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FOREWORD

Sci

In a letter under date of 12 December 1967 , Dr. Charles A. Reynolds ,

Technical Director of Edgewood Arsenal , issued an invitation to hold

the Fourteenth Conference on the Design of Experiments in Army Research ,

Development and Testing at Edgewood Arsenal , Maryland . In his letter ,

Dr. Reynolds set the dates for this meeting as 23-25 October 1968 , and

he appointed Messrs . Joseph Mandelson and Raymond Schnell to serve as

Co-Chairmen on Local Arrangements . These conferences are sponsored by

the Army Mathematics Steering Committee and they come under the super

vision of the AMSC Subcommittee on Probability and Statistics . Dr. Walter

Foster , the Chairman of this Subcommittee , was happy to accept this

invitation and started laying the groundwork for this conference . He

and other members of the AMSC would like to thank Messrs . Mandelson and

Schnell , as well as many other employees of Edgewood Arsenal , who helped

to make the Fourteenth Conference such an enjoyable and successful

meeting .

These conferences are open to scientific personnel of all Government

agencies , and the participation on the program by staff members of

various agencies has been gratifying . In this , and in past meetings ,

scientists from the National Bureau of Standards have contributed a

great deal to the tone of these symposia . It seems appropriate that

we point out some of the Bureau participants in this Edgewood Arsenal

Conference . Dr. Joseph Cameron served as a member of the Program

Committee ; and he , along with Dr. Joan R. Rosenblatt , served as

panelists in several of the clinical sessions . Messrs . H. H. Ku and

Roy H. Wampler each presented technical papers . Further , there was

presented a paper which was authored jointly by David Hogben and John

Mandel . We are pleased to be able to publish most of these papers in

this technical manual .

Those attending the conference had the pleasure of hearing the

following invited speakers talk on the topics noted below :

Broadening the Horizons of Experimental Design

Lieutenant General William B. Bunker

U. S. Army Material Command

Structure and Classification of Patterns

Professor Rolf E. Bargmann

University of Georgia

84-170 017

Bulk Sampling

Professor Acheson J. Duncan

Johns Hopkins University
The
UNIVERSITY

OF CHICAGO

LIBRARY

Stol

ii



Time Series

Professor Emanuel Parzen

Stanford University

The keynote speaker , General Bunker , died before these Proceedings

could be issued . His passing is a heavy loss to the scientific

community , and to me , a special loss , as he was a warm personal

friend .

An outstanding feature of the program of the Fourteenth

Conference was a panel on Bulk Sampling. This is an area of

statistics of special interest to the scientific personnel of

the host installation . Dr. Walter Foster served as chairman and

organizer of this phase of the agenda . He selected Professor A. J.

Duncan to serve as a Discussant and Advisor to the following Panel

Members : Henry Ellner ; Boyd Harshbarger ; G. R. Lowrimore ; Joseph

Mandelson ; and , V. H. Rechmeyer. Another outstanding feature of

these conferences is the awarding of the Wilks Memorial Medal . This

year , it was my pleasure to announce that Professor Jerzy Neyman , of

the University of California at Berkeley , was selected to receive the

Fourth Samuel S. Wilks Memorial Medal .

e

Members of the Army Mathematics Steering Committee think that

the papers presented at the conference have made valuable contributions

to the fields of the design of experiments , statistics , and reliability ,

and have requested that these articles be published in these Proceedings .

They wish to thank the many speakers , chairmen , and panelists for their

help in conducting this symposium .

The conference had an attendance of 163 scientists , and 50

organizations were represented . Speakers and panelists came from :

Cornell Aeronautical Lab ; Duke University ; Federal Electric Corpora

tion / ITT ; Hercules , Inc .; Johns Hopkins University ; National Bureau

of Standards ; Stanford University ; Thiokol Chemical Corporation ;

University of Chicago ; University of Georgia ; and Virginia Polytechnic

Institute ; and nineteen army facilities .

Colonel Paul R. Cerar , Commanding Officer of Edgewood Arsenal ,

gave the Welcoming Remarks for the host installation . In his talk ,

he gave many interesting and historical facts about Edgewood Arsenal .

His address is published here for the edification of those who were

not able to hear him speak .

ite to

tal

Formulation of the outstanding features of this conference and

the selection of the invited speakers were made by the members of the

Program Committee (Joseph Cameron , Francis Dressel , Walter D. Foster ,

Fred Frishman , Boyd Harshbarger , William Kruskal, H. L. Lucas , Jr. ,

Clifforn Maloney , Joseph Mandelson , Henry Mann , Raymond B. Schnell ,

and Herbert Solomon ) . The Chairman wishes these individuals to know

that he appreciated their assistance and valued their comments on the

various phases of the program .

Frank E. Grubbs

Conference Chairman

1
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and other members of the AMSC would like to thank Messrs . Mandelson and
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panelists in several of the clinical sessions . Messrs . H. H. Ku and

Roy H. Wampler each presented technical papers . Further , there was
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Mandel . We are pleased to be able to publish most of these papers in
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The keynote speaker , General Bunker , died before these Proceedings

could be issued . His passing is a heavy loss to the scientific

community , and to me , a special loss , as he was a warm personal

friend .

An outstanding feature of the program of the Fourteenth

Conference was a panel on Bulk Sampling. This is an area of
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the host installation . Dr. Walter Foster served as chairman and

organizer of this phase of the agenda . He selected Professor A. J.

Duncan to serve as a Discussant and Advisor to the following Panel
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these conferences is the awarding of the Wilks Memorial Medal . This

year , it was my pleasure to announce that Professor Jerzy Neyman , of

the University of California at Berkeley , was selected to receive the

Fourth Samuel S. Wilks Memorial Medal .

Members of the Army Mathematics Steering Committee think that

the papers presented at the conference have made valuable contributions

to the fields of the design of experiments , statistics , and reliability ,

and have requested that these articles be published in these Proceedings .

They wish to thank the many speakers , chairmen , and panelists for their

help in conducting this symposium .

The conference had an attendance of 163 scientists , and 50

organizations were represented . Speakers and panelists came from :

Cornell Aeronautical Lab ; Duke University ; Federal Electric Corpora

tion / ITT ; Hercules , Inc .; Johns Hopkins University ; National Bureau

of Standards ; Stanford University ; Thiokol Chemical Corporation ;

University of Chicago ; University of Georgia ; and Virginia Polytechnic

Institute ; and nineteen army facilities .

Colonel Paul R. Cerar , Commanding Officer of Edgewood Arsenal ,

gave the welcoming Remarks for the host installation . In his talk ,

many interesting and historical facts about Edgewood Arsenal .

His address is published here for the edification of those who were

not able to hear him speak .
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WELCOME *

Colonel Paul R. Cerar

Commanding Officer , Edgewood Arsenal

General Bunker , distinguished guests and speakers , ladies and

gentlemen

Edgewood Arsenal is proud and gratified to have been chosen to act

as your host for this , the Fourteenth Annual Conference on the Design of

Experiments in Army Research , Development , Testing and Evaluation . I

consider it a privilege to welcome you on behalf of the arsenal and its

personnel . It is particularly fitting that our arsenal should be given

this opportunity as part of its scientific program for this year of our

existence , a half century of work and achievement as a significant element

in the defense structure of our country .

In October of 1917 the War Department acquired this reservation , later

to become the Infant Gas Warfare Service's first home , and in May 1918 named

the installation Edgewood Arsenal. During the lean years between world

wars Edgewood Arsenal struggled to prepare the military arm , offensively and

defensively , in the area of chemical warfare . Despite the meager resources

allotted , especially during the depression years , somehow the installation

survived to provide the basic cadre for the enormous expansion to over 7000

military and 8000 civilian personnel in the peak years of World War II .

Through their devoted efforts , our military forces were provided with a

capability in research , development , procurement and supply of chemical

offensive and defensive materiel .

Existing industrial and manufacturing facilities were rehabilitated and

new ones built . Necessary support facilities such as utilities , an airstrip ,

and an expanded rail network were added . The chemical warfare school was

expanded and a modern laboratory complex was built to house consolidated

research and development activities . In May 1942 the installation was re

designated the Chemical Warfare Center . In August 1946 the name was changed

to Army Chemical Center but in 1963 we reverted to the original title :

Edgewood Arsenal .

In a re-organization approved 7 July 1966 , Edgewood Arsenal was

designated the U.S. Army's Chemical Commodity Center with responsibility for

all chemical weapons and defense materiel research and development , subordinate to

U.S. Army Munitions Command . Its previous administrative control over

Fort Detrick was relinquished and Fort Detrick became a separate commodity

center with responsibility for biological weapons and defense research and

development . However , because certain of our responsibilities overlap those

of Fort Detrick the old cooperation between the two installations is still in

existence both by necessity and choice .

*Colonel Cerar gave the Welcoming Remarks at the start of the Conference and

also served as Chairman of General Session I.



Two sub - posts fall under the command jurisdiction of the Edgewood

Arsenal Commander : Pine Bluff Arsenal , Arkansas and Rocky Mountain

Arsenal , Colorado . These two arsenals are engaged in various aspects

of procurement manufacture and testing of chemical materiel .

Over the years , then , Edgewood Arsenal has grown to represent about

$115 million in fixed investments , to include $9.6 million in land and

improvements ; $ 78.1 million in buildings and facilities ; and $27 million

in machinery and equipment . These figures do not include our sub-posts .

The installation employs over 3,800 civilians and over 1,600 military

personnel with a combined gross payroll of some $ 40 million .

Among our civilian employees more than 900 hold bachelor degrees ;

over 190 have master degrees ; and 75 have attained their doctorates .

In connection with the subject which is basic to the purpose of this

conference - statistics as it is employed in research , development ,

testing and evaluation - Edgewood Arsenal can point to a long , and a

still growing interest and participation in this highly specialized

field . Starting about 1942 , statistics of this type began to be used

in preparing specification requirements and later in the development

of certain theoretical concepts upon which our surveillance and other

quality assurance activities are based . Much of this work found its

way into the literature and our personnel were actively engaged in the

development of important sampling standards . Interest in , and utiliza

tion of statistics , soon spread from our quality assurance elements to

our research , development and testing activities . At a later date , an

Operations Research Group was formed in whose work , as you know , statistical

principles play a major role . This group was recently incorporated into

the U. S. Army Munitions Command but it remains physically located on

this post .

The Chemical Corps Engineering Command sponsored several conferences

on Statistical Engineering in the 1950's which some of you may have

attended . It has been our policy to encourage our personnel to take

an active part in all professional activities - delivering and pub

lishing technical papers and acting as chairmen and moderators of

technical sessions .

Our background dates back some 26 years , when , as you may recall ,

the work of Professors Fisher and Pearson in England on the Design of

Experiments and even the work of Shewhart , Dodge , and Romig in this

country in Statistical Quality Control were practically unknown . You

can see why Edgewood Arsenal feels so proud to act as your hosts for

the next three days .

At this point , I am pleased to acknowledge our indebtedness to the

Army Research Office and to its arrangements committee for inviting us

to host this conference and to extend my thanks through Dr. Francis

Dressel , the Secretary , to this committee for the excellent work they have

done in securing such outstanding speakers and in arranging so interesting

vi



a technical program . We are especially honored and pleased to have as

our keynote speaker , a distinguished soldier who has taken a very keen

and active interest in the subject to be discussed .

Lieutenant General William B. Bunker is a graduate of the United

States Military Academy , Class of '34 . He attended the Massachusetts

Institute of Technology receiving his degree of Master of Science in

Engineering . During World War II , General Bunker served as Deputy in

Charge of the Transportation Corps ' Supply Program and , in 1945 , as 7th

Army Transportation Officer , during the occupation of Germany .

When the Berlin Airlift began in 1948 the General was put in charge

of Terminal Operations governing gathering of shipments , loading in the

United States zone , unloading and distributing cargo in Berlin . He

organized a similar system between Korea and Japan when hostilities

erupted in 1950 .

In 1950 the Chief of Transportation named General Bunker to be Chief ,

Air Transport Division , investigating the application of the helicopter

to Army transportation . The result of this investigation was an immediate

large scale expansion of this activity . General Bunker was appointed

Commandant of the U. S. Army Transportation School in 1954 and the

following year was assigned as Commander , U. S. Army Transportation

Materiel Command , responsible for logistic support of Army aviation .

He was promoted to Major General 1 June 1961 .

In February 1962 he became a member of the planning group which

developed the organization for the Army Materiel Command and in June

was assigned as its Comptroller and Director of Programs. On 1 April

1962 he became Deputy Commanding General , U. S. Army Materiel Command

and was thereupon promoted to Lieutenant General on 9 May 1966 .

General Bunker has been the recipient of many decorations for his

outstanding work in a long and honorable career , not only from his own

grateful country but also from the United Kingdom and Nicaragua .

He is a member of Professional Societies and published various

articles in technical journals , and has developed a keen interest in

the use of statistics in Army Research , Development , Testing and

Evaluation .

It is with great pleasure that I introduce our keynote speaker ,

Lieutenant General William B. Bunker .

" Broadening the Horizons of ExperimentalThe title of his address is :

Design . "

. Thank you , General Bunker for your very interesting and

informative address .
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One of the most important objectives of these conferences has been

to afford the conferees an opportunity to explore with authorities in

the field those aspects of the subject matter which had most recently

received major attention and development . When such areas have been

determined , it has become the practice to invite experts in these

various areas to speak on the topics selected .

Our next speaker is Professor Rolf Erwin Bargmann of the University

of Georgia and the Thomas J. Watson Research Center of IBM . He

has had a varied career , having been a Rockefeller Foundation Fellow

prior to taking his Doctorate in Mathematical Statistics at the University

of North Carolina . He was associated with our State Department in

Germany and served as an interpreter during the Nuremberg Trials . He

was Assistant Professor of Statistics and Head of the Department at

Frankfurt , later Associate Professor of Statistics at Virginia Polytechnic

Institute . He achieved full professorship in 1959. He was a consultant

to White Sands Proving Ground in the summers of 1957 and 1959. He is

a Fellow of the American Association for the Advancement of Science and

a member of several statistical societies .

It gives me great pleasure to present Professor Bargmann , who will

speak on , "The Structure and classification of Patterns . "

viii
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BROADENING THE HORIZONS OF EXPERIMENTAL DESIGN

LT General William B. Bunker , Deceased

U.S. Army Materiel Command

Washington , D.C.

From its early beginnings , statistics has been an important vehicle

with which reasonable men have attempted to seek an understanding of the

problems which confront them . Some of the earliest developments and

applications of statistical concepts occurred in response to problems at

the gaming tables . In fact , I have been told that more than one early

statistician earned his keep by calculating odds for a wealthy gambler .

