DELETING OBSERVATIONS FROM A LEAST SQUARES SOLUTION

Charles A. Hall

Technical Services Division, Data Analysis Directorate White Sands Missile Range, New Mexico

Abstract

In this paper we give a matrix treatment of the classical least squares theory and determine each observation's contribution to the least squares solution. If each obeervation's (or observer's) contribition is known, then it rnay be possible to delete certain observations (or observers), (l) to improve the least squares solution or (2) to minimize the number of observations (or observers) entering the least squares solution. It should be emphasized that redundancy is necessary to obtain a statis. tically sound least squares solution, however it may be advantageously limited without significantly changing the solution.

Although we present a general least squares theory for uncorrelated observations, special emphasis is given to the least squares misaile position problem generated by a set of observed azimuths, elevations and slant ranges from a system of missile tracking systems such as Radar. The above treatment is used to develope a geometric ordering of available tracking stations, which is then combined with station ability and reliability to determine pre-flight minimal station participation. That is, given an approximate trajectory and n available tracking stations we predict the minimum station combination for an adequate coverage of a flight along this trajectory.

1.0 INTRODUCTION. In this paper we give a matrix treatment of the classical least squares theory and determine each observation's contribution to the ieast squares solution. If each observaion's (or observer's) contribution is known, then it may be possible to delete certain observa. tions (or observers), (1) to improve the least squares solution or (2) to minimize the number of observations (or observers) entering a least squares solution. It should be emphasized that redundancy is necessary to obtain a statistically sound least squares solution, however it may be advantageously limited.

The following procedure has been applied successfully in $[4,5,6$] to the following problem:

GIVEN: Arı approximate missile trajectory and the co-ordinates of n tracking stations (Cinetheodolite, Radars or Dovap receivers) along with various other pre-flight data;

DETERMINE: The best minimal station combination (hew many? and which ones? for an adequate coverage of a flight along this trajectory.

We will use the n-station radar position solution presented in [5] as an example of the general theory which follows.
2.0 LEAST SQUARES THE JRY. A brief outline of a least squares method following the notation of D. Brown [l] will now be given. The model under consideration is assumed to be non-linear. There are obvious simplifications if the model is linear.

Let $\left\{X_{i}\right\}$ be a set of random variates $(i=1,2, \ldots, q)$
$\left\{X_{i}{ }_{i}\right.$; be a set of uncorrelated observations of the set $\left\{X_{i}\right\}$,
For example: $\left\{A_{i}^{0}, F_{i}^{0}, R_{i}^{0}\right\}$, the set of azimuth, elevation and range readings from a system of n radar stations to a missile $(i=1,2, \ldots, n)$.

Let $\left\{Y_{j}\right\}$ be a set of variates (parameters) dependent on the X_{i},

$$
Y_{j}=Y_{j}\left(X_{1}, X_{2}, \ldots, X_{q}\right),(j=1,2, \ldots, p)
$$

We note' that the explicit form the for Y_{j} as functions of the X_{i} may not exist, in which case only an implicit form for this dependence is available.

For example: (x, y, z), the misaile co-ordinates are dependent on $\bar{A}_{i}, E_{i}, R_{i}$.

If the set $\left\{X_{i}\right\}$ is such that not all the X_{i} are necessary to determine the entire set of $\left\{X_{i}\right\}$, or what is of more importance here and in $[5]$, to determine the derived set $\left\{Y_{j}\right\}$, then the set $\left\{X_{i}\right\}$ is said to be over-determined. A least squares solution is in order. We need to find $\left\{Y_{j}^{\prime}\right\}$ a set of approximations to $\left\{Y_{j}\right\}$ such that the sum of the squares of the residuals of the observed set $\left\{X_{i}^{0}\right\}$ is a minimum.

For example: In the n-station radar case [5], each radar determines a missile position $(x(j), y(j), z(j)),(j=1,2, \ldots, n)$. These points will coincide with probability zero. We use the least squares method below to determine the "true" missile position.

We have

$$
\begin{aligned}
& X_{i}^{\prime}=X_{i}^{0}+\gamma_{i} \quad(i=1,2, \ldots, q) \\
& Y_{j}^{\prime}=Y_{j}^{0}+\delta_{j} \quad(j=1,2, \ldots, p)
\end{aligned}
$$

where $\left\{Y_{j}^{0}\right\}$ is a first approximation to $\left\{Y_{j}\right\},\left\{X_{i}^{\prime}\right\}$ and $\left\{Y_{j}^{\prime}\right\}$ are least squares approximations and the γ_{i} and δ_{j} are undetermined residuals.

Suppose the minimum number of $\left\{X_{i}\right\}$ required to determine the entire set of $\left\{X_{i}\right\}$ is q_{o}, then the number of independent condotional equations relating the $\left\{X_{i}\right\}$ and $\left\{Y_{j}\right\}$ is $m=\left(q-q_{0}\right)+p$. Let these m equations be given by

$$
\begin{equation*}
f_{i}\left(X_{1}, \ldots X_{q}, Y_{1}, \ldots, Y_{p}\right)=0(i=1,2, \ldots, m) \tag{2.1}
\end{equation*}
$$

For example: In the radar case if 3 observations are known (azimuth, elevation and range readings from one station then the others can be determined, thus $m=(3 m-3)+3=3 m$. In this example

$$
\begin{aligned}
& f_{3 i-2}=A_{i}-\operatorname{Tan}^{-1}\left[\frac{y-y_{i}}{x-x_{i}}\right]=0 \\
& f_{3 i-1}=E_{i}-\operatorname{Tan}^{-1}\left[\frac{z-z_{i}}{\left[\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}\right] / 2}\right]=0 \\
& f_{3 i}=R_{i}-\sqrt{\left(x-x_{i}\right)^{2}+\left(y-y_{i}\right)^{2}+\left(z-z_{i}\right)^{2}}=0
\end{aligned}
$$

$(i=1,2, \ldots, n)$ Note that here $\left(x_{i}, y_{i}, z_{i}\right)$ are the coordinates of of the $i^{\text {th }}$ radar station.

Assume that the f_{i} can be expanded in a Taylor series about the point $t=\left(X_{1}^{0}, X_{2}^{0}, \ldots, X_{n}^{0}, Y_{1}^{0}, \ldots, Y_{p}^{0}\right)$. Approximate the f_{i} by the constant and linear terma of these Taylor expansions and replace X_{i} by $X_{i}^{0}+\gamma_{i}$. Equation (2.1) becomes (in matrix notation)

$$
\begin{equation*}
A V+B D+E=0 \text { where } \tag{2.2}
\end{equation*}
$$

A is the m by q matrix $\left(A_{i j}\right)$ with $A_{i j}=\left[\partial f_{i} / \partial X_{j}\right](t)$,
B is the m by p matrix $\left(B_{i k}\right)$ with $B_{i k}=\left[\partial f_{i} / \partial Y_{k}\right](t)$,
E is the m by 1 matrix E_{i} with $E_{i}=f_{i}(t)$

$$
V=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{q}\right)^{t} \text { and } D=\left(\delta_{1}, \delta_{2}, \ldots, \delta_{p}\right)^{t}
$$

For example: Note that $A=I$ in the Radar and Cinetheodolite cases, and A is a icalar matrix in the Dovap case.

Assuming uncorrelated observations, the least squares solution is that which results in minimizing the weighted um of the equares of the residuals

$$
\begin{equation*}
S=V^{t}(\sigma)^{-1} V \quad \text { where } \tag{2,3}
\end{equation*}
$$

(σ) is the relative variance matrix of the observations $\left\{X_{i}^{0}\right\}$. The element $(\sigma)_{i i}^{-1}=W_{i}$ is the weight of the $i^{\text {th }}$ observation.
For example: In the radar case the weight $(\sigma)_{j j}^{-1}=W_{j}$ can be determined

$$
\begin{aligned}
& \bar{x}_{j}=\frac{\sum_{i \neq j} x(i)}{n-1} \\
& \bar{y}_{j}=\frac{\sum_{i \neq j} y(i)}{n-1} \\
& \bar{z}_{j}=\frac{\sum_{i \neq j} z(i)}{n-1} \quad(j=1,2, \ldots, n) .
\end{aligned}
$$

Compute the back azimuth: $\bar{A}_{j}=\operatorname{Tan}^{-1}\left[\frac{\bar{y}_{j}-y_{j}}{\bar{x}_{j}-x_{j}}\right]$
the back elevation: $\quad \bar{E}_{j}=\operatorname{Tan}^{-1}\left[\frac{\bar{z}_{j}-z_{j}}{\left[\left(\bar{x}_{j}-x_{j}\right)^{2}+\left(\bar{y}_{j}-y_{j}\right)^{2}\right]^{1 / 2}}\right]$
the back range:

$$
\bar{R}_{j}=\sqrt{\left(\bar{x}_{j}-x_{j}\right)^{2}+\left(\bar{y}_{j}-x_{j}\right)^{2}+\left(\bar{z}_{j}-z_{j}\right)^{2}} .
$$

Let:

$$
\begin{aligned}
& W_{3 j-2}=1 /\left(\bar{A}_{j}-A_{j}^{0}\right)^{2} \\
& W_{3 j-1}=1 /\left(\bar{E}_{j}-E_{j}^{0}\right)^{2} \\
& W_{3 j}=1 /\left(\bar{R}_{j}-R_{j}^{0}\right)^{2}, \quad(j=1,2, \ldots, n) .
\end{aligned}
$$

In the terminology of matrix algebra the problem of least squares as considered by Brown [1,2] and Hall [4,5,6] consists of determining of all possible vectors V and D satisfying (2.2), those which minimize (2.3).

We solve the constrained minima problem with the aid of Lagrange multipliers. Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{q}\right)^{t}$, from (2.2) and (2.3) we have

$$
\begin{equation*}
s=V^{t}(\sigma)^{-1} V-2 \lambda^{t}(A V+B D+E) \tag{2,4}
\end{equation*}
$$

To determine the minimum value of S, equate to zero the partial derivatives of S with respect to the γ_{i} and δ_{i}.

Differentiation of S with respect to the residuals γ_{i} yields
(2.5)

$$
\langle\sigma)^{-1} V-A^{t} \lambda=0 \quad \text { or } V=(\sigma) A^{t} \lambda .
$$

Differentiation of S with respect to the residuals δ_{i} yields

$$
\begin{equation*}
B^{t} \lambda=0 . \tag{2.6}
\end{equation*}
$$

Substitution of (2.5) into (2.2) yields

$$
\begin{equation*}
\left\langle A(\sigma) A^{t}\right) \lambda+B D+E=0 . \tag{2.7}
\end{equation*}
$$

If $\left(A(\sigma) A^{t}\right)$ is nonsingular then the least squares solution results from (1.) Solve (2.7) for $\lambda=-\left(A(\sigma) A^{t}\right)^{-1}(B D+E)$
(2.) Substitute λ into (2.6) and derive the Reduced Normal Equation

$$
\begin{equation*}
\text { ND }+C=0 \text { where } \tag{2.8}
\end{equation*}
$$

$N=B^{t}\left(A(\sigma) A^{t}\right)^{-1} B$ and $C=B^{t}\left(A(\sigma) A^{t}\right)^{-1} E$.
(3.) Solve (2.8) for D.
(4.) Solve (2.5) for V.

In most cases the matrix $A(\sigma) A^{t}$ is nonsingular and (2.8) is valid. In the fow cases where this is not true, it is possible to remove the difficulty by manipulating the conditional equations, [2].

We have computed a least squares approximation to the parameters $\left\{Y_{i}\right\}_{1}$ using an initial approximation. We now repeat this procedure ueing $\left\{Y_{i}^{\prime}\right\}$ instead of $\left\{Y_{i}^{0}\right\}$ as an approximation and compute a new residual matrix D. The iteration continues until $\|D\|$ is sufficiently small.

Since we want to delete observations (or observers), we need some basis for determining which observations are the most likely candidates for deletion. We use the partial derivatives $\frac{\theta\left(\delta_{1}, \delta_{2}, \ldots, \delta_{q}\right)}{\partial\left(X_{1}, X_{2}, \ldots, X_{p}\right)}$ evaluated at t to aid in this determination.
3. 0 DERIVATION OF D_{U}, AE Fatnted ant in the introduction there are two distinct motives for deleting observations. In general if we are trying
(a.) TO IMPROVE THE SOLUTION effect on $\frac{\text { WANT: }}{\delta_{j}} \quad \theta \delta_{j} / \theta X_{i}^{\circ}$ small, so that errors in X_{i}° will have little DELETE: $\quad \partial \delta_{j} / \partial X_{j}^{0}$ large, since a small errorin X_{i}^{0} will result in a large error in the δ_{j}.
(b.) TO MINIMIZE PARTICIPATION

WANT: $\quad \partial \delta_{j} / \partial X_{i}^{0}$ large, since this observation $\left(X_{i}^{0}\right)$ has a great effect on the solution.

DELETE: $\quad \partial \delta_{j} / \partial X_{i}^{0}$ small, since this observation $\left(X_{i}^{0}\right)$ has Little effect on the solution.

Let $U=\left(X_{1}, \ldots, X_{q}\right)$ and define the p by q matrix
 where $\frac{\partial \delta_{i}}{\partial X_{j}^{\circ}}=\frac{\partial \delta_{i}}{\theta X_{j}}(t)$.

One of the objectives of this paper is the derivation of D_{U}. Note that $\left(D_{U}\right)_{j i}$ is the rate of change of 6_{j} (the correction in the dependent variable Y_{j}) with respect to the observation X_{i}^{0}.

For example: In the radar case $\left(D_{U}\right)$ is the rate of change of the correction in one of the miseile position co-ordinates with respect to a change in aximuth, elevation or range at the $j^{\text {th }}$ station.

From (2.8) we have

$$
D=-N^{-1} C=-\left[B^{t}\left(A(\sigma) A^{t}\right)^{-1} B\right]^{-1}\left[B\left(A(\sigma) A^{t}\right)^{-1}\right] E .
$$

Since observational errors have no significant effect on the matrices A, B and (σ), they may be regarded as constants in the propagation of error under consideration. The vector E however is affected by the observational errors. Thus the error in Darises primarily from errors in E, which in turn are caused by errors in the observational vector U. Therefore

$$
D_{U}=-N^{-1} R E_{U} \text { where } R=B^{t}\left(A(\sigma) A^{t}\right)^{-1} \text { and } E_{U}=\left[\frac{\theta}{\partial U}\right][E] \text {. }
$$

But $E_{U}=A$ and thus

$$
\begin{equation*}
D_{U}=-N^{-1} R A \tag{3.1}
\end{equation*}
$$

Note the simplification if $A=I$, as is the case in $[4,5]$.
4.0 VARIANCE - COVARIANCE MATRIX. A well known, [2.7], generalized law of covariance (in matrix notation) states that if $D=\left(\delta_{1}, \ldots, \delta_{p}\right)$ is a vector of functions of the elements of the vector $U=\left(X_{1}^{0}, X_{2}^{0}, \ldots, X_{q}^{0}\right)$ which has the variance rnatrix $\sigma_{0}^{2}(\sigma)$, then the variance-covariance matrix of the vector D is given by

$$
\left(\sigma_{D}\right)=\sigma_{0}^{2} D_{U}(\sigma) D_{U}^{t}
$$

$$
\begin{equation*}
\left(\sigma_{D}\right)=\sigma_{0}^{2} N^{-1} . \tag{4.1}
\end{equation*}
$$

Note that σ_{0}^{2} is the population variance and (σ) is a relative variance matrix of the chservations.

In the radar case $\sigma_{0}^{2}=\frac{\sum_{i=1}^{\Sigma}\left(\gamma_{i 1}^{2} w_{i 1}+\gamma_{i 2}^{2} w_{i 2}+\gamma_{i 3}^{2} w_{i 3}\right)}{3 n-3}$
5. 0 VARIABILITY ESTIMATE, For each correction δ_{i} of the derived quantities Y_{i}, a "variability estimate" will now be associated with each observation.

In the radar case, for each co-ordinate residual a variability estimate is associated with each tracking station.

Consider the matrix $H=\sigma_{0} D_{U}(\sigma)^{1 / 2}$. Note that

$$
H_{i j}=\frac{\sigma_{0}}{w_{j}} \frac{\partial \delta_{1}}{\partial X_{j}^{0}}, \quad(i=1,2, \ldots, p ; j=1,2, \ldots, q),
$$

and

$$
H H^{t}=\left(\sigma_{D}\right) .
$$

It follows that the variance in the derived quantity X_{i}

$$
\begin{equation*}
\sigma_{Y_{i}}^{2}=\sum_{j=1}^{q} H_{i j}^{2}=\sum_{j=1}^{q} \frac{\sigma_{0}^{2}}{w_{j}^{2}}\left[\frac{\partial \delta_{i}}{\partial X_{j}^{0}}\right]^{2}, \quad(i=1,2, \ldots, p) \tag{5.1}
\end{equation*}
$$

Since $H_{i j}^{2}$ is the $j^{\text {th }}$ observation's contribution to the variance in Y_{i}, we will refer to $H_{i j}^{2}$ as the "avriability estimate" in δ_{i} for the $j^{\text {th }}$ observation, $(i=1,2, \ldots, p ; j=1,2, \ldots, q)$.

In the radar case there are three observations per station (azimuth, elevation and range) and thus the variability estimate "for the $j{ }^{\text {th }}$ station" Is cefined as the aum of the variability estimates (as defined above) for the aelmuth, elevation and range readings at the $j^{\text {th }}$ station. We are interestiod in eliminating etation and thus observationa three at a time.

$$
C_{i j}^{2}=H_{i, 3 j-2}^{2}+H_{i, 3 j-1}^{2}+H_{i, 3 j}^{2}
$$

Is the variability estimate for the $j^{\text {th }}$ station, where

$$
X_{3 j-2}=A_{j}, X_{3 j-1}=E_{j} \text { and } X_{3 j}=R_{j} \quad(j=1,2, \ldots, 3 n)
$$

6. 0 MOTIVES FOR DELETING OBSERVATIONS. We will now discuns motives or reasons why one might want to delete observations before computing a least squares solution.
6.1 TO MPROVE LEAST SQUARES SOLUTION, In this case we are interested in deleting observations which are "extremely" poor, that is, observations which contribute greatly to the variances. Certainly if all of the $H_{i j}^{2}(j=1,2, \ldots, q)$ are relatively close to being equal then no observation is predominately worse than the others and no observation should be deleted as a result of investigating the variability estimates. One should remember that usually the variances increase with a decrease in observations. However, if one (or more) observation' variability ostimate is quite large in compariaon to the otheri, then this observation would be considered a predominate contributor to the variances σ_{Y}^{2} (or least squares solution) and would definitely be a candidate for deletion, One must consider ar observation's contribution to each variance $\sigma_{Y i}^{2}(i=1,2, \ldots, p)$ when deciding if an observation should be deleted. There are various ways one might want to combine these contributions to the variances $\sigma_{Y i}^{2}$ so as to be able to order the observations (or observers). In the radar case we have three variances $\sigma_{x}^{2}, \sigma_{y}^{2}, \sigma_{z}^{2}$ $(p=3)$ to consider and define station constants

$$
D_{j}=\sqrt{c_{1 j}^{2}+c_{2 j}^{2}+c_{3 j}^{2}} \quad(j=1,2, \ldots, n) .
$$

The stations are then ordered according to the magnitude of their station constante.

To improve a least squares solution the station corresponding to the largest station constant is designe.ted the most likely to be deleted.

This case of improving solution, not being our main motive for the study, has not yet been thoroughly investigated.
6.2 TO MLNLMIZE THE NUMBER OF OBSERVATIONS. In this case we are not primarily intereated in an improved solution, but rather deleting observationa which contribute "very little" to the solution, so as to minimize the data that we must consider for a solution. The observations (or observers) that contribute least to the variances of those with the smallest variability estimates are the mot likely candidates for deletion. Our motive here might be completely logistical.

In the radar case, it should be pointed out that the matrices needed to obtain the ordering of atations given above $\left(D_{i_{1}} \geq D_{i_{2}} \geq \ldots \geq D_{i_{n}}\right.$) can be determined (or at least approximated) before flight. To find the variabllity estimates we need to know:
(1) $B=\left(b_{i j}\right)=\frac{\partial(X, Y, Z)}{\partial\left(A_{j}, E_{j}, R_{j}\right)}(t)$. This matrix is readily computed given station co-ordinates and an approximate missile position.
(2) $(\sigma)=d g\left(\sigma_{11}, \sigma_{22}, \ldots, \sigma_{3 n, 3 n}\right)=$ variance-covariance matrix of the observation variables. If the standard deviations $\sigma_{A j}, \sigma_{E j}, \sigma^{R_{j}}$ ($j=1,2, \ldots, n$) are known from past histories then set:
$(\sigma)_{3 j-2,3 j-2}=\sigma_{A j}^{2} / \operatorname{Cos}^{2} E_{j} / \sigma_{0}^{2}$
$(\sigma)_{3 j-1,3 j-1}=\sigma_{E_{j}}^{2} / \sigma_{0}^{2}$
$(\sigma)_{3 j, 3 j}=\sigma_{R j}^{2} / \sigma_{o}^{2} \quad(j=1,2, \ldots, n)$
where $\sigma_{0}^{2}=\frac{\sum_{j=1}^{n}\left(\sigma_{A j}^{2}+\sigma_{E_{j}}^{2}+\sigma_{R j}^{2} / R_{j}^{2}\right)}{3 n}$.

In the Cinetheodolite Study, DR-Q has eatimates of $\sigma_{A j}$ and $\sigma_{E j}$ and plans are being made to keep records for the Radar and Dovap nytems.

If the standard deviations are not avallable, then the present weighting echeme at WSMR may be used setting

$$
\begin{aligned}
& (\sigma)_{3 j-2,3 j-2}=1 / R_{j}^{2} \operatorname{Cos}^{2} E_{j} \\
& (\sigma)_{3 j-1,3 j-1}=1 / R_{j}^{2} \\
& (\sigma)_{3 j, 3 j}=1 \quad(j=1,2, \ldots, n) .
\end{aligned}
$$

In this latter case an approximation of σ_{0}^{2} is used instead of the above calculated values. (If neither of these weighting achemes are acceptable, then one can simply set (σ) $=1$.)
(3.) $D_{U}=-\left[B^{t}(\sigma)^{-1} B\right]^{-1}\left[B^{t}(\sigma)^{-1}\right]$ since $A=I$.
(4.) $H=\sigma_{0} D_{U}(\sigma)^{1 / 2}$, and thus the variability estimates and station constants are available before flight.
 "observational" errors, with the standard deviations $\sigma^{A_{j j}}, \sigma_{E j}$ and $\sigma_{R j}$ ' in a simulated least squares solution.

It should be pointed out here that this ordering determines the best k station combination $(k \leq n)$ as the stations ($\left.i_{1}, i_{2}, \ldots, i_{k}\right)$. Otherwise one would have to consider ${ }_{n} C_{k}=\frac{n!}{k!(n-k)!}$ possible cornbinations of k station solutions to arrive at this stage.

In the final stage the Minimal Station Participation problem $[4,5,6]$ takes the form:

GIVEN: (1) A geometric ordering of n stations ($D_{i_{1}} \geq \ldots \geq D_{i_{n}}$),
(2) A reliability fartor P_{j} for each station - the probability
operation if scheduled, of successful operation if scheduled,
(3) Data precision factors for each variable (A, E, R) per station $=\sigma_{A j}, \sigma_{E j}, \sigma_{R j}{ }^{\prime}$
(4) Necessary data to determine tracking capabilities such as tracking rates (focal lengths and object size in the case of Cinetheodolite), etc.

FIND: A subsystem of k stations ($k \leq n$), k a minimum, uch that for this particular point and missile we have:
(1.) Each atation in the subsystem is able to track,
(2.) The probability of two or more (three or more in Cinetheodolite case) of the k stations will operate successfully is greater than P,
(3.) The geometric ordering given above is such that the stations deleted are insignificant contributors to the solution.

Thus we consider otation ability, reliability and geometry in determining the Minimal Station Participation Before Flight (MSPARB) System.

4h?

The RADAR and DOVAP programs are in the procese oi being written. Consider the following SLIDE of the MSPARB Cinetheodolite program [4] , as of 13 August 1965.

The input includes
(1) $\left(x_{j}, y_{j}, z_{j}\right) \cdots+(j=1,2, \ldots, n)$, WSCS co-ordinates
(2) (x, y, y)an approximate missile position,
(3) $(\dot{x}, \dot{y}, \dot{z}) \ldots$. approximate velocity components,
(4) $(\ddot{x}, \ddot{y}, \ddot{z})$........... approximate acceleration conpone:ts,
(5) $\left.r_{A_{j}} \ldots \ldots, \ldots, n=1,2, \ldots, n\right)$, the standard deviation in azimuth readings at the $j^{\text {lh }}$ station,
(6) $\sigma_{E} \ldots \ldots(j=1,2, \ldots, n)$, the standard deviation in elevation readings at the $\mathfrak{i}^{\text {th }}$ station,
(7) $k_{1 j}$ $(j=1,2, \ldots, n)$, the angular velocity limit in azimuth for the $\mathrm{j}^{\text {th }}$ atation,
(8) $\mathrm{k}_{2 j}$
($j=1,2$,
n), the angular acceleration limit in azimuth for the $j^{\text {th }}$ station,
(9) $\mathbf{k}_{3 j}$ $(j=1,2, \ldots, n)$, the angular velocity limit in elevarion for the $j^{\text {th }}$ gtation,
(10) $k_{4 j}-\cdots+\cdots \cdots \cdots$ $(j=1,2, \ldots, n)$, the angular accelera.tion limit in elevation for the $i^{\text {th }}$ station,
(11) F $(j=1,2, \ldots, n)$, effective focal length
of the j th camera, of the $j^{\text {th }}$ camera,
(12) 0 \qquad
(13)

$P_{j} \ldots \ldots-\ldots$	$(j=1,2, \ldots, n)$ the probability that
	station j will operate successfully if
	scheduled.

Notice that the criterion for deletion of stations contains three main considerations:
I. STATION ABILITY. All station conaidered will first be teated as to inability to track for a certain interval for one or all of the following reasons:
(1) Image size too small,
(2) Tracking rates too large,
(3) Elevation angle toc small.
II. STATION RELIABILITY. The minimum number of stations is chosen so that the probability of three or more stations operating successfully at any one time is greater than a pre-determined number.
III. STATION GEOMETRY. The stations are ordered according to station geometry. Stations are deleted if their geometric contributions are "insignificant".

Program output includes:
(1) Print out of all or part of input to program,
(2) Computed azimuth and elevation angles from each station to the point under consideration,
(3) Compute 2 approximations to expected standard deviations in missile co-ordinates and angular standard deviation,
(4) Geometric ordering of stations to include station numbers and geometric factors,
(5) The probability that three or more of the stations in MSPARB will operate succesafully if scheduled.

Modifications of the above MSPARB Cinetheodolite program since 13 Aug 65 include (1) a print out of error estimates for the system of the worst three stations in MSPARB as well as error estimates for MSPARE, (2) a print out of cumulative error estimates over the entire trajectory. (3) a print out
of how many timcs a station was used over the entire trajectory. (I have avallable here eample print outs for a few trajectories if anyone is interested.)

