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ABSTRACT. In this paper we give a matrix treatment of the classical
least squares theory and determine each observation’s contribution to the
least squares solution. If each obeervation's (or observer’s) contribution
is known, then it may be possible to delete certain observations (or ob-
servers), (1) to improve the least squares solution or (2) to minimize the
number of observations (or observers) entering the least squares solution.
It should be emphasized that redundancy is necessary to obtain a statis-
tically sound leaet squares solution, however it may be advantageously
limited without significantly changing the solution,

Although we present a general least squares theory for uncorrelated
observations, special emphasis is given to the least squares misaile
position problem generated by a set of observed azimuths, elevations and
slant ranges from a system of missile tracking systems such as Radar.
The above treatment is used to develope a geometric ordering of available
tracking etations, which is then combined with station ability and reliability
to determine pre-flight minimal station participation. That is, given an
approximate trajectory and n available tracking stations we predict the
minimum station combination for an adequate coverage of a flight along
this trzjectory,

1.0 INTRODUCTION. In this paper we give a matrix treatment of
the classical least squares theory and determine each observation's con-
tribution to the ieast squares solution. If each observaiion's (or observer's)
contribution is known, then it may be possible to delete certain observa-
tions (or observers), (1) to improve the least squares solution or (2) to
minimize the number of observations (or observers) entering a least
squares golution., It should be emphasized that redundancy is necessary
to obtain a statistically sound least squares solution, however it may be
advantageously limited.

The following procedure has been applied successfully in (4,5, 6]
to the following problem:

GIVEN: Arn approximate missile trajectory and the co-ordinates
of n tracking stations (Cinetheodolite, Radars or Dovap receivers) along
with various other pre-flight data;
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DETERMINE: The best minimal station combination (hew many? and
which ones ?) for an adequate coverage of a flight along this trajectory.

We will use the n-station radar position solution presented in [5] as
an example of the general theory which follows.

2.0 LEAST SQUARES THEJRY. A brief outline of a least squares
method following the notation of D. Brown [1] will now be given. The
model under consideration is assumed to be non-linear. There are obvious
simplifications if the model is linear,

Let {XJ be a set of random variates (i =1, 2, ..., q)
{X?i_ be a set of uncorrelated observations of the set {Xi\% R

For examgl H {A?, E‘;. R‘;] , the set of azimuth, elevation and range

readings from a system of n radar stations to a missile (i=1,2, ..., n).

Let {Yj} be a set of variates (parameters) dependent on the Xi,

Y =Y (X, X,, ... ,X ), {=12,...,
;=Y (XX g U P) .

We note'that the explicit form the for Yj as functions of the Xi may

not exist, in which case only an implicit form for this dependence is
available.

For example: (%, y, z), the missile co-ordinates are dependent on
Ai’ Ei' Ri'

If the set {Xi i is such that not all the Xi are necessary to deter-
mine the entirc set of {Xi} , or what is of more importance here and
in [5] . to determine the derived set {ng , then the set {Xi\g is said

to be over-'determined. A least squares solution is in order. We need
to find (Yj { a set of approximations to {Y} such that the sum of the

squares of the residuals of the observed set {X?} is a minimum,

For example: In the n-station radar case (5], each radar determines a
missile position (x(j), y(j), 2(i)), (j =1, 2, ..., n). These points will
coincide with probability zero. We use the least squares method below to
determine the "true' missile position.
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We have X.=X?+‘yi (i=1,2, ...,49
o}
IR U (G=1,2,...,p

1 t
where {Y;’} is a first approximation to {Yj} R {Xi} and {Yj} are
least squares approximations and the Yy and Gj are undetermined
residuals.
Suppose the minimum number of {_Xi} required to determine
the entire set of {Xi} is qo, then the number of independent condi-
tional equations relating the {Xi\} and {Yj} ism=(q - qo) +p. Let

these m equations be given by

(z‘l) £i(x1! LA xq' Y1'°-- P

For eiamgle: In the radar case if 3 observations are known (azimuth,
elevation and range readings from one station) then the others can be

determined, thusm = (3m - 3) + 3 = 3m. In this example

-1 y - Yi
£3i-2 = Ai - Tan Y =
zZ -2z
-1 i -I
f = E, - Tan =0
3i-1 i 2 2,1/2
L(x-xp ) E
_ -/ 2 2 2
£3i = Ri - \/ (x-xi) + (y-yi) + (z-zi) = 0

(i=1,2, ..., n), Note that here (xi. ' zi) are the co-ordinates of

of the ith radar station.
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Assume that the fi can be expanded in a Taylor series about the
o Lo
pointt-(xl,xz.... X Yl”" i
constant and linear terms of these Taylor expansions and replace
xi by X‘; + v, Equation (2.1) becomes (in matrix notation)

) Y:). Approximate the {, by the

(2.2) AV + BD + E = 0 where

A is the m by q matrix (Ai ) with A = [af /BX 1 (¢),
B is the m by p matrix (B ) with B = [afi/aYk] (t),
E is the m by | matrix E, with E = f (t)

t t
V=('y1,72. . 0 .7q) a.nd D=(61, 62, ...,ap)u

For example: Note that A = I in the Radar and Cir;etheodolite cases,
and A is a scalar matrix in the Dovap caase, '

Assuming uncorrelated observations, the least squares solution is
that which results in minimizing the weighted sum of the squares of the
residuals

(2.3) s = vie)tv where

N

(o) is the relative variance matrix of the observations {X:} . The

element (c)ﬁl Wi is the weight of the ith observation,

For example: In the radar case the weight (cr)j'j1 = W, can be determined
as follows. Compute )

Z x(i)
o= M
j n-1

Z y(i)

-

z" (j=1.2,....n),

-
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Compute the back azimuth: X-j = Tan™ i_—iLT;‘LJ
yo
a |y
the back elevation: E = Tan -
) [[(ﬁ %)+ G0l VP
373 IR
- - 2 - .2 - 2
ge: . = -x - -
the back range RJ _\/z‘j xJ) + (yj yj) + (zj zj)
. g— 0,2
Let Waj.z =1/ (AJ. - Aj)
' " T . po)2
W3j_1 = 1/(1‘:j Ej)
_ = p0\2 . ' -
w3j .1/(Rj Rj) , (3J=1,2, ..., n)

In the terminology of matrix algebra the problem of least squares as
considered by Brown (1,2] and Hall [4,5,6] consists of determining of
all possiblé vectors V and D satisfying (2. 2), those which minimize (2. 3),

We solve the constrained minima problem with thernid of Lagrange

multipliers, Let A = (A, A, ... xq)t, from (2.2) and (2. 3) we have

(2.4) s= Vv (e)! v-2:t (Av + BD + E).

To determine the minimum value of S, equate to zero the partial
derivatives of S with reepect to the 14} and 61'

Differentiation of S with vespect to the residuals 7y yields

(2.5) @ v-a =0 or v = (0) A
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Differentiation of S with respect to the residuale &, yields
t
(2. 6) BA =0.

Substitution of (2. 5) into (2.2) yields

(2.7) (A(e) A\ + BD + E = 0 .

If (A (¢) At) is nonsingular then the least squares solution results
from (1.) Solve (2.7) for A = - (A (o) AY"1(BD + E)
(2.) Substitute X into (2. 6) and derive the Reduced Normal Equation

(2.8) ND + C = 0 where

N =BY(A () AY! Band ¢ =B* (A (o) &)L E.

(3.) Solve (2.8) for D.
(4.) Seolve (2.5) for V.

In most cases the matrix A (o) A e nonsingular and (2. 8) is valid.

In the few cases where this is not true, it is possible to remove the
difficulty by manipulating the conditional equations, (2] .

(v}

Y
b s o
{Yi} instead of (Yi } as an approximation and compute a new

We have computed a least squares approximation to the parameters
using an initial approximation. We now repeat this procedure using

residual matrix D. The iteration continues until ||D || is sufficiently
small,

Since we want to delete observations (or observers), we need some
basis fo1 determining which observations are the most likely candidates
8(61, 62, vee s 6q)

for deletion. We use the partial derivatives B(Xl, xz' — pr

evaluated at t to aid in this determination.
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5.0 DERIVATICN CI D, As pointed out in the introduction there

are two distinct motives for deleting observations. In general if we are
trying

(a.) TO IMPROVE THE SOLUTION

WANT; 86, / BX? small, so that errors in X;’ will have little
effect on 6 . )

J
DELETE: Béj / GX? large, since a small error in X: ‘will

result in a large error in the 6j

(b.) TO MINIMIZE PARTICIPATION

WANT: 95, / axf large, since this observation (x‘;) has a
great effect on the solution.
DELETE: 85, / ax‘; small, since this observation (x‘;) has

little effect on the solution,

Let U = (J'C1 P Xq) and define the p by q matrix
_ T T -
~ 96 86
2 toynp )] [ 2k
8| 8xX 8x
q
D, = [8/8U] [D] = . = |
86 96
2 - . =R
ax° ax° ax°
| q 1 q
b L L —
36 86
where -—% " (t)
X" 8X
3 i

L
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One of the objectives of this paper is the derivation of D Note that

U

(DU)ji is the rate of change of 5§, (the correction in the dependent

J
variable Yj) with respect to theobservation Xoi.

For example: In the radar case (D is the rate of change of the

vy

correction in one of the missile position co-ordinates with respect to a
change in avimuth, elevation or range at the j'@ station.

~From (2.8) we have

D=-Nlc=-(BYa() aAHT B] ! (B (A () AYY E.

Since observational errors have no significant effect on the matrices
A, Band (¢), they may be regarded as constants in the propagation of
error under consideration. The vector E however is affected by the
observational errors. Thus the error in D arises primarily from errors
in E, which in turn are caused by errors in the ohservational vector U,
Therefore

- -1 _at t,-l = (9
Dy =+ N RE, where R = B' (A () A)" and E, = [z=] [E] .

But EU = A and thus

-l
(3.1) Dy=-N"RaA,

Note the simplification if A = I, as is the case in [4,5].

4.0 VARIANCE - COVARIANCE MATRIX, A well known, [2.7],
generalized law of covariance (in matrix notation) states that if

D= (61, che 6p) is a vector of functions of the elements of the vector
U-= (X?, X2, ..., XZ) which has the variance rnatrix o': (¢), then the

variance-covariance matrix of the vector D is given by

t

(ch) = 0'2 DU (o) DU

<
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(4.1) (o’D) = cz N

Note that o’i is the population variance and (¢) is a relative variauce matrix

of the chservations. n

T S
i=1 YV T Yi2 Y2 T Y3 Vi3
in-3

2
In the radar case o'o =

5.0 VARIABILITY ESTIMATE. For each correction Si of the derived

quantities Yi' a "variability estimate' will now be associated with each

observation.

In the radar case, for each co-ordinate residual a variabzlity eltimate is
associated with each tracki_lata.tion.

Consider the matrix H = c, DU (0')1/2. Note that

o‘o 1]
H D m— '
ij wj 89X

l""
—~
-

"

- 0

1, 2, ... »P;j=10 2, ... iq) [

and
HH® - (a'D)

It follows that the variance in the derived quantity Yi

' 2 2
2 d 2 i % 861
(5.1) O'Y = Z Hij = z —T —-a ' (i'—‘l, 2, ... ,p).
i 3=l j=1 ] axj

Since Hz is the jth observation's contribution to the variance in Y

ij
we will refer to H as the "avriability estimate" in éi for the jth

ij
obeservation, (1=1,2, ... , p; j=12, ..., q)

i'
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In the radar case there are three ohservations per station (a.zimutn
elevation and range) and thus the variability estimate "for the jt station’
is cefined as the sum of the variability estimates rs defined above) for
the azimuth, elevation and range readings at the j'h station. We are
interestdd in eliminating stations and thus observations three at a time.

2 _ .2 2 2
Cy = My ay.2 ¥ By a0 * Hy g

{s the variability estimate for the jth station, where

x:ﬁ.z = Aj, X3j-l=Ej and x3j = Rj (j=1t,2,..., 3n).

6.0 MOTIVES FOR DELETING OBSERVATIONS. We will now
discuss motives or reasons why one might want to delete observations
before computing a least squares solution,

6.1 TO IMPROVE LEAST SQUARES SOLUTION, In this case we
are interested in deleting observations which are '"extremely' poor,
that is, observations which contribute greatly to the variances, Certainly
if all of the Hizj (J =1, 2, ... , q) are relatively close to being equal then
) no observation is predominately woree than the others and no observation
should be deleted as a result of investigating the variability estimates. One
- should remember that usually the variances increase with a decrease in
observations. However, if one (or more) observation's variability
estimate is quite large in comparison to the others, then this oburvatiOn
would be considered a predominate contributor to the varianceu ’Yi (or

least squares solution) and would definitely be a candidate for deletion.
One must consider an observation's contribution to each variance

<:|'Zi (1=1,2, ..., p) when deciding if an observation should be deleted.

s % o Ll TE TV S

There are various ways one might want to combine these contributions

to the variances cr%“ g0 as to be able to order the observations (or
2 2

2
observers). Inthe radar case we have three variances u‘x, e, <r
(p=3) to consider and define station constants

[ Y
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T

2 2
D, = Co +Co. +cC
j 1j 2j

2
3

The stations are then ordered according to the magnitude of their station

constants. (51 > Di 2 ... 2 Dﬁ.
1 2 o n

To improve a least squares solution the station corresponding to
the largest station constant is designeted the most likely to be deleted.

This case of improving solution, not being our main motive for the
study, has not yet been thoroughly investigated.

6.2 TO MINIMIZE THE NUMBER OF OBSERVATIONS. In this
case we are not primarily interested in an improved solution, but
rather deleting observations which contribute ''very little'' to the solution,
80 as to minimize the data that we must consider for a solution, The
observations (or observers) that contribute least to the variances of those
with the smallest variability estimates are the most likely candidates for
deletion, Our motive here might be completely logiatical,

In the radar case, it should be pointed out that the matrices needed

U ¢

to obtain the ordering of stations given above (Di 2 D, 2 ... 2 Di )
1 2 n B
can be determined (or at least approximated) before flight. To find the e
variability estimates we need to know: 1
-
i

() B= (bij) = %ﬁj’ .YE,:)R‘Q (t) . This matrix is readily computed

given station co-ordinates and an approximate missile position.

(2) (o) = dg (’11' Taar v v Tap 3n) = variance-covariance matrix
of the observation variables, If the standard deviations e, 6 o_,, o,
= A}’ "Ej" "Rj

() =1, 2, ..., n) are known from past histories then set:

O e T R
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2 2 2
(V)Bj-2,3j-'2 = cAj / Cos Ej /a-O
2 2
(@)a5.1,35.1 = 557 %
= o8 2 -
(c)3j.3j = 9%y /% G=1,2, . n)
£,z ., 2 2 ;2
(e, + e + 0o, / R))
where 0'2 = LA E) B ]
o 3n -

In the Cinetheodolite Study, DR-Q has estimates of C.Aj' and qu and

plans are being made to keep records for the Radar and Dovap systems.

If the standard deviations are not available, then the préeent weighting
scheme at WSMR may be used setting

(‘)3_1-2,3_1-2 I/Ri CosZEj
2
(0‘)3‘1 _1. 3j -1 1/Rj

1]
—

(?)31,3j (j =1‘ 20 e n)'

In this latter case an approximation of cr: is used instead of the above

calculated values, (If neither of these weighting schemes are acceptable,
then one can simply set (¢ ) = 1.)

(3.) Dy = - [r:st (a)'lr:s]'1 [Bt (cr)'l] since A = I,

(4.) H = o’oDU (o‘)l/z, and thus the variability estimates and station

constants are available before flight,

S s LA ee e mE AL e LR RS L 5 R e ae e ape L T e R
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Thus belore {lighi we can uides the staticns
''observational” errors, with the standard deviations a'A,. crE, and ch.,
in a simulated least squares solution, ) ) .

i
i

It should be pointed out here that this ordering determines the hest
k station combination (k gn) as the stations (il, o oo ik). Otherwise

|
one would have to consider an = ﬁﬁv possible cornbinations of k

station solutions to arrive at this stage.

In the final stage the Minimal Station Participation problem (4,5, 6)
takes the form:

TYATR ANE

GIVEN: (1) A geometric ordering of n stations (Di 2 ...z Di ),
11 n
for each station - the probability

198

(2) A reliability factor F’j
of succeesful operation if scheduled,

(3) Data precision factors for each variable (A,E,R) per

station = cAj' ’Ej’ U'Rj'

(4) Necessary data to determine tracking capa’:bilitiea such
as tracking rates (focal lengthe and object size in the case of Cinetheodolite),
etc.

SRS

4

. ’,*-’; FIND: A subsystem of k stations (k € n), k a minimum, such that
for this particular point and missile we have:

RS

RN

(1.) Each atation in the subsystem is able to track,

(2.) The probability of two or more (three or more in
Cinetheodolite case) of the k stations will operate successfully is greater
than P,

(3.) The geometric ordering given above is such that the
stations deleted are insignificant contributors to the solution.

Thus we consider station ability, reliability and geometry in deter-
mining the Minimal Station Participation Before Flight (MSPARB) System.
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The RADAR and DOVAP programs are in the procese ot being written,
Consider the following SLIDE of the MSPARB Cinetheodolite program (4], a
of 13 August 1965,

The input includes

(1) (x., Yy % R (j=1,2, ..., n), WSCS co-ordinates
of the jth station,

(2) (x, y, #2) sev=~e--= un approximate missile position,

‘ (3) (x, ;', Z) carmmmann approximate velocity components,
i (4) (x. v, Z) ceemen- -- approximate acceleration coinpoune:ts,
; (5) Tp TTmmmmemmems -(3=1,2, ..., n), the standard deviation
B j in azimuth readings at the j'h station,
, ' (o) Tg ====m=cos=ses (j =1, 2, ..., n),. the:standard deviation
o J in elevation readings at the jth station,
(7)- k1 -------------- (3=1,2, ..., n), the an%ula.r velocity
e / limit in azimuth ‘or the j*** station,
(8) k,, ==e=c-cemae-- (j =1, 2, ..., n), the angular accelera-
J g

E
i 4
i

; o (9) k,, ~=wesacenmeaa (j =1, 2, ..., n), the angular velocity
‘ limit in elevaion for the jth statinn,

tion limit in azimuth for the jth station,

(10) k4. mnemcernaee - (j=1,2, ..., n), the angular accelera-
J tion limit in elevation for the it th gtation,
(11) Fj -------------- (j =1, 2, ..., n), etfective focal length

of the jth camera,
(12) 0 ~ececneacemcnaa- object size
(13) PJ. --------------- (j =1, 2, ... , n), the probability that

station j will operate successfully if
scheduled.




‘ ]
AL i AN L

23 A TR w remres sy an e - e i e e M YN 4 et A A (2 s e e e <~
i Design of Experiments 463
g, Notice that the criterion for deletion of stations contains three main
considerations:
g I. STATION ABILITY. All station: considered will first be tested
as to inability to track for a certain interval for one or all of the following
1easons;

(1) Image size too small,

(2) Tracking rates too large,

i (3) Elevation angle too small.

} I1I., STATION RELIABILITY, The minimum number of stations is
chosen so that the probability of three or more stations operating
successfully at any one time is greater than a pre-determined number,

";_ _ III. STATION GEOMETRY. The stations are ordered according to

station geometry. OStations are deleted if their geometric contributions
are '"insignificant',

Program output includes:

(1) Print out of all or part of inpﬁt to program,

(2) Computed azimuth and elevation angles from each station to
the point under consideration, '

(3) Computed approximations to expected standard deviations in
missile co-ordinates and angular standard deviation,

(4) Geometric ordering of stations to include station numbexs
and geometric factors,

v A IR LD LRI, o LA AP

(5) The probability that three or more of the stations in MSPARB
will operate successfully if scheduled.

Modifications of the above MSPARB Cinetheodolite program since 13 Aag 65
include (1) a print out of error estimates for the aystem of the worst three
stations in MSPARB as vell as error estimates for MSPARB, (2) a print
out of cumulative error estimates over the entire trajectory. (3) a print out

s T, e g vl S
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1

of how many timcs a station was used over the entire trajectory. (I have
available here sample print outs for a few trajectories if anyone is interested.)

Areas where MSPARB can be used include:
(1) Schedule determination.
(2) Minimizing the current scheduling efforts,

(3) Determination of best launch point (balloons),

(4) Determination of best positioning of mobile units.
o (5) Determination of best positioning of future station sites,

. (6) 'Stetement of expected system (MSPARB) errors - (confidence
: intervel) --pre ﬂight.,

e s v LR - g

(7) Determination of which lyetem (Cinetheodolitee, Radar, or

: Dove.p) or combination of systems will yield the best trajectory coverage-
" BET.,
L (8)- Pure error studies concerning geometry versus data precision.
Let us close by stating again that redundancy is necessary to obtain a
statistically sound least squares solution, however, through the methods
outlined here it can very definitely be advantageously limited,

e orrgTes [ PRRTRAT

T e s T YT




R AR R AT AN~ Ste - .

