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FOREWORD

At the Eleventh Conference on the Desiun of Exnerimente Dre,
Joseph Cameron and Walter Foster discussed the possibility of holding
the next meeting at the National Bureau of Standards., Talke with Dr,
Badrig Kurkjian brought out the tfact that he would be willing to investi-
gate the possibility of the Harry Diamond Laboratories serving in the
role of the second host. The efforts of these three individuals brought
about the desired results. The Army Mathematics Steering Committee,
the sponsor of these meetings on behalf of the Office of Chief of Research
and Development, was pleased to hear from Dr. Allen V. Astin, Director
of the National Bureau ot Standards, and Lt., Colonel M, S. Hochmuth,
Conimanding Officer of Harry Diamond Laboratories, that their organiza-
tions would serve as joint hosts for the Twelfth Conference. Both Messrs.
Astin and Hochmuth graciously agreed to give welcoming addresses at
the start of the conference. Their talks set the stage for this interesting
scientific meeting. Incidentally, the Harry Diamond Laboratories and
the National Bureau of Standards served as joint hosts for the first three
conferences of this series. At those meetings, as well as this one,
Mr, John Wheeler, Chairman on Local Arrangements, is well remembered
by those in attendance for his excellent execution of the many details which
must be handled for smooth running symposia,

The conference was conducted at the new quarters of the National
Bureau of Standards at Gaithersburg, Maryland, This afforded the
attendees an opportunity to become acquainted with these new facilities,
and some of the many scientific experiments being conducted by the staff
of the Bureau. They also learned of some of the types of data which NBS
could furnish that would be helpful in the conduction of their own research.
For the benefit of those who did not get to this meeting, we mention here
some of the special equipment now on the Gaithersburg campus. There
are three 35-foot grating spectrographs., One cperates in the vacuum
ultraviolet region, another in the visible region, while the third is used
for the short wave ultraviolet region. The NBS LINAC is a 100 Mec linear
electron accelerator capable of producing one of the world's most intense
high-energy electron beams. Neutron irradiation experiments can be
conducted with the new 10-megawatt nuclear research facility. The world's
largest testing machine, a 12-million pound compression and tension tester,
is about ready for use. This monster rises almost 100 feet above its
base, These and many other new scientific machines are to be found at
these well-equipped laboratories.

The program of the Twelfth Conference featured the following four
invited addresses:
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Operations Research
Professor Brian W. Conolly, Saclant ASW Resaarch Cantrc

Statistics as a Diagnostic Tool in Data Analysis
Dr., John Mandel, National Bureau of Standards

Planning and Analysis of Observational Studies
" Professor W, G. Cochran, Harvard University

Sample Censoring
Professor Norman L, Johnson, University of North Carolina
at Chapel Hill

Besides these talks, the members of the audience were able to select
from 24 contributed scientific papers topics that best suited their own
needs. These papers were presented in eight technical and two clinical
sessions. We are pleased to say that Dr, Frederick F. Stephan, Presi-
ent of the American Statistical Assoczatxon. was able to attend the banquet.
He was called on to present the second Wilks Memorial Medal to General
Leslie E. Simon, i

This volume of the Proceedings contains 24 of the papers which were 2
presented at this meeting, The Army Mathematics Steering Committee ©
has asked that these articles on modern principles on the design of '
experiments, together with the application of these ideas, be made avail-
able in the form of this technical manual. Members of this committee
take this opportunity to express their thanks to the many speakers and
other research workers who participated in the conference.

The conference had an attendance of 125 scientists; and 50 organiza-
tions were represented. Speakers and panelists came from George
Washington University, Harvard University, the National Bureau of ]
Standards, the National Institutes of Health, North Atlantic Treaty Organi-
zation, North Carolina State University at Raleigh, Phillips Petroleum
Company, Stanford University, University of California at Los Angeles,
University of Chicago, University of Georgia, University of Michigan,
University of North Carolina at Chapel Hill, University of Wisconsin,
Virginia Polytechnic Institute and thirteen Army facilities.

The Chairman wishes to express his appreciation to his Advisory
Committee (Joseph Cameron, F. G. Dressel, Walter D. Foster, Bernard
Greenberg, Boyd Harshbarger, J. S. Hunter, H. L. Lucas, Jr., Clifford ‘
Maloney and Henry B. Mann) for their assistance in formulating the pro-
gram and eelecting the invited speakers.

. Frank E. Grubbs
Conference Chairman
ii
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TWELFTH CONFERENCE ON THE DESIGN OF EXPERIMENTS
IN ARMY RESEARCH, DEVELOPMENT AND TESTING

19-21 October 1966

Weodnesday, 19 October

0900-0930 REGISTRATION - Administration Building, Main Foyer

0930-1000 OPENING OF THE CONFERENCE - Admin. Bldg.,
Green Auditorium

John Wheeler, Chairman on Local Arrangements,
Harry Diamond Laboratories, Washington, D. C.

WELCOME

Dr, Allen V. Astin, Director
National Bureau of Standards

Colonel M, S, Hochmuth, Commanding Officer
Harry Diamond Laboratories

1000-1230 GENERAL SESSION 1, Green Auditorium

Chairman: Professor Boyd Harshbarger, Department of
Statistics, Virginia Polytechnic Institute, Blacksburg, Va.

OPERATIONS RESEARCH
Professor Brian W. Conolly, North Atlantic Treaty
Organization, Saclant ASW Research Centre

STATISTICS AS A DIAGNOSTIC TOOL IN DATA ANALYSIS
Dr. John Mandel, Materials Evaluation Laboratory,
National Bureau of Standards, Gaithersburg, Maryland

1230-1330 LUNCH

Technical Sessions I and II will start at 1330 and run to 1500, After
a break Technical Sessions III and IV will convene at 1530 and end at 1700,
The social hour will begin at 1730, The banquet is scheduled for 1830,
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AND COMPUTER PROGRAM DESCRIPTION
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ESTIMATION OF ERROR RATES IN DISCRIMINANT
ANALYSIS
Peter A, Lachenbruch and M. Ray Mickey, University of
North Carolina at Chapel Hill, North Carolina and
University of California, Los Angeles, California
Representing the Army Research Office~Durham

TECHNICAL SESSION II - Lecture Room B

Chairman: Henry A, Dihm, U, S, Army Missile Command,
Redstone Arsenal, Alabama

SOME STATISTICAL APPLICATIONS IN T.HE TESTING OF

MILITARY RUBBER PRODUCTS
Emil H. Jebe, Willow Run Laboratories, Institute of
Science and Technology, The Univorsity of Michigan.
Representing the U, S. Army Tank-Automotive Center,
Warren, Michigan
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Robert G, Provost, U. S, Army Missile Command,
Redstone Arsenal, Alabama

BREAK
TECHNICAL SESSION 1II - Lecture Room A

Chairman: Henry Ellner, Directorate for Quality Assurance,
U. S. Army Edgewood Arsenal, Edgewood Arsenal, Md.

OPTIMAL ECONOMY IN PLANNING EXPERIMENTS
Regina C. Elandt-Johnson, University of North Carolina
at Chapel Hill, North Carolina., Representing the Army
Reseaxch Office-Durham.

viii

b 1 o s et




PO PV,

bt A LR g SR Ao T s P W YO H R

et e i

TECHNICAL SESSION III (continued)

ON A CLASS OF NONPARAMETRIC TESTS FOR MANOVA
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Pranab Kumar Sen, University of North Carclina at
Chapel Hill, North Carolina and the Universily of

Calcutta, Representing the Army Research Office-Durham

1530-1700 TECHNICAL SESSION IV ~ Lecture Room B

Chairman: David Hogben, Statistical Engineering Laboratory,
National Bureau of Standards, Gaithersburg, Maryland

TESTS FOR OUTLIERS
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Durham
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Club, Gaithersburg, Maryland
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Technical Sessions V and VI will run from 09001020, After the break
Technical Session VII and Clinical Session A will start at 1050 and run to
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convene at 1330 and end at 1520, After a half hour break General Session 2
is scheduled for 1550 to 1700,

0900-1020 TECHNICAL SESSICN V - Lecture Room A

Chairman; Selig Starr, Mathematics Branch, Office of the
Chief of Research and Development, Washington, D, C.
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U. S. Army Electronics Command, Fort Monmouth, N.J.
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Chairman: James B, Duff, U. S. Army Engineering Research
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THE NEGATIVE BINOMIAJ. DISTRIBUTION APPLIED TO
ATMOSPHERIC PARAMETERS

Oskar M. Essenwanger, U, S, Army Missile Command, 7/

Redstone Arsenal, Alabama

TRIAL VARIABILITY INTERPRETED AS DIFFERENCES IN
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BREAK
TECHNICAL SESSICN VII - Lecture Room A

Chairman: A, Bulfinch, U, S, Army Munitions Command,
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George I. Lavin, Terminal Ballistic L.aboratory, Ballistic
Research Laboratories, Aberdeen Proving Ground,
Maryland
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A METHOD FOR ADJUSTING FOR PARTICLE SIZE IN THE
X-RAY FLOURESCENCE ANALYSIS OF A MULTICOMPO-
NENT MIXTURE
R, H. Myers, Virginia Polytechnic Institute, Blacksburg,
Virginia, and Donald E, Womeldorph, Phillips Petroleum
Company. Representing the Army Research Office-Durham
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1050-1230 CLINICAIL SESSION A - Lecture Room B

Chairman: Fred Frishman, Mathematics Branch, Office,
Chief of Research and Development, Washington, D, C,

? Panelists:

: Mr, O. P. Bruno, Surveillance & Reliability Laboratory,
U. S. Army Ballistic Research Laboratories, Aberdeen
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Professor A, C. Cohen, Jr., Institute of Statistics,
: University of Georgia, Athens, Georgia

P Professor Boyd Harshbarger, Statistical Laboratory,
Virginia Polytechnic Institute, Blacksburg, Virginia
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National Bureau of Standards, Gaithersburg, Maryland

X B

Professor Herbert Solomon, George Washington University
Washington, D. C. and Stanford University, Stanford,
California

THE PROBLEM OF DETERMINING THE CONFIDENCE
LEVEL FOR SOME TIME INDEPENDENT SYSTEM
’ " RELIABILITY ESTIMATES WHEN ATTRIBUTE DATA FOR
i THE SYSTEM SUB-COMPONENTS ARE GIVEN (A PROPOSED
' SOLUTION AND APPROXIMATION TECHNIQUE)
; Eugene F, Dutoit, Picatinny Arsenal, Dover, New Jersey
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i STATISTICS, PROBABILITY, AND DETERMINISM IN A i
# ; RELIABILITY IMPROVEMENT PROGRAM
' Woodie R. Jenkins, Jr., National Range Operations,
. White Sands Missile Range, New Mexico
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Chairman: Cyrus Martin, U. S, Army Engineering Research
and Development Laboratory, Fort Belvoir, Virginia ’
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A COMPUTERIZED PROCEDURE FOR WRITING MATHE -
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Anthony J. Ricciardi and John G. Mardo, Nuclear
Reliability Division, Picatinny Arsenal, Dover, N. J.
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Ann Arbor, Michigan
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OPERATIONS RESEARCH

Prafeeanr Brian W, Coaolly~
North Atlantic Treaty Organization
Saclant ASW Research Center

;0 INTRODUCTION.

1. It is a privilege and a pleasure to be invited to make a presentation
on QOperational Research at a specialist statistical conference, Those
individuals who choose to make Operational Research their profession !
come from the ranks of engineers, physicists, chemists, mathematicians :
as well as statisticians, All have a contribution to make to Operational
Research. I myself, for example, am a mathematician by basic training,
with a pronounced interest in obtaining practical and verifiable solutions to
real life problems,

2, The name Operational Research is itself perhaps not a very good
description of the type of activity that O. R. workers usually undertake. I do
not propose to be 8o controversial as to suggest an alternative, My theme
is rather to suggest that, as it has developed, modern O. R. has come to
depend more and more heavily on the science and techniques of statistics and
r probability theory. And it is not difficult to see why this is so,

3, In O, R, we are usually concerned with studying the workings of a
complex system or process such as the manufacture of an automobile; the
organization of an airport; the routing of city traffic; a telephone exchange;
the detection, classification and destruction of an enemy target. If we like
to call these systems or processes 'operations', and the study we make of
them 'research', then we arrive at the name Operations Research by which
O.R. is designated in the U, 8, The fact that O, R, is called ''Operational -~
Research” in Europe is presumably by analogy with our practice to call
research in physics physical research, and research in mathematics
mathematical research,

4, The objective of O, R, studies ie normally to discover how to optimize
- in some sense the output of the process: e, g. produce an adequate automo-
bile at a minimal cost; achieve an airport organization which maximizes
passenger flow with a minimum of incovenience and the best employment of
facilities; maximize the probability of destruction of the enemy target. In
order to do this we have to try to understand the structure of the process,

*Now at Virginia Polytechnic Institute, Blacksburg, Virginia
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5. The complex processes which O, R. investigates are normally
decomposable into a number of subsidiary nrorerase on eazh of wwhich
the uitimate output depends. If one regards these as parameters of the
system as a whole, then the study consists first in determining their inter«
relation, and the way they affect the output, This leads to the creation of
a more or less mathematical model - a set of equations which characterises
the process, If the model is verified in the sense that it can be used to '
predict measurable outputs, then the analysis of the process and its opti-
mization reduces to the application of appropriate mathematical techniques
to the model.

6. One reason why modern O, R, has come to be heavily dependent on
probability and statistics is the greater recognition of the need to assess
the effect of chance on the outcome of a process; rather than to work through-
out with average values. Nowadays we are interested in the probability
distributions of the outcomes of the subsidiary processes in order to discover
the probability distribution of the overall outcome. Under these circum-
stances we have to deal with stochastic processes and our analysis depends
on the specialized techniques developed by the experts.

7. I think that in fact O, R. and statistics have much to offer each other.
Erlang was a Danish engineer and an O. R. worker whose interest was the
Danish telepkone service., His work in the early 20th century founded queue-
ing theory which in all its increasing complexity is the subject of many
research papers published in both statistical and O, R, research periodicals,
Those who are concerned with military exercies know that one has to deal
with experiments whose design cannot be altogether controlled, that the
samples are small, and the variables many: a situation shocking to a classi-
cal statistician, but a challenge,

8, During the remainder of this presentation I intend to be more
specific, In order to illustrate my thesis of the statistical interest which
is to be found in O. R, studies and the dependence of the analysis on statis-
tical expertise I shall describe two problems from a military O.R. context,
which I hope you will find entertaining.

PROBLEM 1,

9. During anti-submarine operations there inevitably occur events
which have a nuisance value, and which one would like to eliminate, The
elimination is partly a matter of equipment design, and partly of training
in its use.

10. For the purposes of this presentation I am concerned only with
finding a simple stochastic process which describes the occurrence of the




events in time in the hope that such a description may throw light on the
basic phenomenon., I have no wartimas reacorde of the cvents, thuugh 1 know

they have always occurred, I am therefore dependent on naval exercises
fo: datn,

11, Suppose, then, that I have obtained from the records of one ship
during a recent exercise the times t, of occurrence of the events which I
shall denote by E (n>1). I measure time from the beginning of the exercise,
An immediate d:{t.culty arises out of the fortunate fact that the E, do not
occur at a tremendously high rate, Three per day might be a typical average
taken over all ships. Exeicises of the right sort do not take place frequently
and, when they do, they are of a limited duration. Thus, typically, at the
end of a week I might have a few tens of events for each ship. At the begin-
nig I want to consider each ship's records separately, so my sample is not
very great.

12, Adopting the good practice of making a simple initial hypothesis
I look at the time series (t ) for each ship and ask if there are indications
that the events (which a priori might be thought of as having random origin)
occur in a Poisson stream, The answer is that they do not appear to do so,
but rather that in all cases there is evidence of cluster {a preponderance of
short inter-event time intervals as compared with a Poisson stream with

the same mean), Moreover the mean intervals of the event distributions seem
to be quite different from each other, and I do not find evidence which supports

the hypothesis that the E, for ship A could be generated by adjustment of the
mean irom the stream of E, for ship B,

13, Since there appears to be clustering I next ask myself if a particular
stream E, could have been generated by a contagious process, and for this
purpose I choose a Pélya process defined in the following form: Suppose that
the process begins at time t=0 and that no event E occurs at that time. The
instantaneous probability that the {n+1) th Pdlya event takes place in the small
interval (t, t+dt) is given by B, ,(t)dt where

' A {l+an
(13.1) ﬁn+1(t) = -(T-‘i_-a—i—tg— .

The parameters \ and a are supposed to be real, A is positive and a non-

negative, There is apparently no other restriction on a, though I shall make
some more remarks on that subject later. When a is zero the Pdlya process
clearly becomes a Poisson process with mean mterva.l length 1/\ time units.

14. I now give without proof a few key theoretical results of a Pélya
process as defined, Let P,(T) be the probability that exactly n Pdlya events
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occur during the interval (0, T) and define p (0 =1, The generating function
P(x,T) of p (T ) is then

(14.1) P(x,T) = [1+a)~T(1.,¢)]"/EL .

The rmeéan and variance of n are
(14.2) E(n) = AT,

(14.3) Var(n) = a \ 272 4T .

The exercise data give me a series of tirne intervals between events, The

likelihood of a series of n events occurring at the instante tl, tz, PR tn is
n-l1
n (l+ra)
1
(14.4) Pn(tl. tys oen tn) = Y )n+1/a .
n

The maximum likelihood estimator of \ is simply n/t » but that of a is
more complicated.

15, The distribution of the intervals between events is of particular
interest, It turns out that, for any n, the p.d.f, g (1' of the interval

between the n‘.'h and the (n+l) events, whenever the first n events took
Elace. is .
x .
(15.1) g (r) =
n (1+a k-r)l"'l]aL

and is mdependent of n. The interpretation of this is that if we generate
a lot of Pélya processes, each having the same parameters aand A, and
then examine the time intervals between, say, the second and third events
in all the processes, we should find that they all are distributed according
to (15.1).

16, The rth moment M, about zero of an interval between two given
events ir
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(16.1) poo= r!
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and this clearly exists only if none of the terms in the denominator is
zero, Thus if a=1 the interval length distribution has all its moments
infinite: if a m §, the first moment is finite, but none of the higher
moments is.

17, I return to my fundamental problem. I have an observed series
of events and I want to make statements about the hypothesis that they are
generated according to a Pdlya process, How do I estimate a and A from
the observations? -

18. In order to throw light on this problem sequences of Pdlya intervals

were generated, each having the same aand A, The idea was to compare
estimates of a and A obtained by various means with their known values.

In fact the problem of estimation remains open, but some features of Pdlya
processes have been revealed which were a surprise to me,

19. The digital computer generation of the Pdlya intervals was carried
out as follows. Suppose that n events have been generated and that they
occurred at times tl' tz. .o .tn. We require the probability

th
by (tn+1/t1't2' veot )dt . that the (n+1)*R event occurs in the interval
(tn+1' tn+1+dtn+l)' given that the first n occurred at times bty ot

Clearly,

Poaaltotye e ot )
pn(tl, threes tn)

(19.1) hn+l(tn+l/tl.. it )=

where the p are given by (14.4), This says that the conditional probability
density of the (n+l)t? interval © is .

A(1+na)(1 +a).tn)n+1/ 2

n+l+l/a

(19.2) h (r/t.t,,..t)=
41t 1772 n (1+aAtn+aA1')

The conditional probability that the (n+1)"h interval is less than T is:

g
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To obtain the intervals one generates a sequence of random numbers r
independently and uniformly distributed on 0 < r < 1, and then solves"

1+a A tn n+l/a.

(19.4) r =

n+l

1+a A tn+a)L Tn+l

for Tn+1'

EXPERIMENT 1,

20, I am now going to describe briefly some of the experiments
which were carried out. For the first we generated 5 independent sqquences
of 1000 Pélya intervala, for each of which we assigned A=4/30, a =,
This was to give 1/X (1=a), the mean interval length, the value 10 which
corresponded with observation, The means and standard deviations of the
interval lengths were as follows,

Meana and Standard Deviations of 5 Independent
Sequences of 1000 Pélya Intervals
with the same Parameters

Sequence No, Mean Standard Deviation
1 2,708 3,164
2 21,804 22.964
3 6,428 6,874
4 7. 349 8. 304
5 9.519 10.290

This Table was the first surprise. We expected each sequence to have
a mean and standard deviation reasonably close to the theoretical values of
10 and 10V 2 respectively, The first sequence was also ''looked at! just
after the 100th event and the means and standard deviation were found to be
2.450 and 2, 615 respectively, Thus it appeared that the processes were
settling down to a steady state quite rapidly, but a steady state which could
be vastly different from one process to another, even though the parameters

6
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were the same. On the face of it, then, it appears that estimation of a
and A based on a perfectly valid sequence might well give completely

- - - - 2 o [ S - 1 an - =
different valucs frons those obtained fivi: anvihes vyually valid sequence,

21, The measure used of the mean interval after the nth event at time
t was

(21.1) x=tn/n .

The sampling density function of x is:

n-1
, (nd) L1 o (1+ra)
(21.2) r=l

(n-1)! (1+nalx)

n+l/a

and the expectation and variance of x are respectively

E(x) = 1/A(1-a);
21.3
( ) Var(x) = (1-a+an) / [nAz(l-a)Z(l-Za)] .

Now the mean of the five sequence means is 9. 561 and the standard devia-
tion is about 7. The variation of the sequence means is thus less surpris-
ing, but no less discomiorting.

22, The theoretical reason for the stability of Pdlya sequences about
widely diﬁering means seems to be that the whole pattern of a sequence is
on the average governed by the first interval, This can be seen by con-
sidering the conditional expected value Eh‘?tl,tz. ' tn) of the (n+1)th interval

T , glven the tllmea tl,tz.' . .tn of occurrence of the first n events, Then

1+aAt
n

1
A{1l+a[n-1)} = BIET .

(22.1) E(r/t)ty..0t ) =

Thus the conditional expected value of the second interval is (1+n.)tt1)/)..
If t, is greater than its expected value 1/A (1-a) then

L
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i.e, the second interval also tends to be greater than its expected value,
And so on for all successive intervals.

EXPERIMENT 2.

23, The second cxperiment was an extension of the first., 500
independent scquences of 500 Pdlya intervals were generated, all having
the same parameters a=y, A = 4/30, We were looking for something
constant in all the sequences, Since the value of the instantaneous
probability density of an event, just after the generation of the nth event

is
_ _A{14an) -
ﬁn+1(tn) B l+a/\tx‘;‘)

and since we were measuring the mean interval length by the estimator
t,/n we felt that the product ?’n+l(tn) . (tn/n) should be constant (1) for

long enough sequences. This turns vut to be the case, The table [ See

Table | near the end of this article.] shows some typical values correspond«
ing to the 500th event in each sequence, The products are all very close

to the theoretical value 1/A, in this case 30/4 = 7,5, Unfortunately this
constancy is not of much practical use. It does provide some feeling that

the computer program is working as it should,

24, It was also decided to group all the 250000 intervals into a histo-
gram which is shown in Table 2. If we mske the hypothesis that this
represents a random sample from the eveni-independent distribution of
Pélya intervals '

P (ar) = Adr/(14arr) 13

the mean and standard deviations are theoretically 10 and 10V'2, and the
observed values look close. But are they close enough on the basis of
250 000 observations ? I cannot answer that question at the moment,

25, The observed frequencies in cells of one time unit long are
tabulated in the column "observed', while the "expected' frequencies were
calculated on the basis of the event-independent distribution. The last
column gives xz. Overall this is enormous. There is a deficiency of
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observed short intervals and an excess of long ones. There are also
other oddities, A Poisson process with the same mean (9,866, ..) would
give a frequency of about 24 000 in the (0, 1) range, so at least there is
evidence of the Jlusiering one expects 1n a Polya process, I think perhaps
that the sample cannot be considered random and independent, and this
may be the explanation for the poor agreemcnt. We also produced a
histogram of the 500 process means and this is available if anyone is
interested.

'EXPERIMENT 3.

26. Our faith in the theory, of the event independent interval distri-
bution was a little shaken by the previous experiment. The next experiment
was conducted in order to restore confidence. 1000 independent Polya
proceu (with A = 4/30 and a = -, as usual) were generated as far as the
12t interval. For each process the lengths of the 4'1 and of the 11th
intervals were grouped into histograms, These arz shown in Tables 3 and
4, We did not instruct the computer to group cells with low frequencies,
but even so there is satisfactory behaviour according to the hypothesis of
the event independent distribution.

EXPERIMENT 4.

27. We have carried out various other experiments. The last which
I will mention concerns the correlation between intervals in a Pdlya process,
Theoretically we appeared to find that the correlation between any pair of
intervals is a, provided that a < ;. For a > } there is trouble over the
convergence of the integrals for the second moments,

28, Table 5 concerns sequences of Pdlya intervals for fixed A = 4/30
and a varying from 0,1 to 0,9, For each a, 1000 sequences were generated
and the Table gives the mean and standard deviation of the first and tenth
intervals, the mean value of the product of these intervals ("prod'), and
finallv the correlation coefficient calculated from observed values,

29, Without information on the sampling distribution of the correlation
coefficient it is difficult to make meaningful statements about these results,
There are signs of agreement between theory and observation for a=0.1,

0.2 and 0.3 . For a > 0,5 the second moments do not exist, in theory, and
a certain wildness will be observed in the results.

30. This concludes my description of some experiments with Pdlya
processes, We have subsequentiy formed the opinion that the Pdlya process
is not a good model for the natural phenomenon, but we do feel that it has
been interesting to study the behaviour of the processes, I feel there is
room for a good deal more statistical investigation of these processes.

9




For example the problems of parameter estimation and sampling distri-
butions are still open, not to mention the interpretation of the apparent
seaisiciion un a which resuits from the non-existence of some of the
moments for certain values, Perhaps some of you know the answers to o |
these questions, and if I, as a representative of Operational Research,
have called your attention to a typical O.R. investigation where expert
statistical advice is needed I have:succeeded in my objective.

PROBLEM 2,

31. My second example concerns a tactical problem. We were
interested in a situation in which a tactical unit has the task of penetrat-
. ing a barrier patrolled by opposing tforces. For the purposes of the
; example, the barrier forces will be regarded as a point which moves :
according to the general rules along a line perpendicular to the general !
expected direction of penetration of the opposing forces, !

32. 'The situation is illustrated in the next figure,

D c
|
-i {
A oy F |
; l“.
. P
A B .

The area of interest is the rectangle ABCD, The line EF is patrolled by
the barrier forces S. Its opponent P has the task of moving from some
s point on the boundary AB to CD. That is to say, P wants to traverse EF
! : i without being intercepted by S, i

33, S, the intercepter, is provided with exact information about the
whereabouts of P either .

(a) continuously;

(b) at regularly spaced intervals;

(c) at random intervals having a negative exponential
[ Q distribution,

i P, the penetrator, is supposed to have a number of penetration strategies,
for instance:

10
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(a) a straight unvarying track from A to C;

(b) a track composed of a straight portion and one change
of course at an arbitrarily selected moment before
reaching EF;

(c) a random zig~zag.

Strategies are also postulated for S. It can, for example,
(a) Predict the track of P on the basis of the most recent

information, and strive to reach the point of intersection
of that track with EF in order to intercept P.

PRTTa
-

(b) Attempt to equate its x-coordinate with the last reported
coordinate of P.

) (c) Attempt to reach a point such that, whatever P does, the
: interception time is a minimum,

34, With three information categories, three strategies for P and
; three strategies for S, we have a total of 27 combinations to study. What
is a suitable criterion of effectiveness? One obvious choice which will be
considered here is the shortest distance between P and § during an
attempted penetration. If necessary this can later be translated into
. probabilities of detection and kill,

i ~ 35, We found in fact that the major part of this study could be carried
: out analytically, The combination of random information with any of the
other possibilities defied analysis, however, and for these cases we
resorted to a digital computer simulation, Now it is particularly impor-
tant when employing digital computer simulation to invoke a check on what
one is doing. What, then, would be a suitable check?

[P

. 36. I would like you to consider the situation in which at time t=0
S is at E and P at A, P's strategy is pursue the diagonal track AC, while
S, when it receives information as to P's position, attempts to equate its
x~coordinate with the last reported x-coordinate of P. Assuming that the
distances between A and E are large we then are naturally led to consider
a situation which, evolving over a sufficiently long time consists of a chase of P by S.

37. In projection along an x-axis parallel to AB, P moves continuously
, from left to right at a speed v, say. S, when it receives information about
the x-coordinate of P, tries to equate its own x-coordinate with the last

reported x-coordinate of P. It moves with constant speed u, If S arrives

11
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at the last reported x-coordinate of P before further information arrives
it stops and waits. Otherwise it rontinges,

38. It turns out ihat cne can obtain theoretically the statistical

distribution of the distance between P and S parallel to the x-axis at an *
! "information instant', assuming a steady state has come about. This i
quantity can be output very simply from the computer program and, if it .l

conforms with theory, it gives a measure of confidence in the random
mechanisms which the computer has been programmed to simulate, I
would not like to consider the theoretical problem of the distribution of the
difference between the x-coordinates of P and S at an information instant.

i
39, Let bm be the distance measured parallel to the x-axis between g
P and S at the instant }Em when information is transmitted to S for the ;

t

mth time since t=0, With obvious notation, since

§ xp(Em) = xp(zm-l) +vT |
|
{ and , |
§ i
; x (2 )= xp(zm-l) if x (Z mo1) - ng_xp(zm_l) o
, xs(zm) =x!(2m_l) tuT if xs{zm_l) +uTm<xp(Zm_l); ;
we have
6§ =vT_ ifx(Z ) + uT_ > x (Z ); :
m 8 m-l m-— "p' m-l :
6 =8 .1 +(v-uT_ if xs(zm_l) tuT <xp(2m_1) ,
' or 6§ =vT_if §_ < uT . !
; m m m-] — m
;
i 6 =8 =uT +vT_  if § >uT_,
; m nm-1 m m-1 m
; % Writing Tl = 0 - uT .|+ We have *
! !
12




(a) a straight unvarying track from A to C;

(b) a track composed of a straight portion and one change
of coursc at an arbiirarily selected moment before
reaching EF;

(c) a random zig-zag,.
Strategies are also postulated for S. It can, for example,

(a) Predict the track of P on the basis of the most recent
information, and strive to reach the point of intersection
of that track with EF in order to intercept P.

(b) Attempt to equate its x-coordinate with the last reported
coordinate of P.

(c) Attempt to reach a point such that, whatever P does, the
interception time is a minimum,

34, With three information categories, three strategies for P and
three strategies for S, we have a total of 27 combinations to study. What
is a suitable criterion of effectiveness ? One obvious choice which will be
considered here is the shortest distance between P and S during an
attempted penetration., If necessary this can later be translated into
probabilities of detection and kill,

35, We found in fact that the major part of this study could be carried
out analytically, The combination of random information with any of the
other possgibilities defied analysis. however, and for these cases we
resorted to a digital computer simulation, Now it is particularly impor-
tant when employing digital computer simulation to invoke a check on what
one is doing, What, then, would be a suitable check?

36. 1 would like you to consider the situation in which at time t=0
Sis at E and P at A, P's strategy is pursue the diagonal track AC, while
S, when it receives information as to P's position, attempts to equate its
x~-coordinate with the last reported x-coordinate of P. Assuming that.the
distances between A and E are large we then are naturally led to consider
a situation which, evolving over a sufficiently long time consists of a chase of P by S.

37. In projection along an x-axis parallel to AB, P moves continuously
from left to right at a speed v, say. S, when it receives information about
the x-coordinate of P, tries to equate its own x-coordinate with the last
reported x-coordinate of P. It moves with constant speed u. If S arrives
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at the last reported x-conrdinate of P before further information arrives
it stops and waits, Otherwise it contjnues,

38. It turns out that one can obtain theoretically the statistical
distribution of the distance between P and S parallel to the x-axis at an
"information instant', assuming a steady state has come about. This
quantity can be output very simply from the computer program and, if it
conforms with theory, it gives a measure of confidence in the random
mechanisins which the computer has been programmed to simulate. 1
would not like to consider the theoretical problem of the distribution of the
difference between the x-coordinates of P and S at an information instant,

39, Let 6m be the distance measured parallel to the x-axis between
P and S at the instant Zm when information is transmitted to S for the

m h time since t=0. With obvious notation, since

xp(Em) = x (zml + va
and
xs(Z:m) =xp(2m_l) if xs(zm-l)+uTmpr(zm-l)
x (B ) =x (T )+ uT_ifx(Z  )+uT_<x S(Z )
we have
] vT ifx (Z _1)+uT >x(2m1
6m=6m-1+(v-u)T 1fx(2 ) tueT <x(2m_l)
°r 5§ =vT_if 6_ . <uT_;
m m m-1 - m
6m=6m-l -uTm+va if 6nl-1 > uTm.
Writing fl s ém - UTm+1’ we have
| 12
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m m m
& =v T 4+ if » ~0
m m m m
i. e, 6§ =max [vT ,vT_ +r ].
' m m m m

40. The last equation is extremely reminiscent of the equation for
waiting time in a conventional queueing process, In fact the distribution
function of 6m can be easily derived theoretically. The agreement of

independent calculations of this theoretical result (in the steady state)

with the empirical distribution derived directiy from the computer program
inspires confidence in the latter as a representation of the real-lile situa-
tion which it was desired to simulate,

41. I would now like to point out that the situation I have described
here is formally a rather unusual single server queueing set-up in which
arrival and service intervals are correlated. The connection was observed
by Mr., Cruon when a paper on this subject was presented to the NATO
Conference on Queueing Theory in 1965,

42, Denote the rnth piece of information by Im' It arrives at time
Zm. Let us now interpret Im as a customer who demands as service that

S be moved from wherever it is to a position with x coordinate equal to that
of P at time X m Since the distance between P and S at time T m is 6m

then obviously if waiting time includes time to complete service, and since
S moves with speed u, the waiting time of Im is Gm/u.

43, The arrival intervals T & the customers I are by definition
distributed according to a negative exponential distribution with mean 7.
If we say that service on Im cannot begin until S reaches the position

specified by I then the actual service time of I_ is
m=1 m

1 vT . .
= [xp(z m) - xp(zmnl)] =~ , say. Thus, service time in this model

is also negative exponentially distributed with mean At , where v = v/u.
44, Writing

(_)n-l k%n(n-l)

a = 3
T (1), (1)

13




we have for the steady state distribution of 6

, _ =X 1 1
Pr [0<8<x] =1-2 a.nexp[-—v_r (l+)\+""'+n-l)] .
n_>_1 A

We have constructed a table which shows the comparison between theory

and simulation of the distribution of § for 1000 trials, It can be geen from
this table that the agreement is satisfactory. Consequently one can have
confidence that the random mechanisms employed in the simulation of the
major problem are in fact behaving as they should, Equally we have an
instance of how an Operational Research problem in an apparently completely
unrelated field led, as a by-product, to an unusual queueing situation,
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EXPERIMENT 11

Int = 500
beta/lanbdz=
tota/lam dz=
rota/lanbdr=
bota/lan dz=
lota/lantdz=
t-gta/lan>dz=
f‘ota/lambdz=
tota/lamidz=
beta/lanhdz=
tota/lan’ dz=
Lots/ ant dz=
tota,/lamt dz=
tota/lar’ dz=
hota/lanldz=
leta/lanbdz=
Yota/lantdzz
1 cta/lanbdz=
l.ota/lanl.d2=
t-ota/lant dz=
tota/lanbdz=
vota/lantdz=
Lcta/lambdz:
tota/lantdz=
tota/lanl-de=
' eta/lanbdz=
teotalamt dz=
tota/lanhdz~-
l.ota/lan <d=-
tota/lantdz=
Vota/lant dz=
leta/lamt-dz=
tota/lan! dz=
‘eta/lant dz-

34230956
1.7502601
1.73463¢6
1.n340420
.11/00440
.64124210
.05152562
1.10201C3
1..741004
1.3°011.0

1.320633
1.120583%
1.3C05330
1.3€53840
Rebaf c1of ¢ 14444
1.4500186
1.47703553
1.551827

1.,3006333
4107421

"nO~
1. f.‘s.luu'.'"?

1.°017MG8
1.1710267
. 50640276
1.4220012
.454288238
. 33215466
LI5TTT52
.576R3T7
.73€55635¢
1.4632077
1,00"3577

R Rar dedotar 4

(a)

mean=
neai—
noan=
nean=
mefil=
mean;=
mean=
noan=
mean=
nean=

*omoan=

nean=

- mean=

nean=

~ moan=

nean=

- moan=
T noancs

noan:z
moans

© meansz

Tomeans

noan=
noan:=
noan=—
noan=
nent=

ToneanT

meanc
noai=

©omoan-s

nean-

ComoanT

22.025328
5,0200628

7.2420105
7.25113385
34,7°1084
11.72¢881°
712600568
3.70"17438
5,7314G3%
5,270407
5,5655707
G.625C427
5.27582141
5.7171245

7.5°7 ane
PUR® bt

©.375732
L1154427

A
PPN oS PN

,30443°7
Z.3135300
5,7555401
13.57775°7

s I L
22,7305

11,747744
12.727005
c.5515%C
£,17CTASR
7,.700454

eiiial e BE- 24

‘eta/lamidn= R I AR sl o - mean= 1-4.740057
‘ota/lan! dz== I Y lalsTe L - mean= 17,582757
teta/landz=- AT ean= 1 ,102047
' eta/lam dz=- 1.1176354 - mean= £.7°2M147
‘ota/lan dz= ..140540G6C -~ mean- 3 ,357C41
tota/lantdz= JTG415733 moan= T.,703270C
' ota/lamVdz- 43177 75n < pmeanz 17477070
* ota/lami-dz= .4144°505 - mean= 10,179345
' cta/lanhdz= 1.2171128 - mean= 5,771 7iCe
tota/lan! dz= 11130762 - mean~- §.0°522003
tota/lantdzs DTS - moan= on ,14422¢C
‘cta/lant dz= 1.2320°013 < mean= 5,245
tota/lar! dz- 1.7215"51 - pearn- 7.2470777
tota/lanm dz= L202027138 - moan= 10,2855632
tota/lanhdz= Rlabed R Tatt noan= C,2123405
to*ta/lant.dz= 1.3154200 ~ moanz 5.68007255
L.ota/lantdz= .562600046 - moan= 17 ,3752C0C
! ota/lant.dz= LGnant704 1 mean= 17.5343171
tota/lantdz= 1.,.0400000 - nmean= £,735C075
t:ota/lam! d== 1.1620203 - meanz G,277024°7
vota/lanhdz= L300 T0563 moan= 17,777621
‘ota/lant:dz= LTRCSR160 - mean= 17,6054G5
lota/lamidz= 02450075 - mean= 12.044157
tota/lani-dz= 1.0058C785 -~ mean= 7.45506¢3
teta/lanl-dz- .54202473 -~ rnoan= 13,887733
tota/lantde= 1.,0107°2460 - meanz 4,00760953
ol
TABLE 1 Dot Auailabla
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EXPERIMENT 11 (b)

beta/lambdz= .38392241 P
bota/lambde= 80600007
tota/lanl:dz= ."3074320 -
hota/lambdz= 1.30G2¢7 -
bota/lant-dz= LA27TTI174 "
hota/lami dz= .4335117 ™
leta/lamirdz= .32386100 7
hota/lanidz= 0427377
hota/lant:dz= L0110 02080 1
beta/lanltdz= .70861413 =
Lota/lamh:dz= .61582436 -
tota/lamldz= 1.1315C40 ol
hota/lanbdz= .42163116 ™
beta/lambdz= 1.3£84C38
tota/lanldz= L731733C0
beta,/lambdz= 1.17G3E8 :
Leta/lambdz= 1.1502356 IO
hota/lamtdz= 1.1400¢23
heta/lamidz= 1,257 7265
bota/lanml.dz= 1.45C0436
heota/lambdz= 1.5370753 =~
hota/lanmbdz= .S0:430158
beta/lambdz= 653357223

.3

Rt Bt

beta[lamhdz: . 73315244 [
Leta/lanbdz= 1.176504C ol
teota/lanhdz= . T2325C8 »

ota/lanbdz= .7335056341 n
bota/lamtdz= O Salr Sotain
beta/lantdz= 67530150
hota/lanl.dz= 1.2423834 pe
Lota/lambdz= 1,3535083 -
teta/lamtdz= .03217356 R

heta/lanldz= .4:1223318 P
l:ota/lanhdz= 1.°780371 =
hota/lanb dzs= 1.4943038
hota/lantdz= . 754043510

hota,/lantdz= L3702372°
hota/lanbdz= .0E8701.34 o
heta/lact:dz= .3100145C
leta/landz= 1.,r330004 :
! eta/lami-dz= 1.3104C24: -
tota/lani:dz= .42212244

teta/lannhdz= . 34060742
ota/laml.dz= 1.1425622

lLota/lam’:dz= .51056G828
beta/lambdz= 1.7°000517

bota/lanldz= .C2573G4AT bl
bota,/lant:dz= .G2102464 .
l:ota/lanl:dz= L, 402360060

Lota/lam! dz= LORSN0T1
t.ota/lanl:dz= 1.1045514 el
Leta/lani:de= L05224521

tota/lambdz= 1.4554341
tota/lantdz= 2,731 79€1
ota/lanmtd2=: 1.3701201
tota/lanbdz= «31687€25
tota/lami:dz= ,71664552
Leta/lanl:dz= 1.£1374141 n
l.ota/lanl:dz= L73005111 '

ko |

t.ata/lam-dz= L2585038350
heta/lanirdz= .34C 562368

eta/lamidz= 1.121¢012

TABLE 1 (continued)

mean= 19.631528
mean= ¢,3080G38
mean= 5,7625514
mean= 3,7273352
mean= 17.61550"
mean= 31.708003
mean= ¢ ,~G0CT29
mean= £,3933030
nean= 1. .133777
mean= £,52G4512
moan= 12.156744
mean= 6,615142¢
mean= 17.2704C3

;» mean= 5,34617¢3
. mean= ¢,-G610G3
- mean= 6,2664350

mean= G,5001562

- mean= C,385C277

nean= 5,7 405340

» mean= 5,017C797

moan= 3,.0504430
mean= ¢ ,235C7C0
mean= 11,501721
mean= 10,223607
moan= 5,7G12533
mean= 1:°,31¢537

- ~ naanRne~
moan= 17 ,2C8220

. moan= 3,5400467
- mean= 11.,1333¢5
- mean= G,7225453

mean= 5,5254¢C

mean= C,C500SC?
moan= 17,772C54
moan= Z,7G5030C
mean- 1,7C2C¢200

« moan= ,5023141
- moan= 17,221136

moan= 7,3426017

- mean= £,27318C
- mean= 7,772C4°54

mean= 5,672056C3

» mean= 17.432656
- meanz ©,0325547
» mean= G,5540457
-~ moan= 11,43¢7°1
- moan= 4,157C781

mean= 10,80GC21C

- moan= 11.,72GZ07

mogn= 1°,775047

- moan=z 7,C136724

moan= C,734176G7
mean= 7,7.6043¢C
mean= 5,13433¢2

" moan= 3.6767150
- meanz= 4,7547402

moan= 023,7C0427
mean= 17,43€174
moan= 3.5815304

. mean= ¢ ,020527C
- mean= C,1705221

+ pean= 13,725436
- roan= G.GTCNCT7
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© o K N R AR i}

beta/lambdz=
‘ota/lant dz=
l:ota/lantdr=
tota/lam'dz=
teta/lanl dz=

2,5662482 o
1.1377320 -
LTI

1.1704614 -
t.1°om T

teta/lanhdz= £,U20517C
‘ota/lan:dz= . 54330085
tota/lantdz= Bilah b K leing P

hota/lantidz= ~1G610S8 P
'cta/landz= ASN3GES3
Leota/lan dz= 1.705101°0
lota/lanbdz= L 74747033
tota/lan! dz= 01T 4 r

l.ota/lambd== 5ATCASE
teta/lanbdns 1..712477 -
leta/lant dz= GO 50027
tota/lanhdz-~ 7.,1720563° KR
teta/lanbdz—- Rkt 157 Briets!
Feta/lan!dze: 1.5‘75"15
teta/Tant d== 1. 20552
teta/lambdn= LR3I
totn/lantlz= clalalolr dalhit |
‘ata/larntdzs 1.7775040
‘ote/lami dz= L 155680
Potasiant dos= 1.704GT40

. nras
1. MR

Low/lan Ans
Lota/lant doe
toin/lan des .
tata/lan dz-- 1.°48I006
teta/lanl"dz= 1.5170211 .
teta/lamtdes 1.1 7541+ o
tetn,/lanmi dz :
reta/lani-dr= LT nar
reta/lantdes
totp/lant v
.etaSlan’ de=
cetalam Jdo=
ata/lan!
ceta,lar’
ota. lan!
eLa/lant d
oca/lan’ e s
boLg lant s .
ceta/lnmy lz- 1.171
ela/lan’ do- : 1
Teia,’lan dz=
tota/lanbdnr=
L.ota/lamr dz=
teta/lant.da-
yota/lami.dlz-
‘2ta/lam’ dz=
‘ota/lan dz= LTIININN P
tova/lan’ dz= SN RATAL N
tnta/lann les= 1.,. 77T LTE
lota/lam’ dr= 1. ’5""1‘
iota/lant dox= ohat Aals Birs
ota/lam' drm= 1.‘!37“SJ
Yota/lam dz= LA33C8117
‘ota/lan de= STl

.l1nﬂ7r\r_n

N e o)
ERCR R

Ryt )
PR Fa

1,137

S Rtiakcd I

L1017

TARBLE | {continucd)

EXPERIMENT 11 (c)

mean= 2,.8859421
nean= £ ,3017CT1
anan= 11,1533¢5
coan= 7,4C433CC

tpnne

» meant C.24507
- noanz 0,3047C3
- moanz T

. ‘5!\("\7
roan= . 777207
mean—~ " .1 u77$51

moan= 17.57351¢C

- mean= T7.467°715

meanrs 17.054021
nean-= 11.3C20563%

- pean= 13.32356T

meoi 7.‘7“17

+ moan-— 1. q4”"""

moan= ," . :.;"30471

. - - nnnﬂﬂn
roanT 1

nean- I, a7""”
‘1\ "-

- meav- C LTTIC160

ol SRR A AT e
- A egmrn

mean T Ll ae

- neant T,1°7°0ET
- pearn— T.1°0447°0

pean- S,7irm00e

B s J PRI AR BT

- a-.,-,-.‘

menn- -

nean= ! "647“ i3

- mean= 4,73777°42

neanz .-4u-11-

~nr
- s

rean - .lu’“"I-
rean= 7, 1014577

sameni. 11,5321°0

RS R eboly

comrmmen
PRRRCRIRTIrA

3.15:3:31

- ~Amcpe-
S W =tde
e
11.307°33
- cmamee
Rt ARy ]

Je4de

‘_- BT T T VN
leee

h 2
nean: 1' "1
mean= ‘7'1"’

v e

compan= T, 700G

mean= 7,17 370350
moan- 1.2.455020

nean= 7, . 40500
noan= 135,67 3207

mrnAne~

nean= T 500C07T
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EXPERIMENT Il

beta/lambdz=
teta/lanh:dz—=
votz/lamdz=
bota/lantdnz
heta/lant dz=
teta/lan’.de=
teta/lantdrs=
Lota/lan’ dz=
teta/lani.dz=
tota/Yambdz=
tota/lant.dz=
:ota/lam dz=
hota/lan.dz=
tota/lanudz=
Lota/lantdz=
ota/lani:dz=
tota,/lanl.dz=
lota,/laridzz
hota’Yan! dz-
teta,lanlda=
l'ote,Yamidz=
bota,/lamidn s
iota,lantdzn=
‘ota/Innl de=
tota/1an de=
tota/Yanude=
cetalanidz=s
bota,/lam.de
‘otn/lamtdr=
eta/lant dz
eta/lam’ iz
cta/lan':dz=
et e A
Peta/lamydm—
ota /Iam dz=
cta/lom do=
etalan e
ota/lam' ¢
ota/tan dz=
uta/1£mfdzr
cta/lami.de=
cta/lawt do=
eta/lanl d==
cta/lant d==

et lan e

pE—

-

he me v e aa e

otaslam des
eta/lani:des
eta/tanldze=
.ota/lant:dz.=
eta/landz

chn/lu. 2o
‘ota/lanldz=
[ 34 ’1...‘-1 d::

ota/larm =
ota/lartdzz
Yota,/lanide=
lotas/lanl.dz=
‘ota/lamt dz=
Leta/lambdz-
lota/lonl:dz=
teta/lanl.dz=

.14126939
7477715
1.41:0°70
43724357
603‘4’3:
- ~ 1 "”.) l“
1.137724%
.£1037460
R REVY SO
. 33323110
LTToNIN0
1.7212350
LG3036473
l 1461376
1. T3CEC0

1.;231V28

.a676002
. 121 L3136
JToo AnCe
£13158237
1.711127C
L7012:201
1.71121C4

AR Ser el obalt]
euths Wb

sm g amnn
. 51773835

1.1560771

D LI a T I

1,2077058
1.70873010
1,73487017
LTE005505
1.~.Uu11..‘c
L0sIns
. oo ~OOTTL

Ao
LSTTIS.

1.l~’34"
S 2454710
,0134733
1.:087378
L1 G1A00
ACITNS
LT R
1.5045200
1.724571%
.10 565350

oo

1.,1234u530
1.07T0¢671
1.3504487
35205410
.371632™
.5nc401 07

(d)

53.454910

p mean=
~ mean= A4Z.,107C35
wonoal.z 0,004
» pean— 17.U3C177
. pean= . ,..87224C
~ moan= 7.57°53777%
- peanz ¢,47070580
mean= 1.,13363N
p weans 14,0010
- mean= 7, dCINGE
- moan= 1. .444. 34
- moan= 7.2371255
4 pean= 11,.724:014
=~ mean= C,331 41C
- mean= .20123240
. moan= {,1.C€122
p mean= €,3272033
poan= 1 :.444153
- mea== 17,:40532
» mean= 1., 70525
- moan= 4.11.17442
» moan=z i, 1532
» mean= 5,1.11375
~ moan= '1.30%03C
moan= 17,7147C25
4 moan= ©,77C74L0
-~ mean= ’1::"'
D oroan= .
r meant
). mean=
tomoanc
mean=
moan=
i mean-
- moan= {.UTT4°07
r mean= 7,303450735
nean= 1-1,7. Zv 4l
» pean= 5, 13112
s oan= 1,0 72374¢
-~ moan= T..313717
. mean= 11,3¢ 3301
~ moan= 3,1210770
~ moans TL,10ATIT
7 mean= 11,4777138
mean=s 1. .200212
©peanz JL,17C050
rean= ,11:15350
-~ moan= ,3054350
; moan= 7.753T127
noan= 15,7°17437
: moan-— 1..7?175:
- moan= 1.2,7057341
: mean= 5,7332C57
- omeanz 7.O010T117
- mean= 34,7177
~ moan= G,0607404
mnoan= 7."04"”1
moan= 55,5001
v moan= 13, ﬁ3434u
 mean= 22,44147°
mean= 14,7703C¢C

TABLE 1 (continucd)
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CXPORINENT 11
beta/lambdz=  1.1174040
teta/laniin= . 15,0877
era/lan flz= LOUBIC3T0
ota/lan’ dz= e

*ota/lamt Ans L1 ane
ota/lam’ Az Yot It

-

lotaslan) ) IO
eia/las! BRSO L 3%

viaslan
¢ia, iag
eta, lar

e e e

*cta/law 1,500 !
tota /tanldz S B
tota,lany RV H s
Tola lan LT ol
Telasiny e

totaslaw o
“ote/lan’

eve,taay

~

L R A B
[ N

PR EA Y PR Rt
ey 8%y - A
<R 1 T . RS

Cuta sl dz Piolal': MMt Pt
tota laudne 1.4457°G"
tota NNaw ez 1.237°7T3
‘otaslan’ oins 1.1710274
‘e a/lan o= .3 T47500

TABLE | (continued)

P

(o)

moan= 6.7056988
moan-— ° .0127400
mean= 17.727124
moan= 1, L4l
mpan= 11,7307
poan= 1,477
noan= 7

moan= 1

pean.s 10,40 270
neanz 7

moan~ 3.0 17177
moan~ 3,7:07°74
mon. - 1

monn s 11, 91l

e
woat . Y]

.. e

moLaT .. 1 nrd
i

med . s Bl

ear-
aean -
1:an

s 1o B4
noan-
noan -~
reans
roan=
acanT

19
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"EXPERIMENT II (€9)

beta/lambdz=" .30063233 mean= 25.0870%9
heta/lanmbdz= .C7749743 mean= 5,555431C -
'gta/lanhdz= G“MC"IC ~ mean= 17, C2CT7
dz= LT1228 - mean= 10,5527G3

I - |

. “ totasla R
' vota/lan’ dz= 7..“""1 - meana ",6M1771¢ %
' rota/lam-dz= .15447431’. - moan= *1,70C20C 4
. 1ota/lar’ dz= LTI 0 - means 17,760700
S a teta/lan' dz= ey falalels 3 ~ meanz 7,7°1:1000 ST
L tota/lan Gz= LERTTNLM - moan= 11, 7T737 v,
1 ofa.,.’ln.':‘-,dz: el st talabii noans= :
cta/lamt.dzz: 1 40T - poanz
‘-ofal"ar.l dre LoInnn ..1 -~ mean= 7 .
'- »lota/tar dz= 1.MN770TA5 - moan= 7 .
 teta/lant dz= 1.77°004°41 - mean-= 4 .
w et danldzs 01134715 - moan< 1
o Yetw/ten dz= O 1,07T5NE - moan= O,utITTLG
. “ietasatidzz  1.7775775 0 means £,7434543 .
: l2ta,Naut.dz= A a7t ) e - mean= .,C745553
. ¢ T otn. o= 1510800 roan- ,70755C0
Tata lart dn= JaeeTIns mean= 1 ,7.5435
etn/law de= LTMLSA mean= 1" .713127
?n‘:n,»’,!al.'.".-‘lz-: s tosetet: \v ot -~ mean= 17,743775
tofelan ns 1.7°3011°5 - mean= 3, T1UT Lo

- e

. “ots/lart d L3Annoy Cmoan= 1°,71C000
Loty ia 1.117°0784 p means=

- ‘ot lanndes LACG40TT - neans
e oty Mantdz= LA0A10TI + moans f."’}SCl’ "
* Tote ‘tarnd doz JATOTTTET + mean= 11,°7371C
Yot Mlaid dz= 'T 3370 "‘“") ~ nean= 11,1780
tetastan! das LA711550 neah: T,7 S17R0
Teftatant das ."(‘S""“"S p roan= (.27 74T
- Tt Nant g 1.3222215 ~ pean: 3,0120310
Vorr /lantdes 57450856 ©owean- 1°,°C58140
BRSNS Lot B 1,7200700 ~ moan. Jel [odry
‘ote /lan’ dz2 1.°0r77°.o ~ neanc 3, 435004 '
tetalantdes LGCINNng © poan= 1I,773545
o= lar les= SOTTITYT S omean-= T, D l7TT0f
Tain ot iz 1.°0110700 omean~ ,.32'1 47
nte Fiant dz= LTI 8 © neal= ~,794C137
Lo lan e 1.0 m1Ton monn- LL.LTTUI
tefa/lar e LTI M nent -
[ V8 FYRE LIUTCIOATS ~ea:-
tena/ ant des LOUraATTAn nea: :
tata/lantdes RisLiratind & v ©omoan:
coaslant dz= 1,177 nea -
eops T dns [t e B meps
‘ o, ’lar‘ dn= ok Rl moanz 147,
~oaslars dzs 1.7177 71 someoan: I,V ITILSL
= fan des Sooarnaenn moan-= L, ON3T
terg/landne 3653 near. 21,134755
tetasflan des 1.2779701 neanz 2,-107M 72
Tete Tan das ATenAnT © peans T.72045CT
ela/lar dz= rmoan- 17, 3°N307
TooaYany dzs rean.- C.aﬂ 1134
' nt'\,” ant.dz= nea.a= 2,7 745762
icta/lanhdoz s poan: 7 LSIT0
ictn/lant dz= 1.7 s omean T.W 1a"57'
teta/lan! du= 1.77:7015 + mean- -1,:1740310 .

Lota/lanb.de= 1.20-54440 mean= 5.557C437
leta/lantz= LORT713704 - noanz ¢ 700534

lota/lanbdz= LAN302600 nean-~ 17 ,20013°0
teota/laul.dz= 47163147 ~ nmean= 15,533650
Leta/laml dz= 1476202 ~ mogn= &,27°355¢7

TABLE .1 {continued) . Copy
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e
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e kI TS B ©

EXPLCRIMENT II
beta/lambdz=
Lota/lantdz=
hota/lanhlEs
Yota/'an' dzg
ota/lory o=
ern/Yaghdos

ota/Jawu dz=

caa“"’.;ut‘w!?:
o law v
oia lanhdes
‘ota, lan! d==
graslar! J
cta; law
Y oia,lans dze

dz=

teta, lam dez=

.
. - -

Teialflanvne » opoan= .0
cra/laneder » omeanT 17,

beila,lam o=

.68386243
S354510
STT2N5605

1.°770487

e e =,
o Sa  ea s

1.7634077%

IR TR T Lol a Yotk
P Ll
.

1.17007070

;
! cfnn
it ol i

()

‘heans
~ nean-
- moa. =
Y peans

mnoar.=

means
v means
mean<T
near. -

ooan -

©nooeans
1 r.;udx--:
coealfs

S ooealrn s

P Mmean= 10.962646
» noan=

17,7454G]
©LT1I010

il Telaslam e L 1,370 e i nea=
§ 'ola/lan zs 3 3 ~ nean= FLT07
tela/lami:dz= » moan< .1
‘ola/lan iz RELA PuE> Nemeans
Teta/lant Az o155 o menns
. " 'ela, tan de'n OIS TR B¢ et poan=
“ *oinStan' vl LoN5uo3nY | means

ERN T istel o

NSRRI it
1' PR T

PR PR
1. .137.0%3

coa/tarn dos
clalaw des

Soarad

et

PIEVH DR

‘. , : ‘
: - - A T, e T,
. @ .t L) Wt .
Yoe e peal 3
. - . -
v * h i seans .
1.30C37 0L
S VTICLTS
(AN 1307

2 . *

. Tolaclam e rean~ 11, 1250
. . . t sy Wy oy
voadiane T [ I

oo Cloacl e Lot CLiVT TS
mean- 11, 11173

“l17 35

:;

“

et Tant dze

~taian in

1.4 T

.t e

L7500

teln,Tant des LT rTI mean:s
CetaSlany Jdos LT IST mean -

cta/lar’ du-
eta/lam dr=s

1.7 0
1.17721 8

nean
Teans

TABLE | {ontinued)
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IV

~useye
eont e

TIMENT 11 (D)

bm/m-bd:-
‘a./‘ ar. dz=

.ota/.m... B
. ’:z/"an'.d:-:
'ota/lar Or=

‘ota/lar’ duz

Cota/lary g
t.ota/la dz=

ota/lar’
ora/lan (i
ota/lar’ luz
‘va/lan dz2=
otz/lan’ dz=
ta/lary do=
cta/lam dn=
eta/Tarn do=
oo/ ot )
ota/ilam An
oia/lum di-
ota/iani

- *ota/lam Iz

‘ota/lary
ota/lam dx
‘ota/ln
* -.I/lll‘ dz=
eta/ian o
ota/tan! dm=
teta/lanbdzz
‘eota/lan' dnz
oa/"an do=
eta/lon dos

o a/tam
‘o%a/an
osa/lard
ceta/lam Ar
‘ota/lanm On
Te'a/lan d2=

/am

[-34¥
Cota/slarn
’ c"a/’:m

ota/lu
sta/lary
cLa/iat d
‘eun/lars
tutaslant e
totaany
'otu/tary
cta/la
ota/law’

ota/iam
‘o e/le

~e oy

RN

Qe

v q

TABLE 1 (continucd)

e~ B -]

-

wean= 8,.86509T4
moanz= -. 147713
mept— 3.730NI17

poar = ".‘:‘:’Z‘.’SZ

nean= ., 350
He<1: A

nogr= 11. 71777
mi = ©,712850:8

nean= .. 1450
moan= ~,1°7°27%

- - st
TOANT . +

moan= 4.!‘1 77515

3 ¢
:‘
i i

1)
é
9
1]

1.0
Ta3T
a1
R
I R i

anpiar

asry amr
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EXPCRIMENT II (1)

aunber

. 250000001 =

of trialsz

.13333300

250000 mean=

9.B668640 variance> 206.09938 std dev=14.35616

SAL At dote ] TNV SN IATITnINUTION
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CXPERIMENT 11 ()
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COMPUTATIONAL CONSIDERATIONS IN
MULTIPLE LINEAR REGRESSION~

Harold J. Breaux
U. S. Army Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

INTRODUCTION

The statistical theury concerned with multiple linear regression
and simple, partial and multiple correlation is highly developed and has
been one of the most useful tools of analysis provided by statistics, The
widespread availability of modern high speed computing machinery
makes practical the soiution of many regression problems which before~-
. hand might not have been attempted due to the inherent computational
difficulties, High speed computing machinery enhances the value of
multiple linear regression by removing the computational drudgery
and making possible more eophisticated procedures of analysis. Despite
the tremendous speed and computing capabilities of modern computers,
much can be gained by the skillful design of computer programs designed
to solve the normal equations and provide the associated statistical
data for estimating significance of variabhles and prediction intervals,
The computational labor associated with multiple linear regression
arises in the formation and solution of the normal equations, Efficient
algorithms for solving the normal equations are described in the
commonly used texts of statistics and numerical analysis, however,
only recently has any widespread effort been rnade to fully take adwvant-
age of the capabilities of computers for doing "exploratory'' type
regression computations, In problems where many variables are
involved the analyst may have only intuitive suspicion regarding those "
variables which are significant, When this is true it is desirable to
define a “candidate' linear model which includes all the variables
which are conceivably significant, The exploratory experiment then
would consist of entering this candidate model and.the appropriate l
available data to a computer program specifically designed to analyse w
this model, and output a reduced model containing only significant
variables,

One wav to design such a program is to have it obtain the solution
to all the "sub=set'' modele that can be formed from the collection '
of variables in the candidate and choose the one which best meets the
significance criteria.

“This paper has been reproduced photog raphicaelly, i
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if this model contains N variables there are 2'° ~1 sub-set models,
This method is made practical for as many as 70 variables by a
"binary algorithm' decribed by Lotto (1], 1961, aund Garside (2],
1965, This binary algorithm defines the optimu'n path of elimination
sco that the Gauss~Jordan algorithm goes through the fewest recursions

when generating the ZN -1 solutions, The method has the advantage of
being always able to identify the "optimum model', For the purpose
of this paper the optimum model is defined as that model containing
only variables which are statistically significant at a chosen level of
significance and which has the minimum variance of residuals among
the sub-models that have all terms significant at that level.

