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ABSTRACT. In this paper we give a matrix treatment of the classical
least squares theory and determine each observation~s contribution to the
least squares solution. If each observation's (or observer's) contribution
is known, then it may be possible to delete certain observations (or ob-
servers), (1) to improve the least squares solution or (Z) to minimize the
number of observations (or observers) entering the least squares solution.
It should be emphasized that redundancy is necessary to obtain a statis-
tically sound least squares solution, however it may be advantageously
limited without significantly changing the solution,

Although we present a general least squares theory for uncorrelated
observations, special emphasis is given to the least squares missile
position problem generated by a set of observed azimuths, elevations and

slant ranges from a system of missile tracking systems such as Radar.
The above treatment is used to develope a geometric ordering of available
tracking stations, which is then combined with station ability and reliability
to determine pre-flight minimal station participation. That is, given an
approximate trajectory and n available tracking stations we predict the
minimum station combination for an adequate coverage of a flight along
this trajectory.

1.0 INTRODUCTION. In this paper we give a matrix treatment of
the classical least squares theory and determine each observation's con-
tribution to the ieast squares solution. If each observa~ionas (or observer's)
contribution is known, then it may be possible to delete certain observa-
tions (or observers), (1) to improve the least squares solution or (2) to
minimize the number of observations (or observers) entering a least
squares solution. It should be emphasized that redundancy is necessary
to obtain a statistically sound least squares solution, however it may be
advantageously limited.

The following procedure has been applied successfully in [4, 5, 6]
to the following problem:-

GIVEN: An approximate missile trajectory and the co-ordinates
of n tracking stations (Cinetheodolite, Radars or Dovap receivers) along
with various other pre-flight data-
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DETERMINE: The best minimal station combination (how many? and

which ones?) for an adequate coverage of a flight along this trajectory.

We will use the n-station radar position solution presented in [51 as
an example of the general theory which follows.

2. 0 LEAST SQUARES THE.)RY. A brief outline of a least squares
method following the notation of D. Brown [1] will now be given. The
model under consideration is assumed to be non-linear. There are obvious
simplifications if the model is linear,

Let (Xil be a set of random variates (i 1, 2, ...... q)

Xkbe a set if uncorrelated observations of the set ýX

f0 0 0~For example: A, F.' Ri , the set of azimuth, elevation and range

readirgs from a system of n radar stations to a missile (i = 2, .. ),

F Let ýY3) be a'set of variates (parameters) dependent on the Xi,

: Y -= Y (Xl, x 2  .. . Xq) (j = 1, 2 ... p)

We note- that the explicit form the for Y. as functions of the X may

not cxist, in which case only an implicit form for this dependence is
available.

For example: (x, y, z), the missile co-ordinates are dependent on
AV, Ei, PRi.

If the set (Xi is such that not all the Xi are necessary to deter-

mine the entire set of iX. or what is of more importance here and

in (I1 , to determine the derived set , then the set X is said

to be over-determined. A least squares solution is in order. We need
to find ( g a set of approximations to {Y,3 such that the sum of the•i } ~is a minimum.,)

squares of the residuals of the observed set ýXi

For example: In the n-station radar case (b] , each radar determines a
missile position (x(j), y(j), z(j)), (j = ,. 2. n). *These points will
coincide with probability zero. We use the least squares method below to
determine the "true"l missile position.
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We have X X + i 1,2,,.. q) I]
y. Y + 6, (j=1, 2,. , p) L-

.1 J .1 1-
where (Y0 j ise a first approximation to ( , j and (Y. are

least squares approximations and the y, and 6 are undetermined

residuals.

Suppose the minimum number of [X. required to determine

the entire set of {X)y is qo, then the nu~mber of independent condi-

tional equations relating the jX 11 and ý J is mn = (q -qo) + p. Let

these m equations be given by

(2,. 1) if (X , .. q, Y1 ' ... Y ) = 0 (1 1, 2 . .... n).

For example: In the radar case if 3 observations are known (azimuth,

elevation and ri'nge readings from one station) then the others can be

determined, thus mn = (3m - 3) + 3 = 3m. In this example.

f A " Tan"1 y Yi 0
31-2 ~ 1 [L X...]

f3-1 E= .Tan- L 0

f = R. -R (xx 1i)
2 + (y-yi) + (z-z 1  0

( 1, tr2 ... n). Note that here (xi, yi, z.) are the co-ordinates of

h-

o....h i radar. ..ation.
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Assume that the fi can be expanded in a Taylor series about the
j0 0 0 0 th0b hpoint t= (X , X 2 # ..... X, Y 1 ... , Y ). Approximate the f by the

p
constant and linear terms of these Taylor expansions and replace
X by x, + y". Equation (2, 1) becomes (in matrix notation)

(2.2) AV + BD + E 0 where

A is the m by q matrix (A 1 ) with Ai= 8 8fi/OX] (t),

B is the m by p matrix (Bik) with BEk ([fi/aYk) (t),

E is the m by 1 matrix Ei with E. = fi(t)

t tV=(v 1 , V, . .. , Vq)t and D ( 6(1, 6, ... 6

For example: Note that A I in the Radar and Cinetheodolite cases,
and A is a scalar matrix in the Dovap case.

Assuming uncorrelated observations, the least squares solution is
that which results in minimizing the weighted sum of the squares of the

S• residuals

(2,3) S Vt(o.), V where

(a-) is the relative variance matrix of the observations .X , The
1~ th

element ()i = Wi is the weight of the ith observation.

For example: In the radar case the weight ( = W. can be determined
an follows. Compute

E x(i)

j n-I

j n-i
, •; Z~i)

z j n 1 1, 2, n).

- -,_ n -I_ ___... .7<
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Compute the back azimuth-:A Tan-1~ -~

the back elevation: E Tan' (/x " ( ]j
[IJ -Xj) + (Vj -yj)>- /

the back rangeR R-x~ + (yJY.) +. -(.zj)

Le t: W = " ( .AO)Z

3j- (j Rj
w3jl -I

W = l/(R- I )ý , (j 1, 2, ... , n).

In the terminology of inatrix algebra the problem of least squares as
considered by Brown (1, 2] and.Hall (4, 5, 6] consists of determining of
all possible vectors V and D satisfying (2. 2), those which minimize (Z. 3).

We solve the constrained minima problem with the aid of Lagrange
multipliers. Let X (XI, fX, .. X)t, from (2. 2) and (2. 3) we have

(2.4) S= Vt(r) l V-2At (AV+ BD +E),

To determine the minimum value of S, equate to zero the partial

Differentiation of S with 'respect to the residuals y, yields

(2,5) (O)- V At X 0 or V =(o-)AtX.

S~. .i
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Differentiation of S with respect to the residuals 6. yields

t
(2.6) B A = 0.

Substitution of (2. 5) into (2. 2) yields

(2.7) (A(a) At)A + BD + E a 0

If (A (a) At) is nonsingular then the least squares solution results
from(1.) Solve (2.7) for X - (A(r)A) (BD + E)

(2.) Substitute X into (Z. 6) and derive the Reduced Normal Equation

(2.8) ND+C =0 where

N =Bt (A (a) At)" B and C = Bt (A (a) At) E.

(3.) Solve (2. 8) for D.
(4.) Solve (Z. 5) for V.

In most cases the matrix A (a) At is nonsingular and (2. 8) is valid.

In the few cases where this is not true, it is possible to remove the
difficulty by manipulating the conditional equations, (2] .

We have computed a least squares approximation to the parameters

i using an initial approximation. We now repeat this procedure using

Sinstead of fYi as an approximation and compute a new

residual matrix D. The iteration continues until I D is sufficiently

small.

Since we want to delete observations (or observers), we need some
basis fo2 determining which observations are the most likely candidates

for deletion. We use the partial derivatives
T9XV eXvautda X a

evaluated at t to aid in this determination.
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3,U .. C, IZR V A T I C ,ol ri C, .D-,.-4,..A r.,i,,t in thý introiduction there 4
are two distinct motives for deleting observations. In general if we are

trying

(a.) TO IMPROVE THE SOLUTION

WAN 8 / 8Xo small, so that errors in Xwill have littl

effect on 6,w

0 0
DELETE-: 6 / 8X large, since a small error in X will

result in a large error in the 68

(b.) To MINIMIZE PARTICIPATION

WANT: 863 / aXo large, since this observation (X') has a

great effect on the solution. 
K.

86/8 0  X0) a
DELETE: 6 /ax small, mince this observation (X haA

little effect on the solution,

Let U (X1 , ... , X ) and define thep by q matrix

Sq •6 "86
.- , [61 + , , 6z 1 . . 1xx .,

ox p ex x
U .... .

D =[8/8U])D

66 .. I6I Ii•

,P-

wher -a 0 D = =- (t) '

ax 0  axa

j 3

0a<o axx.?+

q - i .. :,--.-- ------



456 Design of Experiments

One of the objectives of this paper is the derivation of D Note that
U.

() is the rate of change of 6 (the correction in the dependent
U~jij

variable Y ) with respect to the observation Xi

For example: In the radar case (Du)ij is the rate of change of the

correction in one of the missile position co-ordinates with respect to a
change in azimuth, elevation or range at the JM station.

From (2. 8) we have

-l t tl 1 t ID -N" C -[Bt(A(c) At)1 B] [B (A ()A)] E.

Since observational errors have no significant effect on the matrices
A. B and (ws), they may be regarded as constants in the propagation of
error under consideration. The vector E however is affected by the
observational errors. Thus the error in D arises primarily from errors
in E, which in turn are caused by errors in the observational vector U.
Therefore

-l t t 1.rmDU =-N REU whereR=B(A(u)A) andEU a[ I E]

But EU =A and thus
(3.1) D U : A.

Note the simplification if A I, as is the case in (4, 51

4.0 VARIANCE - COVARIANCE MATRIX. A well known, [2. 7]
d -generalized law of covariance (in matrix notation) states that if

D = (6 ... 6 ) is a vector of functions of the elements of the vector

.iacU (X, X0.. , X) which has the variance matrix "r (o), then the

variance -covariance matrix of the vector D is given by

zD ( t

- -- - ------- - - -- - -- - T ~
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(4.1) D 0 N

Note that ir 2is the population variance and (a-) in a relative varia'tce matrix
Ik of the cbservations.

ZY2 2i 2 Y w
In the radar case 0-.2 1=1 (v1 wl + 2 w12 + U~ w

o 3n -3

5. 0 VARIABILITY ESTIMATE. For each correction 6, of the derived

quantities Yip a "variability estimate,, will now be associated with each

observation. *

In the radar case, for each co-ordinate residual a variability estimate is
associated with each tracking station.

Consider the matrix H cr D Wo Note that

N H__ (i1 2, .. ,P; j =1, 2, .. ,q)

and

NH

It follows that the variance in the derived quantity Y.

q q 2 r6
2j 2 [

Y 11 0

2 th

2~ thihi
oboe~~~~ rv.-n (11 , pj ,2 )
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• Il In the radar case there are three observations per station (azimuth,
U elevation and range) and thus the variability estimate "for the jth station"

is defined as the sum of the variability estimates (as defined above) for 1
the azimuth, elevation and range readings at the jth station. We are

interested in eliminating stations and thus observations three at a time.

2 2 2 H2
.ij i3J-Z + i,3j-1 + i,3j

this the variability estimate for the j station, where

SX3J = A , X3j-1 Ej and X3j =R R (j =l,2... 3n).

1 6,0 MOTIVES FOR DELETING OBSERVATIONS. We will now
discuss motives or reasons why one might want to delete observations
before computing a least squares solution.

6.1 TO IMPROVE LEAST SQUARES SOLUTION. In this case we
are interested in deleting observations which are "extremely" poor,

I that is, observations which contribute greatly to the variances. Certainly
if all of the H2 (j = 1, 2, , q) are relatively close to being equal then

no observation is predominately worse than the others and no observatiun

should be deleted as a result of investigating the variability estimates. One
should remember that usually the variances increase with a decrease in
"observations. However, if one (or more) observation's variability
estimate is quite large in comparison to the others, then this observation
would be considered a predominate contributor to the variances (r2 (or

least squares solution) and would definitely be a candidate for deletion,
One must consider an observation's contribution to each variance

W (i = 1. 2, . , p) when deciding if an observation should be deleted.•Yi'"

There are various ways one might want to combine these contributions
to the variances a2  so as to be able to order the observations (or

SYi 2 Z
observers). In the radar case we have three variances, a' , 7 y a'
(p=3) to consider and define station constants X Y
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D. 2 +C2  +c 2  (j 1, 2,.. n)" VCj 2j 3j

The stations are then ordered according to the magnitude of their station
constants. (D1  a Di k . D

11 1 2 n

To improve a least squares solution the station corresponding to
the largest station constant is designe.ted the most likely to be deleted.

This case of improving solution, not being our main motive for the

study, has not yet been thoroughly investigated.

6.2 TO MINIMIZE THE NUMBER. OF OBSERVATIONS. In this
case we are not primarily interested in an improved solution, but
rather deleting observations Which contribute "very little" to the solution,
so as to minimize the data that we must consider for a solution. The
observations (or observers) that contribute least to the variances of those
with the smallest variability estimates are the most likely• candidate's for
deletion. Our motive here might be completely logistical.

In the radar case, it should be pointed out that the matrices needed
to obtain the ordering of stations given above (Di i D • ... Z Di )

can be determined (or at least approximated) before flight. To find the
variability estimates we need to know,

(1)B=(bx, Y, Z). This matrix is readily computed(I)B (ij) = -(AjEjRj)'

given station co-ordinates and an approximate missile position.

(2) (o-) d dg (a-ll, p2 .. , 32) -- variance-covariance matrix

of the observation variables. If the standard deviations orAj Ej 'Rj ,

(j =1, 2,,. n) are known from past histories then set:

• ' :.
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2 2

-.,1 (0.)3j-z,3j-2 = / con2 Ej /a%

()3j -1, 3 j 1 = 0E

()q = 2o (j 2, .... .n)
3j 3j" 0.RJ /J o

E 2 + 2 2S --(0.j + aE' +_ r / R)
2 j=1 Apij 0 Ej Rj /where =
0 3n

In the Cinetheodolite Study, DR.- has estimates of ra' and a, and

plans are being made to keep records for the Radar and Dovap systems.

If the standard deviations are not available, then the present weighting
scheme at WSMR may be used setting

(e.) Sj Co. 1R 2  2

33-2,3j.2

3J1 l/R~:+'•3j -1, 3j -1

-0 (j =1 2, , .. n).

2
In this latter case an approximation of (r is used instead of the above

0

calculated values, (If neither of these weighting schemes are acceptable,
then one can simply set (r ) = I. )

, (3. ) DU 1-[B' (a-)-IB] B1 (B r (')'I since A = I.

(3) 1/2
(4.) H a'DU (o-)/, and thus the variability estimates and station

constants are available before flight,

- -:. "-" - --- -- "- ---.
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"observational" errors, with the standard deviations a, T and arAj' 1Ej IRj'
in a simulated least squares solution. A

It should be pointed out here that this ordering determines the best
k station combination (k 5n) as the stations (i, iz , i Otherwise1 ... . kt ' i

one would have to consider C possible combinations of k

station solutions to arrive at this stage.

In the final stage the Minimal Station Participation problem (4,5,,6)
takes the form:

GIVEN: (1) A geometric ordering of n stations (D. Ž . >. _ Di )
2.1 1n(2) A reliability factor P for each station - the probability I-

of successful operation if scheduled,

(3) Data precision factors for each variable (AE,R) per
station q W E•,w:. °Aj # Ej °'Rj

(4) Necessary data to determine tracking capabilities such
as tracking rates (focal lengths and object size in the case of Cinetheodolite),
etc.

FIND: A subsystem of k stations (k e n), k a minimum, such that
for th as particular point and missile we have:

(1.) Each station in the subsystem is able to track,

(2.) The probability of two or more (three or more in

Cinetheodolite case) of the k stations will operate successfully is greater
than P,

(3.) The geometric ordering given above is such that the

stations deleted are insignificant contributors to the solution.

Thus we consider station ability, reliabilit, and eImet• y in deter-

mining the Minimal Station Participation Before Flight (MSPARB) System.

.t.

•,I-
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The RADAR and DOVAP programs are in the procese ot being written.
Consider the following SLIDE of the MSPARB Cinetheodolite program (4] , as
of 13 August 1965.

• . •. The input includes

(1) Jy, zj) ------- (j 1 2, .... , n), WSCS co-ordinates

. . of the jth station,

(2) (x, y, 7.) ----------- n approximate missile position,

(3) (x, y*, z) --------- approximate velocity components,

(4) (X, y, --------- -approximate acceleration comnpoiaez-ts,

A (5) .-------------- (j = 1, 2, n), the standard deviation
A in azimuth readings at the PI station,

(b) -r -.............- (j = 1, 2, " n), the standard deviation
E in elevation readings at the ith station,

(7) k -. -------------- (j = 1, 2, ,. , n), the angular velocity

limit in azimuth for the jth station,

(8) k-j -------------- (j = 1, 2, ... n), the angular accelera-
* I tion limit in azimuth for the jth station,

(9) k --------------- (j = 1, 2,., , n), the angular velocity
Ij limit in elevation for the jth station,

(10) k . .. 4j (j -1 2, ... n), the angular accelera-
tion limit in elevation for the ith station,

(11) F. -------------- (j = 1, 2, . . , n), eifective focal length
of the jth camera,

(12) 0 --------------- object size

(13) P ---------------- (j 1 1, 2, .. . , n), the probabiUty that

station j will operate successfully if
scheduled.
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Notice that the criterion for deletion of stations contains three main
considerations:

I. STATION ABILITY. All stationi considered will first be tested
as to inability to track for a certain interval for one or all of the following

(I) Image size too small,

(2) Tracking rates too large,

(3) Elevation angle too small.

II. STATION RELIABILITY. The minimum number of stations is
chosen so that the probability of three or more stations operating .I
successfully at any one time is greater than a pre-determined number.

station geometry. Stations are deleted if their geometric contributions " f ':;/•)•:,

"are "insignificant".

Program output includes:

(1) Print out of all or part of input to program, .* ..

(2) Computed azimuth and elevation angles from each station to

the point under consideration,

(3) Cornputd• approximations to expected standard deviations in
missile co-ordinates and angular standard deviation,

(4) Geometric ordering of stations to include station numbers

(5) The probability that three or more of the stations in MSPARB
will operate successfully if scheduled.

Modifications of the above MSPARB Cinetheodolite program since 13 Aug 65
include (1) a print out of error estimates for the system of the worst three
stations in MSPARB as vwell as error estimates for MSPARB, (2) a print
out of cumulative error estimates over the entire trajectory. (3) a print out

!I :!



Y'

A I.I
Design of Experiments

of how many timcs a station was used over the entire ti-ajectory. (I have
available here sample print oults for a few trajectories if anyone ia interested,)

Areas where MSPARB can be used include:

(1) Schedule determination.

(2) Minimizing the current scheduling efforts,

(3) Determination of beat launch point (balloons).

(4) Determination of best positioning of mobile units.

* (5) Determination of beat positioning of future station sites,

(6) tatement of expected system (.MSPARB) errors -(confidence

inerva~l) ýpro'-flight.

(7) Determination of which system (Cinetheodolites, Radar, or
Dova~p) or cornbination of systems will yield the best trajectory coverage-

(8) Pure error studies concerning geometry versus data precision.

L-Ft us close by stating again that redundancy is necessary to obtain a
statistically sotnd least squares solution, however, through the methods
outlined here it can very definitely be advantageously limited.

