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II
FOREWORD

At the Eleventh Conference on the Design of EnxPrirnant nr.

Joseph Cameron and Walter Foster discussed the possibility of holding
the next meeting at the National Bureau of Standards. Talks with Dr.
Badrig Kuxkjian brought out the iact that he would be willing to investi-
gate the possibility of the Harry Diamond Laboratories serving in the
role of the second host. The efforts of these three individuals brought
about the desired results. The Army Mathematics Steering Committee,
the sponsor of these meetings on behalf of the Office of Chief of Research
and Development, was pleased to hear from Dr. Allen V. Astin, Director
of the National Bu,.eau of Standards, and Lt. Colonel M. S. Hochmuth,
Commanding Officer of Harry Diamond Laboratories, that their organiza-
tions would serve as joint hosts for the Twelfth Conference. Both Messrs.
Astin and Hochmuth graciously agreed to give welcoming addresses at
the start of the conference. Their talks set the stage for this interesting
scientific meeting. Incidentally, the Harry Diamond Laboratories and
the National Bureau of Standards served as joint hosts for the first three
conferences of this series. At-those meetings, as well as this one,
Mr. John Wheeler, Chairman on Local Arrangements, is well remembered
by those in attendance for his excellent execution of the many details which
must be handled for smooth running symposia.

The conference was conducted at the new quarters of the National
Bureau of Standards at Gaithersburg, Maryland. This afforded the
attendees an opportunity to become acquainted with these new facilities,
and some of the many scientific experiments being conducted by the staff
of the Bureau. They also learned of some of the types of data which NBS
could furnish that would be helpful in the conduction of their own research.
For the benefit of those who did not get to this meeting, we mention here
some of the special equipment now on the Gaithersburg campus. There
are three 35-foot grating spectrographs. One operates in the vacuum
ultraviolet region, another in the visible region, while the third is used
for the short wave ultraviolet region. The NBS LINAC is a 100 Mec linear
electron accelerator capable of producing one of the. world's most intense
high-energy electron beams. Neutron irradiation experiments can be
conducted with the new 10-nmegawatt nuclear research facility. The world's
largest testing machine, a 12-million pound compression and tension tester,
is about ready for use. This monster rises almost 100 feet above its
base. These and many other new scientific machines are to be found at
these well-equipped laboratories.

The program of the Twelfth Conference featured the following four
invited addresses:
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Operations Research

Professor Brian W. Conollv, Saclant ASW Rppr.:h Cen..+..r

Statistics as a Diagnostic Tool in Data Analysis
Dr. John Mandel, National Bureau of Standards

Planning and Analysis of Observational Studies
Professor W. G. Cochran, Harvard University

Sample Censoring
Professor Norman L. Johnson, University of North Carolina
at Chapel Hill

Besides these talks, the members of the audience were able to select
from 24 contributed scientific papers topics that best suited their own
needs. These papers were presented in eight technical and two clinical
sessions. We are pleased to say that Dr. Frederick F. Stephan, Presi-
ent of the American Statistical Association.,i was able to attend the banquet.
He was called on to present the second Wilks Memorial Medal to General
Leslie E. Simon.

This volume of the Proceedings contains 24 of the papers which were P
presented at this meeting. The Army Mathematics Steering Committee
has asked that these articles on modern principles on the design of
experiments, together with the application of these ideas, be made avail-
able in the form of this technical manual. Members of this committee
take this opportunity to express their thanks to the many speakers and
other research workers who participated in the conference.

The conference had an attendance of 125 scientists; and 50 organiza-
tions were represented. Speakers and panelists came from George
Washington University, Harvard University, the National Bureau of
Standards, the National Institutes of Health, North Atlantic Treaty Organi-
zation, North Carolina State University at Raleigh, Phillips Petroleum
Company, Stanford University, University of California at Los Angeles,
University of Chicago, University of Georgia, University of Michigan,
University of North Carolina at Chapel Hill, University of Wisconsin,
Virginia Polytechnic Institute and thirteen Army facilities.

The Chairman wishes to express his appreciation to his Advisory
Committee (Joseph Cameron, F. G. Dressel, Walter D. Foster, Bernard
Greenberg, Boyd Harshbarger, J. S. Hunter, H. L. Lucas, Jr., Clifford
Maloney and Henry B. Marn) for their assistance in formulating the pro-
gram and selecting the invited speakers.

Frank E. Grubbs
Conference Chairman
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• ~National Bureau of Standard s, Gaither sburg, Maryland
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OPERATIONS RESEARCH

Pi1nfp•au-" -uri"an W. CConuiiy~--

North Atlantic Treaty Organization
Saclant ASW Research Center

I T OINTRODUCTION.i
1. It is a privilege and a pleasure to be invited to make a presentation

on Operational Research at a specialist statistical conference. Those
individuals who choose to make Operational Research their profession
come from the ranks of engineers, physicists, chemists, mathematicians
as well as statisticians. All have a contribution to make to Operational
Research. I myself, for example, am a mathematician by basic training,
with a pronounced interest in obtaining practical and verifiable solutions to
real life problems,

2. The name Operational Research is itself perhaps not a very good
description of the type of activity that 0. R. workers usually undertake. I do
not propose to be so controversial as to suggest an alternative. My theme
is rather to suggest that, as it has developed, modern 0. R. has come to
depend more and more heavily on the science and techniques of statistics and

ra probability theory. And it is not difficult to see why this is so.

3. In 0. R. we are usually concerned with studying the workings of a
complex system or process such as the manufacture of an automobile; thej organization of an airport; the routing of city traffic; a telephone exchange;
the detection, classification and destruction of an enemy target. If we like
to call these systems or processes "operations", and the study we make of
them "research", then we arrive at the name Operations Research by which
0. R. is designated in the U. S. The fact that 0. R. is called "Operational
Research" in Europe is presumably by analogy with our practice to call
research in physics physical research, and research in mathematics
"mathematical research.

4. The objective of 0. R. studies is normally to discover how to optimize
in some sense the output of the process: e. g. produce an adequate automo-
bile at a minimal cost; achieve an airport organization which maximizes
passenger flow with a minimum of incovenience and the best employment of

facilities; maximize the probability of destruction of the enemy target. In
order to do this we have to try to understand the structure of the process.
" ,n
":,Now at Virginia Polytechnic Institute, Blacksburg, Virginiai
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5. The complex processes which 0. R. investigates are normally
tdecomposable into a number of subsidiary prnoi-•.on -n each cf ;.'-.hich
the ultimate output depends. If one regards these as parameters of the
system as a whole, then the study consists first in determining their inter-
relation, and the way they affect the output. This leads to the creation of
a more or less mathematical model - a set of equations which characterises
the process. If the model is verified in the sense that it can be used to
predict measurable outputs, then the analysis of the process and its opti-
mization reduces to the application of appropriate mathematical techniques
to the model.

6. One reason why modern 0. R. has come to be heavily dependent on
probability and statistics is the greater recognition of the need to assess
the effect of chance on the outcome of a process; rather than to work through-
out with average values. Nowadays we are interested in the probability
distributions of the outcomes of the subsidiary processes in order to discover
the probability distribution of the overall outcome. Under these circumn-
stances we have to deal with stochastic processes and our analysis depends
on the specialized techniques developed by the experts.

7. I think that in fact 0. R. and statistics have much to offer each other.
Erlang was a Danish engineer and an 0. R. worker whose interest was the
Danish telephone service. His work in the early 20th century founded queue-
ing theory which in all its increasing complexity is the subject of many
research papers published in both statistical and 0. R. research periodicals,
Those who are concerned with military exercies know that one has to deal
with experiments whose design cannot be altogether controlled, that the
samples are small, and the variables many: a situation shocking to a classi-
cal statistician, but a challenge.

8. During the remainder of this presentation I intend to be more
specific. In order to illustrate my thesis of the statistical interest which
is to be found in 0. R. studies and the dependence of the analysis on statis-
tical expertise I shall describe two problems from a military 0. R. context,
which I hope you will find entertaining.

PROBLEM 1.

9. During anti-submarine operations there inevitably occur events
which have a nuisance value, and which one would like to eliminate. "The
elimination is partly a matter of equipment design, and partly of training
in its use.

10. For the purposes of this presentation I am concerned only with
finding a simple stochastic process which describes the occurrence of the

t 2
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events in time in the hope that such a description may throw light on the
basic phenomenon. I have no w•,iti•• •.,-•. .the ,-••..,, thLuugh I know
they have always occurred. I am therefore dependent on naval exercises
fo . r.t

11, Suppose, then, that I have obtained from the records of one ship
* .during a recent exercise the times tn of occurrence of the events which I

shall denote by En(n> 1). I measure time from the beginning of the exercise.
An immediate da.ftculty arises out of the fortunate fact that the En do not
occur at a tremendously high rate. Three per day might be a typical average
taken over all ships. Exezcises of the right sort do not take place frequently
and, when they do, they are of a limited duration. Thus, typically, at the
end of a week I might have a few tens of events for each ship. At the begin-
nig I want to consider each ship's records separately, so my sample is not
very great.

12. Adopting the good practice of making a simple initial hypothesis
I look at the time series (tn) for each ship and ask if there are indications
that the events (which a priori might be thought of as having random origin)
occur in a Poisson stream. The answer is that they do not appear to do so,
but rather that in all cases there is evidence of cluster (a preponderance of
short inter-event time intervals as compared with a Poisson stream with

the same mean). Moreover the mean intervals of the event distributions seem
to be quite different fronm each other, and I do not find evidence which supports
the hypothesis that the En for ship A could be generated by adjustment of the
mean from the stream of En for ship B.

13. Since there appears to be clustering I next ask myself if a particular
stream En could have been generated by a contagious process, and for this
purpose I choose a P61ya process defined in the following form: Suppose that
the process begins at time t=O and that no event E occurs at that time. The
instantaneous probability that the (n+l)th Pokya event takes place In the small
interval (t, t+dt) is given by (n+l(t)dt where

X• [ +an)(13.1) Pn+l(t)t

The parameters X and a are supposed to be real, X is positive and a non-
negative. There is apparently no other restriction on a, though I shall make
some more remarks on that subject later. When a is rero the Pc1ya process
clearly becomes a Poisson process with mean interval length l/A time units.

14. 1 now give without proof a few key theoretical results of a P61ya
process as defined. Let Pn(T) be the probability that exactly n Pclya events

3



II
occur during the interval (0, T) and define p (0)=l. The generating function
P(x, T) of pn(T) is then

(14.1) P(x,T) = l+a X T(I-x)] -1/a

The mean and variance of n are

(14.2) E(n) = X T,

2 2
(14.3) Var(n) = a X T + X T

The exercise data give me a series of time intervals between events. The
likelihood of a series of n events occurring at the instants ti, t 2 ..... tn is

n-I
fl (1+ra)
I(14.4) Pn(tlI t2i .... tn) = (~k /

n 12 n (atn+l/a
n

The maximum likelihood estimator of X is simply n/t, but that of a is
more complicated.

15. The distribution of the intervals between events is of particular
interest. It turns out that, for any n, the p. d. f. gn(T ) of the interval

th th
between the n and the (n+l) events, whenever the first n events took
place, is

( 1 5 . 1) gn ( ') =+ f(+a -rf)l/

and is independent of n. The interpretation of this is that if we generate
a lot of Pdlya processes, each having, the same parameters a and X , and
then examine the time intervals between, say, the second and third events
in all the processes, we should find that they all are distributed according
to ( 1 . 1).

th16. The r moment ýL about zero of an interval between two given ,
events iF
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(16. l) r!r = r

and this cleairly exists only if none of the terms in the denominator iszero. Thus if a-- the interval length distribution has all its moments
infinite: if a n j the first moment is finite, but none of the higher
moments is.

17. I return to my fundamental problem. I have an observed seriesof events and I want to make statements about the hypothesis that they aregenerated according to a Po'lya process. How do I estimate a and A from* , the observations?

18. In order to throw light on this problem sequences of Polya intervalswere generated, each having the same a and A. The idea was to compareestimates of a and A obtained by variou7 means with their known values.In fact the problem of estimation remains open, but some features of PO'lyaprocesses have been revealed which were a surprise to me.

19. The digital computer generation of the Pdlya intervals was carriedout as follows. Suppose that n events have been generated and that theyoccurred at times ti, tz,... t . We require the probability
n

hn+i (tn+l/t t2... tn)dtn÷1 that the (n+l)th event occurs in the interval(t 1n+, tn+l+dtn+l)Q given that the first n occurred at times tlt 2 ,... t.

Clearly,

P l(ti tz t,.. n+)
(19.1) hn(t/t, .. tn) n)

where the p are given by (14.4). This says that the conditional probability* "density of the (n+l)th interval T is 

4I at)n+l/a
A(l+na)(1+aXt n)

(1.2 +1 (-r/tl't2,tn) )++
(l+aAt +akr)n+I+l/a

h n
S, The conditional probability that the (n+l)th interval is less than T is:

! 5

":I_.



[0
FI + "It. n+l/a

~n+ll/L 1 L 2  n .[+aAt +aXT

To obtain the intervals one generates a sequence of random numberi. r
independently and uniformly distributed on 0 < r < 1, and then solvesn

- n

(19.4) r n.•l
1 l+a t tn +a k Tl n+1

for - '

EXPERIMENT I,

20. I am now going to describe briefly some of the experiments
which were carried out. For the first we generated 5 independent soquences
of 1000 Polya intervals, for each of which we assigned A=4/30, a
This was to give I/A (l-a), the mean interval length, the value 10 which 4

corresponded with observation. The means and standard deviations of the
interval lengths were as follows.

Means and Standard Deviations of 5 Independent
Sequences of 1000 Pdlya Intervals

with the same Parameters

Sequence No. Mean Standard Deviation

1 2.708 3.164
2 21.804 22.964
3 6.428 6.874
4 7.349 8.304
5 9.519 10.290

This Table was the first surprise. We expected each sequence to have
a mean and standard deviation reasonably close to the theoretical values of
10 and W02 respectively. The first sequence was also "looked at" just
after the 1 0 0 th event and the means and standard deviation were found to be
2. 450 and 2.615 respectively. Thus it appeared that the processes were
settling down to a steady state quite rapidly, but a steady state which could
be vastly different from one process to another, even though the parameters

S I 6



were the same. On the face of it, then, it appears that estimation of a
and X based on a perfectly valid sequence might well give completely
difrn farlnc: thA tAAWA fici.AiUWLIZX~ tqucdiiy vttiid sequence.

21. The measure used of the mean interval after the nth event at time
t wasSn
(21. 1) xu=tn/n

The sampling density function of x is:

n-l
(nX) x n- (l+ra)

(21.2) r=l

(n-1)4 (l+na.x)n+l/a

and the expectation and variance of x are respectively

E(x) = I/A(l-a);
k. 2 21.3 En 2 1-)

Var(x) = (1-a+an) / (nA2(1-a)2(1-2a)]

Now the mean of the five sequence means is 9,561 and the standard devia-
tion Is about 7. The variation of the sequence means is thus less surpris-
ing, but no less discomforting.

22. The theoretical reason for the stability of Pdlya sequences aboutwidely difiering means seems to be that the whole pattern of a sequence is
on the average governed by the first interval. This can be seen by con-
sidering the conditional expected value E(i'/t,, t 21 . tn).Of the (n+l)th interval

, given tho times ti,t 2 .. t of occurrence of the first n events. Then2 n

1 +aAt
n 1(22.1) E(f/tlt 2 ... tr) = A l+a(n-l)y (T

Thus the conditional expected value of the second interval is (l+a.t 1 )/A.
If t1 is greater than its expected value I/A (1 -a) then
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E('lt ) > ±+ =77

i.e. the second interval also tends to be greater than its expected value.
And soon for all successive intervals.

EXPERIMENT 2.

23. The second experiment was an extension of the first. 500

independent sequences of 500 Pdlya intervals were generated, all having

the same parameters a=2r, A = 4/30. We were looking for something
constant in all the sequences. Since the value of the instantaneous
probability density of an event, just after the generation of the nth event
is

(t A+an)
n+l n (I+aAt)

n

and since we were measuring the mean interval length by the estimator
tn/n we felt that the product n+l(t) (tt/n) should be constant (1) for

long enough sequences. This turns out to be the case. The table (See

Table 1 near the end of this article. I shows some typical values correspond-
ing to the 5 0 0th event in each sequence. The products are all very close

to the theoretical value I/k, in this case 30/4 = 7. 5, Unfortunately this

constancy is not of much practical use. It does provide some feeling that
the computer program is working as it should.

24. It was also decided to group all the 250 000 intervals into a histo-

gram which is shown in Table 2. If we mfbl<e the hypothesis that this

represents a random sample from the evevi -independent distribution of
P6lya intervals

P r(d-) Ad-r/(l+aX-r)l+I/d

the mean and standard deviations are theoretically 10 and 10ý-. and the

observed values look close. But are they close enough on the basis of
250000 observations? I cannot answer that question at the moment.

25. The observed frequencies in cells of one time unit long are

tabulated in the column "observed", while the "expected" frequencies were

calculated on the basis of the event-independent distribution. The last

column gives x(Z. Overall this is enormous. There is a deficiency of



observed short intervals and an excess of long ones. There are also
other oddities. A Poisson process with the same mean (9.866...) would
give a frequency of about 24 000 in the (0, 1) range, so at 1east there is

~.'~dcncc oti. luaicritg one expects in a Polya process. I think perhaps
S. that the sample cannot be considered random and independent, and this

may be the explanation for the poor agreemcnt. We alwo produced a
* histogram of the 500 process means and this is available if anyone is

interested.

EXPERIMENT 3.

26. Our faith in the theory, of the event independent interval distri-
bution was a little shaken by the previous experiment. The next experiment
was conducted in order to restore confidence. 1000 independent P 6 lya

I
process (with X = 4/30 and a = •, as usual) were generated as far as the
12 interval. For each process the lengths of the 4th and of the IIth

intervals were grouped into histograms. These are shown in Tables 3 and
4. We did not instruct the computer to group cells with low frequencies,
but even so there is satisfactory behaviour according to the hypothesis of
the event independent distribution.

EXPERIMENT 4.

27. We have carried out various other experiments. The last which
I will mention concerns the correlation between intervals in a Pdlya process.
Theoretically we appeared to find that the correlation between anM pair of

intervals is a, provided that a < .. For a > • there is trouble over the
convergence of the integrals for the second moments.

28. Table 5 concerns sequences of P61ya intervals for fixed A = 4/30
and a varying from 0. 1 to 0. 9. For each a, 1000 sequences were generated
and the Table gives the mean and standard deviation of the first and tenth

* intervals, the mean value of the product of these intervals ("prod"), and
finally the correlation coefficient calculated from observed values.

29. Without information on the sampling distribution of the correlation

coefficient it is difficult to make meaningful statements about these results.
There are signs of agreement between theory and observation for a=0. 1,
0.2 and 0.3 . For a > 0.5 the second moments do not exist, in theory, and
a certain wildness wig be observed in the results.

30. This concludes my description of some experiments with Polya
processes. We have subsequently formed the opinion that the Pdlya process
is not a good model for the natural phenomenon, but we do feel that it has
been interesting to study the behaviour of the processes. I feel there is

room for a good deal more statistical investigation of these processes.

9
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For example the problems of parameter estimation and sampling distri-

butions are still open, not to mention the interpretation of the apparent
,abL_&!LLUIL un t which resuits irom the non-existence of some of the
moments for certain values. Perhaps some of you know the answers to
these questions, and if I. as a representative of Operational Renearch,
have called your attention to a typical 0. R. investigation where expert
statistical advice is needed I have: succeeded in my objective.

PROBLEM 2.

31. My second example concerns a tactical problem. We were
interested in a situation in which a tactical unit has the task of penctrat-
ing a barrier patrolled by opposing forcvs. For the purposes of. the
example, the barrier forces will be regarded as a point which moves

* according to the general rules along a line perpendicular to the general
expected direction of penetration of the opposing forces.

32. The situation is illustrated in the next figure.

D, C

S

,P

A B

The area of interest is the rectangle ABCD. The line EF is patrolled by

the barrier forces S. Its opponent P has the task of moving from some
point on the boundary AB to CD. That is to say, P wants to traverse EY
without being intercepted by S.

33. S, the intercepter, is provided with exact information about the
whereabouts of P either

(a) continuously;
(b) at regularly spaced intervals;
(c) at random intervals having a negative exponential

distribution.

P, the penetrator, is supposed to have a number of penetration strategies,
for instance:

I 15 . 10



(a) a straight unvarying track from A to C;

(b) a track composed of a straight portion and one change

of course at an arbitrarily selected moment before

reaching E.F,

(c) a random zig-zag.

Strategies are also postulated for S. It can, for example,

(a) Predict the track of P on the basis of the most recent
information, and strive to reach the point of intersection

of that track with EF in order to intercept P.

(b) Attempt to equate its x-coordinate with the last reported
coordinate of P.

(c) Attempt to reach a point such that, whatever P does, the
interception time is a minimum.

34. With three information categories, three strategies for P and

three strategies for S, we have a total of 27 combinations to study. What

is a suitable criterion of effectiveness? One obvious choice which will be
considered here is the shortest distanice between P and S during an
attempted penetration. If necessary this can later be translated into

probabilities of detection and kill.

35. We found in fact that the major part of this study could be carried

out analytically. The combination of random information with any of the

other possibilities defied analysis, however, and for these cases we
resorted to a digital computer simulation. Now it is particularly impor-
tant when employing digital computer simulation to invoke a check on what
one is doing. What, then, would be a suitable check?

36. I would like you to consider the situation in which at time t=O
S is at E and P at A. P's strategy is pursue the diagonal track AC, while

S, when it receives information as to P's position, attempts to equate its

x-coordinate with the last reported x-coordinate of P. Assuming that the
distances between A and E are large we then are naturally led to consider
a situation which, evolving over a sufficiently long time consists of a chase of P.by S.

37. In projection along an x-axis parallel to AB, P moves continuously

from left to right at a specd v, say. S, when it receives information about
the x-coordinate of P, tries to equate its own x-coordinate with the last

reported x-coordinate of P. It moves with constant speed u. If S arrives

11 | |



at the last reported x-coordinate of P before further information arrives
it stops and waft1m flthavittia rc4+ .

38. It turns out that one can obtain theoretically the statistical
distribution of the distance between P and S parallel to the x-axis at an
"information instant", assuming a steady state has come about. This
quantity can be output very simply from the computer program and, if it
conforms with theory, it gives a measure of confidence in the random
mechanisms which the computer has been programmed to simulate. I
would not like to consider the theoretical problem of the distribution of the
difference between the x-coordinates of P and S at an information instant.

39. Let 6 be the distance measured parallel to the x-axis between
P and S at the instant 7 when information is transmitted to S for the

th mm time since t=O. With obvious notation, since

x•mE x((E + vT
p m p M-1 v

and

x(E x(rn-l) + uTm ifx 1 ) + u T <X(Z ).ara -1 r p rn-1'

we have

6 vT if x(z + uT > x(n

m rn- a a. n- m p rn1rE%=6 -1 v m ifxa(E M1 + u T m< x E -)

or
6 vT if 6 < uTn m rn-il --

6 =6 -uT +vT 4f 6 > u Tm n- -1 - n m r-I m1'

Writing rm+1 =6 - uT we have4 m m+l'
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(a) a straight unvarying track from A to C;

(b) a track composed of a straight portion and one change
cf ccurse at aii -arbrariiy selected moment before
reaching EF;

(c) a random zig-rag.

Strategies are also postulated for S. It can, for example,

(a) Predict the track of P on the basis of the most recent
information, and strive to reach the point of intersection
of that track with EF in order to intercept P.

(b) Attempt to equate its x-coordinate with the last reported
coordinate of P.

(c) Attempt to reach a point such that, whatever P does, the
interception time is a minimum.

34. With three information categories, three strategies for P and
three strategies for S, we have a total of 27 combinations to study. What
is a suitable criterion of effectiveness ? One obvious choice which will be
considered here is the shortest distance between P and S during an
attempted penetration. If necessary this can later be translated into
probabilities of detection and kill.

35. We found in fact that the major part of this study could be carried
out analytically. The combination of random information with any of the
other possibilities defied analysis, however, and for these cases we
resorted to a digital computer simulation. Now it is particularly impor-
tant when employing digital computer simulation to invoke a check on what
one is doing. What, then, would be a suitable check?

36. I would like you to consider the situation in which at time t=O
S is at E and P at A. P's strategy is pursue the diagonal track AC, while
S, when it receives information as to P's position, attempts to equate its
x-coordinate with the last reported x-coordinate of P. Assuming that the
distances between A and E are large we then are naturally led to consider
a situation which, evolving over a sufficiently long time consists of a chase of P.by S.

37. In projection along an x-axis parallel to AB, P moves continuously
from left to right at a speed v, say. S, when it receives information about
the x-coordinate of P, tries to equate its own x-coordinate with the last
reported x-coordinate of P. It moves with constant speed u. If S arrives

l.1



at the last reported x-coordinate of P before further information arrives
it stops and waits. Otherwise it continues.

38. It turns out that one can obtain theoretically the statistical
distribution of the distance bct',.vccn P and S parkdlel to the x-axis at an
"information instant", assuming a steady state has come about. This
quantity can be output very simply from the computer program and, if it
conforms with theory, it gives a measure of confidence in the random
mechanismns which the computer has been programmed to simulate. I
would not like to consider the theoretical problem of the distribution of the
difference between the x-coordinates of P and S at an information instant.

39. Let 6 be the distance measured parallel to the x-axis between
P and S at the instant E when information is transmitted to S for the

th m
m time since t-O. With obvious notation, since

xp( ) x (E + vT

p m p in-1 m

and

xZ( ) X(- *) if x ( )+ u T > l(
s- 1 m-1 m. mXp 1)-

x(En x Z +u T if x (Z + u T <xp(ZM
a~ m ~ l + u- m 6 M-1)+Um p rn-1

we have

6 - v T ifxs(E M1 + u T > xp(Z -1);

6 rn 6 m-l +(v- u)T if x (E ) + uT <xx(zml

orm ::Tm M f6 1 1 m PT;or6 =v T if 5_1 u Tin; ,

6 6 . u T + vT if 6 > uT
m rni m n rn- I in

Writing rm - 6m - uTm+i, we have
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1 1
6 5 vT if r <0m m m-

6 vT 4-"i . i
m m m Mn

"i.e. 6 =max [vTm, v T + r]

40. The last equation is extremely reminiscent of the equation for
waiting time in a conventional queueing process. In fact the distribution
function of 6 can be easily derived theoretically. The agreement ofm

independent calculations of this theoretical result (in the steady state)
with the empirical distribution derived directly from the computer program
inspires confidence in the latter as a representation of the real-lile situa-

{ tion which it was desired to simulate.
7

41. I would now like to point out that the situation I have described
here is formally a rather unusual single server queueing set-up in which
arrival and service intervals are correlated. The connection was observed
by Mr. Cruon when a paper on this subject was presented to the NATO

Conference on Queueing Theory in 1965.

th
42. Denote the m piece of information by I . It arrives at time

mZ
Z .Let us now interpret I as a customer who demands as service that

Zn m

S be moved from wherever it is to a position with x coordinate equal to that
of P at time Z Since the distance between P and S at time E is 6

°nm M
then obviously if waiting time includes time to complete service, and since
S moves with speed u, the waiting time of I is m/u.

43. The arrival intervals T 6 the customers I are by definition
distributed according to a negative exponential distraciition with mean T.
If we say that service on I cannot begin until S reaches the position

specified by Iml then the actual service time of I is
rn-i m

I X (E ) - xp .)] (Esay. Thus, service time in this model
u p M p m-1i
is also negative exponentially distributed with mean X'r , where r = v/u.

44. Writing

.. )n-l i n(n'1)
a

1n 2 n

13}



r
I

we have for the steady state distribution of 6

P (0< 65 x] -l- a exp ( +- ..... +
r An>1 An-1

We have constructed a table which shows the comparison between theory
and simulation of the distribution of 6 for 1000 trials. It can be seen from
this table that the agreement is satisfactory. Consequently one can have
confidence that the random mechanisms employed in the simulation of the
major problem are in fact behaving as they should. Equally we have an
instance of how an Operational Research problem in an apparently completely
unrelated field led, as a by-product, to an unusual queueing situation.
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I~ota/laradz= .4023600G2 moan.. 1.71) 5,4!

hota/laml dz= .fl-220711 m~oan= 7.C220724
I~ota/lamhdz= 1 .1,M50,14 r moan= C.72417G7

beta/lam~dz= .503224531 mean= 7.77.604310
1l-ota/laml'dz= 1.45543-11 mean= 5.13433C2
I-ota/!arilldz fl. ^!3179C1 rnoan= 3.G^67150

,,ota/la~ml;dz. 1.5701221 meanl= 4.7547402

l'ota/1arn!'dz= .31G27C25 p moan= 23.72047

Loat&/laml-.dz= .71664355 :- mean= 1 % 4S32174

I,,ta/laml~dz= 1 .513-414 p moan= 3.SS15004
1:ota/lamlI~z= .72>0 C5111 mean= f'.0205270

I-eta/laml-dz- f!255rG^,r mean.= 2. 1 ý5f!21

Iota/lanahdz= .54C 5633 r2 risann 13.225430

!heta/lamrdz= 1 .121 f21i2 r-ean= G.=72'77

TABLE I (continued) Be tAupilable Cop
16bp



EXPFRflMNT TI (c)

beta/lambdz= 2.5662482 p mea= 2.8859421
!.0ta /Ian! dz= 1 .137730n r.oan= .!4-'~

otnlamz= . ~414 r oan= 11 .1 533S'

ctn/Iam*-dz= i."2517 coan-= !7.34C4530

!-cta/1am-dz= 533~C moar.-! 1 '' 2 ~&7
! ota/Ifr1ar'iz= .1' p mo~i=1C.7^0
hota/lambdz= C-1 G61 0 11 p nean-: %107f5
eta/larnidz= *4Z1,ý30-2 roan-r. 17.5f!ý51 S

11ota/laml'dz= 1 ."C5lrl"! mearn- 7.4GC!'715
1o0ta/1ami'dz= .74747,^33 noan:- 1 !Sn3
'ýOta/lam! c!z-: ."C177414 p mear- 11 .3='63~
1.ota/lamldn-ý .5'47:-t5f' mca-0 -
:-fua/laml-dn- 1 .`-1 "477 me w, ý - . -3iT-,07

Ioeta/lam! dz= .Gl)52C,--7 moan- 12-.343f2U^
hota/3ari!'dz- 7.1 '5' mcan=! " .430471

I-cta/1am! clz= 1 .57 5r1 rý ziean- .. 57"-533

ota/1aril dn-: 1 * .1iV!.w-75

e ta/P'amIAd **57 vew -~a 7C'i 02

\ LCra/lam' d?-= .'1"'" - f7fL

ot~a/laln d.-.= 1 ., 5 Gr'" 7'~ .'177-14

I ota/laimdz Or:! ~C1 -7oa7 r.37"4

olal tin' (12-d- 1 n!2Zi rcan- 72 1 722

I ta/la-il-z= .471:Mii mean= 3:-'

cta/1anld?-: 1 . 1 j41 4 .

n'!a/ta d.~- 1 .1 Me=-oa- 7.1 "'

ot/a* !z i J-17.-3 r. n:- . W'Z
.4 -..1 1.- 11 rean- i 147

ct 'nn 'z- 1. -i .. I -n7

* .a/lan cdz:: 1 .*:.: m.:: ancav 14 '' .
ot,'ii~dI .17.r -1 -.- !11.17

-771a2 1 . - ý,

!a/Iand~ l7n"' C: mo
* :a/'lan' Jz-- 1 7 52 -ro ; ...

7ota/lam' dt= 1..?"2 moa~n

ota/lani (Izr '71211 on
zica/1atr' dz .4 - ic"22" ncan

Tt/aBLE (cotined Best Avpa e~ Cop2yT ..
Q;:a/arild~t= oan7



EXPERIUt'N 11 (d)

bota/laubdz= .14126939 p mean= 53.450~10

"-cta/lar.1'dz .*1 747f%1 r mean 4:. = C

1.ta~a~1C .437--435! mnoai-% 1~ -. 3('1 77

(aa1r 17.= 'on F42-Z3- m~ean-= .734

c t a/Iau', d- --= -' 1=:'374 rmoanr 7.5n3-.~77r

tyl.a/larO-d? 1 .1577"4:.' mean=

1ýota/lari' dz= Cl'037460 mnean= 1iZ.1 ^563(l

I eta,/Iar-'.d7- *25--O 1 201.

1;ota/l ambc1z= ~30_311' rnean=

!-Cta/Iamrl! *757-0 raoan =I . .444. 54I

1 -ota/1 am', d-,-: I.1)21 n:;30 moan.i 7.:;31255
b1t/a,'AdZ= G63n5G4-3 mc ot:~ 1. 11.040

!.oa,/1a~i'adz= 1 .1410..76 moan=C~ 41C

lbota/lani:dz= mc35~ an=:.5l12
ota/hiad~ .221 0 2 *.neiar.= :.I _r 6122

1 ta,'ThTnI.dz= 1 .4'76!:(.2 me an= C..0-721,;3

l'ota/I -ir.:;dz= Il *I-"121(ý moan= 1 .1.44'153

et~,'1arril .CF=0'37 m oan=

I-ota/l arnidz= 1 .:'ll107C meoan= 4.l114

.7ta/":Ct 7.1 1251 moan= I :4332C

cta/larn~dT. U.1V d : mean-= :;.1 1 1525

'cta/1-71 -Al 7:'- - oarl= "l

eta/i arn cl-. mean= 1

I-otft/7 rými.z= ¶. I nG'.771 -1 rioan=C.77
Va/i ~ ~ m an.dz .7 . 0 no

0- ' .cl: r-aan=

* ot'1aV (7.~ 1 .417121. naw:
* "~23234 mean= 0".2

Vea/1n'~1 ~ ri ~s73 r-*oan= 1Y.:41

CtIL/1atII(1 1 1m'' r~oan 2.1

*ota/ThramIZ "71 -17 *-r on

u ta/l.-ml dz= 1 .- 241 r moan= 7.:;'145..7
*Z2alla!37V2 1 Lioafli.. *-'-

ot/-mlr:= 1 273,- moan= 5. 1 53112

ota/1.1t1 dz= 1 *':312 r.,ian-i * 1. 7 -374I

0 +-a /1 07- M.2. oan=7n1Z.I

*ota/lamrnAIz= * 2!'5 525 . eai 11 .31 5351

eta/la-m' d.- 3.-:c L ' moa:v 1 .2

a ta/J a~l dz= .Z; ,,7 72 Z moan=1.4

*ota/'Thll 1127 1 .1 ,r.-;.~ r-- an-z . 3-'l

'eta/1a~2dz~ * 24.4' 1 no-an=V1d~

:-ot/'an~z~ 3,:1 733 noan7 5A. 3 5-,5

'rota/lam';d7.= 1.; 73" coan= 7.1537127

:*~*ta'V I~~z . j-Y1 10-, mom n= 15 .11 M317

!.ca/h~ 'z .'~ ~:.i : oan7 1 .'.77 17T5G

'ota/1nm!.(lz ":: 211 ~- -moanz =12.7037341

otf% lamlf1z= 1 m P4j0 oan= 5.7:;5-C'57

Iota/larl ý1-:= 1 . 24 '710 1ý m -r 7.';107117

~ota/Th-r!. .Iz= .211: 5C530 - *noan= 3A .:'7171 1

otn'/Tht! CZ7 1 .121, 2;530ý moan= 0. G ,', ^4 '-

I eta/lanl-dz= I .070CG01I moan= 7. "040I17

I ota/laml dz= 1 .35:A44"7 m roan= 5. 5C51 051

:,(ota/laml~dzr .552r5413 rnoarn 1;. -34340

Iola/lar&dz= .321 030 -moan= 2: 441 4T'

I-eoa/lanl~dz= f. 04:12 mean - 1 Al.7rCC

TA BLE I(cofltintwd) 
Best Availabi COPY



bata/Iambdz= 1 .1174040 P ma~6752
_2 1 .577 noaz' r.4-

1 Z2~ ~ can=1 C4

utaofaL'l. , n a . : ý . 71 f.

cta/'tn.' i!:- mi:o.an= .7 * 1

1 *... . Z.7 5

:.5

am: (1'
0  1 5 7i~ V 1*

.a 13*" ..L IV -

0 OL an' C *' r-' 7

an. - 11 1 '

S1 1 5

Ota~la .. .Y'ar .

ran

.171

rna .7 :2

n AI * :ra;- 1*.~ ;
T.' m a. - 7 1

L: -l 7 1 . 7.. .

4,r.

.71.

*C-la 'hI 1 .4457r*G" r,333-5.

Best AvailableCp



EXFERIMMN Il f

b.*a/tainbdz= .30063233 p mfan= 25.087059

1,eta/lambdz= C7749743 imean = 5541
Gt/lrndz *!5G3 3 *'moan= Vr.'CC

(t/a:.Z= .71!TC1 3" mean= ln.5327G3

ltota/lar~i cs'.= *r72,-5Z I' nean-i n. .6"171

i eta'/l~ar- dz= moan 2

1-cta/]lam.' d7= C 724 moan= .7i :z
C 2 G7 S'Z -4. moail 11 *'7773'*

~ta/ Iar'll z n"~r 1l m oan :. 7.7: '4 .177

IO~aa/.a1* f, ~'7 moan=~ 7. '"2Z

~~C 1 .i!15 rioan71
t&A/~. !~ 1. 7'5S noan=.

Oeta/lat"' .In= 1 an= -.>:34 U,3

9 :nt~./a;.i:.= I ~1~' mioan7 4. '275'2S:
In ne'a h :~7~2 man- 1 .".'3433

c't;'a~l:!~ 7"15.51 moan= 7 1 -'1 '*.7

otd-lm' 1 1 2z=: moan= .

r,'rd *: C4 ' noan = . 7-1. . 3

* ~"ta1urd~ *~172'.~''moan= 1751

........ oa. 11 = .. 1

* ¶."L Iz= 1 .17111 3.' 3172r.: .
t'In !a i'-a dz= -- 3 p mean n .C 7-4-71

1 /I a.-.-' 5 mon.-cf: 31 ~.~
1 /1at~ildz= -52~Z :a.-.a 1

* ' ~~-,. rnoan:577C

c ..'1a !~1 . -/nuar.- ~z 4:53:>:
* '/Ial.. dz= *coa24 r.o- 1 5. 3

'~''1~' 1 .i 122:1 *~moan: ~. ::7 4

/In-."1, dz= .77111 147:, now:.- .- CI3

~2~Ia '! ".7 ., *mn. 1

* t,>aQ :- .3 '"~ moan 1 .'27r'

* V/aL!tz-, -m1- oa i- '

*'a .Inn ~ 1'. d.-. -3 an-.1.475

*man ý. "-1371 *17a

OCari (1Z r '2r7~ oa n

*t- "./I a1.1d *Y2'33 1 -7ca..- .1 .1 54:75

* ,ta./'1a:*';lz . '1.777773 ioan:: ~471

1 ctr/av,1a dz- 1 '' mc.n- % '

v , / a.~: u! z~ ft 1 .7''r;5!f 3 mer.a.- -. -:;~ 1 '

! ota/laril d~t= 1 .54410"7 mean=. 5~ .7-C-732

I ta/lan;t iz=z * .:'7170473roan. .5

c~oa/lan~!ldz= i.772':G21 roan 1-7 * .13~:7

I.ota/laL!!,dz- C- 1 '3 .2 47 moan= 15. 33 3 0

I~eta/laml dz= .'-l4f!C0223, moan= r'.2133Y-



EXPIMILIENfX (v1

beta/laubdz= .6986243 p man= 10.962646

1,ota/1amft 4~ ::15110 mean= '..50

!!ota/larll,-Lt r n:, a!2.5GS *cal-.721

1ota/'&n'di# i.77f-4r7 rnonr. - 21d

* .otf/a/Thll c... i1.I 7;"0C3

'~~~~~. Mta.r "* 'ia. ~ 7

1 '.a/l an -ca-,= r1- ,:7,

c~na am cl:07 MO

otr~~ar. '~' .J22~'~ rloftn 1

O~1,flLA t -. t.?43tmoa- 75CZ

!~a,-~~'d-* 1 =T3G cnni-

'e~ai!.Z 74ZC3ap~~.1

cOa:1/am! .;2! p~a n75 175 r'-in

o4, m d%=s 5: r'7 50 nnoi

me .I-: I

0.. a.-'3477

.1 1 3, 1 man k

*oa

a, .. .. a

.-w n

a/ a;! . ý7-55 .

:a 1 -oa

,, a - r7 :~ !,Z-~ . 11 1'.

.-- aIla..' C::- 1 , 1 77-, 1 V.

0 a n1r' !r 1 3' .1 7 ca.:: .

-V .\ BLI I (, ontIlt-6 Rck B st Available Copy



b&WtaU.mdz- 341051 69 p man= 5.1690974

:::1UU~T ii ") *I ' dz 1 4 I5 P moa:*.- 7. 14

I.ota/lar".' dnn 1I 1 ror- 7Z
V oan=* -

*ot.a/aInr' e-t I 1 An

!.ota/1a:* c~z= 2.%n475~77 p mean= 2.n~343O'GG

lye lz'v ' -.)ean- ,.1

eta ~~r-oa-.- ýV

o'2/7: 1, 1 1 oai= 1I.1-

olm/lmr* z-: .7 r~oan = .4,5

ota/la?'* ~ .7 1.:' !:a.-= l:

'oa/l.ar' dzý-~ O!

*otr./1lan dz 1 -e::
.ota/lar.' dr? 1.z:- 7.1 1

*cta/lam7 t!- 1 oas= .7.

Ota,'a-n* z:! 1 1 " , ra .

I .-A n!Z oan- 7

* oa/~i * 1 T tsoan=

ot/-m I~ I i oan- :. 7. 1 Z,-

*ota/: Iard 1: :I meoan=- Jo1:
* eta/1aiIr d7 1 ' -1. 11oa

* lta/lar.bdz-ý noan= 14

*ota/lanft= 1 noan: 5.. 1 -7'

eta/lam' dz= 11 1 '1. o ! 7

ut/!&.n 17ý 1 1- p oan= r." 771205

Ioea/'.ama*. 1mn 1 -.a 4

p~/3 1on M-1 751

a*- 1i -t *7 1 e,:.1

o ul /'.8T1 -ý 1 1a
ea/I?.d. 1 51 _

u! ta/a::>..* 1 1'7 7 ma 1

suoa," a ~ 1 7 ,-a.. 1.

*c 'ar. "I ~ 7.1..

* .t/T ?I * 1 rcar- '. .T - 1

oo a1r f? 17

1~m 1:- 1. 1 171

O~~a/'.aL~n 1Ia n- . 1 1

* ca/lum '7 rcý 1 7
t- a.t"l . -771- 7o . 1

c. 1 2 cn~nt' ic/ln I= no:.~ ; i

vt/lrl !n l-7 22n=4

o r.M a an*t 77... 
. . . . . -n



I
I

.: .25000O01= .13333300

number of tria•s= 250000 nn= 9.9668640 variance= 206.09936 std dtv=14.35616 I

- 1 ' ": 5 Y 7 .. " "

- " :7° . 1. ' ' ' 1

Its' I -

n- 1.-, - ' ti .: -" .' .*: : :. v"1 , •-

1 "- -: -P 13 . "~ . *

1 - "t; 2 _.. ".-.
1. ; :- 1. ~1.'•

.- 4,1 -

1- .:1• 1
i:- 1. 11 " ." .1

1.'- 1 "..
1.- '- 1 " 1"". -. '

"" - 1 ., . . . " .'..

1 1.7

7.77

4: " ... 1 " I

J :- Ole COPY,

.- •: .. ,.-B"

." ,- V ...

.: 11; .7 1.!.

S- "1 -11 ":-

-. -* . .

.- 71 ..... .

__.- ... o- o.

• .-. 1.|i..7'

"- - •°1 .'"

* - ",:7 "1. "77

° .... .,; Avala le Copy
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CXPERIENT i(

%oder 0.0000

0- 0 0.11TS

3-
4 '.41!4

5- •",.•%

6-

7- 7"

11I- 11i ".7°''-
1'•- 1i: .,.•

1'- 1,-, .77"47

17- 1 7".:

S i~

"- :- ",I"7

.1 - ::i . ." -

17 -1

1 - . -."..

"T1 - "."5:':-

"*. j- .-. ,-, . 1

.. - 1 . 1'

"- 2 . '.7 ' 1

_..r.

.'•'• .':"^ " 7 -

TABILE 2 (-,ontinued)

24



rxp-nINT 11 Ck

under0

0- 0 0

4- 4 Z

7 31
7- 4-

t4-

4 -

1-1: .

1 15

-'vc r

B est AvailableC OnwY

P~'A f LL



ft. of mpetitimm 1000

S.250000001= .13333330

number of trials- 1000

= 9.3830000 variaances 26.75607 stddev= 16.635"T

moan= 10.475t2
0  variance= 29.).55093 stddev= 17. AS•1

t'2.NG. !OSSERVD ,ýT"MZD CLllS 1

-1 136 12.9 1.39

1- 2 103 124.0 u. -32
2- 3 I'T 1,P.5 -. )2

0- 4 .. 76.V 2.24

4- 5 51 GC.4 3.50

5- 6 70 57.5 2.71

G- 7 41 5:.1
7- 42 43.7 .,..7

,_ 2 3" 3%.3 .3 . •
;- 1," 33 .3.7 .1

1PA 11 2n.^ 1.11

11- 12 31 26.3 .-2

12- 13 25 23.4 .:.11

13- 14 14 21.2 2.20

14- 15 1" 1 .C .. 22

15- 10 14 1C.6 ý..41
1G- 17 2ý 14.!- 1.74

1 7 - 1 1 11 13.4 - 43

1'- 15 14 12.1 ).31
19- 2l: 11 1 ý.9 . N

"- 21 3 0.1, 4.7:1

21- 23 11
"22- 23 2 ',1 .Ž. -;;

23- 34 7 .4 :..52
24- 25 I C.7 1.11

25- 2C 5 G.2 .22

::C- 27 r,.C 2.54

"7.- 5. .2 .. 14

2 "-"2 4. ".'G
711- 2 A .- -3

32- 33 4 -.- .11
n3- 34 2 ,.1 .41

d- 3 33 ..2. •-

""37" .. •

"2 2.2 .75

41- 41 7.4Z : -. 4
• ' : 1 1 1.2 *'.'"

41- 45 2 1.7 ..21
422d 2 1.2 .Le"

45- 44 1.2 1.51
4'4- 45 1.4 1..11

4"- e7 1 1.2 . 5
47- " - 1.2 .21
4 - 2 1.1 1.

n-. TABLE Best Availab!e Copy
..IS;CJSAt-.. ,43.9424 TABLE 3
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Sxporiumnt xII (Contn)

0- 1 113 122.9 0.30

1- 2 DC 1A.G '.71

2- 3 1;5 "D.5 2.70

"- 4 72, 7G. 0 .C2

4- a C2 6e.4

G 51 37.5 ,.74

G- 7 44 5 .1 ,.73

- 44 4.7 T)

-V- 41 3:;,3 ,1"
- 1? 3D 33.7 3

1 -11 27 2%, " ,20

11- 12 1V 2C.3 ,

12- 13 " 234 ,11

1"- 14 23 2 .233
14- 15 1:1 .C . 1

13- 11 14 1C.• .41

1C- 1? 15 14.
1-- 1 1 ic 13.4

17- 2. 11 1 ,

2- 21 14 ' 1.73

21- 22 4, 2.74

12 .1 1.5
S" ::4 '. 4 • -'

2.- 245 1 C.7 .3

_____- ,.. 3.6 1.

'' ' 11LL "C .22

.1 - 3 3 3.G7 .

,• •....3.4 '.11

:] -," 4.,3. 4..3
ý22.1

"2'- .3 " c• '

4.- . .

4 4- 1 1..7 . ,,-n2- 33 1 1. .34

":3- 4. 1.. 1.47

II. 41 1.4 .72

4-. 4 1 1.'1

.1.2 *1

4 A - 4 12

" "4- .1 1 1.: .*4
.':,1- 424 1 . 3 1.

, .* , 1.0 1.47

4 .,- .,," •1 . 1. 77

C 1.

...... ....... '-... ..-. "...'.

L Copy
"iABLE 4
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( tPEROIMFT Iv
mean of first int= :.1~16853raoan of tenth inta ^.6574202

ado. first it=t ".VA;1161ad of tenth tnto C.G2215430
prod= !5. 14141C
corr. ,ouff. = .1 72fC4;03

m~oan of first intr I .137,13laon of '*-,-t.i int= D f',224272
ad of first inta 14.1"743,,d o~f tonth int= 13.115371
prod= 142.3J937.
,orr. -oe't. .2-1973229

Moanl of first iotz 1 *015TC1-'oan o~f tenth intr 11.4G1051
ad of first into 10.31 30Sad of tenth into 17.13714C
prod= 220. 302SD
cor:.c-ooff.= .3070 :64

n~oon of first int= 14.1 .0271noan of tonth into 11.2!r 1 A
ad of first into 44.C'123lnd of tnnth tntz 2!.7Cr3:7
prod= 714. '237:'
"orr.couff.= 370

noan a' first lnto 17.-. ' 5!0Ioan or tonth intm 11.3 0 171
3d of first tnt= 22.^ 4:'Ond~ of tenth into .14.4 <373

,;orr.'!oof f. *2:,'15.'2

loan of first inte 21 . "I171?onn a!f ton th int= 2 .1-l-
ad of 'lirst int= 75.43527`ad of tenth int= 1:13. M13
prrdv 33,30. '740
ccrr.n!oaf'.= .1217174

a= *? :j..;
noan o. first int= 2 .00 r5G"*,.an nf tenth intm 21. 44,' .!2
ad of rirst int= 1.43lPSOnd of tanth into '12. 736' .7A
pro4m 331 C 72
"-orr.coeff.w .47A43 j,;3

nocan o' first int= 2-. -r! ::7ionn or tonthl nt: 150
ad of "irst into 137.4.117ind of tonth Into 1 12.00274
nrcnd= 7147. IIGC5
,,orr.coorff. .4 -7:3 G

!ogn o first int.ý 0.. 72142n:ca,' of tunthi intz 37. "AC02
sd of first into C '08c~7L0nd or tontij Into 104.'53 :1
prod= 'r344.131
nc.crr.raeff.= 71 737

TA 111]



!~Imlw..4T V()

No. of repttitionl=

a:- •.10000000 1= 10.000000
0 0.055 56 7.138

1 ". 7 7..7,7

, .~7.353

Y.

P .T5 G1 7.G,•4

7 -, ,t•"7 .117
r

12 1. :" .

I1 1

17 1. I X11: 1..IT." 71 .7

1 1
17 1."1 " 7 :.I:

1- 1 .' " ;.11

I .. !.7 77 "

:.3 ". "17 .1. . a
- • a-..;- :

.1 -
.

.. 7.

4.14 .. 1 .1

- 1 .7'.57

7 . 3 ", .. ji- I- 7.
IiV

"'3 .'.11: *I 
C OP1

" "-'. " " 1 ."?

.* . . . 1 .. -,.

I" I I \, a. I It I k."
2. 0 1



EXPLR IMM"-?T V (19)

a- .30000000 I= 10.001000

o 0,2 Of 14,223

3 1 '•3"" 3 1 4.,'.3

C " . " 15.535

4.12 1%5.-7

55 '5rc

7 ."27 02 13.....

7 3.•5.: t3 1 7.112

7 4.12? 5/. 1:.4'57

4.722 .. 1:,.47.
f, 4.72" C., 17. PG C

11 5.3"1 G7 17.1'-

1 5 5.;1 ." 17 .7r

17 5.C-7 C 17.7r7

1 5 7 -,7 7 7 1 1~ - •-7

17 757 7" 1" '1

1 7..1 74 1 .

1 . . .. 75 1- .2'5

, . 77 1' - .1

- .7- 77 v.177•S .'f7" 1' .277

Sr - .,. •1 .374-.

"'7 ".S'" "7 - .1..

-_-._"_"22. :'12-.'-

S" -... I:. . ';.I•-715

3 1 . ,7-

7C-1 7
1 ,- - r

.11 -7' .

"" 11 .1 : .5-." " - "

." 11 1 e C O P Y

I 1., *'** .... 5

,; " 1 . 1 " "

.; •1 7"

:7 1^ • I2

' 1. ,"i

:7 1'. ",V

s 1 1 . 1"

-" 1:, '1"

)Best p%,Jaiabe
L :30



SOOOOOOO00 1= 10.000000
0 0.397 FA 29,213

1 57 !%il

. 1.47 nc 7!1.4

4 1 5:1 C4 : .ý1

CC :;

73 73.r. I

-' 11.V 33 XC

173 1 -1

.17

Bes 1*.77*bl C4F

U:;:?. i 2i'TLlMLr1



XPIRJI.!.F,,T V (d)

..70000000 I- 10.000000

0 0.014 56 2.921

2 '47 r- .

3 .1-' 5. 1 .771

4 V.1 5n Go 2.15'

5 p. ci 3.1 ?r

7 0 .2 ' 3... 5.-44

*.552.503

Ir G, 2c Z.51r

11 -. 5." C7 5.5-1-
-C. 5'7'

U ~7.-.72
1- 3 .7 5..,"

23 1 Tt • 3•"G

15 .::17.77I 3r I r :I 3 7

1~ ". .17.. .•"'

-1

"C . , ,,-.

21 r .s 77 S•C

'2. 1 .- IG7' . "

: ' 3 1 .~ ..T .- '

2, I .1 '•. 4. 31

25 1.:.7 1"•, 1 .2 1 w ' . .. . , i . (

:'7 1 . 5 "' "3 4 .4 14 .

"1.7C71 51 4.7-n

;:- 1277" -.. .. 1
23f* 1*" . .7-A , '

""1 1.r1 : "
-' 1..'1- *..? .

3• 1 .9Z 7 " 'S-.'.•

17 .7. 27 r'1 "."775

,15 .5 7

1.21". #Cl4'

171

r1 1 '7,7r.

54 2."4
35 ::..15 Best Available Copy

TA:\ILE 5 ( ont.'•,•cl)

ftU', EI•. - •



ixPFRUi iCr v (a)

.90000000 l1 10.000000

0 0.010 51 2.923
1 .,() .. a . .. .

" O. A"47 53
S 5 54 :.4

., o...a,
4 ('.1:1 5" r

- ~*~'G 57 
t

,-, =, Cl , "..

11 ;. -
U.

1 " •." * 
*'; 1 5C"

I . "'IC 
- IT

7 ~

1 .1 .,, .. ..

11 A"

17'

1 1 " 'I 
- ". - ."

1 1 :" 7. " " -

1' . -. -:.

7 .. -a

"1 .71"

7+ -, "~ I1.

-i Ci

X11

I:I

l * I': : (~ , n, l:i n uL -c



EXPE•I %'"r V {€)

1= 1.1000000 1= 10.000000

0 0.114 $1 16.205
1 '.172 32 1 -. 1: 3

"2 "l "7 53 1 7.r'T7

.,.. 17/
-* r.51 :- 53 1 ".j1

G :1.745 
3. * .1

7 '.J, 
5" 1 ... :n"

"- .;75 
1' .3S"

* .•i 1 G r' ,--

11 2.144 " : 7.

1 '..r 5C ý4 "A. 7::

14 '.1,"Y "" i

15

17 ;.1 .7 7'

1" -i..*-1 7" 1".•

S. 1 71-" .-

":. " .= ' 
T " . -"

.':..: ".'7777, " "-

" - .12 "-¶ .""-

' 7 .-. 1 *" ",.

.7. 7

. 1* . " ' ? . " '."

I .......
,'

.17

^" 1.?7 : ".r "

"1. , ..• .'2 '- 7 . '.-

i •: . ' o.7 -. 1

"" 1 ' .,',. " . -"

1' i ." .1 
: .,r r .

* .' 1 .,1 .
" . - I "

Best Available C Op"

TA \[ L.IE , (. ,.ntin,lcd

J4



ExPER I IC-r v (r

a= 1.3000000 1= 10.000000

0 0.046 5n I.360

•,, ,53 1.274

r.' "1 -1 so I. -I11

,4 '".15.3 1 .. ':75

3 -. 1-r5;1 1,. -17T

T ".1 "3"7 1 .1";1-
* .. ...... J,

4 .... ~

57C 1.37-:

1 ; •..'45 ,• .";:7

1 .. C 63 1.027

1'.

1 - '^.'73 "" I .•

1" .::" "' - "

1' - .,: .7.? 1.'-,r-

-n r .5,r 71 I."•
41-: 7f: I."

.73 .1.gO6
74 1..3C

, -r .. " .- :• .- : ," • . ,4

,,'- r, •'7, 77 .

77 .1 . .X':
"1 :" J'1 ." .111

7.? 1 -.. - -1.-'.1

*i444 

-- 4

77

4-): 1. 7

".4 4* .- **,• ..".fl

•" 1 .11 ""1 ".-

4'1 1.17,-

"", I .I. J7 "5 *. ,.

3.4

.47 1.~ "'" - .. "

'4" 1.V.t7

""\able \ o '
-1 AB LF- 5(CniudILAV



COMPUTATIONAL CONSIDERATIONS IN

MULTIPLE LINEAR REGRESSION

Harold J. Breaux
U. S. Army Ballistic Research Laboratories

Aberdeen Proving Ground, Maryland

INTRODUCTION

The statistical theory concerned with multiple linear regression

and simple, partial and multiple correlation is highly developed and has

been one of the most useful tools of analysis provided by statistics. The
widespread availability of modern high speed computing machinery

makes practical the solution of many regression problems which before-
hand might not have been attempted due to the inherent computational
difficulties. High speed computing machinery enhances the value of

multiple linear regression by removing the computational drudgery
and making possible more sophisticated procedures of analysis. Despite

the tremendous speed and computing capabilities of modern computers,
much can be gained by the skillful design of computer programs designed

to solve the normal equations and provide the associated statistical
data for estimating significance of variables and prediction intervals.
The computational labor associated with multiple linear regression
arises in the formation and solution of the normal equations. Efficient
algorithms for solving the normal equations are described in the
commonly used texts of statistics and numerical analysis, however,
only recently has any widespread effort been made to fully take ad-.,'ant-

age of the capabilities of computers for doing "exploratory" type
regression computations. In problems where many variables are
involved the analyst may have only intuitive suspicion regarding those
variables which are significant. When this is true it is desirable to

define a "candidate" linear model which includes all the variables
which are conceivably significant. The exploratory experiment then

would consist of entering this candidate model and.the appropriate
available data to a computer program specifically designed to analyse
this model, and output a reduced model containing only significant
variables.