Areas where MSPARB can be used include:
(1) Schedule determination.
(2) Minimizing the current achaduling efforts,
(3) Determination of best launch point (balloons).
(4) Determination of best positioning of mobile unite.
(3) Detarmination of best positioning of future atation sites.
(6) Statement of expected system (MSPARB) errors - (confidence interval) - pro-flight.
(7) Determination of which satem (Cinetheodolites, Radar, or Dovap) or combination of astem: will yield the beat trajectory coverageBET.
(8) Pure crror atudies concerning geometry versus data precision.

Let us cloye by stating agein that redundancy is necessary to obtain a statistically sound least squares solution, however, through the methods outlined here it can very definitely be advantageously limated.

:ISIPNK
CINI:TI HOUXOL ITES
as of 13 Nug 65

BIBLIOGRAPHY

1. BROWN, D. C., A. Treatment of Analytical Photogrammetry, RCA Data Reduction Tech. Report No. 39, 1957.
2. BROWN, D. C. A Matrix Treatment of the General Problem of Least Squares Considering Correlated Observations, BRL Report No. 937, 1955.
3. COMSTOCK, WRIGHT, IIPTON, Handbook of Data Reduction Methods, Data Analysis Directorate (DR-T) Tech. Report, WSMR, 1964,
4. HALL, C. A. , Minimal Station Participation Before Flight (MSPARB): Cinetheodolite Case, Data Analysis Directorate (DR-T) Tech. Report, WSMR, 1965.
5. HALL, C. A., Minimal Station Participation: Radar Caae, DR-T Tech. Report, WSMR, 1965.
6. HALL, C. A., Minimal Station Participation: Dovap Case, DR-T Tech. Report, WSMR, 1965.
7. WORTHING and GEFFNER, Treatment of Experimental Data, New York, John Wiley and Son, 1948.

PRECISION AND BIAS ESTIMATES FOR DATA FROM CINETHEODOLITE AND AN/FPS. 16 RADAR TRAJECTORY MEASURING SYSTEMS

Oliver L. Kingsley and Burton L. Whlliams
Range Instrumentation Systems Office
White Sands Misaile Range, New Mexico

INT RODUCTION. A series of flight tests have been conducted at White Sands Missile Range in an effort to obtain a comparison of trajectory data derived from the measurements produced by different instrumentation systems. The instrumentation systems that have been used in some of these tests are Ballistic Camera, DOVAP, Cinctheodolite, and FPS-16 Radars. Interim reports were prepared, based on the data from the threc earlier flights conducted on March 29, 1960, September 19, 1960, and January 29, 1962. Mr. Kingsley and Mr. Free presented a oummary of the analysis and results of these earlier flights at the sixth, seventh and ninth annual meetinge of thia conference.

Purpose of Report
The fourth flight test was conducted on October 1,1962 using a modified Nike Hercules Misaile. The purpose of this report is to present an analysis of the bias and random error associated with some of the major range instrumentation yotems used for this flight and to compare this data with the data from the earlier ilight tests.

Comparability of Results and Earlier Flight Teste

The precision estimates are directly comparable but the bias estimates are not, because the comparison with trajectory data from the Balliatic Camera System wan not available.

The earlier three flight tests were conducted at night so the Ballistic Camera System could be utilized to obtain trajectory data to be used as a standard for position bias error estimation. The Ballistic Camera, used on earlier tests, photographed a flashing light beacon on-board the missile against a star trail background. The light beacon flashes were controlled from the ground by a trasponder aboard the misalle.

Fourth Flight Teat

The fourth flight test wat conducted during the daylight hours utilizing two cinetheodolite eystems and seven AN/FPS-16 radar systems, though only two of the radar systems are analyzed here. The Askania Cinetheodolite System was used as the reference tandard for system position bias orror entimation for the Contraves cinetheodolite and FPS-16 radar syatems. No DOVAP or Ballistic. Camera aystems were used for this fourth flight test. The AN/FPS-16 radar systems were operated successfully in the beacon tracking mode for the firat time during this fourth test of the series. Attempts were made to use the FPS-16 radar systems in the beacon tracking mode for the three earlier flight tests, but the on-board beacon did not operate properly.

Position, Velocity and Acceleration, Precision and Bias

In addition to the estimates of bias and precision for the position data. at given in the earlier reporta, estimates of the bias and precision given for the derived velocity, acceleration and amoothed trajectory position data are presented. These fourth flight test estimates of bias for position, velocity and acceleration are based on data taken from the Aakania cinetheodolite syatem.

PRECISION ESTIMATES FOR TRAJECTORY DATA.

Standard Deviation Eatimate

Precision estimates were derived from trajectory data obtained from two cinetheodolite ystems and two AN/FPS-16 radar systems in teme of atandard deviations for the Cartesian component trajectory data. The standard deviation estimates were derived by the multi-instrument components of variance technique as given by Simon and Grubbs. [1,2]

Instrument Reduction for Position

The cinetheodolite trajectory position data were derived from a least equares reduction of angular measurements [3]. The Askania cinetheodolite syatem was a five inetrument aystem making ten angular observations for each trajectory epace point; the Contraves cinetheodolite system was a three instrument system for trajectory section one and a two instrument

Deaign of Experiments
system for trajectory section two, making six and four angular observations respectively for each trajectory space point. The radar trajectory position data were derived from the range, azimuth, and elevation observations that were reduced to the Cartesian coordinate system.

Mathematical Model

A mathematical model for the trajectory position data from the jth inetrument system at the ith time may be written: $X_{i j}=X_{i}$ (true) $+e_{i j}$, where $e_{i j}$ represents a composite random error for the jth instrument system at the ith time. Standard deviation estimates were determined for these position data, and also for sets of smoothed position, velocity, and acceleration data that were derived by fitting a set of cumponent position data to an eleven point second degree polynomial in time, and evaluating at the midpoint for succesalve trajectory space points (50 per trajectiory section). The polynomial equation for the amoothed X-component data for the ith time would be of the form:

$$
\begin{equation*}
X_{i j}(\text { smoothed })=a_{o j}+a_{1 j} t_{i}+a_{2 j} t_{i}^{2} \tag{1}
\end{equation*}
$$

for the jth instrumentation system. An error would generally be a soclated with each of the coefficient for the jth instrumentation yotem. A compositerandom error for the jth syetem can be expressed in the mathematical model:

$$
\begin{equation*}
X_{i j}(\text { amoothed })=X_{i}(\text { true })+\dot{e}_{i j} \tag{2}
\end{equation*}
$$

where $\bar{e}_{i j}$ is the composite random error for the jth system at the ith time. The velocity equation is writter:

$$
\begin{equation*}
\dot{X}_{i j}=a_{l j}+2 a_{2 j} t_{i} \tag{3}
\end{equation*}
$$

The composite random error for the velocity data can be expresecd by the velocity equation:

$$
\begin{equation*}
\dot{X}_{i j}=\dot{X}_{i}(\text { true }\rangle+\dot{e}_{i j} \tag{4}
\end{equation*}
$$

where the composite random orror in velocity ($\dot{c}_{i j}$) arises in the two of the terms of the velocity equation. A similar pair of equations could be written for the derived acceleration data.

Discuasion of Precicion Eatimates
The position standard deviation estimates presented in Table I represent essentially random error in position data from the particular system. The standard deviation estimates range from two to twenty-two feet with the exception of trajectory eection two for the Contraves system where the system geometry is very poor. Generally, this would not be considered satisfactory coverage; it is included for the sake of continuity.

The position, velocity, and acceleration atandard deviation estimates presented in Tablea II, III, IV, and V reprenent the reaidual randomerror in the derived (or smoothed) position, derived velocity, and derived acceleration data respectively. The velocity standard deviations for the cinotheodolite data ranged from two feet per second to eleven feet per second except for the second trajectory section for the Contruve cinetheodolite. The velocity standard deviations for the radar data ranged from three leet per eccond to eixteen feet per eecond. Velocity data derived from the radar observationa 1 a a good as the velocity data derived from the cinetheodolites with respect to variability. The cinetheodolite eystems and the radar systems are essentially equivalent in variability with respect to the acceleration data; the only exceptional values are the two large acceleration stanciard deviation due to the poor yatem geometry for the Contraves ayatem.

BIAS ESTIMATES FORTRAJECTORY DATA.
Standarda Used In Computation.
All of the blas estimates for Flight Test Nr. 4 of the Operation Precise Program are based on trajectory data from the Askania cinetheodolite system with a mode of ten angular measurements. Earlicr flight teste have used trajectory data from the Ballistic Camera System which was based on star trail background for calibration. The Askania system does very well in the determination of the horizontal trajectory position points but has some bias in the vertical determination as indicated by earlier flight tests $[9,11,12]$.

Definition of Bias Errors and Discussion

The average bias estimates tor position, velocity and acceieralion are presented in Tables VI, VII, and VIII for the respective Contraves, Radar 112 and Radar 122 systems. A positive average bias means that the particular system trajectory data was on the average greater than that corresponding data from the Askania system.

The average absolute component position bias estimates ranged from a low of six feet to a high eighty-two feet. The velocity and acceleration average bias estimates were low. The largest velocity component bias was four feet per second; the largest acceleration component bias was only seven feet per second squared. The explanation for the large average position bias error and the much smaller average velocity and acceleration bias error is that the trajectories as determined by the instrumentation systems are parallel but differ by a constant amount in position. Thia means that the least squares fitting differ by essentially the constant term of the second degree polynomial in time.

A comparison of the unsmoothed position data from the Contraves and radar systems with the corresponding data from the Askania aystem reveals that the average blas does not differ from the corresponding blas eatimates shown in Tables VI, VII, and VIII by more than one foot. This indicates that the smoothing process either moves the average bias eatimate the same amount for all syatem or that amoothing does not change the bian. A further study of the smoothed and unamoothed trajectory data from the Askania aystem reveals that the smoothing procese leaves the Askania trajectory data essentlally unchanged.

SOME COMPARISONS OF PRECISION ESTIMATES WITH EARLIER

 FLIGHT TESTS. Comparion of earlier filight teste were posible for the Askn:ia System and the two FPS-1t Radar Syetems. The Contraves Syatem was not operated on the earlier teste. Table IX shows the mode number oi inotruments that make up the Askania System for each flight teat. Data from the first trajectory section were selected from the third flight test so as ro approximate more closely the other tests. The standard deviation estimates for the Askania ayatem are amaller for the X and Y component data for the later two flight teats.Precision estimates for data from the earlier flight tests for radar systems 112 and 122 are shown in Table X. These standard deviation
estimates indicate that the best periormance for the radar systenis was during the fourth flight test. The FpS-16 radars were operated in the bearon tracking mode with a radar beacon aboard the tracked missalc.

SUMMARY AND CONCLUSIONS. The etandard deviation estimates for the position data ranged from two to ninetoen feet for the cincthoodolite sytems and ranged from five to twenty-two feet for the FPS-16 radar systems. This lndicates that the radar system position data precision are as good as the cinetheodolite system position data precision for these filitht test data. The velocity standard deviation estimates ranged from two to eleven feet per second for the cinctheodolite systems (exception Contraves section 2 data) and ranged from three to sixteen feet per second for the FPS-16 radar systems. Again, a precision equivalence for vclocity data from these systems can be stated. The acceleration standard deviation otimates for all four tracking systems ranged from eight to forty feet per second squared (with the exception of Contraves section 2 clata). Again an equivalence can be stated for precision of the acceleration data from these bystems.

The position component average bias were based on the trajectory data from the Askania cinetheodolite aystem. The average bias for position data from the Contraves cinetheodolite ranged in absolute (component) value from six to seventeen feet (except for section 2 data). The average blas for position data from radar 122 ranged in absolute (component) value from eight to thirty-eight feet and from radar 112 , the average bias range in absolute value from a low of 23 to 73 feet. Based on the Askania cinetheodolite position data, the radar gystems did not do as well as the Contraves sytems, with respect to bias error estimates. The average component blas for the derived velocity data ranged in absolute value from zero to four feet per second for the Contraves gystem and ranged in absolute value from eero to threc feet per socond for the Fres-16 radar systems, Essentially the average velocity bias errors are equal.

The acceleration component bias ranged in absolute value from zero to six feet per second squared for Contraves system and from zero to seven feet per second squared for the FPS-16 radar systems. These derived acceleration data for eleven point (two second) smoothed data are essentially equal in average component bias crror.

TABLE I
PRECISION ESTIMATES FOR TRAJECTORY POSITION DATA
FROM FLICHT TEST NUMBER FOUR

Instrumentation System	Trajectory System	Component Standard Deviation Estimate in Feet		
		North (X)	East	Up (Z)
Askania	1	5	8	10
Askania		7	3	17
Contraves	1	10	2	19
Contraves	2	45*	2	67*
Radar 112	1	12	8	16
Radar 112	2	12	5	7
Radar 122	1	9	5	22
Radar 122	2	9	8	22
WVery poor geometry for a two instriment (theodolite) yetenı.				

TABLE II

STANDARD DEVIATION ESTIMATES

FOR DERIVED (SMOOTHED) TRAJECTORY DATA
FROM ASKANIA CINETHEODOLITE SYSTEM

FOR FLIGHT TEST NUMBER FOUR

Irajectery	Derived Trajectory		$\begin{gathered} \text { Com: } \\ \text { Sta } \end{gathered}$	im	
Section	Element*	Dimengiuns	Nort	81	Up
1	position	leet	5	8	6
2	poibition	feet	5	2	13
1	velocity	fr/eec.	5	4	5
2	velocity	$\mathrm{ft} / \mathrm{sec}$	6	3	11
1	acceleration	$\mathrm{ft} / \mathrm{sec} .2$	11	8	25
2	acceleration	$\mathrm{ft} / \mathrm{sec}$. ${ }^{\text {2 }}$	15	8	40
All data were derived from mid-point evaluation of a second deg:ee least square polynomial fitted over a two second interval (11 points) with time as the independent variable.					

TABLE III

STANDARD DEVIATION ESTLMATES

FOR DERIVED (SMOOTHED) TRAJECTORY DATA
FROM CONTRAVES CINETHEODOLITE SYSTEM
FOR FLIGHT TEST NUMBER FOUR

TABIE IV
STANDARD DEVIATION ESTIMATES

FOR DERIVED (SMOOTHED) TRAJECTORY DATA
FROM RADAR (112) SYSTEM
FOR FLIGHT TEST NUMBER FOUR

TABLE V
STANDARD DEVIATION ESTIMATES
FOR DERIVED (SMOOTHED) TRAJECTORY DATA
FROM RADAR (122) SYSTEM
FOR FLIGHT TEST NUMBER FOUR

Trajectory Section	Derived Trajectory Elems st**	Dimenaions	Component Estimates of Standard Deviation		
			North (X)	East	Up (2)
1	position	feet	7	4	10
2	position.	feet	6	2	9
1	velocity	$\mathrm{ft} / \mathrm{sec}$.	6	4	16
2	velocity	ft/sec.	4	3	9
1	acceleration	$\mathrm{ft} / \mathrm{ec} \cdot{ }^{2}$	10	16	44
2	acceleration	$\mathrm{ft} / \mathrm{sec}$.	10	12	30

* All data were derived from mid-point evaluation of a second degree least squeres polynomial fitted over a two econd interval (ll pointe) with time an the independent variable.

TABLE VI

BIAS ESTLMATES FOR DERIVED (ELEVEN POINT SMOOTHING) DATA FROM CONTRAVES SYSTEM FOR FLIGHT TEST NUMEER FOUR

TABLE VII
BIAS ES TIMATES FOR DERIVED (ELEVEN POINT SMOOTHING) DATA FROM RADAR 112 S YS TEM FOR FLIGHT TES T NUMBER FOUR

Trajectory Section	Derived Trajectory Element*	Bias Dimensions	Component Estimates of Average Bias**		
			North (X)	East (Y)	Up (Z)
1	position	feet	- 55	-23	- 52
2	position	feet	-73	-27	-41
1	velocity	ft/sec.	- 2	1	1
2	velocity	ft/sec.	- 2	-1	0
1	acceleration	ft/sec. ${ }^{2}$	- 1	0	2
2	acceleration	ft/sec. ${ }^{\text {2 }}$	- 1	- 1	- 3

*See note in Table II.

* *The trajectory data at simultaneous times from the Askania System (chosen atandard) were subtracted from corresponding data from Radar 112 System to form an error set of data which were averaged for each trajectory eection.

TABLE VuI
BIAS EETMMATES FOR DERIVED (ELEVEN POLNT BMOOTHLNG) DATA
FROM RADAR 122 BYETEM FOR FLOHT TEET NUMEER TOUR

TABLE IX

COMPARISON OF ASKANIA CINETHEODOLITE SYSTEM
BY FLIGHT TEST PERFORMANCE

Flight	Mode			
Test	Number of			
Numb_r	Cinetheodolite	Component Standard Deviation Estimate in Feet North (X)		
		East (Y)	Up (Z)	
1	6	11	11	8
2	7	10	15	12
3^{*}	7	7	4	10
$4^{* *}$	5	6	6	14

*Trajectory eection one and mode number of inetrumente corresponding more closely to earlier tests. Average eet for the three trajectory ections is 8,8 and 12 respectively for Flight Test three.
**The firat three fight teata were night teats with a point cource of light for optical eystem tracking; whereas, the fourth flight test was conducted during daylight hours.

TABLEE X
COMPARISON OF RADAR SYSTEMS
BY FLIGHT TEST PERFORMANCE

| Flight
 Test
 Number | Radar
 Designation | Component Standard Deviation
 Estimation in Feet |
| :---: | :---: | :---: | :---: |
| | North (X) East | |

*Variate difference estimates for trajectory section l; data sampled at 2 per accond.
*Whese radars were operated in the beacon tracklng mode; whereas, prior teste have utilized the skin tracking mode.

のジミスジッじす

［1］．Simmon，L．E，＂On the Relation of Instrumentation of Quality Control，＂Instruments，Vol．19，November 1946.
［2］Grubls，F．E．，＂On Estimating Precision of Measuring Instruments and Product Variability＂，American Statistical Assn．Vol．43， pp 243－264．
［3］Davis，R．C．，＂Techniques for the Statistical Analysis of Cinetheodolite Data，＂NAVORAD Report 1299，China Lake，Calif． （March 22，1951）．
［4］Pearson，K．E．，＇Evaluation of the AN／FPS－16（System No．1）at White Sands Missile Range，＂WSMR Technical Memorandum No．606， February 1959.
［5］Dibble，H．L．，Carroll，C．L．Jr．，＂A Best Estimate of Trajectory using Reduced Data from Various Instruments at a Single Point in Time，＂AFMTC－TR－60－12，May 1960，Patrick Air Force Base， Florida．
［6］Wine，L．R．，＂Statistics for Scientista and Engineers，＂Prentice－ Hall Inc．，Englewood Cliffs，N．J．， 1964.
［7］Duncan，David B．，＂On the Optimum Eatimation of a Misaile Trajectory from Several Tracking Systems＂，AMFTC－TR－60－16， 24 August ：960，Patrick Air Force Missile Test Center，Florida．
［8］Kendall，M．G．，＂The Advanced Theory of Statistics，＂Vol．II， 3rd Ed．C．Griffin and Co．Ltd．London， 1951.
［9］Kingaley，O．L．，＂Analysis of Some Trajectory Measuring Instru－ mentation Systems，＂Paper presented at the Sixth Conference on the Design of Experiments in Army Research，Development and Testing，October 1960，Aberdeen Proving Ground，Aberdeen，Maryland．
［10］Weiss，J．E．，Kingsley，O．L．，＂Study of Accuracy and Precision of Trajectory Measuring Systems，＂ 30 June 1961 （U）ORDBS－IRM Task 5－4－2．WSMR，New Mexico．
[11] Kingsley, O. L., "A furtiner Anaiyoio ui Bitasile Penge Trarking Systeme." Paper presented at the Seventh Conference on the Design of Experiments in Army Research, Development, and Testing, October 1961, Fort Monmouth, N. J.
[12] Kingaley, O. L., Free, B. R., "Additional Analysis of Missile Trajectory Measuring Systems. " Paper presented at the Ninth Conference on the Design of Experiments in Army Research, Developneent and Testing, October 1963, Redstone Arsenal, Alabama.
[13] "Final Data Report No. 14775. AN/FPS-16 Radar R-112 for Nike Hercules RT-2 in Support of Accuracy and Precision of Trajectory Measuring Syitem Launched 1 October 1962. "(U) IRM-DRD WSMR, N. Mex. (16 November 1962) Claseified Confidential.
[14] "Final Data Report No. 14777. AN/FPS-16A Radar $18-122$ for Nike Hercules RT-2 In Support of Accuracy and Precieion of Trajectory Measuring Syatem Launched 1 October 1962" (U) IRM-DRD, WSMR, N. Mex. (16 November 1962) Claseified Confidential.
[15] "Final Data Report No. 14847. Contraves Trajectory Data for Nike Hercules RT-2 In Support of Accuracy and Precision of Trajectory Measuring Sy ateme. Launched 1 October 1962."(U) IRM-DRD, WSMR, N. Mex. (3 Decomber 1962) Classified Confidential.
[16] "Final Data Report No. 14829. Askania Trajectory Data for Nike Horcules RT-2 In Support of Accuracy and Precision of Trajectory Measuring Syatema." (U) IRM-LRD, WSMR, N. Mex. (28 November 1962) Classified Confidential.

THERMALCYCLES IN WELDING

Mark M. D'Andrea, Jr.

U. S. Army Materials Research Agency
Watertown, Massachusetto

INTRODUCTION: The mechanical property integrity of weld heatafferted zones is an inherent and vital consideration in arc welding applica. tions. A weld heat-affected zone, hereinafter tormed 'weld-HAZ', in defined $i s$ that volume of base material in a weldment that has been heated, as a result of welding, to a range of peak temperatures between the preheat tomperature and the materials melting point.

Previous work conducted at the U. S. Army Materials Rescarch Agency, concerning the welding of fully heat-treated high-strength :tecls for service in the as-welded condition, demonstrated that weld-HAZ arcita characterized by peak temperatures at or about the lower critical temperature, suffered a marked loss of strength, thus reducing weld-joint etificiencies considerably. Other studies with high-strength and maraging atonle have revealed deleterious mecnanicai moone y offocts resulting from thermal eyeles charnetexized by peak temperaturen above the upper criticul tenperature. In iwlition, it is well known that an embrittling aitertin alloy stecle is generally associated with weld-HAZ structures characterized by peak temperatures between the lower and upper eritical temperatures.

Recent work conducteci at AMRA, established the general parameters necessary to define and reproduce the transformational behavior of welelHAZ microstruchures. These parametere included (but are not necessarily limited to) the following; (1) The time-temperature shape of a weld-HAZ thermal cycle, (2) the peak temperature of a thermal cycle, (3) the microstructure of the base materinl (defined by heat treatment, chemistry, working, etc.), prior to the imposition of a thermal cycle, and (4) factors affecting restraining atresses and strains produced in the base material as a result of the overall welding operation.

The gamut of mierostructures procluced in i, weld-HAZ is the enel result of the complex and varied transformations caused by wolding thermal cycles. An important consideration which has been a pertinent reference point in the present investigation, was the fact that in any are weld in a given material there will always be thermal cycles that have the same peak

Abstract

temperature; these thermal cycles wall dirier oniy in that the simpe and position of associated heating and cooling curves will be displaced somewhat in time and temperature. It is a well cstablished metallurgical fart that the mechanical properties of a material depend primarily upon microstructure. In order to predict and perhaps control weld-HAZ microstructures resulting from welding thermal cycles, it is necessary first to investigate the effects of basic farameters of such structures.

OBJECT AND SCOPE:

Welding Metallurgy

The overall objective is to investigate and to establish basic metallurgical concepts to account for the phenomena of the attendant transiorm: tion behavior of weld-HAZ microstructures produced in $4340, \mathrm{H}-11$, and $18 \mathrm{t} / 2 \% \mathrm{Ni}(300)$ maraging steels. The work is limited to a study of the effects of fundamental material and welding time-temperature parameters pertaining to single pass, are welding situations, Realizing the potentially staggering number of general and sub-parameters that may significantly affect resultant microstructure, it was deemed advisable to initiate the investigation by studying only the effects of some of the general parameters. viz; the prior base material microstructure, the peak temperature of a thermal cycle, and the time-temperature shape of thermal cycles imposed by welding. The number and kind of stress-strain conditions that are applicable to welding were initially considered to be overwhelming; consequently the utilization of this general parameter in this initial investigation was abandoned in the sense that such conditions were kept constant.

Statistical Inference

The overall objective of the utilization of statistical inference techniques is to assist the metallurgical investigation by determining the significant factors (i.e., the more critical variables), affecting this phenomena. and to detect the specific significant differences that may exist among each set of significant factors. The transformational behavior and the resultant heat-affected zone microstructures produced will be cvaluated metallurgically in terms of such speciific significant difierences obtained.
-HE EXPER!MENT, A high-speed time-temperature controller is being used in this investigation to produce weld-HAZ synthetically.

The enntroller pasentially is a simulating device which permits the duplication of welding thermal cycles experienced in weld-heataffected zones. Each specimen is heated by ita resistatace to the passage of an $A-C$ elertric current furnished irom a transformer, and is cooled by the removal of heat from the specimen by conduction through water-cooled copper clamps. A the rmocouple percussion welded to the surface of the specimen, provides a signal which is balanced against a reference control signal designed to reproduce the desired thermal cycle. The resultant error signal is amplified and utilized by the controller to maintain temperature control during the cycle to within $\pm 5^{\circ} \mathrm{F}$.

The basic experiment involves two of the general parameters as variables, viz., the prior base material microstructure (defined by various heat treated conditions of a given single heat of steel) and the time-temperature shape of various welding thermal cycles. The the rmal cycle peak temperature parameter is a constant in each basic experiment, i.e., each basic experiment is conducted utilizing thermal cycles having the same peak temperature.

In each basic experiment, it is desired to determine the effects of prior base material microstructure (denoted factor code "H"), and the time-temperature shape of thermal cycles (denoted factor code " $C "$), on the notch toughness (quantitative response variable, measured in in. -lb/in. ${ }^{2}$, indicative of microstructural change) of the resultant weldHAZ microstructures.

In a given heat of steel, the interest lies in the effects of five particular prior base material microstructures and seven particular chermal cycles, i.e., factor "H" is a fixed factor at five fixed levels and factor "C" is a fixed factor at seven fixed levels.

There are three steels (one heat of each) involved in the investiga. tion along with seven different peak temperatures per heat; therefore, there are three times seven or twenty-one basic experiments to be evaluated independently. Metallurgical considerations preclude statistical corrclations between steel types and between peak temperatures per heat of steel.

THE DESIGN AND ANALYSIS: The number of observations (notch toughness values) to be taken is initially unknown; however it is desired

Design of Experiments

to design the statistical analysis to allow for the general situation of dealing with an uneven number of replicationy per cell, since some experimental observations are lost occasionally. A basic model appears to be a fixed, two-way analysia of variance; the suggested mathematical model for the sum of squares is:

Total

Interaction
$\left(\frac{T \cdot j^{2}}{n}-\frac{T \cdot j^{2}}{n q}-\frac{T \cdot k^{2}}{n p}+\frac{T \ldots{ }^{2}}{n p q}\right)+\left(\Sigma \Sigma_{i j k}^{2}-\frac{T \cdot j^{2}}{n}\right)$.