The scope of some regression problems is such, however, that
more than twenty variables are required in the candidate model. Such
a problem is one described by the author in BRL Report No. 1348%,
"The Computation of Firing Tables for Guided Missiles', [3]. In this
problem it is desirable to define a candidate model containing 100 or
more terms., A very practical solution was obtained using "Stepwise
Multiple Linear Regression', The program was patterned after the
computational scheme described by M. A. Efroymson [4] and is docu-
mented in BRL Report No, 1330 [ 5], For documentation of similar
type programs see References [ 6], [ 7] and [8],

Stepwise Multivle Regression takes advantage of the fact that the
Gausg=Jordan algorithm, when used to solve the normal equations with
N variables, vields intermediate solutions to N regression problems
containing respectively 1,2, ... and N variables. The procedure
advances in stages., In the "forward' version the variable which enters
into the regression is the one which at that stage results {n the greatest
reduction in the sum of squares of residuala. The power of the procedure
is further enhanced by removing variables at later stages that may have
become insignificant. The decision to add or remove variables is made
by use of "t" oy '"f" tests of significance. The procedure advances until
an equilbrium point i{s reached where no significant reduction in the sum
of squares of residuals is to be gained by adding variables into the
regression and where a significant increase arises if a variable iy
removed, The "backward' version ¢f the procedure beging with all
variables in regression and proceeds in the opposite direction to achieve
the equilibrium stage, The relative advantage and disadvantages of the
two procedures is dependent upon the application however, it seems
desirable for a well designed computer program to contain a capability
for voth.

*
Copies of thic report are available to qualified requestors.
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MATHEMATICAL BASIS OF THE STEPWISE
REGRESSION

The mathematical basis of the stepwise regression is that the
transformation rules of the Gausg—Tordan algorithm correspond to
recurrence relations that exist between covariances of regiduals,
regression coefficients, and inverse elements of partitions of the covari-
ance matrix, These relations are conveniently expressed by taking
advantag-. of Yule's notation [ 9], In this notation the regression equatioun
is written in the form

, = p 2 + .. .
Xn bn1.23...n-1 1<l * an. 13...n -1 Y2

+ p,
bn.n-l.lZ“.n"Z \(n"'i (1)

The first subscript of b is that corvesponding to the dependent variable
X , the second subscript corresponds to the independent -variable
atfached to the regression coefficient, These two subscriuts are called
the primary subscripts. The remaining subscripts on the right of the . 1
period are those of the remaining independent variables and are called

secondary subscripts. For a particular ohservation equation (1) takes
the form

- b + b E + [ ] +b P. + N
X in 1 %5 2 %2 n-1 Xj,n-1 T8 (2

ej is a residual and is the difference hetween the predicted value and the

observed value of X T. In Yule's notation the residuals are denoted as
n

Xn .12... n -] + Since regressions containing fewer than the (n-1)

independent variables are of interest it is convenient to introduce the
notation

qa = 1, 2,... (i=1), {kt+1),e.ep (3)

Note that q is a set of subscripts containing the digits 1 through p, excluding
i, j» and k. Furthermore q is a sub~set of the (n~1) subscripts of the
independent variables.

e
It should be noted that the variables Xi are asvumed to he measured
without error.
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The covariance of the variables Xi and Xj is defined as

sij = in xj /f

where { is the degrees of freedom and the summation extends over the
m data points. Any variable can be considered as the dependent variable
e, g+, the residuals X, and X will be of interest. The covariance

i.q jeq

of residuals is defined as
s = ZX. X, /t
ijeq i.q " j.q /

Using the above notation, the normal equations can be written in the
form

zxn.lz +oe =] Xk

or equivalently

0, k 21,2, evs, n~] (4)

e Pyt ofa B toereF S 1 Pnm) Ttk
k = 1,2, ean,n=l -~ (5)
The complete covariance matrix is
*u . %12 i
%2 S22 %2 o , .
S = _ : (6)
’nl--' sna . oousnn'

This matrix correaponds to the augmented matrix of coefficients
usually considered in solving a system of linear equations with the
addition of the nth row, The nth row is added so that the variance of
residuals, L q will be made available through matrix manipulations,

thus aveiding the need for computing residuals at each stage.

The matrix element Xij qij k is defined as the ij' th element of

40
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the inverse of the partition of the covariance matrix formed by taking
all the rows and columnr of indices q, i, i, k.

The recurrence relations between the b's, c's and s's that are
of interest in stepwise multiple regression are tabulated in Table 1.

The solution of the normal equations by the Gauss=Jordan
algorithm is equivalent to the successive application of linear trans-
formations to transformed rmatrices, the initial matrix being the
covariance matrix. The successive matrices that are generated by

the recursive equations can be denoted as Ao’ Al’ vee An—l'
Ak (k=1, 2, «..n~1) is the matrix formed by applying the tranaform=-

ation.
ai(. = af.’l -ai‘k-l a:j'l/ aiil, i = 1,2, couy(k=1) (k+1)svs,n
J ) = 1,2, «oo,(k=1) (k+1)sus,n
k k~1 k-1 )
84 = 8 / 210 tm 1,2, eouy(k=1) (kt1)eusyn
ak - ak“l/ ak"l . (7)
.,J kj kk j = 1,2. se ) (k—l) (k+l)uno,n
k k=1
Bt Ve i= 4=k
to the matrix Ak-l' This transforration is denoted as Tk. The
superscripts denote the fact that the matrix Ak—l is beiny operated

on to yield Ak' The sequence corresponds to the introduction of the

variables into the regression in the order 1,2,...n~1, In general the
sequence would be different, however, no loss of generality arises,
gince one can renumber the variables in any arbitrary fashion, By
use of the recurrence formulas one can prove the following theorem:
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THEOREM:

The matrix A, defined above, contains four partitions, the respect—
ive partitions having elements as follows:

aij = cii 12 k, i = l.Z,.-.k, j = I,Z,o-ck
25 % Piiiaien b = bZeedk § = KLKZ.n
(8)
85 % Y12 im, itk 2T KL K200, § o= 12,0000
aij = aij.lz...k' i = ktl, kt2,...n, j = k+l,k+2,...n

The consequence of the above theorem can be generalized as follows:
The collection of variables whose subscripts are represented by the

values taken by k in the successive application of TK are gaid to be in

regression if k appears an odd number of times in the collection. Alter-
natively, a variable is said not to be in regression if its subscript does
not appear in the collection, or if it appears an even number of times.

If the subscript appears twice, e.g., the corresponding variable was
entered into the regression and then removed. The nine recurrence
formulas, 10}, through 18. can be used to prove that the application of

the transformation Tk to Ak generates the matrix Ak-l' i. e., the variable

is removed from regression by the same algorithm with which it is
entered,

*The derivation of the eighteen recurrence formulas and the proof of
this theorem are contained in the author's Masters' Thesis, soon to be
presented to the Graduate School, Department of Statistics and Computer
Science, University of Delaware, Newark, Delaware, The thesis also

contains a discussion of storage saving considerations in the program-
ming of the procedure,
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The content of the matrix at any stage is as follows:

a, . = 8. , when neither X, nor X, are in regression
1) 1} 1 J

a, . = L, ., when X, is in regression but not X,
1) J1 1 J

a, ., = d, when X, is in regression but not X,
1] ij j |

a, i = ¢ j when both Xi and Xj are in regression.

CHOOSING THE KEY ELEMENT

In forward stepwise regression the variable which is entered into
regression is the one which yields the greatest reduction in the variance
of residuals at that stage, For an arbitrary variable Xi that is not in

regression it is seen from the recurrence formula 9. that the variance
reduction is given by the quantity.

Vi = e e ley s ®in.q "ni.q/"ii.q (9)

For an arbitrary variable Xi that ig in regression the variance increase
resulting from the removal of Xi from regression is given by 18.

Vi o= oagag /ey s g q Pni.q ey, qi (10)
For Xi not in regression Vi is positive and for Xi in regression
Vi is negative.

After determining the key element it is necessary to test whether
the variance reduction due to entering the key variable is statistically
significant. By inspection of 9, it is seenthatfori = j = n

) (11)

®nn. gk = snn.q (l_snk.q skn.q /’nn.q akk.q

.q skn.q /snn..q s'kk.q

moment coefficient of correlation between Xn q and Xk Q'

The quantity (snk )* is defined as the product
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This quantity is denoted as LR q

correlation coefficient. Equation {11) can be written in the form
2 (12)

1‘nk.q = snk.q skn.q/s’nn.q Skk.q = | E'nn.q " ®an. gk )/snn.q

and is often referred to as a partial

By inspection rik q gives the fractional variance reduction obtained by

adding Xk into the regression., If r is statistically different from

k. q
zero, then we observe that the fractional variance reduction due to X

k
is significant and that Xk should be brought into regression. For forward
recursion rik q can be computed directly from the first expression of
(12). For backwards recursion, i.e., to test whether a variable Xk can

2
be removed from regression, r nk. q can be computed from the formula

2

= +
T k. q vk /1 ®nn. gk vk ) (13)
A test of significance for T Kk q is listed by Graybill [ 10]. If the true
coefficient rnk.q , for which rnk.q is an estimate, is zero the quantity
_ ) _.2 %
t = rnk_q(f 2)° /(1 rnk.q) (14)

is distributed as the Student t distribution. A test of the hypothesis
Tk q # 0 against the alternative T q = 0 is performed as follows:

The quantity t is compared against the one-tailed t statistic, t (f~2, c)
appropriate to the degrees of freedom, f, and the confidence level, c.
The hypothesis is accepted if t>t ({-2,c).

The test is used in two ways:

(A) At the beginning of a stage Vi is computed for all subscripts,
i= 1,2,...n-1, The largest positive ’Vi identifies the key variable

which should be tested for entering into the regression. The quantity
Tk q is computed using equation (12) and the t test described above isn

performed, If t> t (f-2,c) the variable Xk is entered into regression by

performing the transformation Tk'
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(B} The cocond patt of the stage Legius Ly again cumpuiing V,
1

for all i, The negative Vi identify the variables that are not in regression.
The negative Vi of smallest magnitude identifies the key variable to test

for removal, LI q is computed using equation (13). If t> t (f=2, c) the

correlation is significant and the variable Xk should remain in regression,
If t<t (f-2, c) the variable can be removed from regression without
significantly increasing the variance of residuals. xk is removed from
the regression by applying Tk . The procedure is repeated until all

insignificant variables have been removed,

The modification of {A) and (B) above for backward regression is
quite simple. Initially the recursion is controlled to proceed all the way
forward, yielding the inverse of the covariance matrix. On the way back,
after any variable is removed, the determination is made as to whether a
variable removed previously has become significant. If not, then the
least significant variable in regression is removed, provided again that
the resulting variance increase is not significant.

n e -

b e e <

46




Ry

B« LRt TV N

10.

REFERENCES

Lotto, G., On the Generation of All Possible Stepwise Comuinations,
Mathematics of Computation, Vol. 16, 1962.

Garside, M. J., The Best Sub-Set in Multiple Regression Analysis,
Ap .ied Statistics, Journal of the Royal Statistical Society, Vol. X1V,
1965,

Breaux, H. J., The Computation of Firing Tables for Guided Missiles,
BRL Report No. 1348, November 1966, Aberdeen Proving Ground,
Maryland.

Efroymson, M. A., Multiple Regression Analysis, Mathematical
Methods for Digital Computers, Edited by Ralston and Wilf, John
Wiley and Sons, Inc. 1960.

Breaux, H. J.. Campbell, L. W., Torrey, J. C., Stepwise Multiple
Regression - Statistical Theory and Computer Program Description,
BRL Report No. 1330, July 1966, Aberdeen Proving Ground, Maryland

Wilcoxin, W, L., Wohlever, J. R., An Improved Stepwise Regression
Analysis Procedure, Report No, Y-F015-15-06-513, U. §. Naval
Civil Engineering Laboratory, Port Hueneme, California.

Dixon, W. J., Biomedical Computer Programs Health Sciences «
Computing Facility, University of California, Los Angeles, Septemberl, !
1965.

Abt, K., Gemmill, G., Herring, T., Shade, R., DA-MRCA: A Fortran
1V Program for Multiple Linear Regression, Technical Report No. 2035,
U. S. Naval Weapons Laboratory, Dahlgren, Virginia, March 1966.

Yule, G. U., Kendall, M. G., An Introduction to the Theory of Statistics,
Charles Griffin and Company, London, 1940.

[

Graybill, F. A., An Introduction to Linear Statistical Models, Vol. I,
McGraw Hill Book Company, Inc., 1961.

.




v ——— " ———— T ——

g

. LERG AR e

. g YN B e

A AT B E - boe At T A

ESTIMATION OF ERROR RATES IN
DISCRIMINANT ANALYSIS*

Peter A, Lachenbruch and M. Ray Mickey
University of North Carolina
Chapel Hill, North Carolina and
University of California, Los Angeles, California

ABSTRACT. Several methods of estimating error rates in Discriminant
Analysis are evaluated by sampling methods, Multivariate normal samples
are generated on a computer which have various true probabilities of
misclassification for different combinations of sample sizes and different

numbers of parameters, The two methods in most common use are found

to be significantly poorer than some new methods that are proposed,

%This article is to appear in Technometrics.
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SOME STATISTICAL APPLICATIONS IN THE TESTING
OF MILITARY VEHICLE RUBBER COMPONFENTS#*

Emil H, Jebe
Willow Run Laboratories
The University of Michigan, Ann Arbor, Michigan

SUMMARY. Thig paper utilizes the results of four test programs for
rubber components of military vehicles to illustrate a variety of statistical
applications. Twc of the programs were concerned with the testing of
rubber bushings, an element of the track for track-laying vehicles. A
third program was conducted to evaluate experimental types of track pads
while the fourth example discussed reliability evaluation for track pads and
track shoes,

Two of the test programs were based on experimental designs suggc sted
by the author while the other two may ke described as:

(1) A factorial arrangement for two factors with missing treatment
combinations,

(2) A "road test' without controls or any basis for comparative
evaluation.

The statistical applications described for these test programs include
the following:

a. Unweighted least squares analysis,

b. Orthogonal polynomials for unequal spacing of a factor,

¢, Use of the Kronecker or Direct Product of matrices to form
the Contrast or Design Matrix,

d. Weighted Least Squares analysis,

e. Use of a single replicate with confounding in a 3x3x2x2 experi-
ment for four factors,

f. Estimation of experimental error by a number of techniques,
e.g., regression residuals, Half Normal Plot, etc.,

g. Use of "uniformity trial'' analyses of data from previous tests.
to design a new experiment,

*Willow Run Laboratories, Project 07312, Institute of Science and Technology,
The Jniversity of Michigan. Prepared under Contract No. DA-20-113-AMC -
05927(T) with USATAC, Warren, Michigan. Revised 10 February 1967,




h. ' Reliability estimation based on
(1) The binomial distribution, and
(2) Johns anAd Lieberman (1966) (Technometrics 8, 135, February
issue). ‘

INTRODUCTION. Since 1962 the author has had a unique opportunity
to participate in a number of investigations of rubber products for military
applidations. These studies have been conducted by engineers of the
Components Research and Development Laboratories (CRDL), Research
and Engineering Directorate, USATAC. My participation has been through
several contracts between The University of Michigan and USATAC. Among

the types of products investigated have been bushings, pads, shoes and tires.

The latter needs no definition, but the other three are components or
elements of the track for our tracked vehicles, e.g., tanks and personnel

carriers,

A few words of non-military explanation may be helpful for these
components. The rubber bushing is bonded to a track link pin. A close
fitting metal tube is squeezed over the rubber bushings which are bonded
in clusters of 2, 3 or more on the pin. This assembly is then inserted into
a cylindrical opening in the track shoe. Addition of center guides and end
connectors to a group of shoes makes possible the assembly of a complete
track. The rubber bushing is a key element in this complete assembly in
that it provides a non-lubricated bearing and a load taking element such
that the vehicle can travel at high speed without prohibitive noise. Another
key part of the track is the friction and load bearing surface between the
vehicle and the road. The outer face of the track shoe provides this sur-
face. Again this face of the shoe is made of rubber but it may be provided
in two ways. One way is to bond and mold rubber to the desired shape
directly on the steel surface of the track shoe. Another way is to make
shoe pads of desired shape and bolt them to the track shoe. The pad is
made by bonding rubber on a metal plate with welded bolt attached.

As the author understands the situation, polymer science and rubber
technology are not yet able to predict reliably the outcome of many military
applications. The outcome of interest is durability or life of the component.
Hence, various laboratory and field tests need to be undertaken to investi-
gate the suitability and durability of specific applications. Our participation
in these tests has comprised:

(1) Analysis of laboratory tests (without an experimental design
imposed),

(2) Design of experiments for laboratory and field tests,
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(3) Analysis of previous field tests to obtain information for
designing new field tests,

(4} Analyszie of rooults fron

~ama A Al
y Larais -

cug:‘.cd w':nyc;lxuculti.
(5) Estimation of reliability from road test resulta,

In presenting this paper the author wishes to acknowledge the contri-
butions of his colleagues and co-workers, R. A, King and J. W, Curtis.
Further, the strong support, encouragement and active interest of USATAC
personnel has made it possible to present this report¥,

Least Squares Analysis of a 6x3 Factorial Arrangement for Rubber
Bushings with Missing Treatment Combinations. The first problem pre-
sented to me concerned the analysis of results of fatigue testing a large
number of rubber bushings on a laboratory test machine. This machine is
designed to simulate the actual field applications of the bushings. Adjust-
ments of the machine permit variations of (1) the radial load (in psi) on
the bushing, (2) the angle of torsional twist (plus or minus in degrees),
and (3) the cycling rate for the selected load and angle, During fatigue
testing the rubber deteriorates so that the load squeezed the bushing and
permits a carefully positioned microswitch to close and atop the machine,
A counter mounted on the machine permits recording the torsional cycles
to failure at the time the switch closes.

Engineers charged with analysis of these data on cycles to failure were
disturbed or baffled by the tremendous spread or variability of the results,
Further, plotting of average results showed a non-linear response (Figures
1 and 2) which made prediction appear extremely hazardous [1] %, Tablel
indicates the variability for two groups of tests, Table 2 provides a general
summary of these results,

In approaching the analysis of these data, one found that no experi-
mental design had been imposed on the test sequence, Although it appeared

*In this regard the author wishes to mention Messrs, P. L. Goud, C. Banton,
C. D, Rose, F. Spencer, E. Kvet, R. Westerman, and Miss C, Cicillini.
Statements and opinions expressed in this paper, however, are those ‘of the
author and do not express USATAC position or policy. The author also
wishes to express his appreciation for the comments of Professor H, ,B.
Mann, Army Mathematics Research Center, Univ, of Wisconsgin, made
after the presentation of the paper on 19 October 1966,

**Numbers in brackets refer to references. These Figures l and 2 are
reproduced from Figures 6 and 8 of Reference 1.
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Torsional Fatigue Life, Millions of Cycles

Tt 8+ 3 e ez ran g et

A Y] ¢ N 104 AN o~ . X
m— One epecimen failod at 2,154, 500 Cycies.

. showed little wear after 3,000,000 Cycles.

A .
\

/-—' +15

A

+221/2°

500 1000 1500 2000 2500
Radial Load, psi
Figure |. Fatigue Life of Rubber Bushing Track Pins us a
Function of Radial Loading. at Ditierent Degrecy
of Torsional Twist (Figure 6 of [1]).
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Torsionu} Fatigue Life, Millions of Jveles
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~ Two Specimens Tested Showed Little Wear

After J, 000, 000 Cycies.
L
1
' |
$ %
i
‘ \
|
|
! %
?r \
: 1800 pei—
: N \ 1200 psi
i
| /
2 2250 psi ——] \ /—- 1500 psi
] AN
| )
|
|
|
0 712 15 22 1/2

Torsional Twist, + degrees

Figure 2. Fatigue Life of Rubber Bushing Track Pins as a
Fumction of Torsional Twist, at Different Levels
of Radial Loading. (Figure 8 of [1]).
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TABLE 1, .
Cycles to Failure for Rubber Bushings Tested at Two Conditions

Test No. 20 Test No. 24 .
1 44,900 1 800,000
2 42,700 2 1,326,600 A
3 34,900 3 1,334,900
4 32,600 4 1,372,100
5 41, 500 5 200, 000%
6 40, 200 6 1,638,800
7 83, 500 Load 1950 psi
8 35, 000 Angle + 7. 5 degrees
Load 1500 psi ‘ .

Angle + 22.5 degrees

Cycling Rates for Both Groups - 255 ¢cpm

Source: Table Il of [1].

“Rejected later as an outlier,
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TABLE 2,

Radial L.oad
(psi)

1200

1500

. 1800

1950

2100

P

Warren, Michigan, 1962

+7.5
n =0
(no data)
n =0
Zl(no data)
1'13l =6
C = 266!
R = 2288
y = 3.4066
sz =0,01906
+
n41 =5
C = 1294
R = 1439
y = 3.1006
s2 = 0,01361
ns1 =8
C = 339
R = 317
y = 2, 5021
s% = 0,02778

+15.0
n, = 6

C = 1052

R = 42 3%

y = 30175

% = 0.00505
Rz © 19

C =403

R = 127

y = 2.4539

sZ = 0.00922
n32 =8

C = 188

R = 164

vy =2.2586

% = 0.01771
n =0

(no data)

n =0

5
52 (no data)
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Layout of Rubber Bushing Test Conducted at USATAC,

Angle of Torsional Twist (Degrees)

+22.5
n15 =8
C=56.6
R = 40
y=1,7373
% = 0.01503
N3 =8
C = 44.4
R = 51
y = 1,6284
6% = 0.01643
n33 =8
C = 25.5
R=8.8
y = 1.4035
s = 0. 00222
n =0
43(no data)
n 3,= 0 .
(no data)




Table

2250 ng, =8
C = 342
R = 490
y = 2.5014
% = 0.02930

0
1}

n

Torsional Cycles for the

J

Ty, = 7;‘( (log Cijk)’/ni" k=1, 2,...n,

2 continued

n62 =6
T=76
R = 55
v = 1.8697
s2 = 0.01296

-3
Average cycles to failure in cell x10

Bushing.

Observed range for Cycles to failure in cell x 10™°,

<l o 0
noon

o» —

Y
FS -

%3

52 = 0, 00201

Cycles recoxrded are

3

+
In Cell 4,1, one test result was rejected as an ''outlier',
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that a factorial arrangement had been desired for the factors Load (L)

and Angle (A), such a program was not completed. Table 2 shows a 6x3
layuui Lui six cells are empiy; either no tailures were obtained or no tests
were conducted. Thus, a least squares analysis became necessary., Next,
the question of homogeneity of variance had to be considered, Clearly,
differences in dispersion for treatment combinations as shown by Table 1
should be removed, Without previous experience in this field, the writer
selected the log normal distribution as a plausible model for the within cell
results, Cells 3,3 and 6, 3 were selected to take a first look at the results
of the log transformation. In Table 2 the respective ranges in original
scale were 8,800 and 4,400; the e shown for the transform are 0, 00202
and 0,00201, Corresponding results for cells 3,1 and 6,1 were 2,288,000
and 490,000 for ranges and §2 of 0.01906 and 0. 02930, respectively.
Somewhat encouraged by these results the log transformation was
accepted* [2].

Plotting the transformed data further showed the usefulness of the
transformation. Figures 3 and 4 show the transformed resuits**, It is
seen that the response is approximately linear for either factor for a
selected level of the other factor, Some interaction between the factors
Load and Angle was indicated by the non-paralielism of the straight lines
sketched in the figures.

The next step was selection of a specific regression model and writing
out of the X matrix. As a preliminary model, it was assumed that a cell
mean, Yij’ could be represented as:

Vij = Bo¥o TR Ly Ly 3,4 By A plZ(LiAj) tey

with i=1, 2, ..., band j=1, 2, 3, but not over all i, j. The missing
cells reduced the data vector, ¥, to dimensions 12x1 (the 12 values are
shown in Table 2). Small variations inthe n,; and variations in s values

were ignored at this stage sothat the ;i' were assuried to have uniform
variance. )

*Later the author became acquainted with some of the relevant literature
and concluded that the procedure adopted is reasonably robust against
certain alternative models [2] .

“iFigures 7 and 9 from Reference [1].
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Fatigue Life. Log of Torsional Cycles

-3
o

6.0

5.0

4.0

+712°

Figure 3.

500 1000 1500 2000 2500

Radial Load, psi
Logarithm of Torsional Fatlg'ue Life as a Function of
Radial Load, at Different Degrees of Torsional Twist
(Figure 7 of [1]).
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7.0

. 1800 psi

6.0
\ 1200 psi
Jb- \, 1500 psi

2250 pst >\ \&
5.0 ;

\

Fatipue Lile, Log of Torsionul Cyvcles

G

|
4.0
0 (BV/] 15 221

Torsional Twist, + degrees

: Figure 4. Logarithm of Torsional Fatigue Life as a Fuanction of
' Torsional Twist, at Different Levels of Radiil Loading.
(Figure 9 of [1).
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j A convenient codiny, for Angle is seen to be -1, 0, +1 since the spac-

} ; ing was uniform at intervals of +7.5 degrees. This coding for A also

| uses the orthogonal nolynomial raefficients for the lincar clleci uf A

Similarly, a convenient coding for I.oad was found by taking 150 lbs as the

unit and centering on 1800 as zero, The coded values became -4, -2, 0, .
41, +2, +3. With these values of coded A and L, our first X matrix

appears as in Table 3.

!
L TABLE 3. X Matrix for Preliminary Model Fitted to Rubber g
} ' Bushing Data (Response = Average of Log Cycles %
1 ' to Failure)
5 ' X, L L, A Al LA o
1 0 0 -1 1 0
1 +1 1 -1 | -1
. 1 +2 4 -1 1 -2
1 +3 9 -1 1 -3 :
{ 1 -4 16 0 0 0
E ‘ 1 -2 4 0 0 0 .
1 0 0 0 0 0
1 +3 9 0 0 0 .
1 -4 16 +1 1 -4
| 1 -2 4 +1 1 -2
’ 1 0 0 +1 1 0
‘ 1 +3 9 +1 1 +3

From Table 3, the A matrix = XTX is obtained as shown in Table 4.




TABLE 4, Cross-Product Mat;-ix A for Solution of Normal
Equations; AB =G”

X, L L? A G AxL
12 0 72 0 8 -9
0 72 54 -9 3 15
72 -54 804 15 43 -81
0 -9 15 8 0 3
8 3 43 0 8 -9
-9 15 -81 3 -9 43

From the solution of the normal equations AB = G, which is given by
B = CG, where C = A=), the regression coefficients obtained are shown
in Table 7 under First Equation. The summary analysis of variance
appears in Table 5,

TABLE 5. Analysis of Variance for Fitting Preliminary
Model to Mean of Log of Cycles to Failure

Source of Variation Degrees of Sum of
Freedom Squares
Total 12 66.4389
Mean {correction term) 1 60.9171
Reduction in Sum of Squares
for Regression 5 5.3942
Remainder 6 0,1275
Within Cells (from Table 2) 77 0.18268%%

Extension of Table 5 (based upon fitting the Z model with design
matrix given in Table 8):

Add Reduction in S. S. 3 0.07387
Remainder 3 0.05363

T . . :
*In this compact notation, G = X Y where Y is the vector of means given
in Table 2 in six rows and three columns.

i The actual within cells sum of squares was 1,096091; a divisor of 6 has
been used to place the Remainder SS and Within Cells SS on a comparable
basis.
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The results presented above are incomplete or inadequate in three
respects. VYirst, the regression coefficients are correlated; one would
like orthogonal estimates of the effects of Load and Angle and their
inieraction. Second, the Kemainder Mean Square, 0,0212, obtained from
Table 5, when compared with the Within Cells Mean Square, 0, 00237,
indicates a lack of fit for the regrcssion cquation used (T value - 8.9 with
6 and 77 degrees of freedom), The Within Cells Mean Square used here
may be an underestimate of the proper experimental error due to the lack
of randomization in this test program. Third, there is the hornogeneity
of variance problem already noted in relation to Table 2.

In considering the first point, non-orthogonality of the estimates,
one possible approach might be to uege a '"Missing Value' formula and fill
in the six empty cells. Without blocking applied in the experiment, the
standard formula for any expcrimental design could not be used to fill in
the missing treatment combinations, Rather naively at the time, I assumed
that plausible estimates might be obtained by applying the Randomized
Complete Blocks formula for a missing datum to the rows and columns
of the two-way layout for the factors Load and Angle, By iterative applica-
tion of this formula, the six empty cells were filled, Then a second
regression equation was obtained. It was found, however, that predictions
from this recond equation were much worse than for the first equation,
For the same 12 observed points, the sum of squares of deviations was
0. 33025, about three times the remainder sum of squares of 0.12750 shown
in Table 5 for the First Equation.

Why was this decrease in ''goodness of fit'' observed even though we
now had orthogonally estimated regression coefficients (given in Table 7
under the column headed Second Equation)? If there had been only one or
two missing treatment combinations, perhaps, the results would have been
satisfactory., The consequence of the application of the Randomized Com-
plete Blocks missing value formula to be Load-Angle two-way table was to
minimize the Load x Angle interaction, This interaction has 10 degrees
of freedom in this Load-Angle table but due to the six empty cells only four
degrees of freedom can be estimated. Filling in the empty cells by
minimizing these four degrees of freedom apparently had distorted the
response surface so that the goodness of fit achieved by the First Equation
was destroyed. This view of the problem is supported by a re-examination
of Figures J and 4, which indicate some interaction that may be largely the
Load linear by Angle linear component, and Table 7. In the latter, the

values for the bAL (linear by linear) regression coefficient are +0, 1038

and +0, 0278, respectively, for the equations being compared. This reduc-
tion, by a factor of four almost, in this component of interaction regression
coefficient appears to be due to the minimization of the overall interaction,

64




- e SRS

Al A e

These unsatisfactory results for the second equation posed a dilemma
for ms. Ilow could morc infommation be cxtracted from these data?
Discussions with Professor Paul Dwyer* brought out two suggestions from
him. He did remark that trying to supply one-third of the observations
by the missing value approach is '"too much like trying to pull yourseli
up by your own bootstraps', Essentially, his suggestions were to make
sub-analyses using subsets of the twelve observed points to form orthogonal

structures. The data points used for these analyses are shown in Table 6,

TABLE 6. Data Points Used for Orthogonal Sub-analyses of
Rubber Bushing Fatique Life Data
Angle of Torsional Twist

First Sub-analysis (8 points)

Load +7.5 +15.0 +22.5
1200 0 b3 x
1500 0 p 3 x
1800 - X x
1950 -

2100 - 0 0
2250 - x x

Second Sub-analysis (6 points)

1200 0 - -

1500 0 - -

1800 X x x

1950 - 0 0

2100 . - 0 0

2250 x X x
Code: 0 indicates missing values

- datum observed but not used
x datum used for analysis

Observed values appear in Table 2.

*Department of Mathematics and Statistical Research Laboratory, The
University of Michigan, Ann Arbor, Michigan,
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The results of these sub-analyses are presented in terms of regression
coefficients for the "Third Equation' and ""Fourth Equation' in Table 7.
A study of Table ¢ shows that these sub-analyses support the results for the
First Equation., Perhaps, one should be criticized at this point for not
presenting standard crrors of the regressivn coefflicients, The regression
model of the First Equation gave such a good fit and signs of the coefficients
were proper so this model was accepted and a report written [1]. Further, s
extrapolations attempted by the test engineer from these accelerated test
results and the regression mndel gave plausible results,

Personally, I was not yet satisfied and I continued to think about how
to improve the analysis, If the data had been complete, one could have
worked out the orthogonal polynomial values for the unequal spacing on
Radial Load [3] . Forming the Kronecker Product of the Contrast Matrices :
for Radial Load and Angle of Torsional Twist would then have given an
18 x 18 contract matrix for a complete analysis in terms of single degrces
of freedom, From this view, it occurred to me, '"Why not proceed in this
way to obtain the design matrix for the 12 observed points?'" Details are
omitted but the resulting matrix is given in Table 8, Here is it seen that
additional interaction terms have been added to the model over the First
Equation whose design matrix was given in Table 3. If we designate this
matrix in Table 8 as Z, then a comparison of 2Tz with XTX, given above
in Table 4, provides some basis for evaluating the {ifth approach to the
analysis, The matrix Z7Z in terms of its first 6 rows and 6 columns is
given in Table 9, for making this comparison,

It appears that most of the off-diagonal elements shown in Table 9 have
been reduced in relutive magnitude. Transformation of Tables 4 and 9 to
the correlation matrices shows explicitly that the dependence among
predictors has been reduced®*, What this means is that use of the Z matrix
will give regressicn coefficients that are less correlated than the coefficients
obtained in the first equation, The “egression coefficients obtaincd by use
of Z appear in Table 7 under "Fifth Equation'. Extension of Table 5 to
include the Z model shows an added reduction in sum of squares of 0,07387
with 3 degrees of freecdom leaving a new Remainder S, S. of 0.05363 with
3 degrees of freedom.

Setting aside temporarily the inadequacy of goodness of tit noted on
page 64 , we consider the homogeneity ~f variance situation. Even though
much improved by the logarithmic transformation, it is still apparent in

"Table X of Enclosure 23 (17.

**These correlation matrices have been omitted from this paper,




TABLE 7. List of Regression Coefficients Cbtained by
the Various Analyses
First Second Third Fourth Fifth
Term  Equation Equation Equation Equation Equation
b0 2,2494 2.2364 1.9539 2.0997 2.5243
b] -0.1759 -0.1526 -0.1231 -0,1710 -0.2950
bA -0.9395 -0.8768 -0.9442 -0.8366 -1.2321
bLL +0.0025 -0.0083 +0. 0042 --- +0.0294
bAA +0. 0994 -0,0225 --- +0.0178 +0.1272
bAL. +0.1038 +0.0278 40,0753 +0.1100 +0.2780
linear by linear
bLAA .- +0.0109 - .- -0. 0682
linear by quadratic
- . --- -0. -0.
bLLA. +0.0105 0.0207 0391
quadratic x linear -¢.012¢C
-- _ .- .- +0. 007
B lAA +0.0071 0.0078

quadratic x quadratic
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TABLE 8. Design Matrix Based on Forming Orthogonal Polynomials

For Load and Angle - Ruhbher Ruching Eune

P N R L
s asaliv iy

QxQ = quadratic by quadratic

Lin, Quad. Lin., Quad,
o} Xl Xll XZ XZZ
Load Angle
0 -5.667"% -1 +1
1 -3, 608 -1 +1
2 +0.451 -1 +1
3 +6.510 -1 +1
-4 +6.098 (0] -2
-2 -3.784 0 -2
0 ~5. 667 0 -2
+3 +6.510 0 -2
-4 +6. 098 +1 +1
-2 -3,784 +1 +1
0 -5. 667 +1 +1
+3 +6. 510 +1 +1
LxL = linear by lincar
LxQ = linear by quadratic
QxL = quadratic by linear

68

LxL"  LxQ QxL
XIXZ XlXZZ XllXZ
Interactions

0 0 5. 667
-1 +1 3,608
-2 +2 -0. 451
-3 +3 -6.510

0 +8 G

0 +4 0

0 0 0

0 -6 0
-4 -4 6. 098
-2 -2 -3,784

0 0 -5, 667
+3 +3 +6,510

~~See referer ce 3 for computation of values in this column,

QxQ
X11X22
-5, 667
-3.608
+0.451
+6.510
12,196
+7.568
+11. 334
-13.020
+6. 098
-3,784
-5, 667

+6.510
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TABLE 9, The Matrix ZTZ with Last Three Rows
and Columns Deleted

12.0 0 4.0
0 72.0 22.24
4.0 22,24 339.71
0 -9.0 +5.47
0 +9.0 -5,47

-9.0 +15,0 -14,12

+3.0
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+9.0

-5.47

+24.0

-9.0
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Table 2 that the ;ij differ considerably in precision. Therefore, a

weighted least squares analysis is indicated. Two methods of weighting
were used. One method uscd the individual s;_ shown in Table 2, i.e.,

0.01906, 0.0136l, etc., with wij = nlj/sizj . The other method pooled sums

of squares for the cells where the sij were similar in magnitude, and

obtained a set of three values of s® to be used with the nij of Table 2 to
2

3 . ':::
p(ij)

Calculations using these two sets of weights just described were
repeated with the Z model already given above. The regression coeffi-

cients obtained are presented in Table 7A {Sixth Equation results are for
use of the individual sizj" Seventh Equation results refers to the pooling

obtain the set of w,, = n,_/
1) 1)

method to obtain only three different values of s2 used in forming the
weights), It is scen that the regression cocificifnts obtained by the two
different weighted least squares analyses are quite similar; differences
observed are less than or of the order of the standard errors of the differ-
ences., Further comparison of the regression coefficients with those
obtained for the Fifth Equation, given in Table 7, reveals some differences
that may be judged statistically significant. In terms of practical applica-
tion for making predictions of bushing fatigue life there may be little to
choose between these three equations, In view of the somewhat more
reliable weights 1sed to obtain the Seventh Equation results, a statistical
choice would lead to this equation, other things being equal.

The results for the weighted regression analyses also permit comment
on the goodness of {it issue, which was deferred above. The lower section
of Table 7A displays the Residual Mean Squares for the Fifth, Sixth and
Scventh Equations, With only three degrees of freedom available for esti-
mating these quantities, no sharp judgments can be made. Qualitatively,
the weighted analysis has reduced the residual variation by more than a
factor of two, and the goodness of fit has clearly been improved. Yet the
ratio of Residual to Within Cells is still large (P< 0.05). If cne does regard
the Within Cells as an underestimate of the experimental error as noted
above, then one may conclude that a satisfactory fit has been obtained with

“The sf)(ij) indicates the value of s2 used for each cell after the pooling

operation, The author {5 indebted to Ralph A. King for this suggestion
for obtaining more reliable weights. The sample weights obtained by the
two mecthods appear to be the best surrogates available for the ¢ which
are unknown, ! :
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TABLE 7A. Regression Coefficients Obtained by Weighted
‘ Least Squares Analysis Using Model Z and
Residual Mean Squares for Three Equations

Regression Coefficient Sixth Equalion Seventh Equation
bo +2.4982 +2. 4980
bL -0.2830 -0.2805
bA -1.2093 -1.2002
b +0,0282 +0. 0272
bAA 40,1217 +0. 1140
bar 40,2596 +0. 2552
bLAA -0.0618 -0.0601
b 1A -0.0331 -0.0328
bl LAA +0.0052 +0. 0056

Residual Mean Squares

Source Degrees of Freedom Mean Square’
Fifth Equation 3 0.01787
Sixth Equation 3 . 0.00693
Seventh Equation 3 0. 00740

Within Cells 77 0.00237
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the weighted analysis.® This concludes the story on the first rubber
bushing analysis,

Design and Analysis of a 3x3x2x2 Experiment on Rubber Dushings,
After completion of the earlier work described above, an opportunity arose
to design an experimental program for learning more about rubber bushings.
At first, a rather ambitious program was considered which would have
involved "experiments with mixtures' (Refer Scheffe {4 ]and [5]and more
recent papers in Technometrics). Suitable bushings prepared from mix-~
tures of natural and synthetic rubbers could not be obtained at the time.
Other parameters to be varied in the experiment may be described as
Process variables and Test variables. It was desired to retain two levels
each of Radial Load and of Angle of Torsional Twist to provide a check on
the results for these factors as reported above, These were the Test
variables, As Process variables, three levels each of Cure Temperature
and Cure Time for production of the bushings were to be tested. Thus,
the factorial arrangement became a 3x3x2x2 which requires 36 tests for
a single replicate. Two replicates would have required 72 bushings to be
tested which I regarded as too large an experiment. After some thought I
recomunended a single replicate to be carried out in a completely ran-
domized design. At this point the problems began. Complete randomiza-
tion for the production and testing of the 36 rubber bushings was regarded

“The author believes that some comment on rows 2 and 3 versus row 1

of the lower part of Table 7TA may be helpful., Many texts describe
weighted regression analysis but none with which I am familiar include

a discussion on comparison with the unweighted analysis. With the wy;
values defined as explained above, the author was confronted with residual
sums of squares for the Sixth and Seventh Equations that apparently pro-
vided no basis for comparison with the figure given in Table 5 as 0.05363
with 3 degrees of freedom. Understanding came finally in appreciating
the difference in metric. While all three sums of squares represent
Euclidean distances in n-space, the scale was different for each. The
so-called "unweighted'' least squares analysis in reality has a sum of
weights equal to n, 12 in this problem. Hence, it was necessary to re-scale
the residual sums of squares for the weighted analyses by the factor
n/ZZwij ur lZ/Z?Ewij. These open problems, the choice of scale, the
estimation of weights, and more generally, the broader problem of trans-
formation of response to obtain an optimal analysis appear to merit
continuing attention.
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as impractical, too costly, and too time consuming. My arguments for
complete randomization did not convince the engineers that it shanld he
adopted. Then we started to examine possible compromises. Complete
randomization for Cure Time, Radial Load and Angle of Torsional Twist
could be carried out. Cure Temperature involved bringing the cure press
(heated Platten Press) to the desired temperature and holding it there

for the ncessary Cure Time. The engineers wanted to reduce the number
of times for a press cycle to a minimum. Now, the Cure Temperature
could have been made a Main Plot treatment in a Split-Plot design with
the 3x2x2 arrangement utilizing 12 split-plots. Replication on Cure Tem-
perature would then have forced the total size of the experiment back to
at least 72 bushings.

At this stage it appeared to me that some type of replication for Cure
Temperature must be included in the test program. A study of Kemp-
thorne's book provided a possible solution {(Reference 6). The 12 split-
plot treatments were divided into two main plots of six split-plots each by
confounding the Load by Angle (linear x linear) interaction with the main
plots*. This contruction of the design required only six press cycles with
six bushings cured in each run, two at each of the three Cure Times.

Analysis of the resulting data when this test program had been com-
pleted was, of course, considerably more complicated than that outlined
by Kempthorne since we imposed an added factor at three levels (refer
pp. 351-355 of (6) ). Details are given in Reference 7.

Here, I shall only try to describe some of the major features of the
analysis and interpretation. The actual layout of the program for the 36
experimental units is given in Table 10, It is to be noted that I insisted
on equal spacings for the three levels factors: Cure Temperature at 306,
315 and 324 degrees F. and Cure Time at 15, 30 and 45 minutes. Such
equal spacings make the analysis much easier but should not be required
for all test programs.

Our first-approach to the analysis was to write oit a Design Matrix
that included the General Mean, Blocks, all main effects and all two-factor
interactions. Full column rank was maintained for this matrix by the usual
devices, orthogonal polynomials for the contrasts and subtraction of the

#See Table 18,5, p. 35C, [6] . The three Cure Temperatures were *
randomly assigned to the Replicates shown in the table and the main
plots in each block for Cure Temperature became the sets shown as
"Block 1'* and ""Block 2'' by Kempthorne.
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TABLE 10, STRUCTURE AND RANDOMIZATION LAYOUT FOR
THE SPLIT-PLOT DESIGN WITH CONFOUNDING.
Nutnubers in pareniheses refer to replicaies and biocks
in Kempthorne. [6]

Block 1 Block 2
Tempzrature 306 (2-2) Temperature 315 (3-2)
t L A t L A
i o 1 13 1 1 1 27
1 1 0 14 0 1 1 28
2 0 0 18 0 0 0 25
2 1 1 17 2 0 1 29
0 1 1 15 2 1 0 26
0 0 0 16 1 0 0 30

Temperature 315 (3-1) Temperature 324 (1-1)

t L A t L A

0 0 1 3 2 0 1 33
2 1 1 5 0 o o 35
1 1 0 1 0 1 1 34
0 1 O 2 2 1 0 31
2 0o o 4 1 1 0 36
1 0 1 6 1 0 1 32

Temperature 324 (1-2) Temperature 306 (2-1)

t L A t L A

2 1 1 10 1 0 0 19
1 0 0 12 1 1 ] 20
2 0 0 7 0 1 0 23
0 1 0 9 0 0 1 24
0 0 )\ 8 2 1 0 22
1 1 1 11 2 0 1 21

Each group of six rubber bushing receives the cure temperature indicated.
Two groups at the same temperature form the complete set of 12 = 3x2x2
for the split-plot treatments, For t, L, A the symbols designate,
respectively, 0 = 15 min,, | = 30 min., 2 = 45 min,; 0 = 180%, 1=220#;
0=+7.5degrees, | =+ 9 degrees. Notet = Cure Time, L = Radial Load,
and A = Angle of Torsional Twist. The 4th column in each grouping shows
the randomization order for taking the observations over the entire
experiment,
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column for block 2 from the column for block 1. The resulting matrix
was 36 x 21, Least Squares was then applied to estimate these 21 effects

or their regression coefficients, Again, the transformation Y, =log C,

J J
. (where C, is cycles to Failure) was employed. Original data and

logarithn'ls to base 10 appear in Table 11. The regression coefficients
obtained are listed in Table 12.

An interpretation of these results is given by quoting three paragraphs
from reference 7:

"From the analysis of variance we may deduce that the regression
equation comprising blocks, main effects and two-factor interactions

. provides a good fit to the data. A little over 97% of the total varia-
tion about the mean is associated with these effects leaving only about
. 3% of this total as residual variation,

"From the inverse matrix (obtained in the course of the regres-
sion computations) it is found that all of the effects listed in Table 3
are orthogonal (i.e,, independent) except Blocks and the Load x %
Angle interaction, These two effects have a small correlation and S
are independent of the other 19 effects listed. Further, the diagonal i
elements of the inverse matrix, cjj, are the elements needed for i
obtaining the standard errors of the regression coefficients, !
Specifically, the standard errors are given by (cii)l Zse, where 8,

is the standard deviation of the residuals, given as 0, 0908, These i
standard errors range from about 0,012 to 0.022, Thus, it is
found that Radial Load, Angle of Torsional Twist and Cure Time
(Linear) which show the largest effects in relation to their sampling
errors, should be regarded as real or significant efiects. On the
other hand, the Cure Temperature (Linear) coefficient is slightly
smaller than twice its standard error; thus, it may be regarded as
a significant effect, Interestingly enough, two of the interaction
coefficients are fairly large in relation to their sampling errors,
These are Temperature x Time (Linear) and Time (Linear) x Angle.

S e T L e M A AT

. "F'rom the signs of the regression coefficients, one may obtain
the direction of the effect. Cure Temperature has a positive
coefficient so we conclude that a higher temperature, i.e,, 324
degrees F., is to be preferred. The quadratic coefficient for
temperature is negative which is to be expected, Turning to Cure
Time, the coefficient is negative so that a shorter cure time is best,

. i.e., 15 minutes. Here the quadratic coefficient is positive, but

not reliably estimated, The Load and the Angle coeificients are both

negative as expected; thus, increasing the level of either shortens

the fatigue life. "
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‘ TABLE ll. FATIGUE LIFE OF RUBBER BUSHINGS. Original
, Data-Cvycles to Failure and Logarithms of these Values.,

* Bushing Bushing . |
No. ' Cycles Logarithm No. Cycles Logarithm i
13 114,300 5. 058 0% 19 279,900 5,4470 N
2 173, 300 5,2388 20 36,000 4.5563 ;
> 3 134,100 5.1274 21 72, 600 4,8609 i
4 246,900 5.3925 22 109,700 5.0402 f
5 36, 600 4,5635 23 154, 500 5.1889
6 119,200 5,0763 24 123,300 5.0910 =
7 194, 400 5, 2887 25 459,100 5.6619
8 127,000 5,1038 26 59, 500 4,7145
9 231,100 5.3638 27 42,000 4, 6232
10 32,000 4,505 28 67,800 4,8312 ‘
11 27,700 4,14425 29 79,000  4,8976 |
12 279,200 5,4459 30 257,100 5.4101 )
13 60,200 4,7796 31 77,500 4,8893
14 98,800 4.9948 32 132,000 5.1206 .
15 41,300 4,6160 33 88,700 4,9479
16 416,000 5.6191 34 63,600 4,8035
17 34,700 4,5403 35 722,200 5,8587
18 254, 600 5.4059 36 165,700 5,2193

“Treatments applied to each of these bushings were shown in Table 10 -
refer corresponding numbers, column 4 of each main plot set,

#“Tabulated here with only four decimals in the mantissac. The computer
obtained natural logarithms which were converted to common logarithms
for ease of interpretation,
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TABLE 12, REGRESSION COEFFICIENTS OBTAINED FROM
LEAST 3QUARES ANALYSIS OF LOGARLIIHMS OUf
CYCLES TO FAILURE FOR RUBBER BUSHINGS

e A T W TAMMAR SRR

L Coefficient’ Name of Eifect
. 1 5.049560 General Mean ‘
2 0.019315 Blocks !
‘ 3 0,035382 Cure Temperature - Linear '
4 -0, 002519 - Quadratic |
5 -0, 141561 Cure Time - Linear §
) 6 0. 017544 - Quadratic
g 7 -0,202377 Radial Load - Linear ;
8 -0. 244741 Angle of Torsional Twist |
9 -0, 051940 Temp. (Linear) » time (Linear)
10 -0.010474 Temp. (Linear) x time (Quad) 3
11 0. 006171 Temp, {Quad) x time (Linear) i
12 0.005603 Temp. {Quad) x time (Quad) é
13 -0, 011462 Temp. (Linear) x Load !
14 0. 002001 Temp. (Quad) x Load &
15 -0, 002537 time (Linear) x Load :
16 -0, 001801 time (Quad) x Load ‘
17 0.004561 Temp (Linear) x Angle
18 -0. 021679 Temp. (Quad) x Angle
19 0.036779 time (Linear) x Angle
20 0. 001657 time (Quad) x Angle
] 21 0.008773 Load x Angle

*It is to be noted that the magnitude of these coefficients depends on the
scale of the effect used in fitting the regression. Thus, Blocks were
coded as -1 and +1; Temperature was coded as one unit = 9 degrees F.;

, time was coded as one unit = 15 minutes; one unit of Radial Load = 20(20)
and one unit of Angle of Torsional Twist = 0, 75 degrees.
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Further effort in the analysis of these data was devoted to; (1) Estima-
tion of the main plot experimental error for Cure Temperature, and (2)
estimation of the split-plot experimental error by various methods. It is
true that the regression residual sum of squares 0. 123566 with 15 degrees
of freedom giving a mean square of 0.008238 is an estimator of experi-
mental variation under appropriate assumptions but it is still a mixture of
the main plot and split-plot components just mentioned. Hence, the
sentences just quoted may not be valid statements {for judging the Cure
Temperature effects.

If blocks are ignored, it is possible to estimate each of the 35 individual
degree of freedom effects because. of the balanced structure for the factorial
arrangement, Actually somewhat more is ignored because of the structure
of the main plots for Cure Temperature; some of the higher order inter-
actions for Cure Temperature are confounded with blocks., To obtain the
sum of squares for each of these 35 effects the full contrast matrix was
prepared on the computer by forming the Kronecker or Direct Product of
the individual contrast matrices for Temperature, Time, Load and Angle
[8] [9]. Our next step was to obtain some cstimates of experimental error
by applying several techniques that have been suggested in the literature in
recent yeard10], [11], [12]. Among those used were Daniel's "Half
Normal Plot" and the "Gamma Plots' and 'lsmallest ordered contrasts' by
Wilk, et al, ‘

While the details about the applicatio» of these techniques would be
informative and interesting, only the rcsults arc shown in Table 13, This
table shows the source {or the cstimate, degrecs of {reedom (actual or
approximate), s ana s values, and how or where obtained by a reference,
Comparison values from the carlicr analysis also are given, Among the
problems encountered in making these analyses were the rather large values
of the sums of squarcs associated with certain 3 and 4 factor interactions,
No satisfactory cxplanation has been found for such results®,

Returning to the problem of improving the assessment of the Curce
Temperature effects, the analysis of variance shown in Table 14 was
prepared.

From this Table 14 it could be judged that the levels of Cure Tempera-
turc used in this experimeni did not affect the Fatigue Life of the Rubber
Bushings. The presence of the confounding with Blocks already

It is now clear to the author that the complete design matrix should have
been constructed in order that the matrix product, xTx (39 x 39) could have
been examined for the naturc and degree of confounding present,
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TABLE 13, Summary of Estimates of Experimental Error

Sourcre

Regression Residuals
(appears too large)

Three and Four Factor
Interactions

Half Normal Plot

Gamma Plot

(conservative value cetermincd)

Smallest Ordered
Contrasts

Average of 24 Smallest
Ordered Contrasts

(optimistic, appears too small)

Comparison Values
Regression Residuals#

Within Cells::

*FApproximate,

d. f. 52 8 Reference
15 0, 008238 . 0908 (7
13 0.006628 . 0812 (n
30 0.0067 . 082 (10)
31 0. 0071 . 084 (11)
24 0.004736 . 0688 (12)
24 0.002879 . 0536 (7)
6 0.1275 . 3571 (1)
77 0.0142 0.1192 (1)

wRefer Table 5 of this paper. Multiplied up by 6 for con.parison with

the data above.

79




TABLE 14. Analysis of Variance for Studying the Cure
Temperature Effect

Source of Variation d. {. S.S. Mean Square
Blocks 1 0.012272 .012272
Temperature (Linear) 1 0.030044 . 030044 .
(Quad.,) 1 0. 000457 . 000457
Error (from Temperature by
Blocks Interaction) 2 0.037401 . 018700
Other Effects 17 4,261991 XXXX

(by subtraction from regression analysis)
Remainder 13 0.086165 . 006628

(3 and 4 factor interactions)

FIGURE 5. Cure Temperature Effects in Blocks 1 and 2,
Rubber Bushing Fatigue Life Experiments

3.0

2.0

~-* Block |

o —
oo
Median Cycles to Failure® x( 10-5)

>
<
h

306 315 324

Cure Temperature (degrees F.)

TPoints plotted are anti-logs of average logarithms of cycles to failure,

.

80




mentioned which enters into this error and the small degrees of freedom
raise doubts about such a conclusion, The Cure Temperature results by
Blocks are shown iu Figure 5. This writer's present opinion is that
further experimentation is nceded with adequate replication of the Cure
Temperature tevels and with wider spread, perhaps, 300 to 335 degrees ',

Evaluation of Experimental Types of Track Pads. Attention is directed
to another component of the track, the track pad of the Personnel Carrier.
We were asked to design a test program for evaluating 14 types of experi-
mental composition pads. Two types of production pads were available as
controls. Hence, 16 treatments were to be evaluated. Only one M113
vehicle would be available for carrying out an accelerated road test program.
A further restriction was that only seven pads of each of the experimental
types could be made available for this progrum. After several conferences
with the interested engincers, the following resume was recorded (quoted
from reference [3]):

"Two objective responses could be measured for each individual
track pad:

(1) Decrease in thickness (due to wear) of the pad in respect
to its height above the grouser shoe to which it is holted
(later referred to as '"height loss"), and

(2) Weight loss of the individual pad from its initial wcight,

Both of these responscs had been measured in previous Army tests
with principal dependence placed on the weight loss. Other responses
could be considered such as volume loss of the pad from its initial
volume and subjective 'scores' or 'ratings' based on chunking and
cracking or pieces of material broken off of the pad during use,

"A recent test conducted by the Food Machinery Corporation
(FMC), San Jose, California, had utilized the height loss measure-
ment for evaluating the results. Obtaining these'mecasureinents had
been facilitated by the construction of a special caliper. The level
surface of the grouser lug formed the reference for this caliper
which was really a type of 'depth gauge'. CRDL constructed a
similar gauge for this test program,

"In considering these responses it was pointed out that it should
be useful to examine the response data in relation to physical and
chemical properties of the pad material compositions for the various
type of pads. Examples might be tensile strengin, hardness and
laboratory abrasion resistance.
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"It was expected that total test driving of about 500 miles would
LS icquited bu teveal differences, if any existed, among the experi-
mental type pads. Test driving would be terminated or test pads
would be replaced if wear had progressed to the point that the metal
grousers would come into contact with the road surface. Replace-
ment of pads, however, could affect wear of the pads on adjacent
shoes, Hence, it was recommended that replacement pads be pro-
duction type pads whose height above grouser had been gound down
or worn to that of the pads on adjacent shoes, Height measurements
of pads. were to be made: 1) After initial run-in, 2) Each 100 miles
thereafter, and 3) At termination. It was suggested also that initial
and final weights for individual pads be obtained for all pad types,*"

The real problem encountered in setting up the test program was
agreement on the selection of an "experimental unit'. Based on their
"experience', ATAC engineers tended to tavor an experimental unit or plot
comprising a cluster of 10 consecutive pads of the same type. The basis
for this opinion was that averaging of results from 10 pads would provide a

" fairly stable average. The left and right sides of the vehicle seemed to form

natural blocks for the experimental design. Obviously, with only seven pads
on hand for the experimental types, this cluster of 10 could not be obtained,
Putting all seven in a cluster would not permit replication.

At this point, it was found that data from previous tests conducted by
the Army at several sites was on hand. These data were obtained and
analyzed from the "uniformity trial'' point of view*®, Cluster sizes of
2, 3,4, 6, 8, 12, 13, and 18 were studied in these analyses with the
smaller clusters formed from the larger clusters, It was found that size
of cluster did not affect conclusions for any of the previous tests, A
peculiar feature of the M113 vehicle added interest to the problem of deter-
mining the cluster size; one side of the vehicle has 64 track shoes and the
other side has 63,

With the uniformity analyses information available, a cluster size of ¢4
was established on one side so that 16 x 4 = 64 and on the other side a cluster
size of 3 was used with 16 x 3 = 48, The remaining 15 pads on this side were
filled in with standard pads and limited supplies of a few other experimental
pads. Hence, the experimental design may be described as a Randomized

#*Unfortunately, the 14 experimental types of pads were weighed in groups
before installation so that data from this experiment do not provide suffi-
cient information for correlation of height loss and weight loss.

%% A more sophisticated approach would have calculated auto-correlations
of weight losses for adjacent pads and pade separated by 1, 2, 3 or more up
to K-2 pads, where K was the number used in a cluster,

.
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Complete Block for 16 treatments in two replicates with each track of the
vehicle forming a block. While normal driving provides a natural randomi-
zation on the wear nf the nade 2 differont randomization was used for ine
treatments on each track.

No difficulties were experienced in carrying out the 500 mile accelerated
test program. There were some dcubts in my mind about the scheduled 500
miles being sufficient to show up differences among the treatments since
other Army tests had comprised total mileages of 1000, 1500, or 2000 miles,
The program could not be extended for this test, however, because the
vehicle had to be returned to another agency.

With respect to analysis, we followed the suggestions of George Box
(1950) on analysis of growth and wear curves [14] . Differences between
successive measurements of pad height above grouser were formed, e.g.,

Hi - Hi ) for i = 1 through 5. These differences appeared to be reasonably

distributed so the analysis of variance was applied directly to these differ-
ences without transformation, In order to help understand the analysis of

variance (Table 15), Figure 6 explains the structural arrangement of these
differences.

Tt will be noted that Table 15 shows only 14 degrees of freedom for
treatments (Types of Pads). this happened because only one Control Type
was available when the driving program was started. This one control Type
was duplicated on each track. To simplify the computer programming, only
one cluster in each block was used for the Control Type of Pad. A list of
means for the Pad Types in each block and overall is given in Table 16, {

Now what about iﬁterpretation? Statistically, 1 was quite pleased with
these results. We used Multiple Comparisons Procedures to graip the
experimental pad types into significantly different groups [19]. Our next
step was to try to relate the values of these means to other available physical
and chemical data on the experimental Types of Pads. Unfortunately, no
significant regressions could be obtained. Hence, it is my personal opinion
that there is still room for a lot of research on milifary track pads in order
that we can {ind the determinants of longer life for this element of the vehicle
track.

Reliability Analysis for Track Components, As a final example in this
paper I shall present briefly some attempts at reliability evaluation, -
Recently, the Army has conducted some ''road Testing' of a new track
design for the tank. This new design comprised a track made up with track
shoes whose grouser shape was formed by replaceable pads. Road testing
was conducted at three sites using three vehicles at one site and two each
at the other sites, or a total of seven vehicles. Total distance driven
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FIGURE 6. Structural Arrangement of Differences for Analysis
of Height Loss of Track Pads

1. Block = Side of Vehicle

2. Treatments (16) randomized over plots in each block,

3. Plot = Cluster of 3 or 4 consecutive pads (3 on left side;
4 on right side),

4. Split-Plot = Unit of travel {100 miles) (labeled as Period
in Analysis of Variance).

5, Individual Pad = Subsampling unit within the split-plot.

+

6. Height of Pad recorded at 0, 100, 200, 300, 400, 500 miles.
7. Differences taken {or each pad for each increment of wear

(100 miles) giving a total of 7 x 16 x 5 = 560 differernces,
Difference = Height Loss,
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TABLE 15. Analysis or Variance of Track Pad Test Results: 15 Pad
Types Mrnted on Both Tracks of M113 Personnel Carrier
with Heignt Tinee Meacured for 7 Pode of Each Type ovei
5 Periods of 100 Miles Each*

Source of Decgrees of Sum of Mean Fraciaon
Variation Freedom Squareso Square Ratios
Uncorrected Total 525 299566 — U
Correction Term for

Cverall Mean 1 209121 209121 —
Sides of Vehicle 1 392 392
Types of Pads 14 50696 3621 ~ 91

Error (a) 14 555 39.6
Periods 4 7655 1914 ~23
Types x Periods 56 7681 137 ~ 1.7
Periods x Sides 4 250 62
Types x Periods x Sides 56 4675 83

Error (b)"** 60 4925 82.1
Pads Within Types

Left Side 30 2406 80

Right Side 45 2203 49
Pads Within Types x Periods

Left Side 120 9588 80

Right Side 180 4344 24

*Variable analyzed is Height Loss for a single Period of each individual
pad within a Type, i.e., 7 pads for each Type x 15 Types % 5 Periods
gives 525 measurements of Height Loss. Units are the same as in
Table 16, but squared here.