One way to design such a program is to have it obtain the solution
to all the "sua-set" models that can be formed from the collection "
of variables in the candidate and choose the one which best meets the
significance criteria.
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4i tnis nociel contains N variables there are 2 N -l sub-set models.
Thi,3 method is made practical for as many as 10 variables by a
"binary algorithm" deceibed by Lutto [1], 1961, and Garside L2],
1965. This binary algorithm defines the optimum path of elimination
so that the Gauss-Jordan algorithm goes through the fewest recursions

when generating the 2N -I solutions. The method has the advantage of
being always able to identify the "optimum model". For the purpose
of this paper the optimum model is defined as that model containing
only variables which are statistically significant at a chosen level of
significance and which has the rninimuni variance of residuals among
the sub-models that have all terms significant at that level.

The scope of some regression problems is such, however, that
more than twenty variables are required in the candidate model. Such
a problem is one described by the author in BRL Report No. 1348*,
"The Computation of Firing Tables for Guided Missiles", [3]. In this
problem it is desirable to define a candidate model containing 100 or
more terms. A very practical solution was obtained using "Stepwise
Multiple Linear Regression". The program was patterned after the
computational scheme described by M. A. Efroymson [4] and is docu-
mented in BRL Report No. 1330 [52. For documentation of similar
type programs see References [62, [ 7] and [81.

Stepwise Multiple Regression takes advantage of the fact that the
Gauss-Jordan algorithm, when used to solve the normal equations with
N variables, yields intermediate solutions to N regression problems
containing respectively 1, 2, .. . and N variables. The procedure
advances in stages. In the "forward" version the variable which enters
into the regression is the one which at that stage results in the greatest
reduction in the sum of squares of residuals. The power of the procedure
is further enhanced by removing variables at later stages that may have
become insignificant. The decision to add or remove variables is made
by use of "t" or "f" tests of significance. The procedure advances until
an equilbrium point is reached where no significant reduction in the sum
of squares of residuals is to be gained by adding variables into the
regression and where a significant increase arises if a variable is
removed. The "backward" version cf the procedure begins with all
variables in regression and proceeds in the opposite direction to achieve
the equilibrium stage. The relative advantage and disadvantages of the
two procedures is dependent upon the application however, it seems
desirable for a well designed computer program to contain a capability
for ooth.

CCopies of th±i• repor$ are available to qualified requestors.
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MATHEMATICAL BASIS OF THE STFPWT.qr

REGRESSION

The mathematical basis of the stepwise regression is that the
transformation rules of the Gaiss--Tordan algorithm correspond to

recurrence relations that exist between covariances of reciduals,
regression coefficients, and inverse elements of partitions of the covari-

ance matrix. These relations are conveniently expressed by taking
advantag.- of Yule's notation F9]. In this notation fhe regression equation

is written rn the form

Xn b nl.23...nn X I + b n2. 13. .. n-I ".2

+ b Xn,n-l. 12...n-2 n-i (1)

The first subscript of b is that corresponding to the dependent variable
X , the second subscript corresponds to the independent -v.ariable
attached to the regression coefficient. These two subscriits are called
the primary subscripts. The remaining subscripts on the right of the
period are those of the remaining independent variables and are called
secondary subscripts. For a particular observation equation (1) takes
the form

Xjn. = bI X3l + b2 Xj2 + ... +b X + ej (2)

e . is a residual and is the differenre between the predicted value and the
observed value of X . In Yule's notation the residuals are denoted as

n
n 12.. . Since regressions containing fewer than the (n-1)

independent variables are of interest it is convenient to introduce the
notation

q 0= I,1..(- ), O<+ 1). .. p (3)

Note that q is a set of subscripts containing the digits 1 through p, excluding
i, j, and k. Furthermore q is a sub-set of the (n-1) subscripts of thb
independent variables.

It shouild be noted that the variables X. are ýissunid to be measured
without error.
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The covariance of the variables X. and X, is detintd as1 J

sij = i3X.X/f

where f is the degrees of freedom and the summation extends over the
m data points. Any variable can be considered as the dependent variable
e. g., the residuals X, and X will be of interest. The covariance

1. q q
of residuals is defined as

Sij.q = ZXi. q Xj.q If

Using the above notation, the normal equations can be written in the
form

SX 12Xk = O, = 1, 2, ... , n-1 4

or equivalently

SS1k b I + '2k b2 + + Sn-i' k bn-1  nk'

""k 1,2, ... ,n-i (5)

The complete covariance matrix is

11 12 12n

21 22 2n
Sm6)

5n1 8n2 nn

This matrix corresponds to the augmented matrix of coefficients
usually considered in solving a system of linear equations with the
addition of the nth row. The nth row is added so that the variance of
residuals, s nnq will be -made available through matrix manipulations,

thus avoiding the need for computing residuals at each stage.

The matrix element Xij, q ij k is defined as the ij' th element of
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the inverse of the partition of the covariance matrix formed by taking
all the rows and columnR of indices q, i, j, k.

The recurrence relations between the b's, c's and s's that are
of interest in stepwise multiple regression are tabulated in Table 1.

The solution of the normal equations by the Gauss-Jordan
algorithm is equivalent to the successive application of linear trans-
formations to transformed matrices, the initial matrix being the
covariance matrix. The successive matrices that are generated by
the recursive equations can be denoted as Ao, Alt ... An_1.

Ak (k = 1, 2, ... n-1) is the matrix formed by applying the transform-

ation.
k k-i k-l k-i k-1

a1 a aik akj kk i . .. , (k-1) (k+l). .. , n

k k-I k-I 1 - 1,2, ... ,(k-l) (k+l)...,n
ik ik / akk

k k-l/ kk-. (7)
a i = aklk j 1 20 1 (k-1) (k+l)...,n

k 1/ k-I

to the matrix A k_1 This transformation is denoted as T The

superscripts denote the fact that the matrix A is being operated
k-i

on to yield Ak* The sequence corresponds to the intr6duction of the

variables into the regression in the order 1,2,... n-1. In general the
sequence would be different, however, no loss of generality arises,
since one can renumber the variables in any arbitrary fashion. By
use of the recurrence formulas one can prove the following theorem:
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TABLE I
RECURRENCE FORMULAS

1. C.. j C, - b d~±k~i13. qi j ij. qi ki. jk. qi d k. .15 j

2. cik. qi jk -bki. qj/ kk. qij

3. b ji. qk bji. q b i. q ak.i. qi/ kk.cpi

4. c kj.qi jk d kj. qi /akk. qi j

5. 
- 1/Sqijkk. qi j

6. b jk. q s kj. q/8kk.q

7. d j.= d j q -d kj.q Eik. qj/Skk.qj

8. dik. q -8ik. q / kk. q

q. ij. qk "ij. q -1k. q %kJ. q/8 kk. q

1. cij. ci j - j qi jk C'ik qi Jk Cik. qi jk/c kk. qi jk

1i. b ki.qj = C Cki.qj/Ckkij

12. b j. b ji qk cik. qi b jk qi/C kk qi k4

1. dkj. qi kj. qijk/Ckk. qi jk

14. a kk. qi j = 1/c kk qi jk

15 8 kj. q lk. q/C k.

16. d Cijq i. q -d ik qj jk ~jk /Ckk. qjk

17. s ik. q - ,Ci. q/C kk.qlý

18. 8 ij. q 8ij. qk -dik. q 1)jk. /C1 kk. qk
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THEOREM:

The matrix AI, defined above, contains four partitions, the respect-
ive partitions having elements as follows:

ai.j i c . 12... k'

a. = b . i = 1,2, k, j = k+1, k+2, ... n

(8)
a,. = d i = k+l, k+2, j = 1,2, n

1 j ij. 12...i-1, i+l. ... n, ...

a. f = a. . .. k' i = k+l, k+Z,...n, j = k+l,k+2,...nij . .12..k

The consequence of the above theorem can be generalized as follows:
The collection of variables whose subscripts are represented by the

values taken by k in the successive application of T are said to be in
K

regression if k appears an odd number of times in the collection. Alter-
natively, a variable is said not to be in regression if its subscript does
not appear in the collection, or if it appears an even number of times.

If the subscript appears twice, e. g., the corresponding variable was
entered into the regression and then removed. The nine recurrence
formulas, 10. through 18. can be used to prove that the application of

the transformation T to A generates the matrix Akl, i. e., the -variable

is removed from regression by the same algorithm with which it is

entered.

The derivation of the eighteen recurrence formulas and the proof of

this theorem are contained in the author's Masters' Thesis, soon to be
presented to the Graduate School, Department of Statistics and Computer
Science, University of Delaware, Newark, Delaware. The thesis also
contains a discussion of storage saving considerations in the program-

ming of the procedure.
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The content of the matric at any stage is as follows:

.. a . when neither X. nor X. are in regression13 13 1 3

a.. b.. when 1,. is in regression but not X.

aj. d i j when X. is in regression but not X.

a j c. . when both X. and X. are in regression.ij 1 1 3

CHOOSING THE KEY ELEMENT

In forward stepwise regression the variable which is entered into
regression is the one which yields the greatest reduction in the variance
of residuals at that stage. For an arbitrary variable X. that is not in

1

regression it is seen from the recurrence formula 9. that the variance
reduction is given by the quantity.

i a inani /aii Sin. q Sni. q /ii. q (9)

For an arbitrary variable X. that is in regression the variance increase1

resulting from the removal of X. from regression is given by 18.
1

V. a a ./a.. = d b. /c
I in ni 11 ni.q ni.q H.qi (10)

For X. not in regression V. is positive and for X. in regression

V. is negative.

After determining the key element it is necessary to test whether
the variance reduction due to entering the key variable is statistically
significant. By inspection of 9. it is seen that for i = j = n

Snn. qk = nn. q (1-s nk. q Skn. q /8nn. q akk.q) (II)

The quantity (snk. q Skn. q/Snn. q Skk. q ) is defined as the product

moment coefficient of correlation between X and X .

n.q k.q
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This quantity is denoted as r nk" q and is often referred to as a partial

correlation coefficient. Equation ( 11) can be written in the form

deoe as ik /S ans ofe re)rdt/sapatasnk. q- Snkq kn.qsnn.q kk.q nn. q nn. qk inn. q
2

By inspection r q gives the fractional variance reduction obtained by

adding Xk into the regression. If rnk" q is statistically different from

zero, then we observe that the fractional variance reduction due to Xk

is significant and that Xk should be brought into regression. For forward
2

recursion r k can be computed directly from the first expression ofnk. q

(12). For backwards recursion, i.e., to test whether a variable Xk can

be removed from regression, r n can be computed from the formula
nk. q

r = vk/( + vk) (13)rnk. q k Snn. qk k

A test of significance for rnk. q is listed by Graybill [1 0]. If the true

coefficient r nk. q 9 for which r nk. q is an estimate, is zero the quantity

t (f-2) /( -r (14)
nk. q nk.q

is distributed as the Student t distribution. A test of the hypothesis
r nk. q ý 0 against the alternative r nk"* q 0 is performed as follows:

The quantity t is compared against the one-tailed t statistic, t (f-2, c)

appropriate to the degrees of freedom, f, and the confidence level, c.
The hypothesis is accepted if t > t (f-2, c).

The test is used in two ways:

(A) At the beginning of a stage V. is computed for all subscripts,

i = 1, 2, ... n-l. The largest positive V. identifies the key variable
1

which should be tested for entering into the regression. The quantity

rnk. q is computed using equation (12) and the t test described above is

performed. If t > t (f-2, c) the variable Xk is entered into regression by

performing the transformation Tk.
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k-, Q%0 5V U85kiIM uy agi £.urrputing 1

for all i. The negative V. identify the variables that are not in regression.
1

The negative V. of smallest magnitude identifies the key variable to test1

for removal, rnk" q is computed using equation (13). If t > t (f-2, c) the

correlation is significant and the variable Xk should remain in regression.

If t < t (f-2, c) the variable can be removed from regression without

significantly increasing the variance of residuals. Xk is removed from

the regression by applying Tk. The procedure is repeated until all

insignificant variables have been removed.

The modification of (A) and (B) above for backward regression is
quite simple. Initially the recursion is controlled to proceed all the way
forward, yielding the inverse of the covariance matrix. On the way back,
after any variable is removed, the determination is made as to whether a
variable removed previously has become significant. If not, then the
least significant variable in regression is removed, provided again that
the resulting variance increase is not significant.
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ESTIMATION OF ERROR RATES IN

DISC RIMINANT ANALYSIS*:

Peter A, Lachenbruch and M. Ray Mickey
University of North Carolina

Chapel Hill, North Carolina and
University of California, Los Angeles, California

ABSTRACT. Several methods of estimating error rates in Discrirninant

Analysis are evaluated by sampling methods. Multivariate normal samples

are generated on a computer which have various true probabilities of

, misclassification for different combinations of sample sizes and different

numbers of parameters. The two methods in most common use are found

to be significantly poorer than some new methods that are proposed.

*This article is to appear in Technometricu.



SOME STATISTICAL APPLICATIONS IN THE TESTING

OF MILITARY VEHICLE RUBBER COMPONFNTS*

Emil H. Jebe
Willow Run Laboratories

The University of Michigan, Ann Arbor, Michigan

SUMMARY. This paper utilizes the results of four test programs for
rubber components of military vehicles to illustrate a variety of statistical
applications. Twc of the programs were concerned with the testing of
rubber bushings, an element of the track for track-laying vehicles. A
third program was conducted to evaluate experimental types of track pads
while the fourth example discussed reliability evaluation for track pads and
track shoes.

Two of the test programs were based on experimental designs suggc sted

by the author while the other two may be described as:

(1) A factorial arrangement for two factors with missing treatment
combinations.

(2) A "road test" without controls or any basis for comparative
e valuation.

The statistical applications described for these test programs include
the following:

a. Unweighted least squares analysis,

b. Orthogonal polynomials for unequal spacing of a factor,

c. Use of the Kronecker or Direct Product of matrices to form
the Contrast or Design Matrix,

d. Weighted Least Squares analysis,

e. Use of a single replicate with confounding in 'a 3x3x2x2 experi-
ment for four factors,

f. Estimation of experimental error by a number of techniques,
e.g. , regression residuals, Half Normal Plot, etc.,

g. Use of "uniformity trial" analyses of data from previous tests.
to design a new experiment,

"*Willow Run Laboratories, Project 07312, Institute of Science and Technology,
The Jniversity of Michigan. Prepared under Contract No. DA-20-113-AMC-
059Z7(T) with USATAC, Warren, Michigan. Revised 10 February 1967.



h. Reliability estimation based on
(1) The binomial distribution, and
(2) Johns and Lieberman (1966) (Technometrics 8, 135, February

issue).

INTRODUCTION. Since 1962 the author has had a unique opportunity
to participate in a number of investigations of rubber products for military
applications. These studies have been conducted by engineers of the
Components Research and Development Laboratories (CRDL), Research
and Engineering Directorate, USATAC. My participation has been through
several contracts between The University of Michigan and USATAC. Among
the types of products investigated have been bushings, pads, shoes and tires.
The latter needs no definition, but the other three are components or
elements of the track for our tracked vehicles, e. g. , tanks and personnel
carriers.

A few words of non-military explanation may be helpful for these
components. The rubber bushing is bonded to a track link pin. A close
fitting metal tube is squeezed over the rubber bushings which are bonded
in clusters of 2, 3 or more on the pin. This assembly is then inserted into
a cylindrical opening in the track shoe. Addition of center guides and end
connectors to a group of shoes makes possible the assembly of a complete
track. The rubber bushing is a key element in this complete assembly in

that it provides a non-lubricated bearing and a load taking element such
that the vehicle can travel at high speed without prohibitive noise. Another
key part of the track is the friction and load bearing surface between the
"vehicle and the road. The outer face of the track shoe provides this sur-
face. Again this face of the shoe is made of rubber but it may be provided
In two ways. One way is to bond and mold rubber to the desired shape
directly on the steel surface of the track shoe. Another way is to make
shoe pads of desired shape and bolt them to the track shoe. The pad is
made by bonding rubber on a metal plate with welded bolt attached.

As the author understands the situation, polymer science and rubber
technology are not yet able to predict reliably the outcome of many military
applications. The outcome of interest is durability or life of the component.
Hence, various laboratory and field tests need to be undertaken to investi*-
gate the suitability and durability of specific applications. Our participation
in these tests has comprised:

(I) Analysis of laboratory tests (without an experimental design
imposed),

(2) Design of experiments for laboratory and field tests,
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(3) Analysis of previous field tests to obtain information for

designing new field tests,

(Cf; ,ov•o f ..... _-n- . .

(5) Estimation of reliability from road test resultsi,

In presenting this paper the author wishes to acknowledge the contri-
butions of his colleagues and co-workers, R. A. King and J. W. Curtis.
Further, the strong support, encouragement and active interest of USATAC

personnel has made it possible to present this report*.

Least Squares Analysis of a 6x3 Factorial Arrangement for Rubber

Bushings with Missing Treatment Combinations. The first problem pre-
sented to me concerned the analysis of results of fatigue testing a large
number of rubber bushings on a laboratory test machine. This machine is

designed to simulate the actual field applications of the bushings. Adjust-
ments of the machine permit variations of (1) the radial load (in psi) on
the bushing, (2) the angle of torsional twist (plus or minus in degrees),
and (3) the cycling rate for the selected load and angle. During fatigue
testing the rubber deteriorates so that the load squeezed the bushing and
permits a carefully positioned microswitch to close and 6top the machine.
A counter mounted on the machine permits recording the torsional cycles

to failure at the time the switch closes.

Engineers charged with analysis of these data on cycles to failure were
disturbed or baffled by the tremendous spread or variability of the results.
Further, plotting of average results showed a non-linear response (Figures
1 and 2) which made prediction appear extremely hazardous [1] :":1. Table 1

indicates the variability for two groups of tests. Table 2 provides a general

summary of these results.

In approaching the analysis of these data, one found that no experi-
mental design had been imposed on the test sequence. Although it appeared

):In this regard the author wishes to mention Messrs. P. L. Goud,C. Banton,

C. D. Rose, F. Spencer, E. Kvet, R. Westerman, and Miss C. Cicillini.
Statements and opinions expressed in this paper, however, are those of the
author and do not express USATAC position or policy. The author also
wishes to express his appreciation for the comments of Professor H. .B.
Mann, Army Mathematics Research Center, Univ. of Wisconsin, made
after the presentation of the paper on 19 October 1966.

**..:,Numbers in brackets refer to references. These Figures I and 2 are
reproduced from Figures 6 and 8 of Reference 1.
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On. -- -a vecl. m ,en fa, it 2. 1- xt , &' IV y -r le j. h 1 Iree
showed little wear after 3. 000, 000 Cycles.

2

+ 15

_+ 22 1/2°

0
0 500 1000 1500 2000 2500

Radial Load, psi

Figure 1. Fatigue Life of Rubber Bushing Track Pns ,s a
Function of Radial Loading. at Different De~reej
of Torsional Twist (Figure 6 of [1]).
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Two Specimens Tested Showed Little Wear
*", UU UUU Lyc es.

-1

* I

I- I

1800 ' 1200 psi

"2250 pbi 1500 3si

7 V2 15 22 /2
Torsional Twist, + degrees

Figure 2. Fatigue Life of Rubber Bushing Track Pins as at
Function of Torsional Twist, at Differer:t Levels
of Hadial Loading. (Figure 8 of [I]).
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TABLE 1.
Cycles to Failure for Rubber Bushings Tested at Two Conditions

Test No. 20 Test No. 24

1 44,900 1 800,000

2 42,700 2 1,326,600

3 34,900 3 1,334,900

4 32,600 4 1,372,100

5 41,500 5 200,0004;

6 40,200 6 1,638,800

7 83,500 Load 1950 psi

8 35,000 Angle + 7. 5 degrees

Load 1500 psi

Angle + 22. 5 degrees

Cycling Rates for Both Groups - 255 cprn

Source: Table II of [I]

;Rejected later as an outlier.
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tI
TABLE 2. Layout of Rubber Bushing Test Conducted at USATAC,

Warren, Michigan, 1962

Radial Load Angle of Torsional Twist (Degrees)
(psi) + 7. 5 + 15.0 + 22.5

1200 n=l(no n 1 6 n 1  8
(no data) 12

C = 1052: C = 56.6

R = 423"'* R = 40

y= 30175 y= 1.7373
2 2

s =0.00505 s =0.01503

1500 n 21 =d0 n 2210 n 238
(nu data) 40=3 = 44.4

R- 127 R= 51

y 2 .4539 y 1.6284
2 2

s = 0.00922 s = 0.01643

1800 n 3 1 = 6 n 3 2  8 n3 3 =8

C = 2661 C = 188 C = 25.5

R = 2288 R =164 R =8.8

y 3.4066 y 2.2586 y 1.4035
2 2 2

s = 0.01906 s = 0.01771 s = 0.00222
1950 n = 5+ n =0 n 4 3 =0

4E12 4 2 (no data) (no data)
G = 1294

R= 1439

y = 3. 1006
2

s = 0.01361

2100 n 8 n =0 n =0528(no data) (no data)

C = 339
It = 317
y = 2. 5021

2
s =0.02778
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Table 2 continued

2250 n61 -8 n 62 6 n 63 =8

C =342 C= 76 C= 14.5

R= 490 R =55 R =4.4

y 2 .501 4  y= 1.8697 y 1.1582
2 2 2s =0. 02930 s = 0. 01296 a = 0.00201

C- = Average cycles to failure in cell x0l . Cycles recorded are
Torsional Cycles for the Bushing.

-3:,::::R Observed range for Cycles to failure in cell x 10

E= (log Cijk)/n.j, k 1, 2,.n..ij k- .1

:•:•:•S -- Z (Yijk " y) 2/(nij - )

k

+In Cell 4,1, one test result was rejected as an "outlier".

4
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that a factorial arrangement had been desired for the factors Load (L)
and Angle (A), such a program was not completed. Table 2 shows a 6x3
layuuL buuL aix ceiib are empty; either no railures were obtained or no tests
were conducted. Thus, a least squares analysis became necessary. Next,
thp qjestinor of hornogeneity of variance had to be considered. Clearly,
differences in dispersion for treatment combinations as shown by Table 1
should be removed. Without previous experience in this field, the writer
selected the log normal distribution as a plausible model for the within cell
results. Cells 3, 3 and 6, 3 were selected to take a first look at the results
of the log transformation. In Table 2 the respective ranges in original
scale were 8,800 and 4,400; the e2 shown for the transform are 0.00202
and 0.00201. Corresponding results for cells 3,1 and 6, 1 were 2,288,000
and 490, 000 for ranges and s2 of 0. 01906 and 0. 02930, respectively.
Somewhat encouraged by these results the log transformation was
accepted* (21

Plotting the transformed data further showed the usefulness of the
transformation. Figures 3 and 4 show the transformed results"*. It is

seen that the response is approximately linear for either factor for a
selected level of the other factor. Some interaction between the factors
Load and Angle was indicated by the non-parallelism of the straight lines
sketched in the figures.

The next step was selection of a specific regression model and writing
out of the X matrix. As a preliminary model, it was assumed that a cell
mean, yij, could be represented as:

22-
ij 0 oX 0 + P Li + P1 Li + .32 A. + P 2 2 . + p1 2 (LiA.) +.

with i = 2, ..... 6 and j = 1, 2, 3, but not over all i, j. The missing

cells reduced the data vector, 7, to dimensions 12x1 (the 12 values are
shown in Table 2). Small variations in the n,.. and variations in s2 values13

were ignored at this stage sothat the ;.. were assurried to have uniform

variance.

"Later the author became acquainted with some of the relevant literature

and concluded that the procedure adopted is reasonably robust against
certain alternative models [2].

.:1':'Figures 7 and 9 from Reference (1]
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S 5.0

4.0 1
0 500 1000 1500 2000 2500

Radial Load, psi

Figure 3. Logarithm of Torsional Fatigue Life as a Function of
Radial Load, at Different Degrees of Torsional Trwi•t
(Figure 7 of [ID).
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7.0

1800 psi

• . 1200 psi

_____________1500 i~

.-4 2250 psi
-45.0
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Torsional Twist, + degrees

Figure 4. Logrithai of Torsional Fatigue Life as a Farction of
Torsional Twist, at Different Levels of 1ttdLtl Loading.
(Figure 9 of Ci].
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A convenient coding, for Angle is seen to be -1, 0, +1 since the spac-
ing was uniform at intervals of +7. 5 degrees. This coding for A also
uses the orthowonal noIvnornromilq, fý,+fr th- nc ff ,- u, A.
Sinmilarly, a convenient coding for Load was found by taking 150 lbs as the
unit and centering on 1800 as zero. The coded values became -4, -Z, 0,
-I1, +Z, +3. With these values of coded A and L, our first X matrix
appears as in Table 3.

TABLE 3. X Matrix for Preliminary Model Fitted to Rubber
Bushing Data (Response = Average of Log Cycles
to Failure)

2X L L A A LA
o 2

1 0 0 -1 1 0

1 +1 1 -1 1 -1

1 +2 4 -1 1 -2

1 +3 9 -1 1 -3

1 -4 16 0 0 0

1 -2 4 0 0 0

1 0 0 0 0 0

1 +3 9 0 0 0

1 -4 16 +1 1 -4

1 -2 4 +1 1 -2

1 0 0 +1 1 0

1 +3 9 +1 1 +3

From Table 3, the A matrix X X is obtained as shown in Table 4.

f
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TABLE 4. Cross-Product Matrix A for Solution of Normal

Equations: AB =G*
f2

L L A Az AxL

12 0 72 U 8 -9

0 72 -54 -9 3 15

72 -54 804 15 43 -81

0 -9 15 8 0 3

8 3 43 0 8 -9

-9 15 -81 3 -9 43

From the solution of the normal equations AB G, which is given by
B CG, where C = A-1, the regression coefficients obtained are shown
in Table 7 under First Equation. The summary analysis of variance
appears in Table 5.

TABLE 5. Analysis of Variance for Fitting Preliminary
Model to Mean of Log of Cycles to Failure

Source of Variation Degrees of Sum of
Freedom Squares

Total 12 66.4389

Mean (correction term) 1 60. 9171

Reduction in Sum of Squares
for Regression 5 5. 3943

Remainder 6 0.1275

Within Cells (from Table 2) 77 0. 18268**

Extension of Table 5 (based upon fitting the Z model with design
matrix given in Table 8):

Add Reduction in S. S. 3 0. 07387

Remainder 3 0. 05363

T*In this compact notation, G = X Y where Y is the vector of means given
in Table 2 in six rows and three columns.

**The actual within cells sum of squares was 1. 096091; a. divisor of 6 has

been used to place the Remainder SS and Within Cells SS on a comparable

basis.
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The results presented above are incomplete or inadequate in three
respects. First, the regression coefficients are correlated; one would
like orthogonal estimates of the effects of Load and Angle and their
inieraction. Second, tne Kemaincler Mean Square, 0. 0ZIZ, obtained from
Table 5, when compared with the Within Cells Mean Square, 0.00237,
indicates a lack of fit for the regression equation used (F value - 8.9 with
6 and 77 degrees of freedom). The Within Cells Mean Square used here
may be an underestimate of the proper experimental error due to the lack
of randomization in this test program. Third, there is the homogeneity
of variance problem already noted in relation to Table 2.

In considering the first point, non-orthogonality of the estimates,
one possible approach might be to uee a "Missing Value" formula and fill
in the six empty cells. Without blocking applied in the experiment, the

standard formula for any experimental design could not be used to fill in
the missing treatment combinations. Rather naively at the time, I assumed
that plausible estimnates might be obtained by applying the Randomized
Complete Blocks formula for a missing datum to the rows and columns

of the two-way layout for the factors Load and Angle. By iterative applica-
tion of this formula, the six empty cells were filled. Then a second
regressior, equation was obtained. It was found, however, that predictions
from this recond equation were much worse than for the first equation.
For the same 12 observed points, the sum of squares of deviations was
0. 33025, about three times the remainder sum of squares of 0. 12750 shown
in Table 5 for the First Equation.

Why was this decrease in "goodness of fit" observed even though we
now had orthogonally estimated regression coefficients (given in Table 7
under the column headed Second Equation)? If there had been only one or
two missing treatment combinations, perhaps, the results would have been
satisfactory. The consequence of the application of the Randomized Com-
plete Blocks missing value formula to be Load-Angle two-way table was to
minimize the Load x Angle interaction. This interaction has 10 degrees
of freedom in this Load-Angle table but due to the six empty cells only four
degrees of freedom can be estimated. Filling in the empty cells by
minimizing these four degrees of freedom apparently had distorted the
response surface so that the goodness of fit achieved by the First Equation
was destroyed. This view of the problem is supported by a re-examination
of Figures J and 4, which indicate some interaction that may be largely the
Load linear by Angle linear component, and Table 7. In the latter, the
values for the bAL (linear by linear) regression coefficient are +0. 1038

and +0. 0278, respectively, for the equations being compared. This reduc-
tion, by a factor of four almost, in this component of interaction regression

coefficient appears to be due to the minimization of the overall interaction.
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These unsatisfactory results for the second equation posed a dilemma

Discussions with Professor Paul Dwyer*' brought out two suggestions from

him. He did remark that trying to supply one-third of the observations
by the missing value approach is "too much like trying to pull yourself
up by your own bootstraps". Essentially, his suggestions were to make

sub-analyses using subsets of the twelve observed points to form orthogonal

structures. The data points used for these analyses are shown in Table 6.

TABLE 6. Data Points Used for Orthogonal Sub-analyses of
Rubber Bushing Fatique Life Data

Angle of Torsional Twist

First Sub-analysis (8 points)

Load + 7.5 + 15.0 + 22.5

1200 0 x x

1500 0 x x

1800 x x

1950 0 0

2100 - 0 0

2250 - x x

Second Sub-analysis (6 points)

1200 0

1500 0

1800 x x x

1950 0 0

2100 0 0

2250 x x x

Code: 0 indicates missing values
- datum observed but not used
x datum used for analysis

Observed values appear in Table 2.

*.•Department of Mathematics and Statistical Research Laboratory, The

University of Michigan, Ann Arbor, Michigan.
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The results of these sub-analyses are presented in terms of regression

coefficients for the "Third Equation" and "Fourth Equation" in Table 7.*
A study ol fabie ( shows that these sub-analyses support the results for the
First Equation. Perhaps, one should be criticized at this point for not
presenting standard crrors of the regresbion coefficients. The regression
model of the First Equation gave such a good fit and signs of the coefficients
were proper so this model was accepted and a report written (1] . Further,
extrapolations attempted by the test engineer from these accelerated test
results and the regression model gave plausible results.

Personally, I was not yet satisfied and I continued to think about how
to improve the analysis. If the data had been complete, one could have
worked out the orthogonal polynomial values for the unequal spacing on
Radial Load [3] . Forming the Kronecker Product of the Contrast Matrices
for Radial Load and Angle of Torsional Twist would then have given an
18 x 18 contract matrix for a complete analysis in terms of single degrees
of freedom. From this view, it occurred to me, "Why not proceed in this
way to obtain the design mratrix for the 12 observed points?" Details are
omitted but the resulting matrix is given in Table 8. Here is it seen that
additional interaction terms have been added to the model over the First
Equation whose design matrix was given in Table 3. If we designate this
matrix in Table 8 as Z, then a comparison of zTz with xTx, given above
in Table 4, provides some basis for evaluating the fifth approach to the
analysis. The matrix zTz in terms of its first 6 rows and 6 columns is
given in Table 9, for making this comparison.

It appears that most of the off-diagonal elements shown in Table 9 have
been reduced in relative magnitude. Transformation of Tables 4 and 9 to
the correlation matrices shows explicitly that the dependence among
predictors has been reduced&:. What this means is that use of the Z matrix
will give regression coefficients that are less correlated than the coefficients
obtained in the first equation. The -'egression coefficients obtained by use
of Z appear in Table 7 under "Fifth Equation". Extension of Table 5 to
include the Z model shows an added reduction in sum of squares of 0.07387
with 3 degrees of freedonm leaving a new Remainder S. S. of 0.05363 with
3 degrees of freedom.

Setting aside temporarily the inadequacy of goodness of fit noted on
page 64 , we consider the homogeneity -f variance situation. Even though
much improved by the logarithmic transformation, it is still apparent in

*'Table X of Enclosure 23 (1]

**These correlation matrices have been omitted from this paper,
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TABLE 7. List of Regression Coefficients Obtained by

the Various Analyscs

First Second Third Fourth Fifth
Term Equation Equation Equation Equation Equation

b 2.2494 2.2364 1.9539 2.0997 2.5243

bL -0. 1759 -0. 1526 -0. 1231 -0. 1710 -0,2950

b A -0. 9395 -0.8768 -0.9442 -0. 8366 -1. 2321

b LL +0. 0025 -0. 0083 +0.0042 ... +0. 0294

bAA +0.0994 -0.0225 --- +0.0178 +0. 1272

b +0. 1038 +0.0278 +0, 0753 +0. 1100 +0. 2780
AL

linear by linear

b LAA --- +0.0109 --- -0. 0682

linear by quadratic

b --- +0.0105 --- -0. 0Z07 -0. 0391
LjLA.

auadratic x linear -0. 0120

bLLAA --- +0. 0071 ...... +0, 0078

quadratic x quadratic
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TABLE 8. Design Matrix Based on Forming Orthogonal Polynomials
For 1,od arnd Anal, - e h

Lin. Quad. Lin. Quad. LxL* LxQ QxL QxQ

Xo X! X11 X2 X22 XIX2 XIX22 X11X2 1122

Load Anglt, Interactions

1 0 -5. 667'":" -1 +1 0 0 5. 667 -5. 667

1 1 -3.608 -I +1 -1 +1 3. 608 -3.608

1 2 +Q. 451 -I +1 -2 +2 -0.451 +0.451

1 3 +6. 510 -1 +1 -3 +3 -6. 510 +6. 510

1 -4 +6.098 0 -2 0 +8 0 -. 12. 96

1 -2 -3.784 0 -2 0 +4 0 +7. 568

1 0 -5. 667 0 -2 0 0 0 +11. 334

1 +3 +6. 510 0 -2 0 -6 0 -13.020

S-4 +6. 098 +1 +1 -4 -4 6.098 +6. 098

1 -2 -3. 784 +1 +1 -2 -2 -3. 784 -3. 784

. 0 -5. 667 +1 +1 0 0 -5. 667 -5. 667

1 +3 +6. 510 +1 +1 -13 +3 +6. 510 +6. 510

LxL = linear by linear

LxQ = linear by quadratic

QxL = quadrati.c by linear

QxQ = qiadratic by quadratic

'-See refervi cc 3 for Colmr)putation of values in this column.
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TABLE 9. The Matrix Z TZ with Last Three Rows
and Columns Deleted

12.0 0 4.0 0 0 -9.0

0 72.0 22.24 -9.0 +9.0 +15.0

4.0 22.24 339.71 +5.47 -5.47 -14.12

0 -9.0 +5.47 +8.0 0 +3.0

0 +9.0 -5.47 0 +24.0 -9.0

-9.0 +15.0 -14.12 +3.0 -9.0 43.0
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'Fable 2 that the yij differ considerably in precision. Therefore, a.

weighted least squares analysis is indicated. Two methods of weighting
were used. One method used the individual s.. shown in Table 2, i.e.1J

0.01906, 0.01361, etc. , with w,. = n../s?2. . The other method pooled sums

of squares for the cells where the s2. were similar in magnitude, and
13

obtained a set of three values of s2 to be used with the n.. of Table 2 to
2 p *J

obtain the set of w ij = nij/Sp(ij)

Calculations using these two sets of weights just described were
repeated with the Z model already given above. The regression coeffi-
cients obtained are presented in Table 7A (Sixth Equation results are for
use of the individual s2. Seventh Equation results refers to the pooling

ij 2
method to obtain only three different values of s used in forming the
weights). It is seen that the regression coefficignts obtained by the two
different weighted least squares analyses are quite similar; differences
observed are less than or of the order of the standard errors of the differ-
ences. Further comparison of the regression coefficients with those
obtained for the Fifth Equation, given in Table 7, reveals some differences
that may be judged statistically significant. In terms of practical applica-
tion for making predictions of bushing fatigue life there may be little to
choose between these three equations. In view ef the somewhat more
reliable weights ised to obtain the Seventh Equation results, a statistical
choice would lead to this equation, other things being equal.

The results for the weighted regression analyses also permit comment
on the goodness of fit issue, which was deferred above. The lower section
of Table 7A displays the Residual Mean Squares for the Fifth, Sixth and
Seventh Equations. With only three degrees of freedom available for esti-

mating these quantities, no sharp judgments can be made. Qualitatively,
* the weighted analysis has reduced the residual variation by more than a

factor of two, and the goodness of fit has clearly been improved. Yet the
-ratio of Residual to Within Cells is still large (P< 0.05). If one does regard
the Within Cells as ar underestimate of the experimental error as noted

A above, then one may conclude that a satisfactory fit has been obtained with

S 2 .2
'::The s inidicates the value of s used for each cell after the pooling

p~ij)
operation. The author is indebted to Ralph A. King for this suggestion
for obtaining more reliable weights. The sample weights obtained by the
two methods appear to be the bust surrogates available for the v2, which
are unknown. 1J
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TABLE 7A. Regression Coefficients Obtained by Weighted

Least Squares Analysis Using Model Z and
Residual Mean Squares for Three Equations

Regression Coefficient Sixth Equ&Lion Stverxth Equatlon

b +2. 4982 +2.49800

bL -0. 2830 -0. 2805

bA -1.2093 -1.2002

bLL +0.0282 +0. 0272

bAA +0.1217 +0.1140

bAL +0,2596 +0.2552

bLAA -0. 0618 -0. 0601

bLLA -0. 0331 -0. 0328

bLLAA +0.0052 +0.0056

Residual Mean Squares

Source Degrees of Freedom Mean Square

Fifth Equation 3 0.01787

Sixth Equation 3 0. 00693

Seventh Equation 3 0. 00740

Within Cells 77 0. 00237
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the weighted analysis. This concludes the story on the first rubber
bushing analysis.

Dubign and Analysis of a •3x'2.x Experinent on Rubber Dushinjs.
After completion of the earlier work described above, an opportunity arose
to design an experimental program for learning more about rubber bushings.
At first, a rather ambitious program was considered which would have
involved "experiments with mixtures" (Refer Scheffe (4] and [5 land more
recent papers in Technometrics). Suitable bushings prepared from mix-
tures of natural and synthetic rubbers could not be obtained at the time.
Other parameters to be varied in the experiment may be described as
Process variables and Test variables. It was desired to retain two levels
each of Radial Load and of Angle of Torsional Twist to provide a check on
the results for these factors as reported above. These were the Test
variables. As Process variables, three levels each of Cure Temperature
and Cure Time for production of the bushings were to be tested. Thus,
the factorial arrangement became a 3x3x2x2 which requires 36 tests for
a single replicate. Two replicates would have required 72 bushings to be
tested which I regarded as too large an experiment. After some thought I
recommended a single replicate to be carried out in a completely ran-
domized design. At this point the problems began. Complete randomiza-
tion for the production and testing of the 36 rubber bushings was regarded

*The author believes that some comment on rows 2 and 3 versus row 1
of the lower part of Table 7A may be helpful. Many texts describe
weighted regression analysis but none with which I am familiar include
a discussion on comparison with the unweighted analysis. With the wij
values defined as explained above, the author was confronted with residual
sums of squares for the Sixth and Seventh Equations that apparently pro-
vided no basis for comparison with the figure given in Table 5 as 0. 05363
with 3 degrees of freedom. Understanding came finally in appreciating
the difference in metric. While all three sums of squares represent
Euclidean distances in n-space, the scale was different for each. The
so-called "unweighted" least squares analysis in reality has a sum of
weights equal to n, 12 in this problem. Hence, it was necessary to re-scale
the residual sums of squares for the weighted analyses by the factor
n/1; Ewi. ur 12/;Zwij. These open problems, the choice of scale, the
estimation of weights, and more generally, the broader problem of trans-
formation of response to obtain an optimal analysis appear to merit
continuing attention.
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as impractical, too costly, and too time consuming. My arguments for
complete randomization did not convince the engineers that it Ahrmilti hp

adopted. Then we started to examine possible compromises. Complete
randomization for Cure Time, Radial Load and Angle of Torsional Twist
could be carried out. Cure Temperature involved bringing the cure press
(heated Platten Press) to the desired temperature and holding it there
for the ncessary Cure Time. The engineers wanted to reduce the number

of times for a press cycle to a minimum. Now, the Cure Temperature
could have been made a Main Plot treatment in a Split-Plot design with

the 3x2x2 arrangement utilizing 12 split-plots. Replication on Cure Tem-
perature would then have forced the total size of the experiment back to

at least 72 bushings.

At this stage it appeared to me that some type of replication for Cure
Temperature must be included in the test program. A study of Kemp-

thorne's book provided a possible solution (Reference 6). The 12 split-
plot treatments were divided into two main plots of six split-plots each by
confounding the Load by Angle (linear x linear) interaction with the main
plots*. This contruction of the design required only six press cycles with

six bushings cured in each run, two at each of the three Cure Times.

Analysis of the resulting data when this test program had been com-
pleted was, of course, considerably more complicated than that outlined

by Kempthorne since we imposed an added factor at three levels (refer
pp. 351-355 of (6) ). Details are given in Reference 7.

Here, I shall only try to describe some of the major features of the
analysis and interpretation. The actual layout of the program for the 36
experimental units is given in Table 10. It is to be noted that I insisted
on equal spacings for the three levels factors- Cure Temperature at 306,
315 and 324 degrees F. and Cure Time at 15, 30 and 45 minutes. Such

equal spacings make the analysis much easier but should not be required
for all test programs.

Our first-approach to the analysis was to write odt a Design Matrix
that included the General Mean, Blocks, all main effects and all two-factor

interactions. Full column rank was maintained for this matrix by the usual

devices, orthogonal polynomials for the contrasts and subtraction of the

ý':See Table 18. 5, p. 35C, [6] . The three Cure Temperatures were

randomly assigned to the Replicates shown in the table and the main
plots in each block for Cure Temperature became the sets shown as
"Block 1" and "Block 2" by Kempthorne.
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TABLE 10. STRUCTURE AND RANDOMIZATION LAYOUT FOR
THE SPLIT-PLOT DESIGN WITH CONFOUNDING.
Nui1nutzro in p-,r•.ILhýe•, reier LU rcplicdLes and biocks

in Kempthorne. [6]

Block 1 Block 2

'empeprature 306 (2-2) Temperature 315 (3-2)

t L A t L A

1 0 1 13 1 1 1 27
1 1 0 14 0 1 1 28
2 0 0 18 0 0 0 25
2 1 1 17 2 0 1 29
0 1 1 15 2 1 0 26
0 0 0 16 1 0 0 30

Temperature 315 (3-1) Temperature 324 (1-1)

t L A t L A

0 0 1 3 2 0 1 33
2 1 1 5 0 0 0 35
I 1 0 1 0 1 1 34
0 1 0 2 2 1 0 31
2 0 0 4 1 1 0 36
1 0 1 6 1 0 1 32

Temperature 324 (1-2) Temperature 306 (2-1)

t L A t L A

2 1 1 10 1 0 0 19
1 0 0 12 1 1 1 20
2 0 0 7 0 1 0 23
0 1 0 9 0 0 1 24
0 0 1 8 2 1 0 22
I 1 1 11 2 0 1 21

Each group of six rubber bushing receives the cure temperature indicated.
Two groups at the same temperature form the complete set of 12 3 x 2 x 2
for the split-plot treatments. For t, L, A the symbols designate,
respectively, 0 = 15 min. , 1 = 30 min. , 2 = 45 mrin.; 0 = 180e-, I = 220#;
0 = + 7.5 degrees, I = + 9 degrees. Note t = Cure Time, L = Radial Load,
and A = Angle of Torsional Twist. The 4th column in each grouping shows
the randomization order for taking the observations over the entire
experiment.
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column for block 2 from the column for block 1. The resulting matrix
was 36 x 21. Least Squares was then applied to estimate these 21 effects
or their regression coefficients. Again, the transformation Y. = log C.

J J
(where C. is cycles to Failure) was employed. Original data and
logarithrns to base 10 appear in Table 11. The regression coefficients
obtained are listed in Table 12.

An interpretation of these results is given by quoting three paragraphs
from reference 7:

"From the analysis of variance we may deduce that the regression

equation comprising blocks, main effects and two-factor interactions
provides a good fit to the data. A little over 97% of the total varia-
tion about the mean is associated with these effects leaving only about
3% of this total as residual variation.

"From the inverse matrix (obtained in the course of the regres-

sion computations) it is found that all of the effects listed in Table 3
are orthogonal (i. e. , independent) except Blocks and the Load x
Angle interaction. These two effects have a small correlation and
are independent of the other 19 effects listed. Further, the diagonal
elements of the inverse matrix, cii, are the elements needed for
obtaining the standard errors of the regression coefficients.
Specifically, the standard errors are given by (cii)"/se, where s

e
is the standard deviation of the residuals, given as 0. 0908. These
standard errors range from about 0.012 to 0.023. Thus, it is
found that Radial Load, Angle of Torsional Twist and Cure Time
(Linear) which show the largest effects in relation to their sampling
errors, should be regarded as real or significant effects. On the
other hand, the Cure Temperature (Linear) coefficient is slightly'
smaller than twice its standard error; thus, it may be regarded as
a significant effect. Interestingly enough, two of the interaction
coefficients are fairly large in relation to their sampling errors.
These are Temperature x Time (Linear) and Time (Linear) x Angle.

"From the signs of the regression coefficients, one may obtain
the direction of the effect. Cure Temperature has a positive
coefficient so we conclude that a higher temperature, i. e, , 324
degrees F., is to be preferred. The quadratic coefficient for
temperature is negative which is to be expected. Turning to Cure
Time, the coefficient is negative so that a shorter cure time is best,

i.e. , 15 minutes. Here the quadratic coefficient is positive, but
not reliably estimated. The Load and the Angle coefficients are both
negative as expected; thus, increasing the level of either shortens
the fatigue life.
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TABLE 11. FATIGUE LIFE OF RUBBER BUSHINGS. Original

Data-Cycles to Failure and Logarithms of these Values.

Bushing Bushing

No. Cycles Logarithm No. Cycles Logarithm

1 114,300 5. 058 01'14", 19 279,900 5.4470

2 173,300 5.2388 20 36,000 4.5563

3 134,100 5. 1274 21 72,600 4.8669

4 246,900 5. 3925 22 109,700 5.0402

5 36,600 4. 5635 23 154,500 5.1889

6 119,200 5.0763 24 123,300 5.0910

7 194,400 5.2887 25 459,100 5.6619

8 127, 000 5.1038 26 59,500 4.7745

9 231, 100 5. 3638 27 42,000 4.6232

10 32,000 4.505L 28 67,800 4.8312

11 27,700 4.4425 29 79,000 4.8976

12 279,200 5.4459 30 257,100 5.4101

13 60,200 4.7796 31 77,500 4.8893

14 98,800 4.9948 32 132,000 5. 1206

15 41, 300 4.6160 33 88,700 4.9479

16 416,000 5.6191 34 63,600 4.8035

17 34,700 4.5403 35 722,200 5.8587

18 254,600 5.4059 36 165,700 5.2193

':'Treatments applied to each of these bushings were shown in Table 10 -

refer corresponding numbers, column 4 of each main plot set.

**Tabulated here with only four decimals in the mantissac. The computer

obtained natural logarithms which were converted to common logarithms
for ease of interpretation.
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TABLE 12. REGRESSION COEFFICIENTS OBTAINED FROM
i LEAST± S•Ui- •ESr ANALYSIS z OF LOt..z i.K± 1Mb U •'

CYCLES TO FAILURE FOR RUBBER BUSHINGS

Coefficient* Name of Effect

1 5. 049560 General MIan

2 0. 019315 Blocks

3 0. 035382 Cure Temperature - Linear

4 -0. 002519 - Quadratic

5 -0. 141561 Cure Time - Linear

6 0. 017546 - Quadratic
7 -0. 202377 Radial Load - Linear

8 -0. 244741 Angle of Torsional Twist

9 -0. 051940 Temp. (Linear) x time (Linear)

10 -0.010474 Temp. (Linear) x time (Quad)

11 0. 006171 Temp. (Quad) x time (Linear)

12 0.005603 Temp. (Quad) x time (Quad)
13 -0.011462 Temp. (Linear) x Load

14 0.002001 Temp. (Quad) x Load

15 -0.002537 time (Linear) x Load

16 -0. 001801 time (Quad) x Load

17 0.004561 Temp (Linear) x Angle

18 -0.021679 Temp. (Quad) x Angle

19 0. 036779 time (Linear) x Angle

20 0.001657 time (Quad) x Angle

21 0.008773 Load x Angle

':'It is to be noted that the magnitude of these coefficients depends on the
scale of the effect used in fitting the regression. Thus, Blocks were
coded as -I and +1; Temperature was coded as one unit = 9 degrees F.
time was coded as one unit = 15 minutes; one unit of Radial Load = Z0(20)
and one unit of Angle of Torsional Twist 0. 75 degrees.
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Further effort in the analysis of these data was devoted to: (1) Estima-

tion of the main plot experimental error for Cure Temperature, and (2)
estimation of the split-plot experimental error by various methods. It is
true that the regression residual sum of squares 0. 123566 with 15 degrees
of freedom giving a mean square of 0. 008238 is an estimator of experi-
mental variation under appropriate assumptions but it is still a mixture of
the main plot and split-plot components just mentioned. Hence, the
sentences just quoted may not be valid statements for judging the Cure
Temperature effects.

If blocks are ignored, it is possible to estimate each of the 35 individual
degree of freedom effects because, of the balanced structure for the factorial
arrangement. Actually somewhat more is ignored because of the structure
of the main plots for Cure Temperature; some of the higher order inter-
actions for Cure Temperature are confounded with blocks. To obtain the
sum of squares for each of these 35 effects the full contrast matrix was
prepared on the computer by forming the Kronecker or Direct Product of
the individual contrast matrices for Temperature, Time, Load and Angle
(8] [9] . Our next step was to obtain some estimates of experimental error
by applying several techniques that have been suggested in the literature in
recent year410] I [II] , [12]. Among those used were DanielIs "Half
Normal Plot" and the "Gamnma Plots" and ".smallest ordered contrasts" by
Wilk, et al.

While the details about the applicatio• o1' these techniques would be
informative and interesting, only the results arc shown in Table 13. Thib
table shows the source for the estimate, degrees of freedom (actual or
approximate), sz ane s values, and how or where obtained by a reference.
Comparison values from the earlier analysis also are given. An-ong the
problems encountered in making these analyses were the rather large values
of the sums of squares associated with certain 3 and 4 factor interactions.
No satisfactory explanation has been found for such results':.

Returning to the problem of improving the assessment of the Cure
Temperature effects, the analysis of variance shown in Table 14 was
prepared.

From tliis Table 14 it could be judged that the levels of Cure Tempera-

ture used in this experiment did not affect the Fatigue Life of the Rubber
Bushings. The presence of the confounding with Blocks already

'*It is now clear to the author that the complete design matrix should have
been constructed in order that the matrix product, xTx (39 x 39) could have
been examined for the nature and dcgzue of confounding present.
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TABLE 13. Summary of Estimates of Experimental Error

Source d.f. 8 a Rpference

Regression Residuals 15 0. 008238 . 0908 (7)(appears too large)

Three and Four Factor
Interactions 13 0. 0066Z8 .0812 (7)

Half Normal Plot 30*' 0. 0067 .082 (10)

Gamma Plot 31*,, 0. 0071 .084 (11)

(conservative value eeterinin-cd)

Smallest Ordered
Contrasts 24 0.004736 .0688 (12)

Average of 24 Smallest
Ordered Contrasts 24 0. 002879 . 0536 (7)

(optimistic, appears too small)

Comparison Values

Regression Residuals:::::: 6 0. 1275 . 3571 (1)

Within Cells":"-:: 77 0.0142 0. 1192 (I)

.;-Approxii "-T.--

!:-:tRefer Table 5 of this paper. Multiplied up by 6 for conmparison with

the data above.
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TABLE 14. Analysis of Variance for Studying the Cure
Temperature Effect

Source of Variation d. f. S.S. Mean Square

Blocks I 0.012272 .012272

Temperature (Linear) 1 0. 030044 . 030044

(Quad.) 1 0.000457 .000457

Error (from Temperature by
Blocks Interaction) 2 0. 037401 . 018700

Other Effects 17 4.261991 xxxx

(by subtraction from regression analysis)

Remainder 13 0. 086165 .006628

(3 and 4 factor interactions)

FIGURE 5. Cure Temperature Effects in Blocks I and 2.
Rubber Bushing Fatigue Life Experiment-*

3. •0

x

2.0

0
- - - - -- -- - Block I

- -. Block 2
1. 0
0. 9

306 315 324

Cure Temperature (degrees F.)

:ipoints plotted are anti-logs of average logarithms of cycles to failure.
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mentioned which enters into this error and the small degrees of freedom
raise doubts about such a conclusion. The Cure Temperature results by

Blocks are shown iii Figure 5. This writer's present opinion is that

further experimentation is needed with adequate replication of the Cure

Tvenpcrature levels and with wider spread, perhaps, 3u0 to j35 degrees 1".

Evaluation of Experimental Types of Track Pads. Attention is directed
to another component of the track, the track pad of the Personnel Carrier.

We were asked to design a test program for evaluating 14 types of experi-
mental composition pads. Two types of production pads were available as

controls. Hence, 16 treatments were to be evaluated. Only one Ml 13

vehicle would be available for carrying out an accelerated road test program.
A further restriction was that only seven pads of each of the experimental

types could be made available for this program. After several conferences
with the interested engineers, the following resume was recorded (quoted

from reference [31 ):

"Two objective responses could be measured for each individual
track pad:

(1) Decrease in thickness (due to wear) of the pad in respect
to its height above the grouser shoe to which it is bolted
(later referred to as "height loss"), and

(2) Weight loss of the individual pad from its initial weight.

Both of these responses had been measured in previous Army tests
with principal dependence placed on the weight loss. Other responses
could be considered such as volume loss of the pad from its initial
volume and subjective 'scores' or 'ratings' based on chunking and

cracking or pieces of material broken off of the pad during use.

"IA recent test conducted by the Food Machinery Corporation

(FMC), San Jose, California, had utilized the height loss measure-
ment for evaluating the results. Obtaining these'measurements had
been facilitated by the construction of a special caliper. The level
surface of the grouser lug formed the reference for this caliper

which was really a type of 'depth gauge'. CRDL constructed a
similar gauge for this test program.

"In considering these responses it was pointed out that it should
be useful to examine the response data in relation to physical and
chemical properties of the pad material compositions for the various
type of pads. Examples might be tensile streng-.n, hardness arid
laboratory abrasion resistance.

81



"It was expected that total test driving of about 500 miles would

•,CL CC.= vi•, i ireIcbe, if any existed, among tne experi-
mental type pads. Test driving would be terminated or test pads
would be replaced if wear had pongreR-ped to the point that the metal

grousers would come into contact with the road surface. Replace-
ment of pads, however, could affect wear of the pads on adjacent
shoes. Hence, it was recommended that replacement pads be pro-
duction type pads whose height above grouser had been gound down
or worn to that of the pads on adjacent shoes. Height measurements
of pads were to be made: 1) After initial run-in. 2) Each 100 miles
thereafter, and 3) At termination. It was suggested also that initial
and final weights for individual pads be obtained for all pad types.

The real problem encountered in setting up the test program was
agreement on the selection of an "experimental unit". Based on their
"experience", ATAC engineers tended to tavor an experimental unit orplot
comprising a cluster of 10 consecutive pads of the same type. The basis
for this opinion was that averaging of results from 10 pads would provide a
fairly stable average. The left and right sides of the vehicle seemed to form

natural blocks for the experimental design. Obviously, with only seven pads
on hand for the experimental types, this cluster of 10 could not be obtained,
Putting all seven in a cluster would not permit replication.

At this point, it was found that data from previous tests conducted by
the Army at several sites was on hand. These data were obtained and
analyzed from the "uniformity trial" point of view*'. Cluster sizes of

2, 3, 4, 6, 8, 12, 13, and 18 were studied in these analyses with the
smaller clusters formed from the larger clusters. It was found that size
of cluster did not affect conclusions for any of the previous tests. A
peculiar feature of the Ml 13 vehicle added interest to the problem of deter-
mining the cluster size; one side of the vehicle has 64 track shoes and the

other side has 63.

With the uniformity analyses information available, a cluster size of 4
was established on one side so that 16 x 4 = 64 and on the other side a cluster

size of 3 was used with 16 x 3 = 48. The remaining 15 pads on this side were
filled in with standard pads and limited supplies of a few other experimental
pads. Hence, the experimental design may be described as a Randomized

:'Unfortunately, the 14 experimental types of pads were weighed in groups

before installation so that data from this experiment do not provide suffi-
cient information for correlation of height loss and weight loss.

*'*":A more sophisticated approach would have calculated auto-correlations

of weight losses for adjacent pads and padE, separated by 1, 2, 3 or more up
to K-2 pads, where K was the number used in a cluster,
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Complete Block for 16 treatments in two replicates with each track of the

vehicle forming a block. While normal driving provides a natural randomi-
zation on thp wpnr rf--------- € . "- u~d jar tte

treatments on each track.

No difficulties were experienced in carrying out the 500 mile accelerated

test program. There were some dcubts in my mind about the scheduled 500

miles being sufficient to show up differences among the treatments since

other Army tests had comprised total mileages of 1000, 1500, or 2000 miles.

The program could not be extended for this test, however, because the

vehicle had to be returned to another agency.

With respect to analysis, we followed the suggestions of George Box

(1950) on analysis of growth and wear curves [14] . Differences between

successive measurements of pad height above grouser were formed, e. g.

Hi - Hil for i = I through 5. These differences appeared to be reasonably
distributed so the analysis of variance was applied directly to these differ-

ences without transformation. In order to help understand the analysis of

variance (Table 15), Figure 6 explains the structural arrangement of these

differences.

It will be noted that Table 15 shows only 14 degrees of freedom for

treatments (Types of Pads), this happened because only one Control Type

was available when the driving program was started. This one control Type

was duplicated on each track. To simplify the computer programming, only

one cluster in each block was used for the Control Type of Pad. A list of

means for the Pad Types in each block and overall is given in Table 16.

Now what about interpretation? Statistically, I was quite pleased with

these results. We used Multiple Comparisons Procedures to groap the

experimental pad types into significantly different groups [191 . Our next

step was to try to relate the values of these means to other available physical

and chemical data on the experimental Types of Pads. Unfortunately, no

significant regressions could be obtained. Hence, it is my personal opinion

that there is still room for a lot of research on military track pads in order

that we can find the determinants of lorger life for this element of the vehicle

track.