41'
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PRECISION AND BIAS ESTIMATES FOR DATA FROM
CINETHEODOLITE AND AN/FPS-16 RADAR

TRAJECTORY MEASURING SYSTEMS

Oliver L. Kingsley and Burton L. Williams
Range Instrumentation Systems Office

White Sands Missile Range, New Mexico

INTRODUCTION. A series of flight tests have been conducted at
White Sands Missile Range in an effort to obtain a comparison of trajectory
data derived from the measurements produced by different instrumentation
systems. The instrumentation systems that have been used in some of
these tests are Ballistic Camera, DOVAP, Cinetheodolite, and FPS-16
Radars. Interim reports were prepared, based on the data from the three
earlier flights conducted on March 29, 1960, September 19, 1960, and
January 29, 1962. Mr. Kingsley and Mr. Free presented a summary of
the analysis and results of these earlier flights at the sixth, seventh and
ninth annual meetings of this conference.

Purpose of Report

The fourth flight test was conducted on October 1, 1962 using a modified
Nike Hercules Missile, The purpose of this report is to present an analysis
of the bias and random error associated with some of the major range
instrumentation systems used for this flight and to compare this data with
the data from the earlier flight tests.

Comparability of Results and Earlier Flight Tests

The precision estimates are directly comparable but the bias estimates
are not, because the comparison with trajectory data from the Ballistic
Camera System was not available,

The earlier three flight tests were conducted at night so the Ballistic

Camera System could be utilized to obtain trajectory data to be used as
a standard for position bias error estimation. The Ballistic Camera, used
on earlier tests, photographed a flashing light beacon on-board the missile
against a star trail background, The light beacon flashes were controlled
from the ground by a trasponder aboard the missile,

. - )

- -..-.- i..--i -----. - • ... • ..
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Fourth Flight Test

The fourth flight test was conducted during the daylight hours utilizing
two cinetheodolite systems and seven AN/FPS-16 radar systems, though
only two of the radar systems are analyzed here. The Askania Cinetheo-
dolite System was used as the reference standard for system position bias
error estimation for the Contraves cinetheodolite and FPS-16 radar systems.
No DOVAP or Ballistic Camera systems were used for this fourth flight
test. The AN/FPS-16 radar systems were operated successfully in the
beacon tracking mode for the first time during this fourth test of the series.
Attempts were made to use the FPS-16 radar systems in the beacon track-
ing mode for the three earlier flight tests, but the, on-board beacon did not
operate properly.

Position, Velocity and Acceleration, Precision and Bias

In addition to the estimates of bias and precision for the position data.
as given in the earlier reports, estimates of the bias and precision given
for the derived velocity, acceleration and smoothed trajectory position
data are presented. These fourth flight test estimates of bias for position,
velocity and acceleration are based on data taken from the Askania cinetheo-

F. dolite system,

PRECISION ESTIMATES FOR TRAJECTORY DATA.

Standard Deviation Estirnate

• I Precision estimates were derived from trajectory data obtained from

two cinetheodolite systems and two AN/FPS-16 radar systems in terms
K .of standard deviations for the Cartesian component trajectory data. The

* standard deviation estimates were derived by the multi-instrument
components of variance technique as given by Simon and Grubbs. 1,23

". . Instrument Reduction for Position

The cinetheodolite trajectory position data were derived from a least
squares reduction of angular measurements 13) The Askania cinetheo-

dolite system warn a five instrument system making ten angular observations' for each trajectory space point-, the Contraves cinetheodolite system was
a three instrument system for trajectory section one and a two instrument

[ T

' ' "t • L• ." "....... - . " . . " , ',•:••...,. T = •.. . • -, -•. .. •...... .,



T)Pigir nf Experiments 471

system for trajectory section two, making six and four angular observa-
tions respectively for each trajectory space point. The radar traje-ctory
position data were derived from the range, azimuth, and elevation obser-
vations that were reduced to the Cartesian coordinate system.

Mathematical Model

A mathematical model for the trajectory position data from the jth instru-
ment system at the ith time may be written: Xij = Xi (true) + e ., where

13 ,

eij represents a composite random error for the jth instrument system

at the ith time, Standard deviation estimates were determined for these
position data, and also for sets of smoothed position, velocity, and
accelerati6n data that were derived by fitting a set of component position
data to an eleven point second degree polynomial in time, and evaluating
at the midpoint for successive trajectory space points (50 per trajectory
section). The polynomial equation for the smoothed X-component data for
the ith time would be of the form:

(1) Xi (smoothed) aoj + a1 jti + a "..

for the jth instrumentation, system, An error would generally be associated
with each of the coefficients for the Jth instrumentation system. A
compositerandom error for the jth system can be expressed in the
mathematical model:

(4) Xij (smoothed) Xi (true) + ij

where e is the composite random error for the jth system at the ith time,

The velocity equation is written:

S(3) xtj alj + 2a 2jti ;

The composite random error for the velocity data can be expressed by
the velocity equation:-

(4) Xij X Xi (true) + i)

•A Z '
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where the composite random error in velocity (c..) arises in the two of
ij

the terms of the velocity equation. A similar pair of equations could be
written for the derived acceleration data.

Discussion of Precision Estimates

The position standard deviation estimates presented in Table I represent
essentially random erroT in position data from the particular system. The

.i . standard deviation estimates range from two to twenty-two feet with the
exception of trajectory section two for the Contraves system where the
"system geometry is very poor. Generally, this would not be considered

"- satisfactory coverage; it is included for the sake of continuity.

The position, velocity, and acceleration standard deviation estimates
presented in Tables II, III, IV, and V represent the residual random error
in the derived (or smoothed) position, derived velocity, and derived
acceleration data respectively. The velocity standard deviations for the
cinetheodolite data ranged from two feet per second to eleven feet per
second except for the second trajectory section for the Contraves cinetheo-

dQlite, The velocity standard deviations for the radar data ranged from
three feet per second to sixteen feet per second. Velocity data derived
from the radar observations is as good as the velocity data derived from
the cinetheodolites with respect to variability. The cinetheodolite systems
and the radar systems are essentially equivalent in variability with respect

to the acceleration data-, the only exceptional values are the two large
acceleration standiard deviations due to the poor system geometry for the
Contraves system.

BIAS ESTIMATES FOR TRAJECTORY DATA.

Standards Used In Computation.

All of the bias estimates for Flight Test Nr. 4 of the Operation

Precise Program are based on trajectory data from the Askania c inetheo-
LI : dolite system with a mode of ten angular measurements. Earlier flight

tests have used trajectory data from the Ballistic Camera System which
was based on star trail background for calibration, The Askania system
does very well in the determination of the horizontal trajectory position
points but has some bias in the vertical determination as indicated by
earlier flight tests [9. 11, '21

. ...........

IIL _/:
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Definition of Bias Errors and Discussion

The average bias estimates tor position, velocity and acceieraL••n
are presented in Tables VI, VII, and VIII for the respective Contraves.
Radar 112 and Radar 122 systems. A positive average bias means that the
particular system trajectory data was on the average greater than that

corresponding data from the Askania system.

KThe average absolute component position bias estimates ranged from
a lowof six feet to a high eighty-two feet. The velocity and acceleration
average bias estimates were low. The largest velocity component bias
was four feet per second; the largest acceleration component bias was

only seven feet per second squared. The explanation for the large average

position bias error and the much smaller average velocity and acceleration
bias error is that the trajectories as determined by the instrumentation
systems are parallel but differ by a constant amount in position. This
means that the least squares fitting differ by essentially the constant term
of the second degree polynomial in time,

A comparison of the unsrnoothed position data from the Contraves and
radar systems with the corresponding data from the Askanla system reveals
that the average bias does not differ from the corresponding bias estimates
shown in Tables VI, VII, and VIII by more than one foot. This indicates
that the smoothing process either moves the average bias estimate the same
amount for all systems or that smoothing does not change the bias, A
further study of the smoothed and unimoothed trajectory data from the
Askania system reveals that the smoothing process leaves the Askania
trajectory data essentially unchanged.

SOME COMPARISONS OF~ PRECISION ESTIMATES WITH EARLIER
FLIGHT TESTS. Comparison of earlier flight tests were possible for the
Aska:.ia System and the two FPS-16 Radar Systems. The Contraves Systemn
xwas not operated on the earlier tests, Table IX shows the mode number
oi instruments that make up the Askania System for each flight test, Data
from the first trajectory section were selected from the third flight test
so as to approximate more closely the other tests. The standard devia-
tion estimates for the Askania system are smaller for the X and Y
component data for the later two flight tests.

Precision estimates for data from the earlier flight tests for radar
systems 112 and 122 are shown in Table X. These standard deviation
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estimates indicate that the best performance ior the radar systenms was
during the fourth flight test. The FPS-16 radars were operated in the beacol
tracking mode with a radar beacon aboard the tracked missile.

SUMMARY AND CONCLUSIONS. The Ptandard deviation estimates for
the position data ranged from two to nineteen feet for the cinctheodolitc
systems and ranged from five to twenty-two feet for the Fd-tS-16 radar
systems. This indicates that the radar system position data precision are
as good as the cinetheodoiite system position data p~recision for themic- fligit
test data. The velocity standard deviation estimates ranged from two to
eleven feet per second for the cinotheodolite systems (exception Contraves
section 2 data) and ranged from three to sixteen feet per second for the

+ FPS-16 radar systems. Again, a precision equivalence for velocity diAtU
from these systems can be stated. The acceleration standard deviation
estimates for all four tracking systems ranged from eight to forty feet per
second squared (with the exception of Contraves section 2 data). Again an
equivalence can be stated for precision of the acceleration data from these
systems.

The position component average bias were based on the trajectory data
from the Askania cinetheodolite system. The average bias for position
data from the Contraves cinetheodolite ranged in absolute (component)
value from six to seventeen feet (except for section 2 data). The average
bias for position data from radar 122 ranged in absolute (component) value
from eight to thirty-eight feet and from radar 112, the average bias range

+' ' in absolute value from a low of 23 to 73 feet. Based on the Askania
cinetheodolite position data, the radar systems did not do as well as the
Contraves systems, with respect to bias error estimates. The average

component bias for the derived velocity data ranged in absolute value from
zero to four feet per second for the Contraves system and ranged in
absolute value from zero to three feet per second for the FPS-16 radar
systems, Essentially the average velocity bias errors are equal.

Sto The acceleration component bias ranged in absolute value from zero

to six feet per second squared for Contraves system and from zero to
seven feet per second squared for the FPS-16 radar systems. These
derived acceleration data for eleven point (two second) smoothed data are

a,, essentially equal in average component bias error.

3r
/A
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I

TABLE I£

PRECISION ESTIMATES FOR TRAJECTORY POSITION DATA

FROM FLIGHT TEST NUMBER FOUR

Component Standa rd Deviation
Instrumentation Trajectory Estimate in Feet

System System North (X) East (Y) Up (Z)

Askania 1 5 8 10
Askania "..2 7 3 17

Contrave. 1 10 2 19
Contraves 2 45* 2 67*

Radar 112 1 1z 8 16 1'
Radar 112 2 1z 5 7 . .

Radar 122 1 9 5 2Z .
Radar 122 2 9 8 22

4 *Very poor geomtetry for a two instrtiment (theodolite) systern.

P.

p

Iii

t
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TABLE II i

STANDARD DEVIATION ESTIMATES

FOR DERIVED (SMOOTHED) TRAJECTORY DATA

FROM ASKANIA CINETHEODOLITE SYSTEM

FOR FLIGHT TEST NUMBER FOUR

Derived Component Estimates of
'rajectc ry Trajectory Staiida rd Deviation

* "Section Element* Dimendiuns North (X) East (Y) Up (Z)

I position feet 5 a 6
" poiition feet 5 13

I velocity ft/sec. 5 4 5
a" " • 2 velocity ft/dec. 6 3 11

I acceleraticn ft/sec. I 8 25
2 acceleration ft/bec 2 15 8 40

*All data were derived frum mid-point evaluation of a secoand degree least
square polynomial fitted over a two second interval (11 points) with time
as the independent variable.

•:.
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TABLE III

STANDARD DEVIATION ESTIMATES

FOR DERIVED (SMOOTHED) TRAJECTORY DATA

FROM CONTRAVES CINETHEODOLITE SYSTEM

FOR FLIGHT TEST NUMBER FOUR

Derived Component Estimates of
Trajectory Trajectory Standard Deviation

Section Element* Dimensions North (X) East (Y) Up (Z)

1position feat 5 2 10
2*' position feet 19 1 34

1 velocity ft/sec. 5 2 4
2** velocity ft/sec. 25 4 43

1 acceleration ft/sec. 2 16 3 38
2*4 acceleration it/sec. 87 12 148

*All data were derived from mid-point evaluation of a second degree least
squares polynomial fitted over a two second interval (11 points) with time

as the independent variable.
**Poor geometry for a two cinetheodolite instrumentation system. . . li

AI-.
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,• TABLE IVi F STANDARD DEVIATION ESTIMATES

FOR DERIVED (SMOOTHED) TRAJECTORY DATA

FROM RADAR (112) SYSTEM

FOR FLIGHT TEST NUMBER FOUR

Derived Component Estirnatep of
Trajectory Trajectory Standard Deviation

Section Element* Dimensions North (X) East (Y) Up (Z)

I position feet 10 7 13wii i,-:'"; 2 position , feet 12 4 7

1 velocity it/sec. 10 10 10S. . ./2 veloc ity it/sec. 6 "4 6

322 acceleration ft/sec. 30 20!i' "•.il .. ; ;•a ce e ato ft/sec. 30t.0 .

*All data were derived from mid-point evaluation of a second de.ree least
square polynomial fitted over two second interval (11 points) with tim&e an
the independent variable. The standard deviation estimates are based on
a sample of fifty (50) trajectory points for each trajectory section.
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TABLE V

STANDARD DEVIATION ESTIMATES

FOR DER.IVED (SMOOTHED) TRAJECTORY DATA

FROM RADAR (122) SYSTEM

FOR FLIGHT TEST NUMBER FOUR

Derived Component Estimates of
Trajectory Trajectory Standard Deviation

Section Eloer nt* Dimensions North (X) East ly) Up (Z)

1 position feet 7 4 10 ..
2 position, feet 6 2 9

1 velocity it/sec. 6 4 16
2 velocity it/sec. 4 3 9

"1 acceleration it/sec.2 10. 16 44
2 acceleration it/sec. to0 12 30

*All data were derived from mid-point evaluation of- a second degree least
squeres polynomial fitted over a two second interval (I I points) with time
as the independent variable.

5 1
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TABLE VI

SIAS ESTIMATES FOR DERIVED (ELEVEN POINT SMOOTHING) DATA

FROM CONTRAVES SYSTEM FOR FLIGHT TEST NUMBER FOUR

Derived Component Estimaten of
Trajectory Trajectory Bias Average Bias**

Section Element* Dimensions North (X) East (Y) Up (Z)

1 position feet - 6 9 -17
2 poiltion feet; -28 13 -82

I velocity ft/sec. - 2 1 - 4
2 velocity ft/sec. 0 0 2

21acceleration ft/0ec, 2 0 1 I "1 . .

* acceleration ft/sec. - 4 0 - 6

* See note in Table 11.

**The trajectory data at simultaneous times fronm the Askania System (chosen
standard) were subtracted from corresponding data from the Contravos System
to form an error set of data which were averaged for each trajeLtory section.

•,,,,.+.• ........ •........ ..
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TABLE VII

BIAS ES TIMATES FOR DERIVED (ELEVEN POINT SMOOTHING) DATA

FROM RADAR 112 SYSTEM FOR FLIGHT TEST NUMBER FOUR

Derived Component Estimates of
Trajectory Trajectory Bias Average Bias**

S ection Element* Dimensions North (X) East (Y) Up (Z)

1 position feet -55 -23 -5z
2 position feet -73 -27 -41

I I velocity it/sec. -z 1 1
2 2 velocity it/sec. 2 - 1 0

r

1 acceleration ft/ ec. 2 -1 0 2
2 acceleration ft/sec. 3- -1 3

*See note in Table I.

**The trajectory data at simultaneous times from the Askania System (chosen
standard) were subtracted from corresponding data from Radar 112 System
to form an error set of data which were averaged for each trajectory section.

•I.

Ii
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TABLE VM

t

BIAJS UTDIATSI FOR DERIVED (ELEVEN POINT SMOOTHINO) DATA

FROM RADAR 122 BYBTEM NOR FUOHT TEST NUMBEZR FOUR

Derived Component Estimates of
Tra Jectory Trajectory Bias Aversge Bias**

section Eloment$ Dimensions North (X) Zest (T) Up (Z)

1 posliton foet .38 -11 31
. position feet .21 -6 26

v elocity it/see, a 1 0
2velocity it/see., 3 0 3

1 acceleration it/see. 1 1 7acceleration it/ec. 0 0

,, Olo %*$ in Table U.

, ',•'•++ ... •, *The trajectory data at shaultalsous times from teh Askania sysetm (Ghooon

sta.ndard wove subtract1ed from sorrIpOlding datai tram Ridl 121 System
toform on error seot of data which were ,v~eald foreaoch trajectory, section,

A•! • I I ni
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TABLE IX

COMPARISON OF ASKANIA CINETHEODOLITE SYSTEM

BY FLIGHT TEST PERFORMANCE

Flight Mode Component Standard Deviation
Test Numer of Estimate in Feet

Num-ber Cinetheodolite North (X) East (Y) Up(Z)

1 6 11 11 8
2 7 10 15 12
3* 7 7 4 10
4** 5 6 6 14 1_ _.__.._'_ _

*Trajectory section-one and mode number of instruments corresponding I
more closely to earlier tests. Average set for the three trajectory
sections is 8, 8 and 12 respectively for Flight Test tiree.

**The first three flight tests were night tests with a point source of
light for optical system tracking; whereas, the fourth flight test was
conducted during daylight hours.

~ ~ - -. .

- - - - - - - - - -- - - - - . - ~ * L *----"- -
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TABLE~ X

COMPARISON OF RADAR SYSTEMS

BY FLIGHT TEST PERFORMANCE

Fliglit Component Standard Deviation
Test Radar Estimaticrn in Feet

*Number Designation North (X) East (Y) Up (Z)

Ii- R-112 I 18 46 34
2 R-112 I 25 68 92
3 R- 112* 19 39 16
4 R- i 2** 12 7 12

R R.12 29 29 21
2 R- 124 21 is 20
3 R- 122 26 34 31

4 R122* 22

*V~riate difference estimates for trajectory section I; data sampled at
2 per occond.

- **These radars were operated in the beacon tracking mode-,whe roa, prior
tests have utilized the skin tracking mode.
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'rHEIAMAL CYCLES IN WELDING

Mark M. D'Andrea, Jr.
U. S. Army Materials Research Agency

Watertown, Massachusettu

INTRODUCTION: The mechanical property integrity of weld heat-
affucted zones is an inherent and vital consideration in arc welding applica- .

tions, A weld heat-affected zone, hereinafter termed "weld-HAZ", in
defined as that volume of base material in a weldment that has been heated,
as a result of wolding, to a range of peak temperatures between the pre-
heat temperature and the materials melting point.

P-revious work conducted at the U. S. Army Materials Research
Agency, concerning the welding of fully heat-treated high-strength ý:tecls
for service in the as-welded condition, demonstrated that weld-HAZ ,rva.'
characterized by peak temperatures at or about the lower critical temper- 0'tture, suffered a marked loss of strength, thus roducing weld-joint
etficiuncies considerably. Other studies with high-strongth and maraging
stcls N!avc rovealed delhteriCnzO mec'hLnit.ti ')ronc!'ty effcwts ,resulting

from thermal cycles charactrerivd by pclak tcinpu iatutres above the upper
critical temnperature. In hlflition, it is well known that an ernbrittling

,,',•ot in alloy stecls is generally associated with weld-HAZ structures
characterized by peak temperatures between the lower and upper critical
temperatures.