**Addition may not check in this column because of rounding to whole
numbers in sums of squares for each source of variation. '

wiotError (b) is sum of two preceding sources which appear to be homogeneous.

wioiikF ratios are computed using Error (a) for Sides and Types, and Error (b)
for Periods and Types x Periods. This procedure conforms to the split-

plot structure of the experimental plan with Periods considered as the
split-plot treatments,

W‘Qﬁ IR BT v
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} TABLE 16. Average Height Losses of Track Pad Types for 500 Mile
Test Program’ Based on 3 Padr an T.aft Side and 4 Pade an
) Right Side. Averages are in Thousandths of an Inch:
\ 14. 63 = . 01463"
Type No. CRDLCode  Leit Side Right Side  Overall Rank¥** )
1 S131C2F2 16. 33 13.35 14,63 6 .
2 Z138 17. 67 17.75 17,71 11
3 Z138C 13,87 13, 60 13,71 3
4 Z138C1F 14. 60 16,95 15.94 8
5 Z138CF1 14,53 11.00 12,51 2
6 Z138F2 16. 07 12, 58 14.06 4
7 Z121F 30. 33 28.10 29,06 17
8 7140 20.13 18. 35 19.11 12
9 S131C2F22 52.53 46. 40 49,03 19
10 Z138C2 15, 87 14, 05 14,83 7
11 Z138C3DF3 16.93 16. 80 16.86 10
12 Z116CF2 35, 87 33,25 34, 37 18 .
13 S131C2F2BD 16,73 15, 65 16,11 9
14 Z128CF 12.93 9,35 10.89 1 '
15 Comm!'l SBR 19.93 21.00 20, 54 14
16 A-0 13, 60 (2)«tk 15,20 (2)%30x 14,40 5
17 C-0 21,80 (4) 17.90 (2) 20.50 13
I 18 C-10 25,12 (5) — 25.12 16
15L Comm'l SBR#¥#* 20,71 (7) — 20.71 15

‘ *Averages are calculated on a per Period basis, Multiplication by 5

| gives Average Total Height Loss, Standard deviation of a Type Average =
,P [Error (a)/(35)]11/2 = (39. 6/35)/2 = 1. 063 units (refer Table 15). .
!

**Rank is in order from lowest to highest Height Loss,
it Numbers of Pads averaged in last four rows.

} sraicThese added seven pads for Comm'l SBR were omitted from Type 15
in the variance analysis to simplify the programming and weighting of
| data problems., Comm'l SBR is designated a= the principal control,

i Type C-10 is considered a secondary control.
|
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TABL 17. Order Statistics for Pad Set Miles with Some

Summary Statistics

Urder
. Line No. Statistic No. Miles Completed

1 389

2 904

3 939

4 1 1647

5 2 1994

6 3 2096

7 4 2250

8 5 2250

9 6 2300

10 7 2338

. 11 8 2430
12 9 2496

13 10 2570

14 11 2628

15 12 2677

16 13 2706

17 14 2750

18 n=15 2813

Total 35,965

Summary Statistics

First three values not counted

Ml' smallest value

Ql , first quartile

Median

Q., third quartile

31

3 g

e 25

MlS’ largest value

Mean about 2400 miles

TABLE 18. Reliability Estimation for Pad Sets Under the
Test Conditions of the Program

Estimate for
mo = 2000 miles

Binomial 0.933
Johns and L.ieberman 0.914
M =20
o
Three parameter 0,955
approximation
M = 1667
o
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Lower Conlidence
Limit
(y = 0.90)
0.764

0.811

0.881




exceeded 35,000 miles. In covering this distance, complete pad sets were
rcpldced W}lcll wWoriL UUL, d.ll.d sulice ludlvidual 'l-l'd-ck E;AUUB wele .I.'CP}.G-LZC\.I
although no complete track set was replaced or judged completely worn out.

After much thought about the problem, it appeared to us that a ]
reliability statement might be made about the pad sets and for the first :
track shoe replacement on each vehicle., Table 17 shows the order statistics .
data [or the 18 pad sets used {15] . Three short mileages were omitted
from our analysis for obvious reasons and one value of 1994 miles was
counted as a ''success' in attaining 2,000 miles. It is to be noted that our
reliability estimates apply to the coaditions of the road test and not to Army
use in general, In Tablec 18 the results are shown for three approaches to
the problem [15] #, Johns and Lieberman refer to their recent
Technometrics paper [16]. The binomial result is for 14/15 = 0,933 and
use of a binomial table [17] . The third result is a crude approximation
that I obtained from the Johns and Lieberman approach.

Information about the first track shoe replacements is given in Table 19
[18] #*. Again, an observation has been omitted in the analysis.

TABLE 19, Mileage at Replacement of First Track Shoe During
Road-Testing of New Track Design of Seven Vehicles

Vehicle Replacement Number of .
Number Mileage Shoes Replaced
1 904k 30k .
2 2745 1
3 2992 2
1 3000 4
4 3315 1
5 3686 T , j
6 3925 1 . :
7 4894 1

Median = 3315; Average = 3508

“These Tables 17 and 18 are based on Tables 4.1 and 4. 3 of [15].
iThis Table 19 is derived from Table 6.2 of [15].

wiotDatum. not used because entire track was thrown; damaged shoes were
replaced.
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Table 19 shows the mileages arranged as order statistics; vehicle
numbers are arbitrary designations, From the lowest value, 2745 miles,
and the sample size, n = {, we may estimate with 5U% confidence that 90%
of vehicles road-tested under similar accelerated conditions will have their
{irst track shoc rcplacements after 2745 miles. This rcsult is a non-
parametric tolerance limit [18]. If a higher confidence statement is
desired, then the tolerance proportion or reliability stated must be lowered.
For 90% confidence, the figure becomes 72% first track shoe replacements
after 2745 miles, which is a one-sided binomial limit [17] . One would
like to apply the Johns and Lieberman technique to these track shoe date
but the smallest sample size for which they have worked out their tables
isn =10 [16].

REFERENCES

1. C. D. Rose, !"".aboratory Investigation on Fatigue Life of Rubber
Bushing Track Pin Asscmblies, ' Report No. 7908, USOTAC,
16 July 1963. (Supplement on "Analysis Procedure' by Emil H, Jebe.)

2. M. Zelen, "Factorial Experiments in Life Testing, " Technometrics 1,
269 (1959). Also, see Zelen and Dannemiller, '"The Robustness of Life
Testing Procedures...', same journal, 3, 29 (1961), '

3. D. S, Robson, ""A Simple Method for Constructing Orthogonal
Polynomials when the Independent Variable is Unequally Spaced, "
Biometrics 15, 187 {1959),

4. H. Scheffe, "Experiments with Mixtures, " Jour, Royal Stat, Soc
Series B, 20, 344 (1958).

5. H. Scheffe, '""The Simplex-Centroid Design for Experiments with ‘
Mixtures, ' Jour. Royal Stat. Soc., Series B, 25, 235 (1963).

6. O. Kempthorne, "Design and Analysis of Expenments "J, Wiley and
Sons, New York, (1952).

7. E.H. Jebe and R. A. King, "Investigation of Cure Time and Cure
Temperature Effects on Fatigue Life of Rubber Bushings for Track
Link Pins, " Report prepared for Prnjects 05895 and 07312, Willow
Run Laboratories, The University of Michigan under Contract
DA-20-018-AMC-0954T with USATAC.

8. P. R. Halmos, 'Finite Dimensional Vector Spaces, ' Princeton

University Press, Princeton, é6th Printing (1953) (see Appendix II for
discussion of the Kronecker or Direct Product, pp. 170-182),

89




9.

10.

11

12,

13,

14,

15,

16,

17.

18,

19,

E. H. Jebe and k. O, Bennett, Jr., "The MATRIX MACROS Program, "
(in process). This set of macros or subroutines includes two special
Kronecker Product routines.

C. Daniel, '"Use of Half Normal Plots in Interpreting Factorial Two-
Level Experiments, " Technometrics 1, 311 (]959). A

M. B. Wilk, et al, '"Probability Plots for the Gamuma Distribution, " .
Technometrics 4, 1 (1962).

M. B, Wilk, et al, "Estimation of Error Variance from Smallest
Ordered Contrasts, ' Journ, Amer, Stat. Assn,, 58, 152 (1963),

E, H, Jebe and R, A, King and J, W. Curtis, "T-130 Track Pad Test
Program: Esxperimental Design and Analysis of Test Results, "
Informal report prepared under Projects ¢5895 and 07312, Willow Run
Laboratories, The University of Michigan under Contract No. DA-20-
113-AMC-05927(T).

G, E, P, Box, "Problems in the Analysis of Growth and Wear Curves, "
Biometrics 6, 362 (1950).

Report to: OCRDL, USATAC, Subject: "Preliminary Report on

Examination of Data from the Track Improvement Program, " by

E. H. Jebe, J. W. Curtis and R, A, King, 28 June 1966, Prepared '
under Project 07312, Willow Run Laboratories, The University of

Michigan under Contract No. DA-20-113-AMC-05927(T).

M. V. Johns and G, J. Lieberman, '""An Exact Asymptotically Efficient
Confidence Bound for Reliability in the Case of the Weibull Distribution, "
Technometrics, 8, 135 (1966).

J. R, Cooke, M, T, Lee and J. P. Vanderbeck, "Binomial Reliahility
Table (LC L) for the Binomial Distribution, " NAVWEPS Report No, 8090,
NOTS TP 3140, China Lake, California, Jan. 1964,

D, B, Owens, '"Handbook of Statistical Tables," Addison-Wesley,
Reading, Mass, (1962).

G. W. Snedecor, "Statistical Methods, " Ames, lowa, ISU Press (1956)
Refer section 10. 6, p, 251,




A STATISTICAL ANALYSIE OF PROVISIONING
PROCESSES OM FOUR ARMY MISSILE SGYSTEMS

Robert G, Provost

U. S. Army Missile Cormumand, AMSMI-WR
Redstone Arsenal, Alapama

[The author prcsented a series of slides at the conference, These
slides, with the information about each, are reproduced ir this
article. |
SLIDE 1 - Title slide
2 - Schematic of PDS routes
3 - Station ident
4 - Matrix
5 - Route ident
& - Bottom of PDS
7 - Blow-up of matrix - | ccll and title blocks
8 - Figurc of head!
9 - Tukey - Dixon - Snedecor
10 - Matrix w,/avg station lengths
11 - 400 PDS sample
12 - Axe head cutting time in half

13 - The ¢nd
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ST.IDE 1 Title Qlido, Ac o miccils montime paAd. L ~

Syceem PYCICNLs i the R&D

siage to the productlon stage, changes will occur as a result of value
engineering applications, changes in technology, improved materials and
hardware items, preproduction c¢ngineering, and the discovery of
inadvertent errors. These changes are incorporated through the use of
and Engineering Order (an EO). In one stage of the EO, a Provisioning
List {(PL) is generated which subsequently ends up in our Supply and
Maintenance Directorate as & PDS (Provisioning Data Sheet). A Pro-
visioning List contains all the parts needed to support the change, whereas
a PDS is a computer-produced sheet for each part listed on the PL, It
is used as a worksheet to identify that part within the Federal Cataloging
System,

Due to the different types and classes of parts, and to the priority
required, a PDS will flow through this portion of the S& M Directorate along
different routes. Also duc to the lack of different kinds of information, a
PDS will take still other routes,

Currcent regulations provided a 90-day time limit to process a PDS
through the 5& M Directorate, PDS's which exceeded this time limit were
considered delinquent,

Since a PDS represcnts a single line item in a PL and a PL could
contain from one to 1000 or more linc items, any PDS which exceeded the
time limit caused the entire PL to become delinquent, Management was
concerned about these delinquencies ard wanted to know, since each PDS
flowed through various routes and stations, what the average length of each
station and route actually was, and could the 90-day time limit he reduced.
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SI.NFE 2  Sechamatic nf PNS rantee. The firct ctan incglecd the
determination of the various routes. This slide is a schematic of these
routes. Six basic stations were identified: station number 1 through
station number 6. Each station pertorms one or more functions during
the flow cycle of the PDS. These are identified by the alpha characters
after each station number, For example, Station 4 has but a single func-
tion whereas Station 2E indicates that this is the [ifth function performed
by that station. By counting all possible combinations of routes in this
schematic, one can easily determine that there are fifteen different routes
for an ADP initiation, and the same number of routes for a local initia-
tion, This is true for a single type of a PDS, but duc to priorities, there
are three types of PDS's to consider. These are colored tor easy
identification: a white PDS for routine or low priority items, a yellow
PDS for high priority items, and a green PDS for emergency items,
Adding these various types of PDS's into the schematic, @ maximuim of
forty-five different routes is now possible for each initiation. To compli-
cate matters still further, a green PDS, used for emergencies, is also
used as a delinquency flag, Should any PDS remain in this portion of the
processing cycle beyond a specified period of time, a delinguent grecn
PDS is initiated locally, This is rushed through the systein until it reaches
that station in which the original PDS is bogged down. Since this delin-
quent green PDS can travel along any route, our total maximum number of
possible routes now stands at sixty. Add to these routes the fact that
occasionally a yellow PDS, during the processing cycle, can be downgraded
to a lower priority, that is, downgraded to the status of a white PDS. The
processors when confronted with this action would hand stamp the yellow
PDS not with a ""downgrade'' stamp, but with one called "PEPSODENT" --
you wonder where the yellow went!
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SLIDE 3. Station ident. That Pepsodent action was generally per-
formed in Station 2. Perhaps at this point we should examine the various
functions of each statinn  Thic clide depicts cach of the staticns aud
jdentifies their function(s).

Station 1, our Industrial station, is actually located in the Procure-
ment and Production Directorate. This station performs the validation of
each part number to facilitate the finding of the proper FSN for that part.
This station also checks the part against the drawings for accuracy, and,
as need be, obtains new drawings as required.

Station 2, Maintenance Engineering, is the control station for this
procedure. Upon receipt fromn the computer they review each PDS for
completeness and accuracy, distribute them into system, verify mainte-
nance data and assign pack data as required, and after all the work has
been accomplished remove cach completed PDS froin system. They also
prepare the delinquent green PDS, whenever any PDS is not removed from
the system on time.

Station 3 is Federal Cataloging, It is this station which obtains
the FSN for each PDS from proper sources, cither locally or from outside
agencies, and assigns this Federal Stock Number to cach part on receipt.

Station 4, the Publications station, extracts the pertinent data
from each PDS for inclusion in Supply and Technical Manuals, They also
update the master files.

Station 5, our Supply Control station, which makes the necessary
supply studies, prepares and submits requisitions and sets up the puirchas-
ing of required parts.

Station 6, Cataloging. This function of cataloging involves the
advance notification to our supply depots of these various parts that are
coming through our system,

It is at this point I should mention that all PDS's do not lack an FSN.
Some PDS's do not require an FSN since, for example, the part is
fabricated or modificd in place, Other PDS's, the bulk in fact, had the
proper FSN located by the computer when the PL was converted into the
various types of PDS's,
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SLIDE 4., Matrix. Returning to our sixty poseible routes for each
initiation. each type PDS was carefully examined in relation to all of its
possibie routes through this portion of the S& M Directorate and instead
of some sixty possible routes, a total of twelve basic routes emerged.
Four of thesc basic routes were eliminated for reasons such as: the
item was fabricated, not purchased; infrequent use, like once in two
years; and, sundry othe: reasons leaving us with eight basic routes,
These routes divided into pairs of routes, with each pair having one
broadcasting function: Either the PDS was broadcasted (because it
represented a MICOM-managed item), or it was not broadcasted, These
routes were further subdivided, by segregating the three colors of PDS's
inte sub-pairsfof routes within the basic routes. An additional pair of
routes was developed after discussion with the personnel of one station
because either the PDS could he handled in a relatively short period of
time (30 days or less) or an cxtremely long period of time (90 days or
more). Since we knew the reason for this long period of time the data
collected for this pair of routes were subscquently omitted, This slide
shows the final conliguration as well as the matrix developed to handle
this problern, The columns which identiiy the stations are coded A}
through Aj] for subscquent use in & computer program. The rows which
identify the routes are coded B} through Bjg4 for the same purpose. Routes
Bg and By, which represent the long cycle time of one station, were
subsequently dropped for the rcason stated before. The intersection of
“a row and a ¢olumn is designated as a cell, Each cell is divided into four
columns, one column for ecach missile system under consideration. The
shaded areas represent those stations which are not in that specific route,
Thus Route Bj only contains four stations, Aj, Aq, AlO' and A.ll' whereas
Route 1313 contains all eleven stations, Aj through Ay
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SLIDE 5, Route ident. This slide identilies each pair of routes,

Routes B1 and B2 arc for white PDS's which have an FSN.

Routes 1'.53 and b4 are for white PDS's which do not have an FSN,

Routers B5 and B() are [or green PDS8's which do not have an FSN.

Routes E7 and 58 are for white PDS8's without an FSN aund require

validation, This validation is accomplished in 30 days or less,

Routes B9 and B10 arc also for white PDS's without an ¥SN which

require validation but this validation required 90 days or more to
accomplish, For the reason mentioned before, these routcs were removed
from the analysis.

Route Bll and BlZ are for green PD8's without an FSN, Thoese differ

from routcs By and By in that the FSN was not immediately located and
requires outside agencices assistance,

Routes Byj and By, are for yellow PDS's without an FSN,

The difference between each pair of routes is that the first route of
a pair contains a broadcasting function,

Arc there any questions up to this point?
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SLIDE 6. Bottom of PDS. This slide depicts the lower portion of
a yellow PDS. As you can see, there are sections for each station to
record its completion date. When the PDS emerges from the computer,
it is signed off by the comput er at location A. All PDS's that lack an
FSN or has questionable FSN's are then sent to Station 2A where, after
screening for initial dissemination and other actions which are dependent
upon which missile system is involved. Station 2A records iis comple-
tion date at location B. Each PDS is then sent to the next station as
determined by Station 2. In a similar fashion each station records its
completion date at its appropriate place on the PDS. The elapsed time
between successive dates is indicative of the amount of time that a PDS
remained in that station including the transportation time tc that station.
Since this transportation time is essentially the same for all stations,
no effort was made to remove this small amount of time involved. The
last station to handie a PDS is Station 2E which removes the PDS from
the system. The PD3's thus removed are filed, by missile system, in
order cf their removal. Since the elapsed time varies greatly from the
initiation of a PDS to its completion date, the stack of completed PDS's
in each missile system could be considered to be in 2 random sequence.
However, to preclude any possibility of bias, when these stacks of PDS's
were sampled, the PDS's were randomly selected.

Best Available Copy
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SLIDE 7. Blecw-up of matrix - 1 cell and title blocks. A worksheet
was developed to record the completion date(s) of each station for each
PDS selected for each route previously identified. These samples were
replicated four times for each missile system. After the range of these
completion dates were established through inspection, a pseudo-~Julian
calendar (one which omitted all Saturdays, Sundays, and holidays) was
developed to permit the transfer of each recorded date into the pseudo-
Julian date. Subtraction of these converted sign-off dates indicated the
elapsed number of days that each PDS remained in each station. This
procedure provided a maximum of 56 mcasurements per missile per
station, with a total of more than 1600 measurements taken to fill the
matrix. From the slide one can observe how each cell was filled with
these real time measurcements.

The first attempt to analyze this recorded data was made through the
use of an analvsis of variance program, which was borrowed from the
UCLA Medical Center, for two main determinations: (i) to determine if
there were significant differences between each pair of routes {by omittiny
the broadcast function - Station 6), and (2) to determine if there were
significant differences between missiles as well as colors. The results
from the analysis of variance program run were tested after proper
conversions against the "F'' test for significance at the 95% and 99%
confidence limits. All were essentially negative, which subsequently,
permitted the combination of measurements for larger samples. Unfor-
tunately. some difficulty was experienced during the computer run of this
program (conflicting statements in the program and a faulty printer) which
delayed the computation of the analysis of variance for these data.
Furthermore. this particular analysis of variance program was incomplete
in that it was not programmed to compute nor print out the mean, the
variance, and the standard deviation for each row, column, sum of rows,
and suim of columns nor the required twoe-way tables for analyzing signifi-
cant differences. During this delay, utilizing the original matrix, the
mean, variance, and standard deviation, at 95% confidence limits, were
hand-computed for each missile, for each station, and ior each route
{each route having been identified for a single color) as well as for the
combined group of missiles., All of these resulted in extremely large
standard deviations,
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SLIDE 8. Figurc ol head! This is how I felt! 1 needed help! So,

at this poiud, I conbacvicd Dr. Harshoarger, our MICOM Consultant from
VPI. Aflter a review of the data in which he agreed to its abnormality,
he suggested a transformation to reduce the variability and Lhat, in his
opinion, the data followed a Poissonian, and possibly, a logarithmic
distribution instead of being normally distributed. A few samples were
tested by computing the variance and the mean to determine if the variance
was proportional to the mean., The variance was found to be approximately
proportional to the mean which indicated the transformation to be utilized
could be the squiarce root of the sample value. However, the results of
this transformation after the necessary computations were cempleted
approximated the original results. Since some of the data were less than
unity, one was added to cach sample value and the square root transforma-
tion was again attempted., Once again. although variability did decrease

mificantly, the results still approximated the original results:  variations
(standard deviations) were still oo large.  And, [ still relt like this!
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SLIDE 9. Tukey - Dixon - Snedecor. Research and consultation with
local statisticians produced ""Tukey's Test of Additivity,' a procedure
which is fourfold in nature: It (1) helps decide if a transformation is
necessary, (2) indicates a suitable transiormation, (3) indicates if the
transformation was successful, (4) gets evidence about aberrant observa-
tions. Application of this test on a few selected cells by an experienced
statistician indicated the transformation required was logarithmic.

By this time, the analysis of variance resulte had been received from
the Computation Center. As previously stated, "F' tests at the 95% and
99% levels, revealed there were no significant differences between missiles,
between colors, and between routes. There were highly significant
differences between stations but these were to be expected since the work
content in each station is different and does require different intervals of
time to perform., These results from the analysis of variance permitted
the combination of like routes for cach missile system to obtain larger
samples, However, for comparison purposes, each route was calculated
singly as well as combined for each missile system.

To return to the second result of the application of Tukey's Test,
several observations were found to be aberrant. Unfortunately Tukey's
Test merely indicates aberrance but does not correct them. Through the
use of Dixon's ""Ratios Involving Extreme Values, ' a technique which
permits onc to determine if a value is aberrant, the original matri» was
reentered and al. values in each cell were tested for aberrance. As each
aberrant value was discovered. the remaining values for that particular
cell were tested for aberrance until all data were purified. The removal
of thesec aberrant values left the matrix with several missing values. A
review of techniques to replace these missing data led to Snedecor's
Iterative Procedurc which was subseguently utilized.

With the matrix again complete, all recorded data were transferred
into logarithmic values. The necessary computations were then performed
by hand for all routes and stations tor each missile system. These compu-
tatiors resulted in significantly lower variations and, more significantly,
after converting the derived values back to normal values, truly approxi-
mated the real situation: a highly skewed curve to the left without negative
times.
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SLIDE 10, Matrix w_/avg station lengths. Since the mean times
we re now available for cach station for cach missile, these stations

WOl Symihvsisavd Inwu rouies and subsequently correlated against the
average times of the original routes. This was accomplished for each
missile system as well as the combined group of missile systems, This
slide depicts the average station length for all missiles and the
synthesized total for cach route. The coefficient of correlation as
calculated proved to be +0.87 which is highly significant (well above the
99% level of +0, 708 in a significance table lor my number of degrees

of [recdom),
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SLIDE 11. 400 PDS sanmple. Current procedures provided a maxi-
mum of 90 days hofare 2 PDS bosame dolinguent, With oriein exceptions
for some PDS's on a few routes, no interim time limits were specified,
This anaiysis indicated that, on the average (95% of the time), all PNS'y
can be processed through cach station in 2.2 days, with a range from
0.8 days to 6,3 days. A rccommendation for the cstablishment of time
limits for cach station would preclude lengthy delays,

Unfortunately, S& M cannot predetermine which route a PDS will flow
(with certain exceptions) but on the average, the longest route length
(without broadcast) was approximately 30 days, The final step obviously
was the determination of the frequency of occurronce of this longest reute,

In accordance with a 400 PDS saraple (100 (rom cach missile system)
this route (30 day length) occurred approximately 13% of the tima, This
slide illustrates the results of this sample,
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SLIDE 12, Axe head cutting time in half.  Since a PDS did not

_ become delinquent until the expiration of 90 days and, on the average,
i our longest route length was approximately 30 dayvs nlus & dave for
broadcast plus nearly 8 additional days for two standard deviations, or

v a total of approximately 43 days, 45 days (for the sake of a nice round
number) was selected for the maximum time limit. To support the
1. recommendation of reducing the 90-day time limit to a 45-day time limit,

the probability that this 30-day route would exceed 45 days had to be
calculated, This probability, using the t-distribution, was calculated
to be 0.04. Thus the probability that this route length would exceed 45
days is 13% times the probability (. 04) which is five one-thousandths or
only 5 times out of 1000.

. Consequently, a recommendation for a 45-day limit was tendered
in my final analysis,

Although this now concludes my presentation, I would like to provide

you with a very short follow-up. The 45-day limitation was not accepted !
i because the powers in control felt that this cut in time was too drastic.
i Instead, a sixty-day time limit was substituted. However, through
: improved flow procedures and the subsequent recommended elimination
; of one station, this 60-day time limit was recently cut down to 45 days.
Additional studies (non-statistical) are currently being performed to effect
a further reduction in time.

I thank you!

e——
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OPTIMAL ECONOMY IN PLANNING EXPERIMENT S

Pegina €, Dlandi-Julmsun
Biostatistics Department
University of North Carolina at Chapel Hill,
North Carolina

ABSTRACT., Suppose that a cost, y, {which is a random variable) is
a non-linear function of some controlied variable %, and in a general case,
is expressed as a polynomial of k-th degree in x. Let

k
(1) y=c(x)+ Z ax ,
t
t=1
and
k t
(2) Y=E(y | x)= Z Ax
t=l t

be the estimated and expected ("true') cost functions respectively. Let %
and X be the values of x at which the estimated and expected cost function$

attain minima respectively. Further, let ’;'O = E(y ’ ?:o) be the actual
expected cost when ?‘o is substituted for (unknown) x,, and Y = E(y]| xo)
the 'true’ minimum cost, We define the 'allowance' cost as

' O k at t
(3) BY, - Yg) = 2 A ER)-x ]

If c(x) estimates C(x) closely, then {3) will usually be small.

To evaluate (3) we have %o find the distribution of ?{o which is a

function of regression coefficients 815 8y, e B,

(4) :’20 = g(al, LIV ak) .

.

In the general case this may be complicated, but for sufficiently large
sample size, n, we can find an approximate distribution using the Central
Limit Theorem and a Taylor series expansion of the multivariable function

*This paper has been accepted for publication in '"Operations Research''.
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{4). Application of orthogornal polynomials appears to be relevant to this
situation.

. n
il is casy io see irom (3) that E(Yo - Yo) deper s on the cthape of the

true cost function,C{x), even if the fitted regression function, c(x). is of . |
the right order. Incorrect choice of the degree of r{x) might affect the
'allowance' cost more severely,
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ON A CLASS OF NONPARAMETRIC TESTS FOR MANOVA IN TWO WAY LAYOUTS#*
PRANAB KUMAR SEN

University of North Carclina, Chapel Hill,

and University of Calcutta.

SUMMARY, The object of the present investigation is to propose and study a class

of nonparametric tests for the multivariate analysis of variance (MANOVA) problem
relating to complete two way layouts. In this contex:, the concept of rank-permuta-
ti,.ons for multidimensional interchangeability is developed, and the same ie
incorporated in the formulation of a class of genuinely distribution-free rank order
tests. Asymptotic properties of the claas of proposed tests are studied and compared

with those of the standard parametric ones.

1. INTRODUCTION

Let us consider a complete two way layout comprising of n complete blocks

(replicates), each block containing r(> 2) plots where r different treatments are

applied. The yleld (response) is a p variate quantitative (stochastic) vector,
and we denote by xg‘) the k-th response for the jth treatment placed in the ith
block for i =1, ..., n, =1, ..., ¥, k=1, ..., p. In the sequel, it will be

assuned that n, r, p > 2. Let then

51:’ bl .(XS'), sy xig)). 1= 1. eeep N, j - 1. eeey I} (1.1)
o= w®, P, (1.2)

.

*Hork supported by the Army Research Office, Durham, Grant DA-31-124-ARO-D-G432,
This article was reproduced photographically.
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1y - (Tj(”, O NI M 2 (1.4)

and f;i = (eig), eeey eig)), J=1l, ey ty,i=1, .0.y n, (1.5)
We adopt the usual linear modél as

| ’.‘u".‘*?i*fj*fij'i'l’ veey M, 3= 1, 4uu, 1, (1.6)

where u i8 the vector of mean effects, oy

the treatment effects (§ = 1, ..., r), and eij the residual error vectors

the block effects (i =1, ..., n),

(41 =1, ..., n, =1, ..., r). These component vectors are assumed to be mutually
independent, Our problem is to have a comprehensive test for the hypothesis of

no treatment effects l.e.,

Hoz Ty e 2T (1.7)

In the parametric case, it is usually assumed that Sij (1=1, ..., n, =1, ..., 1)
are N(= nr) independent and identically distributed stochastic vectors distributed
according to a multinormal distribution with a null mean vector and a dispersion
matrix (positive definite) E = ((okq)), where ckq is the covariance of (ei?’ ,
eig)), for k, 9 = 1, ..., p. The parametric MANOVA tests are either based on the
likelihood ratio criterion or on the characteristic roots of some determinantal
equations. The likelihood ratio criterion reduces to the ratio of two generalized
variances and can be expressed as the product of several (p) independent beta
varisbles (cf. Anderson (1958, Chapter 8)). Alternatively, one may work with the
smallest characteristic root of the determinental equuation involving the same
generalized variances. Occasionally, some symmetric function of the roots are also

used. For detalls, the reader is referred to Rao (1965, chapter 8)., The parametric

tests thus appear to be deterministic, but they are not very simple, especially
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continuous and 1ndnpendentrof i=1, ..., n, and

for p > 2. Further, in this procedure the assumptions of independence and, multi-
normality of the error vectors play an indispensible role. Unlike the univariate
culé, very little has been investigated about the effects of departure from these
two basic assumptions on the performance characteristice of the parametric MANOVA
tests. On the otherhand, the assumption of multinormality of the error vectors

is ;fcen found to be dubious, especially in many biometric problems. Further, in
many problems, there appears to be sufficient evidence on the stochastic dependence
of the efror vectors within the same block. For example, in agricultural experiments, %
the presence of spatial correlation may distort the stochastic independnece of the .
efror vectors within the same block. Similar dependence may be due to genetic {

effects in many animal feeding experiments. The object of the present investigation

is to relax both the assumptions of multinormality as well as independence of the
error components. In fact, for the tests proposed here, we require only that

(1) the joint distribution functien F(fil' ceey fir) of ey rer &y is

(11) F(°11' iy e,r) is a symmetric function of its r arguments (vectors)

€10 tovr &L i.€., F remains invariant under any permutation of the r vectors

among themselves, or in other words, €1r vv» &y, are symmetric dependent stochastic

vectors.

Evidently, both the assumptions (1) and (i1) are much less restrictive than {
the usual assumptions of independence and multinormality, Thus, the proposed method
sppears to have a comparatively wider scope of applicability.

In the nonparametric case, practically no work has been done on this line. For
completely randomized layouts, very recently some nonparametric MANOVA tests have been
offered by Chatterjee and Sen (1964, 1966), Sen (1965, 1966a), Puri and Sen (1966),

and Anderson (1965), among few others. Bhapkar (1965) has also presented some !
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asymptotically distribution-free test for the same problem. The present author

(1966 b) has considered some rank methods for combination of independent experiments

in MANOVA. The same procedure 1s applicable in our situation here, but it fails to

be suitable in some respects. This problem may also be regarded as the multivariate
generalization of the nonparametric ANOVA tests relating to two way layouts. Such
ANOVA tests have been congsidered by Friedman (1937), Durbin (1951), Brown and Mood
(1951), Benard and Elteren (1953), and others. These are all based on intra-block
rankings, and the same method can be generalized to the MANOVA problem. The

present author (1966 ¢) has considered a modified approach to nonmparametric ANOVA

tésts for two way layouts, Extending an idea of Hodges and Lehmann (1962), he has
considered the rankings after alignment, and under a suitable permutation model,

hes obtained a clase of genuinely distribution~free tests based:§6 these modified
rankings. This results, in most of the cases, in an increased (at least asymptotically)
efficiency of the proposed test. The object of this paper is to generalize the method
of rankings after alignment to the MANOVA problem and to offer some suitable non-

parametric tests for the same. For this purpose, the concept of multidimensional

interchangeability is developed and certain rank permutational ideas are formulated.
With the aid of this a class of properly distribution-free rank order tests for

the hypothesis in (1., is developed, Further, the celebrated Chernoff-Savage
(1958) theorem on the asymptotic normality and power-efficiency of a class of
univariate nonparametric test-statistics, as extended to the multivariate case by
Puri and Sen (1966) and tu the problem of compound symmerry of multivariate
distributions by Sen (1966 c), is extended further to take care of the problem of
multidimensional interchangeability, to be considered here. With the aid of this,

the asymptotic power and power—efficiency of the proposed class of tests are studied,
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2. SOME PRELIMINARY NOTIONS.

Let us define a set of tz real quantities by

DAL L T O, Lo e o

: ey 8y - Urferg,ael, ., (2.)

- vhere clj 1¢ the usual Kronecker delta. Thus, =0 forall g =1, ..., r.

r
Lym1 ©ag
Let u3 then consider the r intra-block contrasts

. .
Yy " Tyay Gy Kygp b Ly e v ' @2

. From (1.6) and (2.2), we have [

. ' 1.r 1,r |
Yo " Co - Tl Ig) + (ogy = 5 Byap ogy)s (2.3)

where the first factor on the right hand side of (2.3) vanishes when Ho in (1.7)
; holds. Further, by assumption (ii) of section 1, we get with some simple
1l or N
] reasonings that the joint distribution of [gfil T 23-1 fij)’ Lal, ... qJ is
‘a symmetric function of the r (vector) arguments. Consequently, from (2.3), we

b get that under H_ in (1.7), the joint distribution of (Y, , ..., ¥, ) will be a

symmetric function of the r wvectors !11, sesy !ir' On the otherhand, if H° in

(1.7) does not hold, the joint distribution of (!11, veey !ir) will be a symmetric
! function of its (vector) arguments only when each one of them is adjusted by §
appropriate lbcation vectors. Thus, if instead of the observed responses 513'8,
we work with the block-adjusted yields gij'l, our problem of testing H  in (1.7)
reduces to that of testing the hypothesis of interchangeability of the vectors
xi . !11, ceey !1r (tér alli=1, ..., n), againat translation type of alternatives.

This is termed the problem of multidimeneional interchangeability, and a formulation

of an appropriate rank permutation model for the same, will be considered in the

¢
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next section. The necessary rank order statistics will be defined now.
Let us pool the N(= nr) observations {Y§§). =1, ..., r, i=1, ..., n}
into a combined set and denote the ordered observaticns by

(k) (%)
1) (N

vhere by virtue of the assumed continuity of the distribution of the error

L TRTL I 4 (2.4)

vectors, the poassibility of ties in (2.4) may be neglected, in probability. Let

then C(u) be the usual sign-function viz.,

1, if u>0
c(u) = (2.5)
0, if u <« 0, :
and let
® S N (™
“13 1+ GZI c(azi:1 - Y(u)), (2.6)

for i = 1| seeyg N j - 1, seey Lo
Thus Ri?) stands for the rank of Yi:) within the set (2.4). This ranking procedure
is employed separately for each k = 1, ..., p. Consequently, any vector Yij having

P elements is made to correspond to a rank p-vector

- (R(l) R(P)). 2.7)

Rig = (Ryys ooy Ry

fori=1, ..., n, =1, ..., r. The composite collection is a p x N matrix

xN

¢
RN will be termed a collection (rank) matrix. Each row of Ry is a permutation of

the fuwbers 1, ..., N. For any positive integer N(= nr, n = 1, 2, ...) we define

- (511' teny glr. 1oy §n1. vey Bnr)w (2.8)

126




N

- rvnr s R ———————— 1 ol T

p sequences of real numbers by

L A IR\ S RS (2.9)

lﬁkz 's are all real quantities and are explicit functions of Cﬁfi). We adopt

¥

the coventional Chernoff-3avage (1958) form and write

xf"" R L VTIPS AR WS (2.10)

where the function Jé ) need be defined only at «— 1 ,a=1, .,., N. However,
we shall find it more convenient to extend its domain of definition to (0, 1)
according to the Chernoff-Savage convention. Also, we define rp requences of

indicator functions {2§{;k>, a=1, ..., N} ,for =1, ...y r, k=1, ..., pby

1, of YS:; ie some Yi?’(i =1, sesy D),
(1,%)
z - (2.11)
N,a 0, otherwise,
foro =1, ..., N, Then we define rp rnak order statistics
() (Lo N () (3,00 . ,
T ’J n a=l EN,G N a ! j 1. eee, Ty k 1, weey Po (2.12)
It may be noted that
1y .00 1 g(R) | g0 . :
= 23_1 N4 Nzo-l N = By (say)), k=1, ..o, p; (2.13)

(

where Eél). cony Epp) are all known constants (d=pending on N). Thus, at most
(r - 1)p of ths rp variables in (2.12) are iinearly independent. Our proposed
test is based on the set of random variables in (2,12)., To develop strictly

distribution-free tests for the hypothesis (1.7), we shall consider in the next

127




Y-

section some permutation model. But, before that it may be worth writing .
a point of clarification. The class of statistics in (2.12) hss some similarity,

vitﬁ that of a similar class of statistics considered by Purli and Sen (1966).

However, in the later case, we have a one way classification with N independent
p-varfate observations, while in this case, we have a two way classification

with n independent pr-variate observations. This makes the situation somevhat

more conﬁlica:ed, and requires a more specialized attention for both the permutation

as well as asymptotic test theory.

L et Ao . i e 11 % s b o

3. RANK PERMUTATIONS FOR MULTIDIMENSIONAL INTERCHANGEABILITY. -

The collection matrix REXN, given by (2.8), is now expressed in terms of n

submatrices Rpxr’ caey Rﬁxr, where Rixr is the matrix of the r rank p-tuplets

corresponding to (Yil' ceesy Yir)’ for L =1, ..., n, Thus, we have

PxN xr

L

Now under the null hypothesis (1.7), the joint distribution function G(Yil""'Yir) L

pxr '
g ey Bn )o (3'1)

is a symmetric function of ?11’ teey ?1:' and hence, the same remains invariant
under any permutation of the r vectors in the r positions of G. Since, there

are r! possible permutations of the r vectors among themselves, the permutational
probability (i.e., conditional probability) mass associated with each of the r!
pos. ible permutations is equal to (r!)-l,(under H in (1.7),)for all t =1, ..., n.
Since, (311' coey ?ir) is distributed (jointly) independently of (¥£1’ ey gi'r)

for all 1 ¢ 4' =1, ..., n, the joint distribution of ’

» Y“ - (Yll’ L Yir. LY Ynl, evey an). (3;2)
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¥ remains invariant under the following finite group E of transformations "( 8, }
wvhich nipo ‘the sample s,ace of Y dnto itself. The number of elements of i is

. equal to (r!)®, and typically a transformation §, is such that

' RS LN TS TS NS P (3.9 |

vhere (!:h. vees Hr) is any permutation of (311’ ceny !11')' 1s11, ..., n
Let ?ll be the Np-dimensional _nﬂpie space of EN' (and we take it to be the Np-dimensional

Euclidean space). Evidently, the sample space of Yﬁ is the same as that of Yy and

; ' morsover, under H° in (1.7), the joint distribution of YN remains invariant under

. the group of transformations g. Let now S(YN) be a (real or vector valued)

funccion on ¥ Then, for any YN € *N’ we will have a set of (r!)™ values of S(YN),

N
obtained under the group of tranaformations @, and this set {s denoted by 2(YN).

Then, under the null hypothesis (1.7), the conditional distribution of S(YN) over the

[ ——

set !:(Yn) will be uniform. Let us define T(k) as in (2.2), and let

i 3

}

P L (-(Tx(!l:;))j “1, ey mykml, ceeyp (3.4)

% Then, it folllowo that SN is a stochastic matrix, which under the group‘of r.unafomtiona.
: gn can have only ()" possible realizations. Since TN is an explicit function of the

N rank p-tuplets Bij’ i=1, ..:.yn, i=1, ..., r, it will be more convenient for
us to reviev the above invariance argument in terms of the following rank-invariance
‘., argument.
The way in which we have defined I}N in (2.8) and (3.1), it follows that for any

i
g€ ¥“ there will be a corresponding collection matrix R.. On examining the group -
of transformations 2. it will be clear that the transformation g on Y., given

{

129

CoLT
oo Moo 4 13 P o ot St 1




s
|
|

by (3.3), gives rise to another collection matrix ?ﬁ’ which is obtained by .applying
the sane transformation g, on the original collection matrix BN' Thus, under the
grou'_n of transformations % of {gu} » the rank collection matrix l:.g (corresponding
to'!u : ?N) gives rise to a set of (r!)" rank collection matrices (obtained by
app;ying the same transformations (g n}’) and this set is denoted by z(Eﬂ). 1t l}ﬁ
is any menmber of z(gu), we note that l}ﬁ is really derived from RN by n'ﬁniu number

of inversions of the columns of the later. Thus we may write

RY ~ Ry (mod %) for all Ry € E(Ry). , (3.5)

lchce, the set E(RN) contains (r!)® rank-matrices which are permutationally (under
inversions of intra-block columna) equivalent (under %) to RN Thus, we term

-~

t(R,) as the permutation set (mod %) of Ry, Ry like Y, is a stochastic varisble,

‘aad each row of B'N is a permutation of 1, ..., N. Thus, RN can have (N!)p poseible

vealizations, and this set of all possible realizations of RN ig denoted by Q“,

so that

Ry ¢ IRy oRy. (3.6)
The probability distribution of Ry on au (defined on an additive class of subsets
AN on“,) will depend on the unknown joint distributions G (!ﬂ, ceey Yir)’
i~1, ..., n, even under llo in (1.7). Thus, unlike the case of univariate one way
classified dats, the use of the unconditional distribution of RN will fail to

provide a distribution-free test. However, from what has been discussed before, it

follows that
PRy~ R} |:(5N). H) = aH™", 3.7

for all Rg t 2(BN), independently of G(Yu. ooy Yir)’ i=1, ..., n. Now, the way
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in wvhich Eék), k=1, ..., p, are defined by (2.9), (2.10), it follows that ?N in '
[(2.?.2).' (3.4)] is an explicit functinn of !‘N Thus, the set .t(l_le will give rise
to a sec of (n!)™ realizations of 'EN' and this set is denoted by x('{‘u). Hence,
unnicr the permutational probability measure (3.7), we will have a completely specified
perautational distributioa of '5“. and the cortupondj.ng permutational probability
measure is denoted by @n' Let us then consider a test function 0(’5“) (o< )),
which to each !R € ?N associates a probability of rejecting llo in (1.7), with the
aid of @“. It follows that we can always select ¢(¥N) in such & manner that
I oo (ap = (e ¢ (3.8)
Yﬁtt (YN) -

vhere (0 < ¢ < 1) is the preassigned level of significance of the test. Consequently,
0('.1“) has the S(c) - structure of tests Ccf. Lehmann and Stein (1949)] , and iz a
similar size ¢ tast for the null hypothesis (1.7).

Now, in actual practice, ve prefer to use some single-valued function of EN as
a test-statistic, There seems to be no definite suggestions regarding the structure
of this test-statistics, snd an optimum choice naturally may depend appreciably on
the particular class of alternatives we have in mind, However, it may be suitable
(though not necessarily optimum) to consider the following test-statistic which is
the qutdrgt'ic;fom asgsoclated with the asymptotic permutation distribution of ?N'
Tor this, let us consider first the permutational moments of TN' It readily follows

that

g 18 B, for k=2, e p g =L e r (3.9)

Lat u.l define
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] | gk R R N (5 . - '
NR (%) T zj_l EN.R.,(k) sy i=1, «uoy,n, k=1, ..., p, (3.10) ‘
N3 i
. as the intra-block averages. Also lat ) !
i 0 x '
§ gk g(k) =(q) z(q) ~
i ( ) = -~ -E E =B » (3.11
z % ~
1 gor k; q=1, .o, P}
R = (RO, Ly . (312 |
It is then easy to varify that
cov {10), T ) = ke gy - D (R, G

for k, q=1, ..., py 3, 3' =1, .u., r, wvhere §,,, 18 the usual Kronecker delta.

33
For the time being, let us assume that V.(Ry), given by (3.12), is positive definite,

i and denote its reciprocal matrix by

ey = (MR Ly, (3.14)

Our proposed test-statistic SN can then be expressed as

S O e B I P PR

aand it may be noted that SN is essentially a non-negative stochastic variable. We

shall see later on that under certain regularity conditions on G(Yil’ voey Yir)’

Vh(RN) is positive definite with a very high probability, (precisely, in probability).

However, 1if VN(RN) fails to be non-singular, we may work with the highest order _ '
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principal minor of YN(.RN) vhich is positive definite, and proceed similarly Vonly

with the responses pertaining to this minor. Thus, for convenience, we may assume

.!N(!'H) to be positive definite. Now,

B8, ) + p(r - 1), (3.16)

and Su messures the distance of Ty in (3.4), from the pomtltionil centre of
gravity of the same. 1If !l° in (1.7) doss not hold, it can be shown that for at
least one k = 1, «eo, pandone =1, ,,,, r, 'ttg':; will converge to & point
(stochastically) other than Etgk), and hence, by (3.15), SN will be stochastically

larger. Thus, we may propose the following test function:

1, 1 8, > 8 (%),
.(!u) = Y(En)u it s“ - su.c(h), . (3-17)

0, 1t Sy ¢ SN,C(EN)'

vhere the constmtll SN. c(!'N) and y(l_tu) may usually depend on Ry and are so chosen

that

‘“‘!u"d’n} =g 0 <e<l, (3.18)

(3.18) implies that E{O(YH)IHO} = ¢. For small values of n(and r), one may venture
to svaluate the exact values of 8“. ‘(EN) and y(BN) with the aid of (3.7)., However,
the labor of this process of evaluation increases considerably with the increase
in n(or r), and hence, as in other permutation tests, we are faced with the problem
of finding out the asymptotic form of the permutation distribution of Sy This is

dons in the next section.
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4. ASYMPTOTIC PERMUTATION DISTRIBUTION OF SN'

- e shall impose certain regularity conditions on the p sequences {Elgk)}.

kK®i, cee, p,» defined by (Z.9) and (2.1U), as well as on the joint distribution

function G(En, ceey ‘f:h_). Let us define

(3] (x) -— [Number of Y(k) £x] s k=1, ooy py 3=l .o, 13 (4.1)

B'(,k) (f) -%Sj_ll‘l(‘ﬁ](x). k=1, «ioy P} (4.2)

(ko Q)

N[j ](x, y) = i [Number of (Y(k)

s DI CNES) M (4.3)

for k, q =1, «eoy,py, §, 2 =1, ..., r with either § ¥ £ or k ¥ q or both.

Now, corresponding to the joint cdf G, let us denote the marginal cdf of Y(k) and

1)
of (Yg) (q)) by thj (x) and Fb y (x, y), respectively, for Joiml, siu, 2, k,

q=1, ..., p, with at least one of j ¥ £, k ¥ q being true, and let

2™ () -% l::;._1 rgi(x), for k=1, ..., p. (4.4)

With the definition of Etsk:" as in (2.10), we make the following assumptions
1 4

concerning J(k) !

ASSUMPTION 1. n- Jék) (H) = J(k) (H) exists for all 0 < H < 1 and is not a constant,

Since, we shall be interested here in translation type of alternatives, we shall

further assume that

J‘k)(a) is ¢+ inH: O <H <]l forallkel, ..., p.

(4.5)
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pssmerion 2. o [3(9) (2 o y® (ﬁ-l-)l -~ o7, - (4.6)

£9_r-lk- 1.‘ eee) Py and

£ BP0 o - 1Vl ] affh o - o 0™, 4.7

ASSUMPTION 3. J(k)(n) is absolutely continuous in H: 0 < H < 1, and

" ;
[5-; J“"m] <K [HQ - B]7TE (4.8)
[[}:4

for r = 0, 1, and some §>0, whare K 4s & finite positive constgnt.

Also for the positive definiteness and .oyﬁpcocic convargence of the covariance

matrix Vh(R“), given by (3.12), we require two more mild regularity conditions.

ASSUMPTION 4,

Zir-

oy PGP - Mt - e, (4.9)

fork=1, ..., p, and

o [ (0 L a( ) () 3@ B 1D gy - 30 Gl 50 (15 €0 G ng>(y,,]d,§nf.q> Y.

- Op(l) for all j. L = 1. veey Py k' q= 1. essy Py I (“olo)

vhers sithar k ¥ q or § ¥ L or both. Let us also define

e S el

2 < 1 E®a®y, ka1 sy .1
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2y, = (zil),...,zg)), = 1,...,r; (4.12)

Ya 1" z{z“‘) z(q)l for ky q= 1,...,0 3, B = 1,...,1; (4.13)

Mg = Ung ) qm g, @™ 87 b (D)

4 r
vkq- l‘ .1-1 ‘kq~jj -r-a- JE]. = .k TE for k, q=1,...,p (4.1-5)

E= Oy, .., p (4. 16)

ASSUMPTION 5. V¥ is positive definite (4.17)

Before we present the main theorems of this section, let us consider the

conditions under which assumption S holds. Using (4.14), let us define

Beg 0y [byy + 8y =28y W= 1. (4.18)

THEOREM 4.1 Assumption 5 holds if

max
sonl,...,r [Rank of Ay gyl = p (4.19)

PROOF., Let !i"'al"""p) be any real and norn-null p-vector, and let

l_r
ty = yg”, 34, .00, t. = 2L by (4.20)
wvhere zij'l are defined by (4.12), It is then easily seen that
L 2y . p(e2

Svp = _1-1 E(ci) E(t?) > 0. €4.21)
Thus, we require only to show that for any non-null 8, (4.21) is strictly
positive. Using essentially the proof of lemma 4.1 of Sen (1966), it can
be lhown that - j-l !(:2) - E(tz) will be strictly positive unless

l(tjt‘) - !(ti) = constant, for all j,f=1,...,r, (4.22)
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Now, using (4.18) and (4.19), we get that
E(t -t,)% = 4 A0yt > % (4,23)

for at least one pair (3,4), jfs=1,...,x. As !(:j-t‘)z < Z[E(t‘;)ﬂ(tf)],
(4.23) tmplies that !(tg) > 0 for at least one =1,,..,r. Again, for the
specific (J,8) for which (4.23) holds, we may assume without any loss of generality
that !(t:)_ < !(e';), !(t‘j) > 0, and thus, we require only to show that !(tjt‘) < l(tg
1f !(t:) = 0, the proof is evident, while, if l(tf) > 0, we have from (4.23)
2!(_tjt‘) < E(tg) + B(tf) < ZE'(ti). Hence, (4.22) can not hold for all j,é=1l,...r,
1f (4.19) holds. Consequently, (4.21) is strictly positive.

Hence, the theorem,

It may be noted that (4.19) really implies that the vector (z“ - z.u) is of

full rank for at least one jft=l,...,r.

THEOREM 4,2, Under the assumptions 1 to S5, ?N(l}"), defined by (3.12), converges

in probability to ¥, defined by (4.16), and hence, is positive definite, in prob-

.lbﬂt:y. .

PROOF. The proof of this theorem follows as a more or less straightforward gen-
eralization of theorem 4.2 of Puri and Sen (1966) and of theorem 4.2 of Sen (1966¢).
Hence, for the intended brevity of the paper, it is not considered in detail.

THEOREM 4.3. Under the assumptions 1 to 5, the permutation distribution of the

statistic SN, defined by (3.15), converges ssymptotically, in prob.bui:y, to a

chi square distribution with p(r-1) degrees of freedom (d.f.),.

FROOF. We shall first prove that under the permutation model considered in

Bection 3, [ni'(ggr-; . Ef'k

)), =1, .'..,r-l, k=1,...,p] has asymptotically a p(r-1)
sultinormal distribution. This would be dome by proving that any arbitrary linear

function of these p(r-l1) statistics has asymptotically a normal distribution under
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the permutation model of section 3, Such a linear compound can be equivalently

written as (by virtue of (2.13),)

k)

- (
Y niz'j-lzk-l 3 Iy

Under assumption 2, (4.24) can be rewritten as

*n r P
nd £ (z 2 j
im} jl-lk-l
Let us then write

T

=1 k=1 JK

where =

a0
Uy, (B = Z L J“"(—-’l—

j-l jk

g 1 <—-1->) +0 ().

1=1,2, .,

-,n-

= 0, k=1,...,p.

(4.24)

(4.25)

(4.26)

The random variable U \RN) can have only r! possible equally likely values

under our permutation modol. These values are obtained by permuting the r

vectors Bij’ F1,...,r (defined by (2.7),) among themselves. Thu

By @ple) = £ (&5 o
Uy, 1 (By = 351

for i=1,...,n. Similarly,

P r r

P
g (Byle=z = & ¢ ¢

kel qm1 ol gm1 K “q

P

g{K)

a ()
(——-1->1 z d -0,

m1 Ik

p r
= I I (E 4.4k z t:“"(—-‘-)-v‘“’(—i-)

=1 1 =1 K39

r ()
¢ z, .r“*’c-—-i-»n

for i=1,...,n.
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N+1

8y

(q)

T
--(r. J

(k)(

zt.r‘“’(-—l-).r(q) ol @)

pK)

—tdy)
e

(4.27)

(4.28)




f 8ince the permutations of the rank-vectors within the ith block i{s indepen~
dent of the permutations within the i%th block for 1,‘1'-1,...,11,' under our

v p&\'-:ltgtion model, {U’,i(lu), f»1,...,n} are mutually indepundent. Hence, to
pro'vc the desired result, we may use the Berry-Essen thecrem [cf. Loeve (1962,

p. 288)], according to which it is sufficient to show that

P ST
: ™ e, avlo, IR

(%.29)

. From (3.11), (3.12) and (4.28), we get that

Leo g2 )@ )=t £ T @0
n “iml N,iB'N n 1 k=l q-l jk qukqnﬂ

r p P
S g (£ L dgd, v (&)
: e g K ka8

P

-t {Z

4

: wvheraby theorem 4.1 and assumption 5, the right hand side of (4,30) is a (non-

gero) positive constant, for any given “jk’ ”,...,r =1,...,p). Thul, it

is sufficient to show that the numerator of the left hgnd side of (4.29) 1i» op(lf,/z),

ot and this readily follows from assumption 3 and (4.26). Hence, under our per-
wutation model, the first term of (4.25) has asymptotically, fn probability, a

normal disctribution., Once this is established, we consider the quadratic form

associated with the asymptotic multinormal distribution of (ni(rf‘k) i:'k)),
=1,...,x-1, k=1,...,p), and using some well-known results on the limiting
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distribution of continuous functions of random variables [c£. Sverdrup (1952)],
it 1{ easily geen that under our permutation model, the atatictic BN, given by
(3.15), has asymptotically, in probability, a chi square distribution with
! p(x-1) d. £,

_Hence, the theorem.

It may be noted that the permutation distribution of 8y being essentially
a conditional distribution, thc.c;nvorzence in theorem 4.3 holds, in probability,
f.e., for almost all xu. If we now denote by X2 _ the upper 100¢% point of the

chi square distribution with t d.f., then from (3.17) and theorem 4.3, we arrive

RSHAALT 1 RSB YL ARt i e S

at the following.

TEEOREM 4.4. SNLG(BN).:39 7(§N), defined by (3.17), converge, in probability to

x;(r-l),e and 0, respectively.

By virtue of theorem 4.4, the exact permutation test, considered in (3.17),

reduces asymptotically to

2
! b A 8 2% (re1),e
‘(Yﬁ) - (4.31)
0, otherwise;

and (4.31) will be termed henceforth the asymptotic permutation test.

5. ASYMPTOTIC POWER OF THE PROPOSED TESTS.
In this section we shall study the asymptotic power and power-efficiency of
our proposed class of tests. This requires first of all the study of the asymptotic
(unconditional) distribution of SN‘ when the null hypothesis (1.7) is not nec-
essarily true. For this study, we also adopt the same notations as in section 4,

and write

T:rg - _£ J,(,k) (N_E'l' H}gk)(xD drf‘}‘}](x), (5.1)




for i=1,...,r, k=l,...,p. The statistics in (5.1) has some analogy with a

ciase vi wimiilar simiistics considered by ruri and Sen (1966), However, in

this case of two way layout we are faced with n independent pr-variate observa-
tiohl, while in the earlier case, Puri and Sen were faced with the oneway layout
involving N(=nr) p-variste observations. This makes the situation somevhat
wore coﬁpltcntcd in our case, and the necessary wodifications will 30 studied

hers. ht.j us defina

ug“’ -1 30 1) () ar[“ﬁ(x), (5.2)

for j=1,...,r, k*l,...,p. Also let

B0y, = 715D - R eor P o1 2P a®a) 8+ D@y
-y %
ar[%(x) drfﬁ](y), (5.3)

! for 3,404, 41 = 1,...,1, k, @=1,...,p, with either j¥j' or kfq or both, while

(k, k) PR () (k) (k) (1) (K k) (. gp(®)
0 - 11 fwnalon 2 ®Pa® e o Qe affmem

s 11 R 2@ 2 ®a®y) @l welfio;,
cacx<y<n

‘or Pl,...,l’, bl,c-a,p’ ‘," = 1,...,?. - (5-‘.) ]’
Pinally, let

(k,q) (k, q) (k, @) (k )]
¢ ?jjl. {‘.1 "-1[’“".3” B“’, NTL Blj" . jl,f Bj]} (5.5)

for kL, ...,p ' = 1,...,0,

THROREM 5.1. If the assumptions 1,2 and 3 of section 4 hold, then for arbitrarily
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g,

B e

continuous G(Ytl""'tir)’ the random variables [Né(méki - ugk)), 1,...,n
S ———— (4

i=1,...,p] has asymptotically a multinormal distribution with a null mean

.a)

‘ L _(le Sl
vector and a dispersion matrix with elemencs ij" “y derined by (J.3).

(It may be noted that by virtue of (2.13), (4.4) and (5.2), the above multi-
normal distribution will be essentially singular with a rank less than or equal

to p(z-1).)

PROOF. We shall present only a brief sketch of the proof, as the same will
follow precisely on similar lines as in theorem 5.1 of Puri and Sen {1966) and
theorem 5.1 of Sen (1966c). Proceeding precisely on the same line as in the

proofs of these two theorems it can be easily shown that

i) - pl) -l ) -0 ), 5.6

W L a® o1 1R [0 g0, 00 4® ] - o
Bm 7t Py am” 4?.1[“ =1 [ - oo | | eno
W) gy o (K (0 ) (k) 1y g ry
w 0, if x< Yf‘;)
o™ - - G
L 1fx2¥, .
for i=1,...,n, §, #=1,...,7, k=l,...,p. It s therefore sufficient to show that ‘ !
for any arbitrary non-nuli & = (8 5 ) Ni g ; 8 {B(k) + B(k) ) has
: : < AN TR L At 22N

i
|
|
i
|

asymptotically a normal distribution. By virtue of (5.7), the same can be

n
written as n * (=] B(xil”"’zir)’ where
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‘» 1,...,!\- (5010)

8ince, the random varisbles 1n (5.10) are independent and identically distributed,
{n order to make use of the central limit theorem under the Lindeberg's con-

dition, it is sufficient to show that these have finite second order moments.

Using (5.8), it is eacily seen that !m(!u_"“’!u” = ¢ for all i=1,...,n,
and by virtue of (5.10), it lppnﬁ to be sufficient to show that ' '
:(]ng':‘) “‘)lﬂ) <w for all §,4=1,...,7, ®1,...,p, iml,...,n. Now, under the
assumption 3 of section 4, ic is easily seen that for any n: 0 < n < 8 (defined

by (4.8),)

2((3{) ™) <o, (s.1)

uniformly in j,4=1,...,r, k=1,...,p. Hence, the desired asymptotic normslity

follows readily. Again, by (5.7), (5.8) and (5.9), we have

(k) (k) al® (@ ) o (%, q)
R(25p (73D Byl (i) = 8y, Byl o (s.12)
vhere 8“. is the usual Kronecker delta and Bﬁ:‘g‘, s are defined by (5.3) «

and (5.4), for j,i',5,8'=1,...,1, k,ql,...,p. Hence, it is easily seen that

(k) (k) (q) (q) - alke @)
Nl{(Bj’m nj zn)“’ +3 )1 a s (5.13)

which is defined by (5.5), for k,¢=1,...,p, 3,8=1,...,r. Consequently, by
(5.6), ve may conclude that the dispersion matrix of the asymptotic normal
distribution has elements ﬁgr’ q)’ defined by (5.5).

Hence, the theorem.

We have already noted that the asymptotic normal distribution of theorem

8.1 1is singular and of rank at most equal to p(r-1). If the null hypothesis
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in (1.7) is true, G(Yu,...,Y ) will be a symmetric function of the r vectors,
and hnnce it 1s easily seen that (i) the marginal cdf of Y“;) will be the same
for 111 =1,...,r, i=1,...,n, and is denoted by H"”(x) for l=l,,..,p; (i1) the
urzinal cdf of (Y(k) (Q)) (i?q) will not depend on j, and is denoted by
l(k’q)(x,y) for #qil,...,p, and (i1i) the mtsinll cdf of (!ﬁ), Y(q)) (is)
will not depend on (j¥4), and is denoted by Hz q’(x,y) for jfi=l,...,r,

k, ¢l,...,p. Thus, it follows from (5.3), (5.4), (4.11) through (4.14) that

in this case

kq) .
ng"?}l! " ards 'ftq) if =jr=l,...,r

-.ﬁ) 1 wiml,...,rT,

(5.14)

'yhore {:’ depends only on Hgk’ LY (x,y) and .‘(‘i) on (ky q) (x,y), respectively.
Thus, from (4.15) and (5.14), we get that in this case Vig defined by (4.15),

reduces to

Viq " Hf-l)/r](-{;) -kq)): k@1, 00pPs (5.15)
and

ﬂg"q) - (51‘1"1) qus 821, ..., kyq=l,...,ps (5.16)
vhere 6“ {s the usual Kronecker delta. Consequently, it is easily seen that

under Bo in (1.7),

PRk g el m )
ELER Z (Ty) TE AR L (5.17)
k=1 q-l v it | b3 TN )

(where ((vkq)) is the reciprocal of (("kq))’ and
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1
“(k) - g:‘k)(u)du, k=1,...,p)

has asymptotically a chi square distribution with p(r-1) d.f. Now, under

ulﬁmption 2 of section &

3 | ' IS ooy w o), for e, (5. 18)

and by theorem 4.2, we have under assumption 3 that

(s5.19)

e | Yy By te, Blay D
Hence, from (3.15), (5.17), (5.18) and (5.19), we get that under B in (1.7)
g £ o .20 |

Hence, we arrive at ths following.