The basic orientation of statistics toward the solution of practical

problems can be found as the motivation for many major developments in

statistics . For example, Thomas Bayes in his often quoted and contro

versial essay stressed his desire to provide a more efficient procedure

for the estimation of probabilities . More recently , the contributions

of Professor R.A. Fisher in the area of small sample statistics were

motivated by a desire to improve the analytic tools available in bio

medical research ,

The essential point is that many of the important developments in

statistics were motivated by a desire to solve real world problems . I

am concerned that in some quarters this orientation to problem - solving

has been replaced with a tendency toward self contemplation and a primary

interest in statistical purity . There is a need to re -examine the direc

tion of current efforts and to confront our major problems head-on . Only

through broadening the horizons of experimental design can we hope to deal

effectively with our most pressing problems.

Today , as a first step toward broadening the horizon , I would like

to spend the remainder of my time discussing several areas that are amenable

to the application of the concepts of experimental statistics .

SYSTEM TESTING AND DEVELOPMENT . One important area in which much

work is needed involves the statistical issues in equipment testing . At

the offset , I want to stress that our test programs are not and in fact

cannot be scientific experiments . One reason for this is that the tradi

tional requirements for the design of experiments are infeasible within

the context of a test and development program . For example, a basic

principle of design of experiments involves the control or minimization of

the variation in the experimental situation . This is an almost impossible

requirement to satisfy for two reasons . First , due to modification in the

system during development , the basic heterogeneity of experimental units is

high . This inherent variability represents a violation of a basic statis

tical assumption . Second , the dimensions of the problem frequently preclude

control or even measurement of extraneous sources of variation . The problem

was illustrated in the test program for our new AAFSS .

The status of a scientific experiment also is denied to our development

and test programs because of the fact that we just can't afford the large
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number of data points that are required in a classical experimental design .

In practice , testing is done on a small number of prototype systems . If

an attempt was made to gather the number of observations required to achieve

the desired level of statistical significances , no development would ever

take place .

The statistical aspects of testing programs are further compounded by

our difficulties in specification of the model . In many of our test programs

it is difficult to begin to select the relevant variables and logically

impossible to identify the important interactions and nonlinearities .

Our recent experience with the development of 152 ammunition for the

Sheridan provides a case in point . The variable of interest in this case

is binominal , either the round fires or it does not fire . We know that

reliability of this ammunition is a function of a number of variables

including quality control , the efficiency scavenger system , the ammunition

case , and the storage environment , but we also realize that there are n other

important dimensions of the problem which remain to be identified . For

example , through observation we have established an interaction between the

degree of moisture in the powder and the quantity of residue . Experience

has demonstrated that higher moisture content resulted in more residue . In

response to this finding we have lowered the moisture content , but this

change raises a question concerning other yet unknown interactions that

are at work in determining the reliability of the ammunition .

Changing the moisture content also illustrates another problem that

pervades the testing programs . When the nature of an item is altered as

a matter of course in testing and development , how does one aggregate the

test data that were generated prior to the change with that data which have

been gathered after the change ? In a strict sense ,In a strict sense , the modification has

changed the basic structure of the situation that is being modeled , and

has made the two sets of data incommensurable . In reality , we are measuring

a series of separate probability curves and are reporting the envelope of
these curves . This is analogous to developing a baseball batting average

by combining performance in the preliminary grapefruit league with that in

standard league play . In both cases , the cumulative measure of performance

combines early and tentative results with those that have been obtained

after the system has been brought up to working order . The net effect of

this procedure is to substantially understate the reliability of the system .

Given this situation , how can we give our customer a valid statement

of quality assurance ? Upon examining the results of the testing program ,

the statistician would say that we have a ratio of approximately 1 to 52,000 ,

but what we really need to satisfy the customer is a ratio of 1 - 1,000,000 .

At this point I can say , qualitatively , that the real reliability of the

system is understated ; however , it is impossible to specify the absolute

magnitude of the error . Naturally , the customer is not satisfied with

the statement about reliability of the ammunition , and something must be

done to improve the situation . The statisticians ' answer to this dilemma

is more testing to develop the required observations . This is an extremely

costly procedure and it would have been better to have done more work on

estimating the initial function . Ad hoc testing at this juncture is not a

feasible solution to the problem .

2



An alternative approach can be found in the area of statistical

decision theory . Resolution of this dilemma may be achieved through the

combination of the subjective judgment of the experts and objective

experimental results .

A second area in our testing program that requires attention involves

the development of large , expensive systems . The Main Battle Tank provides

a good illustration of the problem . We really have only a vision of the

MBT . In this situation , the problem is that there is no real testing of

the whole system . Instead , tests are conducted on different vehicles with

various configurations . This means that most of the parameters of interest

vary from test to test and that very little remains constant among the

tests . What we are attempting to model then is really a function of

functions . Casual factors can no longer be expressed simply as numeric

values but themselves must be represented as functions , the values of

which are in turn dependent upon the value of the total function .

One analytic technique that has been utilized to attempt to model

a function of functions is dynamic programming . In the development of

the basic algorithm Bellman used a recursive scheme to reflect the method

of sequential calculation that is the essence of the approach . For example ,

consider an aerial weapon system consisting of a navigational subsystem ,

a target acquisition subsystem , and a weapon subsystem . It is desired to

determine the optimal characteristics of all three subsystems, but all

these decisions are interdependent . The thing we do know is that whatever

navigational and target acquisition subsystems are chosen , the characteris

tics of the weapon system , e.g. , the rate of fire must be optimal with

respect to the effectiveness of the whole system . Using the principle of

optimality proposed by Bellman , we can say that the optimum rate of fire

is a function of the effectiveness of the aerial weapons system . Since

we do not know the optimal characteristics for the other two subsystems,

the optimal rate of fire and total system effectiveness must be found for

all feasible outputs of the subsystem . This technique may provide a clue

regarding the way to handle complex equations without knowing their specific

form .

The essential point is that we must move away from concepts that

require the testing of a static system . Pressures imposed by necessary

modifications of systems in the development process do not allow all other

things to remain equal and this dynamic aspect of the environment cannot

be ignored .

On balance , it appears that increased emphasis on rigor in the design

of experiments has diverted our attention from the ultimate objectives.

Efforts must be undertaken to develop techniques which provide feasible

solutions to problems of quality assurance and the manipulation of more

complex dynamic models . We need to soften the science of experimental

design to make it a more useful tool in test and development programs .

The alternative to this change is to continue to strive for more tech

nically precise answers which are even less meaningful in the decision

making process . Unless a conscious effort is made to avoid this plight ,

experimental statistics may create a paradox similar to that caused by
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managerial accounting . As a tool of management , the discipline of

accounting has experienced an increase in the precision with which

financial information is analyzed and reported , but it still does not

provide much assistance in the decision making process . Decision makers

can safely rely on accounting to identify the loss after the investment

has failed , but it is of no help in forecasting the likelihood of this

occurrence . It is an after the fact discipline , and our requirements

are for knowledge before the fact .

While reflecting on these challenges that lie ahead , it may be use

ful to reconsider the role of statistical analysis in the decision making

process . The decision maker is concerned with choosing between two or

more alternatives ; the value of which remains to be established by events

in the future . Statistical analysis is valuable only to the extent to

which it raises the level of understanding of the problem and in so doing

provides an improved basis for fixing beliefs about the future , In

contrast , analyses that provide interesting expositions , but no additional

understanding , are of little value . It , therefore , is essential for the

analyst to be attuned to informational requirements of the decision maker

if real progress is to be made .

MANAGEMENT INFORMATION SYSTEMS . A second area which could benefit

from the attention of statisticians is the design of management information

systems . Even a cursory examination of the recent attempts to design and

implement management information systems reveals the opportunity for

substantial improvement through the infusion of the concepts of experimental

statistics . Many of these efforts reflect a lack of understanding of the

available techniques for summarizing and annalyzing data . The result of

this naivete has been inefficiency in system design and confusion regarding

the purpose and value of the output of the system . For example , the

operation readiness of our hawk units throughout the world must be monitored

daily by phone . Since this information is vital to decision makers at the

highest levels , one would have hoped that a less cumbersome communication

system could have been planned .

To provide you with more background on the problem area , it may be
useful to examine briefly the origin of our current dilemma . The root

of the problem can be found in our recently acquired capacity to process

and transmit rapidly information . In the last thirty years technological

progress has resulted in the development of three generations of computers ;

each of which represented a dramatic improvement over the current state -of

the - art . Equipped with the exciting abilities to process in a real time

mode and to directly access data banks , the designers of these systems

have moved in the direction of including everything about everything in

the system .

One example of the problem is provided by the periodic Army readiness

rt that is prepared for the Chief - of - Staff . Included in this report ,

in great detail , is information on not only major items such as tanks and

jeeps but also on many minor items as well . Once attention was drawn to

equipment readiness at this level of specificity it became apparent that

the number and status of most of the items were subject to continual change .
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This meant that the job of preparing a large scale report was further

compounded by the fact that the information had to be updated and published

frequently , if it was to be of value in its current form . A question can

be asked as whether or not this is a worthwhile or even feasible effort .

This same point should be raised in every management information system .

In nearly all phases of our business today one can observe information

being translated into electronic impulses for transmission up to higher

levels of authority . It is important to note that once data is separated

from its traditional hard copy vehicle , e , 8 . , the DA Form ; it can be sorted ,

summarized , or transmitted at almost unbelievable speeds . It is this

speed and the low per unit cost of processing information which have caused

many of the current problems with management information systems .

These rapid changes in communications technology have caused some

rather traumatic experiences in most large organizations . To begin with ,

many management theorists and most managers of today are still thinking

in terms of the traditional forms of organization structure . These

concepts generally involve pyramidal configurations of the different

layers of authority . The problem is that these organizations reflect a

certain state of information processing technology and this level of

technology is rapidly becoming obsolete . There is no doubt that a certain

disparity has always existed between the institutionalized organization

structure and information technology ; however , recent innovations have

aggravated and accentuated the problem . It is useful to examine the

factors that are important to this problem in order to better evaluate

alternative solutions .

One important factor is the heterogeneity in the speed with which

different types of information are processed through the organization .

While it is not possible to rapidly analyse and summarize information on

personnel strength through the organization , it is still necessary to

individually monitor the progress of many R&D programs . So within the

same large organization , new information processing techniques have

dramatically affected the form and function of some activities while

others remain essentially unchanged. This phenomenon has made the

traditional concepts of a centralized and decentralized organization

obsolete in that both tendencies are apparent within many phases of our

business .

The increasing magnitude of the upward flow of information also

serves to exacerbate the disparity between information processing tech

nology and organizational structure . Too frequently , our concept of

the informational requirements that must be transmitted up to top

management reflects a lack of appreciation for the objectives of the

system . Most communication that an individual has with the higher

levels of the organization is through his immediate superior . Communica

tion at this level is intimate and detailed and this is as it should be

between superior and subordinate . This is not , however , the appropriate

level of communication between a first line supervisor and top management .

The top level manager has neither the need to know nor the capability

to assimilate the large volumes of specific information ; and , therefore ,

it makes little sense to send information at this level of detail up through
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the information system .

In addition to being illogical , this tendency has serious implications

for the organization and the decision maker . If the trend continues ,

middle management will of necessity be relegated , in large measure , to

the job of expediting the flow of information up the line of authority .

More important , however , is the effect of this tendency on the performance

of the decision maker . From his point of view , this tremendous flow of

information provides an all encompassing yet fragmentary view of reality .

While the decision maker has easy access to information regarding every

significant dimension of the problem and some trivial ones as well ; he

may still find himself in a quandary over the nature of the situation . The

reality of any situation is extremely complex when viewed in its entirety .

Most of us have learned through experience in situations to suppress those

aspects of reality which are superfluous to the problem at hand ; however ,

the ability to do this effectively depends on an intimate understanding of

the particular problem and environment . This point illustrates a major

impetus for specialization of interest and talent but raises a serious

question concerning the relationship between the top level decision maker

and the information system . It is obvious that no top manager , regardless

of his ability , can begin to accumulate experience comparable to the new

sum of that possessed by the specialists in his organization . It should

be equally obvious that the detail and format of information required by

the manager is markedly different from that which is required in the lower

echelons , This is , however , only half the problem .

The sorting and evaluating of information by the decision maker is

further complicated by the fact that the information has been abstracted

from the environment to which it is indigenous . No longer is it possible

to view the situation in its totality or to make inferences from the

juxtaposition of the various elements . The information is now presented

in a homogenous package and there is little effort made to illustrate the

relative importance of the various bits of information . This format

encourages the tendency to limit the analysis to what are apparently

obvious relationships in the data , and all too often , these obvious

relationships depict only a superficial view of the problem . When con

fronted with such a situation , the decision maker is tempted to feel that

his evaluation is profound when it in fact may be obvious and trivial or

even worse incorrect .

The question then arises as to what alternatives are available to

aid us in resolving this dilemma . One answer to the problem may be found

in the imaginative and effective application of the techniques of statis

tical analysis . Concepts and procedures that have been used successfully

for years by statisticians offer the means by which meaningful order can
be restored in our information systems.

Returning to the example of the Army readiness reports , in this

information system the emphasis has been placed on reporting the status

of practically every item in the inventory . A moment's reflection reveals

that this approach is a violation of the principle of parsimony .
Why is

it necessary to report data on the status of every item , when we are really
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only interested in those items in a particular status? It is encouraging

to note that all information systems have not proceeded down the same

path . The New York City Department of Public Health , for example , does

not attempt to measure the health status of the city by directly estimating

the proportion of the total population who are well . Instead , their

attention is focused only on those who are sick . Their approach is to

monitor the population of the hospitals throughout the city . Through

observation of this one accessible indicator , they are able to maintain

an adequate estimate of the general level of health of the community .

The principle is to replace the real variable of interest with

surrogate which is more easily measured and analyzed . This has been a

relatively common practice among statisticians and it should have applica

tion in the design of our information systems . In the case of the readiness

report , a substantial increase in the value of the effort would be realized

by reporting exceptions rather than the status of the whole system . This

scheme would substantially reduce the upward flow of information and focus

attention on the real variable of interest . In another phase of the opera

tion , perhaps the status of a particular maintenance operation could be

gauged more efficiently and accurately through the examination of the

re - enlistment rates rather than the number of items serviced per month .

The kind of changes suggested would not only reduce the upward flow of

information but also place the information in a form and format that is

more useful in the decision making process .

The concepts of sampling offer yet another statistical tool that

appears to have application in the design of information systems . Even

if modern technology can provide us with the machine capability to process

information at very high speeds , this capability has a significant , positive

cost . It is therefore necessary to examine alternative ways to economize

in the operation . Sampling theory provides the basic notions for efficiently

and economically gathering data about a particular population of interest .

For example , the mean cost of procuring an item could be estimated accurate

ly and at a mere fraction of the cost of total enumeration through the use

of a self -weighting, stratified sample . It should also be remembered that

in many cases , sample estimates might be even better than would usually

be expected because our concern is primarily with finite populations .

