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Thc Army Munitions Comnd headed by Major General F. A. Hanson
hosted the Eleventh Conference on the Design of Experiments in Army
Research, Development and Testing. This three-day meeting starting
20 October 1965 was conducted at Stevens Institute of Technology in
Hoboken, New Jersey. Colonel Thomas W. McGrath, Deputy Commander
at Headquarters Army Munitions Command, issued the following letter:

"" It is my privilege to welcome you to the Eleventh Conference
on the Design of Experiments in Army Research, Development
and Testing. We consider it a great honor to be selected to serve
as host to this important meeting.

We hope that each participant finds this conference both
enjoyable and professionally rewarding,

The Army Mathematics Steering Committee, sponsors of this confer-
ence on behalf of the Office of Chief of Research and Development, would
like to thank Colonel McGrath for his welcoming remarks. Members of
this committee would also like to thank General Hanson for making
available personnel under his command to help conduct this conference.
In particular, many thanks are due to Mr. Henry DeCicco, who had the
main responsibility as Chairman on Local Arrangements for coordinating
the conference arrangements at the Command Headquarters.

The program of this meeting included 6 general, 11 technical, and 2

4 clinical sessions. The invited speakers in the general sessions
featured the following addresses:

Confidence Limits for the Reliability of Complex Systems
Dr. Joan R. Rosenblatt, National Bureau of Standards

Non-Linear Models: Estimation and Design
Dr. J. Stuart Hunter, Princeton University

Selecting the Population with the Largest Parameter
Professor Robert E. Bechhofer, Cornell University

Selecting a Subset Containing the Population with the Largest
Parameter

Professor Shanti S. Gupta, Purdue University



ii

Target Coverage Problems
Professor William C. Guenther, University of Wyoming

Maximum Likelihood Estimates for the General Mixed
j f Analysis of a Variance Model

Professor H. 0, Hartley, Texas A&M University

The conference was highlighted by the banquet held on Thursday evening,
21st of October, at Stevens Center with Mrs. Samuel Wilks as guest of
honor, On this occasion Professor Sohn W. Tukey of Princrton University
was presented the first Wilks Memorial Medal Award,

This volume of the proceedings contains 26 of the papers which were
presented at this meeting. The Army Mathematics Steering Committee

has asked that these articles on modern principles on the design of
experiments, as well as applications of these ideas, be made available
in the form of this technical manual.

The Eleventh Conference was attended by more than 150 registrants
and participants from over 57 different organizations, Speakers and
panelists came from the National Bureau of Standards, Princeton University,
Rocketdyne (A Division of North American Aviation, Inc.), National
Institute of Mental Health, Virginia Polytechnic Institute, North Carolina
State University at Raleigh, University of Oklahoma, George C. Marshall
Space Flight Center (NASA), Cornell University, University of Georgia,
University of Tennessee, Purdue University, Texas A&M University,
University of Chicago, University of Wyoming, George Washington Univer-
sity, and thirteen Army facilities.

The chairman wishes to take this occasion to thank his Advisory

Committee (Henry DeCicco, F. G. Dressel, Walter Foster, Fred Frishman,
Bernard Greenberg, Boyd Harshbarger, William Kruskal, H. L. Lucas,
Clifford Maloney, Henry Mann, and W. Y. Youden) for their assistance in
formulating the program and their help in selecting the invited speakers.

4 He is.also grateful to the authors of contributed papers, chairmen, and
panelists, Without their help this meeting could never have succeeded in
its scientific purposes.

F. E. Grubbs
Conference Chairman
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ELEVENTH CONFERENCE ON THE DESIGN OF EXPERIMENTS
IN ARMY RESEARCH, DEVELOPMENT AND TESTING

20-22 October 1965 F

Wednesday, 20 October

0900-1100 REGISTRATION - - Lobby of Stevens Center

0930-0945 CALLING OF CONFERENCE TO ORDER - - 4th Floor Seminar
Room

Henry DeCicco, Chairman on Local Arrangements

0945-1200 GENERAL SESSION 1

Chairman: Dr. Walter D. Foster, U. S, Army Biological
Laboratories, Fort Detrick, Frederick, Maryland

CONFIDENCE LIMITS FOR THE RELIABILITY OF COMPLEX
SYSTEMS

Dr. Joan R. Rosenblatt, National Bureau of Standards

BREAK

NON-LINEAR MODELS: ESTIMATION AND DESIGN
Dr. J. Stuart Hunter, Princeton University

IZOO-1330 LUNCH

Technical Sessions I and II and Clinical Session A will start at 1330
and run to 1500. After the break Technical Sessions III and IV and Clinical
Session B will convene at 1530 and run to 1700.

1330-1500 TECHNICAL SESSION I - - 4th Floor Seminar Room

Chairman: Joseph Mandelson, Directorate of Quality
Assurance, U, S. Army Edgewood Arsenal, Edgewood,
Maryland

A PROBLEM OF DETERIORATION IN RELIABILITY
Henry DeCicco, Quality Assurance Directorate, U. S.
Army Munitions Command



viii

TECHNICAL SESSION I (continued)

GAME THEORY TECHNIQUES FOR SYSTEM ANALYSIS AND
DESIGN

Jerome H. N. Selman, Headquarters, U. S. Army Munitions
Command, Dover, New 3ersey

1330-1500 TECHNICAL SESSION II - - 3rd Floor Conference Room

Chairman: Badrig Kurkjian, Harry Diamond Laboratories,
Washington, D. C.

SYSTEMATIC METHODS TO CALCULATE FACTOR EFFECTS
AND FITTED VALUES FOR A 2n 3 m FACTORIAL EXPERIMENT

Barry H. Margolin, U. S. Army Electronics Command,
Fort Monmouth, New Jersey

CONSTRUCTION AND COMPARISON OF NON-ORTHOGONAL
INCOMPLETE FACTORIAL DESIGNS

S. R. Webb, Mathematics and Statistics Group, Rocketdyne,
A Division of North American Aviation, Inc. , Canoga Park,
California. Rep. Aerospace Research Laboratories, Office
of Aerospace Research, U. S. Air Force

1330-1500 CLINICAL SESSION A - - 4th Floor BCD Room

Chairman: David Jacobus, Walter Reed Army Institute
of Research, Walter Reed Army Medical Center,
Washington, D. C.

Panelists:

Dr. Walter D, Foster, Biometrics Division, U. S. Army,
Biological Warfare Laboratories, Fort Detrick,
Maryland

Dr. Samuel W. Greenhouse, National Institute of Mental
Health, Bethesda, Maryland

Dr. Bernard Harris, Mathematics Research Center,
U. S. Army, University of Wisconsin, Madison, Wisc.
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Panclists (continued)

Professor Boyd Harshbarger, Virginia Polytechnic
Institute, Blacksburg, Virginia

Professor H. L. Lucas, North Carolina State University
at Raleigh, Raleigh, North Carolina

STATISTICAL ANALYSIS OF AUTOMATICALLY RECORDED
"PHYSIOGRAPH DATA

John Atkinson, Dir/Medical Research, CRDL, Edgewood
Arsenal, Maryland

AN APPLICATION OF EXPERIMENTAL DESIGN IN
ERGONOMICS: A CARDIOVASCULAR RESPONSE TO WORK
STRESS
Henry B. Tingey and William H. Kirby, Jr., Terminal
Ballistic Laboratory, Ballistic Research Laboratories,
Aberdeen Proving Ground, Maryland

1500-1530 BREAK

1530-1700 TECHNICAL SESSION III - - 4th Floor Seminar Room

Chairman: 0. P. Bruno, Surveillance Branch, Ballistic
Research Laboratories, Aberdeen Proving Ground, Mi.

STRATEGY FOR THE OPTIMAL USE OF WEAPONS BY
AREA COVERAGE

J. A. Nickel, J. D. Palmer and F. I. Kern, Systems
Research Center, University of Oklahoma, Norman, Okla.

(Representing the U. S. Army Edgewood Arsenal)

VARIABILITY OF LETHAL AREA
Bruce D. Barnett, Data Processing Systems Office,
Picatinny Arsenal, Dover, New Jersey

1530-170C TECHNICAL SESSION IV - - 3rd Floor Conference Room

Chairman: Joseph Weinstein, Mathematics Division,

U. S. Army Electronic R and D Laboratory, Fort
Monmouth, New Jersey



j TECHNICAL SESSION IV (con.inued)

DECISION PROCEDURE FOR MINIMIZING COSTS OF
CALABRATING LIQUID ROCKET ENGINES

E. L. Bombara, National Aeronautics and Space
Administration, George C. Marshall Space Flight
Center, Huntsville, Alabama

CALCULATION OF THE THEORETICAL STRENGTH OF
TITANIUM BY MEANS OF THE COHESIVE ENERGY
Perry R. Smoot, U. S. Army Materials Research
Agency, Watertown, Massachusetts

1530-1700 CLINICAL SESSION B - - 4th Floor BCD Room

Chairnman: Captain Douglas Tang, Walter Reed Army
[ Institute of Research, Walter Reed Army Medical Center,

Washington, D. C.

Panelists:

Professor Robert E. Bechhofer, Cornell University,
Ithaca, New York

Professor A. C. Cohen, Jr. , University of Georgia,
Athens, Georgia

Professo:r Boyd Harshbarger, Virginia Polytechnic
Institute, Blacksburg, Virginia

Professor H. L. Lucas, North Carolina State University
at Raleigh, Raleigh, North Carolina

THE PATHOPHYSIOLOGY OF POISONOUS SNAKE VENOMS
J. A. Vick, H. P. Ciuchta, and J. H. Manthei,
U. S. Army Chemical and Research Development
Laboratories, Edgewood Arsenal, Maryland



CLINICAL SESSION B (continued)

RELATIONSHIP BETWEEN LESION COUNTS AND SPORE
COUNTS

Thomas H. Barksdale, William D. Brener, Walter D.
Foster, and Marian W. Jones, Biological Laboratories,

V. Fort Detrick, Frederick, Maryland

Thursday, 21 October

Technical Sessions V, VI, and VII will run from 0830 to 1000. Follow-
ing the break, Technical Sessions VIII and IX together with Clinical Session
C will start at 1030 and end at IZ00. After lunch Technical Session IX and
X along with Clinical Sessions D will be held during the time interval
1330-1420. The Panel Discussion is scheduled to be conducted from 1500
to 1700. The banquet starts at 1830.

0830-1000 TECHNICAL SESSION V - - 4th. Floor BCD Room

Chairman: Henry Ellner, Directorate for Quality Assurance,
U. S. Army Edgewood Arsenal, Edgewood, Maryland

EXTREME VERTICES DESIGN OF MIXTURE EXPERIMENTS
R. A. McLean, Purdue University and the University of
Tennessee, and V. L. Anderson, Purdue University.
Representing Army Research Office-Durham

DESIGN CF A VACUUM-BREAKDOWN EXPERIMENT
M. M. Chrepta, J. Weinstein, G. W. Taylor, and

M. H. Zinn, Electronic Components Laboratory, U. S.
Army Electronics Command, Fort Monmouth, New Jersey

0830-1000 TECHNICAL SESSION VI - - 3rd Floor Seminar Room

ON ,Chairman: Albert Parks, Harry Diamond Laboratories,
Washington, D. C.

MODEL SIMULATION OF BIO-CELLULAR SYSTEMS
George I. Lavin, Terminal Ballistic Laboratory, Ballistic
Research Laboratories, Aberdeen Proving Ground, Md,
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TECHNICAL SESSION VI (continued)

SOME INFERENTIAL STATISTICS WHICH ARE RELATIVELY
COMPATIBLE WITH AN INDIVIDUAL ORGANISM METHODOLOGY

Samuel H. Revusky, U. S. Army Medical Research Laboratory,
Fort Knox, Kentucky

... 0830-1000 TECHNICAL SESSION VII - - 4th Floor Seminar Room

Chairman: A. Bulfinch, Picatinny Arsenal, Dover, N. J,

CONTROL OF DATA-SUPPORT QUALITY

Fred S. Hanson, Plans and Operations Directorate,
White Sands Missile Range, New Mexico

DESIGNS AND ANALYSES FOR THE INVERSE RESPONSE
PROBLEM IN SENSITIVITY TESTING

M. J, Alexander, and D. Rothman, Mathematics and[:'•"!':Statistics Group, Rocketdyne, A Division of North American

Aviation, Inc. , Canoga Park, California, Representing

SGeorge C. Marshall Space Flight Center, NASA, Huntsville,
Alabama

1000-1030 BREAK

1030-1200 TECHNICAL SESSION VIII - - 4th Floor BCD Room

Chairman: F. L. Carter, U. S. Army Biological Laboratories,
Fort Detrick, Frederick, Maryland

MONTE CARLO INVESTIGATION OF THE PROBABILITY
DISTRIBUTIONS OF DIXON'S CRITERIA FOR TESTING OUT-
LYING OBSERVATIONS

Walter L. Mowchan, Surveillance Branch, Ballistic Research
Laboratories, Aberdeen Proving Ground, Maryland

TABLES AND CURVES FOR ESTIMATING DEGREES OF
FREEDOM FOR A TWO POPULATION "T" TEST WHEN THE
STANDARD DEVIATIONS ARE UNKNOWN AND UNEQUAL
E. Dutoit and R, Webster, Quality Assurance Directorate,
Ammunition Reliability Division, Mathematics and
Statistics Branch, Picatinny Arsenal, Dover, New Jersey
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1030-1200 TECHNICAL SESSION LM - - 4th Floor Seminar Room

Chairman: Paul C. Cox, Reliability and Statistics Office,
Army Missile Teat and Evaluation Directorate, White
Sands Missile Range, New Mexico

DELETING OBSERVATIONS FROM A LEAST SQUARES
SOLUTION

Charles A. Hall, Znd Lieutenant, Technical Services
Division, White Sands Missile Range, New Mexico

PRECISION AND BIAS ESTIMATES FOR DATA FROM
CINETHEODOLITE AND FPS-16 RADARS

Burton L. Williams, Range Instrumentation Systems
Office, White Sands Missile Range, New Mexico

1030-1200 CLINICAL SESSIONG - - 3rd Floor Seminar Room

Chairman: Dr. Fred Hanson, Plans and Operations
Directorate, White Sands Missile Range, New Mexico

Panelists:

Professor H. 0. Hartley, Texas A and M University,
College Station, Texas

Professor J. Stuart Hunter, Princeton University,
Princeton, New Jersey

Professor William Kruskal, University of Chicago,
Chicago, Illinois

Dr, Henry B. Mann, Mathematics Research Center,
U. S. Army, University of Wisconsin, Madison, Wisc.

Dr. Joan Rosenblatt, Statistical Engineering Laboratory,
National Bureau of Standards, Washington, D. C.

THERMAL CYCLES IN WELDING
Mark M. D'Andrea, Jr., U. S. Army Materials Research
Agency, Watertown, Massachusetts
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CLINICAL SESSION C (continued)

STATISTICAL ANALYSIS OF TENSILE-STRENGTH HARDNESS
RELATIONSHIPS IN THERMOMECHANICALLY TREATED
STEELS

Albert A. Anctil, U. S. Army Materials Research Agency,
Watertown, Massachusetts

1200-1330 LUNCH

1330-1420 TECHNICAL SESSION X - - 4th Floor Seminar R.oomn

Chairman: Professor A. C. Cohen, Jr., The University
of Georgia, Athens, Georgia

SOME PROBLEMS IN STATISTICAL INFERENCE FOR
GENERALIZED MULTINOMIAL POPULATIONS

Bernard Harris, Mathematics Research Center, University
of Wisconsin, Madison, Wisconsin

1330-1420 TECHNICAL SESSION XI - - 4th Floor BCD Room

Chairman: Professor W. Y. Youden, George Washington
University, Washington, D. C.

STATISTICS IN THE CALIBRATION LABORATORY
Joseph M. Cameron, Statistical Laboratory (IBS), National
Bureau of Standards, Washington, D. C.

1330-1420 CLINICAL SESSION D - - 3rd Floor Seminar Room

Chairman: Dr. Seigfried H, Lehnigk, Research and
Development Directorate, U. S. Army Missile Command,
Redstone Arsenal, Huntsville, Alabama
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0. P. Bruno, Surveillance Branch, Ballistic Research
Laboratories, Aberdeen Proving Ground, Maryland

Paul C, Cox, Army Missile Test and Evaluation
Directorate, White Sands Missile Range, New Mexico
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Professor H. 0. Hartley, Texas A and M University,
College Station, Texas

Professor H. L. Lucas, North Carolina State University
at Raleigh, Raleigh, North Carolina

Professor Henry B. Mann, Mathematics Research Center,
U. S. Army, University of Wisconsin, Madison, Wisc.

APPLICATION OF NUMERICAL TECHNIQUES TO AN
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Andrew H. Jenkins, U. S. Army Missile Command

1420-1500 BREAK
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THE SAMUEL S. WILKS AWARD
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Friday, 22 October

The Subcommittee on Probability and Statistics of the Army Mathe-
matics Steering Committee will hold an open meeting from 0830 to 0915.
All members attending the conference are invited to attend this meeting.
General Session 4 will start at 0930 and run to 1200.

0830-0915 GENERAL SESSION 3 - - 4th Floor Seminar Room

OPEN MEETING OF THE SUBCOMMITTEE ON PROBABILITY
AND STATISTICS

Chairman: Dr. Walter D. Foster, Biometric Division,
U. S. Army Biological Warfare Laboratories, Fort
Detrick, Frederick, Maryland

0915-0930 BREAK

0930-1200 GENERAL SESSION 4 - - 4th Floor Seminar Room

Chairman: Dr. Frank E. Grubbs, Chairman of the
Conference, Ballistics Research Laboratories,
Aberdeen Proving Ground, Maryland

TARGET COVERAGE PROBLEMS
Professor William C. Guenther, University of Wyoming,
Laramie, Wyoming

MAXIMUM LIKELIHOOD ESTIMATES FOR. THE GENERAL
MIXED ANALYSIS OF A VARIANCE MODEL

Professor H. 0. Hlartley, Texas A and M University,
College Station, Texas

TI
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ESTIMATION AND DESIGN FOR NON-LINEAR MODELS
~ J

i J. 5. Hunte r

Princeton University

The object of this paper is to survey current work in estimation and
design for non-linear models. The problems of estimation for linear
models are first reviewed, taking recourse to geometric arguments, and
the distinctions between linear and non-linear estimation problems

4• described. Techniques for the estimation of parameters in non-linear
models are then discussed: linearization of the model and the Gaussian
Iterant, linearization of the sums of squares function, direct search,
elimination of linear parameters, and linearization of the Normal equa-
tions. Borrowing heavily from the papers of G. E. P. Box and his
co-workers, the problems of non-linear design are next discussed,
both for the number of observations fixed, and for sequential non-linear
designs. The emergence of intrinsic designs appropriate to individual
non-linear models is noted.

Consider a response function expressed in terms of the general
model

(i) -= l , . . ' e1 '2 ' . ... ,e
k p!

where r1 is a response, the •i i 1,2, .... k are k variables

or factors under the control of the experimenter and the Oil j = 1,2, .. ,p
are p parameters whose values are unknown.

ITwo classes of models will be discussed in this paper: linear and
;ion-linear. Some examples of linear models are:

e + 6. . or + e
So j~l o j-1

where g(4) are functions solely of the •i as, for example, i or

Examples of non-linear models are:

I,
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(1-e or £ -J e

the growth curve, the Clausius-Clapyion equation from thermodynamics,
and the sum of exponential decay curves respectively. A clear distinc-
"tion between linear and non-linear models will be made shortly.

Consider now u = 1, Z. n settings of the controlled v,,riables
and the corresponding responses •u= f( lu'• u'ý' .ku-O2 " 6 ) I
or, in matrix notation

(2) 1 l0

th
where u = (1 x k) row vector of the u- setting of the controlled vari-

ables and 0 = (p x 1) column vector of unknown parameters. The total
array of settings of the controlled variables generates an n x k matrix
Sconsisting of the n row vectors u.

Of. course, for a we will not observe the true response 1r but

rather record an observation yu where yu • + cup or,

(3) • +

where n x I vector of observations

n x I vector of responses

E = n x I vector of disturbances.

In all that fdllows the individual disturbances c are considered to be
random events, Normally distributed with zero Umean and homogeneous

2 T 2
variance ar , that is, 0; E((= ) = I a, Thus the joint

probability density function for the observations yu is:

- n n l2T

PQ I(F •• e ,~ u
72-n-d
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Once the model T1 u= is g.v ..I. W ..btain: 3

•' ~ ~~~n "•=l [U'(' ) /z

(4) PQ k,0 ; 0 J e

Since we will know •, • and (" the likelihood function for the para-
meters 0 in the model. are given by

f~l- [yu-f(~, e)) 2/zz'
2 1 n u1l ' !u

Our objective now is to find those values e of the parameters which
maximize the likelihood function, or, equivalertly, the logarithm of
the likelihood function

2n 2 -

(6) n(Zno ,n = - I 1 nz

A
Thus, the maximum likelihood estimates e are obtained when the
sum of squares function

(7) S(G) L y A*y- GA2

u

is minimized, e.g., when the least squares estimates • are obtained,
thus

A
(8) S(6)min S(e) -Z Yuf(u, 9)] (y uu)2

.. UU

where u f(u, ) are the predicted values'Il.

It will be helpful now to discuss least squares geometrically (2]
In this discussion, in order to "see" what is happening, we will
restrict ourselves to problems in which the number of observations
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n =3 and the numbez of parameters p = 2. For n > 3 and p > 2,
(n > p), the reader is asked to use his imagination and remember that
the rules ot geometry employed will apply whatever the number of
dimensions. Suppose an experimenter wishes to fit the linear model

Yu = 0o4 + ()14 + C and that for each of three settings of

and he records a single observation y as given in Table I0o
and displayed in Figure 1.

TABLE I

y ,for 0 = 10, 01=4 y -Y
1 a0 1

1 2 18.4 18. 0 0.4

1 1 14.2 14.0 0.2

1 4 24.8 26.0 -1.2

The elements of the observation vector ý provide the coordinates
of a point in the n = 3 dimensional "observation space" as illustrated
in Figure la. The line segment joining this point to the origin is
called the observation vector. Since there are k = 2 unknown para-
meters in the postulated model we can imagine a second coordinate
system called the 'parameter space" as illustrated in Figure lb,
Suppose now the experimenter chooses for his initial values of the
parameters a = 10 and 01 = 4, thus locating the point 0 in the j.,ara-0 "

meter space. Associated with 0 will be the point in the observa-
tion space determined by the prediction equation yu = 10o + 4ý lu as

illustrated in Figure lc. (The coordinates for ' are also given in
Table I.) in fact, for every point e iL parameter space an associated
point, i, can be located in the observation.space. Remarkably, the
surface generated by the predicted values y will be flat, In this
simple example they form a k = 2 dimensional plane as illustrated
in Figure 1c. The distance squared from the point y to tie point

is given by

yu- u) = [ -f u ,
u u

U U U|

i i - i" '
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From Table I we see that Sk e 1.64. This sum oi squareb it -v-Q
in Figure Id at the point 0.

Our objective now is to locate the point ý on the prediction surface
closest to the observation point •, or equivalently, of finding the point

in the parameter space such that S 9 the length squares:" '• "" U t U

of the vector Q-), is smallest, (The symbol 0 indicates the least
squares point and any other point in the paramkter space. Similarly
Sand y are the associated points on the prediction sub-surface in the
n-space of the observations.) Differentiating S(O) with respect to each
the p parameters e and setting these expressions equal to zero gives
the p "normal" equations:

S•8(s(8))

or in matrix notation:

(10) x [yT 1 0

where X n x p matrix of derivatives whose elements are

f( u, e)

J

nx I vector ofobservatlons,

A
=n x I vector of predicted values,

The "normal" equations guarantee that the vector - will be

perpendicular (normal) to the prediction surface and hence that the
length squared of this vector S(t) is a minimum. Now when the model

7 fuu •) is linear, the response vector t may be written as

ýu e. Further, Eq. (9) may now be written S(8) =(Q - e) T(- Q ).
When we construct the normal equations, the elements of the uth row

V ft
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at the matrix oi derivaLic .......-.. - The nara-

meters 6 disappear upon differentiation and weJ have simply that the*
matrixoi derivatives X - Since equation (10) becomes

(11) T[ _AA 0 or (AT A)Q AT

Solving for 0 gives

A (^TA) T

the familiar least squares solution for the coefficients in a linear model.

The analysis of variance table now becomes nothing more than the
resolution of the observation vector X into orthogonal components,
the degrees of freedom column merely keeping track of the number of
dimensions in which the corresponding vectors are free to move. Thus
we have in general (n observations, p parameters):

(13) Analysis of Variance Table

Sum of Square Degrees 9f Freedom

Total Sum of Squares T n

(Length Squared Observation Vector)

Regression Sum of Squares

(Length square, Vector of Pre- XTQ ATT8
dicted Values)

Residual Sum of Squares SA)=AT AS(•)= ( X-X)(-) pn-Mp
(Length Squared of Vector of

Re sidual s)
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FIGURE 2

Observation
Vec or

Vector of
r residuals

'vector of predicted Values

In our example we have (remembering that for this linear model

•7 [ 4[;Z 1  18. 4 (XTX ) X T1j;lo

1 4.8

~ TAit I T
(X= X)X [-7 57.4 00. 000

1 -71 150.2 '3.4857]

1Z [11. 00070] 17. 9714 [0. 428C

3.485 [24.48571 Q025
1 4 -. 485 - 4.9428 0-z. 14Z:0:857

Total SSq. X T = 1155.2400 3

ATARegression SSq. : 1154.9500 2

Residual SSq. (-X.)TQ-.) 0, 9001

,!

iI
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The residual sum of squares S(=) 0. 2900 in the Analysis of Variance
Table is obtained by subtraction. Using our vector of estimated residuals

, ) = 0. Z857. The failure of these two values of S(E) to agree
exactly is due only to rounding errors.

Granting the model is correct, and that the observations

Yu= N[i, Z) then S(t)/v = s2 estimates T4 with v = (n-p) degrees

of freedom. Further E(6)= 0 V(9) = (XTX)'-la, and in fact the
T -lz

are distributed in a multivariate Normal: N(@; (X ). Let 9 be
specific values for the parameters postulated bythe experimenter. To
determine whether the least squares estimates 0 are reasonable in
the light of this hypothesis we may now perform the F testp,')

(14) S(9k)ZE =PP V C SQ/ V Q

If this observed value of F is such that Prob {F > F }<

we reject the hypothesis that the parameters could in fact equal 9
A geometric view of this testing procedure is given in Figure 3. Here
we see the observation point X, the point on the solution locus ý which
is closest to X, and, finally, the point ý determined from the model

FIGURE 3

The resulution of the observation vector • having its
origin at the point • =

"-Zr
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Accepting the hypothesis that i =•0 is correct, then the vectcr
is due to random variabiliy lu ',..T ••c.gth C'•. ,C ,,• f-.,t-

T 2
(Y'(1):v (y-•) is then distributed as a y with n degrees of freedom.
Sin'ce •-is normal to the solution locus which contains we have,
thanks to Pythagorous:

(* )T(•. (XT)T(X.) + (A)T(.)

orS(6) = S(Q) + ,1 %(15)

or So( + Sos) +

and since the errors are independent S(t) is distributed as an 2. with
v n-p degrees of freedom and S(8-b) distributed as 2 with p
degrees of freedom. Thus the ratti g'ven in Eq. (14) is distributed as

and n-p that the F ratio is in fact equivalent to the cot 2

where W is the angle between x- and •-.. When the angle /f Is
small (and hence ý far from or equivalently 0 far frost), F
will be large.

The boundary of the (1-a)l/ confidence region of 8 is obtained by
substituting in Eq. (14) the F critical value and' solving the
resulting expression for 9, thus

(16 (90) (~~) p F

pV P V C

a quadratic form in the 0 ; (1), (3). An illustration of this boundary
(for p=2) is displayed in Figure 4 by the dashed ellipse,
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V FIGURE 4

Sunm of Squares Contours plotted in Parameter Space.'

2

- s(e) + s(e- )

The (l-a) confidence
region boundary for E

:1

A

The length squared of the residual vector is S(e). The length squared
of the vector is S(e) = S(e) + S(6-6). "The ellipses shown in
"the figure are contour lines giving the sum of squares. The dashed
contour line is the S(6) that'gives the critical value of F

Thus, on the parameter space we can superimpose contour lines

(surfaces for k>Z) giving the sum of squares S(6) for !U choice of 6e

Fitting a Non-Linear Model

We now consider the case where the model (u u is non-linear,

Suppose, for example, an experimenter wished to fit the model
Ea a 4 

v
Iu = 1e to the data given earlier for the linear model example.

We can, as before, consider the n=3 observation space, the vector •

and a p=Z dimensional parameter space, Once again, for each point
0 in the parameter space there will be an analogous point in the

u
observation space where u = 1e However, the locus ofpi

8pit
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Sproduced for various values of the 0 will now produce a curved
prediction subspace as illustrated in Figure 5a. In the parameter space,
the contours of the sums of squares bL() wiL produce eiongated and

FIGURE 5

Geometric Interpretation of Non-Linear Least Squares

I Y3 Obaervation Space Parameter Space

1• Contours of

• 0••:••_ j~yz-1

-z

-3

-4

e ~ 1 23 4 56

1ý yl
Figure 5a Figure 5b

twisted elliptical shapes as illustrated in Figure 5b. However, the
maximum likelihood estimates of the parameters still require that we
locate the point in the prediction subspace closest to j, or equivalently,
find the point 6 in the parameter space where S(O) is smallest.

T A
Thus, we form the normal equations X , - 0 except that this time
the derivative matrix X consists of elements x u=l, ... ,n; J=,,..,p
containing the G0s. In general, we have

X1  x2  xk

x 1  x zn kS,' ' , 8 f l A u e )
(17) X where x

1u 8e
x Xln, xZn X kn

S, , .... ;;. - . ......... . .. ....... ... ....... . ..... .... .. ... ... ... ... . . .. , , •• . :.'"!.
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or, for our example, since u e ande

I -

eO2hl 61die eZ~ .e2 ZeU

(is) x= e2~Zz 0el~zeZg = e:2 :1ee2

402 40 2

To find those values 4 and 0z that will satisfy the conditions of

the normal equation X T(-y) = 0 is, usually, a very difficult task,
We now discuss some of the various methods proposed for locating the

A
point 0.

Linearize the Model:

Since the model is non-linear, we convert~it to a linear model
* (approximately) by expanding the model in a lit order Taylorp series

about some set of initial guessed values of the parameters e(0), Thus

(19) -( 0 p ((°) + u-
(9 j=l (e 1 0, 0:

e, e• ,'

or

( . (0) ( (0))(20) yYU"j uj

a set of n linear equations in the p unknowns (0 0) -where

y(0)is(~oyu0 is the predicted value of the response for the initial guessed

values 00), and x . are the derivatives evaluated at GO). In matrix
notation we have uJ

.(21) .Z . x....

* -. ,---*, -,• ,,
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where (6X) = (n x l) vector of deviations (-X°)

X = (n x p) matrix of derivatives xu
A)

(6 6) (p x 1) matrix of corrections (e -e°))

Since our model is now a linear one we can solve for 6 e giving

6 -(TX )-I XIz
60 (X x)4  T )

A
Once we have the estimated corrections (68) we begin anew with new

values of the parameters 6(l) =(0) + eA and continue the iteration
until the estimated corrections 6 are not different from zero, In
actual practice the full correction 6% is usually not employed but
rather corrections proportional to 8 , that is v a where
o < v < 1; (4), (5). This method of locating A is often called the
Gauss-Newton or simply the Gaussian Iterant.

For example, suppose we are given the model lu = e1+ •

and that we record three observations yu = tju + u where theu
are Normal and independently distributed N(O,oa2). The vector ý,
giving the levels of the controlled variable, and the associated response
vector X are given in the following table. Let the initial estimates

o(o) be 01(0)- 10 and 6 (0) 1 .1. The vector of predicted

values X(0) and deviations 6X are also given in the table.

TABLE 2

(0) 1, (0)
X ~y =10+e- X=

[3.35 -1. 3 Y =EYZ 156

7 116 , so)-II(6y) 383.085
1.7 36 16; .49 ;1. ýj! 19',L
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The derivatives of the model 0, + e U with respect to the parameters

are:

uf~uu 8) (0), I- I1
0e) e1°) -Xul =1; Bee2'j e(o) u e

giving for the matrix of derivatives:

1 3. 6889

X 1 1.5119

L1 11. 0301]

A T -1T
Solving now for the corrections 60 = (X X) X 6X) gives

AA
"• • L 2. 34Z7]

and hence a new set of values for 0, that is O(I) 8(0) (60)

() (1 1.1 .34r 3.4427
These values EP) are now empl.o•yed in another iteration, and the

process is repeated until (hopefully) the estimated correction

vanish. In thiL example the fifth, sixth and seventh iteration gave

S: 2. 030ý ;2 0 [ 14j ' % 2.o13.
S=1) 911 S(O(b)~) isL(7))

= 9.1117 8. 4131 S((7) = 8. 4128

The fitted model was taken to be
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A -2. 0134y 5.035+e

These calculations are taken from introduction material appearing in a

Master's Thesis by Norman Dahl, Princeton University, 1963[6].

Linearize the Sum of Squares Function

To locate the values of the 8 's which reduces the sum of squares

function S(e) to a minimum, we may use standard response surface

I: techniques (7), (8). Here the sum of squares function is approximated
locally by a polynominal linear in the parameters. The response is the
sum of squares S(8) for each chosen set of the p parameters 8, as

illustrated for p - parameterc in Figure 6.

FIGURE 6

Locating S(6) by Response Surface Methods

- S(9) Sum of Squares
Contours

Path of Steepest Descent

.....................-.-........... . ..
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Suppose the experiment began with the guessed values of 6 illustrated
uy w•L, uimipiex design in the lower left hand portion of Figure 6. Upon
computing S(0) at each of these settings the path of steepest descent
cn- then be determincd as indicated by the arrow in the figure. Trials

along this path lead to the bottom of the trough. In practice, the size

of the steps along the gradient can seriously effect the speed of conver-
gence of the iteration, and several proposals have been made for
adjusting the size of the steps to be taken [9] , [10] . It is occasionally
possible, as illustrated in Figure 6, to employ a second order design,
and approximating polynomial in the Is, and empirically determine
the curved nature of the S(E) contours. This additional information is
useful in determining the direction of the trough.

For the case where p = 2 or 3 it is often possible to determine
S(e) everywhere on a grid of values of 6, thus permitting the contours
of S(8) to be sketched in by hand. The position of S(O) can then be
determined directly. This brute force method is admissible only for
p small, and where computation is both very fast and economical.

Direct Search

Direct Search [1] is a method for determining S(O) which does not
employ any one strategy unless there is a demonstrable reason for
doing so. One direct search routine, called 'pattern search' has proved
useful. Initially a 'good' point e is chosen in the parameter space and
S(G) computed. Then the p individual values of 8 are changed a
basic' step in a one at a time fashion and S(8) evaluated each time.

This information is used to design a pattern indicative of the likely
direction for successful moves. A pattern move is now made. If
successful, (that is, S(e) is reduced) each of the p values oi 0 at the
new base point are changed a basic step to see if the pattern may be
improved. All steps indicative of an improvement are now added to
all the previous steps to form a new pattern and the pattern move employed
anew. The originators of the method (R. Hooke and T. A, Jeeves) note
that once a pattern becomes established it will often grow until the pattern
moves are as much as 100 times as large as the basic steps, When a
pattern move fails to reduce S(8) the authors propose starting a com-

pletely new pattern off the current best point.

Elimination of Line,".r Parameters

Often a model 1 = f(Q, ) contains parameters that may be defined
as "linear", that is, upon differentiating the function f(, 0) with respect

S.... .. • , !.:..• ,,• --• .. . ... ..-... . . .... ... .. . ..... . . ... .
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to a "linear" parameter, all the parameters disappear in the derivative.
Fczr

S= 81+ e0Z

and its associated sum of squares function

eZu)

ese
(22) 5() = 7 (yu -1- n

u1

The derivative matrix X consists of the elements x = as(e) and
-Ias(ý

Xuz Clearly the elements xu contain neither parameter

and hence O0 is said to enter the model "linearly". The normal equa-

tions associated with this model are

r1e0 + Ze Y
Su u

i (23) ,"

(3 Z0e =u+E Ze 4 yue .

Ufu

The first of these equations may be solved for e0 to give

S- 1 ez~u

(24) el=y -- e
U

This expression for 0 may be used in several ways. For example,
1we can substitute for 0 in the second normal equation in Eq. (23)

and then solve for 6 by \rial and error. Or, since we now have an
expression in 8_ oniy, we might attempt to linearize this nqrmal
equation using a Taylor Series about some guessed value e and
determine, in a fashion analogous to the Gaussian Iterant, corrections
on the guessed values. Upon substituting O in S(0) we obtain
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02 u i e2u)
Z5) S(O) = E [yu-y - (e e

un

It is now easy to calculate S(G) for various values of 0 and to deter.
mine the minimum 9(0) as illustrated in Figure 7. 2

FIGURE 7

The Non-Linear Parameter

S()min

A9

Once 0, the estimate of e2 giving the minimum S(O) is obtained,
A
6 1 can be determined using equation (ZZ), In general, it is always
possible to solve for all the linear parameters in terms of the non-
linear parameters and thus reduce the search for the minirnunm of
S(9) to one involving only the non-linear parameters (1Z),

Confidence Regions for 0

The confidence region for 8 can be determined (13) as in the case
of linear models, by first determining that value of the S(O) which
would just produce a critical value of F . The problem then

becomes one of locating the contour for this critical value of S(D).
This can be accomplished if S(0) has been determined over a reason-
ably fine lattice of points throughout the parameter space. However,

V!
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""I •. earlier, cne evaluation of S(E) over a large lattice can
bu quite expensive in computation time. I

An approximate confidence region can be constructed by first con-

verting the non-linear model into an approximate linear model about
Athe least squares estimate e. The variances and covariance of the

estimated parameters is then given, approximately, b, (XTx)- . 2
where the derivative matrix is evaluated at the pointL . The approxi-
mate confidence region for the 0 is then given by the quadratic form

(26) (-e)T x x(6-e) .0)) F
1 p, V,C

De~skn for Non-Linear Models

The problems of estimating the parameters e in a non-linear
model yu f(u e) + e have been briefly reviewed. We turn now to

the problem of choosing the settings of the variables so that our
estimates of the e are, in some sense, best. One criterion for a
good design is to choose the levels of the ý, that is, construct the

design matrix, so that (X X) is as small as possible. This directs
us then to choose • so that the determinant IX TX I is as large as
possible. G. E, Box and H. L. Lucas (141" em ployed this criteria
for the construction of a non-linear design in an early paper by
considering the special case where n = p, the number of runs equals
the number of parameters. For this special case I XTX X 2,
Thus the problem becomes one of determining the levels of f so as
to maximize the determinante IXI .8

For example, suppose the model is 71 = 81 e Then the

determinant of the matrix of derivatives X becomes

(26) eCI = R ZU + ) ee 1

.e
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where 1 and 2 are the two settings ot to be ,d Ol -arly,

irAtial guesses of the parameters 01 ", and 0 2?' are necessary before
these levels of { can be determined, Let min < max be

the admissible range of ,. Then if the mnodel represents an exponential
decay (6 is negative) we find that X I is maximized when

and 4 =2 + 1/0 . Thus if n is the response at

(min)' the initial response, the experimenter is instructed to take the 2,

next observation when t = e = 6. 816 of n. If the model represents
exponential growth (e8 is positive), then I XI is maximized by setting

and 1 max - /0z. Thus we should take our firstSZ = max i max 2

observation when n e"- = 36. 8% of the response at ýmax' Box and

Lucas discuss design problems associated with other simple non-linear
models. In another paper (151 , Box and W. G. Hunter discuss the
general problem of experimental design for non-linear models with the
two objectives of i) establishing the form of the model and the
ii) estimating the parameters in the model most precisely,

Of course, for n = p the values - I and 4 2 that maximize IXI

could have been determined by trial and error using a fast computer
once 0* and 8" were given by choosing a lattice of values 1 and

{ and determining the contours of I X as illustrated in Figure 8.
2

FIGURE 8

5.
Contours

4- of IXj

4Z -< S Choose different values

2 ~la~nd ~2
Evaluate I X

1 Determine contours of IX
"Choose i and { for

12
2 3 4 5X6 maximum

*

-q
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This brute force method can easily be extended to more settings of 4 .
in iact, those doing such computations will find that the levels o1 ý will

usually merely replicate themselves for n > 2. Further, models with
p paramctcrs will produce designs with n = p points. In all of this,
the initial guessed values e':' must be available. Lk

In a second report [16] Box and W. G. Hunter discuss the problem
of sequential non-linear designs. Here we begin with n observations

the results of a model = fQu, ) + c and the n x k design matrix
•. By the methods of non-linear estimation we can then determine the
lbast squares estimate 0 of the p parameters. Knowing 9 we may
compute the n predicted values qu = 9)k''6 ) and finally the n x I

U'Uvector of residuals R = -. We may also compute the n x p elements

of the derivative matrix X evaluated for e = . Let C= I be

the determinant of the p x p matrix Xr X exWe now require Aealither,
"^,n "-n ýn.l

settings of the k controlled variables for experiment n+l, As earlier,
subject to the experimental constraints on the variables ý, we wish to

maximize the determinant

(27) Cn+1 = I -n+l Xn+lI

Now C C +x xnT where x is the (lxp) row vector

n+l n "'n+l -~n+l n~

Ln+l = n+l,l' xn+lz Xn+l,p (p

and where the j element xn+l,j is the derivative of the function

f(ý,e) with respect to 8. evaluated at 0 ,that is x A.

To deterrmine the settings •nlto maximize Cn+ we now choose a

lattice of points in the space of the k controlled variables •, and by
determining C at each of these lattice points, locate that setting

nt+a
which minimizes C n+' Since we already know Cn this calculatin is

not quite as onerous as might at first seem.

ItI

'I *.
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The following example is from the Box and W. G. Hunter report.
The non-liaear model under study iA

, (28) .1 e~~e~

Y The two controlled variables, 1 and are constrained to lie in the

interval 0 to 3. An initial experimental design consisting of a

.factor-al, was first employed to obtain data to help estimate the three
'! parameters. The design levels and response were-

1 1 0.126SIl (ag) 2 1 0.21
K 1 z 0.076

2 2 0.126

!Ii: iTo begin the non-linear estlrmation computation the initial gueesed values
Softh eparameters were 6,0 . 9; OO 2 n f)=0 9

SThe le ast squar e e stimates a0) vre 1i 0, 39; 02 = 48.83 and 0, 74.

These estimates of the parameters were then used to compute the
ele:ents in the derivative matrix Xia

To determine the location of the iifth experiment the determinant
C Cn+1 was estimated for a grid of values of •1and ,

C Z n+l C11+x 15 Cl12+x 15X 25 C 13 +xis x35

3.
42 Czz+25 2z3+25x35

2.,

1 1 " ,Symmetric C 3+x352

S33 35

FIGURE 9
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The maximum of C. occurs at . = 0.1 and . = 0.0. The next

experiment gave y= 0. 186 and the new estimates (using the as the
initial guessed values in the iteration) were 15.19 and

W, 3 = 0,79. We now begin anew. C 6 was maximum at 61 3.0 and

0. The new observation was = 0.606 and the newest estimatesA, A
@32 and 0.66, Box and Hunter proceeded until

n = 13, Of very considerable interest is the fact that the nine experi-
ments following the initial 22, grouped themselves into three regions
in the space of •l and %. Thest regions: A, B, and C are noted

in Figure 9. These three regions roughly define the "intrinsic" design
configuration for the model and proposed experimental region.

T
The criteria, maximize X X is certainly not the only one an

experimenter might propose. 'or example, an experimenter might
exprimnte mihtT -1

wish to minimize the trace of x or propose values for various

elements in the xTX matrix. The problem now would be one of choosing
the settings of the " , for n fixed, to satisfy these constraints,

that is, given X X can we determine ? Box and W. G. Hunter solve
this important problem for the special case of p = k+l in their report.

Although the way forward to the construction of non-linear designs
has been indicated by the work of G. E. P. Box and W. G. Hunter, the
applications of these methods is only begun. It is evident that designs

, will have to be constructed for each model and experimenter, since

initial guessed values of the non-linear parameters are required. The
question of how sensitive a derived design is to fluctuations in the
initial guesses is largely unanswered, and many more questions could

a, be posed. One thing is certain the arts of experimental design continue
to grow rapidly,

9
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A PROBLEM OF DETERIORATION IN RELIABILITY

Henry DeCicco
Quality Assurance Directorate

t• U. S. Army Munitions Command
Dover, New Jersey

ABSTRACT. A technique is discussed for framing a reliability model

in terms of variables data rather than attribute data. A particular model

is developed in terms of a Gamma process; it is believed that the model

may prove applicable to items undergoing long term storage, especially

V where continuous observations are not feasible. Estimates of the para-

meters of the model, along with a discussion of procedures for control and

verfication are included.

NOTE: For a fuller discussion of the contents of this paper, please
refer to the following article:

"I Estimation, Control and Verfication Procedures for a
Reliability Model Based on Variable Data", by

S. Ehrenfeld and H. DeCicco, Management Science,
Vol. 10, No. 2, January 1964.



SYSTEMATIC METHODS FOR ANALYZING 2 n 3 m FACTORIAL,
EXPERIMENTS'*

Barry H. Margolin
Harvard University and U. S. Army Electronics Comxnand

ABSTRACT. Two systematic procedures to facilitate the analysis of
complete 2 n3 m factorial experiment are presented. The methods are r

applicable when all the quantitative three-level factors are equally spaced
and when the contrasts involving qualitative three-level factois appear as
if the three-level factors were in fact quantitative and equally spaced, .
Algorithm I systematizes the calculation of the factor effects for the
Zn3m series of designs. Algorithm II yields the set of fitted values,
and hence the residuals, based on those factor effects which have been
judged to be non-negligible. The two algorithms have additional and
possibly more important uses in studying fractionated 2 n 3 m factorial
experiments. Algorithm I can be used to facilitate the writing down ofI. the cross-product matrix for a desired set of factor effects for a specified
"set of treatment combinations. For the special case of the standard
fractionated 2 n-P series of designs the two algorithms can be used to
find the set of defining contrasts corresponding to a given set of treat-
ment combinations or to find the set of treatment combinations correspond-
ing to a given set of defining contrasts.