THEOREM 5.2. Under Ko in (1.7) and assumptions 1 to 5 of section 4, the

W—-’—W‘v
L Bl B B 1O, AN D AR T A A -

statistic au in (3.15) has asymptotically a chi square distribution with
! ; p(r-1) d.f, : i

é i
i i Let novg‘ be any consistent estimator of v defined by (4.15) and (5.15). : ¢4.
F : i :
L ! Ifg‘ is positive definite and we dencte its reciprocal by f'l = ((\';‘kq)), then
" 5 we can have an asymptotically distribution-free test based on ‘

; |
i r i
; L By=n z 5 &g ('r“" l,‘,“))(t“ - £V, (5. 21)

' _ =1 g=1 =1 ‘

8ince, ﬁu can be shown to have the chi square distridution with p(r-l) d.f,,

when B in (1.7) holds, the test function may be proposed as

1, t£8,>x2

1 . ’ N> p(r-1),¢

: g = (5.22)
0, otherwise.
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We shall now consider the power properties of the permutation test in (3.1#)
and (4.31) and the large sample test in (5.22). We shall obtaiﬁ certain power-
lquiéllnncc relations among these tests, and compare them with the parametric
tests cuierred to in SBection one. )

By virtua of theorem 5.1, it can be shown that if the linear model (1.5)
holds but the null hypothesis (1.7) is not trde, then (ugk) - fﬁg)), 1,..,1,

¥*i,...,p, can not all converge to zero as N, and hence, 8y defined by (3.15),

will be stochastically indefinitely large, as N increases. Consequently, the tests
coqnidercd will be all consistent. Thus, for any given (;1,...,3r) in (1.6),

(not a1l null), the power of the test (3.17) or (4.31) or (5.22) will be asymp-
totically equal to unity, Hence, forthe study of the asymptotic power propnrtiesb
of the tests; we shall consider a sequence of alternative hypotheses for which

the power asymptotically lies in the open interval (g,1). This we specify as

Hy: iy " N'& AJ, =L,...,t, (5.23)

where kj, J=1,...,t are all real p-vectors, not all equal (or null). Further,

for linpllfication of the asymptotic power function, we shall assume that the cdf
k) k,q)

l[j](x), F[j J](x,y) and F[j ‘](xgy) are all gbsolutely cqntinuou- and have con

tinuous density functions. Under {HN] in (5.23), we will thus have sequences of

cdfrg (Ff:%,n(x)] atc, defined for each N, and it is essy to verify that

pm ) 0 = 800 for a1l g, (5.24)

liﬂ [(l;,qg(x,y) - H(qu)(x’y) for all J-l, S qu'l,..-,?
. (5.25)
nn ,Ek,q%(x,y) - Hgk,q)(x,” for jfs=1,...,7, kq=1,...,p. (5.26)
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Hence, in this case also (5.16) holds in the limit as N->», Also, 1f we define

e L a® ) ™, ... (s.27)

-

thc.n, it is easy to show that
;f: nmi('rf,:‘} - ““,'))l“,,} - kjk){k, | (s.28)

for all ™1,...,t, k=1,...,p. Hence, from the results of theorem 5.1 it fol-

s et At S A, R bt | RGP, S

lows that under (H ), 8% has asymptotically a noncentral chi square distribu.
N .

tion with p(r-1) d.f. and the noncentrality parameter

; L am E L Mg & aR3W)00. 50y, (5.29)
‘ el @l LA ]

i vhere

T(q) - zj:l )\gq)/r, for ¢=1,...,p.

NMow, from theorem 4.2, (5.24), (5.25), (5.26) and the discussion following it,
e it follows that under (H,) also SN.! Bft, and hence, we have the following.

THEOREM 3.3. Under the sequence of alternatives [H“] in (5.23), 8, defined §
by (3.15), has asymptotically a non-central chi square distribution with p(r-1)

d.f. and the non-centrality parameter AS’ defined by (5.29), provided ths con-

ditions of theorem 5,1 hold, and in addition, the marginal cdf's corrssponding

to the joint cdf G(!u,...,gir) are all absolutely continuous and have continuous

density functions,

If we consider the large sample test, defined by (5.22), then it can be

shown’ similarly that ﬁu ,,1,’ 3§, under {1-&}, and hence, the conclusions of theorem '

5.3 also applies to 's’u. Thus, the permutation test considered in sections 3

and & and the large sample test considered in (5.29), are asymptotically power

f
-
B
i
s
5
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squivalent for the sequence of alternatives (HN}, in (5.23). As we have seen that ?

the permutation tests are easy to define for small samples, we are now in a position

to u'cmnd the use of the same, for all sample sizes. ¢
. In the parametric case, the limiting distributions of various test-statistics

for 'thi‘.l problem have been studied by various workers, and the reader may be

referred to Anderson (1958, Ch. 8:10), Rao [(1952, Ch. 7), (1965, Ch, 8)], and

James (1960), among others. Most of the results relate to the null case, while
§ it may be considerably difficult to formulate a general theory for the non-null

cases, though some work has also been done on this line. Por the likelihood ratio

) «
A et e TR

test, however, the asymptotic non-null distribution may be found without much
difficulty, and for the sequence of alternatives in (5.23), this statistic can

be shown to have asymptotically a non-central chi square distributfon with

e LR O T R i WA

e m———— o AN R

p(r-1) d.f. and the non-centrality p rameter

PP r -
ay= £ 5 ez 0P -3 50y, (5.30)
k=1l ¢l i=1

vhere xgk) and 5% are defined by (5.23) and (5.29), respectively, and

E-'l - ((qkq)> - “(akq)-l is the reciprocal of the common dispersion matrix Z.
The comparison of As and AU (for the purpose of studying asymptotic relative
efficiency) poses the same problem as has been studied in some detail by Puri
and 8en (1966). For intended brevity, this is therefore not reproduced again.
The only remark that msy be made here is that if we work with Er(qk)" (defined
by (2.9), (2.10),1) as the expected values of the order statistics in a sample
of size N drawn from a standardized normal distribution and term the resulting

tast as Normal score MANOVA test for the two way lay out, then it is easily seen o

that for normal alternatives, this test is asymptotically power equivalent to the '
likelihood ratic test. In actual practice, the use of rank sums (i.e., !}(‘ki = of (N+1),
»

al,..., N kel,...,p) often results in a quite simplified procedure and at the
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same time does not involve any serious loss of efficiency. For details of these

being true in the two way layout case.
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TESTS FOR OIITTIE RS

H. A. David
University of North Carolina at Chapel Hill
North Carolina

1. INTRODUCTION. The proper treatment of outliers has long
been a subject for study, It is an active area now and likely to remain
so for some time to come. The reason for this is easy to sese: there
seems no limit to the multitude of different situations in which outliers
are important, Excellent recent surveys of the subject have been given
by Dixon (1962) and Ferguson (1961a),

It is useful to Jdistinguish three aims of procedures designed to deal ]
with outliers: )

(2) to screen data in routine fashion preparatory to analysis
(this includes but is more general than the old problem of
'rejection of outliers');

(b) to sound an alarm that outliers are present, thus indicating
the need for closer study of the data-generating process;

(c) to pinpoint observations which may be of special interest
just because they are extreme,

Numerous test-statistics have been devised, mostly from intuitive
considerations, and their percentage points tabulated on the assumption
of a common normal parent population, However, much more needs to be
known about the performance of tht various statistics in use for the non-
null situation when outliers are in fact present. We will here be concerned
primarily with cases (b) and (c). This is not in any way to belittle the
importance of case (a), and I will just mention a recent proposal by
Anscombe (1966). If the primary aim of screening data is the estimation
of parameters, Anscombe suggests a two-stage procedure: (1) Apply
the appropriate test for outliers at a very stringent level of significance,
80 stringent that good observations will very seldom be rejected. The
purpose of this is to get rid only of wild observations very far removed
from the main stream. (2) Apply the same outlier test again to the reduced
data but now at quite a moderate level of significance, This time, unlike
the preceding stage, observ.tions found to be outlying will not be rejected

“"Research supported by the Army Research Office, Durham,
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| but rather given reduced weight in the estimation of parameters., This i
P * second stage process is commonly termed Winsorization. '

This kind of approach promises to be fruitful for the situation of case
{(a) although its properties are by no means easy to investigate,

We shall begin with a discussion of several measures of performance,
including the power function, of some well-known test statistics relevant °
to cases (b) and (c). We assume that the underlying variation is normal
and consider in some detail the case where a single true outlier is present
which differs from the remaining observations in mean only. Some limited
results will also be given for the case when two observations are from a
common outlying or contaminating distribution. The situation of an unknown
number of outliers is briefly treated, Some of the statistics we use, and ‘

others, have been studied under these assumptions by experimental
sampling,

2, MEASURES OF PERFORMANCE. Letx, (i=1, 2, ..., n)be

independent normal variates, X, having mean u i and variance 0'2. On the

L om0 TM

null hypothesis of homogeneity, H,, the u; are all equal to some unspecified
value . . We shall consider alternatives H, representing a shift or
-slippage to the right in one or a small fraction of the pj. A suitable class
of statistics for testing H, against H, is of the form

[ESpe—

!
!
E
3

(1) v = max d
i

where d; is the difference, x; - x, appropriately divided. Of particular

interest are the following special cases of v corresponding to various degrees
of information on o

e —— T ———

(i) standardized extreme deviate (from the sample mean)
v, = max(x, - x) /o = (X oy =% /0 :

(ii) internally studentized extreme deviate ‘

| i - 2 _ -2 _
| vz~(xmax-x)/o. s -E(xi-x)/(n-l),
{iil) externally studentized extreme deviate

| .

'%‘ v3=(xmax- x)/ﬂv !

p

E
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where 8 is a root-mean-square estimate of @ based on v degrees of

(iv) internally and externally studentized extreme deviate

Vg = (xmax i i)/'p ’

where a; = [E(xi - ;.)2 + vsi] Jn-14+v) .
v is appropriate when o is known, v, inthe absence of any knowl-

edge of o . The use of vy and A requires an independent estimate of o,
In A such external information is combined with internal information by

means of a pooled estimate of u‘z. Formally vy and v, may be regarded

as the special cases, v= o and v=0, of Ve

2

If Vo is the upper a significance point of the null distribution of v,
then Ho is rejected for v > Vo and the warning required in case (b) of the

Introduction is thereby given, For (c) this must be followed up by declar-
ing one or more of the x, to be outliers, for example, those X, for which
di exceeds v,

Because of the difficulty of dealing with more general alternatives we
shall first suppose that just one of the observations — we do not know
which = is a true outlier and has mean p + A(A > 0). In the formulation
of slippage tests we may say that H_ consists of n mutually exclusive
hypotheses of which the ith, H;, specifies that

p.i=p+l.p.j=u G=1,2, ...,i-1,i+1, ..., n).

It is known (e. g. Kudo, 1956) that in this situation A (and hence Vi Yy when

applicable) has the desirable optimal property of maximizing the probability
of rejecting a true outlier in the clacs of all level a tests which are
invariant under the transformation x; = ax, + b{a > 0) applied to each X

It is clear that a reasonable measure of the performance of any of the
v-statistics can depend only on the sample size n and the ratioA/e . In
particular, the nieasure must be .ndependent of which of the Hy holds, For
convenience we therefore take i = 1, and also ¢ = 1. The following measures
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come to mind; !
1. Power function P, =Pr(v>v_|H,).

2. Probability that the observation x, from the slipped population
s significantly large

,PZ = Pr(d, > v | H).

1
1 3. Probability that X is significantly large and the largest in the
j

P3 = F‘r(cl1 >v % >x,, Xgs o0 e xnfle).
: 4. Probability that only X is significant ‘

P4=Pr(dl>va,d d .,dn<va[H1).

2’ 73

5. (Dixon, 1950) Probability that x. is significantly large given
that it is the largest in the sample

P5=Pr(dl>va[xl>x2. ches X3 Hl)'

TR RITBI S £

n
: We see that
* (2) P, >P, > P, > P, .
and also that i
(3) P, = P3/I='r(x1 > Xyy Kgy eeer X )

where the probability in the denominator has been tabulated by Teichroew
(1955) for n < 10.

e a1 .

It can be shown that

P, <P <P, +a,

. |

provided n < 2/a; in fact, a somewhat stronger general inequality holds

(David and Paulson, 1965). Also for v, one has Pz = P3 = P4. We there- : .

fore confine attention to Pz as the most convenient measure,

154




P The graphs of Figure 1 show inter alia just how much ia added to the

value of P, by the use of v, rather than v, in the present case of a

4
single true outlier. Of course, the gain is highest when the internal infor-
mation on ¢2 is large compared to the external information, i.e. when

n - 1l is large compared toc v. However, there are indications that internal
degrees of freedom are less valuable than external ones, Thus forn = 6

3 . the solid curve v =5 lies well above the dotted curve v = 0 although in
both cases there i# a total 0of 5 D. F,

3, A SEQUENTIAL PROCEDURE. It will be a rare occasion when we
actually know the number of outliers for which to test. Ideally we might
wish to proceed sequentially as follows:

Apply a certain test-statistic to the sample of n. Ii significance
b is obtained eliminate the most extreme observation and apply

' the same test-statistic to the reduced sample of n-1, adjusting

, : the significance point to the new sample size, If significance
holda again, repeat the procedure until the test-statiastic ceases
to be significantly large.

We consider now such a sequential procedure for v, the case where

1
¢ is known and may be taken equal to unity, To this end note the following
easily proved algebraic results:

= _n-=1 - -
(a) x, - x=— (xi - %,), where x, =

x,/(n-1), | 3

s i s

Wi Mo

o
oo

according as x, - x > x, - x,

b) x, -x, > x -x ; 2 X

i Ty < Ty T

|

{ (c) xi-i +
! .

i

Also when the xi's are normally distributed,

. (d) x, - x and xy - )-ti are statistically independent.

(e) V(ln)a , the upper a significance point of v, in sainples of n,

1
is an increasing function of n,




|
|
|

s o Rl s

From (c) and (d) we see that the joint occurrence of

2 (n) - (n)
(4) X =X > Vi XeX > v

implies

(f) xi-;tj > v(;l.)n > v(;‘,-:)

and by symmetry that xj - ;‘i > v(;‘-;)

This result means that we do not have to take the above procedure too
literally: if (4) holds we can immediately declare both x, and xg to be

outliers, and next apply our test-statistic to the remaining sample of n-2,
etc.

To evaluate the performance of this procedure we consider a rather

special case: two observations Xy and x.i (i, j unknown) are from a

contaminating N(u + A, 1) (A > 0) population, the remaining n - 2 are
from N(p, 1). This is a reasonable model for the situation when a common
source is responsible for the shift in the two observations. Any accept-
able measure of performance will not depend on i and j which we take

to be | and 2. We consider the following measures:

1. Probability that at least one of x , x, is significantly large:

1

- - - (n) ,
I'I1 = Pr {max(x1 - % %, - x) > Vl.a} .

2. Probability that both x

x, are significant in a 2-stage proce-
dure:

ll

“3 > o - &) >oeby,

n, = P‘:r{ma.x(:rc1 -x, X 1o

2 , min(xl -x

y X

2

2 2

3. Proh&ility that both X, %, are significant at the first stage:

(In these measures we are not concerned with the possibility that good
observations may also be declared outliers.) It is clear that Hl > II2 > II3.
IIz may be found from
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= L = Jfn-1)
IIZ-IF‘:'{x1 K>V X, -x1>vl‘a }

'+Pr{xz -x >v(;1’)n, x - 2 (n 1)}

W L) 2 > 0l =5 0 2 s o0
- Pr{xl-x >Vig Xp TPV T Xpmx> Via' X "% e }

= 21’:‘{3‘1 -x% > vﬁll} Pr{xz -x > v(n'-:)}

1
- Pr{xl -%x > v(ln)u.’ X, - X>v nl} by {d) and (f) .

Hence Il2 as well as II. and I, can be evaluated from tables of the

1 3
univariate and bivariate normal distribution function. Figure 2 gives
some nurnerical results comparison being also made with the earlier
probability (P for v = =) of detecting a single outlier when only one is

present, The difference between I'I and II is seen to become less marked -

as n increases,

Some extensions of these results to the above cases of ¢ unknown are
planned, It must not be supposed that the results will all be much the same,
When ¢ has to be estirnated from the sample at hand the presence of a
second outlier tends to "mask' (Murphy, 1951) the effect of the first. In
fact, for a =,05 and n < 14, the probability of detecting any outliers by
the use of v, tends to zero a8 A -+ . (cf. Ferguson, l961b For

finite N\ the probability of detection may be quite unsatisfactorily low and
the sequential process has little chance of ever getting started, The mask-

X -x

ing effect applxea also to other statistics such as Dixon's Tio = __(’_‘.L__;(‘“_'ll
*m) " X(1)

which might be used sequentially in this case, Ferguson (1961b) recom-

mends Karl Pearsou's

b, = nE(x - %)*/[5(x, - 0%1°

as a general statistic appropriate for both one and two-sided tests.

It should also be noted that in the artificial case where the above
model of exactly two outliers is known to be the right alternative to H,
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the optimal procedure consists (Murehy) in rejecting the largest two
os

observations when {x, . +x, .. - Zx)'/s in ton large, Percents
T in) \n-1)
are not known but are available for

matnte
reinis

n=2

n
z (%e4y = %1,/ 1’:1 (x, - > Grubbs (1950).

Dixon (1951, 1962) gives percentage points for several of his r-statistics,
e.g. for

X

r = gng"‘;n-zg

A i tY

designed as a test '"for x(n) avoiding x(n-l)”'

Although only a fraction of the many questions of interest have been
considered in this paper I hope that the need for much more detailed
knowledge of the performance of tests for outliers has been demonstrated,
Of course, it must never be forgotten that the problem of outliers is only

partly statistical.

Section 2 of this paper is based on David and Paulson (1965) where
further details are given. I am indebted to R. G. McMillan for Figure 2,
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Fig. 1. Probability P, that the outlier x; is detected when v{ to v, are used at '
level a and H; holds.

veo ¢ Pr{(x; = ¥)/o s Yol w0 i Pri(x, - x)/s > Y2,u! i

}

-o-ve8,10,20 ¢ Pri(x; - ) /8 > vy,q! == -v=5,10,20 : Pri(x, - x)/,P > V4
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THE PROBABILITY OF SURVIVAL OF A
SUBTERRANEAN TARGET UNDER INTENSIVE ATTACK

!
4
! Bernard Harris, Herman F. Karreman
e and J. Barkley Rosser
i

Mathematics Research Center, U. S, Army
. The University of Wiscongin, Madison, Wisconsin

! st e+

ABSTRACT., This report deals with the analysis of a model for
studying the probability of survival of a subterranean tavget under an
intensive attack. Most of the analysie is based on the assumption that
the explosions are circularly distributed about the target and that the
number of explosions is known. In the last two sections it is shown
what effect a relaxation of these assumptions has on the probability of

survival of the target,

- “The rest of this artical was reproduced photographically, It is MRC

Technical Sumnmary Report No. 653, December 1966,
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1. Introduction

Tiiis 1eport deals with the analysis ot a model for studying the probability
of survival of a subterranean target under an inteasive attack.

The target is located below the surface at « distance d irdm the
surface. The projectipn of the target on the surface will be identified as
the origin in ordinary two-dimensional rectangular coordinates. K explosions

~

occur at points )?1,5?2, e, X where )7.1 are independent identically dis-

K!
tributed random vectors, ii = (Xil’xiz) . They will be assumed to have the bi-

variate normal distribution centered at the origin with zero correlation coefficient,

f.e.,
2 2
-1 1,5 %2 ,
(1) f(xl,xz) =(2mrlo-2) exp(--z-{_:z—+-;-i}) (-oo<x1,x2<oc;crl,o-z>0)
1 2

The energy directly applied into the ground will be denoted by E and the
seismic velocity of the rock will be denoted by ¢ . The distances Ri’
{=1,2,...,K of the explosions from the origin are consequently independent
identically distributed random variables, and from (1), their common probability

density function is given by

.
[ S —————

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin, under Contract No.: DA-31-124-ARO-D-462.
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- maximum loadiné_from a single burst which the target can withstand without

r 2w r2 cosze sinze-
( 2) fl(r)=—-—-—fexp(- ==+ })do (0 <r < w)

2wo, 0 2 2
1’2 0 o o,
In particular, if o, =0_ = ¢, then
i o
2 2
(3) (0 s 2e /2 (05T <)

It will be assumed that the free field stresses Pi’ 1=1,2,...,K, dueto

the explosions are given by *
2 -
(4) P o=ne® BRI +aH Y a2,
where \, o, B, and y are positive parameters, Therefore PI,PZ, e ,PK are
» ' L4

independent and identically distributed random variables,

The following assumptions will be made about the survivability of the target.

() If max P1 > M, the target will fail. That is to say, M is the
1<i<K

failure. >

(2) If Pi <p no damage to the target takes place from the ith burst.

o’
Further, if P1 > P,» some permanent damage is done to the target, in an amount
proportional to Pi - Py * P is the elastic limit of the target structure. Thus
we define
- >
Py - Py if P, >p,
( 5) D = (t=12,...,K)

otherwise .,

o

and Di is known as the degradation due to the 1th burst. The’ target will also
fail to survive the K explosions whenever

K
(6) 2. D, > D"
j=1 '
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Here D* ig called the maximum allowable cumulative degradation. It is assumed
that the accumulation of permanent damage is additive and has no effect on the

} amount of damage produced by any subsequent explosion, or on M, the maximum

loading from a single burst which the target can sustain.

~ Thus we have that the target will survive K explosions whenever

K
(n ), D,<D" and mex P <M .
i=1 l<igkK

Bk
i

. *
The following relations between Pgr M, and D will be assumed to hold,
]
po <M<D + po .
Minor modifications in the analysis that follows would be needed, if this were

not the case. However, it is clear that these are consistency requirements

which should reasonably be satisfied by the three parameters given above.

i :"' * In Section 2, We.o'btain thg probability density function of the free field
Y nn . . . ) . ) . 2
f L stress due to a single explosion, when ¢ f B0, This will be exploited in

VSection 5, by exhibiting a'number of examples to show how ¢ ctraightforward

1
E ‘ :  examination of this probability density function may be employed in estimatirig
. . . }

t the probability of survival.

t .

{

o . Section 3 contains a discussion of techniques for estimating the probability

2_ 2
1 °%2

of survival when K is fixed (i, e., not a random variable) , and when ¢
S (the circular bivariate normal d~i§trlbhkion) . The approximation methods used

e
rs

. : .
! e " here have been employed as'the basis for a computer program.

;\ ‘ . , In Section 4, some comments c"oncerr{'ing the suitability of the model are
t " + . ) o
“ e v given.
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Section 6 dtscusses some methods which may be employed it v 2 ¥ ¢' (thl

Gmmic casa). These are comfared with resuits obtained in Seétion 3 for

11.' . ', . - s \4 ,' -

[

Pinauy, soctton 7 provides a brsef ducuuton of the emnnon bf‘ tho m-
.

" vious results, if K {s a random variable, rathor ‘than a lmd quanttgy. ‘

A substantial amount of useful information may be obt.ainad' by a carsful ex~
amination of the probability density function of P, the frae flald strass. We
‘will derive this function in this section, and note some of its properties. These
will be exploited in Section 5 of this report. |

It will be convenient to define

(8) 6 =2’E? .
Thu:;._ from (4), we have

RO P-é_(aza,dz)'* (0 gR<w) ,

P = P(R) ";‘1; a mapping from [0, ) to (0,6d" zyj « On [0,®), P isa mdno-
tonic decreasing function of R, and thiu the inverse mapping P-I( p) is unique-
ly defined foi every p, 0 <p<6d >, and is a positive monotonic decreasing

fﬁnctlon of p'T-. Indeed

(10) Pl -r(e/p Yy d] (0<p<oqhy .
Hence
(1) _, Pr{P<p)=Pr{rR> P Yp))
4 )
R "f‘x""" (0<pged ")
: o P (P> ‘ '

o | 167
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where fl( r) is given by (2) or (3) and P-l( p} is given by (10) .

We will restrict ourselves to the case o=, until Section 6. With this

restriction, fl( r) is given by (3), and integration of {11) yields

0 ' (p <0)

(0<p<ed Yy .
- D

1 - (p>0d “Y )

Then, the probability density function of P is given by

(130 atp) = (2 o 2 Y oYY ot 1o/ Ya? /20 Y (0<p<ed Yy,

We now proceed to investigate some of the characteristics of g(p) .
The median MP of g(p) is readily obtained by solving

- {(e/MP)V”- a2}/202

1
, ‘14) G(MP) =28 -.-2

or

{(-ML) N 4237202 2 log 2 .
P

Hence

(18) M, =0(2r “log2 +a5”Y .

Here ¢~JZlog 2 1s frequently referred to as the CEP ( circular error probability) ,
so that we may also write ' '

M, =0[(CEP Z4a?TY |

Similarly, the vth percentile of P may be obtained by setting the right hand
side of (14) equalto v/100 .

We can find the mode of g(p), which we denote by mp, by solving
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dlog g(m ) 1
(16) Qoo e®pl xm, &Y
. . oo p Y“‘P Z'YO" -m;Y*"“ /Y
or
(an 7 mp =o[2(y+) ] Yo 2¥

Thus, since

al0) =0, gled™Y )= (2y) o2 a¥ VM) 5 g

g(p) has a unique mode given by (17), whenever

mp < 8d Y
or equivalently,

(18) d< a2y ]/2e .

‘ /2
If, on the other hand, d>[2( Y+1)]/ o,then g(p) is monotone increasing, and
the maximum of g(p) occurs at 6d~>Y ,

We conclude the characterization of g(p) by evaluattnq,tha moments ( both
conditional and unconditional) . Let A be any measurable set on {=w, e ; then
the conditional k'™ moment of 9(p), Hk,A 18 given by

(19) A s E{PX|P « A)

Mk.

« £{0%(R% +a%) 7% | R« P"I(Ai }

. k =2 2), 2
— f ety VK g 20"

=1
Pr{Re¢ P (A)} P-—i(A)

which {s obtained using (3) and ( 9).
Two particular casea of (19) merit explicit statement.

(1) If A is an interval (pl, pz) with ()5_p1 <p, s_ed'zv » then
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rdr

{ 20) uk’A=E{PK|PI_<_P_<_p2}
ok =2 J by
& et (r +d j e
' -rlz/Zch -r /Zo-z_ Ly . '
e -e '
~ where
' L L
(21 -[te/p_,)‘/Y -a¥?, -[(g,pl)x/y -af% .

We can write ( 20) in terms of a tabulated function, the incomplete gamma=

function, as follows. In {20), make the substitution
1
r=(20%y - ¢4 ®

andhencé
rdr=o-zdy .
Thug
- b4
_Qk (;trr%) v 2 -yh Y4
p‘kA- - - y e y
e -8 1
where
o /Yy 2, -1 _ Ly 2, -1
(22) yp =5V (2097, v, = (2 Y (20D

2

Accordingly, we now have

0 {r(1= vk, y) - Tl-vk, y,)}

( 23) E{Pklp1<P <p,) = 2

-y, -Y
Lo, T2

(204 (e )

where
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-/i8 the incomplete gamma=function; -

(2) 1t p, =0, py=0d” Y, ‘then r, =0, r, = ®, and-we obtsin the un=
& '

conditional momeft’ ¢

i 2,. 2

; 2{P*} = =£d /2 ﬂk{nl'*" N ﬁf‘l&u—
f (24) Py (208 %

: 4

T T R Y T e 1T T T e Y
-

3. Estimating the Probability of Survival

We will provide two formulas for estimating the probability of survival. The
: ; first ( 27) is more accurate, but substantially more difficult to compute. The

second ( 30) should nevertheless provide a good approximation for large K .

e e A

Both approximations employ the central limit theorem of probability theory.
Let T be the event described by (7). Then Pr{T} is the probability of

survival, We may write the event T as follows:

K
]
T=U {mof P,P,,...)P.>p,, ), P <D +mp,, max P, < M) . ,;
me0 P2 k> Po prox o ek S |

‘ Thus !

X
K ﬁ o
Pr{T} = mz;o("‘) PP, P oy vty P 3Bgs P inProsys ey Pe<pgs mp‘gn +mpg

max P, <M}
. l<isk

Ky pe(S u K N 2y, 2
= mito(m)Pr(i%,lpis_D +mp°|p°<pl. PZ’ s Pm<M}e (K m)[(B/po) -d ]/ZU'

xPr{p0<P1,Pz,...,Pm<M} .
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The last factor is evaluated as follows:

_(25) Pr{Pn':PpP- ""P <M] "'._‘; ‘.'i“: I o ‘ i

-[(e/M)VY L ]/z

- -[(é)/p0 ’Y d ]/2_"'

To complete the approximation, .we estimate

( 26) Pr{ZP <D+ mi. 5P <P1,PZ,...;P6<M}‘ o

-ZY

by means of the central limit theorem. Noting that if M > 6d y ‘M plays no

role in conditlonlng, we replace ( 26) by

e L PP ——

-2
Then, setting P| =Py Py = min{ M, 6d Y ) and A= (pl,pz), we can obtain
“I,A and g from (20) and (23). Finally, the central limit approximation to
’

(26) is given by
»
D +mp0-mu1‘A

)
jm) 'Jm( b2, Al By A)i)

iiiaen, o e

whare i

x .2
! Q(x)ﬂ"'_l::f e-t/zdt.

N2nm - '

Thus we have ; '

172

R
i,




S B, e 7 o

-A

where y1 and y2 ‘are given by (22) wtth p1 8 po 4and by

The second and more tractable approximatwn is given by applying the central

L
R B O 4 AR R 1 B e &
ta

imit theOrem directly to the random variables D‘, i=1,2)...,K » Inorderto i

__ do this, we need to evaluate the first two moments of D, . ' {

| :
. In general, we have, for k=1,2,... o ' :

E{D*} = E{D®|P <py} Prip<py} + {D¥|p2 Po) PriP2py)

= {(P-p)*|P 25y} Pr{P 2 py)
r

. 2 o 2y, 2 ’ . .
s, s fo(p-po)krc Zer/Za- dr {

where rz 18 given by ( 21) with P, =Pg Thus

LI k_ =2 ~rif2q° f
E(D') = [ (o(r“4d9™Y -p ) re " 6™ /7 ar .

|3 ;

2 o) ke =2 er/2ct :

o D LT o B /2" g i
0 ;=0 J

"

- e T2

Hence, as in the derivation of ( 23),

Z
5 (5) /2
( 28) E{Dk} &), ..L_-Q_ﬁ-_...._

e xR IRV EL RN AY
js o

c i i ST

where Y| and ¥, are dafined as in (22) with P " P and P, led-ZY .
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_We now extend (28) to obtain the conditional moments of D conditioned on

i=12

{P1<M Clearly, . i - ! |

E{DklP<M} E{DkIP<mln(M od 2*)) . ]

Let Py =Pys Py " min(M Od'ZY ) and define r and r, by (21) and yl and
yz by(ZZ) + Then, . A o
Kigw . 3 : | .

(29) E{D"|P>p,) r
r
rl/Zo'z 2

=e J (p-x-':o)krcr'ze
n

2/, 2
-r /Za' dr

SRS
9( =1)
°.yl{r<1~ vy =T vy, y,0)

= (k

)
jso )

(20%) V!

In particular, if we denote E{D|P< pz} by Y and E{D2|P<pz} by v, s then :

we have i
PriT) =pr{LD <D"| max P, < M} Pr{ max P, <M}
1=l 1€1<K 1K1K

and e 2 2 V
o < D -Ky ) “K(y,~d%/20%) 4

( 30) PriT} ~ @ e . '
v, = (v)) f, |
! 4. ADiscussion of the Mode} ! !

At this point, wa digress briefly to note certain aspects of the assumptions

© i g by 4 e

which have been made.

; In-Sections 2 and 3, we have assumed that the number of explosions was a

fixed quantity, However, it may appear more reasonable to suppose ittobea A {

L
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random variable.. Wa c¢an see this as follows, If N missiles are fired at the

" targét ‘then some may not explode by virtue of defects and sonie may be intercepted

by defenses., Hence, for any given target, it may be reasonable to agsume that
the number of missiles whioch explode is a random variable whose probability dis=
tribution depends on the number of n'uasus fired at the target, the raliability of
the missile system, and the nature and extent V'of the defenses of the target, In
Section 7, we provide a brief analysis df thig problem, The results of Sections

2 and 3 will nevertheless provide reasonable approximations to this more compli-
cated model in a large variety of situations. In order to use these results in this
mannar, "K' in Sections 2 and 3 should be Interpreted as the expected value of
the random variable, This is accomplished by permitting K in (30} to assume
arbitrary real positive values, despite the fact that in the derivation of { 30), K
has been presumed to be an irteger.

Then we note that the assumption of the ciroular normal distribution, i, e,
LEPY) which has been employed throughout Sections 2 and 3, may not ke
completely justifieds The usual nature of ballistics problems would suggest that
the two parameter family of probability density functions given by (1) should be
more appropriate, since there sesms to© be no reason to assume that the two error
components, distance and lateral errora, should have the same variance. This
assumption is relaxed in Ssction 6, in which we give a brief discussion of some
suggestinong lor treating the more general problem.

In addition, it may be noted that the model’is quite sensitive to the choice of

the coeffinients and exponents in (4); such as rc” Ep, which we have denoted by

6, for instance,
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In Section 5, an example is provided, which shows that two moderately

We also note that M remains constant during the entire bombardment. It
would seem more reasonable to assume that if ﬁ D, >0, m <K, thenthe
vulnerability to a single shock should be reduo;:ilfor later shocks, since the
target has already suffered some damage.

Moreover, the basic formula ( 4}, used in computing the free field stress,
appears to have certain defects. We point out in particular one defect.

If the target is located on the surface (i.e. d = 0), then the free figld

stress for a direct hit is infinite, regardless of the magnitude of E . There are

many other plausible choices which might be used in place of ( 4) and would

still approximate (4) for d> 0 without the defectat d = 0 ., However, we have
proceeded under the assumption that ( 4) will give satisfactory results for those

values of R, d, ¢, \, @, B, yand E which are in regions of interest to potential

users of the results cited in this paper.
Whatever assumption we use in place of ( 4), there is still the following
concern. Since (4), or its replacement, will be obtained from empirical data,

we must assume that it is only approximately valid, but not exactly vaiid, Then

let

p = Pr{P < M}

be the exact, but unknown probability. The answer given by (4), may be de-

noted by p+6 . Then, for K explosions,
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PriP <M, P, <M, ..., P,<M)} = K

K

which we estimate by (p+ 6) K . 1f, we compare these two quantities, we have
that approximately

(p+ 5K ~ pKebK/p

for & small compared to p . Thus, for K large, very substantial errors may
be produced. We exhibit the magnitude for one simple example. Let p = .93
6=.04 and K=12 . Then,

oF =, 4186 (p+6)* =.8704

and
K
[(p+ 6)/p] =2.079 .

Hence, evenif ( 4) is nearly correct, so that p is approximated fairly well by

use of (12), raising to a large power will introduce very big errors.

5. Some Illustrations

We now show how Sections 2 and 3 may be employed to analyze the problei: for

several ranges of parameter values, using a variety of rough approximation methods.

Example 1. For a certain subset of parameter values, A = Pr{ max P >M}
1<i<K

may be close to unity. If this is the case, it is immediately apparent that since
’

Pr{T}<1 - Ay Pr{T} 1is close to zero.

From (12), we have, for M _<_ed-ZY

N 2, 2K
(31) ay Pl max P > M) =(1_e-{(6/M) -d }/Zcr)

1<i<k !

Thus, for 0 <€ < |, >1 - ¢ {5 equivalent to

“m
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1-(1- E)I/K e“{( 9/\M)]/Y— dz}/Ztrz

Hence, q., > 1 -~ ¢, whenever,

M

(32) 6 - 208 togt1-(1- 0/ Fye( &)Y

Therefore, whenever (32} holds for sufficiently small «¢> 9, {tis apparent that
the probability of survival is negligible. In general, evaluat!né Y -( 31)

provides an easily computable upper bound for Pr{T}

Y.

Example 2. We now assume that M > 0d~2Y = p*, so that M plays no role in

the computation of the survival probability, If in addition, Pq exceeds m_ then,

P
since g(p) 1is monotone decreasing for Py <px< pM, we may be able to replace

g( p) by a simpler function, such as a linear function or an exponential function

in that region. We will now briefly discuss the approximations obtained in this
manner,

From (12),

te/pgY - a¥)/20
(33) Pr{P <p,} = e =G(p,) .

Thus, out of K explosions, on the average, (1 - G{ po) ) X will have a free

field stress exceeding P,

Let

(34) - B=Z(p. +p7) .

[2\] Lt

0

Then, if we expand g(p) ina Taylor series about 2), we obtaln

(35) g(p) =a(®) +(p-H) g'(P) +R(p), pof_psp* )
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where

R(p) = LE-;‘-éL g"(B)

for some p between P and p .

If R(p) is sufficiently small, we can replace g(p) by

( 36) a(p) =a(P) +(p-P)g'(p), pospip*.
Defining h(p) by
(37) h(p) =§(PV/(1-Glp)), By <P<P ,

we see that h(p) isapproximately a probability density function and the conditional

moments of P are approximately the uncce itional moments of h(p) . That is,
& A

p
¥ 3
( 38) E{Pk|p0§P_<_p }~f p hipidp .
P
0

To evaluate the integral in ( 38), it is convenient to write
h(p) =hip) +h(p) ,
where, since h(p) is trapezoidal by ( 36) and (37), we can write
h(p) =h(p"), By <p<P
and

*
<p<p

*
e
is a linear function with hz(p ) =0
The following elementary results of probability theory can now be employed:
1) The moments of the rectangular distribution on (0,b) are given by:
bk
k+

b
..“1 k &) am—
b, = b _{;x dx = =
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2) The moments of the triangular distribution on (0,b) defined by f(x) = Zb'z( b-x),
0 <x <b are aiven by
b

= [ 25 b7 box) dx = 20" /(k+2) (k) .
0

Yk
' %
It is convenient now to identify Py with 0 and p - P, with b . Thatis, we
define .
f ip<p
(p-pg) =h{p)  py=psP
and

Then, it is clear that there is a constant {, 0 <{ <1, namely

’0e

P 3 sk
§=f h,(p)dp =h(p)(p - By)

p

0

such that {’,'1 ﬁl( q) is the rectangular distribution on (o,p':' - po) and

(1-3) -l ﬁzt qQ) s approximately the triangular distribution on (0, p,:‘ - po)

Hence, the moments of ﬁ( q) are approximately given by

4(1:"'—100)k (l-t,)Z(p’:‘—po)k (p*-po)k tk+2
e A P Y T R T T R T R

a
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Thhﬂ‘ for k = !’ wa have
E{Plp, <P<p"} ap, + @
0 0 1

We can interpret the above calculations as follows. About (1-G{ po))l( explosions
will exceed Py and of these, the average force will be about Pot e - Con-
sequently the average degradation per explosion exceeding Po will be about 2.

Hence, the probability of survival Pr(T) will approximately satisfy

pr{T} > .5
if

K.
D" 2 a(1-G(p)K
and less than .5 otherwise.

A more refined estimate of the probability of survival can be obtained by

" .
computing the variance of P conditioned on p0 <P <p . Sincethevarianceis

2

translation invariant, i.e. o = u-:_a for all real numbers a, the variance is

given by a, - alz, and hence

(p*-po) 2

“Plpy<pep® T 3

28+ 2 2
{ i Y-af .
We can now apply the central limit theorem, obtaining
W
D wa(1-Apy kK
Pr{T}~ &~ .
A

'a po))xc P' p0< P < p*

An alternative procedure which leads to estimating g(p) by an exponential

function can be constnicted as follows,

Expand ilggf!'m- given in (16) in a Taylor series about § obtaining,
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iﬁ%.g.(.ﬂ..-r.'.w(p-ﬁ) .

Solving the indicated differential equation, we have

o(p) ~ &<t TPHD(p-B°

If we can assume that the second degree term in the exponenvt can be ignored,
then g(p) has an exponential approximation, The conditional momentsv can now
be readily computed and the central limit theorem can be applied precisely in the
same manner as above, The specific details are omitted,
Example 3, This example is introduced to give some indication of the gensitivt'ty
of the probability of survival to changes in the parameters # and pOA .

it is apparent from ( 31) that we can chocse 6 so that M < p’k and
U >1-¢ forany e >0, so that the probability of survival will not exceed «
Now reduce € so that M = p,k and hence M plays norole in the analysis,.
Then, the damage per explosion exceeding Py is bounded by. p* - B, and the
proportion of explosions that exceed Py is given by | -G{ po) . Thus, the average
total cumulative degradation can notexceed K{ p’h - po)(l -G (po)v) which for suitable
choice of Py» can be made less than D*; and hence Pr{T} can be made

arbitrarily close to unity.
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6. Estimating the-Prokability of Survival when cr,2 # o'f

From (2), we note that the marginal distribution of r, fl(r) cannot be
obtained in closed form in this caso, and consequently, the marginal distribution
of P can not be written in closed form either, Hence, in this case, we must
rasort to numerical integration. This section will therefore be devoted to &
brief discussion of our ideas in this direction, and to the manner in which they

may be exploited to obtain estimates of the probability of survival,

Consider the integrand on the right of (2), and note that for -"'g =max(cr:;,cr:),

we have
_r_i(coszo + sin20)>i(coaze+ sinze \ = rz
2 2 0‘2 - 2 0_Z ! 20.2 )
“1 2 c 0

Thus for rz/crg sufficiently large, the integrand on the right of (2) does not
provide any appreciable contribution to t‘l(n, and for purposes of integration,
we can replace fl(r) by zero.
in brief, for any bounded function g¢(r), there is a real number ], such
that we cén replace
® S

fq(r)fl(r)dr by fq(r)fl(r)dr .
0 0

We will Ltherefore evaluate fl(r) numerically for a sufficiently dense set

of r values, 0 <r< §, sothat integrations of the type denoted above can be




evaluated by numerical methods ( Simpson's rule, for example), with sufficient
accuracy for our purposes.
2
Since the integrand in {(2) depcnds on O only through sin @ and cosze

for each fixed r we can choose a uniformly spaced and sufficiently dense set

of @ values in 0<6< w/2 toevaluate fl(r) numerically,

Then, using (ll), we compute

]
( 39) Pr(P < py} s [ f,{r)dr
T2
and
s
( 40) Pr{PgM} = [ f(r)ar
)
’ whaers
] 2,1/2 -2
L AT DA M < 6d” Y
(41) r =
0 , M > ed”2Y
and
[(9/11’0)l Iy _dZJIIZ 0gp, gmin(M,ed-ZY)
{42) r, =
0 otherwise .

We now proceed, much in the same manner as in section 3, by applying
the central limit theorem to the random variables Dl’ Dz' Ve DK , and therefore
obtaining the analogue of (30). In order to do so, it is necessary to compute

the conditional first two moments of the degradations Dx’ given that P< M,

Hence, we readily have that
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E{DKIP < M) =E(D"IR> r}

T2 S .l
-{f (p-Po)kfI(r)dr}{f £1(r)dr} 8
n n

lence
| 3 o s “l
( 43) E{DklP <M} ~{f [e(rz-o-cia)"Y - po]kfl(r)dx} {ffl(r)dr .
n 'l

Designating E(DIP < M} Ly 8, and E{D*|P <M} by B,, we can now write

the analeg of (30), i.e.,

D*-xp, ¢
( 44) Pr{T} ~ & (Pr(P<M})" .
K(B,_-(ﬁx) )

Two suggestions for applying the mathods of sections 2 and 3 have been

considered, In one of these, wa compute

[ ]
E(R) = [ st(n)ar
6

and equate this to -2}- 2t ¢ » Then, the solution for o,

(45) ¢ = 2E{(R}/NZr ~ 0,85776 E(R)

can be used in (3) to obtain an approximation to tl(r )} which avoids the

complications of this sestion.
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Alternatively, one may consider finding R* such that

P#

* 1
[ findr==
g )

and equate R* to the median of fl( r}) in (3), l.e. set
(46) - R*? = 2(log 2) o2

and use the value of o % thus obtained in (3). Some numerical comparisons
have been made between the results of (44) and those obtained by using (45)
and (46) to simplify the problem.

It was noted that the discrepancies are substantial, suggesting that the
two proposed approximations are not very good, A careful examination of the
discrepancies shows that the estimation of Pr{P < M) is fairly good for a
single explosion, but the exponentiation for K explogions produces large crrors;

this phenomenon was previously noted in section 4,
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In the preceding sections, it was tacitly assumed that K, the number
of missiles that penetiate the defenses and explode in the neighborhood of the
targat is a fixed quantity. The purpose of this section is to give some idea of
the extant to which the probability of survival of the target is affected by allowing
K to be & random variable fathor than a fixed quantity, To this extent a number |
of computations have been peiformed in which K is a random variable with a

probability distribution pN(k), where
Pr{k missiles explode | N sent} = Pr{K =k} = pN(k) ‘

We consider two possible models which lead to the following different cholces
of pylk).

(1) the binomial distribution

vi1) & mixture of two binomial distributions

(i) Assume the probability thot each missile explodes remains the same
for uil missiles, and that whother a given migsile explodes or not {8 independent
of tho performance of any othor missile that is sents We denote the constant

probability that a missile oxplodes by r and hence wa have
(47) P(Ruk) = pylk) o () (1an N,

Then, the probability of survival {s given by

{48) pr{T) g pN(k) Pt (Survival |K =k}
Ked
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Some numerical computations have been made, tor N =17, r =. 7, and in which
( 30) has been used to estimate Pr{Survival K =¢( 17). 7) =11.9), which is the
expected value of XK. These comparisons were made for 6 selected choices of

6 and two choices of D*, leaving o, M, and p0 fixed throughout (12 compari-
sons in all). Over the set of comparisons, it was noted that the maximum
difference between the probability of survival computed using ( 48) and the
probability of survival computed using { 30) was , 015, suggesting that the
approximafion using ( 30) may be quite good for a fairly large range of

parameter values.

It has also been noted that the approximation tends to improve as D*
increases. This is fairly natural, since the central limit approximation employed
in { 30) will tend to become more accurate as D* increases.

(ii) It is natural also to envision circumstances in which the probability
of a missile exploding may change as the circumstances governing the defense
of the target change. Suppose that if the defenders have been warned ( for
instance, with respect to the direction of approach of the missiles by the DEW
line) then the defenses can eliminate about 15 out of a fliyht of 17 missiles on"
the average, but if they are not warned they can eliminate only about 2 of them
on the average. Suppose further that the chance of getting such a warning is

approximately 25%
In general, from this point of view, we will get a mixture of two binomial
distributions, i, e,

(49) Pyt =000 BN e (D Bry N

where 0 <{ <1, For the above set of circumstances, we would have § = . 25,
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and for N =17, as in part (1) we could take r ~ <12 and r, ~ . 88. ( 48)

applies with pN( k) as given in (49).

To approximate in this case using ( 30}, we can evaluate ( 30) numerically

for K = er and for K = er, anc then average thesc two results with welghts

L and 1-0 respectively, The nunerical comparisons which have been made

suggest that this recommendation should have wide applicability.
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SIMON AWARDED 1966 WILKS MEMORIAL MEDAL

Major General Leslie E. Simon (Ret.) received the 1966 (second)
Saiusuel 3. Wilks Mernorial Medal during the ‘I'welfth Annual Conference
on Design of Experiments in Army Research, Development and Testing,
which was held at the Naticonal Bureau of Standards, Gaithersbury,
Maryland, 19-21 October 1966. General Simon has long been recognized
both on a national and international basis for his outstanding contributions
to Army statistics, reliability, quality control and promotion of statis-
tical activities generally. General Simon was a long-standing friend of
Sam Wilks and conferred with Sam on many statistical problems and
activities,

The Wilks Award is given each year to a statistician and is based
primarily on his contributions, either recent or past, to the advance-
ment of scientific or technical knowledge in Army statistics, ingenious
application of such knowledge, or successful activity in the {ostering of
cooperative scientific matters which coincidentally benefit the Army,
the DOD, and the Government, as did Samuel S, Wilks himuself.

Dr, Frank E. Grubbs received the initial Wilks Medal in November
1964, and Dr. John W. Tukey of Princeton University received the first
Wilks Memorial Medal in October 1965 at the Eleventh Design of Experi-
ments Conference,

The Award consists of a medal, with a profile of Professor Wilks
and the name of the Award on one side, and the seal of the American
Statistical Association and the name of the recipient on the other side;
an honorarium related to the magnitude of the award funds donated by
Mr. Rust: and a citation.,

With the approval of President Frederick F. Stephan of the American
Statistical Agsociation, the Wilks Award Committee for 1966 consisted of:
Professor Robert E. Bechhofer, Cornell University

Dr. Francis G. Dressel, Duke University and the Army
Research Office-Durham

Dr. Churchill Eisenhart, National Bureau of Standards '
Professor Oscar Kempthorne, Iowa State University
Dr. Alexander M. Mood, U. S, Office of Education

Dr. Frank E. Grubbs, Ballistic Research Laboratories,
Aberdeen Proving Ground, Maryland -« Chairman
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taticu fos ihe second Wiiks medalist reads as follows:

HTo Major General Leslie E. Simon for his pioneering
contributions to Quality Control, Sampling Inspection,
Reliability and Army Design of Experiments, and for
his timely promotion of statistical activities which have
benefited not only the Army but our government u.nd
country as well, !

General Simon received the second Wilks Memorial Medal at the
banquet of the Twelfth Design of Experiments Conference, the presenta-~
tion being made by President Frederick F'. Stephan. General Simon
replied as follows:

""President Stephan, Chairman Grubbs, ladies and gentlemen:
I am most grateful for the honor that our Association has seen fit to
bestow upon me. However, 1 am primarily a professional soldier;
and secondarily a statistician. Thus, I had difficulty in rationalizing
the bases on which my colleagues came to the conclusion that one of
my statistical attainments should be so honored,

"While considering this matter, I happened to read a letter from
Alfred S, Romer, Preasident of the American Association for the
Advancement of Science, that was published in the September issue of

. the Bulletin of that association, Two paragraphs of that letter, I believe,

not only explain the place of the AAAS in the whole regime of the
scientific community, but by analogy apply equally to the very important
role of the American Statistical Society in the large and diverse field of
statistics. Additionally, these paragraphs may be of some application
to individuals. I would like to read tc you these two paragraphs.

'When the Association was founded, well over a century
ago, all American scientists could -- and did -- meet in one
small hall; in those days specialization had not advanced far
in any field, so that an astronomer, a chemist, a botanist
could all talk more or less understandably to one another.
But the number of American scientists grew constantly and
specialization increased, creating a babel of often mutually
unintelligible scientific tongues. In consequence, a centrifugal
process set in: special societies in various fields were
established; and with the continual increase in number of
scientists, it long ago became impossible for any city in the
country to accormmodate at one time all the members of all
scientific groups.
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‘Although many major societies 1ow meet separately, the
annual meetings of the AAAS still include technical sessions
in nearly every area. Most important is the fact that the
Assuciaiivn is the one organization appropriate for symposia
and conferences ir in interdisciplinary areas. “Still fu further,
there are many aubjegts of common interest to scientists of
every sort (government relations to science, for example),
and the AAAS is the appropriate forum for discussion of such
problems, '

'""The centrifugal process described by Dr. Romer surely took place
in the science of statistics quite as much as in any field of science,
Furthermore, the American Statistical Association is the one organiza-
tion that binds together the common interests of all the specialized
statistical organizations. About twenty years ago, I had the honor of
being a member of an ad hoc committee appointed to consider the future
of ASA and it recommended that rendering this service should be a goal
of ASA,

""The implication of Romer's remarks to individuals is one additional
step in logic. The number of statisticians has increased enormously,
during the last quarter century, along with concomitant gains in powerful
statistical tools and increased recognition of the importance of Statistics.
One who enters a field while it is in a rapidly expanding stage naturally
has more opportunities for identifiable achievement than one who enters

- after it has become mature and more densely populated. In a mature’

activity, one exchanges some of the challenges of pioneering for the
important, but less conspicuous satisfactions of pleasurable cooperative
work with colleagues, the enJoyment of more sophisticated techmquea
and pride in the perfection of one's work.

"Timing one's entry into a field is only slightly more practicable
than making a judicious selection of one's ancestors. as sometimes
recommended by the medical profession. I inade ng choice. However,
due to the need for better methods for solving Army problems, I happened
to begin work in Statistics relatively early and under favorable circum-
stances for ready identification, and I cannot escape the belief that the
perspective of my work is enhanced by a rather chance sequence of events
similar to that described by Dr. Romer. Thus, I am doubly grateful;
first, for the pleasure and satisfaction of working in a most engaging and
rewarding field, and second, for the generous recognition awarded me by
my colleagues. "
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SINGLE DEGREE OF FREEDOM ORTHOGONAL COMPONENTS
OF A FACTOR AT 2K LEVELS IN TERMS OF LINEAR

amrmnres A mrrm A K AAanimn A ome A
V\le‘u“‘n‘ AN LN A b dihd WAt b ANER b W L

K FACTORS AT 2 LEVELS

Joseph Weinstein
Electronic Components Laboratory
U. S. Army Electronics Command

Fort Monmouth, New Jersey

INTRODUCTION., F. Yates (1937) algorithm for resolving a set of
observations from a factorial experiment on K 2-level factors has
many desirable properties for the data analyst. Briefly, it is easily
learned, readily programmed on a computing machine, requires only

the simplest arithmetic operations which limit the possibility of '"blunders',

and it gives estimates of the effects of all K experimental factors singly
and their joint effects 2 or more at a time.

To illustrate the algorithm for those unfamiliar with it we consider
the set of numbers

(1) X,.
ooj5-0.1,2, ..., K

where X, represents the input data obtained from the factorial experiment
and is structured in the standard order.

Then one computes

. (K-1)
X(Zi-l),j+x2i,j ¢ i=1,2,....2
(2) X, .
i,j+1
(K-1),, K1)

s i=2 +2,

Ri2i-1-25),5 * X(2i-2K),
K

iterating until j = K-l so that the contrast vector Xik has been computed.

For K = 2 and the treatment factors A and B the input data, xio can be

represented by the treatment combinations: (1), a, b, ab; where the non-
appearance of the small letter (a) implies that one of the levels of that
factor (A) was included in the conditigns giving rise to that observation and

|
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the appearance of the small letter (a) implies that the other level of the }
factor (A) was present. Then application of the algorithm gives

s'

o *i X2 {
i

l

i
|
|
r
|
|

| (1) (H+a (I)+atb+ab .
a b + ab -(1)+a -b+ab '
b ~(1)+a -{l1)-a+b+ab

ab -b+ab (1) -a -t +ab .

[N 1 S OSSN VT

The entries of the last column will be observed to be respectively the
sum of the input observations
the contrast of the A factor ¢
the contrast of the B factor
the interaction contrast of A and B

(3)

Where an experimental design involves one or more factors which are
varied over a number of levela which is a power of 2 we shall show that
the computational advantages of Yates Algorithm can still be retained in
the data analysis by relating linear combinations of the results obtained
to the desired factor effects. For a factor at 2K levels these desired
‘factor effects are of course .

! [~ -

| the sum of the observations
Linear effect of the factor

Quadratic " " ] 1"

(4) Cubic 1 [T "

L (ZK_]_) ;v '.v v.n l'l
Thus for a factor X which is to be varied over 4 levels K = 2 and our

interest is in the first four rows above and we shall exarnine how they

relate to the four rows of (3) which involve 2 factors A and B each at

2 levels,

Practical Solutions and General Solutions. Given that we will repre-
’ sent the four levels of an experimental factor W by the four treatment
. combinations available from 2 dummy factors A and B which range over
2 levels, the question of assignments arises (for this can be made in '
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4! ways), These 24 possible assignments are detailed in Figure I -
"O Matrices' which relates the levels of W (wl, Wor Wa, w4) to the

treatment combinations of A and B by the appearance of a | in the row
and column and 0 elsewhere,

For example

(1) a b ab
W, 0 1 o0 0
w, 1 0 0 0
wa 0 0 1 0
Wy 0 0 0 1
assigns w to a, w, to (1), w_ to b and w, to ab.

1 2 3 4

It is immediately apparent that practical limitations will constrain
a catalog of relationships to the case of a factor at 4 levels. For the
next step would involve K = 3, or a factor at 8 levels, and 8! (=40, 320)
possible ways of assigning the factor levels to the eight treatment com-
binations (1), a, b, ab, ¢, ac, bc, abc. However, the constraint is
certainly not severe in the case of experiments with physical factors since
the investigator is rarely concerned with effects higher than cubic.
Furthermore the difficulty arises from the desire to catalog all cases,
But, if an arbitrary assignment is made between the factor at 2K levels
and the treatment combination of K dummy factors at 2 levels each, then
the following argument applies in general for all values of K for that
assignrent,

The General Solution. Given a factor W at ZK levels and K dummy
factors Fl. FZ' —--, Fk each at 2 levels which can represent 2K treatment

combinations of a full factorial experiment we may represent the assign-
ment of treatment combinations to the levels of W as a matrix equation.

(5) W = OX
where W is the vector (wl, Wai voos wZK)

Oisa ZK by ZK matrix of 1's and 0's such that only
one 1 can appear in any row or column
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X is a vector of treatment combinations in standard
order for the K 2-level factors

(1), fl, fZ' flfz, f3, f1f3,...,fk, ...,flfz

T

f3"'fK

We represent the comf(utations of the Yates Algorithm by a matrix
operator N which is also 2™ by 2K and define the results of operating on
the input observatione xo by N as Y (the contrast vector for the sum of

- all the‘observations, the K {actor effects Fl’ Fz, o, F and'tﬁe

k
ZK -K -1 joint effects of two or more factors). Thus,

(6) Y = NX

since N™1 ¥ = X equation {5) yields

(7) w =oNy

Consider that a direct method of operating on W by some matrix operator
M which would yield the desired vector of factor effects (such as(4) )
could be represented by . Then

(8) 2= MW = MON "'y (From (7))

Such direct operators M do exist and are in fact the contrast coefficlent
vectors to be found in tables of orthogonal polynomiais (usually limited to
components of 5th degree or less).

Since M and N exist and O can be cataloged for K = 2 (or assigned
arbitrarily for K > 2) it is possible to evaluate MON-! for all values of ©
and thus define the linear combinations of components of Y which corre-
spond to the desired components of the real factor W.

The procedure is illustrated for K = 2 and particular values of O
selected from the catalog of 24 possible values of O given in Figure I.

For K=2 M and N are given by
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1 1 1 1 \ 1 1 1 1 \

-3 =1 1 3 -1 1 -1 1
9 M=1 .0 a1 N=1.a a1 1 1

-1 03 -3 1 1 -1 -1 1

then N} can be shown to be L/9N T andthe special cases for 0 labelled
1, and 7 will be used to evaluate MON-}

1 0 0 0 10
X for O, = 01 0 0 MOlN'1= 01 2 0
: 0 0 1 0 0o 0 0 1
‘ 0,0 0 1 0 2 -1 0

Thus = IviOlN'1 Y has components

WT: sum of the input date = sum of the input data

W. : linear contrast for W = dummy contrast A plus twice

’ L dummy contrast B
WQ: quadratic contrast for W = interaction contrast for
dummy factors AB
i Wc: cubic contrast for W = twice dummy contrast A minus
! dummy contrast B i
Similarly for O, = /0 1 0 0 MO.,N'I = 1 0 0 0 ;
, 1 0 0 0 0 0 1 |
; 01 0 01 0
Ll 0 0 0 1 0 0 -1 2
A
and the components of {1 are defined as
WT: sum of the input data = sum ol the input data
WL: linear contrast for W = twice the dummy contrast B plus the ]
. interaction contrast of dummy factors AB '
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WQ: quadratic contrast for W = dummy contrast A

W .1 cubic contrast ior W = negative of dummy conirasi B pius iwice ihwe
C .
interaction contrast for dummy factors AB.

The complete catalog of such relationships for the 24 possible
assignment matrices O is given in Figure II "W components of MoN-l y. »

Finally, the equivalence of results obtained by this Extended Yates
procedure and by conventional procedures for obtaining single degree of
freedom contrasts for experimental data is detailed in Figures III, IV and
V for the case K = 2 and assignment matrix O. Here we consider a
foctorial experiment in 16 runs where a facter W is at 4 levels and two
factors C and D are each at 2 levels., First consider the conventional
procedure. Figure IIl in column heading "real" lists the standard order
of the real treatment combin~tions (in practice this would be the column
of observations obtained from the experiment). The 16 columns at the
right list the coefficients for multiplying the input observation on the
same row such that the sum of products of the input observation by its
coefficient estimates the factor contrast named at the head of that column.

Similarly, Figure IV also develops single degree of freedom contrasts
from an experiment on 16 runs assumed to be a factorial experiment on
four 2-level factors A, B, C, and D. Here the 16 columns at the right
list the coefficients required to obtain the contrasts named at the head
of the respective columns. ’

Extended Yates Procedures. Figure V is the result of combining
the columns of Figure IV according to the rules of row 1 of Figure II
(since O, was used to assign W to dummy factors A and B). It is observed
that these 16 columns are exactly equivalent to those in Figure III




O - matrices
available for assignment of A and B
treatment combinations to leveis of W

1000
0G0l
0010
0100
0100
0001
bo1io0
1000

1000
0100
0001
0010
010090
1000
0001
0010

1000
100
0010
0001
0100
1000
0010
0001

15
0010

14

0010

13
0010

0001
1000
0100

0100

0001
1000

0100
1009
0001

21
0001

20

0001

19
0001

1000
0010

0100
1000
0010

0100
0010

0100

1000

Figure 1
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e W Components of MON™ 'Y '
o Total Wi, o Wq We |
T A B AB|T A B AB|{T A B AB|T A B AB .
] 1)1 12 1 2 -1
2|1 2 -1 -1 -1 -2 )
3|1 1 -2 -1 2 1
41 1 -2 -1 2 1
511 2 1 1 -1 2
3 6]1 2 -1 -1 -1 .2
711 2 1 1 -1 2
gl 12 -1 -2 -1
9{1 -2 1 -1 1 2
10 1 -2 1 -1 )
” 1] 12 1 2 -1
124 1 -1 2 -1 -2 .1 !
13] 1 1 2 1 2 1 .
: 14| 1 -1 2 -1 -2 -1 . |
15 1 1 -2 -1 2 1 :
; 6|1 21 -1 1
, 171 2 1 1 -1 2
i 1811 2 -1 -1 -1 -2
t 19| 1 -2 -1 i 1 -2
201 -2 -1 1 \ -2
, 211 -1 -2 1 21 '
) 22 |1 -1 -2 1 .2 1 .
| 23| 1 -1 -2 1 21
2 24 | 1 -2 -1 1 1 -2
| i ‘ Figure II .
} ( .
: N
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CONDITIONAL EFFECTS AND INTERACTIONS
IN SYMMETRICAL FACTORIAL CONFOUNDING
WITII APPLICATION TO BIOLOG Y
N. R, Bohidar
Biomathematics Division, Fort Detrick, Frederick, Maryland
C-E-I-R, Inc., Los Angeles, California

INTRODUCTION. The conditional effects and interactions (CE&1's)

associated with a factorial experiment have the property of establishing 3

direct and reciprocal relationship among the various main effects and
thereby improving the interpretative information of such effects, They
have also the virtue of alleviating, to some extent, the broad problems of
interpretation of higher order interactions such as four or more factor
interaction, contrasts of the type linear x quadratic x linear x cubic or

ABSCZ. etc. by assigning appropriate interpretation to their respective
conditional entities. In this treatise the concept of conditional effects
and interactions is introduced in consistence with the general theory and -
modulo notation associated with symmetrical factorial experiments., 7The
treatment consists of algebraic definitions, determination of conditional

effects and interactions for a given gituation and orthogonal partition of

sums of squares in general anova procedures. The problem of estima-

bility of the CE&I's under classical confounding have been considered,

Simple rules have been developed for rapid examination of the estimability

of the CE&1's under confounding conditions by the application of elementary
operations of theory of sets, The interpretation of CE&I's is explained

by a numerical example from a biological experiment. The topics such

as conditional confounding and its impact on fractional replication, frac-

tional factorial, asymmetrical factorials, etc., are not presented in this
treatise. The theorems and the proofs are heavily based on the properties

of finite geometries derived from Galois fields and finite projective and {
Ewclidean Geometry and combinatorial theorems., No proofs will be given !
here. Only the definitions and the salient properties will be described. |
The notation will be consistent with the general factorial notation.