A more general perspective for design of an information system may be

gained from the philosophy of analysis that pervades among statisticians .

While many of the designers of information systems have been content to

concentrate on the preparation and reporting of data , the interest of most

statisticians continues through analysis and interpretation . Efforts must

be made to bring the analysis phase into the design of a system . Up to

this point system designers have emphasized performance measures such as

speed or cost per calculation as measures of effectiveness , but we have

seen that this approach ignores the important question about system effective

ness , i.e. , what is the value of information ? Timeliness of information is

important ; however , in our effort to obtain more current data we have

ignored certain other important aspects of the problem . Is it really

worth anything to the organization to spend additional money to send

information more quickly if much of the information in the system is
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already redundant or nonuseable ? Does it make sense to publish figures

in a daily report if it will require several weeks worth of observation

to verify whether a change in the data is real or simply an aberration ?

The answer to both questions is obviously no ! Both queries suggest that ,

in the future , major payoffs will accrue to advances in the analysis of

data that can be incorporated within the system . Further analysis will

take additional time; however , it should also substantially increase the

informational value of reports . When examining this tradeoff it is

essential to remember that most changes that take place within a large

organization are gradual and occasionally painfully slow . Given this

situation , it is reasonable to expect that the opportunity cost of the

time lost during further analysis may be substantially less valuable than

the increased understanding which would be generated ,

In summary , there is a genuine need to apply the philosophy of

experimental design to the design of management information and control

systems . Statistical techniques can help to determine which variables

should be measured and which should be ignored , as well as facilitating

the analysis and forecasting of trends , Up to now , there has been little

feedback between those interested in experimental design and those involved

in information system design . Much of what we know in the latter area has

been the result of a trial and error process , and as I am sure you are

well aware , this can be a very expensive way to learn . If some of the

statistical notions of sampling and analysis can be communicated to

system designers , then substantial payoffs will be realized . A response

in this direction now will encourage efficiency and progress .

response is forthcoming , however , and decision making continues to escalate ,,

a requirement for total information reporting will demand a huge organiza

tion just for purposes of processing . In many ways , the dilemma of the

decision maker is analogous to that of an individual who attempts to

examine the behavior of a particle suspended in liquid . The more the

individual studies the particle the more confused he becomes of the random

effect of brownian motion . The perception of both the hypothetical individual

and the decision maker could be improved through the use of certain basic

statistical notions .

If no

CONCLUSION , As we have seen there are a number of opportunities to

broaden the horizons of experimental design through reduced emphasis on

rigor and increased attention to current problems ; be they in testing or

systems design . The next move is up to you .
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THE STRUCTURE AND CLASSIFICATION OF PATTERNS *

Rolf E. Bargmann

University of Georgia

Athens , Georgia

TERMINOLOGY . **

Logical Pattern : A set of p diagnostic events is observed .

Occurrence is marked by 1 , non-occurrence by 0. Such single observa

tion results in a row of O's and i's . Observations are repeated , and

several such rows constitute a pattern . If rows are dependent (e.g. ,

observation at consecutive times ) , a cyclical autocorrelation dependence

is assumed .

Major Event : One or very few underlying artificial events , each

of which may assume two or more states , which influence the probability

of occurrence of each diagnostic event .

Calibration Pattern : A

containing observation of occurrences and non-occurrences of all diagnostic

events if the major event ( or , rather , some physical event closely related

to the artifical major event ) is in a known state (e.g. , repeated observa

tion of symptoms of a patient who suffers from a known disease ) .

Model Assumption (leading to a variant of the Latent class Model ) :

The state of the major event determines the probability of occurrence

or non-occurrence of each diagnostic event . Except for this influence ,

the diagnostic events are assumed to be independent (principle of

conditional independence) .

Sample Pattern : A logical pattern consisting of one or more rows ,

describing a situation where the state of the major event is unknown .

Its distance (Euclidean distance or , better , -2 log likelihood ) from

each of the calibration patterns determines the proximity of the current

state of the major event to each of the known states represented by the

calibration patterns .

Note that extensive calculations are required on calibration patterns

only . Determination of the distances of a sample pattern from each

calibration pattern is a very simple matter , and can even be done by

hand calculation .

*A handout at the conference served as a basis for this paper .

**Reference , R. E. Bargmann , " A Method of classification Based upon

Dependent 0-1 Patterns , IBM Research Report No. RC-677 , April , 1962 ) .
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SOME OF THE SIMPLER FORMULAS . The following quantities must be

obtained from each calibration pattern :

х

* ti
O or 1 the entry in row t and column i

of the calibration pattern . N = number of rows , p = number of columns

N

si
Ĉ

* ti Pi
= S / N ( column averages )

i

t=1

Sij { * ti* tj
t=1

Pij - Si//N ( average number of
l-matches in columns

i , j )

If rows are assumed to be independent , then

11 - P (1-8," ]/N -1

ộij - ( Pay - Py ; /N-1

If rows are assumed to be time-dependent ( cyclical , autocorrelation of

lag 1 ) the following additional quantities are needed

N

Σ
*ti*t+1 , i (X11 = { N+ 1,1)i

t= 1

N

Djj { * ti* t + 1 ,j
( 1 -matches , down )

t=1

z
W

U

ij
Σ

*t+1 , i* tj
( 1-matches , up )

t= 1

fi
=

( C4 - s /n)/(s; - syn)s /n) ( autocorrelation)

10



( If N is even , and if a perfectly alternating sequence occurs in a

column -- i.e . , 010101 ... or 101010 ... , ľ, should be replaced by
i

2 / (N+1) -1) .

Then

P(1-P ) 26

@ii
( 1 +

ii

N-1

1 -ri

( = ( N-2 ) /N3 if a column consists of perfect

zeros or ones )

Ο
Σ

I
I +

+

Piz -Pips fi
S -D

ij Tij

N-1 ( 1-f1 ) ( 1-f; ) N (N-1 )

f S ..-U

$ijij

( 1-7;) ( 1-7; ) N (N-1)

Subject the matrix Į (or the corresponding correlation matrix , --most
computer programs do the conversion automatically ) to a Factor Analysis .

If the major event is assumed to have 2 states , extract one factor , if

k + 1 states , extract k factors . A crude technique (e.g. , Centroid ) or

even cruder ones (e.g. , principal components which , alas , some computer

programs call " Factor Analysis " ) can be expected to yield satisfactory

results . For the special case of two states of the major event , a single

vector f (elements fz ) will be reported .
From each calibration pattern ,

the weights w 1 / ( i - ff ) should be calculated .i

Now , to calculate the distance (or rather , the -2 log likelihood

quantity) of a sample pattern from calibration pattern q obtain the

average of each column in the sample pattern , call it a,
' i '

Then

=

108 Wig
(w . -1) ]
ja

j =1 i=1
de treba log ởiia + log ( 1 +

(a, Png)?wita

1 1

+ k

i=1 ܘܪܪܦ

11



2

р

--

( az -Pig) figlia

Viiq

1 [ 1 +

р

į (w . -1) ]

j =1
ja

i= 1

where k = number of rows in the sample pattern , and all logs are to base

The last subscript q indicates that the corresponding value is to be

taken from the a'th calibration pattern .

e .

IMPLICATIONS OF MODEL ASSUMPTIONS ON THE STRUCTURE OF THE COVARIANCE

MATRIX : If the major event has only two states , and a is the probability

that the major event is in state 1

N { = ( a -e?) e e' + diagonal

where the vector p has elements (Pi / 1-P1 / 0 ) ; 1.e. , the difference between
the conditional probabilities of occurrence of diagnostic event i , given

that the major event is in state 1 or 0 .

If there are k + 1 states (or , with restrictions , several major

events ) , the covariance matrix has the structure

[Q_ ( l-ay) -a,az -a1%

-~_º2 az ( 1-02 ) -d24

N : { = P P ' + diagonal

-a1% -d24 ( 1-x)

m

where denotes the probability that the major event is in state m ,

and the matrix P has k columns (number of states minus 1 ) . The element

in row i and column m is (Pi/m -Pi /0 ).

These are standard factor analysis models . The matrices are easily

inverted , and the determinant is easily found -- thus , the calculation

of distances from a sample pattern to each of the calibration patterns

can be most easily effected .

A direct evaluation of the conditional probabilities can be made

only if assumptions can be made relative to the probabilities that the

artificial major event is in a given state . Such assumptions are some

what tenuous , inasmuch as the physical major event is not identical

( though hopefully highly correlated ) with the artificial major event .

12



Example : Frequency of Repair records , 6 consecutive years ,

5 characteristics 0 below average or average ,

1 = above average . Calibration patterns for Make A

and Make B

Make A Make B

00111

10111

01010

11010

01101

11111

10111

01111

01111

10101

10101

00101

Estimates of covariance matrices ( assuming row dependence )

9 0 0 0 0

0 80 -40 -12 -40

1

1080 Σ.0 -40 80 -22 200/3

0 -12 -22 20 -22

0 -40 200/3 -22 80

27 -33 27/2 -18 -27/2

-33 80 -16 54 12

1

2,1080 27/2 54

-

9 108 18
=

+27/2 12 - 6 18

2
0

Factor Analysis results :

f ! [ 0 , -.500 , .912 , -.563 , .924 )

fi
[ -.972 , .730 , -.591 , .377 , .588 )

Use each row as a "sample pattern "

Row
dA dB

Decision Comments

Occurs in A and B , assigned to B

00111

10111

01010

11010

01101

11111

01111

10101

00101

23.0534

23.0534

18.1141

18.1141

60.1230

22.4190

22.4190

58.3983

58.3983

24.2761

11.0242

166.8874

216.8186

9.8467

50.9441

1.7716

3. 2090

31.5718

to A

to B

to A

to A

to B

to A

to B

to B

to B

Misclassification

See comment below

The 01101 sequence shows the importance of a dependence or row

assumption . Since , on the first diagnostic variables , the averages are

equal for A and B , there would have been no difference in assignment

between this and 11111 , if independence had been assumed . The present

classification is correct .

13



Calibration Pattern 0
Sample from 0 with 20% error

1111

111111

111 111

111 111

111 111

111 111

111 111

11 11

111 111

111 111

111 111

111 111

11 11

111 111

111 111

111 111

111 111

111 111

111111

1111

1111

11111 11

111 11111

11 111

111 111

1111 11

111 11 1

111 11

11111 1111

111 1 1

1 1 111

111 1111

11 1

1111 111

11 11

111 111

1111 1 1

1111 11

11 11

111

-

2 log likelihood

from 0 - 97.7

from Q - 43.7

from A 920.2

from E 31.5

from I 27429

from 1 28026

Sample from 0 with 40% error

from 0 72.5

from Q 105.6

from A 1526.4

from E 86 30.7.

from I 27875

from 1 28417

Sample from 0 with 50% error

111

111 1 1

1 11 1

1 1 1111

1 11 1111

1 11 11 1

11 11 1111

1 1

111 1 111

111 1

1 1

1 1 11

11 11 11

1111 111

1 1 1 1

11 11 1

1111111 111

11 1 111

1 1 111

111

11 11

11111

1 11 1

1111 1111

1 1 1 1

111 1 111 1

1 1 1

11 1 111

1 11

1 1 11

1 111 1

1

11

- 2 log likelihood

111

1 1 11

111 1111 1 1

111 1 1111111

111111 111

1111 1111

111 11

1 111

111

from 0

from Q.

from A

from E

from I

from 1

437.9

617.2

2908.5

8423.5

29973

30022

from 0

from Q

from A

from E

from I

from 1

227.9

346.8

1463.8

11686.1

21388

21578

14



Calibration Pattern Q Sample from Q with 20% error

11

1111

111111

111 111

111 111

111 111

111 111

111 111

11

111 111

111 111

111 111

111 111

11 11

111 1 111

111 11111

111 llllll

111 1111

111 11111

1111111111

1111 1111

1111

1 1111 1

11 111 11

111 1 1

111 111

111 1111

111 1111

11 11

1111 1

11 1111

111 1111

111 1 1

1 11

111 11 11

1 111 11

1111 11 1 111

111 111

111 1 111

11 11 1 1

11 11 111 1

- 2 log likelihood

from Q 13.4

from 0 4.2

from A 937.9

from E 9600.7

from I 28003

from 1 28551

-

from Q

from 0

from A

from E

from I

from 1

- 98.4

- 39.9

1379.1

10466

31516

31969

Sample from Q with 40% error Sample from Q with 50% error

11 11

1 1

111 111

111 11 1

11111 1111

11 1 11

11111 11 1

111 1 111 1

11 11 1 11

11111 11 1

11 1111

111 1

1

111

1 1 1 1

111 lllll

11111 1 1

11 1 1

1111 1 11

1 11 111

1 11

111 1 11

1111 1 1

1111 1

1111 111

1 1 11 11

111 11 111 11111

1111 1 1

1111 11

11 11 1 1 1

11 11 1

1 11111 11

1 11111 111

- 2 log likelihood

1 1

111 1 1 1

1111 11111

111 111 11

111 1 11

1111 1 11

1 11 11 111

1111 11111

from 385.2

from 0 421.7

from A 1925.5

from E 11749

from I 28467

from 1 29087

from 0

from

from A

from E

from I

from 1

511.5

529.8

1585.9

10848

28720

29 341
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Calibration Pattern I Sample from I with 20% error

111111

111111

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

11

111111

111111

1lllll

1111 111

11 1

11 1

1

111

11

11

111

1

11

1

111

111

1

11

11

11

111 11

1111 11

- 2 log likelihood

-

from I

from 1

from 0

from Q

from A

- 141.3

60.5

1215.1

2197.3

3037.1

from 1

from I

from 0

from a

from A

453.6

488.1

930.3

1827.3

1964.3

Sample from I with 40% error Sample from I with 50% error

11 1 11

11111111

11111

1

1

1

1111

1 1

111

1

11

11

111

11

11

1

1

11

11 11

11111111

1 11 1

11

111

11

1

1111

1

1.111

1111

11

11

1 11

11

11

11

1 1

1111 11

1 11

1111 1

11 1111

2 log likelihood

from 0

from A

from I

from Q

from 1

911.6

1171.8

1398.1

1815.6

1835.8

from 0

from A

from Q

from 1

from I

840.3

1285.5

1675.8

2011.4

2142.0
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Calibration Pattern 1 Sample from 1 with 30% error

1

1111

1 1

1 11

11 11

1

11

1

11

111

1111

1111

1 11

11

11

11

11

11

11

11

11

11

11

11

11

11

llllll

llllll

11

111

11

11

111

11

11 1

1 1 1

11111

1 1111

1111

from 1

from I

from 0

from

from A

- 140.4

57.3

1231.6

2217.6

3218.2

- 2 log likelihood

from I

from 0

from 1

from Q

from A

907.7

916.6

937.1

1789.6

1976.3

Sample from 1 with 40 % error Sample from 1 with 50% error

11

11 1

1111

11111

1 1

111

1 1

11

11

111

11

11

1

1

111

1

11

111 1

11111

111111

1

111

11 1

1 1

1 11

1 1

11

11

11

1 1

11

11111

111

11

11

1111

11

111 11

1 1111111

1111 11

- 2 log likelihood

from 0 802.8

from A 956.0

from 1643.6

from I 2867.3

from 1 3316.5

from 0

from 1

from A

from I

from Q.