1. INTRODUCTION. In his oft-quoted bulletin in 1937 on the design
and analysis of factorial experiments Yates (7] presented two systematic
tabular algorithms for the 2n series of factorial designs, i.e. , designs
for studying n two-level factors. The algorithms presented were for the

•. calculation of the factor effects and the calculation of the fitted (predicted)

values based on those factor effects judged to be non-negligible. Davies
(4] extended the first procedure for calculating factor effects to the 3 m
series of designs, i.e. , designs for studying rn three-level factors.
These methods have enabled the factorial experimenter who lacks a high
speed computer to save a considerable amount of time and effort in his
data analysis. Even where a computer has been available, it has usually
proven beneficial to program the algorithms as opposed to the standard
method of analysis. This paper presents two procedures for calculating

*'This work wav begun while the author was a summer employee of the
United States Army Electronics Command, Fort Monmouth, during the
period 6/65 - 9/65.

*1J
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factor effects and fitted values for the n3 m series of complete factorial
designs. In addition, the algorithms have further applications to the study
o0 iracL10M CLeU t. .n . .L ..LUI- ... .... ....... n- p _._:

of designs.

2. THE MODEL. Throughout this paper we will be dealing with a

i I factorial experiment in which n factors are studied at two levels each
and m factors are studied at three levels each. Unless it is stated to
the contrary the experiments will be complete factorials. In addition,

the effects attributable to a three-level factor and its interactions will
be broken into the usual single degree of freedom components, namely,
a linear component, a quadratic component, and interactions involving

*1 these components. This breakdown of an effect into its single degree of
freedom components is discussed elsewhere by Davies [4]

Let us adopt the following notation: Designate the n two-level
factors by letters A, B, ... and the m three-level factors by letters

R, S, ..... The main effects of the two-level factors will be indicated
i i by the same capital letters used to indicate the factors. Thus, for

example, A will indicate either factor A or the main effect of factor
A. It will always be clear from the context of the discussion which inter-
pretation is desired. The two main effect components of a three-level
factor will be indicated by the capital letter indicating the factor plus a
subscript L or Q, depending upon whether we wish to denote the linear
or quadratic component, e. g., RL will denote the linear effect of factor

R. A single degree of freedom component of a multi-factor interaction
effect will be designated by a "word" consisting of the capital letters with
subscripts where necessary, corresponding to the factors interacting,
Thus, ABRL S Qwill denote the single degree of freedom effect corre-

sponding to the interaction

(A) X (B) X (linear R) X (quadratic S).

Finally, 1L will designate the grand mean, i.e. , the average of the
expected values of all treatment combinations in the full factorial.

"In the model, the expected value of the response to the (i)th treat-
ment combination, say E(y.), i= i,, .. ,n 3 m , is expressible as a
linear combination of all the main and multi-factor interaction effects
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2 14
nlus the grand mean. Tn ilutist rte the rYnndl f-r the 2 ' Aa•i- 1.#

A, B and R be the two two-level factors and the three-level factor
respectively. Then we assume:

E(y.) jiX . + (A)X~i + (B)XBi + (RL)XR i+(R )XR~ +(AB)X

+ (ARL)XAR i+(ARQ)XAR i+(BRL)X BR i+ (BRQ)X BR i
L 0L Q

+ (ABRL )XABR i+(ABR Q)XABR 12L(ABR i Q lR
L Q

We also assume that the variance of each observation y, is constant.

say - , and that the observations are independent.

The values of the coefficients X , XA... XABR i 1,2 .. 12,

are determined by the settings of the factors A, B and R for the (i)th
treatment combination as follows:

1 x I i l =1. ... , 1 ..

2) If factor A is at its low level, X -1; otherwise, X I'•' XAI= Ai Ai :"

3) If factor B is at its low level, XBi -1 ; otherwise, XBi =

4) If factor R is at its low level, X = -1 and X = 1.

L QQi
5) If factor R is at its intermediate level, XR i = 0 and X -2.

6) If factor R is at its high level, XR.i= I and X =1 .

7) The coefficient corresponding to any interaction will have a
value equal to the product of the coefficients of those factor effect
components which are interacting, e. g. , X =K X X

ABR I Ai Bi RI

0 0

iti

+9
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If we let E(Y) (E(yi) .... E(yl 2 )) , .• , A, B,... ABRQ),

I ~l A...X/X IL X Al X ABRQI1

X X XABRQl2

then the model can be reformulated as: E(Y) = PX' , with independent
observations of common variance.

Algorithm I, presented in the next section, enables the calculation
of • the estimate of , in just one tabular operation.

3. CALCULATION OF THE FACTOR EFFECTS. We revert to the

general case of a 2n 3m design. For the levels of the factors, we need
the following notation: Let 0 and 1 designate the low level and high
level respectively for each two-level factor. Let 0,1 and 2 designate
the low, intermediate and high levels respectively for each three-level
factor,

Now every treatment combination can be identified with an (n+m)-

place integer, possibly beginning with zero. The integral value
corresponding to a treatment combination will have a 0 or 1 in the first
place, depending upon the level of the A factor; it will have a 0 or 1
in the second place, depending upon the level of the B factor, and so
on for the first n places corresponding to the n two-level factors. The
(n+l)st place will contain a 0,1, or 2, depending upon the level of the
R factor, and so on for the m places corresponding to the m three-
level factors.

We now define a column of treatment combinations to be in standard
order if the corresponding column of (n+m)-place "integers" is in
ascending order of magnitude. The systematic method for the calcula-,
tion of the factor effects is a direct combination of the methods known

','I-"
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for the 2n and 3 series [7,4] . Write down in a column the treatment
in cta-- ar! • ,.pv Tr the. adiacent colu'mn enter the observed

responses. Consider this column of observed responses, usually called
column zero, and each of the succeeding m-1 columns as consecutive setsSof three values. Then!

(i) For each set, form the sum of the three numbers (y 1 + Y + y3)

and enter these values in order in the next column (column I).

(ii) Form the difference- the third element minus the first element
(y 3 -yl) for every set, and enter these values in order in column I under

the sums just calculated.

(iii) Form the sum of the first and third values minus twice the second
value in every set (Yl - 2Y2 + y 3 ) and enter these numbers in order in

column I, which is now completed.

(iv) Repeat the above three-step operation m-i times, so that it has
been performed m times in all.

Now consider this last column arrived at after (iv) and the following
n-I columns as consecutive setsof two elements.

(v) For each set form the sum of the two values (x1 + x 2 ) and enter
these values in order in the next column.

(vi) Then form the difference: the second number minus the first

(Xxz - Xfor each set, and enter these values in order under the sums

just calculated in (v).

(vii) Repeat this two-step operation n-I times, so that it has been

performed n times in all.

The final column now contains the contrast sums (not effects) for
the factor effects in standard order. Standard order of the' factor effects

22for a 2 3 , for example, is: total, SL, SQ, RL, RLSL' RLBQ, RQ,

R QSLP RQSQ, B, BSL, ... , BRQSQ, A, ASL, ... , ABRQSQ [41,

'4
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To calculate the factor effects (not the standardized factor effects)

one must divide each contrast sum by its appropriate divisor. ThisJ divisor is given by

Divisor =ni 3 m'p

where i = number of three-level factors in the effect, e. g. , for ABRLSQ)

i = 2; and where p = number of linear terms of three level factors in the
effect, e.g., for ABRLSQ, p = 1.

To calculate the sum of squares for any effect, square the corre-
sponding contrast sum and divide by the above divisor, or square the
effect and multiply by the above divisor.

By way of clarification of the above exposition consider the following
tabular analysis of a contrived 22 31.

Example I
A B R Response I II III Divisor Effect Effect Sum of

• _-_Name Squares

0 0 0 28 99 234 360 12 30 Mean 10,800

0 0 1 27 135 126 64 8 8 RL 512

0 0 2 44 21 5Z 120 24 5 R 600

0 1 0 36 -1& __12J. 120 12 10 B 1,200

0 l 1 27 16 72 56 8 7 BRL 392

0 1 2 .36 4 72 24 3 BR 216
Q

1 0 0 14 -1Z 36 -108 1Z -9 A 972

1 0 1 5 ,=9! 8J -40 8 -5 ARL 200

1 0 2 2 18 20 -z4 24 -1 ARQ 24

1 1 0 30 54 36k 48 12 4 AB 192

I I 21 6 36 16 8 2 ABRL 32

I I 2 54 42 36 0 24 0 ABRQ 0

Total sum of squares 15,140
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Two final comments on this algorithm are in order:

(1) -a caicui-a •tai-rzzd !ff-_ftr (eonstant variance), to be
used, for example, in half-normal plotting [3] , one must divide the
eltnients of the column of contrast sums by the square root of the
appropriate divisor presented previously.

(ii) If m = 0, this procedure reduces to the )ýfes method for
the 2n series; if n = 0, this procedure reduces,otothe Davies technique

for the 3 m series [7,4 . .....

4. CALCULATION OF TIHE FITTED VALUES. We observed
previously that the result of the first algorithm is a column of factor
effects in standard order. One can then judge these effects as to their
significance, either by a half-normal plot employing the standardized
effects, or by the usual analysis of variance using the calculated sums
of squares. One need next calculate the fitted values and the set of
residuals (the observed response minus the fitted value). This enables

one to check in detail the fit of the equation based on the significant
effects to the observed data. For this purpose we propose the follow-
ing tabular algorithm:

(i) Write down the column of effects (contrast sums divided by
appropriate divisor) in standard order, replacing those judged to be

negligible by a zero.

(Hi) As in the first algorithm, regard the numbers in this column

and the succeeding m-I columns as consecutive sets of three values.
For each set, form the sum of the first and third elements minus the

fysecond element and enter these values in order in the next
column.

(iii) Next, form the difference: the first element minus twice
the third element in each set (y1 " 2y 3 ), and enter these numbers in

order under the values calculated in the previous step.

(iv) Form the sum of the elements in each set (Y1 +7 2 +y 3 ) and enter

these values in order in the remaining spaces in the next column.

ia
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(v) Repeat this three-step operation rn-i times, so that it has been

performed m times in all.

(vi) Invert this last column.

(vii) Consider this new cuILUan and thc succeeding n-i columns as

consecutive sets of two numbers. For each set, form the sum of the two
values (x1 + x 2 ) and enter these values in order in the next column.

(viii) Form the difference: the second number minus the first
number in each set (x 2 -x ), and enter these values in order under the

sums calculated in (vii).

(ix) Repeat this two-step operation n-I times, so that it has been

performed n times in all.

(x) Invert this last column.

The resulting column contains the fitted values in standard order.

If our procedure is valid, applying it to the calculated effects of the

earlier example should yield the initial observations or responses in
their standard ordering. This is presented below:

S.....Example 2
"Effect I I inverted 1x a 1i 11 Inverted Fitted Value

Mean 30 27 6 -9 54 28

RL 8 6 -15 63 21 27

R 5 -5 ZO -3 30 44

B 10 2 43 24 2 36

BR 7 Z0 4 -3 5 27
L

BR 0 Q . 4 -7 33 14 72

A -9 -7 4 -21 7Z 14

AR L -5 4 z0 23 27 5

AR -.1 43 z -11 36 2

AB 4 zo -5 16 44 30
*ABR 2 -15 6 -7 27 z2

L
~ABR 0 6 27 z1 Z8 54
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Thus, the original set of responses is recovered, and it is in standard
order. Hence, algorithms I and II operate in an inverse manner.

L)Dserve that ior the Z e1icb, 1. U. , A - V, LI. . .. .

to the method presented by Yates [7] for calculating fitted values. One
first inverts a column of factor effertR in standard order, where zeros
have replaced the negligible effects. Then one performs the calculations
required in algorith I for the 2n series. Finally, another column inver-
sion is required. The end result is a column of fitted values based on
the significant effects and it appears in standard order.

Algorithms I and II have been presented without proof, but their
validity can be verified by a rather untidy argument using matrix theory,
or by an inductive argument. While the proofs have been omitted, one
should observe that the relationship between algorithms I and Il is much
more direct than it appears. Consider steps (i) - (iii) in algorithm 1; they
can be summarized in matrix notation as:

(Y 1 9 YZI Y3 ) ' (-

Next, steps (ii)-(iv) in algorithm II can be summarized as:

(YI, Y 2' Y3 ) ( - 1

Observe then that the second 3X3 matrix is merely the transpose of the
first 3X3 matrix. In a similar fashion, steps (v) and (vi) in algorithm I
can be summarized as:

(X 2X 1 l
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Also, steps (vi) - (viii) and (x) in algorithm II can be summarized as:

(x 2) 011 ý 1 1011ý1 0! 1 1 01

The product of the three 2X2 matrices directly above is- 1' 1

This is the transpose of the first 2X2 matrix above. This matrix rela-
tionship is not accidental; it generalizes as follows: Let M denote
the matrix of coefficients which operates on the right of the Ixzn3 m
data matrix in a complete factorial and produces the matrix of contrast
sums. Then M' operating on the right of the lX2n 3 m matrix of the
grand mean and the set of effects (not standardized), where zeros have
replaced the negligible effects, produces the matrix of fitted values.,

5. FRACTIONATED 2 3 FACTORIAL EXPERIMENTS. Frac-
tionating the 2 n 3 m series of factorial designs has not proven to be an

easy proposition. Webb [8] has presented a fairly thorough review of
the work that has been done in this area; however, there appears to be
room for further exploration and study. No attempt will be made in this
paper to produce new fractions of the 2 n 3m series. We present, rather,
a procedure based on algorithm I for writing down the cross-produce
or normal matrix for any desired set of factor effect estimates broken
into the usual single degree of freedom components, given a specified
fractional set of treatment combinations. The method presented is far
superior to the tedious sums of squares and cross-products calculation
usually used to determine the elements of the cross-product matrix
each time an altered set of factor effects is to be considered. This will
speed the evaluation of new designs by criteria to be discussed later,
and will facilitate the calculation of the desired estimates and evaluation
of the proposed model.

We retain the model presented for the full factorial; however, in
a fractionated experiment we are restricted to obtaining estimates of
only a subset of the set of all single degree of freedom effects possible
in the full factorial. Note that in a full factorial one may be interested
also in only a subset of the set of effects possible, but that is by choice.
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Those effects which are of no interest or cannot be estimated are then
suppressed by assuming them to be zero in the model. In addition, in
a fractionated experiment we no longer have 2 n 3 m treatment combina-
tions to run, but a smaller number, say N. Hence, if we are interested
in the subset of effects, both main and interaction, designated by
(t, a, ... w ), the model is

E(y) = +LX .+aX +pXi + ... + ', i= 1,...,N,
aLi Gi w

where M is the grand mean, and the observations are independent with

variance T . The coefficients X, X i, ... , X 'are determined as

before by the settings of the factors for the (i)th treatment combination.

DEFINITION. X = (Xl ... ,XN) will be called the indicator

variable corresponding to the effect a..

DEFINITION, Two indicator variables X and X will be said to
be orthogonal for the fractional factorial if

N

i= • X1

otherwise, they will be said to be entangled. (We have purposefully
avoided using the ambiguous term "confounding". ) As a consequence of
our particular model, Xa and X are orthogonal if and orly if

N N N
LX -0,since M X = X XiX

api api Q
i=l i= i i=l c i i

To be able to handle the case where both a and 3 have factor compo-
nents in common, e.g., a = ARLS and 3 ABRLSQ , we need to

extend the notation of an indicator variable to allow subscripts containing

such meaningless symbols as RL S and A, This will be purely

for convenience so that, for example, we can write 7
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XARLS XABRLS X 2 2
LQ A BR S S

L LQ

DEFINITION. Effects a and P will be said to be entangled for the
fractional factorial if their corresponding indicator variables are
entangled.

Note that aliasing of effects a and 1 is the special case of entangl-
ing where either Xa = X P or Xa = -X

N
DEFINITION. If E X. / 0, then X will be said to be an

i=1

entangling contrast for the design.

It is clear that if X is an entangling contrast, then X is
a. a

entangled with X , and hence, a is entangled with the grand mean ý.

It should also be clear that defining contrasts, as defined for the frac-

tionated 2n-p series of designs in [2] , are merely special cases of
entangling contrasts where either X . = 1 for i = 1,..., N, or

X . = -1 for i = 1,...,N, and hence

2n-p

~ x,=+n-p.zi X +

6. CORRELATION AND ORTHOGONALITY. The normal or cross-
product matrix for a fractional factorial, necessary for least squares
estimation, requires simply the sums of squarer and cross-products of
the indicator variables corresponding to the desired subset of effect
estimates. The normal matrix is singular if and only if the set of
indicator variables involved is linearly dependent. In this case we say
that the set of effects is non-estimable. The only way to circumvent
this problem and achieve unique estimates is to suppress a sufficient
number of effects to destroy all linear dependencies.

Let us assume that the normal matrix is non-singular. Then one
is interested in the inverse of the normal matrix for purposes of estimation
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and determining the correlation between estimates. The inverse of the
normal matrix is in fact the covariance matrix between effect estimates.
It is well known (see [4] , for example) that if the set of indicator variables
is completely orthogonal, i.e. , any two indicator variables corresponding
to different effects are orthogonal, then the normal matrix and the
covariance matrix are both diagonal. Hence, the correlation between
any two estimates of factor effects is zero. It is less well known and
deserves repeating that orthogonality of a pair of indicator variables is
neither necessary nor sufficient for the corresponding pair of estimates
to have zero correlation. The following two small examples will illustrate
this:

I.
Design Indicator Variables

Run A B C X XA XB XC
11 - B C

1 0 0 0 1 -1 -1 -1

2 0 1 0 1 -1 1 -l

3 1 0 0 1 1 -1 -1

4 1 1 1 1 1 1 1

The normal matrix is:

(d 2 i)

and its inverse, the covariance matrix is:
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1 1 1 1

1 1 1 1
i 7 "

4 2 4 2j

1 1 1 l

4__ • N A A

Thus, even though E XAiXB 0i O, covAs, B) a", where A and B
i=l

denote the estimated effects.

Design Indicator Variable s

Run R S A X XR XS XA

1 1 0 0 1 0 -1 -1

2 0 1 0 1 -1 0 -1

3 1 1 1 1 0 0 1

4 2 2 1 1 1 1 1

The normal and covariance matrices are respectively:

4000 1 0 0
4

0 1 I 2 0 01 0~
2

1 1

0 2 2 4 0 2 2 3/4
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4^ A

Thus, coy (RRLP SL) = 0, but Z XR iXS i I. Both these small

i=i L L

designs were intended solely for illustrative purposes, but either might

conceivably arise at an early stage of some experiment in which the

factors are introduced sequentially and the results become available

sequentially.

7. USES OF -THE ENTANGLING CONTRASTS. One needs to be

able to calculate the normal matrix for a design for any conceivable set

of desired estimates for both estimation and evaluation of the design.

It is with respect to this task that the entangling contrasts prove useful.

Consider the set of entangling contrasts corresponding to the set of all

possible effects for the fractional factorial under consideration. Then

this set contains succinctly the information needed to write down the

L normal matrix corresponding to any desired set of effect estimates.

P For example, suppose that a, P and y are three of the single degree

of freedom effects we are interested in for a particular fractionated

2 n 3 m experiment. Suppose further that the only entangling contrast

for the experiment, regardless of the set of desired effects, is X .*ap,7

Thus,

N N

Z S = c / 0 , whence, E X X C.
1=1 ajyi i al yi

Since we are interested in a, 3 and y, it then follows that X is
aFF

entangled with Xy, and that the cross-product of X andX is

equal to c. We will denote the cross-product of X and X by

(Xa X•7.Hne (Xa, X•7 c. Similarly, (X•,Xa)XXa)

(X , X ) = c. We shall call c the value of the entangling contrast.

Finally, we Ikow that since X is the only entangling contrast,

no other non-zero cross-products are possible. Hence, we can write

down the complete normal matrix for any desired set of effects just

from the knowledge of the entire set of entangling contrasts. It turns

out that we don't even need the entire set of entangling contrasts. This

reduction can be accomnplished by use of the following easily verified
identities:



i) X 2 X , where A is a two-level factor;Au a

ii) XR 2a (Z/3)X + (l/3)XR , where R is a three-level factor;
L Q

iii) XR 2 - X where R is a three-level factor; and

iv) XRL X where R is a three-1 ,evel factor.

Hence, we need not calculate directly any entangling contrast which has
squared components or both the linear and quadratic components of the
same factor as part of its subscript. The remaining subset of entangling
contrasts will be called the generating set of entaiigling contrasts. Thus,
once we have determined our desired effects, we can process to write
down the corresponding normal matrix from the generating set of entangl-
ing contrast.

There is a second related use of the set of entangling contrasts for
any desired set of effects. Frequently the normal matrix can be
rearranged so that there are square submatrices (proper) of non-zero
elements down the main diagonal and zeros elsewhere. Webb [8] has
termed such designs clumpwise-orthogonal designs. Such a rearrange-
ment, if possible, makes it easier to evaluate the determinant of the
entire normal matrix as the product of the determinants of the submatrices.
Thus, if the normal matrix is singular, one can localize the linear
dependencies by determining which submatricos are singular. The
inversion of the normal matrix is also facilitated, for one need only
invert each of the smaller submatrices. Finally, the rearrangement
allows us to state 'immediately that if X and X are indicator variJl

ables whose sums of squares are found in different submatrices, then
coy (d, 0 (4]

The breakdown of the normal matrix is accomplished as follows:
Define - to be a relation between indicator variables X and X

such that X - X if and only if X is entangled with X,, or if

there is a finite chain of indicator variables in the desired model, say
X 'X such that X is entangled with XAI XA is entangled

n. 1 i
with XA ", i 1,...,n-I ,and XA is entangled with X•.

i+l n
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It should be clear that this relation is an equivalence relation for
the desired set of indicator variables corresponding to the desired set of
effect estimates. Hence, it determines equivalence classes or disjoint
subsets of the set of desired indicator variables. The corresponding
rearrangement of the normal matrix by equivalence classes will accomplish
the desired clumpwise-orthogonalization of the normal matrix. In practice
this is an easy operation to perform.

8. DETERMINING THE GENERATING SET OF ENTANGLING
CONTRASTS. We intend to make use of algorithm I for calculating the
generating set of entangling contrasts. For any effect a, algorithm I
forms the contrast sum

in

Where yi is the response entry in the (i)th position in column zero. The
contrast sum appears in the final column in the position designated
for a in the standard ordering of all possible effects in the full factorial.
Let us consider what would happen if, instead of using (y, ... I y Y

as column zero, we choose to have (z, ... ,z as column zero,
where 2n3

Z=1 if the (i)th treatment combination in the standard
"erder was run as part of the fractional factorial,

1 2 n 3 m

0 otherwise.

2 n3 m

Then one would find E z X appearing in the position for a in the
i=

final column. However

2n3 3n

E z.X = Z XI a j SCii-ijs S
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where S is the set of those treatment combinations forming the given

fractional factorial. Thus, j X . is sim~ply the calculation we need

to determine whether or not X is an entangling contrast for the frac-

tional factorial. Thus, algorithm I can be employed to find the generating
set of entangling contrasts in any fraction of a Zn3 m design, since one
sweep of algorithm I performs the calculation of E X . for all possible

jEs

effects a which are meaningful. Practically speaking, if the number
,n 3m is relatively small, say 81 or less, this procedure works well,
and the bookkeeping does not become unreasonable even when calculating

by hand.

To summarize then the procedure in this case, one writes down all,

the treatment combinations in the full factorial in standard order. One
places a one in the response column next to each treatment combination
which was run in the fractional factorial and a zero in each of the
remaining positions in column zero. One then proceeds with algorithm
I as if this dummy response column were a true response column for a
full 2 n 3 m factorial. As in a full Zn 3 rn factorial, one identifies the
final column with a column of effects in standard order. Now, however,

the interpretation of the final column will differ from that of a column
of calculated contrasts. If there is a non-zero element in the final

column next to any effect, then the corresponding indicator variable is
an entangling contrast in the generating set with the value of the non-
zero element. For example, consider the following fraction of a 2232

consisting of 12 runs:

Run number 1 2 3 4 5 6 7 8 9 1 0 11 Z

A 0 0 0 0 0 0 1 11 1 1

B 0 0 0 1 1 1 0 0 0 1 1 1

R 0 1 2 0 1 2 0 1 Z 0 1 2

S 0 1 2 1 a 0 1 2 1 2 0 1

Here A and B designate as usual the two-level factors and R and S
designate the three-level factors.



This fraction was formed by setting A + B + R E-- S (mod 3).

Then the procedure to find the generating set of entangling contrasts

is demonstrated below:

A B R S 0 I II III IV Contrast name

0 0 0 0 1 1 3 6 12 Total
0 0 0 1 0 1 3 6 0 SL
o 0 0 z 0 1 S T 0 SQ
0 0 1 0 0 T 3 0 0 RL
0 0 1 1 1 1 5 0 -I RLSL
0 0 1 2 0 1 0 0 3 RLSQ
0 0 0 z 0 -1 0 R
0 0 2 1 0 1 0 0 -3 RQSL

0 0 2 2 1 1 0 T -3 RQSQ
0 1 0o0 0 1 0 -2 0 B
0 1 0 1 1 1 -3 0 BSL
0 1 0 2 0 1 0 0 0 BS.
0 1 1 0 0 -1 0 0 0 BRL
0 1 1 1 0 0 0 0 -3 BRLSL
0 1 1 2 1 1 0 -3 -3 BRLSQ
0 1 2 0 1 0 0 0 0 BRQ
0 1 2 1 0 1 T 3 3 BROSL
0 1 22 0- - 1 -6 -9 BRQSQ
1 0 0 0 0 0 -1 0 0 A
1 0 0 1 1 1 -1 0 0 ASL
1 0 0 z 0 -1 0 0 0 ASo
1 0 1 0 0 1 3 0 0 ARL

1 0 1 1 0 -1 " "-3 ARLSL
1 0 1 2 1 0 '-3 0 -3 ARLSQ

1 020 To o 0 AR 4
1 0 2 1 0 -2 0 0 3 ARQSL
1 0 2 2 0 1 0 -3 -9 ARQSQ
1 1 0 0 U .2• 0 0 0 AB
1 I 0 1 0 1 0 3 0 ABSL
1 1 0 2 1 1 -3 -6 0 ABSQ
1 1 1 0 1-2 -"3 -0 0 ABRL

1 1 1 1 0 1 3 0 3 ABRLSL
1 1 1 2 0 1 - -9 ABRLSQ

1 1 z 0 0 T -3 6 0 ABRQ
1 1 2 1 1 1 "3 -9 9 ABRQSL
1 1 2 2 0 -2 -3 0 9 ABRQSQ
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Hence, the generating set of entangling contrasts is as follows:

R SulR S 3RSL SiRQ = "3 aBRLSL 3 9
RLSL -1 R RS -- 3 R R RSQ = -3 , BRLS

BR -3 , BRS 3 ,BRS = -9 , ARS = -3, ARS -3

LSQ Q L= =

ARaSL =3 , ARQSQ = -9 ,ABRLSL = 3 , ABRLSQ -9

ABR S = 9 , ABRQSQ = 9

Thus, we find that there are even two letter entangling contrasts, such

as RL S , in this design. One could now proceed to write down the

normal matrix for any desired set of effect estimates based on these

twelve runs.

If 2 n 3 rm is a relatively large number so as to make the foregoing

procedure unwieldy, a variation of the above may be more suitable,

provided one can identify a set of "live" factors in the fractional

factorial, i.e., factors which, when the remaining factors are suppressed

in the design, form a full factorial. Thus, in the fractional 223? in

twelve runs presented above, factors A, B and R may be considered

"live". The run numbers are already in standard order for the full

factorial on A, B and R as they are presented. Consider then that we

are dealing with a tull 2231 design. Now, instead of a column of ones

and zeros, enter in column zero next to each treatment combination the

X Si corresponding to the run. Proceed with algorithm I for this
22 1

dummy response column for a 2 3 design. Then identify the last column

with the effects in the 2Z 3 1 on A. B and R. Note that we are actually

calculating
12
Z XS iXai = XSLC

i=l L L

for all effects a involving A, B and R as components. Then non-zero

elements in the last column of the algorithm will indicate which generat-

ing entangling contrasts in this design involve SL as a component of
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the subscript. Similarly, by taking as the zero column (Xs5  ,... ,XsoI)

one can find those entangling contrasts in the generating set which involve

S as a component of the subscript. Clearly, every entangling contrast

will involve either SL or SQ or both as a component of the subscript,

since A, B and R form a "live" full factorial and hence, no entangling

contrast can exist solely involving A, B and R. We have then found the

entire generating set of entangling contrasts in this plan by two applica-

tions of algorithm I, each individually smaller in size than the application

of algorithm I presented earlier. The above variation is demonstrated
I" below: •

"Live" Suppressed SL I II III Contrasts involving

Factors Factors A, B and R

0 0 0 0 -l 0 0 0 Total

0 0 1 1 0 0 0 -1 RL

0 0 2 2 1 0 1 -3 R
Q

0 10 1 0 0 -2 0 B

0 11 2 1 2 -3 -3 BRL,

01 o 2 0 -1 -1 0 3 BRQ

1 1 0 1 0 -1 0 0 A

S 1 0 1 2 1 - 0 - 3 ARL

1 0 2 0 -1 0 -3 3 ARQ

I 1 0 2 1 -3 0 0 AB

1 1 1 0 -1 -3 - 3 3 ABRL

" 1 12 1 0 3 6 9 ABRQ

Thus, we find the subset of the generating set of entangling contrasts

involving SL to be:

.. . . .. ...
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SLSL -I RQSL 3 BRLSL - 3  BRQSL =3, ARS -3

QAR SL = 3, ABRLSL 3 , ABRQSL = 9 This checks with our previous

calculation of the generating set of entangling contrasts. A similar com-
putation for S would complete the generating set of entangling contrasts
for this design.

3-1
9. YATES' 3 DESIGNS. One specific investigation of the

entangling of single degree of freedom effects in a fractional 2 n 3 im

deserves mention. In [7] , Yates presented twelve distinct 33-1 designs,
illustrated below with R, S and T representing the three factors and W,
X, Y and Z. being Yates' own notation:

WI W2 W3 Xl X X Y Y2 Y3 Z Z Z3
1 2 3 1 2 3 1 2 3 1 2 ~3

R S T T T T T T T T T T T T

0 0 0 2 1 0 1 2 0 2 1 0 1 2

0 1 1 0 2 2 0 1 1 0 2 2 0 1

0 2 2 1 0 1 2 0 2 1 0 1 2 0

1 0 2 1 0 1 2 0 1 0 2 2 0 1

1 1 0 2 1 0 1 2 2 1 0 1 2 0

1 2 1 0 2 2 0 1 0 2 1 0 1 2

2 0 1 0 2 2 0 1 2 1 0 1 2 0

2 1 2 1 0 1 2 0 0 2 1 0 1 2

2 2 0 2 1 0 1 2 1 0 2 2 0 1

The following generating sets of entangling contrasts have been found
for the twelve different 33-1 designs:
W1  RLL L = - RLQ L - RQSLTL= 3 , RQSQTL=-9,

RST 3 RSr 9 R.S T9 R S T 9
RLSLTQ 3 , RLSQrQ -9Q RQSLTQ=9, RQSQTQ=9.
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W 2 RLSLTL L1 RLSQTL =L3 R a SLTL Q3 RQS TL 9

RST =3, RST= 9, RST = -9, RST= 9,
L L L QQ Q LQ QQ Q

W RST =6, ST = -6, RST = -6, RST = -18.
3 LSQL Q LL L LO QQ Q

X: RLSLT = -3 ,R S T = 3 R S T = -3 , R S T = -9
1 L L= LQ L= QLL= QQL=

R S T = 3, R ST = 9, R ST = -9, R ST = 9.
L LQ LQ Q Q LQ QQ Q

X : R LSQTL= -6 , RQSLTL= 6 , RLSLTQ S -6 , RSQTQ = -18

X: RST= 3, RST= 3, RQST =-3 RST 9,
3 LLL LQL QL QL=

RST =,RST = -9, RST = 9 RQSQTQ =9.
L LQ LQ LQ QQQ QS

Y I RLSLTL = -3, RLSQTL 3, RQSLT3L 3, RQSQTL =9,

R S T = -3, R SQ T = -9, R S T = -9, R SQTq 9
LLQ L QLQQ

YZ RLSQTL -6, RST -6 , RLSLTQ 6 RQSQTQ -18.

LL LL QQ

Y RLLTL-- 3 RST =3 , RST =3 , RQSQT =-9,

Y L RST LOL LL QQL' -

R S T RsT T =9, RQSQT = 9.
LL Q  LQ Q 9Q QQ

ZT RSTT6, R =6, TlSRT =T 6 , RQSQTQ = -18.
I L L Q LL= L LQQ

Z R S T 3 ST = -3 , RQSL T = -3 ,R S T L = 9 ,

3~ L L L LQL LL QQL
RST = -3, RST =9 , RST =9 , RST =9

L LQ LQ Q Q LQ QQQaZ3 L RLS L = 3 RLSQTL = -3 , R S TL = -3 , R S TL = "

RLSLTQ -- 3 , LSQTQ = 9 oR SLTO =" RQSQTQ [
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The main thing to observe is that there are four designs which have
only four entangling contrasts in the generating set and that there are
eight designs containing eight entangling contrasts in the generating set.
Thus, the twelve designs are by no means equal in their degrees or
patterns of entanglement for the particiular model we are assuming. Note,
"however, all entangling contrasts involve three-letter words.

For example, suppose we are interested ir. estimating RL RQ
SL, SQ , TL , TQ i RLSL and RLTL , and hypothesize that ji = 0.

Suppose further that we have some prior estimate of a. and that we are
interested in considering designs W1 , W and W3 as possible experi-

mental designs. Then the normal matrices for Wi, W2 and W3 are
respectively:

6 00 0 0 0 0 0 0 6 0 0 0 0 0 0

0 18 0 0 0 0 00 0 18 0 0 0 0 0 0

0 0 6 0 0 0 0 -3 0 0 6 0 0 0 0 3

0 0 0 18 0 0 0 -3 0 0 0 18 0 0 0 -3

0 0 0 0 6 0 -3 0 0 0 0 0 6 0 3 0

10 0 0 0 0 18 3 0 0 0 0 0 0 18 3 0

0 0 0 0 -334 00003341

0 0 -3 -3 0 0 1 4 0 0 3 -3 0 0 1 4

and

6 0 0 0 0 0 0 0

0 18 0 0 0 0 0 0

0 0 6 0 0 0 0 0

0 0 0 18 0 0 0 6

0 0 0 0 6 0 0 0

0 0 0 0 0 18 -6 0

0 0 0 0 0 -6 4 -2

0 0 0 6 0 0 -2 4

• ... . .. .. .. ... . . ... : .. ... .. ... . . .. . . . . . . .... .. .. . •... • •: V .. ... . . . . .....• . . . .. . . .... . . . .. ... ... '
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where the ordering of the cross-product terms corresponds to the order

of the listing of the desired effectis above. Two examples of the calcula-
tions required for the normal matrix are:

i) (RLSL R RSL XRS = (2/3)XS 2 + (1/3)XR SZ
L L L L

(4/9)X + (z/9)xR + (2/9)Xs + (l/9)XR s
tRQ Q0R QQS

ii) (RLSL. RLTL) XRZSLTL (2/3)XsLTL + (1/3)XR SLTL

Hence, for all three designs we find, since X = 9, that

(RSL, RLSL) = (4/9) 9 + 0 + 0+0 = 4

Moreover, for W and W ;Y'

(RS, RT =o + (i/3). 3 - ,

whereas for W

(R•LS, RLTL) 0 +(1/3) (-6) = -z

A criterion for differentiating among a group of designs utilizing a
given number of treatment combinations, none of which is completeiy
orthogonal with respect to a desired set of effect estimates has been
discussed by Webb [8] . He proposes that the design which has the
smallest determinant of the covariance matrix might be optimal. This

is equivalent to choosing the design which maximizes the determinant of



I
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the normal matrix, and minimizes the volume of the confidence ellipsoid
on the parameters estimated [6] .I

The values of the determinants of the normal matrix for W , W
10 6 10 6 1 2

and W3 are 3 2 , 3 2 and 0 , By methods discussed earlier, one

33can easily localize the linear dependency in design W3 to the subset

V (X , X T XRLS , XT ). In fact it is easily verified that for W
SQ RL TL RLSL TQ 3

X 3X + 3X + XS R LT L R LS L TQ

We might define a measure of the relative efficiency in general of a

design D1 to a design D2 with respect to a particular desired set of

effect to be

det (normal matrix for D 1 ) X 100

det (normal matrix for D2 )

In our consideration of Wit W and W for the particular desired set

3of effects, we would eliminate W 3 because of the~linear dependency.

Then, the efficiency of W relative to W2 is 100% , so that they are

equally desirable according to our criterion.

10. DETERMINING DEFINING CONTRASTS IN A 2 n'p DESIGN,

The 2n-p series of fractionated equal frequency designs Las opposed,
for example, to designs of proportional frequency presented by
Addelman (1) ) deserves special consideration. In this case, as we have
already pointed out, the concept of an entangling contrast reduces to
that of a defining contrast. Thus, the procedure presented for finding
the set of entangling contrasts will yield the set of defining contrasts
in a standard zn-P design. Gorman [5] observed this fact previously
and independently of this work. Solely for purposes of illustration,
we consider the following 2 design-
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Factor: A B C

Run I 0 0 1

Run 2 1 1 0

The procedure presented then is:

A B C 0 I II III Defining contrast

0 0 0 0 1 1 2 Total

o 0 1 1 0 1 0 c

0 1 0 0 0 1 0 B

0 1 1 0 1 -1 -2 BC

1 0 0 0 1 -1 0 A

1 0 1 0 0 1 .2 AC

1 1 0 1 0 -1 2 AB

1 1 1 0 -1 -1 0 ABC

Thus, the set of defining contrasts is:.

I= -BC = -AC AB

where the sign of the defining contrast is also determined by the last
column of the algorithm.

A 11. DETERMINING THE SET OF TREATMENT COMBINATIONS IN

2A n-p DESIGN. Frequently one knows the set of defining contrasts for
a chosen Zn-P factorial design and desires to know which treatment corn-
binations form the desired fractional factorial. Begin with the column of
effects for a full 2 n design, where the dummy effect column contains a
plus or minus one next to those desired defining contrasts and zeros

* elsewhere. The sign of each one is determined by the sign of the corre-
sponding defining contrast. The result of an application of algorithm II
is usually a set of fitted values for the complete 2n design; for our

i±
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purpose, the non-zero "fitted values" correspond to runs contained in

the desired 2n'p design. This procedure is illustrated below:

[ ISuppose I - -BC = -AC = AB; then,

Defining 0 0 inverted 1 II II III Inverted Tre4tment
contrast A B C

Total 1 0 1 0 0 0 0 0 0

C 0 1 -1 0 4 4 0 0 1

B 0 -1 -1 2 0 0 0 1 0

BC -1 0 1 2 0 0 0 1 1

A 0 -1 1 -2 0 0 1 0 0

AC -o 0 1 2 0 0 1 0 1

A.B 1 0 1 0 4 4 1 1 0

ABC 0 1 1 0 0 0 1 1 1

We thus find that the runs for this particular fraction are:

A B C

Run 1 0 0 1

Run Z 1 1 0

as we knew to be the case.

This procedure can be justified by remembering that algorithms I and
II perform inverse operations. Hence, the validity of the above procedure
follows from the validity of the procedure presented in section 10,
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CONSTRUCTION AND COMPARISON OF NON-ORTHOGONAL
INUUMPLETE FACTC"A"`L DEIN*•

Steve Webb
Rocketdyne, A DiVision of North American Aviation, Inc.

ABSTRACT. Experience in industrial consulting indicates that the
requirements of a real test plan often differ from the textbook examples
in the number of levels of the factors, the interactions which can be
ignored, and the number of runs in the experiment.. The statistical
consultant must either convince the experimenter to compromise his
original goals, or develop an-d hoc design based on existing designs
and the former's intuition.

This paper is concerned with methods for constructing such designs
and criteria for comparing alternatives. Various construction techniques
are illustrated by examples. Two criteria are developed, and a conven-
ient computer routine for evaluating them is described. Exarnples of
designs are given which were constructed for actual experimental
situations.

INTRODUCTION AND SUMMARY. Very often in industrial research
an experimental program must be planned for which existing fractional
factorial designs are inadequate. The most common reasons for this
inadequancy are

1) the available designs contain too many runs,

2) the factors to be evaluated in the experiment do not all appear
at the same numbers of levels, and

3) the particular set of interactions which cannot be ignored in
the analysis of the experimental results does not appear in
any of the published designs.

In such cases the consulting statistician may have a tendency to try
and alter the thinking of the experimenter so that one of the standard
published designs can be used. This is, of course, undesirable from

*Research sponsored by the Aerospace Research Laboratories, Office
of Aerospace Research United States Air Force, under Contract AF33
(615)-2818, monitored by Dr. H. Leon Harter.
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the experimenter's point of view and increases the probability that the
design will not be carried out am originally planned. As an alternative,
the statistician is faced with the problem of developing an ad hoc test

* plan which satisfies the actual objectives and constraints of the real situa-
tion. Using his intuition supplemented by a meager amount of theory he
must come up with a design with sati-ifactory statistical properties.

CRITERIA FOR COMPARING DESIGNS. The response from an
experiment will be denoted by the N-component vector Y, and its expected
value by EY = XP, where P is a p-component vector of parameters.
Generally speaking, a good design will have low parameter-estimate
variances, which are proportional to the diagonal elements of (X'X)"I
For a given experimental sitvation, that is, specification of the number
of factors, numbers of levels for each factor, and the interactions to
be estimated, a particular finite set of designs is available. In case
one of these designs leads to the minimization of the variance of each
estimate, then there is no selection problem. This does not often happen,
however, except for fractional factorials with all factors at two levels.

In rare cases the relative importance of the parameters to be esti:-
mated may be known quantitatively well enough in advance so that a
realistic criterion can be established based on the variances. This
would usually take the form of a weighted average of the variances. Most
often, however, the relative importance of estimating the parameters

* with low variances will depend on their as yet unknown values.

* A criterion for selecting the design often proposed is the generalized
variance, defined as the determinant of (X'X)"l. A confidence set for
the parameters is the set for which (p-•)'(XX)(Pop) . K. The volumn
of this ellipsiod is

2v aP KiP

p1r(I p) v-det(Tx')
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which is seen to be related to the design only through the determinant of
the cross-product matrix. It is convenient to consider the determinant
in the form of an index, called the estimation index, defined by $

1E det(X'X)/(NPII=w
E

The weights w. are defined as follows. Let Z be the coefficient matrix
associated with the full factorial; that is, if Y14 were a vector ofI •' response for a full factorial then EY* = Z6. (The standard parameteri-

zation is such that Z'Z is a diagonal matrix. ) Let d. represent the i-th
diagonal entry of Z'Z and let M represent the total number of runs in
the full factorial. Then w, = di/M

r iOften the purpose of an experiment is to obtain overall information
about the response. In these cases the appropriate criterion is based
on the average variance of a fitted response, where the average is taken
over all M points of the full factorial. The average variance is propor-
tionai to 7 w.V., where the V are the diagonal elements of (X'X)- 1 .
A convenient representation is through the "fitting index"

I =p/(NzlWivi) W V)

More generally, an index could be based on the integrated variance of I
a fitted response. Such an index would in general involve off-diagonal
elements of (X'X)" 1 , and would be difficult to define in a way which is

general enough for both quantitative and qualitative factors. Experience
has showed I to be a very useful index.

F

Consider the class of models which is "complete" in the sense that F

if any interactions between a pair of factors appear in the model, then
all interactions between them appear. It has been proved [1] that for
models which are complete in this sense, the maximum value of both
I and I is unity. In [2] it is shown that the maximum is achievedE F'
if certain combinations of levels appear with equal frequency. An

equivalent criterion is that the cross-produce matrix XIX is propor-
tional to the cross-product matrix Z'Z for the full factorial. All

!A
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regular fractional factorials have this property. If interaction parameters
do not appear in complete sets, either or both indices may be greater than
unity.

Thus far nothing has been said about the parameterization used to
j, describe the response, that is, how P is defined in terms of the expected
j responses at the various treatment combinations, or equivalently, how

the elements of the X matrix are defined. Since the parameterization
, •is to a large extent arbitrary, a particularly appealing property of the two

indices is that they are invariant under nonsingular reparameterizations.
That is, suppose EY = XP = XAa, and similarly EY,: = ZP = XAa., where

r A is nonsingular. It can be demonstrated that IF and IE are identical

whether calculated under the parameterization 3 or a. Thus, the
parameterization is immaterial as far as these criteria are concerned.

Without the use of electronic computers, the computation of the
indices would be extremely tedious. A computer code has been written
for routine and convenient comparison of alternative incomplete factorial
designs. A detailed description of this code and its use is available [31
Any number of designs may be evaluated simultaneously by reading in
to the computer the treatment combinations in each. The evaluation will
be made for up to five models (specification of interaction terms to be
included in the model). A number of options is available to the user,
including changing the parameterization used for two-, three-, or four-
level factors, or changing the weights used in computing the indices.
A Fortran listing is included in reference [3]

ii ; •METHODS OF CONSTRUCTION,

1. Exhaustive Enumeration. For a few simple experimental situa-

tions it is feasible to enumerate all possible designs. The optimum
design can then easily be chosen. As an example, consider as an
experimental situation a 23 in 5 runs with no interactions. There are
exactly eleven nonsingular designs, which together with their properties
are given in Table I. Clearly, the best designs are the eighth and ninth,
for which each variance is minimized.

2. One Parameter at a Time. It is always possible to construct a
saturated design (although they are very inefficient) by allocating one
run ts the estimation of each parameter. For example, a 32 x ZZ with

_ _ _ _ _ _ .... . ........... ..... ........ .... ..........
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the linear-by-linear interaction between the two three-level factors is
as follows

o 0 0 0 mean10001l:
1 o o 0. 0. .0

~ 00 1 effect of first factor
a01 0 0]

0 2 0 0 J effects of second factor

2 2 0 0 interaction

0 0 1 0 effect of third factor

0 0 0 1 effect of fourth factor

where we have indicated the parameter estimated from each run. The
fitting and estimation indices are . 24 and . 025, respectively.

3. Correspondence. The theory for mixed factorial designs is
less well developed than that for designs in which all factors appear at
the same number of levels. A useful technique is to construct a design
with all factors at the same number of levels, then replace some of
the factors with ones of real interest using a fixed correspondence
between sets of levels. The best.known examples of this technique
are the proportional-frequency designs of Addelman [4] . To dernon.
strate this approach consider a Latin Square of side 3.

0 000

01 11z

20h lattofcos a erpaedb w-ee fcosb sn

2102 .

