperaion index, such as the stand. ard deviation.

Figure 3 b is an enlargement of the area of uncertainty, Weare assuming the two inatruments are equally precise. Let' approximate the actual error-ollipse by the almost-qquare in Figure $3 a$ - and approximate that by the square in Figure 3b. The horizontal diagonal is a measure of the combined error-variance. If we increase the intersection angle, by moving the stations farther apart - or by lowering the misaile - the horizontal diagonal will lengthen. Of course, the vertical diagonal will
gnorten, curse data in one coordinate by making it worse in another. (If we decrease the intersection angle - below $90^{\circ}-$, the horizontal diagonal oti amaller, at the expense of the vertical diagonal.) So, we may conclude 90° is the practical optimum.

Now, we have shown that 90° is the optimum intersection in any plane thru both stations and the misalle. The plan for which the degradationa from this optimum will be the same in its horizontal and vertical projections is the 45° plane. On the basis that there is no preferred coordinate, we have demonstrated the hypothesis regarding the optimum elevation angle.

If we choose to take our geometry in algebraic form, we can uet the law of cosines to calculate the horizontal diagonal (Figure 3b):

$$
a^{2}=b^{2}+c^{2}-2 b c \cos \theta
$$

where b and c are meadures of the two observational variancen, θ is approximately 90°. To see the effect of changing the interection from 90°, let's replace θ by $90^{\circ} \pm 0$:

$$
a^{2}=b^{2}+c^{2}-2 b c \cos \left(90^{\circ} \pm a\right)
$$

In our case, b and c are equal, no:

$$
\begin{aligned}
a^{2} & =2 b^{2}-2 b^{2} \cos \left(90^{\circ} \pm a\right) \\
& =2 b^{2}\left[1-\cos \left(90^{\circ} \pm a\right)\right] \\
a^{2} & =2 b^{2}(1 \mp \sin a) .
\end{aligned}
$$

Substituting,
So, approximately, if the intereection angle is changed, the combined variance in one coordinate increases as the sine of the angular deviation from 90°.

A similar exerciae can be gone thru for the $3-\operatorname{station}$ equilateral triangle. In that case, the error-ellipec it approximated by an almostequilateral hexagon.
 nished the writer a solution which does not depend on approximating the almost-square - - or on testing a hypothesis.

Referring to Figure $4 a$ - the trigonometry for the general two-station case ylelde:

$$
x=\frac{b}{2} \frac{\sin \left(\theta_{1}-\theta_{2}\right)}{\sin \left(\theta_{1}+\theta_{2}\right)} \quad y=b \frac{\sin \theta_{1} \sin \theta_{2}}{\sin \left(\theta_{1}+\theta_{2}\right)}
$$

Applying the standard error-propagation formula:

$$
\frac{2}{x}=\left(\frac{\partial x}{\partial \theta}\right) \quad \theta_{1}^{2}+\left(\frac{\partial x_{1}}{\partial \theta}\right) e_{\theta_{2}}^{2}
$$

(and aimilarly for y) yields:

$$
\begin{aligned}
& \left.v_{x}^{2}=\frac{b^{2}}{\sin ^{4}\left(\theta_{1}+\theta_{2}\right)} \left\lvert\, \frac{1}{5} \sin ^{2} \sin _{2}^{2} \theta_{1}+\frac{1}{4} \operatorname{tin}^{2} 2 \theta_{1} \theta^{2} \theta_{2}\right.\right) \\
& \frac{b^{2}}{\sin ^{4}\left(\theta_{1}+\theta_{2}\right)} \cdot\left(\sin ^{4} \theta_{2} \theta^{2} \theta_{1}+\sin ^{4} \theta_{1}^{2} \theta_{1}^{2}\right)
\end{aligned}
$$

Simplifying to the equidistant, equal-precision case (Figure 4b):

$$
\mu^{2}=x^{2}+y^{2}=b^{2} \frac{(1-\cos 2 \theta)}{\sin ^{4} 2 \theta}
$$

If this total exror is minimized with reepect to θ, the minimum is found to oceur at:

$$
\begin{aligned}
\cos 2 \theta & =1 / 1 \\
2 \theta & =70.5^{\circ}
\end{aligned}
$$

So, Mimmack's optimum interaection angle is 109.5°.
in \bar{F}, . L. Laves NUIS report on his cinetheodelite-reduction method (Ref. 3), he minimized the observational error-ellipee of the two-atationmissile triangle, by a matrix process. With the station fixed and the missile altitude allowcd to vary, Davis found the optimum intersection to be 120°. He theorized this was the refult of compromise between the most favorable intersection and the decrease in the linear arror (corresponding to a given angular error) at the miseile moves closer to the stations, Mimmack's solution represents this same case. So, there is an apparent discrepancy in their results.

With the missile altitude fixed and the stations free to move, Davis found the optimum intereection to be 60°. He theorized this was the result of compromise between most favorable int ersection and moving the station closer to the missile. The present writer thinks Davie' explanations are correct.

However, it appeers that the optimum ground-configurations hypoth. esized in this paper are still optimum when the effect of slant range is included. Also, 45° planes are the only ones for which the dergadations (of coordinate projections) from the optimum interiection will be the same - whatever the optimum may be. So, we have "demonstrated"a simple aet of rulea for laying out, or selecting, a group of itationa for any given point on a misalle trajectory -, and for determining the optimum scale of their configuration. The point used could be the midpolnt of a trajectory eogment.

MINIMUM BIAS CONFIGURATION. The demonatration based on Figure 3 treatod ertor as a dieperiton index (or preciaion index). Let'e consider (it as) a diecrete, or net, error. Then, in Figure 3a, if we increase θ above 90°, the horizontal (error-) resultant - correaponding in size to the smaller almont-aquare - will lengthen if the (diecrate angular) errora happen to have the ame aign (Figure 5a); di the errora have opponite algna (Figure 5b), their (vertical) reaultant will shorten correspondingly. (Of course - in tho equal-accuracy case - there wid be only a horizontal, or only a vertical, resultant.) in general, it not sound practice to (sot out to) improve data in one coordinate by taking an even chance that we will, inatead, make it worae in another. (Even chance, because - to the extent that a given-type instrument consistently
has the same sign, it is more likely to be adjusted, or corrected for,) If we decrease θ (below 90°), the posible homopolar (horizontal) error.
 (vertical) error-resultant gets maller, at the expence of the posibie heteropolar (vertical) error-resultant. So, we may conclude - 90° ie the practical optimum. The rest of the writer's geometric and algebraic demonstrations apply similerly, Summary: perpendicular intersection (per se), 45° elevation, the right-1soaceles triangle for the two-station case, etc, are all optimum for accuracy as well as prectsion.

PATTERN HYPOTHESES. How does one generalize from a single group of stations to a larger area-- for (several segments oi) a family of trajectories? What sort of patternacan we construct with our optimum figures? In Figure 6, what is wrong with a grid built up of optimum three. atation configuratione? Equilateral triangel form hexarons, which violates our odd-sided rule. Each atntion if in line with all the other stations. Continuing in Figure 6, pertagons eem to form a desirable pattern - leaving a fow gapa of isoceles-triangle paira. (Four atationa are ln line acrosa each triangle pair.) Heptagona might do a woll.

In determining the optimum layout, the deciaive conetraint could be the number of stationa needed to meet requiremonts (for preciaion). Or, it could be budgetary (the number of atations permitted per hundred eq. mi.). Or, it could be the effective range of atation - as configuration radiue.

Perhapa someone can demonstrate that the optimum pattern ia random. Or, that a random pattern ia not optimum. A random pattern might have the minimum percent of atationi in line with each other - but it wouldn't be the mout efficient disperaion. Mmmack (Ref, 2) notes that It is dealrable ior a position measurament to be independent of any coordinate sytem; that thi implies the atation geometry inould be free of eymmetries; that the symmetry of being in the oame ground-plane ie larrely unavoldable.

DISCUSSION OF CONFIGURATION, The optimum configuration would maximize; accuracy, precielon, veratility, reliablity, and economy. Filght-measuring instruments exintin three conditions; fixed, (self-contained) mobile, tranaportable (to prepared ites).

The writer chose to start with the prectsion of a ingle point-inapace, because this is WSMR'a operating standard - and beceuse it lande itself to an analytical approach which proceed. from the simple to the complex. The Range's instrumentation plans are prepared per egment of a trajectory. The present standard seems to be the beet (aingle) compromise betveen an operating viewpoint and a misaile-engineer viewpoint. Aside from having a consistent benchmaric, the important quention is: "What aspect of a given missile-performence variable ie most adgif. icant to a particular missile project?"

This is, after all, a clinical paper. The writer's aim is not neceasarily - to solve the whole problem by an analytical eppromeh. (It it to increase underatanding of the subject.) We "demonstrated" the "900. optimum" Intersection in any plane - for observing a point-in-ipace. We found a (limited) approximate eolution, in two dimeneione, for the variation of uncertadili-of-intersection-location as a function of angle-of-inter-section-of-1lnes-of-ifght. Mimmack (Ref, 2) obtalned a general solution (to this problem) for two dimensions; his method could be extended to three dimensions. It may be that an optimum ground-pattern can be conatructed with pentagoni.

The optimum-overall-pattern problem could be etated; "ia there a unique molution for the most efficient layout, for a givos uptisul-atation donsity - or for a given effective etation-range and for the Range's total trajectory-volume ?" It aeeme clear that any thorogoing analyada of thin problem must be made in three dimensione.

Reference 4, revised annually, discusmes computer programe for propagating "typical" orrora-oi-obiervation thru the (trigonometric) equationa rolating coordinates of any given point-in-apace to the (angular, etc.) "obeervations" of the point by etatione-of-known-location. These are essontially the mame programe used for trial-and-error imulation at White Sande, AMR (now ETR) calla the - a priori - error etimatea oo obtained "a geometric dilution of preciaion (GDOP)". Properly, thin term should be reserved for the geometric component of poition-measurement variance.

ERROR SEPARATION PROBLEM. The second problem ie this: "Can wo determine (by statistical methods) - qualitatively and quantitatively - how much of the error-variance in our (final) micalle-position data is position-error, and how much is time-arror?" For velocity and
acceleration (or smoothed position data), we would also like to know the reiative magnitude of a third variance component - the lack-ot-itit of the polynomial which we use to obtain (emoothed and) derivative data.

The jitter (and wander) of time-aignal generatori in mall. Propa-gation- and receiver-delays are appreciable - diferent for each atation aomewhat variable - and partly compenaated for. Recording delaya for: time-code marks, missile image, (angular) dial readings, etc, are appreclable, different, and somewhat variable, Overail time-measurement error includes errors in synchronizing: timing, missile position, and mount position -- physically, on the record, in conversion, in computing, and in reporting.

Fur a Mach 10 missile, a millisecond overall time-measurement error would be equivalent to a polition error of 10 ft. A recent figure for the speed of an ICBM warhead is $26,400 \mathrm{ft} / \mathrm{eec}$ (Ref. 5); in that case a millisecond is 26.4 ft .

Actual requirementa - and capabilities - for instrumentation timing-and-synchronization should be known - in specifiable terma. A completo description of position accuracy - or preciaion - would include a eparate apecification of time accuracy - or precision, lf time-meanurement orror de lgnored, it ahow up at position error - but, it cannot be decreased by improving the pooition-measuring device (as such). If time-mensurement error in appreciable, these two component of position error should be eparated before calculating velocity (or acceleration) error. We don't know that time-meamurement error is an appreciable part of the whole. but we can't afford not to know how much it is,

This paper presente problema .- not colutione. But - In presenting thas problem - let' review the approaches the writer hae already considered.

SEMI-QUANTITATIVE SEPARATION, About four yeare ago, the writer uaggested a emi-quantltative method for "separating" time orror irom position error - In final data. Let's look at the three types of "regreasion" (correlation) of a position coordinate and time (Figure 7).
 assumed to be exactly measured, and that curve is fitted which minimizes the (ame of the equares of) the deviations in position. This in the ore WSMR uses, in its data reduction.
 is assumed to be exactly measured, and that curve is fitted which minimises the (sums of squarey of) the deviations in time. From mathemalical standpoint, this is as logical as the first.

Figure $7 c$ show simultaneous regreanion of x and t. In which they are assumed to be meatured equally well, and that curve is chosen which minimizes the (se of) the devations. This is sometimea called the ibent fit ${ }^{11}$ 。

If measurements of x and t are about equally in error, curve c will (tend to) fall about haliway between a and b - and is the best choice, in this case.

If one variable is badly measured, the curve which miniminest the variability of the badly measured variable will (tend to) deviate the moot from the other two - - but will (tend to) be clowest to the (phyelcally) true relationchip. This justifieu use of method a (by WSMR) - if the asimpHon that position is (always) much more poorly measured proves correct. The curve of "best fit" - c - best represente the deta, as ouch, in syy case.

By comparing theate three types of regresion - and taking into account any knowledge of the (physically) true curve from indepandent data, and/or physical theory - - it is possible to obtain semi-quantitative astimates of how relatively well two varlables are measured. The writer known from experience 'hin worki in applying linear regreasion to rather poor data. It may be an even inarper tool in applying curvilinear regreasion to rather good data.

QUANTITATIVE SEPARATION, On the basis of redundancy in measuring miesile position, these three regresaione can be converted to correnponding analysen of variance. This ghould permit quantitative eeparation of time error and position error. Procedurea are available for analysit of variance of types and bregresion. Type cegresion could be handled - for the linear case - by these same (aingle-ifxedvariate) methods, by a rotation of axes. It may also be posaible to discover (or devise) a bivariate analysin - at leant for the linear case. If necesaary curvilinear data can be transformed to linear.

Such analyses of variance include a lack-of-fit term, which is avallable for the linear inxed-variate case in Reference 6. It appeari to be available for the curvilinear fixad-variate case from (auch sources as) References 7 and 8 .

The usual procedure at $W S M R$ is to fit a second-degree polynomial. If our lack-of-fit proves to be appreciable compared to pesition-error, it will follow that we need to improve our data-reduction procedure.

The writer's questions with regard to the above analyses of variance are these:

1. What analysis-of-variance components can we get from linear fixed-variate regressions of types a and b if we havo (apparent) redundancy in (a given) position (coordinate) at (equally-ipaced) apparent times.. and (if we) convert these aseumed-x redundancies to asamed-t redundanciea by (meana of) the reciprucal-ofnthe-slope of the type a regreation (1.e., if wo multiply by the corresponding value of $\Delta t / \Delta x$). Specifically, can we separate timing-error, poilion-error, and (two) lack-of-fit terme? As a working reference for this would the Panel recommend Reference 9 or come other? Same questions for curvilinear case - - using the reciprocal of the type a slope at each point to convert - and aubstituting Reference 10 as a working eource.
2. Suppose we apply this fixed-variate analysis to type c linear regreanion by a rotation of axea - - and calculate the asamed-normal redundarcies by interpolating between the aseumed-x and the (correaponding) asamed-t redundancies, mbove (in proportion to the ratio of the angle-between-the-x-2xie-and-normal to 90号. Can we get anything out of this transformed type c analyais of variance?
3. Can the Panel give a reference which shows how to calculate lack-of-fit for type c linear regreanion?
4. Can the Parel give a reference to - or device - alvariate analysif of varlance for linear regreaiton lf we have (apparent) redundancy In (a given) poaition (coordinate) at (equally-apaced) apparent timea? Same question for curvilinear regresion.
5. Suppose we transiorm a variable to linearize a (curvilinear) regraminn -. and then narform the (linear) analvale of variance undar question 1 . Is it necessary to leave the result in the tranaformed atate? Is it valld to "untransform" the variance of the transformed variable? Can the Panel give a reference on entimating the error due to "untraneform. ing ${ }^{1}$?
6. Does Referance 7,8 , or 10 clearly give procedure for calculating lack-of-fit for curvilinear ainglo-fixed-variate regresion? if not, can the Panel give a reference which doea?

SEPARATION AT A POINT. So far we've taken a time-varying look at the flight-measurement process. White Siands is also Interested in (knowing) the uncertalnties associated with aingle values of unsmoothed data, it should be posidble to make a hypothetical - if inconclusive analyais of the errors of a aingle point (in apace and time) by looking at the error as all (in) position, all (in) time, all tangential, or all normal, An additional mppronch to the "inatantaneous" anpect might be to coneider (two) succeasive data-points as obiervatione of their moan point. Can we get any - qualitative or quantitative - eopazation of timing and position error out of these appronchen? Can the Panel euggent any further approach to analysia of the errors of ingle-values-of-unemoothed-data?
 Instrumentation": DF, Supplement to Fart b., 1962.
2. Letter from Wm. E, Mimmack, White Sande Misalle Range - on leave to Graduate School, Unlverslry of Rocheater $=1965$.
3. Davis, R, C. "Techniques for the Statiatical Analysis of Cinetheodolfte Data", NAVORD Report 1299 (NOTS 369), China Lake, Cal., 1951.
4. Mann, H. P. "The Accuracy of AMR Instrumentation", RCA Systems Analysia Technical Report 23, Patrick Air Force Base, Fla., 1962.
5. Drewry, I, O. "Hot Rod Miasile", Army Information Digest, May 1965, pp. 22-56.
6. Anderson and Bancroft, Statistical Theory in Rasearch, McGrawnHill, 1952, pp. 156-158.
7. Schultz, H, "The Standard Error of a Forecait from a Curve", J. Amer. Stat, ABroc., 25, 139-185 (1930).
8. Erekiel and Fox, Methods of Corrolation and Regression Analyads, (3rded.) John Wiley \& Sons, 1959.
9. Acton, Analyais of Stradght-Line Data, John Wiley \& Sone, 1959.
10. Browride, Statintical Theory and Methodology in Science and Enginearing, John Wiley \& Sons, 1960.

Flgure 3 a

Flgure 36

Figure 40

Figure 4 b

Flgure Ba. Same slgn

Figure 5b Opposite signs
POSSIBLE SYSTEM CONFIGURATIONS

Figure 6

7
4
4

Figure 70

COMMENTS ON PRESENTATION BY FRED HANSON

Frank E. Grubb:
Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

In my opinion the problems and questions Dr. Hanson radaed can be solved eatafactorily only by compeient personnel working rather full time on the overall problem! I ay this because the problem is involved from both the physical and the analytical atandpoint: that it is easy to overlook the importance of all of the "errors" operating imultaneourly, so to speak,

Conceraing station location geometry, I think that something can indeed be done on this and Dr. Hanson's deas may be near enough the optimum, considering other involved difilculties. I can iee that White Sanda might decrease position estimation errors, etc., by optimum atation locations, whereae the Atlantic Misbile Range cannot really do this,

Just what sums of squares must be minimized, an Dr. Hanson points out, Involves considerable study, From my limited experience, I have the faeling that relative time is quite good but that position data ia not so good because of interaection geometry, and the errora which creep into this depending on unexplainable blasee for the miatile flight, callbration, refraction and other corrections, etc. Of course, all of these things vary with the type of inatrumentation, otc.

Power spectral denalty type analyses, are certainly being looked into by many people now and thi work is no doubt paying off an many of the problema involved necessarily fall in this area, even though this is an added dimeneion of complication.

The nearest publication, as Dr, Fiannon is aware, which Ithink is beginning to approach methode required to settle some of the questions Dr. Hanson is ralsing is the annual report, "Accuracy of AMR Inatrumentation", by H, P, Mann, The latest verifon, as Dr, Hanson knowa, does contain a lot of good material and attempta to cover moat of the important viewpointa, but still doesn't go far enough.

I think the tracking data analysis problem is by far the most inte.esting overall one I have been introduced to in recent years, but unfortunately it it comething that doen not carry the proper priority with many of un in - plte of ite great importance. Our Panel on Tracking Data Analyaif ie quite inactive now but if anything comes up on this in the future, I wuld hope to be in touch with Dr. Hanson.

COMMENTS ON PRESENTATION BY FRED HANSON

Emaii in, J́éve
Institute of Science and Technology
The Univeraity of Michigan
Ann Arbor, Michigan

Befure commenting on Dr, Hanson's two problems, I will frat thke up the misiar of referencen, I certainly recommend F, S. Acton and K, A, Browalte (tities Dr. Hanconmentioned). Dr, Hanson han aleo used Anderson and Eancroft, which is good. Further, I will mention E. J. Williama' "Regresaion Analyais", J. Wiley \& Sonn, and Plackett' "Regression Analysis", Oxfort Press. Also, O. Kempthorne's "Design and Analysia of Experimante" and A, Schaffe' "Analyais of Variance" may prove useful. There is a book by an Australian, P, G. Guent, "Numerical Methode of Curve Fitting", Cambridge Univeratty Preen, 1961, Perhape Dr, Hanaon should look at the symposium publication, "Time Series Analysis", SLAM Series in Applied Mathamatics, J. Wliey \& Sons, 1963.

Now, to Dr. Haseon' probleme, Number lifyet, Certilily, I must comment that my experience with the NORC project at Ft, Monroe, 1941-42, and with the Anti-aircraft Artillery Board, Camp, Devis, 1942-44, ha anclant history by comparison with the atate of the art in the 60s. Generally; I agree with Dr. Haneon' analysis of the geometry of the altuation, $1 . \mathrm{C}_{\text {, }}$, 45 degrae elevation for line-of-aight and nearly orthogonal to miesile path for a "reasonable" interval of time. From the algobra asiociated with the geometry one should be able to work out the error propagation for the position determinations. Of course, one must keep in mind the "beat" phyalcal model for the flight path of the minsile in using the observed data to obtain best apparant position of masalle at a given time.

I tand to think of this first problem more in practical conaiderationa, given that the technical problem of determining location has bean resolved to a useful accuracy and precision. Some method of assigning priorities to each day's or each wook' misalona must be worked out. Then with the resources at hand, an allocation must be made of atations to be manned with eelected equipmenta. Consider Figurel for Miesion A (highest priore ity). Enough paired stations, a and $a!, b$ and $b '$, etc., must bo marned to keep thde miesile path under adequate aurvolllance. Now, if a, b, c and d, etc., are too far apart, there will be too much uncertainty in the computed pouttion in the halfway-between reginns. Next, Misaion B (eecond priority) hat to be imilarly upported at a dealred minimum level. If launch
times can be programmed to some oxtent, it may be that some manned stations can support more than one mission. Continue for say two more Miseione C and D. If any resourcea are left over, consider increasing density of manned paire for Minsions A, B, C and D in that order to thore up obvious weaknessea in trajectory assessment. These practical conuiderations aeem much more relevent to me than going into geometrical consideration beyond the triangle, If io recognized that my eketch implies using rectangles or quadrilaterale in asessing position. When launch times are adequately separated so that all manned stations for each of the four misilons can track each launch, then further geometrical considerari tions may be taken into acrount along the lines Dr, Hanson han diecused.

Now I turn to the econd problem of analyais. Yes, one would like to have variance componente for timing error and for position-measuring error. But how can ore seperate them? Without considerable etudy, more than I can give at this time, I have no direct aggeation. It if hoped that Dr. Hartley hae given Dr. Hanson come weoful direct auggentione. I uee the term indirect for my dean because I wioh to lean on "design of experimentel considerations, By direct suggentions I moan extracting from present method of collecting data, componente of variance of the two kinde deslred.

In directing Dr, Haneon's attention to design of experimente concepti, I believe WSMR is in an outstanding posltion to carry out some apecial otudies. Of couree, these activities must be budgeted, but dt does not seem unreasonable to program some percent of the WSMR annual budget for R\&D on ita own job. What the percent should be, I don't know, but $2 \%, 5 \%$ or 7% teemi reasonable. Electronics and A/C firms do better What kinde of experimenti one asks? On nome miesions WSMR mey have enough epare resources so that it can double up on position measurementa, 1. e., re Figute 1 , again, put two equipmente at each location $b, b \prime, c, c^{\prime}$, say, I assume that timing errors would be nearly equal at any single location. The amoothad apparent poalifon data (after averaging) should then indicate something about poasible "timing component" of error, If a competent person in deaign of experiment: were to epend $3-6$ monthe at WSMR, it seeme reasonable that other experiments with useful treatment combinations could be aggested and suitably deaigned within WSMR's resource frame wor'k.

With respect to the orthogonai regression ine, inere is nuibias is the literature that l am aware of on sampling theory for the regresiton coefficient or for predicted points. A general reference I recommend is J. B. Coleman, Annale of Math. Stat. 3, 79 (1932). In 1963, I did some work on the deaign of a flight program carried out in Arizona. By flight replication, we were able to obtain ampling error information about the orthogonal regression coefficient and, thus, overcome the lack of eampling theory based on an internal estimate of error.

Further, s both Prof, Lieberman and I have pointed out, thereare no difficulties in obtaining an analysis of variance including a goodnese -of-fit term even though the regreseion fittedia polynomial or otherwies non-linear, so long as the least quares equations are linear in the unknown parameters to be eatimated. For the non-linear least equares equations cases, which might arise from a phyical model of the misaile flight path, I suggest Prof. Hartley's recent paper in Biometrika, 51, 347 (Dec. 1964).

At IST, we have a quite general purpose regression program which 18 due to Dr. Wyman Richardson, Also, Robert O. Bennett, Jr, and myself are working on a packaged tet of sub-routines which can be used for doing Analysis of Variance type calculatlons. Perhapa, Dr. Haneon chould visit us to get information on these programe. Both programe operate on IBM 7090 within Univeratty of Michigan Computer Canter Executive Syatem.

No doubt WSMR is itudying the application and use of the newer high accuracy osciliatore for ita timing standaris. Could not these "atomic clocks" help resolve some of tit "timing error' problems? Any WSMR comment on the une of theae osclilators will be of interent to uit at IST, since we are studying their amployment for networke oven more widely distributed than those in the WSMR aystema.

Figure I
E. H. Jebe

an experiment in making technical decisions USING OPERATIONS RESEARCH AND STATISTICAL METHODS

Andrew H. Jenkins
U. S. Army Missile Command, Directorate of Research and Development Physical Sciences Laboratory, Redatone Arsenal, Alabama

and
Edwin M. Bartee
University of Alabama in Hunts ville, College of Enginearing, Huntsville, Alabama

Abstract

This paper presents a case where decisions are reached and recommendations were made on a multi-diactplined technical reacarch program. The decinions were made on the basis of a technical aurvey uaing operations research techniques and atatiatical methodi for evaluation rather than a rigorous technical evaluation of all diacipines. The paper presents the technique used and discusses the practical limitation of the method.

1. INTRODUCTION. The engineer and ecientiat in government research programe are often required to make decisions and/or recommendatione on programe involving advanced technology. Decisions may be required from the individual engineer or group of engineers. Frequently, the deciatone must be made in a minimum of lead time.

The tremendoua advancea in technology have precipitated a situation where very fow research programa are of a single technical discipline. They are usually related either directly or indirectly to other technical disciplines and cannot be treated angularly, A research program, regardleas of the number of technical diaciplines involved, ia an effort to explore and determine the unknown and because of the unknowns io not alway conducive to rigorour technical evaluation by an individual or quite often a amall group. Certalny, as the number of diaciplines increase, the more complex the evaluation becomea.

The engineer, no matter how competent he may be in one discipline, often finds himself making decisions intuitively rather than by rigorous analysis of technical facts. This is so because quite often he does not have the necessary facte, he does not have the time; or he does not have the necessary capability in many disclplines. When the decisiona are made intuitively, they are shaded and toned by the engineer's biasea, preconceived notions, and past experiences. Asthe amount of information increasea in
a multi-disciplined problem so do his vacillations between biases and
 accentuated where the research program is such that the technical opinions of others must be considered.

Therefore, what is needed is a systematic approach to the problem, consideration of as many technical iactors which may affect the decision a. possible, and a method of weighting the factors and quantifying the opinions. In other words, a set of rules are determined and followed aystematically until a decision can be reached,

The authors were recently involved in a problem of making a deciion and recommendations on certain research programs. The purpose of this paper is to present the approach taken and the use of statistica in the decision making process fo: an actual case. None of the government agencies or reaearch group are identified excejt the U. S. Army Miasile Command since the information is for government program planning.
II. BACKGROUND. The U. S. Army Missile Command (USAMICOM) is the technical director of a research program being performed by a research group for the UU. S. government. This research program was 2 multi-disciplined program in misaile phenomenology involving theory and experimentation in such disciplines as electromagnetics, optics, plasma diagnotics, microwave-plasma interactions, aerothermochemiatry, thermodynamics, fluid dynamice, experimental techniques and inatrumentation. This program was one of several similar programs of an overall research program.

The group directed by USAMICOM (identified as Establiehment 7) proposed the development and utilization of a larger, much improved hypervelocity launcher of projectiles for research purposes. This among other thinge precipitated a review of overall research effort in misalle phenomenology. In view of this, USAMICOM was requested to give recommendations on the following categorical questions:
I. The past and future utilization of Eatablishment 7 .

If.. The need for a large caliber, light gas gun and possible uses in misaile phenomenology research.
III. The desirability of building such a gun at ome establishment other than 7.

The experimental approach taken by the author is dncluded except for the coding oi aii agenciéaíd
III. THE EXPERIMENT.
A. Desipn Approach

The purpose of this effort is to provide recommendatione tn three categories which are of concern to midede phenomenology reaearch programs.

The three categories are as follows:
Category l: The past and future utilization of Establishment 7 .
Category II: The need for a large caliber, light-gat gun in minsile phenumenology research.

Caiogory III: The deairabllity of building ouch a gun at some other aatabliahment.

Due to USAMICOM' close association with pant programs and in an effort to carry out thie task with minimum bian and maximum objectivity, It was considered appropriate to conduct a teclundeal aurvey of theoretical and experimental groupa asaciated with much programs. Time dimitatione permitted only representative sample of auch groufs. These groups are known to have knowledge pertinent to all of the above categorion.

It wat antcipated that a wide variation of data and opinion would be obtained from these groupy making orderly, efficient, and unbiasec analyeif of the aurvey reaulta difficult. It was decided thet a method of analyain beesd on quantifying of data and opinione must be used. The mothod selectedie the "Case Inatitute Mathod oi weighting objectives" and la described In Reference 1 in detall.

It was decided to end four engineere asinterviewera to vialt the selected theoretical and exporimental groups. The groupe were elected as a representative crosa aection of thoe familiar with acroballistic range techniques and associated research programe, and therefore able to contribute to the remolution of the three categorical problema. The groups were allowed to comment on or off the record to increase responalvenes.

The establishments were viaited as shown in Table l. It can be seen that Interviewer 1 visited Eatablishmerit 2, 5, 7, and 11; Interviower 2 Istablishments 3, 4, 9, and 10 ; Interviewer 3 Establishments 1 and 8 ; and Interviewer 4 Eatablimhments 6, 12, and 13 .

For consistency of the interviews, a master list of questions consid. ered pertinent to the categories was provided to each interviewer and discusied at each entablichment. The intervewera recorded a nmmary of facllity data and opinions for use during rating of the factora. Thareby, each interviewer obtained sufficient technical background information upon which he could quantitatively rate ten factora considered pertinent to each category. The ten rating factors for Categories I, II, and III are shown in Tables 2,3 , and 4 respectively. The ten factors were selected as a repreentative emple which were required to make a ystematic ovaluation of each category.

The ten, factor: in Category I were designed to rate Etablishment. 7 against other estibliahmente. The otablishmanta choan for 7 to be rated againat were $1,4,6,9,12$, and 13 , These represented otioblichmente aimilar to 7 and operated by all government agencies of the Departmant of Defence, private corporate facllitiea and an educational inatitution,

The ten factore In Category III ware designed to rate ettablishmente $1,4,6,9,12$, and 13 againat 7 .

The ten factors in Category II were denigned to rate the opinione of both theoretical and/or experimental groupi on the need for a large light get gun.

Eech interviewer, after diecusion of the factor with the prinelple investigatory, numerically rated each factor in alach category for the establishmante vialted, These ratinge were botweon 0 and 4 , In the selece tion of a quantitative rating, if the rating was not clearly and easlly differentiated from the mean value of 2 , the rating was establichedat that level. This proceiure tende to minimize individual blaa and onciples the aurvey to approach a truly unbiased conclunion,

B. Factor Rating Critoria

The diseusaion is confined to the typer of information, data and commente obtained for use al a bande for rating the ten factora of ach rategory.

Category I

In Category I the first factor was rated on the basi of the information recelved on program objectives, types of models requiredi, instrumeate required, ard types of data collected. Also considered wes reporting in journale or at bymposiums, the opinion of the reporting by other groupn, and the degree of muccess of the program. The rating of the second factor was based on the ovedall instrumentation capablidty in flow field visualiza. tion, optical radiation, and microwave diagnostic instruments, as well as opecial inatrumentation. The third factor was rated on auch criteria an complexity of model hapes, velocity, and data gathering and leunohing problema. The fourth factor wan rated on the batia of typa of gun, lainch Weighta, volocitien, repastability, and freedoin fram malfunction. Tha Iffti factof was rated on the baein of commente of profeliflonal who heve
 bixth factor was rated on the babis of the number of avalinble rengen, gung. standard and apecial instruments, and utilizetion factor of the faclition. A criteria of minor consideration wat entmated capital invastmant. The
 aix plue the abilty to initiate programe of widely varying experimental parameteri on ahort notice. The aighth factor wat rated on a batis of such thing at available epace, facility cooperativenesis, and facility workloada. Most eatablishmenta have existing funded programi planned and limited staff level responsivenese. The ninth factor wat rated on raintive defense efferta of the eutabllehment. The tenth factor was included on the promide that accomplishmente are often proportional to aupport recelved,

Caterory II

In this category an attempt was made during the aurvey to establiah the need for a large caliber gun in miesile phenomenology research and to dofine a lerge caliber gun. In regard to the large gun proposed reactioni varied from "lit ia feanible" to lit can't be done". Othera atated a preforence for approaching the poiaibilities uf deaigning auch a gun in small diameter phaes, e.g., $2.5 \mathrm{in}, 4 \mathrm{in} .$, then perhape 6 dn , It appeari from commente obtained that a 3 or 4 minch gun may be the optimum aise. A 4 -inch gun capable of velocities of 25,000 feet per aecond would be a ale large enough to allow for expanaion of the typer of experiments which could be performed on an aeroballiatic range, A 4 -inch gun would al oo be more eanlly fabricated, handled, opespted, malncalned and be capable
 a secondaryiasue, the prime factor being the determination of the real need for a large caliber gun, Factere one and two ware rated on the besta of the capibllity of a large bore gun to expand the types of experiment: and measurements that may be effectively executed uniter afmulated conditions, These factori were mot heavly weighted dsi Category II, The concensus is thet this is the foremot juatification for elarge gun. However, those who expressed this opinion could suggent few progesme but some examples are: (1) launching complex geometrical shapes, (2) blast valnerability otudies, and (3) on-board-model telemetry miasurements. The fact that new programs cannot currently be suggested does not exclude many suggeations when auch a device is available. New types of measurements will be developed in parallel with new types of experimenti with larger modele. Factor three was only rating of the opinione of the interviewera on the need for a large bore gun. These opinione yary trongly from fevor to diafavor and are reflected in column 3 of Table t. The X_{1} column reflecte the componite of all factors lor ateh ostabliahment. Factora iour and ive sought to determine if, in the opinions of othern, lerger modele would improve the thratholde of manauret mente made by current inatrument at a given simulated ultitude or provide equal thresholds at a higher aimulated alittude. Some reaporidente indicated that, on a quantitative analyais, aigndilcant improvementa would not be obtained, Other respondents feel that larger gunc would dnaprove thresholde and resolution aignificantly, esecially in optical measuremente but not on microwave meanurementa. Reapondents generally agree that aimulated data can be more eally utilized in theoretical modeling and computation than in full scale. Some reapondente did not feel that this was particularly true to the point of juitifying a larger gun thanda nominally used, e.g., $1-1 / 2$ inch gun. Some of the reapondenta to factor eoven could not comment, epecially if this factor is viewad from tha atandpoint of n large gun rollabllity, capltal cost, and useful life. Other respondents, even in viow of these criteria, feel that more unable data can be obtalned at lese expense on bullistic ranges than under full sale conditions. The overall reaponse to factore eight and nine varied from neutral on aight to elightly negative on nine. One respondent described quantitatively that examinations of ecaling limit increasea how that from 10,000 to 20,000 feet of altitude may be obtained by a flvefold increase in aize for binary ecaling of wake electron denatien: Also, oniy a 20 percent increase in wake lengthe that could be scaled would be obtained.

Factor ten wae included, at very low weight, merely to emphasise thla. advantage of ballietic range data gathering when contrasted to full-acele data. While full scale does represent the real case, for purposes of study repeatabllity ie highly desirable. In view of the finct that euch diverte opinions and wide variatione in: reponees were obtained, the analyais was made easiar by use of the Case Inatitute Method approach.

Category III

This category assumes that a large caliber gun is needed. It is, therefore, important to determine the best places that such a device should be installed and operated.

The inctallation of a large caliber gun, which would be heavy, lonf and cumbersome, would require that the establishment have the necessary heavy moving equipment, tranefor locations, and housing to properly operate and maintain it. Factor one conadera these prosent capabilites without new construction,

The inotallation of a large caliber gun would necessitate incroasing the number of persons required to operate and malntain it in adata. gathering program. The operation and maintenance necesitaten handilng and storage of large amourt of munition and H_{2} of He main, fabrication of lafger models and anbote, telomentry packages, and other incldontal itema required to effectively pursue euch a program, in esteblinhmanta where programe are presently funded to accomplisha mision, uch a large program would perhap overload their present capablitty, In wow of this, the detire of an eatablishment to participate in a program utilizing a large callber gun in important. This, in turn, is a function of their intereste in the experimental programe to be pursued with a large callber gun.

The ratio of chamber diameter to model diameter for good compatibillty hus been eatimated betwaen 20 and 30 . Thereiore, a 5 -inch model would require (taking the average) a chamber of 125 inchee (approximately 10 (eet). Some eatablishment would require additional chambera for 4-or 5-inch models if thil ratio ie accopted, Therefore, some atablioh ments may have the dosire and laterest but not adequate facility and permonnel capability or range compatibillty

Other important considerations are the attitude of the establishment to the full - or part-time participation of contractors in data gathering on the range and the participation of contzactors intermittently to obtain a few data points of a specific interest. This requires that a certain amount of space on the range fo: instrumentation be available. Quite often the data can be gathered on shots of opportunity.

In anticipation of research contractor participation, the accessibility of the facility is important to maximum utilization of the facility. In conjunction with this will be the ability to control and direct programs and program changes. Program orientation is also important. It may be desired to pursue a basic long term program with short specific tasks overlaid, the results of which may on occasion change the basic program orientation.

Finally, the cost of a large gun is considered. The overall opinion is that the costs will probably not differ greatly between government establishments. However, an industrial or corporate facility may be more economical than the government facilities.
C. Numerical Analysis

The Case Institute Method of weighting objectives (1) was selected for use in weighting the factors and quantifying the respondent's comments and opinions.

The lack of a universal standard deviation and the small sample dictated the use of Student's 't' distribution for test of significance of the results.