DEFINITION OF CE&1'S AND PROBLEM OF ESTIMABILITY. The
CELI's are generated by decomposing the total dimension of the factor
space into interpretable dimensions and it is expected that the problem of
estimability of such effects and interactions becomes an immediate concern, -
The mathematical theory of factorial experimental design follows directly
from the theory of linear models based on the Gauss-Markoff theorem
which states that Y, the response vector with n components if expressed
in terms of the following linear model,

Y=Xp +e




where { is the column vector of p unknown parameters, X is the design ’
matrix of dimension n x p and e is the error column vector with n
components, then the best linear unbiased estimator of g is, |

g

B=(xx)"'x'y | ’
obtained from the solution of the following normal equations
X'X8 = XY

where X‘X is hon-singular and there is & unique inverse associated with :
X'X. But the factorial experimental design matrix is not always of full
rank and so one is interested in investigating the conditions of estimability
of a linear function of the B's such as A’p where A is a column vector with
p components. Now let A’B be estimated by a’y. One proceeds to
minimize the variance of a'y = a‘ac” under the condition of unbiagedness,
a’X = X with p constrains by the use of the Lagrangian Multiplier p. Now
; ! solving the equations 80/83.1, i=1,2...nand where Q is the expreasion

. ; to be minimized we have a = Xp or X'Xp = A. This equation provides one

with a condition of estimability which states that, if there exists a p such

that X’Xp = A, the coefficient of the linear function of the p's, then \’p is
1 estimable, In defining CE and I's, the conditions of estimability are
. appropriately incorporated into the definition, and if one follows the

definitions and the constrains associated with the definition, the problem

of estimability does not arise. -

. In consistence with the normal factorial notation, p denotes the level
: of the factors where p is a prime number, n denotes the number of the
i factor and the treatment combinations are denoted by x,X,...x,x;,i=1,2...n,

g being the level of the it? factor where x takes the value from 0 to {p-1).
There are p™ treatment combinations, there are p"-1 degrees of freedom,
there are (ph-1)/(p-1) contrasts each with (p-1) degrees of freedom and
each contrast with (p-1) degrees of freedom is associated with p-sets of
p“'1 treatment combinations. All numbers are expressed as reduced
modulo p. Confounding for p® in blocks of p® requires n-s independent
effects or interactions to be confounded along with all generalized efiects ‘
and interactions with a total of (p""®-1)/{p-1) effects and interactions con-

founded. By considering the modulo definitions for the (n-s) independent

effect or interaction confounded, one can generate the p~® blocks, The

total degrees of freedom confounded is (p™~¢-1) and the number of effects

and interactions each with (p-1) degrees of freedom have (p™~%-1)/(p-s) ‘
effects and interactions confounded. The total number of systems of con-
founding for a ph experiment in blocks of p® is equal to

[y
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(1) (p™-p). - (p™-8" ] / L™ ") (o™ "-p). . (2750 )]

Definition I. The symbolical representation of conditional effect
and interaction with one condition is

(1) . alp?, .N“n/xj

- where 618, 1= 1,2,, .n take integral values-between 0 and p~1 and by

convention first o, FO0=1, the Xj is any factor letters A, B, ... N for
which its corresponding o, (k=1,2...n) =0and j=0,1,2...(p-1).

The expression in (1) defines contrasts among p-sets of treatment
combinations satisfying one of the p following equations,

n

Z‘nnixi=0modp/xk=q
i=l

n
iElc;.ixi=lmc>c1p/xk=q

]

a.ixi-'-'(p-l) modp/xk=q

"M

i=1

where a's take integral values between 0 and p-1, k=1,2,,..n, q takes

integral values between 0 and p-1, k can take any value 1,2,...n for
which a, = 0 and it refers to the kth coordinate in the n-dimensional space.

If p= 3 and n = 4, then one is dealing with 34-cu|e. ABZ/C is

estimable |incea.1=l. nz='2., a3=0 n4=O,X=Candj=0w1t%

congruential equation [x1 +2x, = 0,1,2 mod 3/:\:3 =0].

2

Definition II. An effect or interaction conditioned on more than one
effect is a conditional effect or interaction with multiple conditions
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(2) AB% 3 n n’/wj’,yk’,"",zm

where a,'s take integral values between 0 and (p-1)

jio,l....p-l
k= °,l,ooop"l
m=0.l,...p-l

. W takes the factor letters A,B,...N for which aw =0

Y takes the factor letters A,B,...N for whicha =0

and for which W £ ¥ , y T

{
Z takes the factor letters A,B,,..N for which a, = 0 7
and for which W £ ¥ ¢ 2

The expression in (2) is defined by the contrasts among p-gets of
treatment combinations satisfying one of the p following equations,

n N
IEla.ixi=Ornoclp/xJ=ql/xk=qz/.../xm=qm .
n N
E ax =

ii lmOdp/xj=q1/xk=q2/"‘/xm=qm

n :
iiluixi=(p-1) mm:lp/'xj=ql/xk=qz/.../xm=qm

and j=1,2,..,n and 0 <q £ p-l ‘
k=1,2,...n and 0 < 9, < p-1

L]

m'-'l',a,-.-n and . Osqmsp'l .
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In the case of 3‘l the conditional effact A/R /Cl/D is o3

since a, 21,0, 2a, =a, = Oand W# Y £ 2. For this case the
congruential equation is: x, = 0,1,2 mod 3 /x2 =0 /x3 =1 /x =2,

bdomn ot
CFYYY-3% -

Definit'on IIl. For p>3, one is interested in interpreting effects
and interactions in terms of their polynomial effects such as linear
effect, quadratic effect, cubic effect, etc. The linear effect is defined

p-1 . 2
& =z (i-B) ay el
i=1

and the quadratic effect is defined as

-1 2
A" =3 A, [(1.%‘.1.)-(2._".1.)] /E(P‘Té%'(u)
i=1

for p equally spaced levels and A represents the ith set of the p sets

defining the contrast. For unequally spaced levels Qprdyre ey the
linear effect is defined as P-

p~1 «1
A =02 (qi-q)A/E 1q, - 8°
i=0
p-1
and A = Z C,A
i,

where ZC, =0 and ZC, (qi -q)=0 .
The same line of argument is followed for the other higher order
polynomial effects.

Definition IV, The expression in (1) and (2) will be called condi-
tional effects and interactions (CE& IA and the unconditioned effects and

a; a
interactions of the type A B z. ..N ® will be called classical effects

and interactions.

)

PROPERTIES OF CE AND I'S, The following are the combinatorial
and statistical properties of the conditional effects and interactions,
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Property No. 1: The total number of conditional effects and interactions
and the classical effects and interactions for a given p and n is

Nin.p) = [(2p)" - (p+1)"]
where n>2 and p is a positive integer, The exact number of CE and I's are

N'(n,p) = (2p)° - (p+1)" - (p"-1) .

A Table of N(n,p) and N'(n,p) have been presented in the Appendix.
Property No, 2: Consider an effect or an interaction, denoted by
a) a a )
A'B 2N "/W. /Y, /.. /2, detined by the following equations

n

51 a.x, = 0 mod p/xk = ql/. . ./xm =q.,

n .

':1 a,x, = p-1 mod p/xk = ql/. . /xm =q. .

With other conditions satisfying, each equation satisfies

™

treatment combinations where k = number of conditions associated with
the conditional effects and interactions.

Property No. 3: Consider a conditional effectand interaction

a; G a
A 13 Z. «+N “/wj. where W is any factor letter A, B,...N for which
a,=0andj=0,1,2,.. .(p-1). If W is kept fixed and the congruential
equations associated with the effects and interactions are solved for each
value of j= 0,1,2,,..(p-1), then p contrasts are generated and they
are mutually orthogonal contrasts. :
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Property No. 4; Consider a conditional effect of interaction denoted by
a1 %2
A "R

Q
.M n,".'.’ ,".’k/. . .,'Zm wiih m conditions, where W, Y, .., Z
and j,k,...m all satisfy conditions proposed in (2), I W, Y,.,.2 are
kept fixed and the congruential equations for the effect or interaction are
solved for each combination of the values of j,k,...m, then p™ contrasts
are generated. They are all mutually orthogonal contrasts.

' e; %2 %

Property No. 5;: Let the symbol A "B *,,,N " denote the numerical

totals of the effect or interaction under consideration, then we have

p=-1 o, @
£ (A°A
jm=0

a a a a
2...N“/wj)=A g2, ..N®

This can be extended to the case with multiple conditions

p-1 p-l p-1 a.l CI.Z e
z .. z (aBY.NYW/N//2)
j=0 k=0 m=0 L

0.1 G.z a

=A B l‘an L]

Property No., 6: For p>3, property 5 can be extended to the polynomial
effects, such as

p-1 @ a, " a_ a, a a
z [(a'B2..NP /w1 = (a 'p 2,..N
j=0

n)'

p-1 a, a a_ . a .,
r [(a'B2..ND /W) = (a S-S s L
j=0

So also for the multiple condition caae

p~l p-l p-1 a, ¢ a
r £ .. z [(a'B%..N VALV
j=0 k=0 m«0

“1.%2 L ny
summed over p terms =(A'B “...N") .
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SAUPSALY (¥ 1] MBL LA L e Y oe e Lolal O1 the e€1iect Oor nter-
action under consideration, then the sum of squares for the conditional

effects and interactions (SS(CE&I}) can be expressed explicitly as follows

1

' a, a, a -
(» SS(CE&I) = (A ‘A 2...N “/xj/vk/.../zm)z (=22 %)

where r is the number of replicates and A's are the coefficients such that
Zx, =0, I£X,Y,...2 are kept fixed and for each combination of the
values assumed by j,k,...m, a sum of squares is calculated then this
pm-set of sum of squares forms an orthogonal set for the analysis of
variance tests. The conditional sum of squares can be expressed in terms
of the combination of classical sum of squares as focllows

p~-1 p-1 p-1 a, a a

Z % ..t (A'BELNTKY/Y /2 )P (205
m i

j=0 k=0 m=0

0.1 Gz Gn (11 :!.2 @ nl QZ a
=S8(A B “...N™)+ss(a B . .N"X)+...+85(a B “,..N "2)

where the definition nf X,Y,...2 and j,k,...m are the same as given
in (2). It is also noted that the expression in (3) generates single degrees
of freedom contrast sum of squares,

CLASSICAL CONFOUNDING AND ESTIMABILITY OF CE&I'S. The
problem here is the following:

a a a
Let a classical effect or interaction A 1B Z. ..N " defined by

n
Z ax =0,1,2,...(p=1) mod p
i-1 11

be completely confounded with blocks, then what are the conditions of
estimability of the following CE&1

%2 *n
A'B°...N /wJ,/:rk/...zm

n
defined by I a.x =0,1,2.. .{p-1) mod p/xi 2 ql/xk = qz/. . ./xm =q_
i=1 .
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where thea,'s, W,Y,...Z and j,k,...m meet specifications given in (2).
The problern can be extended to cases in which two or more classical
eiiects or interaciions and their generaiized interactions are completely
confounded. The problem reduces to the fact that there are p™~® blocks
each containing p® treatment combinations and one is interested in finding
a contrast among pP-i-l treatment combinations such that the contrast is
orthogonal to p=8 blocks.

The approach to the problem here will be to develop rules for rapid
examination of the estimability of 2 given conditional effect or interaction
under classical confounding based on simple mathematical manipuléation.
The theorems and proofs of the results are completely omitted,

In this problem we have three types of effects or interactions:

(i) Confounded effects or interactions and their generalized interactions,
(ii) Conditioned effect or interaction,

(ii) "Conditions" (effects used as conditions).

Each of the effects can be represented by their respective coordinates of
the factor space.

Let I’ be a finite set of coordinates in the n-dimensional factor space,

I = I{xl,xz. . .xn}

Let B be a subset of I' containing the coordinates associated with the
confounded effects or interactions

B = {xj.xk....xm}

where j,k,m=1,2,...n and

;is=;31U;sZU...Upr

where B, 's are subsets containing coordinates of the itP confounded effect
or interaction out of r such confoundeded effects or interactions. P is then
the union of the coordinates of r confounded effects or interactions and
their generalized interactions,

Let o be a subset of I" containing the coordinates associated with the
conditioned eifects,




Y = {xi,xj,...xk} .

Let II, be a subset of I' containing the coordinates associated with ’
the ''conditions®

n, = {xi,xj,. ..xk}

Whe:e---ni-=- nHUnlz. o .U.nl:

; if there are r conditions associated with the conditional efiect or
i interaction. ' {

Now by the application of simple rules of set operation we derive the i
following new quantities, in three steps: :

z Step 1. § = Uy
3 Step 2. n,s= Uy
z Step 3. 8= (0,UL)N

The conditions of orthogonality to p?~® blocks are as follows:
(i) 1f 60 =5 .

then the conditional effect or interaction is not orthogonal
to blocks

(i) 1£6 £ 6 |
then the conditional effects and interactions under ‘

consideration are orthogonal to blocks and consequently ; |
estimable,

Examples: -

El. Consider Z4 case and confound ABC, BCD and their generalized
| interaction AD. Then the conditional effect A/Co is orthogonal to blocks,

since I' = {x,x,,x3,x,}0 B = {xux,,%30s By = {3y, x50} By = {3,3,),
B=pUBUB, = {x xxpux, by = {x} T = .}, 6 = {x,x,,x,x,},
m,={x} &, =(n1Unz) N& = {x,x,}#s.

e ot e, AT AT IR o 1
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E2. Consider the same case as in El, the conditional interaction
AB/C]./DO is not orthogonal to blocks and consequently not estimable

because B = {xuxguxg0 %}y v = {3 b ) = (kg %, 10 8 = {x), 5, x5, %, ],
112 ® {xl.xz}. 60 = (nIUnz)na = {xl,xz,x3,x4}ﬂ{x1,xz,x3,x4) and by the
application of the idempotency law, 50 ® 5,

E3. Coneider the case 35 and confound the four factor interaction
ABCD, then the polynomial conditional interaction 4‘&'157'(‘,}‘/'1".‘.‘0 is

) ,??*#".S"ﬂ’l;*‘?-__b.l*’cki because f = .{?El.xz ..33.,::4}'., y = {xl, xz}, 'u'll .

{"1"‘2"‘3"‘4}' n, = {x,x,}, &,= (HIUHZ)QS ® {xl.xz,xa} £s.

The construction phase of the factorial experimental designs involving
conditional effects and interactions will be presented separately. The
impact of confounding of conditional effect and interaction {conditional
confounding) on the structure of fractional factorials, fractional replica-
tion and asymmetrical factorials with balanced and partially balanced
configuration will also be presented separately,

INTERPRETATION OF FACTORIAL EXPERIMENTS, When an effdct
is conditioned on another efiect, a conditional effect is generated. One of
the examples of such effect is the well-known nested effect in the
hierarchical classification situation, The conditional effects and inter-
actions discussed in this study differ irom the nested effects in that the

" nested effects do not permit consideration of reciprocal relationship

between the conditional effect and its conditions, whereas the conditional
effects do permit establishment of reciprocal relationship between the
conditional effects and its conditions and do yleld to meaningful interpreta-
tion when expressed in its reciprocal form, Consider a nested effect
Farm/Counties, the reciprocal nested effect Counties/Farm is not defined,
whereas a conditional effect A/B has a reciprocal nested effect B/A which
is well defined. It passesses the property of commutativity with respect
to the conditional operator "/". The conditional effect and interaction not
only establish direct relationship between two or more effects but it also
yields information on the reciprocal effecta. An effect or interaction is
usually defined orthogonal to other effects and interactions, By establishing
direct and reciprocal relationship among the main effects, the conditional
effects and interaction yield very meaningful and unambiguous interpreta-
tion, By reducing the higher dirmensions to lower interpretable dimensions
the higher order interaction does yield informative information with mean-
ingful interprstation. All possible situations cannot be listed in this note,

Nowlet us consider a small experiment in which
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E(4A) = -68; E(ZA/BO) = 44, E(zA/Bl) w122
E(4B) = 224; E(ZB/AG) = 190: E{_ZB/Al) = 34

E(4AB) = -156, where E stands for effect of, and the numberical value
stands for the rnagnitude of the yield associated with the effects. By
examining the numerical values of the effects and the conditional effects
one can immediately appreciate the virtue of the information given by the
conditional effects, The E{4A) yields the information that there is loss

in the yield as one increases the level of A, but the two conditional effects

following exactly tells us where is the loss and where is the gain, meaning -

that the loss associated with A is not a total loss. The E(4AB) give
information on the loss associated with increasing levels of A or B or
both, but the conditional effects associated with B clearly define where
are the gains and their exact magnitudes. This ias given here purely from
the standpoint of appreciation of the usefulness of the conditional effects.
The true use of conditional effects is appreciated in systems where p is
large and n is large. An analysis of variance on conditional effecta of
this experiment is given in the Appendix, Table 2. The Appendix also
contains a table (Table 3) of effects and sum of squares for a 3“-experi-
ment, where the polynomial effects have been isolated, It is interesting
to note that the quadratic effect of B(B') yields & gain of 56 units in the
presence of higher dose of factor A, The interpretation of the other situa-
tions are self-explanatory,
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APPENDIX

Table 1

N(n,p) and N'(n,p)

p/n 2 3 A 4

2 7, & 37, 30 175, 160

3 20, 12 152, 126 1040, 960

4 - 39, 26 387, 32 3471, 3216
Table 2

ANOVA 2° with Two Replications

Effect dof. 8.8, M.S. ¥
A 1 578 578 16. 5%
A/B, 1 484 484 13.8%
A/B, 1 3136 3136 89. 6wk
B 1 6272 6272 179. 24k
B/A, 1 9025 9025 257, 9%k
B/A, 1 289 289 8.3%
AB 1 3042 3042 86. gk
Error¥(Total -3)=4 140 35
Total (2°r - 1) = 7 10032

* Replication pooled with error.
whSignificant at .01 level of probability of Type I error.




Table 3

Sum of Squares for 3® 'hctotial

Contrasts Effects * N Sum of Squares
_d=1 4
A' «270 6 12,150.0
A'/ﬁar -123 2 7,564.5
A'/By -118 2. 6,962.0
. A'By .20 .2 420.5
B' =257 6 11,008.2
B'/Ao - 14 2 98.0
B'/Ay -135 . 2 9,112.5
B'/Ag -108 2 5,832.0
A 30 18 50.0
Al '/Bo = 31 6 416.7
A''/B, - 16 6 42.7
A''/By - 97 6 1,568.2
B'! 3 18 o5
B' '/Ao - 28 6 130.7
B''/Ay - 25 6 104.2
B''/Ag + 56 6 522,7
A'B' 9 . 4 2,209.0
A'BY! 84 12 588.0
A''B! 148 12 1,825.3
A''B" 78 36 169.0
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THE NEGATIVE BINOMIAL DISTRIBUTION APPLIED
TO ATMOSPHERIC PARAMETERS
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Aerophysics Branch, Physical Sciences L.aboratory
Research & Development Directorate
U. S. Army Missile Command, Redstone Arsenal, Alabama

AGSTRACT. The negative binomial distribution can be very helpful
for determming wind speed and wind shear frequency distributions. The
derivation ¢f irequency distributions of vector wind shear data for small

. shear increments (100 and 50m) from existing common radiosonde data
with 1 km altitude intervals is explained. The frequency distributions for

smaller shear increments differ drastically from ''scaled down' distribu-
tions. Considerable error for engineering evaluation would be introduced
if the shape change of the negative binomial distribution with the shear
increment through the change of the mean and sigma were neglected,

Finally computations of the cumulative 90, 95 and 99% exceedance
thresholds for wind speed and wind vector shear by use of the negative
binomial and the bivariate normal distribution are compared with the
observations. The analytical values for employing the negative binomial
prove best,

I. INTRODUCTION. Although the negative binomial distribution (NBD)
has been known to statisticians for a long time, applications in atmospheric

- physics are not very wide spread. This can be explained for the following

reasons.

After early discussion by Pascal and Fermat [see Todhunter, 1] one
can find largely two versions of interpretation. Greenwood and Yule [2]
assume that the events are mutually independent, but the intensity varies
from individual to individual event, Polya [3] and Eggenberger [4] interpret
that the events are statistically dependent, i.e. the occurrence of one event
increases the probability that further events will occur,

In the latter sense applications have been attempted mainly for distribu-
tion of precipitations or runs of days with or without precipitation [ see
Wanner, 5, 6]. As has been pointed out by the author [7] , applications to
the continuous frequency distribution of precipitation prove to be a problem.
Therefore Thom [8] has suggested the use of the incomplete gamma func-
tion, Recently the model of the Markov chain [see Caskey, 9 and Weiss, 10]
has been more successfully applied, Thus utilization of the negative
binomial for the field of precipitation appears to be very limited,




In the sense of Greenwood and Yule's interpretation the NBD may
apply for wind and wind shear. One would expect from other theoretical
background, however, that the wind vector follows a bivariate normal
distribution (the components being normally distributed). Then the non
central chi-square distribution should adequately describe the distribu-
tion of the scalar wind speed.

The non central chi-square distribution, however, does not fit extreme
values very well, especially for wind shear distributions of smaller
increments [Essenwanger, 11]. Thus one may attempt to fit the empirical
distribution with the NBD, as is later demonstrated. An earlier apnlica-

tion has been made by Wanner (12}, who concludes that the frequency
~distribution of the wind speed follows the shape of the NBD the ¢loser the

higher the altitude of his sampling {(mountain observations). Since the
present discussion is mostly concerned with upper atmospheric observa-
tions, the employing of the NBD with wind data may be investigated.

II. FREQUENCY DISTRIBUTIONS OF WIND AND WIND SHEAR. As
previously mentioned the NBD is employed to describe the observed fre-
quency distributions of wind speed and wind shear values. It is therefore
of vital interest to ascertain how close is the agreement between observed
and analytical distribution., Further, since the NBD is a discontinuous
distribution, testing has to proceed to determine whether the given class
division of the continuous wind distribution can be adequately adjusted to
provide fair resemblance with the NBD. This adjustment is difficult for
precipitation [see Essenwanger, 7] .

The problem is discussed by the author in detail in a recent report [13].
Figure | serves as an example to summarize results {or wind shear distri-
butions. The figure displays a typical wind shear distribution for 1 km
shear intervals (histogram at top of figure 1), The other 3 diagrams
exhibit the deviations from the observed frequency for 3 types of fitted
curves, the NBD, the incomplete gamma function with maximum likelihood
fit and with moments fit, Statistical tests showed no significant difference
between these 3 fitted curve types and the observation,

The NBD was selected for its convenience of computation. Since there
are no observed data on the frequency distributiona of smaller shear
increments and the recomrnended distribution is predicted, data for a
maximum likelihood fit of the gamma function are not available. Thus both
analytical distributions rely ~n the moments fit, It is immaterial to select
the negative binomial rather than the incomplete gamma function, It will
be further seen that observed data in the range of extreme values such as
threshold excéeded by 10, 5 and 1% of the data fit the observations quite
well with the NBD,
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I, WIND SHEAR INTERVALS OF SMALL INCREMENTS. In a basic
article 114‘[ the author has derived that a relationship between the mean

3 mam-m AT (] . ww
shaar v and ths sheor interval Al caisis as iviiows

() Y(an) = % (am)™

where a, and 8, are constants depending on climatological conditions,

The Ah denotes the difference of the altitudes (shear interval), from which
the vector shear v as the residual of two wind vectors is computed,

It has further been deduced that a similar relationship holds for the
standard deviation

(2) Tam) = Ao * B,(ah)™!

where Ao and B1 are again constants depending on climatic conditions,

The constant Ao can be determined from
(3) o-(Ah) = AO + Al V(Aﬁ) .

Equation (1) has further been confirmed by Armendariz and Rider [15] and
Belmont and Shen [16]. Although Armendariz aad Rider [15] derived a
similar equation to (1) for the standard deviation, which means A_ in (2)
would equal zero, it is presently open whother A approximates zero in
the ground layers, from which Armendariz' and Kider's data are derived,
while the author included data up to 50 km altitude [see Reisig 17]. The
absence of Ao may be further an effect of the terrain, as Armendariz and
Rider work with data from White Sands, New Mexico, while the author's
data were obtained at Cape Kennedy, Florida.

One has now two parameters, the mean and standard deviation, which
can be utilized to compute the expected frequency distribution of shear
values. Figure 2 demonstrates the agreement between observed and
analytical distributions, employing the NBD for computing the analytical
model., Five layers from various conditions of upper atmospheric shear
distributions have been selected, The first 3 layers show excellent agree-
ment between analytical and observed data, Some discrepancies are noted
for 15-20 and 20-25 ki, Although the deviations are statistically not
significant, the problem of a distribution with a better fit or some adjust-
ment to the fitting procedure is still open.
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One point must be stressed, however. The present method, employing
the NBD for describing the analytical distribution is far superior to the !
generaily practiced technique of "scaling down' frequency distributions of
vector wind shears, A typical example is given in Table 1, For 3 atmos- !
pheric layers a comparison was made between analytically derived and . '
scaled down distributions. The ''scaling down' technique assumes that the
same distribution for smaller shear intervals as for larger intervals ¢
exists, e, g, the regular available shear distribution of 1 km intervals
(easily obtained from the present radiosonde network) would be divided by
10-to obtain the distribution of 100 m shear interval. Table ] demonsgtrates

- -clearly-that this techrique 18 out 6f place as it does not take into coneidera-
tion any shape and scale change. The real distribution produced such
; changes, which are quite adequately expressed by the NBD, It is impor-
i tant to include these changes into the derived frequency distribution., As '
' becomes quite obvious from Table 1, considerable error for engineering
evaluation would be introduced if the shape changes of the negative binomial ‘
distribution with the shear increment through the change of the mean and
sigma were neglected,

f
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More details can be found in pertinent articles as cited under 13 and
14,

1v. COMPUTATION AND COMPARISON QOF 90, 95 AND 99 PERCENT v
PROBABILITY THRESHOLDS, One of the important criteria in missile
i ‘application are percentile values such as the thresholds of shear values
i exceeded in 10 percent of the cases or similar tolerance values. Thus it , o
is quite reasonable to demand that the employed distribution must be

successful in describing said thresholds. The 90, 95 and 99% observational
values were selected for this purpose,

Three types of distribution were tested, the bivariate distribution (BD),
the negative binomial and the incomplete gamma function (IGF), The results
for the NBD and the IGF were, however, similar and showed no statistically .
significant or obvious differences, Thus the comparison between NBD and 4

IGF may be omitted here,

a, Computation of the Threshold for the Bivariate Distribution.

The computation of the 90, 95 or 99% value for the bivariate

distribution is quite cumbersome. One has to solve the following type of
integral v [

L
(4) ' P(L) = S\ v £(v)dv )

o




P Ei g e g
&
8
g.
" -
] s | R ¥
["™]
38 -
gsg §'S #N#wt\l-ﬁ'l\c\b‘bm(\l—lo
83.& t‘\ﬁ gmb@rmmm—oooooo 'l:
sgf | g w8 =R "
v |z &
i |
-+ Q
- EH.—; - El ng A/l ~]
P TCR I ik k
) g‘i
.-4-55
E Eég §'8 RO OO~ NQ NN O
- §gu g \'R%R;nn.e—coooo E
E ! o N Eﬁ
S sph | o
i | g g 8
, : 'Eé" n
. S B -
I HES .
ig | RR2RRIARRERARR
E- S alihe NS M@ g o o
aa‘ [ I T T Y T T I TR T T I A T |
88888888888888
é% OMNN‘\-&U\\DPQO\S glﬁ

228

T T T T e




[PRU

s

where P(L) denotes the probability level of the threshold, v, the thresh-

L

old value of the wind anesd, v tha wind sp and { v) the disiribuiion

o~
“ e

function, in this case the bivariate normal distribution, A similar equation
exists for the wind shear, replacing v Ly the pertinent parameter for the
wind shear.

The solution is complicated, but can be approximated by the
cumulative distribution of the non central xz distribution or by determining
an offset circle of the bivariate distribution (see 18). In the present
application, one has

(5) v, =R'co

and 1 < R < 5. Thus the equation for approximation is transformed for
obtaining R in explicit form:

" oan-2e 2t
where

(7 C=[-(gnP+gn ﬁ?)]%

(8) - a=2+rl

(9) b.--’;-

(o) S

vy denotes the resultant wind vector or the equivalent for the shear. The
solution presents no problem when employing a high speed electronic
computer,

A simplified approach, provides the same correlation coefficient,
although in the winter months the average threshold is slightly higher than
the observed value. This can be based upon the following &ssumption.

The mean wind speed v can be computed from

(11) v= 3 v f(v) dv .

o
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If the mean components have the values x=y=0, and . =T then the
solution is

(12) v=C_ o .

where

(13) 202 20% + ¢ and C_ = 1.2833,
v o x y o

1t c. $ cy, but not o« cy or cry « v, equation (12) is a good

approximation.

It has been shown by the author [11] that for x 4 0 and y 4 0, the
following type of solution can be found

A-E
(14) , v=C o e VvV

This checks out well as demonstrated in Table 2 by the high correlation
- v
between ¢n - and £

COO‘ a'v

1f one assumes a similar form for the solution of v. , namely

L
AY:
o
= v
(15) vy CL v e ,
then L becomes simply
C
L.
(16) VLT v .

If one considers that the Co is taken from the circular normal distri-
bution, where .= a'y =0, then the high correlation between observed

and computed values of the 90, 95 and even 99% as later shown is
remarkable,




TABLE 2

V’coﬂvi a

<

<

Correlation Coefficient for Check of Formula

Mean Wind Speed

Mean Wind Shear

Month El Paso Chateauroux Montgomery
Jan .986 .987 - 954
Feb .995 .906 915
Apr .992 .888 946
May 991 973 971
Jul 969 .998 933
Aug .998 975 + Sl
Oct .985 .953 .928
Nov .997 .99k .853%

Average .989 .959 931
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b. Computation of the Threshold for the Negative Binomial Distribu-

tion,

The computation of the threshold value for the negative binomial
is also based on a solution of the integral (3) as before but this time the
( ) is the negative binomial distribution and the integral is one-dimensional.

Similar explicit formulae as for the bivariate distribution are presently

not available. One can convert the cumulative NBD, however, into the
incomplete beta function. This was pointed out by Pearson and Fieller [19],
or rediscovered by Patil [20] and was recently discussed by Bartko [21, 22].
The 90, 95 and 99% values can then be obtained from the tables of the
incomplete beta function [23]. The procedure is somewhat elaborate, but
does not involve computations of the cumulative distribution by electronic
computer. It was performed to obtain the necessary analytlca.l values for
comparison with the observed threshold.

Although the maximum likelihood fit could have been utilized by
employing the frequency distributions and finding solutions to the maximum
likelihood equation (Haldane, [24] and cited by Bartko, [22]), the moments
method for parameter estimation was employed for the following reasones,
One of the goals is the derivation of distributions for small shear intervals,
for which the frequency distribution is not known, Thus the information
necessary for the maximum likelihood fit is not available, while the
parameters for the moments fit can be computed. If the NBD with moments
fit would therefore give a poor result for computation of the threshold values,
the NBD could not be used without first developing a prediction scheme for
the information needed for maximum likelihood fit, Thus the question of
maximum likelihood fit is of secondary importance for this parttcula.r
problem.

When using the tables of the incomplete beta functions [23] , the
parameters p, q and the scale parameter b must be known. They have been
obtained from

2% ozl
H+e= -5

2 p N

(3 3 3

() Pt 2
(4__ + 1 - ._.)

H3 crz

(18) q = ppt1)

___-..___L_A [ N
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(19) b= u,

where p3 is the third moment with refe rence to x, the mean and u-z ‘the

~ variance*, The pertinent parameters for wind and wind shear have to be

introduced into equations (17) thru (19).
The threshold value then becomes
(;Oa) " v, = b (1 - ij) or
(20b) v, = bx
depend}ng on whether q > p (then 20a) or q<p (then 20b).

c. Comparison of the Computed Thresholds with the Observed Values,

The threshold values of 90, 95 and 99% were computed for wind
speed and wind shear for several stations and compared with the respective
obaerved values. The latter were obtained from a computer program,
listing certain thresholds of the cumulative distributions as begun in the
Climatological Ringbook [25].

The differences between the computed and observed thresholds
could have been checked with the Chi-square test for statistical significance
of the deviations, Since the computed values were close to the observed
thresholds, another tool of comparison has been employed. It was obvious
from randomly selected samples that the chi-square test would not render
statistical significance for most of the deviations of the computed thresh-
old from the observed values, Thus the correlation coefficient was

“Footnote: The My for the negative binomial distribution is known, when

the x and the 0'2 are known: By = x(1+3d+2d ) where

2
a+1= O,

x
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" observed ones for the negative binomial method,

utilized, which cannot only give information about the agreement between
theory and observation, but can also delineate a systematic bias, if the
means of the analytical aud ubserved ihreshold difier,

The correlation coefficients are contained in Tables 3 - 5 for the
data of Montgomery, Alabama as a typical example of the results, It is
evident from the tables that the correlation is very high and therefore the
analytical values are very close. However, 2 detailed inspection of the
coefficients shows that there are some differences. First one notices that ;
the coefficients display a slight tendency to decrease towards the 99%
threshold., Thus the analytical values appear to fit less towards the: .
extreme values, Further, this tendency to decrease is more pronounced
for the bivariate {it than for the negative binomial and more for the wind 5
shear than for the wind speed. This result is not unexpected., The i
tendency of deviations from the bivariate distribution, especially for wind '
shears, has been pointed out by the author in an earlier article [11].
Further, the analytical method for the bivariate distribution approximates
the thresholds by either using mean wind speed only as in equation (16)
or basing it on the circular distribution for equation (6)., The method
employing the negative binomial avoids these problems, Besides the mean,
the variance of the distribution is needed, and in our particular case the
variance of the wind speed and wind shear, By {itting the incomplete beta
function, even the third moment Y could be included, which is a 3 para-

meter fit, Thus the basis for analytically determining the thresholds
comprises more or better parameters for the negative binomial approach.
The result confirms this, The analytical thresholds agree better with the

e R e T KR st

Whether there is a bias between the computed and observed thresh-
olds can be anawered from Table 6, where typical examples for the wind
speed thresholds are displayed. The results for the negative binomial
distribution look generally good, although there is a slight tendency towards
a lower average than the observed, But the result may be considered within
the tolerance limits of errors. The scatter for the analytical values v
around the average \-IL' expressed by the standard deviation . is the

same as for the observed values, denoted by ¢,. This confirms the
closeness of the computed results in addition to the high correlation
coefficient. '

The averages for the bivariate distribution also agree very well,
thus no systematic large bias is visible. It is noticed, however, that the
scatter represented by o, is higher than the scatter for the observed |
data. This indicates that not all of the computed values have good agree-
ment, a conclusion already stated above in the consideration of the
correlation coefficient,
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Table 3
LINEAR CORRELATION COEFFICIENT FPOR COMPARISON OF
OBSERVED AND ANALYTICALLY DERIVED 504 LEVEL
, Mon. yomery: .
Wind Speed Wind Shear
F : Month Bivariate Neg. Binomisl Bivariate Neg. Binomial
Jan .987 9 971 915
L | Feb 991 .985 957 960
% ! Apr. +996 -9% 966 1920
e | may 996 .99k 985 97
r i '
\ Jul W45 875 .98k 979
L s 882 867 983 968
oct .996 9% .986 976
‘ Nov 993 1995 ST 973
e ‘ Average 975 963 976 962
¢ 232




Table 4
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LINEAR CORRELATION COEFFICIENT FOR COMPARLSON OF
OBSERVED AND ANALYTICALLY DERIVED 5% LEVEL

Montgomery .
R Wind Gpeed. _} .. Wind Shear
Bivariate Neg. Binomial Bivariate Neg. Binouial

.980 .996 940 : .938

Feb .981 .992 .863 .9h0
Apr .993 .997 .950 905
May /991 997 972 .978
Jul 683 906 986 .985
Aug .809 .898 .966 .959
oct LSk .997 972 .958
Nov .990 - 931 . .950
Average .953 973 .9u8 952




Table 5
LINEAR CORRELATION COEFFICIENT FOR COMPARISON OF
UBSERVED AND ANALYTICALLY DERIVED 99% LBVEL
Montgomery
. Wind Speed | Wind Shear .
Month - -Bivariate - Neg. Binomial: Bivariate Neg. Binomial
Jan .980 .995 .868 936
Feb <975 1990 JT2k .925
Apr 1 .986 .9%6 785 .888
May .978 - 4996 950 975
Jul 152 .919 932 .980
Aug 680 .929 . 854 .958
oct .976 .992 .860 902
. Nov .980 997 728 93
i Average .913 977 .838 958
-
-
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Table 6

Comparison of Computed and Observed Thresholds ( Summary)

(a) bivariate
Station Threshold ﬁ ;i Vi ) o, SQf r
Bl Pase o | e2eb | amik | es.8| | 128 | .ok
95 22k 27.9 27.2 16.1 1.2 970
99 o2k 34,6 33,9 20,0 16.4 .929
Chateauroux 90 248 2,1 25.5 11.9 12,2 970
95 2h8 27.6 29.5 13,5 .2 967
99 248 3.2 37.8 16.8 17.2 Sl
Montgomery 90 372 26.6 25,6 18.5 15.3 984
95 372 30.3 29.2 21.1 16.8 970
99 372 37.6 36.2 26.1 19.5 951
(b) negative binomial
Montgomery 90 372 2k.9 25.6 15.3 15.3 2992
95 272 28.2 29.2 16.8 16.8 993
99 372 3l L4 36.2 19.5 19.5 .992
FL mean wind speed of computed threshold (m/sec)
V, mean wind spead of observed threshold (m/sec)
% standard deviation of analytical values
ao ntnnéard deviation of observed values
r correlation coefficlent
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One may think about other distribution functions as being more
suitable for deriving analytical values such as the Weibull distribution
r26] . The negative hinamial dietribution, howsver, doscribes the
thresholds already satisfactorily and preliminary computations with the
Weibull distribution did not render better results rather than thresholds
in the middle between the bivariate and negative binomial method, Besides,
it is very difficult to objectively determine the location parameter for the
Weibull distribution, and thus the negative binomial dietribution offers an
advantage in the estimation of parameters. Under these circumstances

the question of determining the thresholds based on the Weibull distribution

_is not further pursued for this report,

V. SUMMARY AND CONCLUSIONS, It has been demonstrated that
the negative binomial distribution has its place in problems of atmospheric
physics, especially in missile cli matology for wind speed and wind shear
distributions. For this purpose the NBD serves largely as a practical
and convenient tool for describing the frequency distribution. Especially
the application to derive realistic frequency distributions of wind shear for
small increments is important. This technique is far superior to the
general practice of scaling down wind shear distribution for larger intervals
which are commonly available, The utilization of the NBD, however, can
accommodate the change of shape of the distribution with the shear interval,

a property, which the scaling down neglects, Considerable error for

engineering application may arise if this shape change is overlooked.

It has further been discussed in detail that the NBD can also be useful
in deriving threshold values for the cumulative 90, 95 and 99% levels, if
mean and variance for the distribution are known. Comparison between
analytically derived and observed thresholds displayed excellent agreement
without bias. The method proved superior to the application of the
bivariate normal distribution for the same purpose. The only advantage
for the latter practice could be the possibility of establishing a relationship
between the threshold value and the mean, as expressed in equation (l6).

In this relationship one parameter, the mean only, needs to be known,
This simplifies the computation of statistical parameters and increases
the use of numerous data collection, in which the mean only is given,

The conversion of the NBD for the use of the tables of the incomplete
beta function [23] to obtain the pertinent threshold values has been
described. The need for knowing the third moment j, does not introduce
a new condition, as the p3 for the NBD is known with given niean and
variance. Making use of three parameters, however, points to the
poseibility of utilizing the incomplete beta function for the curve fitting,
although the third moment p3 then must be computed from the observa-
tions to offer some advantage. Utilization of two paraineters, mean and
variance, is sufficient only for the NBD,
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Another 3 parameter {it would be the Weibull distribution. Prelimij-
nary computations did not produce better results, however, and therefore
no detailed discussion and comparison were included in this report,

The NBD has therefore a definite place among the statistical
distributions useful for application to atmospheric parameters,
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TRIAL VARIABILITY INTERPRETED AS
DIFFERENCES IN TRANSLATION OR ROTATION IN
FUNCTION ANALYSIS OF VARIANCE

Walter D. Foster !
U, 5. Army Biological Laboratories !
Fort Detrick, Frederick, Maryland

ABSTRACT, Referee experimentation connotes in general a set
of participants performing the same experiment under nearly identical
circumnstances. Variance analysis of results often takes the form of
Between Stations and Within Stations. As a device for interpreting the
magnitude of the mean square for repeated trials at a station, the mean
squarc is converted to a corresponding vertical change in centroid
(translation) or to a change in slope (rotation). The variable of analysis
is a multiple-parameter function representing decay.

The concept and practice of the Analysis of Variance when the response
variable is a function rather than a single value was given by Foster [1]
in 1962, Comparison of this technique to the multivariate analysis of
variance was given by Foster [2] in 1963. Brownlee [3] showed how to
make simultaneous tests of slopes and centroids if the response is a linear
function with two parameters. Church [4] gave the partition of variance
for a factorial experiment for each parameter of a curvilinear model when
used as the response variable.

P Iy

The development in this paper is described in terms of its application;
referee experimentation. Referee (or collaborative or standardization) ex-
periments consist basically of several independent laboratories performing §

o

the same experiment in nearly identical circumstances. The simplest case
compares laboratories (or stations as they are referred to here) using i
repeated trials at each station as the criterion -- the standard Between and :
Within analysis of variance. A more sophisticated design would introduce
a range of treatments in order to estimate a Station X Treatment effect.
Thus, the two major objectives of a referee experiment are the comparison
of stations, treatment means and the estimation of reproducibility at each
station, When each trial is a biological aerosol produced in a closed
chamber and allowed to settle, the response is the decay function which
describes the loss of biological activity with time;

C=c(t+1)Pe™
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is the decay model chosen for this analysais, The compa.rison‘of stations,
treatments and S x T was given by Foster [1]. It is the purpose of this
paper to examnine the mean square for repeated trials at a station which
was used as a measure of reproducibility and to translate this variance
whose magnitude is generally meaningless to the experimenter into a

familiar scale to facilitate subjective appraisal and evaluation of repro-
ducibility,

Using the techniques of multiple regression, the data for a single trial
of n points can be represented by

IncC =.lnC; -« bin(t+1) -kt

where 1In Co’ b, and k are estimated by least squares, Partition of the

variation in the analysis of variance format is given in Table I, using
Snedecor's [5] notation.

TABLE I. A.V. for a Single Trial

Line Souzrce df S8
1 Function 3
2 ¢, 1 (sY)%/n
3 b, k 2 bSx;y + kSx,y
4 Deviations n-3 Sy2 - bely - kazy
5 TOTAL n sy2
Note: X, = In(t + 1) ; X,=zt; Y=InC
x1=X]-Xl;x2=X2-X2;y=Y-Y

For t trials at a station, the analysis of variance of the decay curve,
showing partition and corresponding sums of squares is given in Table II.
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TABLE II. A.V. for t Trials

&
Line Source df ss
, “tn tn
6 Mean 3 (s Y) /m+bs Xy +kS x,y
A
1 1 1
t
7 Ameng trials 3(t - 1) I Line 1§ - Line 6
) _ 1
8 Deviations t{n - 3) Z Line 4
1
. . »
9 TOTAL tn Z Line 5
1

When the mean decay function for a station is compared to those of
other astations, the comparison is both visual and objective -~ visual because
the functions can be graphed and their parameters tabled; objective because
a test of significance is available [1], but not given here. Thus, the com-
parison of means is complete and in a scale meaningful to the participants,
Comparisons of trial M S for the various stations can also be done statisti-
cally, but the mean square itself has little meaning to the experimenter,

Two strategems involving translation and rotation in the original scale
are presented as a method of interpreting the magnitude of the trial mean
square, Since mcst aerobiologists are thoroughly familiar with the simple
exponential function,

as a decay model, the trial mean square has been scaled into translations
of Co and into rotation of k. The technique is simple.

Let the experimenter visualize the trial variabilily as being expressed :
by two parallel lines, the plot of .

InC = InC_ ~ kt
o

whaose vertical separation or translation is equivalent to the trial variability.
Obviously, the greater the variability, the greater the diatance between the
two parallel linee, He thus may consgider his trial variability as if he had
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run 6n1‘y two aerosols with equil decay rates but displaced starting points
(intercepts). :

Algebraically, the displacement or translation is derived by consider-
ing the saine partition of the trial decay functiona in Table Il with only two
trials, This is shown in Table III. The notation hasg the form of

Y =%-b(xX-x.

_ TABLE lII. Development of Trial Variability as Translation

o3 v, b A+ T AT SR A AR A b o R A L L A P B 1T v

Lihe Identification Ss
10 SS Function 1: n 72 + bsxy
11 SS Function 2: n ?g + b Sxy
12 Line 10 + 11; n(¥2 + ¥2) + 2b S xy
13 Mean Function: 2nf (?1 + T’z)/Z] 2 4 2bSxy
14 Line 12 - Line 13; n(¥, - ?2)2/2

The Mean Square corresponding to the sum of squares in Line 14 is simply
n(¥? -¥% )2/4 .
1 2

Upon equating the observed trial mean square to the derived translation
and solving for the translation, we have

¥ . -Y¥, = V4 MS Trials/n ,

which as a distance applies to the intercepts, In C , as well as to the
; o
centroids because of the assumed parallelism,
The following example of six trials at a station illustrates the use
of this technique.
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Had the trial mean square been . 960 the translation would have been

Interpreted to the aerobiologist, trial variation of this magnitude (MS =
. 1975) implies that his ability to reproduce an aerosol is no better than
It should be noted in passing that the translation concept is
applicable to any decay function under the requirement of parallelism,

1,37 fold.

The second approach to relate trial variability to experience is by
‘rotation, i.e., a change in the slope of the linear decay function; in this
case it refers to a chiange in the parameter k.
two lines are required to be identical; the MS for trial variability is

equated to change in slope, This approach is more subtle since changes

in k effected through equivalent pize of the mean square depend upon the
domain of the independent variable and the particular design. For a large
domain the change in k will be small; for a narrow interval, the change
will be large (because the variance of slope is proportional to 1/8 xz).
The development is given in the following table.
form of

Line

15

16

17

¥ - ¥, =Va{1975)/8 = .314 inlnC scale,

or a 1,37 fold (antiln , 314) effect,

Source
Mean
Among Trials

Deviations

V4(.96)/8 = .693 or a 2.0 fold effect.

Y =¥ +pxX-% .
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3
15

30

- '_E_:unction Analysis of Variance

Ms
2427.4869
+ 1978

. 0878

The centroids for each of

The notation again has the




Line  Identification
15 SS Function 1:
16 8S Function 2:
‘17 ILine 15 & 16

: 18 Mean Function:
19 Line 17-18:

TABLE IV. Development of Trial Variability as Rotation

ss

52
nY~ + bley1

2
n¥% 4+ bz Sxy2

g2
2n Y + b1 S:w1 + b2 _stZ

w3 b1 4b :

(b, - by)? 8 x2/2

The Mean Square corresponding to the Sum of Squares in Line 19 is simply

(b, - b,

)2 sz/4 .

As before, this quantity is equated to the ocbserved trial mean square

and the amount of rotation is

l::l--b2

. 022

V4{.1975)/1. 66 X 10°

Note that the apparently small change in slope is due to the extremely

large domain of t, 1300 minutes.

While the concept of translation was

applicable to any decay function, the rotation approach required a linear
model for its straight-forward interpretation as a change in a single

parameter,

248

|
|
|
%

—— ”1'..“,,“&;.‘_4._,”,_4_‘_* 4._ |

ohinsiinilican.




SRR TR AT ok AT

5,

REFERENCES

Foster, Walter D, (1962) Analysis of a Function in Collaborative
Experimentation. Proceedings of the Eighth Conference on the
Design of Experiments in Army Reegearch, Development and
Testing, ARO-D Report 63-2,

Foster Walter D, (1963) FAV versus MAV in a Referee Experiment,
Presented at Biometrics ~ IMS Joint Meeting at Harvard University,
evayss, ~

Brownlee, K, A, Statistical Theory and Methodology in Science and
Engineering. Wiley 1960, pp. 329-342,

Church, Alonzo, Jr. (1966) Analysis of Data when the Response is
a Curve, Technometrics, Vol 8 No., 2, May 1966, pp 229-246.

Snedecor, George W, Statistical Methods, Fourth Edition, lowa
State College Preas, 1946,

249




sy

A METHOD FOR ADJUSTING FOR PARTICLE SIZE AND MATRIX
EFpFECLS IN THE X-RAY FLUORESCENCE ANALYSIS PROCEDURE

Raymond H. Myers
Department of Statistics,
Virginia Polytechnic Institute, Blacksburg, Virginia

Donald Womeldorph
Phillips Petroleum Company
Bartlettsville, Oklahoma

X-Ray {luorescence methods have been widely used in the analysis of
muiticomponent mixtures, The advantage is due, of course, to the high
speed and precision of the method. It is unfortunate, however, that one
is not always able to attain accurate analyses in practice because of the
existence of sample matrix effects and particle size effects,

Existence of matrix effects implies that the intensity of fluorescent
radiation from the analytical element is a function of the concentration of
the matrix elements as well as its own concentration. This phase of our
problem has been discussed by several workers. Mitchell [7] describes
the problem in elaborate detail. In a recent paper, Alley and Myers [1]
discuss ways of using inverse estimation in linear regression to account
for these effects. Also, Campbell and Brown |3l have reviewed mathe-~

- matical and empirical methods.

The consideration of particle size of the components is extremely

important in X-Ray fluorescence analysis for the case of granular materiais,

In fact, variations in particle size of the materials can, in some cases,
have a greater effect on the X-Ray intensity than variations in concentra-
tion. The flucrescent X-Ray intensity is affected by both the fluorescent
and matrix component particle sizes and their relative concentrations in
the sample., Claisse and Sampson [4] , and Bernstein [2] discuss the
particle size~intensity relationship,

This paper describes the use of a procedure involving estimation in a
statistical functional relationship to approximate the structural form that
exists between the X~Ray intensity of each component and the concentra-
tion of all of the components in the mixture, The non-linear functional

relationships, which include the effects of measurement errors, permit the

estimation of component concentrations in unknowns over wide ranges at
constant particle size by using dita obtained {rom the analyses of a series
of calibration mixtures having the same particle size, Methods are also
shown for estimating the concentratiorns of components in mixtures at any
other combination of particle sizes by analyzing only one additional
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calibration mixture having the new particle size combination, This
subsianiiaily reduces in comparison with conventional procedures the
amount of experimental work required to recalibrate when one or more

of the component particle sizes varies upon changing lots or batches of
material.

Special attention is given with numerical results, to ""Tichloral®
igniter mixtures manufactured by the U, S. Army Miesile Command,
Redstone Arsenal, Alabama., These mixtures are comprised of potassium
perchlorate, titanium, and aluminum powders, and sornetimes a small
percentage of a binder such as polyisobutylene. The estimation procedure
is presented and "check samples'' of known concentration (with particle

size differing from that of the calibration data) were analyzed by the
procedure,

The method described here differs considerably from the usual
multiple regression technique,

THEQORETICAL DEVELOPMENT OF PROCEDURE., Lucas Tooth and
Pyne {6] developed a theoretical concentration - intensity model account-
ing for moatrix effects, It is this model that serves as the basis for our
development {other models such as a 'complete quadratic! polynomial can
perhaps be used as well), This model can be expressed as:

(1) v =ad® o2 Mo o2 J0 g

l<j<q 7 ! Mlejecq ™9

where Vn is the percentage of component n in the mixture; I, is the

X-Ray intensity for component j; the u(n)'s are constant parameters
related to mass absorption coefficients [3]. a 1) includes background
intensity when peak intensity measurements are made. The subscript (n)
implies that the parameters are characteristic of the nth component, i, e.,
the a's describe enhancement or absorption of the other components with
the nth component, For example, for a three component mixture, we can
write the percentage of component 1 in the mixture as:

(2) v, =ag) + ail)ll O TR ) S O P a(l)lll

(1
2 1 3 13 g 12 Tyl

)
2 3173

Often terms beyond those describing a linear equation can be deleted with-
out Berious consequence,
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One might expect that a classical least squares procedure for estimat-
ing the coefficicnts iu eyuailon (2) would be appropriate. Actually, the
papers (8], [5], and [1] rely heavily on this procedure. In the latter
paper, the authors use a linear relationship in which the concentrations are
on the right hand side of the equation, while intensity appears on the left,
The coefficients are estimated by least squares and the equations (One for
each component) are inverted for the analysis of an unknown, However, the
particle sizes of the solid components were held constant in the experi-
mental work, If the particle size effect is assumed to vary from batch to
batch of raw materials that are used, then the coefficients in (2) would be
dependent on particle size and thus it would be necesasary to develop a
different relationship involving different coefficients for each batch of raw
materials.

Experimental methods are presented here for which the experimenter
can use concentration - intensity data under one particle size condition, to
dete rmine the percentages of components in unknown samples under a second

particle gize condition,

Assumptions Concerning Equation (2). Suppose we consider the model
of equation (2), We shall drop the subscript on the coefficients and thus
refer to the relationship for component 1,

(2a) VvV, =a,+ al

2
1 0 +qa12+o.I + a I 4+ a II. + a II .,

1 373 111 12712 137173

We could, of course, write a similar expression for components 2 and 3.

Suppose we consider two particle size levels, say 1 and 2, Suppose we
have intensity - concentration data at particle size 2, but we wish to esti-
mate the coefficients in (2.a) when the raw materials are from a batch at
particle size 1. It must be emphasized here that we do not need to know
what these particle sizes are; we simply know that two different conditions
exist, We will assume that the measured intensity of component 1 at some
concentration level (Vl, vy V,) and at particle size 2 can be written:

(3) X) = L +.d +f

and similarly for components 2 and 3,

I is the "effective' or true X-Ray intensity ¢i component 1 for the mixture
at concentration (v., V,» V,), and at particle size condition 1,
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d, is the particle size correction, i.e., the constant which represents the
a}fect on the intensity of the particle size difference (between level 1 and
level 2),

X, is the measured X-Ray intensity of component 1| when the mixture is
composed of raw materials at particle size 2.

f] is a random measurement error effect on the intensity, It represents the
affect of counting and other instrumental errors,

Further discussion of d; and fy are in order here., {j is considered to be .1
statistical '"random' error, owing to inaccuracy in'measuring the intensity.
The measurement error as defined here includes components such as the
counting error, and errors in the preparation of samples and pellets from
the same calibration mixture, dj is not considered to be a random error
but rather a constant value (plus or minus) which describes the affect on the
intensity of particle size 2 over and above particle size 1. It is assumed
for our purposes that the particle size within a batch is reasonably
homogeneous. Otherwise one might consider d, to be a mean or average
particle size affect., It must also be emphasized here that the d; reprecents
an affect on intensity of ingredient 1 of the overall particle size of the
mixture and not merely the particle size of any one ingredient, Finally,

for our purposes, it is assumed that d,, d?_, and d3 (...V.r the case of a three
component system) are independent of the concentration level (Vy, Vs, Vi),
This does not appear to be an unreasonable assumption if the concentration
spread of interest is not excessive.

We shall now proceed to incorporate the model of equation (3) with that
of (2.2) into a procedure for estirating the coefficients of (2.a), Suppose
we have concentration - intensity experimental data for which the basic
materials are at particle size lcvel 2, We would like to be able to use this
data to estimate (2.a) for materials at any particle size level, Suppose we
congider (2. a) in which the materials are at particle size level 1. Substi-
tuting the actual intensities at particle 1 into (2. a) yields:
3 3
+ T a,(X,-d-f) + X a, (X ~-d-f)(X,-d.,~f) + ¢,.
0" 5 %5957 51 1y (Xdy=) (%456 + ¢

We have added the usual ¢ (error term) as a random term to.account for
inaccuracies in equation (3) since this equation is certainly not completely
deterministic in its derivation,
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Estimation of Coefficients in Equation (3). Suppose the chemist were

to nrenare ﬁnmnlpq at nmseplprrar! cnurcantratisn lowvels and | M“‘_“a“y

readings are taken, thc ingredients being from a batch at particle size
level 2, We wish to use this information to obtain an estimate of the
concentration - intensity relationship for particle size 1 {or for the ingre-
dients from a batch at any other particle size),

Equation (4) can be written as;

(5) V,za, + a X + aX + a X, +uxz+uXX +a XX +2

1 0 11 272 3 127712 137173 1

where
3 3 2 2
Lz -[ ..Z ajf,j + 'E a_jdj] +oap, [d1+fl] - Zallxl [dl-i-fl]
j=l j=1

+2a,df 4+ q [dd +, f?] ta, [d1f2+f1d2 X 6%,
(6)

- &, X -d X, ] 4 a, [dd H 4 £ b d 0 X X d X - d X,]

+ Gl .

Thus the '"'error' associated with the least squares model of equation
(5) is given by equation (6). Note the terms that are translated to Z)
through measurement errors and through the important particle size effects.
The X's in equation (5) are the measured values of the intensitites and thus
are random variables, One notices that if the usual least squares procedure
is used, i,e., by minimizing the sum of squares of the errors in determin-
ing the estimates of the coefficients, that Lhe error, Z;, is correlated with
the X's, since both involve the {'s, This, of course, invalidates the usual
regression assumption [9] that the residual error and the X's are independ-
ent, Of course, the errors in measuring the intensities may well be
negligible, in which case we need only consider the effects translated by
particle size., We shall discuss this situation in a later part of the paper.

It is not unrcasonable to assume that these errors are independently
distributed with zero mean and variance a‘%. Suppose we make n observa-

tions of the type (Xli’ XZi' X3i’ Vi)' If weJ sum both sides of equation (5)

over these n values, we obtain:
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| 2
= Vli-nu0+u12 Xli+a22 X2i+a32 }{3i+a11 = xli +a12 z XHX?_i

i=l
(M
+’ul3 z XliXBi + Z AZH .
All terms in equation (7) are known except T Z The latter contains

aample quantities which certainly are unknown I-"or example, if we were
to expan§ EZ W’ such tgrma ag -0.121 fli'” uni 11 .”-Zu Eflixli' etc, would

appear, and since we have no knowledge as to the measurement erroxr on
any given sample, these guantities are unknown, However, we can replace
these quantities by parameters that represent their "expected' or 'average"
values, the latter which we can estimate by a separate experlmental proce~
dure. If we assume the measurement error variable f, U =1, 2, 3) has

mean 0 and variance a’f , then

=E[Zf -_-0.

31]

Here the "E'" notation refers to expectation. For GIE fuz, we can write

2
£ =
(%) T

and, if we further assume that the measurement errors are independent,

2

. 2
Efa Efli] mllo-fl .

After performing these operations, we can then write

- 2] - . - -
zV, = n&o + 8 (ZJxli ndl) + az(z:xn ndz) + &3(23:31 nd3)

2 2 2 A
+ &11(2x11+nd1-2d12x“-nuf) + alZ(Zx x +ndd

(8) 1 11721

«d. Xx ,-d Xx

2Tx) -9 Fx,) + 8 (2x,

11x3i-d32 x1i+ndld3-d12 x3i).
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Equation (8) is unbiased in the sense that both sides have the same
expectation, We have inserted "hats' on the a terms to imply that
they will be estimated by equations of this type.

For the next estimating equation, we can multiply both sides of (5)
by X and sum over the n observations as before,

2

EVx.=uEx + a. T x + a,Ix .x + 0, Zx . %x_, +a Zx

Hli 0 Tl | R 27 T2 377l 1 71

+u.2x + Tx .

3i 1i li

2
toaER X,

leixli will contain unknown sample quantities which we shall once again

3
i £ !

1
which we are defining as E(£1)3. the third moment of the distribution of fl'

replace by their expectation. The term Zf 3 is replaced by ar

In doing this, we arrive at the following equation:

Zx,

A , 2 2 A
uoz Xt &l (z xli-m'rfl -dlz xli) + 4, (ExuxZi-dzz xn)

3 2 3
-dBExH) + ﬁ.“(Exn+anlo'£ -no

+ 83(Ex X
1 1

11731

(9) 2 2 2
3¢ 1Zx +a? (Z¥%m242x ) + &12(2 xlix21+nd20'f1

2 2
v£12x21+d1d22 %474, Zx -d Exnxz) + 313 (Exlix3i

2 2 2
+ nd3crfl-u'f123 x3i+d1d32x i-d Exl -dlZ xlix.'ii)

This equation also hae unbiased property as does equation (8).

At this stage we have two estimating equations, We can proceed to
derive five more for estimating the seven coefficients in model (2. a).
We obtain these equations by multiplying both sides of equation (5) by
Xpp0 Xgp xlzi' X%y and X 1%q4 and performing the necessary operations,

as described here for the first two equations, on ZxZiZn, 2x3izn, etc,
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Estimation of the d's, o, etc, The quantities dj and o, (=1, 2, 3)
j J
which appear in the estimating equations ave, of course, unknown and
must he aatimzatad hafare we can nse the eguntisns in cstinmating the a's.

Obtaining an estimate of o‘le is quite easily accomplished by preparing

several camples and obtaining intensity measurements %y ® ceey X

(independent of the samples used in section (b) ) at some conclezntration a];gd
computing ?f = E(xn-x /N the sample variance, One can then com-
pute estima.tel for u'fz ) 0'% by obtaining similar sample variances for
the intensities of componem.?s 2 and 3. We can, of course, estimate the
third and fourth moments in a similar manner.