The last two factors may be replaced by two-level factors by using i

tim correspondence

7
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0 -. U

which results in the design

1 0 1 1
1 1 1 0

120 1
Z 0 1 1

2 1 0 1

2 2 1 0

This design is quite efficient, having a fitting index of . 93 and an estima-
tion index of . 79. A number of different types of correspondences is
given by Addelman in [4]

4. Permutation-variant Designs. The salient property of

permutation-invariant designs, defined in L51 , is that estimates
involving factors which appear at the same number of levels have the
same variance properties. .More formally, the cross-product matrix
X'X remains unaltered if factors appearing at the same number of
levels are permuted. An example of a 32 x 23 main effect design,
for which I :80 and 1 .47, is:

FE
° 0 0 1 0 0

S0 1 0 0 1
!0 a 0 1 0

1 0 0 0 0

a 0 0 1 1
2. 1Z 1 1 0
22 101

Using a standard parameteriz.ation, the X and XIX matrices for
this design are-

S... :,...••. 0..0..0

10000......"1111
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1-1 -1 1 1 1- 0 1 90 0 11

1-1 0 1 -2 -1 -11 0 6 0 0 0 2 2 2
-- 0 0 6 0 0 2 2 2

1 0 -1 -2 1 -1 -1 -1 0 0 0 18 0-2-2-2
X= 3 0 .2 -2 1 1 (XIX)= 0 00 0 18 -2 -2 -2

i 1 -2 1 1 1 1 1 2 2 -2 -2 9 1 1
1I -- 1 2 2 -2 -2 1 9 1

1 1 0 1 2 1 1 -1 1 2 2 -2-2 1 1 9
1 1 1 11 -11

Permutation of factors appearing at the same numbers of levels has
the effect of permuting rows and columns of the submatrices in the
partitioned cross-product matrix. Since the submatrices are invariant,

the design is permutation-invariant.

This principle has been used* to construct a series of as yet unpub-
lished saturated second-order designs for three-level factors. For five
factors the design contains the treatment combination 0 0 0 0 0, the
five treatment combinations which are permutations of 1 1 I 1 0, the
five permutations of 2 2 2 2 0, and the ten permutations of 2 2 0 0 0.
For this design the fitting index is . 66 and the estimation index is 2.35.
Relative tothe full factorial but adjusting for the difference in the number
of runs, the efficiency of the estimate off the mean is 82%0, of the linear [!

main effects is 114%1, of the quadratic main effects if 25%, and of the
linear by linear interactions is 171%. The reason that the linear effects
and interactions are so efficient is that the points of the design tend to
be concentrated around the outside of the hypercube.

5. Balancing Levels. A very useful technique for constructing
designs is to start with an ordinary factorial structure for the first
group of factors, and then insert the remaihg factors in such a way that
pairs of levels appear together with nearly equal frequencies. For
example, the following two designs are obtained by adding another two-
level factor to a basic 2x3 full factorial:

*This work was carried out by R. L. Rechtschaffner of Rocketdynes's
Statistical Test Design Unit.
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70 Design I Design 2

0 00 00 0
0 11 0 11

4a 1 1 0 1
1 10 1 11
2 00 20 1

There variance properties are given in Table II.

EXAMPLES. Three ad hoc designs which have been used successfully
at Rocketdyne will be mentioned briefly. The first involved determination
of char formation rate in ablative heat-shield material under simulated

I reentry conditions. The testing was done in a small stationary hydrogen-
I oxygen rocket engine. The experimental variables were rocket engine

combustion chamber pressure, propellant mixture ratio, and the angle
¶ of the sample in the rocket exhaust. The experimental design chosen

was one of the optimum 23 designs in 5 runs discussed earlier.

Target
Chamber Target Inclination

Run Pressure Mixture AngleNumber (psia) Ratio (degreeE')

1 170 4 0

2 250 4 1Z2

3 170 16 121

4 250 16 0

5 250 16 12.

Another such design was used on a Signal Corps battery program. The
experimental work involved screening 4 cathode materials, 3 solvents,
and 4 salts. The design was constructed by balancing the levels of the
second four-level factor within the framework of the 12-run 3 x 4
factorial.

S..-. - .- - , - - - - - -- ~ - - - - - -. - - - . - . .... . .. . .
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Run
Number Cathode Solvent Salt

1 0 0 0

3 0 2 34 10 1

6 1 z
7 2 0 2
8 2 1 3
9 2 2 1

10 3 0 3
11 3 1 2
12 3 Z 0

Although there was no justification for assuming interactions did not
exist, they could reasonably be expected to be less important than
main effects. It was intended that this experiment be used to elimi-
nate from contention some of the candidate materials with just a few
tests, so that later tests could concentrate on the better ones. The
actual decision made from these tests was that none of the four cathode
materials was satisfactory, and later testing should be directed at
finding additional materials. If all interactions had been considered, 48
tests, using these four unsatisfactory materials, would be required.

The balancing technique was used effectively to construct a 34 x
2 design in 27 runs for a program concerned with the valuation of fiber-
reinforced plastic laminates. The variables are as follows:

Variable Code Levels

Bonding Pressure A 3
Bonding Temperature B 3
Resin Concentration C 3
Post-Cure Temperature D 3
Bonding Time E 2
Post-Cure Time F 2
Fiber Quality G 2
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It was established that the linear interactions AB, AC, BC, BE,
and DF are expected to be important. Since the factor D does not
interact with the other three three-level factors, the starting point was
a 1/3 replicate of a 34 using as defining contrast I = A2 B C2 D .

For the 2 part of the design three replications of the 2 plus three
3 4

additional points were used. The 2 part was associated with the 3 part
a number of ways, and the best design selected. The third and fourth
designs were singular. The first, and best, design in presently being
implemented.
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RECORDED PH-YSIOGRAPH DATA

J. C. Atkinson
Directorate of Medical Research, CRDL,

Edgewood Arsenal, Maryland

The Directorate of Medical Research, CRDL, Edgewood Arsenal,

Maryland has the mission of investigating the physiological effects of

certain chemical substances on both human and animal subjects. One
of the machines used to measure these effects is a physiograph. This
machine which is commonly used in hospitals measures temperature,
pulse, breathing rate and both systolic and diastolic blood pressure.

•• The common hospital versions displays the information only, how-
ever, in our scientific work a permanent recording was desired so an
analog to digital converter and a punch paper tape output was installed
on a unit by the manufacturer, Air Shields of Hatboro, Pennsylvania.
Originally a flexowriter was used for the output device; later, a
Frieden SP-2 tape punch was substituted to reduce noise.

This machine can be used on both human and animal subjects. It
was first used by our Clinical Division with humans. It was shut down
for some months when difficulties were encountered with the sensors
picking up the signal from the subject. Later with better sensors it
was put to use again this time with dogs, The speed of recording can
be adjusted, So far we have run at a rate where a complete set of
5 measurements are recordedevery 5 seconds. Lower rates are pos-
sible and in many cases desirable particularly where changes occur
only gradually.

When the- paper tape is received by the computer section what is
seen is a series of 4 digit numbers followed by a stop code where every
5th number is of the same kind. The numbers are first checked by the
computer for magnitude. For human's temperature is assumed to be
at least 90, pulse 50, breathing 5, systolic blood pressure 5u, and
diastolic 20. If all readings are at least as large as those above, the
readings are reduced by the above for internal computations. Otherwise,
an error stop occurs. It is felt that if the physiograph ever gets out of
sequence the above checks would bring it to a rapid halt since, for
instance, reading breathing rate for blood pressure would bring an
error halt.
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After reading a predetermined number of enterims, or from a signal
'Ell on the input tape, computations are begun. The mean, 950/ confidence

limits, standard error and coefficient of variations are computed for
N. each of the S types of measurements together with all ten 2 factor correla-

tion coefficients.

It is hoped that the mean values and their standard errors will
indicate longer term effects of the chemical. For instance, significant
changes might be shown to occur from I to 4 hours after administration,
and apparent recovery thereafter, The correlations are hoped to show
up more subtle changes. For instance a negative correlation between
pulse and blood pressure is considered abnormal.

Unfortunately the change from a flexowriter to an SP-Z punch output
RM itook longer than anticipated and to date we have only data from early

human runs with inaccurate sensors but no drug runs. It is hoped that
dog drug runs will start this month. An output from a test run is shown
as Figure 1 to illustrate format.

/ 4.

\,
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AN APPLICATION OF EXPERIMENTAL DESIGN IN ERGONOMICS:
ijr'AD"I RATI. AS A r'TTNWrTTCN F WORK STRESS AND TIME

H. B. Tingey* and W. H. Kirby, Jr.
Ballistic Research Laboratories

Aberdeen Proving Ground, Maryland

ABSTRACT: This presentation concerns the establishment of a

relationship between heart rate and imposed physical workloads for a given,

time period for a small group of young males. A hypothesis was developed,

experiments designed, data collected under controlled conditions, and the
results analyzed using classical statistical methods. The results dersion-

strate that the underlying functional relationship alters as the stimulus

changes. In this case the alterations may be defined over five segments

of time.

1. INTRODUCTION. Studies of changes in the human circulation

have been made from many points of view. Physiologists and others have

long been interested in the effects of physical work on the circulatory

system. Many of these studies have used heart rate behavior as an indica-

tion of the circulatory system's capacity to respond to physical workloads. I

Heavy, medium and light workloads have been considered under various

environmental conditions of temperature and humidity.

However, to the best of our knowledge, there has been no attempt to

study these clinical and physical relationships using more classical

statistical procedures in association with pre..experimental hypothesis
formulation. The usual approach is to collect large amounts of data,

tabulate it and/or plot it on a graph. Then generalized clinical interpre-

tations are made. Occasionally, a statistician is asked to assist in doing

something with the data following its collection.

This study was done as an exploratory exercise not only to investigate

the possibility of an underlying relationship between heart rate and physical

load, but as a meana of bringing the engineer, physician, and statistician

together on a problem of common interest. We wanted to consider each

other's viewpoints In reference to a physical-medical problem. There

are also a common interest to employ more scientific method in. this area

of research,

*•Now Assistant Professor of Statistics and Computer Science,,4 .U U rilty:. -

of Delaware, Newark, Delaware.

----------------------------------.
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We all knew that heart rate would increase with phy.iud vx.ttu,, aad

decrease following the cessation of it. However, we were interested in
knowing the more precise nature of the rise and fall for different degrees
of work intenoity. As simplifications we decided to hold the work period
and envitonntent constant. The phyo!-al workloads were chosen in this
first, study for conveuience and measurability.:

Our longer range objectives include the development of predictive
functions relating more generalized stress situation& on the human system
using this type of approach. Additional cardiovascular system phenomena
which are also of potential interest to other researchers, clinicians, and
those concerned with the effects of various forrns of stress are being
considered. Such phenomena may include, among others, coagulation
"factors, measure of hypoxia, and biochemical constituents,

2. METHODS.

,1 Scope and Procedure.

The purpose of this experiment was to assess the reaction of the
human heart rate to -work stimulation, The conduct of the experiment
took the following line.

* A method of work was selected which may be described as a form
of weight lifting, Preliminary trials were made to determine a set of

' I weights, number of repetitions and frequency which could be accomplished
by the five involved subjects, It was decided that available bar-bell weights,
namely 21. 6 lbs. , 26. 6 lbs. , and 31. 6 lbs, would be used. Each bar-bell
was to be raised from the chest position to maximum vertical height and
lowered with minimum restraint to the starting position, This cycle was
repeated 30 times at a timed (metronome) rate of two seconds resulting
in approximately one minute of intensive physical activity. The subjects
themselves were a non-random sample of available personnel.

A brief physical description of the five subjects who were healthy
males is as follows:

' .- •," ' ' .,' " q . . . . .. - . -... .. . .. . . . .- , - - . .. . . . . . . ...
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No. Ane Weight Height

1. 35 175 5"-9"1
2. 30 230 6'-44"
3. 44 180 51-911
4. 24 135 51411
5. 25 155 5i-91,

successive weeks, Each repetition of the experiment started on Sunday

and terminated on Tuesday of the week. On each day the experiment was
started at the same time of day and the subjects performed in the same
sequence. On the first day the 21. 6-lb. weight was used with the 26. 6-lb.
and 31. 6-lb. weights used on the second and third days, respectively.
The room was air conditioned and temperature and humidity were essen-
tially constant throughout the investigation.

Five minutes prior to the initiation of the weight-lifting exercise
each subject was seated in a chair adjacent to the apparatus. Small patch
electrodes had already been positioned on each side of the bare chest at
the mid-clavicular line just above the lower costal border for the contin-
uous recordilkg of the electrocardiogram, The recording was accomplished
using a telernetering apparatus and commenced immediately after the
subject was seated. This first phase which began at -300 seconds
terminated at -60 seconds,

The subject then arose, stepped onto the force platform, moved into
a predetermined starding position with the forearms against the chest,
elbows acutely ýlexed, and hands positioned to receive the bar-bell from
others. At approximately -5 seconds he was handed the bar-bell and at
zero second~sle began the exercise, ending with the termination of the
30th. cycle at -:60 seconds. Others relieved him of the bar-bell immedi-
ately folloing t.he cessation of exercise. The subject then stepped down
from the platforni and sat in a chair resting for the remaining 540 seconds.
Then he was removed from the experiment and the continuous monitoring
of the electrocardiogram ceased.

This sequence of events led to five time zones to consider for curve
fitting, namely, (1) a rest phase with essentially constant heart rate
(time: -300 sec. to -60 sec.); (2) a preparation phase with linear increase

ilk,
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in heart rate (time: -60 sec. to -40 sec.); (3) a short recovery phase with
linear decrease in heart rate (tirne: -45 sec. to -5 sec.);,* (4) the meadured

i - work phase with linear increase (time: actually 0 sec. to 60 sec. but heart
rate changes occurred between -5 sec. to 55 sec. - the latter is used); and
(5) the recovery phase with exponential decrease (time: 55 sec. to 600 sec,).
As mentioned, heart rate was recorded continuously (via telemetered EC0s)
and the distance of each lift recorded photographically. Apparatus and
measurement equipment are discussed in Section 2. 5.

2. 2 Hypothesis.

The general hypothesis initially considered expressed heart rate to
be some function of workload and time. Symbolically, it was stated, H. R. M
f(L,T). One could make the expression more explicit by adding a. constant
of proportionality and giving both L (measured load) and T (measured time)
exponentials, Because of the sequence of events which took place, the
initial hypothesis was modified to consider the five time pe'.,iods duringwhich the individuals were measured. This led us to the following:

H : (a) The regression relationship between a workload and

heart rate is given over each of the five segments as a function of time.

S(1) H. R. =k k > 0•.300 -ct- -120.)

(2) H.R, k I + Pt ki, P >0 -60 c (t< -40,

(3) H. B. kz + P It k2 >0j P1 <0-35 <t .5,

(4) HR, R k3 +P 2 t k? 03 P2 >0)0 <t <5%
"" 2

(5) H.R, k4 te 3  k4 > 0, c'>0), 3 > 0)60 <.t<600.

Note: The actual relationship might be specified by a single
relationship but more careful planning in the light of this
this experiment is required. One might state the overall
relationship as:

'*One might be led to considering this interval as two segments whereas
our original hypothesis was that over a short interval our heart rate decrease
could be considered linear.

...... . ...-
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H. R. Kta ePt

(b) The regression relationship between a time and heart K

rate is given as a function of load:

H. R. a(t) + P(t)L

Initially the data are subjected to the analysis of variance for a
three-way layout and appropriate tests for the significance of main effects
(and the particular intervals over whic they are significant) and to detect
possible interactions which may be present, The hypothesis tests have
followed the stindard F-test procedure ahd are indicated in the ANOVA
(Analysis of Variance) Table III,

2.3 Design.

The basic design employed for each replicate of the experiment is
a two-way layout using time and theoretical load as controlled variables
with heart rate as the response variable. The general formulas are
given in Table 1.

TABLE I

General Formulas for Two-Way Layout

Source SS df E(ms)

2 2 2
Time SSt = JK (yi, y - I-I a +JKO

2 2 2
Time X Load SS tf KE XYij. . yi, " Yj "y.. all( -) +Ka

i j

Error SS MZEZ •. N 2 IJ(K-l) 2
• ij k ' j'

Total SSr = - 2 IJK-l
ZEE j k ''

r i j k
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It is, perhaps more desirable to analyze the data over the three trials
of the experiment by introducing another main effect for repetitions of the
experiment. Hence the analysis of variance takes on the pattern of a three-
way layout with several (say n) observations per cell, The general formulas
tior this situation are presented in Table II.

The data from the experiment are used according to the formulas in
Table II to calculate the results given in Table III. The error sum of
squares should indicate the approximate value of the renidual error after
fitting the regression lines proposed in the original hy-•othesis. One may,
as a matter of interest, test the significance of the rean squares for main
effects and interactions. This would then lead the ir.vestigatbr to an analysis
to determine the regression which might exist over each of the five intervals.

Additionally, results from the mean squares fitting for the fixed time-
load variable and the fixed load time variable are presented in Tables
IV and V.

2.4 Instrumentation and Equipment.

The weignts used in this equipment were obtained from a commercially
available bar-bell (dumb bell) set, the components of which were weighed
to the nearest tenth of a pound. The components were assembled in three
comLlaations to give the test weights of 21, 6, 26. 6, and 31. 6 pounds,

The experiment was conducted on the surface of a force-platform
of special design capable of making accurate measurements of forces in
the three orthogonal axes and of moments about these three axes. While
the platform impulses were measured, discussion concerning them are
beyond the scope of this presentation,

Heart rates were obtained from a TFLEMEDICS Radio-Electro-
cardiograph known c-,mmercially as the RKG 100 System which is composed
of a receiver Model MCM and transmitter Model 100 A. The associated
electrodes, as mentioned previously, were positioned in order to minimize
muscular noise and prevent premature loosening of them. Very sharp
QRS complexes were obtained, The e. c. tf. profiles were recorded simul-
taneously with impulses from the platform on both , Sanborn 8-channel
Paper Recording System, Model 858-5460 and a Sanborn-Ampex Magnetic
Data Recording System, Model 2007.
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The metronome was a battery-powered electromechanical oscillator
with amplifier and speaker calibrated to give the desired frequency (onle
pulse per second).

....... ..•i•! ...16mm motion pictures were taken of each subject during each exercise.
The camera was located in order to record the appropriate movements
of each subjdct in association with fiducial markers.

3. RESULTS.

3.1 Results and Interpretations.

The computations noted in Tables I and II were carried out and are
shown in Table III.

due to different loads. This was, of course, a gratifying result inasmuch

as the increment between levels of load was rather small. The resulting
F-ratio is more than adequate for the stated significance level. This
effect can be appreciated graphically by referring to Figure 1.

The next control variable, time, is again highly significant as was to
be expected. The significance here, as well as the previous effect, ie.
load, may well stimulate the analyst to consider the functional fit to the
data proposed in the original hypothesis,

A difficulty encountered from the analytical point of view occurs when
one observes that both the Repetitions by Load interaction and Load by
Time interaction are both significant. Considering the former, Repetitions
by Load, the explanation here must come more from clinical considerations
than from statistical interpretations alone. While the entire experiment
was considered to be one that could be repeated, one can note that the
subjects under consideration, although healthy, were not in top physical
condition. As the experimental series progressed, an improvement (or
degradation) in the physical condition probably occurred, Techniques
also improved during the conduct of the experiment. In addition, there
were one or two minor changes in apparatus which might account for this
effect. Additionally, the subjects were not isolated from normal daily
routine before and during the. 3xperiment, Perhaps the effect of psycholog-
ical factors operating through the autonomic nervious system may be mcre
important than can be identified at this time.
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TABLE III

Analysis~ of Variance

Source ___ SS Ms F-Ratio Significance

Replications 2026.58 1013.29 8.64 None

Load 2 7504,00. 3752.00 31.99

Time 43 317105.39 7374.54 62.87

RxL 4 5462.93 1365.73 11.674

RxT 86 4874.66 56.68 0.483 None

LxT 86 15868.31 184.52 1.573 88

RLxT 172 9693.96 56.36 0.480 None

Error 1584 185808.71 117.30 F

Total 1979 548344.54 M .

*Significant at 5% Level.

* *Significant at 1% Level.
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The Load by Time interaction probably receives its largest contribution
from the differences in heart rate acceleration@ and peak values which occur
over the working phase. In comparisbn with the close similarity of the
curves of the other time segments of the experimental cycle, this interaction
could perhaps be avoided in subsequent experimentation by considering
measurements only over the working phase. However, this approach cannot
be taken until reasonable baselines are established for pre- and post-work
pe riod an.

In view of the purpose of the experiment and the original hypothesis
presented, an attempt in made to perform the regression analysis set

forth under the null hypothesis. Table IV indicates the linear regression
functions in reference to time. One may observe that the residual error
after fitting closely resembles, on the average, the error mean square
from the analysis of variance. Table V indicates the regression function@
in reference to load. In like manner, the residual error after fitting resem-
bl es the error mean square from the analysis of variance.

Tests of significance have not been performed on the individual constants
listed in Tables IV and V in that the appearance of interaction effects does
not allow the combining of all the data or the three replicates as was done
for these calculations. We have not formulated the precise nature of the
multiple test procedure implied here. The basic intent again was to develop
an idea of the form to assist in future designs.

4. DISCUSSION.

4.1 Subtle Observations.

a. Heart rate prior to leaving the sitting rest position.

It is interesting to observe (Figure 1) the resting heart rate
patterns. Fluctuations for a given subject on a given experimental run
were essentially similar for the different loads and repetitions. Thus
there was an identifiable pattern for each of the participating subjects,
One would judge that some of the fluctuation in general might be lessened
if subjects were isolated and testing singly in an environment in which
external stimuli were essentially nil. Statistically, of course, we have
treated the values in this phase am constants.

Ii
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| TABLE I V

Table of Linear Regression Functions:
Heart Rate vs. Time

Time
S(Seconds) _ ERMS 0

.300, 79.244444 - .05333333 7.0593 1.6639 .25777

.-240. 78.655555 .06000000 6.3054 1.4862 .23024
-180. 78.777777 .13333335 5.6110 1.3225 .20488
-120. 78.222222 .28000001 7.0641 1.6650 .25795
- 60. 86.499999 - .41999997 9.7390 2.295S .35562
- 55. 90.899999 - .SS333331 13.227 3.1178 .48300
- SO. 91.977777 - .35999996 11.914 2.8081 .43503
- 45. 92.655555 .00666670 12.102 2.8524 .44190
- 40. 94.411110 .23333336 13.937 3.2849 .50890S- 35. 92.622222 .26666670 12.917 3.0446 ,47166

- 30. 88.433333 .52666668 13.759 3.2431 .50242
- 25. 86.388888 .15333334 11.775 2.7755 .42997
- 20. 87.199999. .07999997 11.938 2.8139 .43592
- 15. 87.333333 .10666670 10.728 2.5286 .39172
- 10. 88.755555 .02666669 9.5600 2.2533 .34908
- 5. 89.677777 .40666669 8.5388 2.0126 .31179

0. 95.911110 .12000002 7.8273 .1.8449 .28581
S. 99.966666 .32666671 8.1022 1.9097 .29585

10. 99.899999 .72666669 8.7247 2.0564 .31858
IS. 101.44444 .86666670 9.4751 2.2333 .34598
20. 103.70000 .60666668 9.,6506 2.2747 .35239
2S. 105.47778 .91333333 11.449 2.6985 .41805
30. 106.04444 1.0133333 11.570 2.7271 .42248
35. 106.05555 1.4733333 11,876 2.7993 .43366
40. 108.48889 1.5866667 12.465 2.9380 .45515
45. 109.68889 1.5600000 13.738 3.2382 .50166
.50, 110.62222 1.8000000 12.613 2.9729 .46056

55, 112.45555 1.9266667 13.713 3.2321 .50072
60. 107.64444 2.0133334 13.540 3.1914 .49441
65. 101.70000 1.3133334 10.333 2.4355 .37731
70. 99.799999 A'6666669 10.289 2.4251 .37569
75. 97.411110 .55333335 8.1311 1.9165 .29691
80. 94.766666 .47333335 8.8753 2.0919 .32408
85. 93.644444 .42666669 8.9016 2.0981 .32504
90. 93.766666 .43333337 9.8854 2.3300 .36096

120. 90.755555 .10666665 8.9511 2.1098 .32685
180. 83.622222 .25333335 8.1302 1.9163 .29687
240. 81.633333 .11333336 8.2653 1.9482 .30181
300. 80.422222 .49333335 8.5371 2.0122 .31173
360. 81.888888 .25333336 8.5314 2.0109 .31152
420. 81.866666 .05333333 6.9260 1.6325 .25290
480. 81.011110 .07333336 5.7840 1.3633 .21120
540. 81.033333 .07333334 6.5464 1.5430 .23904
600. 82.266666 .10666665 5.9303 1.3978 .21655
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TABLE V

Table of Regression Functions V
Heart Rate vs. Load V

p: ~Time•

Segment 21.6 lbs. 25.6 lbs. 31.6 lbs.

I 79.7 79.7 79.7

"11 82.6 '.55M' 82.6 + .5"&t 82.6 + .5SAt*

11i2 92.5 - .614t* 92.5 - .614t* 98.5 - .61At*

IIIb 83.6 + .154t* 83.6 + .ISAt* 83.6 + .lSAt*
IV 96.2 * .32t** 96.7 * .43t** 99.2 + .62t** tl

V e4.6bt. 0015o ea.087t** er4.74t.0014-. It** 04.820019 13t**

Start At at zero at the beginning of the respective segments andincrease by 5 for each interval,

Start t at zero at the beginning of the respective segments end
increase by I for each 5 seconds.

.... .. ...
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Sb. Heart rate during immediate pre-work phase.

After the subjects left.their reiting chairs, they took several
4i• paces and took a single step up to the work platform and assumed a

predetermined work position. The subject then remained in this position
to await the signal to receive the bar-bell and commence the excercise.

, :It was this phase that caused us some unexpected concern from an
analytical point of view in that we lost control of the individual in trans-
ferring him from the resting phase to the working phase More careful
planning should avoid this problem in the future, The same kinds of
variations mentioned in (a) above likewise were found in this phase. TheseI • were also treated in linear fashion.

c, Heart rate during work.

While it was expected that the heart rate would rise rapidly
with the sudden onset and continuation of intensive physical exercise, a
more precise statement on how it would rise was desired, rhis, hope..
fully, would give some insight in reference to the posuibility of an under-
lying functional relationship between workload and heart rate response.
The data points for each of the three loads for the five subjects are
shown graphically in Figures 2, 3, and 4. These data were fitted with
linear regression lines as shown also on the graphs. It is interesting
to look now at the individual pattern for this phase of the experiment.
Figures 5, 6, and ! show their chariacteristics. To us these were very

interesting observations for they provided additional insight on the
manner that individuals respond to a physical stress in a physiological
way using a set of quantitative measures as opposed to the more common
but less rigorous clinical impressions, However, we are mindful of
the exploratory natttre of this project as well as its being a orsall non-
random sample.

d. Heart rate during recovery,

It is very interesting that heart rate falls so rapidly following
the cessation of physicalwork. This well known exponential fall, the
greater part of which taken place within approximately the first 10 to 15
seconds, was demonstrated iL association withthe raw data points for
the various loads shown in Figures 8, 9, and 10, According to the
results in this study heart rate began, to fall several seconds prior to
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HEART RATE CHANGE OF INDIVIDUAL SUBJECTS
DURING 60-SECOND WORK PERIOD USING 21.6 LB

DUMBBELL (AVERAGE OF 3 TRIALS)
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the cessation of the work, Our explanation for this is that it may in part
be anticipation by the individual toward the end of the work cycle and, in
part, due to the method of discretizing the data. Since the participants in
this investigation were conaidered to be clinically healthy males in a some-
what restricted age range, no inferences are made regarding variations
in the return of individual heart rates to the normal or resting baselines.

F ~ The fitted exponential regression curves shown in the figures mentioned
L ~ above are treated statistically. Variations are attributed to circulatory

system characteristics and their nervobus system interactions. Presumably
external stimuli which may influence heart rates in the re.sting and the
final stages of recovery would be less significant during intensive

i. physiological stress derived from physical work.

e. Heart rate over the experimental cycle.

A summary or heart rate profile over all phases of the experi-
mental cycle averaged for each load in recalled as shown in Figure 1.
It is interesting to observe the slopes of the surves showing heart rate
increase in that they are clearly different even for the small increments
of work intensity. The same may be said in reference to the peak values.

4. 2 Direction of Subsequent Investigation.

In brief the following are being considered for subsequent investiga-
tions:

a. Longer work periods in order to understand more about heart
rate behavior at maximum range under prolonged work stress.

b. The utilization of an open system in order to accomplish a. above. I.,
Weight lifting, unlike bicycling or tasks utilizing more of the muscles tends
to generate exhaustion prior to the onset of peak heart rate.

c. Certain biochemical parameters associated with circulatory
system response to work stress may be useful particularly as it may, in
turn, be related to such medical conditions as shock. Here then we become
concerned with multivariate models and analysis.

d. Planning of experiments for additional insight on roles of other
physical and psychological factors,

e. An ultimate objective is to relate "stress" to cardiovuscular
system changes associated with early signs of cardiovascular deterioration
and a particular condition known an hemorrhagic shock.
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STRATEGY FOR THE OPTIMAL USE OF WEAPONS
BY AREA COVERAGE*

J. A. Nickel, J. D. Palmer, and F. J. Kern
University of Oklahoma, Norman, Oklahoma

(Representing the U, S. Army Edgewood Arsenal)

ABSTRACT. The development of non-nuclear ground-based weapons
systems in a historical perspective is briefly reviewed. The implications
of this development to target acquisition and logistics in terms of efficiency
of coverage are included.

By defining a new concept termed Efficiency of Target Destruction
as the ratio of expected area destruction of a target complex to the maxi-

mum theoretical area destruction possible, the authors have demonstrated
that a delivery of a number of small effects patterns can be most efficient,

Through use of the SADI Mark IV, Statistical Additive Density Integrator,
it was found that the delivery error (standard deviation of delivery) must
be in the neighborhood of 50% of the target radius for maximum efficiency.
It was further found that the efficiency is not appreciably reduced if the
actual aim point is within 30% of the target's radius of the center.

These results clearly indicate that for certain classes of targets a
decided advantage is attained in terms of efficiency of the weapons system,
reduction of target locator accuracy requirements, and a lessening of
the impact of logistics support.

INTRODUCTION. In the generations of ground based weapons systems
since World War II, three readily identifiable stages have existed in the
development of non-nuclear weapons. In the first instance, the attempt
was to develop a warhead with the greatest possible damage or effects
pattern which required larger and larger lethal radii for each particular
system. During this initial phase, it was tacitly assumed that if one

could develop a larger effects pattern, this was most easily delivered
on target. A major effort during this period was toward warhead design

and development, with little effort toward determining the accuracy
requiremente, It was further assumed that once the warhead was avail-

able, delivery on target would be readily achieved.

':*This acticle appeared earlier as a University of Oklahoma Research

Institute Technical Report: Contract DA 18-035-AMC-116(A); Internal
Memorand%,,- 1454-1-2, July 1965,
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The second phase initiates with the realization that the warhead could
not hf delivered on target with a high degree of reliability, that is with a
high assurance level. This led into the second phase which was the develop-

ment of more accurate locators and target acquisition devices for
sophisticated target acquisition--techniques such as infrared, radar,
radiometers, acoustics, etc. In this phase the dependence of any system
on the inherent ability of a locator to not only locate the target, but also
locate itself relative to the weapon was realized, This presented the
third problem with even more difficulties for designers and tacticians.
The situation now becomes that of large lethal area weapons with a rela-
tively low accuracy yielding the resultant of the net amount of lethal
pattern placed on a target being less than that which could be achieved
should a highly accurate method of firing be developed. With the realiza-
tion that these two viewpoints were mutally opposing, atte pts have been

made to develop closely coordinated systems involving locators and
weapons. Considerable research has been performed in an attermpt to

* formulate a methodology which would serve to alleviate this inherent

difficulty.

In establishing minimum criteria for target location and firing patterns,
the objectives have been aimed at generating more accurate locating
systems and larger effects patterns. Target requirements have become
more and more stringent. More potent effects patterns (non-nuclear)
have been developed with the rather obvious end result of requiring greater
locator accuracy to achieve a maximum effective firepower per unit.
Most recent studies have been directed to ascertaining error sources and
attempting to provide a maximum assurance level of target coverage: for
a given system. This has usually resulted in going to larger and larger
total effects patturns as a consequence of the inability to supply more
accurate target location methods. Tests to determine the mraximum allow-
able error for multiple effects patterns have resulted in a promulgation
of this same trend. Hence, a higher required assurance value of target
destruction has resulted in specifications for more accuracy in location,

The problems which accrue from this trend are many. They include
the requirement for more accuracy and mobility in target location systems,
logistic difficulties associated with increased firing rates, loss of target
during "zero-in" fire due to target mobility, and high initial and mainte-
nance costs associated with larger more complex weapons systems. The
results have been the generation of requirements for more accurate radars,
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infrared devices, and optical detectors with accompanying data processing
equipment, weapons selectors as well as more accurate delivery systems.

A re-examination of simulation data originally run to determine
minimum accuracy requirements to yield maximim area coverage has
resulted in a number of factors which point toward an entirely different
assessment of applicable criteria contradicting previous concepts, In
attempting to determine the "efficiency" of various weapons systems
against standard target sizes, it was found that maximum efficiency seemed
to occur when use was made of smaller values of RD/lRT (lethal patterns)

and that a deliberate error of up to 1516 RT had only a minor elfect on

area coverage at the maximum efficiency levels and further that a sacrifice
in assurance level could. be made and yet have a better system than is
presently available against certain classes of targets under the previous
optimization requirements.

Through the use of the OURI-SADI Mark IV, a systematic study ofS ef.fects patterns and their effectiveness on area targets has been under

investigation, An analysis of the data has brought forward several observa-
tions, Foremost among the observations is that the effectiveness in use
of munitions can be increased by reducing the size of the effects pattern
of a given round and distributing a number of these with a delivery error
that is bounded away from zero, i. e. , not perfectly accurate, as well as

having an upper bound on the weapons errors.

For flame technology, this is particularly important since by not

attempting to cover the entire target with ftiel, the insulation effect of
unburned fuels is minimized, The desirability of small portable flame
devices increases since on the criteria enumerated they are tactically
sound. Furthermore, multiple bursts with each component yielding a
small effects pattern, requires less delivery accuracy than a single
larger burst having the same potential of destruction,

The SADI Mark IV, Statistical Additive Density Integrator, as
developed by the personnel of the Systems Research Center, University
of Oklahoma Research Institute, permits the evaluation of lethality to a
target by simulation techniques. Through such studies, several factors
influencing the effectiveness of multiple firings on a target have come to
light. Area coverage affected by flame devices is particularly well-
modeled by this simulation technique.
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At this juncture of study, the basic configuration has been the random
j placement of six circular "cookie-cutter" effects regions. Each

component, with total destruction or lethality throughout the circle, is
distributed about a point on a circular target. Circular effects regions
have been employed since in a first approximation, this is approximately
the shape experienced under actual firings, Circular targets have been
used since maximum efficiency coild be designed into the SADI Mark IV
with this coniiguration. It is known, however, that a topological equiv-
alence exists between this configuration and any other for which the

I:i boundaries of the target and lethality region are simple closed curves.
It should be further observed that the numerical discrepancy between
using circular patterns and rectangular patterns is negligible. (Ewing,
George. Predicting the Effects of Multiple Firing on an Area Target

* and Related Questions, OCDD, USA AMS, Ft, Sill, 1955). Implicit in
the foregoing equivalence are questions of approxim~ated symmetry and
other regulatory conditions which will not be considered,

APPROXIMATING CONVOLUTION OF THE MOMENT GENERATING
INTEGRAL. In trying to estimate a suitable approximation to the
probability density function f(x) of a population from which samples are
drawn, the following scheme approximating the density function from the
empirical moments is proposed,

it is known in statistical theory, that if the Moment Generating Func-
tion, M(x), is known for a sampling distribution, then the moments of
that distribution are readily obtained from the derivatives,

For simplicity it is assumed that the probability density f(x) at a
cortinuous variable has -i rmnverient McLaurin t;xpansion on the unit
iiiwrval (0, 1) and is zero elsewhere, ii.e. ,

f(x) = Z bxkX o <_. x <1k
k=o

: 0 elsewhere.

This assumption permits the Moment Generating Function M(x) to be
expretsed as an integral over the unit interval, ie.,
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This function can furthermore be expressed as a power series

Sk
M(x) = + E XVk

k=l kW

where v is the kth moment about the origin,

A second possible interpretation is available by considering M(x)
as an Integral Transform instead of an expected value, As an Integral
Transform, the following needed properties can be established.

(]) M(ax + by) aM(x) + bM(y) e -

(2) M I [f I(x)] M ix x~)fO

(3) M(O) 0

S~k
x( 4) M(l) E . '(~)

k=O

(5) M() M (k + M) (k + 2),
k=O 0

16 (6) M(x2 L= (k + 11) (k + 2) + (k + 3) k
k=O

and in general
nk n M [xn-l

(7) M(Xn) = k-- = [n l
k=O L
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)Uning Lhe assumed power series expansion for the probability density

[k= k

b bk M ]

k
When the transforms of x are substituted into this last expression a
second power series expansion is obtained for the Moment Generating

Function, this time in terms of the McLaurin coefficients of f(x). Two
power series converging to the same function necessarily have identical

coefficients, From this, it follows that

® b= E] k 1, 2
Vkl j=l k + j-2

where v = 1. These constitute an infinite system of equations in the
0

variables b j =l, 2,
i-l

b Letting B denote the column matrix of the McLaurin coefficients
Sbi, N the column matrix of the moments vi~ calculated from the

sample, and A the !ilbert matrix

The foregoing system of equations can be written

AB = N.

The matrix A is singular and has no inverse. However, if the system
is truncated sj as to utilize only a specific number (n) of moments, the
resulting (n 4 1) by (n + I) square matrix A does have an inverse An'

n n
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The approximating polynomial coefficients can then readily be obtained as

B = A N
n

It should be observed that the matrix A , and hence, its inverse iF
n

independent of the sampling distribution, hence, one A can be used
for all samples at that degree of approximation.

From a casual observation of the data it is apparent that the density
function is not uniform, normal, or even symmetrical. It follows that any
admissible polynomial approximation should be by a polynomial of degree
greater than two. To allow for the possibility of symmetry it is reasonable
to consider an approximating polynomial of degree four (4). If a least
squares analysis were to be employed in determining the coefficients for
such a polynomial, it would be necessary to use eight (8) moments of the
relative areas. Since the basis for accepting the polynomial of degree
four as a good approximation to the density function is not established,
an abbreviated procedure over a least squares evaluation is desired.

A polynomial approximation to the probability density function was
developed through the use of an approximating convolution of the Moment
Generating Integral. If the approximating density function is given by

2 3 4
f(x) = b +bIx + b2x +b3x + b4x

where x is the relative area reduced to the unit interval. The above
approximating convolution gives the following formulas for the coefficients.

b = 25 - 300vI + 1050v2 - 1400v3 + 630v4

bI -300 + 4 800vI - 18900v 2 + 26880v 3 - 1Z600v4

b2 = 1050 - 18900v1 + 79380v2 - ll7600v3 + 56700v4

b3 = -1.400 + 26880v - 117600v2 +179Z00u3 - 88200v 4

b = 630 - 12600vI + 56700v - 88200v + 44100v4

4 2 3 4
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where v1, v2, v3 , and v are the moments of the relative areas of

coverage about the origin reduced (or scaled) so that the maximum relative
area is one (1). This calculation only requires the use of four moments
of the distribution to give an approximating polynomial. The only segment
of the ensuing polynomial used is that part lying above the axis and corre-
sponding to the range of values of the original sampling distribution.

For the purposes of the original problem, the cumulative probability
distribution is needed. This is readily approximated by the polynomial

P b x +/ (1 xŽ +(I/b, x3 +/(I/bx 4 +(l/5) 4 x

obtained from integrating the approximating density polynomial. This
again is used only over the domain corresponding to the observed area
input obtained from the simulator. As a statistical control, a kolmogorov-
Smirnov Test was applied to the empirical distribution and the calculated
approximating cumulative probability polynomial.

SYSTEMATICALLY INTRODUCED BIAS. It has long been recognized
that a knowledge of the exact position of a target relative to the weapon is
generally not initially known. This raises the question of bias effects in
the assumed target location relative to the actual target center. A study
has been initiated to investigate the systematic introduction of bias in the
location of ground zero. The actual procedure used is probably best
described through the use of the flow chart of Figure 1.

Initially, in the. study of bias effects, the parameters considered
have been a- = 0.5 and r = 0. vr 5 ,. For this particular case, it became
apparent in preliminary investigations that a bias less than or equal to
0. 3 of the target radius produced minor decrease in the exp'cted area
coverage. The fall off to a first approximation is parabolic and the area
coverage can be approximated by multiplying the expected area coverage
of a symmetrical distribution by the factor.

1 - ;0.925X 0 !X !S 0.4

In this factor, the bias X is the ratio of the distance between the target
center and aim point, and the target radius. For X = 0. 3, the fall off
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is approximately 15%, and hence for smaller bias, the correction is quite
insignificant. It must be again pointed out that the foregoing corrcction
is based upon the observations of one pair of parameters. A larger set
of parameters must be considered before general conclusions can be
drawn with a high degree of certainty.

One conclusion inferred from the foregoing observation is that for
multiple firings on an area target, the accompanying target acquisition
problem is not of major significance, since minor inaccuracies in the
target location will not significantly affect the expected amount of destruc-
tion when all rounds are aimed at what is considered to be the target
center.

SYMMETRICAL PROBLEM. The first study to be considered
consisted of six rounds being aimed at the center of a circular target
and distributed with a circular normal probability distribution about the
aim point. Standard deviations equal to one-half and three-fourths of the
target radius were used with a larger variety of effects circles. (Nickel,
J. A. , Palmer, J. D. , Battlefield Simulation for First Round Accuracy
Requirements of Simultaneous Multiple _Firin. Proceedings of Winter
Convention on Military Electronics, IRE, 1963; Nickel, J. A. , Palmer,
J. D., Gajjar, J. T. , Kern, F. J. , and Williams, D. R. Battlefield
Simulation for First Round Accuracy Requirements of Simultaneous
Multiple Firings. Data Supplement No. 1. DA 34-031=AIV-679, 1107-5-6,
January 8, 1963.)

In all cases considered, it was observed that the smaller standard
deviation consistently yielded a greater statistical area coverage. In
other words, for a given size of the component effects circle, the
standard deviation of one-half the target radius gave a greater area
coverage than did the larger standard deviation of three-fourths the
target radius. A local minimum area coverage is to be had with a
standard deviation of zero, in which case all effect@ components would
lie on top of each other, giving a total effective area equivalent to that
produced by a single component.

Consider the statistical area coverage as a function of the stan~dard
deviation of delivery, cr , as well as the radius of the effects circle
component, r. Notationally, this will be written as A(ao,'r). From the
"remarks of the preceding paragraph one observes that
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SA(O, r) < A(0. 5, r) r < I

A(0. 75, r) < A(0. 5, r)

Since r can be varied continuously, it is reasonable to surmise that
the area function also varies continuously. One now concludes from the
mean value theorem of differential calculus that the area function achieves
an expected maximum value for some a in the neighborhood of a- = 0. 5

, .for each value of r. The associated values are yet to be approximated
by simulation studies. A fundamental conclusion to be drawn from these
observations is that for a given size of effects components, there is a
critical value for the standard deviation of delivery which will yield
a maximum area coverage at a given statistical level, when the aim
point is the target center. Figure 2 illustrates this fact by exhibiting
a random delivery pattern, delivered with standard deviation of
(a) w = 0. 5 and (b) w = 1. 0. In Figure (2a) there is considerable over-
lapping of lethality components. In Figure (2b) two of the lethality
components are so far removed from the target center that no damage
to the target is experienced by them and are not recorded in the figure,

A second observation based upon this modeling is that for a given
number of effects components, the total effects or area coverage as
"measured on the simulator, increases with an increase in r, the radius

", of the component circles. However, an increase in r is accompanied
with an increase in the areas shared by two or more components. This
effect is illustrated in Figures 3a and 3b. These figures are composites
showing the effect of distributing six rounds (lethal components) about

s • • the center of the target with a. = 0. 5. The shaded set of circles cor-
respond to an r = 0. 25 whereas the larger boundary about these shaded
circles correspond to r = 0.5.

From a tactical point of view, a weapon is most effective if it deploys
to a given target only the minimum quantity of casualty producing material.
Using this as a basis, it is proposed that an index of efficiency E, can
be determined by

,Expected Target Area Coverage
Theoretical Area Coverage
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The Theoretical Area Coverage in the formula is defined as the total area
that could be covered by the casualty producing material if it were dis-
tributed uniformly. This value, the Theoretical Area Coverage, ukay

exceed the total area of the target. If A is the effects area produced
by one component, then NAL is the Theoretical Area Coverage, N

S~being the number of effects areas used.

t•:: .......... iDefining efficiency as above, it is readily observable its efficiency

decreases with an increase in the size of the effects components for a
given number of components. The dependence on the standard deviation
of the distribution again enters in with an apparent maximum again some-
where near o- = 0. 5. This criteria of efficiency no longer demands
extreme accuracy. The classical phrase "don't shoot until you see the
whites of their eyes," is in general not applicable, excepting certain

!il i• limited tactical situations,

At all levels of significance and for all w" , the efficiency curves
appear to approach each other asymptotically for large component radii,
r. Further, it should be observed that the limit value for the efficiency
S index on increasing r is 0. Figures 4 and 5 indicate the efficiencies
fo r o- = 0. 5 and c" = 0.75 respectively. From these curves, the follow-
ing qualitative information is evident. First, the efficiency increases
with a decrease in the level of assurance demanded. For small r and
large r there seems to be an achievable maximum of efficiency obtain-
able. This may, however, be an apparent condition peculiar to the
"particular sample set used. Further investigation is needed on this point.
A flow chart describing the proposed investigation on the SADI Mark IV
is found in Figure 6,

4",, A conjecture resulting from these observations is that the efficiency
",,1 -•' can be increased by reducing the size of the effects circles to a critical

size dependent upon the target size and the standard deviation of delivery
a- . This implies an entirely new concept for matched weapons systems.

F LOGISTICAL IMPLICATIONS. For tactical neutralization of
* destruction of area targets, a number of tentative conclusions can be

formulated in light of the foregoing observations. If it is desirable to
strike the target without forewarning, several features need to be
considered. A single round could be used, but in such situations the
effects of bias and delivery errors play a major role (Nickel, J. A.,

~~1.
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FIGURE 5
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FIGURE 6 I
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Palmer, J. D. Nomograph for the Determination oi the Cummui A•a of
Intersection of Two Distributed Circles, DA 34-031-AIV-679, 1107-5-9,
March, 1964.in the relative effecLiveness of that round, that ia, target
location problems are of paramount importance.