In the Case Institute Method, the fen factors are weighted as follows:

1. One factor in each category is rated most important and given a value of 1.00 . Each of the other nine factors are then rated between 0 and 1.00 according to its relatively judged importance.
2. After all factors in a category are rated, the most important factor is compared to the other nine collectively as to importance in the category. If it is judged more important than the other nine collectively, the value of 1.00 first assigned is changed to a value larger than the sum
of the other nine values. If the most important factor is conaideruit i be of the same importance as the other nine, the value for the mont infortant factor should be equal to the sum of the other nine factors. If it in
 it adjusted to some value less than the am of the other nine.
3. The mont important factor and it weight are eitablinhed. Next, the econd mont important factor in compered to the remaining eight. Its wolght is ostablished in the oame manner at deacribedin 2 above. When the factor' waight is entabliahad, the procedure coneinuen to the third, fourth, otc, most important factor until all 10 iactori are weighted.
4. This procedure is followed for all three categories,

A composite of the waighting for all categorien is shown in Table 8 in order of desconding welght. The factors for all three categories can be sean in Tablea 2,3 , and 4 ,

The method of rating the factors was to uae the five discretenumera fal luvels $0,1,2,3,4$. In Category 1 , each eatabliahmant contrasted with 7 wan at at devel 2 and 7 rated below or above at 0 or 1 and $30 r 4$ respectively, in Category il, newtral position on each factor by the respordent was aet at 2 and the degree of disfavor or favor of Category II at Oorl and 3 or 4 respectively, In Category ILI, 7 waset at 2 for each factor, and each establinhment was rated below or above with 0 or 1 and 3 or 4 respectively.

The rating eatablished for each factor in each category wan multipliad by the corresponding factor weight and is recorded in Tablea 5,6 , and 7 . The values are eummed for each establishment. in ordor to normalise the range of response for each establishment in each category, the followlng equation is used:

$$
X_{i}=\frac{\Sigma(\text { factor wt } \times \text { factor gating })-2 \times \Sigma(\text { factor } w t)}{2 \times E(\text { factor } w t)}
$$

For Category :

$$
X_{i}=\frac{\Sigma\left(w_{f} \times R_{f}\right)-2 \times 3.12}{2 \times 3.12}
$$

For Category II:

$$
x_{i}=\frac{\Sigma\left(W_{f} \times R_{i}\right)-2 \times 3.75}{2 \times 3.75}
$$

For Category III:

$$
x_{i}=\frac{\Sigma\left(W_{f} \times R_{f}\right)-2 \times 1.49}{2 \times 1.49} .
$$

For all eatogorios:

The limits for each X_{1} in all categories becomes
for

$$
\begin{aligned}
& R_{i}=0 \quad X_{i}=-1 \\
& R_{f}=4 \quad X_{i}=+1 \\
& R_{f}=2 \quad X_{i}=0=\mathbf{X}^{\prime}(\text { hypothesis value }) \\
& \bar{X}=\frac{\Sigma X_{d}}{N}
\end{aligned}
$$

where
X_{1} - entabliahment computed response
$W_{f}=$ factor weight
$R_{f}=$ factor rating
$\mathrm{N}=$ number of eitabliohmonta.
The ample deviation (5) tor each category to

$$
s=\left[\frac{\Sigma\left(X_{1}-X\right)^{2}}{N-1}\right]^{1 / 2}
$$

Student' 't'test for ignificance is

$$
t=\frac{\bar{x}-x}{S / \sqrt{N}}
$$

Uaing the dita from Tablea 3, 6, and 7 for Categorien I, It, and III respectively, we calculate the ammple tanderd deviationz:

$$
\begin{aligned}
& s_{1}=\left[\frac{0_{1} 115}{3}\right]^{t}=0.149 \\
& s_{I I}=\left[\frac{1.76}{12}\right]^{\frac{1}{2}=0.378} \\
& s_{I I I}=\left[\frac{.328}{5}\right]^{\frac{1}{2}=0.256 .}
\end{aligned}
$$

Eefore the 't' teste are made, a confidence levol of 70 percent is
 kdnd" a (30) and the following hypothemen are mede on anch categury

Category ${ }^{\text {a }}$	There de no algnificant difference in utilie. tion of 7 and other entabliohmonts ($1 .$, , , $\mu=0$).
Category II:	There de no aigndficant need for a lerger eallber gun in the miacile phonomenology rescasch program ($1, \ldots, \mu=0$).
Category III	There in no significant differunce between ostablahmonte where a large gun should be built (1.e., μ व 0).

The 't'testa are computed for uch cotesory:

$$
t_{1}=\frac{.067-0}{.1497 \sqrt{6}}=1.105
$$

[^13]\[

$$
\begin{aligned}
& t_{I I}=\frac{.148-0}{.378 / \sqrt{13}}=1.41 \\
& t_{I I I}=\frac{.214-0}{.256 / \sqrt{6}}=2.05 .
\end{aligned}
$$
\]

The computed values are compared with Student's 't' table values as shown below:

Computed Value for Categories
I
$=1.105$
± 1.41
12
0.54
0.87

1,36
1.78

III
-2.05
5
0.56
0.92

1. 48
2.02

It can be meen that the teate for ail three categories are aigniftcant at the original level of confidence of 70 percent which is considered appropriate for advanced research projecta. Ae the teitimers ignifichat at this level (the computed value is greater than the table value), all three hypothesea are rejected. The hlghest level at which the testaro aignificant and the hypotheses rejected are Category In 80 porcent, Category $\dot{L} w 90$ percent, Category III ≈ 95 percent.

If, however, it if conaldered that the level of confidence should be 95 percent, then the testa for, Categories I and II are not ifgnificant and the hypotheses accepted, Category III t'e atill aignificant but inconeequential. For the purposes of decision making in this type resoarch and developinent programs, the 95 -percent levol of confidence if considered excesatuely high by the investigntor.

D. Summary and Conclusions

This task is one which is highly complex. Many technical areas of madvenced nature are involved. An honeat and incere offort han been made to reach an unbiased and technically sound solution. The groupe queried have provided commenta which are epontaneous and which instinctively draw on yeare of technical experience pertinent to
the problem. Therefore. considarahie intelly capability have been concentrated on the tiree categories. It is not supposed or proposed that overy facet has been conalderad and esplored, nor hae a rigorously technical approach been used at this would be a formidable taik. However, a representative sample of the foremot factor: has been conaldered, and the technical analyols wan performed mentally by the respondents.

A aystematic approach to the analysi of a highly complex problem has been used as shown in the numerical analyais. The importance of this approach is the capability to make a decision in the realm of uncertainty and random variation.

Review of the result of the ratingu of Category I prospnted in Table 5 show that (cunaidering all factora) 7 ratea below 9 at -0.178 (or 17.8%) and alightiy above all othere with 4 and 23 clonent with. +0.008 or (0.80%) and +0.024 (0 \% 2.4%), reapectively. Comprang 7 to all other eatabliahmonta for all factora 7 rated at $+0.0665(6.65 \%)$ which if algnificant when compared to the ample standaxd deviation by the 't'test.

Roview of the result of the ratinge of all factori for Category II, presented in Table 6, how that 2 wasetrongly not in favor of a large gun by a valuo of 0.701 , followed by 10 and 8 , Seven wat atrongly in favor of a large gus with a value of +0.948 , followed by $5,4,6$, and 9 . Twelvo and 1 were allghtly in favor, with values of $+0,040$ and $+0,041$, respectively. On un overall comparison of all fuctori and all establish. merts there was a favorable reapone of +0.148 ($14,8 \%$), Thla evaluation doea not laclude the exact launch tube diametere.

Roviow of the resulte of rating the factora in Categozy Iy, presented In Twble 7, how that 9 with a value of -0.0067 and 13 with a velue of -0.0436 compare cloaett with 7 as the place to budld a lerge gun. Twolve wea leant favorable with a valua of -0.712.

Therefore, on the basis of the analymis of the overall resulta shown and within the limits of this study the following conclusiona were drawn:

Category I

There in me epparent difference in the overall ueafuness of 7 compared to other facilitiea. There in a agadicantly poaltive opinion that 7 may be offectively utjlized in the future.

Category II

There is an apparent need for a large caliber gun in the misaile phenomenclogy research program. There is a aignificantly poitive opinion that auch a device is neoded preaently and in the future.

Category III

There is an apparent difference between establishmente where a large gun could be built and utilized. Establishment 7 is a foremost contender as a desirable establishment for developing the large caliber gun. Recommendations on program continuation together with suggested experiments were made based on these conclusions.
IV. DISCUSSION. The preceding case is a real-world example of how operation research and statistical methode can be utilized to asaint in the process of making technical deciaions. The particular fasturen of thil approach are:

1. An inter-disciplinary team is utilized to bring a variety of technical viewpointe to bear upoil the problem.
2. The realult of auch a team effort are quantified to make it possible for analyais to be made at optimum objectivity.
3. Statiatical techniques are applied to evaluate the quantified renulta.

The key feature of auch methodi is the concept of riek and probabllistic conditions. Such an approach is particularly useful in the roalm of deciaion-making since the riaka are often great and the probabiliatic onvironment la every present. Under auch conditions there ia no opportunity for drawing a definite conclusion. A deciaion can only be made at a given level of confldence. The risk of a dectaion being wrong becomes a calculated part of the problem.

The use of quantitative method for expressing the results of the experiment can often lead to a process of overinterpretation of results often to the neglect of sound technical judgement. Obviously, the decision cannot be made solely with such methods. At best, the decisionmaker can be fortified with cortain analyses of the axperimental results
that will provde a statement of the risk he would take if ho should make a ciacision in one direction or another. Such factual data can often be provided with a minimum of bias from lower echelone so that the decinion-maker can benefit from it while exerciaing his best judgement in the problom.

The experiment was basically concarned with the determination of technical facta that exiated within each of the installationa. To obtale auch fact: required us to go through everal "bias filters" such as:

1. The ability and willingnesi of the inetallation repreaentative (the interviewee) to state the true facto that exiat in hio group an free of blas and inaccuractes as posible.
2. The abditty of the interviewer to gather and tranamit the data to the inveatigator with a minimum of his own peraonal bias involyed.
3. The ability of the investigatur to complle the final date at free of his own parional bias as posilble.

To accomplisb the above purposea la obvously no enay taik undez any circumatances. The problem wan faced in the laveatigation by uthleting these basle techniques:

1. A multiple of closely related questions wore used to conduct the interviewera with sach tratallation representative.
2. The intervitowe bias was obierved and evaluated by the interviower in each case.
3. The data wae tranamitted to the lnventigator and a concerted attempt was made on the part of the inveatigator to belance the blas of the interviewer and interviewee through the conduct of an extenalve "debriofing" procedure.
4. The blas of the inveatigator was controlled by hoth the influence of the interviewer in the debriefing besaions and the atematized mothod of quantifying the resulta.

Obvinusly, the effort just described could never hope to ellminate all blay and inconaiatencies. The recognition of thin fact leads us to evaluate the final reasle with techniques that have been developed for auch eituatin:as.

We have, in effect. produced quantified results within an onviroment of uncertainty, Such uncertainty fa made up of two basic elementa. That 1s, the oberved differences in resulta between installations chn be attributed so:

1. Differences that are explained by residual errort and blasea that atill remain in the experiment in epite of the procedurea that were establiched to ellminate thom.
2. Differences that aro explained by roal effects of the instaldation on the category in quention as far as the atudy cen determino.

The teat of hypotheais ueed in the analysis eerved to partition these two bsaic cause of observed differences, To sey that a resulting offect was eigndgicant is to ity that, within the limite of thif inventigation, the observed differences betwesen the eslocted inetallatione cennot be attributed merdy to experimentel orror. The conclusion is thorafore drewn that a real difierence exinta and a poitive conciunion io therofore drawn. It is important to note that for each conclunion there it a compa rablo level of conflence. Whthin the raalm of an environment of uncertainty all conclusions or deciaione must caryy thic element of riak.

V. REFERENCE

1. Churchman, Ackoff, and Arnoff, "Introduction to Operation Rasenrch," John Wiley and Son, New York, New York.

TABLE
Eotaoliohments Visited by Interviewers

Establinhment	Intervowior			
	1	2	3	4
1			X	
2	X			
3		X		\cdots -
4		X		
5	x			w \%
6				X
7	X			-
8			X	
9		X		,
10		X		
11	X			
12				X
13				X

Eatabliohment Ny. 7 Utilization Evaluation Factora

Categoziy I

Factore are listed in descending order of entablished welfite. Each factor rated with 2 representing ench establiahment agelnat whlch Eatablishment 7 da rated. The rating levela are chosen by this interviewer and the chairman of the aurvey committee.

1. How do 7 'i past program reaule compare to other establiohmenta?
2. How doea 7'a pest instrumentation rate in comparison to other entablishmente?
3. How did 7'i program rate with other rangen in degree of difficulty to pesform?
4. How doen $7^{\prime \prime}$ past gun performaree sate in compardion to oither ranges?
5. How do 7 ' profestonala compare with profosalorale of other ranges?
6. How doea 7' past facility development yate in comparison to othe: rangor?
7. How does 7 ' utility as z. Sata gathering facllity in future compare With other sengos?
8. How does futura posadbility of contractors participation on zanges at 7 compare to other eatabliehmenta?
9. How etrong is 7' desire to continue participation in miasile phenomerology reanach cumpared with other rangen?
10. How doe $7^{\text {to past funding compare to other range programs? }}$

TABLE 3
Large Bore Gun Evaluation Factora

Category II

Factorn are lieted in descending order of astablished watghte. Each factor reted at levela batwon $0,1,2,3$, and 4 on bais of dete and opinione gathered with 2 representing neutral opinion. The rating level: are chonen by the interviewer and the chairman of the aurvay committee.

1. Will they expand the type of experiment that may be offectivaly exccuted under simulated condytione?
2. Wild they opon averues of now typas of measuremontep
3. What de opinion of othery doing theoratical work on netd far layge bore guna?
4. Will they increase oboervables devole at higher almulated altituder algnidicantly?
5. Will darger bore guna improve reliability and confldance in range mensurements?
6. What ia opinion of otheri on tha value of almulated data vi fubl ecale for utdiantion in theoretical modoling and computations i
7. How does cost of uable baddatic ringe data gathoring compare with uable full scale data gathering?
8. Will they contribute significantly to ocaling betwean theory and fuld ecale?
9. Wall they contribute afgnificantly to the eatabliohmant of binary caling llmita?
10. What ia the opinion of balliatic range data gathering capability from atandpoint of repalability?

Large Bore Gun Location Evaluation Factore

Category III

Factora are lieted in descending order of eatabilahed weights. Each factor rated at lovela between $0,1,2,3$, and 4 on bain of data and oplaione gathered with 2 representing Entablimment 7 agalnot which each oatabishment ds evaluated. The rating levels are chosen by the interviewer and the chairman of the arvey committee.

1. To what degree $2 y_{0}$ other eatablehmente able to accommodate a large gun from atandpoint of houning, operating, and malntanance without facility construction relative to 7 ?
2. What was capabildty of other catablishmonts for taking on additional range measuremente programe relutive to 7 ?
3. How atrongly do other eatablimhmanta indicate they wart to butid a large bore gun relatdve to 7 ?
4. What wan intereat of other atablibhmente in taking additional programe rolative to 7 ?
5. To what degree de their present range chamber diameter compatible with large modele rolative to 7 ?
6. What de attitude of other atabliohmant toward contractor farticipation in data gathoring on their rangen relative to 7 ?
7. Ia apaco preconty more availabio on thedr rangen for contractoral uthiantion relative to ? ?
8. How doen acceasibility of other eatablinhments cormpare to 7 ?
9. How doen the ability to control programe at other eatablishmenta compare to 7 ?
10. How will cont of large gun dovelopment at other eatablishmenta compare to 7 ?
table 5. CATEGORY I factor rating

TABLE 6. CATEGORY II FACTOR RATING

Factor	-	1	2	3	4	5	6	7	8	9	10	Sum of Factor Wt	X_{i}
Factor Weight (W_{f})		0.92	0.74	0.56	0.40	0.29	0.29	0.18	0.17	0.11	0.09	3.75	
Establishment No.												$\begin{gathered} \text { Sum of } \\ \text { Wt. } x \text { Level } \\ \hline \end{gathered}$	
1	${ }_{\text {Level }} \quad$ ($\left.\mathrm{R}_{\mathrm{f}}\right)$ Factor Wt x Level	$\begin{gathered} 3 \\ 2.76 \\ \hline \end{gathered}$	$\begin{array}{r} 3 \\ \\ 2.22 \\ \hline \end{array}$	0.56	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	0.29	$\begin{gathered} 3 \\ 0.87 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.36 \\ \hline \end{gathered}$	0.17	2 0.22	4 0.36	 7.81	+0.041
2	$\underset{\text { Level }}{\text { Factor }}\left(\mathrm{R}_{\mathrm{f}}\right)$ Factor Wt x Level	0.92	0	$\begin{array}{r} 0 \\ 0 \\ \hline \end{array}$	$\begin{gathered} 1 \\ 0.40 \\ \hline \end{gathered}$	0	1 0.29	$\begin{gathered} 2 \\ 0.36 \\ \hline \end{gathered}$	0 0	0	3 0.27	2.24	-0.701
3	$\begin{aligned} & \text { Factor }\left(R_{f}\right) \\ & \text { Level } \\ & \text { Factor } \\ & \text { Wt } x \text { Level } \\ & \hline \end{aligned}$	$\begin{array}{r} 3 \\ 2.76 \\ \hline \end{array}$	$\begin{gathered} 3 \\ 2.22 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 0.56 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.80 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.58 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 0.29 \\ \hline \end{gathered}$	3	$\begin{gathered} 1 \\ 0.17 \\ \hline \end{gathered}$	3 0.33	$\begin{array}{\|c} 2 \\ 0.18 \\ \hline \end{array}$	8.43	1 +0.124
4	$\begin{aligned} & \text { Factor }\left(R_{f}\right) \\ & \text { Level } \\ & \text { Factor } \\ & \text { Wt } x \text { Level } \end{aligned}$	$\begin{gathered} 3 \\ 2.76 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 2.22 \\ \hline \end{gathered}$	$\begin{array}{r} 3 \\ 1.68 \\ \hline \end{array}$		$\begin{gathered} 2 \\ 0.58 \\ \hline \end{gathered}$	3 0.87	$\begin{gathered} 3 \\ 0.54 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 0.51 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 0.33 \\ \hline \end{gathered}$	3 0.27	10.16	+0.355
5	$\begin{aligned} & \text { Factor }\left(R_{f}\right) \\ & \text { Level } \\ & \text { Factor } \\ & \text { Wt } x \text { Level } \end{aligned}$	$\begin{array}{r} 3 \\ \\ 2.76 \\ \hline \end{array}$	$\begin{array}{r} 3 \\ 2.22 \\ \hline \end{array}$	4 2.24	$\begin{gathered} 3 \\ 1.20 \\ \hline \end{gathered}$	4 1.16	$\begin{gathered} 3 \\ 0.87 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.36 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 0.51 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 0.11 \\ \hline \end{gathered}$	$\begin{array}{\|c} 4 \\ 0.36 \\ \hline \end{array}$	11.79	+0.572
6	$\underset{\text { Level }}{\text { Factor }}\left(R_{f}\right)$ Factor Wt \times Leve 1	$\begin{gathered} 2 \\ 1.84 \\ \hline \end{gathered}$	$\begin{array}{r} 3 \\ 2.22 \\ \hline \end{array}$	$\begin{gathered} 3 \\ 1.68 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.80 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 0.87 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 0.87 \\ \hline \end{gathered}$	2 0.36	3 0.51	2 0.22	$\begin{array}{\|c\|} \hline 2 \\ 0.18 \\ \hline \end{array}$	9.55	0.572 +0.273
7	Factor Level $\left(R_{f}\right)$ Factor Wt x Level	$\begin{gathered} 4 \\ 3.68 \\ \hline \end{gathered}$	$\begin{gathered} 4 \\ 2.96 \\ \hline \end{gathered}$	4 2.24	4 1.60	4 1.16	4 1.16	4 0.36	3 0.51 1	2 0.22	4 0.186	14.61	$\begin{array}{r}\text { +273 } \\ +0.948 \\ \hline\end{array}$
8	$\left.\begin{array}{l}\text { Factor } \\ \text { Level }\end{array} \mathbf{R}_{\mathrm{f}}\right)$ Factor Wt x Level		$\begin{gathered} 1 \\ 0.74 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 0.56 \\ \hline \end{gathered}$	0 0	0 0	3 0.87	4 0.72	1 0.17	2 0.22	4 0.36	6.40	 -0.146

table 6. CATEGORY II FACTOR RATING (Concluded)

Factor	-	1	2	3	4	5	6	7	8	9	10	Sum of Factor Wt	X_{1}
Factor Weight (W_{f})		0.92	0.74	0.56	0.40	0.29	0.29	0.18	0.17	0.11	0.09	3.75	
Establishment No.												Sum of Wt x Level	
9	$\left.\begin{array}{l}\text { Factor } \\ \text { Level }\end{array} \mathbf{R}_{f}\right)$ Factor Wt x Level	3	3	$\begin{gathered} 1 \\ 0.56 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.80 \\ \hline \end{gathered}$	3	3	3	$\begin{array}{\|c\|} \hline 1 \\ 0.17 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1 \\ 0.11 \\ \hline \end{array}$	3 0.27	9.17	+0.223
10	Factor Level R_{f}) Factor Wt x Level		$\begin{gathered} 1 \\ 0.74 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 0.56 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.80 \\ \hline \end{gathered}$,	$\begin{gathered} 1 \\ 0.29 \\ \hline \end{gathered}$	3	$\begin{gathered} 3 \\ 0.51 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 0.33 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.18 \\ \hline \end{gathered}$	6.37	-0.151
11	$\begin{aligned} & \text { Factor }\left(R_{f}\right) \\ & \text { Level } \\ & \text { Factor } \\ & \text { Wt } x \text { Level } \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ 1.84 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 1.48 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 1.68 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.80 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.58 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ \vdots \\ 0.87 \\ \hline \end{gathered}$	4 0.72	2 0.34	$\begin{gathered} 1 \\ 0.11 \\ \hline \end{gathered}$	4 0.36	8.78	+0.171
12	$\begin{aligned} & \text { Factor (} \left.R_{f}\right) \\ & \text { Level } \\ & \text { Factor } \\ & \text { Wt } x \text { Level } \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ 1.84 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 1.48 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 0.56 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ \\ 1.20 \\ \hline \end{gathered}$	0.58	$\begin{array}{\|c\|} \hline 3 \\ 0.87 \\ \hline \end{array}$	2 0.36	3 0.51	2 0.22	$\begin{gathered} 2 \\ 0.18 \\ \hline \end{gathered}$	7.80	$\begin{array}{r}1 \\ +0.040 \\ \hline\end{array}$
13	$\underset{\text { Level }}{\text { Factor }}\left(\mathrm{R}_{\mathrm{f}}\right)$ Factor Wt x Level	$\begin{gathered} 2 \\ 1.84 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 2.48 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 1.68 \end{gathered}$	$\begin{gathered} 2 \\ 0.80 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 0.87 \end{gathered}$	$\begin{gathered} 3 \\ 0.87 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.36 \\ \hline \end{gathered}$	3	$\begin{gathered} 2 \\ 0.22 \end{gathered}$	$\begin{gathered} 2 \\ 0.18 \end{gathered}$	8.81	+0.175
Σx_{i}													+1.924
$\frac{\mathrm{N}}{-5}$													13
$\bar{X}=\frac{\sum \bar{x}_{1}}{N}$													+0.148
$\bar{x}^{\prime}=0$ (by design)													0

TABLE 7. CATEGORY III FACTOR RATING

Factor	-	1	2	3	4	5	6	7	\bigcirc	9	10	Sum of Factor Wt	X_{1}
Factor Weight (W_{f})		0.33	0.22	0.21	0.20	0.14	0.12	0.09	0.08	0.06	0.04	1.49	
Establishment No.												Sum of Wt x Level	
1	Factor Level $\left(R_{f}\right)$ Factor Wt x Level	$\begin{gathered} 2 \\ 0.66 \\ \hline \end{gathered}$	0.22	0 0	$\begin{gathered} 2 \\ 0.40 \\ \hline \end{gathered}$	0.28	3 0.36	$\begin{gathered} 2 \\ 0.18 \end{gathered}$	3 0.24	$\begin{gathered} 3 \\ 0.18 \end{gathered}$	$\begin{gathered} 2 \\ 0.08 \end{gathered}$	2.60	-0.128
4	Factor Level $\left(R_{f}\right)$ Factor Wt x Level	$\begin{gathered} 2 \\ 0.66 \\ \hline \end{gathered}$	0.22	0.21	0.20	$\begin{gathered} 2 \\ 0.28 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.24 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.18 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.16 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.12 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.08 \\ \hline \end{gathered}$	2.35	-0.211
6	Factor Level (R_{f}) Factor Wt x Level	$\begin{gathered} 2 \\ 0.66 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.44 \\ \hline \end{gathered}$	0.21	$\begin{gathered} 1 \\ 0.20 \\ \hline \end{gathered}$	2 0.28	$\begin{gathered} 1 \\ 0.12 \\ \hline \end{gathered}$	1 0.09	$\begin{gathered} 3 \\ 0.24 \\ \hline \end{gathered}$	2 0.12	$\begin{gathered} 2 \\ 0.08 \\ \hline \end{gathered}$	2.35 2.44	10.211 -0.181
9	Factor Level (R_{f}) Factor Wt x Level	$\begin{gathered} 2 \\ 0.66 \end{gathered}$	$\begin{gathered} 2 \\ 0.44 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 0.63 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 0.60 \\ \hline \end{gathered}$	0 0	1 0.12	$\begin{gathered} 1 \\ 0.09 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 0.24 \\ \hline \end{gathered}$	1 0.06	$\begin{gathered} 3 \\ 0.12 \end{gathered}$	2.96	年
12	$\begin{aligned} & \text { Factor }\left(R_{f}\right) \\ & \text { Level } \\ & \text { Factor } \\ & \text { Wt } x \text { Level } \end{aligned}$	0 0	0.22	0 0	0.20	0 0	0 0	0 0	$\begin{gathered} 3 \\ 0.24 \\ \hline \end{gathered}$	2 0.12	$\begin{gathered} 2 \\ 0.08 \end{gathered}$	0.86	星
13	$\begin{aligned} & \text { Factor (} R_{f} \text {) } \\ & \text { Level } \\ & \text { Factor } \\ & \text { Wt } x \text { Level } \\ & \hline \end{aligned}$	$\begin{gathered} 2 \\ 0.66 \end{gathered}$	$\begin{gathered} 2 \\ 0.44 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 0.21 \\ \hline \end{gathered}$	$\begin{gathered} 2 \\ 0.40 \\ \hline \end{gathered}$	2 0.28	2 0.24	$\begin{gathered} 2 \\ 0.18 \\ \hline \end{gathered}$	3 0.24	2 0.12	$\begin{gathered} 2 \\ 0.08 \end{gathered}$	2.85	-
Ex_{1}												2.85	-1.282
N													6
$\bar{X}=\frac{\Sigma X_{i}}{N}$													-0.214
$\bar{X}^{\prime}=0$ (be design)													0

Taste 8

Factor Halshat by catircory

Factor No.	1	2	3	4	5	6	7	8	9	20	Σ
Catagory I	0.38	0.30	0.49	0.40	0.28	0.24	0.20	0.18	0.15	0.10	3.12
Categury II	0.92	0.74	0.36	0.40	0.29	0.29	0.18	0.17	0.12	0.09	3.75
Categary III	0.33	0.22	0.21	0.20	0.14	0.12	0.09	0.08	0.06	0.04	1.48

IMPROVEMENT CURVES: PRINCIPLES AND PRACTICES

Jerome H. N. Selman, Stevena Inatitute of Technology, Rep. the U. S. Army Munitions Command, Dover, N. J.

To build the 1000 th B-29 Aircraft took only 3% of the time required to build the first. To build your firet window screen or dog house will thke you more time than each succeeding one--unless you are a profesional window screen or dog-house maker. This feeling is intuitive. The estimation of time reduction for each succeeding item, based upon judgment and experience, is attributed to a human 'learning" effect, Mathematically, the way to express this condition would be to use a reduction-typa function: A straight line equation with conatant negative slope for a constant linear reduction of cost with quantity; a hyperbolic equation with nogative exponent for rapld initial reduction of cost with quantity, then slowing down to a limit; more complex equationa which are deaigned to reflect the phases of the apocific learning aituation.

Modela of the cost-quantity relationship, as a predictive technique, came into general use in the airframe induatry during World War If after their development in the 1930's. T. P. Wright's pathfinding article* hyperbolically related the average direct man-hour coat to the number of airframes produced. Others have modafied Wright's model to show the inverse relationship between the direct labor hours per unit versur ientity produced; this latter formulation being known as the Undt (Improvement) Curve. A linear improvement curve having linear component curves implies that the rate of learning is the same; intuitively, again, the assumption of constant learning rate in all operations ia open to question. Wright wa of the opinion that different rates of learning are found in the airframe manufacturing process, but he did not inquire into the implicationa.

Studies in the then-new airframe induatry for ab-sonic, reciprocating engine, electrically simple aircraft indicated that although the precentage slope of the improvement curve varied, for every doubling of auccesaive quantities of aircraft, the percentage value was a conatant percentage of the unit value of the quantity immediately prior to doubling. The percentage reduction was approximately 80%. This meant that each time the quartity was doubled, the man-hours required to make that designated aircraft was 80% of the man-hours required immediately prior to doubling. Plotting the improvement curve on logarithmic grids given a "utraight line curve",

[^14]as the gride are so scaled that the interval between doubled quantities are equal; i.e., the distance between one and two is the ame as the distance between two and four, or four and eight, or eight and sixteen, etc. Of course, the linear hypothesis should be discarded whenever the unit curves of man-hours and cost depart aignificantly from linearity--"eignlifcant departure" being determined from the elopes of the parallel linear component curves, based on the error permissible in the problem in hand.

Improvement curves are expressed in terms of percentages, such as 80% Curve, 90% Curve, 92% Curve, etc. The percentage figure referring to the fact that man-hours tend to decrease by a definite amount each time the quantity produced in doubled. By correlation and other statistical techniquea dt has been shown that a graph of the actual performance data (cost, as inferred by man-hours per unit veriue quantity produced, or taeks accomplished) may be approximated by a hyperbolic function of the form $y=a x^{b}$, with a relatively high degree of ignificance. The fundamental hyperbolif hape is postulated rather than tested (for linearity on doublelog scales versus some alternate non-linear functional form for comparison), as a descriptive device for eccumulated data, In Improvement Curve terminology, y, is in direct man-hour coat, a, is the direct man-hour cost for "1anit Number one", and b defines the "slope" of the curve-."slope" being che ratio of the unit (or average) man-hour cont at two cumulative outputs that differ by a factor of two (2), so that the slope is 2b. Wright'a empirical data on umapocified aircraft yielded a "b"-velue of. .322 , giving the popular 180% Curve". On arithmetic grid the 80% Curve with a unit one cost of 1000 man-houre is thown in Figure l, the equation being $y=1000 x^{-.322}$.

To illuatrate the mechandce of constructing improvement curvea, the 80% Curve will be donein three parta; as inown in Figure 2:

The Unit Time Line: Given a value for any unit P and the alope of the Improvement Curve in percentage form, draw a line from point P through a point X so that it will be twice the unit number of P, i.e., P equals twice X; and the value of X will be the value of P, multiplied by the percent slope of the curve. Equation: $y_{i}=a x_{i}^{b}$
for unit curve.

The Average Time Line Per Cumulative Unit: The Cumulative Average line is drawn in two ateps:

1. The Asymptote. The Cumulative average line approaches a straight line which is parallel to (after about the 15 th unit) and higher than the unit line. To construct the asymptote, obtain the "b" for the improvement curve in question. Draw the asymptote parallel to the unit line so that the values of all points on the asymptote are equal to $1 /(1+b)$ times the values on the unit line. For the 80% Curve, the conversion factor for ($1+b$) is 0.687 , as given on Table I, giving each point on the asymptote a value of 1.475 the corresponding value on the unit line. Equation:

$$
\overline{\overline{\mathrm{y}}}=\frac{a N^{b}}{1+\mathrm{b}}
$$

2. The Cumulative Average Line. As an approximation for values between 2 and about 15 , the cumulative average values for any unit X is approximately equal to the value shown on the asymptote for, $X+3$. That is, the average cost of the 4 th unit is approximately equal to the value of the asymptote at unit 7. For practical purposes, the average line for units 16 and above may be considered to equal the values of the asymptote. Equation:

$$
\overline{\bar{y}}=a \sum_{i=1}^{n} \frac{x_{i}^{b}}{N}
$$

The Total Line: Draw a line from the value of unit number one to a point at, say, unit number 10 , which has a value equal to 10 times the cumulative average value of unit number 10 . It is logical that the total time for the first ten units is equal to 10 times the average time (cost) of the first ten units. Equation:

$$
Y=a \sum_{i=\frac{1}{2}}^{N+\frac{1}{2}} x_{i}^{b}
$$

the corresponding asymptote is N times the cumulative average asymptote, just as the Total line is N times the cumulative average line.

Improvement Curves have been utilized in the Aerospace Industries for Cost estimates, scheduling, efficiency comparisons, procurement and
subcontracting, facilities planning, personnel planning, long-range forecasting, ete., and was proposed for varloun industries such as home appli-
 accuracy of the Improvement Curve function as an oftimating device is dependent upon a number of factors, incliding:

Accuracy of Banic Estimete
Choice of the Improvement Rate exponent "b"
Non-linear elemente ia the real world
Changes in the output rate
Design Changes in product
Influx of "green" manpower
Exit of akilled manpower.
The basic tenet of Improvement Curve phllosophy da where there is life (people) there cas be learning, the more man-oriented the work, the more learning potential posaibls. Figure 3 dlluatrates the generally accepted improvement curve percentages for various man-machines mixes: $\mathbf{7 5 \%}$ Man-25\% Machine for the 80% Improvement Curve: 50% Man -50% Machine for about 85% improvement Curves; $25 \% \mathrm{Man}-75 \%$. Machine for the 90% Improvement Curves, etc.

Munitione Command Regulation $715-1$ requires thorough justification where "program costa are not reduced in accordance with expected learning curve costing. " The techniquen of the learning or improvement curven can set roaliatic management goals for wetting expected rates of improvement in reducing operating expenses in the Army "Five-Year Cost Reduction Program".

Operatione develop trenda that are characteriatic of thomeolves. Projecting auch entablished trende it mare valid than astuming level perform ance, or no learning effect. The Improvement Curve function which hat remained parochial to the aeroapace industrien has been preaented with the same motive aw the roouter who showed his hen an ostrich egg--'It's not that I'm complaining, it' just that I'd like you to see what othera are doing!"
Figure 1

Ficure?

DTPROVEMETI CURVE FACTORB

86

- . 218
.782
87
- . 801
. 799
88
-. 284
.816
89
- . 168
.832
90
- . 152
.848
91
- . 236
. 86
98
- . 280
.820
93
gh
- . 105
.695

93
99

- . 0 .
.911
3 :.074 , 986

BTRAIGHT GINE IMPROVEMENT CURVES

Figure 3

THE EFFECT OF RELIABILITY, LENGTH, AND SCORE CONVERSION ON A MEASURE OF PERSONNEL ALLOCATION EFFICIENCY

Richard C. Sorenson and Cecil D. Johnson
U. S. Army Peraonnel Research Office
Washington, D. C.

Abstract

Within the United Statea Army it han been reallued for many years that an effective military organization must have the right kind of men as well as the most advanced and effective equipment. Of course this does not mean that the Army must have only the 'best' of the personnel pool, but does mean that those men taken from the personnel pool must be matched with jobs in a way that facilitates maximum manpower utilization. There are two sides to this task of manpower utilization; 1) the various functions performed within the Army must be analyzed to determine the different akills needed to perform those functions, and 2) the individual differences within the personnel pool must be analyed to find those different abilities that can be reliably measured. At thil point we are left with the problem of developing effective measuring instruments and of devining ways and meane of assigning men to jobs on the basia of the maaure of abilities. This whole attack on manpower utilization rest on the reallzation that while few men can be trained-no matter how extenoive and careful the training--to do all the Army jobs as well as those who do them beat, most men accepted by the Army can be trained auch that they are effective in performing those akdlls for which they are most ept, and when properly asilgned, will be an asset to the Army.

Thus the solution of the problem resta on auccessfully accomplishing the following: 1) dentifylag job families within the Army that require personnel with different ability, 2) dentifying and measuring the ace abilities within the perconnel pool, 3) eatimating the performance on the job on the bais of measures of ability related to job requiremento and 4) asigning men to jobe so as to maximize overall performance.

The firat of these atepa has been treated in the eatablishment of the Army occupational areas. Ten occupational areas have been lementiced and shown to be satisfactory in classifying the various Army functions assigned to enlisted men (EM) [10] 4 . Recent research indicates that nine

[^15]categories of training chools within Army Advanced Individual training may be differentiated [5]. It may be asoumed that continuing research will be requitred to evaluate the constuntly changing functions parformed by Army EM as new methods and procedures ase introduced,

The Army Claasification Battery (ACB) has been developed to measure aptitudes related to Army jobs [4]. An important researchmisiton of USAPRO is to introduce new measuring devices, and to reviee and/or validate present teate [7]

The eight current Aptitude Areas are Sunctions of the eleven teste within the $A C B$ and serve a performance entimatea for the Military Occupationai Specialtien (MOS) in one or two occupational categorion. These Aptitude Area Scores are currenty ueed for differential clasification [10]. (See Figure 1.)

The benefits inherent in differential clasalfication using Aptdude Aren Scorea tem from the fact that information ia obtained relative to the differences in ability between individuale and to differences within the individual. Thu EM may be assigned to jobe for which thair probablity of auccesemay be good deal greater than that for Army jobi in general.

The technical gain in twoiold. Firat, given level of aptitude fora given job can be assured by a lower score on the pecific elector highly related to the job than would be required to maintain the ame atandard of excellence if the eslection were based on an inctrument lese valid for the purpoes at hand. Secondly, when recrultiere taken bove a given cutting score on general seloctor, they are removed from that ecore interval of the aptitude pool for all other jobs an well. However, when recruit: are taken above a givisn cutting ecore on apecific eelector, they come from a much broader range of ecores an far at the pool for another apecific elector in concerned. To the extent that one apecifle selector in uncorrelated with a aecond, the entire range of acores it will a.vallable on the latter aiter aelection has been accompliahed on the ilyt selector.

Thus we aee that for a particular ample of 1800 individuals drawn for the purpose of standardizing a ubsequent veraion of one of the testa 56% were above average on the Armed Forces Qualification Teit (ATOT) relative to the original siandardization popuiation, Of thin ame ample, however, 91% wore above the average for the Aptitude Area in which they acored highest. (See Figure 2.)