Recent work conducted at AMRA, established the general parameters
necessary to define and rnprodi;xc thc transformational behavior of weld-
HAZ microstruc~ures. '[h'eso paramcters included (but are not necesshrily

limited to) the following; (i) The timer-temperature shape of a weld-HAZ
thermal cycle, (2) the peak temperature of a thermal cycle, (3) the *
microstructure of the base material (defined by heat treatment, chemistry,
working, etc.), prior to the imposition of a thermal cycle, and (4) factors

affecting restraining stresses and strains produced in the base material
as a result of the overall welding operation,

The gamut of microstructures prociuccd in ;. weld-TIAZ is the end
result of the complex and varied transformations caused by welding thermal
cycles. An important consideration which has been a pertinent reference
poirit in the present investigation, was the fact that in any arc weld in a
given material there will always be thermal cycles that have the same peak



488 Dcsign of I L'pc r lHli t-.s

temperature; these thermal rycles wii aoilier oniy in that Llne zii• a,

position of associated heating and cooling curves will be displaced some-

what in time "nzd temperature. It is a wcll cstablished metallurgical fart
that the mechanical properties of a material depend primarily upon
microstructure. In order to predict and perhaps control weld-HAZ7 micro-
structures resulting from welding thermal cycles, it is necessary first
to investigate the effects of basic rarameters of such structures.

OBJECT AND SCOPE:

, Welding Metallurg,

The overall objective is to investigate and to establish basic metal-
lurgical concepts to account for the phenomena of the attendant transfornir -

tion behavior of weld-HAZ microstructures produced in 4340, H-Il, and 3
18 1/2%6 Ni (300) maraging steels, The work is limited to a study of the
efftcts of fundamental material and welding time-temperature parameters
pertaining to single pass, arc welding situations, Realizing the potentially
staggering number of general and sub-parameters that may significantly
affect resultant microstructure, it was deemed advisable to initiate the
investigation by studying only the effects of some of the general parameters,

?W.i viz; the prior base material microstructure, the peak temperature of a
thermal cycle, and the time-temperature shape of thermal cycles imposed
by welding. The number and kind of stress-strain conditions that are
applicable to welding were initially considered to be overwhelming;
consequently the utilization of this general parameter in this initial investi-
gation was abandoned in the sense that such conditions were kept constant.

Statistical Inference

The overall objective of the utilization of statistical ileference

techniques is to assist the metallurgical investigation by determining
the significant factors (i.e. , the more critical variables), affecting this
phenomena. and to detect the specific significant differences that may
exist among each set of significant factors. The transformational behavior
and the resultant heat-affected zone microstructures produced will be
evaluated metallurgically in terms of such specific significant differnces•i• obtained.

tHE EXPERIMENT, A high-speed time-temperature controller

is being used in this investigation to produce weld-HAZ synthetically.
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The "PqqPnti11iV iP A Rim1,latino device which permits the duplica.
tion of welding thermal cycles experienced in weld-heat-affected zones, Each
specimen is heated by its resistance to the passage of an A C e]ectric current

*: furnished irom a transformer, and is cooled by the removal of heat from I -

the specimen by conduction through water-cooled copper clamps. A -•

thermocouple percussion welded to the surface of the specimen, provides
a signal which is balanced against a reference control signal designed to
reproduce the desired thermal cycle. The resultant error signal is
amplified and utilized by the controller to maintain temperature control
during the cycle to within + 51F.

The basic experirrment involves two of the general parameters as
variables, viz. , the prior base material microstructure (defined by
various heat treated conditions of a given single heat of steel) and the
time-temperature shape of various welding thermal cycles. The thermal
cycle peak temperature parameter is a constant in each basic experiment,
i. e. , each basic experiment is conducted utilizing thermal cycles having j
the same peak temperature.

In each basic experiment, it is desired to determine the effects of
prior base material microstructure (denoted factor code "H"), and the
time-temperature shape of thermal cycles (denoted factor code "C"), or,
the notch toughness (quantitative response variable, measured in
in. -lb/in. 2, indicative of microstructural change) of the resultant weld-
HAZ microstructures.

In a given heat of steel, the interest lies in the effects of five partic-
ular prior base material microstructures and seven particular chermal - -

cycles, i.e., factor "H" is a fixed factor at five fixed levels and factor
"C" is a fixed factor at seven fixed levels.

There are three steels (one heat of each) involved in the investiga-

tion along with seven different peak temperatures per heat; therefore,
there are three times seven or twenty-one basic experiments to be :

evaluated independently. Metallurgical considerations preclude statis-
tical correlations between steel types and between peak temperatures
per heat of steel.

THE DESIGN AND ANALYSIS: The number of observations (notch : - ,f
toughnes values) to be taken is initially unknown; however it is desired

* r-j
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to design the statistical analysis to allow for the 2eneral situation of deal-
ing wIth an unweven number of replications per cell, since some experimental
observations are lost occasionally. A basic model appears to be a fixed,
two-way analysis of variance- the suggested mathematical model for the
sum of squares is:

Tot&_l H C

2 T. 2 TTz T. kI T.

14ij k npq j nq npq np p

Inte raction Residual

2 2 T..
T.F ~LT..k +2 T2.ki ..- - T. A + T. EE 2 3

nq np npq ijk n

Once the individual ANOVA's are run for each basic. experiment, one of
the following techniques could be used to detect specific significant
differences that may exist among each set of significant factors obtained.

(1) Use Duncan's Test of the means if, and only if, the cells have
the same number of replications. The means used here are those of
the columns, or rows as the case may be, of the cells pertaining to the
significant factor; if both factors are significant, two such tests are
made regardless of irteraction effects. Perhaps this is not a proper
technique, in that only the individual cell averages should be tested by
Duncan's method.

(2) Use the following relationship to test the means of each cell if
there are minor variations in the number of observations per cell.

Sx(entry from studentized range)

N no. observations/cell
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(3) Use the following rilatinnt pn , t,_t the . . I
there are major variations in the number of observations per cell.

- + - x(k-1) ý (k-l,

The foregoing is the author's suggested method of analysis. It is
important to note that the author is merely a novice at this business of
statistical analysis.

It has been suggested since the presentation of this paper that the
use of regression analysis techniques may be a better approach to solving
this statistical p.7oblem. Unfortunately, circumstances to date have not
yet permitted a further investigation into the most efficient statistical
procedures to be used in this problem.

-.

-q~.'ri I
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STATISTICAL ANALYSIS OF TENSILE STRENGTH-HARDNESS

f RELATIONSIUPS IN THERMOMECHANICALLY

Albert A. Anctil
U. S. Army Materials Research Agency

Watertown, Massachusetts 02172

INTRODUCTION. Generally speaking, statistical analysis finds limited
applications in metallurgical problems. This is true because the sample
size is usually quite small and in most cases, the variables are known and
can be controlled. The clinical (statistical) problem described here is a
segment of an investigation entitled, "Tensile Strength-Hardness Relation-
ships in Thermornechanically Treated Steels. " [1] The objective of the
study was to determine metallurgically and statistically how well therrno-

mechanically treated steels followed established tensile strength-hardness
correlations.

The generally accepted tensile strength-hardness correlations are
published Jy the American Society for Testing and Materials (ASTM) (2]
and-the Society of Automotive Engineers (SAE) (3] . These correlations
specifically excluded cold worked, stainless steels and other thermo-
mechanically treat.ed steels. The ASTM and SAE correlations have been
obtained from a particular steel quenched and tempered to various strength
levels. Tensile specimens which contain hardness coupons were machined
from each strength level condition. These specimens were distributed
randomly to several laboratories participating in a standardized testing
program. The assembled data were treated statistically to obtain a
tensile strength-hardness correlation.

Thermomechanical treatments which are under consideration here,

involve the introduction of cold work into the heat treatment cycle of
steel to obtain higher strengths. There are three types of thermomechan-
ical treatments based upon when in the heat treatment cycle the working

*• cycle is performed, [4]

Type I - Deformation of austenite followed by transformation
Type II - Deformation of austenite during transformation
Type III - Deformation after transformation of austenite

"*Comments on this paper by one of the panelists can be found at the end
of this article.
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S* EXPERIMENTAL PROCEDURE. The experimental tensile strength-
hardness data came trom a Literature survey u iii . iCa.-: . ,2Lt^d

steels. Refer to Reference I for a more detailed explanation and dataS~references for this presentation.

Figure n shows the ASTM (solid curve) and SAE (dashed curve) tensile

strength-hardness correlations. There is some difference of opinion as
to which is the better curve. A joint ASTM-SAE committee is presently
working out a compromise curve. The ASTM curve has been extended
beyond Rockwell C hardness 58 to encompass the very high strength steels.
The data points are from Reference 1 and represent various steels having
a quenched and tempered heat treatment, Such data could have been used
to obtain these correlations. These same steels were then processed.
thermrnomechanically with Type I (open symbols) and Type III (closed symbols)
treatments. Statistically the quenched and tempered data fits the ASTM

correlation better than the SAE correlation. Accordingly, the ASTM
correlation will be used for comparative purposes.

Tensile strength-hardness data for the Type I thermomechanical
treatment are shown in Figure 2. The thermomechanical heat treatment

N .cycle is shown schematically. The data follow the ASTM correlation

(solid curve) reasonably well. Figure 3 illustrates Type II data. This
thermomechanical treatment is usually periormed on austenitic stainless
steels at subzero temperatures. Meaningful comparisons of this data are
difficult with such a small sample size. Type III data are shown in Figure
4. The cold work may be performed upon the asquenched martensite or
upon tempered martensite that is subsequently aged. A positive deviation
from the ASTM correlation is immediately apparent over the major por-
tion of the hardness range for Type III data.

"Selected data for Type III treatments where the percent reduction has
S:' been varied are shown in Figure 5. Consider the 5Cr-Mo steel where
S•7 the lowest tensile strength plotted represents the quenched and tempered

condition. Note, that as the amount of cold work is increased, the
tensile strength increases at a faster rate than that shown by the ASTM

IA correlation. This sarne trend can be seen for the majority of these
steels. It is for this reason that a regression line was not drawn for
this data. A tensile strength-hardness correlation for these steels would
be dependent upon the amount of cold work.

|..... v- •..
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DISCUSSION. Metallurgically the behavior was explained using
Tabor's analysis [5] which relates hardness and tensile strength through
an additional parameter, tme strain hardening cpui.t z.. Thc ... 1.•
is summarized in Figure 6. Quenched and tempered steels have strain
hardening exponentb in the range from 0. 04 to 0.12, In this range the
tensile strength-hardnes3 ratio is nearly constant. It is for this reason
that a unique tensile strength-hardness correlation exists. For Type I
treatments the strain hardening exponents fall in the same range, there-

fore, the data fit the ASTM correlation. With Type III treatments the
ratio starts at the minimum and increases as the exponent decreases to
nearly zero with increasing amounts of cold work. This results in posi-
tive deviations from the ASTM correlation. Type II treatments are
usually performed on austenitic stainless steels at subzero temperatures.

These steels have verl high exponents (0. 3) in the annealed condition which
decrease to nearly zero with increasing amounts of deformation. One
would expect positive deviations from the high and low exponents and

adherence to the correlation as the ratio passes through its minimum value.
Cold-worked steel (Type III) and stainless steels (Type II) have been
excluded from the ASTM correlation because of these drastic changes
in strain hardening characteristics. [.

Statistical analysis of the data is summarized in Table I. The
deviation d refers to the experimental tensile strength a" , minus the
corresponding tensile strength rASTM' from the ASTM correlation at a

particular hardness. This deviation was determined for every data pcint.The arithmetic mean of the deviations T-" was taken as the surn of

the deviations divided by the sample size. It serves as an indication of
how well the data for thermomechanically treated steels fit the ASTM
correlation. This value would be zero for a regression line of the data. t
The absolute deviation IT-r and the standard error of estimate Sy*•

were calculated as measures of the dispersion of the data about the ASTM
curve. These differ from the usually defined mean absolute deviation
and standard error of estimate which measure the dispersion around a
regression line,

__Statistical results are shown in Table II. The mean of the deviations
L(r , shows a better fit of the quenched and tempered data about the

ASTM rather than the SAE correlation. Further, the data for the Type I
treatment fit the ASTM correlation better than the Type III treatments.

IL
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Also, the predominantly positive deviation of the Type III data from the

±k• . curve yield approximately the same results. They b not, however, reflect
• •-'--• •the poaitive deviation of data for the Type Ill treatments.

The problem before the panel is that of offering more descriptive

statistical alternatives for comparing several populations of data (tensile
strength-hardneas values for thermomechanically treated steels) to a
given regression line (the standard ASTM tensile strength-hardness
correlation). Consider further that it may not be possible or meaningful
to draw a regression line through each population of data.
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Table II. STATISTICAL RESULTS FOR QUENCHED AND
TEMPERED AND THERMONECHAN I CALLY TREATED STEELS

Type III' 11.00 17.2 20.8 176
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Joan Raup Rosenblatt
Statistical Engineering Laboratory

National Bureau of Standards, Gaithersburg, Maryland

The evaluation of empirical relations of the kind you discussed is a
difficult problem. The various functions of deviations from the ASTMcurve that are presented in your Table II are extremely difficult to •}

interpret: By themselves, they are nearly meaningless. Taken together
with the data, as exhibited in your figures, they add very little and may
be misleading.

For example, looking at Figure 1, I notice that the steels used in
Type I and Type III thermomechanical treatments respectively seem to
be grouped preponderantly in different hardness ranges. Is it possible -
that the ASTM curve fits better for Type I and the SAE curve for Type
III? If this were so, an explanation would have to be sought in the 3
metallurgical facts about the data used, and in the history of the two
standard curves.

Table II gives overall measures of goodness-of-fit. Since these are
well-defined functions of the data, they cannot be "wrong" in themselves.
But if the deviations from the standard curves occur for different reasons
if different types of steels and in different hardness ranges, the overall
measures cannot be relied upon to describe the uncertainty of tensile
strength estimates derived (using the curves) from hardness measure-
ments. Furthermore, if the overall measures are used to select the
"best-fitted" curve, there is great danger that the resulting curve will
have systematic errors arising from the particular choice of data.

Of course, for many purposes a standard curve is entirely adequate.
But your data seem to make it clear that one possible long-run goal would
be the development of a collection of curves each applicable to specific
circumstances. This development would probably require the perform-
ance of mnany new experiments. It could lead to the evolution of your
qualitative explanation of the behavior of thermomechanically treated
steels into a quantitative explanation.

The statistical measures quite properly play a very small role in
your valuable summary of the published evidence on tensile-strength/

I.



hardness relationships. I am sure that in future studies you will continue
to be guided by the totality of scientific information available to you, and

I hope you will often find that statistical techniques are helpful in data[ ~anal ys is.
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SOME PROBLEMS IN STA'i ISTICAL INFERENCE FOR
(~t'Nlr 0 A IT 17rM %AITT r %Tr'%1 k TAT A r% T T A `T'TnN.T4

Bernard Harris
Mathematics Research Center, U. S. Army

University of Wisconsin, Madison, Wisconsin

INTRODUCTION. Assume that a random sample of size N has been
drawn from a "multinomial population" with an unknown and possibly
countabie infinite number of classes. That is, if X. is the ith observa-
tion and M. the jth class, then .

P{X. M.}= pj > 0, j 1, 2, ... ; i -,2..., N

co

and Z pi 1. The classes are not assumed to have a natural ordering.

Let nr be the number of classes occurring exactly r times in the sample.

Then, we clearly have

- rn rN.

Vv e will be concerned with estimating the following two quantities

which are generally of interest to experimenters.

(1) The sample coverage, defined by

(1) C = pi

where the sum runs over all classes which have occurred at least once

in the sample. 4.

(2) The population entropy, defined by

(H - - P logp i
i=l

~i.
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It will be convenient in our definition of entropy to violate the usual conven-
tions and use natural logarithms rather than logarithms to base 2. This is
equivalent to a scale change in units of measurement and will have no
essential effect on any uses for which the entropy might be employed. Of
course, we will assume throughout, that the series (2) converges, sinc
otherwise the discussion will not be relevant.

of the pits are too small, small sample infercnce appears to be virtually

S hopeless, hence, all results described herein will be asymptotic results,
i.e. for large N.

Estimation of H and C. For the moment, we will restrict to the case
:. •oi an ordinary multinomi~al population, that is, one with a finite number,

k, of classes. Then the 'natural estimator" of entropy H is defined by

N in. n. k
log\ log4(3) 11 E -f log p = i Pi

i=l N NIi- l

where j. is the maximum likelihood estimator of p

Its properties has been discussed by G. P. Basharin (1] and we note
them briefly. Basharin showed that

(4) r ) -k-I 2
(4 + O(N"

and

(1 2k 2 2 -[Pi log Pi" H + 0(N')I

and F-N(- H) is asymptotically normally distributed. If we attempt
to apply Basharin's results to the more general case described earlier,
it is easily seen that the naive replacement of pi by Pi in (2) may not

I
be successful. Essentially, Basharin's technique depends on the following
sort of asymptotic behaviour,



Design of Expcrinients

as N -- , Np. i z 1, . k

Consequently, if we have zero as a limit point of the pi's, or even, if

we have the limiting behaviour associ:t'4-, 'Vith the Poisson approximation,

).s N - p, p. -0, Npi - X. 0 < <

for a sufficiently large number of classes, then Basharin's estimator,
H, may be quite poor. The following illustration will exhibit this. Let

P i = 1,Z,....N Then H = 2 log N. However, since the maxi-
i 1,12

mun of II occurs for pi = - , when there are k classes, we have that
k

H < log N. Hence, it is quite clear, that if there are "too many classes
whose probabilities are too small", H will not be a satisfactory estimator.
One of the causes of the difficulty is that H gives no weight to unobserved

A
cells, so that if the total probability in unobserved cells is large, H will
not perform too well.

We can gain some insight in dealing with this, if we examine the
second question we advanced, the estimation of the sample coverage.
This problem is discussed in greater detail in B, Harris [3] , but it is
convenient at this Lime to make some intuitive observations concerning the
estimation of C, so that we can resolve the difficulties noted above in the
estimation of H.

First, note that if we were to proceed as Basharin did and set

A A
C p i

then we have that C = I for all samples, which is clearly inappropriate.
We can guide our intuition by first examining some extreme cases.

(1) If nI N, then we readily reach the conclusion that C must be
small, We can see this as follows. If we now take another observation,
inasmuch as every past observatiorn resulted in a new class being observed,
it is apparent that with probability quite close to unity, the N+lth observa-
tion will also result in a new class. In fact, the probability that the
N+lth observation will not result in a new class is C, which of course
should be near 0, as noted.
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(2) If, on the other hand, there is an integer t, substantiallh larger
than one, such that n 1 = n2 n . tl x 0, nt > 0. Then, similar

reasoning would lead us to conclude that most of the probability is
concentrated in classes with high probability, and therefore C should
be near unity.

()1 - " he •>Ne -

(3) Let pi i 1,2,...,N. 1Then E(nl) and E(n 0 ,)Ne

Thus, we should have C-1 - e

In short, as is shown in B. Harris [3] , it is the low order occupancy
numbers, such as nV, n 2 , and n 3, which contain the principal information

concerning the probability content of unobserved classes. A cursory
examination of the three examples cited above suggest that an appropriate
estimator for C is given by

ni
(6) I

In Harris [3] , it is shown that C is in iact an suitable estimator, in
that it has good asymptotic properties.