O
| ——— e,
RLAD COMPUTT. | DELLTE |
SN B
In it N _STATION |
STATION ABILITY * { <30
TeST 12005 Mgt 7] > 3° [Tist T |sAb | DLLLTE ]
IMAGE  |=® ] LLEVATION TRACKING STATION
_SIZE _ | ANGLE JATES
GOUD f
<008 J
1 BT TEST
DELL'IL - +——.. — ’ ..... - n
STATION
STATION GEOMETRY *"’3
: 3 : {PUTE COMPUTE
COMI:?TI: | o comuTE ] [cowwm | oo; .
Q) Q) (o) A ®
COMPUTE - COMPUTE COMPUTE COMPUTE l
0,509,509, [ ™ —* 1 '
x?%y?%; (H) Q 3
STATION RELIABILITY +
| ken ' | 4
k2n| 1ncrease| MM test | COMPUTE ORDER
K ¥ rrrosexy [ TPROB(K) [ D, and P,
GOOD FLAG(1) FLAG(2)
SET SET
FLAG | e P o FLAG (2)
(1) FLAG (3)
STATION + GEMETRY  [GO0D Jsin
COMPUTE TEST |BAD_ [ INCREASE PRINT
- iy —
WgeIDy s+ y D, <y s oUT
[ - Jsen I YRS ()
——-’.—- —
NLXT POINT
HSPARB
CINEMEODOLTTLS

T T R

as of 13 Aug 65

- .

B SIS R DRt Sk s S
DARECMINNIR At (RIS 1 e




Design of Experiments 467

BIBLIOGRAPHY

1. BROWN, D. C., A Treatment of Analytical Photogrammetry, RCA Data [
Reduction Tech “Report No. 39, 1957,

2, BROWN, D, C., A Matrix Treatment of the General Problem of Least
Squares Considering Correlated Observations, BRL Report
No. 937, 1955,

3. COMSTOCK, WRIGHT, TIPTON, Handbook of Data Reduction Methods, .
Data Analysis Directorate (DR-T) Tech. Report, WSMR, 1964, ' J

4. HALL, C. A., Minimal Station Participation Before Flight (MSPARB): 1
Cmetheodolite Case, Data Analysis Directorate (DR-T) Tech. B
Report, WSMR, 1965,

5. HALL, Cr. A., Minimal Station Participation: Radar Case, DR-T
Tech. Report, WSMR, 1965,

HALL, C. A., Minimal Station Participation; Dovap Case, DR-T
Tech. Report, WSMR, 1965.

7., WORTHING a.nd> GEFFNER, Treatment of Experimental Data, New York,
John Wiley and Son, 1948, -

R B LR TR R i, i i et i = A o TIPS gt
o

-

i e o e S A Y

D2 th

Sy T

‘ﬁ__ _ ‘;“”7“”‘7 B T T L e~




SRR SRR R OCTY Y TN L EIC

PRECISION AND BIAS ESTIMATES FOR DATA FROM
CINETHEODOLITE AND AN/FPS-16 RADAR
TRAJECTORY MEASURING SYSTEMS

Oliver L. Kingsley and Burton L. Williams
Range Instrumentation Systems Office
White Sands Missile Range, New Mexico

INTRODUCTION. A scries of flight tests have been conducted at
White Sands Missile Range in an effort to obtain a comparison of trajectory
data derived from the measurements produced by different instrumentation
systems. The instrumentation systems that have been used in some of
these tests are Ballistic Camera, DOVAP, Cinctheodolite, and FPS-lé
Radars. Interim reports were prepared, based on the data from the three
earlier flights conducted on March 29, 1960, September 19, 1960, and
January 29, 1962. Mr. Kingsley and Mr, Free presented a summary of
the analysis and results of these earlier flights at the sixth, seventh and
ninth annual meetings of this conference.

Purpose of Report

The fourth flight test was conducted on October 1, 1962 using a modified
Nike Hercules Misaile. The purpose of this repozt is to present an anaiysis
of the bias and random error associated with some of the major range
instrumentation systems used for this flight and to compare this data with
the data from the earlier flight tests.

Comparability of Results and Earlier Flight Tests

The precision estimates are directly comparable but the bias estimates
are not, because the comparison with trajectory data {rom the Ballistic
Camera Systemn was not available,

The earlier three flight tests were conducted at night so the Ballistic
Camera System could be utilized to obtain trajectory data to be used as
a standard for position bias error estimation. The Ballistic Camera, used
on earlier tests, photographed a flashing light beacon on-board the missile
against a star trail background, The light beacon flashes were controlled
from the ground by a trasponder aboard the missile,
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Fourth Flight Test

The fourth flight test was conducted during the daylight hours utilizing
two cinetheodolite systems and seven AN/FPS-16 radar systems, though
only two of the radar systems are analyzed here. The Askania Cinetheo-
dolite System was used as the reference standard for system position bias
error estimation for the Contraves cinetheodolite and FPS-16 radar systems.
No DOVAP or Ballistic Camera aystems were used for this fourth flight
test. The AN/FPS-16 radar systems were operated successfully in the
beacon tracking mode for the first time during this fourth test of the series,
Attempts were made to use the FPS-16 radar systems in the beacon track-
ing mode for the three earlier flight tests, but the on-board beacon did not
operate properly.

Position, Velocity and Acceleration, Precision and Bias

In addition to the estimates of bias and precision for the position data.
as given in the earlier reports, estimates of the bias and precision given
for the derived velocity, acceleration and smoothed trajectory position
data are presented. These fourth flight test estimates of bias for position,
velocity and acceleration are based on data taken from the Askania cinetheo-
dolite system.

PRECISION ESTIMATES FOR TRAJECTORY DATA.

Standard Deviation Estimate

Precision estimates were derived from trajectory data obtained from
two cinetheodolite systems and two AN/FPS-16 radar systemns in termas
of standard deviations for the Cartesian component trajectory data. The
standard deviation estimates were derived by the multi-instrument
components of variance technique as given by Simon and Grubbs. [1,2]

Instrument Reduction for Position

The cinetheodolite trajectory position data were derived from a least
equares reduction of angular measurements [3] . The Askania cinetheo-
dolite system was a five instrument system making ten angular observations
for each trajectory space point; the Contraves cinethecdolite system was
a three instrument system for trajectory section one and a two instrument
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system for trajectory section two, making six and four angular observa-

tions respectively for each trajectory space point. The radar trajsctory

position data were derived from the range, azimuth, and elevation obser-
vations that were reduced to the Cartesian coordinate system.

Mathematical Model

A mathematical model for the trajectory position data from the jth instru-
ment system at the ith time may be written; xij = Xi (true) + 25 where

eij represents a composite random error for the jth instrument system

at the ith time. Standard deviation estimates were determined for these
position data, and also for sets of smoothed position, velocity, and
acceleration data that were derived by fitting a set of component position
data to an eleven point second degree polynomial in time, and evaluating
at the midpoint for successive trajectory space points (50 per trajectory
section). The polynomial equation for the smoothed X-component data fox
the ith time would be of the form:

(1) Xi\1 (smoothed) = 8 + a‘ljti + athi'z

for the jth instrumentation system. An error would generally be associated
with each of the coefficients for the jth instrumentation system. A
compositerandom error for the jth system can be expressed in the
mathematical model:

(2) X, (smoothed) = Xi (true) + e

4 N

where éi is the compoasite random error for the jth system at the ith time,
The velod‘ity equation is written:

(3) xij = alj + Zathi

The composite random error for the velocity data can be expresscd by
the velocity equation:

(4) kij = 1;(1 {true) + e

Y
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where the composite random error in velocity (;:ij) arises in the two of

the terms of the velocity equation. A similar pair of equations could be
written for the derived acceleration data.

Discussion of Precision Estimates

The position standard deviation estimates presented in Table I represent
essentially random error in position data from the particular system., The
standard deviation estimates range from two to twenty-two feet with the
exception of trajectory section two for the Contraves system where the
system geometry is very poor. Generally, this would not be considered
satisfactory coverage; it is included for the sake of continuity.

The position, velocity, and acceleration standard deviation estimates
presented in Tables II, III, IV, and V reprecent the residual random error
in the derived (or smoothed) position, derived velocity, and derived
acceleration data respectively. The velocity standard deviations for the
cinetheodolite data ranged from two feet per second to eleven feet per
second except for the second trajectory section for the Contraves cinetheo-
dolite, The velocity standard deviations for the radar data ranged from
three feet per second to sixteen {feet per second. Velocity data derived
from the radar observations is as good as the velocity data derived from
the cinetheodolites with respect to variability., The cinetheodolite eystems
and the radar systems are essentially equivalent in variability with respect
to the acceleration data; the only exceptional values are the two large
acceleration standard deviations due to the poor system geometry for the
Contraves system.,

BIAS ESTIMATES FOR TRAJECTORY DATA.,

Standards Used In Computation.

All of the bias estimates for Flight Test Nr. 4 of the Operation
Precise Program are based on trajectory data from the Askania cinetheo-
dolite system with a mode of ten angular measurements. Earlicr flight
tests have used trajectory data from the Ballistic Camera System which
was basad on star trail background for calibration. The Askania system

B, does very well in the determination of the horizontal trajectory position
i' ~ § puints but has some bias in the vertical determination as indicated by
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earlier flight tests [9, 11, 12].
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Definition of Bias Errors and Discussion

The average bias estimates tor position, velocity and acceieralion
are presented in Tables VI, VII, and VIII for the respective Contraves,
Radar 112 and Radar 122 systems. A positive average bias meanas that the
particular system trajectory data was on the average greater than that
corresponding data from the Askania system,

The average absolute component position bias estimates ranged from
a low of six feet to a high eighty-two feet. The velocity and acceleration
average bias estimates were low. The largest velocity component bias
was four feet per second; the largest acceleration component bias was
only seven feet per second squared. The explanation for the large average
position bias error and the much smaller average velocity and acceleration
bias error is that the trajectories as determined by the instrumentation
systems are parallel but differ by a constant amount in position. This
means that the least squares fitting differ by essentially the constant term
of the second degree polynomial in time.

A comparison of the unsmoothed position data from the Contraves and
radar systems with the corresponding data from the Askania system reveals
that the average bias does not differ from the corresponding bias estimates
shown in Tables VI, VII, and V1II by more than one foot. This indicates
that the smoothing process either moves the average bias estimate the same
amount for all systems or that smoothing does not change the bias, A
further study of the smoothed and unsmoothed trajectory data from the
Askania system reveals that the smoothing process leaves the Askania
trajectory data essentially unchanged.

SOME COMPARISONS OF PRECISION ESTIMATES WITH EARLIER
FLIGHT TESTS. Comparison of earlier flight tests were possible for the
Askania System and the two FPS-1¢ Radar Systems., The Contraves System
was not operated on the esarlier tests, Table IX shows the mode number
0. instruments that make up the Askania System for each flight test, Data
from the first trajectory section were selected from the third flight test
g0 a8 10 approximate more closely the other tests, The standard devia-
tion estimztes for the Askania system are smaller for the X and Y
component data for the later two flight tests.

Precision estimates for data from the earlier flight tests for radar
systerns 112 and 122 are shown in Table X. These standard deviation
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estimates indicate that the best performance for the radar systems was
during the fourth flight test. The FPS8.16 radars were operated in the beacon

tracking mode with a radar beacon aboard the tracked missilc. '
SUMMARY AND CONCLUSIONS., The rtandard deviation estimates for ’

the position data ranged from two to nineteen feet for the cinctheodolite
systems and ranged from five to twenty-two feet for the FI’S-16 radar
systems. This indicates that the radar system position data precision arc
as good as the cinetheodolite system position data precision for these flight
test data. The velocity standard deviation estimates ranged from two to
eleven feet per second for the cinctheodolite systems (exception Contraves
section 2 data) and ranged from three to sixteen fcet per second for the
FP§5-16 radar systems. Again, a precision equivalence for vclocity data
from these systems can be stated. The acceleration standard deviation
estimates for all four tracking systems ranged from eight to forty feet per
second squared (with the exception of Contraves section 2 data). Again an
equivalence can be stated for precision of the acceleration data from these
systems.

The position component average bias were based on the trajectory data
from the Askania cinetheodolite system. The average bias for position
data from the Contraves cinetheodolite ranged in absolute (component)
value from six to seventeen feet (except for section 2 data). The average
bias for position data from radar 122 ranged in absolute (component) value
from eight to thirty-eight feet and from radar 112, the average bias range
in absolute value from a low of 23 to 73 feet, Based on the Askania
cinetheodolite position data, the radar systems did not do as well as the
Contraves systems, with respect to bias error estimates. The average
component bias for the derived velocity data ranged in absolute value from
zero to four feet per second for the Contrives system and ranged in
absolute value from »ero to threc feet per sccond for the ¥FPS-16 radar
systems, Essentially the average velocity bias errors are equal.

o ——— v it

to six feet per second squared for Contraves system and from zero to ¥
seven feet per second squared for the FPS-16 radar systems. These ¥
derived acceleration data for eleven point (two second) smoothed data are
essentially equal in average component bias crror.

The acceleration component bias ranged in absolute value from zero ’
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TABLE 1 !
PRECISION ESTIMATES FOR TRAJECTORY POSITION DATA

FROM FLIGHT TEST NUMBER FOUR

T Y A A P 2 TPEL 25, 1B 78 1 e .
e
e~ A A e e gy 8 < g e o .
Eo

Component Standard Deviation
Instrumentation Trajectory Estimate in Feet
System System North (X) East(Y) Up(2) i
Askania 1 i 5 8 10 ' B
Askania 2 7 3 17
Contraves 1 10 2 19 :
Contraves 2 45 2 YL R
Radar 112 1 12 8 16 S
Radar 112 2 12 5 7
Radar 122 , 1 9 5 22 ' 1.4
Radar 122 2 9 8 22 Y |
& ) o
; oy
¥Very poor geometry for a two instriment (theodolite) system. N
3
§
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TABLE 1II i ]
STANDARD DEVIATION ESTIMATES
FOR DERIVED (SMOOTHED) TRATECTORY DATA *

FROM ASKANIA CINETHEODOLITE SYSTEM

FOR FLIGHT TEST NUMBER FOUR

Derived Component Estimates of
R JYrajectery Trajectory Standard Deviation
% Section . Element* Dimensions North (X) East(Y) Up(2)
1
N § 1 position feet 5 8 6
bl g 2 position feet 5 2 13
LM '
S | : '
R | velocity ft/sec, 5 4 )
A 2 velocity {t/sec. 6 3 11
ok L2
3 | acceleraticn ft/wec, 11 8 25
. g 2 acceleration ft/sec. 15 B 40
? — ——
s %AII data were derived from mid-poini evaluation of a second degree least
'3“_ square polynomial fitted over a two second interval (11 points) with time
i as the independent variable,

restyvcatp g
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TABLE 1II
STANDARD DEVIATION ESTIMATES
FOR DERIVED (SMOOTHED) TRAJECTORY DATA
FROM CONTRAVES CINETHEODOLITE SYSTEM

FOR FLIGHT TEST NUMBER FOUR

Derived Component Estimates of
Trajectory Trajectory Standard Deviation
Section Element* Dimenasions North (X) East{(Y) Up(2) |
1 position feet 5 2 10
2%k position feeot : 19 . ] 4
1 velocity ft/sec, 1 5 2 . 4
2%k velocity ft/sec, 25 4 . 43
1 acceleration ft/lec.g 16 3 38
2%k acceleration  it/sec, 87 12 148

*All data were derived from mid-point evaluation of o seacond degree least

squares polynomial fitted over a two second interval (11 points) with time
as the independent variable,

**Poor geometry for a two cinetheodolite instrumentation system,
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TABLE [V
STANDARD DEVIATION ESTIMATES
FOR DERIVED (SMOOTHED) TRAJECTORY DATA
FROM RADAR (112) SYSTEM
FOR FLIGHT TEST NUMBER FOUR
Derived Component Estimaten of
Trajectory Trajectory Standard Deviation
- Section Element* Dimensions North (X) East(Y) Up(Z)
1 position feet 10 13
2 position feet 12 -7
1 velocity ft/sec, 10 18
2 velocity ft/sec. 6 6
! acceleration ft/sec. 2 32 40
2 acceleration ft/sec. 30 20

*All data were derived from mid-point evaluation of a second degree lesast

square polynomial fitted over two second interval (11 points) with time as
The standard deviation estimates are based on
a sample of fifty (50) trajectory points for each trajectory section.

the independent variable.
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TABLE V
STANDAR]j DEVIATION ESTIMATES
FOR DERIVED (SMOOTHED) TRAJECTORY DATA
FROM RADAR (122) SYSTEM

FOR FLIGHT TEST NUMBER FOUR

Derived AComponent Estimates of
Trajectory . Trajectory Standard Deviation
Section - Eler stk Dimenasions
1 position feet R 7 4 " 10 .
2 position, feet 6 2 ')
1 velocity ft/sec. 6 4 16
2 velocity ft/sec. 4 3 9
1 - acceleration ft/sec. 2 1 10 16 44
.2 acceleration f{t/aec. 10 12 30
*All data were derived from mid-point evaluation of a second degree least
- squares polynomial fitted over a two second interval (11 points) with time
as the independent variable,
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TABLE VI
A BIAS ESTIMATES FOR DERIVED (ELEVEN POINT SMOGTHING) DATA
L FROM CONTRAVES SYSTEM FOR FLIGHT TEST NUMBER FOUR
_ Derived Component Estimaten of
| Trajectory Trajectory Bias Average Biagh*
¥ Section Element* Dimensions North (X) East(Y) Up(2)
] 1 - position feet - - -6 9 -17
o 2 , position feet’ - -28 13 -82
l l velocity It/lé;c. oo .2 1 - 4
2 velocity ft/sec, 0 0 -2
1 acceleration !t/uc.z 0 -1 1
"2 acceleration ft/sec. _ - 4 0 -6
{.| , *See note in Table II.
*#The trajectory data at simultaneous times fron the Askania System (chosen
standard) were subtracted from corresponding data from the Contraves System
to form an error set of data which were averaged for each trajectory section,
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i TABLE VI
BIAS ES TIMATES FOR DERIVED (ELEVEN POINT SMOOTHING) DATA

FROM RADAR 112 8YS TEM FOR FLIGHT TES T NUMBER FOUR

T— ~opa—— -

— Derived Component Estimates of :
Tra jectory Trajectory Bias - Average Biag* * :
b Section Element* Dimensions North (X} East(Y) Up(Z)
E 1 position feet -55 -23 -52
s 2 position feet =73 -27 -41
b
b 1 velocity ft/sec, -2 1 1 &
P 2 velocity ft/sec, -2 -1 0
r
- 1 acceleration ft/oec.z -1 0 2
’ g 2 acceleration ft/sec, -1 -1 -3
1 *See note in Table II,
**The trajectory data at simultaneous times from the Askania System (chosen
} standard) were subtracted from corresponding data from Radar 112 System
‘ to form an error set of data which were averaged for each trajectory section, 3
| =
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TABLE VIl
BIAS ESTIMATES FOR DERIVED (ELEVEN POINT SMOOTHING) DATA
FROM RADAR 122 8YSTEM FOR FLIGHT TEST NUMBER FOUR

Derived Component Letimates of
Tra jectory Trajectory Bias , Averaga Biaa%e
8ection Elemeant* Dimensions North (X) Eut ¥) Up (Z)
1 _ position feet -38 -1l 31
2 positien  {eet | -3 N 26
. velocity {t/sec, , o 1 0
2 valocity tt/nec, N 3 0 -2
1 acceleration !t/uc.g . | - R SR |
2 acceleration f{t/sec. -0 0 -2
*8ee nots in Table I, : )
¢ The iujmorj data at simultansous times from the Askania System (chosen
standard) weve subtracted from corresponding data from Radar 122 System
to form an error set of data which were aversged for each trajectory section,

—
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TABLE IX
COMPARISON OF ASKANIA CINETHEODOLITE SYSTEM

BY FLIGHT TEST PERFORMANCE

Flight Mode Component Standard Deviation
Test Numter of Estimate in Feet
Numbaor Cinetheodolite North (X) East(Y) Up(Z2)
1 6 11 1] 8
2 7 10 15 12
kL 7 7 4 10
4n 5 6 6 14

*Trajectory section one and ‘mode number of instruments corresponding-
more closely to earlier tests. Average set for the three trajectory
sections is 8, 8 and 12 respectively for Flight Test three.