Reliability Analysis forTrack Components, As a final example in this

paper I shall present briefly some attempts at reliability evaluation.

Recently, the Army has conducted some "road Testing" of a new track

design for the tank. This new design comprised a track made up with track

shoes whose grouser shape was formed by replaceable pads. Road testing

was conducted at three sites using three vehicles at one site and two each

at the other sites, or a total of seven vehicles. Total distance driven
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FIGURE 6. Structural Arrangement of Differences for Analysis
of Height Loss of Track Pads

1. Block = Side of Vehicle

2. Treatments (16) randomized over plots in each block,

3. Plot = Cluster of 3 or 4 consecutive pads (3 on left side;
4 on right side).

4. Split-Plot = Unit of travel (100 miles) (labeled as Period
in Analysis of Variance).

5. Individual Pad = Subsampling unit within the split-plot.

6. Height of Pad recorded at 0, 100, 200, 300, 40-0, 500 miles.

7. Differences taken for each pad for each increment of wear
(100 miles) giving a total of 7 x 16 x 5 = 560 differences.
Difference = Height Loss.
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"TABLE 15. Analysis ot Variance of Track Pad Test Results: 15 Pad
Types M, ýi:oted on Both Tracks of M.I 13 Personnel Carrier
wilth T-T--in,it~ T~c hAýo,,,4 f~-- 7 13-~~-l- cf.. Eac Tpc

5 Periods of 100 Miles Each_:l,
Sourcc of Dcgrccs of Sun- of Mean F
Variation Freedom Squares*'* Square Ratios

Uncorrected Total 525 299566 --

Correction Term for
Overall Mean 1 209121 209121 -

Sides of Vehicle 1 392 392
Types of Pads 14 50696 3621 ~91

Error (a) 14 555 39. 6

Periods 4 7655 1914 -2 3
Types x Periods 56 7681 137 - 1.7

Periods x Sides 4 250 62
Types x Periods x Sides 56 4675 83

Error (b) *0 * 60 4925 82. 1

Pads Within Types

Left Side 30 2406 80

Right Side 45 2203 49
Pads Within Types x Periods

Left Side 120 9588 80

Right Side 180 4344 24

':IVariable. analyzed is Height Loss for a single Period of each individual
pad within a Type, i.e, , 7 pads for each Type x 15 Types x 5 Periods
gives 525 measurements of Height Loss. Units are the same as in
Table 16, but squared here.

**':Addition may not check in this column because of rounding to whole
numbers in sums of squares for each source of variation.

S''•Error (b) is sum of two preceding sources which appear to be homogeneous.
* •**F ratios are computed using Error (a) for Sides and Types, and Error (b)

for Periods and Types x Periods. This procedure conforms to the split-
plot structure of the experimental plan with Periods considered as the
split-plot treatments.
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TABLE 16. Average Height Losses of Track Pad Types for 500 Mile
Test Prooram* FRa~ed nni I PaAA nn TPft. Riaeip ;rri 4 Pqrlc nn

Right Side. Averages are in Thousandths of an Inch:
14. 63 = .01463'

Type No. CRDLCode Left Side Right Side Overall Rank'*'

1 S131CZF2 16.33 13.35 14.63 6

2 Z138 17.67 17.75 17.71 11

3 Z138C 13.87 13.60 13.71 3

4 Z138CIF 14.60 16.95 15.94 8

5 Z138CFI 14.53 11.00 12.51 2

6 Z138F2 16.07 12.55 t4.06 4

7 ZIZ2F 30. 33 28. 10 29.06 17

8 Z140 20. 13 18. 35 19.11 12

9 S131C2F2Z 52. 53 46.40 49.03 19

10 Z1 38CZ 15.87 14.05 14.83 7

II ZI38C3DF3 16.93 16.80 16.86 10

12 ZI16CF2 35.87 33.25 34.37 18

13 SI31C2F2BD 16.73 15.65 16.11 9

14 Z128CF 12.93 9. 35 10.89 1

15 Comm'l SBR 19.93 21.00 20.54 14

16 A-0 13. 60 (2):: 15. 20 (2),:,:, 14.40 5

17 C-0 21.80 (4) 17.90 (2) 20. 50 13

18 C-10 25. 12 (5) - 25.12 16

15L Comm'l SBR*'b* 20.71 (7) - 20.71 15

'Averages are calculated on a per Period basis. Multiplication by 5
gives Average Total Height Loss Standard deviation of a Type Average
[Error (a)/C35)] liZ = (39. 6/35)1/2 1. 063 units (refer Table 15).

*:*'Rank is in order from lowest to highest Height Loss.

**:"*Numbers of Pads averaged in last four rows.

):.o;":..ý(These added seven pads for Comm'l SBR were omitted from Type 15
in the variance analysis to simplify the progranmming and weighting of
data problems. Comml SBR is designated as the principal control,
Type C-10 is considered a secondary, control.
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TABL 17, Order Statistics for Pad Set Miles with Some
Summary Statistics

urcer
Line No. Statistic No. Miles Completed Summary Statistics

1 389 First three values not counted
2 904
3 939
4 1 1667 M , smallest value
5 2 1994
6 3 2096
7 4 2250 Q,, first quartile
8 5 2250
9 6 2300

10 7 2338
11 8 2430 Median
12 9 2496
13 10 2570
14 1I 2628
15 12 2677 Q3' third quartile
16 13 2706
17 14 2750
18 n =15 2813 MIS, largest value

Total 35,965 Mean about 2400 miles

TABLE 18. Reliability Estimation for Pad Sets Under the
Test Conditions of the Program

Lower Confidence
Estimate for Limit

m = 2000 miles = 0. 90)
o

A. Binomial 0. 933 0.764

B. Johns and Lieberman 0.914 0.811
M 0

C. Three parameter 0.955 0.881
approximation

S= 1667
0
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exceeded 35, 000 miles. In covering this distance, complete pad sets were

repiaced wflexi wurli UUL, dLU OU111t: 11luXtVLuudiL Ld.I.2ir, b11U~ b WrLr I-CPLCLC~U

although no complete track set was. replaced or judged completely worn out.

After much thought about the problem, it appeared to us that a

reliability statement might be made about the pad sets and for the first
track shoe replacement on each vehicle. Table 17 shows the order statistics

data or the 18 pad sets used (15] . Three short mileages were omitted

from our analysis for obvious reasons and one value of 1994 miles was
counted as a "success" in attaining 2,000 miles. It is to be noted that our
reliability estimates apply to the conditions of the road test and not to Army
use in general. In Table 18 the results are shown for three approaches to
the problem [151 *". Johns and Lieberman refer to their recent
Technometrics paper (161 . The binomial result is for 14/15 = 0. 933 and
use of a binomial table [17] . The third result is a crude approximation
that I obtained from the Johns and Lieberman approach.

Information about the first track shoe replacements is given in Table 19
(151 -''*. Again, an observation has been omitted in the analysis.

TABLE 19. Mileage at Replacement of First Track Shoe During

Road-Testing of New Track Design of Seven Vehicles

Vehicle Replacement Number of
Numbe r Mileage Shoes Replaced

1 9 04: , 30

2 2745 1

3 2992 2

1 3000 4

4 3315 1

5 3686 2

6 3925 1

7 4894 1

Median = 3315; Average 3508

'*These Tables 17 and 18 are based on Tables 4. 1 and 4. 3 of [15]

**'This Table 19 is derived from Table 6.2 of [15] .

,*"*,Datum not used because entire track w'as thrown; damaged shoes were
replaced.
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Table 19 shows the mileages arranged as order statistics; vehicle

numbers are arbitrary designations. From the lowest value, 2745 miles,
and the sample size, n = i, we may estimate with bUU/0 confidence that 901/o
of vehicles road-tested under similar accelerated conditions will have their
first track shoe replacements after 2745 milcs. This result is a non-
parametric tolerance limit [18] . If a higher confidence statement is
desired, then the tolerance proportion or reliability stated must be lowered.
For 90% confidence, the figure becomes 72% first track shoe replacements
after 2745 miles, which is a one-sided binomial limit [171 . One would
like to apply the Johns and Lieberman technique to these track shoe date
but the smallest sample size for which they have worked out their tables
is n = 10 [16]
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A STATISTICAL ANALYSIS OF PROVISIONING
PROCESSES ON FOUR. ARMY MISSILE 3YSTEMS

Robert G. Provost
U. S. Army Missile Conmmand, AMSMI-Wk

Redstone Arsenal, Alauamra

[The author presented a series of slidles at the conference. Thf:se
slides, with the information about each, are reproduced ir. this
article. 1

SLIDE I - Title slide

2 - Schemnatic of PDS routes

3 - Station ident

4 - Matrix

5 - Route ident

6 - Bottom of PDS

7 - Blow-up of matrix - I c eli and title blocks

8 - Figurce of head!

9 - Tukey - Dixon - Snedecor

10 - Matrix w/avg station lengths

11 - 400 PDS sample

12 - Axe head cutting tirme in half
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stage to the production stage, changes will occur as a result of value
engineering applications, changes in technology, improved materials and
hardware items, preproduction engineering, and the discovery of
inadvertent errors. These changes are incorporated through the use of
and Engineering Order (an EO). In one stage of the EO, a Provisioning
List (PL) is generated which subsequently ends up in our Supply and
Maintenance Directorate as v. PDS (Provisioning Data Sheet). A Pro-
visioning List contains all the parts needed to support the change, whereas
a PDS is a computer-produced sheet for each part listed on the PL. It
is used as a worksheet to identify that part within the Federal Cataloging
System.

Due to the diffcrrent types and classes of parts, and to the priority
r(quired, a PDS will flow throiigh this portion 'f the S&M Directorate along
different routes. Also due to the lack of different kinds of information, a
PDS will take still other routes.

Current regulations provided a 90-day time limit to process a PDS
through the S&M Directoratte, PDS's which exceeded this time limit were
considered delinquent.

Since a PDS repres( its a single line item in a PL and a PL could
contain from one to 1000 or nmore line items, any PDS which exceeded the
time limit caused the entire PL to become delinquent. Management was
concerned about these delinquencies and wanted to know, since each PDS
flowed through various routes and stations, what the average length of each
station and route actually was, and could the 90-day time limit be reduced.
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determination of the various routes. This slide i3 a schematic of these
routes. Six basic stations were identified: station number I through
station number 6. Each station performs one or more functions during
the flow cycle of the PDS. These are identified by the alpha characters
after each station number. For example, Station 4 has but a single func-
tion whereas Station 2E indicates that this is the fifth function performed
by that station. By counting all possible combinations of routes in this
schematic, one can easily determine that there are fifteen different routes
for an ADP initiation, and the same number of routes for a local initia-
tion. This is true for a single type of a PDS, but due to priorities, there
are three types of PDS's to consider. These are colored lor easy
identification: a white PDS for routine or low priority items, a yellow
PDS for high priority items, and a green PDS for emergency items.
Adding these various types of PDS's into the schenmatic, it maximinki of
forty-five different roates is now possible for each initiation. To compli-
cate matters still further, a green PDS, used for emergencies, is also
used as a delinquency flag. Should any PDS remain in this portion of the
processing cycle beyond a specified perio-d of time, a delinquent green
PDS is initiated locally. This is rushed through the system until it reaches
that station in which the original PDS is bogged down. Since this delin-
quent green PDS can travel along any route, our total maximum number of
possible routes now stands at sixty. Add to these routes the fact that
occasionally a yellow PDS, during the processing cycle, can be downgraded
to a lower priority, that is, downgraded to the status of a white PDS. The
processors when confronted with this action would hand stamp the yellow
PDS not with a 'downgrade' stamp, but with one called "PEPSODENT" --
you wonder where the yellow went.
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SLIDE 3. Station ident. That Pepsodent action was generally per-
formed in Station Z. Perhaps at this point we should examine the various

functions of each stntinn Thi .1i,1.. -ch cf the -t.t '3n- ,'%
identifies their function(s).

Station 1, our Industrial station, i.s actually located in the Procure-
ment and Production Directorate. This station performs the validation of
each part number to facilitate the finding of the proper FSN for that part.

This station also checks the part against the drawings for accuracy, and,
as need be, obtains ncw drawings as required.

Station 2, Maintenance Engineering, is the control station for this

procedure. Upon receipt fromn the computer they review each PDS for
completeness and accuracy, distribute them into system, verify mainte-
nance data and assign pack data as required, and after all the work has
been accomplished remove each completed PDS froin system. They also
prepare the delinquent green PDS, whn'never any PDS is not removed from
the system on time.

Station 3 is Federal Cataloging. It is this station which obtains

the FSN for each PDS from proper sources, either locally or from outside
agencies, and assigns this Federal Stock Number to each part on receipt.

Station 4, the Publications station, extracts the pertinent data
from each PDS for inclusion in Supply and Technical Manuals. They also
update the master files.

Station 5, our Supply Control station, which makes the necessary

supply studies, prepares and submits requisitions and sets up the pu'cha-s-
ing of required parts.

Station 6, Cataloging. This function of cataloging involves the
advance notification to our supply depots of these various parts that are
coming through our system.

It is at this point I should mention that all PDS's do not lack an FSN.
Some PDS's do not require an FSN since, for example, the part is

fabricated or modified in place. Other PDS's, the bulk in fact, had t'he
proper FSN located by the computer when the PL was converted into the

various types of PDS's.
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SLIDE 4. Matrix. Returning to our sixty possible routes for each

initiation. each type PDS was carefully examnined in relation to all of its
possible routes through this portion of the S&M Directorate and instead
of some sixty possible routes, a total of twelve basic routes emerged.
Four of thesc basic routes were elindi,.±Led for reasons such as: the
item was fabricated, not purchased; infrequent use, like once in two
years; and, sundry othe:. reasons leaving us with eight basic routes.
These routes divided into pairs of routes, with each pair having one
broadcasting function: Either the PDS was broadcasted (because it
represented a MICOM-managed item), or it was not broadcasted. These
routes were further subdivided, by segregating the three colors of PDS's
into sub-pairsrof routes within the basic routes. An adaitional pair of
routes was developed after discussion with the personnel of one station
because either the PDS could be handled in a relatively short period of
time (30 days or less) or an cxtrcmel) long period of time (90 days or
more). Since we knew the reason for this long period of time the data
collected for this pair of routes were subsequently omitted. This slide
shows the final configuration as well as the matrix developed to handle
this problem. The columns which identify the stations are coded A1

through All for subsequent use in a computer program. The rows which
identify the routes are coded BI through B14 for the same purpose. Routes
B 9 and B1 0 , which represent the long cycle time of one station, were
subsequently dropped for the reason stated before. The intersection of
a row and a column is designated as a cell. Each cell is divided into four
columns, one column for each missile system under consideration. The
shaded areas represent those stations which are not in that specific route.
Thus Route Bl only contains four stations, A,, A9 , A10 , and A1n, whei-eas
Route B1 3 contains all eleven stations, A1 through All.
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SLIDE 5. Route ident. This slide ide-ntifies each pair of routes,

Routes B and B are for white PDS's which hav; an FSN.

Routes 155 and 34 are tor white PDS's which do not have an FSN.

Routes B5 and B6 are for green PDS's which do not have an FSN.

Routes B7 and B8 are for white PDS's without an FSN and require

validation. This validation is accomplished in 30 days or less.

Route s B9 and B arc also for white PDS's without an FSN which

require validation but this validation required 90 days or more to
accomplish. For the reason rnentioned before, these routes were removed
fronm the analysis.

Route B and B12 are for green PDS's without an FSN. These differ

from routes B 5 and B 6 in that the FSN was not immediately located and
requires outside agencies assistance.

Routes B1 , and B 14 are for yellow PDS's without an FSN.

The difference between each pair of routes is that the first route of
a pair contains a broadcasting function.

Arc there any qUesLtions up to this point'?
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SLIDE 6. Bottom of PDS. This slide depicts the lower portion of
a yellow PDS. As you can see, there are sections for each station to
record its completion date. When the PDS emerges from the computer,
it is signed off by the computer at location A. All PDS's that lack an
FSN or has questionable FSN's are then sent to Station 2A where, after
screening for initial dissemination and other actions which are dependent

upon which missile system is involved. Station ZA records il:s comple-
tion date at location B. Each PDS is then sent to the next staticon as
determined by Station 2. In a similar fashion each station records its
completion date at its appropriate place on the PDS. The elapsed time
"between successive dates is indicative of the amount of time that a PDS
remained in that station including the transportation time to that station.
Since this transportation time is essentially the same for all stations,
no effort was made to remove this small amount of time involved. The
last station to handle a PDS is Station 2E which rernoves the PDS from
the system. The PDS's thus removed are filed, by missile system, in
order ef their removal. Since the elapsed time varies greatly from the
initiation of a PDS to its completion date, the stack of completed PDS's
in each missile system could be considered to be in a random sequence.
However, to preclude any possibility of bias., when these stacks of PDS's
were sampled, the PDS's were randomly selected.

Best Available Copy
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SLIDE 7. Blew-up of matrix - 1 cell and title blocks. A worksheet
was developed to record the completion date(s) of each station for each
PDS selected for each route previously identified. These samples were
replicated four times for each missile system. After the range of these
completion dates were established through inspection, a pseudo-Julian
calendar (one which omitted all Saturdays, Sundays, and holidays) was
developed to permit the transfer of each recorded date into the pseudo-
Julian date. Subtraction of these converted sign-off dates indicated the
elapsed number of days that each PDS remained in each station. This
procedure provided a maximum of 56 measurements per missile per
station, with a total of more than 1600 measurements taken to fill the
matrix. From the slide one can observe how each cell was filled with
these real time measurements.

The first attempt to analyze this recorded data was made through the
use of an analysis of variance program, which was borrowed from the
UCLA Medical Center, for two main determinations: (i) to determine if
there were significant differences between each pair of routes (by omitting
the broadcast function - Station 6), and (2) to determine if there were
significant differences between missiles as well as colors. The results
from the analysis of variance program run were tested after proper
conversions against the "F" test for significance at the 95% and 99%
confidence limits. All were essentially negative, which subsequently,
permitted the combination of measurements for larger samples. Unfor-
tunately, some difficulty was experienced during the computer run of this
program (conflicting statements in the program and a faulty printer) which
delayed the computation of the analysis of variance for these data.
Furthermore. this particular analysis of variance program was incomplete
in that it was not programmed to compute nor print out the mean, the
variance, and the standard deviation for each row, column, sum of rows,
and sur'i of columns nor the required two-way tables for analyzing signifi-
cant differences. During this delay, utilizing the original matrix, the
mean, variance, and standard deviation, at 95% confidence limits, were
hand-computed for each missile, for each station, cind for each route
(each route having been identified for a single color) as well as for the
combined group of missiles. All of these resulted in extremely large
standard deviations.

105 Best Available Copy
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SLIDE 8. Figurc of hcad! This is how I felt! I nceeded help. So,
pt J.1La I,ý,U",, .ui I Dr. i-iarsnuarger, our MICOM. Consultant from

VPI. After a review of the data in which he agreed to its abnormality,
he suggrested a trans fnormstion to reduce the variability aitd LhaL, in his

opinion, the data followed a Poissonian, and possibly, a logarithmic
distribudion, instead of being normally distributed. A few samples were
tested by computing the variance and the mean to determine if the variance
was proportional to the mean. The variance was found to be approximately
proportional to the mean which indicated the transformation to be utilized

could be the sqiare root of the sample value. However, the results of
this transformation after the necessary computations were completed
approximated the original results. Since some of the data were less than
uinity, one was added to each saniple value and the sctjare root transforma-
tion was again attempted. Once again, although variability did decrease

i• n ficantlvy the re Sult sti.l apprIx.C i Ited thc o riginaI results:, va riations
(statndard deviattas) were still Loo [Li rge. And, I st-ll Iclt like this!
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SLIDE 9. Tukey - Dixon -'Snedecor. Research and consultation with
local statisticians produced "Tukey's Test of Additivity, " a procedure

which is fourfold in nature: It (1) helps decide if a transformation is
necessary, (2) indicates a suitable transformation, (3) indicates if the
transformation was successful, (4) gets evidence about aberrant observa-

tions. Application of this test on a few selected cells by an experienced
statistician indicated the transformation required was logarithmic.

By this time, the analysis of variance results had been received from

the Computation Center. As previously stated, "F" tests at the 95'Yo and
99% levels, revealed there were no significant differences between missiles,

between colors, and between routes. There were highly significant
differences between stations but these were to be expected since the work
content in each station is different and does require different intervals ot
time to perform. These results from the analysis of variance permitted

the combination of like routes for each missile system to obtain larger
samples. However, for comparison purposes, each route was calculated
singly as well as combined for each missile system.

To return to the second result of the application of Tukey's Test,

several observations were found to be aberrant. Unfortunately Tukey's
Test merely indicates aberrance but does not correct them. Through the

use of Dixon's "Ratios Involving Extreme Values, " a technique which
permnits one to determine if a value is aberrant, the original matrix was
reentered and al' values in each cell were tested for aberrance. As each

aberrant value was discovered, the remaining values for that particular

cell were tested for aberrance until all data were purified. The removal
of these aberrant values left the matrix with several missing values. A
review of techniques to replace these missing data led to Snedecor's
Iterative Procedure which was subsequently utilized.

With the matrix again complete, all recorded data were transferred
into logarithmic values. The necessary computations were then performed

by hand for all routes and stations for each missile system. These compu-
tations resulted in significantly lower variations and, more significantly,

after converting the derived values back to normal values, truly approxi-

mated the real situation: a highly skewed curve to the left without negative

times.

0 Best Available Copy
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SLIDE 10. Matrix w/avg station lenths. Since the mean tine s
w: re now available for eac'h station for each missile, these stations

Sy,,thLic:ditJU ru'Lct mnd jubsequently correlated against the
average times of the original routes. This was accomplished for each
missile system as wl i a,; thu combined group of ndlssil' systcms. This
slide depicts the average station length for all missiles and the
synthesized total for each route. The coefficient of correlation as
calculated proved to be +0. 87 which is highly significant (well above the
99% level of +0. 708 in a significance table for my number of degrees
of freedom).
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SLIDE 11. 400 PDS sample. C urrent procedures provided a maxi-

for some PDS. s on a few routes, no intlerim time I ifltits were specified,
This analysis indicated thaI, on the average (95% of the tim,), ;ll HDS's
can be processed through each station in 2.2 days, with a ranige from
0. 8 days to 6, 3 days. A recommendation for the Cbstablishment of tijlli
limits for each station would preclude lengthy delays.

Unfortunately, S& M. cannot predetermine which route a PDS will flow
(with certain exception,,;) but on the average, the longest route length
(without broadcast) was approximately 30 days. The final step obviously
was the determination of the frequency e]: occurreknce of this longest r,muLe.

In accordanc- with a 400 PDS sanpleu (100 [mro each L11issi.!c System),
this route (30 clay length) occurred approximnatly I V% ,C the time, Ihis
sli.de illustrates the results of this s~;iipc.
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SLIDE 12. Axe head cutting time in half. Since a PDS did not

become delinquent until the expiration of 90 days and, on the average,
our longest route lenoth was annroximatelv 30 dave nhiR F ritre frn.
broadcast plus nearly 8 additional days for two standard deviations, or
a total of approximately 43 days, 45 days (for the sake of a nice round
number) was selected for the maximum time limit. To support the
recommendation of reducing the 90-day time limit to a 45-day time limit,
the probability that this 30-day route would exceed 45 days had to be
calculated. This probability, using the t-distribution, was calculated
to be 0. 04. Thus the probability that this route length would exceed 45
days is 13% times the probability (. 04) which is five one-thousandths or
only 5 times out of 1000. 0

Consequently, a recommendation for a 45-day limit was tendered
in my final analysis.

Although this now concludes my presentation, I would like to provide
you with a very short follow-up. The 45-day limitation was not accepted
because the powers in control felt that this cut in time was too drastic.
Instead, a sixty-day time limit was substituted. However, through
improved flow procedures and the subsequent recommended elimination
of one station, this 60-day time limit was recently cut down to 45 days.
Additional studies (non-statistical) are currently being performed to effect
a further reduction in time.

I thank you!

115



I

I 1



OPTIMAL ECONOMY IN PLANNING EXPERIMENTS::

Biostatistics Department
University of North Carolina at Chapel Hill,

North Carolina

ABSTRACT. Suppose that a cost, y, (which is a random variable) is

a non-linear function of some controlled variable x, and in a general case,
is expressed as a polynomial of k-th degree in x. Let

k
(1) y c(x)+ ; a×x

t=a
and

k
(Z) Y = E(y T x) = Z A xt -. I

t1l

be the estimated and expected ("true") cost functions respectively. Let 0
and x be the values of x at which the estimated and expected cost functions

00attain minima respectively. Further, let Yo = E(y ý 0o) be the actual

expected cost when Xo is substituted for (unknown) xo, and Yo =E(yxo)

the 'true' minimum cost. We define the 'allowance' cost as

k
(3) E(Y - Y)= Z A [E(•t)-xt ]

0 t=l t 0

If c(x) estimates C(x) closely, then (3) will usually be small.

To evaluate (3) we have to find the distribution of x which is a
function of regression coefficients a,, a 2 .... ak,

(4) Ao =g(a aa2 9....ak)

In the general case this may be complicated, but for sufficiently large
sample size, n, we can find an approximate distribution using the Central
Limit Theorem and a Taylor series expansion of the multivariable function

"):This paper has been accepted for publication in "Operations Research".



I
(4). Application of orthogonal polynomials appears to be'relevant to this

situation.

it i• -y w see irom () th~at EY- Yo) deper .s on the shape of the

true cost function,C(x), even if the fitted regression function, c(x). is of
Lhe right order. incorrect choice of the degree of c(x) might affect the
lallowance' cost more severely.
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ON A CLASS OF NONPARAMETRIC TESTS FOR MANOVA IN TWO WAY LAYOUTS*

PRANAB KUMAR SEN

University of North Carolina, Chapel Hill,

and University of Calcutta.

SU)OARU. The object of the present investigation is to propose and study a class

of nonparametric tests for the multivariate analysis of variance (MANOVA) problem

relating to complete two way layouts. In this context, the concept of rank-permuta-

tions for multidimensional interchangeability is developed, and the same is

incorporated in the formulation of a class of genuinely distribution-free rank order

tests. Asymptotic properties of the class of proposed tests are studied and compared

with those of the standard parametric ones.

1. INTRODUCTION

Let us consider a complete two way layout comprising of n complete blocks

(replicates), each block containing r(, 2) plots where r different treatments are

applied. The yield (response) is a p variate quantitative (stochastic) vector,

and we denote by X(k) the k-th response for the Jth treatment placed in the ith

block for i - 1, ... , n, j o 1, ... , r, k * 1, ... , p. In the sequel, it will be

assumed that n, r, p > 2. Let then

- (X(I) i(P), 1 1, n, J 1, r;

A u' -(1.2)

*Work supported by the Army Research Office, Durham, Grant DA-31-124-ARO-D-G432,
This article was reproduced photographically.
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.L - CI ) ' (p) . n; (1.3)

,T (T (1.4)

'', (3.) o

and a O•" -) 1 , n. (1.5)

We adopt the usual linear model as

SlJ " •.+ CL + Tj + al'i= ,.. n, j -i .,r 16

where U is the vector of mean effects, a the block effects (i 1 ..., n), T

the treatment effects (j - 1, ... , r), and eit the residual error vectors

(, - 1, ... , n, j - 1, ... , r). These component vectors are assumed to be mutually

independent. Our problem is to have a comprehensive test for the hypothesis of

no treatment effects i.e.,

H : hT .''" ' (1.7)
0o

In the parametric case, it is usually assumed that e ( ... , n,j 1, ... , r)

are N(- mr) independent and identically distributed stochastic vectors distributed

according to a multinormal distribution with a null mean vector and a dispersion

matrix (positive definite) Z - ((akq)), where akq is the covariance of (k)e

(q)s ) for k, q = 1, ... , p. The parametric MANOVA tests are either based on the
eiojns Tc

likelihood ratio criterion or on the characteristic roots of some determinantal

equations. The likelihood ratio criterion reduces to the ratio of two generalized

variances and can be expressed as the product of several (p) independent beta

variables (cf. Anderson (1958, Chapter 8)). Alternatively, one may work with the

smallest characteristic root of the determinental equation involving the same

generalized variances. Occasionally, some symmetric function of the roots are also

used. For details, the reader is referred to Rao (1965, chapter 8). The parametric

tests thus appear to be deterministic, but they are not very simple, especially
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for p > 2. Further, in this procedure the assumptions of independence and. multi-

normality of the error vectors play an indispensible role. Unlike the univariate

case, very little has been investigated about the effects of departure from these

two basic assumptions on the pcrformance characteristics of the parametric MkNOVA
tests. On the otherhand, the assumption of multinormality of the error vectors

is often found to be dubious, especially in many biometric problems. Further, in

many problems, there appears to be sufficient evidence on the stochastic dependence

of the error vectors within the same block. For example, in agricultural experiments,

the presence of spatial correlation may distort the stochastic independnece of the

error vectors within the same block. Similar dependence may be due to genetic

effects in many animal feeding experiments. The object of the present investigation

is to relax both the assumptions of multinormality as well as independence of the

error components. In fact, for the tests proposed here, we require only that

(i) the joint distribution function F(si 1 , .. , of il' "" is

continuous and independent of i a 1, ... , n, and

(ii) FVetl, ., eir) is a symmetric function of its r arguments (vectors)

il' "'" r i.e., F remains invariant under any permutation of the r vectors

among themselves, or in other words, ai' .".. are symmetric dependent stochastic

vectors.

Evidently, both the assumptions (i) and (ii) are much less restrictive than

the usual assumptions of independence and multinormality. Thus, the proposed method

appears to have a comparatively wider scope of applicability.

In the nonparametric case, practically no work has been done on this line. For

completely randomized layouts, very recently some nonparametric MANOVA tests have been

offered by Chatterjee and Sen (1964, 1966), Sen (1965, 1966a), Puri and Sen (1966),

and Anderson (1965), among few others. Bhapkar (1965) has also presented some
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asymptotically distribution-free test for the same problem. The present author

(1966 b) has considered some rank methods for combination of independent exoerimentm

In MANOVA. The same procedure is applicable in our situation here, but it fails to

be suitable in some respects. This problem may also be regarded as the multivariate

generalization of the nonparametric ANOVA tests relating to two way layouts. Such

ANOVA tests have been considered by Friedman (1937), Durbin (1951), Brown and Mood

(1951), Benard and Elteren (1953), and others. These are all based on intra-block

rankings, and the same method can be generalized to the MANOVA problem. The

present author (1966 c) has considered a modified approach to nonparametric ANOVA

tests for two way layouts. Extending an idea of Hodges and Lehmann (1962), he has

considered the rankings after alignment, and under a suitable permutation model,

has obtained a clase of genuinely distribution-free tests based on these modified

rankings. This results, in most of the cases, in an increased (at least asymptotically)

efficiency of the proposed test. The object of this paper is to generalize the method

of rankings after alignment to the MANOVA problem and to offer some suitable non-

parametric tests for the same. For this purpose, the concept of multidimensional

interchangeability is developedand certain rank permutational ideas are formulated.

With the aid of this a class of properly distribution-free rank order tests for

the hypothesis in (1.i) is developed. Further, the celebrated Chernoff-Savage

(1958) theorem on the asymptotic normality and power-efficiency of a class of

univariate nonparametric test-statistics, as extended to the multivariate case by

Puri and Sen (1966) and to the problem of compound symmetry of multivariate

distributions by Sen (1966 c), is extended further to take care of the problem of

multidimensional interchangeability, to be considered here. With the aid of this,

the asymptotic power and power-efficiency of the proposed class of tests are studied.
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2. SOME PRELIMINARY NOTIONS.

Let us define a set of r2 real quantities by

a -* j - 1/r for j, Z - 1, ... , r, (2.1)

where aLj is the usual Kronecker delta. Thus, I = c - 0 for all Z = i, ... , r.

rrI Let us then consider the r intra-block contrasts

y Jul Ctj r 1,... r. (2.2)

* From (1.6) and (2.2), we have

r 1+ ( Er (2.3)
i t r j-l -j) +-it r j-l 1ij,.

where the first factor on the right hand side of (2.3) vanishes when H0 in (1.7)

holds. Further, by assumption (ii) of section 1, we get with some simple. r. •), L,1 . j in
reasonings that the joint distribution of [it - r j a . u ".

a symmetric function of the r (vector) arguments. Consequently, from (2.3), we

got that under Ho in (1.7), the joint distribution of (Y ' 'ir) will be a

symmetric function of the r vectors Y•1 ' ...' lir" On the otherhand, if H0 in

(1.7) does not hold, the joint distribution of (Yil'~ . r) will be a symmetric

function of its (vector) arguments only when each one of them is adjusted by

appropriate location vectors. Thus, if instead of the observed responses Xitat

we work with the block-adjusted yields Y is, our problem of testing H in (1.7)-ij aorpolm ftal8H

reduces to that of testing the hypothesis of interchangeability of the vectors

" !�il' ""' ! or (for all I * 1, ... , U), against translation type of alternatives.

This is termed the problem of multidimensional interchanaeabi11t., and a formulation

of an appropriate rank permutation model for the same, will be considered in the
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S next section. The necessary rank order statistics will be defined now.

Let us pool the N(- nr) observations (Y. k j , ... , r, i 1, lo .n{ij J , r , n

into a combined set and denote the ordered observations by

•(k) (k)
(1) " (N)' (2.4)

where by virtue of the assumed continuity of the distribution of the error

vectors, the possibility of ties in (2.4) may be neglected, in probability. Let

then C(u) be the usual sign-function viz.,

1, if u > 0

c(u) (2.5)
0, if u . 0,

and let

(k) M (k)
"ij 1 + I c(Y)ij - y), (2.6)a-1 • ()

for i - 1, ... , n, j o 1, .. , r.-
.(k)(k

Thus R•k stands for the rank of Y within the set (2.4). This ranking procedure
Ii ii

is employed separately for each k n 1, ... , p. Consequently, any vector Y having

p elements is made to correspond to a rank p-vector

R'. -(it R (2.7)

for i 1, ... , nj- 1, ... , r. The composite collection is a p x N matrix

ilb.N (!1, R', . .. R (2.8)

will be termed a collection (rank)- matrix. Each row of % is a permutation of

the Aumbers 1, ... , N. For any positive integer N(- nr, n - 1, 2, ... ) we define

12
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p sequences of real numbers by

,(k) _ j,(k) .(k), .(2.9)

.(k) are all real quantities and are explicit functions of (er), We adopt

the coventional Chernoff-SavaSe (1958) form and write

S•k). (k)

where the functi.on J) need be defined only at -a 1 , N. However,

we shall find it more convenient to extend its domain of definition to (0, 1)

according to the Chernoff-Savage convention. Also, we define rp requencees of

Indicator function& ( 1, ... , N) , for j = 1, ... , r, k = 1, ... , p by

I, of is some (k) ( 1, n),W iss j ~t(" "

z(Jk) . (2.11)
0, otherwise,

for a = 1, ...0 N. Then we define rp rnak order statistics

T (k) N (k) Z(j,k) j a 1, ... , r, k - 1, ... , p. (2.12)
Nj n U-1 %,a N'a

It may be noted that

I - TN, ( -N E N,(k) . E(k)(say) ,k - 1, ... , p; (2.13)

where -) , are all known constants (dipending on N). Thus, at mosL

ENi

(r - l)p of the rp variables in (2.12) are linearly Independent. Our proposed

test is based on the set of random variables in (2.12). To develop strictly

distribution-free tests for the hypothesis (1.7), we shall consider in the next

)12.
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section some permutation model. But, before that it may be worth writing.

a point of clarification. The class of statistics in (2.12) has some similarity.

with that of a similar class of statistics considered by Puri and Sen (1966).

However, in the later case, we have a one way classification with N independent

p-variate observations, while in this case, we have a two way classification

with n independent pr-variate observations. This makes the situation somewhat

more complicated, and requires a more specialized attention for both the permutation

as well as asymptotic test theory.

3. RANK PERMUTATIONS FOR MULTIDIMENSIONAL INTERCHANGEABILITY.

.pxN

The collection matrix %' , given by (2.8), is now expressed in terms of n

subuatrices Rpxr RpX. , where Rpxr is the matrix of the r rank p-tuplets

corresponding to (Y¥, ""' . ir. ' for i - 1, ... , n. Thus, we have

Now uder he-nll hyoteis 17,teJitdsrbto ucinGYl..Yr18" p~r(3.1)

is a symmetric function of Yi!'"Yir' and hence, the same remains invariant

Stm~r an pemutaionof te rvectors in the r positions of G. Since, there

Sarer: pssile prmuttios ofther vectors among themselves, the permutational

proabiity(i.e., conditional probability) mass associated with each of the r!

oe lepermutations is equal to (r!)-l,•under H0 in (1.7),.• for all i - 1, ... , n.

Sic,(il' "'' TY) is distributed (jointly) independently of (Yi• "'' ir

I o l L+i - 1, ... , n, the joint distribution of
.N (R" ' n

t N1 ti

Is a ymti1ucino Yl . n ecte8aermisi'ain

une an.....inoftervetr.n.h ostosofG ice hr



remains invariant under the following finite group of transformations ' (n }

which maps the sample s*ace of Y, Onto itself. The number of elements of is

equal to (r!)", and typically a transformation s. is much that

whee m ! " " t. "" !r, "', !, "", !•r)' (3.3)

whre (Y. '" is any permutation of (Yi1 , " ,
- i

Lot !V be the lp-dimensional sample space of !N' (and we take it to be the Np-dimensional

Euclidean space). Evidently, the sample space of Y* is the same as that of YH, and

moreover, under H in (1..7), the joint distribution of !N remains invariant under

the group of transformations •. Let now S(YN) be a (real or vector valued)

function on Y!. Then, for any Y c * we will have a set of (rW)n values of S(Y)

obtained under the group of transformations Z, and this set is denoted by 1(YN).

Then, under the null hypothesis (1.7), the conditional distribution of S(CY) over the

(k)set Z(YW) will be uniform. Let us define T-,j as in (2.2), end let

rp (k)
* T~XP- (T,J) )j - 1, k. r, Is 1 ... s p (3.4)

Then, it follows that T is a stochastic matrix, which under the group of transformationsThen,

* can have only (T!) possible realizations. Since TN is an explicit function of the

N rank p-tuplats !ij, I - 1, ... , n, j = 1, ... , r, it will be more convenient for

us to review the above invariance argument in terms of the following rank-invariance

argument.

The way in which we have defined in (2.8) and (3.1), it follows that for any

c 5, there will be a corresponding collection matrix Ld. On examining the group

of transformations •, it will be clear that the transformation *m on Y., given

12~9_______.____ -



by (3.3), gives rise to another collection matrix P, which is obtained by applying

the same transformation n on the original collection matrix P . Thus, under the

*rouo of transformations of (a I . the rank collection matrix P.,, (corresponding

to I c ) gives rise to a set of (rW)n rank collection matrices (obtained by

applying the same transformations (S.),) and this set is denoted by r(L%). If

Is any mmber of E(N). we note that R is really derived from N by a finite number

of Inversions of the columns of the later. Thus we may write

% % (mo for all cf EVb. (3.5)

lence, the set E(%N) contains (rW) rank-matrices which are permutationally (under

inversions of intra-block columns) equivalent (under I) to RN. Thus, we term

E.%) as the per-utatioI -set (mod I)of Of like Y. is a stochastic variable,

and each row of %• is a permutation of 1, ... , N. Thus, R1 can have (N!)P possible

realizatious, and this set of all possible realizations of Ri denoted by

so that

C Ic~ Cy 03.6)

The probability distribution of R on (defined on an additive class of subsets

AN of ,) will depend on the unknown joint distributions G (Y '

I - 1, ... , n, even under R o in (1.7). Thus, unlike the case of univariate one way

classified data, the use of the unconditional distribution of RN will fail to

provide a distribution-free test. However, from what has been discussed before, it

follows that

PE ) Ho) " (r')n (3.7)

for all ( EV(R), independently of G(Yil, ... , ¥tr), i * 1, ... , n. Now, the way

130



in vhich k) 1..., pare defined by (2.9), (2.10), it follows that TN in

C12.12), (3.4)] in an explicit functionr of l. Thus, the set EC() will live rise

under the permutational probability measure (3.7), we will have a completely specified

permutatLonal distrabutioa of TN, and the corresponding permutational probability

measure is denoted by O.). Let us then consider a test function *(!N)(O *1).

which to each !Y e YN associates & probability of rejecting Ho in (1.7), with the

aid of 4P. It follows that we can always select #(I,) in such a manner that
ta

(! * ) - (rein, " (3.8)

where e(O < £ 1) Is the preassigned level of significance of the test. Consequently,

has the S(c) - structure of tests Ccf. Lehmann and Stein (1949)], and is a

similar size c test for the null hypothesis (1.7).

Now, in actual practice, we prefer to use some single-valued function of T as

a test-statistic. There seems to be no definite suggestions regarding the structure

of this test-statistics, and an optimum choice naturally may depend appreciably on

the particular clue of alternatives we have in mind. However, it may be suitable

(though not necessarily optimum) to consider the following test-statistic which is

the quadratic-form associated with the asymptotic permutation distribution of TN.

For this, let us consider first the permutational moments of TN. It readily follows

that

IT(k) IoT n 1k) for k 1 1 p,p, - 1, r. (3.9)

Let us define

1 131
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I
EMk. 1 r E..(k)

.(k) r E (k) 1, . n, k - 1, p, (3.10)S(k) r Zj-I (k),""

as the intra-block averages. Also let

1 r (3.11)Eq) _;q

for kt q" 1, ... ,0 p;

S .(YRN " kq(%.B)))k, q- 1,... p (.

It is then easy to varify that

n(k ,") ( I) R

C oy = T r -)v (y, (3.13)

for k, q -1, ... , p J9 J' - ,..) r, where 6jj is the usual Kronecker delta.

For the time being, let us assume that YV(RN), given by (3.12), is positive definite,

and denote its reciprocal matrix by

!11 (.N) -((vkq_N))) (3.14)

SCv ))k, q 1 1, ... , p

Our proposed test-statistic SN can then be expressed as

Svkn (JN [ T~k) -(k) 2  (q -(q) (3.15)
k-l q-l jl N,j ET,

and it may be noted that SM is essentially a non-negative stochastic variable. We

shall see later on that under certain regularity conditions on G(Yil, " !ir,

VI(RN) is positive definite with a very high probability, (precisely, in probability).

However, if VN(R) fails to be non-singular, we may work with the highest order

13
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principal minor of V()whch is positive definite, and proceed similarly only

with the responses pertaining to this minor. Thus, for convenience, we may assume

VNI)to be positive definite. Now,

p(r -(3.16)

and S. mesures the distance of TN, in (3.4), from the permutational centre of

g•awity of the ame. If i in (1.7) does not hold, it can be shown that for at

least one k o 1, ... , p and one j a 1, ... , r, T will converge to a point
~N1A

(stochastically) other than %k), and hence, by (3.15), SN vill be stochastically

larger. Thus, we may propose the following teat function:

1, if S% " s Nc( .) '

((%). if sN .Ncs.(), (3.17)

0, if s. <s,(R)

vhere the constants S8~(LN) and y(R%) may usually depend on a and are so chosen

that

.- . 0 , Cl. (3.18)

(3.18) implies that E(#(YN) jHo) - S. ?or small values of n(and r), one nay venture

to evaluate the exact values of 8 W and y() with the aid of (3.7). However,

the labor of this process of evaluation increases considerably with the increase

in n(or r), and hence, as in other permutation tests, we are faced with the problem

of finding out the asymptotic form of the permutation distribution of SH. This is

done In the next section.
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II
4. ASYMPTOTIC PERMUTATION DISTRIBUTION OF SN.

We shall impose certain regularity conditions on the p sequences (E k)}

k . L, ... , p, defined by (ý.9) and (z.1u), as well as on the joint distribution

function G(. 1 1 , ... , Yr). Lit us define

(k) aE (k)(
IND] (1) Number of Yk ) 1] k 1, ), (4.1)S( ) ij ps , It ..., ...
(k X r (k)Hi n, ja FN Dj i) (x), k- 1,.., p; (4.2)

"(kq y) - Number of (I(k) -(q)) < (x, y( 4.3)

for k, q It ... ptJ, 9 o 1, ... , r with either j 1 or k q or both.
y(k)Now, corresponding to the joint cdf G, let us denote the marginal cdf of ij and

of (Y). y)) by F7 (x) and F ')}(x, y), respectively, for J, Z - 1, ... , r, k,

q - 1, ... , pp with at least one of j 0 1, k J q being true, and let

3(k) 1a (k
(x) E. Jl j 7J(x), for k a 1, *..., p. (4.4) *

(k),
With the definition of Ej aa as in (2.10), we make the following assumptions
concerning J (k), S.

lA T (k) J(k)(H)
£SSUMPTION 1. u N (J ) - exists for all 0 H< 1 and is not a constant.

Since, we shall be interested here in translation type of alternatives, we shall

further assume that

) is + in H: 0 H < 1 for all k= 1, ... , p. (4.5)
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Prj~k (_.1•. j•k) ) N4. (k)
for k , p ... , p "E

-() j~ ~)()Jd1rD] (K) op(N~E (4.7)

for all k ulp ... p j *1 .,r

ASSUWPTION 3. 3 (k)R() is absolutely continuous in R: 0 < R < 1, and

' [ r j (k) (R)] .1 K [H(l - 1 )]-r-I (4.8)

for r a 0. 1. and some 6 > 0. where K to a finite positive constant.

Also for the positive definiteness and asymptotic convergence of the covarlanee

matrix !N(•I), given by (3.12), we require two more mild regularity conditions.

ASMTION 4. 1 E N ( ) 2 -(o(1), (4..)

for k 1, ... , p. and

(k) -q)(kL (.)(j. j .k)mP (k)3c)J(q)_L ( q1 1~)(7 )) )JT'(k, Y

- o() for all J, L - 1, ... , p, k, q 1 1, ... , p, (4.10)

where either k 5 q or j 0 P or both. Let us also define

A (k) i .T('k)( W(Y(k) t k 131
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z () (Z j 1,..,r; (4.12)

1Z ij •J"' J

E-Z(k).Z(q) for k, q J l,...,p, J, 11 ... Ir; (4.13)A. i JS

A - A1q . ) is , . , '" J , ., r ; (4 . 14 )

r r
1E rq.j, for k, ro,...,p (4.15)Vkq r zJ-1%q. jj E•, q- JA

Ju. ja

V - q'1,...,p (4.16)

ASSUMPTION 5. • is positive definite (4.17)

Before we present the main theorems of this sectionp let us consider the

conditions under which assumption 5 holds. Using (4.14), let us define

bj [h + A - 2 #.U, .1" 1,...,r. (4.18)

THOORIm 4. 1 Assumption 5 holds if

mx [Rank of A p (4.19)J 1 u1is,...,r PU

PROOF Let . tinQ 1 ...,p) be any real and non-null p-vector, and let

tj 'Z j, 1,...,r, t. • J.41, tE , (4.20) 4

where Z 's are defined by (4.12). It is then easily seen that

.EIVE - 1 .r E(t.2 ) - E(t2 ) a o. (4.21)

Thus•,we require only to show that for any non-null . (4.21) is strictly

positive. Using essentially the proof of lemma 4. 1 of Sen (1966), it can

be shown that I r Z(t2 ) - E(t,2 ) will be strictly positive unless

3(tjtS) E i(t2) c constant, for all Ji=l,...,r. (4.22)
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Now, using (4.18) and (4.19), we get that

g(tj-ti)' - I A(jj>j > O, (4.23)

for at lea one pair (J,-), , As 1(tj-tj)2 2[Z(t+

(4.23) implies that 2ft;) > 0 for at least one Jml,.....r. Again, for the
specific (J•J) for which (4.23) holds, we may assume without any loss of generality

that t (eJ) I(t ) > 0, and thus, we require only to show that 3(tjt1) <
If B(ti) - 0, the proof is evident, while, if I(t•) > 0, we have from (4.23)

23(t t ) < E(t2) + E(t•) < 2E(t2). Hence, (4.22) car, not hold for all J,A-l,...r,

if (4.19) holds. Consequently, (4.21) is strictly positive.

Hence, the theorem.

It may be noted that (4.19) really implies that the vector -" is of

full rank for at least one JZul,...,r.

*. TUOIHE 4.2. Under the assumptions I to 5, V C.), defined by (3. 12). converges

in probability to Y, defined by (4.16), and hence, is positive definite, in prob-

ability.

PROOF. The proof of this theorem follows as a more or less straightforward gen-

eralisation of theorem 4.2 of Puri and Sen (1966) and of theorem 4.2 of Sen (1966c).

Hence, for the intended brevity of the paper, it is not considered in detail.

THEOREM 4.3. Under the assumptions 1 to 5, the permutation distribution of the

statistic S., defined by (3.15), converges asymptotically, in probability, to a

chi square distribution with p(r-l) degrees of freedom (d.f.).

PROOF. We shall first prove that under the permutation model considered in

Section 3, Eni(Tk- k1 ), j"l,.'..,r-1, k~l,...,p] has asymptotically a p(r-1)

multinormal distribution. This would be done by proving that any arbitrary linear

function of these p(r-1) statistics has asymptotically a normal distribution under
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the permutation model of section 3. Such a linear compound can be equivalently

written as (by virtue of (2.13),)

l d k (k) re d 0, k-ll...,p. (4.24)
Wn "u• "J~ •'kl dk ",J jl k",P

Under assumption 2, (4.24) can be rewritten as

Jr 
I (k)

Lot us then write

r p ORk
Ni(Q%) E E ( d j ( ) , i-l, 2,...,n. (4.26)

Jl k- 1

The random variable U, (~�N) can have only rl possible equally likely values

pnder our permutation model. These values are obtained by permuting the r

vectors jul,...,r (defined by (2.7),) among themselves. Thus,

r (k)

3t~~~L~)C~ E (!; E 3(J~ .) E du 0j, (4.27)(USl "i djk"l

for iml,...,n. Similarly,

p p r r R(k) R(q)
p p r dikk) ..i. j(q) 6n

kNo1 qul jul J_1 - dJq + N+l D

O(k) a(q) r (k)
Lp p r r~ 1 q r R~k

E (Z d d M(L E [().Jiq)i .L J(::U-)) (4.28)
kul qnl J-1 jk jq) r-I "l•l N+1 r2 r o ul

r (q(q)(I

(E -Q ))m) for iul, .,n.
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Since the permutations of the rank-vectors within the Lth block is indepen-

dent of the permutations within the i-th block for uii,...,n, under our

peTmutation model; (UnoI(%), L1, .. .,n) are mutually independent. Hence, to

prove the desired result, we may use the Berry-Sosen theorem [cf. Loave (1962,

p, 288)1,, ccording to which it in sufficient to show that

li 0.)]f (4.29)

From (3.11), (3.12) and (4.28), we get that

r p p

in Zn(U2,(,)1In) E . E d kdJq1q(•)

r p p
"E ( E E djkdjqVkq(,)

j ,, k ,l 1 - 1

1r p p
_- L E E d kdjqVkq)P (4.30)

Jol k1l qu.l

whereby theorem 4.1 and assumption 5, the right hand side of (4.30) is a (non-

sere) positive constant, for any given (djk Jnl,...,r, ll...,p). Thus, it

is sufficient to show that the numerator of the left hand aide of (4.29) is o (13/2)
p

and this readily follows from assumption 3 and (4.26). Hence, under our per-

imutation model, the first term of (4.25) has asymptotically# in probability, a

normal distribution. Once this is established, we consider the quadratic form

associated with the asymptotic multinormal distribution of (n (4 kT - ,

Jl,...,r-l, kml,...,p), and using some well-known results on the limiting
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distribution of continuous functions of random variables [cf. Sverdrup (1952)],

it is easily seen that under our permutation model, the statistic SN, given by

(3.15)p has asymptotically,, in probability, a chi square distribution with

p(r-l) d.f.

i Ilence*, the theorem..

I• t may be noted that the permutation distribution of SNbeing essentially

Sa conditional distribution,, the €onversence in theorem 4.3 holds, in probability)

S•, Le.,, for almost all •"If we now denote by X2 the upper 1O00A point of the
t),

chi square distribution with t d.f., then from (3.17) and theorem 4.3, we arrive

at the following.

r li 4.4. ,and 7(N), defined by (3.17), converge, in probability to

and 0, respectively.

By virtue of theorem 4.4, the exact permutation test considered in (3.17),

reduces asymptotically to

1, if S8 > X9pr1,

,(Y.) - (4.3 1)'
0O, otherwise;

and (4.31) vill be termed henceforth the asymptotic permutation test.

5. ASYMPTOTIC POWER OF THE PROPOSED TESTS.

In this section we shall study the asymptotic power and power-efficiency of

our proposed class of tests. This requires first of all the study of the asymptotic

(unconditional) distribution of S., when the null hypothesis (1.7) is not nec-

essarily true. For this study, we also adopt the same notations as in section 4,

and write
W k). "(k) N (k) (k)

_ f (N.- (x)) F, [ ) (.
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for J-l,...,r, 1.l,...-p. The statistics in (5.1) has some analogy with a

c~aus uv'vimilar UvUL5ics considered by Yrur and son (196b). However, in

this caes of two way layout we are faced with a independent pr-variate observe-

tions, whLle in the earlier came, Purl and Sen were faced with the oneway layout

involving W(unr) p-vartate observationa. This makes the situation somewhat

more complicated in our case, and the necessary modifLcatLons will be studied

here. Let us define

W f ~)ýk) W) dF (k)(), (.2

for j .l,...r ,...,p. Also let

j(kq) ( f( 1 (~ ) , (k)(X -(€) J,(k)H(k).x)) j,(q)(1 1 (q)(y)).J ~17l -WI if (H['I]xY W) [jfl (H [t])y

(k) (q)drij ) (X) dF[it,] (y), (5.3)

for J, J,J, Jo l...,r, k, qWl,...ip, with either jflJ or k 1q or both, while

.kpk) - p (k)]X)L-F]r (k),(i ], (k) (H (k) (x)) it,(k) (H(k)( (k) (x)dF (k)
JJu J Vil(kJeaL-(k) ,D [A]l (a )

+ (k V (])(1-F j(y)] J((H((k)(x)) j,(k)(H(k)(y)) dF (k) ](x)dF (k)

for jnl,...,r, k.l,...,p, A,1' * l,...,r. (5.4)

*inelly, let

k(k,q) 1 f I[p(kiq) + - - i (5.5)

* J' j l I ~ -S o -fu J j j U AS I 'J J 1 A ~ i JA a' i j

II for kqfl,...,p; jj l .

ZORD( 5.1. If the assumptions 1,2 and 3 of section 4 hold, than for arbitrarily
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continuous G(YI,.., Tir)' the random variables [N1(4 ) (-,,

ka.l,...,p] has asymptotically a multinormal distribution with a null mean
_(k. e•

vector and a dispersion matrix wvch eiements p- "" dejined by (5.5).

(It may be noted that by virtue of (2.13), (4.4) and (5.2), the above multi-

normal distribution will be essentially singular with a rank less than or equal

to p(r-l).)

. We shall present only a brief sketch of the proof, as the same will

follow precisely on similar lines as in theorem 5.1 of Puri and Sen (1966) and

theorem 5.1 of Sen (1966c). Proceeding precisely on the same line as in the

proofs of these two theorems it can be easily shown that

ol k) (k) (k)~l + B (k) )1 0 (02, (5.6)

tor all jfl,...,r, -l,...,p, where

8(k) + 3(k) 1 r l a [(k) y(k)• (k) (Y)JIN J,2N. r n - E J:J," j':j(Yt J ; (5.7)

3(k)(y(k)) (k)I () - F. (k),x j,(k)(H(k) (x) (5.8)

0 ( 3(k)14k) (X)0M if x < xij(59

[j](i)(X) = (5.9)•(k)
1, ifx It

for Jinl,..., J, 1,...,r, ml,• ''P. It is therefore sufficient to show that
N P B~((k) + (k) ' a

for any arbitraryr non-nullb E ( 8 (B4  + B has
V l" pr' J -I kJ1 J, 2N

asymptotically a normal distribution. By virtue of (5.7), the same can be

written as B% n(Y"-l Y) where

14
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r r P p fB(k)(y(k)) o B(k)(Y(k)).
B((il51...0)ir r E E E jk J:A " B' :i is

Since, the random variables In M5.ID) are independent and identically distributed,

in 'order to make use of the central limit theorem under the Uindebersos con-

dittoup it is sufficient to show that these have finite second order moments.

Veto$ (3.8), It Is easily seen that 2(1(lil. .slid)} -. 0 for all i-lj...UP

and by virtue of (5.10), it appears to be sufficient to show that

((B ij j < a. for all J ,Jml.,...r, hkol...,p, N..n o under the

assumption 3 of section 4, it is easily seen that for any 1: 0 < I < 5 (defined

by (4.8),)

SI:Ij1 ij - "

uniformly in jIil,...,r, k-l,...,p. Hence, the desired asymptotic normality

follows readily. Again, by (5.7), (5.8) and (5.9), we have

S.."jiaT i" J':Is" i~'" " 8 iit •JJ':IB' • 5.2

3(k) (k) B~q) ( ( k) pq) q

where 5 ois the usual Kronecker delta and (kq) s are defined by(5.3)• ~i I jjt:JAsi redfndb 53

and (5.4), for JJj',•i'l,. . .,r klqmml,...,p. Hence, it is easily seen that

N lC( (k) + B(k) )(•(q) + I(q) 0 . •(k,q) (5.13)

JlIN J,21 SN' • ,2N i '(.

"which is defined by (5.5), for kqinl...,p, jl- ... ,r. Consequently, by

(5.6), we may conclude that the dispersion matrix of the asymptotic normal

distribution has elements psq) defined by (5.5).

Hence, the theorem.

We have already noted that the asymptotic normal distribution of theorem

5.1 ts singular and of rank at most equal to p(r-1). If the null hypothesis
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in (1.7)' is true, G(Y l,...,Yir) will be a symmetric function of the r vectors,
Sy~~~~~(k) wl etesm

and hence it is easily seen that (i) the marginal cdf of Y ()il be the sameij

for all Jl.. ...r, .. n and is denoted by Hrk(x) for k.l,...,p; (ii) the

marinl ct ((k) W(marginal cdf of y(k Yvq) (ktq) will not depend on J. and is denoted by

k. • I(k (q)
a k)('xy) for kqqml,...,p, and (iii) the marginal cdf of (Y Y (JýJ)

will not depend on (jft), and is denoted by H( k ,q) f ort .,

ko 1....p. Thus, it follows from (5.3), (5.4), (4.11) through (4.14) that

in this case

j(kq) a(1) (1) J j =1,.,
"jj:J " kqj kq i ... • !