One further operational gain was investigated. Under the former system in which a single test--the Army General Classification Test (AGCT) - - was practically the sole determinant of Army clasaification, eelection for one set of jobs automatically gave those jobs the upper sogment of the dietribution of tost scores. The lower segment wac lefi for the remeining jobs, In the operational problem filling the manpower requirements of an infantry division, approximately one half of the men were combat infantrymen. If, as happened at times during the war, a test were uned to eelect primarily for the noncombat opecialties, theso jobs would be filed by using the upper half of the diatribution. In auch a came only the lower half of the distributione of teat scores would be avallable for the combat jobs as indicated in Figure 3. However, when the results of the distribution of men into aptitude areas corresponding to job families for the infantry division used in the standardization atudy mentioned above are viewod, the diatribution of AGCT acorea for the non-priority or combat jobil in wen to be almost equal to the distribution of AGCT acores for the priority jobs. This is shown graphically in Figure 4,

A great deal of research han been undertaken to make optimal alloce: tion feasible, Various versions of the optirnal regiona and other methods are now avallable for operational use [1]. In the research reported in thi paper a routine derived from the Hungarian eolution to the traneportation problem was used [8].

In this paper we will be concerned with inventigating characteristica of performance eatimates (and the teat battery from which they were derived) as they relate to the criterion of personnel allocation efficiency as measured by the average performance under conditione of optimal allocation. This measure of performance is the objective function to be maximized in the transportation problem. Many relationshipi involving this objective function and the varimbies of thie atudy may easily be calculated analytically asouming deal conditiona, e.g., continuoun nommally distributed paychological teat ecuren, For Instance Brogen [2, 3] has shown that when other factora are held conatant and certain conditione assumed, the efficiency of allocation ie directly proportional to the valddity of the performance estimate, and that one may determine by analytic mana the allocation efficiency for given numbera of jobe, percent of perionnel pool rejected, and intercorrelation of performance oatimatea. In reallty, however, we are not dealing with continuous variablei and irequently other aisumptiona are not met. Also, in practice the acorea are often
transtormed in such a way that considerable information is lost. It is less easy to investigate the more realistic situations analytically. Thus we have embarked on a program to study by a Monte Carlo approach the general relationship between amount of information in a distribution of discrete performance estimates and the performance level it is possible to achieve by the most efficient pattern of personnel assignments.

The basic step in the implementation of a statistical experiment is the generation of uniformly distributed random numbers. We have used computer routines which generate pseudo-random numbers by the power residue method [9]. These distributions of uniform variables are then transformed to distributions of normal variables. This transformation results in a matrix, X, of order n by k, i.e., n entities are represented each by a vector of k simulated scores:
(1)

$$
x=\left[\begin{array}{l}
x_{11}, x_{12}, \ldots x_{1 k} \\
x_{21}, x_{22}, \ldots x_{2 k} \\
\ddot{x_{n 1}}, x_{n 2}, \ldots x_{n k}
\end{array}\right]
$$

where
(2)

$$
\left.\begin{array}{lll}
& \mathrm{X} \mathrm{X} & \rightarrow \mathrm{nI} \\
\text { and } & 1^{\prime} \mathrm{X} & \rightarrow 0 \\
\text { when } & \mathrm{n} & \rightarrow \infty,
\end{array}\right\}
$$

We see then that for each sample we generate a matrix that has an expectation for its covariance matrix of the identity matrix.

Now we desire to further transform the matrix X by post multiplication by a matrix T such that the resulting matrix has for its expected covariance matrix a given matrix C :

$$
\left.\begin{array}{rl}
& \mathrm{XT}=\mathrm{Y} \tag{3}\\
\text { where } & \mathrm{Y}^{\prime} \mathrm{Y} \rightarrow \mathrm{nC} \\
\text { when } & \mathrm{n}
\end{array}\right\}
$$

The matrix C is specified a: a function of the desired standard deviation and intercorrelation of the variables:

$$
\begin{equation*}
C=R . \tag{4}
\end{equation*}
$$

Where R is the desired correlation matrix and is the diagonal matrix of standard deviations.

We wish to find the matrix T such that the conditions in (3) will hold. From these equations we may write the requirement that:

$$
\begin{equation*}
\left(\frac{1}{n}\right) Y^{\prime} Y=\left(\frac{1}{n}\right) T^{\prime} X^{\prime} X T \rightarrow C \tag{5}
\end{equation*}
$$

when

$$
n \rightarrow \infty .
$$

From (2) we see that

$$
\begin{aligned}
& \frac{1}{n} X^{\prime} X \rightarrow I \\
& n \rightarrow \infty
\end{aligned}
$$

(6)

$$
\text { when } \quad n \rightarrow \infty
$$

and from (5) and (6) we have

$$
\begin{equation*}
T^{\prime} T=C \tag{7}
\end{equation*}
$$

We may represent the matrix C in terms of its basic structure:
(8)

$$
C=Q \Delta Q^{\prime}
$$

where

$$
Q^{\prime}=Q^{\prime} Q=I .
$$

We know that the matrix C to any power ecg., l, may be formed by raising the eigen values of C to that power, premultiplying by O and poetmultiplying by $Q^{\prime}[6]$:
thus

$$
\begin{align*}
& C^{l}=Q \Delta^{l} Q^{\prime} \tag{9}\\
& C^{\frac{1}{2}}=8 \Delta^{t_{0}^{\prime}} .
\end{align*}
$$

Formula (10) could be demonstrated as follows:

$$
\begin{equation*}
C^{\frac{1}{2}} C^{\frac{1}{2}}=Q \Delta^{\frac{1}{2}} Q^{\prime} Q \Delta^{\frac{1}{2}} Q^{\prime}=Q \Delta Q^{\prime}=C . \tag{11}
\end{equation*}
$$

We will let

$$
\begin{equation*}
T=C^{\frac{1}{2}} \tag{12}
\end{equation*}
$$

We see that

$$
\begin{equation*}
T^{\prime} T=C^{\frac{1}{2}} C^{\frac{1}{2}}=C \tag{13}
\end{equation*}
$$

Hence a transformation solved for by equation (11) meets the requirement of (7) and while there are an infinite number of transformations that meet this requirement the one indicated is by far the most advantageous since it provides for uniformity of rounding errors and impartially improves normality of the transformed scores.

Thus we may simulate samples of personnel by building into the score distribution characteristics of performance estimates in which we are specifically interested. These performance estimates may in turn be a function of such test characteristics as length, reliability and validity. The effectiveness of a test or of the resulting performance estimation is determined by its potential contribution to the optimal allocation average, that is, the average estimated performance of men on the jobs to which they are assigned.

Let us first consider one of these characteristics of a distribution of performance estimates: namely the standard deviation. Often times, in the course of personnel operations where men are actually being assigned to jobs on the basis of measured attributes, distributions of scores are transformed from distributions in which there are two or three significant digits to distributions in which there is only one significant digit. This is the case in assigning men to jobs in the Army. The three digit Army Aptitude Area Score is coded according to AR 611-259 to a score taking on tine values ranging from zero to nine. The questions we ask are: 1) V. at loss of information occurs when scores are coded to a one digit scale, and 2) What affect does this loss of information have on average performance when these scores are used to assign men to jobs?

In Figure 5 we demonstrate the effect of coding the scores of a continuous distribution centered at 50 into nine score scales, e.g., entities with scores less than 11.5 were given a coded score of 1 , entities with scores 11.5 or greater but less than 22.5 were given a coded score of $2, \ldots$ entities with scores 88.5 or greater when given a score of 9 , The upper portion is the resulting distribution when the original distribution has a standard deviation of 20. The information measure, H , has an intuitive appeal because it is sensitive to both the size of the coded interval and the spread of scores. For the above distribution H may be calculated by

$$
H=\sum_{i=: 1}^{9}\left(p_{i} \log p_{i}\right)
$$

where p_{i} is the proportfon of the entities in the ith interval and $\log p_{i}$ is the natural logarithm of p_{i}. The information measure corresponding to the distribution represented in the top of Figure 5 is 1,991. In the lower figure, a similar transformation was performed on a continuous distribution, where the original distribution has a standard deviation of 10 . We see here that the cases are primarily distributed in intervals 4,5 , and 6 , that they are much more closely grouped together. That much more information is lost is indicated by the corresponding information measures which is 1.372 . We may note that the maximum value for the information measure corresponding to a nine score scale is 2.197 which occurs when the distribution is uniform.

Now we can easily see that information is lost when we go from several significant digits to one significant digit. We also see that more information is lost when the standard deviation of the parent distribution is small than when it is large. We desire to investigate the degree to which such information loss affects the optimal allocation average.

Another variable of interest is the quota restriction places on the optimal allocation. A natural quota is defined as the number of men that would be assigned to a job if everyone were assigned so as to maximize his individual performance without regard to quotas. In the case of equal variances and intercorrelations among performance estimates, the natural quotas are equal, i.e., uniform. On theoretical grounds we can conclude that the degree to which the quotas are perturbed from the natural is related to the allocation average. However, the effect of this quota factor
on the other relationships must be studied empirically. We see in Figure 6 the percentage quotas imposed on optimal allocation for the situation where we have 16 jobs and where we simulate only 4 jobs. Note that the natural or uniform quota for 16 jobs is .0625 . That is the proportion of the total personnel pool that would be allocated to each job. For 4 variables it is .25. There are two considerations that determined the perturbed quotas. The first was that we wanted at least one individual to be assigned to each job, for both the 16 and 4 variables for each of the sizes of samples. The second was that we wanted the ratio of the information measure that was found to exist between the 4 and 16 variable situation, for the natural quotas, to exist also for the perturbed quotas. We required that the uncertainty of assigning men to jobs with 16 variables be twice that for assignment with 4 variables for both the natural and perturbed quotas. The resulting proportions indicated in the table were the result of the two considerations mentioned above. We feel that in imposing these quota restrictions in our experiment we are being realistic, in that the necessary perturbations in the quotas in the actual operational conduct of the Army personnel system would not be greater than this.

In order to study the se effects, a 2^{5} factorial experiment using simulated performance estimates was designed. The five factors were: (1) standard deviation of the estimated performance; (2) number of cases in the sample; (3) number of variables; (4) number of score intervals; and (5) quota restriction. Figure 7 indicates the various levels of the five factors that were used. The performance estimate variables were generated such that they had an expectation of. 70 for their intercorrelation. For those samples that were randomly assigned to Level a of Factor 1 , the parent distribution was generated to have a standard deviation of 10 ; for those assigned to Level b, the standard deviation was 20. Similarly, those samples assigned to the first level of Factor 4 were transformed to have 9 score intervals, while those assigned to Level b were transformed to have 99 score intervals. The number of cases and variables represented correspond to the level of Factors 2 and 3 to which the sample was assigned. Those samples assigned to Level a of Factor 5 were allocated with uniform quotas. Those samples assigned to Level b were allocated with perturoed quotas. Thus we have a 2^{5} factorial experiment in which there are 32 cells. The experiment was initially replicated 10 times. Three hundred and twenty samples were generated from a simulated personnel pool and allocated optimally to either 4 or 16 job categories. Figure 8 is a flow diagram indicating the five steps in this experiment. In step 1 , the matrix X of normally distributed random numbers, was generated. In the second
step, the matrix Y of continuous performance estimates, was derived by multiplying the matrix X by the transformation matrix. The continuoue performance estimates were used in evaluating the allocation under the various experimental conditions by averaging the estimated performance of men on the jobs to which they were assigned, in doing this, we used the continuous performance estimates, since continuous performance estimater yield an unbiased estimate of the actual performance of men on the job, whereas discrete performance estimates would have introduced a slight bian. As may be seen from the arrow going from step 2 to step 5 in the graphical presentation, the continuous performance estimates were used in the calculation of the allocation average. In atep 3 , the matrix $\tilde{\gamma}$ was derived by forming a discrets performance estimate from the continuous performance estimate. This was done amply by forming the scores into either 9 or 99 ecore intervala. Step 4, the allocation step, was accomplished by a computer program which optimally allocates men to jobe by a linear program derived from the Hungerian Solution to the tranaportation problem [8]. The average performance for men who are thus allocated is then calculated. It is these allocation averages which are subjected to the analysis of variance in this experiment.

We have put the analyole of variance to alightly different use in our experiment than is the usual case. Theoretical considerationa in this experiment dictate that we should expect significent differencea between the two level of each of these five factors. We are not testing to see if the null hypotheais should be rejected, but we are performing the analysis of variance so that in the event that the main effects ase not significant, we can evaluate our aimulation for its adequacy with regard to the number of replications. Thus, the purpose of the analyate of variance in this experiment ic primarily that of evaluating the number of replications that we used in our simulation. With 10 replications, four of the five factors were highly aignificant at the . 001 level or lesa. However, the effect of Factor 2 , the number of cases in each simulated personnel eample, was not aignificant. We then repeated the experimer uaing as the lovel of Factor 2 different adzes of amplen: 32 and 192 , We found that while there wat amall difference, this difierence was insignificant both statistically and practically. We conclude that when allocating large quantities of men to jobs undsr the conditions apecified above, we are justified in sub-optimising (random sampling the overall sample into everal abamplea and allocating each of the aubamplea optimally). In so doing, we may operate with less computer apace with little concern for the loss in allocation average

In Figure 9 we have shown the mean performance for the levels of those factors that were found to be statistically significant. The results indicated that the number of variables is the most important of the factors of the experiment. We could increase the gain over random allocation by 72% by increasing the number of criterion variables from 4 to 16 . This indicates that one of the most promising avenues of psychometric and personnel research is to differentially predict more job categories or job families than we are now doing. The number of score intervals factor was a significant one as was the quota factor. However, the latter was of no practical significance. We feel that we may continue to use natural (or uniform) quotas in our research work and generalize our interpretation of results to realistic situations where the quotas are not uniform.

The interactions of Factor 1 with Factor 4, and Factor 3 with Factor 4 were both significant at the. 01 level. The cell means for these two interactions are found in Figures 10 and 11 . It appears that the information loss is considerably more crucial when we are dealing with 16 differential job predictions than when we are dealing with only 4. The significant interaction between Factor 1 and Factor 4 indicates that the loss in the allocation average going from 99 score intervals to 9 score intervals is much greater when the standard deviation is 10 than when it is 20 . (Recall that this was predicted from considerations of the amount of information in the respective distributions.) The results thus far indicate that:
(1) mean performance may be increased by increasing the number of differential performance estimates, (2) when attempting to do \#1, it is important that all the information possible be retained in the score distribution by using as.many score intervals as is meaningful, and (3) in going from a 99 interval distribution to a 9 interval one, the loss is doubled if the original standard deviation is 10 rather than 20.

These results may be evaluated from at least two points of view: first, from that of an agercy dealirig with actual score distributions, and second, from the point of view of the test constructor. He looks at our number of intervals factor as the namber of items in a test, since the number of meaningful score intervals is related to the number of test items. Furthermore, he may consider our standard deviation facter in terms of the relationship between the standard deviation of a test and the reliability and number of it, ms in the test.

Upon consideration of the factors mentioned above, an additional experiment was designed. The factors to be studied and their levels are indicated in Figure 12. Ten samples of 200 entities were assigned to each of the eighi cells of the design formed by the first three factors. Each sample was optimally allocated and evaiuated at each level of Factor 4. For each sample, vectors of test scores were generated and transformed to represent perfectly valid performance estimates.

Figure 13 represents by a flow diagram the steps followed in the experiment. First, the matrix of normal random numbers, X, was generated. In step 2, X was transformed to a matrix of continuous test variables. In step 3 the continuous test variables were formed which were to be used in the evaluation of our allocations in step 8 . In step 4 , the discrete test variables, \widetilde{G}, were formed from the continuous test variailes, matrix G, by creating either 20 or 40 discrete score intervals. From \widetilde{G}, the performance estimates, \widetilde{Y}, were formed by the appropriate regression equation. These performance estimates were used in allocating the men to jobs in step 7. In step 6, the performance estimates were transformed to stanine form and again the men were allocated to jobs and the allocation was evaluated.

Note that this analysis of variance is a split plot analysis of variance in which we can analyze the between-samples variance and the withinsamples variance. First, let us look at Figure 14 , which reports the results of the between-samples variance. The effect of intercorrelations, reliability, and the inter-action between intercorrelations and reliability, were all significant. The number of items was significant only at the 25 level, with 10 replications. We see from the analysis of the within-samples variance (see Figure 15) that the score conversion factor was significant and the score conversion-reliability interaction was significant as were the three factor interactions of score conversion, intercorrelation, reliability and score conversion, reliability; number of items. Let us now look at the difference in the mean job performance for the two levels of each of the four factors as indicated in Figure l6. It is of interest to note that by reducing the intercorrelation among the test variables, a great increase can be brought about in the allocation average (i.e., mean job performance). We see also, that the test reliability is an important consideration. Let us note that the difference in mean performance for the two different levels of number of items, apart from validity, intercorrelation, and reliability, was in the direction that the larger the number of items, the higher the allocation average. The difference across the two
levels of score conversion (i.e., no conversion vs. a conversion from the score to the stanine) was also a significant, one. As we look at the interaction between the intercorrelation among the test variables and the reliability (see Figure 17), we see that the reliability is a more crucial consideration when high intercorrelations prevail than when they are low.

Inasmuch as we did not find the number of items to be a significant consideration, we replicated the experiment for crucial cells 20 more times. In Figure 18, we see the results of that analysis of variance. We see that the number of items is significant, and that the score conversion as well is statistically significant. In looking at the means for that experiment, we find that as we go from 40 items to 20 items, that is, when we cut the length of the test in half, even if we would keep the reliability of the test the same and the validity of the test the same, we would lose approximately 8% of our gain over random allocation of men to jobs.

The results of this work indicate that the use of caution is warranted in advocating the use of shorter tests in optimal differential classification, even if the shorter tests retain the reliability and validity of the longer tests, especially if the reliability of the tests is closer to . 7 than to 9. This and other research currently in progress has impact on the planning of further test development research and on the operational handling of test scores and performance estimates. Furthermore, it demonstrates that simulated experiments can yield information concerning possible trade-off between allocation average, testing costs, and the relative costs of test development. Even more efficient experiments could be done to estimate the magnitude of differences by employing variance reduction methods. One, the regeneraticn of the same sample transformed for each cell in the design, would be especially appropriate for this type of study. It was not used in this project because the model for analysis of variance does not provide for a residual estimate of variance. Future projects will employ variance reduction techniques.

REFERENCES

1. Boldt, Robert F. Develupment of an Optimum Computeztacu Bijocetion Sjaiesr. Fecnnical Research Report 1135, U. S. Army Personnel Research Oifice, OCRD, DA, 1964.
2. Brogden, Hubert E. Increased Efficiency of Selection Reaulting from Replacement of a Single Predictor with Several Differential Predictors. Educ. and Psychol. Measurement, Vol, 11, No. 2, 1951.
3. Brogden, Hubert E. Efficiency of Classification as a Function of: Number of Joba, Percent Rejected, and the Validity and Intercorrelation of Job Performance Estimates. Educ. and Prychol. Measurement, Vol. 19, No. 2, 1959.
4. Helme, William H, Differential Validity of the ACB for Courset th Seven Job Arear. PRB Technical Reaearch Repori 118, Pertonnal Renearch Branch, R\&DD, TAGO, 1960.
5. Helme, William H, and Fitch, D, J, Grouping Army Tyaining Courses by Army Clasification Battery Factora, Technical Research Note 128, U. S. Army Pereonnel Research Office, OCRD, DA, 1962.
6. Horat, Paul. Matrix Algebra. Holt, Rinehart and Winuton, Inc, New York, 1963 (see Section 17. 7).
7. Johnoon, C. D., Watera, L. K., Helme, W. H. Factor Analysia of Experimental Noncognitive Measurea of Combat Potential. Techrical Research Note 147, U. S. Army Personnel Research Ofifice, OCRD, DA. 1964.
8. Kuhn, H, W. The Hungarian Method for the Aosignment Problem, Navol Research Logistici Quarterly, Vol, 2, Nos. 1 and 2, 1955.
9. Shreider, Yu A, Statiatical Teating, Eleevier Publiahing Co., New York, 1964 (p. 199).
10. Zeddner, Joaeph, Harper, B, P., and Karcher, E, K, Reconatruction of Aptitude Areus. PRB Technical Research Report 1095, Porsonnel Research Branch, PR\&PD, TAGO, 1956.
ARMY APTITUDE AREAS

0		a
0	条	

4	
$\$$	
$\$$	

army classification battery
Imix
INFANTRY - COMAAT
ARMY CM,
8

ARMOR, AHTHLEEY. ENGintemecomat aEctronics
GENERAL MANTEMANCE
MOTOR MAUNTEMANCE
$\sigma \quad 5$
RC

(BASED ON SAMPLE OF 1,800 MEN)
Figure 2. Proportion of sample of 1800 from input populaticn of enlisted men scozing above

STAND SCORE 100
(b) OR HIGHER ON BEST
APTITUDE AREA

50 PERCENTILE
NO עaHoli yo
afot
$\stackrel{\omega}{\omega}$
250
200
150
100
50
иวึ зо גəqumn
250
200
ost
$\stackrel{\circ}{\circ}$
xəqumn

Figure b, Diserete diatributions rasulting erom continuous dietributioas with ctandard doviation of 10 and of 20.

Figure 8. Flow diagram of experiment using simulated performance estimates.

Factor
Fartor
Standard deviation
Standard deviation
Nr. of variables
Nr. of variables
Mr. of score interv
Nr. of score interv
Quota
Quota

	Standard Deviation	
	10	20
9	$.58[111.5]$	$.67[113.4]$
99	$.73(114.7]$	$.74[114.8]$

$$
\begin{aligned}
& \text { Entries are in terms of standard } \\
& \text { units; bracketed values are in } \\
& \text { terms of Army Standard Scores. }
\end{aligned}
$$

[^16]Number
of
intervals

$\begin{array}{c}\text { Number of Variables }\end{array}$		
	4	16
9	$.46[109.2]$	$.78[115.7]$
99	$.55(110.9]$	$.93[118.5]$

Pigare 11. Hem perfonane for melected cells: firat onder interaction ceing for mumer of verichles and miber of intervals.
FACTORIAL DESIGN FOR EXPERIMENT USING SIMULATED
Factor 1: Test intercorrelation $\begin{array}{ll}\text { Level } a: & r_{1 j}=.4 \\ \text { Level } b: & r_{i j}=.6\end{array}$ 2: Test reliability
Level a: $r_{r t}=.7$
Level $b: r_{r t}=.9$
Factor Factor
Factor

$$
\begin{aligned}
& \text { 4: Score conversion } \\
& \text { Level a: Score } \\
& \text { Level b: Stanine }
\end{aligned}
$$

$$
\begin{aligned}
& \text { swet! fo sequin } \\
& \text { 아 } \\
& \begin{array}{l}
\text { Level a: } \quad n= \\
\text { Level } b: \quad n=
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { Result } \\
X, \text { normal random numbers } \\
\mathbf{G}, \text { continuous test } \\
\text { variables } \\
Y \text {, criterion variables } \\
\widetilde{G}, \text { discrete test } \\
\widetilde{Y} \text { variables performance estimates } \\
\hat{Y} \text {, stanine performance } \\
A, \text { assignment matrix } \\
\boldsymbol{m}, \text { the allocation average }
\end{gathered}
$$

$\dot{-} \dot{\sim} \dot{\sim} \dot{\sim} \dot{\circ} \dot{\circ} \dot{\sim}$

Mean Square
6.2960855
5.8434368
.0133628
.3419087
.0087315
.0228176
.0002393

Sum of Squares
6.2960855
5.8434368
.0133628
.3419087
.0087315
.0228176
.0002393
.5774944
13.1040766
.0560724

Source of Variation
Zatercorrelations

$$
\begin{aligned}
& \text { Reliability } \\
& \text { Nr. of Items } \\
& \text { Intercorrelations x Reliability }
\end{aligned}
$$

Samples in Same Exp. Condition
Reli.ability x Nr. of Items
Intercorrelations x Nr. Items
Total between Samp
Total within Samples
Figure 14. Results of analysis of variance applied to the average performance for items (between sample variance).
山吴 1 Mean_Squares
.0441774
.0000479
.0061563
.0001583
.0003036
.0000131
.0011273
.0000003
.0000568
analysis of variance of allocation average

Sum of Squares
.0441774
.0000479
.0061563
.0001583
.0003036
.0000131
.0011273
.0000003
.0040882
.0560724
13.1040766

Score x Intercorrelation
Score \times Reliability
Score \times Nr, of Items
Score x Intercom. x Reliability:
Score x Interior. X Nr. of Items Score x Reliability $x \mathrm{Nr}$. of Items
Score \times Intercor. x Reliab, x Nr. Items
Sample x Score
Total within Samples
Total between Samples

$$
159
$$

Figure 15. Analysis of variance of average performances for the correlated variable:
type of score conversion (within sample variance).
Results of Experiment Using Simulated Test Scores

Factor	Mean Performance:		
	Level	Standard Units	Army s. Scoresi
Test intercorrelation	. 4	. 83	117
Test intercorrelation	. 6	. 43	109
Test reliability	. 7	. 45	109
Test reliability	.9	. 82	116
Nr. of items	20	. 62	112
Mr. of items	40	. 64	113
Score conversion	Score ${ }^{\text {a }}$. 65	113
Score conversion	Stanine	. 61	112

INTERACTION TERMS
Test intercorrelation x test reliability

$$
\begin{aligned}
& \text { Entries are in terms of standard } \\
& \text { units; bracketed values are in } \\
& \text { terms of Army Standard Scores. }
\end{aligned}
$$

analysis of variance of allocation average

$$
\begin{aligned}
& \text { Source of Variation } \\
& \text { Number of Items } \\
& \text { Samples in Same Exp. Cond. } \\
& \text { Between Samples } \\
& \text { Score Conversion } \\
& \text { Score } x \text { Number of Items } \\
& \text { Score } x \text { Sanple } \\
& \text { Within Samples }
\end{aligned}
$$

Means for Experiment Using
Additional Replications

$$
\begin{aligned}
& \begin{array}{l}
\text { Score } \\
\text { Stanine } \\
\text { Total }
\end{array}
\end{aligned}
$$

Bertram W. Hrines, Froderick Klein, and Ralph E. Lincoin Ti. S. Army Rinlngical Laboratoriea
Fort Detrick, Frederick, Maryland

Abstract

The whole crude toxina of Bacillun anthracds, wthough apparently responaibie for the death of animals with anthrax, had nevar been quantitated. A total of 14 lot of the toxic culture illtrate of B. anthracis were pooled into one large lot of crude anthrax toxins, An extensive absay of this reference materdal wat conducted in four daboran. tories by use of the time-to-death of the intravenously challenged Fischer 344 rat as the reaponse variable, Doses of the material were varied factorially by concentration, dilution, and volume. The data from this study were used to define a potency unit of the crude anthrax toxine, Procedures ware developed and dlustrated for the ailay of unknown lota of the toxing by compardng the rate timentondeath response to the unknown with elther (1) the reaponses reported in this etudy, or (di) directly with the rat responses to a now emple of the refarance toxins. The poesibiddities and limitations of this atandardimation and of the otatistical proceduze through which it was developed are diecuaced.

INTRODUCTION The oxcelhant work of Smath, Kapple, and Stanlay (1955a), demonatrating the toxins of Bacillur anthracie organisme in the blood from guinea pige in the terminal itagin of anthrax, rokindied interest in the dicease, particularly it: toxina. (The toxic mothabolic by-products of the growth of B, anthracis are composed of componante with different blological or chemical propartios, Naturally produced combina. tions of these componente in unknown proportions will be roferrad to in this paparaa "toxina, i) To date, valid comparinons ot rasulta among tha enveral experimenteri (Smith ot al., 1955a, b, 1936; Smith and Oallop, 1956; Thorne, Molnay, and Strange, 1960; Stanley and Smlth, 1961; Beall, Taydor, and Thorne, 1962; Kloln at al, 1962; Kapple, Smith, and HaryiaSmath, 1935; Eekert and Bonvantre, 1963; Harrio-Smith, Smith, and Keppte, 1958; Sargeant, Stanley, and Smith, 1960; Stanley, Sargeant, and Smith, 1960) whe have roported work with the toxic materiale produced by B. anthracis have been dilficult, becaune ather whole crude toxine or the Geveral componenti have bean asiayed by different methode, in different anay animale, and with no roference standard of the toxine.

[^17]This paper presenta the results of atudies to quantitate, in terma of defined potency unita, the lethality of anthrax toxina in Fiecher 344 rate. The anthor! develofad a roierence tor of atablized freese dried crude anthrax toxine. Thit reference material was uad in the otwly deacribed here, and in available for other atadiea againgt which amples of anthrax toxinn of unknown concentration can be asiayed.

MATERIALS AND METHODS. Animale, Fincher 344 albino ratu weighing 200 to 300 were obtained from the Fort Detrick colonies of Franik Beall and Frederick Klein. Both colonies are maintained through brotheresiater matings deacended from the colony deacribed by Taylor, Konnedy, and Blundell (1961). Thit weight qange wan chosen, because p:oliminary data indicated that the reaponae time of rate that weigh more than 300 g was eignificantly greater than that of rats weighing more than 200, butlese than 300, g, Fusthoratudy on rate, carafully melected for woight, revoalod no aignificant ditforence within the woight range of 200 to 300 g (Table 1). The analyale of variance in presented in Table 2 .

TABLE 1
Reaponae time in minutes of 27 rate injocted with
1 ml of crude anthrax toxing by weight
of rat.

Walpht (a) of rat		
200	250	300
99	102	100
97	81	94
96	80	88
94	19	109
93	78	90
92	114	101
89	76	78
88	102	82
87	71	86
83914	783	824
92.64 mm	84,9	90.9

* Total:
* Haymonle mana.

TABLE 2
 recorded in Table 1

Source	dim	Sum of -querea	Mean quare	F
Between weighte.	2	. 0485	0242	1.50\%m
Within waighta. .	24	. 3859	0161	
Total. .	26	. 4344		

* Degreen of ireedom.
** Not significant.
Rat lothal test. Toxina of B anthracia wore injocted into the dorsal vein of the panis of the Fischer rat. In describlig this teat, Beall ot el, (1962) notod a dafinite relationohip between the dose of the toxina injected and time-to-death.

Anticerum. Equine hyparimmune eerum (DH-1-6C) prepared by
 used (Thorne ot al, , 1960).

Proparation of anthrax toxing. The medlum ured was ductibod by Thorne et al. (1960), and was made with triple-diatliled water, Subsequent to hif original description, Thorn (personal communication) has augeited onme changes. The medum uied in thin study was as !ollown.

Nine stock solutione (A, B, C, D, E, F, O, H, and I) wore praptrad. All stock solutione mey be atored at $4 C$ tor indefintin periodi of time. Solution A contalnod $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 0.368 \mathrm{~g} / 500 \mathrm{ml}$ of water; B contalned $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 0.493 \mathrm{~g} / \mathrm{s} 00 \mathrm{ml}$ of watar; C contained $\mathrm{MnSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}, 0.043$ $\mathrm{g} / 500 \mathrm{ml}$ o! water; D conteined adenine aulfate, 0.105 g , and urach, 0.070 g (both mollds wase disiolved in 100 ml of water, and the total volume was made up to 500 mb).

Solution E contained thiamine HCl, $0.025 \mathrm{~g} / 500 \mathrm{ml}$ of water; F containad tryptophan, $2,600 \mathrm{~g} ;$ cyatine, 0.600 g ; and glycine, 0.750 g . Tha molide in solution F were diasolved as follown. Tryptophan was disnolved in 6 ml of 6 NHC . Cyatine was dianolved in 100 ml of water. Olycine war diasolvad $\ln 150 \mathrm{ml}$ of water, Thase three solutiona ware combinad, and water was added to bring the total volume up to 500 ml .

Solution G contained $K H, P O_{A}, 34,0 \mathrm{~g} / 500 \mathrm{ml}$ of watar: H nonte!ned
 $3.75 \mathrm{~g} / 500 \mathrm{ml}$ of water.

A 10-ml amount of each atock elution, except that containing charcoal, was added to a aitable containeri and 3.6 g of Cammino Acids (Difco) were added. The volume wan brought up to liter with tripledistilled water, and the pH of the medium wat adjunted to 6.9 with $1 \mathrm{NH}_{2} \mathrm{SO}_{4}$ orl N NaOH at needed, A 460 ml momont of thid preparation was disponsed Into a 3 -liter Fernbach flati 2 ml of charcoal aurpenaion were added, and the prep ration was autoclaved for 20 min at 15 pal.
inoculation procedure. A 5-mi amount of 20% glucose (aterdised by filtration) Wat added to the Farnbach 1 ask containing 460 mb of aterllired banal medium. Kach flak of final medium wae inoculated with 2×10^{6} Starne itrain ipores. The inoculatad Slanke wore incubated atatically for 23 to 27 hr at 37 Ci 4 hr afterinoculation $55 \mathrm{ml} 0 \mathrm{f} 9 \%$ NaHCO_{3} ware added to each Elask.

Thia final culture wat contrifuged at $3,000 \mathrm{X}$ f for 30 mdn , The aupernatant 5 luld wan decanted, and 10% horie derum was added. The oolution was than atezilised by filtration through an ultrafime gians liter,

A preliminary teat, to detarmine the potency of each oif 14 toxic flltratea, wat done by injocting $d-m \mathrm{ml}$ amplea of ach ilitrate intravanoualy into two zata. The responie (death) times of the rata were conaiderad ab indicationa of the toxicity of each batch. Tho totel volume par batch and the reaponie times of the tat rate are givan in Table 3 ,

The 14 toxic ditraten wore combined, and a eecond praliminary toat wat conductud on the poolad material, The two rata uned in this tont diod in 104 and 117 min , with a moan reaponat time of 110.5 mln . Both responee tlmes wre within one standerd deviation of the mean of all batches.

The pooled toxina were diepensed into 600 drying ampoulea (40 ml), ench containing 10 ml of toxina. Ampoulen were hell-ifocen in Dry ice and alcohol (-79 C), Frocen ampoulea ware placed on an Aminco Dryer (American instrument Co, Sllvar Spring, Md.), and dried under yacuum

TABLE 3
Volume per batch and response time of rate
challenged with toxins by batcin

Batch	Total volume	Responae time (min)		
		Rat B	Mean	
1	780	97	92	94.5
2	450	107	91	99.0
3	450	97	96	96.5
4	460	95	-6	95.0
5	420	122	124	123.0
6	450	114	125	119.5
7	510	116	90	103.0
8	410	121	120	120.5
9	370	88	82	85.0
10	510	90	94	92.0
11	465	106	94	100.0
12	423	106	92	99.0
13	425	117	121	119.0
14	300	100	117	108.5
Total	6,095			$103.9 *$

- Missed the vela.
- $\mathrm{SD}=12.14$.
of 10 to 30μ of mereury tor 18 to 25 hr . Ampoules ware sealed under vacuum, packed in cardboard containers, and atored at -20 C. A thira preliminary test was conducted at this point. One randomiy solected ampoule was coconatituted with 10 m ! of triple-diatilled water. A $1-\mathrm{ml}$ amount of thic toxic material was asiayed in each of five rata. Thair moan responen time wailli. 2 min . To further teat the toxdeity, 0.2 ml of undluted and of ancial twofold dllutions of the reconatituted material was injected intradermally into the shaven sides of a gulnea pig, and observed for odematous reaction. The material reacted at a dilution of 1: 32 , and can be expresiad according to Thorne ot al, (1960) at containing 32 toxic unite. Additional viale were reconstltuted to $4 X$ concentration, and tested on (mmunodiffusion plates againat the atandard apore antiserum (Thorne ot al, 1960). Three individual lines of prectpitate appeared in parallel arrangement when teated with a linezf pattern. The atrongest
precipitate line was identified as the protective antigen (factor II) component when compared with a standard (Beall o+ al. , lots), AEs umiluied sample of the resuspended material had a protective antigen titer of $1: 64$ against the standard spore antiserum.

Reference toxins. These preliminafy tests conatituted quality control measures on the remalning 597 vials of dried roxic filtrate. Ab a result of these tests, it wan known that these vials contained the known compo. nents of anthrax toxins.

Procedures. The toxins were assayed independently by eash of four investigators. The procedures followed by each of the four were as similar as possible.

The characterization of the dosereaponae relationship of the toxina In Fischer rata was based on an assay in which the two dose factors of amount and concentration of toxina were each teated at everal levele as followa: (1) five lovele of the mount of toxins designated an $4 \mathrm{mb}, 2 \mathrm{ml}$, $1.5 \mathrm{ml}, 1 \mathrm{ml}$, and 0.5 ml ; (il) seven level: of tho concentration of the toxina deaignated as $4 \mathrm{X}, 2 \mathrm{X}, 1 \mathrm{X}, 0.5 \mathrm{X}, 0.25 \mathrm{X}, 0.125 \mathrm{X}$, and 0.0625 X , where $1 X$ is defined an the concentration reaulting when 1 ampoule da reconatituted to 10 ml with a diluent of triple-diatilled water, Dilutions beyond $1 X$ were made with diatlled water plue 10% normal horie serum.

The 7×5 factorial combination of the several levels of these two factora, plus 19 control groupa, were ach teated in two Fischer rate by each of four inventigatora (Table 4). Three ete of control animala are not shown in Tuble 4. The firat tet included five palre of yatu. Each palr was inoculated with one of the five amounte of dlluent along (1.e., triple-diatilled water plue 10% normal horse evim) to provide ausurance that their companion animale responded to toxine at opposed to the inoculation of the diluente. The eecond set included seven pairs of anmale. Each pair in thia let was inoculated with $1,5 \mathrm{ml}$ of one of the ceven concentrations of toxine mixed with $0.5 \mathrm{ml}(1 / 3$ by volume) of epecific antiferum (Thorne et al., 1960). The aven pairis of animalis in the third Bet of controla were inoculated with 1.5 ml of one of the seven concentratione of toxins mixed with 0.5 ml of normal horse serum. These animals provided asaurance that the control no. 2 animals that lived were aved by the antiserum specific againot anihrax toxina.

TABLE 4
Response timen in minutes of 28 n Fimehar rate by dese, concentracion, technician, and rat

Concn	Technician	4*		2*		1.5*		1*		0.5*	
		$A^{* *}$	B	A	B	A	B	A	B	A	B
4X	1	58	55	53	54	57	57.	61	60	76	71
	2	53	61	54	52	64	63	64	63	85	70
	3	57	62	56	52	58	56	64	62	78	72
	4	60	52	448	53	59	123	63	59	81	82
2 X	1	57	57	61	63	59	61	72	70	100	89
	2	57	55	65	62	74	65	84	77	119	94
	3	50	56	56	58	66	77	72	78	109	117
	4	67	56	55	65	67	S***	127	5	107	83
1X	1	53	50	70	69	119	70	90	91	127	159
	2	73	64	78	72	82	81	61	100	181	199
	3	65	62	77	80	89	83	107	97.	293	483
	4	5	63	5	5	S	100	132	5	161	202
0.5 X	1	70	77	153	143	129	134	145	148	S	S
	2	74	83	114	103	138	131	425	281	S	\mathbf{S}
	3	75	69	113	118	137	151	1588	244	s	s
	4	74	94	S	139	149	5	S	400	S	5
0.25 X	1	111	112	173	175	S	481	S	S	5	
	2	136	176	295	274	S	S	S	S	S	s
	3	103	124	5	300	S	5	S	S	S	5
	4	5	118	S	5	5	5	S	S	S	S
0.125 X	1	185	195	S	5	5	S	S	s	S	
	2	253	588	S	S	S	5	5	5	S	\mathbf{S}
	3	473	234	S	S	S	S	S	\mathbf{S}	s	S
	4	S	S	S	S	S	5	S	\mathbf{S}	S	s
. 0625 X	1	5		S	S	S	S			S	
	2	S	S	S	S	S	S	S	5	S	s
	3	S	S	S	S	S	S	S	S	S	s
	4	S	S	5	S	S	5	S	S	S	S

Each investigator required 32 ampoules of dried toxins. Each of the 32 ampoules was openod, and reconstituted with 2.5 ml of diluent nrarnnlen to 4 C . The contents of all 32 ampoules were then pooled, providing a total of 80 ml of reconstituted toxins at a concentration of $4 X$ (4 times the original). All concentrationa of toxina were maintained continuously at 4 C . To make the next dilution, 40 ml of the pool (4X) were combined with 40 ml of diluent (triple-distilled water), This provided 80 ml of toxina at a concentration of $2 X$. Further erial twofold dilutione were made to $0.0625 \mathrm{X}(1 / 16 \mathrm{X}$ original concentration) and inoculated an planned.