Once the individual ANOVA's are run for each basic: experiment, one of the following techniques could be used to detect specific significant differences that may exist among each set of significant factors obtained.
(1) Use Duncan's Test of the means if, and only if, the cells have the same number of replications. The means used here are those of the columns, or rows as the case may be, of the cells pertaining to the significant factor: if both factors are significant, two such tests are made regardless of irt eraction effects. Perhaps this is not a proper technique, in that only the individual cell averages should be tested by Duncan's method.
(2) Use the following relationship to test the means of each cell if there are minor variations in the number of observations per cell.
S_{X} (entry from studentized range)
$\sqrt{\text { no. observations/cell }}$
(3) Use the following relatinnshin to teot the menne se =ach こc!!, if there are major variations in the number of observations per cell.

$$
S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \quad x \quad \sqrt{(k-1) F(k-1, \gamma)}
$$

The foregoing is the author's suggested method of analysis. It is important to note that the author is merely a novice at this business of statistical analysis.

It has been suggested since the presentation of this paper that the use of regression analysis techniques may be a better approach to solving this statistical p.oblem. Unfortunately, circumstances to date have not yet permitted a further investigation into the most efficient statistical procedures to be used in this problem.

STATISTICAL ANALYSIS OF TENSILE STRENGTH－HARDNESS RELATIONSHIPS IN THERMOMECHANICALLY
 1K上Al上L S1E上え，

Albert Λ ．Anctil
U．S．Army Materials Research Agency Watertown，Massachusetts 02172

INTRODUCTION．Generally speaking，statistical analysis finds limited applications in metallurgical problems．This is true because the sample size is usually quite small and in most cases，the variables are known and can be controlled．The clinical（statistical）problem described hereis a segment of an investigation entitled，＂Tensile Strength－Hardness Relation－ ships in Thermomechanically Treated Steels．＂［1］The objective of the study was to determine metallurgically and statistically how well thermo－ mechanically treated steels followed established tensile strength－hardness correlations．

The generally accepted tensile strength－hardness correlations are published by the American Society for Testing and Materials（ASTM）［2］ and the So＇ciety of Automotive Engineers（SAE）［3］．These correlations specifically excluded cold worked，stainless steels and other thermo－ mechanically treated steels．The ASTM and SAE correlations have been obtained from a particular steel quenched and tempered to various strength levels．Tensile specimens which contain hardness coupons were machined from each strength level condition．These specimens were distributed randomly to several laboratories participating in a standardized testing program．The assembled data were treated statistically to obtain a tensile strength－hardness correlation．

Thermomechanical treatments which are under consideration here， involve the introduction of cold work into the heat treatment cycle of steel to obtain higher strengths．There are three types of thermomechan－ ical treatments based upon when in the heat treatment cycle the working cycle is performed．［4］

> Type I - Deformation of austenite followed by transformation
> Type II - Deformation of austenite during transformation
> Type III - Deformation after transformation of austenite.
＂Comments on this paper by one of the panelists can be found at the end of this article．

494
Design of Experiments
EXPERIMENTAL PROCEDURE. The experimental tensile strength-
 steele. Refer to Referencel for a more detailed explanation and data references for this presentation.

Figure 1 shows the $A S T M$ (solid curve) and SAE (dashed curve) tensile strength-hardness correlations. There is some difference of opinion as to which it the better curve. A joint ASTM-SAE committee is presently working out a compromise curve. The ASTM curve has been extended beyond Rockwell C hardness 58 to encompass the very high strength steels. The data points are from Referencel and represent various steels having a quenched and tempered heat treatment. Such data could have been used to obtain these correlations. These same steels were then processed thermomechanically with Type I (open symbols) and Type III (closed symbols) treatments. Statistically the quenched and tempered data fits the ASTM correlation better than the SAE correlation. Accordingly, the ASTM correlation will be used for comparative purposes.

Tensile strength-hardness data for the Type I thermomechanical rreatment are shown in Figure 2. The thermomechanical heat treatment cycle is shown ochematically. The data follow the ASTM correlation (solid curve) reasonably well. Figure 3 illustrates Type II data. This thermomechanical treatment is usually periormed on austenitic stainless steels at subzero temperatures. Meaningful comparisons of this data are difficult with such a small sample size. Type III data are shown in Figure 4. The cold work may be performed upon the asquenched martensite or upon tempered martensite that is subsequently aged. A positive deviation from the ASTM correlation is immediately apparent over the major portion of the hardness range for Type III data.

Selected data for Type III treatments where the percent reduction has been varied are shown in Figure 5. Consider :he 5Cr-Mo steel where the lowest tensile strength plotted represents the quenched and tempered condition. Note, that as the amount of cold work is increased, the tensile strength increases at a faster rate than that shown by the ASTM correlation. This sarne trend can be seen for the majority of these steels. It is for this reason that a regression line was not drawn for this data. A tensile strength-hardness correlarion for these steels would be dependent upon the amount of cold work.

DISCUSSION. Metallurgically the behavior was explained using Tabor's analysis [5] which relates hardness and tensile strength through
 is summarized in Figure 6. Quenched and tempered steels have strain hardening exponents in the range from 0.04 to 0.12 . In this range the tensile strength-hardness ratio is nearly constant. It is for this reason that a unique tensile strength-hardness correlation exists. For Type I treatments the strain hardening exponents fall in the same range, therefore, the data fit the ASTM correlation. With Type III treatments the ratio starts at the minimum and increases as the exponent decreases to nearly zero with increasing amounts of cold work. This reaults in positive deviations from the ASTM correlation. Type II treatments are usually performed on austenitic stainless steels at subzero temperatures. These steels have ver, high exponents (0.3) in the annealed condition which decrease to nearly zero with increasing amounts of deformation. One would expect positive deviations from the high and low exponents and adherence to the correlation as the ratio passesthrough its minimum value. Cold-worked steel (Type III) and stainless steels (Type II) have been excluded from the ASTM correlation because of these drastic charges in strain hardening characteristics.

Statistical analysis of the data is summarized in Table I. The deviation d refers to the experimental tensile strength σ, minus the correaponding tenalle strength $\sigma_{\text {ASTM }}$, from the ASTM correlation at a particular hardiness. This deviation wae determined for every data point. The arthmetic mean of the deviations $\bar{\Delta} \sigma$ was taken as the sum of the deviations divided by the sample size. It serves as an indication of how well the data for thermomechanically treated steels fit the ASTM correlation. Thia value would be zero for a regression line of the data. The absolute deviation $|\overline{\Delta \sigma}|$ and the standarderror of estimate Sy ${ }^{*}$ were calculated as measures of the dispersion of the data about the ASTM curve. These differ from the usually defined mean aboolute deviation and standard error of estimate which measure the dispersion around a regresaion line.

Statistical results are shown in Table II. The mean of the deviations $\bar{\Delta} \sigma$, shows a better fit of the quenched and tempered data about the ASTM rather than the SAE correlation. Further, the data for the Type 1 treatment fit the ASTM correlation better than the Type III treatments.

Also, the predominantly positive deviation of the Type III data from the
 curve yield approximately the same results. They do not, however, reflect the positive deviation of data for the Type Ill treatments.

The problem before the panel is that of offering more descriptive statiatical alternatives for comparing several populations of data (tensile atrength-hardneas values for the rmomechanically treated steels) to a given regression line (the standard ASTM tensile strength-inardness correlation). Conaider further that it may not be possible or meaningful to draw a regression line through each population of data.

REFERENCES

1. E. B. Kula and A. A. Anctil, Tensile Strength-Hardnese Relationships in Thermomechanically Treated Steels, Proceedings, Am. Soc. Testing Mat'l:, Vol. 64, 1964, p. 719
2. Methods and Definitions for Mechanical Testing of Steel Products, 1965 Book of ASTM Standards, Part 1 (currently available as a separate reprint)
3. Hardness Tests and Hardness Number Conversions - SAE J417, SAE Handbook, 1964, p. 94
4. S. V. Radcliffe and E. B, Kula, Deformation, Transformation and Strength, Fundamentals of Deformation Processing, Syracuse University Press, Syracuse, N. Y., 1964, p. 321; also, E. B. Kula and S. V. Radcliffe, Thermomechanical Treatment of Steel, Journal of Metals, Vol. 16, 1963, p. 755.
5. D. Tabor, The Hardness of Metals, Oxford University Press, London, 1951

Figure ${ }^{\circ} 4$ ULTIMATE TERSILE STREMGTH VERSUS ROCNHELL C haromess fOR
TYPE D T-ERHOHECHANICALLY TREATED STLELS.

Figure 5 bltimate TEMSILE STREMGTH VERSUS ROCNHLL C HARDIESS FDR temperimg temperature.
19-066-533/mic-64 U. S. apur materials hesearch agenct

figure \quad © ;ratio of temsile stremath to diamono pyramio hardness and to true stress ($\epsilon=0.08$) as a function of the straln-hardenimg exponent
u. S. abmy materials hesearch agency

Table II. STATISTICAL RESULTS FOR QUENCHED AND TEMPERED AND THERMOMECHANICALLY THEATED STEELS

Condition	$\overline{\triangle \sigma_{1}}$	$\left\|\overline{\Delta_{k} \sigma}\right\|,$		n
Quenched and Tempored				
ASTM curve SAE curve	0.23 7.33	11.7 14.1	17.7 19.4	112
Thermomechanically Treated				
Type	3.70	15.4	20.6	319
Type II	11.45	17.3	12.8	176

Joan Raup Roserblatt
Statistical Engineering Laboratory
National Bureau of Standards, Gaithersburg, Maryland

The evaluation of empirical relations of the kind you discussed is a difficult problem. The various functions of deviations from the ASTM curve that are presented in your Table II are extremely difficult to interpret: By themselves, they are nearly meaningless. Taken together with the data, as exhibited in your figures, they add very little and may be misleading.

For example, looking at Figure 1, I notice that the steels used in Type I and Type III thermomechanical treatments respectively seem to be grouped preponderantly in different hardness ranges. Is it possible that the ASTM curve fits better for Type I and the SAE curve for Type III? If this were so, an explanation would have to be sought in the metallurgical facts about the data used, and in the history of the two standard curves.

Table II gives overall measures of goodness-of-fit. Since these are well-defined functions of the data, they cannot be "wrong" in themselves. But if the deviations from the standard curves occur for different reasons if different types of steels and in different hardness ranges, the overall measures cannot be relled upon to describe the uncertainty of tensile strengtl estimates derived (using the curves) from hardness measurements, Furthermore, if the overall measures are used to select the "best-fitted" curve, there is great danger that the resulting curve will have systematic errors arising from the particular choice of data.

Of course, for many purposes a standard curve is entirely adequate. But your data seem to make it clear that one possible long-run goal would be the development of a collection of curves each applicable to specific circumstances. This development would probably require the performance of many new experiments. It could lead to the evolution of your qualitative explanation of the behavior of thermomechanically treater steels into a quantitative explanation.

The statistical measures quite properly play a very amall role in your valuable summary of the published evidence on tensile-strength/
hardness relationships. I am sure that in future studies you will continue to be guided by the totality of scientific information available to you, and I hope you will often find that statistical techniques are helpful in data analyaia.

SOME PROBLEMS IN STA'i ISTICAL INFERENCE FOR CEnERALIzED MULTMOMTAL POMULAT:ONS
Bernard Harris
Mathematics Research Center, U. S. Army University of Wisconsin, Madison, Wisconsin

INTRODUCTION. Assume that a random sample of size N has been drawn from a "multinomial population" with an unknown and possibly countabie infinite number of classes. That is, if X_{i} is the ith observation and M_{j} the j th class, then

$$
P\left\{X_{i} \in M_{j}\right\}=p_{j} \geq 0, j=1,2, \ldots ; i=1,2, \ldots, N,
$$

and $\sum_{i=1}^{\infty} p_{i}=1$. The classes are not assumed to have a natural ordering. Let n_{r} be the number of classes occurring exactly r times in the sample. Then, we clearly have

$$
\sum_{r=0}^{\infty} \quad r n_{r}=N .
$$

Lie will be concerned with estimating the following two quantities which are generally of interest to experimenters.
(1) The sample coverage, defined by

$$
\begin{equation*}
c=\Sigma p_{i}, \tag{1}
\end{equation*}
$$

where the sum runs over all classes which have occurred at least once in the sample.
(2) The population entropy, defined by

$$
\begin{equation*}
H=-\sum_{i=1}^{\infty} p_{i} \log p_{i} \tag{2}
\end{equation*}
$$

It will be convenient in our definition of entropy to violate the usual conventions and use natural logarithms rather than logarithms to base 2 . This is equivalent to a scale change in units of measurement and will have no essential effect on any uses for which the entropy might be employed. Of course, we will assume throughout, that the series (2) converges, since otherwise the discussion will not be relevant.

In those problems which present difficulty, namely where too many of the p_{i} 's are too small, small sample infercnce appoars to be virtually hopeless, hence, all results described herein will be asymptotic results, i.e. for large N.

Estimation of H and C. For the moment, we will restrict to the case of an ordinary multinomial population, that is, one with a finite number, k, of classes. Then the "natural estimator" of entropy \hat{H} is defined by

$$
\begin{equation*}
\hat{H}=-\sum_{i=1}^{N} \frac{i n_{i}}{N} \log \frac{n_{i}}{N}=-\sum_{i=1}^{k} \hat{p}_{i} \log \hat{p}_{i} \tag{3}
\end{equation*}
$$

where $\hat{\mathrm{p}}_{\mathrm{i}}$ is the maximum likelihood estimator of p_{i}.
Its properties has been discussed by $G . P$. Basharin [1] and we note them brieily. Basharin showed that

$$
\begin{equation*}
E(\hat{H})=H-\frac{k-1}{2 N}+O\left(N^{-2}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{\hat{H}}^{2}=\frac{1}{N} \sum_{i=1}^{k}\left[p_{i} \log ^{2} p_{i}-H^{2}\right]+O\left(N^{-2}\right) \tag{5}
\end{equation*}
$$

and $\sqrt{N}(\hat{H}-H)$ is asymptotically normally distributed. If we attempt to apply Bashariri's results to the more general case described earlier, it is easily seen that the naive replacement of p_{i} by \hat{p}_{i} in (2) may not be successiul. Essentially, Basharin's technique depends on the following sort of asymptotic behaviour,

Design of Experinuents
as $\quad \mathrm{N} \rightarrow \infty, \mathrm{Np} \rightarrow \boldsymbol{i} \rightarrow \mathrm{i}=1,2, \ldots, k$
Consequently, if we have zero as a limit point of the p_{i} 's, or even, if we have the limiting behaviour associ:lw, wilh the Poisson approximation,
is $N \rightarrow \infty, \quad p_{i} \rightarrow 0, \quad N p_{i} \rightarrow \lambda_{i}, \quad 0<\lambda_{i}<\infty$,
for a sufficiently large number of classes, then Basharin's estimator, \hat{H}, may be quite poor. The following illustration will exhibit this. Let $P_{i}=\frac{1}{N^{2}}, i=1,2, \ldots, N^{2}$. Then $H=2 \log N$. However, since the maximun of II occurs for $p_{i}=\frac{1}{k}$, when thereare k ciasses, we have that $\hat{H} \leq \log N$. Hence, it is quite clear, that if there are 'too many classes whose probabilities are too small', H will not be a satisfactory estimator. One of the causes of the difficulty is that \hat{H} gives no weight to unobserved cells, so that if the total probability in unobserved cells is large, \hat{H} will not perform too well.

We can gain some insight in dealing with this, if we examine the second question we advanced, the estimation of the sample coverage. This problem is discussed in greater detail in B. Harris [3], but it is convenient at this iime to make some intuitive observations concerning the estimation of C, so that we can resolve the difficulties noted above in the estimation of H .

First, note that if we were to proceed as Basharin did and set

$$
\hat{\mathrm{c}}=\Sigma \hat{\mathrm{p}}_{\mathrm{i}}
$$

then we have that $\hat{C}=1$ for all samples, which is clearly inappropriate. We can guide our intuition by first examining some extreme cases.
(1) If $n_{1}=N$, then we readily reach the conclusion that C must be small. We can see this as follows. If we now take another observation, inasmuch as every past observation resulted in a new class being observed, it is apparent that with probability quite close to unity, the N+lth observation will also result in a new class. In fact, the probaisility that the N+lth observation will not result in a new class is C, which of course should be near 0 , as noted.
(2) If, on the other hand, there is an integer t, substantially larger than one, such that $n_{1}=n_{2}=\ldots=n_{t-1}=0, n_{t}>0$. Then, similar reasoning would lead us to conclude that most of the probability is concentrated in classes with high probability, and therefore C should be near unity.
(3) Let $p_{i}=\frac{1}{N}, i=1,2, \ldots, N$. Then $E\left(n_{1}\right) \sim \mathrm{Ne}^{-1}$ and $E\left(n_{0}\right) \sim N e^{-1}$. Thus, we should have $C \sim 1 \cdot e^{-1}$.

In short, as is shown in B. Harris [3], it is the low order occupancy numbers, such as n_{1}, n_{2}, and n_{3}, which contain the principal information concerning the probability content of unobserved classes. A cursory examination of the three examples cited above suggest that an appropriate estimator for C is given by

$$
\begin{equation*}
\hat{C}=1 \cdot \frac{n_{1}}{N} \tag{6}
\end{equation*}
$$

In Harris [3], it is shown that \hat{C} is in fact an suitable estimator, in that it has good asymptotic properties.

In E. B. Cobb and B. Harris [2], a method for estimating entropy, when "all the sample information is contained in the low order occupancy numbers" was exhibited. In order to do this, we will show that we can represent entrony asymptotically by

$$
\begin{equation*}
H=\frac{1}{N} E\left(n_{1}\right) \int_{-\infty}^{\infty} e^{x} \log \left(\frac{N}{x}\right) d F \cdots(x) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
F \times(x)=\sum_{N p_{j} \leq x} N p_{j} e^{-N p_{j}} / \sum_{j=1}^{\infty} N p_{j} e^{-N p_{j}} \tag{8}
\end{equation*}
$$

It is easily verified that $F 川(x)$ is a cumulative distribution function. Since

$$
\begin{equation*}
E\left(n_{1}\right) \sim \sum_{j=1}^{\infty} N p_{j} e^{-N p_{j}} \tag{9}
\end{equation*}
$$

substitution of (8) and (9) into (7) produces

$$
\frac{1}{N} \sum_{j=1}^{\infty} e^{N p_{j}} \log \left(\frac{1}{p_{j}}\right) N p_{j} e^{-N p_{j}}=-\sum_{j=1}^{\infty} p_{j} \log p_{j}=H
$$

which verifies (7).
Under the assumptions stated above Cobb and Harris [3] suggested that the entropy be estimated by
(10)

$$
\stackrel{v}{H}=\frac{n_{1}}{N} \frac{\left(N-m_{1}\right)^{2}}{\left(N-m_{1}\right)^{2}+\left(m_{2}-m_{1}^{2}\right)} e^{\left(N m_{1}-m_{2}\right) /\left(N-m_{1}\right)} \log \left[\frac{N\left(N-m_{1}\right)}{N m_{1}-m_{2}}\right]
$$

where $m_{1}=2 n_{2} / n_{1}$ and $m_{2}=\max \left(m_{1}^{2}, 6 n_{3} / n_{1}\right)$.
At this point it is worthwhile to present a numerical example, which will iliustrate the behavior of F .

Example $p_{i}=\frac{1}{N}, i=1,2, \ldots, N$. Then $n_{1} \sim N e^{-1}, n_{2} \sim \frac{N}{2} e^{-1}$, and $n_{3} \sim \frac{N}{6} e^{-1}$. Thus, $m_{1} \sim 1, m_{2} \sim 1$ and

$$
F *(x)= \begin{cases}0 & x<1 \\ 1 & x \geq 1\end{cases}
$$

Then

$$
\check{H} \sim \frac{N e^{-1}}{N} \frac{(N-1)^{2}}{(N-1)^{2}} e^{(N-1) /(N-1)} \log \left[\frac{N(N-1)}{N-1}\right]=\log N
$$

and $H=\log N$, which is as it should be.

Clearly, it is principally the classes with small probabilities that contribute to n_{0}, n_{1}, n_{2}, and n_{3}. For those classes with large probabilities, we can estimate P_{i} by $\hat{\mathrm{P}}_{i}$.

Then, the natural way of proceeding is to estimate the contribution to entropy from large classes by means of Basharin's method and the contribution of small classes by $\underset{H}{ }$, and we denote the final estimator by H^{*}. Recall that in order to use H, we have taken n_{1}, n_{2}, and n_{3} to determine $\underset{H}{ } \underset{H}{ }$

Thereis one last detail which must be taken into account. Part of the contribution to moderate order occupancy numbers, such as n_{4}, n_{5}, and some of the succeeding occupancy numbers, will be due to classes with small probabilities and the effect of sample fluctuations. Therefore, we need to examine the following. What proportion of each $n_{j}, j=4,5, \ldots, s, s$ some sufficiently large integer, is due to a large deviation from a class with small probability? Wecan adopt a Theorem due to A. Wald [4] obtaining the following inequalities.
(11)

$$
\begin{aligned}
& \text { if } m_{2}>m_{1}^{2}, E\left(n_{k+1}\right) \geq \frac{6\left(3^{k-2}\right) n_{3}^{k-1}}{(k+1)!n_{2}^{k-2}}, k=3,4, \ldots, \\
& \text { if } m_{2}=m_{1}^{2}, E\left(n_{k+1}\right) \geq \frac{2^{k} n_{2}^{k}}{n_{1}^{k-1}(k+1)!}, \quad k=3,4, \ldots
\end{aligned}
$$

The right hand side of each inequality gives the expected values of n_{k+1}. if 'the sample information is contained in n_{1}, n_{2}, and $n_{3}{ }^{\prime \prime}$. Thus the difference between the left and right hand sides of (11) and (12) gives an estimate of the contribution to n_{k+1} which is due to classes with larger probabilities. We apply Basharin's estimator (3) to these, upon replacing the expected values in the left hand sides of (11) and (12) by the observed values.

Thus, we finaily write
(13)

$$
H^{*}=\lambda \hat{H I}+(I-\lambda) \hat{I}
$$

where $0 \leq \lambda \leq 1$ is the proportion of the observations in n_{1}, n_{2}, anci n_{3} and the parts of $n_{4}, n_{5}, \ldots, n_{s}$ detemmined by (11) and (12). For the parts of the sample allocated to smali classes as noted above we use A, and use \breve{H} on the part allocated to large ciasscs.

The matiomatical aetalis will beg given in a tater gunlication.

REFERENCES

[1] Basharin, G.P., (1959) On a statistical estiniate for the entropy of a sequence of indepencent rancom variables. Teorija Vcrojatnostci i ee Primeniija, 33-336.
[2] Cobb, E.B. and Harris, B. An asymptotic lowes bound for the entropy of discrete populations with application to the estimation of the entropy of alniost uniform: populations. (Submitted for publication).
[3j Harris, E. (1959) Deternining bouncis on intoerals with applications to cataloging problemis. Anmals oi Mathenatical Staistics, 30 , 521.548.
[4] Wald, A. (1939) Linits of a cistribution function cietermined by absolute moments and incqualities autisifed by abselate moments. Transactions of the American Mathematical Society, 46, 280-306.

APPLICATION OF NUMERICAI, TECHNIQUES

TO
EXPERIMENTALLY : $\sqrt{\prime} O D E L$ AN AERODYNAMIC FUNCTION*

Andrew H. Jenkins
Physical Sciences Laboratory, Directorate of Research and Development
U. S. Army Missile Command, Redstone Arsenal, Alabama

ABSTRACT. This report describes the use of an aeroballistic range in the design and execution of an aerodynamic experiment, the analysis of the experimental data by numerical techniques to develop a model of a physical function, and the statistical testing of the data and the model. The report discusses the approach, the experimental design, and the testing of the data using several frequency distributions. It presents and describes a multivariate nonlinear regression analysis performed on the data, the physical model developed by the regression analysis, and the testing of the model. It also lists and presents the tests of hypotheses made and discusses the results of the tests.

SYMBOLS
a Acoustic velocity in air
A Pure constant of regression equation
b First coefficient of regression equation
C Counts per inch of photoreader $=3502$
c Second coeffinient of regression equation
c_{p}
Coefficient os specific heat at constant pressure
$c_{v} \quad$ Coefficient if specific heat at constant volume
d. f. Statistical degrees of freedom

F Frequency distribution
$F_{\text {sh }} \quad$ Magnification factor of shadowgraph $=1.009$
$F_{s c} \quad$ Magnification factor of Sclalieren $=0.855$
$K \quad$ Ratio of shock density ρ_{s} to free stream density ρ^{∞}
In Natural logarithm (base e)

[^0]
SYMBOLS (continued)

M	Mach number $=\mathrm{V} / \mathrm{a}$
M_{1}	Mach factor level $=1.1$ to 1.5
M_{2}	Mach factor level $=2.5$ to 2.9
M_{3}	Mach factor level $=3.9$ to 4.3
M_{i}	Mach factor effect in statistical equation
M_{2}	Mach factor linear effect
M_{q}	Mach factor quadratic effect
$M R_{i j}$	Main fartor interaction effect
N	Total observation
P	Statistical probability
r	Regression correlation cocfficient
R_{0}	Universal gas constant. $=1715 \mathrm{sq} . \mathrm{ft} / \mathrm{sq} . \mathrm{sec} . /^{\circ} \mathrm{R}$.
R	Radius
R_{1}	Model nose/base radius ratio $=1.0$
R_{2}	Model nose/base radius ratio $=;, 7$
R_{3}	Model nose/base radius ratio $=0.4$
R	Model base radius $=0.112$ inch
R_{j}	Radius factor effect in statistical equation
R_{n}	Nose radius of model
R_{r}	Nodel nose to base radius ratio
${ }^{\prime}$	Radius factor linear effect
R_{1}	Radius factor quadratic effect
S	Surtace roughness of model
s^{2}	Experimental sample variance
S	Fixporimontal sample standarsi cieviation

Design of Experiments	
	SYMBOLS (contınued)
SS	Sum of squares
t	Value of students frequency distribution
I	Absolute temperature (${ }^{\circ}$ Rankine)
V	Flight model velocity
$\overline{\mathrm{X}}$	Mean
$\bar{X}_{\text {aw }}$	Mean of Ambrosio-Wortman model
$\overline{\mathrm{X}}_{\mathrm{e}}$	Mean of experimental responses
X_{i}	ith response
\bar{X}_{r}	Mean of regression model responses
$\mathrm{X}_{2}, 3$	Dependent variable of regression equation (computer language)
Y	Independent variable of regression equation (computer language)
Z	Normal frequency distribution
a	Type I error risk level
β	Type IL error risk level
γ	Ratio of specific heats $=c_{p} / c_{v}$
$\delta^{8} \mathrm{~h}$	Shock detachment distance from shadowgraph optical system
δ^{6} SC	Shock detachment distance from Schlieren optical system
Δ	Shock detachment distance in photoreader counts (corrected)
${ }^{6} \mathrm{k}(\mathrm{ij})$	Experimental erior
σ_{e}^{2}	Variance of experimental responses
σ_{r}^{2}	Variance of regression model
$\sigma_{a w}^{2}$	Variance of Arnbrosio-Wortman model
μ	Universal means
x^{2}	Frequency diatribution
p	Density

1. INTRODUCTION. A number of new acrodynamic problems have come into prominence in recent years. The source of the problems has been the very high flight velocities achieved by use of rockets. The characteristics of the problems of the very high flight velocities, referred to as supersonic or hypersonic flight, are those of a hydrodynamic nature. The Mach numbers are high and problems of a physical and chemical nature also exist because the energy of the flow is large. The gases are rarefied so that the mean free path is not negligibly small compared with an appropriate macroscopic scale of the ilow field. Under such conditions, kinetic thoery is included with the hydrodynamics.