In E. B. Cobb and B. Harris [2) , a method for estimating entropy,
when "all the sample information is contained in the low order occupancy
numbers" was exhibited. In order to do this, we will show that we can
represent entropy asymptotically by

(7) H E(n) e log dF,:(x)

where

(8) F"':(x) ; Npje'Np/ 2 NpjeNp
Np.<x i / j =I

It is easily verified that F'l'(x) is a cumulative distribution function.
Since
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(9) E(nE) j e

j1 l

substitution of (8) and (9) into (7) produces

1w Np. 1 Np,
. e log (-)Np.e "N L p log p HN=l N j=l

which verifies (7),

Under the assumptions stated above Cobb and Harris [3] suggested
that the entropy be estimated by

n1  (N-mr1 ) (Nm- m 2 )/AN-m,) N(N-•m)
%110) H 2 e- log[,Nm ~mz(0) H N (N-ml) 2 + (m-ml2) e

where mi = 2n./nI and m2 a max (m1 , 6n 3 /n 1 ).

I At this point it is worthwhile to present a numerical example, which

will illustrate the behavior of H,

Example p 1 2,., N Then n' n T- e - and

e N N-a.d m I and
n"T eThus, mn •, m2• an

F *X o x < I

•: Then

The Ne"I (N-i)e (N-I)/(N-1) log N(N-l)H! -•,N (N-1) zN1

and H -log N, which is as it should be.

and H log , N (N-I) N-I log
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Clearly, it is principally the classes with small probabilities that

contribute to non 1 ,n 2 , and n3 . For those classes with large probabilities,

we can estimate p, by P.

Then, the natural way of proceeding is to estimate the contribution
to entropy from large classes by means of Basharin's method and the

contribution of small classes by H, and we denote the final estimator by

H*. Recall that in order to use H, we have taken n1 ,n?, and n3 to deter-

mine H.

There is one last detail which must be taken into account, Part of
the contribution to moderate order occupancy numbers, such as n4 , n5 ,

and some of the succeeding occupancy numbers, will be due to classes
with small probabilities and the effect of sample fluctuations. There-
fore, we need to examine the following. 'What proportion of each
n j o = 4 5, ... is, some sufficiently large integer, is due to a large

deviation from a class with small probability? We can adopt a Theorem
due to A. Wald (41 obtaining the following inequalities.

7k- )k-l
6(3k n

'(11) if m2 > in, E(n>+k)3 k-2.
• kl -(k+l)1 n 2

2 k n k

(12) if m 2  m1  , E(n - 2 k 3,4,..
k..- n, (k+l)!

The right hand side of each inequality gives the expected values of
" n k+], if "the sample information is contained in nI, n 2, and n 3 ". Thus

the difference between the left and right hand sides of (11) and (12) gives
an estimate of the contribution to nk+l which is due to classes with larger

probabilities. We apply Basharin's estimator (3) to these, upon replacing
the expected values in the left hand sides of (11) and (12) by the observed
values.
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Ti'hu. we finajil% write

-where 0 <X <1I is the proportion of the observations in n ,n, 411: n,

and the parts of n , n ,.,, A dcetinined by (11) and (1.2). For thc
4 S

parts of the sariple allocated týD sinall clatsses as notedi above we use V,
and use H- on the part allocated to Jargc ciasscs.

T he- nmatheinatic al cketail-, will bc, (liven in a later ouolica.t~io-..
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APPLICATION OF NUMERICAL, TECHNIQUESI

EXPERIMENTALLY ViODEL AN AERODYNAMIC FUNCTION':' *

Andrew H. Jenkins
•-, ~Physical Sciences Laboratory, Directorate of Research and Developnment i.x

U. S. Army Missile Command, Redstone Arsenal, Alabama

ABSTRACT, This report describes the use of an aeroballistic range
in the design and execution of an aerodynamic experiment, the analysis
of the experimental data by numerical techniques to develop a model of a
physical function, and the statistical testing of the data and the model.
The report discusses the approach, the experimental design, and the

. testing of the data using several frequency distributions, It presents and
describes a multivariate nonlinear regression analysis performed on the
data, the physical model developed by the regression analysis, and the

9 testing of the model. It also lists and presents the tests of hypotheses
made and discusses the results of the tests.

SYMBOLS

a Acoustic velocity in air

A Pure constant of regression equation

b First coefficient of regression equation

C Counts per inch of photoreader = 3502

c Second coefficicnt of regression equation

c Coefficient of specific heat at constant pressurecp

C Coefficient c,,- specific heat at constant volume
v

d. f. Statistical degrees ot freedomi

F Frequency distribution

* F Magnification factor of shadowgraph = 1. 009
sh

F Magnification factor of Schlieren = 0. 855

K Ratio of shock density ps to free stream density p'

SIn Natural logarithm (base e)

))tThis article was initially issued as U. S, Army Missile Command Report

No. RR-TR-65-11.

t,

i i i i m i m
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SYMBOLS (continued)

M Mach number = V/a

NIL Mach factor level = 1,1 to 1. 5

NI Mach factor level = 2. 5 to 2. 9

M Mach factor level = 3.9 to 4. 3
3

M. Mach factor effect in statistical equation1

M Mach factor linear effect

Mq Mach factor quadratic effect

MR.. Main faitor interaction effect

N Total observation

P Statistical probability

2 Regression correlation coefficient

R Universal gas constant. = 1715 sq. ft/sq. sec./°R.

R Radius
R Model nose/base radius ratio = 1. 0

t R Model nose/base radius ratio 1 ;, 7

R Model nose/base radius ratio = 0, 4
3

HR Model base radius = 0,11Z inch

R , Radius factor effect in statistical equationJ

" Rrn Nose radius of model

RI Rr Model nuse to base radius ratio

Radius factor linear effect

I" Rq Radius factor quadratic effect

S Surface roughness of model

" S2 'Exr)criniemtal sanmple variance

S 1:;: :J)crimVtIII baIIap)le standaIrd d eviation
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7 :SYM13OLS (continued)

SS Sum of squares

J1. t Value of students frequency distribution &.0

T Absolute temperature (*Rankine) .

V Flight model velocity } I...
X Mean

Xaw Mean of Ambrosio-Wortrnan model

X Mean of experimental responses

X. ith response

Xr Mean of regression model responses

X?, 3 Dependent variable of regression equation (computer language)

Y Independent variable of regression equation (computer
language)

Z Normal frequency distribution

Q •Type I error risk level

Type Il error risk level

4; 7Ratio of specific heats = Cp/C
.'p hv

6 Shock detachment distance from Shadowgraph optical system
sh

5 Shock detachment distance from Schlieren optical systemn
sc

A Shock detachment distance in photoreader counts (corrected)

,'k(ij) Experimental error

Ze Variance of experimental responses
Z• Variance of regression model
r

7 ¢wVariance of Arnbrosio-Wortman model

Universal means

• •Frequency distribution
•.P Density

fr
iq~i::•:•".:i;*
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1. INTRODUCTION. A number of new aerodynamic problems have
come into prominence in recent years. The source of the problems has
been the very high flight velocities achieved by use of rockets. The
characteristics of the problems of the very high flight velocities, referred
to as supersonic or hypersonic flight, are those of a hydrodynamic nature.
The Mach numbers are high and problems of a physical and chemical
nature also exist because the energy of the flow is large. The gases are
rarefied so that the mean free path is not negligibly small compared with
an appropriate macroscopic scale of the flow field. Under such condi-
tions, kinetic thoery is included with the hydrodynamics.

The new features of a hydrodynamic nature allow the use of certain
simplifying assumptions in developing theories for hypersonic flow. On
the other hand, certain important featuras which appear introduce addi-
tional complications over those rnet within gas dynamics at more mod-
erate speeds. The techniques of linearization of the flow equations and
the use of mean-surface approximation for boundary conditions have a
diminishing range of applicability. Also, entropy gradients produced by
curved shock waves make the classical isentropic irrotational approach
inapplicable.

The additional problems of a physical and/or chemical nature are
associated with the high temperatures of the flow as the gases traverse
the strong bow shock wave, The sudden shock heating of the gases
excites the vibrational degrees of freedom of the molecules resulting in
dissociation of the species into atoms, electrons, and ions which do not
require treatment at lower velocities. Therefore, it must be recognized
that physical phenomena rather than hydrodynamic phenomena may not
only influence the flow but in many cases control it. In view of the
complexities of the flow at high Mach numbers and the number of technical
disciplines involved, many have resorted to experimental or empirical
development of functional relationships.

The flow field originates at the bow shock. The shock wave charac-
teristics are very important to the stagnation region characteristics.
The volume of the stagnation region is dependent on the shock deta'.hment
distance. Therefore, much of the knowledge of the flow characteristics
is dependent on the knowledge of the shock location. Experiments have
been performed on wind tunnels to study the shock location. However,
few experiments have been made to study this problem under free flight
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conditions. Also, the studies which have been made and the derived
k' relationships are lacking as tests have not been attempted to determine

their reliability. -

V; It is apparent that the community recognizes the need for improved
hypersonic design theory. One of the important areas is the prediction
of shock detachment distance. It is important to the computation of not
only heat transfer but also pressure distributions and drag on the fore-

part of the vehicle, This has been pointed out by Serbin (1] , Ambrosio
and Wortman [2] , DiDonato and Zondek [31 , Heberle, Wood, and
Gooderum [4] , and Love [5]

The lack of purely theoretical models for the prediction of shock

detachment distance at transonic and supersonic velocities has led to the
natural consequence of an experimental approach. This is to be expected
and in addition the theoretical hypothesis is inevitable subject to exper-

imental verification. For this reason, one can also expect to contribute
to scientific progress by the inverted approach of formulating models of
the mathematical relationships between physical variables by experimen-

t, tation. However, the relationships derived are subject to experimental
control, measurement accuracy, human error, and many other sourres
of unexplained or unaccounted for deviations from the true universal
relationships.

In the direct approach (i. e. , the a priori derivation of a mathernati-

cal model ) quite often ideal physical conditions are assumed and simplify-
ing mathematical assumptions are made which depart from the real case,
Therefore, one cannot be sure of the theory nor can one be certain of the

experimental data, Yet, in scientific endeavor, exacting conclu.•ions are I

often drawn by the comparison of an idealized hypothesis and real case

data. That is, both quantities are coupled to each other and not to an
•. ~independent estimate of the deviation present, •,

Empirical models of the shock detachment distance for blunt bodies

of revolution have been made by Serbin I]1 , Ambrosio and Wortman [2"1
and Heberle, Wood, and Gooderum [4] . The data were obtained by thu, c

authors using moving streams oi air surrounding stationary spheres
(i. e. , radius nosed bodies) in such experimental devices as wind tunnels
and jet nozzles. Both of these devices have two common disadvantages.

* The gaseous medium is in a state of expansion just prior to the shock

J
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compression. Also, holding devices are present in the flow around the
body which cause perturbations in the flow. The flow is often not uniform
in cross section. The measurements, therefore, include these perturba-
tions and do not represent the real case of a vehicle in free flight,

Serbin [I] derived the following relationship for a sphere:

(1) R 2/3 (K-1)

Ambrosio and Wortman derived the following relationship:

(2) 0 , 14 3e34/M

4{ and Heberle, Wood, and Gooderum derived this relationship:

(3) = 4/3 (M - 1)"/3

Each author stated that agreement between the model and the data
was very satisfactory. However, the standard by which this was deter-
mine was not stated or explained. This type of unexplained, seemingly

arbitrary, acceptance of a model and data appeared to be typical,

A machine literature search was made, In this search, over
190, UO documents were screened and matched by computer on the basis
of key words and terms in aerodynamics and statistics. This was done
to determine if, in the past, any use of statistics in testing aerodynamic
experimental data had been done. Not one document was found during
the search. However, this is not to imply that statistics have not been
used. Apparently, it is either not a prevalent or accepted practice or
possibly has not been reported.

Ambrosio and Wortrnan [6] did attempt the use of some simpie
statistical methods. This was done to the extent o' computing the mean,
the absolute nican, and the standard deviation. However, it was not for
the purpose of testing the reliability of their data and model but to objec-
tively establish the relative worth of their model as compared to Serbin[l]
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This work has two objectives as follows:

I) To develop an empirical model of shock oetachnrient distance as
a lunction of Mach number and vehicle nose radius with experimental
data obtained under free flight conditions

2) I'o subject this model and data to analysis by statistical eucthods
to objectively define the level of confidence of such a model.

II. EXPERIMENTAL PROCEDURES.

1. Design csa

The shock detachment distance can be described aerodynamically
for radius nosed bodies of revolution as: 1'

SI.
(4) (M)

Explicit models of several investigators were mentioned in the introduc-

tion.

Statistically, the model can be expressed as:

(5) 4 M, +R -MR,, +Ei.).
1 + k(ij)1

The model contains two independent factors, Mach number (Ma) and body 1r '1"

radius (Rj). It also contains a second order effect, the MRij interaction.

The design of the experiment required consideration of both the aero-
dvnaniic and the 3tatistical aspects. Past experience indicated that the
shock detachment distance was a nonlinear function of Mach number (M)
and a linear function of radius (R) The objectives of the experiment are
to determine if the linear and quadratic effects of Mach number and ra-
dius contribute significantly to the shock detachment distance. Also,
it was desired to determine if a second order or interaction effect be-
tween radius and Mach number contributes significantly to the shock

location. The analysis of variance is a useful tool for this. In addition,
it was also desired to develop an empirical model of the functional re-
lationships between the independent and cependent variables. A regres-
sion analysis was planned for this,

I,:

F.. . . .. .w . . . . . .
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The analysis of data by regression calculation can be simplified by
the equal spacing of the independent variables which permits the use of
orthogonal polynomials. This helps also in the subsequent adjustment
arising from the discarding of insignificant variables or the addition of
new terms. One objective of the experiment is to estimate the slope of
the regression, The slope of a -egression is estimated more precisely
if the values of the independent variables are selected with equal spacing
at the extremes of the quantified ranges of the variable. This is because
interpolation is more reliable than extrapolation and the computations
are simplified.

The effects of the main factors in this experiment could not be
considered theoretically independent. Therefore, it is necessary to rep-
licate the experiment within cells of all factor levels in order to test
for interactions between factors and to estimate the experimental error.
Since one objective is to statistically test for interaction, the analysis
of variance will enable the test of interaction and estimates of error
variance. The two best tests for statistical analysis of the aerodynamic
experiment are the analysis of variance and the multivariate regreosion

analysis. The experimental design most efficient for these methods is
the factorial experiment with replication.

The factorial experiment enables one to test the effects of Mach
number (M) and radius (R) on the shock location (a) over the ranges of
interest of M and R at each factor level. It also promotes testing for
the existence of interaction between M and R and the effect of interac-
tion on A. One is also able to differentiate interaction effects from
main effects. In addition, it allows the determination of confidence
limits for the estimates of main and interaction effects based on the
estimate of experimental error derived from replication.

•-- 32
Therefore, the experiment was designed as a fixed model 3 fac-

torial. Both the radius and Mach number factors are equispaced three
Slevel, fixed and quantitative. The Mach number range of interest was

1.0 to 4. 5. The levels selected were M. = 1.1 to 1. 5, M 2 = Z, 5 to 2. 9,
and M = 3. 9 to 4.3. The radii selecteJ were nose to ba~se radius ratios
of R = 1. 0, R = 0.7, and R z 0.4. The experiment was replicated
three times in each factor cell; therefore, a total of 27 observations

was recorded (N 3 x 3 x 3 27).



All 27 responses could not be obtainec. in I 6av. Therefore. to
compensate for day-to-day variations in personnel, voltages, Qevelo.-

ing solutions, film batches. ana printing, the firing sequence was
randomized. All combinations of Eactors and replicates were listed an.-:

the experimental sequence was ranomizec, by use of a ranoom number

generator (71 which was entered in a ranc~om manner. The results of the4randomization are shown in Table I. The numbers shown without par-
entheses are the sequence of firing while the numbers in parentheses
are the corresponding round identification numbers, Table I also shows
the factor levels selected for the experiment.

Table I. Randomized Experimental Sequence

Mach Number Levels

Nose/Base M-Radius NlMM3 i .],,

Ratio Replicate 1.1 to 1. 5 2. 5 to 2.9 3.9 to 4.3

1 26 (75) 7 (56) 11 (60)

1:1'.O 2 22 (71) 8 (57) 6 (5',.)

3 2 (49) 14 (63) 10 (59)

1 12 (61) 13 (62) 9 (58)

R? 0. 7 Z Z3 (72) 27 (76) 25 (14)

3 24 (73) 18 (67) 15 (6,.)

1 16 (65) 3 (50) 19 (68)

R:0,4 2 1 (48) 17 (66) 5 (53)
3

3 4 (52) 20 (69) 21 (70)

Note s: I
1. Numbers without parentheses are randomly determined

prograr._ firing sequence.

2. Numbers with parentheses are for experiment identification.

I4
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The radii of the models are discrete levels, The Mach number
levels are discrete intervals as it is almost impossible to duplicate
exact velocities by this method of experiment. This is due to variations
in propellants, model material homogeneity, and model-launch tube
interference. The Mach number levels chosen were fixed in selected
ranges between Mach 1. 0 and 4. 5 which is the velocity regime of interest
in this aerodynamic study. As a two factor fixed model experiment, it
is assumed that ýL is a fixed constant and the Ek(ij)'s are normally
and independently distributed with a zero mean.

2. Procedure

The experimental data were obtained on the Physical Sciences
Laboratory's free flight aeroballistic range. Figure 1 shows the ex-
perimental apparatus. It consists of a light gas gun for launching the
models, and altitude simulation chamber, a shadowgraph and a Schlieren
system for photographing the model and the flow around the model.
Also, submicrosecond electronic counters to determine the model's
time of flight are included,

The aerodynamic data required from this experiment are the radius
of the model, the Mach number of the model, and the detachment dis-
tance of the shock. The radius of each model was known as the models
were formed in accurately machined dies, Their geometries are shown
in Figure 2. The models were made of copper coated lead. The Mach
number. is determined by taking the ratio of the model velocity to the
acoustic velocity when the photographs are made. The acoustic velocity
is computed as shown in Appendix A. It is seen that the acoustic velo-
city varies as the square root of the temperature and specific heat
ratio. The temperature was recorded at the time of launching each
model. The specific heat ratio was taken as 1. 4. The model velocity
was computed by taking the ratio of the distance between the shadow-
graph and Schlieren stations to the time recorded on the counter. The
distance between the shadowgraph and Schlieren stations is a constant
of 5 feet. It was assumed that the deceleration of the model over 5 feet
was linear; therefore, the velocity computed wao the velocity of the
model midpoint between the two stations.

Photographs of the model showing the shock detachment distance
'were taken by both the shadowgraph and Schlieren systems The mea-
sure of the shock detachment distance from either one of these photos
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as•umption of lincarity, the shuck detachment distance was corrected

to the velocity computation. The correction of the detachment distance
required the consideration of the magnification factors for the photo-
graphs. The magnification factor for the shadowgraph camera was
1. 009 and the Schlieren camera was 0. 855. The photo reader upon
which the negatives were read was calibrated at 3502 electronic counts
per inch in the plane of the negative on the photo reader, The shock
detachment distance was read in counts from both the shadowgraph and
Schlieren negatives. The detachment distance and radius of each type
model was corrected to counts as follows:

(6) F= h F + 6 Fsh sc sc sh

and

(7) R ZxCxR b xF h xF scxR r

The values of A and R computed for each round are shown in Table If. 6
A sketch of a typical shock detachment distance as taken by the shadow-
graph and Schlieren is shown in Figure 3.

The experimental data obtained from the experimental program
are compiled in Table 11. The data are tabulated and identified by the
round number assigned on the aeroballistic range. Computations of
certain data presented in Table II are shown in Appendix.A. The data
from round number 75 were used to show a typical example of the
computational procedures.

II
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11. ANALYSES. The cata obtainec Irom Lhe iepvrei,• •I MA
sented in Table II. The observations taken as the dimensionless ratio
of the standoff distance divided by the model radius are presented in the
factorial design layout in Table ill along with some computations in
preparation for performing an analysis of variance. The statistical
computations are presented in Appendix B.