“¥The first three flight tests were night tests with a point source of
light for optical system tracking; whereas, the fourth flight test was
conducted during daylight hours.
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TABLE X
COMPARISON OF RADAR SYSTEMS

BY FLIGHT TEST PERFORMANCE

Flight Component Standard Deviation
Test Radar Estimation in Feet
Number Designation North (X) East(Y) Up(2)
| R-112 18 45 34
2 R-112 25 &8 92
3 R-l12# 19 39 16
4 R-il2#* 12 7 12
1 R-122 29 29 21 ‘
2 R-122 21 18 20
3 R-122 26 4 31
4 R-l22% 9 8 22
*Variate difference estimates for trajectory section 1; data sampled at
2 per sccond.
*$These radars were operated in the beacon tracking mode,whereas, prior
tests have utiliced tha skin tracking mode,
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THERMAL CYCLES IN WELDING

Mark M. D'Andrea, Jr.
U. §. Armv Materials Research Agency
Watertown, Massachusetts

INTRODUCTION: The mechanical property integrity of weld heat-
affceted zoncs is an inherent and vital consideration in arc welding applica.
tions. A weld heat-affected zone, hereinafter termed '"weld-HAZ'", is
defined as that volume of base material in a weldment that has becn heated,
as a result of welding, to a range of peak temperatures between the pre-
hcat temperature and the materials melting point,

Previous work conducted at the U, S. Army Materials Rescarch
Agency, concerning the welding of fully heat-treated high-strength :tecls
for service in the as-welded condition, demonstrated that weld=-HAZ arcan
characterized by peak temperatures at or about the lower critical temper-
ature, suffered a marked loss of strength, thus roducing weld-joint
etticiencics considerably. Othcr studies with highestrength and mavaging
steals have revealed deleterious mechanical pronerty effects rosulting
from thermal eyeles ebaracterized by peak temnperatures above the upper
critical temperature, In addition, it is well known that an embrittling
niieet in ulloy steels is generally associated with weld-HAZ structures
characterized by peak temperatures between the lower and upper critical
temperatures,

Recent work conducted at AMRA, established the general parameters
ncceasary to define and reproduce the transformational behavior of weld-
HAZ microstruciures, 'These paramctere included (but are not necessarily
limited to) the following; (1) The time-temperature shape of a weld-HAZ
thermal cycle, (2) the pcak temperature of a thermal cyele, (3) the
microstructure of the base material (defined by heat treatment, chemistry,
working, etc.), prior to the imposition of a thermal cycle, and (4) factors
affecting restraining stresses and strains produced in the base material
as a result of the overall welding operation.

The gamut of microstructures produccd in & weld-T1AZ is the end
rcyult of the complex and varied transformations causcd by welding thermal
cycles. An important consideration which has been a pertinent reference
point in the present investigation, was the fact that in any arc weld in a
given material there will always be thermal cycles that have the same peak
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temperature; these thermal nycles will aiifer oniy in that the ahape and
position of associated heating and cooling curves will be displaced some-
what in time and lemperature. It is a wcll cstablished metallurgical fact
that the mechanical properties of a material depend primarily upon
microstructure. In order to predict and perhaps control weld-HAZ micro-
structures resulting from welding thermal cycles, it is necessary first

to investigate the effects of basic prarameters of such structures.

OBJECT AND SCOPE:

Welding Metallurgy

The overall objective is to investigate and to establish basic metal-
lurgical concepts to account for the phenomena of the attendant transiormi -
tion behavior of weld-HAZ microstructures produced in 4340, H-11, and
18 1/2% Ni (300) maraging steels. The work is limited to a study of the
effects of fundamental material and welding time-temperature parameters
pertaining to single pass, arc welding situations. Realizing the potentially
staggering rrumber »f general and sub-parameters that may significantly
affect resultant microstructure, it was deemed advisable to initiate the
investigation by studying only the effects of some of tlie general paramecters,
viz; the prior base material microstructure, the peak temperature of a
thermal cycle, and the time-temperature shape of thermal cycles imposed
by welding. Thec number and kind of stress-strain conditions that are
applicable tc welding were initially considered to be overwhelming;
consequently the utilization of this general parameter in this initial investi-
gation was abandoned in the sense that such conditions were kept constant.

Statistical Inference

The overall objective of the utilization of statistical inference
techniques is to assist the metallurgical investigation by determining
the significant factors (i.e., the more critical variables), affecting this
phenomena. and to detect the specific significant differences that may
exist among each set of significant factors. The transformational behavior
and the resultant heat-affected zone microstructures produced will be
evaluated metallurgically in terms of such specific significant difierences
obtained.

JHE EXPERIMENT. A high-speed time-temperature controller
is being used in this investigation to produce weld-HAZ synthetically.
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The contrallar eaaentially i 2 Rimulating device which permits the duplica-~ | . |
tion of welding thermal cycles experienced in weld-heat-affected zones., Each F
specimen is heated by its resistaace to the passage of an A-C elecrtric current é
furnished from a transformer, and is cooled bv the removal of heat from v
the specimen by conduction through water-cooled copper clamps. A
thermocouple percussion welded to the surface of the specimen, provides
a signal which is balanced against a reference control signal designed to
reproduce the desired thermal cycle. The resultant error signal is
amplified and utilized by the controller to maintain temperature control
during the cycle to within + 5°9F,

i
%
M
¥
I3
i

The basic experiment involves two of the general parameters as
variables, viz., the prior base material microstructure (defined by
various heat treated conditions of a given single heat of steel) and the :
time-temperature shape of various welding thermal cycles. The thermal ;
cycle peak temperature parameter is a constant in each basic experiment,
i.e., each basic experiment is conducted utilizing thermal cycles having
the same peak temperature.

In each basic experiment, it is desired to determine the effects of ]
prior base material microstructure (denoted factor code "H"), and the '
time-temperature shape of thermal cycles (denoted factor code ''C"), on
the notch toughness (quantitative response variable, measured in
in, -1b/in. ¢, indicative of microstructural change) of the resultant weld-
HAZ microstructures,

L | e i

e A

e e e

’ In a given heat of steel, the interest lies in the effects of five partic-
! ular prior base material microstructures and seven particular thermal

: cycles, i.e., factor "H'" is a fixed factor at five fixed levels and factor b
"C'"is a fixed factor at seven fixed levels,

There are three steels (one heat of each) involved in the investiga-
: tion along with seven different peak temperatures per heat; therefore,
! there are three times seven or twenty-one basic experiments to be
A evaluated independently. Metallurgical considerations preclude statis-
' tical corrclations between steel types and between peak temperatures
per heat of steel,

i : THE DESIGN AND ANALYSIS: The number of observations (nptch
! : toughness values) to be taken is initially unknown; however it is desired
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to design the statistical analysis to allow for the general situation of deal-
ing with an uneven number of replications per cell, since some experimental
observations are lost occasionally. A basic model appears to be a fixed,
two-way analysis of variance; the suggested mathematical model for the
sum of squares is:

Total

(Jeo
o]

Interaction Residual
-2 2 S 2
T. k T.. 2 2 T..k
b Tk [T + lze, t .
n nq np npq ijk n

Once the individual ANOVA's are run for each basic experiment, one of
the following techniques could be used to detect specific significant
differences that may exist among each set of significant factors obtained.

(1) Use Duncan's Test of the means if, and only if, the cells have
the same number of replications. The means used here are those of
the columns, or vows as the case may be, of the cells pertaining to the
significant factor; if both factors are significant, two such tests are
made regardless of irt eraction effects. Perhaps this is not a proper
technique, in that only the individual cell averages should be tested by
Duncan's method.

(2) Use the following relationship to test the means of each cell if
there are minor variations in the number of observations per cell.

Sx(entry from studentized range)

\[no. observations/cell
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(3) Use the following relatianahin to taet the menne of cack

- wa wrew

s/ + L x '\/(k-l)r(k-l, y) .
b "2

The foregoing is the author's suggested method of analysis. It is

important to note that the author is merely a novice at this business of
statistical analysis,

It has been suggested since the presentation of this paper that the
use of regression analysis techniques may be a better approach to solving
this statistical p.-oblem. Unfortunately, circumstances to date have not

yet permitted a further investigation into the most efficient statistical
procedures to be used in this problem.
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STATISTICAL ANALYSIS OF TENSILE STRENGTH-HARDNESS
RELATIONSHPS IN THERMOMECHANICALLY
TREALTED ST LELD*

Albert A. Anctil
U. S. Army Materials Research Agency
Watertown, Massachusetts 02172

INTRODUCTION. Generally speaking, statistical analysis finds limited
applications in metallurgical problems., This is true because the sample
size is usually quite small and in most cases, the variables are known and
can be controlled. The clinical (statistical) problem described here isa
segment of an investigation entitled, ''Tensile Strength-Hardness Relation-
ships in Thermomechanically Treated Steels. ' [1] The objective of the
study was to determine metallurgically and statistically how well thermo-
mechanically treated steels followed established tensile strength-hardness
correlations,

The generally accepted tensile strength-hardness correlations are
published by the American Society for Testing and Materials (ASTM) [2]
and the Sotiety of Automotive Engineers (SAE) [3] . These correlations
specifically excluded cold worked, stainless steels and other thermo-
mechanically treated steels, The ASTM and SAE correlations have been
obtained from a particular steel quenched and tempered to various strength
levels. Tensile specimens which contain hardness coupons were machined
from each strength level condition. These specimens were distributed
randomly to several laboratories participating in a standardized testing
program. The assembled data were treated statistically to obtain a
tensile strength-hardness correlation.

Thermomechanical treatments which are under consideration here,
involve the introduction of cold work into the heat treatment cycle of
steel to obtain higher strengths. There are three types of thermomechan-
ical treatments based upon when in the heat treatment cycle the working
cycle is performed. [4]

Type 1 - Deformation of austenite followed by transformation
Type II - Deformation of austenite during transformation
Type Il - Deformation after transformation of austenite .

*Comments on this paper by one of the panelists can be found at the end
of this article.
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EXPERIMENTAL PROCEDURE. The experimental tensile strength-

steels. Refer to Reference l for a more detailed explanation and data
references for this presentation.

Figure ] shows the ASTM (solid curve) and SAE (dashed curve) tensile
strength-hardness correlations. There is some difference of opinion as
to which is the better curve. A joint ASTM-SAE committee is presently
working out a compromise curve, The ASTM curve has been extended
beyond Rockwell C hardness 58 to encompass the very high strength steels,
The data points are from Reference l and represent various steels having
a quenched and tempered heat treatment. Such data could have been used
to obtain these correlations, These same steels were then processed
thermomechanically with Type I (open symbols) and Type III (closed symbols)
treatments, Statistically the quenched and tempered data fits the ASTM
correlation better than the SAE correlation. Accordingly, the ASTM
correlation will be used for comparative purposes.

Tensile strength-hardness data for the Type I thermomechanical
treatment are shown in Figure 2. The thermomechanical heat treatment
cycle is shown schematically, The data follow the ASTM correlation
(solid curve) reasonably well. Figure 3 illustrates Type II data. This
thermomechanical treatment is usually periormed on austenitic stainless
steels at subzero temperatures. Meaningful comparisons of this data are
difficult with such a small sample size. Type 1Il data are shown in Figure
4, The cold work may be performed upon the asquenched martensite or
upon tempered martensite that ia subsequently aged. A positive deviation
{rom the ASTM correlation is immediately apparent ove:r the major por-
tion of the hardness range for Type III data.

Selected data for Type Il treatments where the percent reduction has
been varied are shown in Figure 5, Consider the 5Cr-Mo steel where
the lowest tensile strength plotted represents the quenched and tempered
condition. Note, that as the amount of cold work ie increased, the
o . teneile strength increases at a faster rate than that shown by the ASTM
B correlation. This sarne trend can be seen for the majority of these
Py 4 steels. [t is for this reason that a regression line was not drawn for
E,u;, this data. A tensile strength-hardness correlation for these steels would
by be dependent upon the amount of cold work,
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DISCUSSION. Metallurgically the behavior was explained using
Tabor's analysis [5] which relates hardness and tensile strength through
an additional parameter, the strain hardening capuuciii ii, Thrt anolysie
is summarized in Figure 6. Quenched and tempered steels have strain
hardening exponents in the range from 0.04 to 0.12. 1In this range the
tensile strength-hardness ratio is nearly constant. It is for this reason
that a unique tensile strength-hardness correlation exists. For Type I
treatments the strain hardening exponents fall in the same range, there-
fore, the data fit the ASTM correlation. With Type III treatments the
ratio starts at the minimum and increases as the exponent decruvases to
nearly zero with increasing amounts of cold work. This results in posi-
tive deviations from the ASTM correlation, Type II treatments are
usually performed on austenitic stainless steels at subzero temperatures,
These steels have ver; high exponents (0. 3) in the annealed condition which
decrease to nearly zero with increasing amounts of deformation. One
would expect positive deviations from the high and low exponents and

adherence to the correlation as the ratio passes through its minimum value.

Cold-worked stecl (Type 1II) and stainless steels (Type 1) have been
excluded from the ASTM correlation because of these drastic changes
in strain hardening characteristics,

Statistical analyeis of the data ie summarized in Table I, The
deviation d refers to the experimental tensile strength ¢ , minus the
corresponding tensile strength T ASTM’ from the ASTM correlation at a

particular hardness, This deviation wae_determined for every data pcint.
The arithmetic mean of the deviations A¢ was taken as the sum of
the deviations divided by the sample size. It serves as an indication of
how well the data for thermomechanically treated steels fit the ASTM
correlation, This value would be zero for a regression line of the data,
The absolute deviation lAu-l and the standard error of estimate Sy*
were calculated as measures of the dispersion of the data about the ASTM
curve. These differ irom the usually defined mean absolute deviation
and standard error of estimate which measure the dispersion around a
regression line,

__ Statistical results are shown in Table II. The mean of the deviations
Lo, shows a better fit of the quenched and tempered data about the
ASTM rather than the SAE correlation. Further, the data for the Type |
treatment fit the ASTM correlation better than the Type IIl treatments,
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Also, the predominantl) positive deviation of the Type III data from the

ACTAL oiimena e al. T atlhh cm o~ wan o Ainmawndnen A micd b, AQ’T‘\A’
vl

0-\/.!" e VA .- vuv.vuv P ATy Abh\r\‘t’“d <o Ga CbW A DAV Mo w
curve yield approximately the same results. They & not, however, reflect
the positive deviation of data for the Tyoe I(I treatments,

The problem before the panel is that of offering more descriptive
statistical alternatives for comparing several populations of data (tensile
strength-hardneas values for thermomechanically treated steels) to a

. given regression line (the standard ASTM tensile strength-hardness

correlation)., Consider further that it may not be possible or meaningful
to draw a regreasion line through each population of data,
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Table II. STATISTICAL RESULTS FOR QUENCHED AND
TEMPERED AND THERMOMECHANICALLY TREATED STEELS

T Y ———
S
ol Bl o
[ ] [ ] [ ]
|- J— 9
M ™M
a =
2

Xa—, |Ka—|. Sy*

Condition ka1 ksi ki n

g*: Quenched and Tempered

£ ASTM curve | 0,23 | 11.71 | 17.7] 112
2 SAE curve 7.33 | 14.1 ] 19.4] 112
i Thermomachanically Treated

{E Type 1 3.70 | 15.4 | 20.6] 319
i Type II 1.45 9.3 | 12.8] 60 |
* Type 11T | 11,00 ]| 17.2 | 20.8] 176

Lo

. :}wr; thw) I




Y 1

5 CIN FRESENTATION DY ALBEKT A, ANCIIL
Joan Raup Rosenblatt

Statistical Engineering Laboratory
National Bureau of Standards, Gaithersburg, Maryland

The evaluation of empirical relations of the kind you discussed is a
difficult problem. The various functions of deviations from the ASTM
curve that are presented in your Table Il are extremely difficult to
interpret: By themselves, they are nearly meaningless. Taken together
with the data, as exhibited in your figures, they add very little and may
be misleading.

For example, looking at Figure 1, I notice that the steels used in
Type I and Type III thermomechanical treatments respectively seem to
be grouped preponderantly in different hardness ranges, Is it possible
that the ASTM curve {its better for Type I and the SAE curve for Type
III? If this were so, an explanation would have to be sought in the
metallurgical facts about the data used, and in the history of the two
standard curves.

Table II gives overall measures of goodness-of-fit, Since these are
well-defined functions of the data, they cannot be ''wrong" in themselves.
But if the deviations from the standard curves occur for different reasons
if different types of steels and in different hardness ranges, the overall
measures cannot be relied upon to describe the uncertainty of tensile
strength estimates derived (using the curves) from hardness measure-
ments, Furthermore, if the overall measures are used to select the
"best-fitted" curve, there is great danger that the resulting curve will
have systematic errors arising from the particular choice of data.

Of course, for many purposes a standard curve is entirely adequate.
But your data seem to make it clear that one possible long-run goal would
be the development of a collection of curves each applicable to specific
circumstances, This development would probably require the perform-
ance of many new experiments. It could lead to the evolution of your
qualitative explanation of the behavior of thermomechanically treated
steels into a quantitative explanation.

The statistical measures quite properly play a very small role in
your valuable summary of the published evidence on tensile-strength/

i
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hardness relationships. [ am sure that in future studies you will continue
to be guided by the totality of scientific information available to you, and
o I hope you will often find that statistical techniques are helpful in data
o analysis,
1
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SOME PROBLEMS IN STA'iISTICAL INFERENCE FOR
CEMERALIZED MULTINOMIAL DODPULATIONS
Bernard Harris
Mathematics Research Center, U. §. Army
University of Wisconsin, Madison, Wisconsin

INTRODUCTION., Assume that a random sample of size N has been
drawn from a "multinomial population' with an unknown and possibly
countabie infinite number of classes. That is, if Xi is the ith observa-
tion and Mj the jth class, then

AU

P{Xje M}=p 20, j=l 2, ...: i=L2, .., N, 1

-]

and Z P, = l. The classes are not assumed to have a natural ordering.
i=] '

Let n_ be the number of classes occurring exactly r times in the sample,

SFERS

Then, we clearly have

We will be concerned with estimating the following two quantities
which are generally of interest to experimenters.

(1) The sample coverage, defined by

(1) C = Zp ,

where the sum runs over all classes which have occurred at least once : *
in the sample.

(2) The population entropy, defined by

[ ]
(2) H=-2Z p, logp,
| =1 ‘

™
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It will be convenient in our definition of entropy to violate the usual conven-

tions and use natural logarithms rather than logarithms to base 2. This is
equivalent to a scale change in units of measurement and will have no
essential effect on any uses for which the entropy might be employed. Of
course, we will assume throughout, that the series (2) converges, since
otherwise the discussion will not be relevant.

In those problems which present difficulty, namely where too many
of the pi's are too small, small sample infercnce appcars to be virtually

hopeless, hence, all results described herein will be asymptotic results,
i.e. for large N. '

Estimation of H and C. For the moment, we will restrict to the case
of an ordinary multinomial population, that is, one with a finite number,
k, of classes. Then the 'matural estimator' of entropy H is defined by

. N ini n, k
(3) H=- _I\TIOS_I;I— =X pilogf)i
i=l i=l

where f)i is the maximum likelihood estimator of P

Its properties has been discussed by G. P. Basharin (1] and we note
them brieily. Basharin showed that

» k-l -2
(4) E(H) =H . —z-ﬁ + O(N )
and
2 ;X 2 2 -2
(3) VI*_I=-N-E [pilog pi-H]+0(N )
i=]

and \/T\I(H - H) is asymptotically normally distributed, If we attempt
to apply Basharin's results to the more general case described earlier,
it is easily seen that the naive replacement of P, by ﬁi in (2) may not

be successful. Essentially, Basharin's technique depends on the following
sort of asymptotic behaviour,

Ry DS SN W
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as N - o, Npi»x.i:l.&,..,k

Consequently, if we have zero as a limit point of the pi's, or even, if

we have the limiting behaviour associrtea with the Poisson approximation,
as N . +0, Np. N, 0 <\, < )
Tes Py Py ™ M4 is®

for a sufficiently large number of classes, then Basharin's estimator,
H, may be quite puor. The following illustration will exhibit this, Let

p. = -1—2, i=1,2,... ,NZ. Then H = 2log N. However, since the maxi-

N

1
mun of II occurs for P; =k when there are k classes, we have that

H < log N. Hence, it is quite clear,‘ that if there are ''too many classes

whose probabilities are too small', H will not be a satisfactory estimator.

One of the causes of the difficulty is that H gives no weight to unobserved
cells, so that if the total probability in unobserved cells is large, H will
not perform too well,

We can gain some insight in dealing with this, if we examine the
second question we advanced, the estimation of the sample coverage.
This problem is discussed in greater detail in B. Harris [3], but it is
convenient at this time to make some intuitive observations concerning the
estimation of C, so0 that we can resolve the difficulties noted above in the
estimation of H,

First, note that if we were to procesd as Basharin did and set

then we have that C =1 for all samples, which is clearly inappropriate.
We can guide our intuition by first examining some extreme cases.

(1) Ifn, = N, then we readily reach the conclusion that C must be
small, We can see this as follows. I[f we now take another observation,
inasmuch as every past observation resulted in a new class being observed,
it is apparent that with probability quite close to unity. the N+lth observa-
tion will also result in a new class. In fact, the probabnility that the
N+lth observation will not result in a new class is C, which of course
should be near 0, as noted.
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514 Design of Experiments
(2) If, on the other hand, there is an integer t, substantially larger
than one, such that n1 = ﬂ2 =.,... = nt 1 ° 0, nt > 0. Then, similar

reasoning would lead us to conclude that most of the probability is

concentrated in classes with high probability, and therefore C should

be near unity,
(3) Let P, = % ,i=1,2,...,N. Then E(nl)'\'Ne'l and E(no)mNe-l.

Thus, we should have C~l - e ..

In short, as is shown in B. Harris [3], it is the low order occupancy

numbers, such as nl. nz, and n3, which contain the principal information

'concerning the probability content of unobserved classes. A cursory
examination of the three examples cited above suggest that an appropriate
estimator for C is given by

-~ nl
(6) C=l-ﬁ-

In Harris {3], it is shown that ¢ is in fact an suitable estimator, in
that it has good asymptotic properties.