As an alternate approach, multiple rounds, each with a smaller effect
* i . pattern can be employed. In such a deployment of munitions, the effects

of bias (if not too great) are minimized. Furthermore, the efficiency of
effective area coverage can be increased for a suitable matching of effects
radius and standard deviation of delivery to the target radius.

An immediate implication is that an effective weapons system to be
employed against area targets for which protective procedures can be
affected, such as mobile targets, personnel, etc. , are those which can
deliver a number of rounds, each with a small effects radius. The

!}•!•i!;!i'effectiveness of the system is optimized and does not require excessive

accuracy. Such weapons presumably would include small caliber cannons,
rocket launchers, and mortars, with a variety of warheads from HE to
flame and other incendiary devices, Stated another way, minor inaccu-

racies in the location of a target under the fire of a volley will not
significantly affect the expected amount of destruction.

Unloading a volley on a target before protective measures can be
undertaken, may be tactically more efficient than attempting to zero in
on a target by successive firings and corrections, Not only does the
zeroing give forewarning, but increased accuracy in the knowledge of
target location is not found, As an illustration consider the problem of
using two rounds to bracket the target and the third for effect. First,
in order to assure equivalent ballistic trajectories, missiles of the same
size and mass must be used, and hence two rounds are wasted. To
further assess the consequences of bracket firing, suppose the first

ý7 ,Zround is fire'd short (deliberately), by an amount S. Due to errors
inherent to the system, the round lands at P instead of P For

symmetrical bracketing, Figure 7, the second round is aimed at P

a point symmetrically located with respect to the target point T, If
P1 hid coordinates (0, -s), then P has coordinates (-x, -y-s) where x

and y are distributed by the appropriate error ellipse of the wcapon,
The intended coordinates of P3 are (x, y + s), but in actuality the aim
}3
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point is at P with coordinates (Zx, 2 y + s). The second round actually

aimed at P4 lands at a point P with coordinatcs (Zx + x', Zy + y' + s) ,1

when x' and y' are again distributed according to the error ellipse of the
weapon. From the coordinates of P and P the observed burst points,

2 5'
corrections are calculated for determining the target location T. The
correction is applied either to the coordinate P 2 or P 5 where in

actuality it should have been and actually is applied to the unknown

coordinates of point P1 and P 4 . If the correction is applied to P2V the

aim point, Z. has coordinates (x, y), whereas if the correction is

applied to P5, the aim point, Z1, has coordinates (x', y'), This is
interpreted to being equivalent that the weapon can now "know" the loca-

tion of the target to within the probability distribution of the weapon

under bracket fire techniques, and hence in firing for effect, the loca-
tion of the third round be distributed about the target with a probability
distribution with twice the variance of the weapon.

It should be observed that successive rounds fired at the target

without further correction will be distributed about an aim point offset
from the target in some direction. This offset is an example of the

unknown bias in the delivery of munitions. This further emphasizes
the desirability of multiple small round firings in order to take advantage

of insensitivity to bias in delivery effectiveness.

Manpower requirements and other aspects of logistical support, R1

point to other desirable features of such systems, The importance of
such consideration has been noted many times and has been particularly
well-stated by Marshak and Mickey (Rand Corporation) when commenting
on the optimal choice for weapons when they said,

"We want to choose a weapon system that, subject
to'a given cost constraint, will maximize the

4' mathematical expectation of a military utility
(probability of victory), ".

The foregoing model is based on the correlation of probability of victory
to the target area coverage. Some further comments on the nature of .. .

cost constraints have been briefly considered by Nickel and Palmer

-----------------------------------------......"-.- .....
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(Methodology Utilized in the Determination of Weapons System Accuracy
Re uirements, Proceedings of the Winter Convention on Military Electronics,

APPENDIX A

Data for studying the bias effects (lack of knowledge concerning target
center) on a sampling distribution of a composit of N-effects patterns have
been taken on the SADI Mark IV. A flow chart exhibiting the basic data
taking procedure is presented in Figure 1. The data have been subsequently
reduced to cumulative probability curves by means of the movement
generator technique discussed in this paper. All parameters are normalized
with respect to the radius of the target.

A preliminary analysis using six rounds distributed with a normalized
standard deviation of 0. 5, and a destructive component radius of 0. 45 is
shown in Figure 8. This curve exhibits the relstive change in the average
area of destruction for each displacement from the center and for which it
was observed that small displacements had little effect on the area coverage.

'I In order to get a more detailed view of the results, another set of
patterns was investigated. During this investigation the distribution error
was specified in terms of cizcular probable error (CPE = 1.177o), but
the same circles of destruction (RD/RT T 0. 45) were employed as in the

preliminary investigation. Figure 9 exhibits the family of cumulative
probability curves as functions of area coverage resulting from the set
of more than 50 patterns. Each curve in the family specifies the displace-
ment of intended aim point in terms of 0.2 of the target radius, i. e. , each
curve represents a shift of aim point by 2016 of the target radius from the
target center.

In considering these several curves, their similarity and ordering
is as would be expected. It must be pointed out, however, that for
displacements less than 30% of the target radius, the fall off in area
coverage is small. To further clarify this point, Figure 10 illustrates
the area coverage as a function of the aim point displacement for
confidence levels of 10, 25, 50, 75, and 90%.

.. -



Design of Experiments 153

.Iik-.-±NJDDC b

Data for determining the optimum number of rounds to be deployedj against a target was obtained on the SADI Mark IV according to the
acheine exhibited in the flow chart Figure 6, At the time of writing
this report all of the desired data had not been generated and the analysis

dispe'rsion errors are under investigation with the hope of determining

optmumparameters.



THE VARIABILITY OF LETHAL AREA

i•a•a Bruce Barnett
Dar.& Frocesoiig Gy-LtAA-, .

Picatinny Arsenal, Dover, New Jersey

The purpose of this paper is to describe a statistical model that
estimates the variability of lethal area when fragment mass and initial
fragment velocity are allowed to randomly vary between specified
limits. Prior to this development, the general lethal area equation
will be derived to illustrate the nature of the equations involved and
to show the assumptions made in its derivation.

The lethal area concept is usually applied to anti-personnel muni-

' 'tions that are of a fragmenting nature such as bombs, mines, grenades

and shells. The lethal area is a number that yields a measure of
effectiveness of the particular munition under investigation - the larger
the lethal area the more effective the weapon. The usual mathematical
definition is the following: "The lethal area of a weapon is that number
which when multiplied by a constant density of targets will yield the
expected number of incapacitations". Figure 1 illustrates a typical
situation.

Shown here is a shell bursting over some area A containing N
targets, uniformly distributed. Let h be the height of the shell at
detonation, w its angle of fall, and 8G, e the zone angles within

which fragments are ejected. These fragments are to incapacitate as
many targets as possible. Let the position of each target temporarily

A be known, the coordinates of the ith target being (Xi, Y1 ). The density

of targets lT is the ratio N/A. The lethal area, (AL), can be written

as

(A A A N
L N - cJ

so that multiplying AL by pT yields E(Nc] according to the definition,

Here

Nc F random variable the number of casualties

and E[Nc is the expected value of Nc.

rn,
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The Lethai area equation ib 11UL UncabluL,, ,kLUvVr , , AAA 6A. a$-1-

form of equation (1). To refine this equation let

Y, random variable = I if the ith target is in:apacitated

0 otherwise +

The number of casualties can, therefore, be expressed as

N
(z) N - Y.

ii=

Defining P as the probability that Yi 1., it follows that'1' 1
N A N(3) A A M E[Yi E" P=

(3) AL N -

Refining the lethal area equation further let

N random variable = number of fragments striking the ith
target

P random variable probability that any one fragmentHK 0i striking the ith target incapacitates that target I

M random variable = 1 if the jth fragment to strike the ith
target is the first fragment to incapacitate that target-

0 otherwise.
I'• ' (ji) .

Expressing Y, in terms of the X( yields
.1I

(4) Y " X.:)

j=l

Applying equation (5),

ha
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(5E[Y) [EE[Y i PK.' Nil 3

it follows that•'i ....... • E L x(i)IP N,P NJ

: j=l

N.

E[ ' P.rob X W 1 K., N1)

N
E[Xi (IP FK. 1 F) HK.

S..=;j~l 1

Summing the geometrical series in the latter equation produces

(,7) E[Y] = EF[ - (l-PHK) Ni]

-Using the Poisson distribution as an approximation to the binomial,

equation (7) becomes

(8) 
E(]-e -NiPHK

This equation i& further approximated as follows

(9) i[•iI -- -I e

This is equivalent to expanding l-ex about the point E[XN , X N PHK
and using the first term.
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Letting

(to) N. = P1  .A

where

IP = random variable = density of fragments at the ith targeti -
AP = random variable = presented area of the ith target

p x

then

(11) E[N1J = 3ip1J E (As]
I F

so that finally

A - N. A N =E( 1 ]EE[A ]E[PHK1
1 E

(12•) AL E E [Y] - E- • l-e•
L N E[Yl1]I N" "e

This equation can be used when the targets are at predetermined
positions and should yield a good estimate of the lethal area. This is .
•so, because the kitown target locations enable reasonable estimates for
E(pi] , E]AP and E[P to be assigned. Data for P , the

probability that a random fragment striking the ith target incapacitates
that target, can be obtained experimentally depending in part on the
mass and striking velocity of the fragment.

hanIn a tactical situation, however, the target coordinates are rarely
known and it is desirable to obtain an analogous lethal area equation to
handle this typical case. To accomplish this, let

E[Yi where now P is a function of (Xi, Yi), Xi, Y"" Ki

being random variables defining the coordinates of the ith target.

- .-.- . .- -~:::~.:-*-'-------------------..--
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!.+ IIn this case

EY I E (PK Xi, Y ' d

(12) E[mPx (xi# Yi

- PK(X,,Y fxl Xi) Y X dY,

Since a uniform density of targets is assumed

(13) f(x Y
i+ A

so thatI+I
(14) E[(Y] PK(Xi, Y1) dXidYi+I"i,• ,, A

Substituting this equation in the lethal area equation produces

A /.A N N
(15) A Y Y PdXdY.

L N ~ i- N A j~ A~

Each of these N integrals are identical, so that

16) A- N PdXdY = YL• N A Y AKSAK

This is the usual lethal area equation. It can be evaluated by judiciously
selecting various points in the groundplane, evaluating PK at these
points and numerically obtaining the value of the integral.

S. ..... ............... .... . ... ... ..... . .. ... ... ... ... . ... ... ...... .•+ + - ..... • .. ... -+ - i ii~ i + • +, +..
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This equation, howtrrr, does not allow lor any ot the parameters
to be randomized; that is, it cannot be used directly to ascertain the
variability of lethal area. Before describing the statistical model, 1t

is worth-while to state several reasons for analyzing the variability
of lethal are'. Some are:

1. A quantitative measure of the variability of lethal area due to
specific parameters is provided. A possible application of this is for
establishing tolerances. For example, there are controlled and un-con-

trolled variables associated with a shell. Fragment breakup and explosive - -

weight being somewhat controlled, burst height (for an air burst) and
angle of iall being uncontrolled. Tendencies exist to maintain tight
-tolerances on variables that can be controlled even at more expense.
In lieu of the variability induced by parameters that cannot be controlled,
these possibly tight tolerances may possibly be relaxed without signiifi-
.cantly affecting the overall effectiveness. Conversely, variability can
•point out those parameters that need be better controlled to assure
more uniform effectiveness.

2. Variability affects the design of optimum rounds. Briefly, 141
rounds should not be designed to produce high effectiveness under ideal AU
burst conditions, but decrease sharply in effectiveness when variations ,.
from these ideal conditions are present.

3. Variability analysis permits probabilistic bounds to be placed
on the number of casualties. For example, it may be advantageous in
some situations to have a minimum assurance level for incapacitating
at least P%/ of the targets.

To study the variability of lethal area in the most general case
would first necessitate establishing the independent random variables
and those quantities in the lethal area equation that depend on them.
For example, one may write

(17) AT, SSA(l-e'P(m(8 Vo),h,0e1 ,G 2' Ap (h)PHK(m' Vo,'Oc))dAL A

Here, it is assumed that the density p of fragments depends on the
mass breakup, which in turn depends on the intial fragment velocity
Vo and the angle measured off the nose of the shell. The burst height,

0PR

: . ;,-r.-,Lr•

.,,!-

S.. .. .. . . .. . . ... . . . .. . . - ..
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spray angles and angle of fall also affect the density of fragments at a
=c.1•-t-• *tr.rt Similarly, for A end Pule' As a first analysis,

however, several simplifying assumptions will be made. Some of the
assumptions are somewhat unrealistic; for example, the drag coefficient
aL is assumed independent of the fragment mass. It is for this reason

.V 6ý that the results from this analysis should not be strictly interpreted.
R• However, what may be of importance is to see how well the statistical

model estimates the variability, for then in the favorable case, the
possibility exists of generalizing the model to include more realism.

• •The assumptions used in this analysis are listed below.

1. Only the fragment mass m and initial fragment velocity V will
be considered as random variables. This means that.the burst height,
angle of fall, weight of fragmenting material, etc. , are precisely known
in advance.

2. A 900 fall angle is assumed.

3. The fragments are all of the same mass and initial velocity,
although the particular mn and V are random variables.

0

4. m, V are independent random variables, both uniformly
distributed. o, the drag coefficient is independent of both m and V

0

5. Inverse square law for density is assumed,

6. A , the presented area of a target is a known function of h and
SR ( is thi ground range to the target under consideration).

7, P is specified by an exact formula given as a function of m
and V, the•Hiriking velocity.

8. The maximum effective range of a fragment depends on m and
E[Vo.

As a result of these assumptions, one may write

m max -p(m). E[A] PHK(mD V)
A18)A (I-ea )RdR

LJW 0
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Thi ietv lethal skr~a mauation written in polarcoordinates, making use
of the fact that w = 900 yields radial symmetry. The density p is

(19) p1
22

whr ~ :nr is the range frmthe burst point to the target under considera-

tio an =egto rgetn material. The relation

(20) Nf*

N~ being the number off ragments, was used in obtaining equation (19).