Each investigator required 108 rats. These rats were caged in 54 consecutively numbered cages, each containing two animala. Each of the 54 treatment combinations was given to the two animals in one cage at the ame time. The order of the treatment wat randomized for each inveatigator. Response times-to-death, in minutes, were recorded foreach rat and conatituted the basic data.

RESULTS, The responet times for enimale are peesented in Table 4 , Although none of the controle appears in thic table, none of elther the firat or econd groupe of control animale died. Some animale in the third control group challonged with 2.5 ml of toxine plue normal horie serum responded nearly the ame an test andmale chalenged with 1.5 ml of toxine. The mean reaponee times, in minutea, of theae control animale by concentration of toxine are recorded in Table 5. The pattern of responase by the controle provided the needed aseurance that the responee of the teat andmala was apecifically to the toxine of B. anthracis.

TABIE 5
Mean response time by dose and concentration: of toxine

Concn of toxin	Dose (m)					Mean	Control*
	4	2	1.5	1	0.5		
4X	57.5	53.5	59.0	62. 3	75.0	60.7	60.0
2X	55.2	60.7	66.4	75.2	105.1	69.0	70.0
1 X	61.3	74.1	85.1	88.0	198.7	86.3	134.0
0.5X	74.4	121.6	136.3	247.0	S年 ${ }^{\text {\% }}$	151.3	154.0
Mean	61.3	70.3	78, 3	89,4	143, 5	91, 3	

HControl was 1.5 ml of toxin! plut normal horse serum.
wh All arimale aurvived,

In epite of carefully controlled procedures and techniques, the realte
 rogardad In any further assaysie. Inepection of these date showed that techrician 4 was the only one having revereal of resulte; 1.e., granter amount of toxins not killing and lasser amount killing, or only one of the two tont animals reeponding (except at doan eliciting a response above 300 min). These extrenzely variable result indicated that adequate controls on technique and environment were not maintained in this labonatoyy.

The reciprocale of the reaponse timen were used for analyale, becuse reciprocal reaponse timen are nearly normally diatributed with equal variances, whereas the untranaformed response times are poadtively akewed with unequal variance: (Finney, 1952). The analyais of variance on the reciprocal reaponie timen of 120 rati from the four highest comcomeratione and the flve dosen if shown in Table 6. From this analyois if wan ceen that both dose level and concontration had atatiutically aignificant affecta on the reaponae time of Fiecher rats injectad intravenously with anthrax toxina.

TABIE 6
Analyad of variance of recipzocad reaponse times

$\begin{aligned} & \text { Line } \\ & \text { no. } \end{aligned}$	Effoct	di	Sum of squaros	Moss oquas:	F'
1	Dose (D)	4	11.9272	2.9818	229, 37. ${ }^{\text {\% }}$
2	Concentration (C)	3	16,5629	5,5210	424,69**
3	Techrician (T)	2	0.1543	0.0772	5.94***
4	D X C	12	1.7984	0.1499	11. 5340
5	D \times T	8	0.1485	0.0186	1. 43
6	$D \times T$	6	0.1180	0.0197	1. 52
7	DXCXT	24	0.6452	0.0269	2.07
8	Ersor	60	0.7814	0.0130	
9	Total	119	32.1360		

[^18]The analysia further showed an interaction betwann dose end sonecntaition to be tatietically significant. The mean reaponee times by does and concentration of toxine are given in Table 5. From the tabled meanc, it can be seen that the magnitude of thia interaction is slight and had no practical aignificance in the further analysis and interpretation of these data.

The analyif also showed a statistically signdficant difference among techndciana. Inapection of the data showed that mean reaponse time for all rats responding for technicians 1,2 , and 3 were, respectively, 78 , 83 , and 83 min . This 1 a a practically unimportant difference which we believe may in part be due to environmental factors, because genetic differencea would be almoet nil after 100 generationa of inbreeding. The rati used by technician 1 came from the Beall colony, which wan malntained in a different environment than the Kleln colony andmale uned by the other two techndcians. This raleed the queation as to the affect on this eanay of Fincher rate procured from non-Detrick nourcen, To examine thise efect, commercially avallable Fischer rats obtained from two breederi ware teated and found to be autable for thia aisay. In this atudy, 20 Fiecher 344 rats from oach of two muphiers (Microblological Asoociates, Inc., Botheada, Md.; and Charlea River Ereeding Laboratorion, Inc., Brookline, Mane.) were challonged in each of two laboratories. The reaponso timen of all 80 rate art roposted in Table 7. No statiatically significant difference in times of responae for animal from the two appliers was obeerved, A difference between the two operatore and the interaction of operater X eupplier wat otatietically significant at the 5% level. The mear responee time of three of the four groupa difered by lese than 1 min , and the fourth group differed by approximately 5 mln . Thle difference of about 5 mln betwen these two group could be caused by a difference of about sevon undte of toxine, which iu well within the 93% confidence limita of an estimated potoney, Thue, this difforence, althowgh atatiatioally algniflcent, wai considered of no coniequence concerning this anay.

A teat to determine the atorage characteriatics of the reforence toxina was conducted on a vial of the toxina which had been stored for 36 montha. The teat vial was recongtituted with 10 ml of triple-diatiled water, Six ratis were then challenged with theae reconatituted toxina, according to the protocol described in this paper.

TABLE 7
Responec timen in minutes by appplier, oporatore, and rats

Rate	Charles River Breeding Laio., Inc.		Microbiological Associates, Inc.	
	1*	2	1	2
1	83	87	91	85
2	88	84	84	89
3	86	86	91	89
4	83	82	88	85
5	91	84	89	92
6	87	89	88	84
7	94	88	90	101 -
8	88	83	92	87
9	87	83	96	102
10	91	86	77	87
11	105	83	89	93
12	94	85	94	79
13	92	79	90	107
14	90	81	91	88
15	98	81	91	83
16	91	85	77	90
17	82	83	97	89
18	90	87	89	88
19	83	85	82	75
20	88	83	90	86
Harmonic mean 2raponie time	89.28	84.10	88.50	88.42

*Operator number.

The estimate of potency'from that test was 32.4 potency units per mid
 ml set up in the definition. Therefore, it wat concluded that the reference toxina had not changed with repect to potency during 36 monthe of atorage.

Development of procedures for direct assaymethod, A potency analy hould be baied on dose expreterdin termil of well-defined undes. No auch units have as yet been defined for anthrax toxing. Vayying the amount of toxina by verying oither dose or concentration would have a agnificant effect on the response time of ratis however, rate injected with 1 mb of toxina concentrated to $2 X$ respended \ln about the ame time (75 min) as rats injected with 2 ml of toxina concentrated at $1 \mathrm{X}(74 \mathrm{~min})$. Thia rela tionahip holde true for most other dose-by-concentration combinations for which the product of the te two factore da conetant. If doses ari converted into 0.5 ml undte, and concentrations into 0.062 s undte, then the doase and concentratione in Table 4 can be oxpresied an mown in Table 8 .

TABLE 8
Derivation of potency unite of anthrax toxins

Conen of toxina in 0.0625 -iold unite	Dose of toxina in $0.5-\mathrm{ml}$ undte				
	8	4	3	2	1
64	512	256	192	128	64
32	256	128	96	64	32
16	128	64	48	32	16
8	64	32	24	16	8
4	32	16	12	8	4
2	16	8	6	4	2
1	8	4	3	2	1

The products of the marginal numbera in Table 8 for any two equiva. lent done-by-concentration combinations are the same; thus, the product of two dose units and 32 concentration units gives 64 total potency undte of toxins. Similarly, four dose units of 16 concentration unit adso contain 64 total potency unite of toxins. We deine the potency unit of anthrax toxina to be oxpresed as these producta of does by concentration of thia particuler lot of toxina.

- If wore to carry the definition of a potency ratt no further, then
 effect in andmala, would have 32 potency unita. To standardise a potency unit, it is necessary to describe the asociation botween the dose, in units, and the potency, in terma of biological reaponse to thin particular lot of anthrax toxins. The potency of any other lot of toxine may then be measured by comparing the reipones to a known imount of the teat toxina with the responae to the name amount of the roference toxins.

These repponse characturitici wore described ai the doseresponse relationahip when measured doses of these toxins were injected intrave. nously into Fiacher 344 rats. The challenged rati reaponded by dying at a time that in nhown here to be highly dependent on the dose mearurad in potency unita of these toxina,

The regression of mean reciprocal reaposie timet on the $\log _{2}$ of the potency unite of anthrax toxins do shown in Figure 1 . The deent equaras line has the equation:
(1)

$$
y=b_{0}+b_{1} x+b_{2} x^{2}
$$

Where Y is the mean reciprocal response time, X it the potency of anthrax toxins in $\log _{2}$ undte, and the b values are regresaion coelificionts computad from the date of this test. The values of the confficiants, their veriances and covariances, are: $b_{0}=-2.591 ; b_{2}=0.959$; $b_{2}=-0.051 ; V\left(b_{0}\right)=0.077121 ; V\left(b_{1}\right)=0.009514 ; V\left(b_{2}\right)=0.000068 ;$ $V\left(b_{0} b_{1}\right)=-0.026902 ; V\left(b_{0} b_{2}\right)-0.002238 ; V\left(b_{1} b_{2}\right)=0.000800$, This regrasidon dine represente basis upon which comparisona of potancy of anthyex toxins can be made. Thus, test toxini can be aseayed alther indirectly againat this curve, or directly with peradiel asenys of the salerance toxina.

Dovolopment of procedures for dndirect asaty mothod. To use the responses of 120 zate to the reference toxini lior which the slope of reaponae from the regrasion date (Figure l) hai bear calculatedj, wo recommend use of the indirect method for itandardieing unknown potencies of anthrax toxint. The regreision was nerily linear for
dosen from 16 to 128 units. corresponding to rosponse timet from 240 to 65 min. Thus, although the concentration of teat or unicnown toxins 10 arbitrayy, it should be of auch concantration that 1 ml , injected intravenoualy, whll klld a Fischer rat in not deas than 65 min , nor more thas 240 mln.

Response
Time

Potoncy Unit:
Figure ${ }^{\text {F }}$ Regreesion of rectprocel reiponse time of Flecher rata on log done of anthrax toxine exproneod in potency unde,

To teat the potency of teat or unknown toxina, anough andmall shoudd be ued so that the mount of variation in the final result, that can be attributed to the teat rats, de at least no graator than the mount of varia. tion contributed by the etendurd rats. Thus, at least six Flacher wate of 200 to 300 g ifom a audabla colony chould be lntravenoundy inoculated, three with 2 ml of the teat toxine, and three with l ml .

The test is based on the mean reciprocal response times of the rats. (The rat response is very uniform; thus, any observed nonresponse must be considered the result of technique at some stage of the assay procedure.) This is simply the sum of reciprccal times-to-death of the rats in minutes $(100 / \mathrm{t})$ with the average time calculated. The reciprocal response times of the rats can be put in the following form:

Test Toxins

$$
Y=100 / t
$$

where R_{1}, R_{2}, T_{1}, and T_{2} are mean reciprocal response times. This form for calculation can be used for either the direct or indirect assay method.

The estimate of the difference in potency (D) between the test toxins and the reference can be found as:
$D=\frac{\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)-\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right)}{2 \mathrm{~L}}$
 from the table above, and L it the average lope of the referance doese reaponse curve at the two dose levela used in the teat. Thle average alope may be calculated as:

$$
\begin{equation*}
L=b_{1}+b_{2}\left(x_{1}+x_{2}\right) \tag{3}
\end{equation*}
$$

where X_{1} and X_{2} are the done levele of the reference toxina (in $\log _{2}$ potency unita) that were uaed in the tent, and b_{1} and b_{2} are the estimaten of the zegreseion coofficiente from equationd. Whan the testia run using 1 - and 2 amd doses of toxine, then $X_{1}=5$ and $X_{2}=6$. Under the se conditions $R_{1}=0.92, R_{2}=1.34$ from equation L_{1} and $L=0.3985$ 2rom equetion 3, wo that equation 2 becomes:

Where the letter D mepresente the amount of difference between the test and reforence toxing intermi of $\log _{2}$ potency undta, if D la poiltive, then the teat toxine are more potent than the reference, whereas, if D de negative, the test toxine ase dess potent than the referance, the refonance toxina have potency of 5 log 2 unitic permit at concontration of $1 X_{j}$ thut, the potency (P) of the teft toxins in lof, uniti at the concentrution tesied will be lound ant

$$
\begin{equation*}
P=5+D \tag{5}
\end{equation*}
$$

To find the number of potency undti per mi of the teat toxint, ite potency nithe to be convertid from' $\log _{2}$ unlta to $\log _{10}$ unlti, The converston formula del

$$
\log _{10} p=\log _{2} p \log _{10} 2
$$

The value of P in untta is found by looking up the antilog of this product. This value will be the number of potency unite per milliter of the teat : x :

Eatimation of variance. There is variation inherent in thia asay syotem in addition to the variation between amplea of toxina. Thus, the single estimatea of the potency of any particular sample of an unknown toxin ihould be bounded by confident dimits. To determine there limits it is necessary to calculate the variance (V) of the ostimate D of the $\log _{2}$ of the difference in potency between the teat and the reference. The variance of the eatimate D will depend on the variances of the observed response times and of the regreasion.

If we expres: D as N / G where
(6)

$$
N=\left(I_{1}+T_{2}\right) \cdot\left(R_{1}+R_{2}\right)
$$

and

$$
G: 2 L
$$

then the variance of D cun ba expreseed as:

$$
\begin{equation*}
V(D)=\frac{1}{4 L^{2}}\left(V(N)+2^{2} V(G)\right) \tag{7}
\end{equation*}
$$

which will apply, becauso N and G are eatimated from independent obeer. vationa (Fimey, 1952). The four mean reciprocal responie time are atochantically independent; thua, the oatimate of $V(N)$ can be expresatd 4.t:
(8)

$$
V(N)=V\left(R_{1}\right)+V\left(R_{2}\right)+V\left(T_{1}\right)+V\left(T_{2}\right)
$$

where $V\left(T_{1}\right)$ and $V\left(T_{2}\right)$ are obtained directly from the data of the teat, and $V\left(R_{1}\right)$ and $V\left(R_{2}\right)$ are calculated from the regresion line an:

$$
\begin{equation*}
v\left(R_{i}\right)=v(\bar{y})+\left(x_{i}-\bar{X}\right)^{2} v\left(b_{i}\right) \tag{9}
\end{equation*}
$$

$$
+\left(x_{i}^{2}-\bar{x}^{2}\right)^{2} v\left(b_{2}\right)
$$

The variance of G is given by the equation:

$$
v(G)=4\left\{v\left(b_{1}\right)+\left(x_{1}+x_{2}\right)^{2} v\left(b_{2}\right)\right.
$$

(10)

$$
\left.+\left(x_{1}+x_{2}\right) \vee\left(b_{1} b_{2}\right)\right\} .
$$

When the test is run using 1 - and 2 -mi doses of toxins, then $X_{1}=5$ and $X_{2}=6$. Under these conditions:

$$
V\left(R_{1}\right)=0.0134, V\left(R_{2}\right)=0.0018
$$

and

$$
v(G)=0.0355
$$

so that:

$$
\begin{equation*}
v(D)=\frac{1}{0.6352}\left\{v(N)+0.0355 D^{2}\right\} \tag{11}
\end{equation*}
$$

and:
(12)

$$
V(N)=0.0134+0.0018+V\left(T_{1}\right)+V\left(T_{2}\right) .
$$

Example. A sample of toxin e of unknown potency was tested in this laboratory, It was known to kill Filcher rats in slightly more than 90 min when infected intravenously in doses of 1 ml at a concentration of 1X. The response of the unknown toxin was compared with the response curve described by equation 1 . Each of three Fischer ratio was injected with 1 mi of the teat toxins, and their reciprocal response times in minutes were recorded (Figure 2). Three other Fischer rate were each
injected intravenously with 2 ml of the test toxins. Their reciprocal response times were also recorded (Figure 2). From these six reciperocal response times, values of T_{1} and T_{2} were calculated. Corresponding values of R_{1} and R_{2} were obtained from the regression line by substituting, respectively, the values 5 and 6 for X in equation 1 . The value of L was calculated from equation 3 by use of the values 5 and \leq for X_{1} and X_{2}. The values 5 and 6 were used in these two cases, because they are the $\log _{2}$ of the number of units in 1 and 2 ml of the reference toxins.

The value of D was calculated by substituting the previously calculated values of $R_{1}, R_{2}, T_{1}, T_{2}$, and L in equation 2 . This value of D was found to be 0.78. This indicates that the teat toxins were $0.78 \mathrm{log}_{2}$ unit more potent than the reference. Al-ml amount of the reference toxins contains $5 \log _{2}$ units, so the test toxins must contain $5,78 \log _{2}$ units. Thus, the test toxins have 55.0 potency units perm lat the concentration tested. $\left(5.78 \mathrm{X} .301=1.73978 \log _{10}\right.$ units).

The formula for calculating the variance of the estimate D of the $\log _{2}$ of the difference in potency between the teat and the reference are described above as equations 6 through 10 . These calculations were made in this example, and it was found that $S E(D)=0.26$, Using normal theory, the 95% confidence limits of D become $U L(D)=1,30$, and $L L(D)$ $=0.26$. From these the 95% confidence limits of P were calculated as $U L(P)=79.4$ units per ml , and $L L(P)=38.0$ unite per mi.

DISCUSSION. Anthrax toxins are composed of at least three factors, I, II, and III, by the classification of Stanley and Smith (1961, 1963) or, respectively, edema factor, protective antigen, and lethal factor accord-irg-a Real et al. (1962). Both in vitro-produced toxins, as used in this report, and in vive toxins, as reported by Klein et al. (1963), may be quantitated accurately. The procedure further provide an effective reference for quantitating natural resistance or relative immunity as described by Klein et al. (1963), because the absolute dose of toxins required to elicit a given response will bear a definite relationship to host resistance or susceptibility.

$V(D)=\frac{1}{L}, \quad\left\{V(N) \cdot D^{2} v(0)\right\}$
\qquad
$V(N)=V\left(A_{1}\right) ; V\left(R_{2}\right)+V\left(T_{1}\right)+V\left(T_{2}\right)$
0.0212
.0 .0672

1.(0) \% \quad| (0.26 |
| :--- |

$U L(0): \quad \log _{10} U L(P)=\frac{1.30}{} \quad U L(P)=-\frac{19}{7}$

filu. 2. Culeulation furm fur puleney if anthruz lozing.

The biological activities of these compounds are numerous, and it is likely that some responses are still to be discovered. The problem of evaluating activity and mode of action of compounds which have a synergistic biological action is more difficult than for "single compounds." Quantitation, therefore, is important to allow the work of various investigators to be, related more exactly to each other. The Fischer 344 rats are commèrcially available, and reference anthrax toxins will be provided for responsible investigators who desire to work with this material for use in establishing units. The methods used in this standardization of these toxins may be appropriate to the standardization of other biologically active toxins.

ACKNOWLEDGEMEINTS. We thank Martha K. Ward, U. S. Public Health Service, and Dorothy M. Molnar for their cooperation and independent assay of the towins, and Francis A. Beall who supplied his own animals and, in addition, independently assayed the torins. Thanks are also extended to Bill G. Mahlandt and Charles C. Wigington for producing the anthrax toxins in vitro, and preparing them for storage.

LITERATURE CITED

Beall, F. A., M. J. Taylor, and C. B. Thorne. 1962. Rapid lethal effect in rats of a third component found upon fractionating the toxin of Bacillus anthracis. J. Bacteriol. 83: 1274-1280.

Eckert, N. J., and P. F. Bonventre. 1963. In vivo effects of Bacillus anthracis culture filtrates. J. Infect. Dis. $\overline{103: 226-232 .}$

Finney, D. J. 1952. Statistical method in biological assay. Hafner Publishing Co., New York.

Harris-Smith, P. W., H. Smith, and J. Keppie. 1958. Production in vitro of the toxin of Bacillus anthracis previously recognized in vivo. $\overline{J . G e n . ~ M i c r o b i o l . ~ 19: 91-103 . ~}$

Keppie, J., H. Smith, and P. W. Harris-Smith. 1955. The chemical basis of the virulence of Bacillus anthracis. III. The role of the terminal bacteremia in death of guinea pigs from anthrax. Brit. J. Exp. Pathol. 36: 315-322.

Klein, F., B. W, Haines, B, G. Mahlandt, I, A. DeArmon, Jr., and
 revealed by etudie: of anthrax septicemia. J. Bacteril 85; 1032-1038.

Klein, F., D. R. Hodges, B. G. Mahandt, W. J. Jonea, B, W. Hainae, and R. E. Lincoln, 1962. Anthrax toxin: causative agent in the death of the sut monkeyn. Science 138;1331-1333.

Sargeant, K., J. L. Stanley, and H. Smith. 1960. The erological relationship between purified preparetione of factor I and II of the anthrax toxin produced in vivo and in vitro. J. Gen. Microbiol. 22: 219-228.

Smith, H., and R, C, Gallop, 1956. The chemical basis of the virulence of Bacillun anthracie. V1. An extracellular immunieing agreinin isolatedfrom oxidates, Brdt. J, Exp. Pathol. 37:144-15s.

Smith H., J. Kepple, and J. L. Stanloy, 1955a. The chomical bate of the virulence of Bacillus anthracin. V. The specific toxin produced by B. anthracie in wivo. Brit. J, Exp. Pathol. 36: 460-472.

Smith, H., J. Kappie, J. L, Stanley, and P, W, Harrie-Smith, 1955b. The chemacal baile of the virulence of Bacdlus anthracis. IV. Secondary shock an major factor in death of gunca pigi from anthrax. Erit. J, Exp, Pathol, 36:323-255.

Smith, H., D. W, Tempert, J, L, Stanley, P, W, Harris-Smith, and R. C. Gallop, 1956, The chempal basis of the virulence of Bacllus anthracis. VII. Two comporenti of the anthrax toxin: thedr relationship to known immuniting aggrotaina. Brit, J. Exp. Pathol, 37:263-271.

Stanley, J. L., K. Sargeant, and H. Smith. 1960. Purification of factor: I and II of the anthrax toxin produced in vivo. J. Gen. Microbiol, 22; 206-218.

Stanley, J. L., and H. Smith. 1961. Purdfication of factor I and recognition of a thizd iactor of the anthrax toxin. J. Gen. Microblol. 26: 49-66.

Stanley, J. L., and H. Smith. 1963. The three factors of anthrax toxdn: their immunogenicity and lack of demonetratable enzymatic netivity. J. Gen. Microbiol. 31: 329-337.

Taylor, M. J., G. G. Kennedy, and G. P. Blundell, 1961. Experimental anthrax in the rat. I. The rapid tncrease of natural readatance observed in young hosts. Amer. J. Pathol. 38; 469-480.

Thorne, C. B., D. M. Molnar, and R. E. Strange. 1960. Production of toxin in vitro by Bacillus anthracis and Ita separation into two components. J. Be-teriol. 79:450-455.

AN INVESTIGATION OF THE DISTRIBUTION SELF-DISPERSING BOMBLETS*

David M. Mose and Theodore W, Horner Booz' Allen Applied Resoarch lne.

ABSTRACT, The question has bean raieed concerning the lethal hasard to perannel from aelf-disperaing bomblets. The solution of this queation Involved the derivation of a diatribution and the computation of parameters for a apecific problem. The basic method uned was to define a random variable, θ, the number of individualo which are hiti

$$
\theta=\sum_{i=1}^{N}\left(1 \cdot 0^{n_{i}}\right)
$$

where N is total number of personnel and n_{i} is the number of bombleta atrikirg the $i^{\text {th }}$ Individual. The moment-generatingefunction of thly radom variable wan found and, hence, ita diatribution function. The diatribution of casuadtion was found to be Podsson under the general astumptions of the problem.

The quention has been ratied concerning the lothal hasard to porsonnel from aoll-diaperaing bombleta by direct hits. In trying to determine the dethallity of these bombleta many factors muat be taken into account.

Among the factora which bear on this problam ia that of protection. The flight of tho bomblets might be intercepted by trees, budidings, or other natural or man-made obstructiona, and would thersfore descrease the chances of a lethal hit. In this atudy the interest is directed toward asiesaing the maximum hazard to pereonnel. It la, thorefore, asoumed that all personnel are completely exposed. it in also asimmed that all personnel are in an upright pooltion and no perion provides any protection tor another perion. Thus, each person is completely and equally exposed to the posedbility of a direct hit by a bomblet.

[^19]Other assumptions made in order to assess the maximum hazard are that all personnel are within the target area of interest and all bomblets hit somewhere within this area. It can also be assumed that the vulnerable portions of an individual are his head and neck. If other portions of the body are struck, it is assumed that lethal damage is not inflicted.

The objective here will be to determine the hazard to personnel on target resulting from a drop of self-dispersing bomblets. The distribution of the number of lethal hits resulting from such a drop will be determined and in addition the expected number of such hits and the associated variance will be found. The results found will reflect the maximum hazard involved.

In addition to the theoretical work done here, the results for a specific case will be given. This will be the case where 600 bomblets are dropped on a one square kilometer area which contains 4000 persons.

First it will be assumed that there are N individuals in the target area, A_{T}. There are n bomblets dropped, all of which land in the target area. Further it will be assumed that bomblets and individuals are uniformly and independently distributed in the target area; however, it will be shown later that the individuals may assume any distribution. It will also be assumed that individuals and bomblets can be represented by circles with areas given by

$$
\begin{equation*}
A_{p}=\pi r_{1}^{2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
A_{b}=\pi r_{2}^{2}, \tag{Ene}
\end{equation*}
$$

where r_{1} is the radius of the critical area of an individual and these areas for all individuals are considered to be the same, and r_{2} is the radius of a bomblet. Now in order to produce a casualty, the center of a bomblet must fall within the circle with radius

$$
\begin{equation*}
r=r_{1}+r_{2} . \tag{3}
\end{equation*}
$$

The target area can be divided upinto N circular colls, ench with radiue $x=F_{1}+x_{2}$ reprounting individuals, plue one ooll which ropresents that part of the target in which there aze no individuais. We can aselgn a value p_{1} to the probability that a bomblet falla in the 1 th cell. Let n_{1} represent the number of bomblete that fall in the $f^{\text {th }}$ cell. Then

$\sum_{1=1}^{N+1}$	$P_{1}=1$

and

$$
\begin{equation*}
\sum_{1=1}^{N+1} \quad n_{1}=n \tag{b}
\end{equation*}
$$

where n is the total number of bombleta.
The dntereat now is in the number of persone hit or the number of casualties, denoted here by θ. What is reeded ie a variable which will give the number of casualtien, regardiese of whether an individual in hit more than once. One auch varimble could be obteined by defining a variable which le either zero or one depending on whother an individual ts misued or hit. If euch a variable is then aummed ovar all individuals, the result would be the total number of casualties, θ.

Note that
(6) $0^{n_{i}}=\left\{\begin{array}{l}1 \text { when } n_{1}=0 \\ 0 \text { when } n_{i}>0\end{array}\right.$
and

$$
1-0^{n_{1}}=\left\{\begin{array}{l}
0 \text { when } n_{1}=0 \tag{7}\\
1 \text { when } n_{1}>0_{i}
\end{array}\right.
$$

that in, if the number of hite of an individual la one or more, ($1-0^{n_{i}}$) whll be one and will be sero otharwise, Thut, let uit define our varjable of interestan

This variable tolle us the number of individuala which are hit and it is about thi random variable that we want more information,

Now, before going on, let's look more closely at our probablitias, where $p_{i}\left(1=1, k_{1} \ldots, N\right)$ definee the probability of a hit of the individual in the fth cell. Obviouely, the probabdity that any perticular bomblet hits any particular individual is the amm for all bomblets and all individualu. Also it li quite clear that tho probabillty of a randomly choien bomblet from a uniform dietribution of bombleti hitting any individuad in uqual to the ratio of the aras, A_{c}, of the circie with radiue y to the total target aran, A_{T}.

Thus
(9)

$$
p=A_{c} / A_{T}
$$

where

$$
\begin{equation*}
A_{c}=\pi\left(r_{1}+r_{2}\right)^{2} . \tag{10}
\end{equation*}
$$

Note that dince
(11)

$$
\sum_{i=1}^{N+1} \quad p_{1}=1
$$

and the p_{i} 's, $1=1,2, \ldots, N$, are equal, we thas have

$$
\begin{equation*}
P_{N+1}=1-N_{p} . \tag{12}
\end{equation*}
$$

What we have de ensentially the probability of a randomly eolected point being within a cortain ares. Note in Figure 2 that the probability that a gandomly selocted point lies in a given circle is the game in A and B and aleo that the probability of at loait x of the n polatis lydsg within a chrcio to the same in both, Based on this it can be rean that our renula will be independent of the diatribution of perionnel.

Now let us look at an analogou situation, Suppose that we have $N+1$

Table I
Distribution of Balls Falling into Celle

Cell	Probability	Number of Balla Falling Into Cell
1	$p_{1}=p$	n
2	$p_{2}=p$	n_{2}
,	'	-
,	,	,
'		,
\mathbf{N}	$p_{N}=p$	${ }^{3}$
$\mathbf{N + 1}$	$\mathrm{P}_{\mathrm{N}+1}=1-\mathrm{Np}$	$n_{N+1}=n^{-} \sum_{d=1}^{N} n_{1}$

This le multinomial situation where

$$
f\left(n_{1}, n_{2}, \ldots, n_{N+1}\right)=\left(\begin{array}{cc}
n!/ \prod_{d=1}^{N+1} & n_{1}! \tag{13}
\end{array}\right) p_{1}{ }^{n_{1}}{ }_{2}^{n_{2}} \ldots p_{N+1}{ }^{n_{N+1}}
$$

Since dt is θ in which we are interested, we need to discover the distribution of θ. The approach tak on here will be to find the moment-generat-ing-function of θ and from dt the diatribution of θ.

Recalling the defirition of moment-generating-function from mathematical statiatice and substituting for θ irom equation $\mathfrak{j} 0$; we have

$$
=E\left\{\exp \left[t \sum_{i=1}^{N}\left(1-0^{n_{i}}\right)\right]\right\}
$$

(14)

$$
M_{\theta}(t)=E\left\{e^{t 0}\right\}
$$

$$
=e^{t N_{E}}\left\{\exp \left[\begin{array}{lll}
& \begin{array}{c}
\mathrm{N} \\
\\
i=1
\end{array} & 0^{n_{i}}
\end{array}\right]\right\}
$$

$$
=e^{t N_{E}}\left\{\begin{array}{cc}
\frac{N}{n} & e^{-t 0^{n}} \\
d=1 &
\end{array}\right.
$$

Now

$$
e^{-t 0^{n_{1}}}= \begin{cases}e^{-t} & \text { when } n_{1}=0 \tag{15}\\ 1 & \text { whan } n_{1}>0\end{cases}
$$

and equivalontly

$$
\begin{equation*}
e^{-t 0^{n_{1}}}=1+0^{n_{1}}\left(e^{-t}-1\right) \tag{16}
\end{equation*}
$$

Note that (16) hold: identically and that the right hand aide de not payt of a series axpansion. Subetituting back in (14), we have

$$
M_{\theta}(t)=e^{t N_{E}}\left\{\begin{array}{c}
N \\
i=1
\end{array}\left[1+0^{n}\left(e^{-t}-1\right)\right]\right\}
$$

Now let

$$
\begin{equation*}
b_{i}=0^{n}\left(e^{-t}-1\right) \tag{18}
\end{equation*}
$$

and substitute in (17):
(19)

$$
\begin{aligned}
M_{\theta}(t) & =e^{t N_{E}}\left\{\begin{array}{c}
\prod_{i=1}^{N} \\
j \\
\\
\end{array}\left(1+b_{j}\right)\right\} \\
& =e^{t N_{E}}\left\{\begin{array}{cc}
1+\sum_{i=1}^{N} & b_{i}+\underset{j}{\sum \sum} \underset{j}{j} b_{j} b_{j}
\end{array}\right.
\end{aligned}
$$

$+\underset{i j k}{\boldsymbol{E} \boldsymbol{\Sigma} \boldsymbol{\Sigma}} \mathrm{~b}_{1} \mathrm{~b}_{j} \mathrm{~b}_{\mathrm{k}}+\cdots$ $k>j>1$

$$
\left.\begin{array}{ccccc}
+\boldsymbol{\Sigma} & \boldsymbol{\Sigma} & \ldots & \boldsymbol{\Sigma} & b_{i} b_{j} \ldots b_{m} \\
1 & j & & m & \\
m> & \ldots & > & j>1
\end{array}\right\}
$$

Now taking the expectation of a typical term, say the $g+1$ term and cubstituting from (18), we have

$$
\begin{aligned}
& T_{g+1}=E\{\underbrace{\Sigma \Sigma \ldots \Sigma}_{G} \quad b_{i} b_{j} \ldots b_{m}\} \\
& =\Sigma \Sigma \ldots \Sigma \Sigma\left\{b_{1} b_{j} \ldots b_{m}\right\} \\
& =\Sigma \Sigma \ldots \Sigma E\left\{\left(e^{-t}-1\right)^{g_{0}{ }^{n} L_{0}{ }^{n} 2} \ldots 0^{n} g\right\} \\
& =\left(0^{-t}-1\right)^{8} \Sigma \Sigma \ldots \Sigma \Sigma\left\{0^{n_{1}} 0^{n_{2}} \ldots 0^{n}\right\} .
\end{aligned}
$$

(20)

Now the expectation of the last factor in (20) is

$$
E\left\{0^{n_{1}} 0^{n_{2}} \ldots 0^{n^{n}}\right\}=\Sigma 0^{n_{1}} 0^{n_{2}} \ldots 0^{n^{n}} g_{f}\left(n_{1}, n_{2}, \ldots, n_{N+1}\right)
$$

which becomes upon substitution from (13)
$E\left\{0^{n_{1}} 0^{n_{2}} \ldots 0^{n} g\right\}=\Sigma 0^{n_{1}} 0^{n_{2}} \ldots 0^{n} g \frac{n!}{n_{1}!} p_{1}^{n_{1} p_{2}^{n}} \ldots{ }^{n} \ldots N+1$

$$
\begin{aligned}
& =\Sigma \frac{n!}{n n_{1}!}\left(0 \cdot p_{1}\right)^{n_{1}}\left(0 p_{2}\right)^{n_{2}} \ldots\left(0 \cdot p_{g}\right)^{n_{g}} \cdot p_{g+1}^{n_{g+1}} \ldots \\
& \cdots p_{N+1}^{n_{N+1}} \\
& =\left(0+0+\ldots+0+p_{g+1}+\ldots+p_{N}+p_{N+1}\right)^{n} \\
& =(1-g p)^{n},
\end{aligned}
$$

the last atep following from the fact that
(22)

$$
{\underset{i=1}{N+1}}_{N}^{N} \quad p_{i}=1
$$

Substituting the result from (21) back in (20) we get

$$
\begin{align*}
T_{g+1} & =\left(e^{-t}-1\right)^{g} \Sigma \Sigma \ldots \Sigma(1-g p)^{n} \\
& =\left(e^{-t} \cdot 1\right)^{g}(1-g p)^{n} \Sigma \Sigma \ldots \Sigma(1) \tag{23}\\
& =\left(e^{-t}-1\right)^{g}(1-g p)^{n}\left|\begin{array}{c}
N \\
g
\end{array}\right|
\end{align*}
$$

Ueing thia dast result in equation (19), we now find the moment-generatingfunction to be

$$
\begin{align*}
M_{\theta}(t) & =e^{t N}\left\{1+N\left(e^{-t}-1\right)(1-p)\right. \\
& +\binom{N}{2}\left(e^{-t}-1\right)^{2}(1-2 p)^{n}+\binom{N}{3}\left(e^{-t}-1\right)^{3}(1-3 p)^{n} \tag{24}\\
& \left.+\ldots+\left(e^{-t}-1\right)^{N}(1-N p)^{n}\right\} \\
& =e^{i N} \underset{g=0}{N}\binom{N}{g}\left(e^{-t}-1\right)^{g}(1-g p)^{n}
\end{align*}
$$

The maximum value of gp is Np. However, Np is oxtremely mall as seen from the example following the theory, Since, therefore, gp is extramely amall,

$$
\begin{equation*}
(1-g p)^{n} \simeq e^{-n p g} ; \tag{25}
\end{equation*}
$$

which followe because

$$
\begin{align*}
e^{-n g p} & =\left(e^{-g p}\right)^{n} \\
& =\left(1-g p+\frac{(g p)^{2}}{2!}-\frac{(f p)^{3}}{3!}+\ldots\right)^{n} \tag{26}\\
& \simeq(1-g p)^{n} .
\end{align*}
$$

Therefore

$$
\begin{aligned}
M_{\theta}(t) & =e^{t N}{\underset{g=0}{N}\binom{N}{\varepsilon}\left(e^{-t}-1\right)^{g}\left(e^{-n p}\right)^{g}(1)^{N-g}}=e^{t N}{\underset{g=0}{N}\binom{N}{g}\left[e^{-n p}\left(e^{-t}-1\right)\right]^{g}(1)^{N-g}}=e^{t N}\left[e^{-n p}\left(e^{-t}-1\right)+1\right]^{N} \\
& =\left[e^{t} e^{-n p}\left(e^{-t}-1\right)+e^{t}\right]^{N} \\
& =\left[e^{-n p}\left(1-e^{t}\right)+e^{t}\right] N \\
& =\left[e^{-n p}-e^{t} e^{-n p}+e^{t}\right]^{N} \\
& =\left[e^{-n p}+e^{t}\left(t-e^{-n p}\right)\right]^{N} .
\end{aligned}
$$

Now in the above result let
(28)

$$
0=e^{-n \eta}
$$

and

$$
P=1 \cdot e^{-n p}
$$

We then have

$$
\begin{equation*}
M_{\theta}(t) \simeq\left(Q+P e^{t}\right)^{N} \tag{29}
\end{equation*}
$$

which can be recognized as the moment-generating-function for the binomial distribution, Thus θ is approximately binomially distributed with parameter: P, Q, and N. The expected value of θ or the mean number of casualtion is given by

$$
\begin{equation*}
\mathbf{E}\{\theta\} \quad=\mathrm{NP} \tag{30}
\end{equation*}
$$

(30)
$=N\left(1-e^{-n p}\right)$
$=N\left[1-\left(1-n p+\frac{(n p)^{2}}{2!}-\frac{(n p)^{3}}{3!}+\ldots\right)\right]$
n Nnp,
the lat etop following aince np ia extemely amall. Thus the $\mathbb{E}(\theta)$ it small undeas N is extremely large. Also because P is small, the diatribution of 0 can be approximated by a Poision distribution and therefore the variance in also approximately Nnp. The dintribution of θ, where θ is the number of catualtien, is given by

$$
\begin{equation*}
p(\theta)=(N n p)^{\theta} \quad e^{-N n p} / \theta! \tag{3!}
\end{equation*}
$$

Now let' look at the specific problem: namely that of dropping 600 bomblets on a one square kilometer target which containa 4000 permonnel. It is given that:
A. $\quad A_{\perp}=10^{10} \mathrm{~cm}^{2}$
b. $A_{P}=314 \mathrm{~cm}^{2}$
c. $x_{1}=10 \mathrm{~cm}$
c. $N=4 \times 10^{3}$
d. $n=6 \times 10^{2}$
f. $\quad x_{2} \simeq 7 \mathrm{~cm}$.