911.3

1264.7

1408.6

1630.9

1773.1
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STATISTICAL ANALYSIS OF CUTTING FLUID PERFORMANCE DATA

Lanny D. Wells

U.S. Army Weapons Command

Research and Engineering Directorate

ABSTRACT . A 24 factorial experiment was conducted to determine
the effects of 4 factors in a single-point tool , turning operation .

Factors considered were A ( tool material ) , B (cutting fluid type) ,

C ( fluid application method ) , and D ( fluid concentration ) . Factor B

( cutting fluid type ) was of primary interest in this experiment .

An analysis of variance was performed using Yates ' technique

to test significance of the different factors and interactions and

to determine the relative importance of these different effects .

The results of this analysis indicate that the type of cutting

fluid is a relatively unimportant factor compared with the method of

application and the concentration of the cutting fluid .

INTRODUCTION . Cutting fluids are applied to various metal cutting

tools to help prevent excessive heat buildup and to reduce friction at

the tool-chip interface . A number of beneficial effects can be obtained

if a cutting fluid can perform these functions . Tool life can be extended ;

or , higher cutting speeds can be used while maintaining the same tool life ;

or , some combination of higher speed and longer tool life can be obtained .

Tolerances and surface finish may improve or be easier to maintain with an

effective cutting fluid .

Various users and manufacturers of cutting fluids have developed

formal performance tests to evaluate and compare different cutting fluids ,

mainly for their own special interests . Unfortunately , these tests have

not been standardized ; no specific procedure has been widely accepted ;

and , rarely , is any formal significance test made . Also , the importance

of optimizing the cutting fluid is not usually determined relative to the

importance of optimizing other parameters such as tool geometry or material.

In many cases elaborate programs are set up for cutting fluid selection ;

but , in the same shop no organized effort is made to optimize cutting speeds

and feeds or any of the other parameters affecting the machining operation .

In fact , experimental design and statistical analysis have been notoriously

lacking in the whole field of metal cutting research . A typical comment

overheard in a conversation between some colleagues went something like

this :
" Statistics is fine , but we can't run that many tests in metal

cutting . " The idea that a great number of test runs is necessary to

facilitate statistical analysis is complete nonsense ! Experiments can

often be reduced in size by proper design and consideration of the analysis

to be performed . It is certainly uneconomical to make experiments larger

than necessary .
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A 2 FACTORIAL EXPERIMENT . As an illustration of a type of experi

mental design which can be used in the metal cutting field , the remainder

of this paper describes a 24 factorial experiment ( 4 factors each at 2

levels ) . This experiment was conducted to determine the effects of four

factors in a single-point , lathe , turning operation . These factors were :

-

Factor A Tool material

Factor B - Cutting fluid type

Factor C - Method of fluid application

Factor D Fluid concentration-

Each factor was tested at two levels , thus , making an experiment of

16 observations . The two cutting fluids tested were Fluid A (a heavy

duty , chlorinated , soluble fluid ) and Fluid B (a fluid specially formulated

for mist application) . Each fluid was used at two different dilutions

( 20 : 1 and 35 : 1 ) , and the two different methods of application were

conventional flood and mist .

It should be understood that an experiment of 16 observations is

certainly a small experiment ; but , it could be readily expanded by adding

more factors and /or using more than 2 levels . The mathematical model of

this experimental design was :

Y

tijk
= M + A. + B

t i

+

At BA
+ C

jC ;
+ D + AB + AC

k ti tjACti
+ BC

' ij

+ AD + BD

tk ik

CD + ABC + ABD + BCD + ABCD

jk tij tjk ijk tijk

The tool life was obtained for each of the 16 different treatment

combinations at 4 different cutting speeds . A computerized regression

analysis gave a tool life vs. cutting speed relationship of the form

V = v , in Where T = tool life (minutes ) , V = cutting speed (surface
1

speed of workpiece in feet per minute) , V. = cutting speed for 1 minute
1.

tool life , and n = a determined exponent . Estimates of V ,
20. (the cutting

speed corresponding to a 20 minute tool life) was obtained from these

equations .

These estimates of VV20 are presented in Table I. This data was

then used in a formal analysis of variance using Yates ' technique

( Table II ) .

The Yates ' Technique gives the sums of squares for all the effects

without the need of memorizing or looking up any equations and , thus , is

a powerful tool for analysis of variance . The ANOVA table is shown in

Table III . The 4-three factor and the four factor interactions have been

pooled to form a residual term with 5 degrees of freedom . This is justified

in this case since all of these terms are of the same order of magnitude .
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TABLE III

ANOVA Table

Source SS DF MSR

76,867.5625

95,0625

1

1

2,057.345***

2.544

A (tool material )

B ( fluid)

C (Application

Method )

D ( Concentration )

AB

AC

AD

BC

BD

CD

ABC 22.5625

ABD 18.0625

ACD 18.0625

BCD 60.0625

ABCD 68.0625

232.5625

451.5625

138.0625

1207.5625

52.5625

27.5625

410.0625

138.0625

1

1

1

1

1

1

1

1

6.224 *

12.086 *

3.695

32.320 **

1.407

.738

10.975*

3.695

186.8125 5

186.8125 : 37.3625

5

: 16.26 : 47.18

F1,5 , .95 : 6.61 F1,5 , .99
F

1,5 , .999

* significant at 95 % confidence level

**significant at 99% confidence level

***significant at 99.9% confidence level
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INTERPRETATION OF ANOVA TABLE . The significant AC (tool material

X application method) interaction indicates that the application method

best for one tool material may not work well on the other tool material .

Also , the high BD ( fluid X concentration) interaction indicates that the

best concentration depends upon the fluid used .

The cutting fluid type (Factor B ) appears to be a relatively

unimportant factor compared with the application method and the concen

tration .

The tool material (Factor A) was a very highly significant factor ,

as expected , since carbide and cast alloy are quite different in character .

This factor was so dominant that it appeared to be desirable to analyze the

data for carbide and cast alloy as two separate experiments. This was done ,

and the results of this analysis are presented in Table IV and V , respectively .

INTERPRETATION OF ANOVA TABLE FOR CARBIDE . Analysis of data using

carbide tools shows that all of the main effects were formally significant

in the following order :

1 .

2 .

3 .

Factor D

Factor B

Factor C

( Concentration)

(Fluid type )

(Application method )

The best combination for carbide was flood application of fluid A at

the 20 : 1 concentration .

INTERPRETATION OF ANOVA TABLE FOR CAST ALLOY . Considering the cast

alloy tool material alone , only Factor C (method of fluid application)

was formally significant . Mist application was much better with cast alloy

tools .

CONCLUSION . As this paper clearly illustrates , statistical design

and analysis can be effectively used in metal cutting experiments . The

factorial design is particularly well suited to these experiments . Yates '

Technique , applied to a factorial experiment , is not difficult and can be

carried out without any computational equipment.
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TABLE IV

Yates ' Table (Carbide )

Treatment

SS

( 3 ) 2 + 8Yield ( 1 ) (2 ) ( 3 )

( 1 )

b-
이
이

231

232

217

219

225

202

219

196

1741

463

436

427

415

1

2

-23

-23

899

842

3

-46

-27

-12

1

0

1741

-43

-39

1

-57

-49

15

-1

d

bd

cd

bcd

total

231.125

190.125

.125

406.125

300.125

28.125

.125

1155.875

ANOVA TABLE (Carbide )

Effect SS DF MSR

B

C

D

BC

BD

CD

BCD

231.125

190.125

406,125

.125

300.125

28.125

.125

1

1

1

1

1

1

1

1849*

1521*

3249 *

1

2401 *

225*

F1,1 , .95 : 161.4

Factors

B Fluid

C - Application method

D Concentration

2
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TABLE V

Yates ' Table (Cast Alloy )

Treatment Yield ( 1 ) ( 2 ) ( 3 ) ( 3) 2 : 8

( 1 )

b

с

bc

d

bd

cd

bcd

total

68

80

88

94

69

49

89

95

632

148

182

118

184

12

6

-20

6

330

302

18

-14

34

66

-6

-26

632

4

100

20

-28

-32

32

32

2

1250

50

98

128

128

128

1784

ANOVA Table (Cast Alloy )

Effect SS DF MS MSR

2

1250

98

1

1

1

2

1250

98

018

11.521*

.903

B

с

D

BC 50

BD 128

CD 128

BCD 128

434 4 108.5

.95 : 7.71

F1,4 , .95

B Fluid

Factors с Application method

D. Concentration

2
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MEASUREMENT OF ONE ASPECT OF VEHICULAR MOBILITY

Carol D. Rose and Raymond Owens

U. S. Army Tank Automotive Command

Vehicular Components and Materials Laboratory

Laboratories Support Division

Design of Experiments Branch

Warren , Michigan

ABSTRACT . Measurement of One Aspect of Vehicular Mobility .

Measurements of vehicular mobility have usually been conducted as

" go -no- go" tests , in which vehicles are matched against obstacles until

they can no longer proceed , or " jury system " tests which rely upon

qualitative judgments based on opinions of observers and / or drivers of

the vehicles under test . As a new approach this project investigates

the feasibility of using a statistically designed test which is

reasonably unbiased and provides some measurement of precision for

evaluating mobility of the vehicles .

The paper describes the design problems presented for developing

a test program , the experimental design selected , the field conduct

of the test program , and results of the test . Test data were limited

to time required for a vehicle-driver combination to traverse a pre

scribed course . The report covers a total of 450 runs , using 18 drivers ,

ten vehicles , and 27 test courses over three different terrains .
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INTRODUCTION

Mobility has long been a major aspect of consideration in

warfare . In the year 218 B. C. , Hannibal crossed the Alps and

subsequently won the first of many battles from the Romans .

In addition to horses Hannibal utilized a few elephants which

apparently increased his overall mobility of materiel .

With the advent of motorized vehicles considerable progress

was made in the transportation of men and materiel . This

progress was due in great part to the roads and highways which

were built as part of the transportation complex .

Roads are often not available to supply front line troops

during wartime or for other use during national emergencies . In

recent years then , a prime consideration in the design of a

military vehicle has been off - the - road mobility .

Measurements of vehicular mobility generally have been

grouped into two types , the " go -no - go " and the " jury system " .

In the " go - no -go" type , the vehicles are pitted against various

obstacles- ditches, steep inclines , swamps , etc. , until they

can no longer proceed . The " jury system " uses the combined

opinions of the drivers and observers for evaluation . These tests

give useful results but are subject to certain weaknesses . For

example , the courses are usually well defined , not properly

replicated , and performance of a vehicle can be greatly influenced

by the driver .

As a new approach , this project investigated the feasibility

of using a statistically designed test which is reasonably un

biased and provides some measurement of precision for evaluating

mobility of the vehicles in a tactical cross - country situation .

In a tactical situation , the driver often may not be familiar

with the area , and paths to follow are not defined . Roads may be

mined . The driver may avoid obstacles if possible , and the

time required to reach a destination may be an important factor

for the successful completion of a mission .

CONSIDERATIONS OF THE TEST

At an early stage in the development of the statistical

design , some basic issues were resolved .

1 . These tests were intended to measure only one aspect
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of mobility . This was the time required for a vehicle - driver

combination to traverse from point A to point B where the

course is defined only by the points A and B except where auxi

liary markers may be needed to keep the driver on course .

2 . The experimental unit was the course . It was not

practical to provide the number of courses required to perform

all the desired tests and still have the drivers limited to

only one traverse of a course . This aspect was desired ; other

wise a learning factor would be introduced when a driver tra

versed a course more than once . As an alternative perhaps

many drivers could be used and thus reduce the number of courses

required .

3 .
The courses selected would be about the same length ,

approximately measured , and not accurately surveyed . A course

length of somewhere between 5 and 20 miles seemed reasonable .

[ Examination of the data showed that the actual lengths varied

from 0.6 mile in Terrain III to 2.7 miles in Terrain I ,

approximately ) .

4 . The tests were to be conducted in Nevada with the

cooperation of the Nevada Automotive Test Center . Three types

of terrain were selected to give greater meaning to any results
or conclusions obtained . The terrains were defined as follows :

a . Terrain I : Flat and open with small irregularities

in the form of dry washes , and scattered areas of sagebrush one

to two feet in height . Obstacles were minor in nature .

b . Terrain II : Hilly and open with rolling hills ,

and areas of deep washes and sheer drops . This area contained

outcrops of rock and scattered areas of sagebrush similar to

Terrain 1 .

C. Terrain III : Hilly and timber covered . Areas of

trees were scattered between open spaces of sagebrush and grass .

The trees were closely spaced pine ranging between five and
twenty - five feet tall . This was the most difficult of the

three terrains .

5 . The supply of drivers was not a problem . However ,

the supply of experienced drivers was limited . By definition , a

driver was classified as experienced or novice according to his

own statements as to his ability and / or experience to drive on

the highway and cross country .

2
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6. It was planned that the drivers would be instructed

to traverse the course at the fastest speed they felt they

could go without damaging the vehicle or injuring personnel .

7 . A referee was to ride in each vehicle . The referee

was the official timekeeper . lle would also record any other

information that might effect interpretation of the data . For

example , a driver may become bogged down , or lost , or the

vehicle may not be performing properly . The referees were

also responsible for the safety of the vehicles and occupants

by having the driver avoid any maneuver which could result

in damage to the vehicle or occupants . The referees were

to be familiar with the particular courses to which assigned .

8 . Nine or ten vehicles were expected to be available for
this test . The ones used would be those available at the time

of the test .

CONSIDERATIONS IN THIE DESIGN

The primary interest in these tests was to determine if a

designed experiment could be useful for evaluating factors

that affect the mobility of vehicles . This objective could be

met if it were possible to design a test which could differentiate

between vehicles , at a specified confidence level . Any other

information obtained would be useful for designing future tests .

Considerations were as follows :

1 .

2 .

3 .

t
w
o

i
o
o
o

Vehicle effect

Course effect

Driver effect

a . experienced

b . novice

Terrain effect

Marking of courses

Order of testing . The tests were expected to require

several weeks . The weather could be a factor .

Tracks left from a previous run on the same course .
Referee effect

Interaction effects

Vehicle - course

b . Driver - course

Vehicle - driver

Vehicle - terrain

Driver terrain

a .

C.

d .

e .