To obtain estimates of the d's, the experimenter needs first to obtain

replicated analyses {on component 1 for the case of dl) for a sample of raw

materials from particle size 2, One must then obtain similar readings for
the materials from the batch of interest, in our case this refers to the
batch at particle size 1, It is important that the two sets of readings be

taken at the same concentration, One can then obtain the averages x( )

«(2)

and x1

unbiased estimate of dl is then x(z -(11). The same procedure is used

, where the superscript denotes the particle size condition. The

to obtain estimates of d2 and d3.

APPLICATION TO IGNITER MIXTURES, ) Samples of the igniter
mixture were prepared at various concentrations of KC104, Ti, and Al,

The intensity for each component was measured for each sample, The data
is shown in Table 1. The overall particle size effect on each intensity was
assumed to be the same for these samples, and the materials in this batch
were relatively ''coarse'' for all three ingredients, Thus we shall refer to
the particle size a8 c-c-¢, This is particle size 2 in our theoretical
development,

Exgerimental.

Instrumentation-Analyses were made with a universal vatuum X-Ray
spectrometer marketed by Philips Electronic Instruments. Spectrometer
components conslsted of an FA-60 tungsten target X-Ray tube, a 4-inch
by 0,020-inch entrance collimator, an ethylenediamine D-tartrate (EDDT)

analyzing crystal, and a gas flow detector flushed with P-10 gas, The X-Ray .

tube was operated at 45KV =~ conatant potential, and 40 ma. Pulse height
discrimination was used for the analysis of aluminum,
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’ TABLE 1 :
i f
: Concentration-X -Ray intensity Data for Igniter Mixtures :
; i o i
i Potassium Perchlorate Titanium Aluminum | 1
¢ i
% Weight % Counts/sec. _ Weight % Counts/sec. Weight % Counts/sec. i
! 31,0 11,609, 31.0 7,219, 34,0 4,917, ,;Wj
| 31,0 . 11,382, 3.0 7,135, 34,0 5,116, =
; " ' . .
‘ 5,0 2,113, 30.0 8, 302. 34.0 3,967, i
: 5,0 2,146, 30.0 8,194. 34.0 3,831, i
34,0 11,775, 7.0 1,691, 35.0 3,825,
34,0 12,003, 7.0 1,735, 35,0 3,857.
: § 31,0 15, 180, 30,0 8, 660, 6.0 690.
; ! 31,0 15, 345, 30,0 8, 638. 6.0 712.

; ; 8.0 3,266, 6.0 1,746, 35,0 2,986, %
3 I 8.0 3,294, 6.0 1,776. 35.0 3, 180, ;
{ 34.0 15, 345, 6.0 1,907, 8.0 730. E

34,0 15,250, 6.0 1,884, 8.0 737. .
; 4.0 2,509, 29.0 11,507, 6.0 551, ]
: 4.0 2,486, 29.0 11, 326, 6.0 551,
7.0 3,968, 5.0 2,240, 8.0 531,
7.0 3,938, 5,0 2,198, 8.0 534, d
19.0 8,198. 18.0 5,159, 21.0 2,077,
19.0 8,574, 18,0 5,279, 21,0 2,160,
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o mixtures and analyzed in paifs in conjunction with a stable reference pellet

Prccedure-Calibration and 'check' mixtures were prepared for
analysis as follows: 10 g. of each mixture including a variable amount
of a cellulose binder was weighed into a l1-inch by 2-inch stainless steel
wial and 2 2/8 inch dianmietes plexigias ball was added to the mixture. The
mixture was then blended on a pica blender mill for 10 minutes. The ball
facilitated blending without reducing the particle sizes of the powders. '
Two 5 g. pellets of each mixture were made in a 1 1/4~inch diarneter
pellet die under a pressure of 30,000 pei, The surface of each pellet that
was against the die plunger was subsequently analyzed.

BPellet Samples were completely randomized among the calibration

containing the same analytical elements as the mixtures, The reference
standard was used to correct X-Ray intensities for short and long term ‘
instrumental fluctuations, Peak intensity measurements were made by a '
fixed count technique and recorded as corrected counts per second, Specific

analytical parameters are given in Table 2,

TABLE 2

Malﬁical Parameters for the Analysis of Igniter Mixtures

Component Emission line *Angle,*28 Fixed Counts ]

_Potassium Perchlorate KKa 22,23 200,000 :
Titanium TiKall 49. 25 100, 000 .
Aluminum AlKa 114,77 50,000

[
*EDDT crystal advanced approximately 30 20

ESTIMATION OF CONCENTRATION-INTENSITY MODEL AT SECOND
PARTICLE SIZE CONDITION. A second batch of material was considered,
one which contained relatively coarse particles of KC104 and fine particles
of Ti and Al. Suppose one wished to estimate equation (2.a) for the
c-f-f(particle size 1) lot using, however, the avallable concentration-
intensity data for particle size 2 namely that in Table 1, .

e g

For the purposes of egtimating the d,, a sample from the c¢-f«f batch
was prepared at 19, 18, and 21 per cent KCIO4. Ti, and Al respectively,

Duplicates were taken and the inteusities in counts per second obtained
were: . : ’

- i i T kT,
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KC'JlO4 Ti Al
5,787. 3. 676. 2,482,
5,770.- 3, 646, 2,461,

Point 9 of Table 1, with ingredients also at 19, 18, and 21 per cent
concentration was used as the appropriate sample for the c~c~c batch,
Subtraction of the average intengities was performed as indicated previ-
ously, Solution of equations (8) through (14), using the data of Table 1
was then accomplished on an IBM 7040 computer for each of the three

ingredients, These coefficients are listed in Table 3, The coefficients

can now be used for analysis of mixtures for the rmaterials from the
c-f-f lot,

TABLE 3

Estimates of the Coufficients for Coarse~Fine-Fine Lot

KClO4(component 1) Ti (component 2) Al{component 3)
o =1.80189 8, =-7.99781 8, =-4,12577
= 2,28358x10"° 8, = -4, 34502x10™° 8, = -2, 65274x10"°
5 =-3.71306x10'7 ez = 3.68540x10"° az = 2.57296x10'5
, = 5.22015x10"% 8, = 1.51577x10"% 3, = 1,43834x10"2
e 4.99141x10"° Sy, = -7.89669x10™5 B,y = -6. 38742x10""
12 =-4.46347x1o'B 312 = 4.91218x10‘8 a13 = -1.48698x10'7
_ -7 ) 7 L7
15 = 1.47985x10 8,, = 1.96862x10 8,, = -2,88265x10

Analysis of Check Sample, More samples were prepared using
materials from the c-f-f lot in order that the analytical equation for KC10
and Ti could be checked. Notice that it is only necessary in this case to
analyze for two components, The third can be obtained by difference
because the a-cellulose binder is added by the analyst and is always known,
The per cent of Al for the ''check samples' was cormnputed by difference,
The results were compared with the known concentrations in order that
the quality of the estimating equations could be evaluated. In order to
illustrate the improvement obtained by the method over that of ordinary
least squares without the particle size correction, the resulte for the
check samples were compared with those obtained by estimating the inten-
sity-concentration relationship of equation (2. a) by ordinary least squares,
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The first sample contained the known concentration; 25% KC10,,
25% Ti, 25% Al, and 25% a-cellulose binder. The intrasities in counts
per second were observed in duplicate, The results are:

KC10, Ti Al ; - i

8,453, 8,107, 3,353, o

8,332. 8,129, 3,379, .;

Using these intensities from the duplicates, the average calculated per- 5
centage compositions (Using the coefficients in Table 2) are below: § R
§ ’ o,

. Y [ ] H

KC10, Ti Al ,

24.71 25,59 24,70

This indicates the agreement between actual and estimated concentrations.
One would, of course, expect even better agreement if the range of con-
centration of the original data in Table 1 were more narrow, The estimated
concentration, using conventional least squares, neglecting particle size '
and measuremeit errors are; '

KC10, Ti Al
20.17 30,40 27. 20 i

The difference between these values and the ones for our proposed proce-
dure is primarily due to the introduciion of the d's into the method,

Additional samples from the ¢-{~f lot were prepared and the estimates
of concentration were obtained, using both conventional least squares, and
our procedure, The results are shown in Table 4,

TABLE 4
Actual Concentrations Predicted Concentrations Least Squares
Sample %K %Ti %Al %K %Ti %Al KBTI %Al o
1 21 21 21 20.8 21.65 21,55 16,88 26.56 19,56 i
2 21 25 19 20.53 26.3 18,17 16,72 30,6 17, 68
3 18 20 24 18.09 20.4 23,5 17.33 25.23 19,45

Note the improvement in the procedure over the least squares results,

)
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} i Use of a Linear Model. In many cases of quality control analyeis the
' materials to be analyzed will vary over small concentration ranges and
the procedure ot estimating concentrations at a given particle size and
compensating for recognized particle size changes can be simplified by
using a linear model such as:

. I‘abo-fblxl +b2X2 +b3X3+...

The same procedures apply to this model and the estimating equations
are considerably more simple than those for the second order model LT
discussed in detail here.

[T .

Discussion of Sources of Error. The d, and the moments of the {'s
are based only on saniple estimates. This 18 obviously a source of error
. in the procedure, For the igniter system presented here, the d; are based
[ , on only two observations. We would expect better results on the check
;‘ samples if we had used more observations,

In many practical situations where the X-Ray fluorescence technique
is used, the range of interest in concentration would be more narrow than
what we used here (Table 2). In practice one might wish to narrow the
range of experimentation to insure the truth of the assumption that the d;
are truly constant and do not depend on concentration.

D _ When determining a'%, one must be sure to include all source of error

which cause X; to differ from the true intensity L. As pointed out .
earlier this involves more than just making repeated measurements on the
same sample which gives primarily the counting error., The error of
blending mixtures and preparing pellets as well as uncompensated instru-
mental mechanical, and electronic variations must also be accounted for,

A good estimate of the measurement error can be easily obtained, however.

The composition selected for determining both dj and o'fzj shoula lie

close to the center of the calibration compositions, Also, the calibration
compositions should be selected according to a statistically designed
experiment to insure accurate estimates of the coefficients in equation (2. a).

In a controlled process the normal variation of particle sizes among
; lots of materials will be smaller than the variation shown here for sizes
i 1 and 2. These variations were purposely made large to illustrate the : ‘
suitability of the method,

|
|
|
|
.
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The a-cellulose binder of the igniter mixtures was considered as a
variable component in this work. Although it could not be analyzed
directly by X-Ray spectrometry, the binder was allowed to vary to simulate
production igniter mixtures which may contain a binder subject to pro-
duction variations in the same nmanner as the other components., The
binder, of course, also results in the formation of stronger pellets, and
thereby allows a wider range of composition to be analyzed. The binder
would normally be added to the mixture in a constant amount by the analyst.
Results of analyses with constant binder would probably be more accurate
than results with varizble binder,
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DETEKMINING THE CONFIDENCE LIMITS FOR SOME TIME
INDEPENDENT SYSTEM RELIABILITY ESTIMATES WHEN
ATTRIBUTE DATA FOR THE INDEPENDENT SUB-COMPONENTS
ARE GIVEN. (A Proposed Solution and Approximating Formula)

Eugene Dutoit ‘
Picatinny Arsenal, Dover, New Jersey |

STATEMENT OF PROBLEM: A problem that arises often in
ammunition engineering is estimating the reliability of some ''one shot!
weapon systems. This clinical problem is concerned with the situation
where the only data available are attribute (the fraction: number of
successful functionings/total number of items tested) and pertain to the-
components of the system, The ammunition or reliability engineer
arranges the independent system components in some logical configura-
tion (called the reliability block diagram) and he constructs a mathematical
model of the overall system reliability. Established procedures do exist |
for determining the reliability of each separate component at any appro- :
priate confidence level, but this problem of interest is to establish some
techniques for combining these component data so that some reliability :
estimate can be made about the system (note; -no ''system'’ data are i
available) at any desired confidence level. In essence, this problem is '
hopefully designed to:

(1) Raise some interest and thought for this problem which appears
to have been treated too lightly considering the frequency with which it
arises. Perhaps someone who might be writing or considering to write
a textbook on reliability might develop a computational procedure for
publication and reference. The use of computer/simulation studies have
already been proposed. These methods may be applicable when a computer
is available and tin.e is not a crucial factor, but we are seeking a solution
that would give a quick but good approximation to some rigorous and
lengthy solution.

(2) Encourage the examination of data indicating the distribution of
failures for conventional weapon systems to determine if some character-
istic distribution can be used to describe some types of items. This l
paragraph reflects similar statements made by Lt. Colonel M. S. Hochmuth
during the '"opening remarks'' of this conference. i

ACKNOWLEDGMENTS: Before continuing with some proposed solution
and approximating technique I would like to express my appreciation to the
Army Mathematics Steering Committee for giving me the opportunity to
present this clinical problem at the '""Twelfth Conference', 1 am also appre~
ciative to all the panel members (Dr. F. Frishman, Chairman: Mr.O. Bruno,
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and Professor H. Solomon) who offered constructive suggestions/comments
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I also wish to thank Mr. Stuart Ritter who developed the computer
program and charts used in this work.

A PROPOSED SOLUTION: The author of this report has independently
arrived at a ''similar' solution to the problem as Mr, H, DeCicco [1]" and
Messrs. Lloyd and Lipow [4] , thersfore the derivations presented here
shall be "quick and dirty". The interested reader should consult these .
refefrerices, and the other sources cited in this report, in order to become
more familiar with the problem., Those readers who are interested in
researching the problem might compare this enclosed solution or some
other possible solutions with each other to determine if some extra degree
of accuracy obtained by a more rigorous/analytic method is worth the
extra effort. DeCicco mentions in his paper [1] that it is "unrealistic to
expect serious support for assurance to more than two significant digits",
This criterion might be used to determine significant differences between
all proposed solutions to this problem. This proposed solution will be
reduced to some approximation and graphic procedure which will hopefully
simplify the computation for non-mathematically oriented personnel.

SERIES-PARALLEL CASE (GENERAL): Consider the following
configuration:

Figure 1
J r 1 T a - T, ﬁ r, n R ’ =T 2
1 ﬂ 2 i=l ﬂ i i+l m
2 b X Y z k
rL’l 1 N2 | 15t g oot H 'm
> - R - - DI L,
L H7 1T P Y TP HRiap Lrm

Notation: Number of 'y'' components in parallel in set i, whére the

reliability of each item at the 50% confidence level is r,.

#“Numbers in brackets indicate references at the end of paper.
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7 The derivation of the "error propagation' formula is well known
: and need not be discussed here (see Bowker and Lieberman; Engineerin
Statistics, Prentice Hall, Inc., Englewood Cliffs, N. J., 1959, page 62;.
Given a function of m variables f(rl, r

gt e rm) with expected values

T ?‘1. 3‘2. - ?m' the expected value of the function is approximated by: -

1]

E[f(‘l' Tor enen rm)] f(f'l. ;2’ cens ;rn) with approximate variance;

e WA M - 44 St e 4

2
, 81
VAR [f(l‘l, 1'2. “e ey rm)] - VAR (rl) [Er—" Al’ ?.2’ cer, ?m] + XX

i 1he

;e 2

f f
: v++ + VAR (r_) Fa_ nA A A . ‘;
i . m rm I'l; r2, ve ey m | 1

!

L Considering the general series~parallel configuration, the equation g

R for the reliability of this system is:

3 o a8 b ~ k

(R = D087 De8P] oo - 12008 |
»
F S (1) < or .

m
R= 1 [-(1-8)Y
\ i=1 (=)

e e -

Equation (1) corresponds to the expected value of the function. The
i variance of equation (1) is

. [N fad
. (2) cr; = %R-:- tr% 4 eeae 4 ———25 u'E .
. r rl rm rm

Consider that ;i = number of successful functionings/total number
‘ fired or tested, where x"‘i is a best estimate of a proportion describing
: i a population where a proportion r, of the individuals have a certain
; characteristic and a proportion l-r; of the individuals do not have it.
Ii r; is the best estimate of some binomial parameter r;{, then the

, . AL
{ variance of r, is:

-

e T T




" = T

ey e T T

TR G ¢ et e

A A
(3) 2 T (1-1)
T

Where n, =total number tested of item i, The general term for equation
(2) ts:

X |
%fﬂ vii = ([1-0-3)%) e D108 %) [-QeF, )%) o
“ | 2 3(d)
RN B S0 I % 1 L B SRS SRS

i

The total variance of the system reliability estimate is:

m A \2
2 R 2
(5) os 3 —— oA .
R %Y ¥

Equation (1) describes the nominal value of the true system reliability
R, namely R and equations (4) and (5) give the variance of the system
estimates. In the area of convential ammunation reliability, we are
interested in computing the lower 90% confidence limit of R, This is done
in the usual way:

(6) 90% C.L. R=§-Acﬁ

where ""A'' depends on the distribution of R.

Since we have no data for the overall system performance (reference
second part of Statement of Problem in this report) it was decided to use
distribution-free methods - see reference [1]. Chebyshev's inequality
states that the amount of area under any distribution which is farthe
away from the mean than ""A'" standaid deviation unite is less than - .

This is described in figure (2) below: . A
Figure (2)
1
AREA < =
A
Mean Ao

268




!
|

e

"A' is determined so that at least 90% of the distribution is explained:
i.e., the shaded area must be no larger than 10%, Applying the above
thecrem:

0= Lo
A
A = 3,16
therefore equation (6) becomes:
(n 90% C L. R> ﬁ’-a.leaﬁ -

SERIES SYSTEMS: The most common case of conventional ammunition
reliability assessments have been on systems without replicated compo-
nents. Referencing figure (1) and letting a=bs=, ..=k=1 we have the following
condition:

Figure (2)

> % 2 Fi.l T Tl =~ =~ "m >
Equation (1) becomes:

m

a a ” A

(8) 4 Rarl-rz...i‘m-.n IR

i=1
Equation (4) becomes:

aRY 2 ,. . \ . , 2 F -5
(9) 57| Tp UfcFpe R by B n '
i i i
So that equation (5) is:
o 2 . 2 s s s . 2 5 0-E)

(10) RTOD (Fp e Bpeee B 7y e B ) CR

The values obtained by equations (8) and (10) are then "stuffed into'
equation (7) to obtain the lower 90% confidence limit on the system
reliability,
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Example; Consider two (2) elements in series: !

+- rl rz -—-+ )

Applying equations (8) and (10):

ﬁ-?l-':"

AZ ~ ~ Lo 2 A A
2 T 0-F) 7T, (1er)
T B eemem— +
R | "2
or A A ” "~ ‘

| 2 . & |R20-T) rp (L-1,)
' Oa = r o0 m———rag— + rv—————— R
: R 1 2 n n,

Figure (3) on the next page gives the estimates of R and oﬁ for 2 through !
5 components connected in series,

i PARALLEL SYSTEMS: If S components are arranged in a parallel
configuration, each component with reliability ? and all S components
must fail for the system to fail, then by applying equations (1), (5) and }

(6):

'"'S"" components
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then

therefore:

(1) 90% CL. R = 1-(1-3)%(3. 16)(8)(1-8)°"" (L(ln_i'))g '

APPROXIMATION FORMULAE. The aforementioned equations can
be cumbersome to work with and (as mentioned earlier in the paper) it
might be useful if some approximation technique could be used in its place,

Series Case. Consider the estimate of the system reliability R
where -

>

o m
(8) . R =
i=

1 i

Suppose we were to ''assume'! that R was on estimate of some binomial

parameter R, The estimated variance [?r;] of u'z would be;

R
. RU-R)

(12) ?r; ~ .

The value of n would be chosen so that q'% would be a conservative

maximum,’

If the sample sizes n, are the same, then this common sample size
should be used in the Aenominator; if n, # n,, then the minimum value

of n should be used in order to maximize &R. Equation (12) can be
re-written as:

2 R(1- &
(12)° a-ﬁ = ;((Ea'iﬁ)) .

Equation (7) now becomes:

(13) 90% C.L. R > R-3,16 N

o A ———ED AR ¢ -

TSN T—e——
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b The difference between the proposed solution (equation 7) and its
approximation (equation 13} was examined in a general fashion. From
: thia curaory int::"":.ic“. the diffsicnves betwoen u.eué wethods can
range from about 0. 00 (two significant decimal places - see DeCicco)

. to roughly 0,05 at extreme conditionc. It appears that this approximation
1 becomes more effective for r - 1.0 or large values of n, or both.

- : Parallel Case: The estimate of the system variance (equation 12)
could be applied to parallel system configurations. The range of differ-
ences has not been investigated but it is expected to be in close agresment

.with the series situation.

1ot o setrb g = e =
i

GRAPHIC PROCEDURE: As stated earlier, it would be useful to .

) reduce the computations of both approaches to the problem.
. P.oposed Solution - Series Case - [Equation (4) can be substituted
: into equation (2) to express the total variance of the system reliability )
i estimate (expanded form of equation 5): {
5 ‘ 3‘
(14)
2 ! a k y-1, 2
A " -
; ok =X (Q-0-8)% .. 01051005, )% . 0-0-F )51 [v(-2)7 ')
;! R =
!' A -
% . ri(l-ri)
! X n,
: i
3 m ,
' In the series case a=xzy=2=k=,..=zl, and by factoring out 1II r,
we obtain; i=l
" n A " " A !
i m A SRR r, ey (l-r‘)
; (15) o’E - ﬁ x 1 2 i-1 “i+l m i §
: R i=l i i
1
g . By letting ;
) . = £ ¥ [ 2 - + o0 o -.
(16) by = r Fy e BB e m, (AF) ’
Equation (15) becomes
o'zi:{ m ¢,
. (17) —_— = X — .
R i=1 ™
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For specific paired values of ¢, and n, (which are computed from
sample data) we can set up a graph of the form:;

N
§ = ﬁ
i ni ¢i
- .4
i
Figure (4)
Defining —= §i' equation (17) becomes
i
2
ﬂ'ﬁ m m " %
d - = Z 3} or se = [(Z 3.)(R)]
R i=l i R i=1 1
so that equation (7) can be written as:
3 m A
90%CL. R > R-316 [(Z §)(R)]
i=l

which is defined by E§i and ﬁ . A graph can be set up -

A

90% C.L. R >

v

3,

Figure (5) .

~
to give the proposed solution. The range of values for n,, m, and R
were considered to fall in the following intervals:
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2 <m < 5 .
From these initial boundary intervals the range of values for ¢ i and
b §i were determined to be:

005 < *i < .150

s0x10"® < £, < 30,000x10°° |

Figures 4 and 5 have been worked out per the above ranges of values and
are presented in the appendix as Figures 4'a,b and 5'a,b.

Approximate Solution - Series Case: Equation (13) is:

R(-A) |

90%C.L. R > R-3.16 o(Min)

which is defined by R and n(Min)., These parameters will be assumed to
have the following range of values-

A

.85 < R < .99

25 < n{min) < 200
- 8o that the following graph can be determined:

A

0>

90% C.L. R >

A 4

n(Min)

Figure (6)
The details for Figure (6) are given in the appendix as Figure 6'.
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This method is certainly much easier to use than any of the previous
eihods,

Proposed Solution - parallel case - Consider equation (11)

i
- L) -a 2
90% C. L. Rel-(1-8)® - (3. 16) (S) (1-3)*"} [—’1:—”)-] which is defined
by & number of components in parallel, F=reliability of each component
in the parallel network and n=the same size used to compute £, For
practical purposes let. s = 2 and 3 components in parallel.
The following graphs can be constructed:

A . .

90% C.L. R>

'

Figure (7)
The details are given in the appendix as figure 7'a,b.

CONCLUDING REMARKS: The above procedure is a proposed 'type'
of answer examplifying the kind of solution requested. Any solutions to
this problem that can be published/circulated as a standard reference
would be appreciated.

276




e

REFERENCES

Some solutions to this problem can be found/derived from the
information cortained in the following references:

1, DeCiceco, H., The Reliability of Weapon Systems Estimated From -
Component Test Data Alone; Reliability Branch ORDSW-DR,
1 December 1959,

2, Dowling, J., Computer Simulations in Reliability; 8th Conference

on the Design of Experiments.

3. Kniss, J., Reliability Estimation for Multi-Component Systems;
9th Conference on the Design of Experiments.

4. Lloyd, D. K., Lipow, M., Reliability, Management and Mathematics;

Prentice Hall, Inc., Englewoaod Cliffs, N, J., 1962.

5. Orkand, D., A Monte Carlo Method for Determining Lower r Confi-
dence Limits for System Reliability on the Basis of Sample Com-=
ponent 1t Data; Picatinny Arsenal report, June 1960.

For those readers who wish to persue this problem further I
recommend the following additional references:

6. Cohn, A., Reliability In Complex Systems, paper given at the
12th Conference of the Design of Experiments, 1966,

7. Rosenblatt, J,, '"Confidence Limits for the Reliability of Complex
Systems'' - section 4 (zero-one components) printed in Statistical
Theory of Reliability, Marvin Zelen (Editor), The University of
Wisconsin Press, 1962.

271




APPENDIX




FIGURE 4'a

bl PT-FACTOR R
| | | ..AIII.L‘.I . ...'.:.1_.

RN

S T

o ]
... "oy
'

SEERAEERRRRRERRENE

I

SHNPLE SIZE

e

UIOI“O..““(‘.O.J"O"

C e e -

[

4 8 4 e G A i g M st e amimmr R e - b 4 M

. 3
H .
P . .
'
’

R 0 . .

»
-
.-
————

C bats ey e .
- e -

—— —

279




o .
-+
]
o
D
(&)
-t
s

o ,
i asmmh . ncofamamatsh cas .-'i.....,--.nc
H ' ' i .

i

4 e s 5

H

* B .
i ems tiemn s mfomanan bt e § 60 ¢
: - .
&l
I
-

' '
PO §
T

. ]

ZZIS  37dAHS

e eI AR L I L I S L O

!

P
i
i

H '
- —— e

|

1 H
i
L 1

i

. t

5.0 oo o thaas e
.
[]
"y

“‘ ! ‘.
=

- -

i
o
}

]
t

+

¥

.
X i
' : : T
NS N AU QUPI NI
’ i . .
) i
-




>
—_— ¥
— 4
1w
. -
o X3d&a
i I «
w — 3 m
:A
™ o e
_LL.m
= 7
|
{




[ S T B R

. L. - Bed . - llf.ionllun, -
~ - e - P, ce Dl .0.- » SLoE.

ot A S A

T S s W R o Y iy e i s o i i oo ol wrw siw wa win i i win e e wle edw

-— —— R R
;o
fiLlltMIIollm.l.m‘&.,. 8T
+ i - - o
IR ! ,
m . N \
TS A SRNL AN S P 1

1A T’II'HHI'I?B :

b
282

44

a

FIGURE 5'b
i
|
|
VAN A

R/ //7
/e

VLA
-3 @

. * -

T




FIGURE 6'
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FIGURE 7'a
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STATISTICS, PROBABILITY, AND DETERMINISM IN A
RELIABILITY IMPROVEMENT PROGRAM

Woodie R, Jenkins, Jr,
National Range Operations
White Sands Missile Range, New Mexico

The Data Collection Directorate of White Sands Missile Range (WSMR)
is presently engaged in the task of increasing the probability of obtaining
usable data from several data gathering systems. These systems are used
on various projects to collect vehicle performance data, The projects are
tests of weapon systems, The data gathering systems are optical cameras
and electronic instruments used to measure the position, velocity, attitude,
events, and internal status of teat vehicles. The probability of obtaining
usable data is the ""Reliability'' that is referred to in this paper. Data
records are obtained by instruments of the optical and electronic systems,
and the records are assessed ''Usable in Reduction' or '"Unusable in
Reduction'' by the WSMR Data Reduction personnel.

It is the policy of the Data Collection Directorate to allow a data gather-
ing system to exhibit a total fraction of unusable records, over a given time
period, that does not exceed P_, In other words, if U = the number of
unusable records and I = the number of attempts to obtain data, then the
fraction of unusable data obtained by a system over a given period of timeis

(1) P:-[-IJ-.

(Note that U/I is a measure of the unreliability of the system, and one minus
the unreliability is the reliability of the system.] And, in order for the
process of obtaining usable data to perform in an acceptable manner,

P Must be_<.F’o .

When, over a specified period of time, P > Po' then the Directorate must
take action to improve its data gathering reliability.

It is the P > Po problem that we address ourselves to in this paper,

The question to be answered is "What action must the Directorate take
in order to ensure that P will be < P, for the next equal sampling period?"
It is my hypothesis that "The areas that should be contrclled can be found
by determining the most significant ditferences between the deterministic
relationships that existed at the time the unusable records were obtained by
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specific instruments and the relationships that existed at the time the
usable records were obtained, This requires that the same instruments
at the same locations be operated by the same personnel on the same
projects in both cases, Moreover, hypotheses about how to control
physically the appropriate deterministic relationships can be formulated,
tested, and verified with satisfactory results.”

[1f other hypotheses are made available, I will certainly consider them. ]

Once the relationships or parameters that must be controlled are known,
&n mnmeaefzi of my hypothuu can be performed '

The following example illustrates how statement (1) of my hypothesis
can be accomplished.

Let us say that we must assure ourselves that the P > P_ condition
for sample (1) will be a P < P, condition for sample (2) for the tracking
camera system (cmetheodohtes) Sample (1) is the original data for which
P> P,. Sample (2) is the necessary and sufficient amount of data needed
to make a decision about whether the controlled process yields P<P_.

The following observation was obtained from all of the sample (1) data,

Frequency
of

Occurrence l ]
() (2 (3 (9 (5 (& (7 (8 (9 (10

Reasons for Being Unusable

Figure 1

From the definition of P [Eq. (1)] it can be seen that

= Frequencies
(2) P = Reasons

If there is no reason to expect that the P for sample (2) will be significantly
different from the P for sample (1) if the process were left unchanged andif

b2} Frequencies - Frequency of Reason (1)
Reasons
(3)

<P,
1

T




then each occurrence of reason (1) should be analyzed for the deterministic
conditions or relationships that existed at the time that thé data records
were obtained.

1f reason (1) is identified as: '"Insufficient Coverage', then the equation
describing the probability of obtaining ""Sulficient Coverage! by a camera is
derived as follows.

Sufficient coverage is defined as the required number of cunsecutive
frames of data, M,, for any optical system. If a cinetheodolite is assigned
to operate on a project from time ¢t a‘ to time t'; at & data gathering rate

of £ frames éer unit tiﬁie. then the e:épectad total number of frames of
data is '

(6) 2 (tr: - t;) .

e —————— DO e -

If r =the obtained frame rate and [ta, tn] is the time interval over which !

E the camera operated, then the total number of frames of data obtained is

(7) Tt -t) .

Also, if eo ¢ and §° . azimuth and elevation angles respectively of
H H

. the optical axis of the camera at time t, if 8, and §t = the azimuth and

elevation angles respectively of the aerial target to be tracked at time t, and
if Be and [3§ are the angular sized of the camera' field of view in the !

et

horizontal and vertical planes of the camera respectively, then it can be
i ! shown that the aerial target is contained in the camera's field of view i1 and

only if
57.3 57.3
; 0ot T T2 P 0, -3 By
(8) and

57,3 57. 3
$o,0 T T Py> B > 8, - = Pg

are satisfied simultaneously. Note that since 6 and § are in degrees
and be and B§ are in radians, 57. 3 coverts Be and ﬂi into degrees,

If we call the probability of the camera acquiring the aerial target at the
instant t and use the concept of Delta Functions, then

o TTTTNTNRTEET e T rimemRmmws o e s
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o +5'7.3Fi >0 >0 _57.3

| o.t 2 '@ t o,t = 2 %m4
(9) A = 57,3 57. 3
: §o.t+ 2 p§ > §1: > §o.t T2 p§

0, Otherwise

Since we must have at least M, number of consecutive frames of A, = 1
. ever &&L_"tnl_ in arder to have sufficient coverage, then a concise

mathematical statement of the required condition is defined as follows.

The camera operates at a frame rate of r frames per second, The
time required to obtain one frame of film is At, where

R S
rTEAr
(10)

i At =

i

Moreover, if it takes At units of time to obtain one frame of film, then i
it takes MoAt units of time to obtain Mo consecutive frames of film, |
Therefore, sufficient coverage is obtained if and only if

tn - MoAt
t.+M At
1 o
(11) i>: 'I Atzl.
: tl =|‘:a t=tl+At

where

(12) t = {ta, t,+M oAt t +2M At t +3M ALt -2M AL, tn-MDAt}.

If there is any sampled instant in M, consecutively sampled instants for
! ‘ which A; = 0, then the product term of equation (11) is zero for that series

‘ of frames, If all such series of frames yield product terms of zero, then
the film record will surely be assessed unusable due to insufficient coverage.

Again relying on the Delta Function concept, the probability of having
obtained sufficient coverage is given by

© e -
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{13) CC‘;"n] =

( tn-MoAt W
z t. + M At
' o]

t, =t t=t + At )
a .

0, Otherwise

- - -Bquations (9} and (13) provide a means for attempting to finda physical

cause for each occurrence of unusable records due to insufficient coverage.
For example, the following relationships can be compared by using both
usable and unusable data for each station {camera) that obtained unusable
records due to insufficient coverage.

After anal yzing Figure II, we will be in a position to formulate
hypotheses about how to control physically the relationship(s) exhibiting
the most significant differences between the usable and unusable data for
a given camera on a specific project,

The above discussion has illustrated my approach to solving the P > P
problem, Since the proposed method has not been tried as yet, I am
seeking an evaluation of the method along with alternate approaches to
solving the problem, I will now entertain questions a.nd/or comments

about this problem.
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A COMPUTERIZED PROCEDURE FOR WRITING
MATHEMATICAL MODELS FOR SYSTEMS RELIABILITY

John G. Mardo and Anthony J. Ricciardi
Mathematics and Statistics Branch, Nuclear Reliability Division,
Qnuelity Assurance Directorate, Picatinny Arsenal
Dover, New Jersey

1. ABSTRA(T. A method for the determination of mathematical
models for the reliability of missile adaption kit (AK) systems is pre-

-sentéd,” The method conoists of a computer program, the input of which
"14d Boolean expression of the systemn contiguration, The program

constructs a successa-failure tree from the Boolean expression resulting

in all possible success paths for the system, The union of these success
paths is the reliability model for the system., The number of components
and not the complexity with which they are combined limits the use of the
present procedure,
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IIT Introduction

The purpose of mathematical estimations of reliasbility in any sta~»
of the life cycle of a system is to determine the expected probsbility cf .
successful functioning in use. These eatimationa ahould sntdodnzic
potential reliablility problems and reveal system configurations thst have
greatest probsbllities of fallure in use,

An important tool in evalusting these estimates is the relisbility :
equation. This equation 1s s mathematical model of the system under
congideration, relating the reliebllity of the system to the reliability .
of the components which comprise it. For complex slectricsl systems,
these equetions are difficult to obtain. The difficulties encountered
are dependent upon the mumber of components in the system and the degree
of -complexity of the configuration.” -

The dependent operations of the variocus components require the use
of conditionel probabilitles in developing the mathematical models. The
determination of these conditional probabilities is difficult; as a
result, rellability equations for complex systems are usually approximations
based on the assumption of independence. Simplified models of the system
are presently used which ignore the less likely modes of operation.

Although numerical estimates ohtalned from models whlch represent the
system exactly do not differ merkedly from those that would result from
eprroximete methods, there fre & number of advantages in using the more
exact method. Arguments es to the velidity of the model used for the
analysls ere largely eliminsted because the "model", in this case, is the
most complete mathematical representation of system operation possible.
The abillity to hendle lerge numbers of components permits bresking down vy
the system into very small elements and the relisbilities of these smell '
elemente can be established with greater confidence and can be established
by testing at less expense. Finelly, the equations arising from this
analysls permit component effect studies on s more realistic level, since
a8 more exact representation of a component's role in the operation of the
system is given by the resulting equation.

An sutomsted procedure will be presented for analyzing systems. This
procedure results in a reliability equation which is a methemetical model
representing the system. The primary purpose of this sutomated procedure
is the determination of success models in the shortest length of time by
the most economical means, Complicated networks require months of manual .
effort to determine reliability models sven with the previocusly discussed .
approximations. Using the computer procedure tc be dlscussed, it is
necessary to understend the loglcsl funciioning of the system. ' With this
understanding, it will reqire only a few days rather than months to derive '
the final algebralic equation using computer techniques.




IV Foundations of the Computerized Procedure

Consider the system composed of the components C;, Cay ..., Opn arranged
in » configuration whica mekes ordinary parsllel-series reliasbility anslysis
of the network difficult, Interdependsncy of component operelion causes
such a situation. It follows from Bsye's Theorem that

(1) P(2) = P(£]Cs)P(Cy)+P(£]Ty)P(CL)
where: P(f) = probsbility of the system functioning

P(LiCy) = the probability of the system functioning glven that
component C4 operates correctly

P(C4) = probability of component Cj opersting correctly

P(fIEi) and P(C4) are defined similarly where Ei represents
the event where component C4 fails to operate correctly

P(Ci)(is the relisbility of the component Cy and P(Ty) =
1 -"P(C4)

Equation (1) would be the desired expression of the system reliability
in terms of the gomponent reliabilities if the conditional probabilitlies
P(£|C1) end P(£f|Cy) were evaluated either numerically or as functiona of the
component reliabilities. The computer program listed in Appendix A performs
these evsluations of the conditional probabilities by using the Boolean
algebrsic expression which represﬁ_nts the loglic of the syastem operation.
This expression is a function B(CI, CH, ..., C*) which takes on the values
1 or 7 representing system success or fellure, respectively, where CI’ is &
veriable which takes on the vslue 1 or 0 depending on whether component
C4 operates or frils to operste, respectively.

-+ It is possible using this_functlon B to evalueste the conditionsl
probsbilities P(£|0j) and P(£|Ci). If, when c} is glven the truth value

1 in the Boolesn function B, and all other C¥, where J f i, sre given truth
velues ", the value of B is 1, then P(f|C{) = 1.0, However, if B = 0

then P(f|C4) cannot be delermined directly snd P(f|Cy) must be further
expsnded aa follows:

P(f|Cy) = P(fICicd)P(CJ)+P(fICiEJ)P(EJ)for eny J F 1
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Similarly, wwhen Cr is glven the value Q in B and all other C¥, where
J. $ 1, srg given values 1, B = O, then P(£{Cy) = 0.0. Howaver, 1 ’p = 1,
thein F{L1C01) vau nul ve determined directly ana thus may also require
further expansion as follows:

P(£]Cy) = P(flcicj)P(cj)+P(f|cicJ)P(cJ) for any j # 1

At thils point, an attempt is agein made to evaluate the conditional
probabilities uaing the function B. The procedure is continued until all
the conditional probabilities have been eliminated by substitution of
either their numerical equivalents or these conditional probabllitles

_exprassed as combinations of the individual component relisbilities. When

this point is reached, the P(f) hes been expressed algebreically as a
combination of the individual component reliasbilities snd the program is
terminated.

Applying this procedure to the following circuit:

A

— c FIG. 1
B

the Boolean expression for the clrcuit 1s

SYSTEM = B(A,B,C) = (A+B)+C

Expanding as described above using Taye's Theorem:

1. P(f) = P(£|A)-P(A)+P(L£|A}P(R)

2. P(f|A) = P(£|AB)-P(B)+P(£|ABMP(B)

3. P(£IK) = P(£|AB)+P(B)+P(f|AR)P(E)

L. P(£|AB) = P(f£|ABC)P(C)+P(£|ABC) P(C)

5. P(£lAB)= P(£]|aBC)-P(C)+P(£|ABR) P(E)

6. P(£]AB) = P(£lABC) P(C)+P(£|KBT)«P(T)
From the Boolean Expression i1t follows that:

P(£|AB) = P(£|ABC)= P(f]ABC) = P(£/ABC) = O and P(f|ABC)=
P(£|ABC)= P(£1ABC) = 1




Hence:

P(£) = P(C)*P(B)*P(A)+P(A)+P(C)-P(B)+P()+ P(R).P(T)
P(£) = [P(B)-P(A)+P(A){1-P(B))+P(B}1=P(A)) ) P(C)
P(£) = [P(A)-P(B)+P(A)=P(A)+P(B)+P(B)=P(A)+P(B) ]+ P(C)
P(£) = (P(A)+P(B)~P(A)+P(B))+P(C)

Ehi;lggsglt is the algebraic relisbility equstion for the cirouit shown
n FLG,. 1, . . , L . _
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V Application of Computer Procedure

The following example demonstrates the computer method of handling
the procedure on a simple circuit. Consider the circuit with components ‘
A, B, Ci1, D1, Cay Dy in the figure below: :

i Cy - '[
i , ‘i
% — A S Do e  FUNCTIONAL a
S ”--I ’ DIAGRAM |
. : i
o B 4 - Cz _ FIG. 2 :
H
D, | |
L] o .

The above circuit is translated into its Boolean or logic disgram:

C1

: A B Dy BOOLEAN OR |
; — . LOGIC DIAGRAM §
! B A Ca FIG. 3 §
t
E ; Dy E

The Boolean loglc diagram is converted into a Boolean expression
using Boolean algebraic techniques. The resulting expression for the '
above diagram is 28 follows:

Ceivew e

(1) SYSTEM = A(Cy+BD,)+B(Dy+AC,) "

This expression is then programmed using whatever means are svallable
in the progremming language being used.

The next step is to set up an "order of nonsideration" of the compcaents.
This will be A, B, Ci, Dp, D1, Ca.

The steps that follow are handled by the computer as follows:

Using the Boolean expression, a "tree" is generated within the .E
computer., Such a tree will now be generated for the circult under discussion. i

_Symbol (A) is used to represent the success of component (A). .
¢ Symbol (A) is used to represent the failure of component (A), Similar
: notations are used for components B, C, and D. Starting with component A
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(since A is the first component under the order of consideration) the

associated success-failure symbols (A and A) are used as the first two
branches of the tree. To determine how far to continue a branch, each
hranch 42 tested Ay aysminad neing the following rul

-ca . :
vvvvvvv P ] P

1. Sterting with the A branch, assign the value 1 to
¢ component, (1) and the velue O to all the remaining componenta in the
] { sygtem. Subatitute these truth velues into the Boolean expression for
the system and determine whether this cormbination of velues csuses a
3 - system success or a system failure. If the result is a system success,
3 end the A branch of the tree., If the result is a failure, plan to
, continue the A branch by adding the two branches (B and B) of component B.

SHEE N 2. Using the A dbranch, assign the value 0 to component (A)

.and the valus 1 to all remaining components in the system. Substitute

these truth values into the Boolean exprsssion for the system and

’ determine whether this combination of vslues causes a system success or

s a system failure. If the result is a sysvem failure, end the A branch_

. of the tree. If the result is a system success, plan to continue the A
branch by adding the two branches (B and B) of component B.

3. Contimie to generate the tree diagram uy adding
components and testing esach branch of each component for termination or
contimation as described above. The expression that describes the
success path to the last component in the branch can be used to develop
the a2lgebraic equation for the system.

A

When all success paths have been generated, the program creates
an algebraic success model which can be used for the generation of '
. reliability point estimates for the overall network described by the
Boolean expression. :

The tree diagram for the circuit.of FIG. 2 1s shown in FIG. L along
with the resulting success paths,
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FIG. L
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_The computer program then saves these susscess paths, substituting for
the A, B, etc,, (1-A), (1-B), etc., respectively ss follows:

tt (SYSTEM) = ABL1+AB.U3(.L-b;_)+ABD1LJ.—C;|_)(J.-D2)+ABCQ(1 C1)(1-Dp)(1~D3)
+AC1 (1~B)+BC,D,Dq(1~A)+BC1D1 (1 -A)(J,-Dz)+BDaD1(1-A)(1 Cy)
+m1(1-A)(1-c1§(1-D2

The equation for R (SYSTEM) is then stored in computer memory es
follows {see Appendix; RELIABILITY MODEL):

R (SYSTEM) = ABCy+ABD,=ABC1Dg+ABD; =ABC3Dq-ABD; Dy +ABC,D3Do+ABC,-ABC,C5
~ABCgDo +ABC1CgDa=ABCaD 1 +ABC1C ;D1 +ABCaD1Dp=ABC4CaD Do +AC
-ABC;+BC;D1D3-ABC:_D;DQ+BC1D1~ABC:,D1*BC]_D1DQ+ABC1D1DQ+BD1D3
'ABD]_Da‘BC]_DJ_DQ"‘AB(A1D1D2"‘BD1‘ABD1‘BCID]_"‘ABC]ID],'BD].DQ*ABD:_DQ
+BC1D1D3'ABC:LD1D2

Noting that A and B are similar components which will always have the
same function and the same reliasbility as will Cs, Cz, D1, 8nd D the above
equation will be reduced to the following by the computer:

R (SYS’I'EM) = ARC+ARC-A2C2+AC=-A2CR=A2C2+ARC3+AR0~ARC2-ARC2+4R03-A3CR+ARC3
+A2C2-ARC4 +AC=-ARC+AC3-ARC3+ACR-42CR-A0B+ARC3+ARCR-A02 +ARC?
+AC=-A2C=-ACR+A2(02-AC2+A2C3+AC3~A203

The "combine terms" routlne is then applied to cbtain the final result,
the algebraic success model for the circuit in FIG. 2 or any circuit

represented by the logic diagrsm of FLG. 3.

k (SYSTEM) = 2A3C-6A202+4A203-A204+2AC
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VI Conclusion

The program to carry out the procedure described above has been
develcped and tested on many hypothetical systems., (See Appendix) Results
of this testing brought to light a few drawbacks to the method. These
weaknesses will now be discussed.

On a system consisting of N distinct components, the munbecr nf branches
which mey be considered is 2N, This number may be reduced greatly if a
proper order of considerstion of components 1s used. The procedure ia
extremaly sensitive to this order #nd efforts sre now being mede to deve! p
decision mechanisms within the progrem to construct non-redundant success
peths which result from improper ordar of considerstion. An illustration
of this redundsncy can be shown on the demonstration circuit used sbove.
Because of_ the order A, B, C,, etc. used two success psths which result are
ABC; and ABC;. The same contribution that these pasths make to the final
reliabllity equation would have resulted had the order been slightly altered;
l.e., A, Ci, B, etc. The only success path resulting from thig order would
have been ACy and_P(AC,) = P(A)P(C;). Notice that P(ABC,)+P(AEC1) = P(4)
P(B)P(Cy1) +P (A)P(B)P(Cy) = P(A)P(B)P(Ca)+P(A)P(Cy)=P(A)P(B)P(Cy) = P(A)P(Cy).
Hence, this chsnge in order eliminates the use of two branches to come up with
the same contribution to the final algebraic success model. The presence of
each causes unreasonable amounts of computer time to be used even when only
point estimates rather than the elgebralc equations are being computed.

A second problem is caused by the need for large amounts of computer
storage. This need arises only when the algebraic equatlon 1ls being sought,
since each success path must be stored in some manner so that final
refinement of all success paths as a whole can be made to determine the final
model in a well organized form. When only a rumerical point estimate is
sought, there is, in general, no need to be concerned about memory slze.

The third and final problem is & minor one. It results from the
cumulative round=-off error that is present when many accumulative
miltiplications are performed with very small numbers while generating
numerical estimates of relisbility. This problem, however, hes largely
been overcome due to the svallebility on moat present day computers of the
double precision veriable.

The present stages of development of the procedire are concerned
primerily with overcoming these difficultlies. When the flews sre eliminated,
the computer program will provide to the englneers a means of predicting and
estimating the relisbility of their systems. It wlll provide engineering
with the efficiency and accuracy of the computer in determining*the
relirbility success models it requires, seving & good desl of time and money.
Reliebility equations that previously require months to derive manuslly, can
now be solved in a metter of days.
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Appendix A

Included in this appendix are a listing of the computer program
discussed in the body of this report and an example of the program cutput.
This output resulted from the application of the computer procedure on the
simple ¢ircuit discussed in Section V of this report. Note that a
relisbility point estimate wes generated for a glven set of component
reliability values, as well &s, the final reliebility model,
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PROGRAM LISTING

DIMENSTON  [COMP(37) g IRRNCH{3Y ) o TRUTH( I )y FLEMNT (IR ) 4 TKOUNT (2™ ),
LITERMS( 23 R 339) o STONEZANY JARFALTI(IY 3%, LYY
DUUBLE PRFCISION B{3%) 4PRON,PRABL, PRNAR?
DATA QPOMHL/6GH /
ALANK= QniedL
JATA Q*VIHL/ZGHN /
NEGATE= QFP1HL
DATA QrnadL/4H ¢/ .
L PLUSE QINPHL . .
DATA QOA3HL/4M - /
TINUSE '~ IM4L
WRITE (6467])
651 FORMAT{IHT)
17 READ (85,5°¢) Ny ICQDE,LISECT
§C~ FORMAT((T3,2X))
ICONE =+1 CALCULATE PNINT ESTIMATE NN Y
ICANE = = FOUATE(N (ONLY
{CONE a=1 DBOTH
IF(ICNNEIRG, 39,91
29 READ (5+5°1) (FLEMNT(LIST), LIST=] ,N)
5351 FNRMAT(17A4)
NN 97 TLISTsl,yN
G WRITE{659R) FLEMNTIILIST)I ILISY
5698 FIHRMAT{ 14" 339X, 1 "HEOMPINENT 44644159 IS REPRESENTEN AS VARTARLFE NiIM
18ER L2}
91 IF(ICHNENS2,493,92
9?2 READ(S5,45°2)1(B{KM) ¢KM=] ,N)
WRITE (5,599 IN,{A{KN) yKN2),N)
5Q9 FORMAT (LH" /784X ,27HNIMRER OF SNVMPONENTS #412,/54X,74Hmmemrmccnn=a
lemmevcnccc- /71U 1IHT 449Xy N1R.121) /)
THFE AQNVF STATEMENTS HANNLE THE TARULATING OF COMPNNENT SYMARNL RFPOF-
SEMTATION, RELTARILITIFES NR ANTH, . :
93 [TFRM = *
[comMP(1)a |
K=1
6 IRRNCH(K)=]
5 ICOMP(Kel)=]
MeKe?
DU 1N IsMyN
1" (COoMpP{l)an
NO 7Y" [9=1,N
TAC LUI9)=ICOMP(I9)
IRONLESICOAMP (1) R (TCOMP(2)SICIMP L4 ) «ICAMP{IN I+ TCOAMPI2 ) ICNMP( ] 1%
1I1COMP(4)+ICOMPLS))
IFUIBNOLENT 477 471 g
A IF(K=Ne¢1)13,14,14
14 WRITE(&,67")
6N" FORMAT(15Xs45HND SUCCESS PATH EXISTS FOR CIRCUIT CONSTRULTED)
GO T0 171
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i i

LT

T e e—

41
on

73

8t
a2
214

74
201

199
202
198
293

274
2ns

197

ar e

206

4 172

;181

KeKel

GO TO &

ITERM = [TERM + |

nn 4an !Ml!;M
|F'lCOHP(l""h?v4l,42
Ll'lﬂ

TRUTH( IM) =BL ANK

G YD &4
TRUTH( IM) sNEGATE
CONTINUE
IFLICODEYT73¢764,73
PROR2 = |,0

0N RS [T2al,L)
i?'tCU"P'IT?”BIQBZ'Ql
PROBI=BIIT2)

GO T0 8n

PROBL=1.M - 3(1IT2)
PROB2=PROR2#PRN]Y

PROR = PRMA + panp2
IFCICNDEY T4, 2, 2

D0 271 INDEXsi,L1
ITERMS (1, INDFEX)=INDEX
KOUNT=N

K2=}

IF(TRUTH(K?) = NEGATE)2M3,202,273
KOUNT = KOUNT ¢ 1
IKOUNT(KOUNT )= K2

K2 = K2 + 1}

GO 10 199
IF(K2=1L1)198,2"4,19A8
TF(KQUNT)197,2r5,197
NOTFRMa 1

NUM=1

SIGN( 1) =P US

GO TN 194

NOTERM = 2:&KOUNT
NOSIGN = 28NJTERM

DN 276 INDICE = ) 4NOSIGN
SIGNIINDICE)= PLUS
NUM=1}

KOUNT] =n

ISTAGE =)

MOUNT =sKOUNT1+1

KOUNT1 =KOUNT1 + 2¢s (ISTAGE ~ 1)
Na 189 INUM=MOUNT » KOUNT1
NEXT = IKOUNT(ISTAGE)
NUM = NUM +}
IF(NEXT-1)181,182,181
NEXT1sNEXT=1

D0 15¢ INDEX1=],NEXT]
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182 ITERMSINUMINEXT)= n
NEXT2 = NFXT + 1
DN 151 INDEX2 = NEXT24L1

SIGNINUM) =SIGN{ INUM)
NUMaNUM ¢+ ]

152 SIGNINUM) = TINUS
Gn 10 1710
142 SIGNINUM) =PLUS
17~ IFINEXT=1)191,192,19]
191 00 183 INDEXIs]1,NEXT]

DO 154 INDEX4sNEXT2,L1

. 154 ITFRMS(NUM, INDEX4)}=sITERMS( INUM,y INDFX4])
[FINUM+1=2%x (KOUNT+1) ) 1A, 194,194

18% CONTINUE

s 60 TO 209

194 D0 955 Ja NOTERM,NUM
.NQ 111 JASO=l,L1

157 ITERMS(NUM, INDEX1)=ITERMS{ INUM, INDEX])

191 1TERMSINUM,INDEX?) = [TERMS{INJM, INDEX2)

IFESIGNIINUM)=TINUSILIS52, 1624152

153 ITERMS(NUM,INDEX3)=ITERMS( INUM, INNEX3)
192 ITERMSINUMGNEXT) = [TERMS{ TNUM, NFXT)

IF(ITERMS(J, IBSONI1L2,113,112

1172 AFACTO(Jy IBSO)=ELEMNT(IRSO)
G0 10 111
113 AFACTN{J, IBSN)=3L ANK
111 CONTINUE
> KNOUT=KOUNT+1
ND 144 KNUN=L, KNOUT
DO 114 I=1,L1

' IFTAFACTNIKNUNI)=BLANK ) 114,331,114

331 TEMP=AFACTO(KOUN,T)

AFACTN(KOUNy I )= AFACTO(KDUN,I+1)

AFACTO(KOUNy [+1)aTFEMP
114 CONTINUE
144 CONTINUE
155 IF(ITERM=1)9556,954,955%
954 WRITE(64593)

955 WRITE(646NG) SIGNIJI»(AFACTN(J,T),Ta],L1)

4085 FNRMAT(LIH 427(A4,y1X))

. 593 FORMAT (1H1,12Xs17THRELTABILITY MONDFL/IH 411Xy 19H-=cwam= e mn-- -

1=-/)

60 TQ 2 :
. 200 ISTAGE = [STAGE +1

GO T3 172 '

2 IBRNCHIK)=2

ICOMPIK#1)=)

Ml=Ke2

NG 29 J=MlyN

20 ICaMpPtyysl
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771

; | 22

15
16
23

34

1l
172
61°

502

DO 731 18=],N
Lifg)=[CNMPLIB)
IBOOLF=ICOMP( L) X(ICOMPI2)XICNMP (4} +ICOMPI3NI+ICOMP(I) X(ICDOMP() ) *
11COMP(6)+ICNMP(S))

1F{I8NNLEYY3, 22,41

K=K=1

IFLIRONCHIK)=1) 1", 2,16

IF{K=1)22416472

[IF(ICOMPLL1YIZ23,171,23

1ICoOMP{L)= N

IBRNCH(1)=2

N 30 IN= 2,N

IBRNCH(IN) ="

GO 10 S

[FUICADENIC2,107,172

WRITE(&,617)PROR

FORMATIIH //7742%418H POINT FSTIMATL = , D1R.12/7/)
GOH 70 1"

FORMAT(4D1R.12)

END
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BEST FITTING LINFAR VARINTIES

Rouberi ivi, Thrail
Willow Run Laboratories
University of Michigan, Ann Arbor, Mickigan

1. INTRODUCTION. We consider a generalization of the classical
problem of finding the best fitting linear function for a set of data. The
results obtained are stated in the language of eigenvulues and principal
components and take a form which is not explici* in the usual textbook
treatments of principal components, In 1901 Karl Pearson in his paper
"On Lines and Planes of Closest Fit to Systems of Points in Space"
(London Philosophical Magazine, Sixth Series, Vol. 2, 1901, pp. 559-572)
stated and solved the problem for ordinary three space. The texts
M. J. Kendall, A Course in Multivariate Analysis, and T, W. Anderson,
Multivariate Statistical Analysis, treat the standard principal component
theory and give useful numerical examples. R. Bellman (Introduction to
Matrix Analysis, McGraw Hill, New York 1960, pp. 113-115) develops
the same topic from a slightly different point of view using the Courant-
Fischer min-max Theorem.

2. SOME ALGEBRAIC BACKGROUND, Let V= Vk be the space of

-column vectors of degree k over the real field. A sequence Cl' .o ,Cr
of vectors in V is said to be orthonormal if

0 if i#j
C, C = {t, j=1,...,n).
! 1 if i=j

"3

(We use the superscript T to denote matrix transposition.) A matrix
C= [Cl ves Cr] is said to be orthonormal if its columns constitute an

orthonormal sequence or eguivalently if CTC = Ir'
A subset W of V is said to be a subspace if it is closed under

addition and multiplication by scalars, a subset M of V is said to be
a linear manifold if it has the form M = W + Xo = {Xo + X |XeW} for some

subspace W; i.e.,a linear manifold is just the parallel displacement of

a vector space. For any matrix C we denote by L™(C) the set (subspace)
of all solutions of the equatior. CX = 0 and denote by L{C) the subspace
consisting of all linear combinations of columns of C. For any subspace
W there exist matrices A and B such that W = L*(A) = L(B). If

dim W = r we may assume that A has shape (k-r)-by-k and that B has
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shape k-by-r ; we may alsoc assume that AT and B are both orthonormal.

A square orthonormal matrix P is said to be orthogonal ; for ahy
non-pquare orthonormal matrix C there is a second orthonorrnal‘mttrix
D sach that P = [CD] is orthogonal and for which L{C) = L*(DT),

A k-by-k matrix A is said to be positive semi-definite if X* AX > 0 g

forall X inV; if also XTAX = 0 implies X = 0, A is said to be.positive
definite. 1f A is positive semi-definite there exists an orthogonal matrix
P such that :

K are called eigenvalues of A ; a positive semi-

definite matrix is positive definite if and only if Ak > 0, The j-th column

Pj of P satisfies the condition A1=’j = /\J Pj and is called an eigenvector .

The numbers )\1. e A

for A belonging to the eigenvalue Aj(j =1,...,k).

If A is any k-by-k matrix we define the trace of A by

tr A = au + 322 + ... + akk .

If a product BC of two matrices B and C is square then so is CB and

tr BC = tr CB .

A matrix G is said to be a projection if

cel = ¢ . o
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1f C is orthonormal then CCT is a proj'ectif‘on. | s
If W=L(C) w‘here C is a k-by-r orthonormal matrix the Brolection ’
: of any vector X onW is the vector . s :
oo . - ' K : : .:- k
% v , * xO - zi=l ‘(X Ci)_ cs'i" y ‘
E’“ : then X - X is perpendicular to X (x - X ) X = 0) and tw .squared ' .: _ »v 'y
- dzstance d(x W)2 from X to W is given by ' S .
i e
! f ax, W) = (x-x)Tx-%x) = xTx.xTx W
! ! ) ) o n . '
y .
Y = x'x -7 (x c)(x c)c c ' .
% i Zjul i j N
| T 2 | '
H [ ] §
e X'x - =% (xTc) §
3 iml 1 - i -
i " ’
- ; |
; ‘ |
j = xTx - xT ccT x !
I
| : = xT (1-cch)x .
Let [ CD] be an orthogonal matrix where D has s = k - r columns.
| ' Then 1
!
o I = {cD] [cD] T . cc® + oot 3}
’ ?
so that ;
dx, w)2 = xT oo’ x S

and, moreover, W = L*(D).

Next, let B = [Bl «v+ B_] be a k-by-n matrix and let




i=
* ) YO T -
‘ 'zixl Bi DD Bi
’ = tr BT DDTB
 since | - -, :
" . . ’ T ) '
4 _".‘. * D e B}D " ) j
WL (8"p)(0™p) = | i |- [T, ... p'B ] =, BTDDTBj .
. . s o . BTD . N . -
| n '
- '
Now, since tr is a symmetric function, we have
- wr * '
dB,-W)®> = trB" DD'B = tr D' BB'D .
; . ‘Next, let M be an orthogonal matrix for which
- ' Al
MT(eaT)m = g = N\
A
, k
where /\lg/\z;...gkkzo. )
t Then
Fr! ¢
8, W% = tr (M )" (MT BBT™M) (M D)

H

tr D'T,/\D' = d(_/\, W')z

where D' = M?D is also orthonormal and W' = L’:‘(D'T) . ’

e e e

3. THE BEST FITTING LINEAR SPACE. We now state ouf problem.
Given B, find the space W of dim r which minimizes d(B,W)¢, the sum
of the squared distances from the columns B to W,
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} We see that

Y R

&

“min” {d(B,W)Z |dim W = r} = min{tr DT' BBTﬁ]D orthonormal o i
] . ofrank s =k - r} [

= min{tr D'TA_ D'| D' orthonormal
. of rank s =k - r} .

We now show that

_ (1) D) = [‘; ] minimizes tr D'TAD,
; s

(2) min {d(B.W)2 Jdim W=1r} = A +.., +)¢k

e .

and for the minimizing space W0 we have

T
(3) Wy = L(Dj)= L(C )

where M = [CODO] is the partitioning of M into its first r and last
s columns,

i Thus, we conclude that W_ is the space spanned by the r eigen-
vectors with largest eigenvalues.

Since (2) and (3) follow at once from (1), we need only establish (1):

¢ b et teet

! , Now
pTAp = [FT...FE;] Al.. I;l %
. 4" F, E
. = BLNFU R ;

T

where F. is the i~-th row of D'(i=l,...,k). Next, let y, = Fi

Fi(i=l, veaa k)
Then, since D' is orthonormal, 0 s A < 1. Moreover,
k

ZiaYi

= trD'TD' ] trD'D'T=trI'=a.
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Thus,

v

min tr D'T D!

™
v .

min {ZTAy, |0 <y, <1, y, +

- '+...+yk=s} .

This simple linear programming problem has the solution Y = =Y,

1]
(=]
-

Vpqp ® ¢+ =¥ = 1 and since these y, are realized by Dy, (1) is
established.