The new features of a hydrodynamic nature allow the use of certain simplifying assumptions in developing theories for hypersunic flow. On the other hand, certain important features which appear introduce additional complications over those met within gas dynamics at more moderate apeeds. The techniques of linearization of the flow equations and the use of mean-surface approvimation for boundary conditions have a diminishing range of applicabllity. Also, entropy gradients produced by curved shock waves make the classical isentropic irrotational approach inapplicable.

The additional problems of a physical and/or chemical nature are associated with the high temperatures of the flow as the gases traverse the strong bow shock wave. The sudden shock heating of the gases excites the vibrational degrees of freedom of the molecules resulting in dissociation of the species into atoms, electrons, and ions which do not require treatment at lower velocities. Therefore, it must be recognized that physical phenomena rather than hydrodynamic phenomena may not only influence the flow but in many cases control it. In view of the complexities of the flow at high Mach rumbers and the number oi technical disciplines involved, many have resorted to experimental or empirical development of functional relationships.

The flow field originates at the bow shock. The shock wave characteristics are very important to the stagnation regior: characteristics. The volume of the stagnation region is dependent on the shock deta. hment distance. Therefore, much of the knowledge of the flow characteristics is dependent on the knowledge of the shock location. Experiments have been performed on wind tunnels to study the shock location. However, few experiments have been made to study thi problem under free flight
conditions. Also, the studies which have been made and the derived relationships are lacking as tests have not been attempted to determine their reliability.

It is apparent that the community recognizes the need for improved hypersonic design theory. One of the important areas is the prediction of shock detachment distance. It is important to the computation of not only heat transfer but also pressure distributions and drag on the forepart of the vehicle. This has been pointed out by Serbin [1], Ambrosio and Wortman [2], DiDonato and Zondek [3], Heberle, Wood, and Gooderum [4], and Love [5].

The lack of purely theoretical models for the prediction of shock detachment distance at transonic and supersonic velocities has led to the natural consequence of an experimental approach. This is to be expected and in addition the theoretical hypothesis is inevitable subject to experimental verification. For this reason, one can also expect to contribute to scientific progress by the inverted approach of formulating model of the mathematical relationships between physical variables by experimentation. However, the relationships derived are subject to experimental control, measurement accuracy, human error, and many other sources of unexplained or unaccounted for deviations from the true universal relationships.

In the direct approach (i.e., the a priori derivation of a mathematical model) quite often ideal physical conditions are assumed and aimplifying mathematical assumptions are made which depart from the real case. Therefore, one cannot be sure of the theory nor can one be certain of the experimental data. Yet, in scientific endeavor, exacting conclusions are often drawn by the comparison of an idealized hyputhesis and real case data. That is, both quantities are coupled to each other and not to an independent estimate of the deviation present.

Ernpirical models of the shock detachment distance for blunt bodies of revolution have been made by Serbin [1], Ambrosio and Wortman \{2] and Heberle, Wood, and Gooderum [4]. The data were obtained by the: $:$ authors using moving streams oi air surrounding stationary spheres (i.e., radius nosec bodies) in such experimental devices as wind tunnels and jet nozzles. Both oi these devices have two common disadvantages. The gaseous medium is in a state of expansicii jllst prior to the shock
compression. Also, holding devices are present in the flow around the body which cause perturbations in the flow. The flow is often not uniform in cross section. The measurcments, therefore, include these perturbations and do not represent the real case of a vehicle in frec flight.

Serbin [1] derived the following relationship for a sphere:

$$
\begin{equation*}
\frac{\Delta}{R}=2 / 3(K-1)^{-1} \tag{1}
\end{equation*}
$$

Ambrosio and Wortman ${ }^{2}$ derived the following relationship:

$$
\begin{equation*}
\frac{\Delta}{R}=0.143 \mathrm{e}^{3.24 / \mathrm{M}^{2}} \tag{2}
\end{equation*}
$$

and Heberle, Wood, and Gooderum ${ }^{4}$ derived this relationship:

$$
\begin{equation*}
\frac{\Delta}{R}=4 / 3(M-1)^{-1 / 3} \tag{3}
\end{equation*}
$$

Each author stated that agreement between the model and the data was very satisfactory. However, the standard by which this was determine was not stated or explained. This type of unexplained, seemingly arbitrary, acceptance of a model and data appeared to be typical.

A machine literature search was macle. In this search, over 100, 000 ciocunconts were screened and matched by computer on the basis of key words and terms in aerodynamics and statistics. This was done to determine if, in the past, any use of statistics in testing aerodynamic experimental data had been done. Not one document was found during the search. However, this is not to imply that statistics have not been used. Apparently, it is either not a prevalent or accepted practice or possibly has not been reported.

Ambrosio and Wortman [6] did attempt the use of some simpie statistical methods. This was done to the extent oi computing the mean, the absolute mean, and the standard deviation. However, it was not for the purpose of testing the reliability of their data and model but to objectively establish the relative worth of their model as compared to Serbin[1].

This work has two objectives as follows:

1) To develop an empirical model oi shock Getachment distance as a tunction of Mach number and vehicle nose radius with experimental data obtained under free flight conditions
2) I'o subject this model and data to analysis by statistical methods to objectively define the level of conficience of stich a mosel.

11. EXPERIMENTAL PROCEDURES.

1. Design

The shock detachment distance can be described acrodynamically for radius nosed bodies of revolution as:

$$
\begin{equation*}
\Delta=f(M, R) \tag{4}
\end{equation*}
$$

Explicit models of several investigalors were mentioned in the introcluc. rion.

Statistically, the model can be expressed as:

$$
\begin{equation*}
\Delta=\mu+M_{i}+R_{j}-M R_{i j}+\epsilon_{k(i j)} \tag{5}
\end{equation*}
$$

The model contains two independent factors, Mach number (M_{i}) and body radius $\left(R_{j}\right)$. It also contains a sccond order effect, the $M R_{i j}$ interaction.

The design of the experiment required consideration of both the aerodynanic and the statistical aspects. Past experience indicated that the shock detachnent distance was a nonlinear function of Mach number (M) and a linear function of radius (R) The objectives of the experiment are to determine if the linear and quadratic effects of Mach number and radius contribute significantly to the shock detachment distance. Also, it was desired to determine if a second order or interaction effect between radius and Mach number contributes significantly to the shock location. The analysis of variance is a useful tool for this. In addition, it was also desired to develop an empirical model of the functional relationships between the independent and aependent variables. Aregression analysis was planned for this.

The analysis of data by regression calculation can be simplified by the equal spacing of the independent variables which permits the use of orthogonal polynomials. This helps also in the subsequent adjustment arising from the discarding of insignificant variables or the addition of new terms. One objective of the experiment is to estimate the slope of the regresion. The slope of a regression is estimated more precisely if the values of the independent variables are selected with equal spacing at the extremes of the quantified ranges of the variable. This is because interpolation is more reliable than extrapolation and the computations are simplified.

The effects of the main factors in this experiment could not be considered theoreticaily independent. Therefore, it is necessary to replicate the experiment within cells of all factor levels in order to test for interactions between factors and to estimate the experimental error. Since one objective is to statistically test for interaction, the analysis of variance will enable the test of interaction and estimates of error variance. The two best tests for statistical analysis of the aerodynamic experiment are the analysis of variance and the multivariate regreasion analysis. The experimental deaign most efficient for these methods is the factorial experiment with replication.

The factorial experiment enables one to test the effects of Mach number (M) and radius (R) on the shock location (Δ) over the ranges of interest of M and R at each factor level. It also promotes testing for the existence of interaction between M and R and the effect of interaction on Δ. One is also able to differentiate interaction effects from main effects. In addition, it allows the determination of confidence limits for the estimates of main and interaction effects based on the estimate of experimental error derived from replication.

Therefore, the experiment was designed as a fixed model 3^{2} factorial. Both the radius and Mach number factors are equispaced three level, fixed and quantitative. The Mach number range of interest was 1.0 to 4.5. The levels selected were $M_{1}=1.1$ to $1.5, M_{2}=2.5$ to 2.9 , and $M_{3}=3.9$ to 4.3. The radii selected were nose to base radius ratios of $R_{1}=1.0, R_{2}=0.7$, and $R_{3}=0.4$. The experiment was replicated three times in each factor cell; therefore, a total of 27 observations was recorded ($\mathrm{N}=3 \times 3 \times 3=27$).

All 27 responses could not be obtainec in 1 ciay．Therefore，to compensate lor day－to－day variations in personnel，voltages，aevelof－ ing solutions，film batches，ana printing，the firing sequence was randomized．All combinations of iactors and replicates were listed ani the experimental sequence was rancomizec by use of a ranciom number generator［7］which was entered in a rancom manner．The results of the randomization are shown in Table 1 ．The numbers shown without par－ entheses are the sequence of firing while the numbers in parentheses are the corresponding round identification numbers．Table I also shows the factor levels selected for the experiment．

Table I．Randomized Experimental Sequence

Notes：
1．Numbers without parentheses are randomly determined progran：firing sequence．

2．Numbers with parentheses are for experiment identification．

The radii of the models are discrete levels. The Mach number levele are discrete intervals as it is almost impossible to duplicate exact velocities by this method of experiment. This is due to variations in propellants, model material homogeneity, and model-launch tube interference. The Mach number levels chosen were fixed in selected range between Mach 1.0 and 4.5 which is the velocity regime of interest in this aerodynamic study. As a two factor fixed model experiment, it is assumed that μ is a fixed constant and the $k(i j){ }^{\prime} s$ are normally and independently distributed with a zero mean.
2. Procedure

The experimental data were obtained on the Physical Sciences Laboratory's free flight aeroballistic range. Figure 1 shows the experimental apparatus. It consists of a light gas gun for launching the models, and altitude aimulation chamber, a shadowgraph and a Schlieren system for photographing the model and the flow around the model. Also, sutmicrosecond electronic counters to determine the model's time of flight are included.

The aerudynamic data required from this experiment are the radius of the model, the Mach number of the model, and the detachment distance of the shock. The radius of each model was known as the models were formed in accurately machined dies. Their geometries are shown in Figure 2. The models were made of copper coated lead. The Mach number,is determined by taking the ratio of the model velocity to the acoustic velocity when the photographs are made. The acoustic velocity is computed as shown in Appendix A. It is seen that the acoustic velocity varies as the square root of the temperature and specific heat ratio. The temperature was recorded at the time of launching each model. The specific heat ratio was taken as 1.4 . The model velocity was computed by taking the ratio of the distance between the shadowgraph and Schlieren stations to the time recorded on the counter. The distance between the shadowgraph and Schlieren stations is a constant of 5 feet. It was assumed that the deceleration of the model over 5 feet was linear; therefore, the velocity computed was the velocity of the model midpoint between the two stations.

Photographs of the model showing the shock detachment distance were taken by both the shadowgraph and Schlieren systems The measure of the shock detachment distance from either one of these photos

Figure 1. Arrangement of Experimental Apparatus

530

$n_{2}=0.7$

Figure 2. Sketch of Exparimental Flight Modele
would not coincide with the velocity of the model. Therefore, with the assumption of lincarity, the shock detachment distance was corrected to the velocity computation. The correction of the detachment distance required the consideration of the magnification factors for the photographs. The magnification factor for the shadowgraph camera was 1.009 and the Schlieren camera was 0.855 . The photo reader upon which the negatives were read was calibrated at 3502 electronic counts per inch in the plane of the negative on the photo reader. The shock detachment distance was read in counts from both the shadowgraph and Schlieren negatives. The detachment distance and radius of each type model was corrected to counts as follows:

$$
\begin{equation*}
\Delta=\delta_{s h} F_{s c}+\delta_{s c} F_{s h} \tag{6}
\end{equation*}
$$

and
(7)

$$
R=2 \times C \times R_{b} \times F_{s h} \times F_{g c} \times R_{r}
$$

The values of Δ and R computed for each round are shown in Table II. A sketch of a typical shock detachment distance as taken by the shadowgraph and Schlieren is ohown in Figure 3.

The experimental data obtained from the experimental program are compiled in Table II. The data are tabulated and identified by the round number assigned on the aeroballistic range. Computations of certain data presented in Table II are shown in Appendix. A. The data from round number 75 were used to show a typical example of the computational procedures.

Figure 3. Sketch of Typical Shock Datachment
Table II. Compilation of Experimental Data

$\ln _{10}$		Nooe Reding (COMnta)	Mach Range	$\begin{gathered} \text { Teapp } \\ \left\langle{ }^{\prime} \mathbb{1}\right\rangle \end{gathered}$	$\begin{gathered} \text { Soale } \\ \text { VoL } \\ (4,0) \end{gathered}$	$\begin{aligned} & \text { Model } \\ & \text { Vol. } \\ & (f \mathrm{pec} \end{aligned}$	Mach No. \mathbf{v} / \mathbf{L}		Schlieren (Cocanta)	$\left.\right\|_{\text {(Counts) }} ^{\Delta}$	$\frac{\Delta}{1}$
			M_{1}	71	1131	1416	1.252	390	373	710	1.049
71	$\mathrm{m}_{1}=1.0$	676.74	1.1-1.5	31	1131	1303	1. 152	540	543	1010	1.492
4				73	1133	1342	1.184	487	450	870	1.286
56				75	1135	3142	2.768	73	36	99	0.146
57	$m_{1}=2.0$	676.74	2.5-2.9	33	1133	2969	2.620	74	32	99	0.146
63				72	1132	3215	2.840	92	45	128	0.189
6				12	1132	4541	4.011	102	63	- 151	0.223
54	E m_{1} - 1.0	676.34	3.9-4.3	72	1132	4174	3.952	6	37	9	0.139
99				72	1132	4500	3.975	69	36	95	0.140
61				71	1131	1329	1.175	342	396	692	1.461
72	$\mathrm{E}_{\mathrm{n}}=0.7$	473.72	1.1-1.5	71	1132	1156	1.022	1360	1436	2595	5.478
13				11	1131	1264	1.118	482	486	910	1.921
0			m_{2}	71	2231	3162	2.778	106	36	127	0.268
76	$\mathrm{B}_{8}=0.7$	473.72	2.5-2.9	11	1131	3069	2.714	56	61	19	0.188
0				74	1134	3259	2.874	91	42	120	0.253
50				72	1132	4864	3.943	61	34	86	0.182
76	$x_{0}=0.7$	473.72	3.9-6.3	71	1131	4516	3.993	6	21	35	0.179
4				71	1131	4500	3.979	75	33	97	0.235
				71	1138	1478	1.307	142	157	230	1.034
4	me 0.4	278.70	1.1-1.5	73	1133	1284	1.133	332	320	607	2.243
				72	1232	1326	1.171	258	240	670	1.736
				73	1133	3306	2.900	50	15	61	0.226
6	n $=0.4$	270.70	2.5-2.9	71	1132	3242	2.866	\cdots	21	76	0.280
6				76	1129	3599	3.179	32	23	17	0.321
				76	1129	4730	4.190	33	27	55	0.203
53	$\mathrm{B}_{1}=0.4$	27a. 70	3.9-4.3	72	1832	4208	3.78	4	20	57	0.710
90				10	1129	4642	4.112	4	21	39	0.217

III. ANALYSES. The data obtained trom the experiateni ate pite sented in Table II. The observations taken as the dimensionless ratio of the standoff distance divided by the model radius are presented in the factorial design layout in Table ill along with some computations in preparation for performing an analysis of variance. The statistical computations are presented in Appendix B.

The gathering of the data, the analysis, and derivation of the model of the functional relationships from the experimental observations are vased on certain aerodynamic and statistical assumptions. These assumptions are:

1) Small angles of attack of the models (i.e., less than 2°) do not significantly effect the detachment distance.
2) The models were free from ablation products in the stagnation region.
3) The effects of gas constituent dissociation on the dynamics of flow was insignificant.
4) The effects of spin stabilization on the dynamics of flow was insigniticant.
5) The effect of the conical section of two of the models on the dynamies oi the flow was insignificant (i.e., all projectiles were hemispheres oi various radii).
6) The experimental error is normally and independently distributed.
7) The experimental precision is essentially the same ior all factor combinations.
8) The factors were fixed at discrete levels so, therefore, are not independent oi each other.

Assumptions 1 theough 5 are made concerning the aerodynamics of the experiment. These represent sources of variation which are considered negligible. Thry cannot be separated explicitly from the main

Table III．Data Layout for Shock Detachment Experiment

	Mach Number Ragion			$\mathbf{\Sigma x}{ }_{\mathbf{j}}$ ．	$\mathbf{X}_{\mathbf{j}}$ 。
	M_{1}	M_{2}	M，		
$\mathrm{R}_{1}=1.0$	1.049	0.146	0.223	4.810	0．5344
	1.492	0.146	0.139		
	1.286	0.189	0.140		
	3.827	0.481	0.502		
品	1.461	0.268	0.182		
$g R_{2}=0.7$	5.478	0.188	0.179	10．135	1.126
品	1.921	0.253	0.205		
耑	8.860	0.709	0.566		
	1.034	0.225	0.203		
$\mathrm{R}_{3}=0.4$	2． 243	0.280	0.210	6． 469	0.719
	1.736	0.321	0.217		
	5.013	0.826	0.630		
2X．${ }_{1}$	17.700	2.016	1.698	2X．F 21.414	
$\mathrm{X}_{1} 1$	1.967	0.244	0.189	X．．$\quad 0.793$	
				22\％．－ 30.7464	

and interaction effects. It is important to note that, even though conmidered negligible, these variations are present and are atatistically accounted for by summation into experimental error. The statistical assumptions 6 through 8 allude to these conditions.

1. Analysis of Variance

The experiment was described in Section II by the atatiatical model
(8)

$$
\Delta=\mu+M_{i}+R_{j}+M R_{i j}+\epsilon_{k(i j)}
$$

The theoretical model underlying the analysis of variance assumes that each experimental response of the shock detachment distance (Δ) is the algebraic sum of:

1) An overall mean of the detachment distance, μ (i, e, true standoff dimtance)
2) A Mach number effect on the standoff distance, M_{i}
3) A radius effect on the standoff distance, R_{j}
4) An interaction effect on the standoff distance, $M R_{i j}$
5) A random residual error (experimental), $k(i j)$.

Since the model is a fixed model, none of the effects can be measured absolutely. They can be measured only as differential deviations, i.e., the M_{i} as deviations from μ, the R_{j} as deviations from μ, and the $M R_{i j}$ as deviations from $M_{i}+R_{j}$.

The results of the analysis of variance are shown in Table IV. The computations are presented in Appendix B.

From Table IV, it can be seen that the main effects of radius have apparently no significant effect on the shock detachment distance at the 95 percent level of confidence. The linear and quadratic effects are also insignificant. The quadratic effects of radius seem to have the most effect on the standoff distance. They would be significant at the 80 percent level of confidence though still not significant at the 95 per cent level.
Table IV. Analysis of Variance

Semee of Variation	Degrees Freedom (d. L)	Sum of Squaree (SS)	Mean Square (145)	F Value (Computed)		$\begin{gathered} \text { Expected Meas } \\ \text { Square } \end{gathered}$	
						EMS	Totil
	2	1.6499	0. 8249	1.410	3.55	$\sigma_{4}^{2}+\theta_{R}^{2}$	
E_{1}	1	0. 1529	0. 1529	0.261	4.41	$\sigma_{R}^{2}=0.027$	1. 35
$\mathrm{E}_{\mathbf{q}}$	1	1.4970	1.4970	2.560	4.41		
Mact Mo. (M)	2	12.5583	9. 2991	15.904	3. 55%	$\sigma_{e}^{2}+\sigma_{M}^{2}$	
M_{1}	1	14.3146	14.3146	24.481	4.41*	\% ${ }^{8}=0.967$	39. 5
M_{4}	1	42837	4.2837	3.478	4.410		
berraction ($\mathrm{NaR}_{i j}$)	4	- 22485	0.7471	1. 277	2.93	$\sigma_{8}^{2}+3 \sigma_{\text {mR }}$	3. 30
Em_{2}	1	0.00ss	0.0055	0.146	4.41	$S_{\text {MRR }}^{2}=0.054$	
$\mathrm{Rq}^{\text {M }}$	1	2.1900	2. 1980	3.759	4.41		
$\mathrm{E}_{\mathbf{R}} \mathrm{Ma}_{\text {q }}$	1	2. 0108	0.0108	0.018	4.41		
$\mathrm{P}_{4} \mathrm{Na}_{4}$	1	0. 6942	0.6942	1. 187	4.41		
Error Mal	18	10.5261	0.5867				
						$\sigma_{8}^{2}=0.585$	35. 30
Tocal	26	33.7628					

Lable H. Analysis of Variance

- -

'The Mach number is significant at the 95 percent level of confidence. The computed value in the F test is greater than the F distribution table value by a factor of about 5. The linear and quadratic effects are also significant. The linear effect of the Mach number factur was found to be more significant than the quadratic effect.

The analysis of variance also shows that there io apparently no significant effect of the $M R_{i j}$ interaction on the standoff distance. It is interesting to note, however, that of all the combinations of linear and quadratic interactions between Mach numbers and radi s, the quadratic radius and linear Mach number were nost nearly significant at the 95 percent lev-l of confidence. This is congruent with the fact that the test of the quadratic effects of radias and the linear sffects of Mach number was highest in the main effecte tests. Under the interaction effects teats, the computed value of 3.759 for the $R_{q} M_{1}$ combination would be aignificant at the 92 percent level as comparea to 4.41 for the F value at the 95 percent level.

It is also noted in Table IV that the mean square far radias and radius-Mach number interactions were only slightly higher than the mean square for error. On the basis of the assumption that the experimental error is normally distributed between all factors and all levels, then radius and interaction effects do not significantly contribute to shock detachment distance within the limits of this experiment.

The results of the aralyais of variance, as shown in Table IV, ia further analyzed as shown in Figure 4. Figure 4 is the graphic display of the results of the Duncar. range tests as computed in Appendix B. Figure 4 (a), for the Mach number range signifocance test, shows that the M_{1} level (1.1 to 1.5) is significantly different trom the M_{2} and M_{3} levels of 2.5 to 2.9 and 3.9 to 4.3 , respectively. The M_{2} and M_{3} levels were not found to be significantly different from oach other. The radius factor range test as shown in Figure $4(\mathrm{~b})$ shows the radius factor levels not significantly different from each other. The fact that the M_{2} and M_{3} levels are not significantly differeni from each othes will be discussed later in this section.

2. Regression Analysis

The analysis of variance can be performed whether the iactors are quantitative or qualitative. When the factors are quantitative, then

(0) MACH NUMBER RANGE BIONIFICANCE TEST

(b) RADIUS RANGE SIONIFICANCE TEST

I COMMONLY UNDERLINED MEANE ARE NOT SIGNIFICANTLY DIFFERENT AND COULD HAYE COME FROM A COMMON POPULATION)

Figure 4. Graphic Dieplay of Duncan Range Teste

2 regregeinn analysieran he performed on the data. This analysis is especially uefful in the determination of the general functional relationthips of the factors at other than the experintentally assigned levela.
The analysis of variance has led to knowledge of the important factor considered in this experiment which contributes to the shock detachment distance. This was found to be the linear anci quadratic effecte of Marh number. This led to a bivariate regression analysis. The jegresston anclysi ueed was the SNAP Multiple Regression Analysis for the iBin 7090 computer. It was the Army Missile Comman? SrIARE 183 progranis.

As pointed unt, it is realized that the shock detachment distance is not singularly a function of Mach umber. There are other factors which weze net included in this experiment. For the factors considered by the analysis of variance, some knowledge of the main significant factor (Mach number) is now available.

Befcre progressing with the regrestion analysis, the physical aspect! of the hork detachment distance must be considered. The functional rolationship muist be consistent with the aerodynamic concepts of the detachment diatance. The detachment distance is invereely proportional to Mar:h number. That ia;

$$
\begin{equation*}
\Delta=\frac{1}{f\left(\frac{1}{v I}\right)}=f\left(\frac{a}{V}\right) \tag{9}
\end{equation*}
$$

The limits of the functional relationships are then
$\lim f\left(\frac{a}{V}\right)=\lim \frac{1}{f(M)}=\lim \Delta=\infty$
$a \rightarrow 0 \quad M \rightarrow 0$
$\lim f\left(\frac{a}{V}\right)=\lim \frac{1}{f(M)}=\lim \Delta=0$
$a \rightarrow \infty \quad M \rightarrow \infty$
$\lim f\left(\frac{a}{V}\right) \therefore \lim \frac{1}{1(M)}=\lim \Lambda=0$
$V \rightarrow 0 \quad M \rightarrow \infty$

$$
\begin{align*}
& \lim f\left(\frac{a}{V}\right)=\lim \frac{1}{f(M)}=\lim \Delta=\infty \tag{10}\\
& V \rightarrow \infty \quad \\
& \lim f\left(\frac{a}{V}\right)=\lim \frac{1}{f(M)}=\lim \Delta=\text { constant. }
\end{align*}
$$

$$
\mathrm{V} \rightarrow \mathrm{a} \quad \mathrm{M} \rightarrow \mathrm{l}
$$

The functional relationship as determined by the regression analysis should be compatible with these bounds and pass the limit tests.

The computer program is a inear multiple regression analysis. However, the analysis of variance indicated that the linear and quadratic effects of Mach number are significant. Therefore, a transformation was required to make the computer prograrn applicable to the hypothesized relationship. The relationship is hypothesized as
(11)

$$
\Delta=A M^{b} M^{c}
$$

A physical limitation of the functional aspect of Δ is that

$$
\begin{equation*}
\frac{\Delta+R_{n}}{R_{n}}>1 \tag{12}
\end{equation*}
$$

because as the free stream Mach number goes to infinity, the shock is no longer detached but attached and the standoff distance in zero. Thercfore, the desired functional form of the equation is

$$
\begin{equation*}
\frac{\Delta}{R_{n}}=A M^{b} M^{c} \tag{13}
\end{equation*}
$$

which presents the detachment distance as a dimensionless ratio, which is a more usable form for design engineering purposes.

This is not to indicate the deperdence of detachrent distance on body nose radius but to account for differences in body geometry. That ie, the equations of detachment distance for bodies with radius noses cannot be used for sharp pointed bodien such as cones or parely blunt bodies such as right circular cylinders. Therefore, this functional relationship is for a geometric class of bodies, i.e., radius nosed bodies.