-
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SELECTION OF THE DESIGN

In the considerations of the design there were at least

five major factors that had to be accounted for in the design .

These were order of testing (runs ) , courses , vehicles , drivers ,

and terrain . The other factors would have to be controlled

by conducting the test with care or , considered not significant.

Comments are as follows :

1 . Marking of the courses should present no problem in

Terrain I but in the hilly and/ or timber covered Terrains II

and III care should be exercised so that a driver could easily

determine the course by following the check point markers .

2 . After a course was used once there would then be a

path to follow . It was decided that before a test run was

made , each course would be traversed once . In addition , each

course would have two or three false trails at the start .

The purpose of this was to give the first driver an environment

similar to that of the following drivers . Drivers were instructed

not to follow previous tracks unless absolutely necessary .

Generally there were no roads to follow but in case a driver

did come across an established road he was instructed to assume

it was mined , in which case his maximum speed could not exceed the

two or three miles per hour of mine sweeping operations .

3 . The referee effect was to be controlled by careful

selection and uniform instruction to those selected as referees .

Also , the referees were to establish the courses so they could

become familiar with them before the tests were started .

4 . Each course could have been laid out across all three

terrain types . This would still satisfy the primary objective

of the experiment , but it would give no information on terrain

effect nor on the interaction effects of vehicle - terrain and

driver - terrain .

5 . One way to cope with a problem of this size is to adopt

the Graeco - Latin square as the basic structure for the experi
mental plan . With this choice only four factors can be used .

The basic structure would include runs , courses , vehicles ,

and drivers . To obtain any evaluation of terrain effect , each
square would have to be repeated for each terrain . The Latin

square and Graeco - Latin square have the limitation that no

interaction effects can be measured . It seems reasonable that
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there probably are some inter - action effect . If present , these

effects would inflate the error sum of squares and decrease the

sensitivity of the test . In retrospect , one driver was unable

to complete some of the runs in Terrain III because of his

inability to handle the vehicle on these courses . Never

theless , it was assumed that interaction effects would not

seriously affect the analysis and the Graeco - Latin square

was adopted as an acceptable design for this experiment .

6 . Information was desired on experienced driver versus

novice driver . The test was designed such that nine of each

were assigned . Drivers were randomly divided into two groups

with the requirement that one group contain four experienced

and five novice drivers and the second group contain five

experienced and four novice drivers . Each group was then

assigned to either the first or second square for each terrain .

TITE GRAECO - LATIN SQUARE

A Graeco - Latin square of side N is defined as a square

layout of N rows and N columns with N Latin and N Greek letters

filling the N2 cells with the following restriction : each

letter ( Latin or Greek ) may appear only once in each row and once

in each column, and each Latin- Greek combination may appear

only once . Graeco - Latin squares do not exist for all sizes .

A square of size six is not known . One of side ten was only

recently determined .

In this experiment the Latin treatment represents vehicles

and are designated by capital letters . The Greek treatment

represents drivers and are designated by numbers . Rows and

columns represent order of run and course , respectively .

Correct randomization procedures must be used when con

ducting the experiment using a Graeco - Latin square design .

The general procedure is as follows : Randomly select a

square of the size required from a listing of the squares that

are different from one another ; that is , they are not con

vertible into one another by permuting rows and /or columns .

After selection of a basic square , the rows are permuted randomly ,

then the columns are permuted randomly . Finally , the Latin and

Greek treatments are randomly assigned .

-
-

-
-
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PROBLEMS ENCOUNTERED DURING THE TEST

.

1 . It was anticipated that some drivers would become dis

oriented while traversing a course . One task of the referee was

to prevent this when it appeared the driver was in the process

of becoming lost . There were a few incidents of this nature ,

including one where the referee also became disoriented . These

incidents were recorded by the referee . Upon completion of

the test the project engineer and the referee discussed the

individual incidents and made a decision whether or not to

accept the elapsed time as a data point or discard the data as an
outlier . In general , when a driver became lost for more than

four or five minutes, that time datum was rejected , since this

was not the fault of the vehicle , and the vehicle was the factor of

primary interest . A discarded test run was not rerun .

2. In a few instances , a vehicle bogged down . Again ,

when excessive time was required for the vehicle to again get

under way , the time datum for that run was rejected .

3. A driver - terrain interaction effect or more precisely ,

a driver - course interaction effect became evident during the

test . In particular , one driver lost confidence in controlling

some of the vehicles during the tests in Terrain III . In these

instances , the referee had to drive the vehicle back to camp .

Since the time datum for these runs were not used any analysis

for driver - terrain interaction would be biased .

4 . Some of the courses within the same terrain were

more difficult to negotiate than others in the same terrain .

Differences in vehicles contributed to an apparent interaction

effect . For example , Vehicle I was an armored car , and this vehicle

has a high center of gravity which could be dangerous in the

hilly courses of Terrains II and III . Two vehicles were driven

with the hatch closed and vision was limited to that obtainable

through the vision blocks . Conditions of this nature did

result in a few uncompleted runs ( as previously mentioned ) , or

data which were subsequently not used .

5 . The referees did not react equally to hazardous

situations . During off - duty hours , the drivers would discuss

actions of the referees . Thus the drivers obtained an insight

into how a referee would react under certain conditions . As a

result , the drivers had a tendency to modify their driving

according to who the referee was .
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6 . The referees also were not uniform in controlling the

test when a driver wandered off course . The time allowed

before a referee gave the driver instructions in these cases

apparently varied considerably . Since the data obtained were

the times required to traverse the courses , the referees did

influence the outcome of the tests .

7 . Drivers were instructed not to follow trails left by

previous vehicles . By the time the second square was begun courses

were covered with trails and it became increasingly more difficult

to keep the drivers off these trails . The subsequent analysis of

variance data did not show a significant run effect at the

five percent significance level .

8 . Vehicle El , a 5000 - gallon fuel tanker - truck was with

drawn from the test after completion of the runs of Terrain I.

This vehicle was difficult to control over the basically flat terrain

of Terrain 1 . It was judged best for the safety of the drivers

and vehicle not to use that vehicle for Terrains II and III . A

1-1 / 4 - ton cargo truck designated E2 replaced Vehicle El for

Terrains II and III .

9 . There were instances of mechanical breakdown of a

vehicle during a test run , which required varying amount of

time to repair . There were also instances when a vehicle per

formed below par . This again would result in a judgment by the

project engineer and referee whether to accept or reject the

time datum for that run .

10. Because of mechanical difficulties Vehicle C proved
inadequate in Terrain III . Tests with this vehicle were stopped

after the first square in Terrain III . A replacement vehicle

was not available so an 8 X 8 Graeco - Latin Square had to be

designed for the second square of Terrain III , in lieu of the

9 X 9 size used for the previous five squares .

11 . Vehicle I broke an axle and did not finish tests in
Square 2 of Terrain III .

THE DATA

Data to be analyzed were data for Squares 1 and 2 for each

of Terrains I , II , and III .
>

Data for one of these six Graeco - Latin squares is shown in
Table 1 . The small squares indicate where data are missing . The
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minimum and maximum times required for traversing a course are

shown within the two circles . The extremes for this square

give a range of 5.1 to 52.8 minutes . Other recorded data were

used to compute average vehicle speed and the average vehicle

miles driven per course . A summary of these data are shown

in Table II . The courses as laid out were much shorter

than originally suggested . The courses are listed as miles

driven rather than length . In Terrain III especially some of

the larger vehicles with a large turning radius had to detour

around some obstacles that smaller vehicles could negotiate .

The overall data obtained for analysis showed the following :

Terrain I , Square l had one empty cell .

Terrain I , Square 2 , Terrain II , Squares 1 and 2 were

complete .

Terrain III , Square i had eleven empty cells .

Terrain III , Square 2 had seven empty cells in the

8 X 8 square .

ANALYSIS OF THE DATA

Analysis of Variance Tables for the squares having no

empty cells were computed in a straightforward manner . Analyses

were performed in two ways for the three squares having empty
cells . The first analyses were obtained by estimating the

missing data , then performing the standard analysis of variance

computations . This method results in an upward bias for the

treatment sum of squares , so the data were also analyzed by

regression analysis to obtain an unbiased value for the treat

ment sum of squares .

To determine the missing values , these missing data were

designated as a , b , c , ... etc. Then steps were set up for

an analysis of variance . The error sum of squares is defined

in the usual manner ; that is , it is the remainder after the

treatments sums of squares are subtracted from the corrected

total sum of squares . The error sum of squares is thus

determined in terms of the unknowns . Partial differentiation

is performed on the error term with respect to each of the

unknown missing values and derivatives are set equal to zero .

The resulting set of equations is solved for the missing values .

Since the error term was minimized , the remainder sum of squares

is unbiased .
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This analysis was also obtained using the experimental

design model :

у

р

Σ

i = 1

BiXi te i = 1 , 2 , 37

( for 9 X 9 square )

>

This is a general linear model of less than full rank .

The Xi's take only values of 0 or 1 . In the 9 X 9 square ,

the 9 levels for each of the four factors , plus b , for the

mean , gives an X matrix of size n X 37 with n equal to the

number of observations . Square 1 of Terrain III , with eleven

missing values gave an X matrix of size 70 X 37 , and ß was

solved from the normal equations for this model of

хтхв XTY

A solution was derived by arbitrarily equating to zero

the Bi's corresponding to the ninth level for each of the

four factors , partitioning the matrices , and solving the

reduced X matrix of size 70 X 33 , which was of full rank .

( reparametrization ) . Now , one of the conditions that may be

applied in solving the regression equation is that the sum of

the B's for each factor is equal to zero . A linear trans

formation was imposed on the B's to meet this condition as

follows : The B's for each factor were summed , the result

divided by nine , and this amount subtracted from each of the

nine B's . The general mean was also adjusted the same amount .

The B's or b's were thus departures from mean time and could

be interpreted directly . A large negative b meant that this

level of the factor had the effect of traversing the course

in a much shorter time than the average time .

Additional computations were performed on the squares

with missing data to obtain the sum of squares for vehicles

and drivers for an ANOVA table .

The items of main interest were vehicle effects and driver

effects . For these effects , differences of the means were

tested using Duncans Multiple Range Test at the five percent

significance level .

RESULTS

Primary analyses of the data were summarized in ANOVA

tables for the six squares . One of these tables is shown as

Table III . It is noted that only vehicles and drivers were

randomized . The courses are assumed to be a random sample from

a population of courses . Then a significance test for courses

is valid . Runs cannot be randomly assigned . Thus the sum of
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squares for runs can be computed but a significance test for

runs is not valid . The magnitude of the ratio of mean square

for runs to remainder mean square was small for all six squares .

When tested at a significance level of five percent , the course ,

vehicle , and driver effects were always significant at this

level except in two cases and in these two cases the signi

ficance level was less than 10 percent . Results of the analyses

are summarized in Table IV , which shows the F - ratios and their

respective significance levels .

Although two squares were run in each terrain , true re

plication was not obtained because a different set of drivers

were used in each square . Under the assumption that each set

of nine drivers per square were approximately equal , an analysis

of variance was made on the combined Squares 1 and 2 for

Terrains I and II . The squares of Terrain III were not combined .

Combining the squares made the tests more sensitive for

differences between vehicles .

A comparison of experienced versus novice drivers was

made by partitioning the sum of squares for drivers . The F

ratios did not show a significant difference between experienced

and novice drivers for any square , nor for the combined squares ,

at the five percent level .

Application of Duncan's Multiple Range Test applied to the

means gave separation of vehicles into groups which were

significantly different from one another , at the five percent

significance level . See Table V. Some vehicles fall between

two adjacent groups and cannot be considered different from

either group . These vehicles are indicated by connecting lines

to the main groups in the table . For example in the upper left

square , the group D , F , and A was the fastest , followed by

the group B , I , G , C , and then vehicle El . Vehicle H can be

associated with either of the two groups indicated .

COMBINED ANALYSIS FOR TERRAINS

The vehicle mobility test was designed around the indi

vidual Graeco - Latin Square . It was not designed so the six

squares over the three terrains could be pooled in a straight
forward manner . Any analysis over the three terrains is further

complicated by the missing values in Terrain III , and grouping

of the drivers into experienced or novice drivers . Main items

3
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of interest in combining the terrains are measures of the

relative performance of ( 1 ) vehicles over terrains and ( 2 ) drivers

over terrains .

( 1 ) Vehicles Over Terrains

The problem of missing values was minimized by

using only data on vehicles for which information was available
for all six squares . A table of means of size 6 X 7 representing

six squares and seven vehicles was obtained by omitting data

for vehicles C , El , and E2 . See Table VI . The table is still

slightly biased because of the inclusion of estimated values

for missing data on individual runs . The bias was not considered

serious because an estimated value in general was incorporated

into an average of eight or nine numbers .

An analysis of variance was performed on the table of means
for vehicles . This data is shown in Table VII . The F - ratios

confirm that terrain and vehicle effects were highly significant .

The main item of interest in this Table , the vehicle X terrain

interaction effect , had on F - ratio of 0.93 and thus was not

significant .

With the understanding that squares are to be thought

of as replicates , for vehicles at least , the entries in the

ANOVA for ( Sq 1 ] versus ( Sq 2 ] and [ Sq i ] minus ( Sq 2 ) may be

used as some measure of " learning " . This is a " pseudo - learning"

since a different set of drivers was always used in the second

square for each terrain . It does indicate , however , that drivers

were able to increase speeds by utilizing evidence of trails

from earlier runs . The ( Sq 1 ] verus (Sq 2 ] mean square provides

an estimate of " learning " over the whole experiment ( all three

terrains ) . The (Sq 1 ] minus ( Sq 2 ] comparison provides an

estimate of the variation in this learning from Square 1 to

Square 2 within each terrain . In both cases the probability

of these F - ratiosoccurring by chance under 11. is less than

0.005 . The significant " learning " effect appears to be

contradictory to the conclusion of no run effect within each

square . That is , if this " learning" effect is the result of

tracks or trails left from the previous vehicle , then the

" learning " effect should commence immediately after the first

run .

The run effect for the six squares was investigated

further as follows : First , the run totals were plotted with

the order of runs as the abscissa . A least squares linear

regression line was added . Although the points appeared
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scattered the slopes were negative for five of the six squares ,

indicating less time to traverse a course as the run number

increased . But one square had a positive slope .

Analysis of variance tables were constructed to show the

reduction in sum of squares due to linear regression , with one

degree of freedom , and the deviation from linear regression ,

with seven degrees of freedom for the 9 X 9 squares and six

degrees of freedom for the 8 X 8 square . If the order of runs

is a real effect , then the mean square ratios for reduction in

sum of squares due to linear regression should be large . A

tahulation of these ratios for the six squares , Terrain I ,

Square 1 through Terrain III , Square 2 , follows :

d.f. RED . M.S./REM . M.S.