(5.14)

_(2 if iJ'Nu1,...,r,

depnd ony (k, )q~) (2) (k# q)
where depends only on H (x,) and oq en Hi (xy), respectively.

Thusp from (4.15) and (5.14), we get that in this case Vkqp defined by (4.15),

reduces to

Vkq= C(r-l)/r)l(akq %q kjrl,...,p, (5.15)

and
0 (k..q) (5 (jr-1) Vq l-, k~q~l, .. ,p, (5.16)

iji k'J21 ... r' .

where ijs the usual Kronecker delta. Consequently, it is easily seen that

under R. in (1.7),

p P kqr (k) (k (q ()
U lq'l EE E V X1 J (5.17)

(where ((vkq)) is the reciprocal of ((Vkq))• and
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"P (k i k (u)du, k-l,.. .,p,)
0

has asymptotically a chi square distribution ith p(r-1) d.f. Now, under

assumption 2 of section 4

a td by theorem 4.2, we have under assumption 5 chat

Banoet from (3.15), (5.17)b (5.18) and (5.19), we gft thed under Ho In (1.7)

si t ' (5.20)

Banco, we arrive at the following.

2WREK 5.2. Under_ H° in (1.7) and assumptions I to 5 of section 4. the

statistic KNin (3.15) has asymptotically a chi square distribution with

p(r-1) d.f.

Lot nowiý be any consistent estimator of •,defined by (4.15S) and (5.15).

ug is positive definite and we denote Its reciprocal by ((.kc))- then

we can have an asymptotically distribution-free test based on

I~ p p 4qr -(~k) (4 q) -((521WWI CrI jo " "l

nce, % can be shown to have the chi square distribution with p(r-1) d.f.,
lben o in (1.7) holds, the test function may be proposed as

;(1 p(r), (5.22)

0, otherwise.
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We shall now connider the power properties of the permutation test in (3.1 7.)

and (4.31) and the large samplei teat in (5.22). We shall obtain certain power-

equivelonce relations among theje tests, and compare them with the parametric

tests c,ý,erred to in Section one.

By virtue of theorem 5.1, it can be shown that if the linear model (1.5)
holds but the null hypothesis (1.7) is not true, then (p k) . 4 Jk) Jl.r,

hw1,...,p, can not all converse to aero as N-owo, and hence, S defined by (3.15),

will be stochastically indefinitely large, as N increases. Consequently, the teats

considered will be all consistent. Thus, for any given (rl,... ) in (1.6),

(not all null), the power of the test (3.17) or (4.31) or (5.22) will be asymp-

totically equal to unity. Hence, forthe study of the asymptotic power properties

of the tests, we shall consider a sequence of alternative hypotheses for which

the power asymptotically lies in the open interval (e,l). This we specify as

Id: •- N' -l,...,r, (5.23)

where Xj,, aat..Lre all real p-vectors, not all equal (or null). Further,

for simplification of the asymptotic power function, we shall assume that the cdf

W P° F ( x" y) and F (l y) are all absolutely continuous and have con-

Sinuous density functions. Under (%) in (5.23), we will thus have sequences of

S7(k)(x)) etc,, defined for each N, and it is easy to verify that

i• • (,Nk) W a. H (k(x) for all Jm,...,r,.24)

7 N (x,y) R kq)(xy) for all J'l,...,r, k~q-l, ... ,p

(5.25)

i l~ts ,(kj,q) ( k, qll,)
p.. j* P4 4(X~Y) for jf4iinl,....,r, kcq-l,,...,p. (5.26)
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Hence, in this case also (5.16) holds in the limit as N-4O. Also, if we define

i M J(k)(H(x) W) dF(k)(x),
•W -• •1..., Pe (5.27)

then, it is easy to show that

Ila 110(0k) . (0,)1jN3 X )k)tk 5.

for all 161'...,pr Ikl,...,p. Hence, from the results of theorem 5.1 it fal-

lows that under fHi), S has asymptotically a noncentral chi square distribu-

tion with p(r-1) d.f. and the noncentrality parameter

" p kq r (k) -(k) (q). -(q) (5.29)

T, E v C (7- £ ( -A )x(0 N(5.29

where

i ~ ~ ~ ~ ~ a = J1 /r, for ql..p

how, from theorem 4.2, (5.24), (5.25), (5.26) and the discussion following it,

it follows that under (%)1 also SNX 81 an . hence, we haey the following.

MEOW .3. Unde~r the sequence of alternatives 4) in (5.23), SO defined

by (3.15), has asymptotically a non-central chi square distribution with p(r-1)
d.f. and the non-centrality parameter A&, defined by (5.29), provided the con-

ditions of theorem 5. 1 hold, and in addition, the marginal odf'e corresponding

to the Joint cdf G(Y .. r) are all absolutely continuous and have continuous

density functions.

If we consider the large sample test, defined by (5.22), then it can be

shown similarly that P, se;,' under (cN), and hence, the conclusions of theorem

5.3 also applies to 81; Thus, the permutation test considered in sections 3

and 4 and the large sample test considered in (5.29), are asymptotically pover
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equivalent for the sequence of alternatives VN}, in (5.23). As we have seen that

the permutation tests are easy to define for small samples, we are now in a position

to recommeud the use of the same, for all sample sizes.

In the parametric case, the limiting distributions of various test-statistics

for this problem have been studied by various workers, and the reader may be

referred to Anderson (1958, Ch. 8.10), Rao E (1952, Clh. 7), (1965, Ch. B)3p and

James (1960), among others. Most of the results relate to the null case, while

it may be considerably difficult to formulate a general theory for the non-null

cases, though some work has also been done on this line. For the likelihood ratio

test, however, the asymptotic non-null distribution may be found without much

difficulty, and for the sequence of alternatives in (5.23), this statistic can

be shown to have asymptotically a non-central chi square distribution with

p(r-1) d.f. and the non-centrality parameter

P p kq (., r (.(k) - .(k))(X(q) -(.0

where (k) and T(k) are defined by (5.23) and (5.29), respectively, and

S. ((kq)) q- is the reciprocal of the common dispersion matrix E.- M 'kqy

The comparison of I' and AU (for the purpose of studying asymptotic relative

efficiency) poses the same problem as has been studied in some detail by Puri

and Sen (1966). For intended brevity, this is therefore not reproduced again.

2he only remark that mey be made here is that if we work with (k),8 (defined
N s(

by (2.9), (2.10),) as the expected values of the order statistics in a sample

of size N drawn from a standardized normal distribution and term the resulting

test as Normal score MANOVA test for the two way lay out, then it is easily seen

that for normal alternatives, this test is asymptotically power equivalent to the

likelihood ratio test. In actual practice, the use of rank sums (i.e., (k) (+l)

an1,o..,3, kwl,...,p) often results in a quite simplified procedure and at the
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some time does not involve any serious loss of efficiency. For details of theme

Poino•, Lno reaaer may be rseerreo Lo ruri and Sen iJ.eobJ' tne same argument

being true in the two way layout came.
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1. INTRODUCTION. The proper treatment of outliers has long
been a subject for study. It is an active area now and likely to remain
so for some time to corne. The reason for this is easy to see: there
seems no limit to the multitude of different situations in which outliers
are important. Excellent recent surveys of the subject have been given
by Dixon (1962) and Ferguson (1961a).

It is useful to distinguish three aims of procedures designed to deal
with outliers:

(a) to screen data in routine fashion preparatory to analysis
(this includes but is more general than the old problem of
'rejection of outliers');

(b) to sound an alarm that outliers are present, thus indicating
the need for closer study of the data-generating process;

(c) to pinpoint observations which may be of special interest
just because they are extreme.

Numerous test-statistics have been devised, mostly from intuitive
considerations, and their percentage points tabulated on the assumption
of a common normal parent population. However, much more needs to be
known about the performance of tht various statistics in use for the non-
null situation when outliers are in fact present. We will here be concerned
primarily with cases (b) and (c). This is not in any way to belittle the
importance of case (a), and I will just mention a recent proposal by
Anscombe (19.66). If the primary aim of screening data is the estimation
of parameters, Anscombe suggests a two-stage procedure: (1) Apply
the appropriate test for outliers at a very stringent level of significance,
so stringent that good observations will very seldom be rejected. The
purpose of this is to get rid only of wild observations very far removed
from the main stream. (2) Apply the same outlier test again to the reduced
data but now at quite a moderate level of significance. This time, unlike
the preceding stage, observ ktions found to be outlying will not be rejected

*Research supported by the Army Research Office, Durham.
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but rather given reduced weight in the estimation of parameters. This
second stage process is commonly termed Winsorizat4nn.

This kind of approach promises to be fruitful for the situation of case
(a) although its properties are by no meanc easy to investigate.

We shall begin with a discussion of several measures of performance,
including the power function, of some well-known test statistics relevant
to cases (b) and (c). We assume that the underlying variation is normal
and consider in some detail the case where a single true outlier is present
which differs from the rnemaining observations in mean only. Some limited
results will also be given for the case when two observations are from a
common outlying or contaminating distribution. The situation of an unknown
number of outliers is briefly treated. Some of the statistics we use, and
others, have been studied under these assumptions by experimental
sampling.

2. MEASURES OF PERFORMANCE. Let xi (i = 1,2, .... n) be
independent normal variates, x1 having mean p. i and variance 2 , On the

null hypothesis of homogeneity, H., the 4i are all equal to some unspecified
value IL . We shall consider alternatives Ha representing a shift or
slippage to the right in one or a small fraction of the pLi. A suitable class
-of statistics for testing Ho against Ha is of the form

(l) v max di.i

where di is the difference, xi - x, appropriately divided. Of particular
interest are the following special cases of v corresponding to various degrees
of infornmation on 'r:

(i) standardized extreme deviate (from the sample mean)

v1 = maCxi -)/Cr = (Xn -n )/

(ii) internally studentized extreme deviate

v2 = (,nx a• s 2 •(•. 2 •/(n- )

(iii) externally studentized extreme deviate

3 = (max -)/s' ,
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.1
where s is a root-mean-square estimate of n based on t' degrees of

SS -%S* -Un -% J . .

(iv) internally and externally studentized extreme deviate

v4 =x "ax -)/Sp,

where a [(x" + s ]An + v)

v is appropriate when a is known, v 2 inthe absence of any knowl-

edge of a . The use of v and v4 requires an independent estimate of w.

In v4 such external information is combined with internal information by
2means of a pooled estimate of 2. Formally vI and v2 may be regarded

as the special cases, v and v = C, of v4 .

If v is the upper a significance point of the null distribution of v,

then H is rejected for v > v , and the warning required in case (b) of the
0

Introduction in thereby given. For (c) this must be followved up by declar-
ing one or more of the x. to be outliers, for example, those xi for which

d, exceeds v.

Because of the difficulty of dealing with more general alternatives we
shall first suppose that just one of the observations - we do not know
which - is a true outlier and has mean gi + A(X > 0). In the formulation
of slippage tests we may say that Ha consists of n mutually exclusive
hypotheses of which the ith, Hi, specifies that

i= , + , X . = . (j = 1, 2, . , - 1, i + 1 .). n

It is known (e. g. Kudo, 1956) that in this situation v4 (and hence vl, v2 when

applicable) has the desirable optimal property of maximizing the probability
of rejecting a true outlier in the clats of all level d tests which are
invariant under the transformation xi = axi + b(a > 0) applied to each xi.

It is clear that a reasonable measure of the performance of any of the
v-statistics can depend only on the sample size n and the ratio A/a- . In
particular, the measure must be independent of which of the Hi holds. For
convenience we therefore take i = 1, and also a- 1. The following measures
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come to mind:

I. Power function P, - Pr(v > v. H1ý).

2. Probability that the observation x, from the slipped population
is significantly large

PZ -- Pr(dl > v aIfH).

3. Probability that x1 is significantly large and the largest in the
"smple

P 3 = Pr(d 1 > v , x >x 2, x3, x.., XnH 1 )"

4. Probability that only x, is significant

4 = Pr(d > v , d2, d d<v

5. (Dixon. 1950) Probability that x is significantly large given
that it is the largest in the sample

P -- Pr(dl > v I x >x2 ... 'Xn H d.

We see that

(z) 1 '-2 - P3 '- 4

and also that

(3) P -" 3/Pr(xl > x2) x3 ... Xn

5 3 ~ 3)

where the probability in the denominator has been tabulated by Teichroew
(1955) for n < 10.

It can be shown that

P2 1 P, < P2 + C,

provided n < 2/4 ; in fact, a somewhat stronger general inequality holds
(David and Paulson, 1965). Also for v. one has P 2 = P 3 = P 4 . We there-

fore confine attention to P2 as the most convenient measure.
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The graphs of Figure 1 show inter alia just how much is added to the

value of P, by the use of v4 rather than v, in the present case of a

single true outlier. Of course, the gain is highest when the internal infor-
mation on ar2 is large compared to the external information, i.e. when
n - I is large compared to v. However, there are indications that internal

degrees of freedom are less valuable than external ones. Thus for n a 6
the solid curve v = 5 lies well above the dotted curve v = 0 although in
both cases there ip a total of 5 D. F.

3. A SEQUENTIAL PROCEDURE. It will be a rare occasion when we
actually know the number of outliers for which to test. Ideally we might
wish to proceed sequentially as follows:

Apply a certain test-statistic to the sample of n. If significance
is obtained eliminate the most extreme observation and apply
the same test-statistic to the reduced sample of n-1, adjusting
the significance point to the new sample size. If significance

holds again, repeat the procedure until the test-statistic ceases
to be significantly large.

We consider now such a sequential procedure for v1 , the case where

r is known and may be taken equal to unity. To this end note the following
easily proved algebraic results:

sn

S" X -Z ")' where x= E xtln ).
- - t---

(b) x -Xj > X - xi according as - x > x -x,

< n i <

Also when the x.1 s are normally distributed,

(d) xi - x and xj xi are statistically independent.

(e) v n) , the upper a significance point of v1 in samples of n,K in an increasing function of n.
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From (c) and (d) we see that the joint occurrence of

(4 x ; >v(n) > V(n)
Il,a a

implies

Thi~s result eanthat weo ~nohae)t take the above procedure too

litraly: f 4) old weca irn~eiatlydeclare both x. and x. to be

outliers, and next apply our test-statistic to the remaining sample of n-2,(n1)

aneyt ymtrc.a

This resulutmean thawe dorf otrm anve to tk theisov procedure w osdrarte to

contaminating N(ext + A, 1) (r> 0) population, the remaining n - 2 aren2

from N(IA, 1). This is a reasonable model for the situation when a common
source is responsible for the shift in the two observations. Any accept-
able measure of performance will not depend on i and j which we take
to be 1 and 2. We consider the following measures:

1. Probability that at least one of x1 , x2 is significantly large:

1= Pr {fmax(x 1 - i, x 2 - X) > v(n) 
4

2. Probability that both x , x2 are significant in a 2-stage proce-
dure:

-i - (n) x 2 (n-)
2 Pr{rnax(x 1 x x2 >x) v 1 > Ln min( 1 x2  1 xl) >- 1 -0.

3. Pro~bility that both xi, x2 are significant at the first stage:

() ,(n)

(In these measures we are not concerned with the possibility that good
observations may also be declared outliers.) It is clear that 11 > 142 > n 3.
11 may be found from
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n. Pr{x-X >vn) - -x> (n-)
1 2 1 1, C

+ Pr{x- > X - > (n-i)

iL 2 l 'a.

(n) (n (n - n1Prf X, _ x >vv 1 , CL 1 Xv~ 2- >x v 1 , x 1 -x v 1 ,

ZPr(x1  > V (n ) Pr~x2 -x > v I-)

'l c(n) (n)~(n)x >- x >v by (d) and (f)

Hence 11 as well as Il and 1I can be evaluated from tables of the

u 1 3
univariate and bivariate normal distribution function. Figure 2 gives
some numerical results comparison being also made with the earlier
probability (P 2 for v of detecting a single outlier when only one is

present. The difference between fl and 17 is seen to become less markedS12 n3
as n increases.

Some extensions of these results to the above cases of a- unknown are
planned. It must not be supposed that the results will all be much the same.
When cr has to be estimated from the sample at hand the presence of a
second outlier tends to "mask" (Murphy, 1951) the effect of the first. In
fact, for a .05 and n < 14, the probability of detecting a outliers by
the use of v 2 tends to zero as X -. 00. (cf. Ferguson, 1961b). For

finite X the probability of detection may be quite unsatisfactorily low and
the sequential process has little chance of ever getting started, The mask.

ing effect applies also to other statistics such as Dixon's r-10 r n X() - x( 1)l°=x(n) " x•(1)

which might be used sequentially in this case. Ferguson (1961b) recorn-
mends Karl Pearson's

Sb 2 = nE(xi - X)4 /[E(xi. - ) 2I

as a general statistic appropriate for both one and two-sided tests,

It should also be noted that in the artificial case where the above
model of exactly two outliers is known to be the right alternative to Ho
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the optimal procedure consists (Murehy) in rejecting the largest two
observations when (x , 2/ i n n n-p)op P-&--ag r4+

are not known but are available for

n-2 n2
E (x i, n- 1 n) (Xi -x) Grubbs (1950).

Dixon (1951, 1962) gives percentage points for several of his r-statistics,
e.g. for

r 2 0  n) (n-2)

x(i) x( 1)

designed as a test "for x ) avoiding

Although only a fraction of the many questions of interest have been
considered in this paper I hope that the need for much more detailed
knowledge of the performance of tests for outliers has been demonstrated.
Of course, it must never be forgotten that the problem of outliers is only
partly statistical.

Section 2 of this paper is based on David and Paulson (1965) where
further details are given. I am indebted to R. G. McMillan for Figure 2.
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THE PROBABILITY OF SURVIVAL OF A
SUBTERRANEAN TARGET UNDER INTENSIVE ATTACIC
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ABSTRACT. This report deals with the analysis of a model for

studying the probability of survival of a subterranean target under an

intensive attack. Most of the analysis is based on the assumption that

the explosions are circularly distributed about the target and that the

number of explosions is known. In the last two sections it is shown

what effect a relaxation of these assumptions has on the probability of

survival of the target.
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1. Introduction

Thib zepu-• deaisi wi-h the anaiysis oe a moael Ior s-judying the probability

of survival of a subterranean target under an intcnsivc attack.

The target is located below the surface at o distance d a'om the

surface. The projection of the target on the surface will be identified as

the origin in ordinary two-dimensional rectangular coordinates. K explosions

occur at points Xl ,X,..XK? where XYi are independent identically dis-

tributed random vectors, X, = (XlX They will be assumed to ha"e the bi-
ill 1X2

variate normal distribution centered at the origin with zero correlation coefficient,

i.e.,
2 T-l fxl x2

°' 2

The energy directly applied into the ground will be denoted by E and the

seismic velocity of the rock will be denoted by c . The distances Ri,

i = 1, 2., K, of the explosions fromn the origin are consequently independent

identically distributed random variables, and from (I), their common probability

density function is given by

Sponsored' by the Mathematics Reearch Center, United States Army, Madison,Wisconsin, under Contract No.: DA-31-124-ARO-D-46Z.
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21r 2  2  2

2) fl(r) r---- r tcos 8 s d- _r

12 0 e - a-
12

In particular, if a-, a-, a, then

2 2
()-2 -r /2• (O<r < o)(3) f I r) =ra- e -

It will be assumed that the free field stresses Pi' = 1, 2,... ,K, due to

the explosions are given by

(4) Pi X COE (R2 + d) i 1, ,2,...,K

where X, a, a . and y are positive parameters. Therefore PIPV ... PK are

independent and identically distributed random variables.

The following assumptions will be made about the survivability of the target.

(1) If max P, > M, the target will fail. That is to say, M is theI <_.i < K
maximum loading from a single burst which the target can withstand without

failure.

th(2) If P1 < pO, no damage to the target takes place from the i burst.

Further, if P1 > pO, some permanent damage is done to the target, in an amount

proportional to PI PO ' PO is the elastic limit of the target structure. Thus

we define

S"- PO if P i > PO

(5) Di = ( = 1,2, ... ,K)

0 otherwise

and D. is known as the degradation due to the ith burst. The'target will alsoI

fail to survive the K explosions whenever
K

(6) 3 D>
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Here D is called the maximum allowable cumulative degradation. It is assumed

that the accumulation of permanent damage is additive and has no effect on the

amount of damage produced by any subsequent explosion, or on M, the maximum

loading from a single burst which the target can sustain.

Thus we have that the target will survive K explosions whenever

K
(7) ID < and max P <Mi

The following relations between pO M, and D will be assumed to hold,

PO<M<D +P 0

Minor modifications in the analysis that follows would be needed, if this were

not the case. However, it is clear that these are consistency requirements

whichf should reasonably be satisfied by the three parameters given above.

In Section 2j we obtain the probability density function of the free field

2 2stress due to a single explosion, when ,= a This will be exploited in
Section 5, by exhibiting a number of examples to show how ý. itraightforwafd

examination of this probability density function may be employed in estimating

the probability of survival.

Section 3 contains a discussion of techniques for estimating the probability

2 2
of survival -when K Is fixed ( I. e., not a random variable), and when o1. a
(the circular bivariate normal distribution). The approximation methods used

here have been employed as the basis for a rcomputer program.

In Section 4, some comments concerning the suitability of the model are

. giwen.
.. I

I, .

40 , 1
,•,, ... 66 • • . .•

'ii , •



Section -6 discusses some methods which may be. employed if 2 0 (the

elliptic case). These are co"Mared with results obtained -in Sedtion 3 for

lo 2

Finally, section 7 provides a brief discussion of ihe eixn,sion,'the pr-,om

viOus results, if K is a random variable, rather'than a fixed quantity .

vi2. Thy Probability Distribution of the Free Field Streas of a Sinle Explosion

A substantial amount of useful information may be obtained by a careful ex-

amination of the probability density function of P, the free field stress. We

-will derive this function in this section, and riote some of its properties. These

will be exploited in Section 5 of this report,

It will be convenient to define

(8) OaXC E I

Thus, .from (4), we have .
(9)2 2(9) " P 6(R +d () (< R<bo0)

P P(R) isa mapping from 0,T). to (0, Gdi2 . On [0,.w), P isa mono-

tonic decreasing function of Rj and thus the inverse mapping P- (p) is unique-

ly defined foi every p, 0 p .< Gd" 2 -V and is a positive monotonic decreasing

function of p,.. Indeed

(10) P- P) f •p)/. -d•' ( o< pi _< 2• .y

Hence

() Pr{P S.p) Pr{R > P_ (p))

- Jfy(r) dr (p <ed" 2y)

P (P)~

Z47



I
where f (r) is given by (2) or (3) and p-(p) is given by (10)

We will restrict ourselves to the case oa = a' until Section 6. With this

restriction, fI(r) is given by (3), and integration of (11) yields

S(p < 0)

(2) Pr{Psp} a G(p) = ep /22 2.... ~(0 < p < ed-)

(p > ed" )

Then, the probability density function of P is given by

(13) g( p) (2y)-1 or-o ' p -( y+1)/%/ exp{-[( e/p)i/Y dZ]/2. 2} (0< p_<Od_2').

We now proceed to investigate some of the characteristics of g(p)

The median M of g( p) is readily obtained by solvingPa
{(e/MP) /-. d 2 /2Z0

(14) G(Mp) a-

or

l /y 2
PM d )/Z2a =log Z

Hence

2 2 '(15) Mp = 0( 2c log 2 + d)C

Here a 2 -log 2 is frequently referred to as the CEP (circular error probability)

so that we may also write

M 0 ([CEP) + d ]-

Similarly, the vth percentile of P may be obtained by setting the right hand

side of (14) equal to v/100

We can find the mode of g( p) which we denote by mp, by solving
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d log g(m P)
(16) - + n

P Y1 P Z2yo" -t Y J)

or'

(17) m e[2(Y+) 2-y

Thus, since

"g(0) .O g(d2 (z,) - 1 2 y+1) >

g(p) has a unique mode given by (17), whenever

m < d-Y

or equivalently, 
-

1/Z
(18)I•d ( l y+1)J he

1/2If, on the other hand, d(>2( y+j) then g(p) is monotone increasing, and

the maximum of g(p) occurs at Od'- 2

We conclude the characterization of g(p) by evaluatingthe moments (both

conditional and unconditional). Let A be any measurable set on (-so, ; then

the conditional kt moment of g( p), k k, A is given by

(19) kkA - EPiP 4 A)

kA k a.4ý
S.0e (R +dZ)k IR P- (A) }

"-1 f (r +d2 ) e ' rdr

Pr{Rt P (A) )- I) I
P (A)

which is obtained using (3) and ( 9).

Two particular cases of (19) merit explicit statement.

(1) If A is an interval (pl, p) with 0<p, < pa 98d' 2  
, then
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(20) $k,A -E{Pk"Pl- P :S P2 )

, k - , r 2  .. ... .,... . 2 ,, . ' ,• :L , .... . ; ' ,

Swhere

S€ zl rl.[(o/z)•f• . Z] z rZ -- [(e[/P1)•/• - d2]

We can wrlte (20) in terms of a tabulated function, the incomplete gamma-

function, as follows. In ( 20),p make the substitution
1r-= (2_r -r r

and hence

2rdr -1- dy

Thuu

We A= can "na f tY h icmp gaay

A 2o 2 - dy

where

(22) 1l (p_2 )/ (21- ( . )/ 2 -

S Accordingly, we now haveE{Pkip ,V yk) - r(l-yk , y))

( 2 2)Yk (e -*y

where
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ta-I

x

... is the incomplete gamma-function .-

.0,I pl.O 2 -Od then r1 O, M r 2  a 0 ndzweobtain the un-

conditional )th

d m/omeht

(da/2W pkfrtl - d/Z.l11
(24 ( 2 12yk

3. Estimating the Probability of Survival

We will provide two formulas for estimating the probability of survival. The

first (27) is more accurate, but substantially more difficult to compute. The

second (30) should nevertheless provide a good approximation for large K

Both approximations employ the central limit theorem of probability theory.

Let T be the event described by (7). Then Pr{T) Is the probability of

survival. We may write the event T as follows'

T = U {mof PP...,PK>Op • P <D +mpO, max P < M)
mOO K 0

Thus

Pr{T) a m ) K Pr"P . 'P >o m+lb Ir+2'' PK<POO t- m

max Pj < M)

•,(m Pr +Miop<' <M) e'(K-m)[(e/p°)l/Yd]zr
a ()Pr{ .Pt<D*+mP lP<P' P2'd"'/Pz

X Pr{P < PiP,... a Pm < M)
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The last factor is evaluated as follows:

(25) Pr(, i 7 -M)

-eM1 '- 2  2 2 -

A,{I-e

0 (ed <PO

To complete the approximation,. we estimate

(26) Pr{Z P ~.D + mk 1; 0p <PlyP 2,***p < M)

by meansa of the central limit theorem. Noting -that if M > Od 2 ~ M plays no

role in conditioning, we replace ( 26) by

Pr{L P < D + mpolp < 10P23 .Pm < min(M, Od')
Jii- 00 2Y m

Then, setting p1 = pop p2 a min( M, OcId mind A = (p 11 P2 ) we can obtain

ýkljA and "Z2 A from (20) and ( 23). Finally, the central limit approximation to

(26) is given by

2 {P±SD* + mpolpo PlP2#@4,Pm <p2) (0 D Im~P~

181 7, 4"i )
where .

*(X) * 1  et/dt

Thus we have
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(D +mp -MIA
(4~7) PrjT) eKd /2o ____z___)_0

M=O {e -e ýL I-A)' )

where y' and yZ 'are 'given by (22) with p1 a p*•jid "•=mi ' 14,Od" . "

The second and more tractable approximation is given by applying the central

limit theorem directly to the random variables Di, I 1 1, 2p... , K , In order to

do this, we need to evaluate the first two moments of Di

In general, we have, for k =1, 2, ...

E{Dk) = {DkIp<p0}Pr{Pp 0 ) +

=E{(P -po) kIP p0 ) Pr{P Z po)

fk az .r 2 02-
f p- p0 ) r" dr
a

where r2 is given by (21) with p =PO . Thus

r r2  2
E(D k f (e(ra+d2)' p.0) k r~r- e-r /2ar dr

0
rz

r k k 2 ~ k-t k-j 2-r/2W~.
.J, Z ( )e (r +d )"'j (-l) POr e'/ dr

0 JM0

"Hence, as in the derivation of (23),

(28) E{D I =J ( PO k (rp I-{r(- v I, 1) -r( i-J ,y)

where y• and y2 are deafned as In (22) with p, u p0 and p a -ed-2-y
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We now extend (28) to obtain the conditional moments of D conditioned on U
1~* < i = ,Z,...,K; M >P0) Clearly,

:-E p <M) DklP< min(M,Dd-, .)

Let pl=P0 , P P Z mnin(Mled'd ) and define ra nd r2 by (2)and and

by (2a) . Then,

(29) E{DkIp> P0 )

rl/ZaZ 2 r r2 /2r 2 d

•e f (p--p0) r "cO dr
r1

o k k j (*-I) k-J pok-J
(k 0. •1 ' -•r~l - -yj V, )r'(l- •,yz) •2

* j.O (Zo-.)'•

SIn paricular, if we denote £{DE P< p2 } by vY and E{D2 1P<p 2 } by v2 ,then

we have
K

Pr{) Pr{( D < D*I max P,<M)Pr{ max Pi< M)if15i<•<K L<i<x

and D Kvl. )-K(y -d 2 /Zcr2 )

(30) Pr{T eK

4. A Discussion Of the Model2

At this point; we digress briefly to note certain aspects of the assumptions

which have been made.

In.Seotions 2 and 3, we have assumed that the number of explosions was a

fixed quantity, However, it may appear more reasonable to suppose it to be a
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random variable.. We can see this as follows. If N missiles are fired at the

targt thlen some may not explode by virtue of defects and some may be intercepted

by defenses. Hence, for any given target, it may be reasonable to assume that

the number of missiles which explode is a random variable whose probability dis-

tribution depends on the number of missiles fired at the target, the reliability of

the missile system, and the nature and extent of the defenses of the target. In

Section 7, we provide a brief analysis of this problem. The results of Sections

2 and 3 will nevertheless provide reasonable approximations to this more compli-

cated model in a large variety of situations. In order to use these results in this

manner, '"K1 in Sections 2 and 3 should be interpreted as the expected value of

the random variable. This is accomplished by permitting K in (30) to assume

arbitrary real positive values, despite the fact that in the derivation of (30) , K

has been presumned to be an itrteger.

Then we note that the assumption of the circular normal distribution, L. e.

Cr 1 , which has been employed throughout Sections 2 and 3, may not be

completely justified. The usual nature of ballistics problems would suggest that

the two parameter family of probability density functions given by (1) should be

more appropriate, since there seems to be no reason to assume that the two error

components, distance and lateral errors, should have the same variance. This

assumption is relaxed in Section 6, in which we give a brief discusmion of some

suggestions for treating the more general problem.

In addition, it may be noted that the model'is quite sensitive to the choice of

the coefficients and exponents in (4) ; such as xcoEP, which we have denoted by

6, for instnncf.o.
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In Section 5, an example is provided, which shows that two moderately

different nhnimn., nf A n*~~~ ~A,~t ¶1.. C:j1 r

We also note that M remains constant during the entire bombardment. It
m

would seem more reasonable to assume that if Z D, > 0, m < K, then the
i=-

vulnerability to a single shock should be reduced for later shocks, since the

target has already suffered some damage.

Moreover, the basic formula ( 4), used in computing the free field stress,

appears to have certain defects. We point out in particular one defect.

If the target is located on the surface (i. e. d = 0), then the free field

stress for a direct hit is infinite, regardless of the magnitude of E . There are

many other plausible choices which might be used in place of (4) and would

still appeoximate (4) for d> 0 without the defect at d ý 0 . However, we have

proceeded under the assumption that ( 4) will give satisfactory results for those

values of R, d, c, k, a, 3, and E which are in regions of interest to potential

users of the results cited in this paper.

Whatever assumption we use in place of ( 4), there is still the followinq

concern. Since ( 4), or its replacement, will be obtained from empirical data,

we must assume that it is only approximately valid, but not exactly valid. Then

let

p Pr (P < M)

be the exact, but unknown probability. The answer given by (4), may be de-

noted by p +6 . Then, for K explosions,
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Pr P <M, P Z< M , . P K <M) = P

which we estimate by ( p + 6) K. If, we compare these two quantities, we havo

that approximately

P + K ,, pK e6K/p

for 6 small compared to p . Thus, for K large, very substantial errors may

be produced. We exhibit the magnitude for one simple example. Let p . 93

6v.04 and K=l2 . Then,

K K
p .4186 (P + ) .•8704

and

[(p+ 6)/p] K = Z. 079

Hence, even if (4) is nearly correct, so that p is approximated fairly well by

use of (12), raising to a large power will introduce very big errors.

5. Some Illustrations

We now show how Sections 2 and 3 may be employed to analyze the problei,, for

several ranges of parameter values, using a variety of rough approximation methods.

Example I. For a certain subset of parameter values, qM = Pr ( max P1 >M}
1<i<K

may be close to unity. If this is the case, it is immediately apparent that since
F

Pr (T}<: I - qM$ Pr{T} is close to zero.

From (1Z), we have, for M <ed"2

(31) q Pr{ max Pi >- M)
I<I<K

Thus, for 0 < e < 1, rim > I - e is equivalent to
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F2 S-(1-( ,¢K e-{(()/M)flY- d2)/'lzoz

Hence, q M 1 - e, whenever,

2 2 I/K 6 1/y
(32) d - 2( log(I-(l-0)/)<(e)

Therefore, whenever (32) holds for sufficiently small c > 0, it is apparent that

the probability of survival is negligible. In general, evaluating q (31)

provides an easily computable upper bound for PrfT}

Example 2. We now assume that M_ > Od 2  = p- , so that M plays no role in

the computation of the survival probability. If in addition, p0 exceeds m then,

since g( p) is monotone decreasing for p0 < p < p we may be able to replace

g( p) by a simpler function, such as a linear function or an exponential function

in that region. We will now briefly discuss the approximations obtained in this

manner.

From ( 12),
-{(e/p0)l/Y .- /•

(33) Pr{P < p0 } e e d G(p 0 )

Thus, out of K explosions, on the average, (I -G( p0 )) K will have a free

field stress exceeding p0

Let

(34) p P + p*

Then, if we expand g( p) in a Taylor series about •, we obtain

35 9( P) -- g( +(p - p) g'( A) +R( p), PO-1 p 7p
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where

R( p) 9,.2-•g(•

for some • between a and p

If R( p) is sufficiently small, we can replace g( p) by

3 I6) (p) =g() +(p- g' p) , P0O <• P '

Defining h( p) by

37) h( p) =(p)/(I- G(p0)), PO <- p - p*

we see that h( p) is approximately a probability density function and the conditional

moments of P are approximately the unc,'qitional moments of h( p) , That is,

38) E{p i p 0 < p k I P kh(p)dp

PO

To evaluate the integral in (38), it Is convenient to write

where, since h( p) is trapezoidal by ( 36) and (37), we can write

h 1 p) h( p*), Pc<- pP

and

h 2 p) h(ip) - h(p ), p <pSP

Js a linear function with h2 ( p) 0

The following elementary results of probability theory can now be employed:

1) The moments of the rectangular distribution on (0, b) are given by:

fbk d bk

k 0-79 k +--
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2) The moments of the triangular distribution on (0, b) defined by f(x) =2b-2 b-x)

0 <x 4 b are given bv

bzx

k b -2 kVk f 2  b (b-x) dx = 2bk /(k+Z) (k+l)
o*"*

It is convenient now to identify p0 with 0 nnd p -p 0 with b That is, we

define
R(p-po) h(p) _p - p

and

ht(P-po) h i(P) 1 =l,2; p0 <_p <p

Then, it is clear that there is a constant •, 0 < • < 1, namely

f h(p) dp =h(p* )( p po)

p 0 0PO

such that - q) is the rectangular distribution on (0, p -p and

(1 - )' h2 ( q) is approximately the triangular distribution on (O, p - pO)

Hence, the moments of ý( q) are approximately given by

,k k ' Pok ,k+1p* _ p~o) + (l-Q, 2( p*-po0) ( p -PO 4 "t~.
k k+l + (k+l)k+) - (k+1) "k+2 }

180



Thiiq fr)r ie 1, •A h

E{PIp <P<p} uP + *1.
0 0 l

We can interpret the above calculations as follows. About (I -G( p0 ))K explosions

will exceed p,, and of these, the average force will be about p0 + a1  Con-

sequently the average degradation per explosion exceeding p0 will be about a,.

Hence, the probability of survival Pr(T) will approximately satisfy

Pr{T) > . 5

if

D*_> l(I -G( po))K

and less than . 5 otherwise.

A more refined estimate of the probability of survival can be obtained by

computing the variance of P conditioned on p0 < P < p . Since the variance is
2 2

translation Invariant, e. a. x-a - for all real numbers a, the variance is

given by a 2 - a, and hence
2 21

2 (p*-Pc) 2 -o+2
SPIP <P<p- 3 4 1

We can now apply the central limit theorem, obtaining

O[- p*,~l ))Ktr A .ý

An alternative procedure which leads to estimating g(p) by an exponential

function can be constnrcted as follows,

Expand d log p given in (16) in a Taylor series about • obtaining,
dp
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dlogg(p) ~ +W(p
dp

Solving the indicated differential equation, we have
r2

K+ Tp+(/2)(p
g( p) ~ e

If we can assume that the second degree term in the exponent can be ignored,

then g( p) has an exponential approximation. The conditional moments can now

be readily computed and the central limit theorem can be applied precisely in the

same manner as above. The specific details are omitted.

Example 3, This example is introduced to give some indication of the sensitivity

of the probability of survival to changes in the parameters 0 and p.

It is apparent from (31) that we can choose 0 so that M < p and

qM > I-s for any c > 0, so that the probability of survival will not exceed

Now reduce e so that M = p and hence M plays no role in the analysis.

Then, the damage per explosion exceeding p0 is bounded by p P p0 and the

proportion of explosions that exceed p0 is given by I -C( pa). Thus, the average

total cumulative degradation can not exceed K(Dp* - pO)(l - G (p0 )) wh'ich for suitable

choice of pO, can be made less than D and hence Pr(T) can be made

arbitrarily close to unity.
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6. Estlimating the'Procability of Survival when 4' W r.,

From (2), we note that the marginal distribution of r, f (r) cannot be

obtained in closed form in this case, and consequently, the marginal distribution

of P can not be written in closed form either. Hence, in this case, we must

resort to numerical integration. This section will therefore be devoted to a

brief discussion of our ideas in this direction, and to the manner in which they

may be exploited to obtain estimates of the probability of survival.

Consider the Integrand on the right of (2), and note that for -0 max(0oa- ).

we have

2 ( 2 2 2 2 2
rcos 0 sin . r cos + sinr W r• 1 2' °0 0°'

Thus for r2 /o"2 sufficiently large, the integrand on the right of (2) does not

provide any appreciable contribution to f Cr), and for purposes of integration,

we can replace f (r) by zero.

in brief, for any bounded function g(r), there is a real number S, such

that we can replace

00 S
f g(r) f(r)dr by f g(r)f (r)dr
0 0

We wil therefore evaluate fI(r) numerically for a sufficiently dense set

of r values, 0 < r < 8, so that Integrations of the type denoted above can be
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evaluated by numerical methods ( Simpson's rule, for example) , with sufficient

accuracy for our purposes.

Since the Integrand in ( ) depends on 0 only through sin and cosZO

for each fixed r we can choose a uniformly spaced and sufficiently dense set

of 0 values in 0 < 0 < v/2 to evaluate f (r) numerically.

Then, using (11), we compute

(39) Pr(P<P 0 } po) f,(r)dr
r2

and

S
(40) Pr(?< M :f rdr

where

w[(e/M) /Y. dZJI2 2 , M < ed'

(41) r1  I

0 ,M > Od" ,

and

r O [(B /p0 ) "dZjl/2 0 <. PO min(M, ed"
(42) r 2

0 otherwise

We now proceed, much in the same manner as in section 3, by applying

the central limit theorem to the random variables D1 , D2 , .. ,, DK, and therefore

obtaining the analogue of (30). In order to do so, it is necessary to compute

the conditional first two moments of the degradations D1 , given that P < M,

Hence, we readily have that
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E ( lP < M) E(Dk`jR > r)

"f )k fI(r) dr( fI r) dr3

Nence

(43) E(D kip < M, 1 )"+ - po]k fI(r) dr r)d

Designating E(D P < M} Dy P1 and E(D P < M} by A2, we can now write

the analog of (30), .e.,

(44) Pr (T) 0 ( 1 }Pr P <.M )K

Two suggestions for applying the methods of seotions 2 and 3 have been

considered. In one of these, we compute

E(R) uf rf1 (r) dr
0

and equate this to £ cr . Then, the solution for o, ,

(45) a j(R)r" - o.a5776 E(R)

can be used in (3) to obtain an approximation to f (r ) which avoids the

complications of this seotion.
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Alternatively, one may consider finding su,.h that

f f (r) dr --

0

and equate R to the median of f1lr) in (3), i.e. set

*Z 2
(46) = 2 (10z)-

and use the value of o" thus obtained in (3). Some numerical comparisons

have been made between the results of (44) and those obtained by using (45)

and (46) to simplify the problem.

It was noted that the discrepancies are substantial, suggesting that the

two proposed approximations are not very good. A careful examination of the

discrepancies shows that the estimation of Pr( P < M) is fairly good for a

single explosion, but the exporinntiation for K explosions produces large errors;

this phenomenon wits previously noted in section ,4.
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In the preceding sections, it was tacitly assumed that K, the number

of missiles that ponetiate the defenses arid explode in the neighborhood of the

target is a fixed quantity. The purpose of this section is to give some idea of

the extent to which the probability of survival of the target is sffected by allowing

K to bn a random variable rather than a fixod quantity. To this extent a number

of computations have been performed in which K is a random variable with a

probability distribution pN(k), where

Pr(k missiles explode IN sent) - Pr(K k} - PN(k))

We consider two possible models which lead to the following different choices

of pN(k)

(1) the binomial dintribution

U i) a mixture of two binomial distributions

(I) Assume the probability thot each mýssile explodes remains the same

for Lil missiles, and that whether a given missile explodes or not is independent

of the performance of any other missile that is sent. We denote the constant

probability that a missile explodeb by r and hence We have

,N k N-k(47) P(Kak) a p(k) ) r (l-r)

Then, the probability of survival is given by

(48) Pr ( ,r) PN(k) Pr (Survival X k1
k .0
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Some rnumTerical computations hav, hct-n made, for N = 17, r . 7, and in which

(30 ha; been used to estimate PrfSurvival K =(17)(. 7) = 11. 9}, which is the

expected value of K. These comparisons were made for 6 selected choices of

8 and two choices of L , leaving a, M, and p0 fixed throughout (12 compari-

sons in all). Over the set of comparisons, it was noted that the maximum

difference between the probability of survival computed using (48) and the

probability of survival computed using (30) was . 015, suggesting that the

approximation using (30) may be quite good for a fairly large range of

parameter values.

It has also been noted that the approximation tends to improve as D

increases. This is fairly natural, since the central limit approximation employed
i*

"in (30) will tend to become more accurate as D increases.

(iH) It is natural also to envision circumstances in which the probability

of a missile exploding may change as the circumstances governing the defense

of the target change. Suppose that if the defenders have been warned ( for

instance, with respect to the direction of approach of the missiles by the DEW

line) then the defenses can eliminate about 15 out of a fliyht of 17 missiles on

the average, but if they are not warned they can eliminate only about 2 of them

on the average. Suppose further that the chance of getting such a warning is

approximately 25%1

In general, from this point of view, we will get a mixture of two binomial

distributions, i. e.

Nk 1_,N-k +1N-k
(49) PN k) r(Nk " rOrl-r )2+(l) ( 1-k)rZ2l r2)

where 0 <45 <1. For the above set of circumstances, we would have 4 =. 25,
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and for N =17, as in part (i) we could take r ..12 and r~ .88. (48)

applies with pN(k) as given in (49).

To approximate in this case using ( 30), we can evaluate (30) numerically

for K a NrI and for K - Nr2 , and then average these two results with weights

r and I - ý respectively. The ntrmerical comparisons which have been made

suggest that this recommendation should have wide applicability.
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SIMON AWARDED 1966 WILKS MEMORIAL MEDAL

Major General Leslie E. Simon (Ret.) received the 1966 (second)
,jaiiucl S. vilks Mviermoriai Medial ouring the Twelfth Annual Conference
on Design of Experiments in Army Research, Development and Testing,
which was held at the National Bureau of Standards, Gaithersburg,
Maryland, 19-21 October 1966. General Simon has long been recognized

both on a national and international basis for his outstanding contributions
to Army statistics, reliability, quality control and promotion of statis-
tical activities generally. General Simon was a long-standing friend of
Sam Wilke and conferred with Sam on many statistical problems and

! activities.

"The Wilke Award is given each year to a statistician and is based
primarily on his contributions, either recent or past, to the advance-
ment of scientific or technical knowledge in Army statistics, ingenious
application of such knowledge, or successful activity in the fostering of
cooperative scientific matters which coincidentally benefit the Army,
the DOD, and the Government, as did Samuel S. Wilks himself.

Dr. Frank E. Grubbs received the initial Wilks Medal in November
1964, and Dr. John W. Tukey of Princeton University received the first
Wilke Memorial Medal in October 1965 at the Eleventh Design of Experi-
ments Conference.

The Award consists of a medal, with a profile of Professor Wilke
and the name of the Award on one side, and the seal of the American
Statistical Association and the name of the recipient on the other side;
an honorarium related to the magnitude of the award funds donated by
Mr. Rust; and a citation.

With the approval of President Frederick F. Stephan of the American
Statistical Association, the Wilks Award Committee.for 1966 consisted of:

Professor Robert E. Bechhofer, Cornell University

Dr. Francis C. Dressel, Duke University and the Army
Research Office-Durham

Dr. Churchill Eisenhart, National Bureau of Standards

Professor Oscar Kempthorne, Iowa State University

Dr. Alexander M. Mood, U. S. Office of Education

Dr. Frank E. Grubbs, Ballistic Research Laboratories,

Aberdeen Proving Ground, Maryland -- Chairman
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"The tatic•, •,- -[, Lnu secund Wiics medalist reads as follows:

"To Major General Leslie E. Simon for his pioneering
contributions to Quality Control, Sampling Inspection,
Reliability and Army Design of Experiments, and for
his timely promotion of statistical activities which have
benefited not only the Army but our governmenW 4 nd
country as well."

General Simon received the second Wilke Memorial Medal at the
banquet of the Twelfth Design of Experiments Conference, the presenta-
tion being made by President Frederick F. Stephan. General Simon
replied as follows:

"President Stephan, Chairman Grubbs, ladies and gentlemen:
I am most grateful for the honor that our Association has seen fit to
bestow upon me. However, I am primarily a professional soldier;
and secondarily a statistician. Thus, I had difficulty in rationalizing
the bases on which my colleagues came to the conclusion that one of
my statistical attainments should be so honored.

"While considering this matter, I happened to read a letter from
Alfred S. Romer, President of the American Association for the
Advancement of Science, that was published in the September issue of
the Bulletin of that association. Two paragraphs of that letter, I believe,
not only explain the place of the AAAS in the whole regime of the
scientific community, but by analogy apply equally to the very important
role of the American Statistical Society in the large and diverse field of
statistics. Additionally, these paragraphs may be of some application
to individuals. I would like to read to you these two paragraphs.

'When the Association was founded, well over a century
ago, all American scientists could -- and did -- meet in one
small hall; in those days specialization had not advanced far
in any field, so that an astronomer, a chemist, a botanist
could all talk more or less understandably to one another,
But the number of American scientists grew constantly and
specialization increased, creating a babel of often mutually
unintelligible scientific tongues. In consequence, a centrifugal
process set in: special societies in various fields were
established; and with the continual increase in number of
scientists, it long ago became impossible for any city in the
country to accommodate at one time all the members of all
scientific groups.
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'Although many major societies iow meet separately, the
annual meetings of the AAAS still include technical sessions
in nearly every area. Most important is the fact that the
"Abu•hIciun is the one organization appropriate for symposia
and conferences in interdisciplinary areas. Still further,
there are many subjects of common intcresL to scientists of
every sort (government relations to science, for example),
and the AAAS is the appropriate forum for discussion of such
problesna.

"The centrifugal process described by Dr. Romer surely took place
in the science of statistics quite as much as in any field of science.
Furthermore, the American Statistical Association is the one organiza-
tion that binds together the common interests of all the specialized

statistical organizations. About twenty years ago, I had the honor of
being a member of an ad hoc committee appointed to consider the future
of ASA and it recommended that rendering this service should be a goal
of ASA.

"The implication of Romer's remarks to individuals is one additional
step in logic. The number of statisticians has increased enormously,
during the last quarter century, along with concomitant gains in powerful
statistical tools and increased recognition of the importance of Statistics.
One who enters a field while it is in a rapidly expanding stage naturally
has more opportunities for, identifiable achievement than one who enters
after it has become mature and more densely populated. In a mature,
activity, one exchanges some of the challenges of pioneering for the 4
important, but less conspicuous satisfactions of pleasurable cooperative
work with colleagues, the enjoyment of more sophisticated techniques
and pride in the perfection of one's work.

"Timing one's entry into a field is only slightly more practicable
than making a judicious selection of one's ancestors. as sometimes
recommended by the medical profession. I made ng choice. However,
due to the need for better methods for solving Army problems, I happened
to begin work in Statistics relatively early and under favorable circum-
stances for ready identificatiorA and I cannot escape the belief that the
perspective of my work is enhanced by a rather chance sequence of events
similar to that described by Dr. Romer. Thus, I am doubly grateful:
first, for the pleasure and satisfaction of working in a most engagind and
rewarding field, and second, for the generous recognition awarded me by
my colleagues."
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SINGLE DEGREE OF FREEDOM ORTHOGONAL COMPONENTS
OF A FACTOR AT 2 K LEVELS IN TERMS OF LINEAR

K FACTORS AT 2 LEVELS

Joseph Weinstein
Electronic Components Laboratory

*--U. S. Army Electronics Command

Fort Monmouth, New Jersey

INTR ODUCTION. F. Yates (1937) algorithm for resolving a set of

2K observations from a factorial experiment on K 2-level factors has

many desirable properties for the data analyst. Briefly, it is easily
learned, readily programmed on a computing machine, requires only
the simplest arithmetic operations which limit the possibility of "blunders",
and it gives estimates of the effects of all K experimental factors singly
and their joint effects 2 or more at a time.

To illustrate the algorithm for those unfamiliar with it we consider
the set of numbers

i 1, 2, 31 2 K
Xr = 0, 1, ..Z . K

where X, represents the input data obtained from the factorial experiment
and is structured in the standard order.

Then one computes

( 2(2i.1),j+ 2i,j(2) x. --j(2) = j "X(21 1 2K),J +X(zj.2K),." 1=2 (K-1) 21(K- )+2,

2K

iterating until j K-1 so that the contrast vector X has been computed.
ik

For K = 2 and the treatment factors A and B the input data, X can be

represented by the treatment combinations: (1), a, b, ab; where the non-
appearance of the small letter (a) implies that one of the levels of that
factor (A) was included in the conditions giving rise to that observation and



the appearance of the small letter (a) implies that the other level of the
factor (A) was present. Then application of the algorithm gives

Xio Xil Xt

(1) (1)+a (1)+ aa+b+ab

a b + ab -(I) +a - b + ab

b -(l)+a -(I)-a+b+ab

ab -b + ab (1) - a - t + ab

The entries of the last column will be observed to be respectively the

sum of the input observations
the contrast of the A factor

(3) [tethe contrast of the B factor J
the interaction contrast of A and B

Where an experimental design involves one or more factors which are
varied over a number of levela which is a power of 2 we shall show that
the computational advantages of Yates Algorithm can still be retained in
the data analysis b' relating linear combinations of the resultd obtained
to the desired factor effects. For a factor at 2 K levels these desired
factor effects are of course

the sum of the observations

Linear effect of the factor
Quadratic "

(4) Cubic " " Ii

(zI Kl) ,

Thus for a factor X which is to be varied over 4 levels K 2 and our
interest is in the first four rows above and we shall examine how they
relate to the four rows of (3) which involve 2 factors A and B each at
2 levels.

Practical Solutions and General Solutions. Given that we will repre-
sent the four Levels of an experimental factor W by the four treatment
combinations available from 2 dummy factors A and B which range over
2 levels, the question of assignments arises (for this can be made in
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4! ways). These 24 possible assignments are detailed in Figure I -

110 Matrices" which relates the levels of W (wl, wP w3, w4) to the

Streatment combinations of A and B by the appearance of a I in the row
i and column anA 0 elsewhere.

I • For example

(1) a b ab

w 0 1 0 0

1w 1 00 0
• !w3 0 0 1 0r

30

Sw4  0 0 0 1

assigns wI to a, w2 to (1), w 3 to b and w4 to ab.

It is immediately apparent that practical limitations will constrain
a catalog of relationships to the case of a factor at 4 levels. For the
next step would involve K = 3, or a factor at 8 levels, and 8! (=40, 320)
possible ways of assigning the factor levels to the eight treatment com-
binations (1), a, b, ab, c, ac, bc, abc. However, the constraint is
certainly not severe in the case of experiments with physical factors since
the investigator is rarely concerned with effects higher than cubic.

S. Furthermore the difficulty arises from the desire to catalog all cases.
But, if an arbitrary assignment is made between the factor at 2 K levels
and the treatment combination of K dumm'ny factors at 2 levels each, then
the following argument applies in general for all values of K for that
assignment.

KThe General Solution. Given a factor W'at 2 levels and K dummy
factors F1 , F 2 , --- , F each at 2 levels which can represent 2 K treatment

combinations of a full factorial experiment we may represent the assign-
ment of treatment combinations to the levels of W as a matrix equation.

* (5) W- OX

where W is the vector (W1, w 2, .... W2K)T

K K0 is a 2 by 2 matrix of 1 's and 0's such that only
one 1 can appear in any row or column

197



X is a vector of treatment combinations in standard
order for the K 2-Ievel factors

((1), fit f2 , f f2 , f f .K fT

We represent the conputations of the Yates Algorithm by a matrix
operator N which is also 2K by 2 K and define the results of operating on
the input observations X by N as Y (the contrast vector for the sum of

0

all the observations, the K factor effects F1 , F 2 , F. and the

2 -K -1 joint effects of two or more factors), Thus,

(6) Y = NX

since N Y X equation (5) yields

(7) W = ON Y

Consider that a direct method of operating on W by some matrix operator
M which would yield the desired vector of factor effects (such as(4) )
could be represented by M, Then

(8) fl MW MON Y (From (7))

Such direct operators M do exist and are in fact the contrast coefficient
vectors to be found in tables of orthogonal polynomi4ls (usually limited to
components of 5th degree or less).

Since M and N exist and 0 can be cataloged for K = 2 (or assigned
arbitrarily for K> 2) it is possible to evaluate MON'i for all values of 0
and thus define the linear combinations of components of Y which corre-
spond to the desired components of the real factor W.

The procedure is illustrated for K = 2 and particular values of 0
selected from the catalog of 24 possible values of 0 given in Figure I.

For K =2 M and Nare given by
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(3 1 1 3

-1 3 -3 1 . -1-1 i

then Nl can be shown to be 4/4)N T and the special cases for 0 labelled
1, and 7 will be used to evaluate MONw1 0 ,0 0 1o0o0

SOl 0 1I 0 0 O1N-0 1 20
* forO01 MO N'

0 0 1 0 00 0 1

Thus CZ MO1N-I Y has components

WT: sum of the input date = sum of the input data

"WL: linear contrast for W = dummy contrast A plus twice
dummy contrast B

W quadratic contrast for W = interaction contrast for
dummy factors AB

W cubic contrast for W = twice dummy contrast A minus
dummy contrast B.

Similarly for 07 1 0 0 MO N 1 0 0 0
1 0 0 0 0 0 2 1

0 0 1 0 0 1 0 0

(o 0 0 1 0 0 -1 2

and the components of C are defined as

W T :sum of the input data sum of the input data

WL2 linear contrast for W twice the dummy contrast B plus the
interaction contrast of dummy factors AB
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I

W: quadratic contrast for W dummy contrast A

W C cubic con.rast ior W = negative oi dummy cunLr&LuL B plu LWUCC Lilt!
interaction contrast for dummy factors AB,

The complete catalog of such relationships for the 24 possible
assignment matrice- 0 is given in Figure II "W components of MON 1 Y, Y"

Finally, thc equivalence of results obtained by this Extended Yates
procedure and by conventional procedures for obtaining single degree of
freedom contrasts for experimental data is detailed in Figures IIl, IV and
V for the case K = 2 and assignment matrix 0. Here we consider a
foctorial experiment in 16 runs Where a factor W is at 4 levels and two
factors C and D are each at 2 levels, First consider the conventional
procedure. Figure III in column heading "real" lists the standard order
of the real treatment combin'-.tions (in practice this would be the column
of observations obtained from the experiment). The 16 columns at the
right list the coefficients for multiplying the input observation on the
same row such that the sum of products of the input observation by its

coefficient estimates the factor contrast named at the head of that column.

Similarly, Figure IV also develops single degree of freedom contrasts
from an experiment on 16 runs assumed to be a factorial experiment on
four 2-level factors A, B, C, and D. Here the 16 columns at the right
list the coefficients required to obtain the contrasts named at the head
of the respective columns.