In E. B. Cobb and B. Harris [2], a method for estimating entropy,
when "all the sample information is contained in the low order occupancy
numbers'' was exhibited. In order to do this, we will show that we can
represent entrony asymptotically by

[<-]
1 x N ,
(7) H-N E(nl) S e log (-;)dF-(x)
where
(-]
(8) Fi(x) = I Np.e-Np/ z Npe NP
Np <x ! j=1 !

It is easily verified that F*(x) is a cumulative distribution function.
Since
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&
-Np;
(9) E(n)~ £ Npe °J
S ]
j=1
substitution of (8) and (9) into (7) produces
1 o Np, 1 ~Np, L]
TZ e Jlog(—;—)ije J=-2:.‘p,logpj=l-{
j=l j =1’

which verifies (7).

Under the assumptions stated above Cobb and Harris [3] suggested
that the entropy be estimated by

o 0 (N-m )2 (Nm, -m_)/(N-m) N(N-m,)

"o v D 1 17 v ™y :
{10) "N (Nom. )2 Z, ¢ 8 Nm, -m
] -ml) + (rnz-m1 ) 1 72

2
where m, = an/n1 and m, = max (ml ) 6n3/n1).

At this point it is worthwhile to present a numerical example, which
will jliustrate the behavior of H.

1

. -1 N -1
Example P, ST i=12,.., N, Thennl Ne B

e , and

N .l
n3~—é-e . Thus, m1 ~1, m2~1 and

Then
-1 2
H-~ ______NeN (———-(N-l))z e (N-1)/(N-]) log [-J——lNNI\jl'l ] = log N
N-1

and H = log N, which is as it should be.
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516 Design of Experiments

Clearly, it is principally the classes with small probabilities that

contribute to LIRS TR and n,. For those classes with large probabilities,

we can estimate P, by f)i.

Then, the natural way of proceeding is to estimate the contribution
to entropy from large classes by means of Basharin's method and the

/
contribution of small classes by H, and we denote the final estimator by

\/
H*, Recall that in order to use H, we have taken nl.nz, and n, to deter-

./
mine H.

There is one last detail which must be taken into account, Part of
the contribution to moderate order occupancy numbers, such as n,, ns,

and some of the succeeding occupancy numbers, will be due to classes
with small probabilities and the effect of sample fluctuations., There-
fore, we need to examine the following. What proportion of each

nj. j=4,5...,8, s some sufficiently large integer, is due to a large

deviation from a class with small probability? We can adopt a Theorem
due to A, Wald [4] obtaining the following inequalities.

(1) if m, > m", E(nk+l) > o = k=34,
"2
an k
. 2 - )
(12) it m, =m" E(nk+1)3 ” y k=3,4,....

<l .
n (k+1)!

The right hand side of each inequality gives the expected values of

nk+]’ if "the sample information is contained in ., nZ, and n3". Thus

the difference between the left and right hand sides of (11) and (12) gives
an estimate of the contribution to LY which is due to classes with larger

probabilities, We apply Basharin's estimator (3) to these, upon replacing
the expected values in the left hand sides of (11) and (12) by the observed

values.
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' Thue, we finaily write

A W]

t (13) H« = N H+(l-\) I
P
o
] f where 0 <X < 1 is the proportion of the observations in nl.nz, and n
: : - = =
? i and the parts of ngifgeese.un  determined by (11) and (12). For the

$ &
k : parts of thc sample allocated to sinali classes as noted above we use 1,

—

9
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and use H on the part allocated to Jarye ciasscs,

The mathematical aetails will be given in a later punlication,
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APPLICATION OF NUMERIC AI, TECHNIQUES
TO
EXPERIMENTALLY MODEL AN AERODYNAMIC FUNCTION*

Andrew H. Jenkins
Physical Sciences Laboratory, Directorate of Research and Development
U. 8. Army Missile Command, Redstone Arsenal, Alabama

ABSTRACT. This report describes the use of an aeroballistic range
in the design and execution of an aerodynamic experiment, the analysis
of the experimental data by numerical techniques to develop a model of a
physical function, and the statistical testing of the data and the model.
The report discusses the approach, the experimental design, and the
testing of the data using several frequency distributions. It presents and
describes a multivariate nonlinear regression analysis performed on the

.data, the physical model developed by the regression analysis, and the

testing of the model. It also lists and presents the tests of hypotheses
made and discusses the results of the tests.

SYMBOLS
a Acoustic velocity in air
A Pure constant of regression equation
b First coefficient of regression equation
C Counts per inch of photoreader = 3502
¢ Second coefficicnt of regression equation
cp Coefficient ol specific heat at constant pressure
<, Coefficient i specific heat at constant volume
d.f. Statistical degrees ot freedoin
F Frequency distribution
Fsh Magnification factor of shadowgraph =1. 009
Fsc Magnification factor of Schlieren = 0. 555
K Ratio of shock density Pe to free stream density p>
In Natural logarithm (base e)

*This article was initially issued as U. S. Army Missile Command Report
No. RR-TR-65-11.
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SYMBOLS (continued)

Mach number = V/a

Mach factor level =1,1to 1. 5
Mach factor level = 2.5t0 2.9
Mach factor level = 3,9 t0 4.3
Mach factor effect in statistical equation
Mach factor linear effect

Mach factor quadratic effect

Main fartor interaction effect
Total observation

Statistical probability

Regression correlation cocfficient

Universal gas constant. = 1715 sq. ft/sq. sec./°R.

Radius

Model nose/base radius ratio = 1.0
Model nose/base radius ratio = .7
Model nose/base radius ratio = 0.4

Model base radius = 0,112 inch

Radius factor effect in statistical equation
Nose radius of model

Model nose to base radius ratio

Radius factor linear effect

Radius factor quadratic effect

Surtace roughness of model

Experimental sample variance

Fxperimental sample standard deviation
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SYMBOLS (continued)
Sum of squares
Value of students frequency distribution
Absolute temperature ( *Rankine)
Flight model velocity
Mean
Mean of Ambrosio-Wortman model
Mean of experimental responses
ith response
Mean of regression model responses
Dependent variable of regression equation (computer language)

Independent variable of regression equation (computer
language) '

Normal frequency distribution

Type I error risk level

Type 1l error risk level

Ratio of specific heats = CP/CV

Shock detachment distance from shadowgraph optical system
Shock detachment distance from Schlieren optical Syﬁtem
Shock detachment distance in photoreader counts (corrected)
Experimental ersor ' -

Variance of experimental responses

Variance of regression model

Variance of Ainbrosio-Wortman model

Universal means

Frequency distribution

Density

|
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522 Design of Experiments

1. INTRODUCTION. A number of new acrodynamic problems have
come into prominence in recent years., The source of the problems has
been the very high flight velocitiee achieved by use of raockets. The

characteristics of the problems of the very high flight velocities, referred
to as supersonic or hypersonic flight, are those of 2 hydrodynamic nature.

The Mach numbers are high and problems of a physical and chemical
nature also exist because the energy of the flow is large. The gases are
rarefied so that the mean free path is not negligibly small compared with
an appropriate macroscopic scale of the flow field. Under such condi-
tions, kinetic thoery is included with the hydrodynamics.

The new features of a hydrodynamic nature allow the use of certain
simplifying assumptions in developing theories for hypersonic flow. On
the other hand, certain important featurzs which appear introduce addi-
tional complications over those nict within gas dynamics at more mod-
erate speeds. The techniques of linearization of the flow equations and
the use of mean-surface approximation for boundary conditions have a
diminiehing range of applicability. Also, entropy gradients produced by
curved shock waves make the classical isentropic irrotational approach
inapplicable.

The additional problems of a physical and/or chemical nature are
associated with the high temperatures of the flow as the gases traverse
the strong bow shock wave, The sudden shock heating of the gases
excites the vibrational degrees of freedom nf the molecules resulting in
dissociation of the species into atoms, electrons, and ions which do not
require treatment at lower velocities. Therefore, it must be recognized
that physical phenomena rather than hydrodynamic phenomena may not
only influence the flow but in many cases control it, In view of the

complexities of the flow at high Mach numbers and the number oi technical

disciplines involved, many have resorted to experimental or empirical
development of functional relationships. i

. The flow field originates at the bow shock. The shock wave charac-
teristics are very important to the stagnation regior: characteristics.
The volume of the stagnation region is dependent on the shock deta . hment
distance. Therefore, much of the knowledge of the flow characteristics
is dependent on the knowledge of the shock location. Experiments have
been performed on wind tunnels to study the shock location. However,
few experiments have been made to study thie problem under free flight
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conditions. Also, the studies which have been made and the derived
relationships are lacking as tests have not been attempted to determine
their reliability.

It is apparent that the community recognizes the need for improved
hypersonic design theory. One of the important areas is the prediction
of shock detachment distance. It is important to the computation of not
only heat transfer but also pressure distributions and drag on the fore-
part of the vehicle. This has been pointed out by Serbin (1], Ambrosio
and Wortman [2] , DiDonato and Zondek 3], Heberle, Wood, and
Gooderum [4], and Love [5] .

The lack of purely theoretical models for the prediction of shock
detachment distance at transonic and supersonic velocities has led to the
natural consequence of an experimental approach. This is to be expected
and in addition the theoretical hypothesis is inevitable subject to exper-

.imental verification., For this reason, one can alsoc expect to contribute

to scientific progress by the inverted approach of formulating models of
the mathematical relationships between physical variables by experimen.
tation. However, the relationships derived are subject to experimental
control, measurement accuracy, human error, and many other sources
of unexplained or unaccounted for deviatiors from the true universal
relationships,

In the direct approach (i.e,, the a priori derivation of a mathemati-

cal model ) quite often ideal physical conditions are assumed and eimplify-'

ing mathematical assumptions are made which depart {rom the real case.
Therefore, one cannot be sure of the theory nor can one be certain of the
experimental data. Yet, in scientific endeavor, exacting conclusions are
often drawn by the comparison of an idealized hypothesis and real case
data. That is, both quantities are coupled to each other and not to an
independent estimate of the deviation present.

Ermpirical models of the shock detachment distance for bluni hodies
of revolution have been made by Serbin {1}, Ambrosic and Wortman [2] .
and Heberle, Wood, and Gooderum [4] . The data were obtained by thu: ¢
authors using moving streams ol air surrounding stationary spheres
{i.e., radius nosec bodies) in such experimental devices as wind tunnels
and jet nozzles. DBoth of these devices have two common disadvantages.
The gaseocus medium is in a state of expansicn just pricr to the shock
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524 Dcseign of Experiments

compression. Also, holding devices are present in the flow around the
body which cause perturbations in the flow. The flow is often not uniform
in cross section. The measurcments, therefore, include these perturba-
tions and do not represent the real case of a vehicle in free flight.

Serbin (1] derived the following relationship for a sphere;

(1) % = 2/3(K - 1)'l :

Ambrosio and Wortman'2 derived the following relationship:

3. 24/M2

(2) = 0,143 ,

wip>

and Heberle, Wood, and Gooderum4 derived this relationship:

(3) A asm.yt?

Each author stated that agreement between the model and the data
was very satisfactory. However, the standard by which this was deter-
mine was not stated or explained. This type of unexplained, seemingly
arbitrary, acceptance of a model and data appeared to be typical,

A machine literature search was macde. In this search, over
100,000 documents were screened and matched by computer on the basis
ol key words and termas in aerodynamics and statistics. This was done
to determine if, in the past, any use of statistics in testing aerodynamic
experimental data had been done. Not one document was found during
the scarch. However, this is not to imply that statistics have not been
used. Apparently, it is either not a prevalent or accepted practice or
possibly has not been reported.

Ambrosio and Wortman [6] did attempt the use of some simpie
statistical methods. This was done to the extent oi computing the mean,
the absolute mecan, and the standard deviation. However, it was not for
the purpose of testing the reliability of their data and model but to objec-

tively establish the relative worth of their model as compared to Serbin[l].
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This work has two objectives as {ollows;
1) To develop an empirical model of shock cetachment distance as
a tunction of Mach number and vehicle nosc radius with experimental

data obtained under free {light conditions

2) To subject this model and data te analysis by statistical mcthods
to objectively define the level of confidence of such a model.

I1. EXPERIMENTAL PROCEDURES.

l. Design

A
The shock detachment distance can be described acrodynamically
for radius nosed bodies of revolution as:

(4) A = f(M,R).

Explicit models of several investigators were mentioned in the introduc-
vion,

Statistically, the model can be expressed as;

(5) A = }.L'I"Mi'i'Rj-e-MRij +€k(ij).

The model contains two independent factors, Mach number (M ) and body
radius (Rj). It also contains a sccond order eifect, the MRij interaction.
The design of the experiment required consideration of both the aero-
dynaniic and the statistical aspects. Past experience indicated that the
shock detachmient distance was a nonlinear function of Mach number (M)
and a linear function of radius (R) The objectives of the experiment are
to determine if the linear and quadratic effects of Mach number and ra-
dius contribute significantly to the shock detachment distance. Also,
it was desired to determine if a second order or interaction effect be-
tween radius and Mach number contributes significantly to the shock
location. The analysis of variance is a useful tool for this. In addition,
it was also desired to develop an empirical model of the functional re-
lationships between the independent and aependent variables. A regres-
sion analysis was planned for this.
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526 Design of Experiments

The analysis of data by regression calculation can be simplified by
the equal spacing of the independent variables which permits the use of
orthogonal polynomials. This helps also in the subsequent adjustment
arising from the discarding of insignificant variables or the addition of
new terms. One objective of the experiment is to estimate the slope of
the regression. The slope of a *egression is estimated more precisely
if the values of the independent variablee are selected with equal spacing
at the extremes of the quantified ranges of the variable, This is because

interpolation is more reliable than extrapolation and the computations
are simplified.

The effects of the main factors in this experiment could not be
considered theoreticaily independent. Therefore, it is necessary to rep-
licate the experiment within cells of all factor levels in order to test
for interactions between factors and to estimate the experimental error,
Since ona objective is to statistically test for interaction, the analysis
of variance will enable the test of interaction and estimates of error
variance. The two best tests for statistical analysis of the aerodynamic
experiment are the analysis of variance and the multivariate regression
analysis, The experimental design most efficient for these methods is
the factorial experiment with replication,

The factorial experiment enables one to test the effects of Mach
number (M) and radius (R) on the shock location (A) over the ranges of
interest of M and R at each factor level., It alsoc promotes testing for
the existence of interaction between M and R and the effect of interac-
tion on A. One is also able to differentiate interaction effects from
main effects. In addition, it allows the determination of confidence
limits for the estimates of main and interaction effects based on the
estimate of experimental error derived {rom replication.

Therefore, the experiment was designed as a fixed model 32 fac~
torial. Boththe radius and Mach number factors are equispaced three
level, fixed and quantitative. The Mach number range of interest was
1.0to 4.5. The levels selected were M, =1.1to 1.5, M, =2.5t0 2.9,
and M., = 3,9 to 4. 3. The radii selectedl were nose to base radius ratios
of R, 1,0, R, =0,7, and R, = 0.4, The experiment was replicated
three times in each factor ce%l; therefore, a total of 27 observations
was recorded (N = 3 x 3 x 3= 27).

.
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All 27 responses coulid not be obtainec in 1 cay. Therefore, to
compensate for day-to-day variations in personnel, voitages, aevelog-
ing solutions, fllm batches, ana printing, the firing sequence was
randomized. All combinations ofiactors and replicates were listed ana
the experinental sequence was rancomizec by use of a random nun.ber
generator (7] which was entered in a rancom manner, The results of the
randomization are shown in Table I. The numbers shown without par-
entheses are the sequence of firing while the numbers in parentheses
are the corresponding round identification numbers. Table | also shows
the factor levels selected for the experiment.

Table I. Randomized Experimental Sequence

Mach Number Levels
Nose /Base
Radius M, M, M,
Ratio Replicate (1.1tol 5 2.5t0 2.9 3.9t0 4.3
1 26 (75) 7 (56) 11 (60)
h1=1.o 2 22 (1) 8 (57) 6 (54)
3 2 (49) 14 (63) 10 (59)
1 12 (6l) 13 (62) 9 (58) -
R,=0.7 2 23 (72) 27 (76) 25  (44)
3 24 (73) 18 (67) 15 (64)
, 16 (65) 3 (50) 19 (68)
R,=0.4 2 1 (48) 17 (66) 5 (53) ,
!
3 4 {52) 20  (69) 21 (710)
:Notes:

l, Numbers without parentheses are randomly determined
progran: firing sequence,

2. Numbers with parentheses are for experiment identification.
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. The radii of the models are discrete levels. The Mach number
levels are discrete intervals as it is almost impossible to duplicate
exact velocities by this method of experiment. This is due to variations
in propellants, model material homogeneity, and model-launch tube
interference. The Mach number levels chosen were fixed in selected
ranges betwean Mach 1.0 and 4.5 which is the velocity regime of interest
in this aerodynamic study. As a two factor fixed model experiment, it
is assumed that p is a fixed constant and the ‘k(ij)'s are normally
and independently distributed with a zero mean.

2. Procedure

The experimental data were obtained on the Physical Sciences
Laboratory's free flight aeroballistic range. Figure | shows the ex-
perimental apparatus. It consists of a light gas gun for launching the
models, and altitude simulation chamber, a shadowgraph and a Schlieren
system for photographing the model and the flow around the model.

Also, submicrosecond electronic counters to determine the model's
time of flight are included,

The aerodynamic data required from this experiment are the radias
of the model, the Mach number of the model, and the detachment dis-
tance of the shock. The radius of each model was known as the models
were formed in accurately machined dies, Their geometries are shown
in Figure 2. The models were made of copper coated lead. The Mach
number is determined by taking the ratio of the model velocity to the
acoustic velocity when the photographs are made. The acoustic velocity
is computed as shown in Appendix A. It is seen that the acoustic velo-
city varies as the square root of the temperature and specific heat
ratio. The temperature was recorded at the time of launching each
model. The specific heat ratio was taken as 1.4. The model velocity
v was computed by taking the ratio of the distance between the shadow-

graph and Schlieren stations to the time recorded on the counter. The

distance between the shadowgraph and Schlieren stations is a constant
B of 5 feet. It was assumed that the deceleration of the model over 5 feet
1 was linear; therefore, the velocity computed was the velocity of the
model midpoint between the two stations.

R O RN TR e NIRRT T RTT

Photographs of the model showing the shock detachment distance
i were taken by both the shadowgraph and Schlieren systems The mea-
! sure of the shock detachment distance from either one of these photos
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would not coincide with the velocity of the model. Therefore, with the
assumption of lincarity, the shock detachment distance was corrected
to the velocity computation. The correction of the detachment distance
required the consideration of the magnification factors for the photo-
graphs. The magnification factor for the shadowgraph camera was

1. 009 and the Schlieren camera was 0,855, The photo reader upon
which the negatives were read was calibrated at 3502 electronic counts
per inch in the plane of the negative on the photo reader. The shock
detachment distance was read in counts from both the shadowgraph and
Schlieren negatives. The detachment distance and radius of each type
model was corrected to counts as follows:

(6) A= 6sthc ¥ 6s.chh
and
(7) R = ZxCxbe FBhXFSCXRr .

The values of A and R computed for each round are shown in Table II,
A sketch of a typical shock detachment distance as taken by the shadow-
graph and Schlieren is shown in Figure 3.

The experimental data ohtained from the experimental program
are compiled in Table II. The data are tabulated and identified by the
round number assigned on the asroballistic range. Computations of
certain data presented in Table II are shown in Appendix.A. The data
from round number 75 were used to show a typical example of the
computational procedures,
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534 Design of Experiments

II1. ANALYSES. The data obtained trom the experiineni are pio
sented in Table II. The observations taken as the dimensionless ratio
of the standoff distance divided by the model radius are presented in the
factorial design layout in Table (Il along with some computations in

preparation for performing an analysis of variance. The statistical
computations are presented in Appendix B,

The gathering of the data, the analysis, and derivation of the model

.of the functional relationships from the experimental observations are

vased on certain aerodynamic and statistical assumptions. These
assumptions are:

1) Small angles of attack of the models (i.e., less than 2°) do not
significantly effect the detachmeit distance.

2) The models were free from ablation products in the stagnation
region, '

3) The effects of gas constituent dissociation on the dynamics of
flow was insignificant,

4) The eifects of spin stabilization on the dynamics of flow was
insigniticant.

5) The cffect of the conical section of two of the models on the
dynamics of the flow was insignificant (i.e., all projectiles were hem-
ispheres of various radii),

6) The experimental error is normally and independently distrib-
uted.

7) The experimental precision is essentially the same for all
ftactor combinations.,

8) The factors were fixed at discrete levels 80, therefore, are
not independent of each other.

Assumptions | through 5 are mmade concerning the aerodynamics of
the experiment, Thesc represent sources of variation which are con-
sidered negligible. They cannot be separated explicitly from the main

T e -t %43 < s am = oo o - .