The gathering of the data, the analysis, and derivation of the model
.of the functional relationships from the experimental observations are
oased on certain aerodynamic and statistical assumptions. These
assumptions are:

1) Small angles of attack of the models (i.e. less than V°) do not
significantly effect the detachment distance.

2) The models were free from ablation products in the stagnation
region.

3) The effects of gas constituent dissociation on the dynamics of
flow was insignificant.

4) The effects of spin stabilization on the dynamics of flow was
insignificant.

5) The effect of the conical section of two of the models on the
dynamics of the flow was insignificant (i.e. , all projectiles were hem-
ispheres of various radii).

AI• 6) The experimental error is normally and independently distrib-
K! uted.

7) The experimental precision is essentially the same for all
t: factor combinations,

8) The factors were fixed at discrete levels so, therefore, are
not independent of each other.

Assumptions I through 5 are made concerning the aerodynamics of
the experiment. These represent sources of variation which are con-
sidered regligible. They cannot be separated explicitly from the main

†††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††††



i

535

Table. II Data Layout for Shock Detachment Experiment

Mach Number Region

M M M Ex

1.049 0. 146 0.223

R, 1.0 1.492 0. 146 0.139 4.810 0.5344

1.286 0. 189 0.140

3.827 0.481 0.502

1.461 0.268 0.182

R.a 0.? 5.478 0. 188 0.179 10, 135 .1.126

1.921 0. 253 0.205 K
8.860 0.709 o.566 I.

1.034 0.225 0.203

R3- 0.4 2.243 0.280 0.210 6.469 0.719• .

1.736 0.321 0.217

5.013 0.826 0.630

E 1 17.700 2.016 1.698 EX.. , 21.414

1.967 0.244 0.189 0. • 0.793

ME!. • 50.7464

- -- ... - . .. . ...- -
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. •and interaction effects. It is important to note that, even though con-

6idered negligible, these variations are present and are rtatistically
S......accounted for by summation into experimental error. The statistical

assumptions 6 through 8 allude to these conditions.

1. Analysis of Variance

The experiment was described in Section II by the statistical
model

(8) A= 1 . +M + R + MR + k(ij)

The theoretical model underlying the analysis of variance assumes that

each experimental response of the shock detachment distance (a) is the
algebraic sum of,

sao 1) An overall mean of the detachment distance, it (i.e. true

,standoff distance)

2) A Mach number effect on the standoff distance, M

3) A radius effect on the standoff distance,R

"4) An interaction effect on the standoff distance, MR.i

. 5) A random residual error (experimental), o

Since the model is a fixed model, none of the effects can be meatsured
absolutely. They can be measured only as differential deviations, i.e..,
the Mi as deviations from F., the Rj as deviations from sL, and the MRij
as deviations from Mi + Rj.

4 The results of the analysis of variance are shown in Table IV. TheI,.
computations are presented in Appendix B.

From Table IV, it can be seen that the main effects of radius have
apparently no significant effect on the shock detachment distance at the
95 percent level of confidence. The linear and quadratic effects are
also insignificant. The quadratic effects of radius seem to have the
most effect on the standoff distance. They would be significant at the
80 percent level of confidence though still not significant at the 95 per-
cent level.
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The Mach number in significant at the 95 percent level of confidence.

The computed value in the F test is greater than the F distribution
table value by a factor of about 5. The linear and quadratic effects are
also significant. The linear effect of the Mach number fact•,r was
found to be more significant than the quadratic effect.

. ,The analysis of variance also shows that there io apparently no

significant effect of the MRij interaction on the standoff distance. It is
interesting to note, however, that of all the combinations of linear and
quadratic interactions between Mach numbers and radi s, the quadratic
radius and linear Mach number were nmost nearly significant at the 95
percent lev-1 of confidence. This is congruent with the fact that the

V test of the quadratic effects of radiius and the linear effects of Mach
number 'was highest in the main effects tests, Under the interaction
effects tests, the computed value of 3. '59 for the RqM1 combination
would be significant at the 92 percent level as comparec to 4.41 for the
F value at the 95 percent level.-

It is also noted in Table IV that the mean square for radius andS~~radius-Mvach number interactiuns were only slightly higher than the

mean square for error. On the basis of the assumption that the exper-
imental error is normally distributed between all factors and all levels,
then radius and interaction effects do not significantly contribute to
shock detachment distance within the limits of this experiment.

The results of the analysis of variance, as shown in Table IV, ia
further analyzed as shown in Figure 4. Figure 4 ii the graphic display
of the results of the Duncar. range tests as computed in Appiendix 5.
Figure4(a), for the Mach number range signi.h-ance test, shows that
the Ml level (1.1 to 1.5) is significantly different irom the M1 and M 3
levels of 2. 5 to 2.9 and 3.9 to 4. 3, respectively'. The M 2 and M 3
levels were not found to be significantly different from each other. The
radius factor range test as shown in Figure 4(b) shows the ridius factor
levels not significantly different from each other. The fact that the M2
and M 3 levels are not significantly differerL. from each other will be
discussed later in this section.

2. Regression Analysis

The analysis of variance can be performed whether the iactors
are quantitative or qualitative. Khen the factctrs are quantitative, then

- .* **.... . ---. r*.. .... .--
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MACH NO. LEVELI

0.109 0,224 .6

(a) MACH NUMBER RANGE SIGNIFICANCE TEST

RADIUS TREATMENT

0.534 0,719 ilia$i

(b) RADIUS RANGE SIGNIFICANCE TEST

(COMMONLY UNDERLINtO MEANS ARE NOT SIGNIFICANTLY DIFFERENT
AND COULD HIAVE COME FROM A COMMON POPULATION)

Figure 4. Graphic Display of Duncan Rang. Tests
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i zn~v i1alyai #-q )r% n 1rfnrneci rn the data. Trhis analysis is

espeialy uefu inthe determination of the general functional relation-
Lhips of the factors ~at other than the experimentally assigned, levels.
The analysis of variance has led to knowledge of the important factor
considered in this experiment which contributes to the shock detach-

-~ ~ ment dtstance. This was found to he the linear and. quadratic effects of
Ma'-h number. This led to a bivariate regression analysiks. The regre6-
slon anclysis used was the SNAP Multiple Regression Artakysis for the
. BIM 7090 computer. !t was the Army Missile Gomir~ian' SIARE 183
programA

An pointed out, it is realized that the ishock detachment distance
isa n.-t singularly a function of Mach number. There are other factors
which were roct included in this experiment. For the factors considered
by the analysis of variance, some knowledge of the main significant
factor (Mach number) is now available.

Before progressing with the regression analysis, the physical
aspect~s of the shork detachment distance must be considered. The
fa.nction4LI relationship must b~e consistent with the aerodynamic concepts

4'of the det~achment distance. The detachment distance is inversely propor-
¾ tional to Mat-h nuinber. Thk~t is-

.:f~

The limits of the functional relationships are then

lirnf(.~~)u lixvn 4 .3  Urn~

a-o

Urn f~a 1i f(irnm& 0

Ur f(7 %lirn -
V-0o M-o
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limrf ) f lirn • limrA 00
(10)

V - -O M - o

lm f ( )V li rm lir A constant.V - .a M - 1Il

The functional relationship as determined by the regression analysis
should be compatible with these bounds and pass the limit tests.

The computer program is a linear multiple regression analsis.
However, the analysis of variance indicated that the linear and quadratic

effects of Mach number are significant. Therefore, a transformation

was required to make the computer program applicable to the hypothe-

sized relationship, The relationship is hypothesized as

b cS( I) = A M M .

A physical limitation of the functional aspect of A is that I '

A + R n

(12) R - > 1

nH

because as the free stream Mach number goes to infinity, the shock is
no longer detached but attached and the standoff distance is zero.

Therefore, the desired functional form of the equation is

(13) A A bcM c

n

which presents the detachment distance as a dimensionless ratio, which I
is a more usable form for design engineering purposes.

This is not to indicate the dependence of detachmnent distance on

body nose radius but to account for differences in body geometry. That

is, the equations of detachment distance for bodies with radius noses

cannot be used for sharp pointed bodies such as cones or p-arely blunt
bodies such as right circular cylinders. Therefore, this functional
relationship is for a geometric class of bodies, i.e. , radius nosed bodies.

j - <1
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Equation (11) was programmed for the regression analysis by using
the natural logarithm transformation. The equation programmed was

(14) In n= A + b lnM + clnM.

In computer language, the equation was

1-nYn(, , A + b In X + c In X

3 The values of A/R and M were taken from Table II and programmed

K into the computer, where

Y A

j . (16) X M

The computer transformed the experimental data to the natural loga-'
rithrm form.

The results of the computer regression analysis are shown in
Table V. The computer made two runs. After the first run, the results
are automatically tested for significance ( a = 0.05) and the insignificant
variables are dropped. It can be seen that the X2 term was dropped by
the computer. The data for run 2 were taken as the final regression
analysis values, The pure constant (A), t&e first coefficient (b), and
the regression coefficient (r) were tested and found significant as shown
in Table V and Table VI, The regression equation is therefore:

(17) nY = nA + b InXI

In Y In 0. 751Z -1.911 inX

Taking the antilog the equation becomes
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Y 2.1 ZX 1 -1.911

(18)

y _ 2.12x1.911 .

or

(19) A_ 2.12
S (M).9

with a standard error of estimate of 0. 3933.

3. Testing the Model

Through the use of the analysis of variance, the effect of Mach
number on the detachment distance was determined to be significant
both linearly and quadratically, Based on this, a regression analysis

was used to derive a general mathematical relationship between detach-
ment distance and Mach number. Certain physical limits were pre-scribed for the form of the equation. These physical limits are tested

as follows:

"if M 0) 21-= (o i 911 [.. .

0 " "

Test of Significance of Regression Coefficients A, b hypothesis A * 0
b 0

t(• 0.O025, df 25) + 2.06

~ 0.751177-0
t 1 - 10, 002 > 2.06 Test significant, reject

0. 39033/, 27 hypothesis
1. 910723-0 :

t 90. 23 = 13.25 > 2.06 Test significant, reject
hypotha.iis,..

II

~L
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Table V. Compilation of Regression Analysis Data

JModel: InY = InA + blnX1 + clnX 2

Type of Data Run I Run 2

V7 ' Pure Constant "JA) 0.748900 0.751177

-- First Coefficient 4(b) -27. 610352 -1. 910723

Second Coefficient (c) 1Z.842773 (dropped)

Standard Deviation Y from Mean 1, 084638 1. 084638

Coefficient of Determination (r 2 ) 0.878570 0.875469

Multiple Correlation Coefficient (r) -0.937321 -0.935665

Variance 1.22 0.154759 0.152363

Standard Error of Estimate ' 1.2 0. 393394 0. 390337

Standard Deviation of First
Coefficient b 31.500086 0.144127

. :Standard Deviation of Second
Coefficient c 15. 740889 (dropped)

* T Value for Coefficient Check after
First Run (C a 0.05) 2,60

Test of Significance of Simple Correlation Coefficient r
hypothesis r , 0

' 0.935665-0
""0.95266 • 6.14 > 2.06 Test significant, reject0.152363 hypothesis

2.12
if M 1~ (1 1. 911'121) ~(1)l:•

.2.12
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fM a Z.12

R 1 911
(22) -. 1 I

Z .12

0.
I

Therefore, the regression equation has the correct form for the physi-
cal limitations, Since Mach number is dimensionless, the inclusion of
R gives dimension to A. R is not tested for limits of 0 and •, as
R = 0 implies a pointed body and R = ao a flat plate.

Table VI. Compilation of Test Hypotheses

Hypo - Frequency Type Hypo-
thesis df Distribution a Test Significant thesis

R 0 a, 18 F 0.05 1lTail No Accept

M 0 2, 18 F 0.05 i Tail Yes Reject t. •

MR = 0 4, 18 F 0.05 i Tail No Accept "

= X 26 t 0.05 2 Tall No Accepte r L
26 x2 0.05 2 Tail Yes Reject

r

Zr = aw Z 0.05 2 Tail No Accept

2 22T = aw 26 X 0.05 2 Tail No Accept

A = 0 25 t 0,05 2 Tall Yes Reject

b 0 25 t 0,05 2 Tail Yes Reject

r = 0 25 t 0. 05 2 Tail Yes Reject

i ..
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Next, the regression model was statistically tested against the
experimental data and the Ambrosio-Wortman model mentioned in Sec-
tion II. These computations are shown in Appendix B. The means and
variances for the experimental data, the regression model, and the
Ambrosio-Wortman model were computed based on responses computed

i ~for the experimental Mach numbers. Table VI shows a compilation of
the hypotheses for testing the regression model means and variances.
Table VII shows the computed 95 percent confidence limits of the means

for the experiment, the regression model, and the Ambrosio-Wortman
model. The hypothesis that there is no difference between the variance
"as experimentally determined and as determined by the regression
model is the only hypotheses rejected. The hypothesis that there is no
significant difference between the experimental mean and the regression
model mean or between the regression model mean and the Ambrosio-
Wortman model mean are accepted. The test of no significant difference

between the regression model variance and the Ambrosio-Wortrnan rnodel
variance is also accepted.

Table VII. Compilation of 95 Percent Confidence
Limits on Means

Type Mean Mean A /R Increment Limits

Experiment 0.793 + 0.451 1. 244 to 0, 342

J Regression Model 0,726 + 0,249 0.. 975 to 0. 477

Ambrosio-Wortman 0. 687 0. Z93 0. 981 to 0. 395

The computation for the 95 percent confidence limits for the experi-
mental responses, the regreasion model, and the Ambrosio-Wortman
model are shown in Table VII, The regression model has the narrowest
range of values for this level of confidence, However, the 'XZ test of
the difference between the variances (the second statistical inoment) is
not significant nor is the difference in their means (the first statistical
moment), Therefore, evert though the limits of the regression model are
narrower than the Ambrosio-Wortman model, they are not significantly
different.
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of the regression moodel and the experimental responses is indicative of
the insight into the functional relationship between detachment diRtance
and Mach number obtained by the analysis of variance performed prior
to the regression analysis. The fit of the equation by the method of
least squares is approaching the true mean as evidenced by the high and ".
significant correlation coefficient (r) of 0.94 (Table V). e

In order to determine the power of the tests between the means of
the two models (regression model and Ambrosio-Wortnman model), an
operating characteristics curve was computed. The calculations are
in Appendix B and the plotted values are shown in Figure 5. From this
plot, the probabilities of an acceptance of the hypothesis when it is
actually false (type II error) can be determined for selected differences
in the means of the two models. For example, the probability of accept-
ance when the difference between Xr and Xaw is +0. 30 is about 65 per- i
cent, and the probability of rejecting the hypothesits is 35 percent,

Plots of the values of A/R computed for Mach numbers from I to 8
K for the regression model and the Ambrosio-Wortman model are. hown .

in Figure 6, The locus of the points for the regression model and the
Ambrosio-Wortman model are shown for comparison. There is a
region of high curvature or nonlinearity between Mach 1. 5 and about ' .
Mach 2. 5 with the curvesa becoming aisymptotic beyond 2. 5. The
Ambroslo-Wortman model becomes asymptotic to a A/R value of 0.143,
whereas the regression model has a zero asymptote, the ultimate physi.
cal limit. As mentioned earlier in this section, the Duncan range test
indicated that the MI level was significantly different from the Mp and
M 3 level. Figure 6 shows the curve becoming essentially asymptotic
at about Mach 2. 5 or at about the beginning of the MZ factor level.
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IV. SUMMARY. This experimental and analytical exercise has led
J .to the development of a mathematical model of shock detachment distance.

•,I-T This nmv~l has been statistically tested for significance on the basis of

comparison with several universal frequency distributions. The hypo-
theses made and tested are compiled in Table VI.

The hypothesis that the radius has no effect on the detachment dis-
tance was accepted. This does not mean that radius has no effect on the
shock detachment distance but that, within the limits of the tests, a
significant effect cannot be detected. That 's, one cannot reject the
hypothesis.

The hypothesis that the Mach number has no effect on the detachment
distance was rejected. Mach number is apparently a significant contrib-
utor to shock location. This means that within the limits of the test a
significant variance. - 4sociated with Mach number is detectable and can-
not be-attributed to experimental error.

The hypothesis that the MR .tnteraction has no effect on detachment
distance was also accepted. This hypothesis is accepted £n- similar
reasons as the hypothesis on radius effects. From Table IV, the
ANOVA table, it can be seen that the radius effect accounts for only
1. b5 percent of the total expected mean square of the experiment. Mach
number accounts for 59.25 percent, MR interaction accounts for 3. 30
percent, and error accounts for 35. 80 percent. It is pointed out that the
variance attributable to variables not included in the experiment could
be summed in the Mach number factor, which ii separated would reduce
the detectable effects of Mach number. For example, body surface
roughness, free stream density, and humidity, possible sources not
included in the experiment, may significantly effecL shock location.

The hypothesis on the derived regression constants, coefficient,
correlation coefficient were all rejected. This implies that these values
were significantly different from the values one would derive from data
where tlere was no correlation between the variables included in the
analysis. The standard error of estimate of 0. 390337 shows that the
fit for the universe line of regr 7%ision is good but not perfect. For a
perfect fit, the standard error of estima:e would be 'zero and the. cor-
relation coefficient 1. 0 instead of 0. 935665. rhi emphasizes the fact
that all variables which affect the shock location are not included and all
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variances present have not been accounted for. However, the model does

that is "explained" by the independent variable (M).

The mean of the experimental data was not found to be significantly
different from the mean ol the regression mcdel, whereas the variances

were significantly different. However, since the variance test is a

more sensitive test (i.e. ,the second statistical moments as compared~
to the first statistical moment), it in believed that this also attributes

to the reliability of the model. The mean of the regression model was

not found to be significantly different from the mean of the Ambrosio-
Wortman model. This was also true for the variances of the two

models. This indicates that within the limits of this investigation there

is nc significant difference between the model derived from wind tunnel i

data and free flight data. That is, the hypothesis that the perturbations

of holding devices and expanding flow in wind tunnel tests increase the

variance of main effects or experimental effects cannot be detected.. [
This is not to say that they do not. It is indicated in Table VII that the

regression model is to some degree more accurate than the Ambrosio-
Wortman model as the 95 percent confidence limits on the means are "

more narrow but not significantly so.

Therefore, within the limits of the aerodynamic and statistical

assumptions of this investigation, the following general observations

are made:

1) The model derived is reliable model ior the prediction of

shock detachment distance as a function of Mach number,

2) The model derived with free flight data is apparently not signif- .

icantly better than models derived by data from wind tunnels.

3) The use of the statistical methods for the analysis of data can .

lead to increased knowledge of the functional relationships of physical

variables. '

4) The inferences that can be made through the analysis of data

by statistical methods are more objective inferences than could other-

wise be made.
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5) The use of statistics in an extremely useful tool for the analysis
of data which are functions of physicai relutionships and in manv cases
lead to increased confidence in the results of the analysis over mere
visual inspection of experimental responses.

V. SUGGESTED FUTURE STUDIES. The results of this study
indicate that the shock detachment distance for radius nosed bodies is
strongly a function of Mach number between 1. 0 and about Z. 5. After
2. 5, the detachment distance is practically independent of Mach number,
This was established by the Duncan range test which shows that there is
apparently no significant difference between the responses obtained at the
M2 (2, 5 to 2. 9) and the M 3 level (3. 9 to 4. 3). Therefore, it ;eerns
appropriate to perform future studies in the Mach range of 1. 0 to 2. 5
to obtain a better understanding of the function where the variation is
most sensitive. This will provide a better estimate of the universe
regressior. line of the shock detachment distance in this velocity range.