Extended Yates Procedures. Figure V is the result of combining
the columns of Figure IV according to the rules of row I of Figure II
(since 0, was used to assign W to dummy factors A and B). It is observed
that these 16 columns are exactly equivalent to those in Figure III.
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0 - matrices

available for assignment of A and B
treatment combinations to levels of W

1 2 3 4 5 6
1000 1000 1000 1000 1000 1000
0100 0100 0001 0001 0010 0010
0010 0001 0010 0100 0100 00010001 0010 0100 0010 0001 0100

7 8 9 10 11 12
0100 0100 0100 0100 0100 0100
1000 1000 0001 0001 0010 0010
0 0010 000 1 0010 1000 1000 0001
0001 0010 1000 0010 0001 1000

13 14 15 16 17 18
0010 0010 0010 0010 0010 0010
0100 0100 0001 0001 1000 1000
1000 0001 1000 0100 0100 0001

S000 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0

19 20 21 22 23 24
0001 000 . 0001 0001 0001 0001
0 100 0 100 1000 1000 0010 0 0 10
0010 1000 0010 0100 0100 1000
1000 0010 0100 0010 1000 0100

Figure 1
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W Components of MON Y

Total WL WQ WC

T A B AB T A B AB T A B AB T A B AB

1 1 1 2 1 2 -1

z 1 2 -1 -1 -1 -2

3 1 1 -2 -1 2 1

4 1 1 -2 -1 2 1

1 2 1 - 2

6 1 2 -1 -1 -1 -2

7 1 2 1 1 -1 2

8 1 -1 2 -1 -2-1

91 -2 1 -1 l 2

10 1 -2 1 -1 1 2

11 1 1 2 1 2 -1

121 -1 2 -1 -2 -1

"131 1 2 1 2 -1 "

14 1 -1 2 -1 -2 -1 .
15 1 -2 -1 2 1

16 1 -2 1 -1 1 2

17 1 2 1 1 -1 2

18 1 2 -1 -1 -1 -2

19 1 -2 -1 1 1 -2

20 1 -2 -1 1 1 -2

21 1 -1 -2 1 -2 1

22 1 -1 -2 1 -2 1

23 1 -1 -2 1 -.2 1

24 1 -2 -1 1 1 -2

Figure II
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CONDITIONAL EFFECTS AND INTERACTIONS
IN SYMMETRICAL FACTORIAL CONFOUNDING

Is""'l, I "AL CATION TO BIOLOGY

N. R. Bohidar

* Biomathematics Division, Fort Detrick, Frederick, Maryland
* •C-E-I-R, Inc., Los Angeles, California

"* IINTRODUCTION. The conditional effects and interactions (CE&Its)
associated with a facto-rial experiment have the property of establishing
direct and reciprocal relationship among the various main effects and
thereby improving the interpretative information of such effects. They
have also the virtue of alleviating, to some extent, the broad problems of

S* interpretation of higher order interactions such as four or more factor
interaction, contrasts of the type linear x quadratic x linear x cubic or

3 2
AB C , etc. by assigning appropriate interpretation to their respective
conditional entities. In this treatise the concept of conditional effects
and interactions is introduced in consistence with the general theory and
rmodulo notation associated with symmetrical factorial experiments. The
treatment consists of algebraic definitions, determination of conditional
effects and interactions for a given situation and orthogonal partition of
sums of squares in general anova procedures. The problem of estima-
bility of the CE&I's under classical confounding have been considered.
Simple rules have been developed for rapid examination of the estimability

* of the CE&I's under confounding conditions by the application of elementary
operations of theory of sets. The interpretation of CE&I's is explained
by a numerical example from a biological experiment. The topics such
as conditional confounding and its impact on fractional replication, frac-
tional factorial, asymmetrical factorials, etc. , are not presented in this
treatise. The theorems and the proofs are heavily based on the properties
of finite geometries derived from Galois fields and finite projective and
Euclidean Geometry and combinatorial theorems. No proofs will be given
here. Only the definitions and the salient properties will be described.
The notation will be consistent with the general factorial notation.

DEFINITION OF CE&I'S AND PROBLEM OF ESTIMABILITY. The
CE&l's are generated by decomposing the total dimension of the factor
space into interpretable dimensions and it in expected that the problem of
estimability of such effects and interactions becomes an immediate concern.
The mathematical theory of factorial experimental design follows directly
from the theory of linear models based on the Gauss-Markoff theorem
which states that Y, the response vector with n components if expressed
in terms of the following linear model,

Y= XP + e

V" __•+



where • is the column vector of p unknown parameters, X is the design
matrix of dimension n x p and e is the error column vector with n
components, then the best linear unbiased estimator of P is,

obtained from the solution of the following normal equations

SIXAX I. X'Y

where X*X is noa-singular and the"e is & unique inverse associated with
X'X. But the factorial experimental design matrix is not always of full
rank and so one is interested in investigating the conditions of estimability
of a linear function of the P's such as .X'P where A is a column vector with
p components. Now let A'a3 be estimated by a'y. One proceeds to
minimize the variance of aly = a'ao" under the condition of unbiasedness,
a'X = k' with p constrains by the use of the Lagrangian Multiplier p. Now
solving the equations 8Q/8ai, i = 1,2... n and where Q is the expression

to be minimized we have a - Xp or X'Xp = A. This equation provides one
with a condition of estimability which states that, if there exists a p such
that X'Xp a X, the coefficient of the linear function of the P's, then A'V is
estimable. In defining CE and Ils, the conditions of estimability are .
appropriately incorporated into the definition, and if one follows the
definitions and the constrains associated with the definition, the problem
of estimability does not arise.

In consistence with thL normal factorial notation, p denotes the level
of the factors where p is a prime number, n denotes the number of thefactor and the treatment combinations are denoted by Xlx2 ... xn, xt, i =I, 2, .. n,

being the level of the I factor where x takes the value from 0 to (p-1).
There are pn treatment combinations, there are pn-1 degrees of freedom,
there are (pn-1)/(p-1) contrasts each with (p-I) degrees of freedom and
each contrast with (p-1) degrees of freedom is associated with p-sets of .
p n- treatment combinations. All numbers are expressed as reduced
modulo p. Confounding for pl in blocks of ps requires n-o independent
effects or interactions to be confounded along with all generalized effects
and interactions with a total of (pn-s -)/(p- 1) effects and interactions con-
founded. By considering the modulo definitions for the (n-s) independent
effect or interaction confounded, one can generate the pn-s blocks. The
total degrees of freedom confounded is (pn"9-l) and the number of effects
and interactions each with (p-1) degrees of freedom have (pnS- l)/(p-s)
effects and interactions confounded. The total number of systems of con-
founding for a pn experiment in blocks of p8 is equal to
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[((P,_,) (pfl~p) ... (pn..r a-I) E~n-a_, (n-sa) s-ispna~

Definition It The symbolical representation of conditional effect
and interaction with one condition is

c~nvent~oA B~ ... nd N= N ~,..(-

Whete 4 t0, 1 1, 2., n take integral values- between 0 and p- I aftd by
cone tonfirst a.1 J0 * 1, the X is any factor letters A, B, .. N for

whc t orsodn ka ,..n n '1 .

The expression in (1) defines contrasts among p-sets of treatment
combinations satisfying one of the p following equations,

E ax X 0 od p/xk q

a X1  (p- 1)mod p/x q

where a a take integral valuesabetween 0and p -.1 k 1, 2,....n, q takesa
integral values between 0 and p-1, k can take any value 1, 2....n for
which ama 0 and it refers to the kt coordinate in the n-dimensional space.

If p w3 and n z.4. then one is dealing with 3 -case. AB /C is
estimiable since aIa 1=, C 2  CL 3 W C 4 =0,X = Cand j=O0wlit%

congruential equation EX, + 2x 2 a0, 1,2 mod 3/x3 - 0]

* Definition T1. An effect or interaction conditioned on more than one
effect is a conditional effect or interaction with multiple conditions
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(2) A B C N...Nz/w/v /.,

where aIn take integral values between 0 and (p-i)
i4

kJ 0,1,...p-1
S.k O*1 ... p.I

W takes the factor letters A, B,... N for which a = 0

w
Y takes the factor letters A, B,.. . N for which a = 0

and for which W / Y

Z takes the factor letters A, B,... N for which a = 0
and forwhichWJyJZ .

The expression in (2) is defined by the contrasts among p-sets oftreatment combinations satisfying one of the p following equations,

M C'l~ X 0rood p / qr=q k=a2. lm- ,
n

"11

Q = x , -1 rm o d p / x. j = q / X = q 2 / ' / x , = q n ,

E aix i --(p- 1) modp/xj =ql/ xkm q2 / ... '/xm qm

1=1

and j=1,Z,...n and 0 < q, -< p-I

k--1,2,...n and 0 < q2 < p-1

nj n and 0 < q < p-i
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4
In the case of 3 the conditional nffpt* A /'Ak Ir" -r----

since a1  1a 2 C = L 0and W/j Y /Z. For this case the

congruential equaton on: x 0, ,Z mod 3/x mc~lx

andecte quadraticefetcuiefetec.Telna effect is defined a

p- 1  2

jul2 1.iJ h 2J 8

adteqartceffect is defined as

dforin th cnrt.Frnequally spaced levels and A 1 , rerset th q ,se o the pst

p-i

and A" Z C A

where Z C=0 and MC 1(q 1 -)0.

The sarne line of argument is followed for the other higher order
*polynomial effects.

Definition IV. The expression in (1) and (2) wi±1 be called condi-
tional effects anid interactions (CE&IJ and the unconditioned effects and

di C2 n
interactions of the type A B ... N will be called classical effects
and interactinns.

adPROPERTIES OF CE AND 1'S. The following are the combinatorial

adstatistical properties of the conditional effects and interactions.

all



Property No. 1: The total number of conditional effects and interactions
and the classical effects and interactions for a given p and n is

N(n,p) l(2p)n - (p+l)n]

where n>2 and p is a positive integer. The exact number of CS and I's are

N'(n,. p) ( 2,p)n. (p+i)~n..(p1 . l)

A Table of N(n,p) and N'(np) have been presented in the Appendix.

Property No. 2: Consider an effect or an interaction, denoted by
al o2 C n L

A B .. N /W./Yk/... /Z defined by the following equations

n r

ixa = 0 rood p/xk =ql/. /x q

n a+•xi = p-I pod p/xk -- ql/.../xm =qm -

i=l

With other conditions satisfying, each equation satisfies

(PTi-lk 1

treatment combinations where k = number of conditions associated with
the conditional effects and interactions.

Property No. 3: Consider a conditional effectand interaction1B°2" anA ...N /W where W is any factor letter A,B,.. .N forwhich

ow 0 and j 0,1,2,.. .(p-l). If W is kept fixed and the congruential
equations associated with the effects and interactions are solved for each
value of j a 0,1, 2,... (p-i), then p contrasts are generated and they
are mutually orthogonal contrasts.
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Property No. 4: Consider a conditional effect of interaction denoted by

AalU ,an/,, / .. N j/ 4k/- wiLn £1 conditions, where -W, y, .. Z

and j,k,.. m all satisfy conditions proposed in (2). If W, Y,... Z are
kept fixed and the congruential equations for the effect or interaction are
solved for each combination of the.values of J, k,.. .m, then pr contrasts

are generated. They are all mutually orthogonal contrasts.
a2 n

Property No. 5: Let the symbol A .. N denote the numerical
totals of the effect or interaction under consideration, then we have

P 1 a I a 2 a n/a1 a z Q
E (A A ... Nn/w )=A B ... Nn

.j0

This can be extended to the case with multiple conditions

p-I p-I p-i aI a an
E E ... E (A B ... N nW./
j=O k=0 m- .-yk/.../Z)

=A B 2...Nn

Property No. 6: For p> 3 , property 5 can be extended to the polynomial
effects, such as ,a

p-I a I CL C n ), a 1I a CLn)

z ((A B ... N N),/wJ (A 3 ...

X C[(A 1B .. N n) /W (A 1 .N
J.0

So also for the multiple condition case

p-1 p-1 p-1 a1 a 2 aa C

z ... M [(A .. N l/ kl...Izrn
JiO ku0 m-0

tl a a)
summied overpr terms p(A B ?,..N
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'ii
a ala an

£~JI~1y vu.7: Lc At~ 12 . .. 14 Ue LIC LULdCL ul the eiject or in'ter-
action under consideration, then the sum of squares for the conditional
effects and interactions (SS(CE&I)) can be expressed explicitly as follows

a -i
~~~~~~~~~2 .

....... 
4A. 

. .... ,...,••...

where r is the number of replicates and A's are the coefficients such that
SZAi f 0. It X. Y,.. Z are kept fixed and for each combination of the

values assumed by j,k,.. .m, a sum of squares is calculated then this
p-set of sum of squares forms an orthogonal set for the analysis of

variance tests. The conditional sum of squares can be expressed in terms
of the combination of classical sum of squares as follows

p-i p-i p-I a 1 a2 a 2 2
E z ... E (A B N Ix/Ykl... / ) r 1

j=O k=0 m=O

Cl Q.2 aL a a L a

-SS(A B ... N )+ SS(A B ... N nX) +... + SS(A B ... N Z)

where the definition of X, Y,. ... Z and j,k,.... m are the same as given
in (2). It is also noted that the expression in (3) generates single degrees
of freedom contrast sum of squares.

CLASSICAL CONFOUNDING AND ESTIMABILITY OF CE&I'S. The
problem here is the following:

Let a classical effect or interaction A B ... N ndefined by

n
X ax, = 0,1,2,.. .(p-1) modp
i-LI

be completely confounded with blocks, then what are the conditions of

estimnability of the following CE&I

aL a aL
12 n I YkA B ... N /W /Yk/...Zm

n
definedby E a.x x 0,1,2.. (p-1) mod p/iql/xkfq2/ . xm

j=1
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where the a I's, W, Y,... Z and j,k,... m meet specifications given in ().
The problem can be extended to cases in which two or more classical

eifects or interactions and their generaiizea mteractions are completely

confounded. The problem reduces to the fact that there are pn-S blocks
each containing p8 treatment combinations and one is interested in finding

a contrast among pn-i-1 treatment combinations such that the contrast is

orthogonal to pn-B blocks.

The approach to the problem here will be to devalop rules for rapid

examination of the estimability of a given conditional "effect or interaction
under classical confounding based on simple mathematical manipulation.
The theorems and proofs of the results are completely omitted.

o In this problem we have three types of effects or interactions:

(i) Confounded effects or interactions and their generalized interactions,

(ii) Conditioned effect or interaction,
(iii) "Conditions" (effects used as conditions).

Each of the effects can be represented by their respective coordinates of
the factor space.

'Let r be a finite set of coordinates in the n-dimensional factor space,

Let • be a subset of r' containing the coordinates associated with the

confounded effects or interactions

where j,k,m= 1, 2,...n and

P= PIUP U...U Pr

1.

where I's are subsets containing coordinates of the ith confounded effect

or interaction out of r such confoundeded effects or interactions. P is then
the union of the coordinates of r confounded effects or interactions and
their generalized interactions.

* Let y be a subset of r containing the coordinates associated with the

conditioned effects.
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. x {X -J - Xkl

Let fl be a subset of r containing the coordinates associated with
the "condilions"

II a {XiD~p**x k

wheto -fl1 . n1 Un 12... Unr

if there are r conditions associated with the conditional effect or
interaction.

Now by the application of simple rules of set operation we derive the
following new quantities, in three steps:

Step 1. 8 = AU?

Step 2. 2 = P3Uy

Step 3. 60 -- ( 1lUnz)) 6

The conditions of orthogonality to pn-S blocks are as follows:

(i) if 6o = 6

then the conditional effect or interaction is not orthogonal
to blocks

(ii) if 6 0 j 6

then the conditional effects and interactions under
consideration are orthogonal to blocks and consequently
e stimable.

Example s: -

El. Consider 24 came and confound ABC, BCD and their generalized
interaction AD. Then the conditional effect A/C 0 is orthogonal to blocks,
mine r = x 1 ,'xx3,,x4), PI = (.xl',Xx3), •2 = 2x 'V 3 'x 4 ), P3 = {lxx 4 ),

P = •lU•U•l2  = {x1 ,x 31 x4 ) V = {x,,, 11 = 3)6 {Xl:X 2 x,3X 4,x•

n '[x]}I 6o - (n1Un2) fl 6 - fXlX 3 } 6 6.
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E2. Consider the same case as in El, the conditional interaction
AB/Cl/D 0 is not orthogonal to blocks and consequently not estimable

t- ..is - {ix,X 2 ,X 3 ,X 4 ), Y- xl0x 2., "1 = (x 3 ,x 4 }, 6 - {x ,• x ,x 3 ,x 4 ),

E2n {•zx 1 }, 60 , ('I dz)r6 { xlx 2,x 3 ,x 4 )n{xl'x 2 ,x,,x 4 ) andbythe
application of the idempotency law, 60 a 8.

E3. Consider the case 35 and confound the four factor interaction

ABCD, then the polynomial conditional interaction A'B37C 1 /E 0 is

orthogonal to blocks bocauseo z,~x,~ 4  x,~

(,xzx 3 ,X 4 }, n§-{,x1 5 xZ}. 60 a% (n 1U))162 u{x1,x2,x3 l 6.

' The construction phase of the factorial experimental designs involving
conditional effects and interactions will be presented separately. The

* impact of confounding of conditional effect and interaction (conditional
confounding) on the structure of fractional factorials, fractional replica-
tion and asymmetrical factorials with balanced and partially balanced
configuration will also be presented separately.

INTERPRETATION OF FACTORIAL EXPERIMENTS. When an effIct
is conditioned on another effect, a conditional effect is generated. One of
the examples of such effect is the well-known nested effect in the
hierarchical classification situation. The conditional effects and inter-
actions discussed in this study differ from the nested effects in that the

"* nested effects do not permit consideration of reciprocal relationship
between the conditional effect and its conditions, whereas the conditional
effects do permit establishment of reciprocal relationship between the
conditional effects and its conditions and do yield to meaningful interpreta-
tion when expressed in its reciprocal form. Consider a nested effect
Farm/Counties, the reciprocal nested effect Counties/Farm is not defined,
whereas a conditional effect A/B has a reciprocal nested effect B/A which
is well defined. It possesses the property of commnutativity with respect
to the conditional operator "/". The conditional effect and interaction not
only establish direct relationship between two or more effects but it also
yields information on the reciprocal effects. An effect or interaction isI usually defined orthogonal to other effects and interactions. By establishing
direct and reciprocal relationship among the main effects, the conditional
effects and interaction yield very meaningful and unambiguous interpreta-
tion. By reducing the higher dimensions to lower interpretable dimensions
the higher order interaction does yield informative information with mean-

ingful interpretation. All possible situations cannot be listed in this note.

Nowlet us consider a small experiment in which
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E(4A) - -68; E(2A/B 0) 44; E(ZA/B 1) = -122

E(4B) - 224; E(2B/A,) a 190: E(ZB/A. a 34
U - 1 V

E(4AB) a -156, where E stands for effect of, and the numberical value
stands for the magnitude of the yield associated with the effects. By
examining the numerical values of the effects and the conditional effects
one can immediately appreciate the virtue of the information given by the
conditional effects. The E(4A) yields the information that there is loss
in the yield as one increases the level of A, but the two conditional effects
following exactly tells us Wiere is the loss and where i the gain, meaning
that the loss associated with A is not a total loss. The E(4AB) give
information on the loss associated with increasing levels of A or B or
both, but the conditional effects associated with B clearly define where
are the gains and their exact magnitudes. This is given here purely from
the standpoint of appreciation of the usefulness of the conditional effects.
The true use of conditional effects is appreciated in systems where p is
large and n is large. An analysis of variance on conditional effects of
this experiment is given in the Appendix, Table 2. The Appendix also
contains a table (Table 3) of effects and sum of squares for a 32 -experi-
ment, where the polynomial effects have been isolated. It is interesting
to note that the quadratic effect of B(B") yields a gain of 56 units in the
presence of higher dose of factor A. The interpretation of the other situa-
tions are self-explanatory.
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APPENDIX

Table 1

N(n,p) and N'(n,p)

P/n .2 3 4

2 7, 4 37, 30 175, 160

3 20, 12 152, 126 1040, 960

?2$§;.4 39:, 24 387p 324 3471, 3216

Table 2

ANOVA 2~ With Two Replications

Effect d.f. S.S, M.S.

A 1 578 578 16.5*

A/B 01 484 484 13.5*

B1 6272 316 6272 316 179.20*

B/A10 1 9285 9289 85.3*

AB /A 1 3042 29 3042 2986.90* 83

Error*(Total -3)m4 140 35

Total (23 r -1) - 7 10032

*Replication pooled with error.

K **Significant at .01 level of probability of Type I error.
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Table 3

Sum of Squares for 39 Factorial

Contrast@ Effects X~Sum of Squares '
A'-270 6 12,150.0

A/10-123 2 7 , 5 64 .5

-118 2. 6,962.0

A'i,*29 2 42045
3'-257 6 11,008.2

DO- 14 2 98.0
3/A, -135 2. 9,112.5

B/s-108 2 5,832.0

All 30 18 50.0

IIB- 51 6 416.7
0

A'/~- 16 6 42.7

All/Be *97 6 1,568.2
B11 3 18 .5

-I/ 28 6 130.7

De,- 25 6 104.2

+ 56 6 522.7

A'B' 94 4 2,209.0

III148 12 1,825.3jA''3'' 78 36 169.0
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THE NEGATIVE BINOMIAL DISTRIBUTION APPLIED
TO ATMOSPHERIC PARAMETERS

Aerophysics Branch, Physical Sciences Laboratory
2. Research L Development Directorate

U. S. Army Missile Command, Redstone Arsenal, Alabama

A••ISTRACT. The negative binomial distribution can be very helpful
for deter•rzning wind speed and wind shear frequency distributions. The
derivation Lf ire quency distributions of vector wind &hear data for snall
shear increments..(lOG0 and. 30m) from exi sting comrzion radio sonde data -

""v•th I km altitude Intervals is explained. The frequency distributions for
smaller shear increments differ drastically from "scaled down" distribu-
tions. Considerable error for engineering evaluation would be introduced
if the shape change of the negative binomial distribution with the shear
increment through the change of the mean and sigma were- neglected.

Finally computations of the cumulative 90, 95 and 9916 exceedance
thresholds for wind speed and wind vector shear by use of the negative
binomial and the bivariate normal distribution are compared with the
observations. The analytical values for employing the negative binomiali,:, prove best.

I. INTRODUCTION. Although the negative binomial distribution (NBD)
* has been known to statisticians for a long time, applications in atmospheric

. physics are not very wide spread. This can be explained for the following
reasons.

After early discussion by Pascal and Fermat (see Todhunter, 1] one
can find largely two versions of interpretation. Greenwood and Yule ([]
assume that the events are mutually independent, but the intensity varies
from individual to individual event. Polya [31 and Eggenberger (41 interpret
that the events are statistically dependent, i. e. the occurrence of one event
increases the probability that further events will occur.

In the latter sense applications have been attempted mainly for distribu-
St tion of precipitations or runs of days with or without precipitation ( see

Wanner, 5, 6] . As has been pointed out by the author (7) , applications to
the continuous frequency distribution of precipitation prove to be a problem.
Therefore Thorn [8] has suggested the use of the incomplete gamma func-
tion. Recently the model of the Markov chain [see Caskey, 9 and Weiss, 10]
has been more successfully applied. Thus utilization of the negative
binomial for the field of precipitation appears to be very limited.

*i. 1
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In the sense of Greenwood and Yule's interpretation the NBD may
apply for wind and wind shear. One would expect from other theoretical
background, however, that the wind vector follows a bivariate normal
distribution (the components being normally distributed). Then the non
central chi-square distribution should adequately describe the distribu-
tion of the scalar wind speed.

The non central chi-square distribution, however, does not fit extreme
values very well, especially for wind shear dfistributions of smaller
increments [Essenwanger, ll] Thus one may attempt to fit the empirical
distribution with the NBD, as is later demonstrated. An earlier applica-

-tion has been made by Wanner (IZI , who concludea that the frequency
S. distribution of the-wind speed follows the shape of the NBD the closer the

higher the altitude of his sampling (mountain observations). Since the
present discussion is mostly concerned with upper atmospheric observa-
tions, the employing of the NBD with wind data may be investigated.

II. FREQUENCY DISTRIBUTIONS OF WIND AND WIND SHEAR. As
previously mentioned the NBD is employed to describe the observed fre-
quency distributions of wind speed and wind shear values. It is therefore
of vital interest to ascertain how close is the agreement between observed
and analytical distribution. Further, since the NBD is a discontinuous
distribution, testing has to proceed to determine whether the given class
division of the continuous wind distribution can be adequately adjusted to
provide fair resemblance with the NBD. This adjustment is difficult for
precipitation [see Essenwanger, 71

The problem is discussed by the author in detail in a recent report [13).
Figure 1 serves as an example to summarize results for wind shear distri-
butions. The figure displays a typical wind shear distribution for 1 km
shear intervals (histogram at top of figure 1). The other 3 diagrams
exhibit the deviations from the observed frequency for 3 types of fitted
curves, the NBD, the incomplete gamma function with maximum likelihood
fit and with moments fit. Statistical tests showed no significant difference
between these 3 fitted curve types and the observation.

The NBD was selected for its convenience of computation. Since there
are no observed data on the frequency distributions of smaller shear
increments and the recommended distribution is predicted, data for a
maximum likelihood fit of the gamma function are not available. Thus both
analytical distributions rely n'n the moments fit. It is immaterial to select
the negative binomial rather than the incomplete gamma function. It will
be further seen that observed data in the range of extreme values such as
threshold exceeded by 10, 5 and 116 of the data fit the observations quite J
well with the NBD.

1 " ZH
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III. WIND SHEAR INTERVALS OF SMALL INCREMENTS. In a basic
article [14] the author has derived that a relationship between the mean

A 
a ,1' (1) --~h~a( h)(a

where a and a are constants depending on climatological conditions.

The Ah denotes the difference of the altitudes (shear interval), from which
S.the vector shear v as the residual of two wind vectors is computed.

It has further been deduced that a similar relat.ionship holds for the
standard deviation

(2) c(Ah) - A0 + Bl(Ah)al

where A and B are again constants depending on climatic conditions.

The constant A can be determined from
0

(3) A(h) =Ao + A1

Equation (1) has further been confirmed by Armendariz and Rider (15) and
Belmont and Shen (16]. Although Armendariz a.ad Rider (15] derived a
similar equation to (1) for the standard deviation, which means A in(2)
would equal zero, it is presently open whether A approximates zero in
the ground layers, from which Armendariz' and Rider's data are derived,
while the author included data up to 50 km altitude [see Reisig 17] . The
absence of A may be further an effect of the terrain, as Armendariz and
Rider work with data from White Sands, New Mexico, while the author's
data were obtained at Cape Kennedy, Florida.

One has now two parameters, the mean and standard deviation, which
can be utilized to compute the expected frequency distribution of shear
values. Figure 2 demonstrates the agreement between observed and.

analytical distributions, employing the NBD for computing the analytical
model. Five layers from various conditions of upper atmospheric shear
distributions have been selected. The first 3 layers show excellent agree-
ment between analytical and observed data. Some discrepancies are noted
for 15-20 and 20-Z5 kmn. Although the deviations are statistically not
significant, the problem of a distribution with a better fit or some adjust-
ment to the fitting procedure is still open.
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One point must be stressed, however. The present method, employing
the NED for describing the analytical distribution is far superior to the
Scneralily practiced techinique of "scaling dawn" frequency distributions of
vector wind shears. A typical example is given in Table 1. For 3 atmos-

* I pheric layers a. comparison was miade between analytically derived and 4 j
* scaled down distributions. The "scaling down" technique assumes that the

same distribution for smaller shear intervals as for larger intervals
exists, *. g. the regular available shear distribution of I km intervals
(easily obtained from the present radiosonde network) would be divided by

UM.& 4 0-to -obtain -the distribution of 100 mi shear, interval. Table' 1 demnon~strates
clearly that this-technique is out of place as! 'it does not take into considera-
tion any shape and scale change. The real distribution produced such
changes, which are quite adequately expressed by the NED. It is impor-
tant to include these changes into the derived frequency distribution. As
becomes quite obvious from Table 1, considerable error for engineering
evaluation would be introduced if the shape changes of the negative binomial
distribution with the shear increment through the change of the mean and
sigma were neglected.

More details can be found in pertinent articles as cited under 13 and

1.IV. COMPUTATION AND COMPARISON OF'90,- 95 AND 99 PERCENT 9

PROBABILITY THRESHOLDS. One of the important criteria in missile
application are percentile values such as the thresholds of shear values
exceeded in 10 percent of the cases or similar tolerance values. Thus it
is quite reasonable to demand that the employed distribution must be
successful in describing said thresholds. The 90, 95 and 9956 observational
values were selected for this purpose.

Three types of distribution were tested, the bivariate distribution (BD),
the negative binomial and the incomplete gamma function (IGF). The results
for the NED and theIGF were, however, similar and showed no statistically
significant or obvious differences, hu the comparison between NBD and
IGF may be omnitted here.

a. Compu;tation of the Threshold for the Bivarlate Distribution.

The computation of the 90, 95 or 99% value for the bivariate
distribution is quite cumbersome. One has to solve the following type of
integral vL

(4) 3 v f dv
0
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where P denotes the probability level of the threshold, vL the thresh-

old value of the wivid a-,e. +,, . -;A ____d - I r LSLrn LUI. 1.

function, in this case the bivariate normal distribution. A similar equation
exists for the wind shear, replacing v by the pertinent parameter for the
wind shear,

The solution is complicated, but can be approximated by the
cumulative distribution of the non central X2 distribution or by determining
an offset circle of the bivariate distribution (see 18). In the present
application, one has

(5) vL R,

and 1 < R < 5. Thus the equation for approximation is transformed for
obtaining R in explicit form:

.1 3
(6) R a (I2 l+b 2 l+b C(1 " -,---) + - (-)•" C]

9 a 3 a
where

(7) C[- (n P + n 2Vli)1

(8) a 2 + r2

2

( 9 ) r aa
v

(10) r r
0"

vr denotes the resultant wind vector or the equivalent for the shear. The
solution presents no problem when employing a high speed electronic
compute r.

A simplified approach, provides the same correlation coefficient,

althaugh in the winter months the average threshold is slightly high.er than
the observed value. This can be based upon the following assumption.

The mean wind speed vcan be computed from

v f v) dv

()0
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If the mean components have the values x = y = 0, and a-= a then the
solution is

(12) C" 0 a v

Swhe re

• 2 2 2(13) l U r +4er and C al.2533.

If V but not w W ' or Oc y r equation (12) is agood

a p p r o x im a tio n .
-0 t h

It has been shown by the author (11] that for x 0 and y • 0, the
following type of solution can be found

A L
(14) vC a e Wv

This checks out well as demonstrated in Table 2 by the high correlation

between fn V and - .
OW v

If one assumes a similar form for the solution of vL. namely

VL =CVvAvr
V15 VL=¢ r e Crv

then vL becomes simply

CL
(16) VL C L

0

" If one considers that the C is taken from the circular normal distri-

bution, where or -a = ar , then the high correlation between observedx y v

and computed values of the 90, 95 and even 99% as later shown is
remarkable.
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TABLE 2

Linear Correlation Coefficient for Check of Formula

•T-.-

v C Cfa
ov v

Mean Wind Speed Mean Wind Shear

Month El Paso Chateauroux Montgomery

Jan .986 .987 •954.

Feb .995 .906 .915

Apr .992 .w .946

May .991 .973 .971 I.
Jul• .969 .998 .933

Aug .998 .975 .944

Oct .985 .953 .928

Nov .997 .994 .853

Average .989 .959 .931

22I
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b. Computation of the Threshold for the Negative Binomial Distribu-
tion.

The computation of the threshold value for the negative binomial
in also based on a solution of the integral (3) as before but this time the
fv is the negative binomial distribution and the integral is one-dimensional.

Similar explicit formulae as for the bivariate distribution are presently
not available. One can convert the cumulative NBD, however, into the
incomplete beta function. This was pointed out by Pearson and Fieller (19],)
or rediscovered by Patil (20] and was recently discussed by Bartko [21, 22].
The 90, 95 and 99% values can then be obtained from the tables of the
incomplete beta function (231 . The procedure is somewhat elaborate, but
does not involve computations of the cumulative distribution by electronic
computer. It was performed to obtain the necessary analytical values for
comparison with the observed threshold.

Although the maximum likelihood fit could have been utilized by
employing the frequency distributions and finding solutions to the maximum
likelihood equation (Haldane, (24] and cited by Bartko, (22] ), the moments
method for parameter estimation was employed for the following reasons.
One of the goals is the derivation of distributions for small shear intervals,
for which the frequency distribution is not known. Thus the information
necessary for the maximum likelihood fit is not available, while the
parameters for the moments fit can be computed. If the NBD with moments
fit would therefore give a poor result for computation of the threshold values,
the NBD could not be used without first developing a prediction scheme for
the information needed for maximum likelihood fit. Thus the question of
maximum likelihood fit is of secondary importance for this particular
problem.

When using the tables of the incomplete beta functions (23] , the
parameters p, q and the scale parameter b must be known. They have been
obtained from

"-2 -3 -2

(17) p 2 -a -2(4- + 1 x

q 2p (p +
x
22 p
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4 x-9W -2St• -½-u . 4xo'-
L~ .. (19) b- •L3  -

bw 3

where P3 is the third moment with reference to x, the mean and w the

variahnce*. The pertinent parameters for wind and wind shear have to be
introduced into equations (17) thru (19).

The threshold value then becomes

(ZOa) vL b (1 - ••) or

(20b) v b xL

depending on whether q > p (then 20a) or q < p (then 20b).

c. Comparison of the Computed Thresholds with the Observed Values.

The threshold values of 90, 95 and 99% were computed for wind
speed and wind shear for several stations and compared with the respective
obwerved values. The latter were obtained from a computer program,
listing certain thresholds of the cumulative distributions as begun in the
Climatological Ringbook (25]

The differences between the computed and observed thresholds
could have been checked with the Chi-square test for statistical significance
of the deviations. Since the computed values were close to the observed
thresholds, another tool of comparison has been employed. It was obvious

from randomly selected samples that the chi-square test would not render
statistical significarnce for most of the deviations of the computed thresh-
old from the observed values. Thus the correlation coefficient was

*Footnote: The Rar o the negative binomial distribution is known, when

the x and the w2 are known: ji 3  x(1 + 3d + ad2 ), where
2
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utilized, which cannot only give information about the agreement between
theory and observation, but can also delineate a systematic bias, if the
.i...ara -U thu ,a.aytlul u• d uuncrved Lhreshold diiier.

The correlation coefficients are contained in Tables 3 - 5 for the
data of Montgomery, Alabama as a typical example of the results. It is
evident from the tables that the correlation is very high and therefore the
analytical values are very close. However, a detailed inspection of the
coefficients shown that there are some differences. First one notices that
the coefficients display a slight tendency to decrease towards the 99¶f.
threshold& Thus the analytical values appear to fit less towards the,
extreme Values. Further, this tendency to decrease is more pronounced
for the bivariate fit than for the negative binomial and more for the wind
shear than for the wind speed. This result is not unexpected. The
tendency of deviations from the bivariate distribution, especially for wind
shears, has been pointed out by the author in an earlier article [il]
Further, the analytical method for the bivariate distribution approximates
the thresholds by either using mean wind speed only as in equation (16)
or basing it on the circular distribution for equation (6). The method
employing the negative binomial avoids these problems. Besides the mean,
the variance of the distribution is needed, and in our particular case the
variance of the wind speed and wind shear. By fitting the incomplete beta
function, even the third moment 3 could be included, which is a 3 para-

meter fit. Thus the basis for analytically determining the thresholds
comprises more or better parameters for the negative binomial approach.
The result confirms this. The analytical thresholds agree better with the
observed ones for the negative binomial method,

Whether there is a bias between the computed and observed thresh-

olds can be answered from Table 6, where typical examples for the wind
speed thresholds are displayed. The results for the negative binomial
distribution look generally good, although there is a slight tendency towards
a lower average than the observed. But the result may be considered within
the tolerance limits of errors. The scatter for the analytical values vL
around the average v expressed by the standard deviation a- is the

L a
same as for the observed values, denoted by •o' This confirms the
closeness of the computed results in addition to the high correlation
coefficient.

The averages for the bivariate distribution also agree very well,
thus no systematic large bias is visible. It is noticed, however, that the
scatter represented by i'a is higher than the scatter for the observed
data. This indicates that not all of the computed values have good agree-
ment, a conclusion already stated above in the consideration of the
correlation coefficient.
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Table 3

LINEAR CORRELATION COEFFICIENT FOR COMPARISON OF[ OBSERVED AND ANALYTICALLY DERIVED 90% LEVEL

Wind Speed Wind Shear

IFMonth Bivariate Neg. Binomial Bivariate Neg. Binomial

Jan .987 .9911 .971 .915

Feb .991 .985 .957 .96o

Apr. .996 .996 .966 .950

may .996 .994 .985 .974

Jul .945 .875 .9841 *979

Aug .882 .867 .983 .968

Oct .996 .994 .986 .976

Nov .995 .995 .977 .973

Average .973 .963 .976 .962
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Table 4

LINZAR CORRELATIONq COEFFICIENT FOR COMP'ARISON 01'II ~O9SSVZD AND ANALYTICALLY DERIVD 95% LEVEL

Kantgosery

Wind S"44 Wind shear

Mo.nth Ilivariate Neg. Binomial Bivariate Neg. incoiial

Jan .980 .996 .94o .938

Feb .981 .992 .863 .94o

Apr .995 .997' .950 .905

May .91 997' .972 .978

Jul .883 .906 .986 .985

Aug .89.898 .966 .959

Oct .991 .997 .972 .958

Nov .990 .997' .931 .950

Average .953 .973 .948 .952,
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Table5

LINEBAR CORRELATION COEFF0 ICINT FOR COMPARISON OF
OBSERVED AND ANALYTICALLY DERIVED 99% jjjZVEL

Montgomery

w in Speed Wind Shear

month Bivariate Neg. Binomial Bivariate Neg. Binomial

Jan .980 .995 .868 .956L IFeb .975 .990 .724 .925

Apr .986 .996 .785 .888

May .978 .996 .950 .975
Jul. .752 .919 .932 .980

Aug .680 .929 .854i .958

Oct .976 .992 .86c .902

Nov .980 1 .997 .728 .943

Average .913 .977 .838 .958
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Table 6

FComparison of Computed and Observed Thresholds (Summary)
___________(a) bivariats

Station Threshold N LL a a -

Ej Pi 1aso 0%224 24,4 25.8 14.1 12.8 .984

95 224 27.9 27.2 16.1 14.2 .970

99 224 34.6 33.9 20.0 16.4 .929

*Chateauroux 90 248 214..1 25.5 11.9 12.2 .970

95 248 27.6 29.5 13.5 14.2 .967

99 248 134.2 37.8 16.8 17.2 1.941

Montgomery 90 372 26.6 25.6 18.5 15.5 .984

*95 372 30.3 29.2 21.1 16.8 .970

99 372 37.6 36.2 26.1 19.5 .951

(b) negative binomial

Montgomery 90 372 24.9 25.6 15.3 15.3 -.992

95 372 28.2 29.2 16.8 16.8 .993

99 372 34.4 136.2 1 19.5 1 19.5 .992

v L mean wind speed of computed threshold (rn/sec)

VL mean wind speed of observed threshold (rn/ice)

~a standard deviation of analytical values

a standard deviation of observed values

r correlation coefficient
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One may think about other distribution functions as being more
suitable for deriving analytical values such as the Weibull distribution
r261 . The negative hinnrmia•l ,14 . fb,.th......, . ... tli
thresholds already satisfactorily and preliminary computations with the
Weibull distribution did not render better results rather than thresholds
in the middle between the bivariate and negative binomial method. Besides,
it is very difficult to objectively determine the location parameter for the
Weibull distribution, and thus the negative binomial distribution offers an
advantage in the estimation of parameters. Under these circumstances
the question of determining the thresholds based on the Weibull distribution
is not £u'rther pursued far this report.

V. SUMMARY AND CONCLUSIONS. It has been demonstrated that
the negative binomial distribution has its place in problems of atmospheric
physics, especially in missile climatology for wind speed and wind shear
distributions. For this purpose the NBD serves largely as a practical
and convenient tool for describing the frequency distribution. Especially
the application to derive realistic frequency distributions of wind shear for
small increments is important. This technique is far superior to the
general practice of scaling down wind shear distribution for larger intervals
which are commonly available. The utilization of the NBD, however, can
accommodate the change of shape of the distribution with the shear interval,
a property, which the scaling down neglects, Considerable error for
engineering application may arise if this shape change is overlooked.

It has further been discussed in detail that the NBD can also be useful
in deriving threshold values for the cumulative 90, 95 and 99% levels, if
mean and variance for the distribution are known. Comparison between
analytically derived and observed thresholds displayed excellent agreement
without bias. The method proved superior to the application of the
bivariate normal distribution for the same purpose. The only advantage
for the latter practice could be the possibility of establishing a relationship
between the threshold value and the inean, as expressed in equation (16).
In this relationship one parameter, the mean only, needs to be known.

This simplifies the computation of statistical parameters and increases
the use of numerous data collection, in which the mean only is given.

The conversion of the NBD for the use of the tables of the incomplete
beta function (23] to obtain the pertinent threshold values has been
described. The need for knowing the third moment L does not introduce
a new condition, as the L3 for the NBD is known with given M'ean and
variance. Making use of three parameters, however, points to the
possibility of utilizing the incomplete beta function for the curve fitting,
although the third moment ýL3 then must be computed from the observa-
tions to offer some advantage. Utilization of two parameters, mean and
variance, is sufficient only for the NBD.

* 236
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Another 3 parameter fit would be the Weibull distribution. Prelimi-
nary computations did not produce better results, however, and therefore
no detailed discussion and comparison were included in this report.

The NBD has therefore a definite place among the statistical
I distributions useful for application to atmospheric parameters,

2.3
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II

TRIAL VARIABILITY INTERPRETED AS
DIFFERENCES IN TRANSLATION OR ROTATION IN

FUNCTION ANALYSIS OF VARTAN7(r'

Walter D. Foster
U. S. Army Biological Laboratories

Fort Detrick, Frederick, Maryland

ABSTRACT, Referee experimentation connotes in general a met

of participants performing the same experiment under nearly identical
circumstances. Variance analysis of results often taken the form of

ithn tations. As a device for interpreting the

magnitude of the mean square for repeated trials at a station, the mean
squarc is converted to a corresponding vertical change in centroid
(translation) or to a change in slope (rotation). The variable of analysis

S . is a multiple -parameter function representing decay.

The concept and practice of the Analysis of Variance when the response
variable is a function rather than a single value was given by Foster [1]
in 1962. Comparison of this technique to the multivariate analysis of
variance was given by Foster [2] in 1963. Brownlee [3] showed how to
make simultaneous tests of slopes and centroids if the response is a linear
function with two parameters. Church (4] gave the partition of variance
for a factorial experiment for each parameter of a curvilinear model when
used as the response variable.

The development in this paper is described in terms of its application:
referee experimentation. Referee (or collaborative or standardization) ex-
periments consist basically of several independent laboratories performing
the same experiment in nearly identical circumstances, The simplest case
compares laboratories (or stations as they are referred to here) using
repeated trials at each station as the criterion -- the standard Between and
Within analysis of variance. A more sophisticated design would introduce
a range of treatments in order to estimate a Station X Treatment effect.
Thus, the two major objectives of a referee experiment are the comparison
of stations, treatment means and the estimation of reproducibility at each
station. When each trial is a biological aerosol produced in a closed
chamber and allowed to settle, the response is the decay function which
describes the loss of biological activity with time;

-b -kt
C Co(t + e) e

0
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is the decay model chosen for this analysis. The conmarison of stations
treatments and 6x T was given by Foster (11]. It is the purpose of this

paper to examine the mean square for repeated trials at a station whirh
was used as a measure of reproducibility and to translate this variance
whose magnitude is generally meaningless to the experimenter into a

wnge leefamiliar scale to facilitate subjective appraisal and evaluation of repro-

ducibility.

Using the techniques of multiple regression, the data for a single trial
of ni points can be represented by

lnC= In C - bln(t + 1) -kt

where In C , b, and k are estimated by least squares. Partition of the
0

variation in the analysis of variance format is given in Table I, using
Snedecor's (5] notation.

TABLE I. A. V. for a Single Trial

Line Source df SS

I Function 3

2 C 1 (SY)/n

3 b, k 2 bSxly + kSxzy

4 Deviations n-3 Sy 2 " bSxly " kSx 2 y

5 TOTAL n SY2

Note: X =ln(t + 1) X2 t Y = InC
X IXI - I X2 =X2 -•2 Y-

For t trials at a station, the analysis of variance of the decay curve,
showing partition and corresponding sums of squares is given in Table II.
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TABLE IL. A. V. fir t Trials

Line Source df
Ma32 tn tn

SMean (S Y)2/tn + b S xly+kS x Y
1 1 1

t
7 Among trials 3(t - 1) E Line li - Line 6

t
8 Deviations t(n - 3) E Line 4

t •

9 TOTAL tn 2 Line 5
* 1

When the mean decay function for a station is compared to those ofS• other stations, the comparison is both visual and objective -- visual because

the functions can be graphed and their parameters tabled; objective because
Sa test on significance is available [1] , but not given here. Thus, the cos-

* parison of means is complete and in a scale meaningful to the participants.
Comparisons of trial M S for the various stations canalso be done statisti-
cally, but the mean square itself has little meaning to the experimenter.

Two strategems involving translation and rotation in the original scale
are presented as a method-of interpreting the magnitude of the trial mean
square. Since most aerobiologists are thoroughly familiar with the simple
exponential function, -ktC =C e

0

as a decay model, the trial mean square has been scaled into translations
of C and into rotation of k. The technique is simple.

Let the experimenter visualize the trial variability as being expressed
by two parallel lines, the plot of

In C = In C - kt

whose vertical separation or translation in equivalent to the trial variability.
Obviously, the greater the variability, the greater the distance between the
two parallel lines. He thus may consider his trial variability as if he had
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* run only two aerosols with equal decay rates but displaced starting points
(interce'pts).

Algebraically, the displacement or translation is derived by consider-
ing the samne partition of the trial decay functions in Table II with only two
trials. This in shown in Table III. The notation has the form of

Y -b (X-i

.. TABLE III. Develop~xnent of Trial Variability as Translation

Line Identification SS

10 SS Function 1: nY2 + bSxyI
-211 SS F'unction 2: n Y + bSxy

12 Line 10 +11: n(~ + Y)+ Zb S xy

14 Line 12 - Line 13: n(V17 Y)/

The Mean Square corresponding to the sum of squares in Line 14 is simply

2 ?)/ 4

Upon equating the observed trial mxean square to the derived translation
arnd solving for the translation, we have

Y1 -Y M T rfl ial sn

which as a distance applies to the intercepts, In C ,as well as to the
centroids because of the assumed parallelism.0

The follo wing example of six trials at a station illustrates the use
of this technique.
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Fu ction Analysis of Variance

Line Source df MS

15 Mean 3 2427.4869

16 Among Trials 15 .1975

17 Deviations 30 .0878

-V z417)8 .314 in InC scale,

"or a 1. 37 fold (antiln . 314) effect.

Had the trial mean square been .960 the translation would have been

1 - 2 14(. 96)/8 .693 or a 2. 0 fold effect.

Interpreted to the aerobiologist, trial variation of this magnitude (MS =
1975) implies that his ability to reproduce an aerosol is no better than

1.37 fold. It should be noted in passing that the translation concept is
applicable to any decay function under the requirement of parallelism.

The second approach to relate trial variability to experience is by
rotation, i.e., a change in the slope of the linear decay function; in this
case it refers to a change in the parameter k. The centroids for each of
two lines are required to be identical; the MS for trial variability is
equated to change in slope. This approach is more subtle since changes
in k effected through equivalent size of the mean square depend upon the
domain of the independent variable and the particular design. For a large
domain the change in k will be small; for a narrow interval, the change
will be large (because the variance of slope is proportional to 1/S x2 ).
The development is given in the following table. The notation again has the
form of

Y + b(X-R)
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TABLE IV. Development of Trial Variability as Rotation

Line Identification ..

15 SS Function I- nY2 + blSxy1
16 SS Function 2: n:2 + b 2 SXYx

.17 Line 15 & 16: Zn ?2 + b Sxy, + b
.,.•/ •~ ~ bj + b2 Z i

.18. Mean Function: an 2 (Sy +S y)

19 Line 17-18: (b1 - b?) 2 S x2 /2

The Mean Square corresponding to the Sum of Squares in Line 19 is simply

2 2
(b -b 2 ) S x/4

As before, this quantity is equated to the observed trial mean square
and the amount of rotation is

b b1975)/i.66 X 10

= .022 ,1•

Note that the apparently small change in slope is due to the extremely
large domain of t, 1300 minutes. While the concept of translation was
applicable to any decay function, the rotation approach required a linear

model for its straight-forward interpretation as a change in a single
paramete4r.
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I
A METHOD FOR ADJUSTING FOR PARTICLE SIZE AND MATRIX

EMFE.CTS IN THE X-RAY FLUORESCENCE ANALYSIS PROCEDURE

Rayn-uond H. Myers
Department of Statistics,

Virginia Polytechnic Institute, Blacksburg, Virginia

Donald Womeldorph
Phillips Petroleum Company

Bartlettsville, Oklahoma

X-Ray fluorescence methods have been widely used in the analysis of
muiticomponent mixtures. The advantage is due, of course, to the high
speed and precision of the method. It is unfortunate, however, that one
is not always able to attain accurate analyses in practice because of the
existence of sample matrix effects and particle size effects.

Existence of matrix effects implies that the intensity of fluorescent
radiation from the analytical element is a function of the concentration of
the matrix elements as well as its own concentration. This phase of our
problem has been discussed by several workers. Mitchell [7] describes
the problem in elaborate detail. In a recent paper, Alley and Myers [I]
discuss ways of using inverse estimation in linear regression to account
for these effects. Also, Campbell and Brown--- have reviewed mathe-
matical and empirical methods.

The consideration of particle size of the components is extremely
important in X-Ray fluorescence analysis for the case of granular materiai3,
In fact, variations in particle size of the materials can, in some cases,
have a greater effect on the X-Ray intensity than variations in concentra-
tion. The fluorescent X-Ray intensity is affected by both the fluorescent
and matrix component particle sizes and their relative concentrations in
the sample. Clalsse and Sampson [41 , and Bernstein [2] discuss the
particle size-intensity relationship.

This paper describes the use of a procedure involving estimation in a
statistical functional relationship to approximate the structural form that
exists between the X-Ray intensity of each component and the conco.ntra-
tion of all of the components in the mixture. The non-linear functional
relationships, which include the effects of measurement errors, permit the

estimation of component concentrations in unknowns over wide ranges at
constant particle size by using d'ta obtained from the analyses of a series
of calibratioii mixtures having the same particle size. Methods are also
shown for estimating the concentrations of components in mixtures at any
other combination of particle sizes by analyzing only one additional
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calibration mixture having the new particle size combination. This
buubtian~illy reduces in comparison with conventional procedures the
amount of experimental work required to recalibrate when one or more
of the component particle sizcs varies upon changing lots or batches of
mate rial.

Special attention is given with numerical results, to "Tichloral"
igniter mixtures manufactured by the U. S. Army Missile Command,
Redstone Arsenal, Alabama. These mixtures are comprised of potassium.
perchlorate, titanium, and aluminum powders, and sometimes a small

percentage of a binder such as polyisobutylene. The estimation procedure
is presented and "check samples" of known concentration (with particle
size differing from that of the calibration data) were analyzed by the
procedure.

The method described here differs considerably from the usual
multiple regression technique.

THEORETICAL DEVELOPMENT OF PROCEDURE. Lucas Tooth and
Pyne [61 developed a theoretical concentration - intensity model account-
ing for matrix effects. It is this model that serves as the basis for our
development (other models such as a "complete quadratic" polynomial can
perhaps be used as well). This model can be expressed as:

I)V - aton + 2; a~n. I, + ,I Z. a . I,
n 0~~ n J n<j <q n,j j

where Vn is the percentage of component n in the mixture; I. is the

X-Ray intensity ior component j, the a(n) 's are constant parameters
related to mass absorption coefficients [3] an includes background
intensity when peak intensity measurements are made. The subscript (n)
implies that the parameters are characteristic of the nth component, i. e.
the a's describe enhancement or absorption of the other components with
the nth component. For example, for a three component mixture, we can
write the percentage of component I in the mixture as:

(2) V a(I) 3+() al) I2+ a( a (/)+
0 31 33 12 + 13 1 3

Often terms beyond those describing a linear equation can be deleted with-
out serious consequence.
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One might expect that a classical least squares procedure for estimat-
ing th...... 1c ,, =u,±LuU (2) wouid be appropriate. Actually, the

papers (8] , [5] , and (11 rely heavily on this procedure. In the latter
paper, the authors use a linear relationship in which the concentratluno are
on the right hand side of the equation, while intensity appears on the left,
The coefficients are estimated by least squares and the equations (One for

each component) are inverted for the analysis of an unknown. However, the
particle sizes of the solid components were held constant in the experi-
mental work. If the particle size effect is assumed to var'y from batch to

j . batch of raw materials that are used, then the coefficients in (2) would be
dependent on particle size and thus it would be necessary to develop a
different relationship involving different coefficients for each batch of raw

materials.

Experimental methods are presented here for which the experimenter
can use concentration - intensity data under one particle size condition, to
determine the percentages of components in unknown samples under a second
particle size condition.

Assumptions Concerning Equation (2). Suppose we consider the model

of equation (2). We shall drop the subscript on the coefficients and thus
refer to the reJationship for component 1.

2(Za) V = a 4 aIl a Ia + a3I + aI + a I I + aL IlI

V1 0a 1 1 a 2 3 3 11 1 12 12 131 3

We could, of course, write a similar expression for components 2 and 3.

Suppose we consider two particle size levels, say I and 2. Suppose we
have intensity - concentration data at particle size 2, but we wish to esti-
mate the coefficients in (Z. a) when the raw materials are from a batch at
particle size 1. It must be emphasized here that we do not need to know
what these particle sizes are; we simply know that two different conditions
exist. We will assume that the measured intensity of component I at some
concentration level (VI, V2 , V,) and at particle size 2 can be written:

(3) X I 1I + dI + f1

and similarly for components 2 and 3,

I is the "effective" or true X-Ray intensity ci component 1 for the mixture
at concentration (V , V 2 , V3 ), and at particle size condition 1.
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d. is the particle size correction, i. e., the constant which represents the
alfect on the intensity of the particle size difference (between level 1 and
level 2).

XI is the measured X-Ray intensity oi component 1 when the mixture is
composed of raw materials at particle size 2.

f, is a; random measurement error effect on the intensity, It represents the
affect of counting and other instrumental errors.

Further discussion of dl and f1 are in order here. fl is considered to be ,x
statistical "random" error, owing to inaccuracy inmeasuring the intensity.
The measurement error as defined here includes components such as the
counting error, and errors in the preparation of samples and pellets from
the same calibration mixture. dl is not considered to be a random error
but rather a constant value (plus or minus) which describes the affect on the
intensity of particle size 2 over and above particle size 1. It is assumed
for our purposes that the particle size within a batch is reasonably
homogeneous. Otherwise one might consider dI to be a mean or average
particle size affect. It must also be emphasized here that the dl represents
an affect on intensity of ingredient 1 of the overall particle size of the
mixture and not merely the particle size of any one ingredient. Finally,
for our purposes, it is assumed that di, d2 , and d 3 (.-r the case of a three
component system) are independent of the concentration level (V1 , V2 . V3 ).
This does not appear to be an unreasonable assumption if the concentration
spread of interest is not excessive.

We shall now proceed to incorporate the model of equation (3) with that
of (2. a) into a procedure for estimating the coefficients of (2. a). Suppose
we have concentration - intensity experimental data for which the basic
materials are at particle size level 2. We would like to be able to use this
data to estimate (2. a) for materials at any particle size level. Suppose we
consider (2. a) in which the materials are at particle size level 1. Substi-
tuting the actual intensities at particle 1 into (2. a) yields:

3 3
(4) V 1 - 0 + E a . (Xj-dj-f,) + Z -dj=1 j --l al X f ) ( J- - ) + '

We have added the usual c, (error term) as a random term to. account for
inaccuracies in equation (3) since this equation is certainly not completely
deterministic in its derivation.
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Estimation of Coefficients in Equation (3). Suppose the chemist were

readings are taken, the ingredients being from a batch at particle size
level 2, We wish to use this informuation to obtain an estimate of the
concentration - intensity relationship for particle size 1 (or for the ingre-
dients from a batch at any other particle size).

Equation (4) can be written as:

(5) Vi 0 aX + X + + X+aX +CLXx +a xx + Z1 0 1 1 2 2 3 3 11 1 12 1 2 13 1 3 1

where:

3 3
Z-- z + ad af ÷ [d+ +iz] -d+f 2 aX [d ÷f1+j=l j J j=1 i j Cl

+ Za1 d f 4 a12 [dI d2 +f f?2 ] + aIZ [d 1f2 +fId 2'f 2 X -fIX

(6)

"d 2X -dIX•2 + a1 3 [d d 3 +fIf3+dIf3+f d 3-f3XfIX 3 -d 3XI-dIX 31

+ CI

Thus the "error" associated with the least squares model of equation
(5) is )given by equation (6). Note the terms that are translated to Z1
through measurement errors and through the important particle size effects.
The X's in equation (5) are the measured values of the intensitites and thus
are random variables. One notices that if the usual least squares procedure
is used, i.e. , by mininmizing the sum of squares of the errors in determin-
ing the estimates of the coefficients, that Lhe error, Z1 , is correlated with
the X's, since both involve the f's. This, of course, invalidates the usual
regression assumption [9] that the residual error and the X's are independ-
ent. Of course, the errors in measuring the intensities may well be
negligible, in which case we need only consider the effects translated by
particle size. We shall discuss this situation in a later part of the paper.

It is not unreasonable to assume that these errors are independently
distributed with zero mean and variance q. Suppose we make n observa-

tions of the type (x1 ., X~i, X3 i, V.). If we sum both sides of equation (5)

over these n values, we obtain:
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E V~v+aiE X + CL EX +a IX +a 2:X 2+a X X

S ii = 0 1 Ii 2 zi 3 3i 11 ii 12 li zii=l

(7)
+ 13 i Xli 3i+ i Z R

All terms in equation (7) are known except E Z li The latter contains

sample quantities which certainly are unknown. For example, if we were
to expand X Z11 such terms as ma X f CL aZ1 f?1 .2C 1Ef1 1X, etc. would

appear, and since we have no knowledge as to the measurement errol' on
any given sample, these quantities are unknown. However, we can replace
these quantities by parameters that represent their "expected" or "average"
values, the latter which we can estimate by a separate experimental proce-
dure. If we assume the measurement error variable f.(j=l, 2, 3) has
mean 0 and variance T12 then j-

n
EC Xf E[Zf21  EC~ =0

li 21] X f31i 0

Here the "E" notation refers to expectation. For a 1 f11 2, we can write

E(F .) 2 = 2

and, if we further assume that the measurement errors are independent,

2 2E[aiE1 1Zf 1 1 = fl

After performing these operations, we can then write

zvE nV0 + a1 (E xl,-nd1 ) + a 2 (Ex 2 1 -nd) + a 3 (zx 3 1 -nd 3 )

-1idX2 21 i 3 x3

+ (E X2+nd2- 2dEx- 2 6 +ndd

.d 2 Ex -idIL x 2) + ý(Zxli' -d 32;xl+nd~d 3-dZx '3)
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Equation (8) is unbiased in the sense that both sides have the same
expectation. We have inserted "hats" on the a terms to imply that
they will be estimated by equations of this type.

For the next estimating equation, we can multiply both sides of (5)
by xli and sum over the n observations as before.

S~3

EVlx l M = X0 +GaXX 1  + C•l 2+• Xx +ci 3 ZXl.X3 i +clt1 Xl3

+ ClE•Xi x + a1Ex x + EXlZ

12 1i 2i 13 11 31 11 1i

E XlXli will contain unknown sample quantities which we shall once again
3 3

replace by their expectation. The term £ f1i is replaced by nzfi3
31which we are defining as E-f1 ), the third moment of the distribution of f1 .

In doing this, we arrive at the following equation:

Z xiV CL E0•0x + a, (Z4 Xlno* "d Exl) + (2 (ExlX 2 id 2Z Xli)

3 2 2 2 2

()-3o E +lXid3] ~Xx +- 12• xli+2nl'lnr1

f 1z 1 x1 2dlx) + (2( x (Ex+ndz 31
2 2 x2~dd2

-ol Ex+dX id2:X l'l•liZi) + 13 12XiX3

+ nd qf2 .o-02 Ex +dd Zx -XdEx 2_idL XX)
3 f f 3i1 11 3 li i 1 1131

This equation also has unbiased property as does equation (8).

At this stage we have two estimating equations. We can proceed to
derive five more for estimating the seven coefficients in model (2. a).We obtain these equations by multiplying both sides of equation (5) by

x2 , x3 1, x 2  x and xx 3 1 and performing the necessary operations,
2i'3V i' li 2i, li 3

as described here for the first two equations, on Z x2 Zli, Zx 3.Zi, etc.
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Estimation of the d'e, r, etc. The quantities d j and 2f. (j=l, 2, 3)

j j
which appear in the estimating equations are, of course, unknown and

Obth~Ataining an f estmat of~1 u0 4o 4I..,. -M14t ' U.

Obtaining an estimate of is quite easily accomplished by preparing

several camples and obtaining intensity measurements r l, X12 - .. ,lN

(independent of the samples used in section (b) ) at some concentration and
Za

computing I = E• (X i /N, the sample variance. One can then comn-

pute estimates for o , • by obtaining similar sample variances for

the intensities of components 2 and 3.' We can, of course, estimate the
third and fourth moments in a similar manner.

To obtain estimates of the d's, the experimenter needs first to obtain
replicated analyses (on component I for the case of d ) for a sample of raw

materials from particle size 2. One must then obtain similar readings for
the materials from the batch of interest, in our case this refers to the
batch at particle size 1. It is important that the two sets of readings be
taken at the same concentration. One can then obtain the averages (1)

-(2)l
and x • , where the superscript denotes the particle size condition. The

unbiased estimate of d is then -xl-'). The same procedure is used

to obtain estimates of d2 and d .

APPLICATION TO IGNITER MIXTURES. Samples of the igniter
mixture were prepared at various concentrations of KCG 04, Ti, and Al.

The intensity for each component was measured for each sample. The data
is shown in Table 1. The overall particle size effect on each intensity was
assumed to be the same for these samples, and the materials in this batch
were relatively "coarse" for all three ingredients. Thus we shall refer to
the particle size as c-c-c. This is particle size 2 in our theoretical
de velopment.

Experimental.

Instrumentation-Analyses were made with a universal vabuum X.Ray
spectrometer marketed by Philips Electronic Instruments. Spectrometer
components consisted of an FA-60 tungsten target X-Ray tube, a 4-inch
by 0. 020-inch entrance collimator, an ethylenediamine D-tartrate (EDDT)
analyzing crystal, and a gas flow detector flushed with P-10 gas. The X-Ray
tube was operated at 45KV - constant potential, and 40 ma. Pulse height
discrimination was used for the analysis of aluminum.
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TABLE I

Concentration-X-Ray intensity Data for Igniter Mixtures

Potassium Perchlorate Titanium Aluminum

Weight %Counts/sec. Weight % Counts/sec. Weight % Counts/sec.

31.0 11,609. 31.0 7,279. 34.0 4,917,

31,0 11,582, 31.0 7,135, 34,0 5,116,

5.0 2,113. 30.0 8,302. 34.0 3,967.
5.0 2,146. 30.0 8,194. 34.0 3,831.

34.0 11,775. 7.0 1,691. 35.0 3,825.
34.0 12,003. 7.0 1,735. 35.0 3,857.

31.0 15,180. 30.0 8,660. 6.0 690.
31.0 15,345. 30.0 8,638. 6.0 712.

8.0 3,266. 6.0 1,746. 35.0 2,986.
8.0 3,294. 6.0 1,776. 35.0 3,180.

34.0 15,345. 6.0 1,907. 8.0 730.
34.0 15,250. 6.0 1,884. 8.0 737.

4.0 2,,.509. 29.0 11,507. 6.0 551.
4.0 2,486, 29.0 11,326. 6.0 551.

7.0 3,968. 5.0 2,240. 8.0 531.

7.0 3,938. 5.0 2,198, 8,0 534.

19.0 8,.198. 18.0 5, 159. 21.0 2,077.
19.0 8,574. 18.0 5,279. 21.0 2, 160.
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Precedure-Calibration and "check" mixtures were prepared for
analysis as follows. 10 g. of each mixture including a variable amount
of a cellulose binder was weighed into a 1-inch by 2-inch stainless steel
S.al.a.... .....n . ct,• xiJrxglab ball was adaec to the mixture. The
mixture was then blended on a pica blender mill for 10 minutes. The ball
facilitated blending without reducing the particle sizes of the powders.
Two 5 g. pellets of each mixture were made in a 1 1/4-inch diameter
pellet die under a pressure of 30, 000 psi. The surface of each pellet that
was against the die plunger was subseq~uently analyzed.

Pellet Samples were completely randomized among the calibration
mixtures and analyzed in pair. in conjunction with a stable reference pellet
containing the same analytical elements as the mixtures. The reference
standard was used to correct X-Ray intensities for short and long term
instrumental fluctuations. Peak intensity measurements were made by a
fixed count technique and recorded as corrected counts per second. Specific
analytical parameters are given in Table 2.

TABLE 2

Analytical Parameters for the Analysis of Igniter Mixtures

Component Emission line *Angle, 020 Fixed Counts

Potassium Perchlorate KKa 22.2 3 200,000

Titanium TiKcll 49.25 100,000

Aluminum AlKa 114.77 50,000

*'EDDT crystal advanced approximately 30 2 8

ESTIMATION OF CONCENTRATION-INTENSITY MODEL AT SECOND
PARTICLE SIZE CONDITION. A second batch of ma1:erial was considered,
one which contained relatively coarse particles of KC10 4 and fine particles
of Ti and Al. Suppose one wished to estimate equation (2. a) for the
c-f-f(particle size 1) lot using, however, the available concentration-
intensity data for particle sire 2 namely that in Table 1.

For the purposes of estimating the d,, a sample from the c-f-f batch
was prepared at 19, 18, and 21 per cent KC10 4 , Ti, and Al respectively,
Duplicates were taken and the intensities in counts per second obtained
were:
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KC0 4  Ti Al

5,787. 3.676. 2, 4 3.

5,770. 3,646. 2,461.

Point 9 of Table 1, with ingredients also at 19, 18, and 21 per cent
concentration was used as the appropriate sample for the c-c-c batch,
Subtraction of the average intensities was performed as indicated previ-
ously. Solution of equations (8) through (14), using the data of Table 1
was then accomplished on an IBM 7040 computer for each of the three
ingredients. These coefficients are listed in Table 3, The coefficients
can now be used for analysis of mixtures for the materials from the
c-f-f lot.

TABLE 3

Estimates of the Coefficients for Coarse-Fine-Fine Lot

KClO4 (component 1) Ti (component 2) Al(component 3)

a a 1.80189 = -7. 99781 a0  - -4. 12577
8, = 2. 28358x10"0 a 1 -4. 34502x0" a,= -2. 65274x0"5

1 7 1 .85 1 3  5 1a -3.71806x10" 3.68540x0" a 2.87296xi0 5
2 -42 4 2 21a 3 5.22015x-0a 3 = 1.51577x10" 3 = 1.43834x10•I 4' 99141xi0"9  -=A-

19 = -7.89669x08 a33 = -6.38742x10"7

a12 =-.46347x10"8 a12 = 4.91218xl0 8 = -1.48698x10"7
13 = 1.47985x0"7 a23 = .96862x10" 7 a23 = -2, 88265x10"7

Analysis of Check Sample. More samples were prepared using
* materials from the c-f-f lot in order that the analytical equation for KCIO4

and Ti could be checked. Notice that it is only necessary in this case to
Sanalyze for two components. The third can be obtained by difference

because the a-cellulose binder is added by the analyst and is always known.
.I The per cent of Al for the "check samples" was computed by difference.

The results were compared with the known concentrations in order that
the quality of the estimating equations could be evaluated. In order to
illuistrate the improvement obtained by the method over that of ordinary
least squares without the particle size correction, the results for the
check samples were compared with those obtained by estimating the inten-
sity-concentration relationship of equation (2. a) by ordinary least squares,
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The first sample contained the known concentration; 251% KC10 4 , I

2516 Ti., 25% Al, and 25% a-cellulose binder. The intrasittes in counts
per second were observed in duplicate. The results are:

K~O4 Ti Al

8,453. 8,107, 3,353.

8,332. 8,129. 3, 379.

Using these intensities from the duplicates, the average calculated per-
centage compositions (Using the coefficients in Table 2) are below:

XC 1 Ti Al

24.71 25. 59 24.70

This indicates the agreement between actual and estimated concentrations.
One would, of course, expect even better agreement if the range of con-
centration of the original data in Table 1 were more narrow. The estimated
concentration, using conventional least squares, neglecting particle size
and measurement errors are:

KCI04-T i --Al

20. 17 30.40 27.20

The difference between these values and the ones for our proposed proce-
dure is primarily due to the introducAion of the d's into the method,

Additional samples from the c-f-f lot were prepared and the estimates

of concentration were obtained, using both conventional least squares, and
our procedure. The results are shown in Table 4,

TABLE 4

Actual Concentrations Predicted Concentrations Least Squares

Sample % K %Ti 0 Ai %K %oTi %A1 %K MTI %AI

1 21 21 21 20.8 .1.65 21,55 16,88 26.56 19,56

2 21 25 19 20. 53 26.3 18. 17 16.72 30. b 17, 68

3 18 20 24 18.09 20.4 23.5 17,33 25.23 19.45

Note the improvement in the procedure over the least squares results.
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Use of a Linear Model. In many cases of quality control analysis the
materials to be analyzed will vary over small concentration ranges and
the procedure ot estimating concentrations at a given particle size and
compensating for recognized particle size changes can be simplified by
using a linear model such as:

I = b + bX + b2X + b X +

1 0 1 1 2 2 3 3

The same procedures apply to this model and the estimating equations
are considerably more simple than those for the second order model
discussed in detail here.

Discussion of Sources of Error. The d. and the moments of the fIs
are based only on sample estimates. This is obviously a source of error
in the procedure. For the igniter system presented here, the d. are based
on only two observations. We would expect better results on the check
samples if we had used more observations.

In many practical situations where the X-Ray fluorescence technique
is used, the range of interest in concentration would be more narrow than

what we used here (Table 2). In practice one might wish to narrow the
range of experimentation to insure the truth of the assumption that the d-
are truly constant and do not depend on concentration,

2
When determining a. one must be sure to iaclude all source of error

which cause X. to differ from the true intensity Ij. As pointed out
.3

earlier this involves more than just making repeated measurements on the
same sample which gives primarily the counting error. The error of
blending mixtures and preparing pellets as well as uncompensated instru-
mental mechanical, and electronic variations must also be accounted for.
A good estimate of the measurement error can be easily obtained, however.

2
The composition selected for determining both dj and a"f. shoula lie

close to the center of the calibration compositions. Also, the calibration
compositions should be selected according to a statistically designed
experiment to insure accurate estimates of the coefficients in equation (2. a).

In a controlled process the normal variation of particle sizes among
lots of materials will be smaller than the variation shown here for sizes
I and 2. These variations were purposely made large to illustrate the
suitability of the method.
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The a-cellulose binder of the igniter mixtures was considered as a
variable component in this work. Although it could not be analyzed
directly by X-Ray spectrometry; the binder was allowed to vary to simulate
production igniter mixtures which may contain a binder subject to pro-
duction variations in the sanrit iazuier do the other components. The
binder, of course, also result3 in the formation of stronger pellets, and
thereby allows a wider range of composition to be analyzed. The binder
would'norrnally be added to the mixture in a constant amount by the analyst.
Results of analyses with constant binder would probably be more accurate
than results with variable binder.
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I
DETERMINING THE CONFIDENCE LIMITS FOR SOME TIME
INDEPENDENT SYSTEM RELIABILITY ESTIMATES WHEN

ATTRIBUTE DATA FOR THE INDEPENDENT SUB-COMPONENTS
ARE GIVEN. (A Proposed Solution and Approximating Formula)

Eugene Dutoit
Picatinny Arsenal, Dover, New Jersey

STATEMENT OF PROBLEM: A problem that arises often in
ammunition engineering is estimating the reliability of some "one shot"
weapon systems. This clinical problem is concerned with the situation
where the only data available are attribute (the fraction: number of
successful functionings/total number of items tested) and pertain to the
components of the system. The ammunition or reliability engineer
arranges the independent system components in some logical configura-
tion (called the reliability block diagram) and he constructs a mathematical
model of the overall system reliability. Established procedures do exist
for determining the reliability of each separate component at any appro-
priate confidence level, but this problem of interest is to establish some
techniques for combining these component data so that some reliability
estimate can be made about the system (note: -no "system" data are
available) at any desired confidence level. In essence, this problem is
hopefully designed to:

(1) Raise some interest and thought for this problem which appears
to have been treated too lightly considering the frequency with which it
arises. Perhaps someone who might be writing or considering to write
a textbook on reliability might develop a computational procedure for
publication and reference. The use of computer/simulation studies have
already been proposed. These methods may be applicable when a computer
is available and tin.e is not a crucial factor, but we are seeking a solution
that would give a quick but good approximation to some rigorous and
lengthy solution.

(2) Encourage the examination of data indicating the distribution of
failures for conventional weapon systems to determine if some character-
istic distribution can be used to describe some types of items. This
paragraph reflects similar statements made by Lt, Colonel M. S. Hochmuth
during the "opening remarks" of this conference.

ACKNOWLEDGMENTS: Before continuing with some proposed solution
and approximating technique I would like to express my appreciation to the
Army Mathematics Steering Committee for giving me the opportunity to
present this clinical problem at the "Twelfth Conference", I am also appre-
ciative to all the panel members (Dr. F. Frishman, Chairman; Mr. 0. Bruno,



Professor A. Cohen, Jr., Professor B. Harshbarger, Dr. J. Rosenblatt
and Professor H. Solomon) who offered constructive suggestions/comments
either at the meeting or by writing.

I also wish to thank Mr. Stuart Ritter who developed the computer
program and charts used in this work.

A PROPOSED SOLUTION: The author of this report has independently A
arrived at a "similar" solution to the problem as Mr. H. DeCicco [I]* and
Messrs. Lloyd and Lipow (4] , therefore the derivations presented here
shall be "quick and dirty". The interested reader should consult themeI
referenceS, and the other sources cited in this report, in order to become

more familiar with the problem. Those readers who are interested in
researching the problem might compare this enclosed solution or some
other possible solutions with each other to determine if some extra degree

of accuracy obtained by a more rigorous/analytic method is worth the
extra effort. DeCicco mentions in his paper (1] that it is "unrealistic to
expect serious support for assurance to more than two significant digits".
This criterion might be used to determine significant differences between
all proposed solutions to this problem. This proposed solution will be
reduced to some approximation and graphic procedure which will hopefully
simplify the computation for non-mathematically oriented personnel.

SERIES-PARALLEL CASE (GENERAL): Consider the following
configuration:

Figure I

Notation: Number of "y" components in parallel in set i, where the
reliability of each item at the 50% confidence level is ri.

*Numbers in brackets indicate references at the end of paper.
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The derivation of the "error propagation" formula is well known

! ~and need not be discussed here (see Bowker and Lieberrg~an; Engineering

Statistics, Prentice Hall, Inc. , Englewood Cliffs, N. J. , 1959, page 62).
Given a function of m variables f(r,, r 2 , ... . rrn) with expected values

TI 21 ' the expected value of the function is approximated by:

41 E[f(. 1, r 2 ... r)] f(rl, r 2 , ... , rm) with approximate variance:

~~~~~M l ........ "V2R [hm,• ' 'rr 1 "

VA... .. r., ... r)] vAR(rl) +r1  +...

+ VAR (r)

Considering the general series-parallel configuration, the equation
for the reliability of this system is:

(i : -ria i a)b..........r [(~k

(1) or
m^y

i=1

Equation (1) corresponds to the expected value of the function. The
variance of equation (I) is

(2) R 2 + R 22 0 2

I 'm

Consider that r. number of successful functionings/total nurnber
fired or tested, where P. is a best estimate of a proportion describing
a population where a proportion r. of the individuals have a certain
characteristic and a proportion l1-ri of the individuals do not have it.

41 A
"If ri is the best estimate of some binomial parameter ri, then the
variance of ri is:
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(3) 
o r

r, n

Where n stotal number tested of item i. The general term for equation
(2) is:

Caa I~ A - Cl- -rl) ... -C C-(-;i~ l•1 .

(4)
2 rr

-m -n,

The total variance of the system reliability estimate is:

(5) . ai) r
R i=l

Equation (1) describes the nominal value of the true system reliability
R, namely R and equations (4) and (5) give the variance of the system ,
estimates. In the area of convential ammunation reliability, we are
interested in computing the lower 90% confidence limit of R. This is done
in the usual way:

A

(6) 90%0 C. L. R -A

where "A" depends on the distribution of R.

Since we have no data for the overall system performance (reference
second part of Statement of Problem in this report) it was decided to use
distribution-free methods - see reference [1] . Chebyshev's inequality
states that the amount of area under any distribution which is farthe
away from the mean than "A" standard deviation units is less than -"

This is described in figure (2) below: A

Figure (2)

A REAý<

Mean Ac"
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!I
"A" is determined so that at least 90% of the distribution is explained;

i.e., the shaded area must be no larger than I0%. Applying the above
I theorem:

.10 1
A

A 3.16

therefore equation (6) becomes: ~ 31w

(7) 905oC L. It> 3.1 Rj

*I

SERIES SYSTEMS: The most common case of conventional ammunition
reliability assessments have been on systems without replicated compo-
nents. Referencing figure (1) and letting amb. .. =k=1 we have the following
condition:

Figure (2)

Equation (1) becomes:
m

(8) .. r I r,1 2=1

Equation (4) becomes:

(9) ; (r ri-1 ri+l 'rm) n

So that equation (5) is:

m2 2 l i
(10) 2h E r~ P r ... Am ~

o- 2ili-I i+l

1 The values obtained by equations (8) and (10) are then "stuffed into"
equation (7) to obtain the lower 9016 confidence limit on the system
reliability.

269

K .



Example: Consider two (Z) elements in series:

1 2

Applying equations (8) and (10):

AZA I115 •Z ( P 'rA)

or I rOA r *rn r

2 = .-
R nl n 2

Figure (3) on the next page gives the estimates of R and TA for 2 through
5 components connected in series.

PARALLEL SYSTEMS: If S components are arranged in a parallel
configuration, each component with reliability r and all S components
must fail for the system to fail, then by applying equations (1), (5) and
(6):

r n

'Scomponents

A

R I-

and a 1-t

r Iff

Since:

= qt 1I) 2 2
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then

therefore:

905c CL. R = l-(.)-3.16.Sr(l.) _ 1

APPROXIMATION FORMULAE. The aforementioned equations can
be cumbersome to work wih nd aas mentioned earlier in the paper) it
might be useful if some approximation technique could be used in its place,

Series Case. Consider the estimate of the system reliability .

where -

flA
(8) R nr

Suppose we were to "as sume" that P.was on estimate of some binomial
A2. 2parameter R. The estimated variance !o of a-would be:

2

The value of n would be chosen so that q"^ would be a conservativemaximum. R

If the sample sizes n are the same, then this common sample size
should be used in the ýenominator; if n, i n,, then the minimum value

of n should be used in order to maximize .Equation (1) can be
re-written as:

i~ (Aa) -a .
(12)' 3I

Equation (7) now becomes:

A

(13) 90% C.L. R > -3. 16r•
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The difference between the proposed solution (equation 7) and its
approximation (equation 13) was examined in a general fashion. From

range from about 0. 00 (two significant decimal places - see DeCicco)
to roughly 0. 05 at extreme conditions. It appears that this approximation

Abecomes more effective for r. -. 1. 0 or large values of n1 or both.• 1

I Parallel Case: The estimate of the system variance (equation 12)
could be applied to parallel system configurations. The range of differ-
ences has not been investigated but it is expected to be in close agreement

.,with the series -situatlion.

GRAPHIC PROCEDURE: As stated earlier, it would be useful to
reduce the computations of both arproaches to the problem.

P.oposed Solution - Series Case - Equation (4) can be substituted
into equation (2) to express the total variance of the system reliability
estimate (expanded form of equation 5):

(14)

z n a kl(l; )X 1  
2~3 .

a E. f {j (-(- )J i- I -( i+l ] *. l-l- )k] -yll- ii)Yl] M
R 1=l

X -n.
1

m
In the series case a=x=y=z=k=... =1, and by factoring out 11 r,
we obtain: i=1 1

m r r r r r -i2 m A I Z"" i-l i+l m(i
(15) R M

R i=l n.

. By letting
(16) r r r 0r ;

( 1 2 i-l i+l m i

Equation (15) becomes

2

(17) A
R i=l n.
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For specific paired values of and n, (which are computed from
sample data) we can set up a graph of thle form:

in

Figure (4)

Defining equation (17) becomes

2 n n 1

R or 0 ( k* (R)J
1.1i~ i=l

R 0C. I -. 6( .()

so that equation (7) can be written as:

90% CL. R >. R- 3. 16 1( Ri)(]
i=l

which is defined by Z and R A graph can be set up -

1

90%C. L. R > I Ri

Figure (5)

to give the proposed solution. The range of values for n. M i. and R
were considered to fall in the following intervals:
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<5 ni < 200

2 <_ro_. 5

From these initial boundary intervals the range of values for and
E .. were determined to be:

._ ,005 < * < .150 -

-6. .6
50x10 Z-- < 30,'000xlO0"

Figures 4 and 5 have been worked out per the above ranges of values and
are presented in the appendix as Figures 4'a,b and 5'a,b.

Approximate Solution - Series Case: Equation (13) is:

90%C.L. R > R-3.16 [1]

which is defined by R and n(Min). These parameters will be assumed to
have the following range of values-

A

.85 < R < .99

25 < n(nin) < 200

- so that the following graph can be determined:

90% C.L. R >

rx(Min)

Figure (6)

The details for Figure (6) are given in the appendix as Figure 6'.
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This method is certainly much easier to use than any of the previous

* Proposed Solution - parallel ease - Consider equation (11)

90%o C. L. Rwl-(l-4r)s - (3. 16) (S) A1.)- _(_4_ which is defined

by a number of components in parallel, i-reliability of each component
in the, parallel network and ninth. same size used to compute P. For

.7 practical purpose. let *a2 and 3 components in parallel.

The following graphs can be constructed:

Ssls

90% C. L. R >r

n

Figure (7)

The details are given in the appendix as figure 7 'a, b.

CONCLUDING REMARKS: The above procedure is a proposed "Itype"l
* of answer examplifying the kind of solution requested. Any solutions to

this problem that can be published/circulated as a standard reference
would be appreciated.
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STATISTICS, PROBABILITY, AND DETERMINISIY IN A
RELIABILITY IMPROVEMENT PROGRAM

Woodie R. Jenkins, Jr.
•, National Range Operations

White Sands Missile Range, New Mexico

The Data Collection Directorate of White Sands Missile Range (WSMR)
is presently engaged in the task of increasing the probability of obtaining
usable data from several data gathering systems. These systems are used

"- -~ - I on V•ti6us projects to collect vehicle performance data. The projects are
tests of weapon systems. The data gathering systems are optical cameras
and electronic instruments used to measure the position, velocity, attitude,

* events, and internal status of test vehicles. The probability of obtaining
usable data is the "Reliability" that is referred to in this paper. Data
records are obtained by instruments of the optical and electronic systems,
and the records are assessed "Usable in Reduction" or "Unusable in
Reduction" by the WSMR Data Reduction personnel.

It is the policy of the Data Collection Directorate to allow a data gather-
ing system to exhibit a total fraction of unusable records, over a given time
period, that does not exceed P0 " In other words, if U = the number of
unusable records and I = the number of attempts to obtain data, then the
fraction of unusable data obtained by a system over a given period of time is

P=U(1) p:
I "

(Note that U/I is a measure of the unreliability of the system, and one minus
the unreliability is the reliability of the system. ] And, in order for the
process of obtaining usable data to perform in an acceptable manner,

P Must be<P

When, over a specified period of time, P > Po' then the Directorate must
take action to improve its data gathering reliability.

It is the P > P problem that we address ourselves to in this paper.

The question to be answered is "What action must the Directorate take
in order to ensure that P will be < P0 for the next equal sampling period?"
It is my hypothesis that "The areas that should be controlled can be found
by determining the most significant differences between the deterministic
relationships that existed at the time the unusable records were obtained by

I
j . . . . l
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specific' instruments and the relationships that existed at the time the
usable records were obtained, This requires that the same instruments
at-"th-e same locations be operated by the same personnel an the same

projects in both cases. Moreover, hypotheses about how to control
physically the appropriate deterministic relationships can be formulated,

tested, and verified with satisfactory results.

[('Uother hypotheses are made available, I will certainly consider them. 1

Once the relationships or parameters that must be controlled are known,
*W* the1) of my hypothesis can be performed.

The following example illustrates how statement (1) of my hypothesis
can be accomplished.

Let us say that we must assure ourselves that the P > P condition
for sample (1) will be a P < Po condition for sample (2) for the tracking
camera system (cinetheodolites). Sample (1) is the original data for which
P > Po. Sample (2) is the necessary and sufficient amount of data needed
to make a decision about whether the controlled process yields P < p.
The following observation was obtained from all of the sample (1) data.

Frequency

Occurrence I I
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Reasons for Being Unusable

Figure I

From the definition of P (Eq. •I)] it can be seen that

E Frequencies
Reasons

If there is no reason to expect that the P for sample (2) will be'significantly
different from the P for sample (1) if the process were left unchanged and if

E Frequencies - Frequency of Reason (1)
Reasons-

(3) .. 8< P
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then each occurrence of reason (1) should be analyzed for the deterministic
conditions or relationships that existed at the time that th6 data records
were obtained.

If reason (1) is identified as: "Insufficient Coverage", then the equation
describing the probability of obtaining "Sufficient Cave rage" by a camera is

* derived as follows.

Sufficient coverage is defined as the required number of consecutive
frames of data, Mo, for any optical system. If a cinetheodolite is assigned
to operate on a project fr6om time t to time t' at a data gathering rate

an
of r frames per unit time, then the expected total number of frames of
data is

n a

If r = the obtained frame rate and It, t] is the time interval over ahich

the camera operated, then the total number of frames of data obtained is

(7) r (t -ta)

Also, if 0 and t = azimuth and elevation angles respectively of
the optical axis of the camera at time t, if 0t and ft = the azimuth and

elevation angles respectively of the aerial target to be tracked at time t, and
if and are the angular sized of the camera' field of view in the

horizontal and vertical planes of the camera respectively, then it can be
shown that the aerial target is contained in the camera's field of view it and
only if

57 57, 3
0o,t + 0~ >t o, t' Z e

(8) and

fo + >2 2

are satisfied simultaneously. Note that since 0 and I are in degrees
and and are in radians, 57. 3 coverts P0 and into degrees.

If we call At the probability of the camera acquiring the aerial target at the
instant t and use the concept of Delta Functions, then
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At ~ + 57.3 •e> ft > L7. 3 -• •

(e) t- o't+•-3• >•t2> •ot 27.

F,'1

SO~~, Otherwise•

Since we must have at least Mo number of consecutive frames of A.t I 1
in order to have sufficient coverage. then a concise

mathematical statement of the required condition is defined as follows.

The camera operates at a frame rate of r frames per second. The
time required to obtain one frame of film is At, where

I

AtS (10)

Moreover, if it takes At units of time to obtain one frame of film, then
it takes MoAt units of time to obtain M consecutive frames of film.
Therefore, sufficient coverage is obtained if and only if

t -M 6ti t~n 0 oS~tI + M at

! t+Mit At >1,

1 a

S where

• • (12) t I ft a, t a + Mo0At, t a + 2Mo0 t, ta + 3Mo0At,... tn- 2Mo0 t, tn - Mo } 0

If there is any sampled instant in Mo consecutively sampled instants for
which At = 0, then the product term of equation (11) is zero for that series
of frames. If all such series of frames yield product terms of zero, then
the film record will surely be assessed unusable due to insufficient coverage.
Again relying on the Delta Function concept, the probability of having
obtained sufficient coverage is given by
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I t -MAt

n t.+M At

ti t1 •a t t, 1 + A t

j (13) C [tatn3-

ItI1 . _ ,. O~, Otherwise: .._

S . . quations (9)+|md (13) provide a me as for attemptin--to find a physical
cause for each occurrence of unusable records due to insufficient coverage.
For example, the following relationships can be compared by using both
usable and unusable data for each station (camera) that obtained unusable
records due to insufficient coverage.

After anal yzing Figure II, we will be in a position to formulate
hypotheses about how to control physically the relationship(s) exhibiting
the most significant differences between the usable and unusable data for
a given camera on a specific project.

The above discussion has illustrated my approach to solving the P > P0

problem. Since the proposed method has not been tried as yet, I am
seeking an evaluation of the method along with alternate approaches to
solving the problem. I will now entertain questions and/or comments
about this problem.

29
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A COMPUTERIZED PROCEDURE FOR WRITING

MATHEMATICAL MODELS FOR SYSTEMS RELIABILITY

John G. Mardo and Anthony J. Ricciardi
Mathematics and Statistics Branch, Nuclear Reliability Division,

, 01.iliLy A'surance Directorate, PicaLinny Arsenal

I• Dover, New Jersey

I. ABSTRACT, A method for the determination of mathematical
models for the reliability of missile adaption kit (AK) systems is pre-
.sented. The method crnr&aits of a computer program, the input of which
i. I etoeai e L -tsion of the systemc6nfigu-ation, The program
constructs a success-failure tree from the Boolean expression resulting
in all possible success paths for the system. The union of these success
paths is the reliability model for the system. The number of components
and not the complexity with which they are combined limits the use of the

• present procedure.

1 ACKNOWLEDGEMENT. The assistance of Bruce Barnett of the
Data Processing Systems Office of Picatinny Arsenal in the development
of the techniques used in this report is acknowledged. In particular, his
contributions to the underlying theoretical aspects are appreciated.

The remainder of this article has been reprpduced photographically.
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III Introduction

The purpose of mathematical estimations of reliability in any sta-
of the life cycle of a system is to determine the expected probability Lf

successful functioning in use. These PmS•M÷nre alimuP tijp.t.
potential reliability problems and reveal system configurations that have
greatest probabilities of failure in use.

An important tool in evaluating these estimates is the reliability
equation. This equation is a mathematical model of the system under
consideration, relating the reliability of the system to the reliability
of the components which comprise it. For complex electricol systems,
these equations are difficult to obtain. The difficulties encountered

•;i.:i. - are dependent upon the number of components in the system and the degree
of complexity of the configuration.

The dependent operations of the various components require the use
of conditional probabilities in developing the mathematical models. The
determination of these conditional probabilities is difficult; as a
result, reliability equations for complex systems are usually approximations
based on the assumption of independence. Simplified models of the system
are presently used which ignore the less likely modes of operation.

Although numerical estimates obtained from Ytodels which represent the
system exactly do not differ markedly from those that would result from
approximate methods, there Pre a number of advantages in using the more
exact method. Arguments as to the validity of the model used for the
analysis Pre largely eliminated because the "model", in this case, is the
most complete mathematical representation of system operation possible.
The ability to handle large numbers of components permits breaking down
the system into very small elements and the relipbilities of these small
elements can be established with greater confidence and can be established
by testing at less expense. Finally, the equations arising from this
analysis permit component effect studies on a more realistic level, since
a more exact representation of a component's role in the operation of the
system is given by the resulting equation.

An automated procedure will be presented for analyzing systems. This
procedure res-ilts in a reliability equation which is a mathematical model
representing the system. The primary purpose of this automated procedure
is the determination of success models in the shortest length of time by
the most economical means. Complicated networks require monthq of manual
effort to determine reliability models even with the previously discussed
approximations. Using the computer procedure to be discussed, it is
necessary to understand the logical functioning of the system. With this
understanding, it will reqire only a few days rather than months to derive
the final algebraic equation using computer techniques.
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II

rV Foundations of the Computerized Procedure

Consider the system composed of the components Ci, C2 , ... , Cn arranged
in a configuration whiri makes ordinary prasllel-series reliability analysis
of the network difficult. Interdependency of component opera LioUn causes
such a situation. It follows from Beye's Theorem that

S (1) P(f) * P(flCi)P(Ci)+P(fli)P(Fi)

where: P(f) - probability of the system functioning

P(flCi) - the probability of the system functioning given that
component Ci operates correctly

* P(Ci) - probability of component Ci operating correctly

P(fT•i) and P(Ci) are defined similarly where 7i represents
* the event where component Ci fails to operate correctly

P(Ci) is the reliability of the component Ci and P(3i) =f - P(Ci)

Equation (1) would be the desired expression of the system reliability
in terms of the qomponent reliabilities if the conditional probabilities
P(fICi) and P(fICi) were evaluated either numerically or as functions of the
component reliabilities. The computer program listed in Appendix A performs
these evaluations of the conditional probabilities by using the Boolean
algebraic expression which represents the logic of the system operation.
S This expression is a fxnction B(C*, Ca, ... , C*) which takes on the values
I or I representing system success or failure, respectively, where C3 is a
variable which takes on the value I or 0 Oepending on whether component
Ci opprates or fails to operato, respectively.

It is possible using this function B to evalupte the conditional
probabilities ?(flri) and P(fICi). If, when r4 is given the truth value
1 in the Boolean function B, and all other CT, where J j i, are given truth
values n, the value of B is 1, then P(fjCi) 1.0. However, if B - 0
then ?(fIri) cannot be detLermined directly and P(fICi) must be further
expanded as follows:

P(fICi) P(f CiCj)P(Cj)+P(fICi~j)p(CJ)for any j # i
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Similarly, when Cr is given the value a in B and all other CA', where
J# , arj given values 1, B 0, then P(fICj) 0.0. However, ir B 1,
LIM$" rUiuj ui nuL be deatermined direct±y and thus may also require
further expansion as follows:

P(fICi) - P(fICiC i)?(C J)+P(fICi~j)P(0,j) for any j i

At this point, an attempt is again made to evaluate the conditional
probabilities using the function B. The procedure is continued until all
the conditional probabilities have been eliminated by substitution of
tither their numerical equivalents or these conditional probabilities
. xpreseed as combinations of the individual component reliabilities. When
this point is reached, the P(f) has been expressed algebraically as a
combination of the individual component'reliabilities and the program is
terminated.

Applying this procedure to the following circuit:

A

.the Boolean expression for the circuit is

SYSTEM - B(A,B,C) - (A+B)"C

Expanding as described above using rIeye's Theorem:

1. P(f) - P(r:A>PF(A).P(fIA>P(A)

2. P(fIA) - P(fIAB)P(1B)+P(fIAElP(u)

3. P(fIAB) - P(fIABC)'P(C)÷P(fIABO)'(C)

4. P(fIAB)- P(fIABC)-P(C)+P(fIAC)'P(U)

6. P(flAB) P ?(fIABC)'P(C)÷P(fIAB-C)'P(C)

From the Boolean Expression it follows that:

P(fIKB) - P(fIABC)- P(flABC) * P(f!ABC) 0 0 and P(flABC)-

P(fIABC)- P(ft BC) 1
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Hence: ~ ) -P C -( ) P A +( ) P C -~ ) P r) P i) P T

IP(f) - PB*()PAýLPB)+(ý1PA)-~,

P(f) u PA+()PA)PB)PC

~'~-~ J This result is the algebraic reliability equation for the circuit shown

in.1

.

.
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V Application of Com~uter Procedure

The following example demonstrates the computer method of handling
the procedure on a simple circuit. Consider the circuit with compont-nts
A, B, C1 , Di, C2, D2 in the figure below:

- DA FnINCTlONAL

DIAGAM

Fl:G. 2

The above circuit is translated into its Boolean or logic diagram:

BOOLEAN OR
LOCGC DIACRAM

B A 02FIG. 3

The Boolean logic diagram is converted into a Boolean expression
using Boolean algebraic techniques. The resulting expression for the

9 above diagram is as follows:

(1) SYSTEM - A(CI+BD2 )+B(D,+AC 2 )

This expression is then programmed using whatever means are available
in the progr~mming language being used.

The next step is to set up an "order of o.onsideration" of the components.
This will be A, B, C1 , D2 , D1 , C2.

The steps that follow are handled by the computer as follows:

Using the Boolean expression, a "tree" is generated within the
computer. Such a tree will now be generated for the circuit under discussion.

Symbol (A) is used to represent the success of component (A).
S Symbol (A) is uased to represent the failure of component (A). Similar

notations are used for components B, C, and D. Starting with component A
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(since A .is the first component under the 2rder of consideration) the
associated success-failure symbols (A and A) are used as the first two
branches of the tree. To determine how far to continue a branch, each

1. Starting with the A branch, assign the value 1 to
compuiient (A) and the value O to all the remaining components in the
syitem. Substitute these truth values into the Boolean expression for
the system and determine whether this combination of values causes a
system success or a system failure. If the result is a system success,
end the A branch of the tree. If the result is a failure. plan to
continue the A branch by adding the two branches (B and B) of component B.

2. Using the A branch, assign the value 0 to component (A)
and the value I to all remaining components in the system. Substitute
these truth values into the Boolean expression for the system and
determine whether this combination of valn.tes causes a system success or
Ssystem failure. If the result is a sys'cem failure, end the A branch_
of the tree. If the result is a system success, plan to contine the A
branch by adding the two branches (B and B) of component B.

3. Continae to generate the tree diagram jy adding
components and testing each branch of each component for termination or
continuation as described above. The expression that describes the
success path to the last component in the branch can be used to develop
the algebraic equation for the system.

When all success paths have been generated, the program creates
an algebraic success model which can be used for the generation of
reliability point estimates for the overall network described by the
Boolean expression.

The tree diagram for the circuit.of FIG. 2 is shown in FIG. 4 along
with the resulting success paths.
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The computer program then saves these susscess paths, substituting for

the A, B, etc., (1-A), (1-B), etc., respectively as follat-,s:

it (d.bTlEM) I A8Uj+ABD 1(; 3.) +A13D3.I-C3.) (I-D2) +ABC 2 (-C1) (1-D2)(1-D 1)
*ACt (l-B)+BCD Dl(I-A)*BC3,Dl(I-A) (I-D2) +BD2D(I-A) (I-C.)

The equation for R (SYSTEM) is then stored in computer memory as
follows (see Appendixi REIIABILITY MODEL):

fR (SYSTE) - ABC3+ABD2-ABCiDa+ABDI-ABCI:D-ABDID2+ABCIDIDa+ABC2-ABCiCa
-ABC I+ABkDICCD 2 -ABOgD•+ABC 1 C2DI+ABCgD.D 2 -ABC.C 2 D•)D 2 +ACI

-ABDiDl-BC DID2+ABC 3D2 fl+BHD-ABDI -BCIID+ABC0D 1-BD 1D2 +ABD1 D2
+BC.D 1D a-ABC1 DD2

Noting that A and B are similar components which will always have the
same function and the same reliability as will Cj, C2, DI, and D2 the above
equation will be reduced to the following by the computer:

R (SYSTvI4) = A C÷A2 C-A C2 +A2 C-A2 C2 -A 2 C2 +A 2 C3 +A2 C-A 2 C2 -A2 C2 +A2 C3 -A2 C2+A2 C3

+A 2C 3-A2C4 +AC-A 20AC 3-A2C 3+AC 2-A 2C 2-AC 3+A2C3+A2 C2-AC3 +A2• 3

+ACA 2C-AC 2+A202 -AC 2+A2C2 +AC3 -A203

The "combine terms" routine is then applied to obtain the final result,
the algebraic success model for the circuit in FTG. 2 or any circuit

represented by the logic diagram of FpG, 3.

II (SYSTE24) W 2A2 C-6A2 C2 +4AzG3-A420+2AC
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VI Conclusion

The program to carry out the procedure described above has been
developed and tested on many hypothetical systems. (See Appendix) Results
of this testing brought to light a few drawbacks to Lhe method. These
weaknesses will now be discussed.

On a system consisting of N distinct components, the numbes, nf branches
.which may be considered is 2NA This number may be reduced greatly if a
proper order of consideration of components is used. The procedure is
extremely sensitivP to this order and efforts ere now being mpde to deve!-,p .
decision mecharnsms within the program to construct non-redundant succvei
paths which result from improper order of consideration. An illustration
of this redundancy can be shown on the demonstration circuit used sbove.
Because of the order A, B, C1, etc. used two success paths which result are
ABC, and ABC1 . The same contribution that these paths make to the final
reliability equation would have resulted had thp order been slightly altered;
i.e., A, Ci, B, etc. The only success path resulting from this order would
have been ACI andP(ACI) - P(A)P(C1 ). Notice that P(ABC1 )+P(ABC1 ) - P(A)
P(B)P(C 1) +P (A)P(B)P(C1 ) - P(A)P(B)P(C1 )+P(A)P(C 1 )-P(A)P(B)P(C1 ) - P(A)P(C1 ).
Hence, this change in order eliminates the use of two branches to come up with
the same contribution to the final algebraic success model. The presence of
each causes unreasonable amounts of computer time to be used even when only
point estimates rather than the algebraic equations are being computed.

A second problem is caused by the need for large amounts of computer
storage. This need arises only when the algebraic equation is being sought,
since each success path must be stored in some manner so that final
refinement of all success paths as a whole can be made to determine the final
model in a well organized form. When only a numerical point estimate is
sought, there is, in general, no need to be concerned about memory size.

The third and final problem is a minor one. It results from the
cumulative round-off error that is present when many accumulative
rultiplications are performed with very small numbers while generating
numerical estimates of reliability. This problem, however, has largely
been overcome due to the availability on most present day computers of the
double precision variable.

The present stages of development of the procedure are concerned
primarily with overcoming these difficulties. When the flaws Pre eliminated,
the computer program will provide to the engineers a means of predicting and
estimating the reliability of their systems. It will provide engineering
with the efficiency and accuracy of the computer in determining'the
relipbility success models it requires, saving P good deal of time and money.
Reliability equations that previously require months to derive manually, can
now be solved in a matter of days.
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'ppendix A

Included in this appendix are a listing of the computer program
discussed in the body of this report and an example of the program output.
This output resulted from the application of the computer procedure on the
simple circuit discussed in Section V of this report. Note that a
reliability point estimate was generated for a given let of component
reliability values, as well as, the final reliability model.

~ *11
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ODiUBLE PRpCIsio,' RPs~0RipRositPI~f%?
O)ATA QAi2`'NL/4H/
RLANK- 01r'"HL
JATA 0QAI1HL/4HN/
NEG*ATFu Q"O1IHL
DATA 0`1"2HL/4H

.P~LUS* Q,)ýHL-
DATA Vm"3NL/4H
lINUS* 1'n'14L

S'FOR)MAT( 1i( 1 3t 7X)

ICfl) a ' FO)LIAT ION ONLY'
CICnIE m1BT

04 MAFA (595'1) (FLrMNr(LIT)r, LISTu1,NI

nilJEb''P r9rMIttLSsrrITN
599 FIIRMAT(I14" ,V)X, N'fC14I'~PlN4NT 0 4,15 !. RrPRFýFP'1T' IV VAP 1ASF.L 1"A'~

'1RER 91?)

* ~WRfTPH',5Q9IN#,U1(KN),t(N*1qN1
909 F(IRN'AT (1HV//54Xt27HVNJMF8FQ OF nn%4P'NE'4NTS

C THF AoflvF StATE~4FNTS HANDLE THE TA~tlLarfhN' OF COMPn1NCNT SYMWr1L RFI'OF-
C SENTATION, RFLI.ATL1TTFS FIR RflTH..

91 ITFRM
LCOMP(Lli I
K-1

6 IFRRNC'4(K)u1
5 ICflMP(K+Ilul

no) 1" IuMN

00 71" I9'tN
? #It LIIQ)=TCOMP(191

18)I~inPIl~ mI)lritl-cm(3lTnp;llCnl4P(1)*
I ICcmPI6IeICO"!PI 5)1

611 FORMAT(15X*4#iMNO SUCCESS PATH EXISTS FOR CIRCUIT 1.nJsTR1I~rTFD)

* GO TO Iml
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13 KEK~l
GO TO 6

71 ITERM w KTFR4 + I

42 LI-I'I
TR U T( 1141 - BL.ANK

41TRUTHIIMiNLEGATE
4nCONTINUE
1FICOOE)73,74,73

ICtt 04Pt 1*2)1 11 t82,91
81 PROB~nBIIT2)

GO TO 9
R2 PROBI-I.' - RI~
ac PROB2sPaOR2*Ppjflj

PROB a PRflR + pqr)82
IF(IcnDEI74, 2, 2

74 DO 211 INDEXelLl

KOUNTxu)

19q IF(TRUTHIg(?) - 4CGATEl2'N3,2C7,?03
PC2 X1IONT uKOUNT + I

IKOUiNTIKOUNT)w K?~
198 K2 a K(2 + 1) GO T0 199
203 [F(K2-Ll1i9qs2z%4v198
2C4e IF(KCIUNT)197*2ri,197
VS~ NOTFR14u 1

NUM=I
SIGNIIuPLUS
GU TO 194

197 NOTFR14 a 2**KDUNT
NOSIGN - 2*NOTERM
On 2m6 INDICE a 19NtJ¶KGN

206 SIGNIINnicElu PLUS
NUMUI
KOUNT!Ial
ISTAGF al

t 72 MOUNT uKOUNTI+I
1(OUNTI *KOUNT1 + 2*E'(ISTAGE -1)

DO ISM tNUMU14OUNT,KnUNTI

NUM a O +414
KF(NEXt-1)1a1,lq291 8 1181 NEXTIONIFXT-1
Dfn 15C INDEXItiltNEXrl
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11ITFRP4S(NUM,INDEXuI~wTFRMS(INLJM9tNDEK1)I
12ITERM9S(NU'4*NEXTIS

NEXT2 a NFXT + I
un 151 INDEX? a NFXT29LI

iii ltMSNU?4,INDEW?) a ITERMS(INJ49,tNDFX2)
SI GNINOIsAISIGN( INUM)
NUMaNtJm + I
IF(SIGN'(INUMP-TINUS)152, 16?,15?

* 152 SIGN(NLP'4 a T1NUS
Gn TO 17A

16,2 SIGN(NUMII=PLUS

TqI DO 153 INDFXI*1,1NEXTI
153 ITFRMSINUM,1NDEX3)uITFRMS(1NUMvliflEEX3)
192 ITERMSINUM,NEXI) a ITFRMS(!NUJM*NFXT)

* 15400 154 YNnEX4uNEXT?tLl
14ITFRMqS(NuMtrNDEX41wITERMS(1Nt.1I9,INOFX41

18'! CONTINUE
GO TO20

194 00 955 Ja NflTER49,NUM
.nO 111 IRSO.1,Ll

[P 'AFACTU(Jttssn)=FLEPNTt1RSOI
GO TO III

113 AF-Ac rij, 18So) a3L ANK
1I1 CONT INUE

K NOUT UK UN T et1
00 144 KntUN*I,KNOUJT
00 114 I%1,LI
IF(AFACTfl(Kr)IJN,I)-BL4Ns( ) 114,331,114

331 rEMPsAFACTO(KOUN,tl

15IF( ITFRM-119 55, 954,995~
94WRITEI6,5931
95WRITE(6tV~5) SIGNIJl,(AFACTOI(J, Thqlm1,L1

59 FORMAT (I19I12X,17HRELtABILITY mnrIF:L/1IH ,1X,19H-------------------

* 2!~GO OTO 2
2MISTAflE a ISTAGE +1

GO TO 172
2 IRRNCHIKln2

ICOMPI(K+1)al
Ml=K+2
no 21 JmMlN

20 ICOMPfJulw30
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IBnOLEuICOt4P(1)*(tcflmp(p*fCn54p(4).!COMP(3f1l4Cn'4P(7I*Urr'A4pV!)*
1 ICr)MP( 6) .!cfV4pts))

22 K=K-12

16 IF(ICOI4P(M)23,V1713

IRRNCt4(llu2

nOc TO 5

I ' 2 w R IT E ( t6 1 IP 4 n
61' FLIRMAT(IH ///42X,lI'4 PI~NT FSTIMATII= DIA.12///)

Gfl TO 11"
50~2 FflRMAT(401F*12)

END
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BEST FITTING LINFAR IVARLTIES I
'I~r Iv Thrall

Willow Run Laboratories
University of Michigan, Ann Arbor, Michigan

1. INTRODUCTION. We consider a generalization of the classical
problem of finding the best fitting linear function for a set of data. The
results obtained are stated in the language of eigenv.lues and princiyal
components and take a form which is not explicit in the usual textbook
treatments of principal components. In 1901 Karl Pearson in his paper
"On Lines and Planes of Closest Fit to Systems of Points in Space",
(London Philosophical Magazine, Sixth Series, Vol. 2, 1901, pp. 559-572)
stated and solved the problem for ordinary three space. The texts
M. J. Kendall, A Course in Multivariate Analysis, and T. W. Anderson,
Multivariate Statistical Analysis, treat the standard principal component
theory and give useful numerical examples. R. Bellman (Introduction to
Matrix AnalXyis, McGraw Hill, New York 1960, pp. 113-115) develops

the same topic from a slightly different point of view using the Courant-
Fischer min-max Theorem.

2. SOME ALGEBRAIC BACKGROUND. Let V = Vk be the space of

column vectors of degree k over the real field. A sequence C1, PC C

of vectors in V is said to be orthonormal if r

CT C, (i iif =l ,...,n).
2. J if i=j

(We use the superscript T to denote matrix transposition.) A matrix
C = [C1 .. C ] is said to be orthonormal if its columns constitute an

1 rT
orthonormal sequence or equivalently if C TC = I

r

A subset W of V is said to be a subspace if it is closed under

addition and multiplication by scalars, a subset M of V is said to be
a linear manifold if it has the form M = W +Xo = {X +XJXeW} for some

subspace W; i.e., a linear manifold is just the parallel displacement 01
a vector space. For any matrix C we denote by L"*(C) the set (subspace)
of all solutions of the equation CX = 0 and denote by L(C) the subspace
consisting of all linear combinations of columns of C. For any subspace
W there exist matrices A and B such that W = L'(A) = L(B). If
dim W = r we may asuiume that A has shape (k-r)-by-k and that B has



shape k-by-r we may also assume that AT and B are both orthonormal.

A souare orthonormal matrix P is said to be orthogonal ; for aWy
non-square orthonormal matrix C there is a second orthonormal m trix
D s'ach that P 2 [CD] is orthogonal and for which L(C) - L*(DT).

A k-by-k matrix A is said to be positive semi-definite if XTAX > 0
T

for all X in V; if also XTAX = 0 implies X a 0, A is said to be.positive
definite. If A is positive semi-definite there exists an orthogonal matrix• , . .. . . iP s u c h t h a t

SX 0

A= PTAP=
0 'k]

is a diagonal nmatrix whose diagonal entries satisfy the condition

1= ?X2 k >: 0

The numbers AI,... A k are called eigenvalues of A ; a positive semi-

definite matrix is positive definite if and only if Ak > 0. The j-th column

P. of P satisfies the condition AP. = A. P. and is called an eigenvector
1 3 J J

for A belonging to the eigenvalue A.(j - 1,... ,k).

If A is any k-by-k matrix we define the trace of A by

tr A = al +a 22 + ... + akk

If a product BC of two matrices B and C is square then so is CB and

tr BC s tr CB

A matrix G is said to be a projection if

GG3T = G
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.1, T.
If C is orthonormal then CC is a profecti'on.

j. If W = L(C) where C is a k-by-r orthonormal matrix the projection
of any vector X on W is the vector

J=

T

x _ (xT C1 ) c•':',,: 7 ;:;

then X - X is perpendicular to X (X - X)TX .0) and t1, squared

distance d(X, W) 2 from X to W is given by

2 T T T
2 W) ( -- X 0 X - o X 0

r r (X T (XT C CT C
x~x "i=l i i i

xT r XT 2

T 'r T
=x X CC X

=XT (I -CCT)X

Let [CD] be an orthogonal matrix where D has s = k - r columns.
Then

T T T
I (CD] [CD] CC + DD

so that

2 T TI
"d(X, W) =X DD X

and,' moreover, W = (D).

Next, let B m [B ... B ] be a k-by-n matrix and let
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Sd( i wI
d(B, W)2 M' d(i i j )

~l B DDB
A~l AE J2: B D

T T1tr B MB

since

T 2' T
B JD

T2 T T T T(B(B,...WB [r D B D tB B E DD

L L

d(B, -W r B. DD B t D....

Next, let M be an orthogonal matrix for which

T T1

"ATM(BBT )M [i

where A1 > A > ... > X > 0.

Then

2 T T T T
d(B. W) = tr (MD) (M BEBTM) (M D)

tr D,'AD' duk WI) 2

T 3", Twhere D' = MTD is also orthonormal and W' = L (DI )

3. THE BEST FITTING LINEAR SPACE. We now state ouj problem.
Given B, find the space W of dim r which minimizes d(B,W) the sum
of the squared distances from the columns B to W.
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We see that

mi" fd(B. W dim W = r} = min{tr DT BB D) D orthonormal
:d of rank s = k- r)

= min(tr D TA D' r D' orthonormalSof rank s =k- r)

S..We now show that

(1) DO ] minimizes tr DtTAD,

(2) min (d(B,W) dim W = r) r+1 + +;k

and for the minimizing space W0 we have

(3) W0 = L (DT) L(C)

where M [C DO] is the partitioning of M into its first r and last
a columns.

Thus, we conclude that W is the space spanned by the r eigen-0vectors with largest eigenvalues.

Since (2) and (3) follow at once from (1), we need only establish (I):
Now

= k_. iiT Fi

A F

where Ft isthe i-th row of D'(i=l,.... FT Next, let y, = FTF.(i~l'' k)'

Tesince D' is orthonormal, 0 < yi < 1. Moreover, 1

D AD' = t rD rI

1 n

k TE k yi tr D, DI trDI'DI T tr I a
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Thus,

min tr D'T D > in { 0 < y. <1, y +

S+... yk=S
I I

This ýimple linear programming problem has the solution YM ... M Y r W 0,

yr~i '' = Y•1 and since these yi are realized by DI, (I) is

established.

4. BEST FITTING LINEAR MANIFOLD. Any linear manifold M
of dimension r can be written in the form

M = L(C) + h C
0

where [CoC] is an orthonormal matrix and W L(C) is the related
J0

linear space. To calculate the distance from any vector X to M we first
find the unique vector Y in M for which X - Y is orthogonal to M or,
equivalently to W. Let X be the projection of X on W as defined in
Section 2 above. Then X -'O is orthogonal Lo W and since C is also
orthogonal to W the vector X -°Xo -hCo is also orthogonal to W. %ut
X +hC is in M; hence Y = X + hC . Thus we have

0 0 0 0

d(X, M)2 - (X -(X + hCo )f(X - (X0 + hC0))

- (x - X)T(x -X zh(X - x)Tc +

2 T

+ h C C
0 0

Referring to the notations and calculations in Section 2 and using the
fact that (CoC] is orthonormal this can be written as

2 T T T 2
d(X,M) X DD X - ZhX C 4Th

Now, let A [A1 .... [An be any k-by-n matrix. Then the sum of

the squared distances of the columns of A to M is given by (cf Section 3)
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FI_¸ ... i1r 2T T T2
d(A,M)? = tr A DD A- 2nkAa C0 +nk

= tr A-DD-A + n(h - A- C n(A CoY

where nA E A L e. Aoisthe mean of the vectors All..,,A0 0

From this formula it is clear that for any choice of the matrix C,
T

dA,M)2 is then minimized by taking h a A C and choosing CO orthogonalAT.

to W and so a9 to mrximize AC . This is clearly acheived by taking CO

as the unit vector in the direction of the projection of A on L(D) (the

orthogonal complement of W). Then the projection of A on L(D) will be"T o

(A C )C = hC and we conclude that the minimizing linear manifold S0 0 0
contains the mean A of the columnsof A. We use this fact to reduce the

0
beat fitting manifold problem to the best fitting vector space problem which
we have already solved.

Clearly, for any vector Z,

2 2
d(X,M) d(X - zM - Z)

In particular for Z = A we have0

d(X, M)2 = d(X- Ao, W)

and hence

Sd(A, M) = d(B,W)

where

B [(A - Ao) ... (A- Ao)]

is obtained by subtracting A from each column of A. Hence, if W is
0

the best fitting linear space for B then M = W + A is the best fitting
linear manifold for A. o
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5. SUMMARY. The results of the preceding two sections can be
summarized as follows. Let Al,... ,A be any n vectors in k-space,n

iet A be the matrix whose columns are these vectors, iet A be the mean
0

of the n vectors, and let B be the matrix whose columns are A, - AO,...,

A - A . Then the best fitting linear space W (A) of dimension r for
n 0 r

At,...,A n has a basis the eigenvectors corresponding to the r largest

eigenvalues of AA and the sum of the squared distances of the vectors to
this space is the sum of the k - r smallest eigenvalues of AAT. (In the

S......... i case of equal eigenvalues the generating eigenvectors must be independent...

but this is guaranteed if they are selected as columns of an orthonormal
matrix as above.)

The best fitting linear manifold M r(A) of dimension r for these
vectors is then Wr(B) + A 0 and the sum of the squares of the distance

r T
is the sum of the k - r smallest eigenvalues of BB

If one wishes the average squared distance fromthe vectors to Mr(A)
the number above is divided by n. This can be acheived alternatively

by using the matrix G = ('/ýn)B. The result is that M (A) = Wr(G) + A
r o

and the average squared distance is the sum of the k - r smallest eigen-
values of the covariance matrix of GGT = (l/n)BBT. Suppose that
M - (Mil... M] is an orthogonal matrix for which

T T [IMTGGM=
S"•k

where A1 > A > A >0 . Then the columns M.... Mk are

called the principal components of the distribution Al,..... A, and the

first r principal components constitute a basis for Wr(G).