Table III. Data Layout for Shock Detachment Experiment

N

Mach Number Region

M, M, M, X, Yj.
1,049 0. 146 0,223
{ Rys 10| 1.492 0. 146 0.139 4,810 0.5344
b 1,286 0. 189 0. 140
3.827 0. 481 0,502
1 o . .
] 5 1. 461 0. 268 0.182
| 2| Rye 07| 5,478 | o0.188 | 0179 | 10,138 | 1126
(1]
)
- 1,921 0,253 0.205
™ ——————
3 8.860 0,709 | . 0,566
i
: 1,034 0, 228 0,203
i Rys 04| 2,24 0. 280 0.210 6. 469 0.719
i 1,736 0.321 0.217
o 5,013 0,826 0. 630
b
},
o x.t 1,967 0, 244 0.189 X.. 0,793
|
| IZ!, = 50,7464
L
;
E

n
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536 Design of Experiments
and interaction effects. It is important to note that, even though con-
nidered negligible, these variations are present and are statistically
accounted for by summation into experimental error. The statistical
assumptions 6 through 8 allude to these conditions.

1. Analysis of Variance

The experiment was described in Section Il by the statistical
model

(8) A=p +M + R

+ MRij + (k(ij)'

J
The theoretical model underlying the analysis of variance assumes that
each experimental response of the shock detachment distance (4) is the
algebraic sum of: -

1) An overall mean of the detachment distance, u (i.e. true

standoff distance) 4

2) A Mach number effect on the standoff distance, Mi

3) A radius effect on the standoff distance, R

J
4) An interaction effect on the standoff distance, MRi

J

R N e - crcne o e YL R

5) A random residual error (experimental), (i)’

Since the model is a fixed model, none of the effects can be measured
absolutely, They can be measured only as differential deviations, i.e.,
the M, as deviations from ., the Rj as deviations from u, and the MRij
as deviations from Mj + Ry,

Rkl SRS 1 S5l

; The results of the analysis of variance are shown in Table IV. The
] ; computations are presented in Appendix B.

From Table IV, it can be seen that the main effects of radius have
apparently no significant effect on the shock detachment distance at the
95 percent level of confidence. The linear and quadratic effects are
also insignificant, The quadratic effects of radiues seem to have the
most effect on the standoff distance. They would be significant at the
80 percent level of confidence though still not significant at the 95 per-
cent level,
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The Mach number is significant at the 95 percent level of confidence,
The computed value in the F test is greater than the F distribution
table value by a factor of about 5. The linear and quadratic effects are
also significant. The linear eifect of the Mach number factcr was
found to be more significant than the quadratic effect,

™ .The analysis of variance also shows that there io apparently no
significant effect of the MR,; interaction on the standoff distance. It is
interesting to note, however, that of all the combinations of linear and
quadratic interactions between Mach numbers aud radi s, the quadratic
radius and linear Mach number were nost nearly significant ot the 95
percent lev~l of confidence. This is congruent with the fact that the
test of the quadratic effects of radius and the linear cffects of Mach
number was highest in the main effecta tests, Under the interaction
effects teats, the computed value of 3. 759 for the R,M; combination
would be significant at the 92 percent level as comparea to 4.4l for the
F value at the 95 percent level.

It is also noted in Table IV that the mean sguare far radius and
radius-Mach number interactions were only slightly higher than the
mean square for error. On the basis of the assumption that the exper-
imental error is normally distributed between all factoirs and all levels,
then radius and interaction effects do not significantly contribute to
shock detachment distance within the limits of this experiment.

The results of the aralyais of variance, us shown in Table 1V, ia
further analyzed as shown in Figure 4, Figure 4 is the graphic display
of the results of the Duncarn range tests as computed in Appéndix B,
Figure4(a), for the Mach number range signifizance test, shows that
the M) level (1.1 to 1. 5) is significantly different irom the M3z and M,
levels 0f 2.5 to 2.9 and 3.9 to 4.3, respectively. The M3 and M3
levels were not found to be significantly different {rom each cther. The
radius factor range test as shown in Figurc 4(b) shows the ridius factor
levels not significantly different from each other. The fact that the M3
and M3 levels are not significantly differert from each other will be
discussed later ir this section.

2. Regression Analysis

The analysis of variance can be performed whether the iactors
are quantitative or qualitative. When the facters are quantitative, then

L7
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MACH NO.LEVEL

3 2 )
'Lfr¢ l os o |=.s li.o- A
0489 0,224 1,967

(0) MACH NUMBER RANGE SIGNIFICANCE TEST

RADIUS TREATMENT

t 1 I 3 . g . Iy ) A ’ N
'o o5 NN e (.3
v
0.5634 0719  li26

(b) RADIUS RANGE SIGNIFICANCE TEST

N S T S

{ COMMONLY UNDERLINEO MEANS ARE NOT SIGNIFICANTLY DIFFERENT
AND COULD HAVE COME FROM A COMMON POPULATION)

Figure 4, Graphic chpliy of Duncan Range Teste
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a reagreasinon analveia can he nerfarmed on the data. This analvsis is
especially useful in the determination ot the general functional relation-
thips of the factors at other than the experimentally assigned levels.

The analysis of variance has led to knowledge of the important factor
considered in this experiment which contributes to the shock detach-
ment distance. This was found to be the linear and quadratic effects of
Maerh number. This lad to a bivariate regression analysis. The regres-
sion anzlysis used was the SNAP Multiple Regression Analyesie for the
iBM 7090 computer. It was the Avmy Missile Conunand SHARE 183

" program.

As pointed out, it is realized that the shock detachment distance
is not singularly a function of Mach number. There are other factors
which were rot included in this experiment. For the factors considered
by the analysis of variance, some knowledge of the main significant

factor (Mach number) is now available.

Befcx-e progrening wh:h the regrau;on analysis the physical

. upertl of the shork detachment distance must be considered. The
"fanctional relationship must be consistent with the ae rodynamic concepts

of the detachment diatance. - The detachment distance is inversely propor-

- tional to Mac-:h number_. That is:

S a
(9) . A = ?(m .= f(f:&-) .
The limits of the functional rélationships axe then

hmfv=lim-z-—-5- =lim A = o

a =0 M -0

Hm £(3) « immeee = limA = 0
7! VY

a +» M ~xw

lim £(2) = lim e = lima = 0
Y (M)

V -0 M e
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i a = 1i — = 1i =
lim f (V) = hmm lim A =w
(10)
V » M -0

a g 1 R -
lim f (-\7) = lim ™ - lim A = constant,

V »a M -1

——— R L PRt
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The functional relationship as determined by the regression analysis
should be compatible with these bounds and pass the limit tests.

The computer program is a iinear multiple regression analysis,

h : However, the analysis of variance indicated that the linear and quadratic
' effects of Mach number are significant. Therefore, a transformation

was required to make the computer program applicable to the hypothe-

sized relationship. The relationship is hypothesized as

- (1) a = AMPMS,

A physical limitation of the functional aspect of A is that
A + R
n

R
n

 yomorent

(12)

- VH
—

‘ because as the free stream Mach number goes to infinity, the shock is
} no longer detached but attached and the standoff distance is zero.
i ' Therefore, the desired functional form of the equation is

ne

, (13) A . A,
H Rn

which presents the detachment distance as a dimensionless ratio, which
is a more usable form for design engineering purposes,

[P <SRN .

This is not to indicate the deperdence of detachment distance on

. body nose radius but to account for differences in body geometry, That
1 ie, the equations of detachment distance for bodies with radius noses

, cannot be used for sharp pointed bodieo such us conees or parely blunt

i bodies such as right circular cylinders. Therefore, this functional
relationship is for a geometric class of bodies, i.e,, radius nosed bodies.
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542 Design of Experiments

Equation (l1) was programmed for the regression analysis by using
the natural logarithm transformation. The equation programmed was

(14) 1n%=lnA+blnM+clnM.

In computer language, the equation was

(15) 1nY=1nA+blnX1+clnX2.

The values of A/R and M were taken from Table II and programmed
into the computer, where

2 Wb

(16) X =

>
u
%

The computer transformed the experimental data to the natural loga-"
rithm form.

The results of the computer regression analysis are shown in
Table V. The computer made two runs, After the first run, the resulte
are automatically tested for significance (o = 0,05) and the insignificant
variables are dropped. It can be seen that the X, term was dropped by
the computer, The data for run 2 were taken as the {inal regression
analysis values, The pure constant (A), the first coefficient (b), and
the regression coefficient (r) were tested and found significant as shown
in Table V and Table VI. The regression equation is therefore:

InY = lnA + binX;

(17)
InY = In0.7512 - 1.9l In X,

Taking the antilog the equation becomes

e v At MR S e e e e e e e e R I A
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Y = 2.12X, -1.91
(18)
2.12
y = &
191
or
A 2.12
(19) — D emeteym———
R 1. 911
(M ?

with a standard error of estimate of 0, 3933,
3. Testing the Model

Through the use of the analysis of variance, the eifect of Mach
number on the detachment distance was determined to be significant
both linearly and quadratically. Based on this, a regreseion analysis
was used to derive a general mathematical relationship between detach-
ment distance and Mach number. Certain physical limits were pre-
scribed for the form of the equation. These physical limits are tested
as follows:

T L T T s oy e N SIS IS - B s v " 4 7
3 e Hpsn wD T L s B i
J LAY -l S R T L. oL Ty : o . .

: A 2,12
ifM = 0, = = -
> R 1.9
(o)~
2.12
: g (20) 8 ==
i = w E
% Test of Significance of Regression Coefficients A, b hypothénil A=0 |
{ b=0 :
% t(§-= 0.025, df = 25) = +2.06 .‘
,;'., t = 9—75211-'70._ = 10.002 > 2.06 Test significant, reject ]
0.39033/V 27 hypothesis :
b
t = 1.510723-0 13,25 > 2,06 Test significant, reject i
0.144127 ; !
hypothe ris _ iy
i P
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Table V. Compilation of Regression Analysis Data

Model: InY = InA + blnX! + clnX?
Type of Data Run | Run 2
| Pure Constant TA) 0.748900 | 0, 751177
First Coefficient {B) | -27.610352 | -1.910723
Second Coefficient (c) 12.842773 | (dropped)
Standard Deviation Y from Mean 1,084638 | 1,084638
Coefficient of Determination (r2) 0.878570 | 0.875469
Multiple Correlation Coefficient (r) -0.937321 | -0,935665
| Variance 71,22 0.154759 | 0.152363
- Standard Error of Estimate 1.2 0.393394 | 0.390337
‘ Standard Deviation of First
A Coefficient i 31, 500086 | 0.144127
| Standard Deviation of Second '
: Coeificient T 15.740889 | (dropped)
T Value for Coefficient Check after
First Run (a = 0. 085) 2,60 | ececeea-

Test of Significance of Simple Correlation Coefficient r

hypothesis r = 0

: t 9.935665-0 6.14 > 2,06 Test significant, reject
, 0.162363
; hypotheesis
|
! A 212
1 M=y oM
(21)
__ 22,12
{
|
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(22)

if M

545

Therefore, the regression equation has the correct form for the physi-

cal limitations.

Since Mach number is dimensionless, the inciusion of

R gives dimensionto A. R is not tested for limits of 0 and «, as
R = 0 implies a pointed body and R = » a flat plate,

Table VI. Compilation of Test Hypotheses

Hypo- Frequency Type Hypo-

the sis df Distribution a Test |Significant |thesis
R = 0 2, 18 F 0.05 1 Tail No Accept|
M = 0 2, 18 F 0.05 1 Tail Yes Reject
MR = 0 4, 18 F 0.05 1 Tail No Accept
?e = i‘r 26 t 0.05 | 2 Tail No Accept
62 = o‘i 26 x2 0.05 | 2 Tail Yes  |Reject
Xy = X, z 0.05 | 2 Tail No Accept
o2 = o2, 26 x2 0.05 | 2Tail | No  [Accept
A = 0 25 t 0.05 2 Tail Yes Reject
b = 0 25 t 0,05 2 Tail Yes Reject
r = 0 25 t 0. 05 2 Tail Yes Reject
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546 ‘ Design of Experiments

Next, the regression model was statistically tested against the
experimental data and the Ambrosio-Wortman model mentioned in Sec-
tion II. These computations are shown in Appendix B. The means and
variances for the experimental data, the regression model, and the
Ambrosio-Wortman model were computed based on responses computed

for the experimental Mach numbers. Table VI shows a compilation of - ..

the hypotheses for testing the regreasion model rneans and variances.
Table V1I shows the computed 95 percent confidence limits of the means
for the experiment, the regression model, and the Ambrosio-Wortman
model. The hypothesis that there is no difference between the variance
as experimentally determined and as determined by the regression
model is the only hypotheses rejected, The hypothesis that there is no
significant difference between the experimental mean and the regression
model mean or between the regreassion model mean and the Ambrosio-
Wortman model mean are accepted. The test of no significant difference
between the regression model variance and the Ambrosio-Wortman model
variance is alwo accepted,

Table VII Compilation of 95 Percent Confidence
S . " Limits on Means

Type Mean Mean A/R | Increment Limits
Experiment 0.793 + 0,451 1. 244 to 0. 342
Regression Model 0.726 + 0,249 | 0.978 o 0. 477
Ambrosio-Wortman | 0,687 ri 0.293 0. 981 to 0. 395

The computation for the 95 percent confidence limits for the experi-
mental responses, the regretsion model, and the Ambrosio-Wortman
model are shown in Table Vil. The regression model his the narrowest
range of values for this level of confidence. However, the X2 test of
the difference between the variances (the second statistical imnoment) ise
not significant nor is the difference in their means (the first statistical
moment). Therefore, even though the limits of the regression model are
narrower than the Ambrosio-Wortman model, they are not significantly
different.
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The fact that there i 2 cignificant Qifferince Netwoon the vaiiances
of the regression model and the experimental responses is indicative of
the insight into the functional relationship between detachment distance
and Mach number cbtained by the analysis of variance performed prior
to the regression analysis. The {it of the equation by the method of
least squares is approaching the true mean as evidenced by the high and
significant correlation coefficient (r) of 0. 94 (Table V).

In order to determine the power of the tests between the means of
the two models (regression model and Ambrosio-Wortn:an model), an
operating characteristics curve was computed. The calculations are
in Appendix B and the plotted values are shown in Figure 5. From this
plot, the probabilities of an acceptance of the hypothesis when it is
actually false {type Il error) can be determined for selected differences
in the means of the two models. For example, the probability of accept-
ance when the difference between X, and X, is +0.30 is about 65 per-
cent, and the probability of rejecting the hypothesis is 35 percent. .

Plots of the values of A/R computed for Mach numbers from 1 to 8 .

for the regrecsion model and the Ambrosio-Wortman model are. shown ... '

in Figure 6. The locus of the points for the regression model and the
Ambrosio-Wortman model are shown for comparison. There is a
region of high curvature or nonlinearity between Mach . 5 and about
Mach 2.5 with the curves becoming asymptotic beyond 2. 5. The
Ambroslo-Wortman model becomes asymptotic to a 4 /R value of 0.143,
whereas the regression model has a zero asymptote, the ultimate physi-
cal limit. As mentioned earlier in this section, the Duncan range test

indicated that the M; level was significantly different from the M, and

M level. Figure 6 shows the curve becoming essentially asymptotic
at about Mach 2.5 or at about the beginning of the M; factor level.
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552 Design n{ Experiments

IV. SUMMARY. This experimental and analytical exercise has led
to the development of a mathematical model of shock detachment distance,
This mudel has been statistically tested for significance on the basis of
comparison with several universal frequency distributions. The hypo-
theses made and tested are compiled in Table VI,

The hypothesis that the radius has no effect on the detachment dis-
tance was accepted. This does not mean that radius has no effect on the
shock detachment cdistance but that, within tk2 limits of the tesis, a
significant effect cannot be detected. That ‘s, one cannot reject the
hypothesis.

The hypothesis that the Mach number has no effect cn the detachment
distance was rejected. Mach numtbter is apparently a significant contrib-
utor to shock Jocation. This means that within the limits of the test a
significant variance »ssociated with Mach number is detectable and can-
not be-attributed to expenmental errar.

‘The hypothcsis that the MR \nferaction has no eifect on detachment
- distance was also accepted. -This hypothesis is accepted {nz similar
S reasonn as the hypothesis on radius eifects, From Table IV, the
P ANOVA table, it can be scen that the radius effect accounts for only
7 l. 65 percent of the total expected mean square of the experiment. Mach
{ numper accounts for 59,25 percent, MR interaction accounts for 3, 30
! pexrcent, and error accounts for 35,80 percent, It is pointed out that the
: | variance attributable to variables not included in the experiment could
: be summed in the Mach number factor, which if separated woulii reduce
! the detectable effects of Mach number. For example, body suriace
roughness, free stream density, and humidity, poseible sources not
included in the experiment, may significantly effeci shock location,

The hypothcsis on the derived regression constants, coefficient,
correlation coefficient were all rejected. This implies that these values
were significantly different from the values one would derive from data
where (Lere was no correlation between the variables included in the
analysis, The standard error of estimate of J. 390337 shows that the
fit for the universe line of regr."ssion is good but not peviect. For a
perfect fit, the standard error of estima:e would be zero and the.cor-
relation coefficient 1. 0 instead of 0. 935665. This emphasizes the fact
that all variables which affect the shock location are not included and all

-
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variances pre sent have not been accounted for. However, the model does l

fccmiimt fam tls malatiem amaumt af vawintiam in tha danandant varishla /A\ . .
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that is ''explained" by the independent variable {M).

The mean of the experimental data was not found to be significantly
different from the mean of the regression mcdel, whereas the variances
were significantly different. However, since the variance test is a
more sensitive test (i.e., the second statistical moments as compared
to the firat statistical moment), it is believed that this also attributes
to the reliability of the model. The mean of the regression model was
not found to be significantly different from the mean of the Ambrosio-
Wortmarn model. This was also true for the variances of the two
models. This indicates that within the limits of this investigation there
is nc significant difference between the model derived from wind tunnel
data and free flight data, That is, the hypothesis that the pertirrbations
of holding devices and expanding flow in wind tunnel tests increase the
variance of main effects or experimental effects cannoi be detacted.
This is not to say that they do not. It is indicated in Table VII that the
regression model is to some degree more accurate than the Ambrosio-
Wortman model as the 95 percent confidence limits on the means are
more narrow but not significantly so. '

Pt S AN AT WO O .

Therefore, within the limits of the aerodynamic and statistical

assumptions oi this investigation, the following general cbservations
are made: 7 /

1) The model derived is . reliable model ior the prediction of
shock detachment distance as a function of Mach number,

2) The model derived with free flight data is apparently not signif-
icantly better than models derived by data from wind tunnels.

3) The use of the statistical methods for the analysis of data can

lead to increased knowledge of the functional relationships of physical
variables.

4) The inferences that can be made through the analysis of data
by statistical methods are more objective inferences than could cther«
wise be made.
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5) The use of statistics is an extremely ueeful tool for the analyeis
of data which are functions of physical relutionships and in many cases
lead to increased confidence in the results of the analysis over mere
visual inspection of experimental responses.

V. SUGGESTED FUTURE STUDIES. The results of this study
indicate that the shock detachment distance for radius nosed bodies is
strongly a function of Macih number between 1. 0 and about 2. 5. After
2.5, the detachment distance is practically independent of Mach number. i
This was established by the Duncan range test which shows that there is
Apparently rio significant difference between the responsss obtained at the
Mz (2.5 to 2.9) and the M3 level (3.9 to 4. 3). Therefore. it seems
appropriate to perform future studies in the Mach range of 1.0 to 2. 5
to obtain a better understanding of the function where the variation is
moast sensitive. This will provide a better e¢stimate of the universe
regressior line of the shuck detachment distance in this velocity range.

Another 1mportant point to consider for {uture experimental studies
is to confound the duily variation with a selected interaction, since this

study shows that there is apparently no significant effect of interaction

‘on the, _l_hock deta.c_:hment distance. In this study, the dzy effect was
- confounded with the experimental error and main effects through ren-

domization of all factor levels and combinations with days, Another
approach would be through design, to confound a priori the day effects
with the interaction. This would separate the variance due to day
effects {roin the experimental error and main effects and may result
in a more sensitive test for main effects. However, this doss not nec-
essarily follow tecause the degrees of {reedoin for error would be
reduced for the same number of responses, If the day effects are not
large, the separation cf the day effects may not be sufficient to offset
the reduction in error degrees of freedom. This would require judg-
ment in future designs. In this study, it is believed that it was advan-
tageous to randomly distribute the day effects rather than confounding
them with the main or secondary effects since one objective was to test
for significance of .nteraction.

The very high significance of the Mach number factor indicated
that further test should be initiated to include other factors as free
stream density and some discrete levels of body surface roughness
(deneity and body surface roughness effects were summed as experi-
mental error in this stu'y).
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A suggested experiment of academic interest would be a 43 factor-
ial with day effccts cenfounded with the higheat arder interaction. The
three factor, four level experiment is auggested in order to test for
one degree higher order (cubic) effects. Models of constant radius, tut
with four levels of surface roughness, ai four levels of free stream
density and four levels of velocity would be flown in free flight.

This experiment would enable, through the analysis of variance the
deté rmination of cubic, surface roughness {S) and density (p) effects in
addition to velocity eifects. Since the first order interaction iu this
study ’MR)i was not significant, the day effects could be confounded
with the second order interaction (MSp)i-,]l<
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Appendix A
EXPERIMENTAL COMPUTATIONS

Sonic velocity was computed for each round from the following
equation:

(A-1) a= Vy ROT.