From these it is found that

$$
\begin{aligned}
p & =A_{c} / A_{T} \\
& =\pi(10+7)^{2} / 10^{10} \\
& =9.1 \times 10^{-8}
\end{aligned}
$$

and that
$\pm\{\theta\}$ Nnp
$=\left(4 \times 10^{3}\right)\left(6 \times 10^{2}\right)\left(9.1 \times 10^{-8}\right)$
$=0.22$
and
$\operatorname{VAR}\{\theta\}=0.22$.
Note that N_{p}, which is the maximum value of gp, is $N p=3.64 \times 10^{-4}$, a very mall quantity, Further, it it found that the probablity of exactly x casualties under the given aseumptiona are at in Table II.

Table II
Casualty Distribution

Number	Probablity
of	of
Casualties	Occurience
0	0.80252
1	0.17655
2	0.01942
3	0.00142
4	0.00008
5	0.00000

Note that the expected number of cesualties, 0.22 , is approximately 0.0055 percent of the 4000 persoancl or approximately one casualty in five amilar dropa.

The haeard to pereonned resulting from a drop of eelf-disperaing bombleta wat found to be very low. It way found that the number of casualtian, θ, is Poiseon diatributed of form

$$
p(\theta)=(N n p)^{\theta} e^{-N n p / \theta!}
$$

Where N it the number of personnel on terget, n is the total number of bomblets, and p is the probability that an individual is hit by a particular bomblet. For the specific case of 600 bombleta and 4000 percons in a one quare kllometer araa, p is approximately 9.1×10^{-8} and the expected number of casualties is 0.22 ,

EXPLOSIVE SAFETY AND RELIABILITYESTIMATES FROM A LIMITED SIZE SAMPLE

J. N. Ayrea, L. D. Hampton, I. Kabik
U. S. Naval Ordnance Laboratory

White Oak, Silver Spring, Maryland

Abstract

The problem of predicting, from amall sample teating, high reliability andor high eafoty for exploaive items in becoming more acute. Often the available test ample if no greater than 200. Only a single test per item is allowable and the data is alway of the go/no-go variety. Methodi being used for making conservative extrapolations to the high and low probability of firing pointe are reviowed and illuatrated. The question of how to do the job better la posed and left to the clinicians for anewer.

INTRODUCTION. The problem which we wish to present in how to make, with emall samplea, reanonable estimates of the atimuld corresponding to the high and low probablity of firing of electro-explonive dewices (EEDA).

A typical EED te shown in Fig. 1. Eesentially, it conaiati of an inaulator carrying two electrical conductora acrose which is attached a resiatance wire. Surrounding the resiatance wire in a sensitive explosive. When electrical energy is disaipated in the wire, the realtant tomperature rise causes the explosive to heat and react chemically, and thus produce an explonion.

EED'sare uned by the milltary for a number of purposes; to cause detonation of explosive loaded shella, bombe, granadea, miatilet, minat, etc., to dgnite propellante for gans and rockots, to close switches such ai in fuge arming circuits, to release stores from alreraft, to eject pllots from aircraft, and to soparate mianile stagen. These are only some of the more common uses.

The dealgner of explonive ordnance has alway been faced with the problern of estimating the afety and reliability of his exploaive ay atem. The afety and reliablity asociated with the EED of electrically operated explosive ordnance, are, of course, important links in this ayotem. For reasona to be given, eatimating the rafoty and reliability to be expected from an EED rubjected to various atimuld de unuelly not simple. The ordnance dealgner in the past hat ofton overcome lack of information on
reliability at least, by t he numbers of items strategically used, i.e., the number of shells fired or the number of bombs dropped, etc. Thus unreliability could be compensated for in actual field usage.

Modern weapons and warfare, however, have introduced new problems. It is too costly to fire large numbers of expensive ordnance devices: the catastrophic results of a safety failure of certain types of munitions are intolerable; the intensity of certain stimulis which may cause inadvertent firing (electro-magnetic radiation from radars for example) has increased tremendously in the last decade and is slated to increase further. These changes have made it virtually mandatory that reasunable estimates of response of EED's to electrical stimuli be made.

RELEVANT FACTS.

(a) For economic reasons it is impossible to make a direct demonstration of the response of interest. The stimulus for reliability of $99.9+\%$ is usually desired at 95% confidence. Conversely, safety may demand estimates at 95% confidence of the stimulus at which no more than 1 in a million devices would be expected to fire. Funds are never available to run direct demonstration tests.
(b) The nature of EED's preclude repeated testing on a single device. Since these systems respond chemically to temperature elevation at the resistance wires, it is not known, once a single test at a given stimulus was large enough to have altered the EED's response characteristics. It must therefore be assumed that the possibility of alteration is great enough to preclude more than one test on a given EED. The only piece of information thus possible from each single test is either the EED fired or failed at that particular test stimulus.
(c) It has been found ${ }^{1}$, from a large number of firings on EED's (approx. 10, 000 firings of Squib Mk i), that no standard distribution function fits exactly the tails of the observed EED stimulus-response distribution. A number of distribution functions have been tested for their conformance to the experimental firing data. They all fail at the tails of the curve, see Fig. 2. But it is precisely these regions of the distribution which we must estimate.
(d) Uaually no more than 200 test samples are avadlable to make estimatea on one ide of the mean firing (50%) point, whether high or low. Even a sample aize of 200 is sometimes very difficult to obtain and may be quite expeneive.
(e) Popular test schemes, such as the "Bruceton" tess", which are conservative of sample size, often give pcorestimatea because of long extrapolation, poor estimate of the standard deviation, and/or non-applicability of the selected underlying diatribution ${ }^{3}$, 4 .

THE PROBLEM. By nov it should be obvious that we must make multi-million dollar estimates on tens or hundreds of dollars worth of data. We must design our experimenti so that we most wisely expend our avallable samplea so that we can minimize the error of maxing extrapolations to the desired annwer. We realife that extrapolation is at best a rlaky businese but: fo there any uther choice?
in the following eection we will tell you what we think we know and the methods we are now using.

The basic problem is to collect data which will permit the computation of the variation of the probability offiring as a function of the firing stimulus. It de desirable to allucate the samples co that the data collected will be at closu at posible to the functioning level(a) we wish to estimate. Ideally we should collect go/no-go data at a mamer of stimulus levels, As shown in Fig. 3, we wish to entimate the stimulus, Xe, at which we can expect a high level of rasponse, $Y e$. . We show lata collected at five levele of atmulu: $X_{1}, X_{2}, \ldots X_{5}$, A line has been fit to the observed data and at point Xe , Ye on thie line, de the intereection which glves we the denired etimulua value.

The procese of drawing the atradght line hlown in Fig. 3, and making the indicated prediction implicitly makea the following aseumptione.

1. That there in no ampling errox.
2. That the distribution function is chosen correctly, and
3. That there ie no syatematic error in the instrumentation or testing procedure.

But we know that there must be some sort of error mimpiy herenee the nata points do not fall on the line. By performing the "Chi-Square" statiatical test on the data we can decide whether or not the observed variability (scatter) is what might be expected from sampling erroralone. If this is the case, then we can draw an appropriate confidence band as in Fig, 3.

WHAT WE HAVE DONE, But rather than multi-point testing we have made what we believe to be conservative estimatea of extreme probability of firing points by the test and extrapolation procedures given below.

To minimize the importance of assumptions regarding the frequency dietribution it is again dealrable to base these estimates on data taken as close as posiible to the per cent point to be determined. The simplost such test would be one which calle for testing at two atimulus levele near the region in question. One of the two levele will be farther from the mean and closer to the desired point than the other. This will be designated the remote atimulus level. The data obtained can then be extrapolated to determine the atimulua adeociated with the deatred per cent point. In planning auch an experiment the following conditione inould be met:
2. Tho difference between the atimuli used ahould not be amall compared to the extrapolation distance (the difference between the desired point and the oberved remote stimulus).
b. The number of trial at the remote atimulus level and the expected response at thia level should be chosen so that the probabllity of observing a anturated level (either all-fires or nil falls) is malln.
c. The number of trial made at the remote functioning level should be greater then the number of triale at the level cloeer to the mean in an attempt to obtadn equal welghting of the two levels. A good cholce is to take the number to that the product np ($1-\mathrm{p}$) is the same for both levele, where n ta the number of irials and P is the expected probability of fire.

Af a aturated level il obaerved, one trial can be converted to $1 / 2$ fire $+1 / 2$ iall. Or another, reversed, trial can be arbitrarily added to the data. Either method will give coneervative result.

It is assumed that only two hundred samples are available to eatimate either an extremely high or else an extremely lov probiblity of firing. The general procedure will be illustrated below for a high probability point; a numerical example ia given in Appendix A.
a. Run a preliminary Bruceton type test on 20 samples using a log transform for the dosage*.
b. Use the Bruceton results to estimate the $\bar{X}+0.2 s, \bar{X}+0.4 s$, and $\overline{\mathrm{X}}+1.3 \mathrm{~s}$ levels ${ }^{3 \prime \prime}$.
c. Teet 50 EED's at the computed $\bar{X}+0.48$ level.
d. If more than 5 fail, test 130 amplea at the above calculated $\overline{\mathrm{X}}+$ l. 3s level.
e. If 5 or ftwer fallures occur, continue testing until 130 Eamplea have been teated, and test 50 at the calculated $\overline{\mathrm{X}}+0.2$ level.
f. Using a log-logistic ${ }^{5}$ probabdity apace, plot the two points.
g. Extrapolate the atraight line through the points so obtained to the desired probability or etimulue value.

By uaing only two points we have no way of applying the chi-equere teat. Nor can we draw the confidence band without a furthey aseumption. To obtain more conservatism, two methode have been used.

Hoteragenelty Assumption

We proceed as above but assume a heterogenelty factor*** of 1 In the equation for the confidence limit. Thie aseumption allowi computa. tion and drawing of the conidence band an in Fig. 4, implicit