What is usually stated in statistical texts is that the first principal
component gives the best fitting line; that the second principal component
gives the best fitting line orthogonal to the first; and, in general, that the
r-th principal component gives the best fitting line orthogonal to the space
generated by the first (r - 1) principal components. It is not stated expli-
citly that the first r principal components give the best fitting space of
dimension r.
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PLANNING AND ANALYSIS OF NON-EXPERIMENTAL STUDIES*

W. G. Cochran
Harvard University

Cambridge, Massachusetts

1. INTRODUCTION. During the past 20 years a marked increase
in statistical studies of human populations has taken place. Several
reasons for this can be suggested. Successful applications of operations
research during World War II led to an expanded use of this technique in
business and marketing after the war. Public opinion polls, which proved
interesting and informative as news media, stimulated the growth of
agencies equipped to take sample surveys for clients. The provision of
increased amounts of money for field research in the social sciences also

contributed.

In many of these studies, the objective is primarily descriptive--to
get the basic facts about some problem. Examples are the monthly
estimates of numbers of employed and unemployed, or a survey undertaken
in a city to estimate the amount of delinquency among teenage boys according
to some definition of this term.

In other investigations, interest focuses on the study of relationships.
For my purposes, I should like to distinguish two classes within this type,
although they shade into one another. The first class consists of broad
analytical surveys in which a number of variables are being investigated
simultaneously by multiple classification or multiple regression, or by
setting up models involving systems of equations, as in econometrics. For
instance, in a recent study organized by the U. S. Office of Education [ ],
standard tests were given to school children in grades 1, 3, 6, 9 and 12.
By multiple regression methods, estimates were obtained of the contribu-
tion made to the child's performance by various characteristics of tho school
attended, by the home environment and parental attributes, and by the child'sd
aspirations and self-concept.

When these studies are exploratory, the discovery of the relationships

that are present suggests the question: Why?, leading the investigator to
set up plausible hypotheses about the :ausal forces at work. In other
studies, causal hypotheses may already have been proposed, the purpose
of the study being to verify whether the predictions about relationships made
from a casual model are consistent with the results.

*This work was facilitated by a grant from the National Science Foundation

(Gs-341).
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My second class of analytical surveys is narrower in scope and more

intimately bound up with the idea of cause and effect. The investigator
L:U11C.C.1LrLX~ U11d i ~eCilIC PrVeiUtAlied CdUbdL ageml dflU iried Lu measure
certain aspects of its effects. Examples are the effects of wearing lap
seat belts on the amount and types of injuiry Pustained in anto accidents.
the effects of air pollution on illness associated with the respiratory organs,
the effect of a new contraceptive device on the birth rate during the next fiv:
years, and, to cite a World War It study, the effect of bombing on the morale,
of the bombed people.

These studies resemble controlled experiments, because we set out to
measure the effects of certain 'treatments'--the causal agents. However,
in the 'non-experimental studies with which I am concerned, the investigator
is unable, for practical or ethical reasons, to use the two chief weapons of
controlled experimentation. He cannot select the subjects who are to receive
the causal agent and the subjects from whom it is to be withheld. If the
agent is one that may be present in greater or less amount, as with air
pollution or bombing, he has no control over these amounts, but must take
then- as he finds them.

The design and analysis of controlled experiments has becomne fairly
well categorized and standardized. Most university courses on the subject
discuss completely randomized, randomized blocks, and latin square plans
(sometimes under different names) and go on to factorial experimentation
and to techniques for estimating response surfaces. This standardization
brings with it the usual benefit of economy of effort: once learned, the
techniques of planning and analysis can be applied, often with only minor
variations, in widely different areas of research,

With non-experimental studies much less standardization of this type
has occurred. There is less cumulative experience with the various types
of study plan. In the principal fields in which these plans are used--
sociology, psychology, education, market research, and public health--
workers have only recently begun to learn from one another. Statisticians
have shown limited interest in the logical structures of the plans.

While non-experimental studies present many issues that merit
discussion, this paper will be confined to three topics, as follows.

Some preliminary aspects of planning.
Simple types of study plan.
Techniques for increasing precision and

eliminating bias.
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Z. PRELIMINARY ASPECTS OF PLANNING. Being unable to apply
the causal agent in which he is interested, the investigator in a non-

experimental study must first find some locale in which the agent ii
operating or will operate under conditions suitable for measuring its
effects. In this search the following questions must be kept in mind, all

K, of them matters of judgment rather than of black and white.

1. Is the cause operating in sufficient strength? Sometimes,
for reasons of convenience or expense, the investigator chooses an environ-
ment in which the causal force operates too weakly to allow its effect to be
measured in the size of sample that is feasible. For instance, airline
pilots might be considered a convenient source from which to study predic-
tors of heart disease, since they receive repeated and thorough medical
examinations of which records are kept. On the other hand, one oi the
criteria by which they are selected is that they are the kind of men who are
unlikely to develop heart disease.

2. What other important variables are present whose effects may
be confounded with those of the causal variable ? How will they be handled?
In planning a study of the effects of air pollution, an investigator might
look for three residential areas in the same city, one heavily polluted, one
moderately, and one relatively free from pollution. But it is likely that
the residents of these areas will show a sizeable gradient in socioeconomic
levels, which might account for any differences found in respiratory illness.
If the investigator confines hinmself to areas closely similar in socioeconomic
level, he may find that the differences in amounts of air pollution are quite
small, thus becoming involved in the difficulty mentioned in point 1. Methods
for handling confounded variables are discussed later in this paper. If,
however, an important variable is too highly correlated with the causal
variable, as might be the case in the air pollution example, there may be
no way to disentangle their effects.

3. What measurements are to be taken? What is known about the
precision and accuracy of the measurements? Mlarry aspects of human life
and behavior present formidablc problemns of measurement: e.g. , how
does one measure morale? In large studies, the measurement process may
be restricted, for reasons of expense, to responses on a printed question-
naire. Substantial biases in mneasurement can, of course, produce badly
misleading results. "Random" errors of measurement of the effects
decrease the precision of the results. "Random" errors in measuring the
strength of the causal variable (e. g. number of cigarettes smoked per day)
will produce an underestimate of the size of the effect. Similarly, "random"
errors in measuring a confounded variable decrease the effectiveness of
the standard statistical methods for removing the disturbing effects of this
variable.
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4. If the study is to be made from records already collected by
someone else, have the records been checked as to completeness, accuracy,
and accessibility? It is alw".2s worth considering whether a study can be

made from existing records, not only because of cost but because this may

be the only way to obtain results in a reasonably short time. Sometimrs,
investigators construct plans and engage staff fur d sl.udý on Ihe basis of

someone's assurance about the quality of the records that turns out to be

greatly over-optimistic, particularly when the records are kept for some

legal or administrative purpose but rarely used or examined. A careful

pilot survey of the records, designed to reveal any weaknesses for the

purpose at. hand, is essential before commitments are made.

5. How will the sample size or sizes be determined? In controlled
experimentation there are formulas that provide guidance about sample size
by calculating the size needed to estimate the effect with a prescribed width
of 95% confidence interval, or the size for which some baisic test of
significance will have a prescribed power. It is advisable to try to i.se
these formulas in non-experinmcntal studies also. H-uwvur, in ordur tU
obtain useful numerical answers from these formulas one imust have an
estimate of (i) the standard deviation per observation and (ii) the likely
size of the effect that is being estimated. In exploratory studies these
estimates may be lacking, and the investigator may have tU use sirply theý
largest sample size that can be afforded, having speculated that this size

is more likely to be too small, than too large.

6. If non-response or later melting-away of the sample is anticipated,
what are the plans for coping with it? This is a conmmon problem, especially
when participation in the study is somenwhat of an imposition on the subjects,
or when the study extends for several years, Investigators tend to be lax

about non-response. The standard call-back or follow-up queIstionnaire
procedures developed in sample surveys are ofteia sorprisingly helpful,
Sometimes it is feasible to follow people who niuve within the samit nmtro-
politan area even if it is too costly to follow those who leave the arca,
Sometimes background information about nor.-respondents is available, or

can be obtained by mall, that assists a judgement about th evxtent to which
they bias the conclusions. Speculations about the extent to which nun-
respondents might bias the results can always be made inuch 1rvJ r<
comfortably with a 10% than with a 30% non-respunse rate.

7. What are the comparisons from which the size of the piresumod

causal effect will be estimated? Numerous points arise here. In sonic
studies the 'cause present' group is clearly defined, but it is less clear
what can be used as a 'cause absent' group for comparablu purposes. Often
it is important to estimate the causal effect separately in different subgroups
of the population (e.g. for people of different ages, for mon and women).



The types of adjustment to be made foi- handling confounded variables are
also relevant.

8. Is the environment a 'typical' one from the viewpoint of generali-
zability of results? Sometimes an ingenious investigator finds a group of
people (for instance a special religious sect) among whom the causal force
is operating with no important confounded variables. But he ritay reluctantly
decide not to attempt the study in this group, because they seem atypical in
so many respects that any generalization of results would appear hazardous.

With some problems of great interest and importance, investigators
have to search for a long time before a suitable environment is found.
Sometimes none is found: in other cases we are restricted to the type of
study that can be done rather than the type we would like to do. Consider
the problem of investigating in human subjects the effects of exposure to
atomic radiation on illness and death rates. Ideally, the answer would
take the fornm of a dosage-response curve, the rate being expressed as a
junction of the exposure history (amount and duration).

As pointed out by Seltser and Sartwell [21 , the principal opportunities
for investigations in human subjects are confined to the following: (a) the
Japanese survivors of the atomic bombs in Hiroshima and Nagasaki,
involving a single exposure, (b) groups occupationally exposed to radiation
at times when the possible danger frurn this source was not realized--
radiologists, dentists, and makers of watches with luminous dials, (c)
persons who received medical radiation, as in the treatment of some forms
of cancer, or infants exposed in utero through pelvic X-rays of the mother
in the late stages of pregnancy, and d) areas of the earth in which natural
radioactivity is unusually high.

None of these sources provides more than limited material for con-
structing a dosage-response curve. To illustrate the types of study that
have been undertaken, long-term studies in Hiroshima and Nagasaki were
initiated in 1950. In Hiroshima the sanmple contains about 12, 000 people,
divided into 4 groups of about 3, 000 each, according to their distances
from the point of impact of the bomb. The subjects receive regular health

examinations, with particular attention to any symptom that might be an
after-effect of radiation exposure.

A study of this type is expensive and administratively difficult.
Fortunately, the health data also permit many useful investigations of
general health questions. From the viewpoint of the dosage-response
curve, a weakness ;.s that the dose to which any person was exposed is not
known, but has had to be estimated roughly from memory of a person's
location and local shielding by buildings at the time when the bomb fell.
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Also, the group furthest from the epicenter, who serve as the non-exposed

group, differ in some important characteristics from the three exposed

groups, and have proved unsatisfactory as a 'control' [31 . I

The study by Seltser and Sartwell [Z] of the mortality of radiologists

is an excellent example of the possihilitieA from groups occupationally or

medically exposed. They chose male members of the Radiological Society

of North America. For each member they obtained by a painstaking

search the status (dead or alive) as of December 31, 1958, with cause of

death and any available information on other factors such as age that might

influence duration of life. Research of this type always raises the question:
with what are the exposed group to be compared? Ideally, we seek a

non-exposed group which is similar to the exposed group with regard to

any other variable that is known or suspected to have a material. effect on

duration of life. (In this example an obviously relevant variable is age.

In an observational study the extent to which this goal can be met is of

course dependent on our ability to measure such variables and to find a
group that has similar distributions with respect to then).

The authors chose two comparison groups. As the nearest to a non-

exposed group they used the American Academy of Ophthalmology and

Otolaryngology, whose members rarely have occasion to employ X-radia-
tion. As an intermediate group they also included the American College

of Physicians, since some of these members use X-rays, for example, in

heart examinations. In such studies the inclusion of a middle group is
advantageous in either adding confirmation to the results given by the two

extreme groups or in casting doubt upon them. This study, however,
again has the weakness that no measures of the doses of radiation experi-

enced by the subjects are available, except as a rough guess for the group
as a whole.

3. SIMPLE TYPES OF STUDY PLAN. This section introduces
some simpler types of plan, with a brief discussion of their strengths and
weaknesses and of the statistical analysis.

3. 1 A single group, measured before and after the action oi the

causal agent. This type is common when the causal agent is of short:
duration. For example, after complaints about the time taken to go

through a cafeteria line, a change in the service is proposed that it is

claimed will remove the bottleneck. Before this change is made, the
times taken to go through are recorded for a random sample of the usei s.

the same being done after the change is made. In other situations, the

causal agent might be DDT spraying of 10 villages, an estinmate of thv

misquito population being made before and after spraying, or a radio and
TV appeal which the stations in an area agree to give on a certain day,
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urging mothers to bring their children into the clinics in a city for
immunizations, the number of children appearing for immunization being
counted in each clinic during the weeK betore and the week after this appedi.

Unlike the i.adiologists example, such studies have no comparison
group, usually because all members of the population of interest are

i" exposed (at least potentially) to the causal agent. Sometimes, as in the
DDT example, a comparison group of unsprayed villages might have been
chosen, but is excluded for administrative or financial reasons. Often, a
single-group study is the only feasible approach in attempting to learn

* something about the effects of new governmental programs or laws that
apply to everyone.

The absence of a comparison group is, of course, the major weakness.
Any other event that produces a change in the level of the variable during
the Before-After period has its effects inevitably confounded with those of
the causal agent. Canipbcll and Stanley [4] give a detailed catalogue of
these sources of bias in educational research. If the investigator is aware
of such other influences he can sometimes ask questions about the reasons
for people'>, change in behavior that help him to judge whether these
influences have been important. Knowledge that a change is coming may
influence people's behavior immediately before the change, so that the
After-Before difference is nmisleading.

Although the conclusions from studies of this type involve a substantial
element of judgment, the studies are, as Campbell and Stanley put it,
"worth doing when nothing better can be done". I might express it a little
more positively. With new public programs, plans to estimate their effects
are often not initiated until some time after the program has been running.
By this time it is difficult to get good 'Before' measurements and too late
to take precautions or gather supplementary information that might have
helped in judging the effects. The question: How can we study the effects
of this program? should be raised some time before the program begins.

The statistical analysis usually involves examining the difference
between two paired or independert samples. The samples may be sub-
classified by another variable, e.g., age of subject, in order to reveal
any variation in effect with age.

Sometimes there is reason to expect that the Before measurement will
itself influence the subject's behavior. A plan that has been proposed is
to have two groups, both exposed to the cause. Whenever feasible, these
can be random halves of an initially chosen group. Group I is measured
'fLefore' und 'After', group 2 is measured 'After' only. The idea is that
by comparing the two 'After' sets of results, we can test whether the 'Before'
measurement influenced the level of the 'After' responses in group 1.
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The best method of estimating the size of the causal effect presents

a problem involving the pooling of data after performing a test of signifi-
cance. It the subscripts a and b denote 'After' and 'Before', the difference

('2a-' lb)is an unbiased estimate of the causal effect. Assuming a

constant variance o" _er subject, this difference has variance ZT /n.
The difference (V ]a-Ylb) has variance Za 2(l-p)/n, where p is the

correlation between the 'Before' and 'After' measurements for the same
subject, but is unbiased only if the 'Before' measurement did not affect
the level of the 'After' measurement. The estimates ( -Yb) and )

Za lb
(la-Ylb) are themselves correlated, since Ylb appears in both. One

approach is to seek a weighted 'nean of these estimates, with weights

determined from the results of the preliminary test of significance of
(fla-Y72a), that has minimum mean square error subject to a condition

that the bias be kept small.

The preceding discussion has been confined to studies in which it is
satisfactory to measure the causal effect at a single time after the causal
event. In many situations, the causal event may ha , prolonged effects,
or if its effect is likely to die away, the investigator wants to measure this
decay curve. For these purposes we need, at a minimum, a series of
measurements at intervals of time before thu event, followed by a series
at intervals after the event. The problem of the model to be used for the
analysis of results of this type raises some interesting questions which
have been illustrated by Camnpbell and Stanley [4] . Model-fitting and
interpretation are easiest when the 'Before' measurements appear to
fluctuate about a constant level; the difficulty increases when the 'Before'
and 'After' measurements display trends, particularly those with curvature.
The questioai of serial correlations must also be considered.

3.2 'Cause present' and 'Cause absent' groups. Y nmeasdred 'After'
only. This is a very conmnon tipe. The Hiroshima and radiologist studies,
investigations of the effectiveness of seat belts in preventing injury in
autonmobile accidents, and the large studies of the death rates uf non-
smokers and cigarette, cigar, and pipe smokers are ýxamples. As we
have seen, there may be several 'cause present' groups, representing
different strengths or variations inthe causal agent, and more than one
'cause absent' group, particularly where the selection of a control group
presents difficulty.

At its simplest, the analysis follow the usual methods for the analysis
of one-way classifications or of two-way classifications if pairing or block-
ing has been employed in forming the groups. Often, however, the analysis
of a multiple classification is involved, other variables being introduced
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in order to diminish the risk of bias, as discussed in section 4, or because
the investigator wants to examine interactions of the causal effects with
these variables.

An important variant of this method, often called the retrospective
method, is much used in epidemiological research. In this, we find a
group in which the effect is present and one from which it is absent, and
compare the frequency with which the presumed causal agent is found in
the two groups. This approach is natural when a group of people show
symptoms of food poisoning at a picnic and the cause is being sought. As
another example, numerous investigators have selected a group of lung
cancer patients and another group of patients in the same hospitals who do
not have this disease, comparing the proportions of cigarette smokers in
the two groups. With this approach, it is often hard to select the 'effect
absent' group and to obtain measurements of high quality. Further,
erroneous results may be obtained when there are several causal agents
and attention is focussed on one. But with an effect that is rare, this
approach may be the only practicable one, and it is often the quickest way
of obtaining a preliminary indication for or against a postulated relationship.
For a discussion, see 5].

3. 3 'Cause present' and 'cause absent' groups, Y measured Before
and After. This plan has been used, for example, in studies of the effects
of new public housing, as against slum housing, on health and social
behavior. When it became known which group of applicants were to move
into a new public housing development, a control group of families who
would ingeneral remain in slum housing were selected. The basic question-
naries on health and social behavior were obtained both before the move
took place and at several times after the successful applicants had moved.
In a study of the effects of fluoridation of town watý,r on children's teeth,
usually done by a plan of type 3. 1, a nearby control town which did not plan
to fluoridate could be included if the resources permitted. The state of
dental health of a sample of children from both towns would be measured
before and some time after the fluoridation in the first town.

With this plan the investigator is in a better position to guard against

bias than with plan 3. 2. Ideally, the initial distribution of the response
variable Y should be the same in the 'cause present' and 'cause absent'
groups. Since he has the initial measurements, he can verify whether this
seems to be the case. Even if the distributions are somewhat different, it
is still possible to compare the amount of change in the two groups during
the 'Before-After' period.

A general estimate of the size of the causal effect is

(3.1) (¥ia-VZa) - P(Vb-"Zb),
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where the value of 3 is to be chosen. Suppose that the model is as follows.

RP.fnV'•. = ., " 1. . .. . I -
"lbj ' I lbj' '2bj `2 ' 2bj

After: +laj = + + Ir +c1aj; YZaj L2 + T 2 + eaj

Here, 6 represents the causal effect to be estimated; -r and r2 represent
1 oI

other time-changes that affect the two groups; and the e's are random
variables with means zero. From this model we see tiTat

E { (Yla-' 2 a) - 3(YbY 2 b)} = + ('r 1-T 2 ) + (-" (l-)

Hence, (i) if T, T 7 2 , the plan provides no unbiased estimate of 6:

this is, of course, obvious, (ii) if ", Ir but 4, / 4Z (i.e. , the initial

levels of the two groups differ), the only unbiased estimate of 8 is given by
taking 1 - 1. (iii) if '1 = T2 and ýLI = 42, any value of 13 gives an unbiased

2
estimate. Assuming that the e's all have the same variance T , the estimate
(3. 1) has variance

2Z2 (1-2:3 p+P )/n

where p is the correlation coefficient between an 'After' and a 'Before'
measurement. 1i ihe 'After' and 'Before' samples are independent, so that
p = 0, we take ,3 = 0. If these measurements are paired, the minimum
variance is given by 3 p- p. In practice, ;3 is estimatud in this case by an
analysis of covariance of the 'After' on the 'Before' measurements.

4. TECHNIQUES FOR INCREASING PRECISION AND ELIMINATING

BIAS. In controlled experiments the investigator relies on randomization,
plus other precautions such as 'blindness' in the measurement process, to
ensure that biases are kept to a negligible level. As means of increasing
precision, blocking and adjustments made by the analysis of covariance are
two of the principal weapons.

Devices a'nalogous to blocking and covariance are commonly used in
non-experimental studies also. However, since randomization is not
available, these devices must perform the double function of eliminating
bias and of increasing precision. In fact, since bias is regarded as the
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chief source of erroneous conclusions, control of bias becomes their
principal function.

Si n-1htv;E +-,-r.p ,, cr c v~fc Y aA, bieu1t, and Lhi .,---l hiere is a
'cause present' and a 'cause absent' group. If X is any variable that is
related to Y, a bias may arise in (VI-Y2), the estimratpf difference between

the means of the two groups, if the distribution of X differs inthetwo groups.
For instance, if the regression of Y on X is linear,

Y ij +X + eij

where i = 1, 2 denotes the group, and the e-, are residuals with mean zero,
then

(4. 1) E(7 1 " 2 ljX) = -" 2 + :3 ( 1 -x2 )

The term 3( 1X `X) is the bias.

In handling these variables the investigator makes a list of the X
variables known or thought to be related to Y. These variables are placed
in one of the following classes.

(I) Important variables whose effects the investigator will try to
remove, either because there seems a danger of bias or because removal
will bring a worthwhile increase in precision.

(II) Variables for which the investigator will check whether their
distribution is similar in the 'cause present' and 'cause absent' groups.
No adjustment will be made for these variables unless the distributions
appear sufficiently different so that there seems a danger of bias. This
method is employed for variables whose correlation with Y is modest. If
Y and X are linearly related,with correlation p, the fractional reduction in
the variance of Y due to elimination of the effect of X cannot exceed p2 .
If I p I < 0. 3, this reduction is less than 9%7: the potential increase in
precision is small,

In practice, verification that the distribution of X is similar in the two
groups of subjects is often done by forming the frequency distribution of X
in each group, with, say, k classes, and making the )(2 test for a 2 x k
contingency table. A low value of \ý2 is taken as assurance that the distri-
butions of X are similar and that there is little risk of bias from the relation
between Y and X. This X2 test may not be the best procedure. If the

329



regression of Y on X is linear, equation (4. 1) shows that comparison of the
mean values of X in the two groups is more relevant, since the bias in
(I -T 2 ) comes from the term (X I-X 2 ). Similarly, if the relation between

Y and X is curved and can be approximated by a quadratic regression,
comparison of the first two moments of X in the two groups is relevant.

(III) Variables about which nothing will be done, because their rela-
tion to Y is judged too tenuous to create trouble. This class also contains
X variables which it is not feasible to measure and those of which the
inveAigator is ignorant.

A natural question at this point is: Why not put all the X variables in
class I, or at least do so whenever there is any doubt? I don't know the
full answer to this, but a partial answer is that the techniques (matching
and adjustment) by which we attempt to remove the effects of these X
variables become steadily more cumbersome to apply and to interpret as
the number of X variables increases. These techniques may be described
as follows.

'Ideal' matching. Each member of group I has a partner in group 2
who has, within rarrow limnits, the same value for any X variable for which
.adjustment is being made. By taking the difference between partners, the
effects of these X variables are eliminated, provided that the regression of
Y on these X variables is the same in both groups. Clearly, this matching
is effective whether the regression is linear or curved.

In practice, the construction of matched pairs often presents difficulty,
particularly if matching has to be done on several X variables. Usually,
it is necessary to have a large reservoir of subjects for at least one of the
two groups; otherwise, it will not be possible to locate partners who agree

closely on the values of all the desired X variables. A common experience
is that the construction of partners takes much longei than anticipated, that
the rules set up about the closeness of the match have to be continually
relaxed, and that some subjects have to be omitted because no match is
found.

Stratified or frequency matching. This is a looser fornm of matching
which facilitates the construction of partners. The range of each X variable
is divided into a number of classes, commonly fromn 2 to 5 or 6. Thus the
X variables c~reate a multiple classification: for instance, with 3 X's and
4 classes per variable there are 64 cells. For a member of the 'cause
present' group, any member of the 'cause absent' ý.roup who falls in. the
same cell is an acceptable partner. In the end, what this method amounts
to is that in any cell of the multiple classification the two groups have an
equal number of subjects. Often, there is no specific designation of
partners, since this seems rather pointless.
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Stratified matching is the only kind that is feasible for an X that is an

ordered classification, such as "mild", "moderate", "severe" or is

qualitative, e.g. , religious affiliation or urban, suburban, rural.

Adjustment by subclassification. This method is very similar to
stratified matching. When selecting the 'cause present' and the 'cause

absent' groups we do not attempt any matching. Adjustment for differences
in the X distributions in the two groups is accomplished by forming the
multiple classification used in stratified matching and making adjustments
by a least squares or analysis of variance model.

To illustrate the relation between the two methods, suppose there are
X variables and that only 100 subjects are available for the 'cause present'
group. To see how the land lies, we classify these subjects, plus 100 from
the 'cause absent' group, into 9 cells, assuming that each X variable has
3 cells. In table 1, the numbers of subjects found in each cell are shown,
P and A denoting the two groups, Both the P and A sets add to 100.

TABLE I

Subclassification on two X variebles.

x 1

< 20 21 - 50 Over 50

P8 P 0 P 19
Mild

A23 A 7 A 4

P 8 P 8 P 16
X2 Moderate2A Z6 A 9 A 3

P 5 P 11 P 15
Severe

A19 A 6 A 3

If we are using stratified matching, we select 8 at random out of the
23 A's in the top left cell, discarding the rest. In. both the other cells in
the top row, we need more A's to rcach the desired numbees 10 and 19.
Looking the table over, it appears that a reservoir of perhaps 700 or more
subjects suitable for the 'cause absent' group would be necessary to build
up all the cells to the desired numbers in the P group.
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In adjustment by subclassification, as I am using this term, we either

accept the A sample as it stands or attempt only to build up cells in which
the A sample is very small. The decision depends on the size of the
reservoir for the A group, the time and trouble involved in any build up,
and the investigatoris opinion as to whether the effort is worthwhile.

From the viewpoint of estimation of effects we face a 2 x 3 x 3 table
with either stratified matching or adjustment by subclassification. It is
assumed that Columns (Xl) and Rows (X 2 ) both show real effects, and

possibly an interaction, since otherwise there would be no need to match
or adjust for these X variables.

The simplest situation is that in which there is no interaction of the
(P-A) difference with either X 1 or X2 , In this event the 9 differences

(ij-X j ) are all estimates of the same quantity. It follows that with

stratified matching, the difference between the overall sample nicans
(P-A) is free from any confounding with the levels of XI or X . The

estimate (P-A) has variance a* /50, where a- is the within-cell variance
(assumed constant from cell to cell). If the A sample is accepted as it
stands, the corresponding estimate for adjustment by subclassificatic 1 is
a weighted mean of the differences (Pi- A), weighting each inversely as

its variance. The weights are nlijn ij/(nij+n2 ij),, where the n's are the

sample sizes in the (l,j) cell. For table 1 the variance of this weighted
mean difference turns out to be 0.2/36, 6, about 35% larger than with
stratified matching. In this situat4.on stratified matching provides a
simpler estimate that is more precise.

We may, however, wish to examine whether the (P-A) difference changes
with the level of X and X2. As Billewicz [6] has pointed out, the ability
to examine these interactions is an advantage which thene methods hold over
'Ideal' matching. If interactions are found, estimation of the overall
difference may become of little interest, The technique needed here is the
analysis of multiple classifications with unequal numbers in the cells.
While the general least squares theory covering this technique is not new,
much remains to be learned about the practical handling and interpretation
of such analyses, particularly for investigators who are not expert in
statistical methods. The recent paper by Federer and Zelon (7] is a usel'ul
contribution.

Adjustment by' covariance. Con'ceptually, this is the same approach
as adjustment by subclassification for the case in which the X's are
continuous. Covariance may have an advantage and a disadvantage. The
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grouping of continuous X's into classes in adjustment by subclassification
loses some information: covariance avoids this loss. On the other hand,
adjustment by subclassification does not involve any assumption that the
relation between Y and X is linear. If the investigator follows the common
practice of adjusting in covariance only for linear effects of X, covariance
is at a disadvantage if the true regression has substantial non-linearity.
Of course, this loss can be avoided by adopting a more accurate model in
the covariance analysis.

How effective are these techniques? The following comments are
based on results quoted in (8] and on some unpublished work. As already
mentioned, 'ideal' matching removes bias due to X X...X under any
regression

Yij -- + 0(Xlij- . .X ij +) +÷ (i 1,2)

if the rsression function 0 is the sante in both groups. The variance
of (YfC-Y 2 ) is reduced by the- matching to a fraction (l-p 2 ) of its original

value, where p is the correlation coefficient between Y and 4). In practice,
'ideal' matching is likely to be at its best when the X's are quantitative and
one of the groups has a large reservoir in which matches may be sought,
while the other group is small. In this situation, matching should not
prove too difficult. Moreover, the other disadvantage of matching--that
one cannot examine effectively the interactions uf the cauisal variable with
the X variables--scarceLy applies when one group is small, since the sample
size would probably preclude any precise estimates of interactions.

Covarlance adjustment should have about the same effects on bias and
precision, with the qualifications that the corruct form of the regression
equation must be fitted, and that there is some loss of precision from
sampling errors in the estimated regression coefficients. If the regression
is linear and the re happens to be no bias due to the X's, the fraction to
which V(Y 1 -Y 2 ) is reduced by the tcovarian,:e adjustment is roughly

(4. a2) (1 P + k2~ ~(2 n-k')

where n is the size of sample in each group, so that the regression
coefficients are estimated from 2(n-l) degrees of freedonm. The term in
carly brackets will be close to I if k is small relative to 2n. However, if
there are substantial biases in some of the X's, (4. 2) no longer applies,
and the corresponding term in curly brackets can be much larger. The
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performance of this covariance adjustment when the fitted model is of

the wrong form deserves further study. Linear covariance adjustments

seem to pertorm surprisingly well when the true regression has a moderate
degree of curvature.

The preceding remarks about matching and covariance assume that the
X's are measured without appreciable error. Suppose that for an X

ariable the recordedmeasurement is x --" X + d, where d is a random
error of measurement with mean zero, independent of X and of e, the
deviation of Y from its regression on X, The effects of-these errors of
measuremenrt are roughly as follows, where f = a202= +. os).

(i) Matching and covariance remove only a fraction (1-f) of the
bias in Y due to X.

(ii) V(7 C-y) is reduced to the fraction {I - (I -f) p ) o2 its
original value.

While Imprecise measurement weakens the performance of these
techniques, it is easy to form an exaggerated notion of the size of this
effect if some check calculations are not made. For instance, suppose
that 7X = 25, nearly all the correct values of X lying between 0 and 125.

If we are told that half the observed measurements are wrong by mare
than 5 units, this seems rather poor quality of measurement. However,
a probable error of 5 corresponds to a' = 7,4, a2•= 55, c.2 = 680, ane
f = 0.08. Thus, 92% ol the bias is still removed.

Now consider stratified matching and adjustment by subclassifi'atinn
as applied to quantitaLive XIs. From the viewpoint of errors of measure-
ment of X , these methods'appear crude, since the qubantitative scale of an
X variable is replaced by a classified variable that takes only the nulmiber
of distinct values that the number o- classes allow. With stratified match-
ing the values of (l-f) are 0.64, 0.79, 0.86, 0.90, and 0.92 for Z, 3, 4, 5,
and 6 classes, respectively. Strictly, these vaIues hold only if the regres-
sion of Yon Xis linear, X is normally distributed, and the classes arv of
equal size, However, they appear accurate enough, as guides to practice
when the regression of Y on X is nonlinear, when X has some skewness and
kurtosis and when the class sizes depart moderately from equality. The
results indicate that at least five or six classes should be used for tny X
variable which is thought to be a source of subetantial bias.

With adjustment by subclassification the preceding (I -f) valueu apply
so far as the remcval of bias due to X is concerned, This method suffCrs
an additional loss 'of precision, as ill'ustrated previously, because of

134



inequalities in the sample sizes of the two groups in the individual cells of
the multiple classification.

The situation when X is an ordered classification is not so clear. If
an ordered classificdtion can be regarded as esseniially a grouping of an
underlying quantitative X, the preceding values of (1-f) should be applicable.
In practice, however, ordered classifications are often used because no
more precise method of measurement is known. If we envisage some
accurate measurement X, not yet discovered, it seems reasonable that
the ordered classification will contain errors of misclassification as well
as grouping errors. These additional errors presumably reduce the values
of (1-f), to an extent that does not seem to have been investigated.

Finally, none of the methods can guarantee to remove bias due to an
X variable that has been omitted from the matching or adjustments. The
situation with regard to such omitted variables is interesting. If they
happen to have a high correlation with the included X's--in other words, if
we are lucky--most of their bias will also be removed by the matching or
adjustments. This explains, I think, why linear covariance often works
well when Y has a quadratic regression on X, since X and X2 have a high

correlation in many bodies of data. But one can also meet the opposite
situation in which the bias due to omitted X's is inflated by the adjustments.
Thus in non-experimental studies there always remains an element of
uncertainty in our claims about the size and reality of a presumed causal

: effect.

33

______

- - _____________



REFERENCES

1. J. S. Coleman et al. Equality of Educational Opportunity.

U. S. Office of EdTcation. 1966.

2. R. Seltser and P. E. Sartwell. The influence of occupational
exposure to radiation on thc mortality of American Radiologints

and other medical specialists. Amer. J. Epidemiology, 81,

2-22, 1965.

3. S. Jablon, M. Ishida, and G. W. Beebe. Studies of the Mortality
of A-bomb survivors. 2. Radiation Research 21, 4Z3-445, 1964.

4. D. T. Campbell and 3. C. Stanley. Experimental and Quasi-
Experimental Designs for Research. Rand McNally & Co.,
Chicago, 1966.

5. B. MacMahon, T. F. Pugh, and J. Ipsen. Epidemiologic Methods.
Little, Brown & Co. , Boston, 1960.

6. W. Z. Billewicz. The efficiency of matched samples: an empirical
investigation. Biometrics, 21, 623-644, 1965.

7. W. T. Federer and M. Zelen. Analysis of multifactor classifications

with unequal numbers of observations. Biometrics, 22, 525-551, 1966.

8. W. G. Cochran. The planning of observational studies of human
populations. 3. Roy. Statist. Soc., A, 128, 234-365, 1965.

_ _ _336

.r.



A MODERATELY DISTRIBUTION FREE APPROACH TO
RELIABILITY ESTIMATION BASED ON THE

Michacl 0. Billings
C-E-I-R, Inc. , Dugway Field Operation

Dugway, Utah

ABSTRACT. This paper describes a small sample reliability test
design and evaluation technique based on properties of the first order
statistic. The technique is "moderately distribution free" in that it is
applicable to any problem which satisfies the following conditions: 1) The

random variable X involved is continuous; Z) X can take on only non-
negative real values: 3) the "mission" of the system under investigation

is a set of real numbers of the form [T, c), where T > 0: 4) there exists
a set of real numbers MC [ I, w) such that mne M =>-F X (mT) >_ mFx(T),

where F is the distribution function of X. Some sufficient conditionsxare given which define classes of distributions t. which the technique is
applicable. Also, it is shown that the technique is a highly accurate

approximate procedure for reliability evaluation whn in fact the random
variable X involved has an exponential distribution, s- that Condition 4 is
not satisfied. Finally, a brief consideration of the Weibull distribution is
presented.

1. INTRODUCTION. The purpose of this paper is to derive and
demonstrate a small sample reliability test design and evaluation technique
which appears to have applicability over a wide class of distributional
forms. The technique derived, referred to as the Modified Distribution
Free (MDF) technique, is based upon certain properties of order statistics
and is conceptually similar to the strictly distribution free binomial approach
to reliability evaluation. The MDF technique introduces certain fairly
nonrestrictive assumptions in order to achieve a trade off between sample
size and system performance. Before proceeding it will be useful to
introduce and interpret the concepts and symbols which will be encountered
in the ensuing discussion.

Technically, the term reliability is always used relative to some

system, conceptual or real, the primary purpose of which has been deter-
mined to be the accomplishment of a specific objective called the system
mission. The reliability of the system is defined to be the probability that

",This article prepared for U. S. Army Test and Evaluation Command
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the system will accomplish its designated mission. In order to meaning-
fully discuss system mission reliability it is necessary to establish a
method for measuring system performance relative to the particular
mniistrnnn. F'nr this a i, rnn•qn tit ic,-ui. 2-he -_--. e.t -C

population 4 of systems of the type under consideration. Or, this popula-
tion a random variable X is defined in such a way that the mission can be
characterized as a subset T*C of the probability space J induced from

xj by X. If the probability measure on ,'lis P and the associated dis-
tribution function of X onJ- is Fx, then the definitio- of system mission
reliability becomes "

P { 44 x4-1 Pr(X T*)= dF Y
T*'

In practice it is desired to obtain an interval estimate of the system
reliability to which we are able to attach a measure of assurance that the
interval contains the true reliability. Conventionally, this has been done
as follows:

i ) One obtains for dFx a confidence interval estimator

which depends on an estimator F of FX;

2) A value of P is then observed, and the corresponding

confidence interval estimate for 1 dF is calculated;

3) The confidence coefficient associated with the interval estimator

for dFX is taken to be the measure of assurance (confidence) that the

calculated interval estimate contains the true value of dF
T " X

The result of this procedure is a statement of the form "with y-
confidence the reliability is at least all, hereafter abbreviated r(acY),
where a is the lower bound of the interval estimate obtained for

dFx, and y is the associated confidence coefficient.
T*

-/in accordance with convention, if X is a continuous random variable with

S density function fX a (dFX)/(dx), then dFX -- fxdx. If X is
discrete, isT*

I _ then the integral dF is a sum over the set T33.T* x
338



Under certain assumptions on the random variable involved, it is
possible t- equivalently formulate the reliability evaluation problem
within a hypothesis test framework. The Modified Distribution Free

uechnrque derlbct in h iuit Z uLliies Lnhis appruach.

2, THE MODIFIED DISTRTBUTTON FREE (MDF) TECHNIQUE.
The MDF approach to reliability estimation presupposes that the follow-
ing conditions are satisfied by the particular problem involved:

1) The random variable X under consideration is continuous.

') !X Z-XI
S3) The mission * can be described by TV = exj •xx>T, TeJx}.

4) There exists a set of real numbers MC_ 1, a) such that

mM ---> F(mT)>rnF(T),

where T is given in Condition 3, and F(x) = Pr(X < x).

The particular hypothesis test structure employed in the MDF
approach is described as follows: Suppose it can be assumed that mEM
(see Condition 4 above), and that it is desired to either conclude or fail
to conclude the reliability statement r(a,y) on the basis of a sample of
size n from " Let P be determined so that (I-3)/mr = 1-a, and let

n
the sample size n be such that I-y' Let the null hypothesis be given
by

H0: F(mT) > 1l-P;

and the alternate hypothesis be given by

H 1 : F(mT) < 1-3 .

The test statistic to be used is X the first order statistic, and H0 will

be rejected if X() >T.

It is clear that Pr(Reject H0 H 0 is true) < 1-y, since

%•ote that this means testing can be truncated once each sample system
has operated for mT units.
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I

Pr(X( 1 ) >.mTIH 0 is true)- [1 - F(mT) ]n < pn

= i- .

Thus, if H0 is rejected, it is concluded that F(mT) < 1-P, and the

significance level of the test does not exceed 1-y. By virtue of the
initial assumption that F(rnT) > mF(T), rejection of - implies that

F(T) <_(l-A)/m a I-a. The probability that H is accepted erroneously

does not exceed l-y; thus, if H0 is rejected the conclusion is r(a,y).

The usefulness of the MDF approach as a design tool when the
appropriate conditions and assumptions are satisfied is evident from
Proposition 1:

Proposition 1. Suppose for a given reliability estimation prob-
lem that the Conditions 1-4 above are met. Suppose further that rnsM
(i.e., F(mT) > mF(T) ). If

log(I "Y7)

log( 1-rm-•) ) '

and if the null hypothesis H0 of the MDF hypothesis test is rejected
(i.ea.. if X()>onT), then rOa,y).

Proof: This follows immediately from the relations ( -P)/m =
I-• and pn = I-_y.

Making use of this result, it is possible to construct tables which give
sample sizes from which rejection of H0 will lead to conclusion r(a,y) for
various values of m and reliability-confidence level combinations (CL,?).
An abbreviated table is presented below. The entries are the minimum
sample sizes necessary for rejection of H0 , i.e., when X\> mnT, to
lead to the conclusion r(a.,y) under the assumption that F(94)> mF(T)
"for the value of m shown.
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TABLE 1. 1

I f,. * A1

m _ .99, .90) .I17.90 .90, .90

1 230 45\ 22

2 114 22 11

2.5 91 18 9

3 76 15 7

3.75 61 12 5

4 57 11 5

5 45 8 4

6 38 7 3

Example. If the mission is T = 50 hours, and if it can be
assumed that F Pr) >_ 4F(t), then to be able to conclude r(. 95, .90) a
minimum of 11 systems would have to operate successfully for at least
4.T = 200 hours. (See Footnote Z.)

The MDF-hypothesis test can also be used to provide descriptive
reliability statements, i.e., statements of the form r(a.,y) based on the
actually observed value of X(l). Suppose, for example, that for a

sample of n systems we observe X : m*T, and it can be assumed that

m4leM. It is then possible to determine the strongest statement r(a.,y),
which can be made on the basis of the test, for a fixed upper bound 1-V
on the significance level by solving the equation

lo g(lI-V)In
-- ,logll-mMl-M))

* for a . it is.also possible to determine the highest confidence which can
be associated with a given reliability level a on the basis of the test.

Example. Suppose T = 50 hours and a sample of 17 systems
yields a value of Xtl) = 178 hours. Further, suppose it is possible to

assume that 178/50 a M. Then the strongest statement of the form
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r(a, .90) which can be concluded on the basis of the M6F-hypothesis is

r(. 9645,.90), obtained by solving the equation

log(. 10)
log( 1 -3.56( -a)

for a.

Example. On the basis of the performance described in the
previous example, the statement r(. 95,. 964) could also be concluded.

3. APPLICABILITY OF THE MDF APPROACH. Whether the
MDF-approach can be applied to a particular problem depends on the
extent to which the experimenter can justify the necessary assumptions
regarding the problem and the distribution function involved. The purpose
of this section is to discuss certain fairly nonrestrictive conditions which
define classes of distributions to which the MDF-approach is applicable.
It will also be shown that the MDF-approach is a highly accurate approxi-
mate procedure for reliability evaluation when the distribution involved
is exponential, and thus does not satisfy Condition 4.

Proposition Z establishes that the MDF-approach is applicable to a
fairly commonly occurring class of distributions.

Proposition 2. Let X be a continuous random variable with
S=- (x Ix >_ 0 ,and let Te X' If the density function f(x) is mono.

tone nondecreasing on [0,mT] where in > 1, then F(mT) >? mF(T).

Proof: Let xi[T,mT] . By hypothesis, f(x) is monotone non-
decreasig -on (0,X] , so-that x.f(x) _>F(x). Thus f(x)/F(x) _ I/x. Since
this is true for every x i[TmT] , it follows that

mT -1mTdx

T F()T

This is equivalent to saying that

FVMT) >lg(MT
log > log T log in,

or that F(mT) >mF(T). .E..D.
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I
From Proposition Z, it is immediate that if f(x) is monotone non-

decreasing on (0 ] , where F(4p) = p, then the MDF technique is
p p

qrn ViA fAi All I,2ii1ct rtf iv" 0,2vht t t" F /T~ 1
p

It is appropriate here to point out that the hypothesis

H0: F(mT) > 1-ft

+ j in logically equivalent to the statement

m sT > 4 1-P

Hence, H 0 could be written in the more illuminating, if redundant, form

H0: F(mT) > I-P and1mT >

Therefore, to reject H is to conclude that

F(mT) _< 1 -1

and

mT < _ {1-.

Thus, for example, if one can assume that f(x) is monotone nondecreasing
on [0,4 p , and if 1- I. p. then acceptance of H1 implies the simulta-

neous validity of the relations F(mT) > mF(T) and 1-f > F(mT). ThuL\
acceptance of H implies that

I

F(T) < . - .

so that

Is concluded.

343



Example. Suppose it can be assumed that the density function

inlvolved is monotone nondecreasing on (0, .50 Twc problems are

considered: 1) Design a test which will determine whether the conclusion

r.9 5,.90) Is valid onthe basis of a sample of size 2 1; 2) given a sample
of size 9, and X(1) > 4. 3T, what is the strongest statement of the form

r(a, . 90) that can be concluded?

Solution to Problem 1: The MDF-hypothesis test here can be
expressed as follows: We are given nu 21, l-V = .10, a = .95. Thus
. (I-•)/m -= . 05, and P21 m I-. 1c .10. Thus, P z .896, so that .104/. 05 N

m = 2. 08. Hence, the hypotheses are

H: F(2. 08T) >. 104

and

H1 : F(Z. OST) < . 104.

H is rejected if X)>2. 08T, If X (> 2. OT, then it in accepted that

F(2.08T)<_.104and2. 08 T .<104 <", 50 , so that .104>F(2.08T) > 2.08 F(T),
with at least V-confidence i.e., if X (1)> 2. 08T, r(. 95,.90) is concluded.

Solution to Problem 2: Here n = 9, m = 4.3 and I-7 = .10,
Hence, (I-7)/4.3"I-a andp = .10, so that P w .7745, and a = .0524.
Hence, suppose

H0 :F(4.3T) > .2355

and

H :F(4. 3T) < .2355.

Then, X > 4. 3T results in the conclusion r(. 9476,. 90).
(1)->

We now compare the results of applying the MDF-technique to a
situation in which the random variable X involved actually has the
exponential distribution with f(x) - A.-", X > 0, and thus does not
satisfy Condition 4 for any value of m > 1. Table 3. 1 provides compari-
sons of MDF-approach results with lower . 90 confidence bounds
(1-Pn .90) for the reliability obtained under the assumption that X
actually has the exponential disttibution and X(l) > mT for the sample
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sizes and values of m shown. The hypothesis test involved in obtaining
the bounds under the exponential assumption is nearly identical to the MDF-

rnF(T) is omitted and the bound for F(T) is obtained from the fact that
when X has the exponential distribution

S~~~F(mT) <_ I -A a> F(T) <_ I-1m

The validity of this implication is seen as follows-

-AmT -AmT
F(mT) 1-e < 1 <=>e > <->

-AT •lm -T 1/rn
e _' <=> 1-e- < -

<=> F(T) <I

TABLE 3. 1

o sDFi- r(. 99,. 90) r(. 95,.90) r(. 90,. 90)Conclusion
M n n plm n p

1 230 .990 45 .950 22 .900
2 114 . 990 22 . 949 11 .•895
2.5 91 .990 18 .948 9 .892

3 76 .989 15 .947 7 .888

3.75 61 .989 12 .946 5 .881

4 57 .988 11 .946 5 .881

5 45 .988 8 .944 4 .871

6 38 .987 7 .943 3 .858

For example, the NDF-approach conclusion based on a sample of 76
systems and X(l) > 3T is r(. 99,. 90). The corresponding conclusion

based on the assumption that X has an exponential distribution is
r(. 989,. 90).
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It is possible to analytically explain the lack of sensitivity of the
MDF approach to certain types of departures from Condition 4. In
particular, the condition F(mT) > mF(T) for every me[1, 0] is
equivalent to saying that for xE(T, 0 T] the diatribution function F(x)
,4nrninate'm this f~ivni-tinn

14x) -FtT)T
(See Figure 1.)

F(x)

(roTmT FmmT( X

T., F(T)

x
T mT

FIGURE I

For XE C0. T/F(T)] , L(x) can be thought of as the distribution function of
a random variable which is uniformly distributed on [0, T/F(T)] . Thus,
if in reality X has a distribution function with the property that F(mT) <
mF(T) for m > 1, then F(x) will be dominated by L(x), the slope of

F(T)which T shall be "small" when T/F(T) is large.T

What happens when X has the exponential distribution, with F(x)
1- e•X, is this (see Figure 2): If Ax is small, i.e., if I/A is large
relative to x, then 1 - •"Ax = Xx. That is, F(x) is closely approximated
by the distribution function of a random variable which is uniformly
distributed on [0, 1/A] . Since X - F(x)/x for small values of Ax, if AT
is small F(T)/T -- A, so that F(x) - xF(T)/T = L4x), which accounts for
the relatively small error in the MDF conclusions for small values of m.
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(mT, mFIT) L(x) F(T) xT

F(X)

/...7 •,(T, F(T))

I i

I I

#x

T mT

FIGURE 2

4. A CONSIDERATION OF THE WEIBULL DISTRIBUTION. The
Weibull distribution occupies an important position in the theory of
"reliability. Thus, it is useful to compare MDF results with those
obtained under'the assumption that the random variable under considera-
tion has the Weibull distribution. For these comparisons, it is assumed

e-i -Ax 0)
that the density function of X is given by f(x) -- where x > 0,

-Axe

O > 1 and A > 0. The distribution function of X is F(x) = - • .e

Stitements of the form r(a,y) can be obtained for this case using the MDF
hypothesis test structure with the implication F(mT) < 1 - P(m)

=> F(T) < i - P(m) replaced by the implication-- m

F(mT) < 1 0(m) a> F(r) < 1 - [(m)] m. Note that this is the same
substitution which was made in Section 3 when statements r(a. y) were
obtained for the exponential distribution using the MIDF hypothesis test I
structure. That the implication F(mT) < 1 - p(m) => F(T) < I

is valid when X has the Weibull distribution with 8 > 1 is seen as follows:
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"ke(mT) e
F(mT) <_ I - P~m) <=> I - e- < I - P3(m)

-XTem 1 m] n
e >_Cm) <--> Fe > F8(T)]

1

<.>1-s _<1 - I )]2 _>FT

But 1 - CP(m)]'" < 1 - (P(m)]J since co.0, 1], m < I and 0 > 1

Thus, if X(1) _>T, where Pr(X, mT H is true)<1 -I the
1 0

statement r(( p (m)] my) may be concluded.

Example. In (2] , Lieberman and Johns have presented a
method for estimating reliability when the random. variable involved
has a Weibull distribution. Section 6 of (z] presents an illustrative
example in which the reliability of a system for a mission of T = 40
hours is estimated, with v = 90 confidence, on the basis of the following
observations on the first five order statistics: X(I) = 50, X 75,
X(3) = 125, X245 = 250 and X (5 = 300. The sample size used is 10.

Using the estimation method they derived, the authors conclude r(. 796,.90).
Had the authors simply used binomial reliability tables (1] , they would
have concluded r(. 794. ,90), since no mission failures occurred in 10
trials. By way of comparison, if one employed the MDF technique under
the assumption that f(x) is monotone increasing on C0, 4p ) for any p <.20,

the conclusion would be r(. 835,. 90), while if one were to utilize the Ml3DF
type technique adapted, as described, to the assumption that X has the
Weibull distribution with 8 > I, the conclusion would be c(. 832,. 90). It
should be noted that the estimnating procedure of Lieberman and Johns
does not involve any assumptions on the values of 0, which at least
partially explains the relatively small difference between their estimate
and the binomial estimate. The MDF technique becomes increasingly
less accurate as an approximate method as 0 approaches 0. Therefore,
caution should be used in applying the technique to a Weibull situation if
it is suspected that 0 is actually less than 1.
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RELIABILITY IN COMPLEX SYSTEMS*'

A. Clifford Cohen
The University of Georgia

I. INTRODUCTION. It in well established that the reliability of
complex systems varies with time. Following a break-in and adjustment
period during which minor deficiencies are corrected, a system is placed
in service with an initial reliability R . Thereafter the reliability either

increases as further system deficiencies are corrected or it decreases
as components deteriorate with age. In the life of some systems, there
is an early period during which reliability increases, and a subsequent
period of constant or decreasing reliability. Our attention in this paper
is limited to models of monotone increasing and monotone decreasing
reliability.

2. EXPONENTIAL MODELS.

Increasing Reliability. With R(t) designating reliability at time t,
a simple exponential model for increasing reliability may be expressed
as

- at()R(t) I - (1 - R )e ,a. > 0, t > 0

where R0 and a are parameters to be estimated from sample data.
o

Decreasing Reliability. When reliability decreases with time, we
consider the following relationship

-at
(R 0(t) = Roe- a > 0, t >_0

where again R° and a are parameters to be estimated from sample
data.

3. MAXIMUM LIKELIHOOD ESTIMATION. Let n. specimens be
tested at time ti and let xi designate the number of successes achieved

(i = O, 1, ... k). Sample data resulting from a sequence of such tests
then consist of the triples (to, no, X), (t1 , nI, x1 ) ... (tk' nk' xk)"

From these data, we must determine which model is appropriate (i. e.

I:,Reprinted with permission of the American Society for Quality Control

from Transactions of the Twentieth Annual A. S. Q. C. Technical Confer-
ence, June 1966.



increasing or decreasing) and then estimate the parameters. Before
examining the problem of choosing between mnielJi° wo .%vl f4r,..
estimation in each model separately.

With the reliability R(ti) at time ti abbreviated to R the likeli-

hood function for our sample may be expressed as

Sk ni xi

(3) L[ (no, X 0(nk )J n (Xlyai - R)nii.
S... ; "i=0

Estimation in the Increasing Model. When R. is given by equation
(1), we make this substitution in (3) to obtain

k
(4) LI(Ro = T (,) (ni - (I - Ro)e ti] x'[ (I - Ro)e -a ti] ni'x i ,

i=O Xi10

where the subscript indicates employment of the increasing model.

On taking logarithms of (4) differentiating with respect to R and a
0

in turn, we obtain

k
E (n, -x,) at

81r k xie t

8R I - R + -(1 - R)e2ti0R 0 00

(5)
tte

8lnL k k ixi

--T E ti;n i - xi) +(l -R 0 ) E -(CL ti0 0 1 -1(1-Ro)

On setting these equations equal to zero and simplifying, estimat-
S ing equations in the came of increasing reliability become
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Sk xe-ti k
(I -P) (n x)

0 I -(1 R )e ti 0
) 0,

(6) t
ak t xeQ ti ki k
( I R E E

S1 (1 R)e-R 0
0

When (f) to the appropriate model, the required estimates R and

a. can be found by simultaneously solving (6) using standard iterative
techniques. Should the value a thereby obtained from some given sample
turn out to be negative, this suggests that the increasing model is inappro-
priate and that we should either set A =0 or investigate the decreasing
model of equation (2).

Estimation in the Decreasing Model. When R, is given by equation
(2), we make this substitution in (3) and thereby obtain

k ni
(7) LD(Ro,a) 1 7 (x,) (Roe i)i(l - Rec" ti)al-•Xi

i=0

where the subscript (D) indicates employment of the decreasing model.

On taking logarithms and differentiating, we have

k

lnL k (ni xi)e ti

8Ro Ro 0 1-R e i
0

(InL D k k t(n - x.)e" ti
""_

- xt + R Z
0 01 -Rec it• 8a 0 o 0 1.-Re 1- i

On equating the above partials to zero, the estimating equations become
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Rk (ni - ,i)e'atL k

k t(ni x x)e't k( R - x
0 AO l~Re ti o

When (2) in the appropriate model, the required estimates ftand
d are found by simultaneously solving the two equations of (9). In this
case, should the value 'a thereby obtained, turn out to be negative (an
unacceptable result) this suggests that either we should set • 0 or
that the increasing model of (1) should be employed.

4. CHOOSING THE MODEL. In many applications, a' priori con-
siderations dictate which of the models considered here is appropriate.
In others, the sample data will clearly indicate which model Is to be
preferred. In perhaps the majority of applications, the choice of the
model will involve a more careful analysis of sample data, and the follow-
ing procedure is suggested for choosing between the increasing reliability
model of (1) and the decreasing reliability model of (2).

1. Solve equations (6) for tentative estimates of R and a

in the increasing reliability model. If the tentative
estimate of a thus obtained is positive, a cept both
tentative estimates and designate them as Vo and a1'

If the estimate of a obtained from (6) is negative then
accept as estimates 2I = 0 and R 0k k

X xi/n where n = E n.
i=0 i=O

2. Solve equations (9) for tentative estimates of R and a
0

in the decreasing reliabilit, model. If the tentative
estimate of a from these equations is positive, then
accept both tentative ,estimates from (9) and designate
them as Ao and 'Q" If the estimate of a obtained

oD D
from (9) is negative, accept as estimates a, = 0 and

AD
RoD E x,/n.
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3. 'C.alculate LI LIRl 018 ndLr D (R OD' fa' D using
equations (4) and (7) respectively.

A

4. If L > T, choose the increasing reliability model; ifI I
L > Li choose the decreasing reliability model. Other-
win (if -L aL), we employ the constant reliability model

R with a 0, and with R M x1 /

S. ASYMPTOTIC VARIANCZS AND COVMLIANCES OF.ESTIMATZS.
The asympt tic variance -c'ovariance matrix of the maximumn likelihood
estimates and AQ is given as

-E9lnL -E(a nL v(A ) f

R0 o

8 InL A2 ln

aai
where E symbolizes expected values. In practice, satisfactory approxi-
mnations can be obtained by replacing expected values of the partials with
their actual values calculated using R0  and a =a.The required

second partials follow from further differentiation of (5) and (8) in turn.
These results are given below.

For Increasing Reliability.

a 2 nL k (n - x) k Xe-a

OR 2 R 0 (1l.R ) 0 [1 -(1 - R )e-ati 2

(1 ) 2 2 CLi t

ORBa. BaOR -a ti,
o 0 0 [1(1-lR )e-I

0

~2 k ax atj
a InL1  k -

an (1i (I R )e, i



For Decreasing Reliability.