Another important point to consider for future experimental studies
Ji "is to confound the daily variation with a selected interaction, since this

study shows that there is apparently no significant effect of interaction
on the. shock detachment distance. In this study, the dey effect was
confounded with the experimental error and main effects through rtn-
domization of all factor levels and combinations with days, Another
approach would be through design, to confound a priori the day effects
with the interaction. This would separate the variance due to day
effects fromn• the experimental error and main effects and may result
in a more sensitive test for main effects. However, this does not nec-
essarily follow because the degrees of freedom for error would be
reduced for the same number of responses. If the day effects are not
large, the separation of the day effects may not be sufficient to offset
the reduction in error degrees of freedom. This would require Judg-
ment in future designs. In this study, it is believed that it was advan-
"tageous to randomly distribute the day effects rather than confounding
them with the main or secondary effects since one objective was to test
for significance of interaction.

The very high significance of the Mach number factor indicated
that further test should be initiated to include other factors as free
stream density and some discrete levels of body surface roughness
(deneity and body surface roughness effects were summed as experi-
mental error in this stui..y),



Design of Experiments 555

A suggested experiment of academic interest would be a 43 factor-
i .l ... . "". ........ i, ,.,;e: tha LigahpAr nrder interaction. The

three factor, four level experimnent is suggested in order to test for
one degree higher order (cubic) effects. Models of constant radius, but
with four levels of surface roughness, at four levele of free stream

density and four levels of velocity would be flown in free flight. I,

This experiment would enable, throagh the analysis of variance the A
determination of cubic, surface roughness (S) and density (p) effects in
addition to velocity eifects. Since the fPrst order interaction in this
3tudy (MR)i was not significant, the day effects could be confounded
with the seconid order interaction (MSP)ijk.
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Appendix Aj. i EXPERIMENTAL COMPUTATIONS C

Sonic velocity was computed for each round from the following
equation:

(A-1) a ='vR T.
0

Model velocity was computed for each round from the following
equation-

5 feet•i •(A.2) V -
t

Mach number was computed for each round from the following
equation:

V(A-3) . a

The magnification factors for the shadowgraph (Fah) and Schlieren
( (Fmc) systems were computed for all rounds from the following equation:-

.8
E Film Model Diameter/NN=1-

(A-4) F h and F =,uh•m ZE Model Diameter/N

N=l

The computed values are:

I 0. 2Z6

SFsh .. 224 1. 009

(A- 5)

F 0.1915 0.855.sh 0.224

Shock detachment distance and model radius correcting for mag-
nification and location was computed as follows:

I
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a --sc -nsh "f,

(A-6) - " V i

but 3

(Rs(counts) a CxRbxFehxRr
Rsc(counta) =C x Rb XF sh X

b shi

therefore 6 86 6
sc+ sc

bCxe IF x R C XRbxF~hxR.
(counts) 2____________

(A-B) a

bc s c sh rc

Therefore,

(A-9) A(counts corrected) a 6 F 6 usc

and

(A-9) R(counts corrected) 2(C x Rb X FlcX Fsh x R d.

Example computations for round 75 as shown in Table H. 4.
: a /1'4 x 1715 x (460 + 71)

a 1131

V5ft a 1416
0. 003531 sec*

*This value for round 75 and all other rounds obtained from subnmicro-

second electronic counters as recorded in aeroballistic data log.

•- - • 1 -- I , . . . ..



I (A-10) M~ I4- 1. 39(.52 u70.

A 373(0 8S.) 390l. 00)71046(counts)

R 2 (3502 x 0. 114 x 1. 009 x 0.R 85 1. 0)

.. 676. 74(counts)

A 710.46 104
R 676.74
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Appendix B
STATISTICAL COMPUTATIONS

L. Analysis ol Variance

The computations for the analysis of variance was made fronI

the data shown in Table'lII.

Sums of squares are listed below.

Total sum of squares a .""
abr (EX

Xz (EX.
St = b x

ijk ta

(13-1) (21. 414)2
= 50, 746

=33.7628.

Sum of squares due to radius

b,
2 x ,

s = - X,
R jru rab

(B-Z)= (4 810) + (10._135)2 + (6,469)2 (2414)
9 27

S18. 6335 - 16. 9836

1. 6499.

Sum of squares due to Mach number. I

tM.



50 Design of Experiments

2X XI. 2

m irb rtab

1 22 2I .. (17. 700) + (0. 481)? + (0. 502) (21,.414)
(B -3) 9 27

:-i .- . 35. 5819 -16. 9836

18. 5983.

Sum of squares due to MR interaction

a b 2• •EE X2. 71,X.. ;X ...

(B-4) SSM• -= Ir ._ rabMIIi r 7 i r' " ra ta

(3.87)z + (0.481) + (0. 502) +

(8.860) + (0. 799) + (.0, 566)2 +

I (5.i0 3)2 + (0. 826)2 + (9 630) 2- 1.6499 -18.5989 -16.9836

3

=2.9885.

Sum uf squares due to error

S•SS =SSt - SS - SSM SSM
4 t R M MR

i(B-5 = 33. 7628 - 1.6499 - 18. 5983 - 2.9885

.= 10 5261.

Sum of square, due to linear and quadratic effects within main and
interaction effects. (Coefficients of orthogonal polynomials)1

C. R. Hicks, Fundamental Concepts in the Design of Expeeirnents,
New York, New York, Holt, Rinehart and Winston, 1964
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C.1(4.910) + 0(10.135) + 1(6.4t.9)1

3.3.2

S [1.101 -21.0. 135) + 1(6. 469)] 1 4
Rq 3. 3. 6S•SSq = =_ 14 31467 ,

L.1(17. 7U) +_ O(Z. 016) + 1(1. 698)1' 14r34

SSSMq - [1(17.70) + -2(."o6) + 1(1.698)] 4.2837

8- 6) __ _ _ _ _ _ __ _ _ _ _>

-([1(3. 827) 4- -1(0. 502) + -1(5. 013) + 1(o. 630 L 0. 5-S W - = 0,08551

Rf Mj 3.

[-1(3.627) + l 01+28.8 , 60) + . Z(0, 566) + -1(5. 013) + 1(0. 630o1

SSR/M

RqMj 3. 1Z

SSRM * -1( 3.8 27) 4 2(0, 481) + -1(0. 502) + 1(S, 013) + -20,8) + 1(0, 630)]

= 0.0108

(+1( 3.8$27) + -2(0. 481) + 1(0. 502) + .2(8. 860) + 4(0. 709)
-Z(o, 566) + + 1(S. 013)+ .(0. 826 + 1(0.630)1]

IStqM q 3. " ,36 .

* 0.6910.

2. Multiple Range Toots

Multiple range tests are listed below.

a. Mach Number Effects

1. ,967 0. 22 0. 188
( S7) treatment. 1 2 3

I.
•.... .
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Error mean square = 0. 5847 with 18 d. f.

. .Standard error of mean is

I: (B/8) Error M = 0. 5847:••+:•:+(B-8) S-- 0, 9S
- Xi. V No. of Obs. V9

... From Table (a 0.052 18) the significant ranges arep,. .. 3

•,:': ... ,•(B -9) p
(8-9) ranges 2. 9? 3.12.

Multiplying p values by S--., the least significant ranges are

•. . (B-jo) p = - -

p2 3
LSR m 0,756 0.796

Largest versus smallest:

(B-li) 1. 967 - 0, 224 = 1. 743 > 0. 796"1'(signiflcant)

Largest versus second smallest:

(B-12) 1. 967 - 0.189 1. 778 > 0, 7561:1 (significant)

Second largest versus smallest:

(B-13) 0.224 - 0,189 0 0,035 < 0.756

(See Figure 4 for display of results).

b. Radius Effects

(B-14) X , treatments 1.126 0.719 0,534

Standard error of mean is

'1IHicks, loc, cit.

.+ + ,. . ... . . ,.... .... ... ... .r,....... . ......... .. .. ....... ......... . -.-. +.. .... i
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Eikrror MS _ 0. 847 0 2545
(a-15) No. of Obs. 9 9 '

From Table E, (a 0. 05 n, 18) the significant runges art!

(B-16) p= _" ---

ranges = 2.97 3.12

Multiplying p values by S).., the least significant ranges are
J

(Bp - 3
LSE = 0.756 0.796

Largest versus smallest:

1,126 - 0,5344 0. 5916 < 0.796.

Largest versus second smallest:

1,126 - 0.719 = 0.407 < 0.756

Second largest versus smallest: I

0.719 - 0.534 = 0.184 < 0,756,

(See Figure 4 for display of results).

3, Computations for Testing the Model

a, Computation o' Experiment Mean and Variance

H o

• " " ": ;;:< .. .. . .

, . : . . • . .. . . .. .
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x 2 - z
(xi e) x ( -e

1.049 0. 793 0.0655 0.188 0. 3660
1.492 0, 4886 0.253 0,2916
1.286 0.2430 0.182 0. 3732
0.146 0.4186 0.179 0. 3769
0.146 0.4186 0.205 0. 3457
0.189 0. 3648 1,034 0.0580
0.223 0. 3249 2.243 2.1025
0.139 0. 4277 1,736 0. 8892
0.140 0.4264 0. 226 0. 32-6
1.461 0, .'462 0. 280 0, 2631
5. 478 21. 9492 0. 321 0. 2227
1.921 1. 2723 0. 203 0. 3481
0.268 0. 2756 0.210 0. 3398

0. 217 0. 3317
E 21. 414

j X 21.414/27 z 0,793
e

2S = 33.752/27-1 = 1.298
e

S T298 1.139

b. Computation of Regression Model Mean and Variance

XXr (Xi X r)2 X-i r (X i r)2

1. 382 0.726 0,4303 0. 314 0.1697
1,618 0.7956 0. 282 0,1971
1. 535 0. 6544 0. 154 0. 3271
0. 303 0.1789 0. 151 0. 3306
0. 336 0. 1521 0. 152 0. 3294
0. 288 0.1918 1. 271 0. 2970
0.149 0. 3329 1. 668 0.8873
0. 154 0. 3271 1. 568 0. 7089
0. 152 0. 3294 0. 276 0. 2025
1, 557 0. 6905 0. 283 0.1962
i 035 1.7134 0. 232 0.2440
1. 74 0.9761 0. 137 0. 3469
0. 299 0.1323 0.167 0. 3124

0. 142 0. 3410
E 19. 597 E 11, 84,19

-- -.--.-. -----.-..- --.-
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"X 19. 597/27 0. 726
r

2 io" 11.8449/27 = 0.4387r

VO -438iTh 0. 662 31rK
c. Computation of Mean and Variance of Ambroptio and

Wortman's Model (Z) for the Experimental Conditions
of this Study

S~3. 24/Mz
Model - 0. 143e

X. X (X. X 2 ("
1 aw I aw 1 aw x aw I

1.133 0. 6875 0.1984 0.176 0,2616 I
1.642 0.9110 0.176 0.2616
1.444 0. 5722 1.493 0. 6568
0.218 0.2199 3.180 6. 2125 T,
0. 2Z9 0.2097 1.910 1.4945
0.214 0,2237 0.218 0.2204 ' .
0.175 0,2626 0.222 0, 2166 tp.

X X ( X (
Saw 1 r I. aw ____r

0.212 0,2261 0.209 0.2289
0.176 0.2616 0.212 0.2261
0.175 0.2626 0.197 0.2411
0.176 0.2616 0.172 0.2657
0.951 0,0694 0.179 0.2636
1.783 1,2096 0.173 0.2647
1.519 0.6914 E 18.564 Z16. 3939 .

X = 18, 564/27 = 0.6875

aw 2i

a. = vO.6-072 0. 7792-.
aw
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95 percent confidence limits on experiment mean

L .' (B-19) e 9 0. 793 + -7-- (2. 06) - 0. 793 + 0. 451 - L. Z4 to 0. 342

S 1: 95 percent confidence limits on regression mean

0.. 662

.(B-0) Rr(0 95) 0. 726 + (1. 96) = 1726 + 0.249 = 0.975 to 0.477

95 percent confidence limits on Ambrosio-Wortman Model mean

(B-2 1)
0. 7792• ii! " Xaw(0.95)= 0. 685+O.79

,I 95) 0 _(1. 96) = 0.6875 + 0.293 0.981 to 0. 395.

d. Tests of Means and Variances

; Hypothesis: X X

t =0. 02,5 d. f, +26) =_+ 06

(B-Z2)
X - X'I 0.793 - 0. 726 0.1067
S e 7ti 1.139/T/27 1. 139/5.196

Computed value less than table value, Test not significant. Accept
hypothesis.

* ~2 2Hypothesis: S q
e r

2 a
(B-23) • (I = 0.025 d.f. = 26) + 13.8 to 41.9

s2

X2 1e - 1.298 ,
= n--•j =Y(087) - 79.885.

0r

r"
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"Computed value exceeds table value. Test is significantly higher.
Reject hypothesis.

Hypothesis: X r Xaw

(B-24) Z(a = 0.025) = + 1.960

S0. 4387 0.6072 0. 01624 + 0.0.248 :/0.03872 = 0.1968
r-aw 27 27

Z .Z -0.7 = +0.1981.
0. 726 - 0. 687

0.1968

Computed value less than table value. Test not significant. Accept
hypothesis.

Hypothesis: o, o-r aw...

xlS = 0.02 5•d.f. = 26) = 13.8 to 41.9

Nr 2

2 rN 0. 4387 ,
04387 = 19. 510.

aw

Computed value between table values. Test not significant. Accept
hypothesis.

e. Comuutations for OQeratina Characteristics Curve for
Two-Tail Test of Differences Between the Mean of the
"Regression Model (Xr) and the Mean of the Ambrosio-
Wortman Model (Xaw)

Assumption - the variances are known for both models,

i)
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2N _w r_ +_N r a__w 27(0.4387) + Z7(0. 607o)
€*:N + N "27 +27

aw r

(B-26) - 0.7299

Thesf- data are plotted in Figure 5.

Probability Probability

d'. d' Z 0.95 - dO/cr.aw Acqe.tance Rejection

t•i• .r ,R'aw) (d'/*) w • 1.9b-'Ir. 5 -V. W __ __ __ _ _ _ _ _ _ _ .. ..___ _ _ __ __ _

0 0 0' 1.96" MIS9 0,1.05
0.04912 0.0680 0.25 1.71 0.93 0:07

0.0984 0.1360 0, S . 1.46 0.90 0.05

0.1476 0. 2040 0.75 1.21 0.86 0.14

0.1965 0.3720 1.00 0,96 0.61 0.19
.0.2460 .0.3400 1..35 0:7-1 0.74 0.6 a,1
0. 2952 O 4080 1,150 .0.46 0.65 0.35

i. 0.3936 0.5440 Z. 00 .0.04 0.50 0. so

O,492,0 o .6so1 2.:5 :0,.4 0. 32 0.68
I0.s904 0.,8160 3.06 .1.04 0.17 0.53

i 0.688B 0.5520 3.50 -1.54 0.09 0.91

0.876a 1.0860 4.00 .Z.04 0.05 0.95
-J

(.

i- '-----,------ ----.- .. ~



PRESENTATION OF THE FIRST
SAMUEL S. WILKS MEMORIAL MEDAL*:,

ACCEPTANCE OF THE FIRST WILKS MEMORIAL AWARD

John W. Tukey i i

It is indeed a pleasure to have Mrs. Samuel S. Wilke with us this
evening for the presentation of the first Samuel S. Wilke Memorial
Medal Award.

The Samuel S. Wilke Memorial Award for statisticians was estab-
lished and announced a year ago at the Tenth Conference on Design of
Experiments in Army Research, Development and Testing. An account
of the announcement of the Wilke Award is given in the American Statisti-
cian for December, 1964. The idea for the Award was due to Major
General Leslie E. Simon (Ret.), who gave the opening paper at the Tenth
Design of Experiments Conference entitled "The Stimulus of S. S. Wilke
to Army Statistics". The Wilks Memorial Award is sponsored by the
American Statistical Association through the generosity of Mr. Philip
G. Rust, retired industrialist of the Winnstead Plantation, Thomasville,
Georgia. The American Statistical Association accepted the obligation
of administering the Award and funds in accordance with guidance and
criteria which are consonant with law and with the wishes of the Army
representatives, Mr. Rust, and the American Statistical Association.
The name of the recipient of the Wilks Award is announced each year

Development and Testing,
during the annual Conference on Design of Experiments in Army Research, ,

With the approval of the President of the American Statistical Asso-
ciation the Wilks Award Committee for 1965 consisted of:

Dr. Francis G. Dressel, Duke University and the Army Research
Office -Durham

Dr. Churchill Eisenhart, National Bureau of Standards

*'After the dinner meeting at the Eleventh Cdnference on Design of Experi.
ments in Army Research, Development and Testing, the chairman of the

F conference, Dr. Frank E. Grubbs, gave the above address. Professor
John W, Tukey was presented the first Wilks Memorial Award, Follow-
ing his acceptance of this honor he spoke to the group about his friend
Sam Wilks.I, ~
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Professor Oscar Kempthorne, Iowa State University

Dr. Alexander M. Mood, U. S. Office of Education
Major General Leslie z.. Simon ( lxr..j...er P_•r 1r Florida
Dr. Frank E. Grubbs, Ballistic Research Laboratories, Aberdeen

' -- ' Proving Ground, Maryland - Chairman

The Wilks Award Committee met during the annual meeting of the
American Statistical Association in Philadelphia on 8-10 September 1965.
Many candidates for the 1965 Wilke Award were considered based on

T-Z,: nominations from individuals and also statisticians thought worthy of
consideration by the committee.

The Wilke Award is not limited to contributbrp to design of experi-
ments activities in connection with Army research, development and test-
ing, but rather all statisticians who have made significant contributions to
the general field of Army statistical endeavors, whether theoretical or
applied, are eligible, Moreover, persons eligible for the award include
not only government statisticians but also those fronm universities and
industry. The annual programs of the Conference on Design of Experi-
ments in Army Research, Development and 'Testing indicate rather broadly
the nature of statistical endeavors of interest to th-ý Army, but the achieve-
rnents of those being considered for the award need not, be restricted to
these areas. Rather, as indicated earlier, the awardee is selected for
the advancement of scientific or technical knowlodge in statistical efforts
which co-incidentally will have benefited the Army and goveramrrent in oneI t way or another.

As a result of the committee meeting, it is a great pleasure to
announce that.Professor John W. Tukey of Princeton University has been
selected to receive the first Samuel S. Wilke Memorial Medal Award.

Professor Tukey has long been an authority on the statistical analysis
at data and has received wide recognition for his many contributions to
mathematical statistics and applied statistic, in many different fields,

, Professor Tukey has contributed to the Army Design of Experiments
* Conferetnces from the beginning and gave freely of his time to promulgat-

ting the uses of statistics in Army applications, DOD applications,
Government and industrial applications. The citation for the first Wilke
medalist reads as follows:
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To John W. Tukey for his contributions to the theorl
n(f tatistical inference, his development of procedures j
for analyzing data, and his influence on applications of
statistics in many fields,

Upon receiving the Wilke Medal, Professor Tukey responded as

follows-
We are met to honor Sam Wilks' memory. All of us would have so

much preferred to have had him here instead. Many of us knew him for [
ten or twenty years, some for thirty. No matter whether we knew him
initimately as a close colleague and friend or only as someone met once
a year at such a recurring event as this, we all respected him and all
he stood for. In this we are but a small sample.

The memorial minute of the Princeton University faculty begins
thus: "Samuel Stanley Wilke died in his sleep on March 7, 1964 at the
peak of a distinguished career in teaching, research, and public service,
His sudden death, without any warning leaves many friends and associates
stunned by a sudden loss of a man upon whom they depended for advice on
problems large and small, for a wise appraisal of proposals under con-
sideration, ior getting many. jobs done --- a man instinctively so friendly
and fair that everyone responded to him with great affection. His death
terminates a quiet, penetrating, and influential leadership in the work
of many organizations---especially in mathematics, statistics, and
social science---to which he brought wisdom, commitment, persist-
ence, and a remarkable sense of the importance of new developments.
His passing leaves an emptiness in so many plans, that one wonders how
one man was so versatile and did so much".