Equation (ll) was programmed for the regression analysis by using the natural logarithm transformation. The equation programmed was

$$
\begin{equation*}
\ln \frac{\Delta}{R}=\ln A+b \ln M+c \ln M . \tag{14}
\end{equation*}
$$

In computer language, the equation was

$$
\begin{equation*}
\ln Y=\ln A+b \ln X_{1}+c \ln X_{2} . \tag{15}
\end{equation*}
$$

The values of Δ / R and M were taken from Table II and programmed into the computer, where

$$
\begin{align*}
Y & =\frac{\Delta}{R} \\
X_{1} & =M \tag{16}\\
X_{2} & =M^{2}
\end{align*}
$$

The computer transformed the experimental data to the natural logarithm form.

The results of the computer regression analysis are shown in Table V. The computer made two runs. After the first run, the reaulte are automatically tested for significance ($a=0.05$) and the insignificant variables are dropped. It can be seen that the X_{2} term was dropped by the computer. The data for sun 2 were taken as the final regrestion analysis values. The pure conatant (A), the first coefficient (b), and the regresion coaficient (r) were teated and found significant as shown in Table V and Table VI. The regresaion equation is therefore:

$$
\begin{gather*}
\ln Y=\ln A+b \ln X_{1} \\
\ln Y=\ln 0.7512-1.911 \ln X_{1} . \tag{17}
\end{gather*}
$$

Taking the antilog the equation becomes

$$
Y=2.12 X_{1}^{-1.911}
$$

(18)

$$
Y=\frac{2.12}{x^{1.911}}
$$

or

$$
\begin{equation*}
\frac{\Delta}{R}=\frac{2.12}{(M)^{1.91 I}} \tag{19}
\end{equation*}
$$

with a standard error of estimate of 0.3933 .
3. Testing the Model

Through the use of the analysis of variance, the effect of Mach number on the detachment distance was determined to be significant both linearly and quadratically. Based on thia, a regresaion analyais was used to derive a general mathematical relationship between detachment diatance and Mach number. Certain phyaical limite were prescribed for the form of the equation. These physical limitu are tested as follows:

$$
\text { if } \begin{align*}
M=0, \frac{\Delta}{R} & =\frac{2.12}{(0)^{1.911}} \\
& =\frac{2.12}{0} \tag{20}\\
& =\infty
\end{align*}
$$

Test of Significance of Regression Coofficients A, b hypothesia $A=0$
$t\left(\frac{a}{2}=0.025, d f=25\right)= \pm 2.06$
$t=\frac{0.751177-0}{0.39033 / \sqrt{27}}=10,002>2.06 \begin{gathered}\text { Test significant, reject } \\ \text { hypothesis }\end{gathered}$
$t=\frac{1.910723-0}{0.144127}=13.25>2.06$ Teat aignificant, reject hypothe ine

Table V. Compilation of Regression Analysis Data

Type of Data		Run 1	Run 2
Pure Constant	(A)	0.748900	0.751177
Firat Coefficient	(b)	-27.610352	-1. 910723
Second Coefficient	(c)	12.842773	(dropped)
Standard Deviation Y from Mean		1.084638	1. 084638
Coefficient of Determination	$\left(\mathrm{r}^{2}\right)$	0.878570	0.875469
Multiple Correlation Coefficient	(r)	-0.937321	-0.935665
Variance	${ }^{1} 1.2{ }^{2}$	0.154759	0.152363
Standard Error of Eotimate	$\sigma^{1.2}$	0.393394	0.390337
Standard Deviation of Firat Coefficient	$\sigma^{\circ} \mathrm{b}$	31. 500086	0.144127
Standard Deviation of Second Coefficient	${ }^{\circ} \mathrm{c}$	15.740889	(dropped)
T Value for Coefficient Check afte First Run ($a=0.05$)		2.60	

Teat of Significance of Simple Correlation Coefficient r hypothesis r * 0
$t=\frac{0.935665 .0}{0.152363}=6.14 \geqslant 2.06$
Testaignificant, reject hypothesis
(21)

$$
\text { if } M=1, \frac{\Delta}{R}=\frac{2.12}{(1)^{1.911}}
$$

$=2.12$
(22)

$$
\text { if } \begin{aligned}
M=\infty, \frac{\Delta}{R} & =\frac{2.12}{(n)^{1.911}} \\
& =\frac{2.12}{\infty} \\
& =0 .
\end{aligned}
$$

Therefore, the regression equation has the correct form for the physical limitations. Since Mach number is dimensionless, the inciusion of R gives dimension to Δ. R is not tested for limits of 0 and ∞, as $R=0$ implies a pointed body and $R=\infty$ a flat plate.

Table VI. Compilation of Test Hypotheses

Hypothe sis	df	Frequency Distribution	a	Type Test	Significant	Hypothesis
$R=0$	2,18	F	0.05	1 Tail	No	Accept
$M=0$	2,18	F	0.05	1 Tail	Yes	Reject
$M R=0$	4, 18	F	0.05	1 Tall	No	Accept
$\bar{X}_{e}=\bar{X}_{r}$	26	t	0.05	2 Tail	No	Accept
$\varepsilon_{e}^{2}=\sigma_{r}^{2}$	26	X^{2}	0.05	2 Tail	Yes	Reject
$\bar{X}_{r}=\bar{X}_{\text {aw }}$		2	0.05	2 Tail	No	Accept
$\sigma_{r}^{2}=\sigma_{a w}^{2}$	26	x^{2}	0.05	2 Tall	No	Accept
$A=0$	25	t	0.05	2 Tail	Yes	Reject
$b=0$	25	t	0.05	2 Tail	Yeq	Reject
$r=0$	25	t	0.05	2 Tall	Yes	Reject

Next, the repression model was statistically tested against the experimental data and the Ambrosio-Wortman model mentioned in Section II. These computations are shown in Appendix B. The means and variances for the experimental data, the regression model, and the Ambrotio-Wortman model were computed based on responses computed for the experimental Mach numbers. Table VI shows a compilation of the hypothese for testing the regreasion model means and variances. Table VII showe the computed 95 percent confidence limits of the means for the experiment, the regrension model, and the Ambrosio-Wortman model. The hypothesis that there is no difference between the variance as experimentally determined and as determined by the regression model is the only hypotheses rejected. The hypothesis that there is no ignificant difference between the experimental mean and the regression model mean or between the regression model mean and the AmbrosioWortman model mean are accepted. The test of no significant difference between the regression model variance and the Ambrosio-Wortman model variance is almo accepted.

Table VII. Compilation of 95 Percent Confidence Limity on Meany

Type Mean	Mean Δ / R	Increment	Limits
Experiment	0.793	± 0.451	1.244 to 0.342
Regreasion Model	0.726	± 0.249	0.975 to 0.477
Ambrosio-Wortman	0.687	± 0.293	0.981 to 0.395

The computation for the 95 percent confidence limalts for the experimental responses, the regreusion model, and the Ambroulo-Wortman model are shown in Table VII. The regression model has the narrowest range of values for this level of confidence. However, the X^{2} te at of the difference between the varlances (the second statistical moment) is not significant nor is the difference in their means (the first atatiotical moment). Therefore, even though the limite of the regression model are narrower than the Ambroaio-Wortman model, they are not significantly different.
 of the regression model and the experimental responses is indicative of the insight into the functional relationship between detarhment distance and Mach number obtained by the analysis of variance performed prior io the regression analysis. The fit of the equation by the method of least squares is approaching the true mean as evidenced by the high and significant correlation coefficient (r) of 0.94 (Table V).

In order to deternine the power of the tests between the means of the two models (regression model and Ambrosio-Wortnan model), an operating characteristics curve was computed. The calculations are in Appendix B and the plotted values are shown in Figure 5. From this plot, the probabilities of an acceptance of the hypothesis when it is actually false (type II error) can be determined for selected differences in the means of the two models. For example, the probability of accept ance when the difference between X_{r} and $X_{a w}$ is ± 0.30 is about 65 per:cent, and the probability of rejecting the hypothesis is 35 percent.

Plets of the values of Δ / R computed for Mach numbers from 1 to 8 for the regrecsion mudel and the Ambrosio-Wortman model are shown in Figure 6. The locus of the points for the regression model and the Ambrosio-Wortman model are shown for comparison. There is a region of high curvature or nonlinearity between Mach 1.5 and about Mach 2.5 with the curves becoming asymptotic beyond 2.5. The Ambroslo-Wortman model becomes asymptotic to a Δ / R value of 0.143 , whereas the regression model han a zero asymptote, the ultimate physical limit. As mentioned earlier in this section, the Duncarl range test indicated that the M_{1} level was significantiy different from the M_{p} and M_{3} level. Figure 6 shows the curve becoming essentially asymptotic at about Mach 2.5 or at about the beginning of the M_{2} factor level.

IV. SUMMARY. This experimental and analytical exercise has led to the development of a mathematical model of shock detachment distance. This mudel has been statistically tested for significance on the basis of comparison with several universal frequency distributions. The hypotheses made and testedare compiled in Table YI.

The hypothesis that the radius has no effect on the detachment distance was accepted. This does not mean that radius has no effect on the shock detachment ciatance but that, within the limits of the tesis, a significant effect cannot be detected. That :s, one cannot reject the hypothesia.

The hypothesis that the Mach number has no effect on the detachment distarice was rejected. Mach number is apparently a significant contributor to shock lucation. This means that within the limits of the test a significant variance 9880 iated with Mach number is detectable and can. not be attributed to experimental error.

The hypothesis that the MR interaction has no eifect on detachment distance was also acceptec. This hypothesis is accepted finz similar reasonn as the hypothesis on radius eifects. From Table IV, the ANOVA table, it can be seen that the radius effect accounts for only 1. 65 percent oi the total expected mean square of the experiment. Mach number accounts for 59.25 percent, $M R$ inceraction accounts for 3.30 percent; and error accounts for 35.80 percent. It is pointed out that the variance attributable to variables not included in the experiment could be summed in the Mach number factor, which if separated woulii reduce the detectable effects of Mach number. For example, body suriace roughness, free stream dencity, and humidity, possible sources not included in the experiment, may significantly effect shock location.

The hypothesis on the dertved regression constants, coefficient, correlation coefficient were all rejected. This implies that these values were significantly different from the values one would derive from data where there was no correlation between the variables included in the analysis. The standard error of estimate of 0.390337 shows that the fit for the universe line of regriasion is good but not periect. For a perfect fit, the standard error of estima ee would be zero and the correlation coefficient 1.0 instead of 0.935665 . This emphasizes the fact that all variables which affect the shock location are not included and all
variances present have not been accounted for. However, the model does
 that is "explained" by the independent variable (M).

The mean of the experimental data was not found to be significantly different from the mean of the regression medel, whereas the variances were significantly different. However, since the variance test is a more sensitive test (i.e., the second atatistical moments as compareid to the first statistical moment), it is believed that this also attributes to the reliability of the model. The mean of the regression model was not found to be significantly different from the mean of the AmbrosioWortman model. This was also true for the variances of the two models. This indicates that within the limits of this investigation there is ne significant difference between the model derived from wind tunnel data and free flight data. That is, the hypothesis that the pertruations of holding devices and expanding flow in wind tunnel testsincrease the variance of main effecte or experimental effects cannot be detected. This is not to say that they do not. It is indicated in Table VII that the regression model is to some degree more accurate than the AmbrosioWortman model as the 95 percent confidence limits on the means are more narrow but not significanily 80 .

Therefore, within the limits of the aerodynamic and statistical assumptions of this investigation, the following general observations are made:

1) The model derived is a reliable model ior the prediction of shock detachment distance as a function of Mach number.
2) The model derived with free flight data is apparently not significantly better than models derived by data from wind tunnels.
3) The use of the statiatical methods for the analysis of data can lead to increased knowledge of the functional relationships of physical variables.
4) The inferences that can be made through the analysia of data by statistical methods are more objective inferences than could ctherwise be made.
5) The use of atatistics in an extremely useful tool for the analyeis of data which are functions of physical relutionships and in many cases lead to increased confidence in the results of the analysia over mere visual inspection of experimental reaponees.
V. SUGGESTED FUTURE STUDIES. The results of this atudy indicate that the shock detechment distance for radius no sed bodics is atrongly a function of Macin number between 1.0 and about 2.5. After 2.5, the detachment diatance ia practically independent of Mach number. This wasestablished by the Duncan range teat which shows that there is apparently no significant difference between the responser obtained at the M_{2} (2.5 to 2.9) and the M_{3} level (3.9 to 4.3). Therefore, it deems appropriate to perform futire studies in the Mach range of 1.0 to 2.5 to obtan a better understanding of the function where the variation is most sensitive. This will provide a better estimate of the universe ragression line of the shock detachment distance in this velocity range.

Another important point to consider for future experimental studies is to confound the delly variation with a selected interaction, since this utudy show that there is apparently no aignificant effect of interaction on the shock detachment distance. In this study, the dey effect was confounded with the experimental error and main effecte through rendomization of all factor levele and combinations with days, Another approach would be through design, to confound a priori the day effects with the interaction. Thia would separate the variance due to day effect: from the experimental error and main effects and may result in a moresensitive teat for main effects. However, this dose not necessarily follow because the degrees of freedom for error would be reduced for the same number of reaponses, If the day effecte are not large, the separation of the day effects may not be sufficient to offset the reduction in error degrees of freedom. This would require judg ment in future designs. In thin study, it is believed that it was advantageous to randomly distribute the day effects rather than confounding them with the main or secondary effects since one objective was to test for aignificance of interaction.

The very high significance of the Mach number factor indicated that further test should be initiated to include other factors as free stream density and some diacrete levels of body surface roughness (density and body surface roughness effects were summed as experimental error in this atw'y).

A suggested experiment of academic interest would be a 4^{3} factor-
 three factor, four level experiment is suggested in order to test for one degree higher order (cubic) effects. Models of constant radius, tut with four levels of surface roughness, at four levele of free stream density and four levele of velocity would be flown in free flight.

This experiment would enable, through the analysis of variance the determination of cubic, suriace roughnese (S) and density (p) effects in addition to velocity eifecti. Since the first order interartion in this 3tudy $(M R)_{i j}$ wa not significant, the day effecto coula be confounded with the second order interaction (MSp) ijke .

LITERATURE CITED

1. H. Serbin, SUPERSONIC FLOW GROUND BLUNT BODIES, Journal of the Aeronautical Scionces, Vol 25. No. 1, January 1958.
2. A. Anabrosio, and A. Wortman, STAGNATION POINT SHOCK DETACHMENT DISTANCE FOR FLOW AROUND SPHERES AND CYLINDERS, ARS Journal, Yol 32, No. 2, February 1962.
3. DiDonato, and B. Zondok, GALCULATION OF THE TRANSONIC FLOW ABOUT A BLUNT-NOSED BODY WITH A REAR SKIRT, U. S. Naval Weapons Laboratory Unclasifilea Report (undated).
4. National Aivisory Commiltee or Aeronauticu, DATA ON SHAPE AND LOCATION OF DETACHED SHOCK WAVES ON CONES AND SPHERES by J. W. Heberle, G. P. Wood, and P. B. Gooderam, Jailuary 1959. TN 2000.
5. Natiomal Advisory Committee on Aeronautica, A RE-EXAMINATION OF THE USE OF SIMPLE CCNCEPTS FOR PREDICTING THE SHAPE AND LDCATION OF DETACHED SHOCK WAVES by E. S. Love, December 1957, TN 4170.
6. A. Aribrosio, and A. Wortman, STAGNATION-POINT SHOCKDETACHMENT DISTANCE FOR FLOW AROUND SPHERES AND CYLINDERS IN AIR, Journal of the Aorospace Sclencos, Vol 29, No. 7, July 1962.
7. A. J. Duncan, QUALITY CONTROL AND INDUSTRIAL STATISTICS, Homewood, Illinols, Richard D. Irwin, Inc., 1959.

Appendix A
EXPERIMENTAL COMPUTATIONS

Sonic velocity was computed for each round from the following equation:
(A-1)
$a=\sqrt{\gamma R_{0} T}$.

Model velocity was computed for each round from the following equaticin:
(A.2)
$V=\frac{5 \text { feet }}{t}$.
Mach number was computed fo: each round from the following equation:
(A-3)
$M=\frac{V}{a}$.

The magnification factors for the chadowgraph ($F_{\text {eh }}$) and Schlieren ($F_{s c}$) bytems were computed for all round from the following equation:

The computed valuen are:

$$
F_{s h}=\frac{0.226}{0.224}=1.009
$$

(A-5)

$$
F_{s h}=\frac{0.1915}{0.224}=0.855 .
$$

Shock detachment distance and model radius correcting for magnification and location was computed as follows:

$$
\frac{\Delta}{R}=\frac{{\frac{{ }_{s c}}{R_{s c}}+{ }_{\mathrm{sin}}^{R_{s h}}}_{2}^{2}}{2}
$$

but

$$
R_{s c(\text { counta })}=C \times R_{b} \times F_{e c} \times R_{5}
$$

(A-7)

$$
\begin{equation*}
R_{s h(\text { counts })}=C \times R_{b} \times F_{s h} \times R_{r} \tag{A-7}
\end{equation*}
$$

therefore

(A-B)

Therefore,
(A-9)
Δ (counte corrected) $=8 \mathrm{sc}^{\mathrm{F}} \mathrm{sh}^{8} \mathrm{on}^{\mathrm{F}} \mathrm{sc}$
and
(A-9)

$$
R(\text { count } \text { corrected })=2\left(C \times R_{b} \times F_{s c} \times F_{s h} \times R_{F}\right)
$$

Example computatione for round 75 a shown in Table II.

$$
\begin{aligned}
a & =\sqrt{1.4 \times 1715 \times(460+71)} \\
& =1131 \\
v & =\frac{5 \mathrm{ft}}{0.00353180 c^{*}}=1416
\end{aligned}
$$

Whis value for round 75 and all other rounde obtained from submicroaecond electronic counters as recorded in aeroballiatic data log.

$$
\begin{aligned}
(\text { A-10) M } & =\frac{1416}{1131}=1.252 \\
\Delta & =373(0.855)+390(1.00 \%)=710.46(\text { counts }) \\
R_{1} & =2(3502 \times 0.112 \times 1.009 \times 0.855 \times 1.0) \\
& =676.74(\text { counts }) \\
\frac{\Delta}{R} & \frac{710.46}{676.74}=1.049 .
\end{aligned}
$$

Appendix B
 STATISTICAL COMPUTATIONS

1. Analysis of Variance

The computations for the analysis of variance was made fron. the data shown in Table III.

Sums of squares are listed below.
Total sum of squares

$$
S S_{t}=\sum_{i j k}^{a b \Sigma} \sum^{2} \ldots-\frac{\left(\Sigma X_{1}\right)^{2}}{r a b}
$$

(B-1)
$=50.746-\frac{(21.414)^{2}}{3.3 .3}$
$=33.7628$.

Sum of squares due to radius

$$
\begin{aligned}
S S_{R} & =\frac{\sum_{j} X_{j}^{2}}{j r a} \cdot \frac{\Sigma X_{i} \cdot 2}{r a b} \\
& =\frac{(4.810)^{2}+(10.135)^{2}+(6.469)^{2}}{9} \cdot \frac{(21.414)^{2}}{27} \\
& =18.6335-16.9836 \\
& =1.6499 .
\end{aligned}
$$

Sum of squares due to Mach number.

$$
\begin{align*}
\mathrm{Ss}_{\mathrm{M}} & =\frac{\Sigma X 1_{i}^{2}}{i r b}-\frac{\Sigma X . .^{2}}{r a t} \\
& =\frac{(17.700)^{2}+(0.481)^{2}+(0.502)^{2}}{9}-\frac{(21.414)^{2}}{27} \tag{B-3}\\
& =35.5819-16.9836 \\
& =18.5983 .
\end{align*}
$$

Sum of squares due to MR interaction

$$
\begin{aligned}
(B-4) \quad & \quad S S_{M R}=\frac{\Sigma \Sigma X^{2} \ldots}{r} \cdot \frac{a}{i} X_{i} \cdot{ }_{i b}^{r b} \cdot \frac{X_{j}}{r a}+\frac{x^{2} \ldots}{r a b} \\
& (3.87)^{2}+(0.481)^{2}+(0.502)^{2}+ \\
& (8.860)^{2}+(0.799)^{2}+(0.566)^{2}+ \\
= & \frac{(5.0 j 3)^{2}+(0.826)^{2}+(9.630)^{2}}{3}=1.6499-18.5989-16.9836 \\
= & 2.9885 .
\end{aligned}
$$

Sum of squares due to error

$$
\begin{align*}
S S_{t} & =S S_{t}-S S_{F}-S S_{M}-S S_{M R} \\
& =33.7628-1.6499-18.5983-2.9885 \tag{B-5}\\
& =10.5261 .
\end{align*}
$$

Sum of squares due to linear and quadratic effects within main and interaction effects. (Coefficients of orthogonal polynomials) ${ }^{l}$

[^1]\[

$$
\begin{aligned}
& \delta S_{R Q}=\frac{[-1(4.910)+0(10.135)+1(6.469)]^{2}}{3.3 .2}-0.1569 \\
& S S_{R q}=\frac{[1(4.810)+-2(10.135)+1(6.469)]^{2}}{3.3 .6}=1.4970 \\
& S_{M l}=\frac{\left[.1(17.70)+0(2.016)^{2}+1(1.698)\right]^{2}}{0.2}=14.3146 \\
& (B-6) \quad S_{M q}=\frac{\left[1(17.70)+\frac{-2(2.016)+1(1.698)]^{2}}{3.1 .5}=4.28 .37, ~(1)\right.}{1} \\
& S_{R_{\ell} M l}=\frac{[1(3.827)+-1(0.502)+-1(5.013)+1(0.630)]^{2}}{3 .}=0.08551 \\
& S S_{R q M l}=\frac{[-1(3.827)+1(0.502)+2(8.860)+-2(0.566)+-1(5.013)+1(0.630)]^{2}}{3.12} \\
& =2.198 \\
& S S_{R l M 4}=\frac{[-1(3.827)+2(0.481)+-1(0.502)+1(5.013)+-2(0.826)+1(0.630)]^{2}}{3.12} \\
& =0.0108 \\
& \therefore S_{12 \mathrm{qMq}}=\frac{\begin{array}{l}
{[+1(3.827)+-2(0.481)+1(0.502)+-2(8.860)+4(0.709)}
\end{array}}{-2(0.366)++1(5.013)+-2(0.826)+1(0.630) 2^{2}} 3 \\
& =0.6940 .
\end{aligned}
$$
\]

2. Multiple Range Testa

Multiple range teste are listed bolow.
a. Mach Number Effect:
(E-7)
$\bar{X}_{i} \cdot$ tratmonte $\frac{1.967}{1} \frac{0.224}{2} \frac{0.188}{3}$

Error mean square $=0.5847$ with $18 \mathrm{~d} . f$.
Standard error of mean is
$(\mathrm{B}-8) \quad \mathrm{S}_{\bar{X}_{i} .}=\sqrt{\frac{\text { Error MS }}{\text { No. of Ob: }}}=\sqrt{\frac{0.5847}{9}}=0.2545$.
From Table $E_{1}{ }^{1}\left(a=0.05 n_{2}=18\right)$ the aignificant ranges are

$$
\begin{array}{lll}
\mathrm{p} & =\frac{2}{2.97} \quad \frac{3}{3.12} . \tag{B-9}\\
\text { ranges } & =\frac{1}{2.9}
\end{array}
$$

Multiplying p values by $S_{\bar{X}_{i}}$, the least significant ranges are (B-10)

$$
\begin{aligned}
& \mathrm{p} \\
& \mathrm{LSR}
\end{aligned}=\frac{2}{0.756} \quad \frac{3}{0.796}
$$

Largeat versus smallest:

$(B-11) \quad 1.967-0.224=1.743>0.796 \%($ aigndficant $)$
Largest versus aecond smallest:
$(B-12) \quad 1.967-0.189=1.778>0.756 \%$ (significant)
Second largest versua smallest:
(B-13)
$0.224-0.189=$
$0.035<$
0.756
(See Figure 4 for display of results).
b. Radius Effecta
(B-14)

$$
\overline{\mathrm{X}}, j \text { treatments } \frac{1.126}{2} \frac{0.719}{3} \frac{0.534}{1}
$$

Standard error of mean is

[^2]\[

$$
\begin{equation*}
S_{\bar{X}_{j}}=\sqrt{\frac{\text { Error MS }}{\text { No. of Obs. }}}=\sqrt{\frac{0.58 \overline{47}}{9}}=0.2545 \tag{3-15}
\end{equation*}
$$

\]

From Table $E_{1}{ }^{1}\left(a=0.05 n_{2}=18\right)$ the significant ranges are

$$
\begin{align*}
\mathrm{p} & =\frac{2}{2.97} \quad \frac{3}{3.12} . \tag{B-16}
\end{align*}
$$

Muituplying p values by $S_{\bar{X}} ._{j}$, the least significant ranges are

$$
\begin{align*}
& P=\frac{2}{2.756} \quad \frac{3}{0.796} . \tag{B-17}
\end{align*}
$$

Largest versus smallest:

$$
1.126-0.5344=0.5916<0.796
$$

Largest versus second smallest:

$$
1.126-0.719=0.407<0.756
$$

Second largest versus smallest:

$$
0.719-0.534=0.184<0.756
$$

(See Figure 4 for display of results)
3. Computations for Testing the Model
a. Computation of Experiment Mean and Variance
${ }^{1}$ Hicks, loc. cit.