• -. _ -2 at4D = D - Z " •"- i - ir

8R 0 0 (-R e'ati)Z

2t.(n 1 - xe"a ti
a lnL D a ______k(n________i

862 0 0 (R -eeati)2

Although asymptotic variances arnd covariances might be misleading
for small samples, they should closely approximate the true variancesk
and covariances for moderate size samples; i. e. for n = E n. in excess
of may 20. t

The variance of •.which is of course a function of ft and %

1C o

•can be approximated by employing a theorem of Cram~r [Eu which enables•
us to write

R R

(13) v{•i) -=•. (o + ai---R )81co( ,A + ,8-2 v(A
2 0

itatFor the increasing reliability model, it follows from equation (1) ,

-=e 0 a dt ( (1 RR e-

thaBa

Although" asmtoi variane and coa" ane mih be~ miladn

Accordingly, in this case, we have '.tr vaic

(14) v(R1) eZ tfV •+ ..tCv(.'a ~

For the decreasing r eliability model, it followe from equation (e)

that
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R 8
e i, and - Roe

0R 8a ',

In this case V(R,) becomes

(15) vAi) e 21 t Cov(A A) + 2tov()

.6. ILLUSTRATIVE EXAMPLES, In order to illustr&te the
, practical, application of results of this investigation, let us consider

simulated test data on two complex systems, one with increasing reli-
ability and the other with decreasing reliability.

Example 1. Increasing Reliability. Following are results of the
initial and four subsequent tests conducted on this system.

t1  (time periods) 0 1 2 3 4

n, (number tested) 20 10 5 5 5

x, (number successes) 13 8 5 4 5

xi/n, (success ratio) 0.65 0.80 1.00 0.80 1.00

4 4 4
Summarizing, we have n E n 45, E x 35, E tix 50,

0 0 0t
4 4
E (ni - x) u 10, and E t1 (ni - xi) = 5. Our problem now is to substitute
0 0
these values into (6) and solve for the required estimates 0 and 4d
Any standard iterative method might be employed for this purpose, but
the following procedure seems relatively straightforward and should be
generally satisfactory.

(0)As an initial approximation, R , we select the initial success
ratio xo/nO = 0.65, and as an initia? approximation to R1 , the success

* ratio xl/n, a 0.80. We substitute these two values in (1) with t 1 a1 to
obtain

0.80 = 1 - (1 -0. 65)e' , and it follows that

-oL I - 0,80
e -- oyr 0. 57143,

0.357
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Reading from a ta~l of exponential functions, we have as an initial
approximation, at°) = 0. 56. The superscripts serve t 9 indicate the

urlA'cA ul Olil Vy'ck~U1a ouvlut b ub t l.A~ y L& y Ictluk;A U - W. ;JU ISM!

0. 55 respectively in the two equations of (6) and solve these in turn for
R . We of course are seeking a value of a such that the two values of

R thus obtained are identical. Following is a summary of these results

including interpolation to obtain new approximations C) and o.

a Rfrom 1st. Eq. R. f rom 2nd Eq. Differ'ence
f o(6) o of(6)

0.500 0.662 0.685 -0.023

0.543 0.656 0.656 0
0.550 0. 655 0.651 +0.004

As new approximations, we have a.()I 0.543 and R(I) = 0.656.0

We now elect to seek further improvement through Newton's method
which is based on Taylor beries expansions of the estimating equations
about a point in the vicinity of their simultaneous solution. Let h and
k designate corrections to be determined by the iteration process so that
ft = R~ + h and = a (1) + k. Using Taylor's theorem and neglecting

0 0

terms containing powers of h and k above the first, we have as correc-
tion equations

82lnL 0 InLi 8InL
h +k= B2 8Ra RoR 0

0

_ 2_
a 21nL 8alnL I lnL1

h +k -a +
CL ba 2 2C

which are to be solved simultaneously for h and k.

Using (5) and (11) we eval'aate the partials in these equations at the
point R 0. 656, a = 0. 543, and the correction equations become

0

-119.9088 h- 16.7561 k= 0.0998,

- 16.7561 h - 11.6602 k a 0.0038.
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Solving, we have h i -0. 00098 and k 0.00109. Thus the final esti-
mate s become

R = 0. 656 - 0. 00098 = 0. 6550,0

= =0..543 + 0, 00109 = 0. 5441.

As verification of the accuracy of these final estimates, they were
substituted into the first partials of (5) with results as follows:

- 0.001, I =0.001.
R0  R =0.65:0 R =0. 6550

0 0

=.0.5441 a =0.5441

Values of zero would have indicated perfect agreement. The small values
obtained here are considered satisfactory and no further iterations are
deemed necessary.

Rather than employing the intermediate interpolative procedure, we
might have moved directly from the initial approximations to the Newton
method. In that case, of course, one or more additional cycles of the
Newton iteration might have been required to reach the same final
results as those obtained here.

Using values of the second partials employed as coefficients in the
correction equations, the variance-covariance mnatrix of (10) is approxi-
mated as

119.9088 16.75611 f 0.00104 -0.0150

16.7561 11.6602 =L0. 0150 0.1073 .

Accordingly we have

V(ko - 0. 0104, "r% 0. 1073, Cov( o"' ')" -0. 0150.

g these values in equation (14) we calculate V(Ri) at times
Using)a jn

t. = 0, 1, 2, 3 and 4. We also calculate the predicted values of R

(i. e. kt) at these times using equation (1) with a = a = 0. 5441 and

R = a 0. 6550, These results are displayed below along with actual
O 0

success ratios for comparison.
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0ni 0.65 0.80 1.00 0.80 1.00

0.6550 0.7998 0.8838 0.9326 0.9609

V(A 0.0104 0.0043 0.0046 0.0036 0.0022

... An attempt to fit the decreasing model of (2) to these data resulted

in a value a < 0 as a solution of (9). We were thus led to estimates4

CD = 0 and D X./n = 0. 7778. Using these estimates
(7), calculate LD = 0. 0008,whereas using the estimates

0. 147 R and R 0. 6074 in equation (4), which applies when the
01

increasing model of (1) is employed, we calculate L = 0. 005. Since

LI > LD, our choice of the increasing reliability model of (1) in this

instance is verified as being correct.

Illustrative Example 2. Decreasing Reliability. Following are test
data an a system in which reliability is decreasing with time.

t (Time periods) 0 1 2 3 4

ni (Number Tested) 20 5 5 5 3

X: (Number Successes) 12 3 2 2 1

Xi/ni (Success Ratio) 60 .60 .40 .40 .33

4 4 4Summarizing, we have n= E n 38, ' xi 20, E tx.= 17,

E4 (n, - xi) = 18, and E t4(n " xi) = 25. Proceeding to solve equations

(9) using these data, we again select as an iritial approximation to R
the initial success ratio. Thus we have R(0) = 0. 60. The initial 0

0

approximation to a comes from a free-hand curve through the points
on a plot of the success ratios versus time as a(°) = 0. 1Z.

This time, we skip the intermediate approximations as used in the

first illustration and proceed immediately to the Newton method. At the
end of one cycle, we have as improved approximations
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R•)=0. 605 and a 1) 0. 145.

With the partials of (8) and (11) evaluated for R = 0. 605 and
aff 0.145, the correction equations become

-iZ2.9348 h + 48. 5840 k = -0.1886,

48. 5840 h - 76. 0959 k = -0. 0496.

On sovnwe find

h 0.0024 and ka 0.0022,

and as final estimates (or new approximations) we have

S= 0.6050 + .0024 = 0.60740

a = 0. 1450 + .0022 = 0. 1472.

These values are substituted into the first partials of (8) with the
following results

8 lnLD DlnLD
8R• -0. 0001, ac -0. 0012.

0 R =0. 6074 ,R =0. 6074

o 0

S=0. 1472 a =0.1472

These values are considered to be sufficiently close to zero to justify
acceptance of = 0. 6074 and a = 0. 1472 at final estimates, and no

further iterations were made.

As in illustration 1, the variance-covariance matrix of A and

is approximated uning coefficients of the correction equations. Thus we
have

122.9348 -48.5840 0.0109 0.0069

A r L-48.:584 0  76.0959J 0 . 0 0 6 9  0.0176J

Accordingly for this example, we have V(.O; 0.0109, V•)" 0.0176,
A ^ 

0 0 7

and Cov(Ro0a) = 0. 0069. The variance of A, at t 0, 1, 2, 3 and 4

is computed from (15) and the predicted (estirrated)vvalues of R

361



(designated R^-) for these same time values are computed from (2).
These results along with the success ratios are displayed, below.

t 0 1 2 3 4

xi/ni 0.60 0.60 0.40 0.40 0.33
A
R. 0.6024 0.5246 0.4525 0.3906 0.3371

v(A1 ) 0.0109 0.0069 0.0112 0.0183 0.0250

An attempt to fit the increasing model of (1) to the data for this
example resulted in a value a < 0 as a solution of (6) and we were thus

4
led to B= 0 and = =0 xi/n = 0. 5263. Using these estimates in

(4), we calculate Li = 0. 001, whereas using the estimates a D = 0. 1472

and A oD = 0. 6072 in (7), we calculate L"D = 0. 002. Thus with LD > L

for these data, the decreasing model of (2) is the proper choice.

7. SOME CONCLUDING REMARKS. Although questions relating
to how many tests should be conducted and when they should be scheduled,
have not been formally examined here, they are not to be dismissed as
being unimportant. When tests are destructive and the cost is great,
there is considrcrable pressure to limit their number. Considerations
having little to do with statistics or probability often dictate that a rather
large proportion of available test specimens be expended in the initial
tests. Such allocation, of course, limits the number available for subse-
quent testing. Further studies in this area to determine optimum test
designs are still in progress.

When this investigation was begun, it was intended to consider not only
the exponential models, but also the hyperbolic model

R -R
R(t) = R + ot>, where <R < I,Sat + 1 0-

0 < Rw < 1, and a > 0. As in the exponential models, R is the initial
0

probability at time t = 0. R c is the final or ultimately attainable
reliability; i.e. Lim R(t) = Roo. In this model, reliability is increasing

or decreasing withttlme depending on whether R c> R or Re < R0 .j 3
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A special case of the hyperbolic model with a - 1 and Roo > R has been
considered by Lloyd and Lipow [2]

Procedures similar to those employed in thia paper can be used to

estimate parameters a , Ro, and R.* in the general case, but in view

I of the length that the present paper has already attained, further con-
.. sideration of this model is being temporarily deferred.
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N I
ESTIMATION OF TIME FUZE CHARACTERISTICS

BY NON-LINEAR REGRESSION METHODS

Weldon F. Willoughby
U. S. Army Ballistic Research Laboratories

Aberdeen Proving Ground, Maryland

INTRODUCTION. Ballistic tests of mechanical time fuses provided
data which indicated that the biases in functioning time (I. e., the differ-
oences in the running time and the set time) for a given time setting were
relatively large and widely dispersed when the firing i were condueted at
low temperatures. For the firings conducted at higher temperatures, the
biases decreased in magnitude and became more uniform as the tempera-
ture increased. Since, in the past, the bias in functioning time of
mechanical time fuzes assembled to artillery projectiles had been expressed
implicitly in the firing tables as a function of set time alone, an investiga-
tion was conducted to determine the dependence of fuze bias on tempera-
ture as well as set time. In addition, it was desired to find an equation
expressing the relationship between fuze bias, temperature and set time
which could be programmed for use on the Field Artillery Digital Auto-
matic Computer (FADAC).

Plots of the bias in fuze functioning time versus set time for constant
temperatures indicated that the two variables were linearly related. On
the other hand, plots of fuze bias versus temperature for constant time
settings resembled single branches of rectangular hyperbolas, indicating
a nonlinear relationship between bias and temperature.

From these indications, and after trying several models, a candidate
model equation containing two linear parameters and one nonlinear
parameter was assumed to adequately describe the relationship among
fuze bias, the dependent variable, and temperature and set time, the two
independent variables. In the model, it was assumed that only the biases
were affected by errors of measurement.

As is well known (see [2] and (8] , etc.), the method of least squares,
which is the method most often. used in regression problems, may be used
to estimate the parameters uf functional relationships among tets of
experimental data whenever it can be assumed that:

(a) the dependent variable, Y, is related to known levels of a set
of independent variables, X1 , X,... Xk, by a relationship of the form

, (1) Y P p1 Xl + P2 X 2 +"'*+PkXk +



F"1
where the P. (i 1, 2,... k) are unknown parameters and 4 is the error
in the observed value of the dependent variable, and

(b) the errors in the observed values of the dependent variable are

independent and randomly distributed with zero mean and a common
variance. (In addition, if valid statistical tests of significance are to
bc. made, it is also necessary to assume that the errors are normally

i ~~dict .,Ibutod.), "

However, when the functional relationship among the variables cannot

:[:• 'be expressed as a linear combination of the unknown parameters as in (M),
the usual procedures for estimation by the method of least squares are not
directly applicable. Several procedures are available (see [3] , [4] , (6]
and (7] ) for estimating the parameters of nonlinear functions. These
procedures generally employ a transformation of the function into a
linear form either by a change of variables or by an approximation based
on a Taylor's series expansion under the assumption that the function is
locally linear. In connection with the latter, the approximating procedures
require iterative processes to converge to solutions and the advent of high
speed computers has greatly facilitated the solution of nonlinear regression
problems by these methods.

For this problem, the model equation was assumed to be of the form

Y X +4
ijk Xzj +P 3  li ijk

(2)

SXj + P+ + + +ijkxj ++03 3

where Y is the observed fuze bias at time setting X1 i and temperature
ijk .l

Xzj and ik is a random error with zero expectation. Assuming this model

equation, the regression function to be fitted is

Pl +02 X 2j X
E ijk) + Xlix2j + •3

(3) +lxi 2 x2li Zj
x2j + 3 P x2 ~p-•j--r3 2 j + 033
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It can be seen by inspection of the first form of (3) that, for a constant
temperature (XM. is constant), the regression function represents a
straight line passing through the origin (zero met time and zero bias) and
for a constant time setting (X is constant), the regression function

li
represents a rectangular hyperbola with vertical and horizontal asymptotes.

The function given in (3) was fitted to sets of data obtained from
ballistic functioning tests of the mechanical time fuze. Least squares
estimates of the three parameters were determined first by an iterative
Sprocess(after linearizing the Iunction) which exploited the facility and

speed of computation of the Ballistic Research Laboratories Electronic
Scientific Computer (BRLESC) in scanning the parameter space. Then,
as a check on the results obtained by this procedure, least squares

* estimates were also obtained by the Hartley [5] modification of the Gauss- a
Newton iteration which in theory has the highly desirable property of

* guaranteed convergence to estimates yielding the absolute minimum sum
of squares of residuals provided the initial estimates of the parameters
are in the neighborhood of the final values.

In order to obtain approximate confidence intervals about the individ-
ual parameters, as estimate of the variance-covariance matrix of the
least squares estimates was obtained using the Fisher information matrix
described by Rao [9] . The confidence intervals were constructed by the
procedure described by Stone in his discussions on the paper by Beale
in l[.

THE SCANNING PROCESS. To determine estimates of the unknown
parameters by the scanning process, the regression function was linear-
ized by substituting an initial estimate of the nonlinear parameter P.
The two linear parameters, P1 and P2' were then estimated by the usual
least squares procedure. The sum of squares of residuals was computed
using the three estimates of the parameters. In the next iteration, the
initial estimate of 13 was changed by some small increment and new
estimates of 01 and 02 were determined as before. Again, the uum of

*, squares of residuals, using the new estimates, were computed. The
process was repeated until a minimum sum of squares of residuals over
a rather large range of estimates of 33 was obtained. The estimates of
the parameters which gave the minimum were considered to be the least
squares estimates.

If •, the value of (3 which gives the minimum sum of squares of
residuals, is substituted in (3), the denominator of each of the terms

could be considered to be of the form

(4) x" X2j +'
xj +3
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Now, let

xli
I; (5) t t x

li *Zj 2.3xzj

Then (3) can be written as

.. (6) . I• (Yijk) = tli + 1 '1 t1 j 2.

which is linear in PI ard P2' Least squares estimates of A, and 62,
for the given value of 133. may be obtained by solution of the normal
equations resulting from minimizing the suni of squares of residuals

(7) Yijk" (P tli + P2 tli t2j))

ijk

with respect to P1 and •' when the errors in the Y are independent
ijk

and distributed with mean zero and constant variance o2. On the other
hand, when the errors in the Y have different precision, i.e. , theIj k
variance of errors in Y is not constant, the sum of squares of

ii k
residuals to be minimized is of the form

(8) E(p) - •" " Y.. 1  - 1  tli +p 2 tlit 2 -) )A
ijk 3.j 1I

where the w, are relative weights of the Yijk which make the quantities

(9) Y Y3(9 ijk- Ii ijk

have a common variance. (In the case of homogeneous variances, the
relative weights, w.. = 1.) Thus, a predicted value of Y may be deter-

1j
mined from the equation
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Y ij Al• tl i + 2 t li t zj

1( 1 0 ) A' .P Xl X x
I ii~± +2  2 ±: i 2

2zj + 3 2 xj

The standard error of estimate is given by the expression

, . .yn-

In the process of determining the prediction, it was noted in the
examination of the data that the dispersions of the observed biases wvried
considerably from temperature to temperature and to some degree from
time setting to time setting. As previously stated, a necessary assumption
for the application of the least squares method is that the variances of the
errors in the Yijk be constant. Therefore, it was necessary to perform a

transformation of the biases to remove th3 effect of heterogenous variances
at the various temperatures and time settings. A suitable transformation
found in (8] is to let

(12) u ijk
Yik

where Yijk is the kth observed bias and a-ij is the standard deviation of

the biases at the ith set time and jth temperature. The transformed
variates, Y/k' have the property that their variances equal one. That
is,

E F, 2 Y jk fýukl
Var (Yk) = E k- E - Ej E 2

(1 3) L jk 2ijk j

2 E

I ijk (Yijk) 01 2
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Since the true variances of the biases were not known, the reciprocal of
the sample variances were used as the relative weighting, factors, w

In order to cover the range of feasible values of P the estimates
of this parameter used in the determination ranged from -10,000 to

+10,000. This range was scanned first at intervals of 100, 10, 1, 0. 1,
arnd 0. 01 until the value of P33 was found which gave the smallest mum of
squares of residuals. In each iteration of the process, least squares
estimates of PI and P2 corresponding to the estimate of P 3 were

So*omputed. -Plots of the error root mean squares (in the su-brange indicat-
.:inga•.-i-nimum sum of squares .o.residual.), obtaited in each iteration.

versus the estimated values of P are given in Figure 1, for the three
zones of fire. (A smooth curve has been drawn through the points. )

Table I gives the least squares estimates of the regression parameters
and the sum of squares of residuals for the three zones of fire.

THE HARTLEY MODIFICATION OF THE GAUSS-NEWTON ITERA-
TION. The Hartley modification of the Gauss-Newton iteration initially
requires the expansion of the regression function in a multiple first order
Taylor's series about initial estimates of the parameters, ;1i PZ and i3,
obtaining an expression of the form

S. f (x, + +P~
" " f(x X2 "; PI + A2 +, P +

- - af

where the partial derivatives are evaluated at Pi aii (i31, 2, 3) and

the APi are corrections to the P1 to be computed. This step is based on

the assumption that the regression function is linear in the neighborhood
of the estimated values of the parameters. For convenience, (14) may be
written as

3
)Y f f + E

1-1

This expression is linear in the unknown corrections, APV and therefore,
under the appropriate assumptions, the method of least squares may be
employed to estimate the corrections to the initial estimates of the Pi.
The normal equations are obtained by reinstaising the sum of squares of

residuals given by
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3

" ijk (Y - - '1
assuming ,at the f. are continuous over the range of values of the
independent variables, X 1 and X

"Then, instead of applying the entire correction to the as is done
in the Gauss-Newton Iteration, a fraction v of the correction is applied,
where v is determined as follows.

Consider the sum of sciares of residuals to be a function of v by
defining it as

(17) Q (v) = Q (P1 + vA•I' 52 + VAZ ý3 + A&3 ) o< v<l,

(The the initial estimates of the parameters and the AP., the corrections
to the estimates are known values, leaving only v unknown1 ) The value of v
giving a minimum of Q (v) is found by an approximate method by deter-

• i mining the level of v at which the parabola passing through 0 (0), Q (j),
and Q (1) has a minimum. Using the Lagrange method, the parabola

passing through these points can be written as

"(18) j (v) = [r2(0) - 4Q(!) + ZQ(l)] vZ - [30(0) + 40Q() - Q(1)] v +Q(0)

After differentiating j (v) with 7-ispect to v and setting the results
equal to zero, the value of v giving a minimum of j (v) is found to be

3Q(o) - 4Q(½)ý + Q(I) QOo) - Q(1)

(19) [= 4 -0( o)) + Q(1)] = -[ZQ("') + Q(l)] + 1

Using this value of v, the new estimates of the Pi to be used in computins
f the sum of squares of residuals and in the next iteration is computed from

the expression

• (20) + v i

mn
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The above procedure is repeated until the estimates yielding the minimum
sum of squares of residuals is obtained.

As indicated in (5] , in the event that the value of v does not
give a reduction in the sum of squares of residuals from one iteration to
the next, the value oi v yielding a minimum of j (v) in an interval of
half the length should be used to compute the new estimates.

Because the Hartley modification requires initial estimates that are
in the Aeighborhood of those yielding the absolute minimum, and since
this procedure was to be used as a check, initial estimates of the pan.- I...
meters were selected in the neighborhood of the final estimates obtained
in the scanning process. Table II gives the least squares estimates of
the parameters of (3) ard the sum of squares of residuals obtained in the
final iteration of the Hartley modification.

CONSTRUCTION OF CONFIDENCE INTERVALS. Another procedure,
presented in [L] , yields least squares estimates of the parameters as
well as an estimate of the variance-covariance matrix of the least squares
estimates, which can be used to construct approximate confidence
intervals about the individual pazameters. This procedure is based on
the Fisher information matrix as described in [9] .

Corrections to initial estimates, , are derived by expanding the
normal equations in Taylor's series about the initial estimates, obtaining
expressions of the form

(21) - 0 8 2Q(t3) X A= , 2. 3)8Ai +~ i~l g j

where A.i = i " . and Q(P) is the sum of squares of residuals. From

this, the set of normal equations can be written in matrix notation as

(22) V • =G

where V is the Fisher information matrix with elements

2 2
(23) Ij = - E 2 2 - , (i, j =1, 2, 3)ai aj ai i~
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AP is a column vector with components Api, and 2G is a column vector

with components . Solution of (22) yields the cdrrections which
OPi

are to be applied to the initial estimates-to obtain estimates to be used in
the next iteration, That *.ej,

(24) AP - V G

and

J . + & .+. : .

where 1 is the vector of estimates to be used in the next iteration and
is the vector of initial estimates.

When the process has converged to the least squares estimates, the
-1 '2

matrix V cr is an approximation to the variance-covariance matrix
of the least squares estimates. Using this approximation, it is possible
to construct confidence intervals about the individual parameters such
that

P •1 F" v . (3, n-3)F<sPl_< l + a'3v Fa (3, n-3)

(26) 2~7:-)>-1: 02 " 3v"vz F. (3, n-3) :S 02 <S 2 +" 8'3v'-_2 F; (3 3) I-

+ _ --/ F (3, n-3)
ý3" -"a437 F. (3, n-3) _S P3 _S 03 ''v F (,••.

,ii

where Vii (i = 1, 2, 3) is the diagonal element of the ith row of V,
F (3, n-3) is the a percentile of the F distribution with 3 and n-3

degrees of freedom and

(27) .
• 3[ n-3 "

Ninety percent confidence interval estimates based on the estimates
obtained in the scanning process and those obtained by the Hartley modi-
fication are given in Table III. A combination of the Hartley modification
and the procedure described in this section yielded estimates that gave a

* slightly smaller sum of squares of residuals in each of the three zones.
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Point estimates and 90% confidence interval estimates based on the
combined procedure are given in Table IV.

DISCUSSION OF RESULTS. It can be seen by inspection ot Tables
I and I1, which give the estimates obtained in fitting the regression
function by the scanning procedure and by the Hartley modification of the
Gauss-Newton int eration, that the results of the two procedures do not
differ to any great degree. In general, the estimates of 03 obtained by

K- the two- pwooa,.s differ more than the e iti -mates of the other two par&-
__metr-., especially in Zone II, However, it is pointed out that the error
root mean squares in the neighborhood of the apparent minimum are less
sensitive to small (positive) changes in this estimate than in those for the
other two parameters. This can be seen from Figure 1. In addition,
in examination of the error root mean squares in the various iterations of
the Hartley modification, it was noted that a difference of as much as four
in the estimates of P3 in the neighborhood of the minimum caused a
change of only 0.01 in the error root mean squares.

Further examination of the estimates presented in Tables I and II
reveals that for each zone, the estimates of P2 are relatively small in
comparison to the estimates of PI and P3. This may lead one to think
that this parameter does not contribute significantly to the model and may
be eliminated from consideration. In fact, tests of hypotheses based on

the assumption that the statistic
"°p

01(28) t =" i = 2 i"

8L2 V ii

is distributed as "Student's" t distribution, indicated that the hypothesis
that P. = 0 would be accepted in Zones I and IIw and the hypothesis that

p1 [ 0 would be accepted in Zone III at the . 05 level of significance. On

the basis of these results, the model equations for the various zones
could be as indicated below.

Zone Model Equation

•I Xli.

i.k X2 j+ V2  ijk

iYX i . +4
ijk X jy 2  ' ijk
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Each of the two model equations above have properties that are similar
to those of the original model in that the regression functions determined
from these models represent straight lines passing through the origin
when X is constant and rectangular hyperbolas with horizontal and
vertical symptotes when Xlis constant. Theme equations would be

much more suitable for use on FADAC than the original model equations.
Figures 2, 3, and 4 give perspective sketches of the general shapes

.* .of the surfaces reptesented by the estimated regression functions. Sketchesr +i+tof t.he eonstant temperature and constant set time contour lines are:.given ...
in Figures 5, 6, and 7. To indicate how well the curves fit the data,
Figures 8, 9 and 10 give sketches of the constant set time curves (for
selected time settings) with the data points plotted. Similar sketches for
selected constant temperatures are given in Figures 11, 12, and 13.

It can be seen from the last two sets of sketches that the variability
of the observed biases was relatively large at low temperatures for the
giventime settings; however, there was little difference in the variability
at the various time settings for a given temperature. It is also easy to
see that the assumption that the effect of temperature on bias is relatively
constant is not a bad assumption for temperatures slightly above zero
degree Fahrenheit.

On the basis of the amount of information obtainable from the procedures
discussed in the foregone sections, it appears that the best procedure is
a combination of the Hartley modification and the procedure utilizing the
Fisher Information matrix. Point estimates of the regression parameters
and 90% confidence intervals obtained by this combined procedure are
given in Table III. The combined procedure gave sums of squares of
residuals that were slightly less than those obtained by either of the other
two procedures, although, due to slightly larger estimates of the ("oi , the

confidence intervals obtained for this method were generally longer than
those for the other two procedures.
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TABLE I

Estimates Using the Scanning Procedure

- - Estimates of Regr~ession Parameters
No. Obs Sum of Squares

Zone Considered 1 2 3 ~ of Residuals

1 171 0.5604 0.0023 54~.62 15.0668

11 96 0.6392 -0.0021 64.83 9.1593

111 217 0.0245 -0.0054 51.46 38.0S88
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Estimates of Rogreussion Parameters

No. Obs. Sum of Squares
20o10 Considered 1 2 3 of Residuals

1 171 0.5525 0.0023 54.31 15.0676

11 9 0.6644 -0.0023 67.16 9.3068

inI 217 0.0284 -0.0056 50.67 37.8275

¾ 378

v' I



TABLE III

_ .... Ninety Percent Confidence Intervals about Regression Parameters

90% Confidence Limits on -

01 2 8 3
No. of

Method of Observations Lower Upper Lower tUpper Lower Upper
Esdimation Zone Considered Limit Limit Limit Limrt Limit Limit

I 171 0.3746 0.7467. -0.0013 0.0059 45.46 63.78
Scanning II 96 0.4029 0.8755 -0.0073 0.0031. 50.74 78.92
Process

1I1 217 -0.0476 0.0966 -0.0083 -0.0025 43.15 59.77

I 171 0.3792 0.7377 -0.0012 0.0058 45.75 62.87
Hartley 96 0.3944 0.9344 -0.0078 0.0032 50.04 84.28
Modificationr I

III 217 -0.0349 0.0917 -0.0078 -0.0034 46.39 54•95

I.
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OBSERVATIONS ON THE, SELECTION OF PREDICTORS

-H. L. Lucas and A. C. Linnerud
N:Jrth crclna Stt Un~l........ &'I d-, -,84

I.. INTRODUCTION AND SUMMARY. Most work or the seiection
of predictors bas been done in the context of the general linear model,

whets{ohs~yatie~a t~ the pr4cani) x~ obsurvations on the ith

predictor) and 4 (random residuals) are aim' x 1 matrices, the P (regrea's
uion coefficients9) are scalars, and the prime means transpose. For one
class of practical situations it can be asoum-ed that observations have been
made on all predictors that are relevant (corresponding P' non-zero) and

possibly on some that are not (c'orresponding P's zero). Given a set of data,
the problem is to decide which one or more of the 2P su~sets of prodictore
is o~r are likely to be the correct one. In the present study, attention has

been confined mainly to selection of the single best candidate.

the Mallow@ C-statistic (C) and a modification of the C-statistic (MC), have

been studied to date. It was assumed that a set of data Is a random sample
from a population characterized by certain values of the Pi and by the form

K.and the parameters of the joint distribution of the M and c. Tha.,!E were
assumed to be measured without error. Performance was studied in terms
of the probability that a criterion leads to selection of the correct subset of
predictors.

Since the mathematics has appeared to be intractable, a highopeed
computer has been used to study the problem. empirically. So far, data
have been obtained only on cases with p :3, the 1, and t jointly normally
distributed and -

(2) EH *I r~i IW~ LW LQ2

where I (n xl1) has elements all 1, 0 (nx xl) and 0 (n x n) have elements all

zero, I (i x n) is an identity matri; and p (1 xl1) is the correlation between

'and

~X.



i1
Using sampl'ý size n 20, 100-200 samples were drawn for each of

u,,LuI!L.ULLUIvu u! p 'U. C0, 0. 95) and p-sets having rlifterent numbers
(0, 1, 2, 3) and magnitudes (1, 2, 5) of non-zero elements. Although the
results exhibited many qualitative and some quantitative features which
were not unanticipated, the quantitative features were in general pleasantly
surprising to the author. All three criteria were better for selecting the
correct subset of predictors than was expected on the basis of some
approximate and apparently naive preliminary considerations. This was
particularly true for the cases, all P's zero or the non-zero P's small.
For most situations studied, C was superior to MC and MC superior to MS.
Exceptions occurred particularly when the magnitudes of P, and were

small but both non-zero, and the correlation between and x was .95.

Exclusive of these exceptions, criterion C resulted in 57 - 100% selection
of the correct subset of predictors, and MC and MS resulted in 30 - 100%
correct choice. For the exceptions noted, however, good practical
performance of the criteria was still obtained. The subset of predictors
selected as best simply alternated between including xa and x rather than

both.

2. BACKGROUND.

2. 1. General orientation:

There is a point which needs to be emphasized before focusing on the
immcdiate setting of the results to be presented. It is this. Given a vector
of observations on a predictand u and potential predictors z, (j = 1, 2, ... Tr),

one should consider any theory and reasonable supposition regarding the
nature of relationship of u to the z,. It is often not sensible to assume that

--_ --J
u = of (1) and that z, = xi of(1), although this is too often done. Rather,

it may be proper to let y = r_(u) and x. =- (z., z 2 . . . . .. z). Considera-

tion here will be confined to situations such that transformations of the
observations on predictand and predictors permit expression of the rela-
tionship as in (1).

It will be assumed that a practical situation can be characterized by
certain values of the p. and by the form and the parameters of the joint

distribution of the x. and _. More ecifically, it will be assumed to start
that
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r_ 20 -1 r-il o2 2 o . ' o o

14  F231 -~ [2 211
S 0 x_ 0 p2 3 I I ppI 0

(3) ..... . ...

,V

x 0 x 0 p 31 , 1 0

,• G 0 0 . . 0 1U- J L0 l

A given set of data then represents a sample from the xi, , population
which, with the P3i, implies y

The problem is to examine the performance of the aforementioned
criteria for deciding on which of the 2P subsets of the x. is the relevant

subset of predictors (i. e. , which of the 2p subsets of the Pi consists of
only and all the non-zero Pd.

2.2. The selection criteria:

Let v = 1, 2, 3, ... , 2p index the subsets of the x,. Then upon

rearrangement of the columns of 1xI x 2 ... x c] of (1) and the elements

of [P 1 P2 ." 1 p] ', we can write

(4) p = (Z x -] [E) I]'

where the columns of Z (n x qv) consist of the vth subset of the x,, those

of Xv (n x 57q ) the remaining xi, 6v and Rv consist of the correspondingly

rearranged Pi, and qv = 0, 1, 2, .... p. Then, assuming Z , X to be of
• V V

full rank, the total sum of squares T = y' y can be partitioned into

S =( Z)_ ZvXand R = T - Sv, and R carries n - q degrees of

freedom. It is useful to note that

(5) (R) vPA
397 _v + (n qv)
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where AV X' [I -Zv (Zv Zv) Zv X

The criteria compared were

MSv = R/(n - q)

v R/s 2 - n + Zqv

MC= v/s2 (n-p)(n-qv-Z)/n-p-2)

where s is RI(n-q) for the case in which Z contains all the
VA V V -

When analyzing data, the correct subset of predictors is chosen to be
the one among the ZP subsets which has the smallest value for the criterion
being considered.

Under the assumption 2v 0, and c distributed with mean 0 and
variance I.

E (MSv) =1,

E (C) = (p-qV) (n-p)/(n-p-2) + Zqv-p

q if n is large,

E (MC ) 0.

These expectations are of some interest when studying the results in the
next section.

3. RESULTS. As indicated in the introduction, the mathematics
appeared to be intractable, so performance was studied empirically. The
scope of this work has been restricted by the computational capacity avail-
able to date, but programming for a much faster computer is now in process
and it will be possible to study more predictors than three. The current
results, some of which are shown in the following tables, may provide some
helpful insight toward obtaining at least an approximate analytic solution.
They also may aid in constructing a sharper criterion for selecting
predictors.
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i ~SAMPLE C ENSOEINGXI

': ~N. L. Johi, son

_ _ epartment of Statnstics
(University oc North CarolinaS• ~Chapel Hill, North Carolina -

•.. .1. INTRODUCTION. There are currently available a number of
•,•, = methods designed to reduce the possible effects of "wild" ("maverick")

...observations an the analysis of sample values Among these may be

.mentioned :trimming" and "Winsorisation". These methods involve the

Spossible or sometimes automatic exclusion of ext'reme values among those
observed. Apart from these methods, for which appropriate statistical
analyses, taking proper account of the omission of sample values, are
available, samples may be incomplete owing to inadequate recording, or,
unfortunately, biassed selection of values which accord best with some

, preconceived ideas or desirL-.s.

While, under properly regulated conditions, information on any
censoring of sample values should accompany the records of the values
themselves, this is not always the case. Indeed, with the last situation
described with the preceding paragraph, such information is not to be
expected; but also, even in more respectable cases, information may be
omitted by negligence.

The problems to be considered in this paper are those arising when
it is suspected that there has been some form of censoring of the origllA.l
sample. Complete, and reasonably tidy solutions are obtained only on the
assumption that the population distribution of an observed character is
known. However, study of this situation does give some clue as to what
can be done when knowledge of the population distribution is incomplete.

Problems of a similar kind have been discussed in an earlier paper (1)
They were of a rather simple nature in that there was usually a direct
choice between two possible sample sizes.

1

2. FORMAL STATEMENT OF PROBLEM. It will be supposed that
there are available r observations of a character (X) which may be regarded
as observed valuea of random variables x', x' ... , x'. rhese are a

r
sub-set of the n (> r) variables x•, x ...1 x'n corresponding to a complete

random sample of (unknown) size n. If r n, then the 'sub-set' is identical
with the complete sample. We will be interested in testing whether this is,
in fact, the case. Various kinds of alternatives, specifying different kinds

",,The work was supported in part by Army Research Office Contzact AROD-4,
and in part by Air Force Contract AF-AFOSR-760-65.



of censoring which might be applied to the complete sample, can be
considered. Certain special kinds of censoring have been discussed
in earlier papers l2] [3] , and the results of these investigations will
be sunmmarised in.Sections 3 and 4. Then, in Section 5, we will consider
problems associated with general types of censoring. Certain practical
problems arising in application of the tests described in Sections 3, 4,
and 5 will be discussed in Section 6.

Discussion will be restricted to situations in which x ' x2, ... , x

can be regarded as n independent continuous random vari bles, with a.
•- ... .................'known common probability density function, repre sented by !Ix).

3. SYMMETRICAL CENSORING OF EXTREMES. We will suppose
that if censoring occurs it takes the form of exclusion of the s greatest
and a least among the original n sample values. Then x 1 , x x

are the r central values among an original set of n(=r+2s) values.
Denoting this hypothesis by H the joint probability density function of
the r ordered variables xl.<x_ , <X (these being a rearrangement

of x, x•, .,., x' in increasing order of magnitude) is:rr

P(r H ) r((x 1 )l 1-F(x In
(J11

(x_< x2_< ... X)

whore F(x) x) dx.

The hypothesis that there has been no censoring and therefore that the
complete sample is available is, in the notation already introduced, Ho'o.
For brevity this will be denoted by H0 .

The most powerful test of H against the alternative H has a
critical (rejection) region of the Porm.

(2) H~l xj H0)
P(Xl' ... xr I aa) >_ Cp( , .

where C is a constant. Whatever be the value of s, inequality (2) can be
written in the form.

(3) F(x1 ) 11 - F(xr)I >_K
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where K is a constant. Inequality (3) does not depend on s, so the test
defined by this inequality is uniformly most powerful with respect to H
for all s > o; i.e. with respect to any symmetrical censoring of the a,
extremes oi the sample values. The value of K must be chosen to give a
required level of significance, a say, when H is true. This value
depends on a and r, and may be denoted by K(c,°r). Then

(4) Pr,[F(xl) [1-F(x r] _ K(,a, r) 1H0] =a•

Table 1 gives a few values of K(,r). For

r > 10 the approximations

K(o. 10, r) 2 2. 65(r+1. 5)"2

K(o. 05, r) 4. 41(r+2)"
2

K(o. 0o, r) • 9. 2(r+3,5)"

give useful results. Mathematical analysis connected with the determina-
tion of. K(, r) is contained in Appendix I,

A discussion of the evaluation of the power of this test is contained
in Appendix II.

TABLE 1
Upper 100 Significance Limits of F(x)[l -F(xl]

S 0.05 0.01

2 0.207 0.235

3 0. 150 0,195

4 0. 109 0. 156

5 0. 0822 0. 125

6 0.0633 0.101

7 0. 0303 0,0830

8 0. 0408 0. 0692

9 0.0338 0,0585
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4. GENERAL CENSORING OF EXTREMES. If the requirement of

symmetry is dropped we need to consider hypotheses of form H S ,S

corresponding to eve-hiininn mf +him a aralf an ý- '.4.4..

the original sample, with a and r not necessarily equal. In this case
there is no longer a uniformnly most powerful test of H0 . There is a

uniformly most powerful test of H0 with respect to the subclass He a r

in which aosr (a S ) is constant.

It has a critical region of form

(5i•;•C) CF(xl)l' cl-F~x•) I _ X , r, 0)

I Sr - 0, we take 0 - , and replace (5) by F(xl)_> constant]

To obtain a significance level equal to a , the value of K(Q, r, 0), given
H0 is valid (i. e. there is no censoring), must make the probability that

inequality (5) is satisfied equal to a. In [3] a heuristic xnethod proposed
by S. N. Roy [4] is applied to suggest a possible test of H0 with respect
to all alternative hypotheses of type Ho . (for any values of s and a

This calls for construction of the union of regions like (5) with a = a', over

all values of 8. Points ( F(xr) ) on the boundary of the critical

region must satisfy the equations.

(6.1w) (a ., r, e

(6.2) -8e C •(xdl)] C•l F(xr)] 8=K (a,, r, 8)/8 8 0

From (6. 1) and (6. 2) it fv,•.iows that

(6.3) log F~xl) = 8 long KN a', r, 0)/88

If K(al, r, e) is known, F(x) can be found from (6. 3) and then F(x,) is
determined by (6. 1). However explicit evaluation of K(al, r, 0) is
troublesome, and approximate methods were used in [3] leading to the
simple (through approximate) formula-.
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(7) F(x1 ) + (i F(xr)] >KI (a.' r)

for the union of critical regions. Here K (a, r) represents a constant
which can be chosen to give a. required va ue, a say, for the significance

level. (Note that a ' appears only in the construction of (7); it is not the
significance level of the resultant test,)

Although -an xpprocirnate arguments applying a heuristic principLe-

has been tased:-in reaching (7), the critic&. region so obtained ham a natural
appeal; and seems worthy of further consideration,

The distribution theory associated with the critical region (7) is very
simple. If H is valid then F(x,) + (I - F(xr)] is distributed as

zZ 2 2
+s(2 ++s +)) where K2(So+S +2) a 2(r-l)

s + r + 2

are mutually independent. (Equivalently, the distribution is a beta distribu-
tion with parameters (a + a 4 2), (r-l). ) It follows (putting a 0 s a 0)

tht0 r 0 rthat

(8) K,(a, r) = upper 100 a/o point of beta distribution with parameters

2, (r-l). These values can be obtained from Table 16 of (6) .

The power of the test with respect to a specified alternative hypothesis

H is also easily calculated. In fact

(9) PrýF(xl) + (l-F(x)) >Ki ,H ,I ] = .K (aI + ar +2, r-1)
or r

1-K, I (r-l, so + sr + 2)

where I (M, N) = [B(M, N) I Pt M-1(I t) N- dt Is the incomplete beta

function ratio,

For given ao and a as r tends to iniinity the power tends to

(10)+2 2
(10 PrCy.(,+ 5r+ 2) > X 4 1-

0 r

(where x 2 denotes the upper 100 a 96 point of the distribution of 2

with v degrees of freedom).
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A few values of the power are shown in Table 2. It appears that the
asymptotic (r -- a,) values give a good indication of true value for r > 30.

TABLE 2

Power of the general purpose test (a = 0. 05)
rmr

5 5+ s 2 6 10 14 180 r

r =4 0.167 0.470 0.716 0.862 0.938

r u 30 0.-281 0.845.. 0..989
• r 0.•O,303 O,.892 .1 ,996-

A special case of some interest arises when censoring at one extreme

only is suspected (i. e. 0 = a or s r o). In this case the uniformly most

powerful test has the critical region

i r<I/r (ifS =°)

or

Yl > IC aI/r (if or 0

The power of the test with critical region yy < a1'r with respect to

the alternative HOP is

rr

((Hr+S) yr-l(loy) r dy

r (r1!r 0

= /r(r, S +1)

(where I denotes the incomplete beta function ratio).

5. GENERAL CENSORING. We first introduce the notation
H to denote the hypothesis that s observations have been

so 81, ... , 1j

removed between x and x for jul,2, ... , (r+l) with x 0-, r+l
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In this notation the H considered in Sections3 and 4 would be

H . Also, for convenience we will write
%j, y -9 r

S(11)-j F = i, ... r)I. y .0: y .
.o r+1

_. .... -Then the- beat critica..feglon-for testling the hypothesis of no censoring
H) against the alternative H is of form

" O 0 , .. . F O f, So l s i t .. . P r

r S.

(12) +l" yj) j > K(c, r, So s' a r)
3=0j=o

It is clear that there is a uniformly most powerful test with respect to
any set of alternatives H for which the ratios

. : Sl : " " " a are constant, but'not with respect to any other sets

'of alternatives. While one could attempt to apply Roy's heuristic principle,
as in (5] , to construct a general purpose critical region for the whole set
of alternatives H the effect of approximations might well5O, S , •..• , 5

be much more important in the more general case, and is certainly more

difficult to gauge. We therefore consider more or less arbitrarily chosen
criteria which, however, do have some relation to criteria suggested
from theoretical considerations.

We first consider a test with critical region

r
(13) g = 3l (Yj+l - Y) > K-Ka, r) K 2

. jio

It is quite likely that this criterion may be felt to have some practical
drawbacks. These will be discussed in Section 6, but for the present we
will just consider how to evaluate K2 in (13), at any rate approximately.

It will be convenient to approximate to the distribution of log g, rather
than of g itself. The moment generating function of log g, when
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H is valid, is3 3 0 .. ,. SI
O0 1 r

r(r + E ,a:
(14) E Hgte o *"', a] ... 0 a r x

0JU 1 J

a~~ 0 n

11 3.II

a or+12

Since the joint probability density function of yl, '.. y is

r

Yo H) 0 o- n (y -Sol " r $1. .. ,s r r j ~ +1"

n r(s +1)
j=o

it follows that r

n rL, +l)
(15 ) n (yj l -yj) J d y ". ' " . . d

r(r+l+ E s)

and hence from (14) and (15)
r

(r+•" Sj, rtrE 0 3 n r(t+s +1)
E16 C gt IH 0 J= i=

r n,, r( (r+l) (t+i) r

j~o J  o

Taking logarithms and differentiating, the following expression for
the mth cuinulant of log g is obtained:
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(17) K (Log g H • )
m8 aB 8 .

ol r

r -

=- '7_1+1) - (r+l)* .' {,'+1 o s)
j~o 0~

In particular when the null hypothesis H0 (- H ) is valid

1 (16) im(iog g •Ho) ; (r+I) 'l)1) .+l)m m" )+l) -

The polygamma functions have the values

* P 1) - = -0. 5772

* and S(1)--)M(m-1)! S ( _> 7.)

* where S 1 + 2m + 3"- +...m

* Hence

(19.1) Kc(-log gl H0 ) (r+l) (y+li(r+l)

(19.2) Km(-log giHo) (r+l) C(m-l)' Sm + ((l)1rltr+l)m (

(i n > z

For z not too small, we have, to a good approximation

(20.1) (Zj() log(z- 1/2)

i(20.2) •m) (a) (--l)m' (m-_): ( - 1/)m (m 1z )

whence
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(21. 1) K (-log g IH 0 ) " (r+l) (0. 57722 + log (r+ 1/2)

(21.2) ,m(-log gjH0 ) " (r+l) (m-r1) [S M --(m-1)l{(r+l)/rll/2)}m-l]

Noting that

(i) tV 2 least possible value of (-log g) is (r+L) log (r+l), correspond-
ing to y j/(r+l) for jl,2, r, . r S 1

3 .3
and ('log g IH 0)]J (~(r+l) (8z)

and

6S -2K 4(-log g IHo' | 0) 4 10.80

,2 (-log g F) ( r +l ) ($2- 1)"

2 2 3
(while for X with (r+l) degrees of freedom, 1 0K 8r+0)and

C4 /1 2  12A/(r+l) )
(iii) var(-log g H0) = 0. 645(r+l)

while var(0. 57722 XZr+l 0. 666(r+l)

it appears that we might take, as an approximation,

(22) -log g - (r+l) log (r+l) to be distributed as 0. 57722 x (X2 with
(r+l) degrees of freedom) or, equivalently

2
(22)' 1.732 C -log g - (r+l) log (r+l)] to be distributed as X with

(r+l) degrees of freedom. This implies

exp x /.--K 732]
s Kr+lL

2 (r+1)r+l

! Vwhere

X+' a is the lower p% point of the distribution of X with (r+l) degrees

of freedom.
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(If -log g - (r+l) log (r+l) is approximated by 0.5587 X 1. 0332 +1)' then

means and variances agree while the values of K c/ K and K4K for the
S... . ,.-I ... ... . 4/ 22

The approximations cannot be expected to be good unless r is fairly
large. In the extreme case r = I with g = y(-y) we have exactly

Z (23.1) Prig > H0 ] C (I-4G)1/Z (0 <G < 1/4)

while (2Z) gives

(23.2) Prig > GJH0] I -(4G)0.866

The approximation (23. 2) is substantially less than the true value (23. 1)
though it does have the correct limits (I and 0) as G tends to 0 or 1/4.
In order to assess the power of this test we return to equation (17). This
gives the cumulants of log g when a general alternative hypothesis
H Sris valid. I't would seem reasonable to fit the distribution

2
of C -log g - (r+l) log (r+l)] by that of a multiple of X , so that first and
second moments agree. It may be that better approximations to upper
percentage points of -log g would be obtained by fitting the firat three
moments (instead of the initial point and first two moments - see (4) ).
This method might therefore be employed when the power is, say, above
0.75.

6. MODIFIED TESTS. The test criteria described above are all
based on the probability integral transformationSx
(24) y = f(x)dx.

They explicitly assume that fx) is known exactly (in practice to a close
approximation) and that there are no errors in observation of x. This
last condition is never satisfied when x is a continuous variable. There
is always some kind of grouping error occasioned by the finiteness of the
number of digits used in recording the observations. This is particularly
important in relation to test functions like g of (13) in Section 5. If it so
happens that any two of the y's are equal the value of g is zero and Lhe
null hypothesis will be accepted. Clearly, if this happens because of the
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use of too coarse a grouping interval, the test is likely to be very
inoensitive. Furthermore, the larger r is, the more likely it is that
at least two x's (and so two y's) will be equal, thus giving rise to a zero
value for g. We are thus led to consider modified tests, less sensitive
to this kind of effect. A simple way of effecting this is to use only a
selected number of the transformed order statistics y, y2, ... , y

-say y y (with the values l < a < a < ... < a r

fixed before analyzing the data, of course) and to apply a test with critical
region

(z5) $a n (Ya. Ya >K3
o-1

with y 1, ya 0. (A natural choice -would be to take the a's at
o~ equal intervals apart. )

The value of K 3depends on the required significance level, a , and also

on the selected a'ja, as well as on r. In fact the distribution of g when

HO is valid, is the same as that of g, with r replaced by k, when

H5 a '' i . is valid and with s. a a -a - 100., 1, 2 ... , k)01O s,. .sk J l

hence, the same calculations as those needed to evaluate the power of the
test using g are required in calculating the value K3 in (25). Also, of
course, calculation of the power of the test with critical region (25) will
follow the same lines.

A similar kind of modificiation can be applied to tests of symmetrical
censoring of extremew (Section 3). In this case it would be natural to
ignore the least and greatest m observations, and use only ym+l ... y

The uniformly most powerful test of H against symmetrical alternatives

H has a critical region form similar to (3), viZ:
SON

(26) (-(z6) Ym+l (I- Yr-m) _> K4.

Determination of K4 is, however, more troublesome than for K. The
equation
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(27) J m , m r-Zmmm (1-y)M dyidy

(where the region of integration is y +(l-Yr ) > K4 ;
:~~+ 0- _<4;l•Y-m<l

has to be satisfied.

Evaluation of the integral of the left hand side, with K4 replaced by K,

g ive.. t he power of the test with critical region (3) with respect to the
alternative hypothesis Hnm . The notes in Appendix II are therefore; ~relevant to this problemm'

7. CONDITIONS OF APPLICABILITY. It may be felt that the
condition stated at the beginning of Section 6, namely that the true
probability density function f(x), must be known, is unlikely to be satisfied
in practice. While this is so, in the strict sense that it is very rarely
the case that a theoretically formulated model gives an exact representa-
tion of reality, it will sometimes be the case that there is sufficiently
massive evidence to establish f(x), from observed relative frequencies,
with adequate accuracy. Slight variations in form of f(x) can be tolerated
without serious effect, particularly if a modified test oý the type described
in Section 6 is used. It may be noted that it is not essential that f(x) have
a simple, or indeed any explicit, mathematical form - a graphical
representation can suffice.

It would, however, be interesting, but beyond the scope of the present
investigation, to inquire into the robustness of these tests with respect to
variation in f(x). (I. e. to use of an in±corrccL function, f1(x) say, in (24)).
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II
Appendix I

We have to consider the evaluation of K(a, r) from equation (4).
Putina v. = F(x.) (as in (.11)). the Joint probability density of v. and v

given HO, is

r-Z
(A. 1) P(yl' yr Il 0 ) r yr-) r-) (0 < y1 < y < 1)

Hence K(a, r) (now written as K for convenience) satisfies the equation

(A. 2) r(r -l) (y -lr2 d

yl(l-y) > K

The region yl(L-yr) > K can be defined by the inequalities

Y <• Y"r :E 1-K/y 1 and these imply also l-y, - K/y 1 >0 or Y- < Yl Y+

where Y+ - [l + -1-4K /.

Hence from (A. 2)

Y+ r-
(A. 3) r ( 1-Ky -y) dy• a

Expanding the integrand and integrating term by term leads to the equation

r-I r-J-l
(A. 4) r M ( r-I (-j)JoJ E r-j-1 (.l)i h1 h.j+,( .1-4K)

JEo if-o

where ho(z) = log

-lhm(s) 2 -m m- C(+Z)M.(.)ml

Note that for m > 0,
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(A.s) hI (1--4K)m

( (-j)J(51L)1s 14

_•(m -0)/

uKm (V 1-4K)

.-............F Z()- 9. te le ....ft ad f4 (A.4), ihowninr Table A. 1 . . .
below.

TABLE A. 1

r = - x log +X
I- 1I4K

3 1 +8K 6K

4 1 +Z6K IZK (1+ K)

5 1 +2 2+K( +33K)
3 3

6 1 + 97K + 226K 2  30K(l + 6 K + 2K )

759 355..__58 K + 1O24 3 27 1+---K +8654 K3 46K ( 10K+1OK)
8 +A"2z K 8 4 KZ + 492 K3  56K(+1SK+ 30K2 + 5K 3 )

125634 2 2 310618 K 7ZK(1+ZlK+7oK + 35K9 + 35' 35

218044 3 32768 4
K +- -K35 35

(For example for r , 31-+8K);I-4K 6K log +
1 - VI'4

The calculations rapidly become more complicated as r increase e.

It therefore is desirable to search for some approximation to K(&, r)
which will give useful results for r large (and preferably for r > 10).
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Somne empirical formulae have been given in Section 3. Here we use an
analytical approach, starting from equation (A. 3). We first make a
succession of transformations, aimed at obtaining an intearand fnp whirh
useful bounds can be set.

Firstly, putting y a "

Y+ .A(K)

y do

-t -
Next making the transformation z e the integral becomes

-log A(K)

1o A tK -;t -( e-t)}r-1I

~- log A(K)
-log A(K)i(+ t}r1d

I•
(log A(K) ,--

(A. 6) u2•' '0o A(K) (l.-24Krcosh t) cosh t dt.
o

Now making the transformation v Z= R cosh t, we obtain

(A. 7) 4K vlv~- ( .,II dv.

SIntegrating by parts, this is equal to

* I (A. 8) (r-i) • (1-v) 3(v2 - 4K)i1/2 dv.

Thus equation (A. 3) can be written

ir~r-i) S (V2  4X)l2(.Vr dvm a
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I
Making the final transformation v = K + (I-2v"tRu we obtain

(A. 9) r(r-1)(1+ i-)riiz S (1-Zv'K~u 2+r iu)1/Z
0

Since ~(j~.),.j* i~ -

(lZV()l-u/i7 du jv r(1 .

.•-U 1.2 X "'....... ....... 8 riu u +. I

r (r+1/2)

As can be deduced by direct analysis, K"-o as r -a, 1 but since

i< '

it follows that K r 1/4 (1 -a and hence Kr cannot tend to zero.

If we put K Cr' (where C in, of course a function of r and a) then,
approximately

(A 11) 241-C ;Tl/4 < d; < r2(•0+ -l) r /

This implies that C liies between fixed limits, and sug ' Cto that. for largeJ
S , rm C r. (The form of function - C I u as an

approximation to K in Section 3 was suggested by this analysis.)

An oows thatK , 1h4euristc approach is as follows: t

If H be valid, yK (.-y ) is distributed as uv/(u + v + w) where u, v and

w are independent X random variables with 2, 2, 2(r-1) degrees of freedom

re spectively.
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Ifr isl large

(U+VW)- ra 2 7

I(since wAZ2(r-1)] 1 as r -. i)Hence we have K'- Cr" where C
satisfies the equation

S4* exy( fu -ZC-/)du a
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"APENDIX II

The joint probability density fu~nction of yand y r when H is
..14 A 4. ,, .

(riB s +z a
(A. 12) p(y 1, Y) * 0 r Y I- )!Iryr-2

r

00 r

(A. 13)iieult

=~ y r (~~~~)Sir2r-Z r-2(1-Y y dy 1
0s r ys i ro

fotmaisg thathe - r cumbesome and) doe not giee muha tnihe intega the

(Althoug is depends tonsequtrogapriminshdiva

roabY+ accrt idea of the nature of this -) deedec,2hn -1sg

Y -JU-iz



From (17) it follows that

' . (-)• ""l{, +) + •ml() ('}, + l
(1)mt .3mml)(+~ + q • (m)(-1) (mo 1)

r j

(A. 16.1) Kl(-loU{y1Yr}l} - Z',- 2V o M M j 1 -log(r-l/2)
j=l j=l

+ 3 log(s0 +sr+r+3/7)

"and, for m > 2

(A. 16.2) imc-lo5 Yl(l1Yr)}) (m-l). ( -m+ j -
~jags +1 2as+-=S0 j wr+l

+{(m-l)(r-l/Z}m'l}"l

3m +(m-l) +a +r+3/Z)m-'l 4'
0 r

If r is large, then for the smaller values of rn( > 2)

(A. 16. 3) Krml-log.{Yl(l-•,r)) )"(-1); C' -E E j-M]
,-ja m o+lJ

0 " Jas +1

Note that r does not appear in this approximation.

In particular, taking m = 2

(A. 17) var(-log {Yl(-2Yr)) ) - Z + j-2
jago+1 jug +l
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The variance decreasesa as 9 and /Or a rincreases. The expected value
(K1 ) also decreases.

A further approximation to (A. 16. 3) gives

(A. 18. 1) scr(-log {y 1(l-y,)}) (m-2).' [(so + 1/2)(~) +(s/2)~l)

(A. 18. 2) K 2(-log {y(~ ) (so +1/2)_ + (s. +1/2)_

If a a a, formula (A. 18. 1) becomes

(A.. 19. 1) ic,(-log~yl(l-y,))) 2 (m-2)! slZ)(nl

while (A. 16. 1) becomes

(A. 19. 2) K l(-log{y1(1-yr)})) 2y- 2 M ..log(r.l/2) + 3 log(2s+r+3/2.).

If r is large this last equation may be replaced by

(A1.3 c(-log~y(, -) Z>- l Z (r+3s+5/2)
jual

Ifsa increases to s+l, K , decreases by approximately 2(8+1)l .'6(r+3s+S/2)_.
It in not suggested that it will always be appropriate to use theme approxi-
mations, particularly those appearing later, which depend heavily on r being
large compared with a, 0 n r .The approximations are exhibited because

they bring out rather clearly the way the distribution of ~o( 1 ly)
depends on a andse

0I r
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