A (fh, R) a known quantity
p

~~~1/3
P J zf(M. V);'V Voe_1

A typical plot of P1 is shown in Figure 2.

0 A f (m. V)inrangn
increasing V

FIGURE Z

hkV

.~~~~~7 ... ... ...... . .
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Note that a certain cut-off point A exists such that for £i(m,V) 5 A,

]PHK ; 0. PHK is non-differentiable at this point A.

To obtain the variability of lethal area, it is first convenient to reduce
the integral form of the lethal area equation to one that is purely algebraic.
This is accomplished by selecting a numerical scheme to evaluate the
integral. In this case the Trapesoidal rule was used. Thus

M
(21) A 2•r A R E RP

L 1m iK

Here it is assumed that R 0 and m is so large that
0

(22) PK PK RM)0

Clearly

M
12z3) E (A L]Ui AR V R E(PK

i=1 1

and

2M
(24) V[AL - 42r (AR)Z V[; R PK

The latter equation can be Put in the more convenient form by employing
equation (25).

., .- -
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M M M

V[ ; R P K j EL2E R P K E[Z R iP K]1
i=1 1=1 iK izl

(.;S) M 
- P

- R R V[PJ +2 RR(E[P K 1K
J= iC j K

E[PK . E EPK] )

Since V[P~J K [[ IPK. E[P]K

equations (23) and (24) require only that expressions of the form

, E [P 3,and E (P toK L'Ke K KiJ

be evaluated to ascertain the end result. This is doscribed next.,

Following Reference I a logical method of proceeding would be to
expand PK in a Taylor series in the independent random variables 7 ,

m and V
0

Thus

P =P +P +P (
K K M

0m 
44a

'KK -K2KnPKoV.• 
:i;

(27)+ • (PKIT('n1~)z + • PKniV (n.•) (yo-Vo)

(27) 0

i+ PKV V (v0'vo)
0 0

In the right members of (Z7) PK, PKm "i 8PK/Om, ,. ., are each under-
stood evaluated at the point (ff, VO).

. . .. .., ....+L, .
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j Here the subscript i has been omitted. Unfortunately a deficiency in the
above expansion exists in that P may take on negative values and thus

IU becomes meaningless. This is illustrated in Figure 3.

RANGE=R

~i

SERIES EXPANSION

0 mmr
j - 0

FIGURE 3

In addition a. second deficiency results when using this expansion in that
for any given initial velocity V0 there is a corresponding mass (atm)

where P is non-differentiable. This arises from the point of non-dif-
ferentiabffhty in the P equation which is subsequently carried through

to the PK equation. (By assumption (8) E[V0 will be used instead of

the random variable V to determine in)
00

Both difficualties are overcome, however, if one forms two
separate expansion~s for P., namely;

for znk mn

nuo 0

for mnm

P Ka0
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where for algebraic uimplicitv mn is chos~n hv

(29) zn C E(m Imam (R)]

so that

since *Ir ()

(3)=[]ECY f X< X ]*Prob [cx

+ E(Y IX kXQ P roib(~

One may write for P

E(PK u(PK+P E [n-'M]

+i P E Noy jZ Ikma i Prob m t km 3

0 0

each term of which is easily avaluated.

The covariance terms are handled by expanding P P about a

~electsi point and formally taking the expectedvauoftepdc.

aFor example .v~~o 1epout
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P P (P (P + P rk-m+

1+ PK (m.M)(PK + Pm (Mm ~+.]

V so that

E [rn-W')
K K K Kmn Km

q+..) Prob (m m}l

i For the uniformn distribution2

~fv*. -
.-------



Design of Experiments 171

Carlo evaluation whereby m and V were sampled from their respective0

daiuZ&-uu~iunim. The resuiin o, ihe comparison are shown in !'able I.

TABLE 1

STATISTICAL L L
MODEL 4519 178.9

MONTE CARLO
MODEL 4516 179.8

o Difference in E (AL]= .06%

76 Difference in a [AL) .s50

In acertaining these results the following variances were Assiged;
V (m] = .75 and VVo] 75, also 200 simulations were used in the

Monte Carlo evaluation.

The next Table shows a comparison of E[PK] and V(PK] at selocted
range = i6'.,

E[PKJK v x 10] 3

RANGE M. C. S. M. M. C.* S. M.
10 ..9366 .9370 .1572 .1658
20 .5482 .5491 .1372 .6667

30.z• •o .6o,72 .6,667~0 .2q67 .2974 .2839 .2958
40 .1736 .1740 .1068 .1112
s0 .1103 .1105 .0429 .0447

100 '0222 .0222 .0011 .0012
200 .0028 .0028 0 0

270 .0008 .0008 , 0 0
300 .0004 .0004 .00001 .00001

370 0 0 0 0
•*Based on a sample size of 100

-.- ILL,
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A review of these results indicate that the statistical model does
provide a good approximation to the variability of lethal area - a method
which may possibly be generalized to include more realism in the model.

It is of interest to note that the covariance terms contributed as high
as 87%1o of the total variance of lethal area. The final table also included
for interest, shows the effect of step size used in the numerical integra-
tion scheme on the results.

TABLE fI

R 5 R =O R=20

LEAL] 4554. 4519. 4304.

,oIAL] 179.4 178.9 185.5

"In summary, therefore, it is not the numerical results of this paper
that should be emphasized, but rather the possible application of a
straight-forward technique to a couriplex problem involving the variability
of lethal area.

REFERENCE

1. Picatinny Arsenal Technical Report 2508, "Variability of Lethal

Area", by Sylvain Ehrenfeld, February 1959.
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DECISION PROCEDURE FOR MINIMIZING COSTSI ~ ~~OF c ALIBaATINGJ LWULD ROC iEiTNG:,NES !" I .ALSidney H. Lishman and E. L. Bomtara°-

Engine Program Office, Marshall Space Flight Center

SUMMARY: Prior to acceptance of a liquid rocket engine for use in
Saturn vehicles, the average thrust of two consecutive tests without an
intervening calibration must satisfy specification requirements. The
contractor may recalibrate after the first and subsequent tests if he bo

chooses, based upon decision limits, until the above requirement in met,

This paper provides a method for calc-4ating decision limits such
that the total number of tests required for acceptance it minimnixed. The
model for calculating the decision limit takes into account operational

reliability and life of the engine, ratio of cost of testing to cost o.f aI %.
engine, and correlation between teuts as a function of engine-to-engine
and run-to-run variance components.

INTRODUCTION. One of the requirements for NASA acceptance, .. ....- ,
of a Saturn vehicle engine is that the thrust averaged from two successive
tests without an intervening calbration fall within specification limits.
In the past, most engines were accepted from the contractor aiter three
tests, but when the specification was recently tightened itwas estimated
that more than 50% of all engines would have tn be tested at least four
times prior to acceptance. Their increase in number of testa per engine .

represented an appriciable increase in costs,

This paper presents the results of a study made to determine what
could be done to reduce acceptance testing costs when the specification
limits are held constant. ,.

DISCUSSION. Engine testing is conducted in accordance with the :i
following ground rules until the engine meets acceptance requiremtns
or until it is scrapped:

1. If thrust in a test following a calibration is outside certain
decision limits, the engine is successively recalibrated and
tested until thrust falls inside the decision limits.

.

* I~i

4 i'
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2. If thrust in a test following a calibration is inside the decision
SI~t limits, no changes arc mane to the engin'e and 4•,AIBhT ty t i=

S ...... conducted in an attempt to satisfy acceptance requirements.

3. If the average thrust from two consecutive tests without inter-
vening calibration falls outside of specification limits, the
engine is recalibrated, and the test cycle is repeated.

It should be pointed out that the value in using a procedure such as
described below is greatest when specification limits are tight. If
specification limits are very wide, there is not much point in using
decision limits at all, because the need for recalibration becomes remote.

ILLUSTRATIONS. For the purpose of applications herein, the
following assumptions were made:

1. The engine is always calibrated after the first test (due to high

variability of thrust prior to the first calibration),

Z.,. 2. 'There is no bias introduced in calibrating the engine.

3, After the initial calibration, ability to recalibrate does not
'.improve between tests.

4. Cost of calibration is negligible compared to cost of a test.

5. The engine is scrapped after N tests that do not satisfy the
criterion for acceptance described above.

6, The engine-to-engine and run-to-run variance components,
ad .. ,respectively, are known, the mean thrust

)4. .:." is also known.

S7. R is the same for all engines.S~RR

8. Engine-to-engine and run-to-run deviates are normally and
independently distributed.

The models described below can easily be altered to change assumptions
1 through 5.

1, 7 -,
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Two models are considered heroin:

1. Assume the engine is scrapped after nine unsuccessful tents, and
operational reliability = 1. 0. Operational reliability is defined I
as one minus the probability of any failure (hardware, facility,
human error) that causes a single additional test and calibration,
Assume that the cost of scrapping an engine is equal to the cost
of 40 tests.

2ý Assume the engine is scrapped after 5 unsuccessful tests and
operational reliability S. 1.0.

Common to all ro.odels generated under the above assumptions, we define
the following probabilities (figure 1):

S Let Pt,) be the probability of thrust exceeding the decision limits in
t h e i t , t e s t ,.-• : • : • .

Let P(M) be the conditional probability that the mean thrust,
(Xi+X )/Z. eof the ith and (i+l)th tests exceeds the specification

limits.

It is assumed that P(i) is the same for all i, and that P3() is the same for r
all i. Assuming normality, P(i) and Pni may be calculated from the
bivariate normal density as illustrated in figure 1. ".. E.

P(i) and P(i) may be obtained from equations (1), (Z), (3) below by
using any table of the bivariate normal distribution, such as reference
(1). It is convenient to express the correlation coefficient as a function
of the run-to-run and engine-to-engine variance components, because
of the advantage gained by utilizing all pertinent data. From the appendix,
the standard deviation of X ',s:

(X) TX --- EE

The correlation coefficient between X and (X +X )/ is:n

- - .-
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( 2) Px i
S2 

(r X

The standard deviation of (Xi+Xi+l)/2 is.

(3) (X i+X i+,)/z a 'X i PXi ,(X i Xi+l)/2 , ,

MODEL 1- Reliability : 1. 0; engine is scrapped after 9 unsuccessful
tests.

Let the notation HZ 3" describe the event that thrust of the-second
test was Within decision limits and that the average thrust of the second
and third test was within specification limits. Let the notation
112 3 4 5 1" deac~ribe the following event:

c c

Calibration after second test (thrust outside of decision limits),

No calibration after third test (thrust within decision limits),

* Calibration after fourth test (mean thrust of third and, fo*.rth

test outside of specification limits).

, Thrust in fifth test within decision limits.

* Average thrust of fifth and+ sixth tests within specification limits.

Using this notationp.nd the notation of figure 1, probabilities for the
various events are as follows:

............. . ....... . " "'
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TABLE I

KWH?,PROBABILITY

24. 3~4

2 ~ 2

2 Sc 4o 7 E-P(1)P(T8JLP(7)pj) ID1 P(03)
2 3o to -3

2 5* 4,5w 6~ D.%(I.-PJ1)'(I)J PM) D-'pct

[I.P(±).P(TJ])[P()) )
2~PiI) 4E'Ci2

[ -P ,...........[t J3
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TABLE I (Cont.'d)

IV'VwrR~ PROBABILITY

2 4 ' 6 8 P(* Li- (')l t P(73 D~ - 2.

2 4 6 678 LI - P~)- P~) P~±V( 1)1 [Ip~)

C C

2 IS 4 5 67 8 Vl-p E12() P(-)] P( 2[() E, p(]ý2

2 4 C. 5 6 C 8 T L .(i)F( IJ)]JEP(i 2q 2 [1 p(t12

2~ 3 Z 5 6 a7 a8 T [iI (±)( 2(7)) LP(d)J4 P(-,) [I - j]

2 3 We . 6 7 8 ; [1 -P(j) - P(-))L ?4  ()~ J
cC 4 0 C c I-2 P

2 3 45 6 7 8 [1-V () ( P-) [ y

c aC a. a ..e i I *(1 .. I() -P ) I(7 -

CCP C C() F M

2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ L 3 S6781 1 ().P ~) c)[ y

[I pyl~ .

2 3.4. . . . .. &.[ I . . . . . . . . . . . . . . . ..p r
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Assume that the cost of one engine is equivalent to the cost of
M a 40 tests. L~et i) Lot Uiiv =... prc-~1-itifl5 in table I associated

with tLose events requiring Jtests. Then the expected number of tests
per accepted engine is:N

E~ JP 4 M(= - EP)

(4) E(N) J~=3 N 3J

J123
'A. '

The quantity in parentheslsv in the probability that more than 9 tests
are requir~ed; i.ea., the probability of scra~pping the engine. Holding the
specification limit constant, the decision limit (figure 1) is varied until
E(N) is minimised,

In illustration, this model was u~sed to support contract negotiations
in an enginie program where reliability of the engine is very high.
:Practice is to scrap the engine after 9 unsuccessful tests. Data. showed
that the squar,ý root of the within-engines or ruan-to-run variancej compsonent of thrust was 600 lbs, , and the square root of the engine-to-
engine variance component was between 1200 and 1500 lbs. Both
extreme* were analysed, au follows-

......J Case I a, 1200 lbs. Cr 600 lbs.
Fm tEEI, RR 14 ls

From equaton (1,I -(600)'ý+(1200)' 34 ls

From tiquation (2) p1 (x1  x1 1 )2

From equation (3) r(X1 + X 1+)/Z 9 5(1340) z: 1270 lbs.

Suppose the~ specification limits for thrust are nominal + Z000 lbs.
Then the number of standard deviations between nominal and thL specifi-
cation limit (two-sided) is 000/1270 = .57. By trial and error, equa-
tion (4) is minimnized when the decision limits are nominal + 1. 7(1340)
nominal + 120.s hn ,N 318 o.oz) 998 3.2tes
per accepted engine.
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Case 2: a' 1500 lbs. WR 600 lbs.
E4 R

r
From equation (1), a.X V(600)' + (1500)' 1620 lbs.

xi 1'600' 2
From equation MZ, p, ,.1 671H 0 .9,61

A 1 , (X i ,jJ1

From equation (3), 0p.( +. .965(1620) 1560 lbs.
.i Xi+1 )

The number of standard deviations between nominal and the
s~pecification limit (two-sided) is 2000/11560 = 1. 28. Bly trial and error,[
equation (4) is minimized when the decision '[`Ynits are nominal
*1. 5(1620) nominal + 2430 lbs, when E(N) [3. 286 t 40(. 0122,)] .988

3. 8 tests per accepted engine. (Note that changing the ratio of

T R ck from 600/1340 in case 1 to 600/1620 In case 2 changes the
correlat~on coefficient by only . 015, and merely changes the optimum
decision liisfo-.7t .5sadr eitos ,N hne

signficntl, fom . 3to 3. 8 tests per accepted engine,)

Other info rmation of interest corresponding to decision limits i s
the. followingi

VA. Prob. of acceptance after N tests E
J=3N

C. Percent engines requiring calibration after second test PWi

Of these, the four 'corners" of the bivariate distribution
are necessary (see figure 1),

Prior to this analysis, the contractor had been using arbitrary
decision limits of nominal +1 (2000-2 a-RR Advantages gained by

minimizing expected number of tests are also obtained from A, B,

and C above, as follows-.
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COMPARISON OF DECISION LIMITS

THE ENGINE IS SCRAPPED

0 EF !~203 lbs. aR 600 lbs.

ISpec. Nomiinal + 1. 6 Sigma)

(Assume 1 Engine Decisioni Limit Optimum Dec. Limit
is 40 Tests) nominal +±0. 6 w *nominal +1. 7.Xi -. Xi

*Prob. of Acceptance .45 . 87
after 3 Tests

0/ Engines requiring 55%0 10%
calibration after (of these, 201c (of theae, 771o
Znd test are necessary) are necessary)

-Aeaenumber of 4. 11(diie to recalibration) 3.18
tests requi*red for 0. 61(due to scrapped engine) 0. 08
acceptance 4.72 (Total) 3.26

A 15tests/egn

Expect.~d Number of 1. 5 0. 2

Scrapped Engi4ies
Per 100 Tested

after NTests 69.9 N = 4 95.5
83.5 N a 99.0
90.0 N z6 99.6
95,0 N =7 99.76
97.3 N =8 99.79
98.5 N =9 99.80
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COMPARISON OF DECISION LIMITS

ASSUMING THAT AFTER 9 UNSUCCESSFUL TESTS

THE ENGINE IS SCRAPPEDg,,
a' EE 1500 lbs. T'RR = 600 lbs.

(Spec. Nominal + 1. 3 Sigma)

(Assume 1 Engine Decision Limit Optimum Dec. Limit
40 Tests) = nominal + 0. 5 "r nominal + 1. 5 o-•' - - Xi

Prob. of Acceptance .38 .78
after 3 Tests.

%Engines Requiring 627, 16%
Calibration After (of these, 31%0 (of these, 84%
2nd Test are necessary) are necessary)

Average Number of Tests 4.4 (due to recalibration) ., 3
Required for Acceptance 1.4(due to scrapped engia, ) 0.5

5.8 (Total) 3.8

2. 0 Teats/Engina

Expected Number of 2
Scrapped Engines 3.5 1,2
per 100 Tested

% Engines Accepted 38.0 N = 3 78.0
after N Tests 61.9 N = 4 90.6 N

76.4 N = 5 96.5
85.4 N = 6 98,0 I
91.0 N = 7 98.5
94.4 N-- 8 98.7
96.5 N-r 9 98.8

;V
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MODEL Z: Reliability 1. 0; Engine is scrapped after 5 unsuccessful
tests. Assume that the engine is scrapped when the contractor fails to
meet'requiremrents for acceptance after 5 successive teats with calibration.
Let I-RI be the probability of failure in the first test, where "failure" is
any event that causes a single additional test as in table 2, and similarly
for l-R in the seond test, etc. A curve of reliability vs. number of tests

S-nmay be obtained from past experience, as in figure Z.

Figure 2

OPERATIONAL RELIABILITY VS. NUMBER OF TESTS

r 7'

500

.70

A 0000

a60

.50

1 2 3 4 5

Numbet of Tests

./... ..
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Let the notation "I1 2 FZ3 c4 5describe the following event:

Calibration after first test,.A
Failure during second test.j
Calibration after third test.
Thrust in fourth test within decision limits.
Average thrust of fourth and fifth tests within specifica~tion liltilts.

As before, the engine ir, always calibrated after the first test'
unless failure occurs. Using the notation P(i) and P(T) as in model 1,V
probabilities for the various events are as follows:

TABLE 2

EVENT PROBABILITY

C1 2 3 .1 ",Ji)
I1C2 3 4 R *R 2R3 P(i) P4) PI

1Fl 2  3 4 (1 R )R R R 11 PW )P(T~)

1 2 3 4 (1 R ) R R R [I P(i) pff)]C FZ

1 23 45 RRR R R ()J(11 P(i) -P(i-) I

1 234 R RR R R 5  F) 1
C C 1 2 3 4 ~ LI 5~J

1 2345 (1 R) (1-fl) R R R (1- P(i) -P(i)JFl F2 c 1 2 3 4 5 .

1 2 3 4 5 (1 - R 1) (1 -R 3 ) P6"R5 l-)i I~(~Fl cF3 R 4R 1P'

1c 2 F2 3 34 5  (1- R2 )(l - R) R, R4 R5 (1 - P(i) -P(7T)J

c12 3 F3 3) ( R R 45

22
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1 Assuming that the cost of one engine is equivalent to the cost of M
•.•!t• i tests, and letting Pj be the sum of probabili•.ies in table 2 associated

Ii;•i with J tests, the expected number of tests per accepted engine is given by

• •',:=7--•- Ca3e 1: Reliability • 1.0
,•,•,, -...... u 1200 Ibs. = 600 Ibs. , specification

i!• .=:•.. In illustration suppose SEE ' wRR

• ii-l.ii •imt. at. no=,inal _.* ZOO0 •b,., aria the cost of one engine is equ•vale=
,• z!•": :.

StO the cost of 40 tests Then as in model 1 case 1, we have:
b, • 0 p

. i)•:!•!!!!,•.;.i.. •Xi = 1340 Ibs.

•-.•.• .....
:!!]•: •xi' ¢xi + Xj+l)la : .,•

:i: . . .., . ,..:.• o" (X" +X' l)/Z = I•-70 lbs.

S " - . ........ ........ i I J•"

.j" ,

SNumber of standard deviations between non•nal and specification limit
!:• •,"-::.L - .'.'[ = I. •7.

:ii':;:":';!•;: • ,i •alculate P. from table 2 for j = 3, 4, 5, utilizing operational
/?)'i!i'i','/:i;.•i..i ...... :";;J reliability value• of figure •, By trial and error, equation (4) isi !iiii :i !iiiiiiii
-, ,,.:•.,.,s:•..:..: :,• ,,,..:.:;. mL•imi•ed when the decision limits are nornlnal .+ I. 8 standard

•i}' i';::i::;•j !. "= : : • -----.---Case •.: Reliability = 1, 0 (SamedeviationsCOrrelatiOnin coefficient•\ and standard

Sas case ,•
;.:.::/!. ': It is of interest to observe the partial effect of reliability on the

S...... optimum decision limits and expected number 0£ tests, ]•(N). Let R1

i•i! through i•5 be I. 0, Then utilizing table •., (or table 1 for • = 3, 4, 5)
Siii1

Scalculate Inj. The standard deviations of Xi a•d (Xi+Xi+l)/• and correla-

..•7• tics coefficient are the same as in ca•e 1, Equation (4) is minimized
Swhen the decision limits are nominal _.+ 1.5 standard deviations and E(N)

•..: = 3.6 tests per accepted engine, In cor•paring these values to those in
•. case 1, note that the optimum decision limits become tighter, and the
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number of tests per accepted engine decreases as reliability increases.

By comparison of results in Model 1, case I to those of Model 2,
7~M ^.a ta tka ah ffai-t r~f af ."~~r 0h~ ut ,u,

S tests is obtained. The optimum decision limits are nominal + 1. 7
standard deviations in the former, and E(N) = 3. 3 tests per accepted
engine; in the latter, the optimum decision limits are nominal + 1.5
standard deviations, and E(N) = 3.6 tests.

APPLICATIONS: The minimum expected number of tests per
accepted engine, E(N), provides a convenient yardstick for trade-off
studies, For example, one might want to determine whether or not
the cost of overhauling test facilities in order to improve operational
reliability by, say, 576, is worthwhile, Or, one might want to deter-
mine whether the cost of reducing engine-to-engine variability by -
improving calibration techniques or equipment is offset by the reduced
number of tests required for acceptance, etc.

REFERENCES

(1) Tables of the Bivariate Normal Distribution Function and Related ' /
Functions, National Bureau of Standards, U. S. Department of
Commerce.

(2) Tables of Normal Probability Functions, National Bureau of Standards, ,
U. S. Department of Commerce.
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APPENDIX

coy XA*, zi~

P i X +X

Substituting from equations (7) and (8), this is

IT IT~ + * IT)

/21 2 2
r*X ~ aX1 + Zw~- RR

12 2 2
2v +. -Zw 2RB

/8, + o0xi aR

alssuming ITa- =~



Design of Experiments 191

2a2 2

2 RR~

(6A) Xji+Xj~ zizl 2.

2 2
2ax

I2

or, letting w =0 in equation (5), this result may be expressed

(63) P x~ x=/ p

2

L~et w, be the engine -to- engine variance component. Using the ~ ~

relttion 2 2 T tgther with equation~s (6A) and (8B),
iX -EE 0 RR tg

the volume in the corners of figure 1 are computed from a bivariate
no~rmal distribution table. Using this result plus a wnivariate normal
table, P(i) and P(I') as defined pge. 175 and. 177, trio.calculated.

cov (X1  0!X1 1

2

=E F(x + Xi+ 1 )] i 1+1
2 EtXiE(
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I ~f~E(X) + zEIx.~) x [E(X,)] E(X) E (

* w[r coy (Xi. x~~

Uf w * r this becomes

ITX

(7A) COy (X1, 2 f+p Px

(B) =1 Ir + 2 p2 x x rx~

ii.l

IfO w q

(8A) crX+ [7

Frorn.6B), this becomes
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(SB) X +X X
i 1+1 XX.+X

ItI
from equation (9A), (8A) becomes

B 2

2 I2
Sum of squares run-,to-run is

1N

SS
RRAusuming ýL 11, and since MSSS N

MES z + E(X~ 1 z& E -2(Xw g~)Xj-f~]RR __l +I+ ¾~)
N N N JJ

Takilng expectations, the run-to-run variance component is:

2 1 2
+ 1a- 2 XW

X X+- ovX 1 ,X+)

I ~ it ~
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and

+ r 2w

yRR
(9A) PX x. 2 =

1 14 ' x+1

2 i~

II WX 
-r

1.010
19+96.4 2

.98 .92.08 .R

.90 .6 .R6

V V

*- ~ ~ ~ W en r 0 when 0.-----**---*.- ,------ ... ..
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THE THEORETICAL STRENGTH OF TITANIUM
CALCULATED FROM THE COHESIVE ENERGY

Perry R. Smoot

Research Phyeical Metallurgist
U. S. Army Materials Research Agency

F Watertown, Massachusetts

ABSTRACT. The derivation of the equation for theoretical strength

max = was reviewed, and certain assumptions made were
r

e
considered questionable, Therefore, the accuracy of the equation was
considered questionable, 'and a new method for calculating the theoretical L ..:iit
strength of crystals was derived, utilizing'the Morse potential'equation
and the cohesive energy. The theoretical strength of titanium calculated
by this method was 3.28 x i06 pei.

I. ITRODUCTION. Tha U. S. Army Materials Research Agencyi s engaged in the development of strong, lightweight titaniurn aloywf'foruse in Army weaponsd In the course of this inve.stigation,, a questio'n •T

arose concerning the maximum, strength theoretically'obt'aihýable,..,;a4 a" '"kd
how it mightyeon. .It has been'rpoPosed for soiee jtm 1htj fe
theoretical. strength of metals is considerably higher than that normally

observed. Polanyi1 presented a method of calculating theoretical. strength,
in which the bonding force between atoms, as a function of internuclear,
separation, was taken to be approximately ýa shown in Figlre ?... As a >.

brittle crack progressed through the crystal in the manner shown in m f

Figure 2, the interatomic bonds were extended and broken, and the work
done against each bond was equal to the area under the curve from r
to r in Figure 1. As the brittle crack progressed, new surfaces V
were created having a surface energy of 2S, and this energy was assumed

equal to the work done against the interatomic bonds. On this basis,
an algebraic solution for °max, the maximum theoretical stress at
fracture was obtained, as follows:

max

where E : the elastic modulus.
S = the surface energy
r = the equilibrium atomic spacing

i 1,+C
!.
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The value of w was ordinarily expected to be of the order of E!max 1
6 2

which was about 1 to 10 x 10 psi for most common metals . Indeed, very
high strength values of this order of magnitude have been obtained in
metallic and ceramic whiskers.

In the deviation of this expression, the following energy balance
is assumed:

'iii Energy to fracture bonds surface energy of new surface
created by fracture .

No theoretical basis for this assumption is apparent, since the mechanism
S' by which surface energy arises, and its relationship, if any, to the energy

j e.ýp required to fr&cture the interatomic bonds is not known. Consequently,
lthis expresyon for the theoretical strength is considered to be of question-

•,• :,able accuracy.,

Another questionable aspect in the derivation of this method is the
assumption that the interatomic force vs. displacement curve (Figure 1)
is sinusoidal. I In addition, there is a practical difficulty in calculating
theoretical strengths by this method, since surface energy values forJi,'• t ,: i solids are not available for most elements (including titanium).

Because of these questions as to the correctness of this method,
and because of the lack of surface energy data, it was desired to discover
another method for calculating theoretical strength in which more confi-
dance could be felt, perhaps by some meansiinvolving computation of the
actual forces between atoms.

3
•n inquiry,-• Dr R

II. CALCULATIONS. As a result of an inquiry, Dr. RJ 3. Weiss
•,•:!•suggested a method for calculating the4theoretical strength of metals by

means of the Morse potential equation

'V = D [eZa(rre) -a(r-r)]

where V(Ev) potential energy
Ev

D(aom cohesive energy (the heat of
vaporization, &H v per atom
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a( a constant I

r(A) = the internuclear separation

r.e = the equilib•pum separation

This equation related the bonding energy of two hydrogen atoms to the
internuclear separation, as shown in Figure 3.

The energy values given by this function agreed well with:

+a. experimental values of bonding energy v% separation for the HZ
molucule (except under compression; see Table I) ,

b. theoretical valaen of bonding energy calculated in a few cases
by quantum mechanics,

y c. experimental values for compressibility for sixteen metals

(see Figure 4)7.

It was therefore considered reasonable to assume that this relation- -
ship applied between the atoms in a crystal, with a modification consisting•i of multiplying the cohesive energy by a factor to take into account the"':..

division of the cohesive energy between nearest neighbors in a crystal.
Differentiation of this equation yielded an expression for interatomic
force, and it was suggested that this be used to calculate the maximum '
f6rce between atoms and the theoretical strength of metals. The accuracy
of the calculations was expected to be within a factor of two at worst,

A and probably much better.

As mentioned above, it was necessary to multiply the cohesive
energy by a factor to take into account its division between N nearest
neighbors. The energy contributed by each atom to each interatomic

N bond was PD. Since this contribution was made by one atom at each

end of each bond, the total energy of one bond was RD, Therefore, the
cohesive energy, D, was multiplied by A when the Morse potential aqua.

tion was applied to a crystal.

I-



The theoretical strength of a titanium crystal was calculated by
means of the method suggested above by Dr. Weiss. The Morse potential
equation for a crystal was differentiated as follows:

V(Ev) = RD (Moere potential
(1)2 [- 2 -a +are] equation for a

•..=.. . e crystal)
-:,: : .,:V R •D e -2e

2 -Zar 2ar -ar ar2e 4D e•
V -De e -- D e

This equation was similar to:

bx,
y : k e where k and b are constants.

Since bk= k• thendx

SEZar -2ar ar -ar
= F(interatomic force, += -a eZae e,: .,dr = -N' )2a = -DeR2D

A
( !4 [ 2a(re-r) a(re-r)

SF = Da . -e+ ]
and

20d7V dF K(interatomic spring constant, 6 =) z

dr A

Zar - Zar ar -ar
(3) 4a e 22 e e 2

-De -De

4 ~ [ 2ea(re r) a(rer)]
K - Da 2e -e.
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It should be noted that when r =re

K ±Da'N

and when K 0

2ar -2ar ar -ar
2 2 2 2

4ae N =Dae -De
N

ar -are
Z e e = 1

1 1. '=2e

ar ar

arar • a

• ffi 2e rthe iteate a

26l

ar ne = =n2 +ar Ina

SIn2

and !, '
SlnW. .693 •

(s) r •'e a-''ne 0 ae+ • ..

In order to utilize theme equations to calculate the theoretical
strength of a crystal, it was necessary to obtain numerical values for

S a, D, and r .Values for D and r were found in the literature as
S. .follows: •e

•. atom

Sr =2. 95 A
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The value "a" was determined from the elastic modulus of the crystal.[ •The structure of titanium is hexagonal close packed, and was considered
. . .to be an assembly of unit tensile cells, as shown in Figure 5. As a

hypothetical stress was applied to the crystal in the [ 100 ] direction,
an elastic strain occurred, as shown in Figure 6, so that bonds between
atoms in the plane of atom A such as bond AS were extended, but bonds
such as AT and AS were not. Also, the bonds between atoms in the
plane of atom A and the atoms above and below this plane were not

S extended. For example, bonds AG, AV and AO (Figure 7) were not

extended, Trigonometric calculation derronstrated that this was possible
without physical interference between atoms, As a result, the spring
constant of the unit tensile cell was equal to the spring constant, K, of
.the singl interatomic bond, AS. A numerical value for K was determined
from Young's modulus, E, as follows,

E 17.85 x106 psi = 7.67 xlO' 0" /
A

•t7-7 l0 6,2.9 = 16. Z2x10"1 =v' K1 6.24
7. 67 X10 X - L.Z 02. 95A

where 6. 24 transverse area of unit tensile cell, A
0

.295 : length of unit tensile cell, A

From equation (4), above

- -Da 16.22 xlo10

and

a 1. 014 "6K A
Having numerical values for all the constants required, the Morse

potential energy and ixkteratomic force were calculated as a function of
internuclear displacement, r, and the results are shown in Figure 8.
It will be noted that an a stress was applied and the interatomic bond
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extended, the maximum force was reached at the internuclear separationdF'

for which = 0. The internuclear separation at this point was cal-

culated from the equation:

"T sprir - r + .693 (equation 5, above) Ev

0 Ev •

S This separation was 3.63A, and the corresponding force was 0. 402 --

(0, 645 x 10-4 dynes). A

This data was then used to calculate the theoretical strength of a U4
titanium crystal. A tensile force was considered to be applied in the
[001) direction in the crystal, an equal part of which was transferred
to each atom in the (001) plane (see Figure 9). These tensile forces on
each atom are represented by the vectors AB and AF. The tensile
vector AB is the resultant of the vectors AC, AD, and AE, These vectors
arise from the extension of the interatomic bonds AC, AD and AE. As
the applied tensile force increased, the bonds extended until they reached
the fracture extension; and the force in each bond increased to equal the
fracture force mentioned above. As the applied tensile increased still
furthew, the bonds exceeded the fracture separation and the force in V'M

each one decreased in accordance with Figure 8. Thereafter, the sum
of the bond forces was less than the applied force, so that the applied
force was able to fracture the crystal on the (001) plane,

The theoretical maximum strength was attained immediately
prior to fracture. The stress on the crystal at this time was determined
by calculating the magnitude of the vertor AB and dividing it by the area
per atom in the (001) plane. The value so calculated was 3. 28 x 106 psi.
It should be noted that, in this theory of fracture,, it was assumed that
no slip occurred and no brittle crack propagated through the crystal at
a stress lower than the theoretical maximum.

A calculation of the theoretical strength of a monatomic titanium
filament was made by means of equations 1 and 2, letting N = 2, and theA
theoretical maximum strength of a monatomic filament was found to be
8,200,000 (8.2 x 106) psi, which was considerably higher than for the
crystal. This increased strength was due to greater cohesive energy



per bond, since there were fewer nearest neighbors, The strength of a £
monatomic sheet would be above that of the crystal and below that of a
filament, due to the same effect.

Using this method, the theoretical cleavage strength of iron in the
[100] direction was calculated to be 12. 7 x 106 psi. It is interesting to
compare this value with the observed yield strength of iron whiskers in
the (100] direction, which is . 664 x 106 psI 0 . The strength of the

V• whiskers is considerably higher than normally observed in iron and iron-
base alloys, showing that the material is capable of much higher strength
than it normally exhibits. On the other hand, the whisker yield strength
is considerably less than the calculated cleavage strength, due to the onset
of plastic flow. If plastic flow could be prevented by some means, it is
possible that the high cleavage strength predicted by the calculations
could be attained.

III. DISCUSSION. The theoretical strength calculated for titanium,
3.28 x 106 psi, is much larger than the normally observed strength of
about 200, 000 psi. Greater confidence is felt in this method of calculating
theoretical strength than in the method of Polanyi, because of the ques-
tionable aspects of the Polanyi deriviation mentioned in the Introduction.

High theoretical strengths may be obtainable in real materials if
the necessary conditions can be maintained, namely, that no slip occur
and no brittle crack propagate at a stress below the theoretical maximum

strength. The method of obtaining these conditions is problematical, and
several possible methods may be suggested. One method might be to
grow whiskers of such perfection that no slip would occur and no brittle
crack would propagate until a stress level approaching the theoretical
were reached. Another method might be to simply produce very fine fila-
ments (not necessarily whiskers) by some method, such as drawing from
the melt. Slip in these filaments might be inhibited by alloying elements
and brittle crack formation supressed by the small size. (There is some
evidence that in filaments, the tendency for brittle cracks to nucleate
and propagate is suppressed by decreasing the diameter.) Slip might
also be inhibited by suitable control of crystal orientation, the production
of very fine grain sizes, or by amorphous (vitreous) structures. The
high strengths calculated for monatomic filaments and sheets may be
approached ii these or similar structures can be produced. There is
some hope that these high strength levels may be attained in metals such
as titanium, since strength levels of 3 x 106 psi have already been
achieved with graphite whiskers1 l.
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IV. RECOMMENDATIONS FOR FURTHER WORK. Since this area
of study offers considerable promise for the development of ultra-high
strength materials, it is suggested that further work be undertaken to
further develop the theory of the strength of solids, verify it experimentally,
and find methods of applying it to the production of engineering materials
having these high strengths. From a survey of the literature, it appears
that further developments are necessary in the methods of quantum
mechanics so that more accurate calculations of the energy vs. internuclear
separation may be made. Experiments are required to verify the results
obtained and to provide data for engineering application.

The materials offering the best combination of properties should be
identified, and developmental programs initiated to establish methods of
providing high strength engineering materials at acceptable cost and in
the quantities required.

ACKNOWLEDGEMENT. The author ls indebted to Dr. R. J. Weissof the U. S. Army Ma'terial•s'Research Agency for providing the theoretical

physical basis and guidance on which these calculations were based.
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TABLE 1I

BoningEner gy and Interatomic Spacing for 2

n-(Energy Unit: Rydberge)

V V
r Exact Calcula~ted*

0.2 7.1426 0.9654
0.4 2. 3984 0.5821
0.6 0.9903 0. 3093
0.8 0.3910 0.1184
1.0 0.0964 -0.0122z
1.2 -0.0O579 -0,0989

1.4 -0.1399 -0.1536
1.6 '-0.1819 WO. 1854I
1.8 -0. 2005 -0. 2010
2,0 -0.2053 -0. 2053
2.2Z -0.2017 -0.2020
Z. 4 -0.1931 -0.1937
z. 6 -0.1817 -0.1824
2. 8 -0.1687 -0.1693
3.0 .0.1551 .0.1556
3.2 -0.1415 -0,1417
3.4 -0.1282 -0.1282
3.6 -0.1154 -0.1153
3. e -0.1034 -0.1033
4. 0 -0. 0922 -0. 0922
5.0 -0.0489 -0.0502
6.0 -0. 0240 -0. 0264
7.0 -0.1002 .10?
8.0 -0.0051 -0.0070
9.0 -0.0024 -0.0036

*Calculated by means of the Morse potential equation.

Credit: From Quantum Theory of Molecules and Solids,
by J. C. Slater, Copyright (S 1963 by the
McGraw Hill Book Co. , Inc. Used by permission
of McGraw Hill Book Co.
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TEN SNAKE VENOMS: A STUDY OF THEIR EFFECTS
ON PHYSIOLOGICAL PARAMETERS AN) .TTT?.!T1rAL

James A. Vick, Henry P. Ciuchta, and James H. Manthei
Neurology Branch, Experimental Medicine Department

Medical Research Laboratory, U.S. Army Chemical and Research Labs,
Edgewood Arsenal, Maryland

The poisonous snakes and the venoms they produce have both fascinated
and confounded the scientific world for a number of centuries. In the past
inaccurate and incomplete descriptions of the physiologic changes observedi
following envenomation have aided the advance of folklore concerning the
venomous snake, Even now there are numerous conflicting reports con-
cerning the mechanism by which these venoms produce their lethality. It
is no small wonder, therefore, that because of these reports many mis-
givings and misconceptions concerning the snake and its lethal and/or
incapacitating capabilities have arisen,

With this background in mind a study was designed to determine the
exact sequence of physiologic changes which follow the injection of a lethal
dose of snake venom. Precise data concerning the minimum lethal dose ."

for each of ten venoms was also determiaed, as well as a comparison of
relative potencies in the mouse and dog.

MATERIALS AND METHODS. The snake venoms used in theme
experiments were obtained commercially from the Miami Serpentarium, '0"
Miami, Florida and from the Medical Research Laboratory at Ft. Knox,
Kentucky. Each venom, which was collected by inducing the snake to
strike a rubber covered jar, was mucous free and devoid of cellular debris.
Bacteria were removed by high-speed centrifugation and the supernatant
liquid was lyophilized. Ten venoms., representing three fanilie.s of snakes,
were studied. These were an follows:

Family - C~rotalidae

1. Crotalus Adamanteus ........ Eastern Diamondback Rattlesnake

2. Agkistrodon Piscivorus . . Cottonmouth Moccasin

3. Crotalus Atrox ........... Western Diamondback Rattlesnake

4. Agkistrodon Contortix
Contortix ............ Southern Copperhead



I

5. Agkistrodon Contorttx
Moke son ..... ........... Northern Copperhead

Family - Elapidae

1. Bungarus Caeruleus ...... Indian Krait

2. Naja Naja ................. Indian Cobra

"3. Micrurus Fulvius ............. Coral Snake

.. a __. -4_ _ Vieridae

'I. Vipers Russelli . . ........... Russell's Viper

2bitis Ariea a..........Puff Adder

Initial toxicity of the ten venoms was determined using a total of 1864
mice. Just prior to administration, the lyophilized venom was dissolved
in normal saline (1. 0 mg/ml) for intravenous injection into the dorsal
tail vein of the mouse, Table 1 shows the number cif-mice used to
establish the LD and time to death for each venom.'1 99

Eighty adult mongrel dogs, anefithetized with 30 mg/kg pentobarbital
sodium, were employed in the second phase of this study. Arterial blood
pressiewas monitored using a polyethylene catheter inserted into the
femoral artery and connected to a statham pressure transducer and an
E and M physiograph recorder. Portal venous pressure was recorded
via a catheter inserted into the splenic vein and advanced into the portal
circulation. Respiratory rate, electrocardiogram (EKG), and heart
rate were continuously monitored ising a pair of needle-tip electrodes
placed in either side of the chest wall, and connected to the E and M
physiograph through appropriate preamplifiers.

Cortical electrical activity (9EG) was monitored using four unipolar
silver electrodes placed directly on the dura of each hemisphere of the
brain and connected to hi-gain preamplifiers. Two of the electrodes were
placed in the frontal area and two in the occipital region of the brain.
Continuous recordings of EEG were made on a Model 5 grass polygraph.

S . .. . . . . .~~ ~~.. . . .. . . . .... . .. . . . . . .. . ,
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The LD 9 9 ' as well as the approximate time to death, was determined

for each venom. All data were statistically evaluated using standardised
procedures (1).

Evisceration was performed in 20 dogs to determine if the initial
fadl in blood pressure observed following venom administration was due
to the pooling of blood in the hepato-mplanchnic bed. The surgical
evisceration procedure was carried out as follows: the celiac, superior
and inferior mesenteric arteries were ligated, and the stomach, spleen
and intestines were removed after ligation of the esophagus and sigmoid
colon. The portal vein was also ligated and sectioned. Blood flow to the
adrenal glands and kidneys was carefully preserved and not impaired by
the procedure.

Vagotomy was performed through an incision made at the level of, M1,

the larynx. Both vagi were cut following a careful dissection from the
tissues surrounding the carotid arterly. A recovery period of 60 minutes ,'"!' .
was allowed before venom was administered.

R.ESULTS. The intravenous mouse LD with 95per cent confidence.'.

limits for each of the ten venoms is shown in Table 1 [Figures and tables
have been placed at the end of this article. J. Comparative potencies for
each venom are also graphically displayed in Figure 1, It is to be noted .
that the most lethal venom (Indian Krait) is approximately o`ei.luhdred
times more potent than the venoms of either the Norther .or Sou'hern .....

Copperhead. Also shown in Table I is the average time to deah- for I ' W
each venom. There appears to be no clear relationship between potency
and survival in that the most potent venom (Krait)has the longest our- r
vival tim e. .. . . .. ,.. .

The I. V. LD of each venom in the dog is shown in Table Z. Average
99

time to death is also indicated for the ten venoms. Comparative potencies
for all venoms are presented in Figure 2. In general, this data indicates
that, on a mg/kg basis, the lethal dose of each venom in the dog is
significantly less than the corresponding lethal dose of venom in the
mouse (p <. 05). This is not entirely true, however, because the lethal
doses of Russell's Viper and Coral snake venoms are nearly identical
in both the dog and mouse (p>. 05). Relative potencieslof the venoms are ..

.. . .- --- --
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2 quite similar in that the venom which is the most potent in the dog is also

tne one that is most potent in the mouse. Likewise, the venom which is the
least potent in the dog is also the one that is the least potent in the mouse.

The specific effects of lethal injections of each venom on EEG, EKG,
heart rati, respiration and blood pressure in the dog are shown in
Figures 3-12:

FiSure 3, Following a lethal injection of Eastern Diamondback
rattleshage venom, there occurred a precipitous fall in arterial blood
pressure and a marked narrowing of the pulse pr 'essure. This was
followed at from 8 to 10 minutes by partial recovery of blood pressure
to near normal levels and an increase in pulse pressure. Finally, just

S. -prior to death arterial pressure once again decreased sharply, terminat-
ing with cardiac arrest.

.espiration appearedunaffected during the first 2-5 minutes post
injection at which time an abrupt cessation in ventilation occurred.
Changes in EKG observed after the injection of the venom were cansistant
with progressive cardiac anoxia. Fast tracing during the post injection
period showod depression of the ST segment, inversion of the spike
segment, and finally, overwhelming cardiac hypoxia.

This venom produced marked bradycardia immediately post injec-
tion becoming progressively severe until just prior to death. At this time
an anoxic tachycardia was observed leading to ventricular fibrillation.

' .... Within 3-5 minutes after injection a complete loss of all cortical
electrical activity occurred. This change was irreversible and appeared
to occur prior to depression of respiratory movements.

Evisceration, for the most part, prevented the sharp fall in arterial
"blood pressure and the decrease in heart rate observed in the intact dog.
Instead, a very moderate decrease in blood pressure occurred with an
associated increase in heart rate.

Bilateral vagotomy did not prevent the drop in blood pressure but
did allow for an increasc in heart rate following a lethal injection of
Eastern Diamondback rattlesnake venom.
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Figure 4. The venom of the Cottonmouth moccasin also produced a
orednitmin fA11 in, j.Yt,. 4

!a M'I^,, Z.-.. . . ,'I .,c r r I" p",,Sal

pressure rather than a decrease was noted. This was followed by partial
recovery at from 3-5 minutes and a subsequent decline in both arterial 1
and pulse pressures. Just prior to death a second marked increase in
both arterial pressure and pulse pressure occurred. This appeared to
be due to depressed respiratory movements and generalized cardiovascular
hypoxia. Respiration was temporarily interrupted after injection of venom.
This was followed by partial recovery and a subsequent decrease in both
rate and volume over the following 10-20 minutes, leading to complete
apnea. No significant changes in EKG were noted until severe respiratory
embarrassment became apparent at whicht ime changes consistent with
generalized myocardial hypoxia appeared. Likewise, heart rate was I
only slightly affected by this venom until time of apnea when terminal
tachycardia was noted. This was followed by cardiac arrest.

No significant changes in cortical electrical activity were noted
immediately following the injection of venom. Only after prolonged
hypotension were alterations in EEG noted. At time of apnea complete
electrical silence was observed.

Evisceration did not prevent the precipitous decrease in blood pres-
sure or the bradycardia produced by this venom. In contrast, vagotomy ,
allowed for an increase in heart rate as the blood pressure fell following 1
the injection of the venom.

Figure 5. The venom of the Western Diamondback rattlesnake
produced a less dramatic fall in arterial blood pressure. Pulse pressure

increased initially and returned to normal as blood pressure recovered.
No anoxic rise in blood pressure was observed at any time prior to death.
Rather, a slow progressive decline in both arterial and pulse pressures

occurred during the 10-15 minutes preceeding cardiac arrest. Respiration
was not significantly affected by the venom during the first 10 minutes
post injection, however, an abrupt decrease in both respiratory rate and
volume was noted, at approximately 15-20 minutes which quickly lead to

complete cessation of respiration.

With this venom the EKG was relatively normal until the time at
which both apnea and severe hypotension became prominent. When this
occurred changes consistent with cardiac hypoxia were noted. The only
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alteration in heart rate noted following injection of venom was a terminal
bradycardia which occurred at time of cardlovascuiar collapse.

A decrease in cortical electrical activity was observed following
Western Diamondback rattlesnake venom and occurred prior to any signifi-
cant alterations in normal physiologic function. This change in cortical
activity progressed to complete electrical silence just prior to death.

Zvtsce-ration partially prevented the decrease in arterial blood
pressure observed with this venom and allowed for an increase in heart

.. - rate.

Vagotomy also eliminated'the post venom bradycardia but did not
prevent the sharp fall in blood pressure.

Figure 6. A lethal injection 6f Northern Copperhead venom produced
an unusually sharp fall in. arterial blood pressure and a remarkable
increase in pulse pressure. Arterial pressure remained at a very low
level (30-40 mm Hg) until respiratory arrest occurred at which time an
anoxic -induced hypertension and subsequent cardiovascular failure
occurred. This entire sequence of events required a total of from 8-12
minutes. Complete respiratory arrest occurred approximately 2-1/2
minutes after the injection of the venom. Changes in EKG and heart
rate were observed only after prolonged apnea. This also is true for
the change in cortical electrical activity. Loss of EEG appeared due
primarrily to prolonged cerebral hypoxia. Average time to death with
this venom was approximately 2 hours.

Evisceration did not significantly alter the changes in heart rate
and blood pressure observed in the intact dog.

Vagotomy did allow, however, for an increase in heart rate as
arterial pressure fell following injection of venom.

Figure 7. Southern Copperhead snake venom produced changes in
the dog similar to those observed with the venom of the Northern Copper-
head. A precipitous fall in arterial blood pressure occurred with an
associated increase in pulse pressure. At 5-10 minutes post injection
pulse pressure narrowed as arterial pressure increased slightly. No
significant changes in respiration, EKG, heart rate or EEG were noted
during the initial post injection period. Progressive respiratory

- * -
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depression was noted at from 30-60 minutes, terminating in apnea and a
subsequent cardiovascular collapse. With this venom a slow progressive
decline in cortical electrical activity was observed which occurred prior
to any significant change in respiration. Time to death was approximately
1- 1-1/2 hours.

The efiect of evisceration and vagotomy was identical to that observed
with Northern Copperhead.

Figure 8. The venom of the Indian Krait produced a gradual decrease
in arterial blood pressure with little or no change in pulse pressure.
Arterial pressure returned to normal at from 5-15 minutes and remained
stable until the final anoxic rise and abrupt decline at death. Respiration
remained affected by the venom until approximately 20-30 minutes post
injection at which time a decrease in amplitude but not rate of respiration
was observed. No significant change in heart rate or EKG were observed
at any time prior to cessation of respiration. Cortical electrical activity
also remained essentially normal following Indian Kraft venom, decreas-
ing abruptly only after prolonged apnea and following the onset of
cardiovascular difficulties. Average time to death for this group was
2 hours.

Evisceration partially prevented the sharp fall in arterial pressure

but did not affect the profound bradycardia observed in the intact dog.

Following vagotomy no significant decrease in arterial blood pressure
was noted, The bradycardia previously noted in the intact and eviscerated
animals was eliminated by vagotomy, being replaced by an actual increase
in heart rate.

Figure 9. A lethal .njection of Indian Cobra venom produced an
immediate fall in arterial blood pressure and a narrowing of the pulse
pressure. This was followed by a progressive increase in both arterial
and pulse pressure to near normal levels reaching maximum recovery
at from 20-25 minutes. With the onset of respiratory paralysis a sharp34 rise in both pressures was noted which terminated in cardiovascular
collapse and death. The effect of cobra venom on the respiratory
mechanism of the dog has previously been described in great detail.
This study confirmed previous results in that there was a slow progres-
sive decrease in respiratory rate and volume with complete arrest at

-... -.. ..-- - - -.. .
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I ,approximately 20-30 minutes post injection. Heart rate and EKG were not
markedly affected by the venom until respiratory arrest at which time
terminal anoxic changes were observed. A remarkable change in cortical
electrical activity was noted following administration of the cobra venom.
W~thln 30-60 seconds there was a complete and irreversible loss of all
cortical electrical activity resulting in an isoelectric EEG tracing.

The initial fall in arterial pressure and decrease in heart rate was
completely prevented by surgical evisceration. Instead, a marked

¶ ~"increase in heart rate followed the administration of the venom and
occurred as blood pressure fell slowly over the entire observation period
of I to 2 hours.

Vagotomy had no significant effect upon the changes in heart rate and
blood pressure previously noted in the intact dog.

Figure 10. The venom of the Coral snake produced an initial rise
in arterial blood pressure. This was followed in 30 to 60 seconds by
sharp fall in arterial pressure and a decrease in pulse pressure. Both
pressures then gradually increased reaching normal or near normal
levels in 15-30 minutes post injection. At time of severe respiratory
embarrassment arterial pressure fell off abruptly. The hypoxic rise in
systemic pressure previously noted with other venoms at time of apnea
was not seen. Immediately after venom administration a temporary
period of apnea was also observed which lasted from 3 to 5 minutes.
Breathing gradually returned to normal and remained such until time of
respiratory failure. Heart rate decreased abruptly during the time of
initial hypotension. Heart rate returned to normal in approximately 10
minutes and remained stable until terminal bradycardia was observed.
SEKG was not affected by the venoin until time of respiratory arrest. A
gradual decrease in cortical electrical activity was noted at from 3 to 5
minutes post injection. This change was reversible and EEG returned to
normal or near normal 15 minutes post injection. A second loss of
cortical activity was noted at the terminal stage at a time when severe
respiratory difficulties were apparent. Average time to death with
coral snake venom was 2. 5 hours.

With this venom an increase in heart rate andi a decrease in arterial
blood pressure were noted in both the eviscerated and the vagotomized
animals.
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Figure 11. A lethal injection of Russell's Viper venom produced at)
immediate and irreversible decline in arterial blood pressure. Pulse
pressure decreased as arterial pressure fell and remained narrow until . F
:1(,ath, No terminal signs of hypoxia were exhibited with this venom.
Re-piration was not affected during the initial post injection period.
However, at approximately ten minutes there was an abrupt cessation of
respiratory movements. Heart rate decreased as arterial blood pressure
fell, showing some increase in rate just prior to death. Following
respiratory r.rest, however, profound bradycardia was noted.

Progressive hypoxic changes in EKG were noted after administration
of the venom. At time of death electrical disassociation leading to
cardiac arrest was seen. No alteration in electrical cortical activity
was noted immediately post injection. Following the prolonged hypo-
tension a gradual decrease in activity was observed. At no time prior V

P to death, however, was a completely isoelectric tracing (EEG quiiescence)
recorded such as was observed with certain other venoms. Evisceration
prevented the initial hypotension and bradycardia produced by Russell's
Viper venom. A rather slow progressive decline in arterial blood pres-
sure occurred over a 15-30 minute period of time. Death followed
respiratory paralysis. Vagotomy did not prevent the sharp fall in arterial
blood pressure previously noted in the intact animal, however, bradycardia
was prevented and a significant increase in heart rate occurred.

Figure lZ, The venom of the Puff Adder produced a somewhat
transient fall in arterial blood pressure. Following the brief fall both
blood pressure and heart rate decreased progressively over the 15-30
minutes preceeding death. An abrupt cessation of breathing was also
noted with this venom. Sporadic irregular movements were observed at
approximately 15 minutes post injection. This was followed by complete p
cessation of respiratory movements. Profound bradycardia and EKG
changes were noted shortly after envenomation progressing rapidly to
cardiac arrest. Cortical electrical activity decreased sharply at
approximately 3 to 5 minutes, remaining "quite" until death. Eviscera-
tion did not prevent the initial fall in arterial blood pressure but did
eliminate the sharp decrease in heart rate produced by the venom of :
the Puff Adder. Eviscerated animals went on to expire, however, in
much the same manner as the intact envonomated dogs. Vagotomy
eliminated the bradycardia, allowing for an increase in heart rate but
did not prevenit the initial fall in blood pressure.

- ? .i.I - : *
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~IS1CUS8ION, The results of this study indicated that the toxicity of
sak, venom is not a species specific phenomenon. Even though the
lethal dome of venom for the mouse is in many instances 5 to 10 times
greater than that for the dog, relative potencies are remarkably similar.
That is: venorms which appear most toxic in the mouse are likewise
most potent In the dog -- the reverse of this is also true. As the potency
o( the venom decreasts, however, the difference between the lethal dose,
on a mg/kg basis, for the mouse and dog increasesa. This is most probably
due to differences in the rate of the metabolism for each species which
m'ay be obscured in the extremely potent venoms. Our data would tend

* to substantiate this in that the mouse and dog LD Is are quite alike for
99

two of the more potent venoms, 1. E. Russell's Viper and Coral snake.

The injection of a lethal dose of snake venom produced a precipitous
fall in arterial blood pressure and a marked decrease in heart rate.

j This is not unlike those changes observed following administration of

certain other toxins where hypotension, bradycardia and decreased
venkous return have been observed and are attributed to the hepatooeplanchnic
pooling of blood (2, 34). In this study surgical removal of the viscera

* prior to envenomation was seen to prevent the initial fall in blood pressure
and apparent pooling of blood in dogs administered either cobra or
Russell's Viper venoms. These data. support the concept that these
venoms produce a marked pooling of blood in the hepatoeplanchnic bed
of the dog. Evisceration, however, did not prevent death of the animals.
With Rattlesnake and Krait vmnoms evisceration modified but did not

A due to pooling of blood in the pulmonary tissues as well as in the hepato-

splanchnic bed (5, 6). Pulmonary vascular pooling per se is also thought
to occur with the venomns of the puff adder, coral snake, copperhead and
cottonmouth moccasin. In these ceses evisceration did not in any way
modify the initial drop in blood pressure previously observed in the intact
dog. Studies are currently underway in these laboratories to more
closely examine this phenomenon.

A cholinergic -like response has been described following the injec-
tion of gram negative endotoxin in which a decrease in heart rate was
noted and appeared to be due to an increase In parasympathetic tone (7).
Lethal doses of venom also produced bradycardia in conjunction with the
early fall in blood pressure. Bilateral vagotomy prior to administratio~n
of venom not only eliminated the slowing of the heart but actually allowed
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for a significant increase in rate. Vagotomy in deference to evisceration

did not, however, prevent the initial fall intiood pressure nor did it
in any way alter the ultimate lethal effects of envenomation. The only L
exception in this study of venoms was found with that of the Indian Krait,
which, if administered following vagotomy, did not result in either a

decrease in heart rate or blood pressure. All animals treated in this

manner did eventually expire, however.

The effect of certain venoms on cortical electrical activity has
previously been described (8,9). This study confirmed the earlier reports
in that a marked change in EEG was observed following the intravenous
administration of crude cobra venom. This observation has been extended

to include the venoms of the Eastern and Western Diamondback Rattle-
snakes and the Puff Adder. No significant changes in EEG appeared to
occur with the remaining venoms. The mechanism by which the venoms
produced a quieting of cortical activity is as yet obscure.

The most nebulous aspect of this study was the apparent mode of
death by which the venoms produced their lethal effects. For the most

part the primary mechanism of death appeared to be'of a respiratory
nature. It is important to note, however, that the respiratory failure

observed with certain venoms followed a prolonged period of hypotension.
The apparent cause of respiratory failure may not in fact be due to the .
direct action of venom on the respiratory system but to a medullary

hypoxia. None the less it has been proposed by some that cobra venom
produces respiratory paralysis by interference with nerve impulse trans-

mission at the myoneural junction of the diaphragm (10, 11). Others

postulate that this phenomenon may be the result of increased nerve
membrane permeability (12). Although other venoms may act in much

the same manner as cobra venom preliminary o~bservations vmuld
indicate that central respiratory involvement is indeed a possibility.
Halmagyi et al have shown that rattlesnake venom decreases sensitivity

of medullary respiratory neurons rather than affect either thes'eripheral
nerve or neuromuscular apparatus (13). These possibilities have not
yet been explored.

SUMMARY. Lethal doses of venom representing three families

of poisonous snakes (Crotalidae, Elapidae and Viperidae) were adnmin- . V
istered intravenously to mice and dogs. The approximate lethal dose
of ten venoms was established, as well as a characterization of tht patho-

- 1•
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J ~physiological events proceeding death in the anesthetized dog. Results
indicate:

I1. On a mg/kg basis the lethal doese of each venom for the dog
is significantly 1..e than that for the mouse.

2. The venom which is most potent in the dog Is also the one that
is most potent in the mouse. Likewise, the venom which is
the least potent in the dog is also the one that is least potent
in the mouse.

3.. All venoms produced a precipitous fall in arterial blood
pressure immediately post injection which appeared to be

-- due to pooling of blood in the viscera and/or the pulmonary
vasculatuze.

4. A significant decrease in heart rate occurred simultaneously
* I with the drop in arterial blood pressure and can be completely

eliminated by prior vagotomy.

5. The venoms of the Indian Cobra, Rattlesnake and the Puff
Adder all produced a marked decrease in cortical activity
Immzediately following injection.

6. The apparent mode of death with these venoms appeared to be
respiratory in nature although the role of prolonged cardio-
vascular hypotension has not yet been fully evaluated.

REFERENCES

1. Snedecor, G. W. : Statistical Methods. Iowa State College Press,
Arne&, Iowa, 1946,

Z. Vick, 3. A.: Etiology of Early Endotoxin -Induced Bradycardia and
Hypotension. Military Medicine, 129: 659, 1964.

3. Lillehei, R. C. and L. D. MacLean: The Intestinal Factor in
* Irreversible Endotoxin Shock. Ann. Surg., 148: 513, 1958,



Design of Experiments 235

4. Gilbert, R. P. : Mechanism of the Hemodynamic Effects of
Endotoxin. Physiol. Rev., 40: 245, 1960.

5. Vick, I. A., R. 3. Blanchard and 3. F. Perry, Jr.: Effects of
Epsilon Amino Caproic Acid on Pulmonary Vascular Changes
Produced by Snake Venom. Proc. Soc. Exper. Biol. Med. , 113:
841, 1963.

6. Feldberg, W, and C. H. Kellaway: Circulatory Effects of the
Venom of the Indian Cobra. Ast, 3. Exp, Biol. Med. Sci, 15:
81, 1937.

7. Trank, 3. W. and M. B. Visacher: Carotid Sinus Baroreceptor
Modifications Associated with Endotoxin Shock, Amer. J. Physiol.,
20Z2: 971, 1962.

8. Vick, 3. A., H. P. Ciuchta and E. H. Polley: Effect of Snake
Venom and Endotoxin on Cortical Electrical Activity. Nature, 203:
1387, 1964.

9. Bicher, H, I,, C. Klibansky, J. Shiloah, S. Gitter and A. de Vriies:
Isolation of Three Different Neurotoxins from Indian Cobra Venom
and the Relation of their Action to Phospholipase A. Biochern,
Pharma., ,14: 1779, 1965.

10. Vick, J. A. , H, P. Ciuchta and E. H. Polley: The Effect of I
Cobra Venom on the Respiratory Mechanism of the Dog. Arch.
Inter, Pharmacol. et de Therapie, 153: 424, 1965.

I
11. Meldrum, B, S. : Depolarization of Skeletal Muscle by a Toxin

From Cobra Venom. J. Physiol., 168: 49, 1963 (London).

12. Narahashi, T, and J. M. Tobias: Properties of Axon Membranes
as Affected by Cobra Venom, Digitonin and Proteases. Amer, 3.
Physiol. , 207: 1441, 1964.

13. Halmagyi, D. F. 5., B. Starzecki and G. 3. Horner: Mechanism
and Pharmacology of Shock Due to Rattlesnake Venom in Sheep.
3. Applied Physiol., 20: 709, 1965.

S, ' Tv ; : '.. . .. . . .. . ... . ... . . . . ... . . . ..



236 ~I

K WI
* 0x

Ca -% P4

IA~ ~~~ -V M 0 0% N* V

000 o C3 0 0y

04

'I

U CY

a. -e 2.
id cm 0

CLC

su o q46 4a 0

.? II m m II C
'm C4 E E "P4 c

cl*

. - ob 04- - - - - - - - -



237

0u S. ci u

0 .0 AUACL Li
at.

o u, u * u u uPO a *l a. is ~ Cl c l C

" "' 04 0~ 
1

04C Y 

0m C P P- 0p 
P4>

"4W

m 0 

0 U

'00

a a

".4

* .u U
CA

U 0
.0.0 

1.

-w -w wCL 0 C

"4 +0 a4I

zi~~ V4a



239

ITT -11, "T7 "FIV7 9 OT .1 7



--- T7

4, co" :a

t) r

.2 E

_ "A 4'r

L - 1
4, *~~ a -. '4 ;4A*V~ i

~ ~att at

IT 0

t. A -j* are

-~ý' t 4 i

A

Ms*

,"Mll~~ 111* 1



tt

- I

310 0



91

�
4-

I:

� -Ia
0

'S.
�, 4-i
-- "��s,,t±�a&' '�I . . t&t��ga.pL�. � S

L.. -. ' � " ,# cNe-. '-$z.. '�k�W4..�t ... &�;

� �%- '-r*-
'-I �*�JrLJ

-.- 4-cI .- �4.'

-��2

t4tt

0
'-1 '-..�4;; -

K-r - 1- ad.-?
�

-� .1K: *� p

Pt r�-� -CL. -'"4

%'t-� *

V it

it' I

½..

'It

-A'a _
.4 Li

i--KVI - . .' .1Ž

I: . I 0 A."''

� ) I

* � b� ,y-.¶S¶ £� �

V�44�4N4�

�

� '�%r� Z4�
;1" � 4

�Ji'

2>; �- -.



440

too

I,-,

I-,, -+ -(4

"I '1- 4

Sa" f

I I

a o LA N

ao a x



1 -�

0
- C..

U,
*1__ m

.ii
o
- B

��bE '�

00

-
0

2
0 io'S., 1

m
0

5��

a-
UF � 0
C

- 0

0
�t- - 4

o o

�uJ

4 0 -� _

4
- �
-( �o -� 0



Z 47

awa

as C6

x~04

N- j"mJ K L



249

10

pf a

Z7 -.-

- 02



2cS

1 2%

4C

=~ $6

1- -ac
ýle ix= 0u

C19 CL
cr0



4-1

400,

at "A at

iOf

0,' '

1"

l a

'.

ki

|0



r ---________

I,"

-- -.

-"-" 0" •• :•. '

Ti 2 2 •"•'



257

1-0-

at

I
• I-

d • .0

- w Z

S! -

g l

- 0I



259

S1-

LU

rz C.4

090

-4 W

AJ~. 6.- -

ve 0 0. 0
-c IN-ca

C) un hv

t -p -A *1 6.

%AU0 m



261

/
/

- /

-4 -4

C/ &

r 4-
im

0 i "
aD

-- •.., •. .•S__ -

C-A
0 0 0 0•'

• -- C.. -:•



PIRICULARIA ORYZAE - RELATIONSHIP BETWEEN
LESION COUNTS AND SPORE COUNTS

Thomas H. Barksdale, William D, Brener,