ܐܕ

1 ,

ܐܕ

47

48

48

48

1 , 37

28

1 ,

6.16

0.46

1.10

4.02

0.34

2.681 ,

These ratios do not give strong support for the conclusion

that drivers used evidence of previous trails to reduce their

traverse time within a square . A possible explanation of the

pseudo - learning between squares is that during the runs of the

first square the drivers were able to comply with the requirement

of not using trails left from previous runs ;left from previous runs ; however , compliance

to this requirement broke down during tests for the second square .

Performance of vehicles over the three terrains was shown

graphically by first subtracting the means for the individual

square from the vehicle means . The performance for the vehicles

were then algebraically added over the six squares . The

departure from mean time for each vehicle could then be

plotted as shown in Figure 1 . Vehicle F shows the best overall

performance . This vehicle is the 1 / 4 - ton M151 Al Utility Truck .

This is a jeep type vehicle . Vehicle D was the commercial

Kaiser jeep . Vehicle El was the slowest vehicle . This was

a 16 - ton payload vehicle with an unusual control system and no

suspension other than the tires . In Figure 1 it must be

remembered that vehicle El was used only in Terrain I , Vehicle E2

was used only in Terrains II and III , and Vehicle C was not used

in square 2 of Terrain III .
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( 2 ) Drivers Over Terrains

There was no replication of drivers within terrains ;

hence , no direct test for driver X terrain interaction can be

obtained if an ANOVA is performed on a table of means for

drivers . An ANOVA operation was computed and the mean square

term for driver X terrain interaction was 77,915 . The magni .

tude of this term is not large in relation to other relevant

mean squares obtained from the data . The remainder sum of

squares term in the previous ANOVA table for vehicles over

terrains was 22,325 . A denominator of this magnitude for

determination of the F - ratio would indicate that the driver X

terrain interaction effect is significant at about the 0.025

level . The remainder sum of squares for the six basic squares ,

however , ranged from 35 , 938 to 283,164 and it is concluded

that the driver-terrain interaction effect cannot be properly

assessed .

Data for drivers were summarized in the same manner as

for vehicles . Differences between the fastest and slowest

drivers within a square ranged from 5.5 to 11.2 minutes except

in Terrain III Square 1 the maximum difference was 25.8

minutes . The mean time for all drivers in this square was

30,2 minutes . The major portion of the difference can be

attributed to driver Number 3 . Overall performance of this

driver was poor , as shown graphically in Figure 2 .

The total difference in elapsed time , over all terrains ,

between experienced and novice drivers was 49.9 seconds , or

less than one minute . This difference was not significant at

the five percent significance level , nor even at the 20 percent

significance level . It can be safely concluded that although

differences exist among drivers , the differences are between

individual drivers and not the subclassification of experienced

and novice as defined for this experiment .

BIAS IN TREATMENT SUM OF SQUARES

The percent upward bias of treatment sum of squares

were calculated for the three squares having missing values .

Results are shown in Table VIII . The percent bias was determined

from the ratio of sum of squares determined by supplying estimated

values , to the unbiased sum of squares as determined by the

regression analysis . It can be seen that the bias for vehicles

for Terrain III square 1 , with eleven missing values was over

52 percent . Actually , all conclusions for vehicles were the

same as both F - ratios were significant at less than the 0.01 level .
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However , the 21.4 percent bias did modify the conclusions for

drivers in Terrain III , Square 2 . (The F - ratio obtained using

the unbiased sum of squares was not significant at the five

percent level whereas the F - ratio had been significant when

computed from the biased sum of squares ) .

CONCLUSIONS

1 . The Graeco - Latin square design for this experiment did

allow the separation of various factors so that relative effects

of cach could be estimated .

2 . The linear run effect within squares was not consistent

throughout the experiment . However , there was some evidence

that the order of testing may sometimes be significant .

3 . The course effect was large throughout the experiment

and the largest overall contributor to the sum of squares .
This

means that the courses within a terrain were not homogeneous

with respect to time required for a vehicle to traverse the
courses .

4 . Vehicle effect was significant . It was possible to

assess relative vehicle performance by separating vehicles of

similar performance into different groups .

5 . Driver effect was significant . Individual drivers

could be separated into groups of similar performance . However ,

there was no signifcant difference between the subclassifications

of experienced and novice drivers as defined for this experiment .

6. Interaction between vehicles and terrain was not

significant .

7 .

Interaction between drivers and terrain could not be
properly assessed .

8 . A pseudo " learning" effect between the two squares
within a terrain was highly significant . The cause of this effect

was not accurately described .

SUMMARY AND RECOMMENDATIONS

The number of possible combinations of the four factors

with nine levels is nine to the fourth power or 6561 . Since
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only 81 observations were taken by using the 9 X 9 Graeco

Latin square , the actual test is equivalent to a 1/81 replicate .

Results of these tests and the information obtained were

considered very satisfactory . This type of test appears useful

for other tests involving mobility of vehicles . Specific points

for consideration are as follows :

1 . There was some evidence , although not conclusive ,

that trails left by previous runs influenced subsequent runs .

It is also reasonable to expect that variations in the weather

and other environmental conditions would affect the outcome of

a test run . It is therefore recommended that the order of

testing ( runs ) be built into the design for future tests of this

nature .

2 . The design must allow for analysis of the effects of

differences in courses and differences in drivers .

3 . The referee effect was not measured during these tests .

Ancillary information picked up during these tests indicate

the referee effect may be significant . In a future experiment

of this type it may be appropriate to superimpose an additional

orthogonal square onto the two orthogonal squares of the Graeco

Latin design to assess the referee effect , i.e. , add another

language to the design .

4 . Since there was no significant vehicle - terrain interaction

effect , the size of most future experiments could be reduced

by limiting tests to one terrain . As an alternative , courses

may be laid out over a varying type of terrain .

5 . This general type of statistically designed vehicular

mobility test may be extended to determine differences among

features of vehicles . Examples :

( a ) Different power plants, transmissions , or other

components in the same vehicle .

(b ) Effects of payload

(c ) Tracked versus wheeled vehicles over a particular
type of terrain .

42



REFERENCES

1 . Davies , Owen L. , " The Design and Analysis of Industrial

Experiments " , Oliver and Boyd , New York , 1956

2 .
Duncan , D. B. , " Multiple Range and Multiple F Tests " ,

Biometrics , No. 11 ( 1956 ) .

3 .
. Graybill , F. A. , " An Introduction To Linear Statistical

Models , Volume 1 " , McGraw - llill Book Company , Inc. , New

York , 1961 .

A.
Kempthorne , 0. , " The Design and Analysis of Experiments " ,

John Wiley & Sons , Inc. , New York , 1952 .

5 .
. Fisher , R. A. , and Yates , F. , " Statistical Tables For

Biological , Agricultural and Medical Research " , Oliver

and Boyd , London , 1948 .

6 .
Owens , Ryamond , " Statistical Design and Analysis For

Military Vehicle Mobility Study " , TACOM Technical Report

Number 10132 , 26 July 1968 .

43



COURSES 1 2 3 4 5 6 7 8

RUNS

926

114

855

110

1323

B18

1228

( E2 ) 17

1931

616

1491

H15

1878

A12

1425

F1312

429

D12

616

116

977

( E2 ) 13

935

B15

2429

A10

1618

F17

1631

G14

763

H1813

630

( E2 ) 18

842

B17

1662

D14

662

F15

1554

A16

742

H13

1629

G1214 110

700

G15

544

A13

1164

1116

1597

F12

3169

B14

968

D17

1075

( E2 ) 1015 118

462

H10

594

F14

1409

G17

741

A18

1972

B12

878

( E2 ) 16

896

D1516 113

450

B13

1185

( E2 ) 15

728

116

1144

H17

1968

G10

814

F18

1402

A1417 112

768

A17

712

618

622

F10

1604

D13

1901

( E2 ) 12

1098

B1618 H14 115

304

F16

541

H12

1749

A15

1173

G13

1594

( 82 ) 14

1202

D18

1285

B1019 117

Letters Vehicles

Numerals Drivers

Numerical Data = Time to traverse course , in seconds .

VEHICULAR MOBILITY TEST DATA

TERRAIN III , SQUARE 2

TABLE I
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Minutes

Per Run

Average

Vehicle

Speed , MPH

Average

Miles Driven

Per Course

Terrain I

Square 1 10.0 - 46.9 5.7 - 12.7

2.5 2.7

Square 2 8.0 35.9 5.8 - 14.9

Terrain II

Square 1 9.2 - 46.6 4.8 - 7.1

1.5 - 2.5

Square 2 7.7 34.4 5.5 - 7.8

Terrain III

Square 1 7.1 - 74.1 2.3 - 4.1

0.6 - 1.7

Square 2 5.1 - 52.8 2.7 - 5.2

VEHICLE SPEED AND COURSE DATA

TABLE II
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I - 1 * I - 2 II - 1 II - 2 III - 1 III - 2

F - RATIOS

Runs ** 1.70 0.65 1.81 0.94 0.84 1.04

Courses 4.90 2.56 4.38 14.26 11.39 10.66

Vehicles 16.68 18.25 1.99 5.13 3.38 2.40
. .

Drivers 3.20 2.78 3.22 10.35 3.91 2.07

SIGNIFICANCE LEVELS

Runs **

Courses .001 .025 .001 .001 .001 .001

Vehicles .001 .001 .100 .001 .005 .050

Drivers .010 .025 .010 .001 .005 .100

**

Example : 1-1 = Terrain I , Square 1

Significance Test Not Valid

F - Ratios and Their Respective Significance Levels

TABLE IV
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Square 1 Square 2
Combined

DFA DF DFA

HН ALIGB

)
HT

E
R
R
A
I
N

I

BIGC IC GBI

С

( E1 )( E1 ) ( E1 )

No DFH DFIL

Significant A (E2 ) (E2) AG

Differences GB B

T
E
R
R
A
I
N

I
I

С С

II

FHD ( E2 ) B HF Not

T
E
R
R
A
I
N

I
I
I

AG DI ( E2 ) Combined

IC ABG

DISTINGUISHABLE VEHICULAR GROUPS

AT 5 PERCENT SIGNIFICANCE LEVEL

TABLE V
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A B D F G H I

TER SQ 1

# 1 SQ 2

932.9

843.7

1140.9

1070.9

901.5

760.1

928.6

766.8

1160.2

1025.6

1067.2

926.3

1149.4

1149.9

TER

# 2

SQ 1

SQ 2

1270.0

1003.2

1327.2

1077.1

975.1

855.8

1025.6

857.0

1260.4

1061,3

1090,7

908.6

1535.0

1288.7

TER

# 3

SQ 1

SQ 2

1816.7

1383.1

1635.9

1384.2

1578.9

1043.0

1372.4

954.5

2013.5 1416.3

1394.1 917.2

2416.2

1060.0

TABLE VI : TABLE OF MEANS FOR VEHICLES OVER TERRAINS

4
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SOURCE d.f. M.S. F - Ratio

Squares ( 6 )

Mean 1
58,919,874

Terrain 2 827,562 37.07

( Sq 1 ) vs ( Sq 2 ] * 1 940,056 42.11

( Sq 1 ) minus ( Sq 2 ] ** 2 227,064 10.17

Vchicles 6 172,334 7.72

Vehicles X Terrain 12 20,788 0.93

Remainder *** ( 18 ) 22,325

Vehicle X Square 6 18,641

Veh X Ter X Sq 12 24,167

Total 42

* Over three terrains

**Within Terrains

** For estimate of experimental error

ANOVA For Vehicles Over Terrains

TABLE VII
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PERCENT BIAS

Terrain I

Square 1

( 1 Missing Value )

Terrain III

Square 1

( 11 Missing Values )

Terrain III

Square 2

( 7 Missing Values )

Runs + Courses 2.4 12.0 2.0

Vehicle 0.8 52.2 9.1

Driver 2.2 47.0 21.4

UPWARD BIAS IN TREATMENT SUM OF SQUARES

WHEN MISSING VALUES WERE ESTIMATED

TABLE VIII
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PROBABILITY OF A NON - REPEATABLE OBSERVATION AN

EXAMINATION OF THE UTILITY CONCEPT AND THE

NATURE OF QUEUEING SEQUENCES

Mikiso Mizuki

Federal Electric Corporation/ITT

Vandenberg AF Base , California

0 . INTRODUCTION . The subjective probability is often defined

using the utility concept of gambles and lotteries , cf. , de Finetti

[ 2 ] and Savage [ 8 ] . Such an approach gives the only tangible means

of measuring the personal assessment of subjective probabilities .

However , the basis for this approach seems to be the unstated premise

that the gambles are to be played or can be played repeatedly . The

expected utility or the weighted mean of gains with the weighting of

the probabilities of particular outcomes has a clearly defined meaning

under such conditions . On the contrary , the same weighted mean does

not possess any practical meaning for a non - repeatable observation .

Fishburn [ 3 ] concedes that in order to define subjective probability

coherently using the utility concept , it is essential to have con

sequences that can occur under more than one state . This indicates

the possibility of modifying the utility theory for non-repetitive

random events .

As the second topic of this paper , the nature of queueing sequences

is investigated from the same point of view . The queueing sequences

constitute non - repeatable observations for each particular service

system . An observable queue size sequence is dependent on its companion

sequence of arrival /service events . By the above argument , the prob

ability discussed in queueing models of a particular system cannot be

interpreted as subjective probability . An investigation on the characteris

tics of ensembles of queueing sequences is made .

1 . UTILITY THEORY AND SUBJECTIVE PROBABILITY . The utility theory

is constructed using a mixture space , for instance as defined in [ 3 ] .

mixture set consists of a set 22 { A , B , C , ... } and operation GA + ( 1-a) B

which define an associating element of 2 with each ae [0,1 ] and each

ordered pair (A , B ) E 322 such that , if A , B E , á , BE (0,1) , then

=

( 1.1 ) 1A + OB = A

( 1.2 ) AA + ( 1-a) B = ( 1-a) B + CA

( 1.3 ) a ( BA + ( 1- B ) B ) + ( 1 - a ) B = ABA + ( 1-ab ) B.

5
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In repeatedly played gambles , the expression GA + ( 1- a) B corresponds

to the gain (or loss ) of mixed outcomes of A's in 100 % of plays and

of B's in 100 ( 1- a) % of plays . In particular , if the gain A is set

equal to unity and the gain B is set to zero , the utility of the mix

ture of A's and B's ; namely , a'1 + ( 1- a) .0 = Q , represents the sub

jective probability that A occurs . The generalization of this gambling

situation to non-repetitive random events requires the substitution of

the uncertainty of a single random outcome by an aggregate of random

observations .