[^20]\frac{\mp@subsup{X}{}{2}}{n-2},\quad\mathrm{ where F = heterogeneity factor and }n=\mathrm{ the number of tent
levelu.

```
}
in the assumption are the assumptions previously given also, d.e., we have chosen the correct distribution function; there is no systematic error in the instrumentation and test procedure; and only normal sampling error occurs.

\section*{Binomial Method}

Using the second method of gaining conservatism, rather than plotting the measured points directly, calculate, at a desired confidence ievel (say \(75 \%\) ), the one-sided lower value oi the higher percentage firing point, and the one-sided upper value of the lower percent firing point. Plot these points in a loglogistic probability space. Draw the straight line through thene points and extrapolate to the desired value. See Fig. 5.

It in, of course, posible that if too conservative a valuo be set for the confidencelimiti of the upper one-sided, lower and the lower onesided, higher per cent firing pointe, the alope of the line drawn through theae limite will be negative, Such a situntion, when it occurs, fil not realiatic and thi more conservative estimating technique should be abandoned.

Our experience hat shown us that although the logitic distribution function doen not give an accurate fit to EED diatribution functiona at the tails, it at least errore on the coneervative side, i.e., it will predict a lower afety than actually existe and lower roliability than actually exiate.

The two-level test and analyais, then, di one technique which we have used to make, with limited samples, estimatea of extreme probability of firing points. We could certainly deviae more elaborate and opkisticated variations, but we wonder if those more sklled than we in itatistical theory might not be able to recommend alternate procedures which can do the job better. More epecifically, we have wondered about, and have planned to work on, the application of non-parametric atatiatical methods to the problem. The clinic' opinion and advice on this matter could be beneficial since, at the time of this writirg (June 1964), we are oniy in the preliminary thinking atage.

Finally, we have been hopeful that ome combination might be made of statiatica and the underlying physica of the mechanism by which wire bridge EED's function, to put bounds on the degree of extrapolation
needed in making our estimates. In this regard our work has shown that rine neating of a wire oriage E巨D can de represented oy ine mainematicai equation:
\[
\begin{aligned}
& C_{p} \frac{d \theta}{d t}+\gamma 0=p(t) \\
& \text { where } C_{p}=\text { heat capacity of bridge plug explonive } \\
& \theta=\text { temperature elevation above ambient } \\
& t=\text { time } \\
& \gamma=\text { heat loss facte } r, \text { and } p(t)=\text { power input. }
\end{aligned}
\]

The combination of thie equation \({ }^{6,7}\) with Bowden's hot fopt theory of explosions \({ }^{8}\) haf led to fai-ly accurate representation of EED firing characterletics over a limited range of input times (i.e., average powers). Since equipment is avallable for making independent meseurementi of \(C_{p}, \gamma\), and \(C_{p} / \gamma\), the cooling time conatant, it appears possible to meature, on individual EED's, parameters which should bediroctly related to their individual ilring characteristica. .

\section*{REFERENCES}
1. L. D. Hampton, J. N. Ayres, "Characterization of Squib Mk 1 Mod O: Determination of the Statistical Model", NavWepa Report 7347, 30 January 1961.
2. Statistical Research Group, Princeton Univeratty, "Statistical Analysia for a New Procedure in Sensitivty Experiment i, AMP Report 101.1R, SRG.P No. 40, (NSRD Report 4040) July 1944.
3. J. N. Ayres, L. D. Hampton, L. Kabik, "The Predicion of Very Low EED Firing Probabilities'', NOLTR 63-133, 4 September 1963.
4. L. D. Hampton, J. N. Ayrea, I, Kabik, "Egtimation of High and Low Probability EED Functioning Levels", NOLTR 63.266, 3 Febsuary 1964,
5. Jour, of American Statistical Asiociation, Vol. 48, p. 365-599, 1953, Joseph Berkson, "A Statistically Preciee and Relatively Simple Mothod of Entimating the Bloansay with Quantal Response Baesd on the Logistic Function':
6. I. Kabik, L. A. Rosenthal, A. D. Solem, "The Reaponee of ElectroExplosive Devicea to Tranaicnt Electrical Puleen", 4th Navy Science Symposium, Pasadena, Callf., March 1960.
7. 1. Kablk, L. Rosenthal, A. Solem, "The Response of ElectroExploaive Devicea to Tranalent Electrical Pulses", NOLTR 61-20, 17 April 1961.
B. Initiation and Growth of Explonion, Bowden \& Yofie, Cambridge at the Univeraity Press, 1952.

\section*{APPENDDK A}

ILLUSTRATIVE EXAMPLE

The unite used for \(X\) are in terms of the transformed variable.
The twenty trial Bruceton gave a maen of 20, 314 and etanderd deviation of 0.589 .

The two test levels are then
\[
\begin{aligned}
& m+0.4 s=20.55 \\
& m+1.3 s=21.08
\end{aligned}
\]

The results at these levela were
Near level 35/50=70\%
Remote level \(113 / 130=86.92 \%\).
The upper \(95 \%\) confidence limit at the near levelda \(\mathbf{7 8 . 6 8 \%}\). The lower \(95 \%\) confidance limit at the remote level is \(81.94 \%\).

A atraight line through the obeervod pointe is
\[
Y=1.13019 X-22.7014
\]
( Y in Normite).
Thif gives estimates an follows:
95\% point
21. 542
99\% point
22. 144
\(99.99 \%\) point
23. 347.

The oquation for the lower \(95 \%\) coniddance band asaming the heterogeneity factor to be undty is
\[
Y=1.13019 X-22.7014-1.645 \sqrt{0.014909+0.213434(X-20.857)^{2}}
\]

This gives estimates as follows:
95\% point
22.9
99\% point
24.8
99. \(99 \%\) point
29.0.

The straight line through the binomial limits on the observed points has the equation
\[
Y=0.2226 X-3.7784
\]

This gives the following estimates
\[
\begin{array}{ll}
95 \% \text { point } & 24.37 \\
99 \% \text { point } & 27.43 \\
99.99 \% \text { point } & 33.69 .
\end{array}
\]

Using the same data with the logiatic assumption, we have the followIng analyais
at the near level \(35 / 50=70 \%\)
\[
L=\ln \frac{35}{15}=0.8473
\]
at the remote level \(113 / 130=84.92 \%\)
\[
L=\ln \frac{113}{17}=1.8942 .
\]

The straight line through these point: is
\(L=1.975\) X \(=39.7447\)
Thi gives the following estimates
\begin{tabular}{llc} 
& \(L\) & \(X\) \\
\(95 \%\) & 2.9444 & 21.6 \\
\(99 \%\) & 4.5951 & 22.4 \\
\(99.99 \%\) & 9.2102 & 24.8
\end{tabular}

The binomial confidence limits as before are
near level \(\quad\). 306 ; remote level 1.512 .

The straight line through these points is
\[
L=0.389 X-6.688
\]
which given
\begin{tabular}{ll}
\(95 \%\) point & 24.8 \\
\(99 \%\) point & 29.0 \\
\(99.99 \%\) point & 40.9.
\end{tabular}

The hyperbola for the lower \(95 \%\) confidence band has the equation \(L=1.9753 X-39.7447-1.645 \sqrt{0.039557+0.579926(X-21.86)^{2}}\)
which has an aymptote
\(L=0.723 \mathrm{X}-13.6224\).

\section*{Eatimates are}
\begin{tabular}{ll}
\(95 \%\) point & 22.9 \\
\(99 \%\) point & 25.2 \\
\(99.99 \%\) point & 31.6
\end{tabular}

Summary of these calculations realta
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{3}{|c|}{Normal} & \multicolumn{3}{|l|}{Logistic} \\
\hline & Straight Line & 95\% conf. bend & Binomial & \[
\begin{gathered}
\text { Stralght } \\
\text { linge } \\
\hline
\end{gathered}
\] & Conf. Band & Binomial \\
\hline 95\% point & 21.54 & 22.9 & 24.4 & 21.6 & 22.9 & 24.8 \\
\hline 99\% point & 22.14 & 24.8 & 27.4 & 22.4 & 25.2 & 29.0 \\
\hline 99.99\% point & 23.35 & 29.0 & 33. 7 & 24.8 & 31,6 & 40.9 \\
\hline
\end{tabular}

Comparison of these values show the more coneervative nature of the logiatic diotribution. The difference is not marked at the \(95 \%\) point but does how up at the more extreme pointe.


OTES:
1. IGNITION BEAD-APPROX. 5 MG DDNP/KCIO 3
2.FLASH CHARGE -APPROX. 45 MG BLACK POWDER
3 BASE CHARGE - APPROX 45 MG BLACK POWDER
4 BRIOGE WIRE - O.OOI' PLATINUM -IRIDIUM OOGO" LONG
FIG.I SQUIB MKi MOD O


FIG. 2 LOG-GAUSSIAN, LOG-LOGISTIC FITS OF FIRING DATA

－紋




\section*{CYCLIC DESIGNS*}

\author{
H. A. David and F. W, Wolock \\ Univeraity of North Carolina at Chapel Hill and Boaton College
}
1. INTRODUCTION. Cyclic designs are incomplete block designe conaisting in the amplest case of a et of blocks obtained by cyclic development of an initial block. More generally, a cyclic deaign conaiata of combinations of such sets and will be said to be of aize ( \(n, k, r\) ), where \(n\) is the number of treatmente, \(k\) the block size, and \(r\) the number of replications.

It is well known (e.g. Bose and Nair [2]) that cyclic development of a suitably chosen initial block is one of the methods of generating designs with a high degree of balance in the arrangement of the treatmente auch as balanced incomplete block (BIB) deaigna and partially balanced incomplete block desigrie with two associate clasees (PBIB(2) dealgne), Again, the cyclic type is a rather junior partner mong the tive typesinto which Bose and Shimamoto [3] clasediy PBIB (2) designa. Tha emphasis in these and many rolated papera has been underatandably on the number of associate clasees, the cyclic aspect being incidental. In the present aridele we proceed in opponite fashion putting the cyclic proparty firut. It will be shown how eyclic designs may be systemetically genernted and how the nor-isomorphic designs of given sime may bo enumerated and conatructed. All such deaigne are PBIB deaigne but may have up to fnasioclate clasees. Forn \(\leq 15\) and \(k=3,4,5\), tables of the most efficient cyclic deaigna are presented and comparieone with BIB and PBIB (2) designa are made.

Pointe which make cyclic designe attractive are:
(i) Flexibllity, A cyclic design of ate ( \(n, k, 1 k\) ) exiats for all pouitive Integerim \(n, k\), if nand \(k\) have common divisor d then a "fracional set" of sizo ( \(n, k, k / d\) ) exista cosrusponding to each \(d\), Fractional eets may be combined with designe of aize ( \(n, k, i k\) ) to form freit designe, or uaed by themaclveo empedally if \(n\) ie large. Thue there are cyclic designe for many siees ( \(n, k, r\) ) for which no PBIB (2) design is available, but the reverac may almo happen.

\footnotetext{
"Research supported by the Army Research Office, Durham, and the National Inatitutea of Health. Thie paper hae been aubmitted for publication in the "Annal of Mathematical Statiatica."
}
(11) Eaxe of zejresentation. No plan of the experimental layout is needed since the initial block or blocka suffice.
(iii) Youden type. In view of thetr method of generation cyclic ete with \(r=k\), and hence combinations of such eta, provide automatic climination of heterogeneity in two directions.
(iv) Analyals. For cyclic designo the coefficient matrix of the normal equations is a circulix. The inverse matrix may therefore be obtained explicitly (as another circulix), thus making posible a general method of analysis, Questions of analysis will not be considered further here since methode given in a special case by Kempthorne [9] continue to apply with minor modificatione. However, detaile and alds to analyeis are preaented in [12].

Cyclic deaigna a a clase in theis own right were introduced fork \(k 2\) by Kempthorne [9] and Zoellner and Kempthorne [13]. Designadpecta for the case \(k=2\), which has iome special ieaturen, wore conaldered in [6] and [7], and will not be tre. :d in this paper. For generalk cyclic dedigna are closely related to the cisch'.r desigtis of Dam [5]. See also the eurvey of non-orthogonal designn', ear:e [ll] who on'is cyelic designa a little publicized class," PBIB designs have been atudied from an algebraic point of view in a ceries of papers by Masuymm. In mome of these (e.g. (10]) reference is made to cyclic dosigna but no detalled resulta are obtained.
2. GYCLIC SETS. Label the treatment: \(0,1,2, \ldots, n-1\). Tofixideae consider the arrangement of \(n=7\) treatments in blocke of sizek E 3. The complete design of \(\left(\frac{?}{3}\right)=35\) dietinct blocke may be set out as followe:
\begin{tabular}{llllllllll} 
& \(\{012\}\) & \(:\) & 012 & 123 & 234 & 345 & 456 & 560 & 601 \\
& \((013)\) & \(:\) & 013 & 124 & 235 & 346 & 450 & 561 & 602 \\
& \((014\}\) & \(:\) & 014 & 125 & 236 & 340 & 451 & 562 & 603 \\
& \((015\}\) & \(:\) & 015 & 126 & 230 & 341 & 452 & 563 & 604 \\
& \((024\}\) & \(:\) & 024 & 135 & 246 & 350 & 461 & 502 & 613
\end{tabular}

From any block the others in the ame row may be obtained by increasing each object label in turn by \(1,2,3,4,5,6\), and reducing modulo 7 . The
rows have been arranged to start with the block of lowest numerical value and are designated by the initial block placed in braces. We call each row a cyclic set.

A block may also be conveniently represented by identical beads spaced regularly on a circular necklace. Fig. 1 shows the blocks 012 and 123.

\(012=(115)\)

\(013=(124)\)

Figure 1
The set \{012\} is then generated by successive unit rotations.
It is not difficult to show that each cycle set forms a partially balanced incomplete block (PBIB) design with \(b\) (no. of blocks) \(=n\) and \(r\) (no. of replications) \(=k\). If objects \(i\) and \(j\) are \(a-t h\) associates so are \(i\) and \(n-j\). Thus the number \(m\) of associate classes is at most \(\frac{1}{2}(n-1)\) for \(n\) odd and \(\frac{1}{2} n\) for \(n\) even, but may be less, with \(m=1\) for a balanced (BIB) design. An additional feature of a cyclic set is that each object occurs once in each position within a block. Order effects are therefore automatically balanced out and the sets are Youden Type designs, balanced ( \(\mathrm{m}=1\) ) or partially balanced ( \(\mathrm{m}>1\) ).

The same procedure can be used for any \(n\) and \(k\) except that when \(n\) and \(k\) are not relative primes fractional sets arise consisting of \(n / d\) blocks, where dis any common divisor of \(n\) and \(k\). In terms of Fig. 1 such sets correspond to arrangements of beads which can be reproduced in fewer than \(n\) rotations of the necklace.

For the purpose of aymematically enumerating all cyclic eete it it convenient to characterize each et by a circular partition of \(n\). Thus we may replace \(\left\{0 x_{1} x_{2} x_{3} \ldots x_{k-2} x_{k-1}\right\}\) by \(\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2}, \ldots\right.\),
\(\left.x_{k-1}-x_{k-2}, \quad n-x_{k-1}\right)\).
Example 1. For \(n=8, k=4\) the aet \(\{0123\}\) becomea (1115), The cyclic efts may now be written down in increasing order of the numericul value of the corresponding partition: (1115), (1124), (1133), (1142), (1214), (1223), (1232), (1313), (1322), (2222). After (1142) we omit (1151) this being identical with (1115), etc. As the repetition of digits indicates the set (1313) consists of the 4 blocks
\[
01451256 \quad 2367 \quad 3470 \quad(\mathbf{r}=2)
\]
and (2222) of the 2 (dieconnected) blocka \(0246,1357(r=1)\). These are still PBIB denigne but, of course, no longer of the Youden Type. We shall ay that the corresponding ayrangements of beade on necklace have porioda 4 and 2, reapectively. Aa a check note that all ( 8 ( 4 ) blocka are accounted for since \(8 \times 8+4+2=70\).

For any \(n\) and \(k\), the total number of acte, being equal to the number of distinct arrangements of \(k\) white beads and \(n-k\) black beads on neck. lace of \(n\) beade (which may not be turned over) is given by (Jablonaki [8])
(2)
\[
N(k, n-k)=\frac{1}{n} \quad \Sigma \phi(d) \frac{(n / d)!}{(k / d)!(n-k) / d]!},
\]
where the ammation is over all integere \(d\) (including unity) which are divisors of both \(k\) and \(n-k\), and \(\phi(x)\) is Euler'e function, the number of integers less than and prime to \(x\). Thus
\[
N(4,4)=\frac{1}{8}\left(\frac{8!}{4!4!}+\frac{4!}{2!2!}+2 \cdot \frac{2!}{1!1!}\right)=10
\]

The number of cycile sets of various sizes making up thio total is tabulated in [7] for \(n \leq 15\).

If a deaign of aize \(n=b=7\) and \(k=r=3\) is required a look at the association chemes of the 5 sets in (1) leadi to \(\{013\}\) or \(\{015\}\), both being BIB designe. For most sizes there will be no balaneed eet and the choice is lesa clear but might be based on the ulual aficiency factor. Combinations of sete provide larger designa and again the question of optimal selection of sets arises. This presents a formidable task for all but small designs. Our principal aim is to show thet this task can be greatly simplified if certain isomorphisme between cyclic eots are recognifed. A syateraatic approach for the construction of optimal cyclic designe is then developed.
3. EQUIVALENCE CLASSES. Let us now appl; to (012) of equation (1) the \(\bar{r}\)-numbering or permutation
\[
R(7,3)=\left(\begin{array}{lllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 3 & 6 & 2 & 5 & 1 & 4
\end{array}\right)
\]

Obtained by muitiplying each of the 7 labels by \(3(\bmod 7)\). Thon \(\{012\}\) becomes
\[
\begin{array}{llllll}
036 & 362 & 625 & 251 & 514 & 140
\end{array} 403,
\]
a Youden Type design which is merely a re-arrangement of (014) , We write \(\{012\}^{3}\{014\}\). Thus \(\{012\}\) and \((014\}\) are isomosphtc. Two further applications of \(R(7,3)\) give \(\{024\}\) and the original \(\{012\}\). We have therefore establlahed the quivalence clase \(\{012\} \sim\{014\} \sim\{0 ; 24\}\). No blocke reed be writton in the process if partition notation is used: \(\{012\}^{3}\{036\}=(331)=(133)=\{014\}^{3}\{035\}=(322)=(223)=\{024\}\). Likewise \(\{013)^{3}\{032\}=\{023\}=(214)=(142)=\{015\}\), e that \(\{013\}\),
\{015\} form a econd equivalence class,
The same procedure can be used for any prime nand any k. To see this note that the permutations \(R(n, 1)\) (the identity permutation), \(R(n, 2), \ldots, R(n, n-1)\), form a group under "multiplication" defined by
\[
\begin{equation*}
R(n, d) \notin R(n, j)=R(n, i j \bmod n) \tag{2}
\end{equation*}
\]
which is isomorphic with ine multiplicative group of residuee modn. Hence all clementa \(R(n, 1\), are generated by powers of \(R(n, g)\), where g de a primitive root \(0: n\left(i, e ., \mathrm{g}^{\mathrm{x}} \mathrm{F}+1 \bmod \mathrm{n}\right.\) for \(x=1,2, \ldots, n-2\) but
\(\mathrm{g}^{\mathrm{n}-1} \equiv 1 \bmod \mathrm{n}\) ), But a permutation \(\sigma\) which changes one cyclic set into another must be of the form \(R(n, i)\) if we assume without loss of generality that \(\sigma\) leaves 0 unchanged; for if \(a, b, c, d\), are elements of the residue set with \(a\) and \(b=a+d\) two elements in the same block we require that
or
\[
\begin{aligned}
& \sigma(b)-\sigma(a)=\sigma(d) \\
& \sigma(a)+\sigma(d)=\sigma(a+d)
\end{aligned}
\]
\[
\text { all } a, b, d
\]
showing that \(\sigma\) is multiplicative: \(\sigma(a)=c a\). Thus all possible isomorphisms between cyclic sets can be established conveniently by repeated application of \(R(n, g)\).

When \(n\) is not prime the \(R(n, i)\) continue to form a group under \(*\) of (2) provided \(i\) and \(j\) are restricted to be integersrelatively prime to \(n\). The group is now of order \(\phi(n)\) and is clearly isomorphic with the multiplicative group of the reduced set of residues. \(g\) is said to be a primitive root of \(n\) if \(\phi(n)\) is the smallest power making \(g \phi(n) \equiv 1 \bmod n\). Primitive roots exist only if \(n\) equals \(2,4, p^{n}\), or \(2 p^{n}\), where \(p\) is any prime \(>2\) and \(n\) any integer. For values of \(n\) admitting a primitive root we proceed as before; otherwise, multiplication by each member of the reduced set of residues:will establish most isomorphisms.

Example 1 (cont'd.) Since 8 does not have a primitive root we begin by applying \(R(8,3)\) to the sets of Example 1 and find
\[
(1115) \xrightarrow{3}(1232), \quad(1124) \xrightarrow{3}(1223), \quad(1142) \xrightarrow{3}(1322) .
\]

The other sets are unchanged by the transformation. Likewise \(R(8,5)\) gives
\[
(1115) \xrightarrow{5}(1232),(1124) \xrightarrow{5}(1322), \quad(1142) \xrightarrow{5}(1223) .
\]
\(\mathrm{R}(8,7)\) produces "mirror images" obtained by reading a circular partition anti-clockwise rather than clockwise. E.g. (1124) \(\xrightarrow{7}(4211)=(1142)\). This isomorphism had already been established by \(R(8,3)\) and \(R(8.5)\) because \(5 \equiv-3\). However, an additional isomorphism can be obtained by the permutation
\[
\binom{0}{0}\binom{1}{1}\left(\begin{array}{ll}
2 & 6 \\
6 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 7 \\
7 & 3
\end{array}\right)\binom{4}{4} \quad\binom{5}{5}
\]
which takes (1133) into (1214). This is the only instance we have come across where the equivalence of two cyclic sets cannot be demonstrated by a multiplicative permutation.

A listing of all equivalence classes for cyclic sets in experiments with \(\mathrm{n} \leq 15\) and \(k=3,4,5\), is given in [12]. The efficiences of the se sets regarded as designs have also been tabulated. When \(n=8, k=4\) we find
\begin{tabular}{rlccccc} 
Design & E & \(\mathrm{E}_{1}\) & \(\mathrm{E}_{2}\) & \(\mathrm{E}_{3}\) & \(\mathrm{E}_{4}\) \\
\(\{0123\}=(1115)\) & .812 & .922 & .834 & .760 & .712 \\
\(\{0124\}=(1124)\) &. & .851 & .867 & .873 & .810 & .868 \\
\(\{0125\}\) & \(=(1133)\) & .851 & .867 & .809 & .867 & .877 \\
\(\{0134\}=(1214)\) & .836 & .863 & .810 & .869 & .807 \\
\(\{0145\}\) & \(=(1313)\) & .779 & .802 & .803 & .668 & \(.800(r=2)\).
\end{tabular}

Here \(E\) is the overall efficiency and \(E_{j}(j=1,2,3,4)\) is the efficiency factor relating to the comparison of \(j\)-th associates. On the basis of \(E\) the choice of optimal design for \(r=4\) among the five sets (the fifth duplicated) lies between \(\{0124\}\) and \(\{0125\}\), with the latter preferable in having only 3 associate classes. It should be noted that except for fully balanced designs the highest value of \(E\) does not necessarily correspond to the design with the smallest number of associate classes. Other optimality criteria might be used but the choice of cyclic design is in any case reduced to one of the non-isomorpinic sets. Moreover, it is only combinations of these sets (and possible ciisconnected sets) which need to be considered in the construction of larger cyclic designs. In Table l we list the most efficient cyclic sets for \(\mathrm{n} \leq 15\) and \(\mathrm{k}=3,4,5\).

Cyclic sets with two associate classes. For purposes of comparison we have made a corresponding compilation in Table 2 of two-associate PBIB designs of all types as given by Bose et al. [1] and (with asterisks) by Clatworthy [4]. The BIB designs in this range are also included. It will be noted that Table 2 has gaps for several ( \(n, k\) ) combinations
although the symmetrical case fe favorable to the existence of designe with a high degree of balance. The table also show that a cyclic deagn with
 PBIB.

It is of some interest that every regular (R) group diviable PBIB of Table 2 may be laid out as a cyclic dealgn; this is already done in [ 1 ] in some cases and may be effected for the remaining designs by attable relabeling. We find the following isomorphisme:
\[
\begin{aligned}
& n=6: R 1 \sim\{013\} \quad \text {, } \mathrm{R} \text { i } \sim\{0124\} \\
& n=8 \quad: \quad R 5 \sim\{013\} \quad \text { R!08*~} \sim\{01235\} \quad, R 109^{*} \sim\{01246\} \text {; } \\
& 1=9: R 8 \sim\{0136\}, \text { R112 } \sim(01346\} \\
& n=10 ; R 114 \sim \sim\{01257\} \text {; } \\
& n=12: R 15 \sim\{0137\} \quad \text { R116*~ }\{01356\} \\
& R 117 * \sim(01249) \quad \text { R118* } \sim(014710) ; \\
& n=14: R 24 \sim\{0146\} ; \\
& n=15: R 27 \sim(0137\}
\end{aligned}
\]

These aze only two other cyclic deaigne with two ansociate clasees in the range under conalderation. Forgal3 we have \(\mathrm{Cl} \sim 014\); forn mi2 the design \(\{01247\) \} ham the ame aisaciation achame as R116 but is not isomorphic with \(1 t\).
4. COMBINAT:ONS OF CYCLIC SETS CyClic seta ior given nmay be combined to produce a wide variety of cyclic denigne, atill of PBIB iorm, Thie can always be done if the number of roplicationa \(r\) is multiple of \(k\) but will also be posible for certain other values of rif fractional sote exist. We ehall omy that the combined design de of aize ( \(n, k, r\) ). Equiva. dence clasiea may again be ostablishad. However, the moteificient cyclic design of given mize is not recessarily one made up of the most efficient cyclic deta.

Example 2. For \(n=9, k=3\) we have the equivalence classes
A : (117) , (225) , (144) ;
\(B:(126),(243),(133),(162),(234),(135) ;\)
\(C:(333) \quad(x=1)\).
The order within a clase has been arranged so that accessive eta are obtained by the application of \(R(9,2)\), the primitive root of 9 being 2 . There are clearly two non-isomorphic designe of sice \((9,3,4)\) obtained by combining (333) with any member of clase A or claes \(B\). Of these the latter, which may be written as \(\{013,036\}\), is the more efficient, with \(\Sigma=0.713\) and 4 associate clasest.

To get dealgna with \(:=6\) we can take two setifrom \(A\), two from \(B\), or one from onch. Call the ate \(A_{1}, A_{2}, A_{3}\), and \(B_{1}, B_{2}, \ldots, B_{6}\) We then have the following eeven equivalence clasees
\[
\begin{aligned}
& A_{1} A_{2}, A_{2} A_{3}, A_{3} A_{1} ; \\
& B_{1} B_{2}, B_{2} B_{3}, B_{3} B_{4}, B_{4} B_{5}, B_{5} B_{6}, B_{6} B_{1} ; \\
& B_{1} B_{3}, B_{2} B_{4}, B_{3} B_{5}, B_{4} B_{6}, B_{5} B_{1}, B_{6} B_{2} ; \\
& B_{1} B_{4}, B_{2} B_{5}, B_{3} B_{6} ; \\
& A_{1} B_{1}, A_{2} B_{2}, A_{3} B_{3}, A_{1} B_{4}, A_{2} B_{5}, A_{3} B_{6} ; \\
& A_{1} B_{2}, A_{2} B_{3}, A_{3} B_{4}, A_{1} B_{5}, A_{2} B_{6}, A_{3} B_{1} ; \\
& A_{1} B_{3}, A_{2} B_{4}, A_{3} B_{5}, A_{1} B_{6}, A_{2} B_{1}, A_{3} B_{2},
\end{aligned}
\]

Calculations show that the moat efflcient cyclic design is \(A_{1} A_{2}\) with \(E=0.731\) and 4 associate classen.

The present example has been chonen to bring out the enumeration procedure required when the original cyclic eete fall lato everil equive. lents clanean.

Actually, for \(r=6\) aismany as four \(\operatorname{PBIB}(2)\) designa are available, viz. SR13, R10, LS3, and LS9*, of which LS3 is the mont eifiatert haviak \(\bar{E}=\) U.iai. When \(r=4\) the only tabulated PBIB(2) designis LS6, with the relatively low efficiency \(E=0.667\). For \(r \leq 10\) Table 3 insta a election of cyclic designe in cases where no such PBIB(2) deaigna are known to exist or are all of more than trivially inferior efficiency.

It is of interest to note that the number of non-isomorphic designa made up of eete all chosen from the same clase of \(S\) sets ia just \(\mathbb{N}\) ( \(s, \mathrm{~S}-\mathrm{B}\) ), where N is defined by (2). Thin is socause we can now regard the beads of Fig. 1 as representing ete rather than blocks. The operation \(R(n, g)\), where \(g\) is a primitive root, produces a unit turn. The enumeration of non-isomorphic designs when sets are from more than one class proceede exactly at deacribed in (7) for \(k=2\).
5. FRACTIONAL SETS. The number nk of obervationa required fora cyclic eet of eize ( \(n, k\) ) whll often be greater than desired, epecially when \(n\) is large. In this situation fractional eete are very useful. As pointed out in Example lauch eete are churacterleed by a repetitive pat tern in their partition representation. No such designis posible if nia prime, For \(n\) composite fractional sete exiet corresponding to every divisor \(d(l<d<n)\) of a ance there must be at leat one partition of \(n\) consiating of \(d\) repetitions. Clearly, \(k\) must be multiple of \(d\), and \(r=k / d\); (however, \(y=1\) gives adiconnected iet), From a cyelic uet with parametera ( \(\mathrm{n} / \mathrm{d}, \mathrm{k} / \mathrm{d}\) ) a fractional set with parameters ( \(n, k, r=k / d\) ) can alway be obtained.

Example 3. Forn \(=30\) connectad Eractional eete exist for \(k:=4,6\), 8, 9, 10, , 10 Suppose we require a design with \(k=6\), The non-isumorphic connected cyelic ute of aize (15, 3) are (1113); (1212), (1311), (1410), and (159). Of thene (1212) leade to the most eficiont deaign of atze (30, 6, 3), viz. (12121212) or 013151618 \} with \(E=0.762\).

In [12] a selection of the most officient fractional sets of given aize is cabulated for a \(\leq 100\).
6. ACKNOWLEDGMENT, Much of this work wat done while the authors were at the Virginia Polytechnic Inatitute. Weare grateful to Dr. Dale M. Mesner for meveral helpful comments.

\section*{REFERENCES}
[1] Bose. R, C., Clatworthy, W. H., and Shrikhande, S. S. (1954). Tables of partially balanced designs with two associate classes. North Carolina Agric. Expt, Sta., Tech. Bull. No. 107.
[2] Boee, R. C. and Nair, K. R. (1939). Partially balancedincomplete block designa. SankhyE, 4337-372.
[3] Bose, R, C, and Shimamoto, T. (1952). Classification and enalysis of partially balanced designs with two associate clasfes. J. Amer, Statist. Assoc. 47 151-190.
[4] Clatworthy, W. H. (1956). Contributions on partially balanced incomplete block designa with two associate classes. Nat. Bur. Stand., Applied Mathematica Series No. 47.
[5] Das, M. N. (1960), Circular designe, J. Indan Soc, Apzic, Statiat. 1246 -56.
[6] David, H. A. (1963). The otructure of cyclic paired-comparison designe. J. Austgai. Math. Soc. 3117-127.
[7] David, H. A. (1965), Enumeration of cyclic paried-comparifon deagne. Amer, Math, Monthly, 72 (In prese).
[B] Jablonaki, E. (1892). Théorie des permutations et dea arrangaments circulatres completn. J. Math, Pure Appl., therites, 8 331-349.
[9] Kempthorne, 0 . (1953). A clase of oxperimental deaigni ueing blocke of two ploti. Ans. Math. Statiat. 24 76-84.
[10] Masuyama, M. (1962), On the ciastes of blocke. Rep. Stat. Appl. Rel, JUSE 983-87.
[11] Peazce, S. C. (1963), The use and clasalfication of non-orthogonal designe. J, Roy, Statict. Soc. A 126 353-369.

\section*{REFERENCES (cont'd.)}
[12] Wolock, F. W. (1964). Cyclic designe. Fh.D. dissertation, Vizginia Polytechnic Institute.
[13] Zoellner, J. A. and Kempthorne, O. (1954). Incomplete block designe with blocks of two plote. Lowa Agric. Expt. Sta, , Res. Bull. No. 418.

Table 1 . Most efficient symmetric cyclic PBIB deaign \(D\) forn treatmente and block size \(k\), and its efficiency \(E\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{n} & \multicolumn{2}{|c|}{\(\mathrm{k}=3\)} & \multicolumn{2}{|c|}{\(k=4\)} & \multicolumn{2}{|c|}{\(k=5\)} \\
\hline & D & E & D & \(\pm\) & D & \(E\) \\
\hline 6 & \((013)^{2}\) & - 784 & \{0123\} & . 895 & \{01234 \({ }^{1}\) & 961 \\
\hline 7 & \((013)^{1}\) & - 778 & \(\{0124\}^{1}\) & . 876 & \{01234\} & . 932 \\
\hline 8 & \(\{013\}^{2}\) & . 748 & (0125) & . 851 & \(\{01235\}^{2}\) & . 914 \\
\hline 9 & \{013\} & . 722 & (0134) & . 836 & (01235) & . 898 \\
\hline 10 & \{013\} & . 700 & \{0125\} & . 823 & (01245) & 888 \\
\hline 11 & \{013\} & . 676 & \{0125\} & . 817 & \(\{0.247\}^{1}\) & 880 \\
\hline 12 & \{014\} & . 673 & \((0137)^{2}\) & . 813 & \(\{01247\}^{2}\) & . 870 \\
\hline 13 & \((014)^{2}\) & . 667 & \(\{0139\}^{1}\) & . 812 & \{01269\} & . 863 \\
\hline 14 & (014) & . 670 & \(\{0146\}^{2}\) & .805 & \{01358\} & . 859 \\
\hline 15 & (015) & . 641 & \(\{0137\}^{2}\) & . 795 & (012410) & 853 \\
\hline
\end{tabular}
N. B. Superactipts

\footnotetext{
1, 2 denote respectively \(B I B\) and \(P B I B(2)\) designe.
}
 efficiencies from Bose et al. [1] and Clatworthy* [4].
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{n} & \multicolumn{2}{|c|}{kE3} & \multicolumn{2}{|c|}{\(k \times 4\)} & \multicolumn{2}{|l|}{k=5} \\
\hline & D & \(E\) & D & \(E\) & D & \(\pm\) \\
\hline 6 & R1 & . 78 & S2, R2 & .88, . 89 & BIB & .96 \\
\hline 7 & BIB & . 78 & B1B & . 88 & & \\
\hline 8 & R 5 & . 75 & SR 7 & . 84 & R108*, R109* & . 91.1 .90 \\
\hline 9 & SR12 & . 73 & RB, LSI & . 80, . 83 & LS10, R112* & .90,.89 \\
\hline 10 & T6 & .70 & S17, 72 & .79, . 79 & R114* & . 88 \\
\hline 11 & & & T12 & . 82 & B18 & . 88 \\
\hline 12 & & & R15 & . 81 & R116*, R117* R118* & \[
: 87, .87
\] \\
\hline 13 & Cl & .67 & BIB & . 81 & & \\
\hline 14 & & - & R24 & . 80 & & \\
\hline 15 & T28 & .66 & R27 & . 80 & & \\
\hline
\end{tabular}

Table 3. Selected cyclic deaigna with \(r>k\), corroaponding optimal two. asoociate PBIB deasgn, and efficiencies E.
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Sine } \\
(n, k, x)
\end{gathered}
\] & Cyclic denign & E & PBIB(2 design & \\
\hline 8, 3, 6 & \(\{013,014\}\) & . 756 & R50* & . 747 \\
\hline 8, 4, 5 & \{0134, 0246\} & . 850 & - & \\
\hline 9, 3, 4, & \{013, 036\} & . 713 & LS6 & 667 \\
\hline 10, 4, 6 & \(\{0147,0156\}\) & . 825 & T 3 & - 789 \\
\hline 10, 4, 8 & \{0126, 0148) & . 830 & R14 & . 823 \\
\hline 11, 3, 6 & (013, 026) & . 727 & - & \\
\hline 11, 3, 9 & (013, 014, 027) & . 730 & - & \\
\hline 11, 4, 8 & \{0134, 0248\} & . 823 & - & \\
\hline 13, 4, 8 & (0125, 0159) & - 807 & \(\mathrm{C}_{2}\) & . 797 \\
\hline 13, 5, 10 & \{01247, 01258\} & . 865 & - & \\
\hline 14, 3, 9 & (014, 0211, 019) & . 709 & - & \\
\hline 14, 5, 10 & (012410, 01710 22 & - 862 & - & \\
\hline 15, 3, 4 & (015, 0510) & - 682 & T23 & 673 \\
\hline 15, 5, 6 & [01257, 036912] & . 856 & T 38* & . 808 \\
\hline
\end{tabular}

\author{
Bernard Harris, J. D. Church, and F. V. Atkinson \\ Mathematics Research Center, U. S. Army \\ The University of Wisconsin
}

INTRODUCTION. A fundamental problem in statistical decision theory is concerned with establishing criteria for selecting a single decision procedure from the set of available decision procedures. In this paper, some criteria for optimality of statistical decision procedures are proposed and the consequences of these criteria are discussed. It is shown that these optimality criteria exclude a very general class of decision criteria, which contain as members, the minimax and minimax regret criteria, Finally, we note that these optimality conditions are consistent, in that there exists a decision procedure which satisfies all conditions, and a constructive procedure is given for determining such a decision procedure.

\section*{THE GENERAL STATISTICAL DECISION PROBLEM. A statistical} decision problem is characterized by a set of states of nature \(S\), whose elements will be denoted by \(s\), and a set of pure (non-randomized) decisions \(D\), whose elements will be denoted by \(d\). The statistician selects an element \(d\) from \(D\), and if nature is in state \(s\), a loss \(L(d, s)\) is incurred. An experiment is conducted and random variables \(X_{1}, X_{2}, \ldots, X_{N}\) are observed where \(X_{1}, X_{2}, \ldots, X_{N}\) has the probability distribution \(P\left(x_{1}, x_{2}, \ldots, x_{N} \mid s\right)\). We require that the distributions \(P\left(x_{1}, x_{2}, \ldots, x_{N} \mid s\right)\) be distinct for every \(s \in S\). Then, since the decision is to be made following the experiment, the decision procedure is a function \(\delta\) from the sample space to the space of decisions \(D\). Let \(\Delta\) be the set of such functions and note that d is then a random variable, i.e. \(\mathrm{d}=\delta\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{N}}\right)\). This risk function \(\rho(\delta, s)\) is then defined by
\[
E[L(d, s)]=\rho(\delta, s) .
\]

The statistician's objective is to choose \(\delta\), so that \(\rho(\delta, s)\) is small in some appropriate sense. It will frequently be desirable (in the sense of reducing risk) to augment the set of decisions to include the randomized decisions; and equivalently to augment the set of decision procedures \(\Delta\) to \(\Phi\) the set
of randomized deciaion procedures, whose elements will be denoted by \(\phi\).页 is the et of all probablity mixtures of element oi \(\dot{a}\).

The fundamental probiem of ntatiatical decision theory to to decide how to choose an element \(\phi\) ( \(\Phi\). We can interpret this as conaiding of two sub-probleme.
1. What conditions should be impoeed on andomized atrategy \(\overline{\underline{I}}\), so that we can regard strategies having thoee properties an being optimal?
2. Having decided which conditions are appropriate, how do we determine which elements \(\phi\) e satisfy those conditions? Note that for some sets of posible conditions which one may wieh to consider, it may happen that there are no meratugies in \(\boldsymbol{q}^{\boldsymbol{T}}\) which atiafy them.

We will make the formal assumption that, in edvance of the experiment, the atatistician is in "complete ignorance" of which elemant of \(S\) has beon ielected by nature. That do, that theso is no prioti thermaton available concerning the mechanism by which naturo whil selectun clement : S

The resulti atated in the ueceading efctiona have been etablished under the following hypotheses.

2. With probability one, the random vecter \(\left(X_{j}, X_{2}, \ldots, X_{N}\right)\) asiumes only a finite number of values.

Ata consequerce of the two hypotheres atated above, \(\Delta\) is a findte at, and we can label ite elementa as \(8_{1},{ }^{6}, \ldots, \ldots, 6 \mathrm{~m}\).

Deapite the reatrictive nature of these atamptions, theremea a ubstantial number of atatiatical problems to which they areapplicable, and in addition, many problema may be approximate by problems atisifying the above hypotheses. Aa an example of problam which atiafles the above restrictions, conalder the following dlluatration.

Let \(X_{1}, X_{2}, \ldots, X_{N}\) be independont and identically diatributed random variablea with
\[
p\left\{x_{i}=1\right\}=p_{j}, P\left\{x_{i}=0\right\}=1-p_{j}, \quad 0<p_{i}<1
\]
fordel, \(2, \ldots, N_{;} j=1,2\) and \(S=\{1,2\}\). Then, the sample space has \(2^{n}\) elements, If we let \(D=\{1,2\}\), then \(\Delta\) consista of all functions from the sample space to \(D\), and hence \(\Delta\) hat \(2^{2^{2}}\) clements, Hence, lof thie probe lom the above asumptions are all satisfied.

We can make this illustration more concrete by noting that the above is eseentially the problem of testing whether a coin is fair ( \(p, \frac{1}{2}\) ) or has probability ( \(p_{2}=\frac{3}{4}\) ) of landing head. We can interpret the two elemente of D as boing 1: Accept the hypothesis that \(=1,1.0, p=\frac{1}{2} ; 2 ;\) Accept the hypotheais that \(=2,1,0, p=\frac{3}{4}\), Thus, the didustration givon is an "abstraction" of a test of a simple hypothesis against a simple niternative in a coin toasing problem.

It is well-known, that as a consequence of the ubove two assumptions we can dentify the selection of a dactaion procodure \(\phi\) with the celoction of a point in a convex polyhedron \(C\) in Euclldasn n-ipiee, whare \(C l\) generated au the convex huld of the polnte \(\left(p\left(\delta_{1} \|_{1}\right), p\left(\delta_{1}, H_{2}\right) \ldots\right.\)
 \(1=1,2, \ldots m_{i} j=1,2 \ldots \ldots n\) by \(p\left(\delta_{j}, \ldots j\right)=a_{j j}\), then \(C=C(A)\), the convox hull of the row vectore of \(A\), Thus, we can use the natural relationehip betwean the matrix \(A\) and the polyhedron \(C(A)\), and freely chasaeterise all relovant apecti of the problem in terme of elther the matifix or the associated polyhedron, The reteder de referred to the book by D. Blackwell and M. A. Girahick [l] for the relevent details.

We now turn to the characterieation of deairable propertien for deciaion procedures.

THE CHOLCE OF A DECISION PROCEDURE It is convontent at this time to introduce some definitiona which will be needed in order te apactiy those properties of a decision procedure which will be considered desirable.

Definition 1. Two decibion procedure \(\phi_{1} \phi_{2}\) in \(\bar{\Phi}\) will be aeid to be equivalent if
\[
\rho\left(\phi_{1}, \|_{j}\right)=\rho\left(\phi_{2}, n_{j}\right) \text { for } j=1,2, \ldots, n
\]

Definition 2. \(\phi_{1}\) 14 ald to be dominated by \(\phi_{2}\) if
\[
p\left(\phi_{2}, a_{j}\right) \leq p\left(\phi_{1}, a_{j}\right), \quad j=1,2, \ldots, n
\]
with etrict inequa'ity holding for at least one \(j\)
Note that if \(\phi_{1}\) it dominated by \(\phi_{2}\), then rogardieis of which state of nature of has been colocted by nature, the ribk using \(\phi_{1}\) do alwaye at loastan large as that using \(\phi_{2}\), and hance \(\phi_{2}\) la always to be proferred ovar \(\phi_{1}\)
Dofinition 3. A deciaton procodura 0 de madd to be admiandale if in in not dominated by eny eloment \(\phi\). .

Since wa have proviously noted that domdrated utrategion are not deadrable, then clearly the election of a ctrategy chould be made from among those that are admiaable.
 Iftor -very paiz of decision procedurus \(\phi_{1} \phi_{2} \in\), with \(\phi_{1}\) not oquivalont to \(\phi_{0}\) and for overy real number \(\lambda, 0<\lambda<d\),
\[
p\left(\phi_{0}, \Omega_{j}\right) \nexists \lambda \rho\left(\phi_{1}, \Delta_{j}\right)+(l-\lambda) p\left(\phi_{2}, \Delta_{j}\right)
\]
for at loast ono index \(j, ~ l \leq j \leq n\).
The easential deciaion procedurot are thooe which are admiesible and in addition are also extrome point of the convex polyhodron \(C(A)\). Theso deciaiona can thon be used to generate all strategles which one may wion to conadder.

The characteriation of optimal deciaion procedures is equivalent to partitioning \(\Phi\) into two sete, \(K\) - the eat of decision proceduye which ere considered optimal, and \(\overline{\mathbf{\Phi}}-\mathrm{K}\), those which are non-optimal. Equivalonty; we can characterize \(Q(A) \subset C(A)\), the et of optimal vectors in Euchidean n-space.

We now propose eight properties which we believe will characterise a atisfactozy decialon procedure.
1. For every matrix \(A, Q(A)\) is a non-empty ubset of \(C(A)\).

Clearly this condition te osiential, aine if \(Q(A)\) is ampty, we have no dactation proceduras avallable for use.
2. If \(A^{\prime}\) can be obtained from \(A\) by a pormutation of the rown and columas of \(A\), then \(Q\left(A^{\prime}\right)\) can be obtained from \(Q(A)\) by applying the permutation on the columni of \(A\) to the coordinates of vectori in \(Q(A)\)

Condtion 2 say that the relabeling of the atater of nature, and the (pure) decialon procedures avallable to the atatiatician ahould not aflect the deciolon procedure employed.
3. Evary deciaion precadure with a ziak vector in \(Q(A)\) la admianble.

Thia condition da juat the obarevation that the ondy deciaion procedurna that ihould be conaldozad are the admiasble deciaion procedures.
4. \(Q(A)\) if convax.

The motivation for thit proparty is the following, \(1!\phi\) and \(\phi\) 'are both optimal, 1. A. have thair riak vectori in \(Q(A)\), then evary probabldity mixture of and \(\phi\) will also be optimal.
5. II
\[
A_{1}=\lambda A_{0}+\left[\begin{array}{cccc}
c_{1} & c_{2} & \cdots & c_{n} \\
c_{1} & c_{2} & \cdots & c_{n} \\
\cdots & \ldots & \cdots & c_{n} \\
c_{1} & c_{2} & \cdots & c_{n}
\end{array}\right]
\]
where \(\lambda\) is a positive real number and the vector \(\left(c_{1}, c_{2}, \ldots, c_{n}\right)\) in an arbitrary raal vector, than
\[
\theta\left(A_{1}\right)=\left\{\lambda \tilde{x}+\tilde{c}, \widetilde{x}, O\left(A_{0}\right), \tilde{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right)\right\}
\]

Thit requirement, includes, for example, invariance under the change of unita of the lons function, in particular, if \(\lambda=1\) and \(C_{j}=\)
\(-\min \rho\left(\delta_{i}, a_{j}\right)\), the matrix \(A_{0}\) is reduced to ita regretmatrix
\(\leq i \leq m\) \(1 \leq i \leq m\)
6. If \(C\left(A_{1}^{T}\right)=C\left(A_{2}^{T}\right)\), whers \(A^{T}\) is the transpose of \(A\), and in addition \(A_{1}\) can be obtalned from \(A_{2}\) by delating \(\left\{\right.\) columno from \(A_{2}{ }^{\prime}\) then \(Q\left(A_{l}\right)\) can be obtained by deleting the corresponding coordinatei from every vectory in \(\boldsymbol{O}\left(\mathbf{A}_{2}\right)\).

Property 6 Inciudes the column duplication propirty requised by othox writeri, such an \(J\), Minos [4]. The point of this property, de that unde: complete dgnorance, the deciaion problom for the atatiaticiar de eseantially the ume in both cases.
7. Lot \(I_{A}\) be the submatrix of \(A\) contesponding to easential dacinion procedurea in \(A_{1}\) Then, if \(A_{1}\) and \(A_{2}\) are two matriceit with \(C\left(E_{A_{1}}\right)=C\left(\Psi_{A_{2}}\right)\) we require that \(Q\left(A_{1}\right)=Q\left(A_{2}\right)\).

Thin onys that the eet of optimal decision procedures ehould depend only on those pure atrateglos whlch are candidater for good atrateglea. Wemlght noto that a risk vector \(x\) ( \(C(A)\) lt an esiential itrategy if and orly if lt undqualy minimisen the risk for come priori diatribution on the staten of nature.
8. If \(\left\{A_{j}\right\}\) is a equence of matricen with \(\lim _{j \rightarrow \infty} A_{j}=A_{0}\) and \(\widetilde{x}_{j}, Q\left(A_{j}\right)\) for overy \(\left\{\geq d^{\prime}\right.\) thon overy limit point of \(\left\{x_{j}\right\}\) is an olamont of \(\theta\left(A_{0}\right)\).

Thia lat condition is a continuity requiramant Thereede=' may be aided by noting, that if one statistical decision problem may be approximated by another atatiatical decialon prublem, then this property requires that optimal decision proceduree for the first problem are alio approximated by the optimal decision procedurei for the second problem.
R. D. Luce and H. Ralffa [3] give an extonaive diocunaion of aimilar eyatems of optimal properties. The reader'mattention is also apecifically directed to paper: by H, Chernoff [2] and J. Milnor [4], which deal with this problem.

CONSEQUENCES OF THIS CHOICE OF DESIRABLE PROPERTES Let \(v_{j} \min _{1 \leq i \leq m} \rho\left(\delta_{i}, z_{j}\right)\) and define \(\vec{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)\). Dofine
\(\|\left.\tilde{x}\right|_{p}=\left(\frac{n}{2}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, 1 \leq p \leq \infty\), where \(\|\tilde{x}\|_{\infty}\) in interproted as
sup \(\left|x_{i}\right|\). Then, let the clali of deciaion procedure: \(\Delta_{p}(1 \leq p \leq m)\) \(1 \leq 1 \leq n\)
apectiy as optimal all \(\widetilde{x}, C(A)\) which are admisible and satisfy
\[
\|\tilde{v} \cdot \widetilde{x}\|_{p} \leq\|\widetilde{v} \cdot \tilde{y}\|_{p}
\]
for all \(y, C(A)\). Then, the following theorem can be eatablished,
THEOREM, Far \(1 \leq p<\infty, \Delta_{p}\) atialien every property with the exception of property 6. \(\Delta\) atiaties every property except property 8.

The raader ohould note that \(\Delta_{d}\) ia Laplace's criterion and that \(\Delta_{\text {. }}\) da the minimax-regret criterion rentricted to admisaible decision proceduref. The fallure of the minimax ragret criterion to astiafy the above Hat of propertiea alio eatablishes that the minimas criterion doea not alway satigiy the liat of requiremarta given above.

Finally, we have the following theoxem.

HHEOKEM, There is at least one decision procedure atisfying all of the wbove properties.

The proof of thi last atatement is accomplished by exhibiting a constructive procesa, which we now sketch.