4, BEST FITTING LINEAR MANIFOLD. Any linear manifold M
of dimension r can be written in the form

M = L{C) +h C_

where [C C] is an orthonormal matrix and W = L(C) is the related
linear space. To calculate the distance from any vector X to M we first
find the unique vector Y in M for which X - Y is orthogonalto M or,
equivalently to W, Let X be the projection of X on W as defined in
Section 2 above. Then X -X _is orthogonal to W and since C_ is also
orthogonal to W the vector X -OXO -hC, is also orthogonal to W. DBut

Xo + hCo is in M; hence Y = Xo + hCo. Thus we have

ax, M)? = (X ~(x_ +1C_J (X - (x_ +hC_))

T T
= (X -X )7 (X-X)-2pX-X ) c, ¢+

+ ¥cTe .
[e] [+]

Referring to the notations and calculations in Section 2 and using the
fact that [CoC] is orthonormal this can be written as

a(x,M?2 = xT ppTx - 2nx T C, +h°

Now, let A = [A1 e .An] be any k=by-n matrix. Then the sum of

the squared distances of the columns of A to M is given by (cf Section 3)
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(A, M)2 2

tr ATDDTA - an.Ai Co + nk

T__T . T, 2 T 2
tr ADD A+nh-A C) -n{a_C )
o 0 o ©

where nA =T A, ;i.e. A is the mean of the vectors A_,...,A .
(- i (] 1 n

From this formula it is clear that for any choice of the matrix C,
a(a, M) is then minimized by taking h= ATC and choosing C orthogonal
to W and so as to miaximize A C + This ia clearly acheived by taking C
as the unit vector in the direction of the projection of A on 1{D) (the
orthogonal complement of W), Then the projection of A on L(D) will be
(AZCO)CO =hC_ and we conclude that the minimizing linear manifold

contains the mean Ao of the columnjof A. We use this fact to reduce the

best fitting manifold problem to the best fitting vector space problem which
we have already solved,

Clearly, for any vector Z,

ax,.M)? = ax -z, M - 2)°

In particular for Z = Ao we have
ax,m)? = &x - A, W)
and hence
da,M)? = 4(B,W)
where | N
Bel(A -A)...{A -A)]
is obtained by subtracting A from each column of A, Hence, if W is

the best fitting linear space for B then M =W + A is the best fitting
linear manifold for A,
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5. SUMMARY. The results of the preceding two secticns can be
summarizad as follows. Let Al’ ‘e 'An be any n vectors in k-space,

let A be the mairix whose coiumns are these vectors, let Ao be the mean
of the n vectors, and let B be the matrix whose columns are Al - Ao' e
An - Ao' Then the ben‘t fitting linear space Wr(A) of dimension r for

Al’ +++sA_ has a basis the eigenvectors corresponding to the r largest

eigenvalues of A.AT and the sum of the squared distances of the vectors to
this space is the sum of the k - r smallest eigenvalues of AAT, (In the
case of equal eigenvalues the generating eigenvectors must be independent
but this is guaranteed if they are selected as columns of an orthonormal
matrix as above.)

The best fitting linear manifold Mr(A of dimension r for these
vectors is then W (B + A and the sum of the squares of the distance
is the sum of the k - r srnallest eigenvalues of BB

If one wishes the average squared distance fromthe vectors to M_(A)
the number above is divided by n, This can be acheived alternatively
by using the matrix G = (1/\/;)3. The result is that M (A) =W (G) t A

and the average squared distance is the sum of the k - r smallest eigen-

values of the covariance matrix of GGT = ( /n)BB Suppose that
M= [Ml' o .Mhl is an orthogonal matrix for which
Al
MIGGTM = .
where )!1 2 Az 2 0002 Ak 2 0, Then the columns Ml' N 'Mk are

called the principal components of the distribution Al' oo An’ and the

first r principal components constitute a basis for Wr(G).

What is usually stated in statistical texts is that the first principal
component gives the best {itting line, that the second principal component
gives the best fitting line orthogonal to the first; and, in general, that the
r-th principal component gives the best fitting line orthogonal to the space
generated by the first (r - 1) principal components. It is not stated expli-
citly that the first r principal components give the best fitting space of
dimension r,
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PLANNING AND ANALYSIS OF NON-EXPERIMENTAL STUDIES*

W. G. Cochran
Harvard University
Cambridge, Massachusetts

1. INTRODUCTION. During the past 20 years a marked increase
in statistical studies of human populations has taken place., Several
reasons for this can be suggested. Successful applications of operations
research during World War II led to an expanded use of this technique in
business and marketing after the war. Public opinion polls, which proved
interesting and informative as news media, stimulated the growth of
agencies equipped to take sample surveys for clients, The provision of
increased amounts of money for field research in the social sciences also
contributed.

In many of these studies, the objective is primarily descriptive--to
get the basic facts about some problem, Examples are the monthly
estimates of numbers of employed and unemployed, or a survey undertaken
in a city to estimate the amount of delinquency among teenage boys according
to some definition of this term,

In other investigations, interest focuses on the study of relationships.
For my purposes, 1 should like to distinguish two classes within this type,
although they shade into one another, The first class consists of broad
analytical surveys in which a number of variables are being investigated
simultaneously by multiple classification or multiple regression, or by
setting up models involving systems of equations, as in econometrics. For
instance, in a recent study organized by the U, S, Office of Education [1 ],
standard tests were given to school children in grades 1, 3, 6, 9 and 12,

By multiple regression methods, estimates were obtained of the contribu-
tion made to the child's performance by various characteristics of the school
attended, by the home environment and parental attributes, and by the child's
aspirations and self-concept.

When these studies are exploratory, the discovery of the relationships
that are present suggests the question; Why?, leading the investigator to
set up plausible hypotheses about the :ausal forces at work, In other
studies, causal hypotheses may already have been proposed, the purpose
of the study being io verify whether the predictions about relationships made
from a casual model are consistent with the results,

#*This work was facilitated by a grant from the National Science Foundation
(GS-341).
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My second class of analytical surveys is narrower in scope and more
intimately bound up with the idea of cause and effect. The investigator
Cuniceniraies un a specliic presusued causal ageni and iries io measure
certain aspects of its effects., Examples are the effects of wearing lap
seat belts on the amount and types of injury rustained in auto accidents.
the effects of air pollution on illness associated with the respiratory organs,
the effect of a new contraccptive device on the birth rate during the next fivc
years, and, to cite a World War II study, the effect of bombing on the morale
of the bombed people.

These studies resemble controlled experiments, because we set out to
measure the effects of certain 'treatments'--the causal agents, However,
in the 'non-experimental' studies with which I am concerned, the investigator
is unable, for practical or ethical reasons, to use the two chief weapons of
controlled experimentation, He cannot select the subjects who arc to receive
the causal agent and the subjects from whom it is to be withheld. If the
agent is one that may be present in greater ov less amount, as with air
pollution or bombing, he has no control over these amounts, but must take
them as he finds them,

The design and analysis of controlled experiments has become rairly
well categorized and standardized., Most university courses on the subject
discuss completely randomized, randomized blocks, and latin square plans
(sometimes under different names) and go on to factorial experimentation
and to techniques for estimating response surfaces. This standardization
brings with it the usual benefit of economy of effort; once learned, the
techniques of planning and analysis can be applied, often with only minor
variations, in widely different areas of research.

With non-experimental studies much less standardization of this type
has occurred. There is less cumulative experience with the various types
of study plan, In the principal fields in which these plans are used--
sociology, psychology, education, market research, and public health-=
workers have only recently begun to learn from one another. Statisticians
have shown limited interest in the logical structures of the plans,

While non-experimental studies present many issues that merit
discussion, thie paper will be confined to three topics, as follows.

Some preliminary aspects of planning,

Simple types of study plan.

Techniques for increasing precision and
eliminating bias,
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2. PRELIMINARY ASPECTS OF PLANNING. Being unable to apply
the causal agent in which he is interested, the investigator in a non-
experimental study must first find some locale in which the agent is
operating or will operate under conditions suitable for measuring its
effects., In this search the following questions must be kept in mind, all
of them matters of judgment rather than of black and white,

1. Is the cause operating in sufficient strength? Sometimes,
for reasons of convenience or expense, the investigator chooses an environ-
ment in which the causal force operates too weakly to allow its efiect to be
measured in the size of sample that is feasible, For instance, airline
pilots might be considered a convenient source from which to study predic-
tors of heart disease, since they receive repeated and thorough medical
examinations of which records are kept, On the other hand, one of the
c¢riteria by which they are selected is that they are the kind of men who are
unlikely to develop heart disease,

2. What other important variables are present whose effects may
be confounded with those of the causal variable? How will they be handled?
In planning a study of the effects of air pollution, an investigator might
look for three residential areas in the same city, one heavily polluted, one
moderately, and one relatively free from pollution. But it is likely that
the reasidents of these areas will show a sizeable gradient in socioeconomic
levels, which might account for any differences found in respiratory illness.
If the investigator confines himself to areas closely similar in sociceconomie
level, he may find that the differences in amounts of air pollution are quite
small, thus becoming involved in the difficulty mentioned in point 1. Methods
for handling confounded variables are discussed later in this paper., If,
however, an important variable is too highly correlated with the causal
variable, as might be the case in the air pollution example, there may be
no way to disentangle their effects.

3. What measurements are to be taken? What is known about the
precision and accuracy of the measurements? Many aspects of human life '
and behavior present formidable problems of measurement; e.g., how
does one measure morale? Inlarge studies, the measurement process may
be restricted, for reasons of expense, to responses on a printed question~
naire, Substantial biases in measurement can, of course, produce badly
misleading results., ''Random!' errors of measurement of the effects
decrease the precision of the results, '"Random'' errors in measuring the
strength of the causal variable (e.g. number of cigarettes smoked per day)
will produce an underestimate of the size of the effect., Similarly, " random'
errors in measuring a confounded variable decrease the effectivensss of

the standard statistical methods for removing the disturbing effects of this
variable,
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4, If the study is to be made from records already collected by
sotneone else, have the records been checked as to completeness, accuracy,
and accessibility ? It is alw~ ;s worth considering whether a study can be
made from existing records, not only because of cost but because this may
be the only way to obtain results in a reasonably short time. Sometimes,
investigators construct plans and engage slaff for a study on Lhe basis of
someone's assurance about the quality of the records that turns out to be
greatly over-optimistic, particularly when the records are kept for some
legal or administrative purpose but rarely used or examined, A careful
pilot survey of the records, designed to reveal any weaknesses for the
purpose at hand, is essential before commitments are made,

5. How will the sample size or sizes be determined? In controlled
experimentation there are formulas that provide guidance about saniple size
by calculating the size needed to estimate the effect with a prescribed width
of 95% confidence interval, or the size for which somc basic test of
significance will have a prescribed power. It is advisable to try to usc
these formulas in non-experimental studies also. Howoever, inorder to
obtain useful numerical answers {rom these formulas one must have an
estimate of (i) the standard deviation per observation and (ii) the likely
size of the efiect that is heing estimated, In exploratory studies these
estimates may be lacking, and the investigator may have to use simply the
largest sample size that can be afforded, having speculated that this size
is more likely to be too small than too large.

AT WA DA Attt ¢ T

6. If non-response or later melting-away of the sample is anticipated, o !
what are the plans for coping with it? This is a comunon problem, vspecially |
when participation in the study is somcwhat of an imposition on the subjects, . -
or when the study extends for several years, Investigators tend to be lax 1
about non-response. The standard call-back or follow=up questionnaire
procedures developed in sample surveys arc often surprisingly helpiul,

Sometimes it is feasible to follow people who move within the same metros

politan area even if it is too costly to follow those who leave the area, d
Sometimes background information about non«respondents is availabie, or
can be obtained by mail, that assists a judgement about the extent to which
they bias the conclusions. Speculations about the extent to which non-
respondents might bias the results can alwaye be made thuch nmore
comfortably with a 10% than with a 30% non-response rate.

7. What are the comparisons {rom which the size ol the presuned
causal effect will be estimated ? Numerous points arise here, In some :
studies the 'cause present' group is clearly defined, but it is less clear o |
what can be used as a 'cause absent' group for comparable purposcs, Often
it is important to estimate the causal effect separately in different subgroups .
of the population (e, g. for people of different ages, for men and womean), ' 4
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The types of adjustment to be made for handling confounded variables are
also relevant,

8. Is the environment a 'typical’ one from the viewpoint of generali-
zability of results ? Sometimes an ingenious investigator finds a group of
people (for instance a special religious sect) among whom the causal force
is operating with no important confounded variables. But he may reluctantly
decide not to attempt the study in this group, because they seem atypical in
50 many respects that any generalization of results would appear hazardous.

With some problems of great interest and importance, investigators
have to search for a long time before a suitable environment is found,
Sometimes none is found: in other cases we are restricted to the type of
study that can be done rather than the type we would like to do. Consider
the problem of investigating in human subjects the effects of exposure to
atomic radiation on illness and death rates. Ideally, the answer would
take the form of a dosage-response curve, the rate being expressed as a
function of the exposure history (amount and duration).

As pointed out by Seltser and Sartwell [2], the principal opportunities
for investigations in human subjects are confined to the following: (a) the
Japanese survivors of the atomic bombs in Hiroshima and Nagasaki,
involving a single exposure, {b) groups occupationally exposed to radiation
at times when the possible danger frum this source was not realized--
radiologists, dentists, and makers of watches with luminous dials, (c)
persons who received medical radiation, as in the treatment of some forms
of cancer, or infants exposed in utero through pelvic X-rays of the mother
in the late stages of pregnancyTand d) areas of the earth in which natural
radioactivity is unusually high.

None of these sources provides more than limited material for con-
structing a dosage-response curve. To illustrate the types of study that
have been undertazen, long-term studies in Hiroshima and Nagasaki were
initiated in 1950, In Hiroshima the saniple contains about 12, 000 people,
divided into 4 groups of about 3,000 each, according to their distances
from the point of impact of the bomb. The subjects receive regular health
examinations, with particular attention to any symptom that might be an
after-effect of radiation exposure.

A study of this type is expensive and administratively difficult,
Fortunately, the health data also permit many useful investigations of
general health questions. From the viewpoint of the dosage-response
curve, a weakness is that the dose to which any person was exposed is not
known, but has had to be estimated roughly from memory of a person's
location and local shielding by buildings at the time when the bomb fell.
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Also, the group furthest {rom the epicenter, who serve as the non-cxposed
group P

group, differ in some important characteristics from the three exposed

groups, and have proved unsatisfactory as a 'control' [3].

The study by Seltser and Sartwell [2] of the mortality of radiologists
is an excellent example of the possihilities from groups occupaticnally cr
medically exposed. They chose rmale members of the Radiological Society
of North America. For each member they obtained by a painstaking
search the status (dead or alive) as of December 31, 1958, with cause of
death and any available information on other factors such as age that might
influence duration of life. Research of this type always raises the question:
with what are the exposed group to be compared? Ideally, we seek a
non-exposed group which is similar to the exposed group with regard to
any other variable that is known or suspected to have a material effect on
duration of life. (In this example an obviously relevant variable is age.)
In an observational study the extent to which this goal can bhe met is of
course dependent on our ability to measure such variables and to find a
group that has similar distributions with respect to them,

The authors chose two comparison groups. As the nearest to a non-
exposed group they used the American Academy of Ophthalmology and
Otolaryngology, whose members rarely have occasion to employ X-radia-
tion. As an intermediate group they also included the American College
of Physicians, since some of these members use X-rays, for example, in
heart examinations. In such studies the inclusion of a middle group is
advantageous in either adding confirmation to the results given by the two
extreme groups or in casting doubt upon them. This study, however,
again has the weakness that no measures of the doses of radiation experi-

enced by the subjects are availablc, except as a rough guess for the group
as a whole.

3, SIMPLE TYPES OF STUDY PLAN. This section introduces

some simpler types of plan, with a briel discussion of their strengths and
weaknesses and of the statistical analysis,

3.1 A single group, measured before and after the action ol the
causal agent. This type is common when the causal agent is of short
duration. For example, after complaints about the time taken to go
through a cafeteria line, a change in the service is proposed that it is
claimed will remove the bottleneck. Before this change is made, the
times taken to go through are recorded for a random sample of the usci s,
the same being dune after the change is made. In other situations, the
causal agent might be DDT spraying of 10 villages, an estimate of the
misquito population being made before and after spraying, or a radio and
TV appeal which the stations in an area agree to give on a certain day,
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urging mothers to bring their children into the clinics in a city for
immunizations, the number of children appearing for immunization being
counted in each clinic during the week betore and the week alter this appeai.

Unlike the radioclogists cxample, such studies have no comparison
group, usually because all members of the population of interest are
exposed (at least potentially) to the causal agent, Sometimes, as in the
DDT example, a comparison group of unsprayed villages might have been
chosen, but is excluded for administrative or financial reasons. Often, a
single-group study is the only feasible approach in attempting to learn
something about the effects of new governmental programs or laws that
apply to everyone,

The absence of a comparison group is, of course, the major weakness.
Any other event that produces a change in the level of the variable during
the Before-After period has its cffects inevitably confounded with those of
the causal agent. Campbell and Stanley [4] give a detailed catalogue of
these sources of bias in educational research., If the investigator is aware
of such other influences he can sometimes ask questions about the reasons
for people's change in behavior that help him to judge whether these
influences have been important. Knowledge that a change is coming may
influence people's behavior immediately before the change, so that the
After-Before difference is misleading.

Although the conclusions from studies of this type involve a substantial
element of judgment, the studies are, as Campbell and Stanley put it,
"'worth doing when nothing better can be done'., I might express it a little
more positively. With new public programs, plans to estimate their effects
are often not initiated until some time after the program has been running.
By this time it is difficult to get good 'Before' measurements and too late
to take precautions or gather supplementary information that might have
helped in judging the effects. The yuestion: How can we study the effects
of this program? should be raised some time before the program begins.

The statistical analysis usually involves examining the difference
between two paired or independent samples. The samples may be sub-
classified by another variable, e.g., age of subject, in order to reveal
any variation in effect with age,

Sometimes there is reason to expect that the Before measurement will
itself influence the subject’s behavior, A plan that has been proposed is
to have two groups, both exposed to the cause, Whenever feasible, these
can be random halves of an initially chosen group. Group 1 is measured
'Defore' and 'After', group 2 is measured 'After' only. The idea is that
by comparing the two 'After' sets of results, we can test whether the 'Before!
measurement influenced the level of the 'After' responses in group 1.
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The best method of estimating the size of the causal effect presents
a problem involving the pooling of data after performing a test of signifi-
cance, It the subscripts a and b denote 'After' and 'Before', the difference

(?Za-Ylb) is an unbiased estimate of the causal effect. Assuming a
2 o]
constant variance ¢° _per subject, this difference has variance 20'"/1’1.

The difference (?la-Ylb) has variance 20%(l-p)/n, where p is the

correlation between the 'Before' and 'After' measurements for the same
subject, but is unbiased only if the 'Before' measurement did not affect
the level of the 'After' measurement, The estimates (YZa-YIb) and
(?la-?lb) are themselves correlated, since ?lb appears in both. One
approach is to seek a weighted mean of these estimates, with weights
determined from the results of the preliminary test of significance of

(?la_?Za)' that has minimum mean square error subject to a condition

that the bias be kept small.

The preceding discussion has been confined to studies in which it is
satisfactory to measure the causal effect at a single time after the causal
event, In many situations, the causal event may ha - prolonged etiects,
or if its effect is likely to die away, the investigator wants to measure this
decay curve. For these purposes we need, at a minimum, a series of
measurements at intervals of time before the event, fnllowed by a series
at intervals after the event, The problein of the model to be used for the
analysis of results of this type raises some interesting questions which
have been illustrated by Campbell and Stanley [4] . Model-fitting and
interpretation are easiest when the 'Before' measurements appear to
fluctuate about a constant level; the difficulty increases when the 'Before!
and 'After' measurements display trends, particularly those with curvature,.
The questioa of serial correlations must also be considered,

3.2 'Cause present' and 'Cause absent' groups. Y measured 'Aiter’
only., This is a very common type. The Hiroshima and radiologist studies,
investigations of the effectiveness of seat belts in preventing injury in
automobile accidents, and the large studies of the death rates of non-
smokers and cigarette, cigar, and pipe smokers are éxamples, As we
have seen, there may be several 'cause present' groups, representing
different strengths or variations inthe causal agent, and more than one
'cause absent' group, particularly where the selection of a4 control group
presents difficulty.

At its simplest, the analysis follow the usual methods for the analysis
of one-way classifications or of two-way classifications if pairing or block-
ing has been employed in forming the groups. Often, however, the analysis
of a multiple classification is involved, other variables being introduced
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in order to diminish the risk of bias, as discussed in section 4, or because
the investigator wants to examine interactions of the causal effects with
these variables,

An important variant of this method, often called the retrospective
method, is much used in epidemiological research, In this, we find a
group in which the effect is present and one from which it is absent, and
compare the frequency with which the presumed causal agent is found in
the two groups. This approach is natural when a group of people show
symptoms of food poisoning at a picnic and the cause is being sought, As
another example, numerous investigators have selected a group of lung
cancer patients and another group of palients in the same hospitals who do
not have this disease, comparing the proportions of cigarette smokers in
the two groups. With this approach, it is often hard to select the 'effect
absent' group and to obtain measurements of high quality., Further,
erronecus results may be obtained when there are several causal agents
and attention is focussed on one, But with an effect that is rare, this
approach may be the only practicable one, and it is often the quickest way
of obtaining a preliminary indication for or against a postulated relationship.
For a discussion, see [5].

3.3 'Cause present' and 'cause absent' groups, Y measured Before
and After, This plan has been used, for example, in studies of the effects
of new public housing, as against slum housing, on health and social
behavior. When it became known which group of applicants were to niove
into a new public housing development, a control group of families who
would ingeneral remain in slum housing were selected, The basic question-
naries on health and social behaviar were obtained both before the move
took place and at several times after the successful applicants had moved,
In a study of the effects of fluoridation of town water on children's teeth,
usually done by a plan of type 3.1, a nearby control town which did not plan
to [luoridate could be included if the resources permitted, The state of
dental health of a sample of children from both towns would be measured
before and some time after the fluoridation in the first town,

With this plan the investigator is in a better position to guard against
bias than with plan 3.2. Ideally, the initial distribution of the response
variable Y should be the same in the 'cause present' and 'cause absent'
groups., Since he has the initial measurements, he can verify whether this
seems to be the case, Even if the distributions are somewhat-different, it

is still possible to compare the amount of change in the two groups during
the 'Before-After' period.

A general estimate of the size of the causal effect is

(3.1) (Yla-?Za) B 5(?1{?21)) !
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where the value of # is to be chosen. Suppose that the model is as follows.

Refare: v = + @

ibj -~ M1 T Ty Y2bj T2 ' C2bj

After: H + 0+, + e, .

Ylaj 1 laj’ Yzaj = M2 2 2aj

Here, § represents the causal effect to be estimated; " and Ts represent

other time-changes that affect the two groups; and the e's are random
variables with means zero, From this model we see that

E{(V],-¥p,) - B¥),-Tpp)b = 6 4 {rpomy) + (o)) (1-9)

Hence, (i) if Ty # o the plan provides no unbiased estimate ol &6

this is, of course, obvious, (ii) if v, = 7, but y, # by (i.e., the initial

2
levels of the two groups differ), the only unbiased estimate of 6§ is given by

taking 3 = 1. (iii) if TIET, and Ky = W, any value of 3 gives an unbiased

estimate, Assuming that the e's all have the same variance a-z, the estimate
(3.1) has variance

2¢% (1-23 p+3%) /n

where p is the correlation coefficient between an 'After' and a 'Before!
measurement, Ii Jhe 'After' and 'Before' samples are independent, so that
p =0, we take 3 = 0, If these measurements are paired, the minimum
variance is given by 3 « p. In practice, ;3 is estimated in this case by an
analysis of covariance of the 'After' on the 'Before' measurements,

4, TECHNIQUES FOR INCREASING PRECISION AND ELIMINATING
BIAS. In controlled experiments the investigator relics on randemization,
plus other precautions such as 'blindness' in the measurement process, to
ensure that biases are kept to a negligible level., As means of increasinyg
precision, blocking and adjustments made by the analysis of covariance are
two of the principal weapons,

Devices analogous to blocking and covariance are commonly used in
non-experimental studies also, However, since randomization is not
available, these devices must perform the double function of eliminaling
bias and of increasing precision. In fuct, since bias is regarded as the
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chief source of erroneous conclusions, control of bias becomes their
principal function.

qnnnhnn that ¥V ic tho vroonon ~ L

1e Tho X ..r.w.SC C:‘ ciices va.a..u:.u;t:, and ihai there is a
'cause present' and a 'cause absent' group. If X is any variable that is

related to Y, a bias may arise in ( -Y ), the estimated difference between

the means of the two groups, if the distribution of X differs inthetwo groups.
For instance, if the regression of Y on X is linear,

where i = 1, 2 denotes the group, and the eij are residuals with mean zerao,
then

17 _- - - s Eva _.'
(4.1) E(Y,-Y,]X) = u -n, + 3(X-X,)

The term g()’(l‘-i is the bias.

2)
In handling these variables the investigator makes a list of the X
variables known or thought to be related to Y, These variables are placed

in one of the following classes,

(I) Important variables whose effects the investigator will try te
remove, either because there seems a danger of bias or because removal

will bring a worthwhile increase in precision,

(I1) Variables for which the investigator will check whether their
distribution is similar in the 'cause present' and 'cause absent' groups,
No adjustment will be made for these variables unless the distributions
appear suifficiently different so that there seems a danger of bias. This
method is employed for variables whose correlation with Y is modest, If
Y and X are linearly related, with correlation p, the fractional reduction in
the variance of Y due to elimination of the etfect of X cannot exceed pz.

If |p] < 0.3, this reduction is less than 9% the potential increase in
precision is small,

In practice, verification that the distribution of X is similar in the two
groups of subjects is often done by forming the frequency distribution of X
in each group, with, say, k classes, and making the x“ test for a 2 x k
contingency table. A low “value of XZ is taken as assurance that the distri-
buticns of X are similar and that there is little risk of bias from the relation
between Y and X. This xz test may not be the best procedure. If the




"

regression of Y on X is linear, equation (4.1) shows that comparison of the
mean values of X in the two groups i_s more relevant, since the bias in
(Tll--:x‘-'z) comes from the term (X‘ -X?). Similarly, if the relation between

Y and X is curved and can be approximated by a gquadratic regression,
comparison of the first two moments of X in the two groups is relevant,

(1il) Variables about which nothing will be done, because their rela-
tion to Y is judged too tenuous to create trouble. This class also contains
X variables which it is not feasible to measure and those of which the
inve.tigator {s ignorant.

A natural question at this point is: Why not put all the X variables in
class I, or at lecast do so whenever there is any doubt? I don't know the
full answer to this, but a partial answer is that the techniques (matching
and adjustment) by which we attempt to remove the effects of these X
variables become steadily more cumbhersome to apply and to interpret as
the number of X variables increases. These techniques may be described
as follows,

'Ideal' matching, Each member of group | has a partner in group 2
who has, within narrow limits, the same value for any X variable for which

“adjustment is being made, By taking the difference between partners, the

effects of these X variables are eliminated, provided that the regression of
Y on these X variables is the same in both groups. Clearly, this matching
is effective whether the regression is linear or curved,

In practice, the construction of matched pairs often presents difficulty,
particularly if matching has to be done on several X variables, Usually,
it is necessary to have a large reservoir of subjects [or at least one ol the
two groups; otherwise, it will not he possible to locate partners who agree
closely on the values of all the desired X variables, A common experience
is that the construction of partners takes much longe: than anticipated, that
the rules set up about the closeness of the match have to be continually

relaxed, and that some subjects have to be omitted because no match is
found.

Stratified or frequency matching. This is a looser form of matching
which facilitates the construction of partners, The range of each X variable
is divided into a number of classes, commonly from 2 to 5 or 6. Thus the
X variables create a multiple classification: for instance, with 3 X's and
4 classes per variable there are 64 cells, For a member of the ‘cause
present' group, any member of the 'cause absent' ,toup who falls in the
same cell is an acceptable partner. In the end, what this method amounts
to is that in any cell of the multiple classification the two groups have an
equal number of subjects, Often, there is no specific designation of
partners, since this seems rather pointless.
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Stratified matching is the only kind that is feasible for an X that is an
ordered classification, such as "mild", '"'moderate', "severe' or is
qualitative, e.g., religious affiliation or urban, suburban, rural,

Adjustment by subclassification. This method is very similar to
stratified ratching. When selecting the 'cause present’' and the 'cause
absent' groups we do not attempt any matching., Adjustment for differences
in the X distributions in the two groups is accomplished by forming the
multiple classification used in stratified matching and making adjustments
by a least squares or analysis of variance model.

To illustrate the relation between the two methods, suppose there are
X variables and that only 100 subjects are available for the 'cause present'
group., To see how the land lies, we classify these subjects, plus 100 from
the 'cause absent' group, into 9 cells, assuming that each X variable has
3 cells, Intable 1, the numbers of subjects found in each cell are shown,
P and A denoting the two groups, Both the P and A sets add to 100,

TABLE 1

Subclassification on two X variables,
xl

< 20 21 - 80 Over 50

P 8 P 10 P 19
Mild

A 23 A7 A 4

P 8 P 8 P 16

XZ Moderate

AZb A 9 A 3

P 5 P 11 P 15
Severe

Al9 A 6 A 3

If we are using stratified matching, we select 8 at random out of the
23 ﬁ's in the top left cell, discarding the rest. In both the other cells in
the top row, we need more A's to reach the desired numbess 10 and 19,
Liooking the table over, it appears that a reservoir of perhaps 700 or mnre
subjects suitable for the 'cause absent' group would be necessary to build
ur all the cells to the desired numhbers in the P group,
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In adjustment by subclassification, as I am using this term, we either
accept the A sample as it stands or attempt only to build up cells in which
the A sample is very small, The decision depends on the size of the
reservoir for the A group, the time and trouble involved in any build up,
and the investigat&'s opinion as to whether the effort is worthwhile,

From the viewpoint of estimation of effects we face a 2 x 3 x 3 table
with either stratified matching or adjustment by subclassification, It is
assumed that Columns (Xl) and Rows (XZ) both show real effects, and

possibly an interaction, since otherwise there would be no need to match
or adjust for these X variables,

The simplest situation is that in which there is no interaction of the
(P-A) difference with either X, or X,. Inthis event the 9 differences

(E"‘K’j) are all estimates of the same quantity, It follows that with

stratified matching, the difference between the overall sample mcans

(P-A) is free from any confoundmg with the levels of X, or X, The

estimate (P-A has variance o /50, where 0'2 is the within-cell variance
(assumed constant from cell to cell), If the A sample is accepted as it
stands, the corresponding estimate for adjustment by subclassificatic 1is
a weighted mean of the differences (PJ Aij)' welghting each inversely as

its variance. The weights are nl'j Zi'/(nli' n .,), where the n's are the

sample sizes in the (i,]) cell, For table 1 the variance of this weighted
mean difference turns out to be ¢“/3¢, 6, about 35% larger than with
stratified matching, In this situation stratified matching provides a
simpler estimate that is rnore precise,

We may, however, wish to examine whether the (P-A) difference changes
with the level of X, and Xz. As Billewicz [b] has pointed out, the ability
to examine these interactions is an advantage which thene methods hold over
'Ideal' matching. If interactions are found, estimation of the overall
difference may become of little interest, The technique needed here is the
analysis of multiple classifications with unequal numbers in the cells.
While the general least squares theory covering this technique is not new,
much remains to be learned about the practical handling and interpretation
of such analyses, particularly for investigators who are not expert in

statistical methods. The recent paper by Federer and Zelen [7] is a useful
contribution,

Adjustment by covariance. Conceptually, this is the same approach
a8 adjustment by subclassification for the case in which the X's are
continuous, Covariance may have an advantage und a disadvantage., The
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grouping of continuous X's into classes in adjustment by subclassification
loses some information: covariance avoids this loss. On the other hand,
adjustment by subclassification does not involve any assumption that the
relation between Y and X is linear., If the investigator follows the common
practice of adjusting in covariance only tor linear effects of X, covariance
is at a disadvantage if the true regression has substantial non-linearity,

Of course, this loss can be avoided by adopting a more accurate model in
the covariance analysis.

How effective are these techniques? The following comments are
based on results quoted in [8] and on some unpublished work, As already
rnentioned, 'ideal' matching removes bias due to Xl' . 'Xk under any
regression

) + e, (i=1,2)

P B e
i} kij if

Y=ot (X

if the rggressmn function ¢ is the same in both groups, The variance
of (Y YZ) is reduced by the matching to a fraction (1-p2) of its original

value, where p is the correlation coefficient between Y and ¢. In practice,
'ideal' matching is likely to be at its best when the X's are quantitative and
one of the groups has a large reservoir in which matches may be sought,
while the other group ls small., In this situation, matching should not

prove too difficult, Moreover, the other disadvantage of matching--that

one cannot examine effectively the interactions of the causal variable with
the X variables~-scarcely applies when one group is small, since the sample
size would probably preclude any precise estimates of interactions,

Covariance adjustiment should have about the same effects on bias and
precision, with the qualifications that the correct form of the regression
equation must be fitted, and that there is some loss of precision {rom
sampling errors in the estimated regression coefficients, If the regression
is linear and the re happens to be no bias due to the X's, the fraction to
which V(Y -Y ) is reduced by the covariante adjustment is roughly

k

2
(4.2) (1-p7) {1 Znek~3)

where n ls the size of sample in each group, so that the regression
coefficients are estimated from 2(n-1) degrees of freedom, The term in
curly brackets will be close to | if k is small relative to 2n. However, il
there are substantial biases in some of the X's, (4.2) no tonger applies,
and the corresponding term in curly brackets can be much larger, The
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performance of this covariance adjustment when the fitted model is of
the wrong form deserves further study. Linear covariance adjustments

seem to pertorm surprisingly well when the true regression has a moderate
degree of curvature.

The preceding remarks about matching and covariance assume that the
X's are measured without appreciable error, Suppose that for an X
variable the recorded measurement is x = X + d, where d isa random
error of measurement with mean zero, independent of X “and of e, the
deviation of Y from its regression on X, The effects of these errors of
measurement are roughly as follows, where { = o /o' = d/(a' + o-é)

(1) Matching and covariance remove only a fraction (1-f) of the
bias in Y due to X, ‘

(ii) V(?' T is reduced to the fraction {1 - (1-f) pz} of its
original valuc.

While imprecise measurement weakens the performance of these
techniques, it is easy to form an exaggerated notion of the size of this
effect if some check calculations are not made. For instance, suppose
that T = 25, nearly all the correct values of X lying between 0 and 125,

If we are told that half the observed measurements are wrong by mare
than 5 units, this seems rather poor quality of measurement, However,

a probable error of 5 corresponds to o, = 7.4, a'cz1 = 55, 0'2' = 680, and

f=0.08, Thus, 92% of the bias is still removed.

Now consider stratified matching and adjustment by subclassification
as applied to quantitative X's, From the viewpoint of errors of measure-
ment of X , these methods appear crude, since the quantitative scale of an
X variable is replaced by a classified variable that takes only the number
of distinct values that the number of classes allow, With stratiticd match-
ing the values of (1-f) are 0,64, 0.79, 0,86, 0.90, and 0,92 for 2, 3, 4, 5,
and 6 classes, respectively. Strictly, these values hold only if the regres-
sion of Yon X is linear, X is normally distributed, and the classes are of
equal size. However, they appear accurate enough as guides to practice
when the regression of Y on X is nonlinear, when X has some skewness and
kurtosis and when the class sizes depart mod;rately from equality, The
results indicate that at least five or six classes should be used for uny X
variable which is thought to be a source of subrtantial bias, -

With adjustment by subclassification the preceding (1-1) values apply

8o far as the remcval of bias due to 5 ig concerned. This muthod sulfers
an additional loss of precision, as illustrated previously, because of
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inequalities in the sample sizes of the two groups in the individual cells of
the multiple classification, :

The situation when X is an ordered classification is not so clear. If
an ordered classification can be regarded as esseniially u grouping of an
underlying quantitative X, the preceding values of (1-f) should be applicable.
In practice, however, ordered classifications are often used because no
more precise method of measurement is known., If we envisage some
accurate measurement X, not yet discovered, it seems reasonable that
the ordered classification will contain errors of misclassification as well
as grouping errors. These additional errors presumably reduce the values
of (1-f), to an extent that does not seem to have been investigated.

Finally, none of the methods can guarantee to remove bias due to an
X variable that has been omitted from the matching or adjustments. The
situation with regard to such omitted variables is interesting, If they
happen to have a high correlation with the included X 's--in other words, if
we are lucky--most of their bias will also be removed by the matching or
adjustments., This explains, I think, why linear covariance often works
well when Y has a quadratic regression on X, since X and X2 have a high
correlation in many bodies of data. But one can also meet the opposite
situation in which the bias due to omitted X's is inflated by the adjustments.
Thus in non-experimental studies there always remains an element of
uncertainty in our claims about the size and reality of a presumed causal
effect.
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A MODERATELY DISTRIBUTION FREE APPROACH TO
RELIABILITY ESTIMATION BASED ON THE
FIRST ORDER SLTALIDLULIG

Michacl G. Billings
C-E-I-R, Inc., Dugway Field Operation
Dugway, Utah

ABSTRACT. This paper describes a small sample reliability test
design and evaluation technique based on properties of the first order
statistic. The technique is "moderately distribution free' in that it is
applicable to any problem which satisfies the following conditions: 1) The
random variable X involved is continuous; 2) X can take on only non-
negative real values: 3) the '""mission'' of the system under investigation
is a set of real numbers of the form [T, »), where T > 0: 4) there exists
a set of real numbers MC [1, w) such that meM => Fx(mT) > mFX(‘I’),

where F_ is the distribution [unction of X. Some sufficient conditions
are given which define classes of distributions tu which the technique is ,
applicable. Also, it is shown that the technique is a highly accurate
approximate procedure for reliability evaluation whon in fact the random

variable X involved has an exponential distribution, s» that Condition 4 is
not satisfied. Finally, a brief consideration of the Weibull distribution is

presented.

e R

1. INTRODUCTION. The purpose of this paper is to derive and ;
demonstrate a small sample reliability test design and evaluation technique :
which appears to have applicability over a wide class of distributional :
forms. The technique derived, referred to as the Modified Distribution ’
Free (MDF) technique, is based upon certain properties of order statistics
and is conceptually similar to the stricily distribution free binomial approach
to reliability evaluation. The MDF technique introduces certain fairly
nonrestrictive assumptions in order to achieve a trade off between sample
size and system performance. Before proceeding it will be useful to
introduce and interpret the concepts and symbols which will be encountered
in the ensuing discussion.

Technically, the term reliability is always used relative to some
system, conceptual or real, the primary purpose of which has been deter-
mined to be the accomplishment of a specific objective called the system
mission. The reliability of the system is defined to be the probability that

*This article prepared for U. S. Army Test and Evaluation Command
under Contract No. DA-42-007-AMC-141(R).




>
1

the system will accomplish its designated mission. In order to meaning-
fully discuss system mission reliability it is necessary to establish a
method for measuring system performance relative to the particular
miraion. For this purpose it ie canveniant to aeeumes the sxictence of 2
popuiation of systems of the type under consideration. On this popula-
tion a random variable X is defined in such a way that the mission can be
characterized as a subset T% of the probability space d _ induced from

by X. If the probability measure on J is P and the associated dis-
tribution function of X on §_ is F_, then fhe definitio- of systern mission

X X

reliability becomes

P {xe,lxyxer':=} = Pr{X ¢ T*) =‘5 aF, .Y/
T);:

In practice it is desired to obtain an interval estimate of the system
reliability to which we are able to attach a measure of assurance that the
interval contains the true reliability, Conventionally, this has been done
as follows:

1) One obtains for 3 dFX a confidence interval estimator
which depends on an estimato:l-rv'f-? of Fx;

2) A value of £ is then observed, and the corre sponding

confidence interval estimate for 5 de is ca.l'cula.ted;
Tn,

3) The confidence coefficient associated with the interval estimator

for S de is taken to be the measurc of assurance (confidence) that the
T):c

calculated interval estimate contains the true value of de
Tx::

The result of this procedure is a statement of the form 'with y-
confidence the reliability is at least a'', hereafter abbreviated r(a,y),
where a is the lower bound of the interval estimate obtained for

S‘ de, and y is the associated confidence coefficient.
T

1 . \ . . . .
—/In accordance with convention, if X is a continuous random variable with

density function ix = (de)/(dx), then S-r::: de = 5T* fxdx. If X is
discrete, then the integral 5 de is a sum over the set T*,
T;‘.c
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Under certain assumptions on the random variable involved, it is
possible t~ equivalently formulate the reliability evaluation problem
within a hypothesis test framework. The Modified Distribution Free
technique described in Seclion & uillizes ihis appruach.

2. THE MODIFIED DISTRIBUTION FRFEFE (MDF) TECHNIQUE,
The MDF apprcach to reliability estimation presupposes that the follow-
ing conditions are satisfied by the particular problem involved:

1) The random variable X under consideration is continuous.

2) 3= (x|x20}.

3) The mission T* can be described by T# = {x¢ Jx |x>T, T‘JX}'
4) There exists a set of real numbers MC[1,®) such that

meM = F(mT) > mF(T),

where T is given in Condition 3, and F(x) = Pr(X < x).

The particular hypothesis test structure employed in the MDF
approach is described as follows: Suppose it can be assumed that meM
(see Condition 4 above), and that it is desired to either conclude or fail
to conclude the reliability statement r{a,y) on the basis of a sample of
size n from ’8){' Let 3 be determined so that (1-3)/m = 1-a, and let

the sample size n be such that 1-y = ﬁn. Let the null hypothesis be given
by

Ho: F{mT) > 1-p;
and the alternate hypothesis be given by
H,: F(mT) < 1-3 .

The test statistic to be used is X(l). the first order statistic, and H0 will
be rejected if X(l) > m'I‘.-Z/

It is clear that Pr(Reject Ho'Ho is true) < l~y, since

E/N;te that this means testing can be truncated once each sample system
has operated for mT units.
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Pr(X, | > m'I‘[H0 is true) n

(1) = [l‘F(mT)]nf_ g

ley

Thus, if H is rejected, it is concluded that F(mT) < 1-8, and the

significance level of the test does not exceed 1-y. By virtue of the
initial assumption that F(mT) > mF(T), rejection of H, implies that

F(T) < (1-)/m = 1-a. The probability that H, is accepted erroneously
does not exceed 1~y; thus, if Hy is rejected the conclusion is r{a,y).
The usefulness of the MDF approach as a design tool when the

appropriate conditions and assumptions are satisfied is evident from
Proposition 1;

Proposition 1. Suppose for a given reliability estimation prob-
lem that the Conditions 1-4 above are met, Suppose further that meM
(i.e., F(mT) > mF(T) ). If

gl
* Toaltom{i-a] 7"

and if the null hypothesis Hy of the MDF hypothesis test is rejected
(ive., if X(l) > mT), then r{a,y).

Proof: This follows immediately from the relations (1-p)/m =
l=a; and Bt = 1 -y,

Making use of this result, it is possible to construct tables which give
sample sizes from which rejection of Hy will lead to conclusion r(a,y) for
various values of m and reliability-confidence level combinations (a,y).
An abbreviated table is presented below. The entries are the minimum
sample sizes necessary for rejection of Hy, i.e., when X 1 mT, to
lead to the conclusion r(a,y) under the assumption that F(&’}

) > mF(T)
for the value of m shown.
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TABLE 2.1 '
{2,
m {.99, .90) (.95, .90) (.90, .90)
1 230 45\ 22
2 114 22 11
2.5 91 18 9
3 76 15 (
3.75 61 12 5
4 57 11 5
5 45 8 4
6 38 7 3

Example. If the mission is T = 50 hours, and if it can be
assumed that Fi4T) > 4F(t), then to be able to conclude z{.95, .90) a
minimum of 11 uystems would have to operate successfully for at least
4.T = 200 hours. (See Footnote 2.)

The MDF -hypothesis test can also be used to provide descriptive
reliability statements, i.e., statements of the form r{a,y) based on the
actually observed value of X(l). Suppose, for example, that for a

sample of n systems we observe X_(l) =m*T, and it can be assumed that

m*e¢M. It is then possible to determine the strongest statement r(a,¥),
which can be made on the basis of the test, for a fixed upper bound 1.y
on the significance level by solving the equation

_ log(1l -
" log(l-m(l-a

for a . "It is also possible to determine the highest confidence which can
be associated with a given reliability level a on the basis of the test.

Example. Suppose T = 50 hours and a sample of 17 systems
yvields a value of X(l) = 178 hours. Further, suppose it is possible to

assume that 178/50 ¢ M. Then the strongest statement of the form
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r{a, . 90) which can be concluded on the basis of the MD'F-hypothesis is
r(.9645,.90), obtained by solving the equation .

log(, 10
17 = '1“.:‘;'(1-3.L56"(1'-aT5'

fora.

Example, On the basis of the performance described in the
previous example, the statement z(, 95, . 964) could also be concluded.

3. APPLICABILITY OF THE MDF APPROACH, Whether the
MDF -approach can be applied to a particular problem depends on the
extent to which the experimenter can justify the necessary assumptions
regarding the problem and the distribution function involved, The purpose
of this section is to discuss certain fairly nonrestrictive conditions which
define classes of distributions to which the MDF -approach is applicable.
It will alsc be shown that the MDF ~approach is a highly accurate approxi=-
mate procedure for reliability evaluation when the distribution involved
is exponential, and thus does not satisfy Condition 4.

Proposition 2 establishes that the MDF -approach is applicable to a
fairly commonly occurring class of distributions.

Proposition 2, Let X be a continuous random variable with
3 x = {x[%x 207, and let Te Jx. If the density function {(x) is mono-
tone nondecreasing on [0, mT], where i > 1, then F(mT) > mF(T).
Proof: Letx¢[T,mT]. By hypothesis, f(x) is monotone non-
decreasing on [0,x] , so-that x:i(x) > F(x). Thus £(x)/F(x) > 1/x. Since

this is true for every x ¢[T, mT], it Tollows that

~mT ~mT
g e [T
T W T X
This is equivalent to saying that

F(mT mT
1°83~{?T)' 2 log (5F) = log m,

or that F(mT) > mF(T). Q.E.D.
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From Proposition 2, it is immediate that if f{x) is monotone non-
decreasing on [O,{p] , where F(gp) = p, then the MDF technique is

valid for a1l valueo of m such that m [1, £ /T 1,

It is appropriate here to point out that the hypothesis

Hy: F(mT) > 1-8

is logically equivalent to the staterment

mT > 51_‘5.

Hence, H, could be written in the more illuminating, if redundant, form ' 3

HO:F(mT) >1-B and mT > 51-;5 . h
Therefore, to reject Ho is to conclude that
F(mT) < 1-p |
and . |
mT < § 1-p ’

Thus, for example, if one can assume that £f(x) is monotone nondecreasing
on [O,ﬁp] , and if 1-B < p, then acceptance of H, implies the simulta- ‘

neous validity of the rclations F(mT) >mF(T) and 1-p > F(mT). Thug
acceptance of H1 implies that r

F(T) < _1._-59_

80 that

is concluded. '
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Example. Suppose it can be assumed that the density function
involved is monotone nondecreasing on [0, £ 50] . Two problems are

considered; 1) Design a test which will determine whether the conclusion
r{.95,.90) is valid onthe basis of a sample of size 21; 2) given a sainple
of size 9, and X(l) > 4. 3T, what is the strongest statement of the form

r(a,.90) that can be concluded?
Solution to Problem 1: The MDF ~hypothesis test here can be

expressed as follows; We are givenn= 21, l.y =,10, a = .95, Thus
(1-B)/m = , 05, and 2! = 1.y = ,10. Thus, B = .896, so that ,104/,05 =

m = 2,08, Hence, the hypotheses are

Ho: F(2.08T) >, 104
and

H,:F(2.08T) < . 104,

HO is rejected if xm >2,08T, If X“) > 2.08T, then it is accepted that
F(2.08T) < .104and2,08T < £, 0, <£ ), so that . 104 > F(2.08T) > 2,08 F(T),

with at least y-confidence; i.e., if X(l) > 2.08T, »(.95,.90) is concluded.

L] 104
. 0524,

Solution to Problem 2: Heren =9, m = 4.3 and l-y
Hence, (1-B)/4.3 = l-a and 7 = .10, so that B = ,7745, and a
Hence, suppose

n B

HqiF(4.3T) > 2353
and
H,:F(4.3T) < . 2355,

Then, x(l) > 4. 3T results in the conclusion r(.9476,.90).

We now compare the results of applying the MDF -technique to a
situation in which the random variable X involved actually has the
exponential distribution with f(x) = Ae" %X )\'> 0, and thus does not
satisfy Condition 4 for any value of m > 1, Table 3.1 provides compari-
sons of MDF -approach results with lower .90 confidence bounds
(1-p? = ,90) for the reliability obtained under the assumption that X
actually has the exponential distribution and xm > mT for the sample
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sizes and values of m shown. The hypothesis test involved in obtaining

the bounds under the exponential assumption is nearly idenncal to the MDF -

hunotheeie teet, with the cxception that the MDT assumpiion :‘nn; >

mF(T) is omitted and the bound for F(T) is obtained from the fact that
when X has the exponential distribution

F{mT) < 1-p => F(T) < 1-;31/ m

The validity of this implication is seen as follows:

F(mT) = l-e’hmT <1-p a=> e-hmT >p <=>

e AT > 51/m <=> 16T < 1_‘31/m

<=> F(T) < l-pllm

TABLE 3.1
o #(.99,.90) =(. 95, .90) =(. 90, .90)
m N ﬁl/m n p17m n ﬂl[x'n
1 230 . 990 45 . 950 22 .900
2 114 |.990 |22 |.9a9 | 11 | .895
2.5 91 |.990 | 18 | .948 9 | .892
3 76 |.989 |15 | .947 7 | .sss
3,75 61 |.989 | 12 | .946 5 881
4 57 . 988 11 . 946 5 . 881
5 45 |.988 | 8 | .94 4 | .87
6 18 |.987 | 7 | .943 3 | .as8

For exampie, the MDF -approach conclusion based on a sample of 76
systems and X(l) > 3T is r{.99,.90). The corresponding conclusion

based on the assumption that X has an exponential distribution is
r{. 989, . 90).
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It is possible to analytically explain the lack of sensitivity of the
MDF approach to certain types of departures from Condition 4, In
particular, the condition F(mT) > mF(T) for every me[l, 0] is
equivalent to saying that for xe[T,0T] the distribution function F(x)

daminates the functinn
L(x) = E%!)— %

(See Figure 1.)

F(x)

(mT, F(mT)) L{x) = E(T) x

(mT,mF(T) )

FIGURE 1

For xe [0, T/F(T)] , L(x) can be thought of as the distribution function of
a random variable which is uniformly distributed on [0, T/F(T)] . Thus,
if in reality X has a distribution function with the property that F{mT) <
mF(T) for m > 1, then F(x) will be dominated by L(x), the slope of
which -F-,(-rzl shall be "small" when T/F(T) is large.

What happens when X has the exponential distribution, with F(x) =
1 - e"AX, is this (see Figure 2): If Ax is small, i.e., if 1/) is large
relative to x, then 1 - ¢"'¥ = Ax, Thatis, F(x) is closely approximated
by the distribution function of a random variable which is uniformly
distributed on [0,1/A] . Since A % F(x)/x for small values of Ax, if AT
is small F(T)/T = A, so that F(x) 2 xF(T)/T = L{x), which accounts for
the relatively small error in the MDF conclusions for small values of m.
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FIGURE 2

4. A CONSIDERATION OF THE WEIBULL DISTRIBUTION., The
Weibull distribution occupies an important position in the theory of
reliability. Thus, it is useful to compare MDF results with those
obtained under’the assumption that the random variable under considera-
tion has the Weibull distribution. For these compariaons.e it is assumed
0-1 -Ax

e

that the density function of X is given by f(x) = Ax » where x> 0,

6 > 1 and A > 0. The distribution function of X is F(x) = 1 - e-)‘xe.

Statements of the form r(a,¥) can be obtained for this case using the MDF
hypothesis test structure with the implication F{mT) < 1 - p(m)

=> F(T) < hap‘ﬁ replaced by the implication
1

F(mT) < 1 - B(m) => F(T) <1 - [p(m)] ™ . Note that this is the same
substitution which was made in Section 3 when statements r(c,y) were

obtained for the exponential distribution using the MDF hypothesis test 1

structure. That the implication F(mT) <1 - B(m) => F(T) <1 - [B(m)] ™
is valid when X has the Weibull distribution with 0 31 is seen as follows:
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F(mT) <1 - f(m) <=>1 - e-'\(mT) <1 -p(m)
1
e 686
<os oM m > B(m) <=> .-ATe > [B(_m)]m
A
<> 1-e T8 <1 - [B fm)] md uy F(T)

s

<t- Bmn™ .

- 1
But 1 - [B({m)] md <1- [ﬂ(m)]ﬁ since Bef0,1] , m<land 0> 1.
Thus, if X(l) >mT, \i/here" Pr(x(l) > mT 'Ho'ie true) <1 - y, the

statement ([ p (m)] ™, 7) may be concluded.

Example. In [2], Lieberman and Johns have presented a
method for estimating reliability when the random variable involved
has a Weibull distribution. Section 6 of [2] presents an illustrative
example in which the reliability of a system for a mission of T = 40
hours is estimated, with ¥ = 90 confidence, on the basis of the following
observations on the first five order statisticas: xw = 50, x(z) = 75,

X(3) = 125, x(4) = 250 and X(s) = 300. The sample size used is 10,

Using the estimation method they derived, the authors conclude r{.796,.90).
Had the authors simply used binomial reliability tables [1], they would
have concluded r(.794.,90), since no mission failures occurred in 10
trials. By way of comparison, if one employed the MDF technique under
the assurnption that f(x) is monotone increasing on [0, £p) for any p <. 20,

the conclusion would be r(.835,.90), while if one were to utilize the MDF
type technique adapted, as described, to the assumption that X has the
Weibull distribution with 6 > 1, the conclusion would be i(.832,.90). It
should be noted that the estimating procedure of Lieberman and Johns
does not involve any assumptions on the values of 6, which at least
partially explains the relatively small difference between their estimate
and the binomial estimate. The MDF technique becomes increasingly
less accurate as an approximate method as 6 approaches 0. Therefore,
caution should be used in applying the technique to a Wejbull situation if
it is suspected that 6 is actually less than 1,
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RELIABILITY IN COMPLEX SYSTEMS:

e amn ¢ A ety e o,

A. Clifford Cohen
The University of Georgia

' 1, INTRODUCTION. It is well established that the rellability of

‘ complex systems varies with time., Following a break-in and adjustment
period during which minor deficiencies are corrected, a system is placed
in service with an initial reliability R°. Thereafter the reliability either

increases as further system deficiencies are corrected or it decreases
as components deteriorate with age. In the life of some systems, there
is an early period during which reliability increases, and a subsequent
i ; period of constant or decreasing reliability, Our attention in this paper
Do is limited to models of monotone increasing and monotone decreasing
reliability.

ad
e o B QAT

2, EXPONENTIAL MODELS.

Increasing Reliability. With R(t) designating reliability at time t,
a simple exponential model for increasing reliability may be expressed

o e

4,_,____.__.,...,7,_“.'..,4
e s P

as I
: {1 R(t):l-(l-Ro)e'at,azo,tzo. '
:
;l Doe where Ro and o are parameters to be estimated from sample data.

Decreasing Reliability., When reliability decreases with time, we
consider the following relationship

l (2) R(t):Roe'“t,q >0, t>0,

t where again Ro and a are parameters to be estimated from sample
! o data.

3. MAXIMUM LIKELIHOOD ESTIMATION, Let n, specimens he

tested at time ti and let x, designate the number of successes achieved ’

(1=0,1, ... k). Sample data resulting from a sequence of such tests ‘
then consist of the triples (to, n_ xo), (tl, N (tk. D E)e i

A s o

From these data, we must determine which model is appropriate (i. e. l ,

ek WA

' “Reprinted with permission of the American Society for Quality Control 1
from Transactions of the Twentieth Annual A. 8.Q.C. Technical Confer- i
. ence, June 1966, !
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increasing or decreasing) and then estimate the parameters., Before
examining the problem of choosing between models, we will Hret congid
estimation in each model separately,

With the reliability R(ti) at time t, abbreviated to R,, the likeli-
hood function for our sample may be expressed as

: l;x it N | n,-x
(3) | L{ (no, xo)...(nk, x, )] 'j-.-o (x{)Ri {i- Ri) i,

Estimation in the Increasing Model, When Ri is given by equation
(1), we make this substitution in (3) to obtain

=B

(4 LR, e =

i (:i)[l -{1 - Ro)e-a k[ () - R )e™" S S

0 7i

where the subscript (0 indicates employment of the increasing model,

. On taking logarithms of (4) differentiating with respect to Ro and o

in turn, we obtain

Kk
/ BlnL, g(“i X))k xeoH
R - " 1-R. T 2 1-(1-r)e0t
‘ o [ 0 o
(5) ¢
=-Q ti
slnL, Kk ko G%e
=«Ztfn -x)+({(l-R) T
\Oa 0 it i (o) Ol-(l-Ro)e-ati

On lettinﬁ these equations equal to zero and simplifying, estimat-
ing equations in the case of increasing reliability become
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-0 ti (]

k xie k
1-P)Z = Z (n, -x),
( ° 01-(1-R0)e'“ti o * Y
(6)
k tixie-o‘ Y k
(1- R)Z ' e % t:i(n1 -x) .

0 l-(l-Ro)e

A
When (1) is the appropriate model, the required astimates Ro and

S can be found by simultaneously solving (6) using standard iterative
techniques. Should the value a thereby obtained from some given sample
turn out to be negative, this suggests that the increasing model is inappro-
priate and that we should either set @ =0 or investigate the decreasing
model of equation (2).

Estimation in the Decreasing Model. When R, is given by equation
(2), we make this substitution in (3) and thereby obtain

k

(7 LD(Ro’°) = i1'=I0 (::) (Roe'“ ti)"i(l -R_e

-Q ti)ni =X ,

where the subscript (D) indicates employment of the decreasing model.

On taking logarithms and differentiating, we have

k
IZx -1t
- i
BlnL 0 i ) ; (ni xi)e
BRo Ro 0 1-Re™® t
[o)
(8) -q t
BlaL k k tn - x)e i
5 " - Iy +t R I
) 0 l-Roe i

On equating the above partials to zero, the estimating equations become
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( k (ni-x)e-Clti k
" f) i~R e-ati i g xi ’
o
(9)
k tn -x je=oti k
R X . . z tixi .
o 1- R e M 0

When (2) is the appropriate model, the required estimates ﬁo and

& are found by simultaneously solving the two equations of (9). In this
case, should the value @ thereby obtained, turn out to be negative (an
unacceptable result) this suggests that either we should set =0 or
that the increasing model of (1) should be employed.

4, CHOOSING THE MODEL. In many applications, a' priori con-
siderations dictate whicli of the models considered here is appropriate.
In others, the sample data will clearly indicate which model is to be
preferred. In perhaps the majority of applications, the choice of the

model will involve a more careful analysis of sample data, and the follow-
ing procedure is suggested for choosing between the increasing reliability
‘model of (1) and the decreasing reliability model of (2).

1. Solve equations (6) for tentative estimates of Ro and a

in the increasing reliability model. If the tentative
estimate of a thus obtained is positive, aicept both

tentative estimates and designate them as ol and 31 .

1f the estimate of a obtained from (6) is negative then
accept as estimates 31 =0 and RoI =

k k
= xi/n where n= X n, .
i=0 i=0

2. Solve equations (9) for tentative estimates of Ro and o

in the decreasing reliability model, If the tentative
estimate of a from these equations is positive, then
accept both tentative estirmates from (9) and designate

them as oD and aD. If the estimate of a obtained
from (9) is negative, accept as estimates ?"D = 0 and
R 5 /
= %, /n.
oD {=0 i
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‘Calculate L. =L{R ,4) and L_=L (R _, & i
3. ‘Calculate L, = L(R -, ) and L= D(RoD' uD) using

equations (4) and (7) respectively.

Iy -
4., If LI > 'LD, choose the increasing reliability model; if
LD > ?.,1, choose the decreasing reliability model. Other-

wine (if 21 = ?"D)' we employ the conatant reliability model
. k
A
R,=R_with a=0, andwith R_= I x,/n.
1 ° ° el i

'8, ASYMPTOTIC VARIANCES AND COVARIANCES OF ESTIMATES.
The asymptotic variance~covariance matrix of the maximum likelihood
estimates o and 8 is given as

_ -1 - 7]
2 2 |
-EEa lnzl.a) _E(aa;"-;'a ) V(Ro) Cov(ﬁo. ?) |
BR °
a0 |, 2 : '
‘Efaaal:; ) _E(_EEZI_L_) Cov(ﬁo.a ) V(&)
L o 8a - . -

where E symbolizes expected values, In practice, satisfactory approxi-
mations can be cbtained by replacing expected values of the partials with
their actual values calculated using Ro = Ro and a =3 . The required

second partials follow from further differentiation of (5) and (8) in turn.
These results are given below.

For Increasing Reliability.

5%InL k (n, -x,) k x e 29t
1 i i i
3 =-% 7~z atis 2
" (1 - -aty
3R, o1 Ro) 0 [1-(1 R )e ]
(11) lenLI lenLI K xte ® *
= = - X
BROSO. BnaRo 0 [1 - (1 - Ro)e'a ti] Z
8%nL Kk toxe~ %t
T . T
2 =-{1- Ro) z g t;, 2
8a o f1-(1- Ro)e i]
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For Decreasing Reliability.

/321'1:-4 1S 2 1z (n' - );-z a ti
5= = - B xR0 - B bl
B8R 0 0(l-Re '
[~} 0
9%1nL, 81nL k (n, - x)t.e ¢t
(12) anéfaaar?'z . iitz ’
o ™ 0 (1-Re %M
8%inL, k t.z(n -x)e b
D ity i
7 TR Z oz
8a ® 0o (1-Rre™M

Although asymptotic variances and covariances might be misleading
for small samples, they should closely approximate the truls variances

and covariances for moderate size samples; i.e, for n= T n, in excess
of say 20. 1

The variance of i which is of course a function of ﬁ and '&

" can be approximated by employmg a theorem of Cramer [l] which enables

us to write

R
(13) v(n)-( )v(a)+ze5§—)( Eiiconf,. ) + (B2 vis)

For the increasing reliability model, it inllows from equation (1)

7 that

Ri e %% and 8Ri
R -

[~}

-]

«at
= ti(l - Ro)e

Q@

Accordingly, in this case, we have
(14) V(R s 28ty ViR ) + 21 -8 )t,CorR %) + (1 - R )%3ve)]

For the decreasing reliability model, it follows from equation (2)
that
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Summarizing, we have n = % n

811 - - ti
and 5o = -tiRoe .

! - e-Q ti‘

Q

In this case V(Ri) becomes

.3

(15) V&) 2 2 IR ) - 2R pCovR &) + RAPvit)] .