Walter D. Foster, and Marian W. Jones

U. S. Army Biological Laboratories
Fort Detrick, Frederick, Maryland

INTRODUCTION: On theoretical grounds, one spore of Piriculariaj oryza can cause one lesion on a rice leaf under suitable environmental
conditions. In nature, however, when a plant population (that has leaves
oriented in all possible planes) is exposed to a population of spores the

Sratio of spores to lesions is necessarily much greater than 1: 1. This is
true for a variety of reasons, e. g. , (a) not all spores are viable,
(b) not all spores land on leaves because most fall on soil or are carried

away from fields by air currents, and (c) not all leaves are equally
susceptible. It was desired to simulate natural conditions and to find
the relationship between spore and plant population. in terms of a sample
of a spore cloud and lesion counts, respectively. Of particular interest
was an estima:te of the range of spore counts below which lesions are
not likely to form, and above wl-ich lesions will usually appear.

MATERIALS AND METHODS: Weighed amounts of a dry spore
preparation (1) of Piricularia oryzae, Race 1, were discharged with a
CO. pistol into a small closed chamber (30 x 18 inches x 26 inches high)
placed flush against an ordinary chemical fume hood with a floor surface
35 inches across and 28 inches deep (Figure 1.).

After one minute was allowed for the cloud to equalize, the front
and rear sides of the chambe-r we2e quickly removed, and the cloud
was drawn through the hood. Pots of one-month-old Gulfrose rice
plants were arranged in the hood to the front-left, front-right, rear-
left, and rear-right of hood center where a rotobar spore sampler was
located at plant height. Spores collected on the rotobar were counted

'• after each run.

S~Four runs (designated Al. A2. BI, and B2) per day were made on

__ each of five successive days. The following amounts of inoculum were
used for runs designated "A": 2, 4, 8, 16, and 32 mg; for runs "B":
1, 5, 10, 25, and 50 mg were used. Following inoculations on a given
day, plants were placed in dew chambers at 72 to 75oF for 16 hours,

•'_

,i....
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after which they were ?laced on a greenhouse bench. Eight days later,

[ ,data for each pot were taken in terms of (a) number -)f lesions, and
(b) number of leaves,

ANALYSIS: Variables for analysis were "lesions per leaf,' and
"number of spores on rotobar". We had hoped to find transformations of
spore counts and/or lesion counts that would linearize the relationship
between the two variates, X-intercepts of tolerance limits for the
regression line providing the desired range of spore counts, as shown
in Figure 2.

Some of the mathematical models investigated are shown as follows:

Number Equation

I Log [Log(Lesions + a,) + a,] a + • (Log Spores)

a , Log [Log(Leslons + a,) + a2 ] a + • (Spores)

"3 Log [Log(Lesions - Background + al) + a,] = a + p (Log Spores)

4 Log (Lesions - Background + a) a + f (Spores)

S(Lesion). a + A (Spores)

Preliminary tests based on a more limited range of spore counts
indicated that Equation 1, which is a special case of the Weibull function,
linearized the data for each individual test; however, parameters varied
among tests. At that time the variation was attributed to non-standard
experimental variables. For the tests discussed in this paper, particular
emphasis was placed on standardization of experimental variables such

[A •as method of firing the CO 2 pistol, time elapsed between steps in the
procedure, and plant age. Also, an extended range of spore counts was
used. Equation 1 did not linearize the data obtained from these tests.

S...Equation 2 differs from Equation I in that original spore counts
were not transformed. This equation resulted in linearity, but varia-
tion in the transformation of lesions increased with number of spores on
rotobar, and a positive Y-intercept was obtained. When this equation
was fitted to the data, approximately 52%6 of the variation in "lesions per
leaf" was explained.

- " ": -- - • ............ .
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The positive Y-intercept of Equation 2 indicates Ihat some lesions
wvould have been formed in the absence of spores. This is not possible.
The data could have resulted from use of previously infscted plants, or
if the chamber and/or hood were contaminated from previous runs. It
was assumed that some background was present, and the average number
of lesions obtained with very low spore counts was used am an estimate
of this background, shown in Equation 3. A linear relationship in this
transformation did not exist.

A plot of the data transformed as in Equation 4 gave results similar

to those obtained with Equation 2; i.e. , the function appeared to be
linear, but with unequal variances in the transformation of lesions, and
it appeared that a positive Y-intercept would still exist. Results from
Equations 2 and 4 did, however, seem to imply that spores should
remain untransformed,

Equation 5 gave the desired properties of linearity and homogeneity
of variances. When this equation was fitted to the data, results shown
in Figure 3 were obtained. This equation explained about 65% of the
variation in "lesions per leaf". A positive Y-intercept is again evident.
Untransformed data, together with the fitted equation and 80% tolerance
limits for individual values are shown in Figure 4.

DISCUSSIONS AND PROBLEMS: Our problem is, of course, that
we did not obtain the expected positive X-intercept from which tolerance
limits for individual values would have~givdn an. estimate of the range

r of number of spores below which lesions would not form and above which
lesions would usually appear.

Some deficiencies of the experimental design have occurred to us,

First, we should have included runs in which no spores were
released as a check on methods and a measure of any background that
may have been present.

Second, consideration should have been given to the ratio of leaf
area (this involves orientation of the leaves among other factors) to
volume of air sampled by the rotobar, An attempt should have been
made to equalize the probability of obtaining one spore on the rotobar
and the probability of one spore landing on any one leaf in the hood.

'S

.-------



266 Design of Experiments

Detection oi small numbers oi sporeYb pc....a. •--.Z.
.. Since our interest is in a range of counts that is probably low, perhaps

S .. it might be more accurate to estimate lesion counts expected from low
spore counts by extrapolation of a function derived from a range of higher
counts, in which we have more confidence.

We have been measuring number of spores collected at plant
height. Perhaps this is not the measurement wo need. Fallout would not

"4 be included in this measurement. Perhaps an additional measurement of
1 .spores collected from the floor of the hood should be made. We may need

a measurement of the cloud before it reaches the plants, in which case
should we go to a wind tunnel ?

Suggestions for the design and analysis of an experiment to find the
relationship between spore counts and lesion counts, particularly the
range of spore counts below which lesions will not be likely to form and
above which lesions will usually appear, will be appreciated.
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SXTQ'•MF. VERTICES DESIGN OF MIXTURE EXPERIMENTS*

R. A. McLean, University of Tennessee [
V. L. Anderson, Purdue University

ABSTRACT. The extreme vertices design is developed as a proce-
dure for conducting experiments with mixtures when several factors
have constraints placed on them. The constraints so imposed reduce the
size of the factor space which would result had the factor levels been
restricted to only 0 to 100 per cent. The selection of the vertices
and the various centroids of the resulting hyper-polyhedron as the design
is a method of determining a unique set of treatment combinations. This
sellection is motivated by the desire to explore the extremes as well as
the center of the factor space,

A non-linear programming procedure is used in determining the

optimum treatment combination.

INTRODUCTION. In experiments dealing with mixtures one studies
the response surface of a given dependent variable, y, (e.g. , amount
of illumination, in candles, for a given size flare) as a function of q
factors (q ? 3). The q factors (components) are all represented by a
proportion, x,, of the total mixture. Thus

q

ZI} 2 x. I and 0 < a. < x. < b. < 1
i=l

where i = 1, ,, q, and the a. and b. are constraints on the x11 1

imposed by the experimenter or by the physical situation invelved.

Scheff4 16) introduced the topic of mixture experiments for the
case a, = 0 and b, 1 for i = 1..... q. He defined the (q,m]

1 1

simplex lattice design as a design which uniformly covers the factor
space with each factor having m+l equally spaced values from 0 to Iq

such that E x. = 1. A complete (3, Z) lattice would consist of

"*This paper has been subrnitted to Technometrics for publication.
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ob rations taken at the following points (1,0,0), (0,1,0), (0,0,1), 4

(0. 5, J. 5,0), (0.5, 0, 0. 5), and (0, 0. 5, 0. 5) which are seen to lie on
the plane x1 + x + x 3 = I in the first octant (Mason and Hazard (3] ).

This lattice is pictured in Figure I and redrawn in Figure 2 as a two-

dimensional simplex. Since the example which is presented later
contains four factors, a (4, 3) lattice is presented in Figure 3 as a
three-dimensional simplex

xZ
2

(0,1,0)

o . X./ "

Figure I ( I 2 3 3 plane /

(010 0 , ,)(100

( )0,1 )(o ; , 0,0)( ,o.o

x

Figux x •X+X+3 : 1} ln Figure 2 (- 3,2) latticej

(0,O,1, 0) - 0,0,0

Figure 3 - [4, 3) lattice
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(tetrahedron). In general the q dimensional factor space will reduce

to a (q-1) dimensional polyhedron.

Scheffe discusses the use of a polynomial of degree n in estimating
the response function defined on any (q,n} lattice design. A simple

procedure is derived for estimating the regression coefficients for these

polynomials in the case of ýq, 21 and tq, 3) lattice designs, This
method was extended by Gorman and Hinman [2] to the case of a (q,4)
lattice design and the corresponding quartic polynomials, Both of these

papers give detailed information on testing the fit of the polynomial to

the response surface and for determining the variance of a predicted
response.

Scheffe briefly discusses the problem where one factor has an
upper bound less than one, thus the restriction x. < b. < I for some

i. The notion of a "pscudocomponent" (coding of the original variables)
is introduced which permits the establishment of a regression equation
in terms of the coded variables. It is pointed out that this procedure

can be extended to more than one factor. It is also noted that the
design of the experiment for this method has a shortcoming of not corn-

pletely covering the factor space of interest.

It is the purpose of this paper to introduce a design which will
allow each factor to be constrained as described in (I1 and cover the

extremes of the factor space. It is assumed throughout that the degen-
erate situation of

q q
Z a. :t. 1 or Z b, < I

i=l i--- 1-

does not occur. In the case of either equality only one treatment
combination would be feasible, i.e., either (a,, . . a q) or (bi b q),
respectively. In the case where a. b. for the ith factor, the

1 I

dimensionality of the factor space is reduced by one and the remaining

components must sum to (1-ai) which indicates that the design problem

is essentially the same. Hence we also assume that a. b. for any
i~l.... ,q.

1F
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J EXTREME VERTICES DESIGN. The constraints piaced on nhe

j individual factors describe an irregular hyper-polyhedron (q-1 dimen-

sions). T[he vertices and centroidb of this figure dcscribc a unique set
of points (the design of the experiment) which may be used to estimate

the response surface. Throughout the paper it will be assumed that
there is a sufficient number and adequate placemen't of points in the
design to permit estimation of all parameters in the polynomial that is

used to approximate the response surface. In the case of the quadratic
, •, model

S~q

izj 1< i j < q ,j .j

which is used exclusively in this paper, a minimum of lq(q+l) points
are required. Additional points would, of course, be necessary if an

estimate of error is needed or if the lack of fit is to be tested. In case
additional points are desired in any given design they may be obtained,

tfor example, by using mid points of the edges of the hyper-polyherdon
or repeating some of the existing points. A more elaborate description
of the variousi polynomials that may be used can be found in the Gorman

and Hinman paper.

Once the constraints for each factor are given all the points of the
basic design are uniquely determined. The vertices of the design nmust
fall on the boundary formed by upper or lower constraints of (q-l) factors.
Hence, the vertices of the design may be found by using the two following
rules:

(1) Write down all possible two level treatment combinatiqns
using the a. and b. levels for all but one factor whic'h1 1

is left blank, e. g. (a 1, b 2 , a 3 , -, a 5 , b6 ) for a six factor

experiment. This procedure generates q. 2 ql possible
treatment combinations with one factor's level blank in
each.

(2) Go through all q. 2 q- possible treatment combinations
and fill in those blanks that are admissible, i.e. , that

level (necessarily failing within the constraints uf the
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missing factor) which will make the total of the levels

for that treatment combination add to one. Each of the
admissible treatment combinations is a vertex; how-
ever, some vertices may appear more than once.

The hyper-polyhedron so constructed contains a variety of centroids.
There ic one located in each bounding 2-dimensional face, 3-dimen-
sional face, .... , r-dimensional face (r < q - 2), and the centroid of
the hyper-polyhedron. The latter point being the treatment combination
obtained by averaging all the factor levels of the existing vertices. The
centroids of the 2-dimensional faces by isolating all sets of vertices
for which each of (q-3) factor levels remains constant within a given
set and by averaging the factor levels for each of the three remaining
factors. All remaining centroids are found in a similar fashion using
all vertices which have (q-r-l) factor levels constant within a set
for an r-dimensional face where 3 < r < q - 2. It should be noted
that under the assumptions given above the dimensionality of the hyper-polyhedron formed by the extreme vertices will always be q-1.

EXAMPLE. In manufacturing one particular type of flare the chern-
ical constituents are magnesium (xl), sodium nitrate (x2 ), strontium

nitrate (x 3 ), and binder (x4 ). Engineering experience has indicated that

the following constraints on a proportion by weight basis should be
utilized:

.40 < x < .60,

.10 < x2 < .50,

.10 < x .50,
and .03 < x4 < .08

The problem is to find the treatment combination (x , x, x 3 , 4)

which gives maximum illumination as measured in candles.

The vertices of the polyhedron consisting of all the admissible
points of the factor space are found by applying rules (1) and (2) above.

The listing appears as

_ _ _ _ _ _ -
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Treatment Treatment
Combination x1  x 2  x 3  x4 ..........

.40 .10 .10 (1) .40 .10 .47 03

.40 .10 50 (Z) .40 .10 .42 .08

.40 50 .10 .40 .50 . 03

.40 50 .50 .40 .50 .08

. 60 .10 .10 (3) 60 .10 .27 .03

.60 .10 .50 (4) 60 .10 .22 .08

.60 50 .10 60 50 .03

.60 50 .50 60 50 . 08

(5) .40 .47 .10 .03 .10 .10 .03

(6) .40 .4Z .10 .08 .10 .10 .08

.40 . 50 .03 .10 50 .03

.40 .50 .08 .10 50 .08

(7) .60 .Z7 .10 .03 50 .10 03

(8) .60 .22 .10 .08 50 .10 o08

.60 .50 .03 50 .50 .03

.60 .50 .08 .50 .50 .08

thus indicating eight admissible vertices and six faces. These eight
treatment combinations are shown in Figure 4.

In order to complete the design, one must determine the six centroids
for each face and the centroid for the polyhedron. To do this we list
the treatment combinations that make up the six faces with the resulting
ccntroids as follows:
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(0,1,0,0)

7 - i

i

I

'(5) 1)i

(6)

a(7)

(0(000,001)

(ooouc)

Figuz 4• - Extrem vertices tow tier. erptriz~en
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Treatment Treat__nt hinatin

Combination Centroid which form the face

(9) (.50, .1000, .3450, .o55.) (1) , (2, (3')I, (

(10) (.50, 3450, 0OO0, .o0s5 (s), (6), (7), (s)

(11) (.40, 2725, .2725, .055) (1), (z), (5), (6)

(12) (.60, 1725, .1725, .055) (3), (4), (7), (8)
i(13) c, o, 2350, . 350. .o030) (1), (3), (5), (7)

(14) (.50, .2100, .2100, .080) .(z), (4), (6), (8)

and the final centroid of the polyhedron, of course, comes from the

average of all eight treatment combinations and is

(15) (.SO, .2225, .2225, .055).

Fifteen flares assembled at each of the above treatment combina-

tions produced, respectively, the following amounts of illumination

(measured in 1000 candles):

(1) 75 (6) 230 (11) 190

(2) 180 (7) 220 (12) 310

(3) 195 (8) 350 (13) 260

(4) 300 (9) 220 (14) 410

(5) 145 (10) 260 (15) 425

Standard least squares techniques were used on the above data to

obtain the complete quadratic model (equation (z2 above)

y -1,558xI - 2, 351x2 2,426x3 + 14, 372x4 + 8, 300Xx + 8,076xx1 -

6, 6ZSIxX4 + 3, 213x' x - 16, 998x x2 - 17,1Z7x3 x 4

14 '2 24 3

I1

mm m m lm m m m m • lmmm ( = mm m m= mm m mmmI
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2
Thp~ -nq P --itil ______t4^ IP I f-- - - 4-

is .9833, with only five degrees of freedom for residual, If only
xI, x?, x 3 , Xxg, x 1 x3 , xx 4 , xx3 were used, the R 2 would be .9829,

with eight degrees of freedom. Since all four variables still appeared
in the latter model, the authors decided to retain the full model. The
reader should recognize that, as in any model development problem, one
must have stopping rules for evolving models from data. The purpose

1 of this example, however, is merely to demonstrate the use of the
regression model to determine the optimum treatment combination not
to elaborate on model development, per se.

In an attempt to determine the optimum treatment combination,
Lagrange multipliers were utilized to determine the maximum of the
above equation subject to the constraint

4
il x. =1.E X.

The resulting equations to be solved are

8,300x 2 + 8,076x3 - 6, 625x + X= 1,558
2 3 4

8,300x1 + 3, 213x 3 - 16 ,998x 4 +X = 2,3.51

8,076x1 + 3,213x2 - 17,127x4 + X = 2,426

-6, 625xI - 16, 998x2 - 17,127x3 + X = -14, 372

xI + 7. + x3 + x4 1
x1  2 + 3 + 4  1

where X is the unknown Lagrange factor. The solution to these

equations indicates the optimum treatment combination is

(.5020, .2786, .2203, -. 0009)

"which is obviously incorrect since all factor levels must be positive.
It should be noted that the above approach would only be valid if the
resulting factor levels (for the maximum y) fell within their respec-

tive constraints.



282 Design of Experiments

In order to consider ali the necessary constraints, a more appro-
priate tool was utilized in estimating the optimum trealment combin-
ation. A non-linear programming routine (SHARE program No. 1399
r.- a. " Proje-Ocion (G P 90)' by Ruth P M erriii, Sheii Development Co.
Emeryville, California) was used to yield the treatment combination

(.5233, ,2299, .1668, .0800)

which is the dejired solution to the problem. The predicted value of y

for this optimum point is 397. 48. It should be noted that this procedure
only guarantees an optiri.um in the case where the response surface is a
concave function.

It is quite feasible that one would like to further verify the initial
estimate of the optimum condition. This could be done by applying
anotherextreme vertices design to a localized region containing this

initial point.

An additional comment on this experiment is that the fifteenth obser-

vation seems to be too large for the equation used, Further experimenta-
tion is necessary to investigate this feature thoroughly. It is hoped that
this peculiarity does not detract from the purpose of the paper, namely
to show a unique design of experiment for mixture problems.

FEATURES OF THE DESIGN. The extreme vertices design for

mixture problems is uniquely determined once the investigator decides
on the constraints for the chosen factors to be used in the experiment.
In addition, the design allows investigation of the extreme points of the
factor 3pace as well as internal points in a manner similar to that used

quite successfully in evolutionary operations, As pointed out in the
example above, this design can be used sequentially to locate the opti-
nium treatment combination.

As with all factorial type experiments the number of treatment
combinations increases quite rapidly as the number of factors increases.
As a guide to the number of treatment combinations which one nmght

expect, Table I displays the mininmumn number of vertices and number
of centroids in the 2-dimncnsional faces, 3-dimensional faces, etc ., ior

use in dcsigns containing up to 8 factors. Formulae for dcterImning
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the3e figures as well as conservative upper bounds on the number ot treat-
ment combinations are given in a pap,,r uy $3-iay '5] . AUdiOIud1 reaulxg"
on the geometry of this type of configuration is given in references [1]
and [4] . it is .een in Table 1 that the number of the various diin Mensiona!
faces rapidly iacreases as the number of necessary treatnient combina-
tions. One way of reducing the number of observations would be to delete
certain centroids, say, those belonging to the even dimensional faces.

Table I

Minirnunr, design structure compared to

number of parameters for a quadratic model
Numnbe r

Face dimension Miriirnum of
a Vertices 2 3 4 5 6 7 design size Parameters

3 3 1 4,:( 6
4 4 4 1 9) 1o
5 5 10 5 1 21 15
6 6 20 15 6 1 48 21
7 7 35 35 21 7 1 106 28
8 8 56 70 56 28 8 1 227 36

'*Extreme vertices design would have to be augmented with
add .tional points if these cases occur.

Another method for reducing the size of the design would be to
compute a normalized distance between points of the design and randomly
omit points that are less than a certain minimum distance from other
design points. The minim-num distance and the method of normalization,
which would be required if certain components are much more sensitive
than others, would have to be chosen by the experimenter. One possible
means of normalization would be to define the distance between two
points (xil ..... xiq) and (x jl... xjq) as

q X. - x.
d = ( 2dij b

rl r

4I
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This method of r.ormalization would assume that the sensitivity for each
factor is inversely proportional to the length of its constraint interval.

In light of the above discussion it is easily seen that a computer
program for determining the various extreme vertices, centroids, and

normalized distances between points would be highly desirable when q
gets greater than 4 or 5. At the moment, no such program exists;
however, writing such a program should not be too difficult.
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IN-VACUUM EXPERIMENT*

M. M. Chrepta, J. Weinstein, G. W. Taylor, and M. H. Zinn

Electronic Components Laboratory

U. S. Army Electronics Command, Furt Monmouth, New Jersey

INTRODUCTION. Present-day requirements for extremely high-

power radar and communication systems, high-energy particle accelerators,

and ion-propulsion systems demand reliable operation of components at

voltages up to a million volts. The demand is greatest in components such

as vacuum tubes, vacuum capacitors, and ion-propulsion systems where

high voltage must be insulated by vacuum in small spaces. Therefore, a

reliable relation between the hold-off voltage and the factor or factors

that affect an electrical breakdown in vacuum is needed for the design of

these components.

The mechanism of voltage breakdown in a vacuum medium has been
the object oi wide investigation for many years. In spite of the voluminous i

lite- ature on the subject, there are insufficient data available to permit a I
straight-forward approacn tothe design of high-voltage sections of high-

power electron tubes or other types of devices. In a study of the available

literature, one finds a wide divergence in both the data and the theories

that have been generated from the data. Fig. 1 shows the spr.ead of the

scattered data:

to -

1 t4

to'%

-I

10.- , ,-

GR[AKOOWN DISTANCE (CM)

Fig. 1. Breakdown Data - Voltage versus Distance

*Spontored by Advanced Research Projects Agency (ARPA Order No. 517),

PROJECT DEFENDER, under ECOM Contract DAZB-043 AMC-00394(L)
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These curves are a few of the most closely grouped brea•kdown curves of
those reported. For each curve a new theory was probably presented.
Our own experiments with high-voltage breakdown showed that there is more
than one breakdown mechanism; a break in the curve exists around 1. 5 mm
spacing with a slope of 0. 75 below 1. 5 mm and a slope of 0. 5 above. These
experiments were carried out in the traditional manner, varying the
distance between electrodes and recording a breakdown voltage for that
spacing. It is obvious that, after each breakdown, measurement conditions
in the electrode system are changed; surfaces are pitted or melted, gas
is liberated, and even the conductivity of the insulating vacuum envelope
is changed. For ideal experimentation, therefore, a method of avoiding
breakdown would be desirable.

FACTORS AFFECTING BREAKDOWN. In order to investigate the
mechanism of breakdown, the 16 factors shown in Table I were considered
as probably contributors to the breakdown process:

TABLE I

FACTORS AFFECTING BREAKDOWN

1. Cathode Material 9. Envelope Diameter

2. Anode Material 10. Electrode Shield Size

3. Cathode Finish 11. Electrode Shield Placement

4. Anode Finish 12, Residual Gas Pressure

5. Cathode Geometry 13. Energy of Supply

6. Anode Geometry 14. Contaminant

7. Vehicle Bakeout 15. Magnetic Field

8. Envelope Material 16. Electrode Spacing

Traditional experimentation varying a few of these factors for each
experiment leads to the neglecting of joint effects of more than one factor

and probably is responsible for some of the spread in data seen in Fig. 1.
A full factorial experiment, on the other hand, would require a prohibitive
amount of experiments and time even though tests were performed at only

two levels of each factor. The initiation of such a massive experiment
would only contribute to the already existing chaos in this field. I
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So as to bring order to this problem, a program of investigation of
the breakdown process was initiated. The program is based on a statistical
design plan that will consider all pertinent factors, without bias, so that
the significance of the main effects and interaction effects can be analyzed.

It was recognized* that the list of 16 factors could be separated into
two groups, as shown in Table II: -

TABLE II

INFLEXIBLE AND FLEXIBLE FACTORS

Inflexible Factors Flexible Factors

I. Cathode Material 12. Residual Gas Pressure

2. Anode Material 13. Energy of Supply

3. Cathode Finish 14. Contaminant

4. Anode Finish 15. Magnetic Field

5. Cathode Geometry 16. Electrode Spacing

6. Anode Geometry

7. Vehicle Bakeout

8. Envelope Material

9. Envelope Diameter

10. Electrode Shield Size

11. Electrode Shield Placement

The inflexible factors are those that are constructional. With the ex-
ception of factor 7 - Ve".icle Bakeout - they can.not be varied without open-
ing the vacuum test chamber. The flexible factors are all susceptible to
being varied continuously without disturbing the test setup. It was also
recognized that the last four of the inflexible factors were factors concerned
with a particular application device design and they could be dropped at
this time to reduce the complexity of the experiment and to accelerate the
investigation. They will be introduced into future experiments.

",,In discussions with C. Daniel.
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The remaining factors will be investigatcd at the two levels shown in
Table III, recognizing that we are assuming a linear model. Future
experiments will allow us to build a prediction model from the results
and to test at other levels in each factor space.

EXPERIMENTAL SETUP. The experiments will be run in the t#-st
vehicle shown in Fig. 2 at voltages up to 320 kilovolts. The chamber is1i equipped with access ports for electrode changes, optical viewing, X-riy
detectors, and a mass spectrometer for monitoring the gap activity. For

cleanliness, the whole chamber can be baked out by an oven assembly sur-
rounding the chamber as well as the titanium sputter pump appended to
the side, which controls the degree of vacuum. The power supply is a

*. Van de Graaff generator that, for the high-energy level, charges up a bank

* of capacitors to 7000 joules. For the low level, the energy bank is not
connected. The stored energy in this case is less than 1000 jouleo.. 7he
magnetic field is generated by two large field coils pivoted at the sides of
the chamber so that they can generate perpendicular, parallel, and oblA.que
fields. The chamber is constructed so that the factors that were dropped
for the initial experiment can be included in future experiments by placing
glass and ceramic envelopes at two levels (large and small) of di;'meters
and electric shields could be placed around the electrodes at levels of
interest. The length of the gap can be varied by a drive mechanism at the
top of the chamber.

F EXPERIMENTAL PROCEDURE. The first experiments will be con-
ducted using a limited series of trials consisting of 32 runs as shown in
Table IV. The table constitutes a quarter replicate of a seven-factor
experiment taken at two levels of each factor. The seven factors used

for this test plan will be the seven inflexible factors previously discusseid.

In each test run the flexible factors will be tested on a factorial basis at
two or more levels for each treatment. Table IV was derived by using
the live letters, A, B, D, E, and G, with defining relations, C + ABE,

F + ABDO in Table M of Davies' "Design and Analysis of Industrial

Experiments. " Ill

The design shows the levels of each factor for each of the 32 runs.
The minus sign in each run means that the factor is either at the low level

or absent from the treatment; the plus sign means that the factor is at the
high level or present in the treatment. The set is orthogonal; i. e. , each

level of any factor is tested equally against each of the other factor level
combinations.
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The following letter assignments were carefully chosen so that in the
treatment and analysis of the results the effect of any two-factor inter-
action involving the Bakeout factor, D, would bt clear of any other main
effect or two-factor interaction of interest:

TABLE V j
LETTER ASSIGNMENT

A - Anode Material

B - Cathode Shape

C - Cathode Material

D - Bakeout

E - Anode Shape

F - Anode Finish

G - Cathode Finish

The isolation of the bakeout main effect and all two-factor interactions
involving bakeout was designed into the experiment with the objective of
eliminating bakeout in future experiments. Since bakeout of the large
mass of the test vehicle is a long time process of heating and cooling, it
would be dr-sirable to eliminate it if results indicate negligible main and
two-factor effects. The absence of bakeout in the test run involves the
use of inert gases during the time that the test vehicle is being modified
and the testing of the electrodes, themselves., using built-in heaters.
There is, therefore, a possibility that the lack oi a bakeout of the entire
structure will, not inflience the test results.

A, B, and C were assigned to factors whose interactions with each
other could be assumed to be negligible.

The tabulation of minus and plus signs shown in Table IV not only
gives the levels of the factors but indicates how the data collected from
all of the test runs, or treatments, should be handled in order to deter-
mine each effect; i.e., to determine the A effect, the test results for
tests 1 to 32 are added where a plus sign is present under column A and
subtracted for the minus signs. For two-factor interactions, the two
columns are first multiplied one by the other and then the data are treated
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in accordance with the resulting column. The re~u!L,•,--i l ur,'u,,si" t .c

a more systematic manner by using the Yates Algorithm, which consists
of repeatedly adding and subtracting adjaccnt tcst results [2] until the
results for mean, main effects, and two-factor interactions are obtained

.as shown in Table VI. All the two-factor interactions are measurable
except AB, CE, AC, BE, AE, and BC. As can be seen, we can get seven

main effects and six two-factor interactions with D (the bakeout) plus the
mean, which allows eighteen degrees of freedom for estimating error.
We expect that this analysis will tell us the significance of each main
"factor and two-factor interaction involving D and thus allow us to better
design an experiment that includes only the important factors in a full
factorial for a complete significant factor space investigation.

An investigation is now under way searching for a repeatable, non-

destructive, performance criterion that can be obtained without taking
the electrodes to breakdown. This criterion is necessary to make meas-

urements for the values of voltage to be used for the analysis, The areas
being investigated to find a breakdown criterion are: gap current;
X-radiation; gas evolution and gas analysis; and the spectral response
of visible radiation as a function of voltage. All of these characteristics
will be continuously monitored vith the hope that one or all will permit
the onset of breakdown to be predicted. To prevent severe damage to

the electrodes and the system in the event that breakdown does occur, an
electronic energy diverter will be incorporated in the test setup. The
diverter can be triggered by a chosen level of current, X-ray output, or
the output of a photomultiplier, and can respond in a micro-second or
less after a fault is sensed to remove the voltage from the gap.

Two or three runs per week will be carried out according to the
dictate of the inflexible factors that require change. Changes of the
inflexible factors will be made in an ultraclean, dry nitrogen, pressurized
white-bench atmosphere. This atmosphere is monitored for dust particles

and water vapor content. The materials for the electrodes will be certified
from a single heat and will be chemically analyzed for recorL purposes.
The electrode finishes will be obtained by precise polishing techniques,
with prescribed abrasives down to 0. 05 micron size particle finish for
the "fine" level. The electrode3 are being constructed with Bruce pro-
files so that the E field is maximum in the gap. The vacuum pumping

system is an ultraclean, oil-free cryogenic and titanium ion sputter system.
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CONCLUSIONS. It is expected that sufficient information will be

collected during these pilot experiments to permit elimination ot factors
having minor effects and to permit a more comprehensive design for the
final experiment. The initial 32 runs are specifically aimed at the bakeout

,.A iafactor, D; hopefully to eliminate this time-consuming process in subsequent
experiments. The final experiment will be a full factorial using only those
factors that are determined to be significant in this pilot experiment.

51; Results from the pilot experiment are now being collected.

The techniques developed for this program are applicable to other
studies in the physical sciences where large numbers of variables of both
a qualitative and nonqualitative nature are involved,
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ABSTRACT. A number of new statistica) techniques are described
which are very sensitive to effects of an independent variable when a t

relatively small number of subjects are used and the effects of theSindependent variable are irreversible. The same notions are generalized

to the case when the effects of the independent variable are reversible.

INTRODUCTION. Operant conditioning techniques are most useful
when a number of experimental conditions are tested on a single animal.

It is an empirical fact that within-subject comparisons are far more
sensitive to small effects than between-subject comparisons. Further-
more, when within-subject experimental manipulations are not made,
each S can only contribute one data item (strictly speaking) toward a
valid statistical analysis because of the requirement, central to inferen-
tial statistics, of random sampling. The net result is that splitting a
number of subjects into groups will yield evidence only of very pronounced

effects unless a very large number of Ss are used. The establishment
of a complex operant performance is usually too time consuming and
difficult to permit use of a large number of Ss, so that statistical proce-
dures in which each S supplies only one data item are usually not
practical. Similar considerations are applicable to many subject matters
in addition to operant conditioning. For these reasons, as well as some
others, single organism methodologies with.within-subject control# have
been among the most prominent scientific techniques.

But the use of a number of scores from a single S as separate inputs
into statistical tests does not rigorously adhere to the assumptions
involved in inferential statistics when the independent variable (IV) has
irreversible effects. 1 Examples of such IWs are x-irradiation and

1By irreversible effect we mean, in the present context, the case in which
baseline data cannot readily be recovered after the IV is administered.

*' It is possible to compare performance after the IV with baseline perform-
ance, but, for each S, only one statistically independent data item, such
as a difference score, can be used rigorously as input into statisticaltests
of the type in general use. This is because the data obtained after intro-
duction of the IV always follows the baseline data so that the sampling can-
not be random. Of course, one may decide (legitimately, I think) that such
violation of random sampling will be of little practical importance in some
particular instance.

I .



-' murgery; in certain contexts, drive operations and novel stimuli may also
be considered irreversible. Thus, it would seem, at first glance, that
the use of difficult individual organism techniques is usually impractical
when irreversible IVs are studVd and assessment of the results is by
means of inferential statistics. But due to a recent development in
statistical methodology (Cronholm and Revusky, 1965), such assessment
is not as impractical as it used to be. The reason is that statistically
rigorous inference about irreversible IVs may be made with a smaller
number of So then har, hitherto been feasible. First, I will describe
the basic idea underlying the Cronholm - fevusky paper in concrete and
intuitive form, and then I will extend some of its notions to more complex
experimental designs.

THE R METHOD. Suppose 6 Sm are trained to final performance

on a complex schedule of reinforcement and we wish to assess the effects
of a novel stimulus on this performance. Since exposure to a novel

S .stimulus has irreversible effects, (in the weak sense that after the first
exposure the stimulus no longer is novel), conventional experimental
"design requires that we randomly divide the 6 Ss into groups of 3 each,
subject one group to the novel stimulus and the other group to a control
procedure. For analytic purposes, we shall always refer to rank tests

[. !.and in the present example, the rank test to be used would be the Mann-

Whitney U Test (Siegel, 1956). With this test, the total number of
possible and equiprobable) outcomes is 6.' /(3! 3.)= 20 and the
probability of the most extreme outcome is 3! 3!/6! = 1/20 = .05. Thus,
the maximum significance level obtainable with 6 S. and a conventional
experimental design is . 05 (one-tailed). Only with extremely pronounced
effects would it seem intuitively reasonable to study any hypothesis with
less than 10 So, and for many operant conditioning procedures, this is
an impracticably large number of Ss.

With the same 6 Ss a result significant beyond the one-tailed.. 002
level is possible, if the following technique described by Cronholm and
Revusky is used. First, administer the novel stimulus to one randomly

.•+ selected S and the control procedure to the remaining 5 So. Rank the

performance of the experimental S with respect to the 5 controls. Thus,
the statistical outcome of this procedure (which may be called a sub-

2
No claimis made here that all results must be assessed by means of

* inferential statistics.
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experiment) is a rank from I to 6. We now have 5 Se which have not
been exposed to novelty. Randormily select one for exposure to the
novel stimulus and rank it, as before with respect to the 4 controls.
This rank will be between I and 5. Now continue this process until one
S remains; this last S will receive a rank of I regardless of what it
does. Table 1 is a precis of the procedure.

TABLE 1

Precis of the experimental design used with R . Each linen

contains the possible outcomes of one sub-experiment.

The sub-experiments are numbered in chronological order.

Sub-experiment Possible, equiprobable, ranks
1 1, Z, 3, 4, 5, 6 ,
2 1, 2, 3, 4, 5

3 1, 2, 3, 4.. .

4 1,Z, 3

53, 4

Since the total number of outcomes in each sub-experiment is
equal to the number of possible ranks, the total number of outcomes
over all 6 sub-experiments shown in Table 1 is equal to the product
of the number of equiprobable outcomes for each sub-experiment; that
is, 6x5x4x3x2xl = 6! = 720. It is this large number of outcomes,
cornpared to the 20 possible outcomes of the Mann - Whitney U with
6 Ss, which is the secret of the remarkable sensitivity of the procedure
we are describing.

Now we will determine the chance distribution of the results oa
the sub-experiments so that results obtained by this procedure can
be subjected to inferential statistical analysis. Chance is defined to
mean that the random selection of the experimental S in each sub-
experiment alone determines the probability of any rank outcome; in

i. ...... .. ....... . - -::•: 7:. .,. ' , . . : .. • .. ,• • z.,: i- _ _ _. • .
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other words, the novel stimulus is assumed to hnvt ,ul.tzly ... cffcc
. . on what is measured. Given this definition of chance, in each sub-

experiment each of the pousible outcomrcs is equally probahie. Thus,
in sub-experiment 1, each rank from Ito 6 has a probability of 1/6. In

sub-experiment 2, each possible rank has a probability of 1/5. And so
on. A physical model of the chance distribution may make it clearer,

j- Sub-experiment 1 is similar to the toss of a true die and the rank out-

come is ecluivalent to the number of pipe which appear. Sub-experiment
Y-•-2 is the toss of a five-sided die. with a different number of pips (from

1 to 5) on each side. And so on.

Under this assumption, each sub-experiment may be said to have a
probability generating function of its own, which is of no intrinsic
interest, but is necessary for the understanding of the probability
generating function of R., as well as the other statistics to be described

in this paper. When k is the number of possible ranks, this function is

k

Es

i~im. k

The coefficient of the ith power of s in this function is equal to the
probability that the rank obtained in the sub-experiment will be equal
to i ; s has no numerical meaning and its only function is to supply a
place for the exponent i, which indicates the outcome for which the
coefficient of s is the probability. For instance if k = 5, the function

i

E s
1- 11+ 12 + 13+ 1,4 +151

This function means that each rank from 1 to 5 has a probability of 1/5.

The statistic to be used to evaluate the probability of the entire
series of sub-experiments is simply the sum of the ranks obtained in
each sub-experiment (called Rn). To find the generating function of

n
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"R , we multiply together the generating functions for each sub-experiment.n

For instance, when n = 6, we have6 1 6
Zs a s • s; Z 818) 1 6 E

6J\5 4 3 _2_1_6

I will clarify the meaning of this generating function by multiplying it
out and then explaining it; the more formally inclined reader may con-
sult Cronholm and Revusky (1965), where an intuitively less understandable
but easier to use version of this generating function is explained.

6 s Ls 8 29s9 49s0 71

720 720 720 720 720 720

I I,+ 012 +LI13 0114 9015 116
720 720 720 720 720

17 Z~18 s19 520 21
t •e+ =2s + + -- --4+ - -- + + .-.sr

720 720 720 720

In the above expansion, the coefficient of any power of a is equal to the
chance probability that the value of R equal to that power will occur.

More specifically, the coefficient is afraction, the numerator of which
is equal to the number of outcomes which result in the corresponding
value of R and the denominator of which is equal to the total numbern
of possible outcomes. The probabilities shown are not cumulative. To
obtain the cumulative probability the probabilities of all more extreme
events must be added to the probability of the event itself. For instance,
the probability that R = 8 is 14/720, the probability that R < 8 is

n -

1/720 + 5/720 + 14/720 = 20/720. It is apparent that the smallest
possible value of R, 6, has a probability of 1/720, as against a small- j
est possible probability of 1/20 for a U test utilizing the sarne number

of Sa. I

I
21
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Gronnoim and Revu•ky (193'S' Lav= ,,. =d a dctailed deatitirsn

of the propertie3 of R n a rigorous discussion of its sensitivity to small

S _ .effects as compared with the Wilcoxon T (which is functionally identical

to the U test), and a table suitable for practical use of the statistic with
Sup to 1Z So. They also discuss when the R procedure should and should

not be used, as well as its use as a quasi-sequential test. One matter of
particular importance to operant conditioners, is that one can use such
measures as percentage change in each sub-experiment without affecting
the chance distribution; this permits a correction for the base line of
each S. This will be true of all the tests to be mentioned in this paper,
as well as most common statistical tests.

PURPOSE OF EXT r; NSION OF THE R METHOD. The basic idea

[1 • underlying Rn, the use of a number of sub-experiments each containing

one experimental S an.d a number of controls, can generate a large
number of statistical techniques more compatible with a single-organism

mthodology than conventional statistics. Unfortunately, in practice, the
experimenter will have to supply his own probability generating function
if he must depart from a straightforward use of R , because the num-n
ber of possible variations on the basic procedure is huge. The tedium

of computing generating functions is partially compensated for by the
ease with which the statistics can be computed. The remainder of this
paper will consist of examples of statistics tailored for particular

* experiments in the hope that they will be a guide for anybody who has
special needs to be filled. The rationale for this unusual procedure is
that it increases the flexibility of the experimenter's attack on the

subject matter.

A VARIETY OF LEVELS OF THE IV; ONE LEVEL STUDIED IN
EACH SUB-EXPERIMENT. Suppose we are studying the affects of a
poison on stabilized performance and wish to use 3 dose levels. We
are willing to assume that the direction of the effects does not change
as a function of dose level; for example, if one dose level either
improves or interferes with performance, any of the other dose levels
to be used either will do the same or will have no effect. If it is
reasonable to suppose that one dose level improves performance and
"a second dose level interferes with it, the present type of analysis
"makes no sense, although modifications, to be mentioned later, may
be made for such situations.

"" •-• "-,-• -- • ... .... ...
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W e begin w ith 10 So undpr. • i,•,, .a ...... ° -f t erc ---r .

described by Table 2. The change in our procedure is that for each i "
sub-experiment one of the 3 dose levels is used for the experiment S.

TABLE 2 K

The experimental procedure by which the R statistic is used

to study the effects of 3 levels of an IV.

Chronological order is from top to bottom.
III

Sub-experiment Dose Level Possible, equiprobable, ranks

1A 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

2 B 1, 2, 3, 4, 5, 6, 7, 8, 9

3 C 1, 2, 3, 4, 5, 6, 7, 8

4 A 1, 2, 3, 4, 5, 6, 7

Ct
5 B 1, 2, 3 , 4, 5, 66 c 1, 2, 3,4, 5

8 B 1, 2, 3

9 A 1,2

Thus, we select 3 sub-experiments to test each of the 3 dose levels;
we do not use the last sub-experiment for purposes of statistical infer-
ence becausl its outcome is predetermined, To assess the probability
of the overall affect, we simply use R n ignoring the individual doselevels. To obtain a seaaestatistic--for each dose level, weadd the• 'i
ranks obtained in the sub-experiments in which that dose level was

-used. Thus for dose levels A, B and C, we have r A# rB and rC.

The generating functions for each of these 3 statistics are straight-
forward. Consider rA and remember our physical analogy. Table 2

AA

j'

... ..
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analogy for each of these sub-experiments, respectively is a ten-sided
die, a seven-sided die, and a two-sided die. Thus, the probability

- generating function of rA may be constructed much like the probability

�-.• I g�generating function for
n

10 7 2

10 • 7 .2

where, as before, the coefficient of any power of s corresponds to the
probability that a sum of ranks equal to that power may be obtained.
For similar reasons, the generating function for rB is

9 i 6 3i
E E is E a

il i--6 i=l-9 6 ; 3

and the generating of r• is

8 5 4

Inspection of the denominators of these 3 generating functions, shows
140 possible outcomes for dose level A, 162 outcomes for B and 160

* outcomes for C. I contrived the sequence of administration of the dose
levels, so that the number of outcomes for each dose level would be as
nearly 3qual as I could make it in the hope that the statistical power at
each dose level would then be similar. Of course, this may not be
desirable in some cases.

- The net result is that in the above example, the significance of
an overall effect can be determined, Given a significant overall effect,

S ' .. • ... . • _ . .... -._.. , ..:• .. ...... .... . . :
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the significance of the effect at each dose level can be determined.
Uniortunateiy, however, Lhere • ,•e ,ou,,iuy A,, tiCiOU.,itCL F:
assess differences between the effects of the different dose levels. The
best that can be done is to use the Kruqkall-Wallis one-way analysis
of variance (Siegel, 1956) to compare the magnitude of the effects at
different dose levels; the input into this test is all the experimental
scores! and none of the control scores; the assumption is made that the
effects do not change over sub-experiments.

Still more statistical sensitivity may be obtained with the above
procedure if some results may be discounted before the data are
collected. An analcgy from conventional statistics is the one-tailed
test in which the experimenter is so certain that the results will
occur in only one direction, that he is willing to state that any result
in the opposite direction, no matter how extreme, is a sampling error.

Similarly, in the prese.it case, we may be entirely certain that if any
effect exists, dose level A (the lowest level) will have the smallest
effect and dose level C (the highest level) will have the largest effect.
If we are willing to assert that any other result is due to chance, we
may divide our obtained probability levels by 1/6 because there are
3! = 6 possible permutations of the results obtained for the 3 dose
levels, and we are assuming only one of these 6 possible outcomes 1.
can be non-chance. Alternatively, we may also accept a significant
result if A has the largest effect and C has the smallest effect, in which
case the probability level may be divided by 3 since 2 of the 6 possible
permutations are acceptable as not due to chance. Of course, if the
data seem to clearly contradict oneIs preconceptions; one is in the
unenviable position of discarding data not because of anything in nature
but because of the foolishness of his a priori notions. On the other
hand, if one does accept the unexpected result as not due to chance, the
true probability of rejection of the null hypothesis at the chance . 05 level
will be . 30 if only one permutation had been expected and . 15 if one of t
two permutations had been expected. I think the best solution in event r
of an unexpected outcome is to repeat the experiment unless the
unexpected result is entirely convincing without any formal statistical
evidence in its favor.

A NUMBER OF LEVELS OF THE IV; ONE S IN EACH LEVEL
TESTED IN EACH SUB-EXPERIMENT. The preceding application
included 9 sub-experiments. A variant on this procedure, also utilizing

. . ....... " -- - ,.. - - -,- -
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10 So, permits a reduction to 3 sub-experiments as follows: (a) Sub-
experiment 1. Beginning with 10 Se, randomly assign 1 5Sto each dose
level and utilize 7 controls. (b) S-ub-experiment 2, Of the 7 controls of
sub-experiment 1, randomly assign 1 S to each of the dose levels and use
the 4 remaining Ss as controls. (c) Sub-experiment 3. Repeat the proce-

; .... dure with 3 experimental Ss and I control. In this design, the probability
generating function for ea'ch dose level is straightforward, but the
assessment of whether an overall effect occurred is difficult. Therefore,
"we will begin backward with an assessment of the effects at the separate
do!e levels and then we will consider the overall effect.

Consider dose level A. A rank is obtained for each sub-experiment
by ranking the subject receiving dose level with respect to the controls
and ignoring the results obtained with levels B and C. These ranks are

.I. then summed over the 3 sub-experiments. The following probability

generating function is applicable.

i8 i5 i2 i

ii=i

8 , 5 . 2

A similar statistic is obtained for levels B and C; of course, their
probability generating functions are the same as for level A. It should
be noted that the denominator of the generating function shows 80
possible outcomes; when only one experimental S was run at a time
in the otherwise similar design of the preceding section, the smallest

number of outcomes was. 140. Thus it is evident that this method reduces
the number of sub-experiments needed in the preceding section at the
price of some power. Whether this price is worth paying is up to the

experimenter.

We ar'e now faced with 3 statistics and the problem of deciding if
the overall pattern is due to chance; obviously the probability that at
least one of these statistics will be significant at the . 05 level has a
higher chance level than . 05, which will be taken, in this discusskon,
to be the rejection level for the chance hypothesis. There are 3 ways
of doing this and the experimeter must select the most reasonable way
for his particular experiment. before he has seen the data. The first
2 of these ways are also applicable to the method of the preceding

---
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section in cases where one dose level may improve performance and a
second level may interfere with it. Following are the 3 ways:-Li

a. If the result is significant at the .05 level at the highest dose Jý
level, assume any other apparently significant results are real. If it
is not, assume any other significant results are spurious.

b. If each of 3 statistical probabilities were independent, one or
more of the 3 results would be significant at the .017 level with a
probability of . 05. Since the results are not entirely independent
because they all depend on the same control scores, a conservative
guess at the chance level is . 02. If one of the 3 results has a chance
probability below .02, regard any other results significant at the . 05
level as non-chance.

c. Combine all 3 dose levels for each sub-experiment and regard
it as the comparison of an experiment with a control group. Then, for
each sub-experiment, obtain a probability level by some conventional

to t; heMann-Whitney IL test (Siegel, 1956) would be very consistent
with our other tests because it is a rank test. Then combine the 3
obtained probabilities by means of the z-transformation (Mosteller andS Bush, 1954). If, and only if, the combined probability level is below :!

.05, there is a significant overall effect. If this method is to bej sensitive, it must be reasonable to suppose that all dose levels act
in the same direction on the performance. 3 Because U is a discrete
distribution, the combined probability will be conservative.

THE CASE WHERE THE EFFECTS OF THE IV ARE REVERSIBLE.
So far, we have dealt with cases in which the Ss are irreversibly

L affected by the IV, because this in the situation in which the new
statistical method makes a unique contribution. Nevertheless, an
extension in which a subject is used for control data after it has been
subjected to the IV may be of interest to some experimenters, par-
ticularly psychopharmacologists.

Suppose there are n subjects. On each of k occasions, one S is
randomly selected for the experimental treatment and the remaining

3 It is cautioned that combination of the probabilities obtained for eachSt dose level is not valid, strictly speaking, because the same control
scores are used for each dose level. L

So'

. ....
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S• are used an controls. For the foregoing material to be rigorous, it
Ti necessary that the selection be entirely aL random, even if it results
in the same S being administered the experimental treatment on each of
the k occasions, The probability generating functions for the sum of the
ranks obtained by the experimental So is

k

II
k
n

Irreversible effects will not affect the statistical validity of any rejection
] of the null hypothesis, although the sensitivity of the test will be reduced,

so that it is only necessary that the effects of the IV be reversible
enough so that a significant result is conceivable and will make scientific
sense.

Now consider a concrete example, There are 4 Ss, each trained to
a high performance criterion. On each of the 8 occasions, one of these
So is randomly selected for drug administration and the remaining 3 S.
act as controls. The probability generating function looks like this!

1 2~ s3  48
(S + s + S +

48

The denominator of the above function, 48 = 65,536, is the number of
possible outcomes. I hope the reader shares my intuition that this huge
number is indicative of remarkable sensitivity to small effects.

jBecause of this large number of outcomes, the probability generat-
ing function diocussed in the preceding twvc paragraphs cannot usually
be computed except by an electronic computer. Fottunately, both
editions of Feller's (1950, 1957) textbook on probability theory include
equations for the chance probability of any sum of ranks under this
procedure. For the 1950 edition: examples 11 and 12 on page 236 with
necessary background on pages 40-41. For the 1957 edition: examples
18 and 19 on page 266 with necessary background on pp-ges 48-49.

' • :'•'•' .. ... •'• ...... ...... ... ....... .. -...,- .•I
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As already mentioned, if the use of the statistic is to be mathematiý..

cally rigorous, the experiment S to be used in each sub-experiment must
be sa.lected entirely at'random so that some Ss may receive the experi- I
mental treatment more often than others. From an experimental view- I
point, however, it usually seems more desirable to administer the
experimental treatment in a restricted random sequence in which no S
receives the treatment a second time until all So have received it once.
My preference is for use of restricted randomization and I expect, without
solid proof, that its effects are to reduce the probability of a significant
result dve to chance. If the experimenter prefers statistical rigor and I
still wishes to use restricted randomization, he may use the R. procedure.

n
Of course, in this case, discarded Ss will simply be ignored for statia-
tical purposes and may remain in trainlng. After all So have received
the experimental treatment, the group can be reinstate;d and another R

procedure be administered. Cronholm and Revusky (1965) describe
how a joint generating function can be obtained for a number of R

experiments.

There are other usable statistical methods for reversible effects and
I am not sure the present method is better. It has been mentioned with
reference to the effects of drugs on behavior because it permits a great
deal of sensitivity with a low frequency of drug injection. Furthermore,

computation of the statistic is almost instantaneous. If it happens to be
useful, it can be elaborated much as procedures for irreversible effects
have been elaborated in this paper. For instance, in the case we used
as an example, 4 sub-expe.-iments can be administered at one dose level
and 4 sub.experiments at a second level. ,

I.f
P l
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CONTROL OF DATA-SUPPORT QUALITY

Fred S. Hanson
Plans and Operations Directorate

White Sands Missile Range, New Mexico

ABSTRACT. The need for businesslike management of range-user
support is a requirement forquality control. Required, or committed,
levels of quality and reliability largely determine cost of support and
value of the services. Measurement support is the best area to start a
Range quality-control program. Evaluation support is an easier place
to start formal control than real-time suppott. In this frame of reference,
quality is the technical level -- accuracy and/or precision -- of data
support. The problem of specifying data quality has been largely resolved.
The statistical control chart for the standard deviation can be directly
carried over to the flight-measurement operation. The Ranges have
available a sufficient basis for operating control -- and for some of the
user's needs -- in the precision of observations and of data. It appears
that quality assurance for everything is not necessary, so far as data-
support contractors are concerned, A single number (average precision)
can serve as an index of technical level of support performance -- for
control of resources and for long-term planning. An approach to technical
validation of measurement requirements is proposed.

INTRODUCTION. By definition, some technical criteria are neces-
sary to efficient management of technical operations, In the case of a
missile range, the keys to some of these criteria lie in the discipline of
data analysis -- which is the hardest place for Management to get them
out.

BACKGROUND. Almost two years ago, White Sands' Range Opera-
tions Directorate appointed a Quality Assurance Committee -- because
the formal organization had failed to develop adequate quality control.
(The writer serves as Chairman.) The Committee engaged a consultant,
thru ARO(D) -- Charles Bicking, who once worked with General L., E.
Simon.

Figure I shows a (missile) range as a system, The input is from
the range user. Support may be represented as a transfer function,
The idealized diagram shows open two-way communication, within the
support function. The output is to the user.
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A need of this system is businesslike management ot user SupJort --

co make the output match the input -- and to minimize the cost of the
$ ,.nufa. ftin,-tir-p, %ath41 4- 1,i,.hi.ripe rnna,~g~rvvnt 1tnhiR n anndl v qhart- of

the overhead), This paper shows the extent to which this need is a require-
ment for quality control.

DEFINITIONS. Quality is how well and how good, Broadly, quality

i- is any desirable characteristic of process or product other than sheer

quantity or rate.

- The viewpoint that a missile range need be concerned only with pro-
" f duction; that exactly what it turns out is less important; and that how good

-l- -is i. is scarcely worth mentioning is, of course, not rational, However,
.. pressures to meet deadlines - and limitations of resources of all kinds -

tend to reduce a Range to this viewpoint.

Reliability is how often -- either within a test or among tests. It ib

Support reliability in - strictly speaking - a production characteristic.

However, hardware reliability is sustained quality - of the hardware, So,
as a discipline, reliability is found with quality. This paper considers
reliability control common to production control and quality control, for
missile ranges,

Required, or committed, levels of quality and reliability largely deter.
mine cost of support and value of the services. So, can a Range have an
economical, consistently-valid support operation without (some form of)

I -. quality control ?

This paper considers the distinction between quality assurance and
quality control to be a matter of degree. Assurance is broader -- more

1 'stafflike.

This paper defines statistical quality control - industrial quality con-
trol - as: closed-loop control of operations. It's emphasis is on formula-
tive and evaluative control actions, A. a separate discipline, or function,
quality control is taken (in Figure 2) to comprise: specification, score-
keeping, feedback, and followup. Let's explore quality control, itself,
and each of these phases (in relation to a range),
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QUALITY CONTROL. The (missile) Ranges tend to overemphaB:ze

&--- %A VA.".. at -th -ex ens - - - -rh r - - .--- -- -

(emphasis) is partly due to the cost. But, it's mostly that data support
to a focus of confusion (and difficulty). Measurement is the best place to
-;tart a support) quality-control program. Because it offers a big pay-off
(thr" inore economic control of resources and of planning-) because it is
a key to the technical level of the missile effort; and because it lends
itself dir•telv to conventional (statistical) quality control -- as will be
Sb,,•vn.

Evaluation support is an easier place than real-time support to start
formal quality control. Because the data holds still - and sits around -

during postflight reduction. And there's less sound and fury connected
with it.

An overland missile range is ideal for (pioneering) statistical quality
control of flight data -- because it has an unlimited number of possible
locations for instruments.

In this frame of reference, quality is the technical level of a range's - I

(daily-operating) data support -- evaluated against the corresponding
requirement. Quality (level) is the percent to which a particular (quality)
requirement is met.

A range may need other things as much - or more - than it needs
quality control. For instance: standard operating procedures for
instrumentation; reliability control; an integral production-control
system. The National Ranges have to work on all of these, V.

SPECIFICATION. As this paper sees it, specification is the corner-
stone of quality control, A spec, is a practically foolproof (and knave-
proof) description of an item or service. It is the standard that tells
what counts as a goal - in the particular game. It has to be definite, and 'Iq u a n titativ e . ,....

In specifying measurement quality, one should ask the question:
"What do we mean, 'accuracy'?"

Suppose a user has furnished the characteristics of his vehicle -

and its proposed trajectories, Assume that a missile-performance
variable (to be measured) has been identified; and the desired units,