Model velocity was computed for each round from the following
equation:

- 5 f{eet

(A-2) Ve

Mach number was computed {or each round from the following
equation:
(A-3) . : ' [1’\4:%,.

The magnification factors ‘for the shadowgraph (F ) and Schlieren
(Fge) systems were computed for all rounds from the following equation:

Z Film Model Diameter/N
) ’ N=1'_
(A-4) N Fuh and F.c = =%
£ Model Diameter/N
N=l
The computed values are:
0.226
Fon 0,224 = 1009
(A-5)
_0.1915 _
Fsh' 0 334 - 0.855.

Shock detachment distance and model radius correcting for mag-

nification and location was computed as follows:
#
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o
(A-6) a sc sh
R 2
but
Roc(co\mtu) *Cx Rb x Flc x Rr
(A-7)
Rol'\(t:m.mtl) = CxRyxF, xR,
thercfore
&
sc_ . sC

A CxbeF.chr CxbeF'thr

= (counts) = _

R 2
(A-8)

] 8ycTan * Senluc
2(C xbeF'c xF'hx Rr)

Therefore,
(A-9) A(counts corrected) = 5, .Fan é.h!‘.c
and
(A-9) R(counts corrected) = 2(C x R xF _xF_ x R)

Example computations for round 75 as shown in Table I,

a = V1.4 x 1715 x (460 + 71)
= 131

5 ft

V * 37503530 secr

= 1416

*This value for round 75 and all other rounds obtained from submicro-
second electronic counters as recorded in aeroballistic data log.
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1416

= -11—3-1- s 1.252

(A-10) M

373(0.855) + 390(1.002) = 710, 46(counts)

>
"

B
"

2(3502 x 0.112 x 1. 009 x 0.855 x 1, 0}

676. 74(counts)

710. 46

m = ln 049.
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Appendix B
STATISTICAL COMPUTATIONS

l. Analysis of Variance

The computations for the analysis of variance was made from
the data shown in Table 1II.

s ye o 4 _,'__
@

Pl “wﬁﬂwmm [ o1 -l

Sums of squares are listed below. ;
Total sum of squares
abr 2 i
ss. = zzz x°... - EX.) P
t . rab i
ijk v
: (B-1) | 2 |
‘ = 50,746 - 2l dld
! 3.3.3
= 33.7628. ;
\ Sum of aquares due to radius : , : . S
b, o i
: . . EX gy L 1
o R~ jra rab S "
§ L
‘ S
B (B-2) _ (4.810)& + (10.13'5)2 + (6.469)2 A (21.414)& p ;
L - = 9 27 §
& t
bt = 18,6335 - 16,9836
yé ’ b
= 1. 6499, i ]
g-. Sum of squares due to Mach number. : “
?..Ij “ i>
i
i
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zxi2 v 2
M * 6 T Trab
_ (17.700)% + (0.481)% + (0.502)° (21 414)°
(B-3) - 9 27

35.5819 - 16.9836

18. 5983,

Sum of squares due to MR interaction

a

b
£r x2.. TX. EX. %% .
(B-4) SSmp = r " i " ra ' TTab

(3.87)% + (0.481)% + (0.502)% +

(5.860% + (0.799)% + (0.566)% +

(5.0:3)° + (0.826)% + (9.630)% - 1.6499 - 18.5989 - 16.98
2 ,

2.9885,
Sum of squares due to error

SS
€

SSt -85 - SSM - 88

R MR

(B-5) 33,7628 - 1. 6499 - 18. 5983 - 2.9885

u

10. 5261,

Sum of squares due to linear and quadratic effects within main and
interaction effects. (Coefficients of orthogonal polynomiala)l

lc. Rr. Hicks, Fundamental Concepts in the Design of Experiments,
New York, New York, Holt, Rinehart and Winston, 1964
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5¢1

L ) 2
| s, (-1(4. 810) +3o(;oélss) + W6.469)] 5525
- 2
§
i ; squ . [1a.810) ¢ -zglo3.1:§) + 1(6.469)] = 1.4970
: . .
{ ‘ [-1(17.70) + O(2 awf + 11 698)'2
[ ' Sy T T s 22l = 14, 3146
i | a
} _ lig7.70) + -2(2.016) + 1(1.698)]
F‘ g (B-6) SSMq = ~ T = 4, 2837
-k 2
b i Sséc e _[ys.827) + -yo. 502)3+ -1(5.013) + 1(0.630)]"_ 4 4ossi
. E ss _[-1(3,827) + 1(0.502) + 2(8.860) + ~2(0. 566) + -1(5. 013) + (0. 630 y 2
o RqM{ ‘ 3.12 —=
o = 2,198
B
' S5 _[=1(3.827) + 2(0.481) + -1(0.502) + (5 013) + -2(0.826) + 10, 630))°
Ri My 3,12
r = 0.0108
[+1(3.827) + -2(0. 481) + 1(0. 502) + -2(8.860) + 4(0.709)
" .2(0. 366) + + 1(5.013) + -2(0.826) + 1(0.630)] 2
| 5% = ,
F RyMy 3.36
'ﬁ’ _ = 0.6940.
2. Multiple Range Tests
pae §- Multiple range tasts are listed balow.
g
; : a. Mach Numbsr Effects
% b , = 1.967 0.224 0.188
P E (B-7) X,. treatments — 5 3
&
b
ﬂ“ g -

e T

g
%
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Error mean square = 0. 5847 withk 18 d. f.

Standard error of mean is

_ _[Error M§ _ ,0. 5847 _
(B-8) 5%i. * VNo ofObs. - 9 = 0.2545.
From Table E.l (a =0.05 n, =18) the significant ranges are

(B-9) P
ranges

"o
~n
L ¥V

Multiplying p values by Sz. , the least significant ranges are

| Xi.
4 _ :
g (B-10) PeR « 5% T
E Largest versus smallest:
. (B-11) 1,967 - 0,224 = 1,743 > 0.796%(significant)
, ; Largest versus second smallest:
- ( (B-12) 1,967 - 0.189 = 1,778 » 0.756'1'(lignificant)
" Second largest versus smallest:
. (B-13) 0.224 - 0,189 = 0.035 < 0,756
' (See Figure 4 for display of results), 3
i
! b, Radius Effects ?
(B-14) X ¥ treatments L 1226 2 ;19 9. ?34 i
f Standard error of mean is
THicks, loc. cit.
i
e LT T
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— e .
Error MS 0.5847
(3-15) s)?.j “ V No. of Obs. ~ \/ 9 =0.2545

From Table ZEI,1 {a =0.05 n, = 18) the significant ranges are

(B-16) P
ranges

n n
ol™
(V8]

Muitiplying p values by S)-c- » the least significant ranges are

J

_ P = 2 3
(B-17) LSR = 0,756 ©0.79%.

Largest versus smallest;

1,126 - 0.5344 = 0.5916 < 0.796 .
Largest versus second smallest:

1,126 - 0.719 = 0.407 < 0.756.
Second largest versus smallest:

0.719 - 0.534 = 0.184 < 0,756,
(See Figure 4 for display of results).

3. Computations for Testing the Model

a. Computation of Experiment Mean and Variance

lI-Iicksx, loc. cit.
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564 Design of Experiments

X X (X, - X )° X % (X, - x )°
‘.....l __i 1 € _1 _e 1 e
1. 049 0.793 0.0655 0.188 0. 3660
1.492 0.4886 0.253 0.2916
1.285 0.2430 0.182 0. 3732
0.146 0.4186 0.179 0. 3769
0.146 0.4186 0.205 0. 3457
0.189 0, 3648 1.034 0.0580 :
0.223 0. 3249 2.243 2.1025
0.139 0.4277 1.736 0.8892
0.140 0.4264 0.226 0. 3226
1.461 0.4462 0.280 0. 2631
5.478 21. 9492 0. 321 0. 22217
1 1.921 1.2723 0.203 0. 3481 g
0.268 0.2756 0.210 0. 3398
! 0. 217 0. 3317
§ Z 21, 414
>‘ce = 21.414/27 = 0,793
{ 2 p
. S, = 33.752/27-1 = 1.298
s, = V1.298 = 1139
: b. Computation of Regression Model_h:iean and Variance
: % 3 2 F % )2
X FexF X% KXF
1.382  0.726 0.4303 0. 314 0.1697
1. 618 0.7956 0,282 0.1971
1. 535 0. 6544 0.154 0. 3271
0.303 0.1789 0.151 0. 3306
0. 336 0.1521 0.152 0.3294
0.288 0.1918 1. 271 0.2970
0.149 0. 3329 1. 668 0.8873
0.1%4 0. 3271 1. 568 0.7089
0.152 0. 3294 0.276 0.2025
1. 557 0. 6905 0.283 0.1962
> 035 1. 7134 0.232 0.2440
1.7i4 0.9761 0.137 0.3469
0.299 0.1823 0.167 0. 3124
0.142 0. 3410
£19.597 ~TE11, 8449
I |
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X = 19.597/27 = 0.726
r
2
7 = 11.8449/27 = 0.4387

v = 1/0. 4387 = 0. 6623

¢. Computation of Mean and Variance of Ambrorio and
Wortman's Model (Z) for the Experimental Conditions

of this Studz

2
Model % = 0.14 3e3' 24/M
- = .2 = = |2
X, X (X. -X_) X, X (X, -X_ )
i aw i aw i aw i aw’
1.133  0.6875  0.1984 . 0.176 0.26l6
1. 642 0.9110 0.176 0.2616
1. 444 0.5722 1.493 0. 6568
0.218 0.2199 3,180 6.2125
0.229 0.2097 1.910 1. 4945
0.214 0.2237 0.218 0.2204
0.175 0.2626 0.222 0.2166
= s "2 = < |2
i(.l xaw (xi ] xr) ﬁ aw (xi ) xr)
0.212 0.2261 0.209 0.2289
0.176 0.2616 0.212 0.2261 -
0.175 0.2626 0.197 0. 2411
0.176 0.2616 0.172 0.2657
0.951 0.0694 0.179 0.2636
1.783 1.2096 0.173 0.2647
1.519 0. 6914 T18.564 Z16. 3939
X = 18.564/27 = 0.6875
aw
(B-18) o2 = 16.3939/27 = 0.6072
aw

Tow ° v 0.6072 = 0.7792

P 0 AU A = 0 AR = 7 T e




T
ez,

R

w26 Design of Experiments

95 percent confidence limits on experiment mean

< ) 1.139 . o
(B-19) Xe(0. 95) ” 0.793 £ ==’ (2.06) = 0.793 + 0. 451 = 1. 244 t0 0. 342

95 percent confidence limits on regression mean

- ) 0. 6623 ) o
(B-20) Xy(y g5y = O 726 + === (1. 96) = 1726 + 0.249 = 0.975 to 0.477

95 percent confidence limits on Ambrosio-Wortman Model mean

(B-21)
B X.w =0, 6875 + 0.7752 (1.96) = 0. 6875 + 0.293 = 0,98l to 0. 395,
= (0.95) V27 -
i
i d. Tests of Means and Variances
Hypothesis: Xe = Xr
- : t(3 =0.025d.1 +26) = #2.06

X -X'.0.793 - 0.726 _ 0.067

YT SN LNz 1.139/5.196 = 0.305.

s Erva,

o , Computed value less than table value. Test not significant. Accept

. \ hypothesis,
2 2
N Hypothesis: Se =0,
il 2
E‘ (B-23) k(3 =0.025d.1. = 26) + 13.8to 41,9
.
5 .S 1.298
o : e .
f ¥ ! = tmmn ——————— = N .
e E X n cz 27(0.4387) 79.885
l' r
]
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Computed value exceeds table value. Test is significantly higher.
Reject hypothesis.

Hypothesis: Xr = xaw

(B-24) z(% =0.025) = +1.960

__[0.4387 . 0.6072

o = + = v 0.01624 + 0.02248 = v 0,03872 = 0.1968
r-aw 27 27

0.726 - 0.687
0.1968

Z = 40,1981,

Computed value less than table value. Test not significant. Accept
hypothesis.

2

' ' 2
Hypothesis: crr = Caw

x(% = 0,025 d.f.

26) = 13.8 to 41. 9

(B-25)
No’z
2 0.4387
e = 2T (Gg) = 9
Taw

Computed value between table values. Test not significant. Accept
hypothesis. ’

e. C j ratin aracteristics Curve for

Two-T Test D 8 Between the Mean of the
Regression Maodel (X..) and the Mean of the Ambrosio-
Wortman Model (X, )

Assumption - the variances are known for both models.

VBTN P et et —— i e i b+ e+ Pt

ot e o o
TATERE = A K

78 A v -

B, 2 2

B TR PEE AR




e vt LT

T e

RS, SEPT

e e s LR S R

568 Design of Experiments
2 4N <r‘7‘“~ o P
. aw’r v’ aw _ [ 27(0.4387) +27(0. 6072)
or = N_+ N = 27 + 27
aw r
(B-26)
= 1f0.52277 = 0.7299
Y
These data are plotted in Figure 5.
Probability | Probability
_ of of
. 4 A d' 20,95 -d'/¢p.aw | Accestance | Rejection
(ir_ =%, _(d'lv N7 " 1,96 =~ d'/0 poaw ] L-p
()} 0 o 1.96 0..9% 0,08
0.0492 0.0680 | 0.2% 1.7 0,93 .07
0.0984 0.1360 | 0.%0 1.46 0.90° 0.10
. 0.1476 0.2040 | 0.75 1.21 0. 86 0.14
10,1968 0.3720 | 1,00 0.96 0. 81 0.19
0.2460 0.3400 | 1,25 0:H 0.74 0.26;
0.29%2 0.4080 | 1.%0 0,46 0. 63 0.38
0.3936 0.5440 | 2.00 0,04 0.50 0.50°
0, 4920 0.6800 | 2,50 0,54 0.32 0.68
0.5904 | 0,8160 | 3,00 <1,04 0.17 0.83
0. 6888 0.5520 | 3.50 <1.54 0.09 D.9Y
e
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PRESENTATION OF THE FIRST
SAMUEL S. WILKS MEMORIAL MEDAL#*

Frank E, Cruobbe

ACCEPTANCE OF THE FIRST WILKS MEMORIAL AWARD
John W, Tukey

It is indeed a pleasure to have Mrs, Samuel S, Wilks with us this
evening for the presentation of the first Samuel S. Wilks Memorial
Medal Award.

The Samuel S. Wilks Memoridl Award for statisticians was estab-
lished and announced a year ago at the Tenth Conference on Design of
Experiments in Army Research, Development and Testing. An account
of the announcement of the Wilks Award is given in the American Statisti-
cian for December, 1964, The idea for the Award was due to Major
General Leslie E, Simon (Ret.), who gave the opening paper at the Tenth
Design of Experiments Conference entitled '"The Stimulus of S. S, Wilke
to Army Statistics'', The Wilks Memorial Award is sponsored by the
American Statistical Association through the generosity of Mr. Philip
G. Rust, retired industrialist of the Winnstead Plantation, Thomaasville,

Georgia, The American Statistical Association accepted the obligation

of administering the Award and funds in accordance with guidance and
criteria which are consonant with law and with the wishes of the Army
representatives, Mr, Rust, and the American Statistical Association.

The name of the recipient of the Wilks Award is announced each year
during the annual Conference on Design of Experiments in Army Research,
Development and Testing.

With the approval of the President of the American Statistical Asso-
ciation the Wilks Award Committee for 1965 consisted of:

Dr. Francis G. Dressel, Duke University and the Army Research
Office-Durham
Dr., Churchill Eisenhart, National Bureau of Standards

“After the dinner meeting at the Eleventh Conference on Design of Experi-
ments in Army Research, Development and Tosting, the chairman of the
conference, Dr. Frank E, Grubbs, gave the above address. Professor
John W, Tukey was presented the first Wilks Memorial Award, Follow-
ing his acceptance of this honor he spoke to the group about his friend
Sam Wilks.
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570 Design of Experiments

Professor Oscar Kempthorne, lowa State University

Dr., Alexander M. Mood, U, S, Qifice of Education

Major General Leslie £, Simon {Rei. ), Winter Park, Florida

Dr. Frank E. Grubbs, Ballistic Research Laboratories, Aberdeen
Proving Ground, Maryland - Chairman

The Wilks Award Comniittee met during the annual meeting of the
American Statistical Association in Philadelphia on 8 -10 September 1965,
Many candidates for the 1965 Wilks Award were considered based on
nominations from individuals and also statisticians thought worthy of
consideration by the committee,

The Wilks Award is not limited to contributdre to design of experi-
ments activities in connection with Army research, development and test-
ing, but rather all statisticians who have miade significant contributions to
the general field of Army statistical endeavors, whether theoretical or
applied, are eligible, Moreover, persons eligible for the award include
not only government statisticians but also those {ron: universities and
industry. The annual programs of the Conference on Design of Experi«
ments in Army Research, Development and Testing indicate rather broadly
the nature of statistical endeavors of interest ta the Army, but the achieve-
ments of those being considered for the award need not be restricted to
these areas, Rather, as indicated earlier, the awardee is selected for

. the advancement of scientific or technical knowlodge in statistical efforts
which co=~incidentally will have beneﬁted the Army and goverament in one
way or another,

e b ——— .

As a result of the committee meeting, it is a great pleasure to
announce that Professor John W. Tukey of Princeton Univeresity has been
selected to receive the firast Samuel S. Wilks Memorial Medal Award. -

o i,

Professor Tukey has long been an authority on the statistical analysis
ot data and has received wide recognition for his many contributions to
mathematical statistice and applied statisticc in many different fields,
Professaor Tukey has contributed to the Army Design of Experiments
Conferences from the beginning and gave freely of his time to promulgat-
ting the uaes of statistics in Army applications, DOD applications,
Government and industrial applications. The citation for the firat Wilks
medalist reads as follows:
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To John W. Tukey for his contributions to the theory
nf statistical inference, his development of procedures
for analyzing data, and his influence on applicatione of
statistics in many fields,

s e T -
Lntantttitliin, . il G . . .

e g e
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Upon receiving the Wilks Medal, Professor Tukey responded as
follows:

e —rre
IR,
i N

M
We are met to honor Sam Wilks' memory. All of us would have so
much preferred to have had him here instead. Many of us knew him for
ten or twenty years, some for thirty. No matter whether we knew him
initimately as a close colleague and friend or only as someone met once
a year at such a recurring event as this, we all respected him and all
he stood for. In this we are but a small sample.

i s
ire i

The memorial minute of the Princeton University faculty begins
thus: ''Samuel Stanley Wilks died in his sle¢p on March 7, 1964 at the
peak of a distinguished career in teaching, research, and public service.
His sudden dzath, without any warning leaves many friends and associates
stunned by a sudden loss of a man upon whom they depended for advice on
problems large and small, for a wise appraisal of proposals undexr con-
sideration, for getting many jobes done---<a man instinctively so {riendly
and fair that everyone responded to him with great affection. His death
terminates a quiet, penetrating, and influential leadership in the work
of many organizations---especially in mathematics, statistics, and
social science---to which he brought wisdom, commitment, persist-
ence, and a remarkable sense of the importance of new developments,
His passing leaves an emptiness in 8o many plans, that one wondere how
one man was so versatile and did so much".
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The memorial notice of the American Philosophical Society approaches
ite end thus {1]: "In his service to our Society, Sam showed all the won-
derful characteristics we have noticed elsewhere: quiet, modest
diligence, deep wisdom, a technical skill that was always adequate to
any demand; the ability to comprehend, and bring others to comprehend,
the broader issues. ' The notice then ends: ''Mosteller's memoir,
written for statisticians, was fittingly entitled: ''Samuel S. Wilks:
Statesman of Statistics'. As members of Benjamin Franklin's own
society it is only right that we salute ourdeparted colleague and {riend ae
"Sam: A Quiet Contributor to Mankind',
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57¢ Design of Experiments
On the afternoon of his death Sam told my wife: "Now that so many
VL G e 1 R tasiuaty abai e aiu h-.ad’n‘.,,- statistive departme:‘.ts ol
tharr ean i 's timie that John and I worked out something new to do. " 1
never saw Sam oagain: what we are working out in Princeton today is not
wnal 1t would have been unaer his lcadership, but we can, and will, do
vur bhest to make the new Department of Statistics something of which
Sam would have been proud.

For thirty years he kept Fine Hall statistics in balancca contact with
mathematics on the one hand and with a wide variety of applications on
lhe other, showing clearly by his example how it was best to combine both,
His recogmtion of the dangers of tight Gaussiar assumnptions led him to
pioncer with non-parametric methods, His recognition of the growing
anporianc e of computing came very early; the first punched card equip-
ment on the Princeton campus occupied the room next to his office.

A8 a4 ﬁri;ﬁed Princeton statistics comes into being and grows, we

will do all we can to continue his tradition. We will emphasize the need

lor combining contact with mathematics and contact with applications.