The memorial notice of tho American Philosophical Society approaches
its end thus (1] : "In his service to our Society, Sam showed all the won-
derful characteristics we have noticed elsewhere: quiet, modest
diligence, deep wisdom, a technical skill that was always adequate to
any demand; the ability to comprehend, and bring others to comprehend,
the broader issues. " The notice then ends: "Mosteller's memoir,
written for statisticians, was fittingly entitled: "Samuel S. Wilks:
Statesman of Statistics". As members of Benjamin Franklin's own
society it is only right that we salute ourdeparted colleague and friend as
"Sam: A Quiet Contributor to Mankind".

II
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On the afternoon of his death Sam told my wife- "Now that so many

j I u .'.~iti t ini that J ohn and .I worked out something new to do. I
-i.-% NA W ~.111 a~m~g~iin: what we art,' working oilt in P~rinreton today is rnot

'.vf.iL it wouldd have been micit~r hiis leaderbhip. hut we can, and will, doJ~',l IWNI if) make the nom iDepa~rtment of Statistics something of which
Sam would have been proud.

For thirty years he kept Fine Hall statistics in balaniccr! contact with
mathematics on the one hand and with a wick variety of applicatiolih on

hlic othcer, showing clearly by his example how it was best to combine both.
!I. I i stcogflitiofl of the dangers of tight Gaussiax assumptions led him to
pion'vr with non-parametric methods. His recognition of the growing
-olport.imcc! of computing came very early; the first punched card equip-

A miil on the~ Princeton campus occupied the room next to his office.

pwii As a unified Princeton statistics comes into being and grows, we
w l1 do all we can to continue his tradition. We will emphasize the need
iar combining contact with mathematics and contact with applications.
We will do all -we can to bring statistics, computer science, and the use

KI of compine. ficilitics,.evci' f.loser together. We will try to be ever more
rvalislic in understanding the problems of the real world and in formulat-
ing thos~e pale ropies of real. problems, whose solutions serve to guide

'III ;t.9 %*tV fa' cle reality. We can do no less if we are to follow his noble
1 11,11 i [Itill

RE1 E RI;N..E

11 1 San-itie Stanliey Wilke (1906-1964). 1964 Yearbook of the American

IPhilosophical Society, 147-154.



TAI'GET COVERAGE PROBLEMS

William C. Guenther

University ot Wyomin~g, Laramie, Wyoming

Much of the material contained in this paper is a review of

literature which has appeared in many different publications.
The definition of a single shot coverage problem which was

given in a paper by Guenther and Terragno [1] is extended to

a multiple shot case. T.he results which were reviewed in

reference 1 appear here in abstracted form since they are use-

ful for the new extension, Some models for the multiple shot .

case are considered in detail. The latter include some for

which results have not been previously pu'blished, It is hoped ,

that this paper will be a coordinating force for future research.

In recent years a large number of publications have appeared onrproba-r

bility problems arising from ballistic applications, Many of these papers U

and reports are concerned with topics which are often referred to as

coverage problems. A definition of a coverage problem, which yields

many interesting models as special cases, appears in a paper by Guonther

and Terragno (1] and will be reproduced here. That definition was for
the single shot case but only minor modifications are required to extend .

it to a multiple 3hot situation. Further modifications may be necessary

ifi sdesired that the definition yield certain other problems, which have
already been investigated or may be formulated in the future, as special
cases,

Although most work in this field has been rostricted to the two-

dimensional case, some applications are meaningful in three dimensions.

It is doubtful that the coverage problem has any useful interpretation in
more than three dimensions. We will use n-dimensional notation not only

because it includes the cases n = 2 and n = 3 but also because results H
one derives can occasionally be used in unexpected places where n dimen-

sions are meaningful.

For brevity we will use the notation X= (xt, xt, ... , xi)and

dF(Xi) will represent an n-fold integral. . I

"I:i
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DEFINITION FOR THE SINGLE SHOT CASE, Before attempting to

define a coverage problem, let us consider a special case which will help

ti nt-Ar-oa-,' <mo. rf the• essential ideas and lannlualge. Suppose that a
point target is located at the origin of a two-dimensional coordinate system.

A weapon with killing radius R is aimed at the origin with the intentfn of
destroying the point target. When the weapon arrives at the target, the

. latter is located at X, = (x 2 1 x2 2 ), a randomly selected position within

or on a circle of radius D centered at the origin (see Figure 1). That

Fig.1. X is point target and weapon has killing radius R.

.. "is, the probability density function of X. is

12 2 2g(x= 0 x2 1 + x <D.•! . 2x1, x22) .2D1 22

i!r

Assume that aiming errors are circularly normally distributed with
unit variance so that the center of the lethal circle X ) tl,)2 has
p.d.f.

.. ,• 11 2 2.ill ) 12 V 2Xll + '1)1

C, .
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Now a given point X2 will be destroyed if the impact point of the weapon

is within R units of X2 . The probability that this happens is

h(x2 , x) dx1 dx

22 2
where C is the region (X 1 - x +z R . The probability & U11 +1 (' 12-x,,)
of destroying the target (that is, the probability that the impact point is
within R units of the target given that the target is as likely to be at one
point as at any other within the circle of radius D) is

P(R,D) = ' h(x 1 , x22) g(,. x2)d1 dx

2
2 2 < 2

where C in the region x 1 + x < D. The evaluation of P(RD) for

any number of dimensions is discussed in Section 2 of reference l-and is
mentioned in the abstract of that paper which appears in the next section.

Now let us formulate the definition of a coverage problem for the
single shot case. Let X be the impact point of the weapon, X be the

position of the target at the time of impact, P XIX)=probability of j
destroying the target for given values of X1 and Xc (sometimes called
the damage iunction), F(X ) the distribution on of the impact
point, G(X 2 ) the distribution function of X . Then

P 2 (x 2 ) - j P1 (Xl' X 2 ) dF(X l )

= probability a given X 2 is destroyed

and I

') = $ P(X 2 ) dG(X,)

probability of destroying a point target whose
position is governed by G(X 2).

-------- *,
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1 We will define a single shot coverage problem an the computation of aJ probability of the type P(.), that is, the evaluation of

J,•::; (1) P(.) = P1 (Xl, X2 ) dF(Xl) dG(X 2 )

SAll three functions P(X 1 , X 2 ) F(X 1), and G(Xz) (and consequently

P(.) ) will in general depend upon parameters.

Although the order of integration in (1) has proven to be the most
efficient in the majority of problems which have been studied, there is
no reason why that order cannot be reversed if it is profitable to do so.
This change gives

(2) P(.) $ P1(xl, X.) dG(X 2 ) dF(Xl)

Several special cases are worthy of consideration. If

(a) P (XI X2 ) = 1, X 1 Eregion C1 (usually a sphere)

(3) -0 otherwise

(b) g(X2 ) = 1, X- B =(hb,

0, otherwise,

then (1) reduces to

(4) P() = dF (X1)

which is the probability content of region C1 under distribution F(XI)

If (a) of (3) is satisfied (sometimes called a zero-one damage function)
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but G(X,) does not concentrate all the probability at one point, then (I)

reduces to

(•15) P( $dF(Xl) dG(X2 )

C1

where in general C1 is defined in terms of both X and X

If X is uniformly distributed over a region C?, that is

0, otherwise

where V(C 2 ) is the volume of C21 and the damage function is zero-one,

then P(.) can be interpreted as the expected fraction of overlap of the
region of total destruction and a target area C 2 , To see this integrate

in reverse order, Given a value of X1 (see Figure 2)

RIR

2: 2

Fig, 2. Circular area of total destruction and target area C 2 .

h2v9-i

S---- *-*- *-*~~**- *- ~ ~ §
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X is captured if it'lies in the region common to C1 and C The proba-

bility that happens is

$ V(Cz dX~= v(X)

where V(X 1) is the volume common to C and C for given X1. Then

integrating over X we get

_____ 1[)(vx 1

which, is, by definition, the expected fraction overlap. Multiplying the
latter result by Y(C gives E [V(XI)] or the expected overlap.

When the damage function is not of the zero-one type and X has the
density (6), then P(' can again be interpreted as the fraction of the
target area destroyed. This i beat seen by writing P() as

()P(. xX

P2(X
22

and observing that since P (X2) can be interpreted as the fraction of

the point X destroyed, ,[P (X2)) is the fraction of the target area

C which is destroyed. Morganthaler [2] has used this interpretation.
2

SOME SPECIFIC RESULTS FOR SINGLE SHOT CASE--GUENTHER-
TERRAGNO PAPER. A comprehensive review of results for the single
shot case has been published by Guenther and Terragno [1]. This paper
lists 58 references of which about 30 deal directly with target coverage.
A thorough knowledge of results for the single shot case is extremely
helpful in the multiple shot situation. This section will be an abstract
of that paper.
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For most models discussed in the review it is assumed that X has
density

f(X 1 ) - f('1 ... ' X) Kin
(7) n- 5

-= ~ 2) n -l exp " n. i /l i)Z].

Section I is devoted to probability content problems, special cases
S of (4) with the region CI being ; (xli-bi)z <. R. Thus the point B '

is destroyed if the point of impact is within R units of the fixed point.

If all =r ai ( then P(.) is the integral of a non-central chi-square

density function with n degrees of freedom and non-centrality parameter I
n 2 2

E b2 . Very extensive tables exist for n=2, adequate tables fori=1 i

in = 3(1)30(2)50(5)100. Results are less abundant if the variances are not
equal. However, for B = o, n = 2, 3 and B / 0, n = 2, existing tables
seem to be quite adequate.

Section 2 describes some special cases of (5). The most interest-
ji ing results are obtained by using (7) with equal variances for the density.

oTus f XzI isa within R units

of X1 and E (x l-x zi)a for C. is withi i

2of2 X 2 is destroyed. For these cases the probability can be

expressed as the integral

2 2 2 2(8) -(.) (--;n, -- C dGX)= H-Tn dQ(-)

R rwhere H( n, -) is the non-central chi-square distribution function

I V

7I:

Ii
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with n uoagre es of freedom and non-centrality parameter XZE = r /a-
iJ=

Q(r,/w) is the distribution function of r/a (which is, of course, determined
by G(X2 ) ). The evaluation of the integral (8) i discussed for the cases:

I. The distribution of X. gives equal weight to each point on
2 2x = DI, no weight elsewhere. That is, X is uniformly

:1 21. 2

distributed over the surface of a sphere of radius D centered at the
origin.

II. X2 is uniformly distributed within or on a sphere of radius D

centered at the origin. Thus,

?(. vD ' x <i

0 , elsewhere

* where V(D) is the volume of the sphere.

III. X has a density g(X2 ) taking on the form (in spherical coordinates)
z 2)

p(r,cy, IM. On-1) =(2Dfn)f 0 <_r D

0 ng- n-i -2 -l

= 0, elsewhere

so that the spherical coordinates are each independently and uni-
eformly distributed.

IV. r/r has a gamma distribution.

2 2V. T /'r ', has a gamma distribution.

VI. r/r, has a beta distribution.



Finally, a ease not falling under (8) in which X and X both have density

(7) (but v'ith different variances) is discussed. Perhaps II is the most
interesting since it generalizes a well known result by Gerrnond (3] . For -
this case 1 '4

R D R 2  D 2  H.L D D2  2
(9) P(.=P( H(. D

and evaluation is accomplished by using tables of the non-central chi-
square distribution [4]

In Section 3 a few models with damage functionn 2x .2i~/

P 1 (Xl ,X2 ) Aexp[- (X

are discussed. Again X, is assumed to have density (7), Then P(,)
is evaluated for

I. Same as Case I of Section 2.

II. Same as Case II of Section 2 except that unequal variances are

permitted in (7).

III. Same as Case III of Section 2.

IV. Same as Case V of Section 2. r

V. Both X and X2 have density (7) but with different variances. .

EXTENDING THE DEFINITION TO THE MULTIPLE SHOT CASE.
Again, having a special problem in mind will help in constructing the
definition. Let us consider the following case discussed by Jarnagin

I
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and Di Donato (5] . A big bomb is aimed at a point target located at the
origin of a two-dimensional coordinate system. When the weapon arrives
at the target, the latter is located at X2 , a randomly selected position

within or on a circle of radius D. Assume that aiming errors for the big
bomb are circularly normally distributed with unit variance. That is, when
the big bomb detonates its position X3 is governed by the density

f3 (x 3 1 ' '32) 2T exp 2- (X 3 1  + x3z2 ]

At detonation the big bomb scatters N bomblets, each with lethal radius R,
with impact points uniformly and independently distributed over a circle
of radius A. Thus, the density of X1 , the impact point of a bomblet,
is for given X 3

1 22 2f1 3 (XI X 3) 2 (x 11 .x 3 1) +(x1 2.X32)- A
wA,

- 0 , *otherwise.

Now, given that the target is at X2 and the big bomb detonates at X
X is captured by-a bomblet.if X is within a diatance R• of X• (see Figure

3). The pr.obability that this happens is

F S -- dX,
C iA

where C is the region (xI_-X2 1) 2+(Xl2-,z2) 2 R2. The target will be

captored if it is coviged by at least one bomblet. This happens with
probability 1-(I-Ps) because of the independence condition. The prob-

ability that the target will be captured regardless of where the big bomb
detonates is

I.' Nh(X 2 ) [1 - f3 (X 3) dX3

I
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/ 4

I

F IG. 3. Big bomb detonates at X, bomblet at XI ... •

Target is at X . ...!.-,

Finally, the probability that the target will be captured no matter where . ':=

it is located is:i.

Sh(X 2) 9(X?.) dX2 .

Z 2

where C2 is the region X2 + X2 ea and ".

2 HI 2

12 2 Z

g(X 2) i r"D 20 X 2f + X ZZ D .

This problem will be discussed further d a matte whereon

To generalize the above result let X3 = the impact point of the biga

bomb, Fr(X the distribution function of X X impact point of
3 3 30 otherwise

This prbe-ile u

To gneraizethe bov reslt et X the mpat pont f th.bi

bob,......h.dsriuio untono X.X~=imat onto



584 Design of Experiments

a bomblet. F1 3 (X I X 3) conditional distribution of X, given X 3 , the

same for each of the N bomblets with all N impact points being independ-
: ently distributed, X 2 = position of target when the bomblets impact,

G(X2 ) = distribution function of the point target, P (X 1, X2 ) probability

of destroying the target for given values of X and X., P probability

S.of capturing the target for any one bomblet given X and X2.f ThenI3
P - PI(x 1,X2 ) F 1 3(X1 X 3 )

:,-,.. * aand

(0)p() NI - dF dG(X2)

is the probability of destroying the target. Expanding the binomial under

the integral in (10) leads to the alternate form

i .N to 0
:• .... , (.lk+l N) p" k d (!I~ ~~~~ (-I d (I)d( - "1: 8dX(

We wili define an n-d(mensNonal coverage problem as the evaluation of a
probability of the type given by (10) or (11).

If X has density
3 fX

(12) f (X3 , X -B (a fixed point)

- 0, otherwise

then (10) reduces to

d•I
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(13) P(.) [ - ( 1-P) dG(X )
-0

where X B in P Formula (13) yields P(.) for N shots aimed inde-3 S'
pendently at B ( at the origin if B 0). Fprther if N = 1, (13) becomes

P XiX') dF(X) dG(X)
-•, -- mr

the single shot formula (where F(XI, = FI 3 (XII B) ).

SOME SPECIAL CASES OF FORMULA (13),

Big Bomb Hits Origin with Probability 1, Zero-One Damage Function I

Assume that aiming errors of the big bomb are governed by the p. d. f.
of (12) with B = 0 and that X is uniformly distributed over a sphere of
radius D centered at the origin, that is, has p.d.f.

(14) .g(X 2V)] 2< (region Cn)= , 21 am_ 2rgo~ )

= 0 , otherwise

where V(D) is the volume of sphere of radius D. We will also assume
that the density of X1 given X 3 is

1 1 gie eX[ 3 'a
(15) f 3(X zX3 )(15) f X T) ra exp[- E (X -i Xi /a-1

with "r or, i=l,2,... ,n and where x 0, i,Z .. 2 n because the

big bomb hits the origin with probability 1. Then

. .. q .. , .
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P dF1 3 (X1 10)
Cl

where C is the region 1)2 R2. It is well known that this

integral has the value

h 2 2
( 16) PS H(--;n -- )

whore r2 E X Hence

iml 2 ) C (1(.-

SC2  
rO"(D 2

N R 2 2 I-
R nr

I2

• , D

q()k+l N4 [ H(-..R nth~)]k -n r

k=l iCa r T D

The multiple integral converts to a single integral by virtue of the result
on page 248 of [1] . We know from Formula (9) that the single integral in
(17) can be expressed in terms of H functioni for k z 1. A corresponding
result fnr k > 2 may be possible but it is unknown at the present time.

For the case n=2, Jarnagin [6] has prepared tables of (17) for R/w
.005(. 005). 05(. 01).10(. 02). 20(. 05)1(.1)2(. z)4(.5)10, D/O" = . 05, 1.(.1)

4(. 5)12, N ='1(1)20. Also included is an inverse table giving the number
of bomblets N required to make P(.) = . 05(. 05). 95 for the range of
D/o" given above and with R/w ranging over values reqluired to make N
go from 1 to 999.

"K.
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Big Bomb Hits at Point B with Probability 1, Exponential Damage Function

Assume that the damage function is(18) P1(X1 X2 ) =exp[- E (xzi-xli),/ I]

and that the p. d. f. of X1 given X 3  B is given by (15) with = bi,

1i-l, 2, ... n. Then an easy integration yields K;
Exa!in T Xn+Z 1p 2 (:•i.=bi)2/(w•±+A2)]

P -r exp[(- E ( - b Aa + .X
- 1 1( +r 1- +,A) IjA

Expanding the binomial in (13) we can write p e h r

E (-l) [) l, zi ( 2  2 1 ( gion 2 )k(. l - T( +Xz) +"'• X °(

1=1

=:First assume that X2 is unifformly distributed over an ellipsoid

•, whose aecenter Thnis at the origin and whose axes are parallel to the coordinate

Sg(X)= [VC2) L, (. /a , I (the region Ca

= 0 otherwise

S where V(C 2 ) is the volume of C2 . Then if we let' k a(x b/(-+ +A

* yi the probability (19) becomes aI

ir

I.r::

,I

•p
-... 11:

,...
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(20) N (~1)k+. (N) Xnk ?)*7
.- (20) Nk~ ( k na1½

2kk

;•?:i• kul V(C) k w''n +12 '(-) S

fo(Y) is the standard normal density in n dimensions, and Ck is the

whreginZ ( 0
+

b.Y ter snd ] onat and in ( dmnow(, and R os e sthl

andRod.n(10. If b1 . l0 o tha t .e elis .cet .da h-E R

2. 2.. .2

. Tables from which Jk can be obtained when n=-2 have been prepared
': .'i •"Iby Germand (7] , DiDonato and 3arna$1n (8] , Lowe (91 , and Rosenthal

.. • and Rodden [10) . If b! = b2 = 0 so that the ellipse is. centered at the

40 origin, then Jk can be evaluated from the tables published by Esperti (11],

Harter [12] , DiDonato and Jarnagin (1 3] , and Marsaglia (14] . All tht
above tables are described by Guenther and Terragno [1] . Groves (15]
derived (20) for the case n r 2 and includes a 16 page table of 3 for this
case (with/bI x b 2 = 0) in his report.