~~~~~~~~~~~~W 011".- .- - - - .. - - - - -. - - - - -
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and coordinate system, have been specified. It takes about nine more
questions to -pin down" Lh;i uo '•.. ........ r .....

Figure 3 shows the e!ementu - dnmonstrably - required to specify
the "accuracy" of flight measurements:

1. What part of the trajectory? (trajectory phase)

2. At what intervals (do you want data)? (reporting interval)

3. Is this accuracy or precision? (quality characteristic)
The user could be stating the allowable discrete error (of the data) with
respect to his (preferred) coordinate system. Or, he could be stating
the allowable inconsistency of the data with itself.

4, Does this number apply to the vector or to a component?
(mode or representation)
(If he says "component", there is a second question: Is the requirement
the same for each component ?)

5. What % (of the data) must be within this tolerance ? (probability
level - 9 compliance)

6. Precision (or accuracy) or exactly what? (data phase)
i. e. , What stage of the measurement-computation-analysis process ic

S . being characterized?

7, What is the "operational" basis of the quality characteristic?
(quality criterion)
In other words, what sort of procedure is (to be) employed to obtain
"this precision (or accuracy) figure ?

8. Over what interval do you want the precision (or accuracy)
to average out to the requirement? (lot size)
Question 5 was; What Is (of the time) do you want the data (to be) within
the stated tolerance ? If the user said "1685c of the time", the present
question is: 685a of what time -- what is the minimum lot size to which
the spec. applies? (W-hat constitutes an acceptance lot?)

, 9, How much variation is acceptable within a lot ? (variability

w/in lot)
Of course, this is already reflected in the lot-average tolerance.
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10. Finally, what support-reliability (level) will you accept?

neither the users nor the Ranges are ieady for quantitative specification

of data-support reliability.

People go around saying "accuracy". Figure 3 shows the kinds of
uncertainty implicit in that word - when applied to flight measurement.

It turns out - if one says accuracy without further qualification - the

uncertainty as to what is mei~nt can be as large as 15 or 16 times the

requirement. This was shown in the writer's paper-(Ref.-1) at the 196. 3 F-
Army Operations Research Symposium. People should be more scientific

than being away from what they are dealing with by a factor of 15 or 16 -
as aimatter of pride. Also, the taxpayer can't afford to have the Ranges
spend his dollars so vaguely.

These elements of a spec, apply to all performance variables. Actually,

they cover any quantity -- no matter how obtained. Asking these questions,

of the user was an oxpository device. They could, just as well, be asked
of a range - regarding its capability. In practice, White Sands has built a

sufficient basis, and a standard basis, for a measurement-quality spec.
into its user-document formats -- with the door left open for (the user to

state) a different basis.

WSMR's standard basis is:

Quality characteristic -- precision

Mode of representation -- component

Probability level -- 68%5

Data phase -- a single value of the missile variable - at a given point

in time - in component form

Quality criterion -- propagation of error (from the previous data

* phase)

Lot size -- the series of firings covered by the requirement (the V
average precision for that)
WSMR wants to be judged on the average quality of "the whole trainload LI

of apples". First, it was necessary to state what constitutes an "apple"
(data phase) in this case.

_____ ____ _____ ____II

-..- . ............... ... - - -..- ,-- -.
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Reliability -- in the White Sands edition of the National Range Documen-

... • tation, categorizing a requirement as "Mandatory", "KequireQ", or

"Desired" yields a qualitative judgment of the user's need for reliability
•,i of (obtaining this) support.

Because WSMR's standard'basis is (rath r) concisely stated, it's
not foolproof - unless one (also) refers to the procedure for its calcula-

tion (stated) in Final Data Reports. It would improve communication if
"that were expressed in "English" - as well as matrix algebra. For
instance, WSMR calculates the precision of a single value of a position
component from the precision of observations of (physical) determinants

of that position. In three dimensions, and matrix algebra, the square
root of the sample size is replaced by the square root of: a11 over &.

It would be desirable to spell out vwhat that means in ordinary algebra -

and ordinary English.

It is more in accord with a search for ultimate purity, and more con-
venient, to say that accuracy and precision should be left in the qualita-

tive realm. But, the Ranges are in business, So, they have to go ahead
aas best they are able. The writer has collected many publicgtions on
measurement semantics, This paper's semantic criteria are:

First -- usefulness (for the particular purpose)

Second simplicity, clarity, ordinary logic

Third -- tradition, rigor, abstract symbolism

In the unsheltered world, communication between disciplines is more
useful than purit of discipline, If it's authoritarian, it's not science -

anyhow.

The writer's paper at the Tenth Conference (Ref.' 2) may lead WSMR
to (separately) specify the quality of measurement of the time dimension
of missile -performance variables.

The economic goal is to give the range user exactl what he asks
for -- and not one iota more. If the user finds he needs more, he has

only to ask.
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SCOREKEEPING. Standard statistical quality control can be directly
A.,, t^- Ant-ain. r ^ -npratinnv - an m nn

A manufacturer of "widgets" will inspect a sample of (several) widgets
taken from production. The average caliper of the sample will become
a dot on a control chart showing the level at which his operation is run-
ning. The average variation (standard deviation), from-widget-to-widget i

within the sample, nmay become a dot on a control chart showing the
(current) variabilit of his process. Control of the level of a missile-
performance variable is a (range-) user function, The Ranges can
directly carry over the control chart for vibility - of their measuring
operation. The dot on a Range's chart can be a statistical average of the
variability for an entire (phase of a) trajectory; because feedback control
can only be from-firing-to-firing - of a given type. Variability of the
measuring operation is, of course, precision of measurement. We are
talking, here, about using a standard measure of final-data quality as an
overall-performance index for a data-support operation -- besides using t

it as a consistent basis for user-range communication of (data-support) Rt

requirements.

Physical accuracy is important. But, the least we can be is con-
sistent. The Ranges have available a sufficient basis for operating control

-- and for some of the user's needs -- in the (internal) precision of their
insufficiently-calibrated data-support systems. (Insufficiently-calibrated
as systems.) White Sands' standard precision of position measures
consistency between (observing) stations -- which contains a portion of
physical truth.

A few samples of WSMR scorekeeping:

1. Our consultant, Mr. Bicking, developed a control chart for
instrument and system support reliability, The number of unusable
records, of a system, is plotted directly from Data Reduction's Field
Record Quality Report - without (the necessity of) calculating (the) frac-
tion defective. The horizontal scale is total number of instrument
operations (in a week). This avoids fluctuating limits. So, the chart
can be preparedin advance -- with (2-sigma) limits which increase
smoothly with number operated.

2, Figure 4 is another control chart on an intermediate
"product". This is from Data Reduction's monthly Data Quality Report

..... ...... ....i...l...
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(Ref. 3). It shows the (rms-) average precision of azimuth-angle obser-
vations by each (Askania-) cinetheodolitc station - identified by rumbber.
(Ordinate scale is minutes of arc.) The precisions for August are the
plain bars. The shaded bars are cumulative-average preciiions. The
UCL is a 3-sigma control limit -- basee on the fluctuations of che
r cumulativw-ave rage precisions (cumulative from I January) about their
central value, during the March-April period. (It should be realized
this is 3-sigma of sigma,

3. Let's look at (an example of) overal data-support quality.
Figure 5 is from Data Reduction's Data. Quality Report for May (Ref. 4).
It slows the (rms-) average precision of (cinetheodolite) position measure-
ment, in feet, for (the) Little Jo) (component of NASA's Apollo). The
solid curve shows the average (data-point component) precision for each

I round. The dotted curve is tht; cumalLtlve-average precision, For this
Project, the requirement and the range commitment happen to be the
same, In the beginning, Data Reduction didn't use statistical control
limits; because WSMR's greatest need was to see where, it :,rood -- and
what sort of creature it was. There were better - and worE.- - charts
than Figure 5. The main point is: the quality of WSMR data support
can vary widely from-test-to-test. (Also, from-month-to-month - and
from-project-to-project.)

The average precision of final data is a hneasure of support perfor-
mance. When the user's requirement is valid, average precision is
(a-lso)a measure of Range effectiveness.

Two of WSMR's operating chiefs were displeaced by the test-to-
test precision charts. The bad data waL too evident. Since the May
Report, prec'sions for each test have been shown only in tables. Start-
ing with the current Data Quality Report (Ref. 5), monthly and
cumulative-average precisions for each project - along with the
requirement and commitment - are shown on bar gr".phs.

One of WSMR's operating supervisors suggested (seriously) final-
data charts could he improved by editiug the input to the average
preciaions - at (about) 75% confidence. That's editing at 1.15 time
sigma (the variable being plotted), It would do a great deal for the
chart,, but it would nullify their usefulness.
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A comment on (the problern o0) monitorih.•. ,a,1 -u.pm.t c-n-rc t"'' S I!i
MIL-Q-9858, etc. furnish guidelines for quality assurance - almost "from-
womb-to-tomb". These are procurement-oriented regulations. When [q 71

procurement requirements "cannot" be niumnerically specified: compliance
""cannot' be demonstrated by test; or initial failure to meet "cannot" be
tolerated; it is necessary to inspect a contractor for "everything". This
paper has shown a basis for dcfinite, numerical specification of flight
measurement - and demonstration of compliance. The tact that, in the
past, the Ranges have not had systems for reporting whether requirements
were met (in a technical sense) is evidence that initial failure to meet
can be tolerated. So, it appears that quality assurance for "everything"S is not necessary - so far as data-support contractors are concerned,. A t

single number - average precision of measurement - can serve as an
index of variability of (a given data-support) procesp and pioduct; and as
an index of technical level of support performance (add effectiveness) --

for control of resources and for (long-term) planning.

FEEDBACK, Open-loop control gives good results only for very
simple, basily-controlled procn.sses. Flight measurement is not simple
or easily -controlled.

In the past year, WSMR has increased faedback on field-record
assessments; and on which stations are thrown out in data reduction.
WSMR ha- also initiated feedback on average angular errors of each
(optical) station (Fig. 4); and feedback on final-data quality (Fig7-, T
Purposes of these feedbf.cks include: input to an "calibration" of
station-selection (computer) programs (Pef. 6); and input to (the actual)
instrumentation plans. Which feedbacks have the greatest "profit

potential" • and what the optimum and achievable time frames are -

remains to be determined.

.Some range personnel, who are not quality-minded, make a counter-
issue of "timeliness" (of data delivery). So, the (Plans & Operations
Directorate's) Quality Assurance Committee has adopted that word. The
Committee is stressing timeliness of feedback -- timeliness of quality
reporting, as well as of data reporting.

It should be realized that final-data quality reports are (also) a
* formal system for knowing Range capabilities -- the beginning of such

• ii :1

- --- ;-' -* --



S 322 Design of Experiments

a. System. Conies of final-data qualitv reports now go to White Sands'
(long-Term) planners. These reports also serve as feedup to top r, anage-

...- .- ment, They put numbers on some of WSMR's technical, operating, and

management problems.

FOLLOWUP. Assurance of followup, in a procedural sense, is a
Quality Control rcsponsibility. Actual followup is an operating respor,-

sibility.

When Data Reduction QC gets a very bad average precision of final.
data, they check to be sure the analyst is not including the poorest part
of that trajectory in the formal report.

When ar optical station has the same (major) deficiency in its field
record for two consecutive tests, Data Reduction assessment personnel
report this, by telephone, to Optical Division technical personnel. When
this proves insufficient, Data Reduction will send a (written) memo to
Data Collection requesting a reply stating what corrective action has
been taken, and what further action is planned,

The writer suggestedData Reduction look at average relative bias
of each (cinetheodolite) station -- by taking algebraic means of arguiaar
residuals (from least-square3 solutions). A good deal of what WSMR
treats as random error is persistent bias. It turns out this step will
not be practical until WSMR ham quality control per segment of trajectory

i- o average relative bias (of a station) will be with respect to a single
group of stations. The fact the reference changes with each station

\' added (or subtracted) shows the extent of the station-bias problem,

Of course, White Sands is setting its sights on controlling (both)
the level and the test-to-test consistency of average precision (of data).
To do this, it needs to learn how to break down the firing-to-firing
variability (for a given project) into that due to: project; weather;
collectiorn; reduction; other, Major factors are: number of stations;
whe-re s+h. missile flies; reliaoility of stations; "visibility"; relative
locations oi stations; quality of stations.

V. WSMR won't have real control until it moves its feedback out of
a management tiie frame into an operating time frame, It is also
necessary to increase aupervisory awareness of the quality feedback
(and feedup) now available,
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White Sands is slowly moving toward: reliability and precision standards
for each type of instrument and systenm; clearly defined responsibilities (of

Collection and Reduction) in relation to final-data quality; functional manage- r
ment of this shared responsibility.

Mr. Bicking essayed an analysis of variance of undesiined, operational
precision data, He was able to test whether: stations, film-reading
machines, (human) readers, etc. had significant effects on data precision.
He was not able to determine the amount by which each affected precision.
Further investigation (of this approach) is certain to be fruitful.

Range support is a hard place to carry out classical design of experi-

ment. The missile Project does the test design. The Range has, occa-
sionally, put two (similar) instruments at the same site. WSMR runs a
range-calibration "test" (Ref. 7), at infrequent intervals. Instrumentation
(support) planning is a statistical-design problem. However, current ""0
station-selection computer programs (Ref. 6) are a long stop away from
representing analyses of variance. P&O's Quality Assurance Committee
aims to develop the Range 'i quality-control situation to the point where
it will use Evolutionary Operation (EVOP) (Ref. 8). Presently, the Range
needs to carry out (more)correlations - and analyses of variance - on
undesigned, operational data. WSMR urgently needs a statistical-calculat-
ing service,. It also needs better coordination of its applied-statistics
efforts. . A

REAL TIME. Quality control applies - in its entirety - to real-time
data support. Specification is e t the same; but WSM4R hasn't built
this into its edition of the National Range Documentation (to the same
extent) - yet. Realtime scorekeeping and feedback can be carried out
on a firing-to-firing basis. To some degree, they can be included in
the real-time computer program. Followup is the same (problem) as for

STATUS OF QUALITY CONTROL, The suggestion to use (a

standardized) average precision as an index of overall data-support
performance was made five years ago, by this writer (Ref. 9). It took
four years, one Committee, and John Carrillo (of Data Reduction) to

implement this.

In applying statistical quality control to data support, White Sands
is running counter to Thurnian Arnold's corollary (to Parkinson's law):

N.-.-



324 Design of Experiments

No new government activity can possibly be effectively carried out by any

Only a little over a year ago, the most important product of P&O's Quality
Assurance Conimittee was hop hope that data support could be put on
a more objective basis.

The focus of Quality Control has caused White Sands to correct a
few errors in its data-reduction methods.

P&O's Quality Assurance Committee is still selling quality control
to operators -- as a tool for th, ir use -- not as a club held by Manage-
ment, Data Collection (people) ,eecently asked that Data Reduction's Field
Record Quality Report be discontinued -- on the ground that Data Reduction's
assessments were not valid. Data Collection personnel have since been
told to exchange assessment sheets with Data Reduction - both ways - to
improve understanding. A Quality Assurance Subcommittee is developing
a single set of standards, and a single SOP, for assessment of optical
records. Data Reduction Groups on the Ranges are predominantly
mathematicians. To this writer, they seem inclined toward monodisci-
plinary and laboratory viewpoints - and to favor a priori approaches,
Resistance by data-reduction personnel to quality control may have been
duo to QC's management, and factory, and a posteriori connections. But,
quality control is not the factory in science, It's science in the factory,
(This is now recognized by White Sands data-reduction personnel.)

Data Collection Quality Control has been mainly concerned with
solving the problems of station reliability.

There is still a need to sell quality control (of range support) to
various echelons of Range Mangement -- as a tool for their use -- not as
a constraint, The key to selling Management probably lies in the fact
that - for data support - quality control is resource control. The prospect
of better bridging the (communication) gulf between Management and data-
analysis (personnel) may cause some discomfort on both sides, Of
cource, at some date, White Sands will have to bring cost into its
Quality Control picture. Specifically: precision/manhour, precision/
dollar, and value of precision (as distinquished from cost).

PSYCHOLOGICAL IMPACT OF QUALITY CONTROL. It is this
writer's observation that truth for the sake of the mission i. psychologically

- . .• .---- -- - ..- --- - w----- Y ----- -- - - - - ----
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closer to truth for its own sake than it is to truth as an instrument of
power. raiiiNegative reactions to quality control appear to be due to resistance

to change - and to dislike of the "criticism" inherent in scorekeeping
(feeling threatened by any demand to be objective). Quality control is

partly an educational - and re-educational - problem. AMETA gave a
composite of its basic and advanced Statistical Quality Control courses
at White Sands, This writer is working on an executive primer of
flight-measurment quality (and specification). WSMbR may bring in a
quality-control speaker. The Chief of Data Collection Quality Control
has written a memo to the individual (field) operators, and their super-
visors, asking them to identify - verbally or in writing - existing or
potential causes of error; and to grade these as critical, major, or
minor. (This will also be an input to the work of the optical-assessment
Subcommittee,)

On the positive side, keeping score adds meaning and significance
to any game. Keeping score makes how-to-play (Ilow-to.operate) more
important - not less, It improves the motivation and morale of
functionally -oriented people,

PHYSICAL ACCURACY. This paper defines accuracy as: the
numerical difference between any value and the "true" value. It is
further necessary to say that the "true" value must be a reference
physically independent of the value characterized. Physically independent
means: the errors of measurement (of the two) are uncorrelated. (Of
course, accuracy is the inverse of the "absolute" error defined here as
its measure.)

The development of the potential of its star-reference BC-4 camera
system is White Sands' only real hope for an absolute-accuracy reference
for flight data.

WSMR could derive accuracy (am well as precision) estimates for
two kinds of data in its current operation. Besides star-referenced
ballistic-camera data, it could do this for (launch and terminal) fixed-

camera data - in which the reference-target poles are photographed in
the same frame as the missile.
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.1 Of course, measurements cannot be consistently accurate unless
I• they are also precise. Differences in the accuracies of stations affect

v system precision.

, 2 This writer holds that being more definite and quantitative about

precision will increase (range and user) understanding of accuracy
and awareness of specific needs for it.

VALIDATION OF REQUIREMENTS, Range-support personnel are
often asked "Why don't you tell them they don't need all this data?"

Of course, user requirements should be based on missile technology
and missile-test design. Support personnel have no particular qualifica-
tions in those fields.

This writer has suggested an approach to deriving measurement
requirements in which the Range can assist the user (Ref, 10).

The simplest way to derive estimates of required data quality is to

wconvert missile-performance tolerances to measurement "tolerances"
-- directly, when they are the same variable -- or by (complete)
propagation of error (formulas) thru an equation relating the performance
variable and the measured variable. As Figure 6 shows, the resulting
"tolerance" must then be tgened -- on the basis that the actual

r, uncertainty whether missile performance meets its specified tolerance
is the sum of the uncertainty of the measured performance and the

I~ allowable uncertainty of the specified performance. The required
measurement tolerance depends on the level of risk at which the missile.
using agency is, practically, willing to operate. While a Range
superiority of 10 times (in standard deviation - sacrificing elegance
for clarity) would be ideal -- 2-2times is the necessary level; 5
times is certainly the sufficient level.

1p
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DESIGNS AND ANALYSES FOR INVERSE
RESPONSE PROBLEMS IN SENSITIVITY TESTING*

M. J. Alexander and D. Rothman
Rocketdyne, A Division of North American Aviation, Inc.g ~Canoga Park, California :

INTRODUCTION. Sensitivity testing is that area of experimentation
in which each test is characterized by a quantal response. To some
sample specimen or realization of a system one or more stimuli are
applied and the result is either a "response" or a "nonresponse", depend- YNZ
ing on whether some critical physical threshold was or was not exceeded ,-
for that particular sample. The most commonly encountered type of
sensitivity problem is that of finding at what level of the stimulus vari-
able a given percent response will occur. For example, in biological
assay it is often necessary to determine the dose (called LD 50 or ED 50)
which is effective half the time, and in testing explosives, it is often of
interest to find the stroes that results in a detonation, say, 9596 of the
time. In each of these situations we are concerned with inverting the
relationship which gives the probability of a reaponse as a function of the
stimulas; thus the terminology (probably due to J. W. Tukey) of the
"Inverse Response Problem,

The general problem can be stated more precisely as follows:
Suppose we have a stress variable x, and suppose that a test at this
stress can result in a response which is either "1" or "O". This is the
well known quantal response experiment. Let M(x) denote the mean or
average response fraction at x. In this situation M(x) is called the
response function. If M(x) is monotone nondecreasing, it may be thought
of as representing a cumulative distribution function, as, for example,
the cumulative normal diatribut..on

X ~ C-(Y-11)/12w dy,

In most cases, however, the explicit form of M(x) is not known. " f
I i" .IThis work wag supported by the George C. Marshall Space Flight

Center, NASA, Huntsville, Alabama. under Contract No. NAS 8-11061. I ,
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For the inverse response problem the experimental objective is the
estimation of that x x (generally unique, but not neccaDily Di) "U

which M(x) = a , for a given value of a . We shall be concerned here
' both with experimental designs for the inverse response problem andj methods for analyzing the test results.

"V The first approach to this problem was based on the use of the probit
design [1] which was originally formulated for biological applications.
This design requires a fixed number of tests at each of a given set of
stimulus levels, and thus a large number of tests is necessary. The
analysis generally used with the probit design to based on assumptions
concerning the response function M(x) and the objective of the analysis
is the determination o. response function parameters. Once these have
been estimated, the soluticn of the inverse response problem can be
obtained for any a

. •When cost of availability of materials is an important consideration,
the probit design, because of the larger number of tests involved,
becomes impractical. To obtain estimates of xa, particularly for

a = 0. 5, in fewer tests, a sequential design was introduced in 1943 at
the Explosives Research Laboratory at Bruceton, Pa. (2] . The rules
for the Bruceton or up-and-down design require increasing the stimulus
by a fixed step-size after a nonresponse and decreasing the stimulus
one step after a response. The up-and-down design is still the most
widely known and most extensively used test procedure, particularly for
explosive testing and other engineering applications. For a = 0.5 it is
used in conjunction with the Dixon-Mood (3] or more recently Dixon [4]
analysis, both of which assume that the response function M(x) is
cumulative normal.

Other methods generally used with distributional assumptions are

the Langlie (10] and rundown designs. When these procedures are used
to estimate x for values of a near , 5, inappropriate distributional

assumptions do not have a critical effect on the efficiency'of the design.
However, for more extreme values of a the situation is more cr-tical
not only because the tails of the response distribution are more sensi-
tive to inappropriate assumptions, but also the estimates of x in

these cases are generally less robust.
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•" th• xhoiit.• ,f distributional assumptions on M(x) the inverse
response problem was first attacked directly by Robbins and Monro [5]
who employed a stochastic approximation design. In this procedure the I
step-size is no longer fixed, and the rules for determining successive

test levels depend only on the last test (as in the up-and-down design).
The levels converge to the desired critical level, x , not only in

a.
probability but with probability one. This design and its variations,
Kesten [6) , Odeli (7] , and delayed [8] , particularly the latter, are
slightly more efficient than the Bruceton or probit designs for ac = 0. 5.
However, for more extreme values of a (e.g. , c. = 0.05, 0.95), simula-
tions (9] indicate that the design seems to be much less efficient than
expected.

For many years the major attention in the inverse response problem
was focused on the case a. = 0. 5. For this problem both the up-and-down
and Robbins-Monro types of designs give reasonable answers in about
6-12 tests. However, reliability and safety problems require estimates
of x CL for a < ..05 or a > .95. For such extreme values of a ,when

prior knowledge of the response function M(x) is limited, it was
necessary to consider new design and analysis procedures. In the
Robbins-Monro design, successive test levels are determined from only
the previous test results. One would expect that improved estimates
of x could be obtained if all data were analyzed before the next test level
was selected,

The two designs described in this paper were formulated from this
point of view; they give good results with limited sample sizes for
a , 05 (. 95) and are still useful in many applications for a ,- . 02 (. 98).
One design is appropriate when it is desired to continue testing on a set
of discrete test levels until a specified precision in the estimate of x

is attained. The other is appropriate when the sample size is fixed in
advance and there are no restrictions on test levels. Both designs have
been evaluated by simulation and it is shown that they compare favorably
with existing procedures and with a conjectured asymptotic criterion for
distribution-free inverse response problems.
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ALEXANDER DES ON

GENERAL DESCRIPTION. In sequ--ntial oesigns new levels for

testing are determined fromr, previlis tcbt results, and this may be
accomplishes in many difterent ways. In tie AMeNander design the step
"mze is uonstant but (unlike the brac-eton anu Rorobins-1Monro rroccoircs)

inew test levels depend on all previous test resuits. It is assunwCa only
:.hat the response function M(x) is monotone nondecreasing, so that the
ciesign in otherwise c.istribution-trce. '/1, kses alternatsyincreasing and
er,.rctsinlg dCcuelnces to oounet the sought-tor stirnuius ievel ,.. cc-

ing ends when x is, wv-h i speciiied prooability, located within an

iL, ,',i of len1 tin rot n.cor" tharn ZA , where A is L-I ttcp si,,. F'ronm
.,*•- : d (I Citiiatc of this interVVa1l, in osti,. ('101: 0.l ( 1'011,L1J iJ [l'-i'-'s

line,, r inte ruolatlon.

I•(: . Th, initio.ion. Luni tcri&isatiou raiic s Co r tL.c S C •,n:. ; lBi. ( Ciil

in tc.x oý nonoionc estimates of the response probabuiitici at the Lct

S. ;. jievels. In one version of the design, which should be used for a near
Ii7 " 0. 5, maximum-likelihood estimates are used. However, for extreme

values of a, it is more efficient to use both maximum-likelihood osti-
.1 mates and certain estimates based on confidence bounds which will be

described subsequently,

Simulations of both 0. 5 and 0. 05 designs have been carried out.
IM The design is generally quite efficient relative to other available distri-

bution-free designs, and is roughly as efficient as the best parametric
* stochastic approximation when distributional assumptions on M(x) can

be made,

.'rh general rules for the design may be described as followb:

1. Thd first test is at L 1 , the a prior- best guess of x.

Z. By the method of reversals (Appendix I) monotone estimates
are evaluated at all test levels after each test.

3. Testing will be performed by alternately increasing and
i !decreasing sequences of test levels.

4. The first test of an increasing (decreasing) sequence is at[6

- - .7: ... .... . ........ .. . .. .. . . . .. , . . .
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either the highest (lowest) level, strictly above (below) the last
test level, at which the estimate is less (greater) than or equal
to a or, if there is no such level, at the level above (below) the
last test level.

5. An increasing (decreasing) sequence will be terminated at the
first level at which the estimate after a test at that level is
strictly greater (less) than a .

6. The rules for ending the design depend on the value of a. and L
are given explicitly below.

THE DESIGN FOR a = 0.5. For a = 0. 5 the estimates uted in
following the design rules are the maximum-likelihood estimates given
by the method of reversals. When the testing is finished we wish to
have an intervi.l I such that Prob(x tl) > P, where P is some pre-

scribed probability. The length of I depends on the particular experi-
ment; it is never more than twice A, the step size, but in most cases
it is A. The occurrence of an interval of length 24 correRponds to
the situation when is at the center of I. 'resting will be stopped t
when either of the following conditions is satisfied: (a) there are three
adjacent test levels L0 < L < L2 such that the response estimate at

is . 5 and the respense estimates o and P at levels L and L

respectively, lead to the confidence staternentx

Prob {p, > .5 < (I-P)/2

Prob(p. .5) < (l-P)/2

or (b) there are two adjacent levels L < L for which the above
confidence statements can be made. 0

When P is. 5 then the conditions for L1 and L2 are given by "
the following table:

V
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A B

• 9 0 Zr 1 3

2 4
3 6
4 7
5 8
6 9
7 10

9 13
10 14

In this table, A denotes the number of responses at L and B
denotes the minimum number of nonresponses which mutst beobserved
at the level for the condition in (a) to be satisfied. Similarly, if A is
the number of nonresponses at L2 then at least B responses at L

S are required for termination,

THE DESIGN FOR EXTREME VALUES OF a. In a desirable
distribittion-free design for the inverse response problem, most of the
test levels are concentrated in a region around x• . Therefore, when

. 05 we would expect on the average 19 nonresponies for every
response. Thus in this case a good design forces some testing in the
stimulus region below tho lowest level at which a response has been
observed. Since the maximum-likelihood estimates of the response

. probabilities are all zero in such a region, a new kind of "estimate"
will be introduced to insure a sufficient number of zero responses. This
"estimate" is actually used only to determine when to terminate a
decreasing sequence. The method is most easily introduced in terms
of an example.

Suppose that after some testing the following responzet have
occurred

S • 0

Is0 0 0 1
L L L L (LI < 2 < L3 < L4);1 2 3 4 1 2 3 4

Fi
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Smt 4. nim. ^ ipnm-afnnnse. at each of the levels L. and L-, two nonresponses .1
at L 3and one response at L 4 ' At L, L 2and L 3we would like to obtain I
estimates which satisfy the monotonicity assumption on M(x) and which
indicate that it is likely that the actual response fractions at these levels
are greater than zero. We will accomplish this by introducing an appro-
priate confidence bound. In the example being considered two nonresponses Li
were observed at L and either from binominal tables or the equation

(1) ( 1'P0 = 1-P (N = 2) r

one can obtain an estimate, p3' for a given probability P (specified in"advance) such that I
Prob (p 3 < p3) P .

If the same criterion is used at L a larger e stimate than that atL

should result. To insura monotonicity an interval estimate will be used.
This will be accomplished by introducing a "zero region" for each level -

defined as that level and all consecutive higher levels at which no responaes • .
have occurred. Thus the zero region Z 2 for L2 is the interval (L., L3)

and similarly Z (L"l L ). The estimate for can then be found from

(1) with N = 3 (the number of zeros in Z2 ).

The objective in using the new type of "estimate" is to be reasonably.I
sure that decreasing sequences end below x From the rules of the

design, a decreasing sequence will terminate at level L where P < a.

Because of the way p is defined the following confidence statement can . -

be made: -.

Prob (p < a j observed reoponses } > P ;

i. e., on the basis of the observed responses the probability that L 0 is

below x is greater than P. For each decreasing sequence, the same

_. t2

.~***,-
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total number of nonresponses in the appropriate zero region will be
required for termination. Thus, it Is not necessary to determine estimates
at each level. Instead, from

(2) ( 1-)n -P , N= [n] + 1

one can determine the appropriate N for a givcin P and then it in only
necessary to count zeros in the zero region.

A uniform set of rules for the design can now be given:

1. The first test of an increasing sequence is at the level below the
lowest level at which a response has been observed. If the result
of this test is a response the sequence ends; otherwise, one more
test (at the next higher level) is performed.

2. The first test of a decreasing sequence is at the level below the
lowest level at which a response has been observed. The sequence
ends at level L whose zero region contains at least N non-

responses. Values for N can be found from (2). The following
table gives values of N for P = 5

a N
.1 7
.09 8
.08 9
.07 10

o06 12
.05 14
".04 17
.03 23
.02 35
.01 69

3. Testing ends when there are three adjacent levels Loy Ll, ad

L sith that at least one response has been observed at L2 (and
2

none at a lower level), and a total of at least N nonresponses
has been observed at L and L The value of N is given in the
preceding table. 0
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A
4. An estimate x C:an be found by linear interpolation between

th ~* #;-#-4 T -.. A T- -. .l . . . .. . . . .. . . . 2.. .Z

The Alexander desIgns have the virtue, that once the rules are under-
stood, the actual procedure is fairly straightforward and the calculations

required between tests are extremely simple. Of course, as with any
distribution-free design, distribution assumptions can always be adopted
after testing is complete. If,for example, it is desired to find x 01 under

the assumption of an underlying cumulative normal distribution, the
estimates determined from the data generated by this design are some-
what better than those based on the data obtained from an up-and-down

design, and are in fact almost as good asymptotically au the optimum for
the 1% cumulative normal inverse response problem, Furthermore, any
departure from normality will probably affect the estimates obtained
from these data much less than the (extrapolated) estimates gotten from
up-and-down data. One of the advantages of these designs is the small
number of tests required. An estimate of the expected upper bound N

is given by

N =ZN(l + +. + .1
FN/2

N , N an integer

N=

LOJ +1, otherwise

When P 0 5 this gives an expected upper bound of 76 tests for a . 05.

The design has been simulated for a = . 5 and . 05. It appears that

this design, particularly for extreme values of a., is more efficient
than other nonparametric designs which are not based on analysis of all
previous results at each stage. In our simulations, the median number :.
of tests was about 64 for a : 05; for a : . 5 the median number of tests
was about 16.

EXAMPLES:

I. In the following sirmulated example, the Alexander design is used
for a .5, A= :5, with a cumulative normal response function,
• 0, o':
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Test Number Stress Response

1 1.3 1

3 .3 0
4 .8 1
5 .3.

- I: 6 -. 2 1
7 -.7 0
8 -. 2 0
9 .3 1

10 -. 2 1
11 -. 7 0

12 -. 2 1

Since the response traction at -. 2 is 3/4, while at . 3 it is 2/3,
CA- mIethod oi reversals must be used, giving 5/7 at -. 2 and at
3. Linear interpolation between 5/7 at -. 2 and 0/2 at -. 7 gives

as final estimate x" .. 35..5

2. The following data were simulated using a normal response
function with = 0, w = 1, so that for a .05, x = -1. 645.

The first test was at -3q and the step size chosen was .25a,

(The X 's and O's indicate responses and nonresponses,

respectively.)

Stimulus Level Test Results

-3.00 0
,2.75 0
-2.50 0 0 0
-2.25 0 0 0 0
-2.00 0 0 0 0 0 0
-1.75 0 0 0 0 0 0 0 0
-1.50 0 0 0 X 0 0
-1.25 0 0 0 0
-1.00 0 0 0 0 0 0
-. 75 0 X 0 0
- . 50 X

ID DI D I3 D3 :4 D4 I5 D

1.... . 1 2... .. 2.. .. 3.. .. 3 4. . .. ..4 . . .. .. . ...5
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In the above table, the columns indicate sequences (I for increasing, D for

decreasing). The final estimate is obtained by linear interpolation which
yields •_ = -1. 675. Note that a total of 44 tests wa8 required. a

ROTHMAN DESIGNI

BACKGROUND. The second new design for the inverse response
problem is built on a design by Marks [11] for locating the step in a step I r-.

response function. Thus we shall begin with a brief review of that design
in the case of infinite sample size (the same design is very nearly optimum
even for small samples). I

Let the siep response function M(x) be such that
.• IM0 , x < x

M(x) : M x = x and 0 < < 1.

Suppose we have some previous estimate of the step location x which .

we denote by x" and which we assume is normally distributed with unknown

mean, x, and known standard deviation, w. Let the successive test f I -

levels be Li (i = 1, 2...) and the response at Li be Ri, The first test

is at that stress, L which is the best prior guess of x Then

L I - 1.17w if R = I.

1 + 1.17w if R = 0

Since the design is symmetric about L 1 , we shall give the next two test

"'- *levels only for R1  0 0; these are

. 55w R = 0, R = I

L+199w RI 0, R20
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and

[L, + .273w R, 0, R, 1, R, I

- i] L1 + .847w R, 0,R I, R2 1,

•.: LI +1" I. 537w Rl0, R 2 =O, R 3 I

L + 2. 657w R =0, R 0 , R -

In order to simplify the computations, the following approximation, which

only slightly affects the efficiency of the Marks design, will be used:

1. If RP = R . Ft., then L L. + 1. 167w/Vr, i 1, 2,
.1 1i+1 1-

2. For all other cases the successive test levels are determined by
"splitting the difference" between the lowest I and the highest 0.

For the fourth test, for example, this approxmation gives (for the same
result situation as above)

"� .875w
L4 1 1 580w

2. 666w

The effect of these small changes from the Marks values on the efficiency
of the design is negligible. In fact Marks has shown [11] that even larger
changes do not have a significant effect.

It is interesting to note that the factor 1/fi can be thought of as a
compromise between the term I/i in the original Robbins-Monro process
and the constant step used to start the delayed R-M process.

RULES FOR ROTHMAN DESIGN, If it is known that w is very
large compared to the distance of the interval in which the response func-
tion essentially goes from 0 to 1, then it is obvious that the Marks design
could very profitably be used for the first few tests. Thus we propose the
following de sign:
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L= Yo + 1. 167w(a-. 5)

"where y du.civue. :----i--*- CL . ta •' f The second
test is at

L = L + 1.167w
2 1

if the first result is a 0, and at

L 2= L 1.167w

if it is a 1. The general rules for planning the (r+l)St test are:
th

1. After the r test, all of the data are analyzed by the method of
rever~sals (Appendix 1).

2. Compute

= (1/i) , v + fn(r+. 5) + 1/2<r+. 5)

*where y is Euler's constant V r 7Z This quantity is asymptoticV.
to the expected number of plateaus given by the method of reversals.
Thus nY is roughly the average number of points which have gone

into each response estimate.

3. Compute =64 ala i

4. If there are any stress levels at which the estimated response is
greater than or equal to min(a + A, 1), let S denote the lowest of

these, If there are any stress levels at which the estimated response

Kis less than or equal to max(CL A 0), let S 2 denote the highest of these.

I:,
i4

L ;
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5. If neither S, nor S2 exists, let

r+l 1 L

- I If S exists, but not S2 , let

L (S +L )/2 - l.167w/{r
r+1 1 r

If S exists, but not S1, let
2

L 1 =(L + S )/2 + 1,167w/V'r

If both S1 and S exist, as is generally the case lor large

sample sizes, let

Lr+l -(SI+SZ)/Z + 1,167w(-r-a)

where Q is the fraction of responses in the first r tests,
r

r
a = E R/rr 11 r

i=l

For large sample sizes, the second term should be replaced by
(L ... r)/dr, where dr is an estimate of M'(x ) based on the

sample, For example, dr Z /ASI-S2) could be used, but

only if there is some data in the interval (S 2 ,S 1 ). (Note that

this interval is also an approximate 50% confidence interval on
a.

SIMULATED EXAMPLE OF DESIGN, Let a = . 05, w = 5, and the
true response function be cumulative ý"mal with ýk 0, o* = 1. Then
x = -1,645. Suppose y 2-.. Then

S7--.- - - - - I
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L -. 2 + (1,167)(5)(. 05-. 5) =-2 - 2. 626 z -2. 826.

Now suppose A z U k denotes the respusu uc t th ...... \ A*
1 r

thi apoint Y =1, A .67455 IV 0x,95- .15 , .

Since the estimated response at -2. 826 is 0, and since this is the
highest level at which the estimate is less than or eqmal to max(. 05-. 15, 0)

0, we have S = 0. Since there are no test levels at which the estimated
response exceeds min(. 05+. 15, 1) = 0>, SI does not exist, Then r-:

L= (Ll+S2 )/2 + (1. 167)5/;f1 K.:.
=Z,826 + 5.835

=3. 009 ,

Suppose now R. 1. Now we have S - 3. 009, S = -2.826,
2 1 '2

L,3  (.S83)/2 + 1.167(5) .05.. 50)

u.2. 534

Suppose now R =0. Then S 3.,009, S -2. 534,32

"L (. 575)/Z + 1.167(5) 05-. 3333)
4

u -1.366

Suppose now R 0. Then S 3.009, S -1. 366,

" ik

- .,-. - LJI
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L5 = (1,643)/Z + 1.167(5) (.05-. 25)

• • • = -. 345

If R 5  1, then 81 345, S2  .1. 366,

L6  (1. 711)/2 + 1.167(5) 05.. 4)

s -2.898

The design might continue as follows:

r L, R r L R r L R
r r r r r r

6 -2.898 0 16 -1. 342 0 Z6 -1. 505 0
8..2, -37 -Z 509 0 17 -1.281 0 27 -1.478 0

,°; 8 -2, 231 0 is -1.208 0 28 -1.454 0

9 -2.03 0 19 -1.133 0 29 -1.430 0
'.. j10 -1.860 0 20 -1.061 1 30 -1.409 0

11 -1.731 0 21 -1.681 0 31 -1.389 0
12 -1.625 0 2Z -1,639 0. 32 .1.370 0
13 -1.536 0 23 -1.601 0 33 -1.352 1
14 -1.461 0 24 -1.566 0

15 -1.398 0 25 '.1. 535 0

At this point the analysis of results by means of the method of reveraals
becomes nontrivial, The estimate is I/5 = . 2 at -1. 352. It turns out

V- that S -1.35Z, S2 .1.366,

:;L 3 4 - "1. 359 + 1. 167(5)(, 05-4/33)

= -1. 774

We continue:
V-

/
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r L R
r r

34 -1.774 0
IC I 75A f

36 -1.734 0
37 -1.716 0

t 38 -1.698 1

Let us present the entire analysis at this step, for this is the first
S time it is possible to get a decent estimate of M'(x') [

Strtig Responses/Trials E stimates

3.009 i/1.
.345 1/1 1.00

.1.061 1/ 1 1.00
-1. 133 0-1 .20-1: .1 208 0/1 .20 •

. .28 0/1 1/5 .20

-1.342 0/1 .20
-1. 352 1 .20
.1.366 01 .056
-1 .370 0/1 .056

-. 389 0/1 .056
-1 . 398 0/1 056
-1.409 0/1 .056
.1.430 0/1 .056
-1.454 0/1 .056
-1.461 0/1 .056
-1.478 0/1 1/18 .056
-1.55 0/1 .056
.1. 535 0/1 . 056

.1.536 0/1 .056
-1.566 0/1 .056
-1.601 0/1 .056

-162 *0/1 .056
-1.639 0/1 .056
.1.681 0/1 .056
.1.698 .056
-1.716 0/i .0
-1.731 0/1 .0

h ..
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Stress Re&Ponses/Trials Estimates (continued)

-1.734 0/1 .0

-. 774 0/1 .0
-1.860 0/1 .0
-2. 023 0/1 .0

-2.231 0/1 .0
-2.509 0/1 .0
-2.509 0/1 .0
-2.826 0/1 .0

:• .!;: : 2.89@ 0/1 .0

Nowwe have r= 38, Y .5772 + 1n(38.5) 4.228,
r

.6745 (. 5) (.95) (4. 2Z8)/38

.049

Since rnr(• + 4 , 1) .099, we have S -1. 352. Since max(. - A, 0) =

.001, we have SVI -1. 716. Furthermore, (S,, S~ is not empty, so weI may replace 1.167w= 5.835 by our estimate of l/M'(x), which is
L•,L

S "• .364
- = - = 3,71

SZA .098

(The true value is actually 1/M'(x )C 9.7, so we have accidentally

adjusted the coefficient in the wrong direction.) Then L

v1 L3 9 = (.1, 352-1. 716)/2 + 3.7 (. 05-5/38)

= -1. 837

The analysis again becomes routine until the next 1 occurs.

JI

L I m m
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SIMULATION RESULTS FOR ALEXANDER AND ROTHMAN DESIGNS.
The new designs for the inverse response problem have been simulated
on a diaital comouter for a wide variety of response functions and (in each
case) for two different values of w, the standard deviation of the density
of the prior estimate of x%. The response functions used were

1. Cumulative normal: L m 0, w. = 1

2. Cumulative uniform: x, 0 < x <

3. The five functions given by Odell (7]

(a) x 2 5 0< x < I

2-
4x0 < x< .25•:(b) 2

() -4(:-x) /3, .25 x < 1

2x ,0 < X<
.5 x<

4x/3 < x <.75
(d) (4x/3. o ,

1 .4'( , - x).75 < x < I

4S(e) x4,0 x <I

4, Two functions with pathologies atx. 5 U0

(a) .5+x 5 , -. 87056 < x < .87056

Here M'(x 5 )0

2+ ' 1

(b) X a O

Sa~•1:..5 + x> 0

I 2+x

I'-

,'f .p..
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S~ ~~Here MI(x5)=,•

n� -.., -, .1 .u.i..1otinn do not differ very much, we sh~li

report here only the results for the cumulative normal response function.
.•:• .i=•.These rt.sudlt are tabulated below:

.Dsn w Sample Asymptotic Minimum Variance (if

Desist% Size Varitfce for c . 5 Estimator in

SRoariance for~:.5(N)(n@'/2N100 Slmnu~ationa.

Alexander 1~ul 4 8 17'' .9.. .042. K .40 .14

Rtmn 316 32 64 .ZO .098 .049 .02.5 .36 .15 '10 u)

Alexander (A 21) 10 4 8 14".: .39 .20 , 456 1.98 .39

Rothman 110 8 16 12 64 .20 .098 .09 .045 1.10 ,36 .12 .061

Asymptotic Minimum Variance of

Rothman 1 l 32 64 28 .14 .00 .60 Z4 092

Alexander (A 25 ) i10 16 32 65",' .28 .14 .069 17,5 5,88 ,2.3

"Rothman 110 16 32. 64 .2 8 .14 .070 1.04 .31 .14

Asymptotic' Minimum Variance of
i Variance fora a ,01 E•stimator in

a .0113.91caz/N) 2 Simulationsma4 .u 0 0 ' ' . ..e".

"Rothrnan 10 64 IZ 256 Z . 1.. ,.1 ,054 .33 .11 .07a.

Median sample size required to complete design
:,O Without altering design to incorporate estimates of the derivative

' Unsatisfactory because 1. 167w was much smaller than I/M'(x 01)

01.
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From this table we may draw certain conclusions:

1. The Alexander designs are excellent if completed or if carried
-1 ..:; 6- - - - - - -- 2. AA' t,,at fnr r. - O"}

2. The Rothman designs are excellent for smaller sample sizes.
However, if large samples are intended, the experimenter
should utilize the more complicated verslon of the design (not
yet simulated) in which M'(x ) is eventually estimated from

aL
the sample and then used to modify the spacing of the subsequent
test levels. Otherwise, as in the anomalous result for a = . 01,
w = 1, we may find that the initial spacing (based on 1. 167w rather
than on an estimate of I/M'(x )) is completely inappropriate.

A comparison of all simulations reported in [15] indicates that the
Rothman method is slightly better for poor prior information, and the
Alexander design is slightly better for small w, for most response
functions included in our simulations.

Simulations of other 500/ designs have appeared in the literature.
Wetherill [9] has shown that for the 5076 logit problem, the Robbins-
Monro process gives an estimator with variance very close to the
asymptotic minimum. However, his initial test level is very close to
the level sought, which corresponds to a small value of w (i.e., a
great deal of prior information). But the R-M process would be very
poor for small samples if w is very large. Our designs are intended
to cover bath cases, and it follows that their efficiencies at small
values of w are therefore somewhat impaited.

Wetherill claims that small sample inefficiency is clue to lack of j
linearity in the neighborhood of xa.. However, there is a "growth of

information" (growth of efficiency per test) aspect of small samplei
work for any response problem (cf [15] , pp. •l-220) even for the
homoscedastic problem on a straight line (non-quantal response).

Wetherill apparently found unsatisfactory the performance of all
known designs for the inverse response problem when a is not near
50•/. This seems to have been due to the bias of the estimators in the
small-sample situation, which we believe is due in turn to increased

A_

,,~ ,-

'I- L
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nonlinearity of conventionally uped types of response functions a6 orie

leaves the neighborhood of a. = .5. For example, IM"(x) I for the
cumulative normal response function in maximized at 4 t o- . For values
even further out, it might be imagined that heteroscedasticity would have
an effect.