1. 382
2. 618
3. 535
4. 303
0.336
0.288
0.149
0.154
0.152
5. 557
$? 035$
6. 714
0.299

288

035
b. Computation of Regression Model Mean and Variance
$\frac{\bar{X}_{r}}{\bar{X}_{r}} \frac{\left(\bar{X}_{i}-X_{r}\right)^{2}}{0.726} \quad \frac{X_{i}}{0.3303} \quad \frac{\bar{X}_{r}}{-} \quad \frac{\left(X_{i}-\bar{X}_{r}\right)^{2}}{0.1697}$
0.1697
0.1971
0. 3271
0. 3306
0. 3294
0.2970
0.8873
0.7089
0.2025
0.1962
0.2440
0.3469
0. 3124
$\frac{0.142}{\Gamma 19.597}$
0. 3410

$$
\begin{gathered}
\bar{X}_{r}=19.597 / 27=0.726 \\
\sigma_{r}^{2}=11.8449 / 27=0.4387 \\
\sigma_{r}=\sqrt{0.4387}=0.6623
\end{gathered}
$$

c. Computation of Mean and Variance of Ambrosio and Wortman's Model (Z) for the Experimental Conditions of this Study

$$
\text { Model } \frac{\Delta}{\mathrm{R}}=0.143 \mathrm{e}^{3.24 / \mathrm{M}^{2}}
$$

$$
\begin{align*}
& \bar{X}_{\text {aw }}=18.564 / 27=0.6875 \\
& \sigma_{a w}^{2}=16.3939 / 27=0.6072 \tag{B-18}\\
& \sigma_{a w}=\sqrt{0.6072}=0.7792
\end{align*}
$$

95 percent confidence limits on experiment mean
$(B-19) \bar{X}_{e(0.95)}=0.793 \pm \frac{1.139}{\sqrt{n}}(2.06)=0.793 \pm 0.451=1.244$ to 0.342

95 percent confidence limits on regression mean
$(B-20) \bar{X}_{r(0.95)}=0.726 \pm \frac{0.6623}{\sqrt{n}}(1.96)=1726 \pm 0.249=0.975$ to 0.477

95 percent confidence limits on Ambrosio-Wortman Model mean
(B-21)
$X_{\mathrm{aw}}^{(0.95)}=0.6875 \pm \frac{0.7792}{\sqrt{27}}(1.96)=0.6875 \pm 0.293=0.981$ to 0.395 .

d. Tests of Means and Variances

$$
\begin{aligned}
\text { Hypothesis: } \bar{X}_{e} & =\bar{X}_{r} \\
t\left(\frac{a}{2}=0.025 \text { d.f. }+26\right) & = \pm 2.06
\end{aligned}
$$

(B-22)

$$
\mathrm{t}=\frac{\overline{\mathrm{X}}-\bar{X}^{\prime}}{\mathrm{S}_{\mathrm{e}} / \sqrt{\mathrm{n}}}=\frac{0.793-0.726}{1.139 / \sqrt{27}}=\frac{0.067}{1.139 / 5.196}=0.305
$$

Computed value less than table value. Test not significant. Accept hypothesis.

$$
\begin{gather*}
\text { Hypothesis: } S_{e}^{2}=\sigma_{r}^{2} \\
x^{2}\left(\frac{a}{2}=0.025 \mathrm{d.f}=26\right)+13.8 \text { to } 41.9 \tag{B-23}\\
X^{2}=n \frac{S_{e}^{2}}{\sigma_{r}^{2}}=27\left(\frac{1.298}{0.4387}\right)=79.885 .
\end{gather*}
$$

Computed value exceeds table value. Test is significantly higher. Reject hypothesis.

$$
\text { Hypothesis: } \bar{X}_{r}=\bar{X}_{a w}
$$

$$
\begin{equation*}
z\left(\frac{a}{2}=0.025\right)= \pm 1.960 \tag{B-24}
\end{equation*}
$$

$$
\sigma_{r-a w}=\sqrt{\frac{0.4387}{27}+\frac{0.6072}{27}}=\sqrt{0.01624+0.02248}=\sqrt{0.03872}=0.1968
$$

$$
z=\frac{0.726-0.687}{0.1968}=+0.1981
$$

Computed value less than table value. Test not significant. Accept hypothesis.
(B-25)

$$
\text { Hypothesis: } \quad \sigma_{\sigma}^{2}=\sigma_{\text {aw }}^{2}
$$

$$
x\left(\frac{a}{2}=0.025 \mathrm{~d} . f .=26\right)=13.8 \text { to } 41.9
$$

$$
x^{2}=\frac{\mathrm{N} \sigma_{r}^{2}}{\sigma_{\mathrm{aw}}^{2}}=27\left(\frac{0.4387}{0.6072}\right)=19.510
$$

Computed value between table values. Test not significant. Accept hypothesis.

e. Computations for Operating Characteristics Curve for Two-Tail Test of Differences, Between the Mean of the Regression Model ($\overline{\mathbf{X}}_{\mathrm{r}}$) and the Mean of the AmbrosioWortman Model ($\mathrm{X}_{\text {aw }}$)

Assumption - the variances are known for both models.

$$
\sigma^{*}=\sqrt{\frac{N_{a w} \sigma_{r}^{2}+N_{r} \sigma^{2}}{N_{a w}+N_{r}}}=\sqrt{\frac{27(0.4387)+27(0.6072)}{27+27}}
$$

(B-26)

$$
=\sqrt{0.52277}=0.7299
$$

These data are plotted in Figure 5.

$\left(\tilde{X}_{\mathrm{r}}-\bar{d}^{\prime} \bar{X}_{a w}\right)$	${ }_{\left.\left(d^{+} /\right)^{\lambda}\right)}$	$\frac{d^{\prime}}{\Gamma-d w}$	$\begin{aligned} & 20.95-d^{\prime} / \sigma_{r-a w} \\ & 1.96-d^{1} / \sigma_{r-a} \end{aligned}$	Probabilliy of Accoptance β	```Prabability of Rajectina L-&```
0	0	$0 \cdot$	1.96	0.95	0,05
0.0492	0.0680	0.25	1.71	0.93	0.07
0.0984	0.1360	0.50	1.46	0.90	0.10
0.1476	0.2040	0.75	1.21	0.86	0.14
0.1968	0.2720	1.00	0.96	0.81	0.19
0. 2460	0.3400	1.25	0.74	0.74	0.26 :
0.2952	0. 4080	1,50	0.46	0.65	0.35
0.3936	0.3440	2.00	-0.04	0. 50	0.50
0.4920	0.680 n	2.50	-0.34	0.32	0.68
0.5904	0.8160	3.00	-1.04	0.17	0.83
0.6888	0. 5520	3.50	-1. 54	0.09	D. 91
0.7872	1.0880	4.00	-2.04	0.05	0. 98

PRESENTATION OF THE FIRST
SAMUEL S. WILKS MEMORIAL MEDAL;*

ACCEPTANCE OF THE FIRST WILKS MEMORIAL AWARD

John W. Tukey

It is indeed a pleasure to have Mrs. Samuel S. Wilks with us this evening for the presentation of the first Samuel S. Wilks Memorial Medal Award.

The Samuel S. Wilks Memorial Award for statisticians was established and announced a year ago at the Tenth Conference on Design of Experiments in Army Research, Development and Testing. An account of the announcement of the Wilks Award is given in the American Statistician for December, 1964. The idea for the Award was due to Major General Leslie E. Simon (Ret.), who gave the opening paper at the Tenth Design of Experiment Conference entitled "The Stimulue of S. S. Wilke to Army Statintics". The Wilk: Memorial Award ia aponsored by the American Statistical Association through the generoaity of Mr. Philip G. Rust, retired industrialist of the Winnatead Plantation, Thomasville, Georgia. The American Statistical Association accepted the obligation of administering the Award and funde in accordance with guidance and criteria which are consonant with law and with the wishes of the Army representatives, Mr . Runt, and the American Statistical Association, The name of the recipient of the Wilka Award is announced each year during the annual Conference on Deaign of Experimenta In Army Reaearch, Development and Testing.

With the approval of the President of the Axrericen Statiatical Ase0ciation the Wilks Award Committee for 1965 consitted of:

Dr. Francie G. Dressel, Duke Univeraity and the Army Repearch Office-Durham
Dr. Churchill Eisenhart, National Bureau of Standarda
Wifer the dinner meeting at the Eleventh Conference on Design of Experimenta in Army Research, Dovelopment and Tosting, the chairman of the conference, Dr. Frank E. Grubbe, gave the above addrens. Profecsor John W. Tukey was presented the firat Wilke Memorial Award. Following hie acceptance of this honor he apoke to the group about bis friend Sam Wilks.

Professor Oscar Kempthorne, lowa State University Dr. Alexander M. Mood, U. S. Office of Education Major General Leshe e. Simon inci.), winter Park Florida
Dr. Frank E. Grubbs, Ballistic Research Laboratories, Aberdeen
Proving Grourd, Maryland - Chairman

The Wilks Award Comnittee met during the annual meeting of the American Statistical Aseociation in Philadelphia on $8-10$ September 1965. Many candidates for the 1965 Wilks Award were considered based on nominations from individuals and also statisticians thought worthy of consideration by the committec.

The Wilks Award is not limited to contributors to design of experiments activities in connection with Army research, development and testing, but rather all statisticians who have made significant contributions to the general field of Army statistical endeavors, whether theoretical or applied, are eligible. Moreover, persons eligible for the award include not only government statisticians but also those froni universities and industry. The annual programs of the Conference on Design of Experiments in Army Research, Development and Testing indicate rather broasly the nature of statistical endeavors of interest to the Army, but the achievement of those being considered for the award need not be restricted to these areas. Rather, abindicated earlier, the awardee is selected for the advancement of scientific or technical knowiodge in statiatical efforts which co-Incidentally will have benefited the Army and government in one way or another.

As a result of the committee meeting, it is a great plessure to announce that Profesior John W. Tukey of Princeton Univeraity has been selected to receive the first Samuel S. Wilks Memorial Medal Awara.

Professor Tukey has long been an authority on the statistical analysis of data and has received wide recogndtion for his many concributions to mathematical statistics and appliod statistic: in many different fields. Professor Tukey has contributed to the Army Design of Experiments Conferences from the beginning and gave freely of his time to promulgatting the uses of statistics in Army applications, DOD applications, Government and industrial applications. The citation for the first Wilks medalist reads as follows:

> To John W. Tukey for his contributions to the theor, nf atatistical inference, his development of procedures for analyzing data, and his influence on applications of statistics in many fields.

Upon receiving the Wilks Medal, Professor Tukey responded as follows:

We are met to honor Sam Wilks' memory. All of ua would have so much preferred to have had him here instead. Many of us knew him for ten or twenty years, some for thirty. No matter whether we knew him initimately as a cluse colleague and friend or only as someone met once a year at such a recurring event as this, we all respected him and all he stood for. In this we are but a small sample.

The memorial minute of the Princeton University faculty begins thus: "Samuel Stanley Wilks died in his sleep on March 7, 1964 at the peak of a distinguished career in teaching, research, and public service. His sudden death, without any warning leaves many friende and associates stunned by a sidden $108 s$ of a man upon whom they depended for advice on problems large and mall, for a wise appraiaal of proposals under conaideration, for getting many.jobs done-a-a man instinctively so friendly and fair that everyone responded to him with great affection. His death terminates a quiet, penetrating, and influential leadership in the work of many organizations---especially in mathematics, statistics, and social science-.-to which he brought wisdom, commitment, persiotence, and a remarkable sense of the importance of new developments. His passing leaves an emptiness in so many plans, that one wonders how one man was so versatile and did so much".

The memorial notice of the American Philosophical Society approaches ite end thus [1]: "In his service to our Society, Sam showed all the wonderful characteristics we have noticed elsewhere: quiet, modest diligence, deep wisdom, a technical skill that was always adequate to any demand; the ability to comprehend, and bring others to comprehend, the broader issues." The notice then ends: "Mosteller's memoir, written for statisticians, was fittingly entitled: "Samuel S. Wilks: Statesman of Statistics". As members of Benjamin Franklin's owr. society it is only right that we salute ourdeparted colleague and friend as "Sam: A Quiet Contributor to Mankind".

On the afternoon of his death Sam told my wife：＂Now that somany
 thetr．．．nt it＇s tims that John and 5 worked out something new to do．＂I
 wnal it would have been masier his leadership，but we can，and will，do wiat besi to make the now Lepartment of Statistices something of which Salli would have been prouc．

For thirty years he kept Ftne Hall atatistics in balancoa contact with mathematics on the one hand and with a wicle variety of applications on ths ofher，showing clearly by his example how it was best to combine both． flis recognition of the dangers of tight Gaussian assumptions led him to pioncer with non－parametric methods．His recognition of the growing amporiance of computing came very early；the first punched card equip－ meit on the：Princeton campus occupied the room next to his office．

As a unified Princeton statistics comes into being and growe，we will do all we can to continue his tradition．We will emphastze the need lor combining contact with mathematics and contact with applications． We will do all we cal to bring statiatics，computer science，and the use of computc：finciliticsevar closcr together．We will try to be ever more realsitic in understanding the problemis of the real warld and in formulat－ ing those palu ropies of real problems，whose solutions serve to guide us is wr lace reality．We can do no less if we are to follow his noble リールい！いい

REFERENCE：

［1］Samuel Stanley Wilks（1906－1964）．1964 Yearbook of the American Philosophic：al Society，147－154．

TAi'GET COVERAGE PROBLEMS

William C. Guenther
University of Wyoming, Laramie, Wyoming

Abstract

Much of the material contained in this paper is a review of literature which has appeared in many different publications. The definiticn of a single shot coverage problem which was given in a paper by Guenther and Terragno [1] in extended to a multiple shot case. The results which were reviewed in referencel appear here in abstracted form since they are useful for the new extenslon, Some models for the multiple shot case are considered in detail. The latter include some for which results have not been previously piblished. It is hoped that this paper will be a coordinating force for future research.

In recent years a large number of publications have appeared on probability probleme arising from ballistic applications. Many of these papers and reports are concerned with topics which are often referred to as coverage problems. A definition of coverage problem, which yielde many interesting models as secial cases, appears in a paper by Guenther and Terragno [1] and will be repraduced here. That definition was for the single shot case but only minor modifications are required to extend it to a multiple shot situation. Further modifications may be necesaary If it is desired that the definition yield certain other problems, which have already been investigated or may be formulated in the future, as special cases.

Although most work in this field has been restricted to the twodimensional case, some applications are meaningful in three dimensions. It is doubtful that the coverage problem has any useful interpretation in more than three dimensions. We will use n-dimensional notation not only because it includes the cases $n=2$ and $n=3$ but also because resulta one derives can occasionally be used in unexpected places where n dimensions are meaningful.

For brevity we will ute the notation $X_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i n}\right)$ and $\int d F\left(X_{i}\right)$ will represent an n-fold integral.

DEFINITION FOR THE SINGLE SHOT CASE, Before attempting to define a coverage problem, let us consider a special case which will help ta introndice anme of the assential ideas and language. Suppose that a point target is located at the origin of a two-dimonsional coordinate eystem. A weapon with killing radius R is aimed at the origin with the intention of destroying the point target. When the weapon arrives at the target, the latter ta located at $X_{2}=\left(x_{21}, x_{22}\right)$, a randomly selected position within or on a circle of radius D centered at the origin (see Figure 1). That

Fig. 1. X_{2} is point target and weapon has kelling radius R.
is, the probability density function of X_{2} is

$$
g\left(x_{21}, x_{22}\right)=\frac{1}{\pi D^{2}}, \quad 0 \leq x_{21}^{2}+x_{22}^{2} \leq D^{2}
$$

Assume that aiming exrors are circularly normally distributed with unit variance so that the center of the lethal circle $X_{1}=\left(x_{11}, x_{12}\right)$ hae p.d.f.

$$
f\left(x_{11}, x_{12}\right)=\frac{1}{2 \cdot \pi} \exp \left[-\frac{1}{2}\left(x_{11}^{2}+x_{12}^{2}\right)\right]
$$

Now a given point X_{2} will be destroyed if the impact point of the weapon is within R units of X_{2}. The probability that this happens is

$$
h\left(x_{21}, x_{22}\right)=\int_{C_{1}} \int_{f\left(x_{11}, x_{12}\right) d x_{11} d x_{12}}
$$

where C_{1} is the region $\left(x_{11}-x_{21}\right)^{2}+\left(x_{12}-x_{22}\right)^{2} \leq R^{2}$. The probability of deatroying the target (that ia, the probability that the impact point is within R unite of the target given that the target is as likely to be at one point as at any other within the circle of radius D) is

$$
P(R, D)=\int_{C_{2}} \int_{21} h\left(x_{21}, x_{22}\right) g\left(x_{21}, x_{22}\right) d x_{21} d x_{22}
$$

where C_{2} is the region $x_{21}^{2}+x_{22}^{2} \leq D^{2}$. The evaluation of $P(R, D)$ for any number of dimensions is discussed in Section 2 of reference 1 and is mentioned in the abstract of that paper which appears in the next section.

Now let us formulate the definition of a coverage problem for the single shot case. Let X_{1} be the impact point of the weapon, X_{2} be the position of the target at the time of impact, $P_{1}\left(X_{1}, X_{2}\right)=$ probability of destroying the target for given values of X_{1} and X_{2} (sometimes called the damage iunction), $F\left(X_{1}\right)=$ the diatribution function of the impact point, $G\left(X_{2}\right)=$ the distribution function of X_{2}. Then

$$
P_{2}\left(x_{2}\right)=\int_{-\infty}^{\infty} P_{1}\left(x_{1}, x_{2}\right) d F\left(x_{1}\right)
$$

$=$ probability a given X_{2} is destroyed
and

$$
P(\cdot)==\int_{-\infty}^{\infty} P_{2}\left(x_{2}\right) d G\left(x_{2}\right)
$$

$=$ probability of destroying a point target whose position is governed by $\mathbf{G}\left(\mathbf{X}_{2}\right)$.

We will define a single shot coverage problem as the computation of a probability of the type $P(\cdot)$, that is, the evaluation of

$$
\begin{equation*}
P(\cdot)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{1}\left(X_{1}, X_{2}\right) d F\left(X_{1}\right) d G\left(X_{2}\right) \tag{1}
\end{equation*}
$$

All three functions $P_{1}\left(X_{1}, X_{2}\right), F\left(X_{1}\right)$, and $G\left(X_{2}\right)$ (and consequently $P(\cdot))$ will in general depend upon parameters.

Although the order of integration in (1) has proven to be the most efficient in the majority of problems which have been studied, there is no reason why that order cannot be reversed if it is profitable to do so. This change gives
(2)

$$
P(\cdot)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{1}\left(x_{1}, x_{2}\right) d G\left(x_{2}\right) d F\left(x_{1}\right)
$$

Several special cases are worthy of consideration. If
(3)
(a) $P_{1}\left(X_{1}, X_{2}\right)=1, \quad X_{1} \in$ region C_{1} (usually a sphere)

$$
=0, \quad \text { otherwise }
$$

(b) $g\left(X_{2}\right)$
$=1$,

$$
x_{2}=B=\left(r_{1}, \ldots, b_{n}\right)
$$

$$
=0, \quad \text { otherwise },
$$

then (1) reduces to
(4)
$P(\cdot) \quad=\int_{C_{1}} d F\left(X_{1}\right)$
which is the probability content of region C_{1} under distribution $F\left(X_{1}\right)$. If (a) of (3) is satisfied (sometimes called a zero-one damage function)
but $G\left(X_{2}\right)$ does not concentrate all the probability at one point, then (1) reduces to

$$
\begin{equation*}
P(\cdot)=\int_{-\infty}^{\infty} \int_{C_{1}} d F\left(X_{1}\right) d G\left(X_{2}\right) \tag{5}
\end{equation*}
$$

where in general C_{1} is defined in terms of both X_{1} and X_{2}.
If X_{2} is uniformly distributed over a region C_{2}, that is

$$
\begin{array}{rlrl}
g\left(X_{2}\right) & =\frac{1}{V\left(C_{2}\right)}, & X_{2}: C_{2} \tag{6}\\
& =0, & & \text { otherwise }
\end{array}
$$

where $\mathrm{V}\left(\mathrm{C}_{2}\right)$ is the volume of C_{2}, and the damage function in zero-one, then $P(\cdot)$ can be interpreted as the expected fraction of overlap of the region of total destruction and a target area C_{2}. To see this integrate in reverse order, Given a value of X_{1} (see Figure 2)

Fig, 2. Circular area of total destruction and target area C_{2}.
X_{2} is captured if itilies in the region common to C_{1} and C_{2}. The probability that happens is

$$
\int_{c_{1} \cap c_{2}} \frac{1}{v\left(c_{2}\right)} d x_{2}=\frac{v\left(x_{1}\right)}{v\left(c_{2}\right)}
$$

where $V\left(X_{1}\right)$ is the volume common to C_{1}, and C_{2} for given X_{1}. Then integrating over X_{1} we get

$$
\int_{-\infty}^{\infty} \frac{V\left(X_{1}\right)}{V\left(C_{2}\right)} d F\left(X_{1}\right)=E\left[\frac{V\left(x_{1}\right)}{V\left(C_{2}\right)}\right]
$$

which is, by definition, the expected fraction overlap. Multiplying the latter result by $V\left(C_{2}\right)$ gives $E\left[V\left(X_{1}\right)\right]$ or the expected overlap.

When the damage function is not of the zero-one type and X_{2} has the density (6), then $P(\cdot)$ can again be interpreted as the fraction of the target area destroyed. This is beat seen by writing $P(\cdot)$ as

$$
P(\cdot)=\int_{C_{2}} P_{2}\left(x_{2}\right) \frac{1}{V\left(C_{2}\right)} d x_{2}
$$

and observing that since $P_{2}\left(X_{2}\right)$ can be interproted as the fraction of the point X_{2} destroyed, $E\left[P_{2}\left(X_{2}\right)\right]$ is the fraction of the target area C_{2} which is destroyed. Morganthaler [2] has used this interpretation.

SOME SPECIFIC RESULTS FOR SINGLE SHOT CASE--GUENTHERTERRAGNO PAPER. A comprehensive review of result for the single shot case has been published by Guenther and Terragno [1]. This paper lists 58 references of which about 30 deal directly with target coverage. A thorough knowledge of results for the single shot case is extremely helpful in the multiple shot situation. This section will be an abstract of that paper.

For most models discussed in the review it is assumed that X_{1} has density

$$
f\left(X_{1}\right)=f\left(x_{11}, \ldots, x_{1 n}\right)
$$

$$
\begin{equation*}
=\left[(2 \pi)^{\frac{1}{2} n} \underset{i=1}{n} \sigma_{1 i}\right]^{-1} \exp \left[-\frac{1}{2} \underset{i=1}{\sum}\left(x_{1 i} / \sigma_{1 i}\right)^{2}\right] \tag{7}
\end{equation*}
$$

Section 1 is devoted to probability content problems, special cases of (4) with the region C_{1} being $\sum_{i=1}^{n}\left(x_{1 i}-b_{i}\right)^{2} \leq R^{2}$. Thus the point B is destroyed if the point of impact is within R units of the fixed point. If all $\sigma_{l i}^{2}=\sigma^{2}$, then $P(\cdot)$ is the integral of a non-central chi-square density function with n degrees of freedom and non-centraltty parameter $\sum_{i=1}^{n} b_{i}^{2} / \sigma^{2}$. Very extensive tables exist for $n=2$, adequate tables for $n=3(1) 30(2) 50(5) 100$. Results are less abundant if the variances are not equal. However, for $B=0, n=2,3$ and $B \neq 0, n=2$, existing tables seem to be quite adequate.

Section 2 describes some special cases of (5). The most interesting results are obtained by using (7) with equal variances for the density. of X_{1} and $\sum_{i=1}^{n}\left(x_{1 i}-x_{2 i}\right)^{2} \leq R^{2}$ for C_{1}. Thus, if X_{1} is within R unite of X_{2}, X_{2} is destroyed. For these cases the probability can be expressed as the integral

$$
\begin{equation*}
P(\cdot)=\int_{-\infty}^{\infty} H\left(\frac{R^{2}}{\sigma^{2}} ; n, \frac{r^{2}}{\sigma^{2}}\right) d G\left(X_{2}\right)=\int_{-\infty}^{\infty} H\left(\frac{R^{2}}{\sigma^{2}} ; n, \frac{r^{2}}{\sigma^{2}}\right) d Q\left(\frac{r}{\sigma}\right) \tag{8}
\end{equation*}
$$

where $H\left(\frac{R^{2}}{\sigma^{2}} ; n, \frac{r^{2}}{\sigma^{2}}\right)$ is the non-central chi-square distribution function with n cegrees of freedom and non-centrality parameter $\sum_{i=1}^{n} x_{2 i}^{2} / \sigma^{2}=r^{2} / \sigma^{2}$, $Q(r / \sigma)$ is the distribution function of r / σ (which is, of course, determined by $G\left(X_{2}\right)$). The evaluation of the integral (8) is discussed for the cases:

1. The diatribution of X_{2} gives equal weight to each point on $\sum_{i=1}^{n} x_{2 i}^{2}=D^{2}$, no weight elsewhere. That is, X_{2} is uniformly
distributed over the surface of a sphere of radius D centered at the origin.
II. X_{2} is uniformly distributed within or on a sphere of radius D centered at the origin. Thus,

$$
\begin{array}{rlrl}
\dot{g}\left(X_{2}\right) & =\frac{1}{V(D)}, \quad \sum_{i=1}^{n} x_{2 i}^{2} \leq D^{2} \\
& =0, & & \text { elsewhere }
\end{array}
$$

where $V(D)$ is the volume of the sphere.
III. X_{2} has a density $g\left(X_{2}\right)$ taking on the form (in spherical coordinates)

$$
\begin{array}{ll}
p\left(r, a_{1}, \ldots, a_{n-1}\right)=\left(2 D \pi^{n-1}\right)^{-1}, \quad & 0 \leqq r \leq D \\
& 0 \leq a \leq \pi, i=1, \ldots, n-2 \\
& 0 \leq a_{n-1} \leq 2 \pi
\end{array}
$$

$$
=0, \quad \text { elsewhere }
$$

so that the spherical coordinates are each independently and uniformly distributed.
IV. r/ σ has a gamma distribution.
V. r^{2} / σ^{2} "has a gamma distribution.
VI. r / σ has a beta distribution.

Finally, a sase not falling under (8) in which X_{1} and X_{2} both have density (7) (but with different variances) is discussed. Perhaps II is the most interesting since it generalizes a well known result by Germond [3]. For this case

$$
\begin{equation*}
P(\cdot)=P\left(\frac{R}{\sigma} \frac{D}{\sigma}\right)=H\left(\frac{R^{2}}{\sigma^{2}} ; n+2, \frac{D^{2}}{\sigma^{2}}\right)+\left(\frac{R / \sigma}{D / \sigma}\right) H\left(\frac{D^{2}}{\sigma^{2}} ; n, \frac{R^{2}}{\sigma^{2}}\right) \tag{9}
\end{equation*}
$$

and evaluation is accomplished by using tables of the non-central chisquare distribution [4].

In Section 3 a few models with damage function

$$
P_{1}\left(X_{1}, X_{2}\right)=\exp \left[-\sum_{i=1}^{n}\left(x_{2 i}-x_{1 i}\right)^{2} / 2 \lambda^{2}\right]
$$

are discussed. Again X_{1} is assumed to have density (7), Then $P(\cdot)$ is evaluated for
I. Same as Case I of Section 2.
II. Same as Case II of Section 2 except that unequal variances are permitted in (7).
III. Same as Case III of Section 2.
IV. Same as Case V of Section 2.
V. Both X_{1} and X_{2} have density (7) but with different variances.

EXTENDING THE DEFINITION TO THE MULTIPLE SHOT CASE.
Again, having a special problem in mind will help in constructing the definition. Let us consider the following case discussed by Jarnagin
and Di Donato [5] . A big bomb is aimed at a point target located at the origin of a two-dimensional coordinate system. When the weapon arrives at the target, the latter is located at X_{2}, a randomly selected position within or on a circle of radius D. Assume that aiming errors for the big bomb are circularly normally distributed with unit variance. That is, when the big bomb detonate its position X_{3} is governed by the density

$$
f_{3}\left(x_{31}, x_{32}\right)=\frac{1}{2 \pi} \exp \left[-\frac{1}{2}\left(x_{31}^{2}+x_{32}^{2}\right)\right] .
$$

At detonation the big bomb scatters N bomblets, each with lethal radius R, with impact points uniformly and independently distributed over a circle of radius A. Thus, the density of X_{1}, the impact point of a bomblet, is for given X_{3}

$$
\begin{array}{rlr}
f_{13}\left(X_{1} \mid X_{3}\right) & =\frac{1}{\pi A^{2}}, \quad\left(x_{11}-x_{31}\right)^{2}+\left(x_{12}-x_{32}\right)^{2} \leq A^{2} \\
& =0, & \vdots
\end{array}
$$

Now, given that the target is at X_{2} and the big bomb detonates at $X_{3}{ }^{\prime}$ X_{2} is captured by a bomblet if X_{1} is within a diotance F of X_{2} (see Figure 3). The probability that this happens is

$$
P_{S}=\int_{C_{1}} \frac{1}{\pi A^{2}} d X_{1}
$$

where C_{1} is the region $\left(x_{11}-x_{21}\right)^{2}+\left(x_{12}-x_{22}\right)^{2} \leq R^{2}$. The target will be captured if it is covered by at least one bomblet. This happens with probability $l-\left(1-P_{S}\right)^{N}$ because of the independence condition. The probability that the target will be captured regardless of where the big bomb detonates is

$$
h\left(x_{2}\right)=\int_{-\infty}^{\infty}\left[1-\left(1-F_{S}\right)^{N}\right] f_{3}\left(X_{3}\right) d X_{3} .
$$

FIG. 3. Big bomb detonates at X_{3}, bomblet at X_{1}. Target is at X_{2}.