If all a U o, anda 1 = D, then

22 2
3 k n, r~ 2X

where

2 k n 2
r = 2 2 Z b

0a + i=x
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Further if B = 0, then Jk reduces to a central chi-square probability.

For both the latter two cases many tables are available and a description
f of these tables is found in Section 1 of [1)

If in (19) we take B =0, w a, and assume that G(X2.) give. equal
n k!

S2 2
weight to each point on the sphere E K2 1  D , then (19) reduces to

kN I nkI

(21) PH) E (-l) k) xflf exp 2
k=l (

since everything comes out in front of the multiple integral except dG(X,)

which when integrated over the whole space yields 1. Fov a (X,) so

chosen, X. picks its position at random on the surface of the sphere. The

answer is the same, of course, no matter how G(X) assigns probabilityi
on the surface of the sphere but uniform assignment is the most reaistic,

model.

As one further model let us assume that B =0 and X2 has p. d. i.

(22) g( C (2?r) in n .1i a x[-~ E(x/2]

Then (19) readily reduce@ to

N ~ N nk

P()= . k n [ 2+x2 (k.1) ( 2 + 2 + 2)
k=l ( X(k-+r+

SOME SPECIAL CASES OF FORMULA (10).

The Jarr~agin-DiDonato Mcdel

Let us return to the example which we used to introduce multiple
shot coverage problems but generalize the discussion to n-dimensions.
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Then X, given X3 is uniformly distributed over a sphere of radius A

centered at X so that

f13(X1  [3 V(A)] .1 A -~i (regionC)

- 0, otherwise,

X2is uniformly distributed over a sphere of radius D centered at the

origin so, that ithas the p. d. f. given by (14), arid

(3) (Xx3  /a.w) ~ -1 (

Here V(A) in the volume of -a sphe re of radius A, We will assumne that
T3i r , !1i2'... ,n and for convenience (as. IiDonato and Jarnagin have
done) we will take a- = 1 which means all distances are expressed in

1 :. ... standard units. The damage. function in

2 2P1XzX) 1, E (x 1 X21  :S R .(region C,)

Then

"'1 2
P I -.-. dX.-X~-A

Cl

2 2
where t E (x 21 -x 3 1) and V(t )is the volume common to C and

C.,Hance, since all functions appearing in (10) are known, the Zn-fold

integral could be written down with the integrand expressed in terms of
X 2and X
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2 2
Some simplification in possible. We seek E[u(t )Jwhere u(t iL

=1-(l-PS) N. If the density of t 2were known, then P(.) could be expressed
2 z

as a single integral with integrand in t . We know from working wi~
single shot coverage problems that the density of t2 given rw 2 =E

is non-central chi-square- with non-centrality parameter r .This isC1 1 t (n.2)/2t 2
odr (n-2)/Z. The

where~~~ I (xstemdfe Bs ucino othrwder(-/ZTh

C ~2 2 2 2 2

2 z 2 22 2

(25)g(.)S ut)~ r )q0 rd <t

a dobl 2 t2ral

since (4isthejont dsymmeutrion oft and r 2 Ths, itn ~(25) ta nderto

of~~~~~~ r 2 yed2(Z , 2  ota
z( ) It 2  22 2 2

(26) P(.) )h~ H(;n,t)q~ dt

0 .

a~~~~ dobl ntgrl

Fo te -imenZIion. -casea frthr smplfictio isposibl
ic (2)i hn ymti i zadr2 hs n 2)t .inerto
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j The Jarnagin and DiDonato report includes over 100 pages of graphs
"which yield the P(.) of (26). Two cases are considered. For Case I,

R < A and 20 % N S 500 for various values of D, A, and rR , For Case
II, R >.A and I < N S 20 for selected values of R, D, A. The Case I
graphs gWve irD2 P(.) while the set for Case II give P(. ) directly.
Various:approximations to P(.) are discussed.

From a practical point of view the most interesting case is R < A.
For this situation it is immediately apparent that bounds on the P(.) of
(26) are

RZ (A-2R) 2i...[1 (1 R R-ZN" I( ' - H(D?; , t 2 dt 2 < P(-)

SA J D

17)A (. HD 2 2t t2

A 2.A 0D

Both integrals appearing in (27) can be expressed in terms of H functions
by using (9). The H functions in.turn can be evaluated by usigg the
tables of Hayman, Govindarajulu, and Leone [4] . Of course, the smaller
the R the closer the bounds will be.

ANDEXPONENTIAL DAMAGE FUNCTION, DETONATION POINTS OF BIG
AND LITTLE BOMBS NORMALLY DISTRIBUTED, Assume that the
damage function is given by (18) the density of given X by 115)

and the density of X3 by (23). Then a straight forward evaluation yields

PS = P1(Xl, X2) f13(X1 X3) dX1

4 n n
e(• (r+ X ) i=)

i;1

7 - ""-7" ''"-" . . . .
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The same itnd of evaluation next gives

Ankn X x[2 / 2 2 2 2

8 Pk fp(X[)dXi =21/ M31 I
(28)S 33 3 n 2 2 (k-) 2 27t I (O'li +A (kT R +q li+X )

i=l

To write down P(.) as given by (10) we need finally to integrate (28) over
the range of X 2 .

For several distributions of X P(. is obtained very quickly. We
will consider(

L
Case I: a3 , = w3. °'l =o. and G(X ) gives equal weight to each point

on th"per. X D Then with the same reasoning'used.. •:'::::i!'ion the sphere• 1 ~ :!.. :.

to obtain (21) we get D.Tnwht.araoi..
kn kl . 2 "z. 2

N X exp[-kD /2,(ke +r +XA).
(29) k' 2 (k.1)

k=l [ +X (k)3 +r2 1

* Case II: The density of X2 is given by (14). Letting .

yi ~ r1xi ,.,Yi = • " "
... z +W z...
k 3i+ i , ,

and recalling that V(D) n/2 _ •, + ,:i:.'-,:::
=( D D r / rI 2 n."::ii!,-!:

we get ("'DA )
7 7I.
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13 kn 11+2 2n/it
N k+1 N T ()2

(30) P. = c Dk/ z)ki1

/2 e E Yi yI y

whr C2th 2 ,2 2 221hr i h region (ka ~~ 3 +a1 +A y /k <. D. The

evaluation of standardi norwial integrals over ellipsoida~l and
spherical regions is discussed in Sec~tion 1. 3 of [1)

Case III.. The density of X2 Is given by (22). A routine integration yields

N k+1 N X___________
(31) k() n(1 2 2 (IZ (k-1) ( 2 +k 2 +a 2 i

kvl ff 'Ii' ijx+ki 2k 31+

CONCLU.DING. RE MARKS. Although the definition of a coverage
problem which we have given can be further generalized, many of the
interesting models which have received attention are special cases of
the definition. as we have given it. Certainly there are models which
may be of interest ether than those covered in the Guenther -Terragno

r review and in this paper.

In this review we have considered only the zero-one damage function
and the exponential damage functio~n given by (18). Many others have been
proposed. For example, another possibility that has some merit is

n 2 2
APA 1(X 2 ) = 1, (xli-x 2 i) R

(32)

KIexp - . ( 1E R(x1 -x21 )2 - R2 >R
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T'he damage function (32) is found in Ll] but the topic is not pursued. Other
damage functions are mentioned in [16] and [17]

I The first step for a potential researcher in the field of coverage
problems is to select a useful and realistic model. Having made that
choice, the remainder of the task confronting an investigator i mainly
numerical. It is possible that most or all ,f the computation required
is already available in the literature if one. knows where to look. Even if
no such results are in existence, chances are excellent that probabilities
of interest can be evaluated if one is clever enough in handling special
functions and computers.

Work on target coverage problems has suffered from a mass duplica-
tion of effort. This is in part due to (a) some company publications being
difficult if not impossible to obtain, (b) results having been published not
only in obscure publications but also in many different journals so that" ~it in difficult to keep current in the field, and (c) some piprer bein

difficult to read unless one has background in both probability and target
coverage,
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MAXIMUM LIKELIHOOD ESTIMATION FOR

UNBALANCED FACTORIAL DATA*

H - 0. Hartley

institute oi SLtbLiictp

Texas A&M University I
I. 'INTRODUCTION. The statistical literature is abundant with results

concerning the design and analysis of factorial experiments. Most of these
results relate to design experiments whose intricate balance usually
provides orthogonal contrasts for the estimation of parameter functions

for which inferences are desired. The consequences of such designs are
statistical efficiency of estimation with exactness of estimation theory
and simplicity of computational procedures thrown in as'fringe benefits'.

Unfortunately, however, in basic and operation research there are
many situations where the scientist is forced to draw inferences from
data which have not arisen from carefully balanced factorial experiments
mainly because part of the origin of his data is beyond his control. Thus
we may be concerned. with an analysis of ope rational data in a chemical
plant attempting to relate the quality and yield of the output to various
types and sources of input materials, ; to,different types of catalysts, to
various modes of operating the plant such as temperaturre-and pressure
levels and running times. Even if it is possible to control the change in
the various input factors tt will often not be possible to conduct balanced
experiments. Again in genetical research concerned with heritability
studies we may study certain traits of the progeny resulting from the
mating of a number of sires each to a different set of dames, We may
try to arrange for the 'breeding pens' of the progeny trail to have an
equal number of dames in each but the progeny resulting from each mat-
ing is beyond the conrtrol. of the experimenter, resulting in an 'unequal
number nested classification' of data. Again, in medical research we.
may wish to compare the follow-up of patients who have recoived different
treatments. Such follow-up data are often classified with regard to
numerous concomitant characteristics concerning the medical history,
environmen.tal and genetical background of patients resulting in data , ,

arranged in completely unbalanced factorial patterns. There is clearly
no possibility of a designed experiment here.

",This paper gives only a summary of some of the results derived in
more detail by Hartley, H. 0. and Rao, J. N. K. "Maximum Likelihood
Estimation for the Mixed Analysis of Variance Model" submitted for
publication in Blometrika.

. ...... .. . ..
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We do not need to add further examples of this kind; indeed it Is
generally recognized that they will outnumbcr, by far, the situations of
data from balanced experiments.

In the case of balanced designs the estimation problem for the con-
stants and variances involved in the linear model theory of the experimental
data has been extensively treated: Confining ourselves to just one reference
on varlance;.estimation, optimality properties of the classical analysis of
variance procedures have already been demonstrated for various balanced
designs (see e.g., Graybill (1961)). However, results for unbalanced
factorial and nested data are much more restricted: Henderson (4953)
has suggested a method of unbiased estimation of variance components
for the unbalanced two-way classification but his method is computationally
"cumbersome for a mixed model and when the numbers of classes is large.
Searle and Henderson (1961) have suggested a simpler method also for the
unbalanced two way classification with one fixed factor containing a
moderate number of levels and a random factor permitted to have quite
a large number of levels. Bush and Anderson (1963) have investigated
for the two-way classification random model the relative efficiency of
"Henderson's (1953) method and two other methods, A and B, based on the
respective methods of fitting constants and weighted squares of means

,described by Yates (1934) for experiments based on a fixed effects model
which also provide unbiassed estimates of variance components. Possi-
bilities of generalizations are indicated. In all the above methods the
estimates of any constants in the model are computed from the 'Aitken

I Type' weighted least squares estimators based on the exact variance-
Scovariance matrix of the experimental responses which involves the

unknown variance ratios. The estimation of the latter is then based on
various unbiassed procedures so that little is known about any optimality
properties of any of the resulting estimators. However, all these methods
reduce to the well known procedures based on minimal sufficient statistics
in the special cases of balanced designs.

The method of maximum likelihood estimation here developed differs
"from the above in that maximum likelihood equations are used and solved
for both the estimates of constants and variances. This method has
apparently not been used by the above authors (and is indeed rejected'
by Bush and Anderson, 1963) because the computational effort is not (in
their view) warranted by the known properties of maximum likelihood
estimation. This point is well taken. However, we have nevertheless
undertaken to develop this theory on the following grounds:
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(a) Withini reason and with the help ot suLtabie numeric4i L ,LuL.io
the argument of computational labor looses its stigma with the
progress in computer technology.

(b) Our technique of maximum likelihood estimation provides a a
numerical analysis for the completely general mixed model
and does not require the development of new devices whenever
a more involved situation of unbalanced factorial data arises.
Moreover, it provides the basis for a coinprftely general
'analysis of variance test' procedure in the form of 'likelihood--
ratio testt'.

I,

(c) We have established large sample optimality properties and
it is already apparent that for small experiments the amount of
computational labor is quite comparable with that involved in
alternatives. Here our technique will permit Monte Carlo :
evaluations of small sample variances (on the lines made by
Bush and Anderson) for the maximum likelihood estimators.
For really large experiments (such as arise with certain:
genetical problems) the large sample optimality properties of
maximum likelihood estimators should provide a clear justi-
fication of additional comxputer time (if any).

(d) Recent researches in identifying minimal sufficient statistics
for the estimation of the parameters (see .e. g. . Hultquist and
Graybill, (1965) Furukawa (1960)) is at this time confined to i'
several special designs. Since a universal method of identifying
such statistics when they exist is not available it is a consider-
able (small sample) advantage of maximum likelihood estimators
that they will automatically be functions of such statistics when-
eve~r they exist.

(e) Our estimates of variance components are always > 0 (see section
4) and whiles the alternative estimators could be modified to I"
also be > 0 they would thereby loose the property of unbiassedness
which is the main justification of their use.

2. SPECIFICATION OF THE GENERAL MIXED MODEL. The speci-
fication of the general mixed model will be sufficiently general to cover
most of the situations of unbalanced factorial data arising in practice.

/ Ki
A
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On the other hand, it utilizes certain speciiic •`af " ,.,vh distinguish
analysis of variance models from a completely general linear model
involving both 'constants' as well as random variables.

The linear model here treated is given by

(0) yX +Ub + .. +Ub +

where

X is an n x k matrix of known fixed numbers

U1 is an n x mi matrix of known fixed numbers

7i.. C is a k x I vector of unknown constants

b is an mi x I vector of independent variables fromN(O, cr)

a is an n x I vector of independent variables from N(O, a.

The random vectors b, b2 , ... , b , and e are mutually independent

* and y is given by (1),

We -assume that the design matrices X and U are all of full rank

iii.e. , the rank of X is k and the rank of U is mi. In terms of analysis

of variance terminology the vector of constants a comprises in its
elements all levels of all fixed factors, i. e., the levels of all fixed
main effects and interactions appropriately re-parameterised so that
the design matrix X has full rank. For the c random factors we are
keeping the components separate since all elements of b have the same

z i
unknown variance a-ri Usually (with "analysis of variance models)

each y is associated with precisely one level of the it random factor
so that the design matrix Ui will have in each row precisely one I and

the remaining mi-l elements zero. We therefore assume that the U1

have this property which imples that all mi x mi matrices U,'Ui are
diagonal.
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One additional important assumption must be made about the design
matrices which may be described as a condiiiusi L, -;'•tma÷.bity -f th

"a and crz: Denote by m

(-) ma= m

the total number of levels in all random components. Then the adjoined

n x (k+m) mnatrixt

(3) M- (X I Ut u)

is assumed to have as a base an n x r matrix W of the form

(4) W (XJ U*)

where the n x (r-k) matrix U must contain at least one column fromeach Ui so that •.:;;

() k + c <r < k + m.

3. THE LIKELIHOOD EQUATIONS. From.(1) it is obvious that y
follows a multivariate normal distribution with variance-"cova; .rianc"e.
(6) H'Z c H+-0V {n+iUlU+.. + cC C

where

(7) 7, = I W

Hence the likelihood of y is given by

iIn -
L it 01 . f l y ,.{,,,,: ,,..-y X o.....~ X c=,.-a-2
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The differentiation of the log likelihood

(9) m a Log L

with regard to a, o" and V, yields the equations

8A -2 -1 -
(10)= {X' H'y - (X' H X)}= 0

DI n 1 1l
(,y -- In)) H- nyXM

+-3

and

•;•'I 8.- .. , . j~tr (H'U0 (- (y

By, ' -1r -

tr -if H u+ W• (y U U.).

Whitist it has long been recognised that 4Lquatioz.s8 (10) and (11) readily
yield the maximum likelihood estimates a and op as functions of the Vi

involved in H, the solution of equations (12) i., . 0 has not beenavi
attempted in the past. We give in the next section a numerical proce-
dure of solving the simultaneous equation (10), (11), and 0 given
by (12). W•

4. SOLUTION OF THE MAXIMUM LIKELIHOOD EQUATIONS BY
"STEEPEST ASCENT. As mentioned in 3. the equations (10) and (11)
are readily solved for a and o- in terms of the - We obtain the
familiar answers for 'weighted least squares'

(13) =(X .H X) (X H- y)

and

(14) nw =y'1 y - (X'H' y)( X IX) I(XI • y).

!,T7
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Equations (13) and (14) yield a and a 2 in terms of the y and 'i" We

13require symbols for this functional relationship and write in place of .

(13) and (14)
(15) a = 4 i, : "

and

Substitution of (15) and (16) in (12) and equating to zero would yield

c simultaneous equations for the c values of V.. The solutions of these

equations are now obtained as the asymptotic limits of asystem of. c

simultaneous differential equations, namely the equations of steepest

ascent given by

(17)-dt - V , (Y i)' dy",d..

where the k + I + c argument function (aIVFi) is given by the right
871

hand side of (12) and (15) and (16) are substituted for'a and r .

The variable of integration, t, in (17) is auxiliary and the numerical

integration of (17) commences at initial trial values 0oV (usually chosen

as consiitant estimators) so that

(18) Vi oi at t 0. A

It can now be shown that asa t

(19) lirn i(t) = V (say)

t

and

(20) lm( ia e) i
t-, Oy

," .- 4,744 -S. ........... .............." • -' = • • ., • • ... .• .. ... .... • , " ,• : .: :': : ; : i ; , : - IZl • [ l
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Therefore, ytogether wii. "'- i) repret-nt- anlution of the maximum
likelihood equations (10),(11), and - 0 gien by (12). It should be noted
that although the limit along a specific path of integration is unique as

t -. 0 it does not follow that there is only one solution of the maximum
likelihood equations since a change in the starting point oyi may give
rise to a different path of integration.

Finally we should comment on a modification of our steepest ascent
integration which ensures that Vi = 0 along the path: First observe that

the log likelihood is a differentiable function of -r = is

symmetrical at =r 0. It follows that if T is used as a parameter in

place of y we have

Therefore, the steepest ascent differential equations (17) can be replaced
by

(2)d adr ---- =(•(• ), ;(i), i)
* I

"The integration would commence at positive values Y but should the

path of integration reach a point where one or several of the r, = 0, a

new integration would be started at that point and the one or several -r,

would be held at -r = 0 for the rest of the integration path. The limit as

t - w will again be a solution of the likelihood equations
8A A A2

(23) BA = A 0.2 , L =0S•r - = o-

This procedure ignores and avoids any posslble solutions of the likelihood
j ' i equations with y, < 0.

.6
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Itwould carry us to far afield if we were to discuss in this paper[K

computational details ot solving the system of c ordinary first order
differential equations (17) or (Uk). It suffices to state that a large step

to be quite serviceable. For large ri (i. e. , n > 50) numerical inversion
of the n x n matrix H involved in (12), (13), ana"(14) can be completely
avoideC. by reducing this task to operations involving only matrix inver-
sions of order m x m where rm = E m1 on lines similar to Henderson
et al (1959). The relevant equation is

(24) H =I z(z'z +I) z . {~:
where

(.5) Z is the adjoined n x m matrix-.,.,-

With the help of (24) the computational work is quite manageable on hgh---
speed computers and a program is in preparation covering data fr which

n 50,c< k<150, m < 150. The computer time on the. IBM 7094
is stmaedtorange bten5minutes and 2 hours largely depending

on the magnitudes of m and k.
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