Let \(\left\{{ }_{j}\right\}, j=1,2, \ldots\) beamonotone non-increasing acquence of positive real numbers, with \(\lim _{j \rightarrow \infty} e_{j}=0\). Let \(d(\widetilde{x}, \tilde{y})=\operatorname{mup}_{1 \leq i \leq n}\left|x_{i}-y_{i}\right|\) and let \(Q_{1}=C(A), ~ D e f i n e ~ v_{1}^{(1)}=\min _{\tilde{x}, Q_{1}} x_{1}\) and \(\widetilde{v}=\left(v_{1}^{(1)}, v_{2}^{(1)}, \ldots, v_{n}^{(1)}\right)\), Then let \(z_{1}=\min d\left(v_{1}, \widetilde{x}\right)\). We now proceed inductively, For \(h z 1\), define \(\theta_{h+1}=\left\{\tilde{x}_{x}, Q_{h}: d\left(\tilde{v}_{h}, \vec{x}\right) \leq z_{h}+c_{h} z_{l}\right\} \quad\) where \(v_{i}^{(h)}={\underset{x}{x}}_{\min }^{Q_{h}} \quad x_{i}\) and \(\widetilde{v}_{h}=\left(v_{1}^{(h)}, v_{2}^{(h)}, \ldots, v_{n}^{(h)}\right)\) and \(z_{h}=\min _{\tilde{x}, Q_{h}} d\left(\tilde{v}_{h}, \widetilde{x}\right)\). Then, it can be shown that \(Q(A)=\overbrace{h=1}^{\infty} Q_{h}\) satisfies all of the requirementa.

One of the consequences of the above construction is that \(D(A)\) is a angle point \(T\). However, the apectifc single point obtained may depend on the choice of the sequence \(\left\{i_{j}\right\}\) employed,

The reader's intuition concerning the above conatruction may be alded by considering the procest an a limit of a equence of minimax. legret procedures, as follows:
\(z_{1}\) In the minimax regret deciaion procedure (more properiy, it lé the distance of the risk vector associated with the minimax regret decision procedure from \(\widetilde{V}=\widetilde{v}_{1}\) ). Then a new convex polyhedron \(Q_{2}\), is conatructed, containing the risk vector for the minimax regret dacision procedure, and the minimax regret deciaion procedure for \(Q_{2}\) is determined. The procesi is repeated and converges to a angle pulnt \({ }^{2}=Q(A)\).

\section*{REFERENCES}
[1] Blackwell, D. and Girshick, M. A. (1954). Ths Theory of Games and Statistical Decisions. Wiley, New York.
[2] Chernoff, H. (1954). Rational Selection of Decision Functiona, Econometrica, 22, 422-443.
[3] Luce, R. D. and Raiffa, H. (1957). Games and Deciaions. Wiley, New York
[4] Milnor, J. W. (1954). Games Againat Nrture. In Thrall, Coombe and Davis, Decision Processes, Wiley, New York, 49-60.

\title{
PATHOPHYSIOLOGY OF INDIAN COBRA VENOM
}

\author{
 Directorate of Medical Resenrch US Army Edgewood Arsenal \\ Chemical Research and Development Laborntorise Edgewood Areenal, Maryland
}

INTRODUCTION, It has been reported that the venom of the hooded cobra, Naja naja, has a detrimental effect on the reapiratory syetem of animals and man [1-3]. Soveral workers have attempted to fractionate the crude venom into its variou: toxic fractions [4,5], they being: (a) neurotoxic fraction, (b) a cardiotoxic fraction and (c) a non-apecific hemolytic iraction. Our study is concerned with the affect of crude cobra vencm on cortical electrical activity (EEG), respiration and the cardiovascular eyatem.

MATERIALS AND METHODS, In this atudy a total of 54 doge and 5 monkeya of the Cynapthecold group (sooty mangabey) were uecd. of the above totel, 44 adult mongrel dogs, anathetieed with eodium pantobarbital, \(30 \mathrm{mg} / \mathrm{kg}\), were used to atudy the offect of vanom on the reaplatory and cardiovancular ayateme, Femosal arterial preatuze was monitored uning a Statham atrain gauge and arart polygraph recorder. The phranic nerve was drolated at the lavel of the 5th cervical vertebra. The nerve was carafully dianected free of connective thasue and ectioned. Silver wire electrodes were connected to the can. tral end of the phrente from which nerve impuleen were than mondtored and amplified on a Tektronix obelloncope. Permanant recordingi wera obtained photographically. Both EKG and reepiratory rate were recorded in come of the animali uaing a Grabs polygraph recorder, All of the above animale wore administerad ( \(0.5 \mathrm{mg} / \mathrm{kg}\) ) lyophlifed crude cobra venom, which was reconatituted with normal aline and injocted directly into the femoral voin.

The 44 andmale were divided into the following groups: Group ! was comprised of aix animals used to study the overall affoct of the vanom on blood presaure and reaplration. Group II - Eight andmale ventiated with a Starling pump at respiratory arrest but prior to cardiovascular fallure. Tha resultant effect on survival time was noted. Group ill The remaining thirty animali were used to atudy opecific effecta of the

Ot the varom on the respiratory syotern, inciuding tine pinconic norve and diaphragm. Nerve impulsen over the central ond of the cut phrentc nerve were continuously observed. The peripheral end of the cut phrenic nerve and the diaphragm ware etimulated at intervale uaing a Gran model 54 stimulator. Diaphragmatic muscle contractions were recorded with a Greas Force Dieplacemant Tranaducer. The offect of venom, artiticial respiration and changes in \(\mathrm{pO}_{2}\) and \(\mathrm{pCO}_{2}\) rension on nurve ectivity were observed. Group IV compriand the remaining ton doge and five monkey: which were ueed to monitor the effect of crude cobra venom ( \(0.5 \mathrm{mg} / \mathrm{kg}\) ) on cortical electrical activity. Blood preseure and refpiratory effecte were also recorded. The cortical electrical activity was recorded uging bipolar silver electrodes which were alugacelly lmplanted directly on the dura of each hemiephere of the brain. Continuour electroencophalogrimi were recorded prior to and for up to 10 hours after the intravenour adminetration of the vonom,

\section*{RESULTS.}

Group. The effect of venom on reaplatozy rate and arterfal blood prenture li hown in Figurel. Within \(1-5\) minutes post-injection theri is an incrame in rosplyatory rate as woll as a oharp drop in blood proteure. Thin di followad by a progrosaiva decrase in respizatory rate and volume to complete argest at \(90-120\) minutes. During this time blood presare makes a partial rocovary remaining atable untlif rapiratozy fallure, at which time cardiovacislar collapee reaulta. The average eurvival time of thia group was 105 minutea.

Groun II. The cffect of venom on the artifically vantlated animal 1a shown in Figure 2. Thene andmale ware placed on a positive preacure respirater at time of reaptratory cenation, with a recultant increaso in aurvival time of from 4.6 houra. Howevas, all animala untimatoly devoloped arrhythmian and progressive hypotension which led to death Figure 3. The average eurvival time for thil group of animale wat 7.5 houra post-venom.

Group III. Changes in phrenic nerve action potentiale induced by cobra venomare thown in Figure 4. Action potentiali psior to venom are synchronoun corresponding to the inapiratory phase of resplration, increase in both rate and amplitude are noted within \(1-5\) minutes after
administration of venom. The central component of the nerve continues to discharge for from 5-10 minutes after complete cessation of respiration. During this period phasic discharges over the phrenic nerve become sporadic and irregular. These central impulses are eliminated by placing the animal on the artificial respirator. At any time prior to death impulse traffic can again be re-established by discontinuing artificial respiration, even though the animals do not breathe spontaneously. Phrenic impulses, as seen on the oscilloscope, continue with increasing frequency and amplitude until the animal either expires or is again ventilated.

The administration of 5 percent \(\mathrm{CO}_{2}\) to artifically ventilated animals initiates discharges over the phrenic nerve. This is quickly eliminated by removal of the stimulus. Phasic phrenic discharges can also be elicited in ventilated animals by the reduction of their tidal volume. Where such activity is noted the administration of 100 percent oxygen does not eliminate or appreciably alter their frequency or amplitude.

The terminal effect of venom on impulse traffic over the phrenic nerve is characterized by abnormal appearing bursts probably due to a combination of hypotension and central nervous system ischemia.

Spontaneous contractions of the diaphragm show a gradual decrease in force of contraction after venom ultimately leading to complete cessation of movement Figure 5 [6].

Group IV. The effect of crude cobra venom ( \(0.5 \mathrm{mg} / \mathrm{kg}\) ) on the EEG of the dog and monkey can be seen in Figure 6. Within \(30-60\) seconds following the administration of the venom there was complete loss of EEG, as well as corneal reflexes. There also occurred a sharp drop in arterial blood pressure shortly after cessation of all EEG activity. This hypotension was followed by a partial recovery. The effect of the venom on EEG was irreversible. As seen in Table I all animalsexpired, with an average survival time of 1.4 hours in the dog and 2.0 hours in the monkey.

DISCUSSION. This study has characterized the effects of crude cobra venom ( \(0.5 \mathrm{mg} / \mathrm{kg}\) ) on the peripheral respiratory mechanism, cardiovascular system and cortical electrical activity (EEG) of the dog and monkey. The respiratory effect is apparently due to a blockage of nerve impulses at the neuromuscular junction of the diaphragm. This
is supported by the fact that the respiratory center remains functional after venom. There are continued phrenic dischagres, although somewhat modified following the venom. The muscle of the diaphragm remains in tact in that it retains its response to stimuli. This same stimulation when applied to the phrenic nerve produces no response in the diaphragm. It appears, therefore, that transmission of impulses is interferred with at the level of the neuromuscular junction. The character of this block is unknown.

The primary lethal effect of cobra venom, respiratory arrest, was shown to be alleviated with the application of artificial ventilation. This, however, was a temporary phenomena in that all animals eventually developed cardiovascular failure. The etiology of this phenomenon has not been studied but may be related to the action of venom on motor end plates [7]. The effect of venom on cardiovascular hemodynamics may also be due in part to its strong hemolytic effect, producing a high serum potassium which may result in cardiac failure [6].

The cortical electrical activity of the brain of the dog and monkey has been shown to be severely depressed by the action of cobra venom. The exact action of venom is not clear but may alsc, in some way, be related to its blocking effect on neuromuscular transmission [8] .

SUMMARY. This study has dealt with the effects of cobra venom, Naja naja, on the respiratory system cardiovascular system and the cortical electrical activity of the dog and monkey. Results have indicated that death is primarily due to respiratory failure, which appears due to peripheral neuromuscular blockade. The character of this block is unknown. The respiratory center, phrenic nerve and diaphragmatic muscle fibers appear to be relatively unaffected by the venom. Survival time was increased several hours with artificial ventilation, however, all eventually developed cardiovascular difficulties terminating ir death. This effect may be due to the extended action of venom on the areas of the body.

In addition, venom has been shown to have a severe depiessant effect on the cortical electrical activity of the dog and monkey. The exact mechanism by which this effect is produced has not as yet been defined.

\section*{REFERENCES}
1. Ganguly, S.N. and Malkana, M.T.: Indian E. med. Res, 24: 281, 1936.
2. Sarkar, B. B., Mitra, S.R and Ghomh, B.N.: Indian F. med. Res. 30: 453, 1942.
3. Gautrelet, J., Halpern, N, and Cortigglant, E.: Arch. int. Phylol. 38: 293, 1934.
4. Mastes, R, W, P, and Rao, S.S.: E.biol. Chem. 236:1986, 1961.
5. Sarker, N.K.: Ann, Biochem, exper. Mod, 8ill, 1948.
6. Vick, J.A. Ciuchta, H. P. and Polley, E.H.: Arch. Int, Pharman codym. Vol. 153, No. 2: 424-429, 1965.
7. Chang, C.C. and Lee, C.Y.: Arch. 1nt. Pharmacodyn. 144: 214,1963.
8. Vick, J.A., Cluchta, H. P. and Polley, E. H.: Nature. Vol. 203, No. 4952:1387-1388, Sept. 26, 1964.

\section*{LEGENDS FOR ILLUSTRATIONS}

Figure l. The effect of cobra venom on arterial blood pressure and resplratory rate.

Flgure 2. Modification of venom effect by uet of artificial reaplrator,
Fhgure 3. The effect of cobra venom on cardiovascular function after reapdratory axfest and eubiequent artifical vantlation.

Figure 4, Changea in phasic phrenic diechargee produced by cobra venom. Effects of artilicial reapiration and adminiatra. tion of 5 percent \(\mathrm{CO}_{2}\) after cesaation of mpontaneous respira. tion are nhown.

Figure 5. Effect of cobra venom on blood pressure, phrenic nerve diachargea and diaphragmatic contractions. Note: Lois of diaphragmatic reapone to direct phrenic etimulation (PS). Dlaphragmatic renponiet to direct atimulation (DS) are retained.

Figure 6, The effoct of cobra venom on EEG and blood presture.

Effect of Cohra Venom on Cortical Electrical Activity
\begin{tabular}{lccc}
\hline \hline & \begin{tabular}{c} 
No. \\
of \\
animali
\end{tabular} & \begin{tabular}{c} 
EEG \\
change
\end{tabular} & \begin{tabular}{c} 
Average \\
survival \\
time \((h)\)
\end{tabular} \\
\hline Dogs & 10 & \(10 / 10\) & \begin{tabular}{c}
1.4 \\
\((0.3-2.2)\)
\end{tabular} \\
Monkey & 5 & \(5 / 5\) & \begin{tabular}{c}
2.0 \\
\((1.1-3.1)\)
\end{tabular} \\
\hline
\end{tabular}

Figure 1

Figure 2

Figure 3

pre-venom


Figure 4

Figure 5



Figure 6

\title{
COMPUTER ANALYSIS OF VISUAL DISCRIMINATION DATA
}

\author{
John C, Atkinson \\ Dizectorate of Medical Research, Chemical Research \& Development Leboretorice Edgewood Areenal, Maryland
}

One of the methoda used by the Directorate of Medical Research, Chemical Research and Development Lehoratories in evaluating the offect of various druga on en animal's performance is a viound dioctimination teat. This la a conditioned visual diacrimination between a triangle and a square in which monkeys are trained to avold or encape an electric shock by preseing a lever under the correct aymbol, the triangle. Thus, escesesful performance involves eensory perception (vision) decision making and motor activity (pressing the lever).

If a drug interfera with any of these activities the result will be a slowed or inaccurate periormance. An obvious corrolation can be uen betweon this tent and mary taske performed by a soldier during combat.

In our operation Rhesus monkeys are used as toat oubjecte. Tach monkey is placed in a sound attumated bosth which is anclosed to provent vieual as well as audio diatraction. The monkey te geatrained by a Wilinaki harnesa*[1]. By this meana the monkey to kept in front of a panel on which therescetwo ecreena at an equal level. At the beginning of atrial a triangle appeara on one ecreen and a aquare on the other. If the rnonkey proasea the lover under the triangle, the symbole dianppear from the ecreen and the trial is over. If he prosese the lever under the equare he receives a puniehment in the form of a mild electrical shock for twenty (20) milliseconda. This is called an incorrect roapones. If the monkey does not press the designated lever in an interval of five ( 5 ) eeconda he receives a negative reinforcement in the form of a mild electacel shock. This uhock continies for five (5) econde undesi sooner thut off by proseing the lever under the triangle. Presing the corract lever before the ahock ie conadered an avoldance response. Pressing the correct lover after the shock has atarted in consifered an encape raponae. Novar

\footnotetext{
* Patent Pending
[1] Frank T. Wdinski - Effects of Atropine Sulfate on Trained Monkeym Manuseriptin progrena.
}
pressing the correct lever is a no response. The time interval between the trial start and a correct response is considered response laiency. Pressing either lever when their is no figure on the screen is called an intertrial response.

The electrical equipment associated with trial presentation and the paper tape punch are rack mounted behind each booth. Two (2) loops of punched mylar tape on each rack control the presentation of the trials. The shorter loop initiates trial starts and is punched at random intervals in order that no discernible trial start pattern will be presented to the monkey. Circuity in the rack presents the triangle on the right or left screen in a random order with the restriction that the long term expectation of the number of presentations on the two sides be equal. The longer tape starts and stops the trial presentation tape. The monkeys are given five (5) sessions per day, 55 minutes each, with a five (5) minute break between sessions. No presentations are made for the remaining 19 hours. The monkeys live in the test booths for several days during testing. Food and water are provided adlibitum and the cage provides enough room for the monkey to lie down. A tray of absorbent material underneath the woven wire floor is provided for excretions.

A record of the experiment is made on punched paper tape containing six (6) information codes. When a trial is initiated the punch emits a "start of trial punch" and continues to run at 10 characters per second, emitting a code associated with latency until a correct response is made or the trial is automatically terminated. Separate codes are made for latencies following a right or left screen presentation. At present no distinction is made between right or left latencies upon computer analysis. A code is associated with the avoidance response, with the escape response and with an incorrect response. A separate code for right or left presentations is provided for an intertrial response. Since it is quite possible that two or three of the above things could happen in a single \(1 / 10\) second period, the code is designed for this. Forty-one separate codes may appear. Since the tape has 6 information channels it is possible to represent up to 64 codes thus 41 presents no coding problem. At the end of a session an end of session code is automatically punched.

At the end of a day the punched paper tapes are removed from the takeup roll on each equipment rack and sent to the computer group for analysis. During the 55 minute sessions an average of 104 trial presentations are made. To obtain frequent measurements of the progress of the monkey,
the data are conadered as 4 subgroups by the computer. Theso abgroups are termed segments. The first 3 segmenta contain oxactly 26 triale while the laat contain the number of triadn remaining.

Foreach eegment and for the eestion the geometric man of the trial latencies is computed. The computer determine each trial latency by counting the number of tape frames between the start of trial punch and an avoldance or encape punch. If neither occur in 100 tape framet this it considered a no responee, and the latency is taken an 10 seconds. The standard error is computed in terms of log latenctea for each eegment and oach tesaios. The \(95 \%\) fiducial limite are computed for the geometric mean latency for each segment and for each eseaion, and the moan and ditimate are printed. Analyais in terme of lociatencies is done to ratindente the akewness of the latenciea which realte from the phyaical lnability of the andmal to react in lese than 2 or 3 tentha of a econd, Thic would truncate the deviations on the minus aide. Deviations on the positive ade aye only truncated after the cut off time of 10 eeconda. Since the mean reaponse time is generally from \(1 / 2\) to 1 second the positive deviationa can be many times as large as the negative ones. Thia causes skewnest Copyersion of the latencies to their logarithmeminimizeathis sownes.

Session one of each day is considered a control run and any drug in administered between aesion one and two. A "t"test for significmence ds made between the mean latency in terme of logarithme of osch of the 4 subsequent seasions and the control run. The statement "not aigaficant, or eignificant at \(95 \%\), oy uignificant at \(99 \%\), or aignificant at \(99.9 \% 1\) if printed after each of the sealone \(2,3,4\) and 5 . The amm of all latencion for a session is printed at the end of each wesion, in addition to the analyais of the latencies the computer counta and printi for atch egment the number of occurrences of each of the following: avoldance responate eacape reaponses, incorrect responee done with the right hasd, incorrect responses done with the left hand, intertrial reaponees done with the right hand, intertrial responaen done with the left hand and the no reaponeen. No analysis is made of these figures at the preaent time.

A typical computer printed output de presented as Figure 1 . The numeric portion of this output da amuleneously punched into paper tape. Thie tape is to be converted into Holorith carda for storage and will allow iuture manipulation of the test reaulte.
rigure


\section*{FATIGUE-LIMIT ANALYSES AND DESIGN OF FATIGUE EXPERIMENTS}

\author{
A. H. Sond and R. E. Little \\ Oklahoma State University \\ Stallwater, Oklahoma
}

INTRODUCTION, It in generally accepted that there do as much, if not more ecetter asiociated with fatigue than with any other mode of fallure. Coneequently, fatigue presente a challenging problem to both the engineer and the statistician.

The purpose of fatigue analyses is to adduce information about the probabildty of relatively rare evente, not to deacribe the mean or model evont. Accordingly, the statistical problem in fatigue ia to eatablish the alternating strese amplitude that corsesponde to the optimum economic level of tolerable fallures.

A brief resume of the nature of fatigue il presented here before diecuasing existing deta and the design of future experimente.

NATURE OF METAL FATIGUE, Fatigue is caused by continued cycle strosing, A fatigue fallure can be recognized by fitting the two broken piecen back together and observing the original geometry, As indicated in Figurel, there is no evidence of grose plastic deformation prior to fallure by fatigue.

Fatigue cracke are the cumulative realt of micro-inelantic behavior occuring within the ubatructure of the metal. Electron meroncopy and Xeray diffraction etudies have hown:
(1) the physical mechandme associated with fatigue ara of a \(10^{-3}\) to \(10^{-7} \mathrm{~cm}\) obecrvation level, and
(2) theie phyaical mechaniame are intimately rolated to a ctual defecte (diolocations) in the theoretical atomic arrangement.

The atatiatical nature of fatigue ia intuitively apparent when fatigue is viewed an being caused by thene minute abatructural defects.


Figure \(1 \quad \mathrm{~S}-\mathrm{N}\) Curve
The lower the alternating stress amplitude the greater the over-all fatigue life, \(N_{\text {s }}\)

Thin intuitive view can be enhanced by conaidering an idealized material model. Firat, recall that metals are aggregate structurea of zandomy oriented crystallites (graina), and that individual cryatalltes are anisotropic (oxhibit differenct properties and etrengthe in different directione). Now conalder the static yield atrength of the metallic tenalle epecimen shown in Figure 2. It theoretically has unique yield atrangth onfy if ald crystallites are perfect and have the ame orientation. But, ainen the cryatallites of commezcial motala have defectandare randomly oriented, the cryatmaliten within thia apecimen must exhibit a strangth diatribution.

Observe in Figure 2 that only a fow cryotallites experience yielding at low atrese levals. But, under altarnating atreating (Figurel), these fow cryatallites yiedd firatin teneion, then in compsesion, thon again in tension, and so forth. This localizad reveried clip daformation will eventually lead to a fatigue erack in cryatallite where the alip magnitude (fatigue dntenalty) da hlgh. Thue, the rumber of cryotalidea that iesve a potontial fatigue crack indiation aitea as well as the fatigue latenaity at thease sites are directly related to the cryatallite atrength diatribution, Accordingly, fatigue ia a tatistical problem.

Fatigue fallure theoriea are in thalr infancy--etheory lage experimontal work. The prosent catierion for the relative evaluation of various statistical function is simply their goodnass of fit with regard to data. Figure 3 how the two types of fatigue data considared, mamely:
(1) data atated in terma of a life distribution.
(2) data itated in terme of atrongth diatidbution.

In turn, the over-all objective of all etatiatical analyoes of fatigue data is to devolop the P-S-N auriace hown In Figure 4.

Exiating data indicatoa that the P-S-N aurface is warped and cennot be deacribed in it entirety by a almply mathematical function. This paper treati a small but ofgnificant portion of this aurface-.-the atatiatical analyees of fatigue-limite in terme of a strength diatribution.


Tigure 2 Strangh Diatribution of Tensile Speciman Cryatallites.


Pigure 3 Fatigue Strength and Fatigue Life Distributiong The life diatribution is markedly ckewad to the right.



Tigure 4 P-S-N Surface
This murface completely definat fatigue fadlure.



\section*{PART I - ANALYSES OF EXISTING FATIGUE-LIMIT DATA}

COMMON DISTRIBUTIONS. The three common statistical functions applied herein to fatigue-limit data are listed rows 1,2 , and 3 of Table 1.

Typical fatigue-limit data appears in Table 2. Cbserve that the statistics recorded are simply the alternating stress amplitudes and the corresponding proportion of specimens failed prior to the given fatigue life.

These common functions are fitted to the observed statistics by using a minimum residual \(X^{2}\) approach. For example, the logistic function is fitted by minimizing the logit \(x^{2}=\Sigma \operatorname{Npq}(\ell-\hat{\ell})^{2}\), where \(\hat{\ell}=\hat{a}+\hat{\beta} \mathrm{s}\). Taking the partial derivative of the logit \(\chi^{2}\) with respect to \(\hat{\alpha}\) and \(\hat{\beta}\) and then setting these expressions equal zero; simultaneous sclution of the two resulting equations yields the expressions for the estimates listed in rows 4 and 5 of Table 1.

OTHER DISTRIBUTIONS. The goodness of fit of the common (twoparameter) functions can be evaluated by examining the goodness of fit for three-parameter functions, i.e., determining whether the third parameter is really required to describe the data.

Table 3 lists these three-parameter functions. The estimates listed in rows 4,5 , and 6 are establinhed by taking the partial derivative of \(x_{3}^{2}\) with respect to \(\hat{a}, \hat{\beta}\) and \(\hat{\gamma}\), respectively; setting the se expressions equal to zero, and then solving these three equations simultaneously.

The significance of the third parameter, \(\gamma\), can be now determined from the magnitude of
\[
F \approx \frac{x^{2}-x_{3}^{2}}{\left(x_{3}^{2} / x-3\right)}
\]
where \(F\) has one and (K-3) degrees of freedom. (At least five datum points are desirable for comparative residual \(X^{2}\) analyses.)
table 1. COMYON distributions
\begin{tabular}{|c|c|c|c|}
\hline & Normal & Logistic & Extreme Value Type I \\
\hline Probability Function & \[
P=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-\frac{t^{2}}{2}} d t
\] & \[
P=\frac{1}{1+e^{-(\alpha+\beta s)}}
\] & \[
P=1-e^{-e^{-(\alpha+\beta s)}}
\] \\
\hline Linear Transform & \(\boldsymbol{Y}=\boldsymbol{\alpha}+\boldsymbol{s}\) & \(l=\ln \frac{P}{Q}=\alpha+\beta s\) & \(g=\operatorname{lr} \ln \frac{1}{1-P}=-(\alpha+\beta s)\) \\
\hline Parameters & \(\alpha, \beta\) & \(\alpha, \beta\) & \(\alpha, \beta\) \\
\hline Estimate of \(\beta\) & \begin{tabular}{l}
\[
\hat{\beta}=\frac{\sum w \sum w Y s-\sum w Y \sum w s}{\sum w \sum w s^{2}-\left(\sum w s\right)^{2}}
\] \\
Weights, w, are listed in Ref. [4].
\end{tabular} & \begin{tabular}{l}
\[
\hat{\beta}=\frac{\sum w \sum w l s-\sum w h \sum w s}{\sum w \sum s^{2}-\left(\sum w s\right)^{8}}
\] \\
Where
\[
w=N p q
\]
\end{tabular} & \begin{tabular}{l}
\[
\hat{\beta}=-\frac{K \sum g s-\sum g \Sigma s}{K \sum i_{3}^{2}-(\Sigma s)^{2}}
\] \\
Where
\[
\mathbf{K}=\begin{aligned}
& \text { No. of Stress } \\
& \text { Amplitudes }
\end{aligned}
\]
\end{tabular} \\
\hline Estimate of \(\alpha\) &  & \[
\hat{\alpha}=\frac{\sum w l-\hat{\beta} \Sigma w s}{\sum w}
\] & \[
\hat{\alpha}=-\frac{\Sigma \mathbf{g}-\hat{\beta} \Sigma \mathbf{s}}{\mathbf{K}}
\] \\
\hline
\end{tabular}
table 2. results of rotating bending fatioug teste ON BAE 4340 gtERL. \(\left(N=10^{\circ}\right.\) cycles)
\[
s_{u}=190 \mathrm{kB1}, \quad K_{t}=2.6
\]
(Data by Cumainge, Stulan, and Schulte)
\begin{tabular}{|c|c|c|c|c|}
\hline Test & \begin{tabular}{l}
Straba Leval \\
a, kai
\end{tabular} & \begin{tabular}{l}
Number \\
Tented
\end{tabular} & Numbar
Pailed & Proportion Fatled \\
\hline & & & & P \\
\hline 1 & 32 & 110 & 1 & 0.0091 \\
\hline 2 & 35 & 60 & 3 & 0.0500 \\
\hline 3 & 38 & 30 & 6 & 0.2000 \\
\hline 4 & 41 & 20 & 14 & 0.7000 \\
\hline 5 & 42 & 20 & 16 & 0.8000 \\
\hline
\end{tabular}
thaly 3. ThREE-PARAMETER DISTRTBUTIONS
\begin{tabular}{|c|c|c|c|c|}
\hline & Mormal 1 & Logiatic & Extreme Value--Type I & Weibali \({ }^{(z)}\) \\
\hline Probability Punction & \[
P=\frac{1}{\sqrt{2 n}} \int_{-\infty}^{Y} e^{-\frac{t^{2}}{2}} d t
\] & \[
P=\frac{1}{1+e^{-\left(C+B_{z}+r^{2}\right)}}
\] & \[
P=1-e^{\left.-e^{-\left(x+B_{z}\right.}+y^{2}\right)}
\] & \[
P=1-e^{-\frac{(6-\gamma)^{\beta}}{\alpha^{\prime}}}
\] \\
\hline Hodified Transform & \begin{tabular}{l}
\[
Y=a+\beta_{1}+r_{2}
\] \\
where
\[
v_{2}=s^{2}=s^{2}
\]
\end{tabular} & \begin{tabular}{l}
\[
\ell=\alpha+b_{2}+r_{2}
\] \\
where
\[
\begin{aligned}
& R=\ln \frac{P}{1-P} ; \\
& 2_{2}=1_{1}^{2}=2^{2}
\end{aligned}
\]
\end{tabular} & \begin{tabular}{l}
\[
z=-\left(\alpha+\beta_{z_{1}}+r_{2}\right)
\] \\
uhere
\[
\begin{aligned}
& z=\ln \ln \frac{1}{1-P} ; \\
& =z^{2}=s^{2}
\end{aligned}
\]
\end{tabular} & \[
\begin{aligned}
& g=\alpha+B x \\
& \text { where } \alpha=\ln \alpha^{\prime} \\
& \text { and } x=\ln (5-\gamma)
\end{aligned}
\] \\
\hline Parameters & \(\alpha, B, \gamma\) & \(\alpha, B, \quad \gamma\) & \(\alpha, \mathrm{B}, \mathrm{Y}\) & a, B, v \\
\hline Estimate of \({ }^{\text {(b) }}\) & Weights, \(u\), are given in ref. [4]. &  & \[
\hat{\dot{B}}=-\frac{\Sigma s_{1} s_{2} \Sigma s s_{2}-\Sigma s s_{1} \Sigma s_{2}^{2}}{\left(\Sigma s_{1} s_{2}\right)^{2}-\Sigma s_{1}^{2} \Sigma s_{2}^{2}}
\] & \(\bar{B}=\frac{\kappa \Sigma_{g} x-\Sigma_{R} \Sigma_{x}}{k \Sigma x^{2}-(\Sigma x)^{2}}\) \\
\hline Estimate of \(\gamma^{(b)}\) &  &  & \(\bar{\gamma}=-\frac{\Sigma s_{1} s_{2} \Sigma G s_{2}-\Sigma s_{1}^{2} \Sigma G s_{2}}{\left(\Sigma s_{1} s_{2}\right)^{2}-\Sigma s_{1}^{2} \Sigma s_{2}{ }^{2}}\) & \(\gamma\) is estimated by an iterative procedure .see footnote (a). \\
\hline Estimate of a &  &  &  & \(\dot{\alpha}=\frac{\Sigma_{\underline{s}}-\underline{E} \Sigma_{X}}{\mathrm{~K}}\) \\
\hline
\end{tabular}

\footnotetext{
(a) Weibull's function is fitted using an iterative procedure, f.e., the correlation between \(g\) and \(x\) is maximized by iterating with regard to
} \(f=D 6 X, \sqrt{6^{2} x^{2}}\).
(b) \(B\) and \(Y\) are estimated by adjusting the various variables about their mears, i.e.,
\(c=E-\Sigma_{B} / X:\)
\(x=x-\Sigma_{X} / K\).
\[
: 3^{2} \sin -E_{1} \cdot c_{5}
\]

EXISTING DATA [1]. The mean-square error associated with fitting the two- and three-parameter functions appears in Table 4. Although th.e two-parameter functions are similar, the logistic and the extreme value functions fit the data slightly better than the integrated normal curve. See Figure 5. In turn, the three-parameter functions fit the data somewhat better than the two-parameter functions as shown in Figure 6. However the third parameter is required for only about one-half the data.

Table 5 emphasizes the similarities in the descriptive abilities of these functions. The respective (calculated) 10,50 , and 90 per cent responses are identical for practical purposes. These functions differ only at their tails as indicated by the extrapolated 0.1 per cent response. (These 0.1 per cent responses are computed only for illustrative purposes, and are not intended for use in design.)

Clearly, these data are not adequate to discern which function, if any, precisely describes the nature of the fatigue-limit. Consequently, further experimental study is required. The second part of this paper deals with the design of these tests.

\section*{PART II - DESIGN OF FUTURE FATIGUE-LIMIT EXPERIMENTS}

EXPERIMENT DESIGN. The design of fatigue-limit experiments must overtly reflect efficiency in terms of over-all cost. Thus it is imperative to exploit fatigue testing. In turn, two considerations are basic to exploitation of fatigue testing:
(1) the minimum number of specimens required (for testing at a given alternating stress amplitude) to attribute a prescribed level of confidence in the position of the datum point, and
(2) preselected spacing of the different alternating stress amplitudes (datum points) to describe the distribution in an efficient manner.

The following discussion shows how simple statistical concepts can be used to design more efficient fatigue tests.
table 4. response measured in teres of mean squake error
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Test } \\
& \text { Series }
\end{aligned}
\]
No.} & \multirow[t]{2}{*}{Materisi} & \multirow[t]{2}{*}{\begin{tabular}{l}
Ultimate \\
Strength \\
\(\mathrm{S}_{\mathrm{u}} \mathrm{ks}\) 1)
\end{tabular}} & \multicolumn{3}{|l|}{Two-Parametex Distributione} & \multicolumn{4}{|l|}{Three-Parameter Distributiona} \\
\hline & & & Integrated Normal & Logistic & \begin{tabular}{l}
Extreme \\
Value- \\
Type I
\end{tabular} & Integrated
Normal & Logistic & \[
\begin{aligned}
& \text { Extreme } \\
& \text { Value- } \\
& \text { Type I }
\end{aligned}
\] & Weibull \\
\hline (1) & \[
\text { SAE } 4330
\]
Uanotched & 130 & 1.145 & 0.872 & 0.794 & \(0.571{ }^{*}\) & 0.586 & 0.822 & 0.983 \\
\hline (2) & SAE 4340 Unnotched & 239 & 0.511 & 0.484 & 1.472 & 0.766 & 0.708 & 0.699 & 0.789 \\
\hline (3) & SAE 4350 Unnotched & 300 & 2.107 & 1.308 & 0.930 & \(0.002^{* *}\) & \(0.003{ }^{\text {*** }}\) & 0.491 & 0.971 \\
\hline (4) & \[
\begin{aligned}
& \text { SAE } 4350 \\
& \text { Notched (1) }
\end{aligned}
\] & 300 & 4.13 & 3.114 & 1.525 & 0.351** & 0.307** & \(0.0001^{* * *}\) & 3.241 \\
\hline (5) & SAE 4340 Notched & 190 & 0.533 & 0.132 & 0.127 & \(0.119^{*}\) & 0.084 & 0.133 & 0.136 \\
\hline \multicolumn{10}{|l|}{(1) \(X_{t}=2.6\)} \\
\hline \multicolumn{3}{|l|}{* Level of Significance for} & Pr \(<0.05\) & & & & & & \\
\hline \multirow[t]{2}{*}{} & " " & " & Pr \(<0.01\) & & & & & & \\
\hline & " " & " & Pr \(<0.001\) & & & & & & \\
\hline
\end{tabular}

TWO PARAMETER DISTRIBUTIONS


ALTERNATING STRESS AMPLITUDE - KSI

Figure 5 Typical Performance of the Two-Parameter Functions


Figure 6 Typical Performance of the Three-Paratiater Functiona
tasle 5(a). Comparison of stress anplitudes fredicted ay various distediutions for 20,50, and \(90 \%\) failudres.
The Integrated Normil, Logistic, and Extreme Value--Type I responies pertain to the respective two-parameter
functions. The response predicted by the Weibull function in typical of the responses predicted by the
function. The response predicted by the Weibull function is typical of the reaponaes predicted by the
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Material } \\
& \left(S_{u}\right)
\end{aligned}
\]} & \multicolumn{4}{|l|}{10 \% Response} & \multicolumn{4}{|l|}{\(50 \%\) Responae} & \multicolumn{4}{|l|}{\(90 \%\) Response} \\
\hline & Integrated Normal & Logistic & \begin{tabular}{l}
Extreme \\
Value-- \\
Type I
\end{tabular} & Weibull & Integrated Normal & Logiatic & \begin{tabular}{l}
Extreme \\
Value-- \\
Type I
\end{tabular} & Weibull (V) & Integrated Normel & Logiatic & \begin{tabular}{l}
Extreme \\
Value-- \\
Type I
\end{tabular} & Weibull \\
\hline \[
\begin{gathered}
\text { SAE } 4330 \\
(130)
\end{gathered}
\] & 62.61 & 62.85 & 62.96 & 62.72 & 69.11 & 69.09 & 69.76 & \[
\begin{aligned}
& 69.20 \\
& (-150)
\end{aligned}
\] & 75.61 & 75.34 & 74.10 & 73.63 \\
\hline \[
\begin{gathered}
\text { SAE } 4340 \\
(239)
\end{gathered}
\] & 82.05 & 82.14 & 81.73 & 81.99 & 89.51 & 89.53 & 90.95 & \[
\begin{aligned}
& 89.70 \\
& (72.2)
\end{aligned}
\] & 96.98 & 96.93 & 96.82 & 97.02 \\
\hline \[
\begin{gathered}
\text { SAE } 4350 \\
(300)
\end{gathered}
\] & 91.87 & 92.49 & 92.36 & 92.07 & 99.77 & 99.93 & 100.49 & \[
\begin{aligned}
& 100.26 \\
& (-300)
\end{aligned}
\] & 107.68 & 107.37 & 105.67 & 105.5 \\
\hline \[
\begin{gathered}
\text { SAE } 4350^{*} \\
(300)
\end{gathered}
\] & 54.15 & 54.53 & 53.86 & 53.24 & 60.78 & 61.03 & 60.99 & \[
\begin{aligned}
& 61.04 \\
& (-300)
\end{aligned}
\] & 67.42 & 67.53 & 65.53 & 65.04 \\
\hline \[
\begin{aligned}
& \text { SAE } 4340^{*} \\
& (190)
\end{aligned}
\] & 35.95 & 36.34 & 36.55 & 36.36 & 39.80 & 39.85 & 40.15 & \[
\begin{aligned}
& 40.09 \\
& (0.0)
\end{aligned}
\] & 43.64 & 43.36 & 42.45 & 42.67 \\
\hline
\end{tabular}
\(\cdot\) mocer \(x_{t}=2.6\)
TABLE 5(b). COMPARISOA OP THE (Extrapolated) STRESS ANPLITUDES
fardicted my the variour distributions por 0.1 z pailurr.
\begin{tabular}{llll}
\hline \begin{tabular}{c} 
Test \\
Series
\end{tabular} & Material
\end{tabular}

\footnotetext{
* The other three-parameter distributions are not listed bere because: (a) the third parancter is not needed, or then it is needed, (b) the 0.12 values correspond to "imaginary root \(\varepsilon^{\prime \prime}\) of the quadratic expression.
}

The minimum number of fatigue apecimens required fox testing at a given alternating atress amplitude may be deduced by considering the possible variation in the observed quantal response. For simplicity, assume that the specimen reaponse is described by a binomial diatribution that has parameters \(P\) and \(\sigma_{p}^{2}=\frac{P Q}{N}\) and a coefficient of variation of \(C . V .=\sqrt{\frac{Q}{N P}}\), Reliable estimates of \(P\) require a mall \(C . V\).-on the order of 0.2 . Thus, approximately 225 specimens ahould be tested to estimate \(P=0.1\). No such experimental result are available. Moreover it ia likely that none will be forthcoming in the immediate future because this test alone could cost up to \(\$ 10,000\). (A single fatigue machine running at 10,000 RPM night and day would take eight yoara to complete such a test if the desired fatigue life ia \(5 \times 10^{8}\) cycles).

Clearly, atatiatical efficiency muat be bacrificed in fatigue-limit teate. A coefficient of variation on the order of 0.5 is probably the beat that can be expected. Even then, approximately 400 epechmens are required to estimate \(P=0.01\). Thua, it appearithat the conficient of variation approach to deducing the number of fatigue epecimene required in testing will atiafy neither the atatiatician nor the materialis analyat.

It is possible to mitigate this problem somewhat by estimating the number of epecimena required by a diferent approach, vie., selecting N auch that the parameters have a negligible bias. The logiotic function 1s aelected here to illuatrate thle approach. (This selection ia made on the basie of ease of computation. .. there is relatively little difference in the descriptive abilities of any of the functione conaldared here within the probability ranger of exiating fatigue-limit data.)

The linear tranaform of the logiatic function in given by
\[
\begin{equation*}
\ell=a+\beta_{1}+c \tag{1}
\end{equation*}
\]
where \({ }^{\text {l }}\) the (random) error associated with \(\ell\). This transform is used to fit the loglatic function to the data. Howevor, to accomodate aubsequent graphical alution of \(\beta\), thit tranaform ia temporarily redefined as \([2,3]\)
\[
\begin{equation*}
\ell^{\prime}=\ln \left[\frac{P+\frac{1}{2 N}}{Q+\frac{1}{2 N}}\right]=a+\beta s+1 . \tag{2}
\end{equation*}
\]

The error and variance of l'are given by
\[
\begin{align*}
& \pm E\left(\ell^{\prime}-a-\beta s\right)= e^{-N p q}\left\{N p q \ln 3+\frac{1}{2!}(N p q)^{2} \ln 5\right. \\
&\left.+\frac{1}{3!}(N p q)^{3} \ln 7+\ldots\right\}-\ln (2 N p q)  \tag{3}\\
& V\left(q^{\prime}\right)=e^{-N p q}\left\{N p q(\ln 3)^{2}+\frac{1}{2!}(N p q)^{2}(\ln 5)^{2}+\ldots\right\}
\end{align*}
\]
(4)
\[
-0^{-2 N p q}\left\{N p q \ln 3+\frac{1}{2!}(N p q)^{2} \ln 5+\ldots\right\} \quad 2
\]
and the asymtotic mean and variance ere:
(6)
\[
\begin{align*}
& E\left(l^{\prime}\right)=a+\beta a  \tag{5}\\
& V\left(l^{\prime}\right)=\frac{1}{\mathbb{N} p q} .
\end{align*}
\]

Thus, it is clear that bian is a function of Npq. This relationehip it shown in Figure 7, where it can be eeen that a value of Npq of two or larger afforde unbiased estimates of the populations parameters. Accordingly, the minimum numbey of epecimens required at a given alternating strese amplitude can be read from Figure 8.

The spacing of the different alternating atrese amplitude should be ufilciertiy wide to attain an efficient eatimate oi \(\beta\). Conaidering the logistic function
\[
\begin{equation*}
\hat{\beta}=\frac{\ell_{1}^{\prime}-l_{2}^{\prime}}{l_{2}-!_{2}} \tag{7}
\end{equation*}
\]


Figure 7 Bias, Varianee, and Man Square Error for f



Figure 8 Minimum Number of Specimene Required to Eatimate the Population Parametera Zfficiantly. (C.V. ia coefficient of Variation)
where \(\ell_{1}^{\prime}>\ell_{2}^{\prime} ; s_{1}>s_{2}\); and \(\left(\varepsilon_{1}-s_{2}\right)=d\), the apacing.
Equation 7, restated in terms of d, beccmes
\[
\begin{equation*}
d=\frac{1}{\hat{\beta}}\left[\ell_{1}^{\prime}-\ell_{2}^{\prime}\right] . \tag{8}
\end{equation*}
\]

Now, selecting \(p_{2}\) such that
\[
\begin{equation*}
p_{1}-p_{2}>t \sqrt{\left(-\frac{p q}{N}\right)_{1}+\left(\frac{p q}{N}\right)_{2}} \tag{9}
\end{equation*}
\]
this dnequality can be rewritien as
\[
\begin{equation*}
p_{2}<p_{1}-t \sqrt{\left(-\frac{p q}{N}\right)_{1}+\left(\frac{p q}{N}\right)_{2}} . \tag{10}
\end{equation*}
\]

Finally, abstitution of Equation (10) into Equation (8) gives the deaired -pecing
(11) \(\quad d_{\min }=\frac{1}{\beta}\)

when Npq \(=2\). This spacing is shown in Figure 9. Note that the pacing can be qualitatively deduced from Equation 9 which indicates that \(p_{1}-p_{2}\) can approach zero as \(N\) becomes very large.

HYPOTHETICAL FATICUE TEST, Suppose that the materiala analyst has only 100 AISI- 1020 annealed steel specimens (Ultimate Strength \(=70 \mathrm{kej}\) ), but wishea to obtain the mont information concerning the atrength diatribution. Figure 10 suggests a trial value of the alternating etress amplitude



Figure 9a Relationthip Between \(P_{f}\) and \(P_{g}\) for Efficient Eatimation of \(B\).


Figure 9b Ralationahip Between \(\ell_{1}^{\prime}\) and \(l_{1}^{\prime}\) for Efficient Eotimation of \(A\). The values of \(l_{!}^{\prime}\) and \(l_{1}^{\prime}\) correspond to \(p_{2}\) and \(P_{g}\), reapectively, Obeerve that \(d_{m i n}>1.75 / \hat{\theta}\).


Figure 10 Trial Value for Pirat Preliminary teat
Diagram taken from \(S_{N}{ }^{-} S_{U}\) relationship developed
for steel by Bullens [5].
that corresponds to a \(P\) of roughly 0.50 to 0.75 . Using this trial value, 10 specimens are tested at \(S_{a}=42 \mathrm{ksi}\) and it is observed that 7 specimens fail prior to \(10^{7}\) cycles. Setting \(d=5 \mathrm{ksi}\) (based on Figure 10), the second test is conducted at \(S_{2}=37 \mathrm{ksi}\). In this second test, only 4 of the 10 specimens tested fail. The required spacing in subsequent tests can now be determined by estimating \(\beta\) (using Equation 7). In this hypothetical test
\[
\hat{\beta}=\frac{\ell_{1}^{\prime}-\ell_{2}^{\prime}}{S_{1}-S_{2}}=0.225 .
\]

Thus, \(d\) is taken as 7 or 8 and the number of specimens is established as indicated in the following table:
\begin{tabular}{cccc} 
Test & Alternating & pestimated by & Corresponding \\
& Stress & graphical solution & Adjusted \\
& Amplitude & \((\hat{\beta}=.225)\) & for
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Fourth & 23 & 0.04 & 52 & 45 \\
\hline Third & 30 & 0.15 & 16 & 15 \\
\hline (Second) \({ }^{\text {a }}\) & (37) & (0.40) & (10) & (10) \\
\hline (First) \({ }^{\text {a }}\) & (42) & (0.70) & (10) & (10) \\
\hline Fifth & 49 & 0.90 & 22 & 20 \\
\hline (a) prelim & ry & & 110 & \[
100
\] \\
\hline
\end{tabular}

Note that Npq is greater than two for the preliminary tests. Actually 10 specimens are not required in either case. The weights can be calculated as these preliminary tests progress and the next test can be started when the respective Npq approaches two. Then, the "saved" specimens can be tested at the most appropriate stress amplitude at the conclusion of the over-all test.

The over-all test data are then listed in tabular form (Table 2) and fitted as outlined in Part I (Tables 1 and 3.)

SUMMARY. Fatigue data will always be somewhat limited because fatigue tests are expensive. Thus, it is necessary to design fatigue tests to be statistically more efficient. This means that care must be given to the preselection of the number of specimens tested and to the spacing of the respective alternating stress amplitudes considered.

Present analyses can only compare the relative performance of different functions with regard to goodness of fit of limited ranges of data.

\section*{REFERENCES}
1. H. N. Cummings, F. B. Stulen, and W. C. Schulte, "Investigation of Materials Fatigue Problems," Wright Air Development Center, WADC Technical Report 56-611, (March - 1957).
2. F. J. Anscombe, "On Estimating Bionomial Response Relations," Biometrika, 43, 461-4, (1956).
3. S. E. Hitchcock, "A Note on the Estimation of the Parameters of the Logistic Function, Using the Minimum Logit \(X^{2}\) Method," Biometrika, 49, 250-¿52, (1962).
4. D. J. Finney, "Probit Analysis," Cambridge University Press, London, (1952).
5. D. K. Bullens, Steel and Its Heat Treatment, Vol. 1, P. 157, Fifth Edition, J. Wiley \& Sons, New York, (1948).

\section*{PERTINENT REFERENCES}
6. "A Tentative Guide for Fatigue Testing and the Statistical Analysis of Fatigue Data," American Society for Testing Materials, Special Technical Publication No. 91-A. (Supplement to Manual on Fatigue Testing, ASTM, STF, No. 91 (1958).
7. E. J. Gumbel, "Statistics of Extremes," Columbia University Press, New York, (1958).
8. A. M. Freudentnal, and E. J. Gumbel, "On Statiatical Interpretation of Fatigue Tests "Proc. Roy. Soc., A, 210, 309, (1953),
9. W. Weibull, :A Statiotical Repreaentation of Fatlgue Falluree in Solids," Trans. Roy. Inst. Tech. Stockholm No. 27 (1949).
10. A. H, Soni and R, E, Litt", "Statiatical Analysis of Fatigue Limits Using the Logistic Function \({ }^{r \prime}\) The University of Michigara, Industry Program of the College of Engineering, IP-634, (Oct. 1963) Also see, "Materials Research and Standards," Vol. 4, No. 9, pp. 471-473. September 1964.

\title{
GETTING REGRESSION ANALYSIS IMPLEMENTED*
}

\author{
w. H Ammann \\ U. S. Army Aviation Materiel Command St. Louin, Missouri
}