Some of the difficulties are typified by the examples of non - constant

valued consequences . For instance , the utility in the sense of social

justice of a judge's sentence varies depending on his choice of act of

taking the side that the accused did or did not commit the crime ;

Fishburn , loc . cit . In the risk taking acts of Russian roulette and

dangerous mountain climbing , the mental elation , if survives , after the

acts gives a different value of being alive from that of not taking the

chances . Under such conditions , the linear combinations of utilities

of consequences do not have any meaning . And , this is the basis that

Fishburn made the statement that subjective probability cannot be dis

cussed for such cases .

The probability assigned to a non-repeatable observation is best

formulated as a set of real numbers distributed over an exhaustive set

of mutually exclusive possible outcomes . Denote the possible outcomes

by Az , i = 1 , ... , n , and the real numbers assigned to A by P (A2 ) ,

satisfying P (A2 ) 20 and P (AZ ) = 1 . Suppose a gain of Az is made

when A, is observed , where all the gains may be bounded . Then , if Ai

is observed , no other A's ( j +i ) can add to the gain after observing A7 .

Because of this , there exist no logical bases for associating a gain of

A, with those of A.'s in the form of the expected utility , [ (gain of
i j

i

A. ) P (A ).

i

2 . EXPECTATION AND EXPECTED UTILITY . Define a variable which

takes on x, when A is observed , and define the indicator function

1 if the observed outcome is A.
'

( 2 ) I

i 0 otherwise .

Then , the simple random variable X is given by , cf. Loève [ 4 ] ,

( 3) X =

į{ * PA성
시

i

56



The expectation of X is defined by

( 4 ) E (X ) =
{ x : P (A ).Pi

1Suppose the utility of the constant consequences are represented by x

when the state A. obtains . Then , ( 4 ) is the expected utility of the
i

outcomes . However , as mentioned earlier , the same expression is not

adequate for the representation of the utility of a non -repeatable and

non-constant valued consequence . In order to circumvent this difficulty ,

Mizuki [ 6 ] suggested an alternative definition of expectation for a non

repeatable observation of the form

( 5 ) ENR (X)

{ * A. (PA_ ) = x, P ( A ?i i

A

Y

X ..

i= 1 , ... , n , yielding n different expected values of each possible outcome

The ENR expectation introduced here is consistent with Bayes ' defini

tion of probability [ 1 ] of any event to be the ratio between the value at

which an expectation depending on the happening of the event ought to be

computed and the value of the thing expected upon its happening .
The use

of (5 ) leads to an interesting modification of the utility theory for a

non -repeatable event .

>

u

The above formulation is slightly generalized . Suppose there exist

a chosen act , denoted by H , and n mutually exclusive states , Aj, j = 1 , ... , n ,

H

and consequences , measured in some utility , when H is chosen and A
Ajj

obtains . The probability that A, obtains when H is chosen is defined by

j

real numbers P,, (A . ) , satisfying P, (A . ) 0 and (A. ) = 1 . In order to
H j H j H

H

account for the non-constant values of consequences , is not necessarily

H '

equal to u for H ' # H. The familiar use of mixed acts is not justified

j

for a non-repeatable situation and will be excluded from the subsequent

development . The connotation is that in spite of the mixing operations

prior to the final choice of act , the chosen act is unique , thus losing

all of its random attributes unlike the case of repeatable events . This

eliminates the necessity of defining the probability P (H ) assigned over

different choice of H's . Under this set of conditions , a simple random

variable of utility Uh of a chosen act H is defined by

C
W

( 6 ) U.

H

H

u

I

j = 1

4
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The ENR expectation of 'h is then given by

( 7 ) ENR (U,, )
H up Pp( ) ", „ J-1 , ... , n .

For a choice problem of a non - repeatable event , the expectation given

in ( 7 ) can be used as the optimizing criterion .

3 . A CRITERION FOR PREFERENCE . The individual expectation

H

u; PH (A, ) of ( 7 ) may be interpreted as the psychological incentive

에
) ,

H

force acting on a lever at the point of distance u from the fulcrum

j

with the mass P (A.) , whereas the incentive force should be measured
H j

at a fixed point on the lever always . Since there exists only one

outcome event A

j
the incentive forces can act only individually , but

not collectively , for any given decision problem . Application of such

an interpretation is considered below .

>

Savage discusses an example on the choice between two pairs of

gambles , pp . 101-103 of [ 8 ] . Savage prefers Gamble 1 to 2 , and Gamb le

3 to 4 after reversing his initial intuitive choice of Gamble 4 over 3

by applying the sure-thing principle . However , the utility theory being

developed simply as a normative theory , it is natural to seek an augmented

normative theory which explains his initial intuitive choice . The

specifications of Savage's gambles are as follows . For the choice

between Gambles 1 and 2 ,

Gamble 1 : $500,000 with probability 1 ; and

Gamble 2 : $ 2,500,000 with probability 0.1 ,

$500,000 with probability 0.89 ,

$ 0 with probability 0.01 .

Similarly , for Gambles 3 and 4 ,

Gamble 3 : $ 500,000 with probability 0.11 ,

$0 with probability 0.89 ; and ,

Gamble 4 : $ 2,500,000 with probability 0.1 ,

$0 with probability 0.9 .

For the sake of simplicity , suppose one acts based on a linear utility

function over the range of zero to $2,500,000 of the form u (x) = kx ,

k >0 for x dollars gain . Using ( 7 ) , it is immediately seen that the

expected utility term of $500,000 of Gamble 1 is greater than any of
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the three expected utility terms of $ 250,000 , $445,000 and $0 of Gamble 2 .

Likewise , the combination of the expected utility terms of $ 250,000 and $0

of Gamble 4 is more attractive than the $55,000 and $0 combination of

Gamble 3 . A similar preference pattern is obtained even in the general

case of usual concave utility functions . When the utility function be

comes sharply convex , an individual inclines to prefer Gamble 2 to 1 ,

and at the same time , he remains to prefer Gamble 4 to 3 . This is a

clear indication that the leverage system model can explain the general

intuitive choice patterns .

The preference rule examined above can be summarized by :

Dominance of Expectations : Act H is preferred to act G , if

H

u

j PPH (4;) > v Po (44 )
for corresponding A.'s .

j

This is a partitioned version of the familiar Bayes ' principle which

maximizes the expected utility (or utilities in this case ) . The other

familiar rules of dominance principle , minimax regret , and maxmin

principles remain unchanged for such non-repeatable events . For the

details of this development , the readers are referred to [ 7 ] .

4 . ABOUT QUEUEING SEQUENCES . A queueing model is specified by

the input process , service time distribution , and the number of servers .

The most elementary example is that of Poisson arrivals (M) and negative

exponential distribution (M ) of service times with a single server ( 1 ) ,

or M/M/ 1 system , which will be examined in the following .

For a particular system , a pair of sequences of customers ' arrival

and departure times , or equivalently a pair of sequences of queue sizes

and arrival /service events can be observed . In the latter pair , the

queue size sequence is functionally dependent on the observed sequence of

arrival /service events . These sequences are random in nature prior to the

observation , but are unique and fixed when it is observed . In other

words , these sequences constitute a pair of non-repeatable observations

from an ensemble of such pairs . A subjective probability may be used

to describe the uncertainties of such samplings . However , there exists

a complete analogy with the utility of non - constant valued consequences

of non-repeatable event of Section 2 . If we use the Fishburn's example

of a judge's sentence , the arrival / service events sequence corresponds

to the judge's taking the side that the accused did or did not commit

the crime , and the queue size sequence corresponds to the social justice .

This puts the problem right back to the start .

The M/M/ 1 models are often analyzed using the birth-and-death process

models . Consider a simple birth-and-death process of Poisson input with

a constant parameter 1 and a negative exponential service time with a

constant parameter By denoting the probability that the queue size

is n at time t by P. ( t ) , the standard differential difference equations

are introduced , i.e. ,

μ .

n
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( 8 )
Ph ( t ) = - ( 1 + x) PA (t ) + 1Pn -1 (t) + UP

n +1

( t ) for n> 0 ,

Ps ( t ) Po ( t ) + uP (t ) .

The original balancing equation is given by

( 9 )
Pn ( t+at ) ( 1- λΔ t- μΔt ) P. ( t ) + λΔtP.

n

'n - 1 (t) + matpn+i (t )

n

for n > 0 . Notice that there exist two classes of probabilities in ( 9 ) ,

namely , one class of lat , uat , and ( 1- it- uat ) , and the other of P. ( t ) .

The former designates the probability of arrival /service events , and the

latter designates the probability of queue sizes . The queue size of a

particular M/M / 1 system is , however , by definition a step function in

time . If the queue size at time t , denoted by a ( t ) , is known , for

suitably small Δt ,

a ( t ) with probability 1-14t-uat ,

( 10 ) q ( t+ At )
3

a ( t ) -1 with probability ust ,

q ( t ) +1 with probability it.

In fact , y ( t ) may not be known unless it is observed , but a ( t ) is not a

random variable . Rather , f ( t ) is an observation which is a constant ; and ,

furthermore , q ( t ) cannot be observed repeatedly for any given t . Thus ,

a ( t ) is a single non - repeatable observation . Equation ( 10 ) defines that

a ( t ) is a function dependent on another non-repeatable observation over

At of a new arrival , a departure , or no events .

n

In the original formulation of the birth - and - death process models ,

P. ( t ) is defined as the proportion of n items in existence at time t with

respect to a set of simultaneously observable ensembles , such as bacterial

cultures , and particles in chambers . Our primary interest in the behavior

of a particular queueing system differs from these cases , and Po ( t ) is a

representation of the uncertainty for the value a ( t ) prior to its non

repeatable observation . Since a ( t ) is known to be unique at t , it is

sensible to construct a parametric model shown below :

n

Define Q (N ) , Q ( A ) , and Q (L ) to be three matrices satisfying
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Q (N) = ( 8 ) . i , j =0,1,2 , ...

( 013)

Q ( A ) = ( 1,3-2 i=0,1,2 , ... ; j =1,2 , ...

( 11 )

80,3 j =0,1,2 , ...

Q (L )

104-1,3)
i=1,2,3 , ... ; j =0,1,2 , ...

2

At time t the queue size of a particular M/M/ 1 system is given by a

vector q ( t ) ( qg ( t ) , 97 (t) , 92 ( t ) , ... ) , 9 (t) = 1 for some 1 , 9j ( t ) = 0

for i * j . The queue size at t + At is then given by a ( t ) Q (x) , x = N ,A , L ,

which will occur with the probability II (x ) respectively such that

II (N ) 1 - ( λ + μ) Δt

( 12 ) II (A)
= λΔt

II (L ) = μΔt .

In this formulation Q (x ) is a random matrix which takes on Q (N) , Q (A) ,

or Q (L ) with the probability of II ( N ) , II (A) , or II (L ) .

The two different notions of expectations of ( 4) and ( 5 ) can be

applied to the above argument . Let x, and P ( A ) correspond to Q ( x ) and

II (x ) , respectively . Then , we can define a simple random matrix

( 13 ) Q
3

[ Q (x) I
х

х

where x = N , A , L .N , A , L . Then , from ( 4 ) we obtain

E ( Q)
=

[ Q (x ) II (x)
х

( 14 )

=

( 1- λΔt- μΔt ) Q ( N ) + MAQ (A) + UALQ ( L ) .

2

Consider some arbitrary ensemble of a ( t ) ' s , and define the expectation

E (q ( t ) ) = p ( t ) over this ensemble to be a probability vector such that

p ( t ) = ( Pz ( t ) ) , i = 0,1,2 , ... , 0 < Py (t) < 1, EPz(t ) 1 . Define the

entry of p ( t ) Q ( N ) for queue size n to be Pn ( t ) , of p ( t ) Q (A) to be P

and of p ( t ) Q ( L ) to be Pn+1 ( t ) . Then , the entry of E (p ( t ) Q ( x ) ) for queue

size n is given by the Equation (9 ) of the birth-and-death process model .

n-| ( t ) ,
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On the other hand , the use of ( 5 ) obtains

ENR(Q) [ Q (x) If (x) IX

х

( 1 - λΔt - μΔt) Q ( N ) , if x = N ,>

( 15 )

λΔtQ (Α ) if x = A ,9 >

μΔtQ ( L ) if x = L.

This definition of ENR ( Q ) satisfied a one- to-one correspondence with

( 10 ) except for the fact II (x) Q (x) is given instead of Q ( x ) with its

associated II (x ) .

Another queueing model of Poisson arrivals (M ) and general service

time distribution (G ) of a single server ( 1 ) , or M/G/ 1 system can also

be analyzed using the approach of queueing sequences . It can be shown

that the convergence properties defined for the overall ensemble of

queueing sequences do not hold for the conditional subensemble of M/G/ 1

sequences , cf. [ 5 ) .
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APPLICATION OF SIGNAL FLOW GRAPH THEORY

TO A STOCHASTIC PROCESS

R. G. Stimson

Office , Chief of Staff , Army

Office , Director , Weapon Systems Analysis

Washington , D. C.

ABSTRACT . A method is presented for calculating the probability

of killing a multiple target aircraft formation attacking a missile

battery as a function of engagement parameters and missile firing

strategy The stochastic processes engendered by various firing

strategies are represented by signal flow graphs , facilitating the

calculations . Results are utilized to optimize missile firing

strategy Although developed for analysis of firing strategies , the

method can be applied to many analogous problems involving stochastic

duels and programming under conditions of uncertainty , where the

situation can be resolved into discrete states with transition

probabilities dependent on both the state and the path by which it

was reached .

INTRODUCTION . When an air defense system using missiles , which

home on energyfurnished by an illuminating radar and reflected by

the targets , attempts to engage a formation of aircraft (or missiles )

which are grouped closely enough in position and velocity that they

appear as a single target to the homing missiles until the latter are

close to the formation , a question arises as to the optimal firing

strategy The choice of a strategy for any particular situation

depends on several factors which affect the conditional probability

of success at any particular point in the process and which must be

accounted for in formulating a generalized framework for assessing

various strategies . When a missile engages the formation , it

initially homes on the centroid of reflected energy . At some point ,

the return from a single target will override the centroid , and the

missile may have to perform a relatively high-g maneuver in the end

game , degrading its kill probability . The effects are worst for the

case of two targets , where the energy centroid may move back and forth

rapidly , and become less detrimental as the number of targets increases ,

since the energy centroid tends to remain closer to the center of the

formation in this case . Therefore , in analyzing the effectiveness of

various missile firing strategies , it is necessary to assign a weighting

factor to the single shot kill probability ( or SSKP ) in accordance with

the number of targets in the formation . Since the magnitude of the

weighting factor increases as the number of targets increases , it might

seem advantageous to fire as many missiles as possible in the first volley .