Finally, the probability that the target will be captured no matter where it is located is

$$
\int_{C_{2}} h\left(x_{2}\right) g\left(x_{2}\right) d x_{2}
$$

where C_{2} is the region $x_{21}^{2}+x_{22}^{2} \leq D^{2}$ and

$$
\begin{aligned}
g\left(X_{2}\right) & =\frac{1}{\pi D^{2}}, \quad x_{21}^{2}+x_{22}^{2} \leq D^{2} \\
& =0, \text { otherwise. }
\end{aligned}
$$

This problem will be discussed further in a later section.
To generalize the above result let $X_{3}=$ the impact point of the big bomb, $F_{3}\left(X_{3}\right)=$ the distribution function of $X_{3}, X_{1}=$ impact point of
a bomblet. $F_{13}\left(X_{1} \mid X_{3}\right)=$ conditional distribution of X_{1} given X_{3}, the ame for each of the N bombleta with all N impact points being independentiy distributed, $X_{2}=$ position of target when the bomblets impact, $G\left(X_{2}\right)=$ distribution function of the point target, $P_{1}\left(X_{1}, X_{2}\right)=$ probability of destroying the target for given value of X_{1} and $X_{2}, P_{S}=$ probability of capturing the targot for any one bomblet given X_{3} and $X_{2}{ }^{\text {a }}$ Then

$$
P_{S}=\int_{-\infty}^{\infty} P_{1}\left(X_{1}, X_{2}\right) d F_{13}\left(X_{1} \mid x_{3}\right)
$$

and

$$
\begin{equation*}
P(\cdot)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left[1-\left(1-P_{S}\right)^{N}\right] d F_{3}\left(X_{3}\right) d G\left(x_{2}\right) \tag{10}
\end{equation*}
$$

is the probability of destroying the target. Expanding the binomial under the integral in (10) leads to the alternate form

$$
\begin{equation*}
P(\cdot)=\sum_{k=1}^{N}(-1)^{k+1}\binom{N}{k} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} p_{S}^{k} d F_{3}\left(X_{3}\right) d G\left(X_{2}\right) \tag{11}
\end{equation*}
$$

We will define an n-dimensional coverage problem as the evaluation of a probability of the type given by (10) or (11).

$$
\text { If } X_{3} \text { has density }
$$

$$
\begin{align*}
f_{3}\left(X_{3}\right) & =1, \quad X_{3}=B \quad(a \text { inxed point }) \tag{12}\\
& =0, \quad \text { otherwise }
\end{align*}
$$

then (10) reduces to

$$
\begin{equation*}
P(\cdot)=\int_{-\infty}^{\infty}\left[1-\left(1-P_{S}\right)^{N}\right] d G\left(X_{2}\right) \tag{13}
\end{equation*}
$$

where $X_{3}=B$ in P_{S}. Formula (13) yields $P($.$) for N$ hots aimed independently at B (at the origin if $B=0)$. Further if $N=1,(13)$ becomes

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P_{1}\left(X_{1}, X_{2}\right) d F\left(X_{1}\right) d G\left(X_{2}\right)
$$

the single shot formula (where $F\left(X_{1}\right)=F_{13}\left(X_{1} \mid B\right)$).
SOME SPECIAL CASES OF FORMULA (13).
Big Bomb Hits Origin with Probability 1, Zero-One Damage Function
Assume that aiming exrors of the big bomb are governed by the p.d.f. of (12) with $B=0$ and that X_{2} is uniformly distributed over a sphere of radius D centered at the origin, that is, has p.d.f.

$$
\begin{align*}
\dot{g}\left(X_{2}\right) & \left.=[V(D)]^{-1}, \quad \sum_{i=1}^{n} x_{2 i}^{2} \leqq D^{2} \quad \text { (region } C_{2}\right) \tag{14}\\
& =0, \quad \text { otherwise }
\end{align*}
$$

where $V(D)$ is the volume of aphere of radius D. We will also assume that the density of X_{1} given X_{3} is
with $\sigma_{1 i}=\sigma, i=1,2, \ldots, n$ and where $x_{3 i}=0, i=1,2, \ldots, n$ because the big bomb hits the origin with probability 1 . Then

$$
P_{S}=\int_{C_{1}} d F_{13}\left(X_{1} \mid 0\right)
$$

where C_{1} is the region $\sum_{i=1}^{n}\left(x_{1 i}-x_{2 i}\right)^{2} \leq R^{2}$. It is well known that this integral has the value

$$
\begin{equation*}
P_{S}=H\left(\frac{R^{2}}{\sigma^{2}} ; n, \frac{r^{2}}{\sigma^{2}}\right) \tag{16}
\end{equation*}
$$

where $x^{2}=\sum_{i=1}^{n} x_{2 i}^{2}$. Hence

$$
P(\cdot)=P\left(\frac{R}{\sigma}, \frac{D}{\sigma}\right)=\int_{C_{2}}\left\{1-\left[1-H\left(\frac{R^{2}}{\sigma^{2}} ; n_{i} \frac{x^{2}}{\sigma^{2}}\right)\right] N\right\} \frac{1}{V(D)} d X_{2}
$$

$$
=\sum_{k=1}^{N}(-1)^{k+1}\left(\frac{N}{k}\right) \int_{0}^{D}\left[H\left(\frac{R^{2}}{\sigma} ; n, \frac{r^{2}}{\sigma^{2}}\right)\right]^{k} \frac{n x^{n-1}}{D^{n}} d r
$$

The multiple integral converts to a single integral by virtue of the result on page 248 of [1]. We know from Formula (9) that the single integral in (17) can be expressed in terms of H functions for $k=1$. A corresponding result fir $k \geq 2$ may be possible but it is unknown at the present time.

Fur the case $n=2$, Jarnagin [6] ham prepared tables of (17) for R / σ $=.005(.005) .05(.01) .10(.02) .20(.05) 1(.1) 2(.2) 4(.5) 10, \mathrm{D} / \sigma=.05,1 .(.1)$ $4(.5) 12, \mathrm{~N}=1(1) 20$. Also included in an inverse table giving the number of bomblets N required to make $\mathrm{P}(\cdot)=.05(.05) .95$ for the range of D / σ given above and with R / σ ranging over values required to make N go from 1 to 999.

Big Bomb Hits at Point B with Probability 1, Exponential Damage Function

Assume that the damage function is

$$
\begin{equation*}
P_{1}\left(X_{1}, X_{2}\right)=\exp \left[-\frac{1}{2}{\left.\left.\underset{i=1}{n}\left(x_{2 i}-x_{1 i}\right)^{2} / \lambda^{2}\right] .\right] .}^{n}\right. \tag{18}
\end{equation*}
$$

and that the p.d.f. of X_{1} given $X_{3}=B$ is given by (15) with $x_{31}=b_{i}$, $i=1,2, \ldots, n$. Then an easy integration yields

$$
P_{S}=\frac{\lambda^{n}}{{\underset{n}{i=1}}_{n}\left(\sigma_{1 i}^{2}+\lambda^{2}\right)^{\frac{1}{2}}} \exp \left[-\frac{1}{2} \sum_{i=1}^{n}\left(x_{2 i}-b_{i}\right)^{2} /\left(\sigma_{1 i}^{2}+\lambda^{2}\right)\right]
$$

Expanding the binomial in (13) we can write

First assume that X_{2} is uniformly distributed over an ellipsoid whose center is at the origin and whose axes are parallel to the coordinate axes. Then

$$
\begin{aligned}
g\left(X_{2}\right) & \left.=\left[V\left(C_{2}\right)\right]^{-1}, \quad \sum_{i=1}^{n}\left(x_{2 i} / a_{i}\right)^{2} \leq 1 \quad \text { (the region } C_{2}\right) \\
& =0, \quad \text { otherwise }
\end{aligned}
$$

where $V\left(C_{2}\right)$ is the volume of C_{2}. Then if we let, $k{ }^{\frac{1}{2}}\left(x_{2 i}-b_{i}\right) /\left(\sigma_{1 i}^{2}+\lambda^{2}\right)^{\frac{1}{2}}$ $=y_{i}$, the probability (19) becomes

$$
\begin{equation*}
P(\cdot)=\sum_{k=1}^{N} \frac{(-1)^{k+1}\binom{N}{k} \lambda^{n k}(2 \pi)^{\frac{1}{2} n}}{V\left(C_{2}\right) k^{\frac{1}{2} n} \prod_{i=1}^{n}\left(\sigma_{1 i}^{2}+\lambda^{2}\right)^{\frac{1}{2}(k-1)}} J_{k} \tag{20}
\end{equation*}
$$

where

$$
J_{k}=\int_{C_{2 k}} i_{0}(Y) d Y \text {. }
$$

$f_{0}(Y)$ is the standard normal density in n dimensions, and $C_{2 k}$ is the region

$$
\sum_{i=1}^{n} \frac{\left(y_{i}+\frac{b_{i} \sqrt{k}}{\left(\sigma_{1 i}^{2}+\lambda^{2}\right)^{\frac{T}{2}}}\right)^{2}}{k^{2} / a_{i}^{2}\left(\sigma_{1 i}^{2}+\lambda^{2}\right)} \leq 1 .
$$

Tables from which J_{k} can be obtained when ne 2 have been prepared by Germond [7], DiDonato and Jarnagin [8], Lowe [9], and Rosenthal and Rodden [10]. If $b_{1}=b_{2}=0$ that the ellipse is centered at the origin, then J_{k} can be evaluated from the tables published by Eeperti [11], Hater [12], DiDonato and Jarnagin [13], and Maraglia [14], All the above tables are described by Guenther and Terragno [1]. Groves [15] derived (20) for the case $n=2$ and includes a 16 page table of J_{k} for this case (with $b_{1}=b_{2}=0$) in hie report.

$$
\text { If all } \sigma_{11}=\sigma \text {, and } a_{i}=D, \text { then }
$$

$$
J_{k}=H\left[\frac{k^{2}}{D^{2}\left(\sigma^{2}+\lambda^{2}\right)} ; \quad n, r^{2}\right]
$$

where

$$
r^{2}=\frac{k}{\sigma^{2}+\lambda^{2}} \quad \sum_{i=1}^{n} b_{i}^{2} .
$$

Wurther if $B=0$, then J_{k} reduces to a central chi-square probability. For both the latter two cases many tables are available and a description of these tables is found in Section 1 of [1].

If in (19) we take $B=0, \sigma_{1 i}=\sigma$ and asoume that $G\left(X_{2}\right)$ gives equal weight to each point on the sphere $\sum_{i=1}^{n} x_{2 i}^{2}=D^{2}$, then (19) reduces to $1=1$

$$
\begin{equation*}
P(\cdot)=\sum_{k=1}^{N}(-1)^{k+1}\binom{N}{k} \frac{\lambda^{n k}}{\left(\sigma^{2}+\lambda^{2}\right)^{n k / 2}} \exp \left[\frac{k D^{2}}{2\left(\sigma^{2}+\lambda^{2}\right)}\right] \tag{21}
\end{equation*}
$$

since everything comes out in front of the multiple integral except $d G\left(X_{2}\right)$ which when integrated over the whole space yielde 1 . For a $G\left(X_{2}\right)=0$ chosen, X_{2} picks its position at random on the surface of the sphere. The answer la the same, of course, no matter how $G\left(X_{2}\right)$ ainigns probability on the surface of the sphere but uniform assignment is the most realistic model.

As one further model let us assume that $B=0$ and X_{2} has p.d.f.

$$
\begin{equation*}
g\left(X_{2}\right)=\left[(2 \pi)^{\frac{1}{2} n}{\left.\underset{i=1}{n} \dot{\sigma}_{2 i}\right]^{-1} \exp \left[-\frac{1}{2} \sum_{i=1}^{n}\left(x_{2 i} / \sigma_{2 i}\right)^{\eta}\right]}^{n}\right. \tag{22}
\end{equation*}
$$

Then (19) readily reducen to

$$
\left.P(\cdot)=\sum_{k=1}^{N}(-1)^{k+1}\binom{N}{k} \frac{\lambda^{n k}}{\prod_{i=1}^{n}\left[\left(\sigma_{1 i}^{2}+\lambda^{2}\right)(k-1)\right.}\left(k \sigma_{2 i}^{2}+\sigma_{1 i}^{2}+\lambda^{2}\right)\right]^{\frac{1}{2}} .
$$

SOME SPECIAL CASES OF FORMULA (10).

The Jarragin-DiDonato Mcdel

Let us return to the example which we used to introduce multiple shot coverage problems but generalize the discusaion to n-dimensions.

Then X_{1} given X_{3} is uniformly distributed over a sphere of radius A centered at X_{1} so that

$$
\begin{aligned}
f_{13}\left(X_{1} \mid X_{3}\right) & =[V(A)]^{-1}, \sum_{i=1}^{n}\left(x_{1 i}-x_{3 i}\right)^{2} \leq A^{2}\left(\text { region } C_{3}\right) \\
& =0, \quad \text { otherwise, }
\end{aligned}
$$

X_{2} is uniformly distributed over a sphere of radius D centered at the origin so that it hat the p.d.f. given by (14), and

Here $V(A)$ is the volume of a sphere of radius A. We will assume that $\sigma_{3 i}=\sigma, i=1 ; 2 ; \ldots, n$ and for convenience (a DiDonato and Jarnagin have done) we will take $\sigma=1$ which means all distances are expressed in standard units. The damage function is

$$
P_{1}\left(x_{1}, x_{2}\right)=1, \quad \sum_{i=1}^{n}\left(x_{11}-x_{2 i}\right)^{2} \leq R^{2}, \quad\left(\text { region } C_{1}\right)
$$

Then

$$
P_{S}=\int_{C_{1}} \frac{1}{V(A)} d x_{1}=\frac{V\left(t^{2}\right)}{V(A)}
$$

where $t^{2}=\sum_{i=1}^{n}\left(x_{2 i}-x_{3 i}\right)^{2}$ and $v\left(t^{2}\right)$ is the volume common to C_{1} and C_{3}. : Hence, since all functions appearing in (10) are known, the $\mathbf{2 n}$-fold integral could be written down with the integrand expressed in terms of X_{2} and X_{3}.

Some simplification is possitle. We seek $E\left[u\left(t^{2}\right)\right]$ where $u\left(t^{2}\right)$ $=1-\left(1-P_{S}\right)^{N}$. If the density of t^{2} were known, then $P(\cdot)$ could be expressed as a single integral with integrand in t^{2}. We know from working with single shot covarage problems that the density of $t^{2} g^{i}$ ven $x^{2}=\sum_{i=1}^{2} x_{21}^{2}$ is non-central chi-square with non-centrality parameter r^{2}. Thif is

$$
\begin{equation*}
h\left(t^{2} ; n, r^{2}\right)=\frac{1}{2}\left(\frac{t}{r}\right)^{(n-2) / 2} \exp \left[-\frac{1}{2}\left(t^{2}+r^{2}\right)\right] L_{(n-2) / 2}(t r) \tag{24}
\end{equation*}
$$

where $I_{(n-2) / 2}(x)$ is the modified Bessel function of order $(n-2) / 2$. The denalty function of r^{2} (see [1], p. 248 for the denaity of r) ide

$$
\begin{aligned}
g\left(r^{2}\right) & =\frac{n\left(r^{2}\right)(n-2) / 2}{2 D^{n}}, \quad 0 \leq r^{2} \leq D^{2} \\
& =0 \quad 0 \quad \text { otherwise. }
\end{aligned}
$$

Hence the joint diatribution of t^{2} and r^{2} is $h\left(t^{2} ; n, r^{2}\right) q\left(r^{2}\right)$ and

$$
\begin{equation*}
P(\cdot)=\int_{0}^{(A+R)^{2}} \int_{0}^{D^{2}} u\left(t^{2}\right) h\left(t^{2} ; n, r^{2}\right) q\left(r^{2}\right) d r^{2} d t^{2} \tag{25}
\end{equation*}
$$

a double integral.
For the 2 -dimensional case a further simplification is posedble since (24) is then symmetric in t^{2} and x^{2}. Thus, in (25) the iniogration of r^{2} yields $H\left(D^{2} ; 2, t^{2}\right)$ that

$$
\begin{equation*}
P(\cdot)=\int_{0}^{(A+R)^{2}} \frac{u\left(t^{2}\right)}{D^{2}} H\left(D^{2} ; 2, t^{2}\right) d t^{2} . \tag{26}
\end{equation*}
$$

The Jarnagin and DiDonato report includes over 100 pages of graphs which yleld the $P(\cdot)$ of (26). Two cases are considered. For Case I, $R<A$ and $20 \leq N \leq 500$ for various values of D, A, and πR^{2}. For Case II, $R>A$ and $1 \leq N \leq 20$ ior selected values of R, D, A. The Case I graph give $\pi D^{2} P(\cdot)$ while the set for Case Il give $P(\cdot)$ directly. Various approximations to $P(\cdot)$ are diecussed.

From a practical point of view the most interesting case is $R<A$. For this situation it la immediately apparent that bounds on the $P(\cdot)$ of (26) are

$$
\begin{aligned}
& {\left[1-\left(1-\frac{R^{2}}{A^{2}}\right)^{N}\right] \int_{0}^{(A-R)^{2}} \frac{1}{D^{2}} H\left(D^{2} ; 2, t^{2}\right) d t^{2}<P(\cdot)} \\
& \because\left[1-\left(1-\frac{R^{2}}{A^{2}}\right)^{N}\right] \int_{0}^{(A+R)^{2}} \frac{1}{D^{2}} H\left(D^{2} ; 2, t^{2}\right) d t^{2} .
\end{aligned}
$$

Both integrals appearing in (27) can be expressed in terme of functione by using (9). The fifunctions in turn can be ovaluated by ueing the tables of Hayman, Govindarajulu, and Leone [4]. Of course, the smaller the R the closer the bound will be.

EXPONENTIAL DAMAGE FUNCTION, DETONATION POINTS OF BIG AND LITTLE BOMBS NORMALIY DISTRIBUTED. ABeume that the damage function is given by (18), the denaity of X_{1} given X_{3} by (15), and the density of X_{3} by (23). Then a atraight forward evaluation yields

$$
\begin{aligned}
P_{S} & =\int_{-\infty}^{\infty} P_{1}\left(x_{1}, x_{2}\right) f_{13}\left(x_{1} \mid x_{3}\right) d x_{1} \\
& =\frac{\lambda^{n}}{\prod_{i=1}^{n}\left(\sigma_{1 i}^{2}+\lambda^{2}\right)^{\frac{1}{2}}} \exp \left[-\frac{1}{2} \sum_{i=1}^{n}\left(x_{3 i}^{-x_{2 i}}\right) /\left(\sigma_{11}^{2}+\lambda^{2}\right)\right]
\end{aligned}
$$

The same icind of evaluation next gives

$$
\begin{equation*}
\int_{-\infty}^{\infty} P_{S}^{k} f_{3}\left(X_{3}\right) d X_{3}=\frac{\lambda^{k n} \exp \left[\left(\frac{-k}{2}\right) \sum_{i=1}^{n} x_{2 i}^{2} /\left(k \sigma_{3 i}^{2}+\sigma_{1 i}^{2}+\lambda^{2}\right)\right]}{{\underset{i=1}{n}\left[\left(\sigma_{11}^{2}+\lambda^{2}\right)^{(k-1)}\left(k \sigma_{3 i}^{2}+\sigma_{1 i}^{2}+\lambda^{2}\right)\right]}_{\frac{1}{2}}} \tag{28}
\end{equation*}
$$

To write down $P(\cdot)$ as given by (10) we need finally to integrate (28) over the range of X_{2}.

For several distributions of $X_{2} P(\cdot)$ is obtained very quickly. We will consider:

Case I: $\sigma_{3 i}=\sigma_{3}, \sigma_{1 i}=\sigma_{1}$ and $G\left(X_{2}\right)$ gives equal weight to each point on the sphere $\sum_{i=1}^{n} x_{2 i}^{2}=D^{2}$. Then with the same reasoning used to obtain (21) we get

$$
\begin{equation*}
P(\cdot)=\sum_{k=1}^{N}(-1)^{k+1}\left(\frac{N}{k}\right) \frac{\lambda^{k n} \exp \left[-k D^{2} / 2 \cdot\left(k \sigma_{3}^{2}+\sigma_{1}^{2}+\lambda^{2}\right)\right]}{\left[\left(\sigma_{1}^{2}+\lambda^{2}\right)^{(k-1)}\left(k \sigma_{3}^{2}+\sigma_{1}^{2}+\lambda^{2}\right)\right]^{n / 2}} \tag{29}
\end{equation*}
$$

Case II: The density of X_{2} is given by (14). Letting

$$
y_{i}=\frac{\sqrt{k} x_{2 i}}{\sqrt{k \sigma_{3 i}^{2}+\sigma_{1 i}^{2}+\lambda^{2}}}
$$

and recalling that

$$
V(D)=\pi^{n / 2} D^{n} / \pi\left(\frac{n+2}{2}\right)
$$

we get

$$
\begin{align*}
P(\cdot)= & \sum_{k=1}^{N}(-1)^{k+1}\binom{N}{k} \frac{\lambda^{k n}\left[\frac{11+2}{2}\right) 2^{n / 2}}{D^{n} k^{n / 2} \prod_{i=1}^{n}\left(\sigma_{1 i}^{2}+\lambda^{2}\right)}(k-1) / 2
\end{align*}
$$

where C_{1} is the region
$\sum_{i=1}^{n}\left(k \sigma_{3 i}^{2}+\sigma_{1 i}^{2}+\lambda^{2}\right) y_{i}^{2} / k \leq D^{2}$. The evaluation of standard normal integrals over ellipsoidal and spherical regions is discussed in Section 1.3 of [1].

Case III. The density of X_{2} is given by (22). A routine integration yields

$$
\begin{equation*}
\left.P(.)=\sum_{k=1}^{N}(-1)^{k+1}\left(N_{k}^{N}\right) \sum_{i=1}^{n} \frac{\lambda^{k n}}{\left[\left(\sigma_{1 i}^{2}+\lambda^{2}\right)(k-1)\right.}\left(\sigma_{1 i}^{2}+k \sigma_{2 i}^{2}+k \sigma_{3 i}^{2}+\lambda^{2}\right)\right]^{\frac{1}{2}} . \tag{31}
\end{equation*}
$$

CONCLUDING REMARKS. Although the definition of a coverage problem which we have given can be further generalized, many of the interesting models which have received attention are special cases of the definition as we have given it. Certainly there are models which may be of interest other than those covered in the Guenther-Terragno review and in this paper.

In this review we have considered only the zero-one damage function and the exponential damage function given by (18). Many others have been proposed. For example, another possibility that has some merit is

$$
\begin{align*}
& P_{1}\left(X_{1}, X_{2}\right)=1, \\
& \sum_{i=1}^{n}\left(x_{1 i}-x_{2 i}\right)^{2} \leq R^{2} \tag{32}\\
&=\exp \left\{-\frac{1}{2}\left[\sum_{i=1}^{n}\left(x_{1 i}-x_{2 i}\right)^{2}-R^{2}\right] / \lambda^{2}\right\}, \sum_{i=1}^{n}\left(x_{1 i}-x_{2 i}\right)^{2}>R^{2} .
\end{align*}
$$

The damage function (32) is found in [1] but the topic is not pursued. Other damage functions are mentioned in [16] and [17].

The first step for a potential researcher in the field of coverage problems is to select a useful and realistic model. Having made that choice, the remainder of the task confronting an investigator in mainly numerical. It is possible that most or all uf the computation required is already available in the literature if one knows where to look. Even if no such results are in existence, chances are excellent that probabilities of interest can be evaluated if one is clever enough in handing epecial functions and computers.

Work on target coverage problems has suffered from a mass duplication of effort. This is in part due to (a) some company publications being difficult if not impossible to obtain, (b) results having been published not only in obscure publications but also in many different journal so that it is difficult to keep current in the field, and (c) nome papers being difficult to read unless one has background in both probability and target coverage.

REFERENCES

1. William C. Guenther and Paul J, Terragno, "A Review of the Literature on a Class of Coverage Problems," The Annale of Mathematical Statiatics 35, 232-260 (1964).
2. George W. Morganthaler, "Some Target Coverage Problems," Biometrika 48, 313-324(1961).
3. G. E. Haynam, Z. Govindarajulu, and F. C. Leone, "Tables of the Cumulative Non-Central Chi-Square Distribution, "AD 426500 Office of Technical Service, U. S. Department of Commerce, Waahington, D. C. 20230 (1962).
4. M. P. Jarnagin, Jr. and A. R. DiDonato, "Expected Damage to a Circular Target by a Multiple Warhead, " INWL Report No. 1936. U. S. Naval Weapons Laboratory, Dahlgren, Virginia (1964).
5. M. P. Jarnagin, Jr., "Expected Coverage of a Circular Target by Bombs all Aimed at the Center, "NWi Report No. 1941, U. S. Naval Weapons Laboratory, Dahlgren, Virginia (1965).
 Offset Ellipse," Rand Report No. P-94, The Rand Corporation, Santa Monica, California (1949).
6. A. R. DiDonato and M. P. Jarnagin, Jr., "Integration of the General Bivariate Gaussian Distribution over an Offset Ellipse," NWL Report No. 1710, U. S. Naval Weapons Laboratory, Dahlgren, Virginia (1960).
7. J. R. Lowe, "A Table of the Integral of the Bivariate Normal Distribution over an Offeet Circle, " Journal of the Royal Statistical Society, Series B 22, 177-187 (1960).
8. G. W. Rosenthal and I. J. Rodden, "Tables of the Integral of the Elliptical Bivariate Normal Distribution over Offset Circles," Lockheed Report No. IMSD-800619, Sunnyvale, California (1961).
9. R. V: Esperti, "Tables of the Elliptical Normal Probability Function," Defense Systems Division, General Motors Corporation, Detroit, Michigan (1960).
10. H. Leon Harter, "Circular Error Probabilities, "Journal of the American Statistical Association 55, 723.731 (1960).
11. A, R. DiDonato and M. P. Jarnagin, Jr., "A Method for Computing the Generalized Circular Error Function and Circular Coverage Function, "NWL Report No. 1768, U. S. Naval Weapons Laboratory, Dahlgren, Virginia (1962).
12. George Marsaglia, "Tables of the Distribution of Quadratic Forma of Ranks Two and Three," Boeing Scientific Research Laboratories Report No. D1-82-0015-1, Seattle, Washington (1960).
13. Arthur D. Groves, "A Method for Hand-Computing the Expected Fractional Kill of an Area Targer with a Salvo of Area Kill Weapone, " Ballistic Research Laboratories Memorandum Report No. 1544, Aberdeen Proving Ground, Maryland (1964).
14. Operations Evaluation Group, "Probability-of-Damage Problems of Frequent Occurrence," OEG Study 626, Office of the Chief of Naval Operations, Washington, D. C. (1959).
15. Frank McNolty, "Kill Probability When Lethal Effectis Variable," Operations Research 13, 478-482 (1965).