We will do all we can to bring statietics, computer science, and the use
of computer tacilities ever closer together, We will try to be ever more
realistic in understanding the problems of the real world and in formulat-
ing those pale copies of real problems, whose solutions serve to guide

us a8 woe face reality, We can do no less if we are to follow his noble
frauition

REFERENCE

[} Sumuel Stanley Wilks (1906-1964). 1964 Yearbook of the American
Philosophical Society, 147-154,
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TACGET COVERAGE PROBLEMS

William C. Guenther
University ot Wyoming, Laramie, Wyoming

Much of the material contained in this paper is a review of
literature which has appeared in many different publications.
The definiticn of a single shot coverage problem which was
given in a paper by Guenther and Terragno (1] is oxtended to

a raultiple shot case. The results which were reviewed in
reference | appear here in abstracted form since they are use-
ful for the new extenslon, Some models for the multiple shot
case are considered in detail. The latter include some for
which results have not been previously published, It is hoped
that this paper will be a coordinating forece for future research.

In recent years a large number of publications have appeared on proba-
bility probleme arising from ballistic applications. Many of these papers
and reports are concerned with topics which are often referred to as
coverage problems. A definition of a coverage problem, which yields ,
many interesting models as special cases, appears in a paper by Guenther
and Terragno (1] and will be reproduced here. That definition was for

~ the singls shot case but only minor modifications are required to extend .

it to a multiple ahot situation. Further modifications may be necessary
if it is desired that the definition yield certain other problems, which have

already been investigated or may be formulated in the future, as special
casus,

Although most work in this field has been restricted to the two-
dimensional case, some applications are meaningful in three dimensions. .
It is doubtful that the coverage problem has any useful interpretation in
more than three dimensions, We will use n-dimensional notation not only
because it includes the cases n =2 and n = 3 but also because results
one derives can occasionally be used in unexpected places where n dimen-
sions are meaningful. :

For brevity we will use the notation X, = ("n' POREEY xm) and
S‘dF(Xi) will represent an n-fold integral.
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574 Design of Experiments

DEFINITION FOR THE SINGLE SHOT CASE, Before attempting to
define a coverage problem, let us consider a special case which will help
to intynaduce anme nf the essential ideas and language. Suppose that a

point target is located at the origin of a two-dimensional coordinate system.

A weapon with killing radius R is aimed at the origin with the intention of
destroying the point target. When the weapon arrives at the target, the
latter {e located at X, = (x 21’ * 2) a randomly selected position within

orona circle of ra.diu- D centered at the origin (see Figure 1), That

Fig. 1. xz is point target and weapon has killing radius R.

is, the probability density function of xz is

1 2 2 2
8(xpr %55) = -z 0Sx, *+x,8D.

Assume that aiming errors are circularly normally distributed with
unit variance so that the center of the lethal circle X, = (x1 ' % ) has
p.d.f, 1 1 2

fxy) %) = E!F exp - %"‘f z)] '
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Now a given point XZ will be destroyed if the impact point of the weapon

is within R units of X?.' The probability that this happens is

hixy» xz,) = S‘CS TR P TR
1

2 2 2
-%..) -
where C, is the region (xll X5 * (:(1Z xzz) < R°. The probability

of destroying the target (that is, the probability that the impact point is
within R units of the target given that the target is as likely to be at one
point as at any other within the circle of radius D) is

P(R,D) = S‘c g hlxy e %5,) 8y %p,) dxy, dx,y,
2
+ x

where C2 is the region xgl :Z < Dz. The evaluation of P(R,D) for

any number of dimensions is discussed in Section 2 of reference l-and is
mentioned in the abstract of that paper which appears in the next section.

Now let us formulate the definition of a.”céve'ra;ge problemrfor the -

single shot case., Let Xl be the impact point of the weapon, Xz be the

position of the target at the time of impact, pl(xl. XZ) = probability of

destroying the target for given values of X, and X, (sometimes called
the damage function), ¥(X,) = the distribution function of the impact

point, G(Xz) = the distribultion function of xz. Then
[ ]
Pz(xz) = S‘ Pl(xl. xz) dF(xl)
-0
= probability a given Xz is destroyed
and
L
B(.) = = S P,(X,) dG(X,)
-0

L

probability of destroying a point target whose
position is governed by G(XZ).
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576 Design of Experiments

We will define a single shot coverage probiem as the computation of a
probability of the type P(.), that is, the evaluation of

) P(.) = S.. S.,. P (X, X,) dF(X,) dG(X,)

All three functions pl(xl. XZ)'

P(-) ) will in general depend upon parameters.

F(Xl). and G(Xz) (and consequently

Although the order of integration in (1) has proven to be the most
efficient in the majority of problems which have been studied, there is

no reason why that order cannot be reversed if it is profita.bl.e to do so.

This change gives

(2) ' P(.) = S' S P/(X), X,) 4G(X,) dF(X))

Several special cases are worthy of consideration. If

(a) Pl(xl. X)) =1, X,¢ region C, (usually a sphere)-
(3) = 0, otherwise - |
(v) g(XZ) = 1, X,=B= (hl' . bn)
= 0, otherwise,
then (1) reduces to
(4) () = { erx)
©

which is the probability content of region C, under distribution F(Xl).

If (a) of (3) is satisfied (sometimes called a zero-one damage function)
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but G(XZ) does not concentrate all the probability at one point, then (1)

reduces to
(-]

S‘ S' dF(Xl) dG(XZ) )

-® C1

(5) P(.)

where in general C1 is defined in terms of both Xl and Xz.

it X2 is uniformly distributed over a region C_, that is

2)

(6) §(X,)

I
j
O

)
o
[ ]
O
™

1t
o

otherwise

where V(C ) is the volume of C,, and the dama.ge function is zero-one,

then P(:) can be interpreted as the expected fraction of overlap of the
region of total destruction and a target area C2 To see this integrate

in reverse order. 'G'i:v_en a value of Xl (see Figure 2)

o
N

Fig, 2. Circular area of total destruction and target area C

§
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578 Design of Experiments

Xz is captured if it:lies in the region common to C1 and CZ' The proba-

bility that happens is

L Loy
S Vic,) X, = VIC,)

c:lr\c2

where V(Xl) is the volume common to C1 .and C2 for given Xl. Then

integrating over Xl we get

S‘m V(Xl) v(xl)

which'is, b} definition, the expected iraction overlap. Multiplying the
latter result by _V(Cz) gives E[V(xl)] or the expected overlap.

When the damage function is not of the zero-one type and Xz has the

density (6), then P(') can again be interpreted as the fraction of the
target area destroyed. This is best seen by writing P(.) as

p(-):f P,(X,) \7%5';7 ax,
C
2 .

and observing that since PZ(XZ) can be interpreted as the fraction of
the point X, destroyed, E[PZ(XZ)] is the fraction of the target area
C, which is destroyed. Morganthaler [2] has used this interpretation.

SOME SPECIFIC RESULTS FOR SINGLE SHOT CASE--GUENTHER-
TERRAGNO PAPER, A comprehensive review of results for the single
shot case has been published by Guenther and Terragno [1]. This paper
lists 58 references of which about 30 deal directly with target coverage.
A thorough knowledge of results for the single shot case is extremely
helpful in the multiple shot situation. This section will be an abstract

of that paper.

Ll
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Design of Experiments 579

For most models discussed in the review it is assumed that X has

[

density !
f(xl) = f(xlll e ey xln) g
2
v = (Zﬂ)*n xI‘I v N exp L ; (xl /e )2 ]
i=1 1 2 i=1 i1 2
Section 1 is devoted to probability content problems, special cases ,’

n
of (4) with the region Cl being I (xli-bi)2 < RZ. Thus the point B
i=l

is destroyed if the point of impact is within R units of the fixed point.

If all 0'121 = o'z, then P(:) is the integral of a non-central chi-square

density function with n degrees of freedom and non-centrality parameter

n .
Z bi2 /cl'2 . Very extensive tables exist for n=2, adequate tables for
i=1

n = 3(1)30(2)50(5)100. Results are less abundant if the variances are not
equal, However, for B=o0, n=2, 3and B #0, n = 2, existing tables
seem to be quite adequate. '

Section 2 describes some epecial cases of (5). The most interest-
ing results are obtained by using (7) with equal variances for the density.

1

of Xz, XZ is destroyed. For these cases the probability can be
expressed as the integral

n
of X, and Z (x,-x,,)2 SRZ for C,. Thus, if X, is within R units
1 i=1 11 721 1

R2 rZ R2 rz r :
® 2= [ aEia 5 acxy) = aEria i) sad
T o a v
“00 -0
Rz rz
where H(-é-;n. —3) is the non-central chi-square distribution function
T T

o m ey e e
E T R S
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. 2,2_ 2,2
with n ucgre es of freedom and non-centrality parameter I xz‘/c =z fo",
i=l

“Q(r/e) is the distribution function of r/¢ (which is, of course, determined

by G(Xz) ). The evaluation of the integral (8) is discussed for the cases:

1 Ttl‘\e distribution of Xz gives equal weight to each point on

z x;i = Dz. no weight elsewhere, That is; XZ is uniformly

i=l

distributed over the surface of a sphere of radius D centered at the
origin,

I1. XZ is uniformly distributed within or on a sphere of radius D

centered at the origin. Thus,

1l

gp’

i 3

2
*21

= 0, elsewhere
where V(D) is the volume of the sphere,

III. X, has a density g(Xz) taking on the form (in spherical coordinates)

2
p(r.ﬂ-l. cue 'an-l) = (ZDT\'n.l)-l y 0 § r s D
0sga £, i=1,...,n-2
0 san-l £ 2n
= 0, elsewhere

so that the spherical coordinates are each independently and uni-
formly distributed.

IV. r/c has a gamma distribution.

\' rz/c-zp has a gamma distribution,

VL. r/c has a beta distribution,
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Finally, a case not falling under (8) in which X, and X, both have density

(7) (but with different variances) is discussed. Perhaps II is the most

interesting since it generalizes a well known result by Germond [3]. For
this case

Z 2
9 B)=pED - H(z,n+z—->+(§§§-)m 5 0, 2
a ()

and evaluation is accomplished by using tables of the non-central chi-

square distribution (4] .
In Section 3 a few models with damage function
iy 2, .2
Pl(Xl,Xz) = exp[ - El (xZi-xn) /2 A7)
are discussed. Again X, is assumed to have density (7). Then P(.)
is evaluated for
I. Same as Case I of Section 2.

II. Same as Case 1I of Section 2 except that unequal variances are
permitted in (7).

III, Same as Case III of Section 2.
1V, Same as Case V of Section 2,

V. Both X, and X, have density (7) but with different variances.

EXTENDING THE DEFINITION TO THE MULTIPLE SHOT CASE.
Again, having a special problem in mind will help in constructing the
definition, Let us consider the following case discussed by Jarnagin
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and Di Donato (5] . A big bomb is aimed at a point target located at the
origin of a two-dimensional coordinate system. When the weapon arrives
at the target, the latter is located at XZ, a randomly selected position

within or on a circle of radius D. Assume that aiming errors for the big
bomb are circularly normally distributed with unit variance. That is, when
the big bomb detonates its position X3 is governe d by the density

-1 1, 2 2
f5(xq) %35) = 37 exp [- 5(xy + x3,)].

At detonation the big bomb scatters N bomblets, each with lethal radius R,
with impact points uniformly and independently distributed over a circle
of radius A, Thus, the density of X the impact point of 2 bomblet,

I is for given X3 !
b
B! 1 2 2 2
| 3% 1 X5) = — B T U PR PN
Yl ook - 32)
i = 0 , .otherwise.

Now, given that the target ia at X, and the big bomb detonates at X

o F et | 3!
I! X, is captured by-a bomblet if Xl' is within a dictance K of Xz'(’see Figure
; 3). The probability that this happens is
g X l
Pg = g —5 9
c A
1

' 2 2 2 '
where C, is the region (xll'x21) +(x12-x22) € R, The target will be

captured if it is covgred by at least one bomblet. This happens with
probability 1-(1-Ps) because of the independence condition. The prob-

ability that the target will be captured regardless of where the big bomb
detonates is b

h(X,) = S‘ - a-py™] (X ) aX,

T

s el ot i ki e samnah s
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FIG. 3. Big bomb detonates at X, bomblet at X..
3 1
Target is at Xz.

Finally, the probability that the target will be captured no matter where
it is located is

g n(X,) g(X,) dX,

€2

wheré CZ is the region xil + xgz < D2 and

1 2 2 2
g(X,) = ' *a t %, 8D
= 0 , otherwise,

This problem will be discussed further in a later section.

To generalize the above result let X. = the impact point of the big
bomb, F3(X 3) = the distribution functiof of X, X, = impact point of
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a bomblet, F‘m(x1 [ Xs) = conditional distribution of Xl given XB. the

same for each of the N bomblets with all N impact points being independ-
ently distributed, X2 = position of target when the bomblets impact,
G(X 2) = distribution function of the point target, pl(xl, XZ) = probability

of destroying the target for given values of X1 and xz, Ps = probability
of capturing the target for any one bomblet given X3 and -X?. Then

«
, Py = S‘ Pl(xl'xz) dF13(X1|X3)
- e
i
: and
N § [ ] L]
| S S 1--P)N] d4F,(X,) dG(X
. 10 P(:) = - (l-
ol -t e
w4
- is the probability of destroying the target. Expanding the binomial under
the integral in (10) leads to the alternate form
T . k+1 /N k
q . L 0 = -
P () ORI S g Pk aF (X ) 4G(xX,).
‘ : =

i v -

g _ We wili define an n-dimensional coverage problem as the evaluation of a
) probability of the type given by (10) or (11).

i . If X, has density

1, X, =B (a fixed point)

a

| (12) (%)

0, otherwise

’ then (10) reduces to
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) N 4' :
(13) () = | 1-u-pM) dalx,) |

- 00 g
g 2
where X3 =B in PS. Formula (13) yields P(.) for N shots aimed inde- % ;
pendently at B ( at the origin if B = 0). Further if N =1, (13) becomes : :
o ® .

g S' P/(X,.X,) dF(X|) dG(X,) , f

0 ~&

the single shot formula (where F(Xl) = F13(X1| B) ).

SOME SPECIAL CASES OF FORMULA (13), g
Big Bomb Hits Origin with Probability 1, Zero-One Damage Function é
Assume that aiming errors of the big bomb are governed by the p.d. f. 5
of (12) with B = 0 and that X_ is uniformly distributed over a sphere of
radius D centered at the origin, that is, has p.d.f.
-1 no2 2 - | 3
‘ (14) (X)) = [v(D)] T, Z x,, < D° (regionC,) '
H 2 121 2 = 2 L
= 0, otherwise i
‘ i
' 'l
where V(D) is the volume of sphere of radius D. We will also assume : \_
that the density of Xl given X3 is i [
i i n -1 1 2,2
= FRL - - - i
> ) £4(X1%5) = [(2m) s o] expl-3 if‘l CREINLN ;
¢
E‘ with crn=cr, i=1,2,...,n and where x3i =0, i=l,2,...,n because the

big bomb hite the origin with probability 1, Then
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Ps = S‘ dF)3(X, 1 0)
!

2
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n _
where C1 is the region I (xll'x21)2-<- R, It is well known that this
i=1

integral has the value
2 2

R r
(16) Ps- H(—z-;n. -—z-)
[ T
. n . o
where rz = Z xz » Hence.
24
i=l
.. R D ' g2
)= pE. 2 - Lo DG
CZ
D .
N : 2 2
Y - k4l N R r .k nr
S C U o W 1 L ) L

k=1 o o

) e

e i M e o DL

s ratlrioian -

The multiple integral converts to a single integral by virtue of the result
on page 248 of (1] . We know from Formula (9) that the single integral in
(17) can be expressed in terms of H functions for k =1, A corresponding
result fnr k > 2 may be possible but it is unknown at the present time.

———— i i

Fur the case n=2, Jarnagin [6] has prepared tables of (17) for R/¢
= . 005(. 005). 05(. 01).10(. 02). 20(. 05)1(.1)2(. 2)4(. 5)10, D/e = .05, 1.(.1)
4(.5)12, N ='1(1)20. Also included is an-inverse table giving the number
of bomblets N required to make FP(:) =,05(.05).95 for the range of
D/¢ given above and with R/¢ ranging over values required to make N

go from 1 to 999,
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Big Bomb Hits at Point B with Probability 1, Exponential Damage Function

Assume that the damage function is

oy

(18) PUX.X,) = expl- 5 T (xy-x,)%/A%

WMo

1

and that the p.d.f. of X| given X, = B is given by (15) with X = by

3
i=1,2,...,n, Then an easy integration yields

.n n
i A 1 2, 2 .2
Ps = — 5 exp[-2 z (x2i-bi) /(cli +A9)] .
(o, +dA) i=l
=1 M |

~i

Expanding the binomial in (13) we can write

19 : .
19) 2 nk n (x, -b )Z

N , .
p(-) = £ (- A (-5 s -2 11 ax,).
) el (l:b 5 a2 ok oxplg) B —— R

" First assume that X_ is uniformly distributed over an ellipsoid
whose center is at the orizgin and whose axes are parallel to the coordinate
axes. Then

. 0 n , .
S(XZ) = [V(CZ)] ) ifl (XZi/ai) <1 (the region Cz)
= 0, *  otherwise

1 1
2 Z 2
where V(Cz) is the volume of CZ' Then if we let’ k 2(xZi-bi)/(crn+ AZ)2

=¥ the probability (19) becomes

Ceme e e vrlew pugt—— e e




T LA

[ L

588 Design of Experiments
(20) N ) Ak et
P(:) = z Jk

kel V(C,) Wi 'n(t +f‘) ¥(k-1)

where

1 - _f f, (¥) ax,

Cax

fo(Y) ie the standard normal density in n dimensions, and CZk ie the

region

( b K 2 -
' vy 3 z '-5)

z (o, +2%) <1
zz

i=l

k/a. +A)

'fablel from which J’k can be obtained when n=2 have been prepared

by'Germond. {7] , DiDonato and Jarnagin [8], Lowe [9], and Rosenthal

and Rodden [10] . If b1 = b2 = 0 so that the ellipse is centered at the

origin, then Jk can be evaluated from the tables published by Eseperti [11],

Harter [12] , DiDonato and Jarnagin (13] , and Marsaglia (14] . All the
above tables are described by Guenther and Terragno (1] . Groves [15]
derived (20) for the case n = 2 and includes a 16 page table of J, for this
case (with /by = b, = 0) in his report.

Ifal'i v, = cr.a.ndai=D. then

1
2
k . 2
J, = H «' n, v
k 2, 2 2' ! ]
[D( AT%)

where

g 1ot fuatg SRR L v e Aeie kA ko e ekt et s A e el = et A se o o
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¥urther if B = 0, then Jk reduces to a central chi-square probability,

For both the latter two cases many tables are available and a description
of these tables is found in Section 1 of [1] .

If in (19) we take B =0, 0., =0 and assume that G(xz) gives equal

i
weight to each point on the sphere Z xzi = Dz. then (19) reduces to
i=1
N nk 2
k+l N A kD
(21) PU) = BANTG) g P Tz
(¢” +17) 2(c”+1")

k=l

since everything comes out in front of the multiple integral except dG(Xz)
which when 1ntegra.ted over the whole space yields 1. For a G(Xz) 80

chosen, Xz picks its position at random on the surface of the sphere. The _

‘answer is the same, of course, no matter how G{X.) ullgnl probability .

on the surface of the aphere but uniform assignment’is the most realistic’
model. :

As one further model let us assume that B=0 and X

2 has p.d. £,

[(2m) t®

&zi]'l'.xp[. 1 s (5‘21/"*:1)2] .
i=] _ ."=1 S

Then (19) readily reduces to

N : nk
k+ N A
()= 2 () .
kel k ‘f?ucnu)“‘ U (o 408 425

i=l

SOME SPECIAL CASES OF FORMULA (10).

The J a.rr.ailn-DiDonato Mcdel .

Let us return to the example which we used to introduce multiple
shot coverage problems but generalize the discussion to n-dimensions.

L R M
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Then Xl given X3 is uniformly distributed over a sphere of radius A

centered at X1 so that
£.(X 1X) = (VA ™Y I (x,-x,)°S A? (region C)
13v%1 13 ' M"‘u i 8 3
= 0, otherwise,

Xz is uniformly distributed over a sphere of radius D centered at the

- origin so that it has the _p. d.f. given by (14), and

e
[- ?3( / )]
P exp 1 "31 T3

Here V(A) is the volume of a 'aphere of radius A, We Qﬂl uiuﬁw that
Ty X0 i=1,2,...,n and for convenience (a3 DiDonato and Jarnagin have

done) we will take ¢ = 1 which means all distances are expressed in
standard units. The damage function is

2

n
2
Pl(xl.xa) = 1, 131 ("-11'821) < R7. (region Cl)

Then
1 V(2
S‘ Wa) % = VIAJS

Cl
n

where t2 = Z(x 2 and V(tz) is the volume common to Cl and

21" 31)
CS' - Hence, aince all functions appearing in (10) are known, the 2n-fold
integral could be written down with the integrand expressed in terms oi

X2 and X3.
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Some simplification is possible, We seek E[u(tz)] where u(tz)
=1- (l-PS)N. If the density of t2 were known, then P(.) could be expressed

as a single integral with integrand in tz. We know from worldng wig Z
single shot coverage problems that the density of t given r?

i=l
is non-central chi-square with non-centrality parameter r . This is
¢(n-2)/2

2 2 (_)

(24) h(t";n,r") = exp[--%-(tzﬂ'z)] I(n_z)/z(tr)

where I( 2)/z(x) ia the modified Bessel function of order (n- 2)/2 The

density function of e (see [1] , p.248 for the density of r) is

2 (n-Z)/Z o
S(rz) -L—L;——— . 0< r? < p?
2D
= 0 . otherwise,

Hence the joint distribution of tz and :-z is h(tz; n, :z) q(rz) and

(A+R 2 2
P(:) = § ' ) S. u(tz) h(tz;n. rz)'q(rz) drz' dtz,
. 0. 0

(25)

a double integral.