INTRODUCTION. The idea for this presentation came as a result of unsuccessful attempts to solve an analytical problem which was complicated by reatrairtsplaced on the collection of data for analysis. Figure 1 . This situation is not an isolated one but generally occurs when much data are already being gathered and they are not sufficient for the analyais desi.ed. Alteration of the existing data collection system just to satisfy the needs of a supposedly isolated and parochial study effort is generally not fearible. So, it is necessary to consider the existing data limitations as part of the problem to be solved.

In this cast, the success of the analytical effort depends on the relationship which is established between the kind and amount of information which is needed to define the problem and the kind and amount of information avallable for solving the problem as defined. When this problem-defining and solving effort doea not provide meaningiul resulta (Figure 2), three questione are appropriate: has the problem been inadequately defined because of ignorance about the nature of the opera. tion being conaldered?; are the data collected not sufficient in kind and/or quantity to establish the desired relationshipa?; and are the data being inadequately analyzed because of the ignorance of the analyats? It is generally necesary to assume that data collected for analyais are not erroneous to the extent that they would be the principal cause for the lack of meaningiul analytic renults because it is seldom feasible to double check the correctness of the data.

ONE EXAMPLE. To Hluatrate the foregoing remarke, a recent atudy will nowbe deacribed. To appreciate the need for this atudy, it is necessary to point out that AVCOM's supply effort relates to keeping Army aircratt from being too often deadined due to a lack of parts (commonly referred to al an Equipment Deadined for Parts or briefly an EDP aituation) while incurring no more than the least contenecesary to obtain such résults. It was recognized that this effort might be made more
*The views contained herein have not been approved by the Department of the Army, and represent only the views oi the author.
effective and/or efficient if it could be analytically demonatrated how the rate, at which aircraft are EDP, varies with various oupply actions and ultimately with the costs associated with each action.

A study to obtain the desired analytical results was developed.
a. Concept: It was recognized that the total time that airciaft are EDP is affected by how often an EDP situation occurs and how long it takes to satisfy each EDP situation. Therefore, the tudy was naturally subdivided into a study of the frequency of occurrence of EDP situations and a study of the time required to satisfy EDP situations. Immediately, obstacles were encountered.
(1) Frequency of Occurrence: How often each aircraft is EDP during the month ia not reported. However, when an aircraft in EDP for a part which is aupposed to be furnished by AVCOM action and that part cannot be obtained below depot level, an EDP requisition is sent to \(A V C O M\). Therefore, there are at least as many instances of alrcraft EDP as there are valid EDP requisitions received at \(A V O C M\) and it is operationally known that there are more such occurrencea aince aircraft are EDP for parts which are supplied without AVCOM action. The term valid EDP requisitiona is needed because those for common hardware parts which could not render an alreraft operationally deadined were excluded as being invalid.

Fortunately, the total time that each aircraft ia EDP is reported to AVCOM. So, it was hoped that an estimate of the amount of change which might be achieved in the days aircraft are EDP by a supply action which might reduce the rate at which EDP requieition occurat AVCOM by a particular amount, might be obtained by regression analyses by aircraft type. The results of these analyaes will be indicated later.
(2) Time to Satisfy: Meanwhile, attempts to relate the time to satisfy an aircraft EDP situation encountered similar data constraints. When an aircraft EDP eltuation is satiafied without an AVCOM action in response to an EDP requisition, the time required to obtain such satis. faction is unknown at AVCOM. So, it was necessary to aisume that such instances have a random effect on the total time aircraft are EDP in a month. Then, a meaningful correlation might be discovered between the time aircraft are EDP and the time required to satisfy an EDP requisiton at AVCOM.

Also, the complete time required to satisfy an EDP requiaition at AVCOM could not be easily obtained. The time that was obtained is the time between the date an EDP requisition is initiated and the date on which materiel release at the appropriate depot is confirmed.

In other words, the time consumed after a material release confirmation is sent to AVCOM and until the part arrives at the site of the particular EDP aircraft was not readily measurable and had to be left out of the study. Again, it was necessary to assume that the effect of this time or the total time aircraft are EDP is zandom and that a meaningful correlation might exist between the time aircraft are ind and the principal portion of the time to satisfy an EDP requisition measured in this study.

On the other hand, since an EDP reguisition does not identify the specific aircraft which is awaiting the part, it is posaible that an EDP aircraft hat been made eerviceable by using a part obtained from tome other source ach as off of crash damaged aircraft and yet the pertinent EDP requiaition is not aasisfied. It was hopefully aesumed that such instances might compensate for some of the excluded shipping time.
b. Sample Selection: By now, hopes to obtain fruitful analytical reaults were waning and yet the worse was yet to come. Since it was desired to obtain some useful results as soon as posible and the information about aircraft days EDP is available only on monthly basia, edx montha data or six data points were chosen for analyais. After the data were gatinered, there was reason to belleve that data concerning all EDP requisitions received by \(A V C O M\) during the first three months observed had not been obtained. Further, it could not be determined whether the sample EDP requisitions could be validly claimed to be a representative sample. Therefore, only the latter three month's data were uned for regression analysis. At this point, the problem being described can be summarized as shown. Figure 3 .
c. Results Obtained: Approximately nine month elapied before efforts to obtain the preferred analytical results were oxhausted. A total of 14 aireraft types were considered. Needless to say, the results obtained were disheartening even though not unexpected.
(1) Frequency of Occurrence: Tablel contains estimates of the
 requisitions received at \(A V C O M\).
(2) Time to Satisfy: Table 2 containe estimates of the relationship between the days aircraft are EDP and the major portion of the time to satisfy EDP requisitions at AVCOM.
(3) It is recognized that three data points are not enough to preclude apparentiy conflicting results from occurring because of ampling variations but there were no more reliable data points which could be used to reduce this likelihood. However, the occurience of both posdeive and negative correlation coefficient is dieconcerting. In the case of negative ones, it is implied that a reduction in aircraft daya EDP can be obtained by increasing the frequency of occurrance of EDP inatancea or by taking more time to atisfy EDP requisitiona. Both of these implicationiare unreasonable. With the hope that the three queationable data points might be good ones, regression analysea uning six pointi were made but no more reasonable reault wore obtained.
(4) To preclude some wrong implications, it muat be pointed out that thi nine month atudy effort did not consume much more than one analystime. The atudy time had to take six months to obtain idx monthe of data. Additional time wes required to allow EDP requisitione received near the end of the sixt'i month to be matiafied. In addition, several by-product analysea were made with the data collected. In other worde, it would be unfair to conclude that thi analytical effort was not worthwhile. Also, it seeme that it could be concluded that the desired results were not obtained for at least the first two of the reacons listed on Figure 2 ; namely, inadequate representation of the problem and innufficient data collected both in type and quantity.
d. Question: However, the question atlll remaina; What can be done to increase the effectiveness of the analytical effort baing expended in the manner just described?

ANOTHER EXAMPLE, Before attempting to present any abjective answers to the question just atated, another analytical problem area can be used to suggest that there is a related question that also neede answering. This analytical problem is suggested by a review of budgeting and funding practices.

It is not necessary to know the exact budgeting and funding procedures to appreciate the features which are useful here. Figure 4.
a. The preparation of a budget must be in accordance with guidance furnished by higher headquarters. This guidance has usually been different from year to year. This situation implies that a generally sound budgeting procedure has not yet been determined.
b. In addition, forecasted budget requirements are never completely honored. Somewhere up the line, limitations are set below the accumulated forecasted requirements and the se limitations are somehow partitioned and passed down to each organization involved.
c. Further, each organization's general objective is to make commitments nearly equal the limitations appropriate at the time of each within year review. In other words, if there is only a mid-year review, commitments should be nearly equal to one half of the annual limitation otherwise it might be concluded that even less funds will suffice and limitations will be decreased accordingly. As a result of these within year reviews, particular fund limitations for the remainder of the year are revised; sometimes upward and sometimes downward.
d. At this point, it is well to hypothesize the logic which supports this budgeting and funding practice. It is initially assumed that no one can forecast an organization's budgetary requirements more accurately than the organization itself. Therefore, forecasted requirements are made by each organization and these are the starting point for the budgeting cycle. Since fund limitations have always been set less than forecasted budget requirements, organizntions find it expedient to compensate for such reduction by somehow inflating estimates of requirements. It seems reasonable to assume that the extent of this inflation cannot be accurately determined by the people who set limitations otherwise budgetary guidance could proclude such inflation and forecasted requirements could be honored. Also, since the practice of setting limitations less than forecasted requirements has never been considered responsible for serious operational shortages, the practice has been continued without fear.

It seems that this strategic exercise must persist until it has been definitely learned that the allotment of different quantities of funds leads to the achievement of recognizably different accomplishments. Only then can superiors choose the desired amount of accomplishments and fund accordingly. Thus, the question arises:

How can the regression analysis effort, necessary to establish a sound relationship between money allotted and results achieved therebv, be obtained?
1. ONCLUDING REMARKS. In review, it seems that the two ituations just describedindieats a need for a way; of improving the effectivenese and efficiency of the analytical effort trying to do regression analysis in a subordinate command such as AVCOM; and of getting regression analyais implemented in a higher headquarters in the budgeting-funding aubject area.
a. In the firat case, it is possible to take the viewpoint that certain analytical efforts should be dropped when data collection restraints are too restrictive or that it is worthwhile to expend some effort to remove as many of those restraints as necessary. However, the potential value of certain analytical reaulta is auificient to preclude their being dropped untll it has been indisputably demonatrated that they cannot be obtained in opite of existing conatraints. Also, the removal of data collection reatraint to atisfy local analytical needi ie practically imposible ance existing data collection and reporting requirements have been entranced by tradition and munterity masiurea in the manpower area prectide the collection and reporting of additional data for local analyese that have not been epecifically required by higher hendquarters. Therefore, it seeme that some outside, authoritative intervention is needad if the aituation confronting local, investigative analyaen is to be improved,
b. In the eecond case, since budgeting guldance is iurninhed by higher headquarters and munt be adhered to by aubordinate commands, dt ceeme that regresaion analyais muat be attempted and found successful at the top before the official authorization to do auch analyaia at the bottom can be expected and before the cooperation necesary to have a reasonable chance at being auccesiful with this offort will be fortheoming.

In other words, it seema that it ds not enough to hire analyste at all levela in the Department of the Army and then allow orgenizational tradition to rasder auch analyete ineffective and inefifeient. The situation could be ifgnificantly Improved If (Figure 5) the Office of the Chief of Research and Developinent (OCRD) would form a Survey Tenm of renowned analyata who would visit eolected Army headquarters to determine the extent and kind of analytical program that eemo appropriate for each organizational
level and would then prepare a recommended Department of the Army program. Then, OCRD could coordinate this prngram an app=apaiaía and direct that the coordinated program be done. This type of poalive action seems a bit extreme and probably imposable to obtain and so a solicitation for a less extreme improvement action and one more within the authority of a subordinate organization is hereby extended.

Tablel
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { A/C } \\
& \text { Iype }
\end{aligned}
\] & A/C Day: EDP va Qty of EDP Rqn: & Correiation Cocficienta \\
\hline OH-13 & \(y=1921+0.777 x\) & 0.927 \\
\hline UH-19 & \(y=397+2.610 x\) & 0.903 \\
\hline CH-2! & \(y=-419+21.177 x\) & 0.933 \\
\hline OH-23 & \(y=2701-0.890 x\) & -0.120 \\
\hline CH-34 & \(y=399+5.472 x\) & 0.621 \\
\hline CH-37 & \(y=588-5.447 x\) & -0.68 3 \\
\hline UH.1 & \(y=1572+1.679 x\) & 0.415 \\
\hline 0.1 & \(y=519+20.107 x\) & 0.783 \\
\hline U-6 & \(y=908-2.543 x\) & -0.347 \\
\hline U-8 & \(y=533-2.403 x\) & -0. 713 \\
\hline U-1 & \(y=391-1.582 x\) & -0.281 \\
\hline OV-1 & \(y=468+2.610 x\) & 0.976 \\
\hline CV-2 & \(y=362-0.522 x\) & -0,649 \\
\hline CH-47 & \(y=885-5,567 x\) & -0.997 \\
\hline \(y=10\) & of aircraft day EDP & \\
\hline
\end{tabular}

Table 2
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { A/C } \\
& \text { Type } \\
& \hline
\end{aligned}
\] & A/C Day EDP va Qty of EDP Rqn: & Correlation Coefficiont: \\
\hline OH.13 & \(y=1923+0.126 x\) & 0.998 \\
\hline UH-19 & \(y=567+0.103 x\) & 0.394 \\
\hline \(\mathrm{CH}-21\) & \(y=509-0.046 x\) & -0.088 \\
\hline OH. 23 & \(y=3194-0.457 x\) & -0.662 \\
\hline CH-34 & \(y=482+0.382 x\) & 0.777 \\
\hline CH. 37 & \(y=377-0.220 x\) & -0.883 \\
\hline UH-1 & \(y=6913-1.551 x\) & -0.388 \\
\hline 0.1 & \(y=3151-6.119 x\) & -0.498 \\
\hline U-6 & \(y=950-.184 x\) & -0.465 \\
\hline U.8 & \(y=56+0.530 x\) & 0.999 \\
\hline U-1 & \(y=302+.116 x\) & 0.681 \\
\hline OV-1 & \(y=431+0.132 x\) & 0.619 \\
\hline CV-2 & \(y=359-0.023 x\) & -0.728 \\
\hline CH. 47 & \(y=690-0.092 x\) & -0.566 \\
\hline \multicolumn{3}{|l|}{\(y=10\) dn tesme of alrcraft daye EDP} \\
\hline \multicolumn{3}{|l|}{\(x=\) Is in termi of the pincipal quantity of dayo required to satiofy EDP requiaitions received at AVCOM} \\
\hline
\end{tabular}
Problem To Be Solved Analytical
Problem
Plus
Data Collection
Restraints
FIGURE 1
No Uneful Solution Obtained
Inadequate Representation of Problem?
Inoufficiont Data Collected?
Inadequate Analyele?
FIGMRE 2
Sample Problem
Esfect of Supply Aetione on
Acft EDP Rato
Plu:
Inexact EDP Frequency
Unknown Extent of EDP Change
Due to Non-AVCOM Action
Unknown Shipping Time
Only Thyee Reliable Data Pointa
FIGURE 3

\author{
 \\ Guidance Change: Annually \\ Limitations Less Than \\ Forecasted Requirements \\ Commit Full Limitations \\ Within Year Reviews \\ Revised Limitations
}

FIGURE 4

\section*{For Consideration}

PROFESSIONAL TEAM:

Conduct Survey
\&
Describe Aralytical Program
CHIEF, RESEARCH \& DEVELOPMENT:

Require Program Be Done
FIGURE 5

\section*{ASSESSMENT AND CORRECTION OF DEFICIENCIES IN PERT}

\author{
 \\ Institute of Statistics \\ Texa: AbM Univeraity \\ College Station, Texae
}
1. INTRODUCTION. As is well known, the technique known under the name of PERT (Program Evaluation Review Technique) is concerned with a 'project' comprising a large number of succosaive 'activitien' which are arranged in a complex 'network' (see e.g. Figure 2), Each activity 'commences' at a particular 'point' of the network but not until all activities 'terminating' at that point are completed. Specifically, PERT is concerned with computing the expected time required to complete all activitien of the project: -Assuming that the time taken to complete a particular activity follows a specified diatribution of completion times, the total time needed to complete the project the a called 'critical time' in a atatiatical variable and ia given by the total of completion time along the 'cxitical path'. i. e. along that sequence of activities in the network which for a given sample of completion time a takes longeat to reach every point along ita path. The expected value of this caitical timo is the expected time to complete the project.

Now it in well known that PERT does not compute the corroct critical time as definad above but inatead uses for each activity the avarage completion time and then determine: a unique and fixed critical path at the equence of activities for which the am oi the expected completion times is at a maximum. Critical path determination by this method may be badly misleading and may result in a berious underestimate of the expected time to complete the project. Moreover, it may also lead to erroneous information on the identification of 'exitical activities', i, e, activities which are crucially reaponable for the delay in completion of the project.

Whilat this ehortcoming of PERT has been known from ite dnitiation and the above method is deliberately used as an approximate short-cut, we do not think that the magnitude of the bias in this short-cut method is fully appreciated. Indeed dt can be mhown (see e.g. section 8) that under certain circumatances PERT may underestimate the correct expected completion time by \(50 \%\) or more. Moreover, for a general network, PERT provides the correct anawer only under the (completely uncealiatic) aseumption that there ie estentially no variability in the completion times for each activity.

One of the objectives of this paper is therefore to eliminate this bias from PERT; in fact, we shall provide a method of computing the probability distribution of criticaltimes and thereby supply not only the correct value of its expectation but likewise of its variance and percentage points.

It may rightly be argued that our exact method of critical path analysis is based on the assumed distribution of completion times for each activity, and that there is usually a notorious lack of information on such timings. This point is well taken. However, we feel that the deplorable lack of input data should not excuse us from using a method accurately utilizing at least all the available information. Moreover and: more positively our method enables the analyst who is uncertain about the completion times of (say) a particular activity in the network to evaluate the effect of altering his assumptions about that activity on the critical time and path. We consider the provision of such a 'sensitivity analysis of PERT' as an important contribution to planning a project 'under uncertainty'.

Mathematically our method utilizes the following devices: -
(a) A classification of networks into different types depending on their degree of involvement and complexity.
(b) An operational calculus by which the distribution of critical times will be derived by numerical analysis, notably numerical integrotion. This method will provide the solution to our prob-lem for the basic types of networks.
(c) A Moi Uarlo procedure providing an approximate solution for the more involved networks.
(d) Analytic solutions for particularly simple networks and particularly simple distributions of completion times. These are mainly used for illustration purposes.
2. GENERAL DEFINITIONS AND 'UNCROSSED NETWORKS'. In order to provide a mathematically rigorous theory of PERT analysis for networks, it is necessary to introduce certain definitions and concepts. We therefore give the following definitions and explanations: -
2.1. An activity is represented by one or two line segments in the network (see Figure 1). It 'commences' at one of its ringed end points and 'terminates' at the other ringed end point, the 'direction of the time flow being indicated by the arrow. The numbering of the activities is explained in 2.3.
2.2. A Network Point: - These are represented by ringed points in Figure 1. A network point represents any stage in the network occurring at the beginning and/or end of an (or several) activity(ies) (e.g., event 5 in \(\mathrm{F}_{\text {igure }} 1\) is a network point since activity \((7 ; 2,5)\) terminates and activities \((10 ; 5,8)\) and ( \(11 ; 5,8\) ) commence at that stage of the network.
2.3. Codes: - 'Network points' carry a serial number (ringed in Figure 1) identifying them. The order of the numbering is immaterial at this stage. An activity also carries a 'serial number' (preceding the ; ) but also the number of the network point at which it commences followed by the network point number at which it terminates. Thus (7;2,5) denotes activity No. 7 commencing at point No. 2 and terminating at point No. 5.
2.4. Two consecutive activities are defined as activities numbered ( \(t ; i, j\) ) and ( \(s ; j, k\) ) i.e., the first terminates at point \(j\) whilst the second commences at point \(j\).
2.5. A Path from \(i\) to \(j\) is a 'sequence of consecutive activities' starting at point \(i\) and finishing at point \(j\) (e.g., activities \((2 ; 0,2),(7 ; 2,5)\) and \((10 ; 5,8)\) starting at point ( 0 ) and terminating at point ( 8 )).
2.6. A complete path - A path starting at the beginning and finishing at the end of the project (e.g., the path formed by ( \(1 ; 0,1\) ), \((5 ; 1,4),(9 ; 4,7)\) and \((15 ; 7,10)\) ).
2.7. A Universal Point - A network point through which all complete paihs pass (the only universal points in Figure 1 are at 0 and 10).
2.8. Consecutive Points - Point \(j\) is consecutive to Point if both \(j\) and i are universal and if all paths starting from i pass through j before passing through any other universal point (if any).


FICURE 1
NETWORX NOTATION
2.9. Sets of first order branches - Consider the set of all paths commencing at a universal point \(i\) and terminating at a universal point j consecutive to i . Subdivide the set of these paths into exhaustive subsets such that any two paths in different subsets have only points \(i\) and \(j\) in common but any two paths in the same subset have at least one more point in common. (This is always possible since we may place, if necessary, all paths in the same subset.) These mutually exclusive subsets are called 'lst order branches.' (e.g., in Figure 1 the paths formed by connecting points \(0,1,4,7,10\) form the first lst order branch, the paths formed by connecting points \(0,2,5,8,10\) the second lst order branch and the paths formed by \(0,3,6,9,10\) the third lst order branch.) If there are only two consecutive points in the network (i.e., the start and the end) and there is only one set of paths as described above, we shall term it a zero order branch. For example, Figure 3 would constitute a single zero order branch, so would a single activity network.
2.10. Sets of 2nd order branches - Consider a particular lst order branch starting at a universal point \(i\) and ending at a universal point \(j\) consecutive to \(i\) and regard it as a separate network. Apply definitions 2.1 to 2.9 to this network, then any lst order branches of this first order branch are called second order branches, but any zero order branch of a first order branch still be called a lst order branch. (e.g., in Figure 1 activities \((2 ; 0,2)\), and ( \(3 ; 0,2\) ) connecting points ( 0 ) and (2) are two second order branches belonging to the second first order branch. Likewise ( \(7 ; 2,5\) ) is a second order branch belonging to rhis first order branch.
2.11. The uncrossed network - If by the repeated application of definitions 2.1 to 2.10 all individual activities in the network can be identified as different \(k\)-th order branches (for some \(k \geq 0\) ), the network is said to be "uncrossed." (e.g., the network in Figure 1 is uncrossed and all activities are recognized as different 2nd order branches. The network in Figure 2 is likewise uncrossed with some of the individual activities being 2nd order branches and some 3 rdorder branches. However, the network in Figure 3 is crossed - there being only one ( 0 order) branch comprising all activities.


FITHKE 9
AN EXUHFLI OP A "CROSSED" NETMORK
"WIEALRIDNA HRILXI:"
3. CROSSED AND MULTIPLE-CROSSED NETWORKS. The arrangement shown in Figure 3 , called the 'Wheatstone bridge': has heon giunted in the previoua ection a an example of a crossed network. It conalate of the five activities \((1 ; 0,2),(2 ; 0,1),(3 ; 1,2),(4 ; 1,3)\) and \((5 ; 2,3)\). If now each of these five single activities is replaced by an uncroated network, as defined in Section 2, we shall reach a notwork called a hat order crossed network, More epecifically we define a O-order crosied network as an uncrosaed network in which at least one of the 'activitios' la replaced by a Wheatatone bridge (nee Figure 3). With the help of thia network we define a \(t^{\text {th }}\)-order crosied network (for \(t \geq 1\) ) as a oorder croseed network in which any 'activity' may be replaced by a \(k^{\text {th }}\)-order croaned network with \(0 \leq k \leq t-1\), but at least one activity is replaced by a ( \(t-1\) ) torder crossed network.

Although mont practical situations of activity netwark will be recognized at a th order crosied network for some order t. There are cloarly quite amall networks which do not belong to this category, as for example the network shown in Figure 4:
4. OPERATORS FOR EXACT SOLUTION BY NUMERICAL ANALYSIS. Conaider first the case of an uncroised network as defined in cection: 2 . It la easy to show (see e. g. Section 5) that an uncrossed network can be bult up fromindividual activiriea by two basie operations which can be briefly described at follow: -

Operation ri - Placing activities in parallel
Operation S: - Placing activities in everies
These basic operationa, well known concepta in electric circuit theory, are dlluatrated in Figuren 5 and 6 .

Corresponding to thase two basic natworki we now devolop the aimple equation for the c.d.f. (cumulative diatribution function) of the critical time in the two basic networks.
a. Parallel activities: -

Denote the iesial number of the \(k\) activities in parallel by sto that \(1=1,2, \ldots, k(k=5 \mathrm{in}\) Figure 5) and denote the time required to

rioune 4
BeANOE OF A NETNORK NOT IDENTIFLABLE
A! th onder crossed natwork


YIOURE 0
TWO ACTIVITIES IN ARIRS
 then the critical time \(t\) for this simple network ia clearly given by \(t=\max i_{s}\) so that the c.d.f. of tis obtained as

1
(1)
\[
F(t)=P_{r}\left\{\max t_{s} \leq t\right\}=\prod_{0=1}^{k} F_{(t)}
\]
b. Two activitios in series.

Denote the times required to complate the two activities by \(t_{d}\) and \(t_{2}\) respectively and thois e.d. \(£\), by \(F_{1}\left(t_{1}\right)\) and \(F_{2}\left(t_{2}\right)\). Then the critical time for this simple notwork ia clearly given by \(t=t_{1}+t_{2}\) so that the \(c, d, f\), of tis obtained as
(2)
\[
F(t)=\int_{0}^{F} F_{1}\left(t-t_{2}\right) d F_{2}, \text { where } F=F_{2}(t) \text { and } t_{2}=F_{2}^{-1}\left(F_{2}\right)
\]

It nould be noted that equations (1) and (2) yiold the c, \(d_{1} f, E(t)\) for the beale network from the c.d. f. 'm of the indindual ectivitien. Therefore, these baic networke can aubsequently be regarded as 'Individual activities' and ontorod at \(\mathrm{F}_{\mathrm{f}}\left(\mathrm{t}_{\mathrm{f}}\right)\) in aubaequent opera tions of the type (1) and (2), It le obvious therefore that by repeated application of (1) and (2) the \(c, d_{1} f\) of an uncrosesd network ouch an in Figure 1 and Figure 2 can be obtelnad. The operational logic for this ia given in uection 5 .

Next we deal with lat order eroased networki and to thil and must evaluate the e.d. \(f\), of the critical time tor the Wheatatone bridge (figura 3). Denoting by \(t_{1}, \ldots, t_{5}\) the completion timni for tho five activities
 we obtain by elementary probabllity calculue the \(c, d, f\) of the critical time tasa am of thret integrale an nown in (3) below: -
(3)
\[
\begin{aligned}
& F(t)=\int_{j}^{a} \mathrm{dF} \sum_{2} \int_{j}^{p} \mathrm{dF} \int_{j}^{c} \mathrm{dF}, F_{1}\left(t t_{2}+t\right) F_{4}\left(t t_{5}+t\right) \\
& +\int^{a} d F_{2} \int^{d} d F_{4} \int^{f} d F_{5} F_{1}\left(t_{2}+t_{4}-t_{5}\right) F_{3}\left(t_{4}-t_{5}\right) \\
& +\int d F_{1} \int^{h} d F_{5} \int^{j} d F_{2} F_{3}\left(t_{1}-t_{2}\right) F_{4}\left(t_{1}+t_{5}-t_{2}\right)
\end{aligned}
\]

Where \(t_{i}=F_{i}^{-l}\left(F_{i}\right)\) are the inverse functions of \(F_{i}\left(t_{i}\right)\), all variablea of integration are the \(F_{i}\) with integrations atarting at \(F_{i}=0\) and anding at pointe 'e' to 'j' given by
(4)
\[
a=F_{2}(t), b=F_{3}\left(t-t_{2}\right), c=F_{g}\left(t-t_{2}-t_{3}\right)
\]
\[
\begin{aligned}
& d=F_{4}\left(t-t_{2}\right), f=F_{g}\left(t_{4}\right), g=F_{1}(t) \\
& h=F_{g}\left(t-t_{1}\right), j=F_{2}\left(t_{1}\right),
\end{aligned}
\]

It should be noted that the three terma in (3) correapond to the three mutually exelualve and exhauative aituation (a), (b), (c) shown below
(a) Cxitical path \(t=t_{2}+t_{3}+t_{5}\)
(b) Critical path \(t=t_{2}+t_{4}\)
(c) Critical paith \(t=t_{1}+t_{g}\).

The general case of a t-th order crosed network is Inally covered by repeated application of the Rbove operatore at shown in eection 5 .
5. THE COMPUTAT DONAL LOGIC FOR t-th ORDER CROSSED NET-

WORKS. The computer logle ihown in Figure 7 wlil compute the \(c\) d.f. of the critical time in at-th order crosied network from c, d. f. s of the complation times of the draduldual activities,

PIUUN ;
THOW DLNGRAM IOR \(t^{\text {th }}\) ORDER CROSSED NETWORXS


The inftialieation of the computation conaiste of loading the code numbose uinii activities (s;j,k) (see section 2, 3) as woll as readying the tape giving ell theirc. \(d, f\), functione. If the aeried mumer of the activity is immaterial we shall use the symbol (.ij,k). In the course of the operationa certein code numbera will be deleted and the retained code number activitiea have thair c.d.f.' modified. We hould give the following explanatione of so: \(\therefore\) of the operatione involved: -

Box \(1 ; 2\) An sctivity ( \(; j, k\) ) with the current erial number and starting at \(j\) and ending at \(k\) (see 2. 3) is prucessedi.e. if \(j k a r e\) recorded and the aemociated \(c, d, f, F_{1}(t)\) loaded.

Bose 3 A test iamade ato whether there is a 2ndactivity etarting at \(j\) and ending at \(k\)

Box 4 If the 2nd activity itarting at \(j\) and onding at \(k\) hes a code ( \(\left.u_{i} f, k\right)\) and a c. \(d, f\), of \(F_{2}(t)\), replace \(F_{1}(t)\) by \(F_{1}(t) F_{2}(t)\) and dolete ( \(\left.u ; j, k\right)\) from the list of code numbers and \(F_{2}(t)\) from the tape of \(c . d . f\), functione.

Box 12 If the \(c, d, f\), functiona of activition \((b ; j, k)\) and \((\cdot ; k, n)\) are denoted by \(F_{1}(t)\) and \(F_{2}(t)\) respectivaly we raplace \(F_{1}(t)\) by \(\int_{0} F_{1}\left(t-t_{2}\right) d F_{2}\) with \(F=F_{2}(t)\), and \(t_{2}=F_{2}^{-1}\left(F_{2}\right)\) replace the code \(\left(s_{i} j, k\right)\) by ( \(s ; j, n\) ) and delete code \((1 ; k, n)\) and \(F_{2}(t)\).

Box 9 A teat is made as to whether the current activity ( \(\mathrm{B}_{\mathrm{i}} \mathrm{j}, \mathrm{k}\) ) and Assoclated activitien \((1 ; j, m),(1 ; m, k),(1 ; m, n)\) and \((1 ; k, n)\) can be ddentified with the activities \((1 ; 0,2),(2 ; 0,1),(3 ; 1,2),(4 ; 1,3)\) and \((5 ; 2,3)\) of the Wheatstone bridge of Figure 3 .

Box 10 The five c.d.f. function involved on the Wheatstone bridge opezation are combined in accordance with equation (3). The renulting \(F(t)\) replacea \(F_{1}(t)\), the code ( \(\left.B ; j, n\right)\) repleces \((s ; j, k)\) and all other coden and \(c\). \(d, f\). are deleted,

The proof that the logic of the flow diagram in Figure 7 does indeed realult in the computation of the c. d.f. of the critical time for any multiple-crosied network is given in the Appendix.
h. MONTE GAPIO SOITYIONS FOR TUE MORE COVGFLEX NET-

WORKS. As is well known and as was mentioned in section 1 the currently used PERT algorithm determines that path in the network for which the total of average completion times is a maximum. Now imagine that we apply the same algorithm to a random sample of completion timen, each drawn from the distribution relevant to its activity. The 'critical time' so computed will be a single random variable from the distribution of critical times defined in section 1 and discussed in section 5. A large number of repetitions of this computation will therefore yield a Monte Carlo solution of the distribution of critical times. Such a solution will therefore be available for any network (and not just for multiple crosied networks).

Suppose now we are faced with a complex network (not neceasarily multiple crossed). If we apply the algorithm of ection 5 to such a network we would in general reduce the number activity - codes by the operations ' \(\pi\) ', 'Conv' and 'Bridge'. However, if the network is not multiple crossed we shall not be able to reduce the network to a eingle activity. As soon as we find therefore that no zeduction of codes has occurred on too consecutive cycles we would output the roduced network activitica and ansociated c, d.f.'a so that it can be solved by Monte Carlo as indicated above. The operational calculus of section 5 will considerably reduce the complexity and extent of the network 00 that the oubderquent Monte Carlo calculations are much almplified.

An IBM 709 computer program performing the above Monte Carlo computation of the diatribution of critical timea was propared by L. L. McGowan (1964), in his M. Sc. theals at the Inatitute of Statiatica at Texas A\&M Univeraity.
7. SENSITIVITY ANALYSIS AND GUIDE TO MANAGEMENI, The previour iectione have been concerned primarily with the eitablishment of the mathematical, atatintical, and logical aspects of determining the diatribution of completion times for a project. The methoda daveloped have further applications in analysing the effecta of making apecified changes in the original network and thereby providing guldea for management actions. Basically, the analyses moar roadily recognived in this area are concerned with (i) assesaing the impact of modifying the distribution of apecified activitiea (e.g., a change in their average completion times); (2) aseearing the impact of modifylrg blocka of
activities; (3) comparing two or more networks to eatablish the organiention of the project forminimum time, minimim enet. \(==\) = \(\quad\) ine winer opidiausn; and (4) assesting progresa or remaining time foz the comple. tion of the project.

All of the above assessments are permisable under the mothod developed in this paper. In fact once the logic in eatablithed on a computer, all four assessmente are posible with the came computer programe. It is only neceseary to vary the input and certain problem parameters eccording to the asseamment required.

It should be pointed out that the afsessmente gained via this logic will be more comprehensive than a imilar PERT asiesament. With the prea sent logic the impact on the c.d.f. of project complation times will be obearvable. Thie meane that our anadivity analyain providea atimates of the impact of production vchedule changes on the axpectad completion time but also of the impact on ite variance, percontiles, conidence intervals and other statiatical parametere.
8. SPECIAL CASES OF BIAS DEMONSTRATION, Aa noted earlier bias enters the olution of network problem due to inadequate treatment of the atatiatical conadderationi and approximate logic. in order to demonatrate this bian a low axamplea will be worthwhile for diluatrative purposes. The following examples whl also demonatrate the dependence of the eolution on the distribution form and network componition.

EXAMPLE 1, Consider the caio where \(k\) activities aro in paralled ails llluatrated in Figure 5. Asaume furthar that atech \(t_{i}\) to a random variable with exponantial e. d. \(\mathrm{f}_{\text {, }}\)
\(F_{i}\left(t_{j}\right)=1=0^{-\lambda_{1} t_{1}}, 1=2,2, \ldots, k_{1} t \geq 0\),
The c, d.f. of themaximum time t io then givon by.
\[
\begin{equation*}
F(t)=\prod_{\{=1}^{k}\left(1-e^{-\lambda_{1} t}\right) \tag{3}
\end{equation*}
\]

If \(\lambda_{1}=\lambda\) for all 1 , the moan of \(F(t)\) is given by
(6)
(7)
\(\mu=\frac{1}{\lambda} \quad \underset{i=1}{\vdots} \frac{1}{i}\).
Clearly, since all \(\lambda_{i}=\lambda\) and hence all \(\mu_{i}=\mu^{+}=1 / \lambda_{\text {, }}\), the conventional PERT olution under thi: condition in \(\mu^{*}=1 / \lambda\), The bias is then given by
\(\mu \cdot \mu^{*}=\mu^{*} \sum_{i=2}^{k} \frac{1}{i}\)

Thus if there are only kra activitiea in parallel the blas will be \(\mu^{*}-\mu^{*}=\mu^{*}\left(\frac{13}{12}\right)\) or more than 100 percent of the PERT solution, whilet with \(k=8\) activities in parallel the bias la 1.718 or \(172 \%\). It should of course be remembered that the above bine spplien to the particular networkin Figure 5 which, in general would only conatitute a mall section of the large network. Therefore, the \% bias in the PERT computed expected completion timei will not, in general, beas large as the above example would indicate. However, PERT will alway make undereatimates of the critical time interval: (see e.g., Fulkerson (1962), p. 808) to that the blaves from individual network eections will cumulato.

EXAMPLE Z: Consider the same network as above but with the denalty functione given by \(f\left(t_{i}\right)=\frac{1}{c} i \quad 0 \leq t_{i} \leq c\).
in this case
(8)
\(F(t)=(t / c)^{k}, \quad 0 \leq t \leq c\)

The mean value of \(F(t)\) Ie then
(9)
\(\mu=\frac{k c}{k+1}\)

The PERT solution would be the mean value of \(t_{i}\) which is \(\mu^{*}=\frac{c}{2}\). The bian in found to be
\(\mu-\mu^{*}=\frac{k-1}{k+1} \mu^{*}\)

In this example the bias is at least bounded in that it cannot exceed \(100 \%\) of the PERT solution. It does increase very rapidly however, with the number of activitien in parallel. If \(k=4\) as in the firat example the bias is \(60 \%\) of \(\mu *\), when \(k=8\) it is \(78 \%\).

EXAMPLE 3. To illustrate the dopendence of the solution upon the form of the densition involved conalder the following network.


FIGURE 8
SHIET OF CRITICAL PATH WITH FORM OF DISTRIBUTION

In this case suppose that the activities repseasted by the \(t_{i}\) have expected time as followe: -
\begin{tabular}{|c|c|}
\hline Artirrity & Evpented Time \\
\hline \(t_{1}, t_{2}, t_{3}\) & 9 \\
\hline \({ }_{4}{ }_{4}\) & 11 \\
\hline \(t_{E}, t_{6}\) & 10 \\
\hline \({ }^{\text {t }} 7\) & 3 \\
\hline \(\mathrm{t}_{8}\) & 6 \\
\hline \({ }^{1} 9\) & 4 \\
\hline
\end{tabular}

Evperter Time
9

11

3

6

4

If conventional PERT is applled, path ACE will be critical with a sum of expected times of 17 unde. On the other hand, if the densities of the \(t_{i}\) are exponential and the operational logic of this paper is applied the expected time for \(A B E\) is \(191 / 2\) unite, for \(A C E 17\) units, and \(A D E 19\) units, thus making \(A B E\) critical. This distribution dependence is further emphasized if the \(t_{i}\) are rectangularly diatributed. In euch a case the expected time for \(A B E\) is \(161 / 2\) units, and for \(A D E 171 / 3\) units, thus making \(A D E\) critical.

The above examplea, though somewhat elementary and academic, demonatrate the consequences of inadequate statistical treatment and approximate logic. The impact can be even more pronounced and the consequences more significant in a realistically large program pian.
9. RELATION TO THE EXISTING LITERATURE ON PERT. MOAt of the published work on PERT is concerned with computations based on the mean value of the completion times and deliberately ignores the bias discussed in this paper. There are undoubtedly situations when thia bias is not serious notably in networks when
(a) There is a low degree of parallelism in the activities of the network and most operations are sequential and/or
(b) When mome activities are carried out in pargllel but ore =f itatia has a considerably longer expected completion time than the others parallel to dt.

It will be agreed that the above conditions are not usually satisfied. In view of the very axtensive, detalled and coatly computatione involved in the currently practiced PERT analysis it is surprising that co litele atteation has heen paid to the bian affecting them.

We believe that whilat the possibllity of a matiatical approach (auch as is here presented) has sometimes been considered (see e.g., Depariment of the Navy (1958), Appendix A, and Fulkerson, D. R. (1962))it hai apparently been regarded ai leading to unsolvable or unmanageable mathomatica. Indeed, Fulkerson (1962) who fully recognimes the exintence of the biat (see page 308) and offers an interesting approximate method to correct it, state (page 309): - "Since a typical PERT network may involve hundrads and thounande of arce, the precine calculation of expected critical path lengthe would, of course, be out of the queation. " Now it must of course be remembered that the mathod of numerical analyain here offered gives the colution only for the apecial case of multiple-croseed notworke an here defined. We do not claim that the networks ancountered in practice will usually belong to this category, However, if the algorithm described in rection 5 in upplied to general network it will reduce it conaiderably ao that the dietribution of the critical time for the reduced network can be obtained by the Monte Carlo procedure deacribed in cection 6. Moreover, we could andarge the cope of the numarical method of section 5 by adding (to the Wheatstone bridge operation for the natwork in Figure 3) aimilar basic cronsed networks (ouch as that of Figure 4) and incorporate a calcula. tion of the critical time (aimilar to that given by equation (3)) for auch configurations. The featibility and economy of auch udditione in under investigation.

Since we only give a hand full of referencea in eplte of the vant diterature on the ubject, we should perhapa include the extenaive Bibliog. raphy (Bolling Alr Force Base (1963)) in our list.

\section*{RFPERENCES}

Bolling Air Force Base (1963), PERT Orientation and Training Canter, Bibliography, PERT and Other Management Systema and Techniques

Fulkeraun, D. R. (1962). "Expocted Critical Path Lergthe in PERT Networkn, " Rand Corporation, RM 2075, P.R., Santa Monica, Californa.

McGowan, L, L. (1964), Monte Carlo Techniques Applied to PERT Networks. M. Sc. Thesis in Statiatica, Texas A\&M University.

Navy Spectul Project: Office (1958). PERT Summary Report, Phase I. (Gov't, Printing Office, Catalog No. D217, 2, p. 94/958.```


[^0]:    This document contains blank pages that were not filmed

[^1]:    *. This paper was presented at the conference. It does not appear in these Proceedinge.

[^2]:    \% This paper was presented at the conference. It does not appear in these Proceedings.

[^3]:    "This paper was presented at the conference. It does not appear in these Proceedings.

[^4]:    * We anticipate that this paper will appear in the Proceedings of the Eleventh Conference on the Design of Experiment

[^5]:    $?$

[^6]:    *References to the Army do not imply that the Navy and Air Force did not also make progress.

[^7]:    *Ballistic Research Laboratories Publications.

[^8]:    "The Army was not new to Wilks. In 1948 he was awarded a Joint ArmyNavy Certificate of Merit for hie war-time contributions to anti-submarine warfare and the solution of convoy probleme.

[^9]:    *Later, a permanent group was formed.

[^10]:    *In writing for the Journal of the Royal Statistical Society, July, 1964, the noted Britieh Statistician, E. S. Pearson says, "... it is hard to think of any mathematical statistician of the past 30 years who combined to a greater extent an excellence in the field of theory with a pows of inspiring confidence in government agenciea, national research inetitutions, and educational authorities, as a wise couneoller in pracrical affalre."

[^11]:    Prepared in connection with work on Contract AF 33(615)-1737, Office of Aerospace Research, United Staten Air Force, Wright-Patterson Air Force Base, Ohio.

[^12]:    !

[^13]:    *The risk of rejectiag a hypothesis when it is true. Also called the producer's risk,

[^14]:    *T, P. Wright, "Factorn Affecting the Cost of Alrplanes," Journal of the Acronautical Sciences, Vol. 3, February, 1936, pp. 122.128.

[^15]:    "The numerala in bracketo indicate numbered references lited at end of paper.

[^16]:    Figare 10. Vhan perfon, for melected cells: Fimat ordar interaction tome for standard

[^17]:    *This paper appeared previously in the Journal of Bacteriology, Volume 89, No, 1 , page: 74-83. Parmbation of the edtiose of tha journal to publioh this prper in these Proceedinge is apyraciuted.

[^18]:    * Error line 8 was used to test all affects.

    4 Approximate probabllities $<0.001$.
    mmmApproximate probabilitio: $<0,05$.

[^19]:    WWork on which paper in based was supported by contract with the U. S. Army Blological Laboratorien, Fort Detrick, Frederick, Maryland.

[^20]:    *Conaderable testing has led us to belleve a logarithmic dosage to stimulus tranaform le of proper form.
    w*For low prohebility eatimates these terms would be $\overline{\mathrm{X}}-0.2 \mathrm{a}, \overline{\mathrm{X}}-0.4 \mathrm{~s}$, $\bar{X}-1,3 s$, and following computation would be conaintent.

    ```

 F=```