-6, ILLUSTRATIVE EXAMPLES, In order to illustrate the

.pnctica]...application of results of this investigation, let us consider

simulated test data on two complex systems, one with increasing reli-
ebility and the other with decreasing reliability,

Example 1. Increasing Reliability. Following are results of the
initial and four subsequent tests conducted on this system.

t, (time periods) 0 1 2 3 4
n, (number tested) 20 10 5 5. ]
X, (number successes) 13 8 8 4 5
xi/ni (success ratio) 0,65 0,80 1.00 0.80 1,00

4

4
45, X x, = 35, T t,x, = 50,

n

i

4 4

z (ni - xi) = 10, and 20 ti(ni - xi) 5. Our problem now is to substitute
0 ‘ ,
these values into (6) and solve for the required estimates Ro and Q.
Any standard iterative method might be employed for this purpose, but
the following procedure seems relatively straightforward and should be
generally satisfactory,

As an initial approximation, R(O). we select the initial success
ratlo xo/no = 0, 65, and as an initial approximation to Rl' the success
ratio xl/nl = 0,80, We substitute these two values in (1) with t = lto
obtain

0.80 =1 -(1 - 0,65)e" %, and it follows that

-Q l - 0|80
e 1 _O.T_ B 0.57143..
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Reading from a ta lf of exponential functions, we have as an initial
approximation, 0.56. The superscripts serve to indicate the
u.l‘tlt:x UI t:lc &.yy;un.und.\..\uun. "."C nubu:qucuﬁly ‘\vly :c‘bilus LY 3- 53 &AA\;
0. 55 respectively in the two equations of {6) and solve these in turn for
Ro' We of course are seeking a value of a such that the two values of |

I ot et .

R thus obtained are identical. Following is a summazry of these results

mcluding interpolation to obtain new approximations n( ) and R‘l) .

o R, fromlst. Eq. R from 2nd Eq. Difference S

of (6) ° of (6)
0.500 0. 662 0, 685 -0.023
0.543 0. 656 0,656 0 ' |

0.550 0. 655 0. 651 +0.004 {

As new approximations, we have a.(l) = 0,543 and RS) = 0. 656,

g We now elect to seek further improvement through Newton's method
which is based on Tayior series expansions of the estirmating equations
about a point in the vicinity of their simultancous solution. Let h and
k designate corrections to be determined by the iteration process so that . i

L and mn

ﬁo = él) +h and 8 = a (1) + k. Using Taylor's theorem and neglecting

terms containing powers of h and k above the first, we have as correc-
tion equations

R SN

L
E
FF 8zlnL 8zlnL InL
f h L 4k L 81 ‘
z e —— :
! SR 3R 3o 3R _ : d
[} i
: 2 2 "
! 3 lnLI 8“1nLy alnLI
da §
£

3R tX =7~ ° " o ’ 4
o L
{

which are to be solved simultaneocusly for h and k. 1
i

Using (5) and {11) we evaiuate the partials in these equations at the
point Ro = 0,656, a = 0,543, and the correction equations become

]

% -119,9088 h - 16,7561 k = 0. 0998, |
} - 16.7561 h - 11,6602 k = 0. 0038, '
%
f
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) Solving, we have h = =0,00098 and k = 0,00109. Thus the final esti-
mates become

»
! Ro = 0, 656 - 0,00098 = O, 6550,
i
& =0.543+0,00109 = 0.5441 .
; . As verification of the accuracy of these final estimates, they were

] substituted into the first partials of (5) with results as follows:

am"x aanI
= 0, 001, 3 -
o R_=0.6520 o R_=0. 6550

L. a =0,5441 a =0,5441

= 0,001,

: 8R

-

Values of zero would have indicated perfect agreement, The small values
obtained here are considered satisfactory and no further iterations are :
deemed necessary. '

Rather than employing the intermediate interpolative procedure, we
~ might have moved directly from the initial approximations to the Newton
method. In that case, of course, one or more additional cycles of the
. Newton iteration might have been required to reach the same final
results as those obtained here.

b R A TR Ko Sl U DA

Using vaiues of the second partials employed as coefficients in the
correction equations, the variance-covariance matrix of (10) is approxi-

| mated as

t . . _1

E . 119.9088 16. 7561 0.0104 -0.0150

F . 16.7561 = 11, 6602 -0.0150 0.1073 .
; - Accordingly we have

Co. 7 V(R ) =o0.0104, V(8)£0.1073, Cov(R ,3) =2 -0.0150.

ti =0, 1, 2, 3and 4, We also calculate the predicted values of Ri
i.e. ki) at these times using equation (1) witha =@ = 0. 5441 and

RQ = io = 0,6550, These results are displayed below along with actual
’ success ratios for comparison.

}
Using these values in equation (14) we calculate V(ii) at t'?i'nes !
|
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i

x,/n 0.65 0.80 1.00 0.80 1.00
‘ 0.6550 0.7998 0.8838 0.9326 0.9609
v(R)  0.0104 0.0043 0.0046 0.0036 0.0022

An attempt to fit the decreasing model of (2) to these data resulted
ina value o < 0 as a solution of (9), We were thus led to estimates

A

G,=0 and ﬁoD = .Eo xi/n = 0,7778. Using these estimates
in (7), we calculate 1= £D = 0.0008,whereas using the estimates

ﬁ! = 0,1472 and RoI = 0. 6074 in equation (4), which applies when the

increasing model of (1) is employed, we calculate i'l = 0.005, Since
L, >?"D' our choice of the increasing reliability model of (1) in this
instance is verified as being correct.

Hlustrative Example 2. Decreasing Reliability. Following are test
data on a systemn in which reliability is decreasing with time.

t, (Time periods) 0 1 2 3 4
n, (Number Tested) 20 5 5 5 3
x, (Number Successes) 12 3 2 2 1
x,/n, (Success Ratio) 60 .60 .40 .40 .33
- 4 4 4
Summarizing, we have n= X n =38, X x =20, Z tx, =17,
1 174 1 i

E‘: (n.1 - xi) = 18, and E: ti(n - xi) =25, Proceeding to solve equations

(9) using these data, we again select as an iinitial approximation to R ,
the initial success ratio. Thus we have Rg) = 0,60, The initial

approximation to @ comes from a free-hand curve through the points
on a plot of the success ratios versus time as a(o =0.12,

This time, we skip the intermediate approximations as used in the

first illustration and proceed immediately to the Newton method, At the
end of one cycle, we have as improved approximations
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R%l) = 0,605 and n(l) = 0. 145,

With the partials of (8) and (11) evaluated for R_= 0, 605 and
a = 0,145, the correction equations become v ’

-i22.9348 h + 48,5840 k = -0, 1886,
48,5840 h - 76,0959 k = -0, 0496,
On solving, we find
h=0,0024 and k = 0,0022,
and as final estimates (or new approximations) we have
R_=0.6050 + .0024 = 0.6074
a

a =0.1450 + .0022 = 0,1472,

These values are substituted into the first partials of (8) with the
following resulte

9 lnLD olnL,

-5-5-—- = .0, 0001, —-5;2 = -0,0012,
0 R.°=0. 6074 R°=0. 6074
a =0,1472 a =0.1472

These values are considered to be sufficiently close to zero to justify
acceptance of ﬁo = 0.06074 and @ = 0,1472 as final estimates, and no
further iterations were made.

As in illustration 1, the variance-covariance matrix of R and$
is approximated uning coefficients of the correction equationa, Thus we
have
-1
122,9348 -48, 5840 0,0109 0.0069

"

-48. 5840 76,0959 0, 0069 0.0176

[ . .
Accordingly for this example, we have V(R ) &0.0109, V(d) = 0. 0176,
and Cov(f%o.a) = 0. 0069. The variance of ii at t, =0, 1,2, 3and 4

is computed from (15) and the predicted {estimated)values of R,
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(designated R ) for these same time values are computed from (2).
F These results along with the success ratios are displayed below.

| t 0 1 2 3 4
xi/ni 0. 60 0. 60 0. 40 0. 40 0.33
R, 0.6024  0.5246  0.4525  0,3906  ©,3371 | .
V(R)  0.0109  0,0069  0.0112  0.0183 0.0250

An attempt to fit the increasing model of (1) to the data for this
example resulted in a value a < 0 as a solution of (6) and we were thus

4
led to aI =0 and ﬁol = Z xi/n = 0,5263, Using these estimates in .
i=0

(4), we calculate i‘I = 0.001, whereas using the estimates a

D =0, 1472
A

A ) IS
and R = 0.6072 in (7), we calculate L) = 0.002. Thus with £, > L,

for these data, the decreasing model of (2) is the proper choice.

7. SOME CONCLUDING REMARKS. Although questions relating

to how many tests should be conducted and when they should be scheduled, i
have not been formally examined here, they are not to be dismissed as

’ being unimportant. When tests are destructive and the cost is great, .

: " there is considcrable pressure to limit their number, Considerations ;
having little to do with statistics or probability often dictate that a rather .
large proportion of available test specimens be expended in the initial 5
tests, Such allocation, of course, limits the number available for subse-
quent testing. Further studies in this area to determine optimum test
designs are still in progress,

When this investigation was begun, it was intended to consider not only
the exponential models, but also the hyperbolic model

RO-Reo :
q R(':)=R‘=° + —u—t-TT—; tZO, WhereOSRosl, '

0<Rw<l, anda > 0. Asinthe exponential models, Ro is the initial

probability at time t = 0. R « is the final or ultimately attainable
reliability; i.e. Lim R(t) = Rew. In this model, reliability is increasing
t +o

or decreasing with time depending on whether Ro > Ro or Re < Ro.
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A special case of the hyperbolic model with a = 1 and Reo > Ro has been -

considered by Lloyd and Lipow [2].

Procedures similar to those employed in this paper can be used to
estimate parameters o , R,, and R in the general case, but in view

of the length that the present paper has already attained, further con-
sideration of this model is being temporarily deferred,
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ESTIMATION OF TIME FUZE CHARACTERISTICS :
{ BY NON-LINEAR REGRESSION METHODS |

Weldon F', Willoughby
U. 8. Army Ballistic Research Lahoratories
Aberdeen Proving Ground, Maryland

_ INTRODUCTION. Ballistic tests of mechanical time fugzes provided
data which indicated that the biases in functioning time (i.e., the differ-
-ences in the running time and the set time) for a given time setting were

_.relatively large and widely dispersed when the firing 8 were conducted at
low temperatures, For the firings conducted at higher temperatures, the

. biases decreased in magnitude and became more uniform as the tempera-

§ ture increased. Since, in the past, the bias in functioning time of

. mechanical time fuzes assembled to artillery projectiles had been expressed
implicitly in the firing tables as a function of set time alone, an investiga-
tion was conducted to determine the dependence of fuze bias on tempera-
ture as well as set time. In addition, it was desired to find an equation
expressing the relationship between fuze bias, temperature and set timme
which could be programmed for use on the Field Artillery Digital Auto-
matic Computer (FADAC).

Plots of the bias in fuze functioning time versus set time for constant
temperatures indicated that the two variables were linearly related. On
ia the other hand, plots of fuze bias versus temperature for constant time

settings resembled single branches of rectangular hyperbolas, indicating
. a nonlinear relationship between bias and temperature,

S

From these indications, and after trying several models, a candidate
model equation containing two linear parameters and one nonlinear
parameter was assumed to adequately describe the relationship among
fuze bias, the dependent variable, and temperature and set time, the two
independent variables. In the model, it was assumed that only the biases
were affected by errors of measurement.

- As is well known (see [2] and [8], etc.), the method of least squares,
- ! which is the method moast oftern used in regression problems, may be used
to estimate the parameters of functional relationships among cets of
experimental data whenever it can be assumed that:

: (a) the dependent variable, Y, is related to known levels uf a set
of independent variables, Xl. Xz. . .Xk, by a relationship ¢f the form

q (1) Y= B X, +ByX, +...4B X+ ¢ ;
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.problems by these methods.

where the 8. (i = 1, 2,...,k) are unknown parameters and ¢ is the error
in the observed value of the dependent variable, and :

(b) the errors in the observed values of the dependent variable are
independent and randomly distributed with zero mean and a common
variance. (In addition, if valid statistical tests of significance are to
be niade, it is also necessary to assume that the errors are normally
dist ibuted. ) :

However, when the functional relationship among the variables ca.nnot
be exprusad as a linear combination of the unknown parameters as in (1),
the usual procedures for estimation by the method of least squares are not
directly applicuble, Several procedures are available (see [3], [4], [6] .
and [7]) for estimating the parameters of nonlinear functions, These
procedures generally employ a transformation of the function into a
linear form either by a change of variables or by an approximation based !
on a Taylor's series expansion under the assumption that the function is
locally linear, In connection with the latter, the approximating procedures
require iterative processes to converge to solutions and the advent of high
speed computers has greatly facilitated the solution of nonlinear regression

For this problem, the model equation was assumed to be of the form

o e e A B RS o s

B, +B, X, A
N Nl T TRV .
e TX, A8, Y .
i tPs
(2)
P Xy . By Xyy Xy .
Xy, + 5, Xy P, ik

where Yijk' is the observed fuze bias at time setting xu and temperature
ij and 'ijk is a random error with zero expectation, Assuming this rmodel

equation, the regression function to be fitted is

‘51 t8, X,
b=E(Y)= Xy P X\
(3)
P Ey . By X1 Xy
X3 ¥P3 Xy * By
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It can be seen by inspection of the first form of (3) that, for a constant
temperature (X,. is constant), the regression function represents a
“)

straight line passing through the origin (zero set time and zero bias) and
for a constant time setting (xli is constant), the regression function

represents a rectangular hyperbola with vertical and horizontal asymptotes.

The function given in (3) was fitted to sets of data obtained from
ballistic functioning tests of the mechanical time fuze. Least squares
estimates of the three parameters were determined first by an iterative
process (after linearizing the function) which exploited the facility and
speed of computation of the Ballistic Research Laboratories Electronic
Scientific Computer (BRLESC) in scanning the parameter space, Then,
as a check on the results obtained by this procedure, least squares
estimates were also obtained by the Hartley [5] modification of the Gauss-
Newton iteration which in theory has the highly desirable property of
guaranteed convergence to estimates yielding the absolute minimum sum
of squares of residuals provided the initial estimates of the parameters
are in the neighborhood of the final values,

In order to obtain approximate confidence intervals about the individ-
ual parameters, as estimate of the variance-covariance matrix of the
least squares estimates was obtained using the Fisher information matrix
described by Rao [9]. The confidence intervals were constructed by the
procedure described by Stone in his discussions on the paper by Beale

in [1].

THE SCANNING PROCESS. To determine estimates of the unknown
parameters by the scanning process, the regression function was linear-
ized by substituting an initial estimate of the nonlinear parameter 8,.
The two linear parameters, (| and B,, were then estimated by the usual
least squares procedure. The sum of squares of residuals was computed
using the three estimates of the parameters. In the next iteration, the
initial estimate of B3 was changed by some small increment and new
estimates of ) and B, were determined as before. Again, the sum of
squares of residuals, using the new estimates, were computed, The
process was repeated until a minimum sum of squares of residuals over
a rather large range of estimates of 33 was obtained. The estimates of
the parameters which gave the minimum were considered to be the least
squares estimates,

If ﬂ;, the value of 8, which gives the minimum sum of squares of
residuals, is substituted in (3), the denominator of each of the terms
could be considered to be of the form

I

(4) ij = xzj + Bs
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Now, let

xli
(5) tli= ;'-T ; th = ij .
2
Then {3) can be written as
L6 b= B(Y) = Bty +By Yy by

which is linear in B, and B,. Least squares estimates of $; and BZ’
for the given value of [53 R may be obtained by solution of the normal
equations resulting from minimizing the suru of squares of residuals

(7 Qe = iﬁ‘ (Yipe - (Bt * By ty tz:‘)}z

with respect to ‘51 and BZ, when the errors inthe Y are independent

ijk
and distributed with mean zero and constant variance ¢%. On the other

hand, when the errorsinthe Y,,k have different precision, i.e., the

ijk

variance of errors in Yijk is not constant, the sum of squares of

residuals to be minimized is of the form

(8) Q) = T . {Y

gk 4 (Bt By Yy, 25)}

where the wij are relative weights of the Yijk which make the quantities

(%) Yi‘jk = \/_u-i; Yk

have a common variance. (In ihe case of homogeneous variances, the ’
relative weights, wij = 1,) Thus, a predicted value of Y may be deter-

mined from the equation
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~ N ”
Y5 = Pt H P2 Byt

»

(10) 4
P Xy . 2 X1 %
X

xzj+a"3' zj+|3

[FER

The standard error of estimate is given by the expression

() F s By (Y <Ry, v By, 1)

In the process of determining the prediction, it was noted in the
examination of the data that the dispersions of the observed biases varied
considerably firom temperature to temperature and to eome degree from
time setting to time setting, As previously stated, a necessary assumption
for the application of the least squares method is that the variances of the
errors in the Yijk be constant. Therefore, it was necessary to perform a

transformation of the biases to remove tha effect of heterogenous variances
at the various temperatures and time settings. A suitable transformation
found in [8] is to let

Y.,
(12) y!  w Ak
ijk u-tj

where Yijk is the kth observed bias and o-ij is the standard deviation of

the biases at the ith get time and jth temperature. The transformed
variates, Yijk have the property that thair variances equal one. That

is,
Y Y
_ . vy le ijk AMTE
Var (Y )< E [Yijk -E(Yuk):l . E[_?Ui_ -E “7115—]
(13) 2
2 v
- 1 e M2
T2 E [Yijk E(Yijk] ) _'Lz" =4
j Y
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Since the true variances of the biases were not known, the reciprocal of
the sample variances were used as the relative weighting factors, w5

In order to cover the range of feasible values of f., the estimates
of this parameter used in the determination ranged frofn -10, 000 to
410,000, This range was scanned first at intervals of 100, 10, 1, 0,1,
and 0, 01 until the valve of B3 was found which gave the smallest sum of
squares of residuals., In each iteration of the process, least squares
estimates of p) and B, corresponding to the estimate of f, were
computed,  Plots of the error root mean squares (in the subrange indicat-

ing-a-minimum sum of squares of residuale) obtained in each iteration -

versus the e¢stimated values of By are given in Figure 1, for the three
zones of fire, (A smooth curve has been drawn through the points. )
Table I gives the least squares estimates of the regression parameters
and the sum of squares of residuals for the three zones of fire,

THE HARTLEY MODIFICATION OF THE GAUSS-NEWTON ITERA-
TION., The Hartley modification of the Gauss-Newton iteration initially
Tequires the expansion of the regression function in a multiple first oxder
Taylor's series about initial estimates of the parameters, f5;, B2 and P3,
obtaining an expression of the form

Y o= (X, X, B+ A8, B, +48,, B, +a8,)

(14) : 3 o
m (X, X; B,y B,y By +. T —— AP
10 N2i P Py Py o B T

where the partial derivatives are evaluated at |31 = Ei (=1, 2, 3) and
the Api are corrections to the El to be computed, This step is based on

the assumption that the regression function is linear in the neighborhood
of the estimated values of the parameters. For convenience, (14) may be
written as

3
(15) Y= fnf + T f Y
ial

This expression is linear in the unknown corrections, AB,, and therefore,
under the appropriate assumptions, the meothod of least squazes may be
employed to estimate the corrections to the initial estimates of the B,.
The normal equations are obtained by minimizing the sum of squares of
residuals given by
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(16) Q (pg' B,»B) = T . (Y“b -, - % Aﬂi)z ‘ ]
- - v ) i= i

T T M . has gy
R i o :v-
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i

1

! . assuming .at the {, are continuous over the range of values of the
independent variables, X1 and xz.

Then, instead of applying the entire correction to the B as is done
in the Gauss~-Newton iteration, a fraction v of the correction is applied,
where v is determined as follows,

Consider the sum of s¢gnares of residuals to be a function of v by
defining it as

(17) Q(v) = Q(Bl + vABl, EZ + vABZ, 63 + Ap3) o< w1,

(The E.. the initial estimates of the parameters and the AP,, the corrections
tc the éstimates are known values, leaving only v unknown.l) The value of v
giving a minimum of Q (v) is found by an approximate method by deter- z
mining the level of v at which the parabola passing through Q (0), Q(}), '
and Q (1) has a minimum, Using the Lagrange method, the parabola
passing through these points can be written as

2t J IR e e SR s DS B T &

L. .
; ;
| .2
: ) (18) & (v) = [2Q(0) - 4Q(}) + 2Q(1)] v~ - [3c(0) + 4Q(3) - Q(1)] v +Q(0) . 4
g g 1
4 i
[ f After differentiating § (v) with respect to v and setting the results
’ equal to zero, the value of v giving a minimum of § (v) is found to be ‘
E ‘ ‘ 3Q(0) - 4Q(4) + Q1 Q(0) - Q(1) N
1 3 = = = .
: (19)  min = ZT8rG) = zof;z) Fo(DT " A0 - 2/ s an)] 2 , {
S ) Using this value of v, the new estimates of the ; to be used in computing !

the sum of squares of residuals and in the next iteration is computed {rom
the expression

(20) By = B + v_. A8
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The above procedure is repeated until the estimates yielding the minimum
sum of squares of residuals is obtained. :

As indicated in [5], in the event that the value of v does not
give a reduction in the sum of squares of residuals from one iteration to
the next, the value oi v yielding a minimum of § (v) in an interval of
half the length should be used to compute the new estimates,

Because the Hartley modification requires initial estimates that are
in the neighborhood of those yielding the absolute minimum, and since
this procedure was to be used as a check, initial estimates of the para-
meters were selected in the neighborhood of the final estimates obtained
in the scanning process. Table Il gives the least squares estimates of
the parameters of (3) ard the sum of squares of residuals obtained in the
final iteration of the Hartley modification,

bt et e e e o

CONSTRUCTION OF CONFIDENCE INTERVALS. Another procedure,
presented in [1], yields least squares estimates of the parameters as
well as an estimate of the variance-covariance matrix of the least squares
estimates, which can be used to construct approximate confidence
intervals about the individual parameters. This procedure is based on
the Fisher information matrix as described in [9].

Corrections to initial estimates, E , are derived by expanding the
normal equations in Taylor's series about the initial estimates, obtaining
expressions of the form

3 2 .
(21) 20p) .. 2B , ;5 48, 296 =1, 2, 3

3, B -H i=1 9B, ab'j

where Aﬁi = ﬂi - Bi and Q(B) is the sum of squares of residuals. From

this, the set of normal equations can be written in matrix notation as

(22) V AR = G

where V is the Fisher information matrix with elements

2 2
ij _ 2°Q - 3 Q(p o
(23) 1--E5ﬁ%--#ﬁ?-(i.a-l.z.s).
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AP is a column vector with components AP, and 2G is a column vector

with components 8—(Q~E)- . Solution of {22) yields the corrections which
9P

are to be applied to the initial estimates-to obtain estimates to be used in

the next iteration, That is,

(24) ap =vlie
and
1

fzg} S . Bl = E +Ap = 'é + v'l G

where ﬁl is the vector of estimates to be used in the next iteration and
B is the vector of initial estimates,

When the process has converged to the least squares estimates, the

matrix V-l 3',2 is an approximation to the variance-covariance matrix

of the least squares estimates, Using this approximation, it is possible
to construct confidence intervals about the individual parameters such
that

(26)

PJ B, - o307 F, (3, n-3)_<_[525ﬂ2+3"\/;r22 F, (3, a-)\>1-a

B - ¥y F_ (3, n-3) <8, <B, + 833 F, (3, n-3)

where Vli (i =1, 2, 3) is the diagonal element of the B row of V-l,

Fa (3, n-3) is the a percentile of the F distribution with 3 and n-3

degrees of f{reedom and

(27) 5. [SEL

Ninety percent confidence interval estimates based onthe estimates *
obtained in the scanning process and those ohtained by the Hartley modi-
fication are given in Table III, A combination of the Hartley modification
and the procedure described in this section yielded estimates that gave a
slightly emalier sum of squares of residuals in each of the three zones,
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Point estimates and 90% confidence interval estimates based on the
combined procedure are given in Table IV,

DISCUSSION OF RESULTS, It can be seen by inspection ot Tables
I and I, which give the estimates obtained in fitting the regression
function by the scanning procedure and by the Hartley modification of the
Gauss-Newton int eration, that the results of the two procedures do not
differ to any great degree. In general, the estimates of 53 obtained by

the two processes differ more than the estimates of the other two para-

meters, especially in Zone I, Howewver, it is pointed out that the error-

root mean squares in the neighborhood of the apparent minimum are less
sensitive to small (positive) changes in this estimate than in those for the
other two parameters, This can be seen from Figure 1. In addition,

in examination of the error root mean squares in the various iterations of
the Hartley modification, it was noted that a difference of as much as four
in the estimates of P, in the neighborhood of the minimum caused a
change of only 0,01 in the error root mean squares,

Further examination of the estimates presented in Tables I and II
reveals that for each zone, the estimates of f, are relatively small in
comparison to the estimates of B; and Bj3. This may lead one to think
that this parameter does not contribute significantly to the model and may
be eliminated from consideration. In fact, tests of hypotheses based on
the assumption that the statistic

51'0 a

28) t = = -
( _561 8 2 vit

is distributed as !"Student's' t distribution, indicated that the hypotheéis
that Bz = 0 would be accepted in Zones I and IIw and the hypothesis that

ﬂl = 0 would be accepted in Zone III at the . 05 level of significance. On

the basis of these results, the model equations for the various zones
could be as indicated below.

Zone Model Equation
v, X
171
29 1& 11 V., = et 4
(29) iik = X0y, “ijk
Y, X,, X
172y
(30) bi N Yi.jk xzj +72 + ‘ijk .
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Each of the two model equations above have properties that are similar
to those of the original model in that the regression functions determined
from these models represent straight lines passing through the origin
when X,. is constant and rectangular hyperbolas with horizontal and
vertical Asymptotes when Xn is constant. These equations would be

much more suitable for use on FADAC than the original model equations,

Figures 2, 3, and 4 give perspective sketches of the general shapes
of the surfaces represented by the estimated regression functions, Sketches

-of the constant temperature and constant set time contour lines are given

in Figures 5, 6, and 7. To indicate how well the curves fit the data,
Figures 8, 9 and 10 give sketches of the constant set time curves (for
selected time settings) with the data points plotted. Similar sketches for
selected constant temperatures are given in Figures 11, 12, and 13,

It can be seen {from the last two sets of sketches that the variability
of the observed biases was relatively large at low temperatures for the
giventime settings; however, there was little difference in the variability
at the various time settings for a given temperature. It is also easy to
see that the assumption that the effect of temperature on bias {8 relatively
constant is not a bad assumption for temperatures slightly above zero
degree Fahrenheit.

On the basis of the amount of information obtainable from the procedures
discuseed in the foregone sections, it appears that the best procedure is
a combination of the Hartley modification and the procedure utilizing the
Fisher Information matrix. Point estimates of the ragression parameters
and 90% confidence intervals obtained by this combined procedure are
given in Table IlI. The combined procedure gave sums of squares of
residuals that were slightly less than those obtained by either »f the other
two procedures, although, due to slightly larger estimates of the a'ﬁi , the

confidence intervals obtained for this method were generally longer than
those for the other two procedures.
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TABLE I

Estimates Using the Scanning Procedure

Estimates of Regression Parameters

‘No. Obs, B F 8 Sum of Squares

Zone Considered 1 2 3 of Residuals
I 171 0.5604 0.0023 54,62 15,0688
11 96 0.6392 | -0.0021 | 6u.83 9.3593
III 217 00,0245 -0.,0084 51.u46 38,0889

e e




TABLE II

Estimates Using the Hartley Modification !

! Fstimates of Regression Parameters
t : : No. Obs. N 8 3 Sum of Squares
E | Zomne Considered 1 2 K] of Residuals
: 1 +
- % 1 171 0.5585 0.0023 54,31 15.0676 ,
. ¢ 96 0.66u4 | -0.0023 [ 6€7.16 9.3068 |
5 i III 217 0.0284 -0.0056 50,67 37.8275




TABLE 11I ’

Ninety Percent Confidence Intervals about Regression Parameters
F i . 90% Confidence Limits on =
B B 8
. No. of 3 d .
Method of Observations Lower | Upper Lower Upper | Lower | Upper
: Estimation Zone Considered Limit | Limit Limit Limit | Limit| Limit
i . ,
| 5 1 171 0.3746| 0.7u82) -0,0013 | 0.0058 | 45,46 63,78
“' ‘ Seanning 11 9 0.4029| 0.8755 | -0.0073 | 0.0031 | 50.74 | 78,92
f § TI11 217 =0.0476] 0.0966| -0,0083 | -0.0025] 43,15 59.77
f ; =
Ev I 171 0.3792} 0.7377} -0.0012 | 0.0058 | 45.75| 62.87
} Hartley .
g . Modification I1 96 0.3944] 0.93u4 0.0078 0.0032 ] 50.04| 84,28
; 111 217 =0.03491 0,0917| -0.0078 | -0.0034 | 46.39] 54,95

.
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OBSERVATIONS ON THE SELECTION OF PREDICTORS

H, L. Lucas and A. C. Linnerud

Nhl‘fk Caxr rolina State 'Tni'v'-‘::.‘:it',‘ at R&lclgh

1, .I_N_TRODUCTION AND SUMMARY. Mast work op the aeiection
of predictors has been done in the context of the general linear model,

(1) L= [5152- el [ﬁlpz. RTINS “

(obiervaticml on the ith
predictor) and ¢« (random residuals) are a.ﬂ-in x 1 matrices, the pi (regres-
sion coefficients) are scalars, and the prime means transpose, "For one
clags of practical situations it can be assumed that observations have been
made on all predictors that are relevant (corresponding p's non-zero) and
possibly on some that are not (corresponding f's zero). Given a set of data,
the problem is to decide which one or more of the 2P suhsets of predictors
is or are likely to be the correct one, In the present study, attention hal
been confined mainly to selection of the single best candidq.te.

Three criteria of selection, namely, the residual mean square (MS)
the Mallows C-statistic (C) and a rnodification of the C-statistic (MC), have
been studied to date, It was assumed that a set of data is a random sample
from a population characterized by certain values of the §; and by the form
and the parameters of the joint distribution of the x; and ¢. The x; were
assumed to be measured without errer. Performance was studied in terms

of the probability that a criterion leads to selection of the correct subset of
predictors,

Since the mathematics has appeared to be intractable, a highspeed
computer has been used to study the problem empirically. So far, data
have been obtained only on cases with p = 3, the % and ¢ jointly normally
distribuvted and

% i %) 0000

(2) O b I ok A L
X3 g ' .’53-29119'
L ° (! 9 0 91

where 1 (n x 1) has elements all 1, 0 (n x1) and 0 (n x n) have elements all

zero, I(n x n) is an identity matrix and p (1 x 1)"1s the correlation between

X, and 5_3




"

Using samplz size n = 20, 100-200 samples were drawn for each of
several cotnbinaiions vl p (G. 3G, 0, 95) and p-sets having ditterent numbers
(0, 1, 2, 3) and magnitudes (1, 2, 5) of non-zero elements. Although the
resulta exhibited many qualitative and some quantitative featurecs which
were not unanticipated, the quantitative features were in general pleasantly
surpriring to the author. All three criteria were better for selecting the
correct subset of predictors than was expected on the hasis of some
approximate and apparently naive preliminary considerations, This was
particularly true for the cases, all f's zero or the non-zero p's small.

For most situations studied, C was superior to MC and MC superior to M5,
Exceptions occurred particularly when the magnitudes of ﬂl and ﬁz were
small but both non-zero, and the correlation between x5 and X
Exclusive of these exceptions, criterion C resulted in 57 - 100% selection
of the correct subset of predictors, and MC and MS resulted in 30 - 100%
correct choice, For the exceptions noted, however, good practical
performance of the criteria was still obtained. The subset of predictors
selected as best simply alternated between including X, and X, rather than
both.

was . 95.

2. BACKGROUND.

2.1. General orientation:

There is a point which needs to be emphasized before focusing on the
immediate setting of the results to be presented. It is this. Given a vector
of observations on a predictand u and potential predictors _z_j (i=1 2, ....,m),

one should consider any theory and reasonable supposition regarding the
nature cf relationship of u to the Ej' It is often not sensible to assume that

u = y of (1) and that z, = x. of (1), although this is too often done. Rather,
u i T &

it may be proper tolety = n (11_) and X = ?-i (-?-i' Zyr e Considera-

) _7_-‘“).
tion here will be confined to situations such that transformations of the
observations on predictand and predictnrs permit expression of the rela-
tionship as in (1).

It will be assumed that a practical situation can be characterized by
certain values of the ﬂi and by the form and the parameters of the joint

distribution of the X and ¢. More  ccifically, it will be assumed to start
that
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A given set of data then represents a sample from the X € population
which, with the (31, implies y .

The problem is to examine the perforrnance of the aforementioned
criteria for deciding on which of the 2P subsets of the X is the relevant
subset of predictors (i.e., which of the 2P subsets of the pi consists of
only and all the non-zero ﬂi).

2.2, The selection criteria:

Letvs=l, 2, 3, ..., 2P index the subsets of the X Then upon
rearrangement of the columns of [_)gl Xpee Xy €] of (1) and the elements
. .
of [Bl ‘32 c e Bp 1] ', we can write
t
= / t
(4) y [vavi] [QVEVI]

where the columns of Zv (n x qv) consist of the vth subset of the X those
'_— P . . ] f '
of Xv (nxp qv) the remaining X e_v and Ev consist of the correspondingly
rearranged ﬂi, and q, = 0,1, 2, ..., p. Then, assuming Zv' Xv to be of
full rank, the total sum of squares T = y' Yy can be partitioned into
' -1 ' .
8, = ‘(ZV Zv) ZyandR =T -85 , and R carriesn - q, degrees of

freedom, It is useful to note that

(5) E(R) = B, AB + (n-a) .
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where A =X '[1-2 (2 z)tz'1x .
v v v v \'4 v v '

The criteria compared were
MS_ =R /(n-q)
2 )
Cv-Rv/s -n+2q,
_ 2
MC_=R_/s" - (n-p) (n-qv-z)/(r}-p.-z)

where sz is R‘/(n-qv) for the case in which ZV contains all the X

When analyzing data, the correct subset of predictors is chosen to be
the one among the 2P subsets which has the smallest value for the criterion
being considered.

Under the assumption Ev = 0, and ¢ distributed with mean 0 and
variance I,

E(MS) =1,

() E(C ) =(p-q ) (n-p)/(n-p-2) + 2q_-p

i qV if n is large,
E (MCV) = 0.

These expectations are of some interest when studying the results in the
next section. '

3. RESULTS, As indicated in the introduction, the mathematics
appeared to be intractable, so performance was studied empirically, The
scope of this work has been restricted by the computational capacity avail-
able to date, but programming for a much faster computer is now in process
and it will be possible to study more predictors than three, The current
results, some of which are shown in the following tables, may provide some
helpful insight toward obtaining at least an approximate analytic solution.
They also may aid in constructing a sharper criterion for selecting
predictors.

e s ————
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SAMPLE CENSORING*

N, L. Johuson
Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

1. INTRODUCTION. There are currently available a number of
methods deasigned to reduce the possible effects of "'wild" ('maverick")
cbsarvations on the analysis of sample values, Among these may be
mentioned 'trimming'' and "Winsorisation', These methods involve the
possible or sometimes automatic exclusion of extreme values among those
observed, Apart from these methods, for which appropriate statistical
analyses, taking proper account of the omission of sample values, are
available, samples may be incomplete owing to inadequate recording, or,
unfortunately, biassed selection of values which accord best with some
preconceived ideas or desirvs,

While, under properly regulated conditions, information on any
censoring of sample values should accompany the records of the values
themaelves, this is not always the case. Indeed, with the last situation
described with the preceding paragraph, such information is not to be
expacted; but also, even in more respectable cases, information may be
omitted by negligence.

The problems to be considered in this paper are those arising when
it is suspected that there has been some form of censoring of the originsl »
sample. Complete, and reasonably tidy solutions are obtained only on the |
assumption that the population distribution of an observed character is
known., However, study of this situation does give some clue ae to what
can be done when knowloedge of the population distribution is incomplete,

Problems of a similar kind have been discussed in an earlier paper [1].
They were of a rather simple nature in that there was usually a direct
choice between two possible sample sizes.

2. FORMAL STATEMENT OF PROBLEM. It will be supposed that
there are available r observations of a character (X) which may be regarded
as observed values of random variables xl" xé. avey xr'. Lhese are a

sub-set of the n (> r) variables %]y X3, «uv, x ! corresponding to a complete

random sample of (unknown) size n, If r = n, then the 'sub-set' is identical
with the complete sample. We will be interested in testing whether thig is,
in fact, the case. Various kinds of alternatives, specifying different kinds

%The work was supported in part by Army Research Office Contract AROD-4,
and in part by Air Force Contract AF-AFOSR-760-65,




of censoring which might be applied to the complete sample, can be
considered. Certain special kinds of censoring have been discussed
in earlier papers [2] [3], and the results of these investigations will .:
be summarized in-Sections 3 and 4, Then, in Section 5, we will consider !
problems associated with general types of censoring., Certain practical
problems arising in application of the tests described in Sections 3, 4,

! and 5 will be discussed in Section 6,

f}'

o Discussion will be restricted to situations in which x ', Xolo veey X!
o can be regarded ans n independent continuous random varilbles; with a
R known comrmon probability density function, represented by x),

3. SYMMETRICAL CENSORING OF EXTREMES. We will suppose {
that if censoring occurs it takea the form of exclusion of the s greatest

and s least among the original n sample values, Then x.l' ’ xz‘ TP xlj

are the r central values among an original set of n(=r+2s) values.
Denoting this hypothesis by H. . the joint probability density function of Tt

the r ordered variables X €%, <000 £ X, (these being a rearrangement i

2
of xl', xz', e x:: in increasing order of magnitude) is:

p(xl. Xy tres X |H

T &, 8

] 8 r
) = {228 pey )] *0-F(x )] * T i,
(s1)® - ST ya ]

(1)

(xlsxz < o0 < xr)

X
where F(x) = S f(x) dx .

The hypothesis that there has been no censoring and therefore that the
cornplete sample is available is, in the notation already introduced, H .
For brevity this will be denoted by Ho' 0,0

! The most powerful teit of H_ against the alternative H has &
critical (rejection) region of the form, "8

(2) p(xl, ceen Xy | H...) > Cp(xl. v erHO)

R T T —_._

‘ where C is a constant. Whatever be the value of s, inequality (2) can be
i written in the form. '

(3) F(xl) Fl - F(xr)] >K
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where K is a constant. Inequality (3) does not depend on s, so the test
defined by this inequality is uniformly most powerful with respect to H
for all s > 0; i.e. with respect to any symmetrical censoring of the !
extremes of the sample vaiues, 'I'he value of K must be chosen to give a
required level of significance, a say, when H_ is true, Thie value
depends on a and r, and may be danoted by K(o,,or). Then

(4) PrFF(xl)Fl-F(xr)] > Kfa,r) |H0] =aq .

____'_:__I_‘ﬁblg 1__g,'_£v_ve:a a fgw'yaluen_of Ko, r). Faor

r > 10 the approximations

K(0,10,1) £ 2. 65(r+l. 5)'2

K(0.05,1) & 4. 1(;»+2)'2

K(0.01,1) & 9.2(r+3,8)"2

give useful results. Mathematical analysis connected with the determina-

tion of K(a,r) is contained in Appendix I,

A discussion of the evaluation of the power of this test is contained
in Appendix II.

TABLE 1
Upper 100 0,70 Significance Limits of F(ﬁl)l':l - ﬂxlﬂ_

r 0.05 0.01

2 0.207 0.235
3 0.150 0.195
4 0.109 0.156
5 0.0822 0,125
6 0.0633 0.101
7 0.0503 0,0830
8 0.0408 0.0692
9 0.0338 0.08%85
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4, GENERAL CENSORING OF EXTREMES. Ifthe requirement of
symmetry is dropped we need to consider hypotheses of form H

corresponding to axclusion Af tha & amallaset and = |
I g ° r

the original sample, with s  and s, not necessarily equal. In this case

there is no longer a uniformly most powerful test of H,, There is a

uniformly most powerful test of Hy with respect to the subclass Hg, .8
T

in which lo/ﬂr (= 8) is constant,

It has a critical region of form
(5) [F(xl)] [l'F(xr)] Z K(ﬂ‘ L 9)

(1f s, =0, wetake 0 = w and replace (5) by F{xl) > constant ]

To obtain a significance level equal to a , the value of K(a, r, §), given
H, is valid (i.e. there is no censoring), rnust make the probability that
inequality (5) is satisfied equal toa. In [3] & heuristic method proposed
by S. N. Roy [4] is applied to suggest a possible test of Hy with respect
to all alternative hypotheses of type H'o: . (for any values of s, and s,).

This calls for construction of the union of regions like (5) witha ~ a', over
all values of 6. Points (F(xl). F(xr) ) on the boundary of the critical

regibn must satisfy the equations,

(6.1) [F(x,)1° [1-F(x,)] = K(a', 7, 0)

(6.2) 35 { PP D-F(x)]}= 6K (s, =, 8)/5 6 .
From (6.1) and (6.2) it fuiiows that

(6.3) | log F(x,) = 8long K{a', r, 8)/00 .

If Ka', r, 6) is known, F(xl) can be found from (6. 3) and then F(xl) is

determined by (6.1), However explicit evaluation of K(a', r, 0) is
troublesome, and approximate methods were used in [3] leading to the
simple (through approximate) formula:
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(7) Fix,) + [l -F(x)] 2K, (o, 1)

for the union of critical regions. Here K, (a,r) represents a constant
which can be chosen to give a required vaiue, a say, for the significance
level, (Note that a'appears only in the construction of (7); it is not the
significance level of the resultant test,)

Although an approximate argument, applying a heuristic principle

has besn used. in reaching (7), the critical reglon so obtained han-a natural

appeal; and seams worthy of further consideration.

The distribution theory associated with the critical region (7) is very
simple. IfH, . is valid then F(xl) + [1 - F(xr)] is distributed as
oy .

XZ /(x 2 + XZ ) where x.z and XZ
Z(Bo te, +2) 2(-0 ts + 2) " *2(r-1) z(.o te 4 2) 2(r-1)

are mutually independent. (Equivalently, the dietribution is a beta distribu-
tion with parameters (s_ + a_ +2), (r~1), ) It follows (putting s _=s_ = 0)
that o r o r

(8) K,(a,r) = upper 100 a% point of beta distribution with parameters
2, (r-l), These values can be obtained from Table 16 of [6] .

»

The power of the test with respact to a specified alternative hypo.thenia
H. . is also easily calculated, In fact
o 'r

(9) PrEF(xl) + (I-F(xr) )2 K, |H ] = -1 (-Q e 2, r-1)

1

2,
o
w Il-Kl(r'l' 5, + .. + 2)
1 (P Ma1 N-1
where Ip (M, N) = [B(M, N)] 5 t (1-t) dt Is the incomplete beta
function ratio. °

For given L and §aa8r tends to intinity the power tends to

2
(10) Pr E"z(»m ve_+2) 2 X4, lea]

where xz denotes the upper 100 a % point of the distribution of x','
v,l-a .

with v degrees of freedom).
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A few values of the power are shown in Table 2. It appears that the
asymptotic {r — «) values give a good indication of true value for r > 30,

TABLE 2
Power f_ of the general purpose test (a = 0.05)
N ;
s +8 = 2 6 10 14 18 .
o r

r=4 0.167 0.470 0,716 0,862 0,938
.r=30 | 0.281 0,845  0.989 - -

ree 0.303 0.892 0.996 - -

A special case of some interest arises when censoring at one extreme
only is suspected (i.e. s, soors = 0). In this case the uniformly most

powerful test has the critical region

1/r . _
y, < (if 8, = o)
or
1/r
y, > l-a (if s, = 0) .

’_. .
The power of the test with critical region Y, < nl’ ¥ with respect to

‘the alternative H , is
o's

T

(r+sr)! 1z ;

- @ r-1 *r
ﬂ(Ho.,r) * (et S‘o y (l-y) * dy
= Inl/r(r, lr + l)

(where I denotes the incomplete beta function ratio).

5. GENERAL CENSORING. We first introduce the notation

- . to denote the hypothesis that sj observations have heen
2 R |

removed between x, , and x, for j=1,2, ..., (r+1) with X, =ee, X

J A} +1

= 4w
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In this notation the H considered in Sections3 and 4 would be

o
H o ~ _ . Also, for convenience we will write
-o, Wy My s e ey Wy, or
(11) yy = Flx) G=1,...7) .
Yo =0 Vo1 © !

. ‘Then. the best critical vegion for testing the hypothesis of no censoring - -

(# ) against the alternative H is of form
0,0, ouo,°~,° 8 , B,, ¢4
o 1 r
r sj
(12) I (yj_H - yj) > K(a, r, Bs By eees sr) .
j=o

It is clear that there is a uniformly most powerful test with respect to
any set of alternatives I-Is 6 s for which the ratios
ol 1" "t Ty

8, .+ 8 - s, are constant, but not with respect to any other sets

‘6f alternatives. While one could attempt to apply Roy's heuristic principle,

as in 5], to construct a general purpose critical region for the whole set

of alternatives H s, . the effect of approximations might well
o' 1" " Tr

be much more important in the more general case, and is certainly more

difficult to gauge. We therefore consider more or less arbitrarily chosen

criteria which, however, do have some relation to criteria suggested

from theoretical considerations.

We first consider a test with critical region

r
(13) g = jr.l.o (yj'.'l - yj) > Kz(a” 1‘) = Kz .

It is quite likely that this criterion may be felt to have some practical
drawbacks, These will be discussed in Section 6, but for the present we
will just consider how to evaluate Kz in (13), at any rate approximately.

It will be convenient to approximate to the distribution of log g, rather
than of g itself, The moment generating function of log g, when
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H is valid, is
B8 , B, ¢vs, B
1 r
T
. (r+Zsj).'
(14) Elg |y, , g 1= —2ot x
. o 1"t Ty r
I s,
jmo

. S S S j'-;}o .(Yj+1'.vj)sj+_tdyl_- o dy,

[The region of integration is 0 < VpSY¥;%00 £ ¥, < 1. Remermber that
y, =0 and yr+l=1.]

Since the joint probability density function of AR is

T
. r(r+1+§ 8 ) r lj
s —-—————L -
p(Ylb s Yr' HB ,!1'...5 ) r -11 (Yj+1 Yj)
° I l"(sj+1) J=o
j=o
it follows that - i
n r(sj+1)

Y r B,
.y) Y = =2
= I(r+l+Zs,)
o J

and hence from (14) and (15)

T
(r+2° ’j)" ;1 T(t+s,+1)
(16) E[gt'H ] = = j=o0 J -
: Borfyprre ® m s! I((r4) (t+l) +Z s,)
jao J o j

Taking logarithms and differentiating, “the following expression for
the mth cumulant of log g is obtained:
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(an xm(log g [HSO’ B )

Vitlven o 1) s
[y =~

(sj+l) - ()Y

a-1)
- r
\

r
sH+Z 8.) .
j=o

In particular when the null hypothesis H, (= H 0) is valid

0,0,....

(18 ls‘m(_log g ]_Ho) = (r+l) w(m-l)“) -.'(r.+1)m ‘i’(m‘l)(ﬁn. .

The polygamma functions have the values
, Y(1) = -y =-0.5772

and w(m-l)(l) =(-l)m(m-1)! 5., (m > 2)

where S =1+2-m+3-m+. .
m
Hence
o (19.1) «(-log g|Hy) = (r+1) (y+W(r4))

(19.2) &_(-log g|H) = (x#1) [(m-1)t §_ + (-1)™  {rey™] Wm-)e )

(in > 2)

4 For z not too small, we have, to a good approximation
(20.1) Y¥(z) = 1og (= - 1/2)
(20.2) Y™ (2) & (-1)™ ! {me1) (2 - 1/2)" ™ (m > 1)

whence




(21.1) « 1(-log g2 ’HO)

(r+1) (0.57722 + log (r+1/2) )

e

b - | (21.2) xm(-log g|Hy) % (r#)(m-1)! [Sm - (m-l)'l {(r+l)/(r+1/2)}m-l] .

§ i Noting that

| (i) t! . least possible value of (-log g) is (r+l) log (r+l), correspond-
ing to vy = i/ (x41) for j=1,2, ..., r

i 2 2 |
i ) [x3(-log g |Hy)] . (28,-1) __7,35 b
A . LA e g R 1 . pi ¥ Ty 4l i
| : ‘.Dcz (<iog g 1H,) ] (r41) (8,-1) r ;
v and ‘i
| 6s, -2
Kgl-log g |Hy) . 4 _10.80
: o8 H) (ray) (s,-1)° T4l

(while for xz with (r+l) degrees of freedom, xg/xg = 8/(r+l) and
x4/x§ = 12/(r+1) )

(iii) var(-log g [HO) 0. 645(r+1)

while var(0. 57722 xzr o) = 0 666(r+1) L.
it appears that we might take, as an approximation,

(22) -log g - (r+l) log (r+l) to be distributed as 0.57722 x (xz with
(r+l) degrees of freedom) or, equivalently

(22)' 1,732 [ -log g - (r+l) log (r+1)] to be distributed as xz with
i (r+l) degrees of freedom. This implies

; 2

; exp [ -x r+1.a/l°732] |

5 K vy v !
(r+1) ‘

sjte

2

where '

; xzr 41+ @ i8 the lower a% point of the distribution of x?. with (r+l) degrees
of freedom. ‘
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. 2
(1f -log g ~ (r+1) log (r+l) is approximated by 0.5587 x 1_0332}”1), then

. 3
means and variances agree while the values of & 3/'c?_ and K4 x% for the
) AL + e e sa AU R
approvimating dlstribution ave 7. T4{s+1) Vand ii. oi(r+i) *.)

The approximations cannot be expected to be good unless r is fairly
large. In the extremne case r = 1 with g = yl(l'yl) we have exactly

(23.1) Prlz >G|H,] = (1402 (0<G<1/4)

‘while (22) gives

(23.2) Prlg > G|H,] z 1. (4(:')0‘866

The approximation (23.2) is substantially less than the true value (23,1)
though it does have the correct limits (1 and 0) as G tends to 0 or 1/4.

In order to assess the power of this test we return to equation {(17)., This
gives the cumulants of log g when a general alternative hypothesis

Hao, 'l reasy 'r is valid. It would seem reasonable to fit the distribution

of [ -log g - (r+1) log (r+1)] by that of a multiple of xz. so that first and
second moments agree. It may be that better approximations to upper
percentage points of -log g would be obtained by fitting the firat three
moments (instead of the initial point and first two moments - see [4]).

This method might therefore be employed when the power is, say, above
0. 175. '

6. MODIFIED TESTS. The test criteria described above are all
based on the probability integral transformation

(24) y = g f(x)dx .

They explicitly assume that f{x) is known exactly (in practice to a close
approximation) and that there are no errors in observation of x, This
last condition is never satisfied when x is a continuous variable, There
is always some kind of grouping error occasioned by the finiteneas of the
number of digits used in recording the obaervations, This is particularly
important in relation to test functions like g of {13) in Section 5. If it so
happens that any two of the y's are equal the value of g is zero and the
null hypothesis will be accepted, Clearly, if this happens because of the
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use of too coarse a grouping interval, the test is likely to be very

inpensitive. Furthermore, the larger r is, the more likely it is that

at least two x's (and so two y's) will be equal, thus giving rise to a zero

value for g. We are thus led to consider modified tests, less sensitive

to this kind of effect. A simple way of effecting this is to use only a

selected number of the transformed order statistics Yy Yar eeen ¥

-say y_ ¥, Vs (with the values 1 < a, g S e <8 <x
B By e k

fixed before analyzing the data, of course) and to apply a test with critical

region

< a

@ - g m

with y =1,y =0. (A natural choice would be to take the a's at
k4l %o equal intervals apart.)

The value of K3 depends on the required significance level, a , and also
on the selected a'jl. as well as on r. In fact the distribution of By when

Ho is valid, is the same as that of g, with r replaced by k, when

B 8 by is valid and with 'j = a.j_u-a.1 -1 (j=0, 1, 2, ..., k)
hence, the same calculations as those needed to evaluate the power of the
test using g are required in calculating the value Kj in (25). Also, of
course, calculation of the power of the test with critical region (25) will
follow the same lines,

A similar kind of modification can be applied to tests of symmetrical
censoring of extremes (Scction 3). Iu this case it would be natural to
ignore the least and greatest m observations, and use only y

The uniformly most powerful test of Ho against symmetrical alternative-
H_ _ has a critical region form similar to (3), via:

(26) Ym+l (1- Vr-m) z K4 *

Determination of K is, however, more troublesome than for K. The
egquation

m+l, ,.. Yeam'

o




i
.

P

erTerein ot

c e -2m-
(27) ——5= 5 3 Yoal Ve Ve o Haey )™y

' i r-m ‘mtj r-m dy
(m. ) (r-zm-Z).

m+l ‘rem

(where the region of integration is ym+1(1-yr-m) 2K,
0= Ym#l £ Yyem

has to be satisfied,

<D

Evaluation of the tntegral of the left hand side, with K replaced by K,

““gives the power of the test with critical region (3 thh respect to the

alternative hypothesis H . The notes in Appendix II are therefore
m,
relevant to this problem. :

7. CONDITIONS OF APPLICABILITY. It may be felt that the
condition stated at the beginning of Section 6, namely that the true
probability density function f(x) must be known, is unlikely to be satisfied
in practice. While this is 8o, in the strict sense that it ie very rarely
the case that a theoretically formulated model gives an exact representa~
tion of reality, it will sometimes be the case that there is sufficiently
massive evidence to establish £(x), from observed relative frequencies,
with adequate accuracy. Slight variations in form of f(x can be tolerated
without serious effect, particularly if a modified test of the type described
in Section 6 is used, It may be noted that it is not essential that f(x) have
& simple, or indeed any explicit, mathematical form - a graphical
representation can suffice.

It would, however, be interesting, but beyond the scope of the present
investigation, to inquire into the robustness of these tests with respect to
variation in f(x). (i.e. to use of an incorrcct function, f(x) say, in (24) ).
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We have to consider the evaluation of K(a, r) from equation (4).
Puting v, = F(xj) (as in (11) ), the joint probability density of v, andy .

given HO’ is

r-2

(A1) ply,s v, [Hg) = o{r-1) (v -v)) (0<y gy, c1).

Hence K(a, r) (now written as K for convenience) satisfies the equation

a2y wle) (b -y ayay, e e
Yl(l'y) _>_ K .
The region yl(l-yr) > K can be defined by the inequalities
vy £V, £ I-K/yl and these imply also l-y, - K/yl 20o0rY-gy <Y,
where Y = [1 +V1-4K] /2.
Hence from (A.2)

T+ 1 rel
(A.3) rS (1-Ky "=y)" "dy= a .

Expanding the integrand and integrating term by term leads to the equation

Tl el odod Tt o,
(a9) =2 (7 E "7 0 ny_ (VTR
= =0

l4e

where ho(z) = log (r_—;-

h_(g) = 277 m™ L (142) (1)

Note that for m > 0,
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(A.5) h_ (VI-4K)

= [m} z(-x)j(‘";"‘j) K] V14K

o<}
<(m-1)/2
=K™h_ (VI-4K) .
C - -Forre2(t)9, the 1ok hind side of (A, 4) is shown in Table A1
below.
TABLE A. 1
r = vV1-4K x - logl-+—-fx_—-4—l—<— x !
1-Vi4K '
3 3K
3| 148K 6K
4 | 1426K 12K (1 + K) :
5 1+L%‘lx+3§§-xz 20K(1 + 3K) |
6 | 1+97K +226K2 30K(1 + 6 K + 2K%) |
7| 1+ 32k o+ B2 k212 P | aak (14 10k + 1087
8 1+B£-Zx+§%i x2+7—4;’3 K? | sk (1 + 15K + 30K? + sk3)
o | 14 1°365‘° K + E—%-‘;i‘-‘ K 72K(1421K+70K> + 35K°)
. 213244 N 32;568 4 .
.

(For example for r = 3, 148K) v1-4K - 6K logl-t-——-—- Y 1-4K = a.)
1 -v1-4K

The calculations rapidly become more complicated as r increasee.
It therefore is desirable to search for some approximation to K(a, r)
which will give useful results for r large {and preferably for r > 10).
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Some empirical formulae have been given in Section 3. Here we use an
analytical approach, starting from equation (A.3). We firet make a
succession of transformations, aimed at obtaining an integrand far which
useful bounds can be set.

T P T

Firstly, puttingy = s VK : ‘

(1-Kky " oy)™! ev-f" S QYR (=" 4 0))™) ds
I e T

 where A(K)s{x/Z)(Hu’_'_i«&x)ﬂ—' .

Next making the transformation z = e’ the integral becomes

. 1 K)
K S o8 Al e {1-K (et + e-t)}r-l dt !
3 ~log A(K) ' | |
log A(K i
=VK °8 AlK) et (1WVK (et + e"':)}r'l dt l f
-log A(K) | 1

(A.6) =K S‘log A(K) (1-2VK cosh t)r'lcosh t dt.
°

Now making the transformation v« = 2VK cosht, we obtain .4
| 1 | ‘
, (A.7) \g (™! (VP-4 V2 e .

VK 4
|
I Integrating by parts, this is equal to
, ‘ \ | ]
SR (A.8) ) (™R - a2 g, ~ |
2K

| Thus equation (A, 3) can be written

r(r.nf 2 a0 21 2 avma .
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Making the final transformation v = 2V K + (1-2VK)u we obtain

1
(A.9) Hr-1)(1-2E)* /2 S' {(1-2VE)u? + 2K u}/?
Q

(1-u)"%du=a .

it follows that

{A.10) G-vE) Vx4 )/-ifl‘f;ﬂ)

< (1-2~/?)"VZF»/1-NT< + 2VK %] .

As can be deduced by direct analysis, K-+0 as r ~e«, but since

(1-2VK)® < o
' 1/x 2 2
it follows that K > 1/4 (1-a”/")" and hence Kr” cannot tend to zero.

If we put K = Cr-2 (where C is, of course a function of r and a ) then,
approximately

(A.11) e2C 75 I/ <ac< e2C (1 VT2 /Ay,

This implies that C lies between fixed limits, and suggests that, for large
r, K is of the form C r-2, (The form of function - (':1 r-(»Dl)"z - used as an

approximation to K in Section 3 was suggested by this analysis.)

An alternative, heuristic approach is as follows:

If H, be valid, yl(l-yr) is distributed as uv/{u + v + w)z where u, v and

w are independent xz random variables with 2, 2, 2(r-1) degrees of freedom
reaspectively.

.
FUSA—




If r is large |

satisfies the equation

.
)
:

{
3
t
{
X
i
2
".
)
b
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(since w/[2(r-1)] ~ 1 as r -+ »). Hence we have K

~ Cr'z

where C

¢ S. exp(~ $u -2C/u}dus a .
T - T N
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APPENDIX 11

The joint probability density function of Y, and Yoo when H . is

th"f‘ {. n' »

~

(r+s +s )'

(A.12) ply,» v,) = f;-r[;.-:zy:—,—. Yl (1-Y) My -y

o<y, gy, s

r-2

) ’

]

"‘Prtyl(l-yr)ax'ﬂs '8
- o'’r

(A.13)

2

(x4s ) ¥+ 5\1-!(/;,1(1 ., 2,
-y lyaov) T dy dy,

= soxtr-?.)zsrz Y vy ° v,
(where Y, = (1/2) [1 + Y1 - 4K] as in (A.3).

s ]
Noting that (l-yr) T={ (l-yl) - (yr'yl)} T we see that the integral in
(A.13) is equal to '

T+ *o ' j 'r."i -1 r-2
Son® = (e ey aes/men) T2 oy,
Y j=o

Y¢ 8 r|[s B _=j T=
= S‘ y, °F (j')(-l)j(l-vl) R z (r'z)( D'Rly, -y "2 gy,

Y_ j=0
®r r-2 ] +r 2-i=j
(A.14) = = iz: (- 1)3“( ")( 4i45-1) "1kt S 8- l1-y1) dy,.
Jao 0

Using (A. 5) this can be expressed explicitly in terms of K. The resulting
formula is rather cumbersome, and does not give much insight into the
dependence of power on L and s,. The following alternative approach,

although it depends on some quite rough approximations, should give a
reasonably accurate idea of the nature of this dependence, when r is large
compared with s, and s
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From (17) it follows that

{argy  x L-loglyll-y

V1)
m IJ-I

r

< (PTY D ay + YO LWl ) :

-Bm\!(m'l)(lo+nr+r+z)] . :

B _ _ ulﬁxgthe&p’proximne iar.iizula: (20..). we obtain .

s -
T

. o4 o
(A.16.1)  x(-logly)(l-y)}) = 2y - Z 7 - 2§ -log(r-1/2)

j=1 j=1
y +3 log(a°+|r+r+3/2)
and, form > 2
. - -m, -m
(a.16.2) & (-logfy(l-y)}) = (m-1t[ 2 7+ Z
- j=s°+1 jz.r+1
+ {(m-1)(x-1/2)"1) 0
. - 3™ {(m-1) (no + nr+r+3/2)m'l}'.l . Aj
i ' | |
) If r is large, then for the smaller values of m( > 2) : ‘
1 ,
| (A.16.3) xm('h‘-{yl(l'yr)} ) =(m-1)! ['Z RN ; j-m] . f
¢ -j=s_+1 4
Pt o j=8_+1 .
M: r i
s Note that r does not appear in this approximation,

In particular, taking m = 2

(A17)  var{-log {yfly)}) 22 3P4z 52, '
: janoﬂ j=|r+l . i *
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~ and in particular

The variance decreases as L and for s_increases. The expected value
(x,) also decreases, r

A further approximation to (A. 16.3) gives

L]

(A.18.1) xm(-log {Yl(l.yr)}) = (m-2)! F(.o + 1/2)-(m-1)+(.r+1/z)-(m-l)]

(A.18.2) " xz(-log {yl(l-yr)}) = (-o +1/z)"1 +(»r+1/z)'1 .

Ifs =8 =8, formula (A.18.1) becomes

(A.19.1) K pl-log{y(l-y )}) = 2(m-2)! (a41/2)4m"D)

while (A.16.1) becomes

s
(A.19.2) xl(-log{yl(l-yr)}) = 2y-2 L j‘l-log(r-l/z)+31og(z-+r+3/z).
=]

If r is large this last equation may be replaced by

' -
(A.19.3) nl(-log{yl(l-yr)} '= 2y -2 I jl + 2 log(r+3s+5/2) .
j=l A

If s increases to s+l, k, decreases by approximately 2(|+1)'1 -"6(r+3|+5/2)'1. |
It is not suggested that it will always be appropriate to use these approxi- 1
mations, particularly those appearing later, which depend heavily on r being
large compared with s ° and L The approximations are exhibited because

they bring out rather clearly the way the distribution of -log{ yl(l -y_)}
depends on s, and L *
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