- i• :Our designs for a = .05 show the same small-sample inefficiency,
but we do not conclude that this necessarily implies that the designs are
unsatisfactory. More work is needed on the effect of (1) M"(x ),

(2) heteroscedasticity, and (3) prior information on the minimum vari-
ance which can be reached for a particular sample size.
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APPENDIX I

METHOD OF REVERSALS

The method of reversals was first proposed by Brunk, Ayers, Van
Eeden and others (12, 13] . The method is based only on the assumption
that the response function is nondecreasing with increasing stimulus
level. This method is best dernoiistrated by an example (see [151 for
examples and uses of this method):

Stress Responses/Trial's First Attempt Second Attempt Response
I |Probability

__ __ _ Estimate s

5.02/3 2/3 Z/3 Z/3
3.7 0/1 5/12

3..2 2/4 2/5 5/12 5/12

1.9 3/7 3/7 5/12

The sample response fractions are first arranged in order of increas-
ing stress. Since the response function is assumed to be nondecreasing
with increasing stress, the sample response fractions may be used as
estimates unless they violate this rule. Whenever such a violation occurs
on consecutive stress levels, an attempt is made to correct the situation
by merging the two response fractions. In the example, the fractions 0/i
and 2/4 violate this rule, and are therefore merged to give Z/5. The
other response fractions remain the same, At this point 3/7 and Z/5 are
a violation, and are merged to get 5/12. The result is now satisfactory.
No matter what order the violations are corrected, it can be shown that
the final estimates are the unique maximum likelihood estimates.

Since we need it in the test, let us define a "plateau" as an ordinate
on the partially estimated response function. In the above example there
are two plateaus.
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APPENDIX II

GENERAL CRITERIA FOR EVALUATING DESIGNS FOR
THE INVERSE RESPONSE PROBLEM f

D. Rothman e_ !

The estimation of the abscissa x at which a nondecreasing mean

response function M(x) takes on a specified ordinate a may be called
the distribution-free inverse response problem. A judiciously chosen
experimental design for this problem would very likely enjoy certain
common properties independent of considerations due to the intended
sample size, the domain of allowable test levels, the desired response
fraction, the technique of analyzing the data, and the extent to which
blocking is required. One would also expect that designs which lacked
some of these characteristics, but were otherwise excellent, could be
easily modified to conform, and would thereby be slightly improved.
The properties are:

1. The design is as sequential as possible, in that as much as
possible of the past data is utilized at each step to plan.the next test
level, or block of test levels,

2. The stress levels in a test block average the same or less (more)
than the stress levels in the previous block if the average response in
that previous block was greater (less) than the desired response fraction,

3. The test levels converge as rapidly as possible to x or to
some minimal set in the test level domain spanning x ,

4. The sample response fraction converges to a, and

5. The spacing of the early test levels takes into consideration the
prior density on x

Let us discuss these characteristics in detail.

1, The design should be as sequential as possible. A purely sequen-
tial design would be one in which each test level is not chosen until all
previous data have been carefully analyzed. The reason for this is that
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the design must be able to correct itself if it has I,, i, lostir',g in tht %ronin:
rcgion due to a poorly thosen initial test level. im r ,\,ruple, a RHobbins-

5 ~Monro process which starts out with too small a mtp size and a bad first
m guess is very poor for small samples, and there is no nmechanism for

altering the design after a few results have been ohsq.rxed.

A maximum likelihood technique for such data anitlysis in the distri-"•-.::iI bution-frec case which can be used with any sequLntidal de siun is the

'method of reversals" discussed in Appendix 1.

In practice such ananalysi, may not be feasible, since the results

of .ill previous tests may not bc available when the new test is planned.
or there may not be time for the calculations. Nevertheless, as much
data as are available should be analyzed, and it would 1e hard to beat the
nmthod of reversals for simplicity. We know of no d,.jign presently used
which obeys this precept, and we feel that this is really I serious defect.

Both of our new designs were conceived to meet this need.

2. The stress levels in a test block should average the same or ,ess

(.more) than the stress levels in the previous block if the average response.'

in that previous block was greater (less) than the desired response
t raction, a,

For purely sequential designs this condition inmplies that the test
level after a "Ill will bL at an equal or lower level, and the test level
after a "0" will be at an equal or higher level. The up-and-down design
and the stochastic approximations all follow this rule, whoreas the
Derman design does not,

For extremely small values of a one would not bc too fussy in
demanding that the test after a "0" be at a higher level. In practice the
test efficiency is relatively insensitive to the location o! the test follow-

Sin1 a "0". This is why it is possible to violate this rule in the Alexander
design for a 5=%. A similar observation could be made for high values

0o' q,

i. The test levels should converge as rapidly as possible to x or
to nie minimal set in the test level domain spanning \

.I the allowable test levels are discrete, then the design should
on\erge to the two levels bounding x. If the allowable test levels are

,;2 (4
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dense in a neighborhood of x , the design should actually converge to

x . Such a design is called a stochastic approximation (of x )' and an

example is given by the Robbins-Monro process,

L L + cn(a-R)
n+l n n n

th th
where L denotes the n test level, R denotes the n test result,

n n
and c is generally of the form c/(n+n ). It has been conjectured that

the minimum asymptotic variance for such designs, and for the general
nonparametric inverse response problem for quantal data, is given by

2
V in(X ) ' a(l-o)/N[M'(x)]
nin a C

where M'(x) denotes the derivative of the response function, and N
denotes sample size. M'(x) should be continuous at x , and

0 < M'(x ) < c. For example, if a = .5 and M(x) is cumulative nor-

mal, then I
Vmin(", 5) (i/2)r /N

Based on this conjecture, a relative asymptotic efficiency may be defined I
as follows-

To our knowledge this conjecture at present lacks proof, but may
be justified as follows:

a. The R-M process can match this asymptotic variance for the
right choice of c , namely, c = Il/nM'(x ).

b. When the response function is known to be cumulative normal
and when the optimal design still turns out to be a stochastic
approximation of x (as in Chernoff (14]), the variance is

aL
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v U equal to the expression above, thus making it plausible to
- .- conclude that we can generally do no better.

f..It is intended that the new designs satisfy this rule. The up-and-
down, Langlie, and Derman designs do not. It should be pointed out
however that the first two of these were intended only for the cumulative

• ,normal inverse response problem.

4. The sample respons" fraction a should converge to a.

If the design is a stochastic approximation, and if M(x) is continu-
ous at x , then this property will hold. Of the allowable test levels are

a
i' , discrete, then this rule gives the asymptotic percentage at each of the

.H two levels that the design converges to.

taeOne might deduce from this a principle of "compensation': If a > a,
"take the next test at a level under the latest estimate, to compensate rfor
the lack of 0's. A similar statement could be made for a < a. The
Rothman design does this explicitly.

5. The spacing of the early test levels should take into considera-
tion the prior density on x

Let w denote the known standard deviation of the (normal) prior
density on x , L. denote the ith test level, R, denote the itn response,

and let g = wM'(x )/"\r . Then the situation g > > I corresponds to

the Marks problem of locating a step; the situation g < < I would permit
us to imagine that we are merely continuing a design which had already
gone quite far.

Then the above property has the following ramifications:

a. The quantity I L2-LII should be close to 1.17w (as in the Marks
design) for g > > 1, and close to g2 a.RI /M'(x ) for g < < I

(c.f. L 2 - L = (a-Rl)/M'(Xa) for the Robbins-Monro process).

b. If R R, then
2 1



If g > > I, the lower bound is more useful, as in the Marks design.
If g < < 1, the upper bound is more appropriate,as in the delayed
R..M process. The conventional R-M process,

Ln+I =L + (a-Rn)c/n

violates this precept.

c. If R2 /R 1 , then IL 3 -L 2 / LZ-LLI should be close to 1/2 (as

in the Marks design) for g > > 1, and close to Ia-R 2 1 /I ac-Rl
for g<<l.

The big question here is the quantity w. If the prior density is uniform
with range D, then the Marks design would change. Nevertheless, the
above rules with

w D/11-12

should still be useful guidelines.,I

Often one is testing a population similar to populations previously
tested h. the past, differing perhaps only because of small changes in
chemical formulation or test equipment. In this case the distribution of
past estimates of x is just the "prior density" we are using.

If w itself is extremely uncertain, the experimenter should use a
high value as a precautionary measure.
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DISTRIBUTIONS OF DIXON'S CRITERIA FOR TESTING

OUTLYING OBSERVATIONS

Wal' , L Mowchan

Surveillance BrL.. Ballistic Research Laboratories,
Aberdeen Proving Ground, Maryland

ABSTRACT. An empirical or Monte Carlo method for determining
the distribution of Dixon-type sample statistics for testing outlying
observations is presented. Results are presented for samples generated
from a normal distribution and for samples generated from a uniform
distribution. The method employed was to select random samples of
sizes n = 5, 10, 15, and 20 from each of the aforementioned distributions.
After ordering the sample values such that X, < X < Xn, the six

different statistics (defined later) for each sample size were computed
for each distribution. A sampling distribution was therefore obtained
empirically for each sample size for each distribution after 500 such
sample trials. The cumulative frequency functions were then plotted
for both the normal and the uniform distributions. With respect to the
normal distribution, these results can be compared with theoretical
values which are published in tabular form by W. J. Dixon [I With
respect to the uniform distribution, two contributions are made to the

statistical literature:

I. A procedure for detecting outlying observations in samples
from a uniform distribution is presented.

2. A comparison of the cumulative frequency functions indicates
that all extreme values, except for sample size n = 5,
rejected under the assumption of normality would also be
rejected if the actual data were in fact selected from a
uniform distribution, since the upper percentage points for
the normal distribution are higher than for the uniform
distribution.

Finally, a comparison of the two cumulative distribution functions

indicates which statistics of the six presented are best suitable for
checking an extreme value given a certain sample size.

t
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1. INTRODUCTION.

1.1 Definitions of Statistics to be Investigated

Six statistics proposed by Dixon (9) for testing the significance of
outliers are presented. The author has attempted to obtain the
probability distributions of these statistics by the Monte Carlo method
of sampling on an electronic computer. Let us consider n observations
of a sample from Normal and Uniform distributions such that
X, < X2 < . . , < X , where X, is the suspect outlier. Since both1+ - 2- - n1

th-% normal and the uniform distribution are symmetric, we could also
have considered the largest observation, X , to be a suspected outlier.
Of course, it is easy to observe that for any of the six statistics the
sampling distribution of the smallest value, X1 would be equivalent

to the sampling distribution of the largest value, Xn, except for3 location or mnean.

For definition purposes, let us consider the following six statistics

which will be investigated in detail:

1. For a single outlier, X

10 X -X

n 1
2. For a single outlier X avoiding X

1 n

r xz - x

Srn-I 1

3. For a single outlier X avoidiig Xn, X

•+•i Z " 1
:" r12 = X -x (



Design of Experiments 369

4. For outlier X avoiding X2

X -X

3 1
r20 -X X

n 1

5. For outlier X avoiding X2 and Xn

3 1

6. Foroutlier X avoiding X and X X1 n' n-i

r 22 : 3 1~

n-Z I

12. Brief Historical Background

The testing of extreme values is a very old problem in applied
statistics. The data obtained in experimentation must be carefully
examined so that one can be reasonably certain that the results of L

sampling are representative of the process. It is quite obvious that
rejection (or acceptance) of outliers could lead to a much different
course of action than otherwise taken. It shoulo be noted that in some
cases the problem of outliers may depend on common sense and hence
may be a practical problem as well as a statistical problem. A review
of the literature indicates that the problem of outliers received much
attention prior to ).940. In fact explanations concerning outliers were
presented as early as 1850 by W. Chauvenet [z]. His hypothesis
basically stated that some samples contained a very small portion
of observations from a population with a different mean value.
P. R. Rider (3], for example, proposed a solution based on the
assumption that the population standard deviation, a , be accurately
known. In a similar manner, J. 0. Irwin [4] published in 1925
criteria based on the difference of the first and second (ranked)
observations and on the difference of the second and third (ranked)

ii
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observations in a random sample from a normal population. Another
very practical approach was presented in 1935 by McKay [5 ]who

published a paper on the difference between an extreme observation
"and the sample mean. "In conjunction with his work, K. R. Nair [6] in
1948 tabulated the distribution of the difference between an extreme

observation and the sample mean for small sample sizes. W. R.

Thompson (7] in 1935 working on the assumption that the standard devia-
tion was not known presented a paper, "On a Criterion for the Rejection

of Observations and the Distribution of the Ratio of the Deviation to the
Sample Standard Deviation. " One interesting fact concerning Thompson's

Swork is that he presented an exact test for the hypothesis that all sample
observations were from the same normal population. Another significant
contribution is presented by Grubbs [8] whose criteria are based on the
sample sum of squared deviations from the mean for all observations
as compared to the sum of the squared deviations omitting the "outlier".
, W. J. Dixon (9] in 1950 presented a paper based on sample ranges and
subranges. His paper assumes that the random samples are drawn
from a normal population. In connection with this, Dixon and Massey
(10] proposed a method for estimating the mean and standard deviation

k_. when the effect of outliers (light, medium or heavy) is known. This
paper is concerned primarily with the statistics presented by Dixon [9)•! - in 1950 since for practical purposes they are very easy to compute.

In addition, one would like to know how much non-normality would
affect the tests and this is also studied. As an example, this paper
attempts to develop empirically how sample criteria for non-normal
distribution (the uniform) compares to that for the normal distribution
when various tests for suspected outliers are performed, As already
mentioned, one of the primary reasons for selecting Dixon's criteria is

that the statistics presented are very easy to compute.

"1. 3 Monte Carlo Method

With the aid of high speed electronic computers such as BRLESC
(Ballistic Research Laboratories Electronic Scientific Computer) at
Aberdeen Proving Ground, Maryland, a program was available to obtain
random numbers with frequencies equal to those of the uniform or normal

distribution, In order to generate random numbers for both the uniformAM,:•i and the normal distributions, it was necessary therefore only to enter

a subroutine already on tape. Basically, the subroutine works as follows

"K for the uniform distribution. An initial value, X , 54781Z619135913)
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is selected and multiplied by a "K" factor which is always 25 X-60
The last fourteen digits are then preceeded by a decimal point so that
the number X lies between 0 and 1. The X is then used to generate X

in an identical manner and the process is continued until the n random
numbers desired are generated.

In order to generate numbers which follow the normal distribution,
i.e., N(0, 1) a very similar procedure is employed. The computer
first selects 64 random numbers from the uriform distribution and -

computes the mean, XI. One-half is then subtracted from the mean X

and the whole quantity is multiplied by 1613. Therefore the first random
normal observation X would be 16,13(X - .5). For the second random

normal number, the computer again selects 64 random uniform numbers
and follows exactly the same process until n observations are generated.
Since the ", (i = 1, 2, 3, . . . n) are obtained from a uniform distribu-

tion, it can easily be shown by use of the well known central limit
"theorum (11) that X is approximately N (1/2, V/768). Therefore, it is
obvious that (R - .5)/ 1/161'3 is approximately normally distributed
with mean 0 and variance 1. These routines have been checked byX 2

for Normality and Uniformity and the results are contained in BRL .
Report No. 855 dated May 1953 [12] . Incidentally, the periodicity of
the subroutine is one in every four million computing years.j

In order to obtain a sampling distribution for each of the previously
mentioned six statistics for each distribution, it was de 'ided that 500
trials might be acceptable. For example, for sample size n = 5 from r

the uniform distribution, r1 0 - (X-2 X1)/(X 5 - X1 ) was computed from

500 trikls and the observed cumulative distribution was plotted. Like-
wise, this same general procedure was used to obtain ri for the

normal distribution. Since Dixon [1] has already published tabular
results based on an analytical function of the distribution for r1 0 for the

normal universe, it is of primary interest to compare his analytical
function with both the uniform and normal distributions which were
derived in this work empirically by Monte Carlo techniques. These
results (see Appendices I and II) are tabulated and plotted for each of
the six statistics for each of the sample sizes n 5, 10, 15 and 20.
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2. MONTE CARLO NORMAL VERSUS THEORETICAL NORMAL.
The general contribution of Dixon [1] was to obtain analytical results

-:-• -based on small sample sizes for the distributions of the six previously
mentioned statistics. Percentage points were then obtained by numerical
integration for various sample sizes from n = 5 to n = 30.

As an example let us consider r1 0  (Xn - Xnl)/(Xn -X l) where the

subscripts on the X's indicate ordered values such that XI <X < < X

Dixon (I •indicates the density function for X,, X n., X to be

() n. •xndl f(t)dt) n.3 3~

(a) (n-3 'l) d t f(xn! 1 ) dxn.1 f(x,) dx

... If we let v X n - X1, rv -x. Xn-, x n and integrate x and vover

their range of definition we get the density of (v, r, x) to be

~x-rvn-
(b) [ f(t)dt] f(x-v) f(x-rv) f(x) v dv dx

7n- T3).1 0 .x-v

r where -, < x <s and 0 < v <a. Also let f(t) = (l/ 1 2rr) e a

Let us now consider a specific case where n = 3. Formula (b) now
appears as

2 2 2
x-rv 3-3 +(~v

.. •!.• [_____ (xrv)2 z

(c) f-.- 35 e v dv dx0 X -= 02n)

and collecting terms we get the density function to be

vd) (2r)3/ Se 3xv"I l+r))
(d) 6 3 e v e dx dv,

.21T)/ 0
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Upon completing the square we get

(e) (l+r 1/3 (1+r+r Z(l/3)

l /341+r) 2

1/ 3 dx dv

which can easily be integrated to obtain

(f) f(r) - 3 3

21(1-r+r )

Integration of the density function results in the cumulative density
function (cdf) which is expressed as

3 2F(R) arc tan [.(R 1 0 - 1/2)] + I/Z

and upon setting (g) equal to 1 - a, we can easily obtain

V3
(h) R1 0  tan if/3 (1/2 - a) + 1/2 where R1 0 is the upper a

a Q
probability level or percentage point.

In comparison, the Monte Carlo distribution (based on a sample
of 500 trials) for r1 0 for sample size n = 5 agrees very well with tie

analytical functionderived by Dixon for n a 5. In general, the six
statistics for sample sizes n = 5, 10, 15, and 20 agree quite well with
Dixon's results - particularly for the upper percentage points. A

2 goodness of fit test indicated that the percentage points for the

Monte Carlo method of sampling did not differ significantly (.05 level

•"... .. ....."-- • i .... "+• "•:"!=+" •+: "+-" "+ -..... --.tLV " +" .. .. -".. . ... . "-- '



374 Design of Experiments

7':.•of significance) from those derived theoretically by Dixon; however, it

is strongly recommended that in future work more than 500 trials be
utilised in order that more accuracy may be obtained by Monte Carlo

we methods.

Let us derive the density function, the cdf and the upper a probability
level for the uniform distribution for the statistic, ri 0 . As indicated in

(a) and (b) earlier, we can write the density of (v, r, x) to be

n!r pxrv ),
(i) - 3)! (3v f(t)dt)n 3 f(x-v) f(x-rv) f(x) v dv dx

: •""i/•: (i) (n- 3): -

and let f(t) = I/b-a where a < x < b which readily gives us

,.(J) n- v d
77731 ,,a S (l) (b-a)3

Upon performing the integration in (J) we get the density function

(k) f(r) = (n-2)(l-r) where 10
n > 3

Integration of the density function results in the cdf which is expressed

(1) F(R) 1 - (1.- R 1 0 )n 2 and upon setting (1) equal to I- a we
• i obtain

() R 1 - /nZ where R1 0 is the upper a probability level

"L or percentage point. These theoretical results are compared with the
Monte Carlo results and are contained in Appendix No. I.

Another point of interest is that the Monte Carlo results for the
uniform distribution were significantly different from the (theoretical)

A.- 4_ _
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SDesign of ExperiuntlM 2fnormal when the X goodness of fit test was applied at the 05 level of
significance as might have been suspected. This would indicate that

Dixon's criteria are rather sensitive to departures from a normal universe.

3. COMPARISON OF NORMAL AND UNIFORM DISTRIBUTION.

3.1 Sampling from a Normal Distribution.

As previously mentioned, the Monte Carlo method based on a sample r
of 500 trails did not differ significantly from the analytical method
developed by Dixon for Normal distributions. If one assumed that he
were sampling from a normal distribution, it can be seen that all extreme
values rejected under the assumption of normality (with the exception of
n = 5) would also be rejected if in fact the actual distribution sampled V
were uniform. (See Appendix No. I)

3.2 Sampling from a Uniform Distribution.

If one assumed that he were sampling from a uniform distribution,
then many extreme values rejected values under the assumption o!
sampling a uniform distribution would be wrongly rejected if in fact
the actual distribution sampled were normal. (See Appendix No. I)
Hence, the error involved in 3.1 would probably be less serious than k
the error involved in 3.2. wl

4. AN EXAMPLE.

This section will seive to illustrate the use of Dixon's criteria
for determining whether a doubtful observation is to be retained or
rejected. One of the classic examples consists of a sample of fifteen
observations of the vertical semi-diameters of Venus made by a
Lieutenant Herndon in 1846 and presented by Chauvenet (2). In the
analysis of the data which followed the following fifteen residuals were
obtained and have been arranged in ascending order of magnitude

-1.40" -0.24 -0,05 0.18 0.48

-0.44 -0.22 0.06 0, 20 0.63

-0.30 -0.13 0,10 0.39 1.01 .

-7

_____ ___

...-..-.------. ~ -'
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The residuals -1,40 (X) and 1. 01 (X 5 ) appear to be questionable.

Here the suspect outliers lie at each end of the sample. Since no
optirnun procedure for testing outliers at both ends of the sample is
currently available unless the population variance, o,2, is known, we
shall now illustrate the simplicity or ease at which Dixon's statistics
mrtay be computed. Let us first test the observation -1.40 since it is most
distant from the mean of the sample. Also, we shall select a CS 0 which
means tha-t Pr (r2 > R) =.05. For sample size n =15, we get:

_3_" XI - 30 + 1.40 1.10.48+1.40 ~= -- .585
rzZ X 13 - 1 .48 + 1.40 1.88

Since the calculated value of . 585 is greater than the critical value
3 of ,525, we reject the observatiun -1.40 by Dixon's test and now proceedj to check the observation 1. 01 for sample size n = 14.

r ' 14  12 1.01 - .48 .53 .425
SX - X.01 + .24 1.25

14 3

Since the calculated value of . 4Z5 is less than the critical value
of . 546, we accept the observation 1. 01 by Dixon's test and no other
values would be tested in this sample.

5. CONCLUSIONS.

5.1 Extension of Tables Based on the Normal Distribution

Since the Monte Carlo Normal Distribution can be used to represent
the analytical solution presented by W. J. Dixon, it is therefore possible
to extend these tables (See Appendix I) to sample sizes for larger values
of n, which in many cases would be of considerable interest in applied
statistic s.

5. 2 Development of Criteria Based on the Uniform Distribution

The Monte Carlo uniform distribution can be employed to develop
a criteria for the rejection of extreme values based on the assumption

" I . ,
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of sampling a uniform distribution. Thus, the tables and figures pre-
sented in Appendices I and 11 may be of significant in'purtance in many
practical situations where the actual distribution is in fact uniform.

5.3 Choice of Statistics

The cumulative distribution functions plotted in Appendix II provide
very helpful information regarding which statistic should or should not
be used given a certain distribution and a certain sample size. For

example, if given the normal distribution, the statistic ri 0 appears to

perform very well for small sample sizes such as n z 5 while it is
obvious that the statistics r12 and r."would not provide a good test for

these small samples because of the slope of the curves.

5.4 Additional Comments

In this paper, I have attempted to show that Dixon's (1] criteria
for testing of extreme values based on the assumption of normality

can be established empirically. Also, I have attempted to show what
would happen if the distribution sampled were in fact uniformly distri-
buted.

Since analytical or theoretical functions for testing outlying
observations generally become quite involved, further work involving
the effect of skewed distributions such as some of the Pearson Type

curves [11] could be accomplished by Monte Carlo methods on a high
speed computer.

It would also be of interest to develop a two sided test for examining
extreme values from a sample. In this connection it is suggested
that the sample observations be arranged such that XI <.X < . . . <X.

A proposal for the two sided test would be to first let X be the

suspected outlier (Dixon's approach) and then to compute the desired

statistic. Next, from the same sample, let X be the suspected outlier
and again compute the statistic. The higher ofthe two values obtained
would then be chosen. If this procedure were repeated at least 500
times, then a two sided test could be developed empirically for testing
extreme values and this might have rather wide application. Again, it
is once more repeated that at least 500 trials should be used.

ZA,

1.K ~ -
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Finally, Appendices III and IV contain machine programming data
which could easily be ustd for obtaining Monte Carlo distributions of I
Dixon's statistics []] based on the assumption of uniformity or normality,

4. vvvif sample sizes of greater than 20 are desired.
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APPENDIX I

Ta~bles Of Upper Percentage Points forthe Unifornm and the Normanl Distribution
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Table of the Upper Percentage Points for the Uniform Distribution

Pr(rl> R) =Cwhere j u 0,1,2

Bample o= .005 1 - .01 - = .02 1 - .05
Sir* 'Statiutil "AL U-•' a -w UF " T- I U- "" U

r-o 0 .9 .533 .785 .7T5 .J29 .716 .626

.&4 r 11 .928 .918 .900 .886 .859 .831 .716 .736

12 .995 .996 .990 .990 .980 .980 .950 .946

no r .531. ,5314 .482 .1484 .4,28 .427 .3•, .349

r12 .586 .588 ,536 .541 79 1.476 .393 .393

r0 ,335 .298 .300 .260 .262 .726 .209

n-15 r .357 .356 .319 .323 .278 .279 .221 .223

12 .382 .381 .342 .345 .299 .298 .238 .235

10 0 .226 .221 195 .193 .153 .14

nw20 r .268 .2614 .23T .231 .206 .197 .162 .153

12 .282 .281 .250 .253 .235 .230 .lT1 .166

*U¶Jpper percentage points based On Dixon's Uniform (theoretical).
**pper percentage points based un Monte Carlo Uniform.

t7
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iII i
Table of Upper Percentage Points for the Normal Distribution

Pr (ri, >R) = o where i 1 i, 2 and J * 0, 1, 2

Sample __ __ e 005 CI .01 Of 02 10Size Statistic T*' N** T* N** T* N** T* N** ý

.6r .82. .82 9780 .5790 .5729 7.T543 .4 .9720

n-5 r .93. ..639 .91 6 .162 6 62r6 .882 807 .812
r .2 ,996 .996 .992 993 984 .985 .965 .963
r2 o .950 .952 .929 .927 .967 .961 .845 .604

r .5 ,9982 .998 .995 .996 .990 .996 .9T68 .909

r2 .56 .5642 .525 .526 .483 .488 .416 .M5i
r20 .655 .626 .522 .579 .581 .599 .4TT .49"

r2 1  .607 . 60 5 .57 .575 .61o .65 3T 5, o .- . .

r20 .664 .663 .632 .62.3 .59 .-599 .525 .539

r T6o .756 .726 .-TO .692 .6T1 .618 .6,o

n22 .260 .815 .759 .802 .749 .742 .582 .59.

r .494 .470 .438 .452 .30 .424 .572 .375

r122  .506 .529 .526 .527 .482 .4•7 .419 .432

r2,2 .562 .556 .525 .510 .502 508 .43o .438

r~~~~~~ .67.0 54 55-3 54.43.9

Upper percentage points based on Dixon'. Normal (theoret9e52 ). .52

* *Upper percentage points based on Monte Carlo Normal..

r . . . .. . . .... .4 2 2

10 ~~~~~-39 -39rt 5 31 36'1

r ~~~~~ ~ ~ ~ ~ .,4.5 4o .3 32 .8 34 M

nw" 12 .43 .8 48 43 .1 41 38 .5
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410 PR0BW-Ob9 DISTR~t5UrION SKEET W. MCvdHAN 10 MAY 6129 PAW,!

SLOC(NI-1430)UL-U30)
BLOC lOIS 1-DISSi) 0-01440)
SAL0CITI-TAO)SI-S30) SUML-SUMb)i

F2 FORM19-10)9-L0)4-10)4-10)4-5,5-1-5)
START Y~v.02492A4$5% LO=-.00021346561%

CLEAR 11440)NOS.AT(DI)2
S8T(S8u)NNSOO)t FSSuSZ OESw0t SET(MAX-O)t

3.0 SET(IB0)t
3.1 Slau1:x

COUNT4301INI !200T043.1)%
1.0 SET(ImOIX ENTIF6IZEROCC)%

SE TI M 0) PQaOl
IF(0ESu0)GOTOII.2)t

1.1 ENTEiR(URNOS2)URN)2 GOTO(1.3Vt
1.2 ENTEI4(URNOSI)URN)%
1.3 U1ItIURN% Tl#I.14.5eUKN-4.51

cou~wf(ss)lN( I)GOTOf1.1)%
4.0 SETUNmO:

IF(DES.O)G0T014.1)t GOTO(4.2)%
4.1 ENT.k(NRN05ISWS1 l)fNI#I)% L)ES&IS GOTO(4.3)2
4.2 ENTERINRN0SZSM, I) 1N1,U
4.3 COUNT(SS)IN(I)GOT014.2)t
900 SE-T(C Ter-It

I - SETIMsN1)2X
10.0 INT(IIM411% INT(KnM)% SETlX.0)Zn0)%

T1,@K% pKaott ,LaTll
12.0 COUNT(SS-1)IN(X)GOTO(13.012 GOTO(14.012
13. INCII.I'+I)% G0TO(11.01%

¶14.0 COUNTISS-IIIN(Z)G0T0(L5.03z GOTO(16.0)%
15.0 INT(K.M.*Zlt INT(I-K+11% INTIXuZlt

GOTOI 11.0)g
16.0 INCICTeCT4I)I

GOTOC 17.0)2
16.1 SETIM.UI)2 GOTOI10.0)2
17.0 SETICTa1)t SETIMuNI)% ENTER(ZE5K0CC)%
0171 INTIIaM+SS-1)2
18.0 T1.,(MIt1)-tMX T2a9(M421-,M%

18.1 DIS~oTI/T3% DIS2aTl/T4% 0[S3uTl/TS%
L)!S4aT2/T3% D1S~..T2IT4* 01S6uT2/T5%

Tlu,1-plL-1)2 T2., I-,II-2)% T4-ol-t(M+1)% T50u!-#t4+2)t
DlS7-TI/T39 DZSSaT1/T49 DZS9=T1/T~S'
DIS1CiuT2/T3Z UIS1I.T2/T4% DlSI2uT2/TSZ

24.0 IFl0IS2>DlS8)G0T0C25.l)% DIý14ADIS8%
24.1 IF(UItý3>O1S9)GOTU( 25.2)% DlS15.Lfl59*4

24.3 IF(UIS5>DIS1 1)GOTO(25.4)% OlSl7m01S1Ll
24.4 IF(OIS6>IS12)GOTO(25.5)% DtSI8aD1S12%
24.5 GOTO ( ALLY I)
25.0 DjISI3.L)1S14 GOTO(24.0)%
2b. 1 DIS14vDIS2,4 COTO(24.11Z
25.2 OISL5mD013 CG0TC(24.2)%
25*3 0 1S lei aL S4% GOTO3(24.3)%
25.4 L)IS17uDIS5% GUTO(24.4)4

2b.ý DISttJ-OiS64 GQTJC24.511ý
TALLYI SET(CG0)% STlQa0k)ý1



ii t T~u)IS .G; IT(M=u~Q) ~10 MAY 6:)t t'Ai-i

IH T~x>.52LGOrt.(LL2 )%I ~IF (Tls>.25)G;OTO( LL3)*
T2-0". T3a.025Y. GOTO(O;EN)4

LL2 IFlT!->.75)G0TO(LL5)%
INT;ML-M342C)' T2-.5Z T3-.525% GOTO(OPEN)%

LL3 INT(MluM3.+10)X T2-.25% r3-.275% GOTO(OPEN)%

LL5 IFtTlu>.875)GOTO( LL6)t
lNT(mlmMl+30)% T2=n.754 T3a.775% GOTO(OPEN)l

LL6 IN(l~l3) T2-.075% T3m.9t
OPEN 1FCI2-<Tl<T3)G0T0(TALLY2)%

T2zT2t.025%1 T3=T3+.02b5t IF(T2u1)W!THIN( .001)G0T0CTALLYZ)'%

TALLY2 1N1(otM1l,MI1+fl

ZtIP INT (PQ- zi+4'ý GOTO (LL I) 4

IF-INT(C~u2)GOTC(19.2)2
GOTO(20.0)t

19.2 SET(M*UL14 GO0TO17.1)%
20.0 couNrIN)IN(MAX)G0T0(I.0)*
26.0 ENTtER(ZEROCC)% SEiT(ZaO)
26.1 TI*OZ T2-.025% SET(Lu0)Z INT(SUMuO)2
26.2 INTlSUMvSUM*Dl*Zl%

PRINT-F~kMA4TIF2)-(Tl) (T2)D1,Z)SUM )SS)i
TlaTl+.O259 T2-T24.025% INCIIaZ+1)%
C0UiNT(40) INCI)GOT0(26.2)%
IF-INT(Z-1440)GOTO( 21 .0)% GOTOC 26. 1)X

21.0 1NC(SSmSS+5)4 FSS-FSS45
CLEAR( 1440)N0S*AT(01A%
SET(MAXu0)%

2290 IF-INT(SS>3O)GOTO(N*PROB)%
GOTOC 2.0)*
LIST

END G0TO(STAR~T)%

Y7,V.
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j 414 I'KCt 6-089 ~1STi41fUT 10. SKEET FOi4 W.MUWCHA!14 LC ;.;AY uj 'Ak,r

Fl, FORM(4-5)M-!i 8-S1
F2 FOaMt9-10)3-70)I
F3 F0Rm(9-10)cj-1c,)4-1O)4-10)'.-5)8ý-2,7)-5I
STAR~T *READ-FOR~. '( F I I-(S S)R)J))

REALU-FO1IMAT(F2)-(5OO)NOS.AT( Al)
CLEAR(4CF)N05*AT(Cl )`
CLEAK(40)NC3.S.AT( TALl)'.

L.0 ETLno~l TUC2. STLO;

T~aT,.0~s ~wtcri2)..
2oO lIF(Ts''ta',' ~ i3(,ý

~OU:~ (~:.J I ( ii.025. .

.UIC(sl.i ) GO-TU

710 TlIOt T~em.O~Z$ aLT(IsCR%
Boo ~PR!NIT-FOitU4ATIU3)-(TI)T2)Cils)rA4LII)SS)R)C)c)

COUlTr40oNhl)oT0(8*0o; GOTO(START)%

END GOTO(STAKTI%
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A SIMPLIFIED TECHNIQUE FOR ESTIM:VFTING DEGREES OF FREEDOM

FOR A TWO POPULATION T TEST WHEN THE STANDARD

DEVIATIONS ARE UNKNOWN AND NOT NECESSARILY EQUAL

Eugene Dutoit and Robert Webster

Quality Assurance DirectordL, Aminunition Rcliability DiviRi n 4
Mathematics and Statistics Branch,

Picatinny Arsenal, Dover, New Jersey
•~

The purpose of this paper is to develop a practical aid for the descrip-
tive statistician performing tests of statistical significance who must do
most of his computing at a desk using an ordinary "desk-top' calculator.

The t statistic is used to test for significant differences between two

s;ample means when samples are randomly selected from two normally
distributed populations. If samples are drawn from two normal popula-
tions and the standard deviationb oi these populations are unknown and
their computed estimates indicate they are not necessarily equal, then
the t test statistic is computed by-,

x -X
1 2(1) (2 +t 2//) 1/2•i ~ ~(Sl/l + S2/na,.

J'•~~ 2 ~ i .

where this random variable follows a t-distribution with degrees of

freedom (d. f. ) equal to-

S + S 2

1 2

(a) d. f. -
2 2

n ~ +
1 ,

Z 2 22
where S and S 2are estimates of T and a respectively and n1 and
n are the sample sizes. Since equation (2) is a cumbersome expression

to work with, an alternate form of this expression would be desirable for
analysis performed on a desk calculator or a slide rule.

I

;,' • 5 i 'r , .'• "; • " " ' • .. ... .. .. ..... . . .. ." • 1. 4."
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In order to determine whether or not tne standard deviations are
equal the F ratio test is used:

22
(3)F S /S 1

2 2 2
where S is denoted suchthat S > S This guarantees that F > 1.

22 2 t
Ifthe coptdF ratio is larger than the tabulated critical values of F

ratios, the two standard deviations are unequal. Equation (Z4 can be
manipulated so that the d.f. can be expressed as a function of the ratiosII-. : " •'of thc• variances and the values n1 and n. Since the ratio of the

variances has already been computed as the F test statistic, equation

(2) can be generalized as:

(4) d.f. f(F S S n 2 )

If n 1 n 2 thIn equation (2) can be rewritten as:

(5)(n 1 ; 1) (n2 "1) (n2 +
n (n2 -1) + F n (nt 1 )

or alternatively:

.2(n + nlF)
(6) d.f. 2 I .n2 2-2

n- nI

Equation (6) is more efficient because twelve operations are needed to
calculatt. the d. f. whereas equation (5) requires 17 separate operations,
Equation (5) howcver, has eliminated the "coinplex iunction" appearance
a-•,d might be more palatable to the 9tatist'cal employee who would have

to co:. pute the value.
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If n, n= n, then equationrs() and (6) reduce to:

2
(7) d.f. :_(1 + F) ( - 1)( + F 2

The derivation of equations (5), (6) and (7) will be presented in Appendix
A. These equations lend to cornouter applications for selected values of
n,, n_ and F. The number of degrees of freedom can then be calculated
and presented as tzbles or graphs. The output format used for the initial
computer run was of the type:

Figure 1

n2  10 Is . . . . . . . 180

10 d.f. d.f. . . d.f. . d.f.
'11 12 lj 1

= Fk 15 d.f. 21 d.f. 2 2 . d.f. 2j d. f.2m .

* I

I t

d. f. d.f. i2 d. f.. ... d m,

180 d.f. d. f. d.f. d. f.
rnl m2 mi Manlf

Twenty values of F were chosen so that twenty tables (see Figure 1)
were generated, These tables were then used to generate sets of curves
as per Figure 2 below:

'I

ii
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Figure 2

d.f. nI Some fixed value

140

20 a
Fb

10 C

10 20 . . . . . 180 2

A fixed value for n and F produces a set of smooth curves for various

values of n . The first attempt at plotting curves proved to be a bit

impracticJ for larger valuees of nl, n2 because the curves become highly

confounded. A more realistic plot can be made (for Ordnance purposes)
by using values of n1 , n2 < 50.

Example: Suppose we should like to compare the test scores of two
high school science classes. We wish to detect a significant difference
in the dispersion of scores within each class and, in addition, we should
like to detect whether or not the average score of one class is significantly
greater than the other.

We consider the following data:
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Class a. Class b.

95 81 b9 80

83 67 74 77

46 81 91 92

71 85 90 86

76 52 82 78

64 86 71 82

82 79 72

84 80 80

84 88 91

56 64 98

n 20 n 16

x = 75.2 X 81.3
a b

2 2
= 170.06 *b * 60.10a b. . ...

ea 13.04 sb 7.75

Using the F-ratio test for equality of variances (dispersions),

2

F = 2 = Z.83 > Z.77 = Fa/ 2 n--1, nblI
0 a/ a b ..

b

when a = 0. 05. We conclude that a significant difference between the
variability (or dispersion) of test scores is detected.

Since we only have estimates of the true variance of the data and
have shown these estimates to be unequal, we should employ the two
population t-test for data with unknown and unequal variances to deter-
mine whether the average score of Class b significantly exceed that of
Class a. We must, therefore, compute

S., .., ,: . .
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_ -

:-~~li 

's:-•: i

2

12 2

andd. f. 
b

"Then, t 81.3 - 75.2

-0 + -I 0,01

6.-\4i
,ý'2 2 6,

, 1.73

2
170.06 60o10

,20and d ;16

and ~f 170.062 60.10)

20 16

i -= (12. 26) 2

3.81 + 0. 94

... , .. ,; ,..: ,.Ii.• 
. .. ""-
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-_150. 31
i ~4.75

: 31. 6 11 3 2 -• -

As might be expected, these calculations are lengthy, time-comsumii. g
and error prone. An alternate method to determine d. f, would be to
consult the graphs which have been prepared to yield values of d. f. when
the sample sizes and F-ratio are known. r I
The graphs plot d. f. vo N for a specified value of N and for certain

values of F .In this case N 20=Z and N, 16 since the variance of

n > variance of n The simple steps to determine d, f. are as follows:

1. Find the graph corresponding to N = 16

2. On this graph find N 20.

3. On the vertical line corresponding to NZ = 20 find the points of

intersection corresponding to F-ratiots of 2. 00 and 3.00 (only values of
F = 1.50, 2.00, 3.00, 4.00, 5.00, 8.00 and 14.00 are plotted).

4. From these points read d. f. (F=2. 00) and d. f. (F = 3.00) off the
o rdinate

ordiated. f. (F=2. 00) = 33. 5
d.f. (F=3. 00) = 31.3

5. Interpolate'to determine d.f. (F = 2.83)

33.5-31.3 = 2.2
(.83) (2.2) 1.83% 33.5 - 1. 8 =31. 7 d. f. (F 2. 83) ! i

Thus d. f. = 31.7 • 32 - which is compatible with the calculated value
of 31.6 • 32.

SL ,;.
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Derivative of equation (6);

d f. f a 2 / n 2a /
nI- *1 n- -

r a tio -. - F > • L. . ,

td+ + 2

S (1/n1 )2  (F/n 2 )2

nI - I+n -

multiplying by (nI 1 2 (n1 n 2 )2  •ivcs equation (5):

(n 2 + n1 F)£

d~ f. = 2 2 F2 . • ,

n nF

n 2 n I. ..1, -

nI -1 * 2 - 1.. .

(n1 -k) (nF-l) n
mquation (5) follows by rrultiplyini by (n(-l) (n 2 .():

I0*~~
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d. 1n-I) (n ) (nz + nIF)-
d., f., n 2 (n -) + n 2 (n 2

when n1 n 2 = n

d.f ( + F)2 (n -I)

I + F 2

which is a linear function for d. f. with 'n" intercept n 1 and slope
2

LI +F)

-+F 2

" . .... ..........
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APPENDIX B

logic diagram of oomputer program'

START READ Nj F[

iwC+

II jS

IINO
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The FrtirtDea satienan for the abovre logic aiagrea Is presmented

below tie F7gre 4.

DEGREES OF FREEI)IM FOR UNEQUAL VARIANCE T-TEST

DI4F.NSION SIZE.'I20btS1ZEL(20) ,F(20),OFI2t2,t20OI
99 READ INPUT TAPL 2t100,N1t1NZN3

1%; FORMAT(312)
REAn INPUT TAPE 2t1O19(S[LESIU)oI-iNL)
RViAD I-NPUf TAPE 2,lrhl,(SIZELIJhJ-loN2)
NRtAD INPUT TAPt. ,101gIF(K)9KziN3)I .I~ FIRMA7(12F6.0)
00i 1000 KnuhN3
DO 1000 J@IN2

UPPEReISILEL IJ *SI ZESt 1) 'Ft V.i 2

DblSZE LLJI-hI ZLJl/SZSI-l)IIISlE(1*2

S 1U0~ DF(K.,JoI)*UPfiHEI/DEN9M
4 ~00 400 VKu1,N3
I WRITE OUTPUT TAPE 3,3a)1,P(K)oISILESIIbtI91?N1)
* Q1 F0RMA7B1H1,?X998HDEGREES OF FREEDOM FOR TWO POPULATION T-TEST WITH

N ~I UNEdUAL VARIANCES WHERE VAI&(NZI EXCEEDS VAR(N1)9s//I.OX#3HF 8#F6.2
2,/ION X X#iOH X NI. Xt/8H A X#/OH X#X.I180t4.092X))
WRITE OUTPUT TAPE 3,3011

3011 FORMATIGH N2 X Xt/6X,2liXX,/1KU15(1HXI,/?X,1HXI
00 400 Jvl,N2
wRITE OUTPUT TAPE 3,3D2,SlZEL(J),(OFIKJIbtlu1,Nfl

)C02 FORMATI2X,P4.O.I.K,1MX,18(IXPS,llI
WiAITE OUTPUT TAPE 3,3022

3022 FOI'MATI?X#IHX)
4ý;O CONTINUE

000 TO 99
j ~ENU(I,OCt,0O,OCe10C irP*G).O,0,0,00)

The computed output follows the format as given In Figure 5



.wlw] I' t t. -. t+..• :a, F =5.+•) ii.r4 nu, Itnq ]+, 7 . . ..2

Inarviarnts of 2

I' -L, ' F INO . 'M Al 101 1|-rtLS; % l 3I IIIO f.,UA[ VA' lA! S(.L 1 1 111I VA.41£ ,) I jr I IDS VAf i I1 .

A I,

% 1 12. 14.. 16. 1". 11o. ?2. 2.. 26. 28. 30. 32. 34. J6. )a. 40. 42.

iA:P 4$1 t I -.• AX XA K &XXX A.•I ~ l t X AI A X• All A JA XXAA X AAAl lJXAAXXXAXAAAX AAA XX KXXX AAAL X Aggll 4 XXX A X lX XXX XXAX I• +X A [ XXXXXX IX XXXXA

I). A II.A Ii.) L2.1 12.1 11.9 1. 6 31.4 31.2 ll.• 10.9 10.5 t0 .? 10.6 1 .%. 10.4 L(A.- 10

A I 1. , l..q 16.1 15 . I . 14. . t , I. ' . 2. 14.3 1 11H 1. .61 31.4 13.) 3 3.2 l3.0 12.9 312.

A',. .1 14,,4 1'1 ,li.3 1I ,I Ij, , 11.d 11.4 11.I 1,.8 16.6 16.1 16.2 16.j IS.8 IS,1 15.
A

A4 1 ,-b Z•.. t.'3 2.9 e2.1 1,? I2It.2 2 .Q 201.4 10.0 19,f 19.4 . 1.L I 5,) 1.1 I .5 Is.
A

I, A It,. 4.6 2,.1 2(.. 24.8 24.2 , , •." 2I . 3 21. 21 .6 22. J 22.0 It. 1 21.11 ,21
A
4 1 1 1-. $0.A 1, lj.1 P .1, 2 H . N d I'. 211 11.31 26.b, Z6.13I' 2.1 21.95 2 .2 24.91 24.6 24.

VA 21.2 12,.!, 13.1 1J.5 13.2 , 2. 32.1 11.6 1.).4 3ý .3 29.0 29.3 25.9 08. 21.1 21.1 it.

A+4 ZI+).r 1 1.4l Vj+l , 6.6 36.7 16. 1 14.6+ )).z ".5+. 5.9 M l 1 2.4 32. 31 3 1).5 31.4 11.0 30.

I&. A 10.0 Ili .0 ,i. 11,4 31)9 . '.,1 S9 ),9.4 )86,5 31.2 J1 6 31,0 16.4 1S.8 3 .1 34.1. 14.4 14.1
A
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U APPENDIX C

1. Charts for n1 , nz, F

n, n, = 10, 12, 14 ........... 44
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