For the 2-dimensional case a further simplification is possible
since (24) is then lymmetric int2 and r2, Thus, in (25) the integration
of r2 yields H(DZ?;2,t2) so that

2
A+R 2
(26) p(.) = S( ) -“-(t—z)- H(D% 2,t%) at?
D
0
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The Jarnagin and DiDonato report includes over 100 pages of graphs
which yleld the P(-) of (26). Two cases are considered., For Case I,

R< Aand 20 § N <500 for various values of D, A, and wRZ, For Case
I, R>A andl § N § 20 for selected values of R, D, A, The Case I
graphs give 7D2 P(.) while the set for Case 1l give P(.) directly.
Various approximations to P(:) are discussed.

_ Froma practiéal point of view the most interesting caseis R < A,
For this situation it is immediately apparent that bounds on the P(.) of
(26) are

2
2 (A-R)
n-(1- BE)N] S' -3-2- H(DZ;Z.tz) at® < P{-)
| N 2 N, (AR 1 2. 2 .2
{27) S [16(1--;5-)_] S ;Z-H(D ;2,t7) dt
S o 5 .

Both integrals appearing in (27) can be expressed in terms of H functions
by using (9). The H functions in turn can be evaluated by using the

tables of Hayman, Govindarajulu, and Leone [4] . Of course, the smaller
the R the closer the bounds will be.

EXPONENTIAL DAMAGE FUNCTION, DETONATION POINTS OF BIG

AND LITTLE BOMBS NORMALLY DISTRIBUTED, Assume that the
damage function is given by (18), the density of , Biven )C3 by (15),

and the density of X3 by (23). Then a straight forward evaluation yields
[ ]
s * S PiX)» X)) 150X, [X,) aX)

P

Al‘l

t (crlzl+ Az)s
i=]

1 5 2, 2.2
exp [' 'é' 121 (x3l.x2i) /(a'n‘+x )] ¢

e e —e——
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The same iind of evaluation next ygives

n -
A K )Lkn exp[(;lc-) =, x2 /(k’cr2 +o'2'+)t£)]
7) 5 X/t
(28) Pg X)Xy = =37 3. 3
e ” [(o'u+A ) (ka'31+cru+h )]
i=l

To write down P(.) as given by (10) we need finally to integrate (28) over
the range of XZ'

For several distributions of X2 P(:) is obtained very quickly. We
will consider: .

I
i
i
!
Iy
M

Casel: o, =0,, 0, =0, and G(X,) gives equal weight to each point
34 3 i 1 P ZF ! :
on the sphere él Xay = D

. Then with the same reasoning used .

L tqrobtain (21) we get
o N L e [-kD?/2 kel 22)]
E (29) P(') = T (- (1:) Z L 2(k1) . 2 32 > Zoanj2 .
k=1 x [(a1 N (ko y4o'y +A )] S
F % Casge II: The density of "XZ is 'givén'by (14), Letting )
% Vix,, o f R
kogy*oyy A o R
and recalling that ' ‘ o | 7-_ - P |
| V(D) = /% DPmELE) |
\w

we get
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kn _un+2, ,n/2
) = B (0 . nn"")z
k= kK pngn/e T (a’u + £ &-D/2
i=l

(30)

1 102
§ a2 PR E v ey
: .
1
2

where C, is the region Z‘i (ko'“ 11+J\ )yi/k D”. The

evaluation of standard normal integrals over ellipsoidal and
spherical regions is discusaed in Section 1. 3 of (1] .

Caae III The denli.ty of X, s given by (22). A routine integration yields

kn
k+l,N
D = A

k-1) 2,2 2 ’
1[( H+A )( (o' ko, ko +27)] :

(31) - - '_'. P(.) z( <1)
T kal
i=

GCONCLUDING REMARKS, Although the definition of a coverage
problem which we have given can be further generalized, many of the
interesting models which have received attention are special cases of
the definition.as we have given it. Certainly there are models which
may be of interest other than those covered in the Guenther-Terragno
review and in this paper.

In this review we have considered only the zero-one damage function
and the exponential damage functicn given by (18). Many others have been
proposed. For example, another possibility that has some merit is

n 2 2
P(X.X,) = 1, ;&;l (3,-%,,)" S R

(32)

1, b 2
= exp {"z'[ & o=y,

e e L

2

- RZ] /Az} ) él("n"‘m)z’k .
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The damage function (32) is found in [1] but the topic is not pursued. Other
damage functions are mentioned in [16] and [17].

The first step for a potential researcher in the field of coverage
problems is to select a useful and realistic model. Having made that
choice, the remainder of the task confronting an investigator is mainly
numerical. It is possible that most or all of the computation required
is already available in the literature if one knows where to look. E-en if
no such results are in existence, chances are excellent that probabilities
of interest can be evaluated if one is clever enough in handling special
functions and computers.

Work on target coverage problems has suffered from a mass duplica-
tion of effort. This is in part due to (a) some company publications being
difficult if not impoesible to obtain, (b) results having been published not
only in obscure publications but also in many different journals so that '
it is difficult to keep current in the field, and (c) some papers being

difficult to read unless one has background in both probability and target
coverage, .

REFERENCES

1, Willlam C. Guenther and Paul J. Terragno, "A Review of the Litera.-

ture on a Class of Coverage Problems," The Annals of Mathematical

Statistics 35, 232-260 (1964).

2. George W. Morganthaler, 1Some Target Coverage Problems "
Biometrika 48, 313-324 (1961).

3, G. E. Haynam, Z, Govindarajulu, and F. C. Leone, "Tables of the
Cumulative Non-Central Chi-~Square Distribution, ' AD 426 500 Office
of Technical Service, U. S, Department of Commerce, Waahington,
D, C. 20230 (1962).

Circular Target by a Multiple Warhead, " NWL Report No. 1936,
U. S. Naval Weapons Laboratory, Dahlgren, Virginia (1964).

6. M. P, Jarnagin, Jr., "Expected Coverage of a Circular Target by
Bombs 2all Aimed at the Center, ' NWL Report No, 1941, U, S,
Naval Weapons Laboratory, Dahlgren, Virginia (1965).

(O A

Wi TS o




9.

10.

11,

} 17.

596

14,

15.

16.

Design of Experiments

..... —dliabd o

)
»
t
3
B

ee  ee "
n, n. uerrnosnug, Llllcsxnuun ui the Saussian Distributis YT an

Offsct Ellipse, ' Rand Report No, P-94, The Rand Corporation Santa
Monica, California (1949).

A, R. DiDonato and M. P. Jarnagin, Jr., "Integration of the General
Bivariate Gaussian Distribution over an Offset Ellipse, ' NWL Report
No. 1710, U. S, Naval Weapons Laboratory, Dahlgren, Virzinia (1960).

J. R. Lowe, '""A Table of the Integral of the Bivariate Normal Distribu-
tion over an Offset Circle, " Journal of the Royal Statistical Society,
Series B 22, 177-187 (1960).

G. W. Rosenthal and I. J. Rodden, "Tables of the Integral of the
Elliptical Bivariate Normal Distribution over Offset Circles, "
Lockheed Report No. IMSD-800619, Sunnyvale, California (196l).

R. V. Esperti, "Tables of the Elliptical Normal Probability Function, "
Defense Systems Division, General Motors Corporation, Detroit,
Michigan (1960).

H. Leon Harter. “Circular Error Probabilities, ! Journal of the Amer-
ican Statistical Association 55, 723-731 (1960).

. A, R. DiDonato and M. P. Jarnagin, Jr., "A Method for Computing
. the Generalized Circular Error Function and Circulat Coverage

Function, "' NWL Report No. 1768, U. S. Naval Weapons Laboratory,
Dahlgren, Virginia (1962).

George Maraaglia. "Tables of the Distribution of Quadratic Forma
of Ranks Two and Three, ! Boeing Scientific Research Laboratories
Report No. D1-82-0015-1, Seattle, Washington (1960).

Arthur D. Groves, "A Method for Hand-Computing the Expected Frac-
tional Kill of an Area Target with a Salvo of Area Kill Weapons, "
Ballistic Research Laboratories Memorandum Report No. 1544,
Aberdeen Proving Ground, Maryland (1964).

Operations Evaluation Group, '"Probability-of-Damage Problems of
Frequent Occurrence, ' OEG Study 626, Office of the Chief of Naval
Operations, Washington, D, C. (1959).

Frank McNolty, "Kill Probability When Lethal Effect is Variable, "
Operations Research 13, 478-482 (1965).

S UL PR

et ik tlian e




MAXIMUM LIKELIHOOD ESTIMATION FOR
UNBALANCED FACTORIAL DATA"

H. O. Hariley
Institute of Statisiics
Texas A&M University

l. 'INTRODUCTION. The statistical literature is abundant with resuita
concerning the design and analysis of factorial experiments. Maost of these
results relate to design experiments whose intricate balance usnally
provides orthogonal contrasts for the estimation of parameter functions
for which inferences are desired. The consequences of such designs are
statietical efficiency of estirnation with exactneas of estimation theory

and simplicity of computational procedures thrown in as'fringe benefits',

Unfortunately, however, in basic and operation research there are
many situations where the scientistis forced to draw inferences from
data which have not arisen from carefully balanced factorial experiments
mainly because part of the origin of his data is beyond his control. Thus
we may be concerned with an analysis of operational data in a chemical
plant attempting to relate the quality and yield of the output to various
types and sources of input materials,; to.different types of catalysts, to
various modes of operating the plant such as temperature~and pressure
levels and running times, Even if it is possible to control the change in .

. the various input factors jt will often not be possible to conduct balanced -
experiments. Again in genetical research concerned with heritability ‘
! studies we may study certain traits of the progeny resulting from the
mating of a number of sires each to a different set of dames, We may
4 try to arrange for the 'breeding pens' of the progeny trail to have an T
equal number of dames in each but the progeny resulting from each mat- I
ing is beyond the control of the experimenter, resulting in an 'unequal 5
number nested classification' of data. Again, in medical research we
may wish to compare the follow- -up of patients who have received dif(erent _
treatments. Such follow-up data are often classified with regard to
numerous concomitant characteristics concerning the medical history,
environmenrtal and genetical background of patients resulting in data
arranged in completely unbalanced factorial patterns. There ia clearly
- - no possibility of a designad experiment here, :
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“Thig paper gives only a summary vf some of the results derived in
more detail by Hartley, H, O, and Rao, J. N, K. "Maximuin Likelihood ,
Estimation for the Mixed Analvsis of Variance Model" submitted for , . 1-
publication in Blometrika. S
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We do not need to add further examples of this kind; indeed it is
generally recognized that they will outnumber, by far, the situations of
data from balanced experiments.

In the case of balanced designs the estimation problem for the con-
stants and variances involved in the linear model theory of the experimental
data has been extensively treated: Confining ourselves to just one reference
on variance.estimation, optimality properties of the classical analysis of
variance procedures have already been demonstrated for various balanced
designs (see e.g., Graybill (1961)). However, resuits for unbalanced
factorial and nested data are much more restricted: Henderson (1953)
has suggested a method of unbiased estimation of variance components
for the unbalanced two-way classification but his method is computationally
cumbersome for a mixed model and when the numbers of classes is large.
Searle and Henderson (1961) have suggested a simpler method also for the
unbalanced two way classification with one fixed factor containing &
moderate number of levels and a random factor permitted to have quite
a large number of levels. Bush and Anderson (1963) have investigated
for the two-way classification random model the relative efficiency of
Henderson's (1953) method and two other methods, A and B, based on the
respective methods of fitting constants and weighted sguares of means

.described by Yates (1934) for experiments based on a fixed effects model

which also provide unbiassed estimates of variance components. Possi-
bilities of generalizations are indicated. In all the above methods the
estimates of any constanta in the model are computed from the 'Aitken
Type' weighted least squares estimators based on the exact variance-

. covariance matrix of the experimental responses which involves the

unknown variance ratios. The estimation of the latter is then based on
various unbiassed procedures so that little is known about any optimality
properties of any of the resulting estimators. However, all these methods
reduce to the well known procedures based on minimal sufficient statistics
in the special cases of balanced designs.

The method of maximum likelihood estimation here developed differs
from the above in that maximum likelihood equations are used and solved
for both the estimates of constants and variances. This method has
apparently not been used by the above authors (and is indeed 'rejected’
by Bush and Anderson, 1963) becauee the computational effort is not (in
their view) warranted by the known properties of maximum likelihood
estimation. This point is well taken. However, we have nevertheless
undertaken to develop this theory on the following groundas;
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(a)

(b)

(c)

Within reason and with the help ot suitabie numericai icchuigucs
the argument of computational labor lvoses its stigma with the
progrzse in computer technology.

Our technique of maximum likelihood estimation provides a
numerical analysis for the completely general mixed model

and does not require the development of new devices whenever

a more involved situation of unbalanced factorial data arises,
Moreover, it provides the basis for a comylitely general
'analysis of variance test' procedure in the form of 'likelihood--
ratio tests’.

We have established large sample optimality properties and

it is already apparent that for small experiments the amount of
computational labor is quite comparable with that invelved in
alternatives. Here our technique will permit Monte Carlo

" evaluations of small sample variances (on the lines made by '

(d)

(e)

2. SPECIFICATION OF THE GENERAL MIXED MODEL.

Bush and Anderson) for the maximurm likelihood estimators.
For really large experiments (such as arise with certain -
genetical problems) the large sample optimality properties of
maximum likelihood estimators should provide a cleat juoti-
fication of additional computer time (if any).

‘Recent researches in identifying minimal sufficient statistics

for the estimation of the parameters (see e. 3., Huitquint and
Graybill, (1965) Furukawa (1960)) is at this time confined to
several special designs. Since a universal method of identifying
such statistice when they exist is not available it is a consider-
able (small sample) advantage of maximum likelihood estimators
that they will automatically be functions of such statistics when-
ever they exist.

Our estimates of variance components are always >0 (see section
4) and whilst the alternative estimators could be modified to

also be > 0 they would thereby loose the property of unbiassedness
which is the main justification of their use.

The speci-

fication of the general mixed model will be suificiently general to cover
most of the situations of unbalanced factorial data arising in practice,
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On the other hand, it utilizes certain speciiic featurss which distinguish
analysis of variance models {rom a completely general linear model
involving both 'constants' as weil as random variables,

The linear model here treated is given by

11+"'+ucbc+°

(1) y=Xa +Ub
where
X is an n x k matrix of known fixed numbers
U isannx mi matrix of known fixed numbers

o. is ak x 1 vector of unknown conctanu

bi il an rns x1 vector oi 1ndependent variables £rom N(O A )

eisannx! vector of independent varh.bleu from N(O v ).

The random vectors b,, b,, ..., b )  and e are mutuany mdependent
and y is- given by (1).

We assume that the design matrices X and U
i e., the rank of X in k and the rank of U is mi
P of variance terminology the vector of conltantl a compri.lel in its

i a.ie all of full rank

In terms of analysis

. elements all levels of all fixed factors, i.e., the levels of all fixed
E X main effects and interactions appropriately re-parameterised so that
; i the design matrix X has full rank, For the ¢ random factors we are
keeping the components separate since all elements of bi have the same
i unknown variance a'zt. Usually (with fanalylln of variance models)
| - .
’ each y is associated with precisely one level of the i.th random factor
so that the design matrix U1 will have in each row precisely one | and

the remaining mi-l elements zero. We therefore assume that the Ui

v have thia property which imples that all m, x m, matrices U 'Ui are
: diagonal,

eFimr ..
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One additional important assumption must be made about the design

matrices which may be described as a condiiion fus estimakhility of the

e and trzi: Denote by : §

™Mo

(2) m = m

i i

1

WOLRIR S

the total number of levels in all random components. Then the adjoined
n x (k+m) matrix

(3) | M=(X]U .. |U)

is assumed to have as a base an n x r matrix W of the form

(4) . w=(x | U)

i —— e '*"3“"7""

where the n x (r-k) matrix U must contain at least one colum.n £rom
each U, so that

i

(5) 7 ktcgr<k+m,

3, THE LIKELIHOOD EQUATIONS From (1) it is obvious that Y :

follows a multivariate normal distribution with variance--cov;rtmce

matrix 7 ' ]

(6) TP {1 +y U U + ) +y'U'Itr'}'

7 n ‘171717 TfeTe e’ _ !

- ’
where '
2 2

(7) 71 = ’1 / v v
) Hence the likelihood of y is given by

(8) L=(n 6™ | ulderp ((y - X)Xy - Xa)/2 0% .
LTI YR AR IARO ok e £ 2 m o keI !
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The differentiation of the log likelihood
(9) A= Log L

with regard to a, ¢ and 7y yields the equations

(10) R xaly. a0
A n 1 -1l )
(1) % S +:§(y-Xa)'H (y < Xa)=0
8A .1 aH
— % e t H - -—- - Xo. ' - Xa
T i - b b )a-,;-(y )
(12) -~ o o
=4 tr {H-IU } + (y . Xu.) H lUiU H (y -Xa).
i Whitlst it hurlong been recoghized that equat'imki (10) and (11) readily
P LT yteld the maximum likelihood estimates a and ¢ as functions of the 2
LI 3
involved in H, the oolution of equations (12) i.e., -g% = 0 has not been

attempted in the past, We give in the next section ia. numerical proce-
dure of solving the simultaneous equation (10), (11), and % = 0 given
by (12). i

4. SOLUTION OF THE MAXIMUM LIKELIHOOD EQUATIONS BY

STEEPEST ASCENT. As mentioned in 3, the equations (10) and (11)

are readily solved for a and ¢2 in terme of the ¥,: -- We obtain the
i

familiar answers for 'weighted least squares'

P
e et ey W L ok

TR R e T

13) s sx'atx T ey
and
(14) n et =yH 'y - XE Y X E Y)Y x'E YY) .
5 |
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Equations (13) and (14) yield a and ;2 in terms of the y and ,. We

require symbols for this functional relationship and write in place of
(13) and (14)

(15) o = aly,)
and
(16) v =o(y,)

Substitution of (15) and (16) in (12) and equating to zero would yield
¢ simultaneous equations for the ¢ values of y¥,. The solutions of these
equations are now obtained as the asymptotic "limits of a system of ¢
simultaneous differential equations, namely the equations of steepest
ascent given by - '

dy .
i_ i~ ~
dA :
where the k +1 + ¢ argument function -5-; (u.c.yi) is given by the right

hand side of (12) and (15) and (16) are subitituted for'a and o .

The variable of integration, t, in (17) is auxiliary and the numerical
integration of (17) commences at initial trial values ¥ (usually chosen
) ol
as consistant estimators) so that

(18) Y Ty att= 0.

It can now be shown that ag t—+

(19) lim  y,(t) = ¥, (say)
t ~+o
and I
(20) tim 2 (3(¥) T (r) ) =0,

t +*w i
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Therefore, Y, togetner wiiis a(yi) ;(-,'i) reprasent a aalution of the maximum

likelihood equations (10),(1l), and -g—:} = 0 given by (12). It should be noted

that although the limit along a speciﬁlc path of integration is unique as
t »« it does not follow that there is only one solution of the maximum
likelihood equations since a change in the starting point oty may give
rise to a different path of integration,

| Finally we should comment on a modification of our steepest ascent
integration which ensures that Yy = 0 along the path: First observe that
the log likelihood is a differentiable function of T = 71* which is
symmetrical at TS 0. It follows that if T is used as a parameter in
place qf Y, we have

(Z.l)', o _ = = e 2v, .

" Therefore, the steepest ascent differential equations (17) can be replaced

by

: : : ar .
(22 R A ARAE

The integration would commence at positive values o'y but should the
path of integration reach a point where one or several of the T F 0, a
new integration would be started at that point and the one or several v,
would be held at T
t -+« will again be a solution of the likelihood equations

= 0 for the rest of the integration path. The limit as

0 M, 2

o, "% %5 *°

(23)

This procedure ignores and avoids any possible solutions of the likelihood
equations with vy < 0.
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It would carry us to far afield if we were to discuss in this paper
computational details of solving the system of ¢ ordinary first order
differential equations (17) or (22). It suffices to state that a large step
{(high order) Runge-Kutta procedure (see e.g., Henrici {1962) is found
tc be quite serviceable. For large n (i.e., n > 50) numerical inversion
of the n x n matrix H involved ia (12), (13), and (14) can be completely
avoided by reducing this task to operations involving only matrix inver-
sions of order m x m where m = Z m_on lines similar to Henderaon
et al (1959). The relevant equation is

(24) Hl-1.2(2'2+ 1)‘1
where
(25) ~ Z is the adjoined n x m matrix :

With the help of (24) the computatlonal work is quite ma.m,geable on: hlgh
speed computers and a program is in preparation covering data for which
n< 500, c<5 k< 150, m< 150. The computer time on the IBM 7094

is estimated to range between 5 minutes and 2 hours largely depending

on the magnitudes of m and k.
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