MAXIMUM LIKELIHOOD ESTIMATION FOR UNBALANCED FACTORIAL DATA*

H. O. Hariley
Institute oi Siativitice
Texas A\&M University

1. INTRODUCTION. The atatistical Iiterature is abundant with results concerning the design and analysis of factorial experiments. Most of these results relate to design experiments whose intricate balance usually provides orthogonal contrasts for the estimation of parameter functions for which inferences are desired. The consequences of such designs are statietical efficiency of estimation with exactness of estimation theory and simplicity of computational procedures thrown in as'fringe benefits'.

Unfortunately, however, ir basic and operation research there are many situations where the scientist is forced to draw inferences from data which have not arisen from carefully balanced factorial experiments mainly because part of the origin of his data is beyond his control. Thus we may be concerned with an analysis of operational data in a chemical plant attempting to relate the quality and yield of the output to various types and sources of mput materials side different types of catalysts, to various modes of operating the plant such as temperature-and pressure levels and running times. Even if it is pessible to control the change in the various input factors it will often not be possible to conduct balanced experiments. Again in genetical research concerned with heritability studies we may study certain traits of the progeny resulting from the mating of a number of sires each to a different set of dames. We may try to arrange for the 'breeding pens' of the progeny trail to have an equal number of dames in each but the progeny renulting from each mating is beyond the control of the experimenter, resulting in an 'unequal number nested classification' of data. Again, in medical research we may wish to compare the follow-up of patient who have recoived different treatments. Such follow up data are often classified with regard to numerous concomitant characteristica concerning the medical history, environmental and genetical background of patients resulting in data arranged in completely unbalanced factorial patterna. There ia clearly no possibility of a designed experiment here.
"This paper gives only a summary of some of the results derived in more detail by Hartley, H. O. and Rao, J. N. K. "Maximum Likelihood Estimation for the Mixed Analysis of Variance Model" submitted for publication in Blometrika.

We do not need to add further examples of this kind; indeed it is generally recognized that they wlll outnumber, by far, the situations of data from balanced experiments.

In the case of balanced designe the eatimation problem for the conatante and variances involved in the linear model theory of the experimental data has been extensively treared: Confining ourselves to juat one reference on variancesatimation, optimality properties of the classical analysis of variance procedures have already been demonstrated for various balanced designe (see e.g., Graybill (1961)). However, result for unbalanced factorial and nested data are much more restricted: Henderson (1953) has suggeated a method of unbiased estimation of variance components for the unbalanced two-way classification but his method is computationally cumbersame for a mixed model and when the numbers of classes is large. Searle and Henderson (1961) have auggested a simpler method also for the unbalanced two way clasification with one fixed factor containing a moderate number of levels and a random factor permitted to have quite a large number of levels. Buah and Anderson (1963) have investigated for the two-way classification random model the relative efficiency of Henderson's (1953) method and two other methods, A and B, based on the respective methods of fitting constants and weighted squares of meane described by Yates (1934) for experiments based on a fixed effects model which also provide unbiassed estimates of variance components. Possibilities of generalizations are indicated. In all the above methods the estimates of any constanta in the model are computed from the 'Aitken Type' weighted least squares estimators based on the exact variancecovariance matrix of the experimental responset which involves the unknown variance ratios. The estimation of the latter is then based on various unbiassed procedures so that little is known about any optimality properties of any of the resulting estimators. However, all these methods reduce to the well known procedures based on minimal sufficient utatistics in the special cases of balanced designs.

The method of maximum likelihood eatimation here developed differs from the above in that maximum likelihood equations are ured and solved for both the estimates of constants and variances. This method has apparently not been used by the above authors (and is indeed 'rejected' by Bush and Anderson, 1963) because the computational effort is not (in their view) warranted by the known properties of maximum likelihood estimation. This point is well taken. However, we have nevertheless undertaken to develop this theory on the following grounda:
(a) Within reason and with the help of surtabie numericai iecianiyǘa the argument of computational labor looses its stigma with the prograss in computer technology.
(b) Our technique of maximum likelihood estimation provides a numerical analysis for the completely general mixed model and does not require the development of new devices whenever a more involved situation of unbalanced factorial data arises. Moreover, it provides the basis for a compritely genexal 'analysis of variance test' procedure in the form of 'likelihood-ratio testa'.
(c) We have established large sample optimality properties and it is already apparent that for small experiments the amount of computational labor is quite comparable with that involved in alternatives. Here our technique will permit Monte Carlo evaluations of small sample variances (on the lines made by Bush and Anderson) for the maximurn likelihood estimatore. For really large experiments (auch es arise with certain genetical problems) the large sample optimality propertios of maximum likelihood entimators ahould provide a clear justification of additional computer time (if any).
(d) Recent researches in identifying minimal sufficient statistics for the estimation of the parameters (see e.g. . Hultquiat and Graybill, (1965) Furukawa (1960)) is at this time confined to several special designs. Since a universal method of identifying such atatistics when they exist is not available it is a considerable (small sample) advantage of maximum likelihood estimators that they will automatically be functions of auch statiatics whenever they exist.
(e) Our estimates of variance components are always ≥ 0 (see section 4) and whilst the alterrative estimators could be modified to also be ≥ 0 they would thereby loose the property of unbiassedness which is the main justification of their use.
2. SPECIFICATION OF THE GENERAL MIXED MODEL. The specification of the general mixed model will be sufficiently general to cover most of the situations of unbalanced factorial data arising in practice.

On the other hand, it utilize certann speciiic faatiare whirh distinguish analyaie of variance modele from a completely general linear model involving both 'constante' as weil as random variables.

The linear model here treated is given by

$$
\begin{equation*}
y=X_{a}+U_{1} b_{1}+\ldots+U_{c} b_{c}+0 \tag{I}
\end{equation*}
$$

where
X is an $n \times k$ matrix of known fixed numbers U_{1} it an $\mathrm{n} \times \mathrm{m}_{\mathrm{i}}$ matrix of known fixed numbers a If a $k \times 1$ vector of unknown constante
b_{1} is an $m_{1} \times 1$ vector of independent variables from $N\left(0, \sigma_{1}{ }^{2}\right)$ eis an $n \times 1$ vector of independent variables from $N\left(0, \sigma^{2}\right)$.

The random vectors $b_{1}, b_{2}, \ldots, b_{c}$, and e are mutually independent and y is given by (1).

We assume that the design matrices X and U_{i} are all of full rank i.e., the rank of X is k and the rank of U_{i} is m_{1}. In terms of analysis of variance terminology the vector of constants a comprisesin its elements all levels of all fixed factors, i.e., the levels of all iixed main effects and interactions appropriately re-parameterised so that the design matrix X has full rank. For the c random fectors we are keeping the components separate since all elemente of b_{i} have the same unknown vartance σ_{i}^{2}. Usually (with analysis of variance models) each y is associated with precisely one level of the $i^{\text {th }}$ random factor so that the design matrix U_{i} will have in each row precisely one l and the remaining $m_{i}-1$ elements zero. We therefore assume that the U_{i} have thia property which imples that all $m_{i} \times m_{i}$ matrices U_{i} ' U_{i} are diagonal.

One additional important assumption must be made about the design matrices which may be described as a condiiiun ius entimatility of the a and σ_{i}^{2} : Denote by
(2)

$$
m=\sum_{i=1}^{c} m_{i}
$$

the total number of leveln in all random components. Then the adjoined $\mathrm{n} x(\mathrm{k}+\mathrm{m})$ matrix

$$
\begin{equation*}
M=\left(X\left|U_{1}\right| \ldots \mid U_{c}\right) \tag{3}
\end{equation*}
$$

is assumed to have as a base an $n \times r$ matrix W of the form
(4)

$$
W=\left(X \mid U^{*}\right)
$$

Where the $n x(r-k)$ matrix U^{*} must contain at least one column from each U_{i} so that
(5)

$$
k+c \leq r \leq k+m
$$

3. THE LIKELIHOOD EOUATIONS. From.(1) it is obvious that y followe a multivariate normal dietribution with variance-ocovariance matrix
(6)

$$
\sigma^{2} H=\sigma^{2}\left\{I_{n}+\gamma_{1} U_{1} U_{1}^{\prime}+\ldots+\gamma_{c} U_{c} U_{c}^{\prime}\right\}
$$

where
(7)

$$
\gamma_{i}=\sigma_{i}^{2} / \sigma^{2}
$$

Hence the likelihood of y is given by

$$
\begin{equation*}
L=(2 \pi)^{-\frac{1}{2} n} \sigma^{-n}|H|^{-\frac{1}{2}} \exp \left\{-(y-X a)^{\prime} H^{-1}(y-X a) / 2 \sigma^{2}\right\} . \tag{B}
\end{equation*}
$$

The differentiation of the \log likelihood
(9)

$$
\lambda \equiv \log L
$$

with regard to a, σ and γ_{i} yields the equations

$$
\begin{equation*}
\frac{\partial \lambda}{\partial a}=\sigma^{-2}\left\{X^{\prime} H^{-1} y-\left(X, H^{-1} X\right) a\right\}=0 \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \lambda}{\partial \sigma}=-\frac{n}{\sigma}+\frac{1}{\sigma^{3}}(y-X a) \cdot H^{-1}(y-X a)=0 \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \lambda}{\partial \gamma_{i}}=-\frac{1}{2} \operatorname{tr}\left\{H^{-1} \frac{\partial H}{\partial \gamma_{i}}\right\}-\frac{1}{2 \sigma^{2}}(y-X a) \frac{\partial H^{-1}}{\partial \gamma_{i}}(y-X a) \tag{12}
\end{equation*}
$$

$$
=-\frac{1}{2} \operatorname{tr}\left\{H^{-1} U_{i} U_{i}^{\prime}\right\}+\frac{1}{2 \sigma^{2}}(y-X a)^{1} H^{-1} U_{i} U_{i}^{\prime} H^{-1}(y-X a) .
$$

Whitlst it has long been recognized that equations (10) and (11) readily yield the maximum likelihood estimates \tilde{a} and $\tilde{\sigma}^{2}$ as functions of the γ_{i} involved in H, the solution of equatione (12) i.e., $\frac{\partial \lambda}{\partial \gamma_{1}}=0$ hat not been attempted in the past. We give in the next section a numericai procedure of solving the aimultaneous equation (10), (11), and $\frac{\partial \lambda}{\partial \gamma_{i}}=0$ given
by (12).
4. SOLUTION OF THE MAXIMUM LIKELIHOOD EOUATIONS BY STEEPEST ASCENT. As mentioned in 3. the equations (10) and (11) are readily solvedfor a and σ^{2} in terme of the γ_{i} : - We obtain the familiar answers for 'weighted least squares'

$$
\begin{equation*}
\tilde{a}=\left(X^{\prime} H^{-1} X\right)^{-1}\left(X^{\prime} H^{-1} y\right) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
n \tilde{\sigma}^{2}=y^{\prime} H^{-1} y-\left(X^{\prime} H^{-1} y\right)^{\prime}\left(X^{\prime} H^{-1} X\right)^{-1}\left(X^{\prime} H^{-1} y\right) \tag{14}
\end{equation*}
$$

Equations (13) and (14) yield \tilde{a} and $\tilde{\sigma}^{2}$ in terms of the y and γ_{i}. We require symbols for this functional relationship and write in place of (13) and (14)

$$
\begin{equation*}
a=\tilde{a}\left(\gamma_{i}\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma=\tilde{\sigma}\left(\gamma_{i}\right) . \tag{16}
\end{equation*}
$$

Substitution of (15) and (16) in (12) and equating to zero would yield c simultaneous equations for the c values of γ_{i}. The solutions of these equations are now obtained as the asymptotic limits of a syatem of c simultaneous differential equations, namely the equations of steepest ascent given by

$$
\begin{equation*}
\frac{d \gamma_{i}}{d t}=\frac{\theta \lambda}{\partial \gamma_{i}}\left(\tilde{a}\left(\gamma_{i}\right), \tilde{\sigma}\left(\gamma_{i}\right), \gamma_{i}\right) \tag{17}
\end{equation*}
$$

where the $k+1+c$ argument function $\frac{\partial \lambda}{\partial \gamma_{1}}\left(a, \sigma, \gamma_{i}\right)$ is given by the right hand side of (12) and (15) and (16) are substituted for a and σ.

The variable of integration, t, in (17) is auxiliary and the numerical integration of (17) commences at indial trial values $\boldsymbol{\gamma}_{1}$ (usually chosen as consiatant estimators) so that

$$
\begin{equation*}
\gamma_{1}=\gamma_{1} \text { at } t=0 . \tag{18}
\end{equation*}
$$

It can now be shown that as $\mathrm{t} \rightarrow \boldsymbol{\infty}$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \gamma_{i}(t)=\tilde{\gamma}_{i} \text { (say) } \tag{19}
\end{equation*}
$$

and
(20)

$$
\lim _{t \rightarrow \infty} \frac{\partial \lambda}{\partial \gamma_{i}}\left(\tilde{a}\left(y_{i}\right), \tilde{\sigma}\left(\gamma_{i}\right), \gamma_{i}\right)=0 .
$$

Therefore, $\tilde{\gamma}_{i}$ togetiner wiiit $\tilde{u}_{i}^{\prime} \tilde{r}_{i} ; \tilde{\sigma}_{i} \tilde{r}_{i}$; :spresent a anlution of the maximum likelihood equations (10), (11), and $\frac{\theta \lambda}{\partial \gamma_{i}}=0$ given by (12). It should be noted that although the limit along a specific path of integration is unique as $t \rightarrow \infty$ it does not follow that there is only one solution of the maximum likelihood equations aince a change in the starting point ${ }_{o} \gamma_{i}$ may give rise to a different path of integration.

Finally we ahould comment on a modification of our steepest ascent integration which ensures that $\gamma_{i}=0$ along the path: First observe that the log likelihood is a differentiable function of $\tau_{i}=\gamma_{i}^{\frac{1}{2}}$ which is symmetrical at $\tau_{i}=0$. It follows that if τ_{i} is used as a parameter in place of γ_{i} we have

$$
\begin{equation*}
\frac{\partial \lambda}{\partial \tau_{i}}=\frac{\partial \lambda}{\partial \gamma_{i}} \cdot 2 \tau_{i} . \tag{21}
\end{equation*}
$$

Therefore, the steepeat ascent differential equationn (17) can be replaced by

$$
\begin{equation*}
\frac{d \tau_{i}}{d t}=2 \tau_{i} \frac{\partial \lambda}{\partial \gamma_{i}}\left(\tilde{a}\left(\gamma_{i}\right), \tilde{\sigma}\left(\gamma_{i}\right), \gamma_{i}\right): \tag{22}
\end{equation*}
$$

The integration would commence at positive values γ_{1} but should the path of integration reach a point where one or several of the $T_{i}=0$, a new integration would be started at that point and the one or several $T_{\text {: }}$ would be held at $\boldsymbol{T}_{i}=0$ for the rest of the integration path. The limit as $t \rightarrow \infty$ will again be a solution of the likelihood equations

$$
\begin{equation*}
\frac{\partial \lambda}{\partial \tau_{i}}=0, \frac{\partial \lambda}{\partial \alpha}=0, \frac{\partial \lambda}{\partial \sigma}=0 . \tag{23}
\end{equation*}
$$

This procedure ignores and avoids any possible solutions of the likelihood equations with $\gamma_{i}<0$.

It would carry us to far afield if we were to discuss in this paper computational details of solving the system of \sim ordinary first order differential equations (17) or (2人). It suffices to state that a large step (higin ordei) Runge-1Kutta procedure (see e.g., Henrici (1962)) it found to be quite serviceable. For large n (i.e., $n \geq 50$) numerical inversion of the $n \times n$ matrix H involved in (12), (13), and (14) can be completely avoidec by reducing this task to operations involving only matrix inversions of order $m \times m$ where $m=\Sigma \mathrm{m}_{\mathrm{i}}$ on lines similar to Henderson et al (1959). The relevant equation is ${ }^{1}$

$$
\begin{equation*}
H^{-1}=I-Z\left(Z^{\prime} Z+I\right)^{-1} Z^{\prime} \tag{24}
\end{equation*}
$$

where
Z is the adjoined $n \times m$ matrix

$$
\begin{equation*}
\mathrm{Z}=\left(\sqrt{\gamma}_{\gamma_{1}} \mathrm{U}_{1}|\ldots| \sqrt{\gamma_{c}} \mathrm{U}_{\mathrm{c}}\right) \tag{25}
\end{equation*}
$$

With the help of (24) the computational work in quite manageable on high speed computers and a program is in preparation covering data for which $\mathrm{n} \leq 500, \mathrm{c} \leq 5 \mathrm{k} \leq 150, \mathrm{~m} \leq 150$. The computer time on the IBM 7094 is eatimated to range between 5 minutes and 2 hours largely depending on the magnitudes of m and k.

REFERENCES

Bush, N. and Anderson, R. L. (1963). "A Comparison of Three Different Procedures for Estimating Variance Components." Technometrics, 5, 421-40.

Furukawa, N. (1960). "The Point Estimation of the Parameters in the Mixed Model. " Kumamoto J. Sci. A, 5, 1-43.

Graybill, F. A. (1961). An Introduction to Linear Statistical Modela, Vol, 1. McGraw-Hill Book Company, Inc.

Graybill, F. A., Martin, F. and Godfrey, G. (1956), "Confidence Intervals for Variance Ratios Specifying Genetic Heritability. " Biometrics, 12, 99-109.

Henderson, C. R. (1953). "Entimation of Variance and Covariance Components." Biometzics, 9. 226-52.

Handermon, C. R., Kempthorne, O., Searle, S. R, and Von Kroaigk, C. M. (1959), "The Entimation of Environmental and Genetic Treads from Records Subject to Culling." Biometrics, 15, 192-218.

Henrici, P. (1962). Discrete Variable Methods in Ordinary Differential Equations, John Wiley \& Sons, Inc.

Hultquint, R. A. and Graybill, F. A. (19G5). "Minimal Sufficient Statistics for the Two-Way Classification Mixed Model Design. " J. Amer. Stat. Absoc. 60, 182-92.

Searie, S. R, and Henderson, C. R. (1961). "Computing Procedures for Entimating Components of Variance in the Two-Way Clasafication Mixed Model." Biometrics, 17, 607-16.

Yates; $F .(1934)$. "The Aralysis of Multiple Clasaifications with Unequal Numbers in the Different Claspes." J. Amer. Stat. Assoc. 29, 51-66.

LIST OF ATTENDEES

Alley, Bernard Anctil, Albert A. Anderson, Virgil L. Atkinson, John C. Bailey, Milton Barksdale, Thoman H. Barnett, Bruce D. Bechhofer, Robert Bell, Raymond Biser, Erwin Bohidar, Neeti R. Boldridge, A. Bombara, E. L. Brown, George A. Brown, William A.
Bruce, C.
Bruno, O. P.
Buifinch, Alonzo
Cameron, Joseph M.
Carrillo, J. V. Carter, F. L. Chernack, Gilbert Chrepta, M. M. Ciuchta, Henzy P. Cohen, A, C. Couington, George F. Cousin, Thomas Cox, Paul C. Curtis, William E. D'Andrea, Mark M. DeCicen, Henry Dick, John S.
Dressel, F. G. Duff, James B. Dutoit, Eugene
Dziobko, John Ehrenfeld, Sylvain Eisenhart, Churchill Fetters, William B. Fontana, W.
Foohey, Sean P.

US Army Missile Command
Army Materials Research Agency
Purdue University
Edgevrood Arsenal
US Naval Supply Res \& Dev Facillity
Fort Detrick
Picatinny Arsenal
Cornell University
BRL, Aberdeen Proving Ground, Md.
Fort Monmouth
Fort Detrick
TECOM
Marshall Space Flight Center
Thiokol Chemical Corp., Denville, NJ
Dugway Proving Ground
RAC
BRL, Aberdeen Proving Ground, Md. Picatinny Arféenal
National Bureau of Standardis
White Sands Miselle Range; New Mextco
Fort Detrick
Thiokol Chemical Corp., Denville. NJ
Fort Monmouth
Edgewood Arsenal
University of Georgia
Picatinny Arsenal
BRL, Aberdeen Proving Ground, Md.
White Sanda Missile Range, New Maxico
Picatinny Arsenal
US Army Material Research Agency
US Army Munitiona Command
US Army
Army Research Office-Durham
Fort Belvoir
Picatinny Arsenal
Picatinny Arsenal
New York University
National Bureau of Standards
Naval Propellant Plant, Indian Head, Md. US Army Electronics Laboratoxy
Research Analysis Corporation

Foster, Walter D. $\overline{\text { Futrerer, Arnoid } \bar{I}}$. Galbraith, A. S. Geshner, John A. Gronnewoud, Corneliue
Grubbs, Frank E.
Guenther, William C. Gupta, Shanti S. Hall, Charlen A. Hanson, Fred S. Harris, Bernard Harshbarger, Boyd Hartley, H. O.
Hassell, Louia D.
Heacock, Frederick E.
Hecht, Edward C.
Helvig T.N.
Howarda, B. A
Hunter; J_{t} Stuart
Jacobue, Davd P.
James, Peter G.
Jenkins; Andrew H.
Jessup, Gordon L.
John, Frank J.
Kirby, William
Kocornik, Richard W.
Kolodny; Samuel
Krueger, Albert C.
Landerman; J.
Lavin, George I. Lawrence, Myron C.
lehnigk, Siegfried H.
Levy, Hugh B.
Little, Robert E.
Lucat, H. L.
Lum, Harry S.
Lum, Mary D.
Macy, Donald M.
Mandelson, Joseph
Mann, H. B.
Mannello, Edmund L.
Manthei, Jamea H .

Fort Detrick
Eagewood Arsenai
Army Research Office-Durham
Picatinny Arsenal
Cornell Aeronautical Lab., Buffalo, N. Y.
BRL, Aberdeen Proving Ground
Univeraity of W yoming
Purdue University
White Sand Misaile Range
White Sands Missile Range
University of Wisconsin
Virginia Polytechnic Institute
Texas University
Picatinny Arsenal
LOH Field Office, St. Louis, Missouri
Picatinny Arsenal
Honeywell, Inc.
US Army Weapons Command
Princeton University
WRAIR
Bureau of Medicine, FDA
Redatone Arsenal
Fort Detrick
Watervliet Arsenal
BRL, Aberdeen Proving Ground
Picatinny Arsenal
Harry Diamond Labs.
Picatinny Arsenal
ONR
BRL, Aberdeen Proving Ground USAF, Opra, Analysis Ofc., Wash. ,D.C.
Redstone Arsenal
Picatinny Arsenal
Univeraity of Michigan
North Carolina State Univeraity
Fort Detrick
Wright-Patterson Air Force Base
US Army Aviation Materiel Command
Edgewood Arsenal
University of Wisconsin, Math Res Center Picatinny Arsenal
Edgewood Arsenal

Margolin, Barry H. Niasaitis, Eesiovas Mazzio, Vincent J. McBroom, C. W. O. McKeague, Robert L. McLaughlen, G. McLean, Robert A. McMains, Forest McMullen, W. C. Miller
Miller, Morton Mioduski, Robert Moore, James R. Mowchan, Walter Nagorny, George W. Nelson, Harold Nickel, J. A. Olivieri, Peter G. Orleana, B. S. Osiecki, Charles H. Palmer, J. D. Parks, Albert
Parrish, Gene B. Pell, William H. Pliml, Jamea R. Provost, Robert G, Revasky, Samual H. Rigen, Charlea W. Rinkel, Richard C_{1}
Rose, Carol D. (Mr.)
Rosenthal, Arnold J.
Rosenblatt, Joan R.
Rothman, David Rotkin, I.
Saboe, John C.
Sarakwanh, Michael
Schlenker, George J.
Schmidt, Th, W,
Scholten, Roger W.
Sellg, Seymour M.
Selman, Jexry H,

Fort Monmouth
Daiiisic テ̄esearcin iajoraiorics US Army Natick Laboratorie:
Walter Reed Hospital
USA. Ammunition Procurement \& Supply Agcy. NRB
University of Tanneasee
Picatinny Arsenal
Naval Supply, R\&D
Picatinny Arsenal
Scherring RC
BRL, Aberdeen Proving Ground
BRL, Aberdeen Proving Ground
BRL, Aberdeen Proving Ground
Naval Base, Philadelphia, Pa.
Hercules Power Co.
Univeralty of Oklahoma
Nuc Rel Div, QAD, Dover, N.J. BU Ships
Picatinny Aratanal
University of Oklahome
Harry Diamond Laboratorde e
Army Research Oifice-Durham
National Science Foundation LOH Field Oifice, St, Louis, Mistouri
U. S. Army Misaile Command

Fort Knox, Kontucky
Fort Detrick
Research Analyaie Corporation
US Army Tank-Automotive Center
Celanere Corporation of America
National Bureatu of Standarde
Rocketdyne, A Division of NAA
Fiaryy Diamond Laboratorlea
International Reaist. Co.
Thiokol Chemical Corporation
U. S. Army Weapona Command

Army Research Oifice-Durham
The Boolng Company
Oiflce of Naval Reserreh
U. S. Army Munition: Command

Sloane, Harry S. Slutter, Carl G. Smoot, Perry R. Solomon, Herbert Somody, Edward V. Starr, Selig Strauch, R. Tang, Douglas B. Tilden, Donald A. Tingey, H. B. Uherka, David J. Vick, Jamer 4 . Walner, Arthur W. Webb, S. R. Webster, Robert D. Weinstein, Joseph Weintraub, Gertrude Wiesenfeld, Louis Williams, Burt on L. Willoughby, Weldon Youden, W.J.

Dugway Proving Ground Picatinny Arsenal AMRA, Watertown, Mase. Stanford University Aberdeen Proving Ground
Army Reaearch Office-Washington Vitro Laboratory
Walter Reed Army Institute of Research
Picatinny Arsenal
University of Delawa de
U. S. Army Natick Laboratr rien

Edgewood Arsenal
US Naval Applied Science Laboratory
Rocketdyne, A Division of NAA
Picaiinny Arsenal
Fort Monmouth
Picatinny Ax'sonal
Pleatiran: Arsenal
White Sands Mirsile Range
BRL, 'Aberdeen Proving Ground
George "Tashington University

[^0]: *This article was initially issucd as U. S. Army Missile Command Report No. RR-TR-65-11.

[^1]: ${ }^{1}$ C. R. Hicks, Fundamental Concepts in the Design of Experiments, New York, New York, Holt, Rinehart and Winston, 1964

[^2]: IHicks, loc. cit.