However , as the number of simultaneously fired missiles is increased , the

probability of two or more missiles locking on the same target increases ,

and at some point a further increase becomes unattractive .

ley .
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In the following method of analysis , the number of attacking

aircraft is taken as k , and the stochastic process of shooting them

down is represented by a system having k states , the number of each

state denoting the number of aircraft which have been killed at that

point in the process . The system is depicted by a single flow graph

for each firing strategy . The paths leaving each node represent all

possible ways to go from each state to succeeding states , each path

value being the conditional probability of reaching state ntp via that

path given that state n has been reached . In order to illustrate how

this technique is used to determine an optimal firing strategy , the

number of targets is taken as four , and the following four strategies ,

in which Snı : 12 ... ong , refers to n, missiles fired in the first volley ,

n2 the second time , etc. , and n; the jth and all succeeding times , are

analyzed , using the signal flow diagrams depicted in Figure 1 through 4

in conjunction with Mason's signal flow graph rule to effect the

calculations .

MISSILE FIRING STRATEGIES

si , 1 , 1 ,

S2 , 2 , 2 ,

S3 , 3 , 3 ,

S3 , 2 , 1 ,

SIGNAL FLOW GRAPHS FOR UNIFORM STRATEGIES . For strategy si , 1 , 1 ,

... , the engagement process is represented by Figure 1 in a manner

suggested by Hall ( 1 ) . The four states are represented by nodes 1 to

4 , each state representing the number of planes which have been shot

down at that point in the process . Each firing of a missile is a

Bernoulli trial with the probability of success , equal to the product

of the single shot kill probability and the multiple target weighting

factor for that state , determining the value of the path to the next

state , and the probability of failure determining the path value of

the self-loop to the same state . Path values are multiplied by a

dimensionless parameter x . Since the system function or ratio of

output to input , from the input to a specific node is a multiplicative

function of the node-to-node path values , the exponent of x in the

calculated system function , or gain , to that node is equal to the

number of missiles fired to reach the state represented by that node

via that path . The self-loop in state four is necessary to account

for any missiles fired or still in transit after all targets are

killed . It is seen that the engagement sequence in this case is a

Markov chain with as many states as there are aircraft , each state

representing the number of aircraft which have been killed . Although ,

in this simple case , it is feasible to solve the problem using transition

matrices , it will be seen later that this technique will become increasingly

tedious for more complicated strategies . For instance , a " non -uniform "

strategy , where successive volleys may contain different numbers of

- -
-
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missiles , constitutes a system with memory , in which the conditional

probability of transition to the next state depends not only on the

present state , but also on how one arrived in it ; i.e. , how many

missiles were fired in reaching the present state . The stochastic

process then ceases to be represented by a Markov chain , and the flow

graph becomes very useful as an aid both in calculation and in under

standing the physical implications of the situation . The actual

calculations are carried out using Mason's gain formula [ 2 , 3 ] .

In the signal flow diagram , the value at each node is equal to

the sum of the values of all paths leading to that node . Each path

value is the product of the value of the node at the beginning of the

path and the transfer function associated with that path . Signal flow

diagrams find their greatest application in electrical engineering in

connection with differential equations , representing control systems ,

which are first Laplace - transformed , then depicted as flow diagrams ,

solved using Mason's rule as described below , and then transformed

back to the time domain . In the present case , the "input signal" is

simply unity probability of reaching state 0 ; i.e. , of shooting down

at least zero aircraft . The nodes represent states which are defined

by the number of aircraft which have been shot down , state k representing

a point in the process at which k aircraft have been shot down . The

" transfer functions " are simply the conditional probability of reaching

a certain state , or number of aircraft downed , given that a certain other

state had been reached previously . In order to represent these probabilities

as functions of the number of missiles being shot , the conditional prob

abilities are multiplied by xn , where n is the number of missiles which

are shot in each volley when attempting to go from a node to a succeeding

node . As will be seen below , when Mason's rule is used to find the out

put signal , given the input signal and the signal flow diagram , the path

values between successive nodes are multiplied . Therefore , the highest

exponent of x in the system function , or ratio of output , represents the

total number of missiles fired to reach the final node , or number of air

craft downed , since it was arrived at by traversing a series path from

node to node , with the path values multiplying and therefore with the

exponents of x in each path adding . Thus , considering Figure 1 , it is

obvious that the probability of shooting down four planes ; i.e. , of

reaching Node IV , by firing only four missiles is

3

P ( IV , 4 ) = IT P

i
i =0

This is true since , in order to down four aircraft with four missiles , one

must traverse the paths representing the conditional probability of reaching

the next state ( getting a hit ) directly from Node 0 to Node IV without

traversing any self-loops , which represent the conditional probability

of remaining in the same state (getting a miss ) . It is seen that by
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multiplying each P, by x , the system function , or gain , for reaching
i

node IV by firing only four missiles is

3 3

G (IV , 4 ) = TT

4

P. X = X

i

P

TT

i=0

i

i=0

The exponent of x is seen to represent the number of missiles fired .

If one was to miss with the jth shot , however , it would take five

missiles to shoot down the four aircraft , and the probability would

be

3

P ( IV , 5 , miss jth shot )

T
T

9j
P.

i

i=0

itj

In this case the system function arrived at by multiplying each P, by

x , would be

i

3 3

G ( IV , 5 , miss jth shot )
25P.

i

X = X

9j чі
х TT

i=0

itj

TT P

i

i=0

itj

Of course , the total probability of shooting down four aircraft by firing

five missiles is the sum of five such probabilities , arrived at by con

sidering a miss on the jth shot and letting j range from 0 to 5 . However ,

5

the system gain will still contain an x term . As will be seen below , use

of Mason's rile in conjunction with a particular diagram will produce a

polynomial in x in which the coefficient of x in each term will indicate

the probability of shooting down all the aircraft , using the strategy

associated with that diagram , by firing the number of missiles indicated

by the exponent of x in that term . The calculations may be carried out

to any desired power of x (number of missiles fired) and the probability

of shooting down the aircraft approaches unity as the number of missiles

is increased without limit . If it were desired to find the probability

of reaching a lesser state , say , state k (k aircraft downed ) , then the

signal flow graph could be used by omitting all paths which lead to

higher nodes than Node k .

Mason's signal flow graph gain formula is a technique for utilizing

a signal flow graph to obtain the gain of the system instead of directly

solving the equations describing the system . It makes use of the gains ,

or transfer functions , associated with forward paths and loops , the gain

of a forward path being the product of the gains of each segment of the

path , where each segment leads from one node to another . A loop is

simply a forward path which closes on itself . The formula is :
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Gk 4

G = {
Δ

k

where

G = system gain , or ratio of output to input

Gk gain of the kth forward path

A. = system determinant

1 ( sum of all individual loop gains )

+ (sum of products of gains of all possible combinations

of two non-touching loops ) - ( sum of products of gains

of all possible combinations of three non-touching loops )

+

Ą
= value of A for that part of graph not touching the kth

forward path

While the mechanics of the formula are simple , they frequently

are tedious for a signal flow diagram which has many loops and forward

paths . Fortunately , this type of repetitive calculation is easily

carried out with a digital computer ; one only needs to identify the

individual forward paths and their respective non- touching loops on a

particular graph in order to be able to use a standard program .

For the strategy of firing successive volleys of two missiles ,

S2 , 2 , 2 , ... , depicted by Figure 2 , it is seen that several results

may ensue from the firing of a volley . First , one may score two hits ,

not on the same target , and will , therefore , go from state n to state

n+2 . Secondly , one may score only one hit , and will , therefore , reach

state n + l . Thirdly , one may score two hits , both on the same target ,

and will , therefore , reach state n+1 by a different path . Fourthly ,

one may score no hits and remain in state n . In order to assign the

correct value to each path , it is necessary to know the probability of

l missiles homing on the same target when each of m missiles homes on

one of n targets . This will be

m-l

( 2) ( )* 1.- h)l , m , n

The effects of these probabilities are seen in the signal flow graph .

The technique of forming the graph is straightforward ; all possible

transitions from one state to the next are given a path , which is

assigned the appropriate probability and multiplied by x2 , since two
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missiles are being fired . The binomial coefficients are also necessary ,

since the paths result from Bernoulli trials and follow the binomial

probability law . The values of all paths leaving each state node will ,

of course , sum to unity ; if they do not , a mistake has been made . It

is seen that the process is still a Markov chain , since two missiles

will be fired with the same probability of success when the system is

in a particular state , regardless of how that state was reached . The

extension to strategy S3 , 3 , 3 , ... , is straightforward and results in

the flow graph in Figure 3 .

FLOW GRAPHS FOR NON - UNIFORM STRATEGIES . When one uses a non

uniform strategy such as S3 , 2 , 1 , 1 , ... , the system becomes somewhat

more complicated , as seen in Figure 4 . The number of missiles to be

fired when the system is in a particular state now depends on how many

were fired in reaching it . Therefore , the transition probabilities are

dependent not only on the present state , but also on how that state was

reached . The system has now developed a memory and can no longer be

represented by a Markov chain . Fortunately , the flow graph remains

quite simple even for this type of stochastic process . Node N ,

representing the state in which n targets have been killed , is

merely split into m nodes , where each node is reached from a prior

node either by firing a volley composed of a different total number

of missiles , m being the number of different total numbers of missiles ,

or by proceeding from a different node such that the same point in the

firing strategy is reached . Consider a "keyed " firing strategy

53 , 2 , 1 , 1 , 1 , ... , where the transition between volley sizes ; e.g. ,
between the volley of three missiles and the volley of two , is not

made until there has been a change of state ; i.e. , until at least one

plane has been shot down as a result of firing missiles in volleys of

three . This information is normally available from a continuous wave

illuminating radar , since a falling tone indicates that one or

( but not how many) planes has been killed . The keyed strategy does ,

of course , require the operator to wait until the present volley of

missiles has reached the target area before firing the next volley .

For the case of four targets and firing strategy S3 , 2 , 1 , 1 , 1 ,

this necessitates two nodes for state two and two nodes for state

three , as can be seen from the diagram . Although self-loops and

forward paths are thereby added to the flow diagram , the calculations

do not become conceptually more complicated , but merely more voluminous .

Since an electronic computer would ordinarily be used to evaluate system

gain , using Mason's rule , for situations involving a large number of

aircraft or a complicated firing strategy , this is not a serious draw

back . Indeed , the chief advantage of the method is that the complexity

of the calculations does not increase in proportion to the number of

states in the system and the complexity of the strategy . If instead

of a keyed non - uniform strategy , one uses a " pure" strategy , in which

the transition between volley sizes is independent of changes in state ,

it is necessary to provide additional split nodes to accommodate the

paths representing misses by all missiles in a volley . This type of
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path will no longer be a self-loop to the same node , but will lead to

a separate node representing the same state but requiring that a dif

ferent number of missiles be fired . For example , for the strategy

S3 , 2 , 1 , 1 , 1 , ... , the self-loop to node O would now lead to subse

quent nodes by the strategy S2 , 1 , 1 , 1 , ... ,.. , finally reaching node IV .

Similarly , the particular path from node OB which represents two

misses would not be a self-loop , but would lead to node OC , which

would then lead to subsequent nodes by the si , 1 , 1 , ... strategy

depicted in Figure 1 . The paths representing misses by all missiles

at other nodes would be treated in the same manner . This case is not

worked out here since it adds nothing to the explanation of the

technique, merely representing a straightforward extension of the

diagram with no difference in the manner of solution except that it

requires more steps in the computer program .

The above four strategies were analyzed for a formation of four

attacking aircraft . The SSKP was taken as .75 , and the multiple

target weighting factors were taken as 0.9 , 0.8 , 0.5 , and 1.0 for

states 0 , 1 , 2 , and 3 , respectively , in accordance with the fact ,

explained above , that the multiple target effects become less pro

nounced as the number of targets increases . Therefore , the resulting

kill probabilities , Pn ; were .675 , 600 , .375 , 5750 , and 0 for states

0 , 1 , 2 , 3 , and 4 , respectively , being 0 in state 4 since there are

no remaining aircraft at this point . The diagrams were used to

calculate , for each firing strategy , the probability of killing all

four targets as a function of the number of missiles fired .

example , the flow diagram for s3 , 2 , 1 , 1 , 1 , ... , after assigning

path values and combining parallel paths , is shown in Figure 5 .

The system gain can now be found by node absorption , Mason's rule ,

or a combination thereof . For example , the quotient of polynomials

obtained for S3 , 3 , 3 , 111 , was :

As an

0.224x6 + 0.418xº + 0.052x
12

n A

i

G :

Σ
A 1 - 1.360x3 + 0.391x6 - 0.034x° + 0.001x12

i=1

.224x6 + .722x9 + .946x
12

+ .963x + .964x18

Thus , the probability of killing all four targets with , for example ,

twelve missiles fired three at a time was .946 . The results of the

calculations are shown in Figure 6 . It is seen that si , 1 , 1 ,

provides a higher probability of killing all four targets than do the

other strategies when the number of missiles to be fired is seven or

less . However , the probability then levels off rather sharply , and a

great many missiles would be necessary in order to exceed a probability

of .8 . The curves for S2 , 2 , 2 , ... , and 53 , 3 , 3 , ... , have the same
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general shape as that for si , 1 , 1 , ... , except that they tend to level .

off at a higher range of values . However , it would still be necessary

to fire a large number of missiles in order to attain a probability in

excess of .9 . The curve for S3 , 2 , 1 , 1 , 1 , ... tends to level off at

a high range of values , and it has the advantage of rising more quickly

to this range . The reason for this is fairly obvious , since this

strategy calls for firing a large volley at first and then smaller

volleys , taking advantage of the fact that the energy centroid of the

targets tends to remain more in the center of the formation if the

number of targets is large and that the probability of more than one

missile locking on the same target is lower for a large number of

targets . Although these effects are intuitively clear , the exact

manner in which they interact is not , and it is apparent that further

analysis along the lines suggested by Figure 6 would lead , by a kind

of dynamic programming process , to the optimal firing strategy for any

given situation if one is trying to maximize the probability of killing

all four targets by firing a certain number of missiles . If one is

interested in the probability of killing some specific number of the

attackers instead of all of them , as a function of firing strategy and

number of missiles fired , it is necessary only to delete all flow graph

nodes representing a number of kills greater than this .

If one is attempting to optimize some other aspect of the situation ,

the information is generally available from Figure 6 . For instance , the

expected kills per missile are plotted for each strategy in Figure 7 .

It is seen that strategy S3 , 2 , 1 , 1 , 1 , ... provides a higher number

of expected kills per missile than the others if five or more missiles

are fired . In order to obtain the true mathematical expectation , of

course , one would also need the probability of killing three , two , and

one of the attacking aircraft , which would necessitate calculations of

the system functions to nodes I , II , and III . The main contribution ,

however , is provided by the probability of killing all four of the air

craft , and the true expectations , although somewhat higher than the

ones in Figure 7 , would not differ from them qualitatively , and one

would not ordinarily require a refinement of this nature until it was

apparent that the optimal strategy had been approached .

Although the above technique , utilizing representation of transition

probabilities by signal flow graphs and subsequent application of Mason's

rule to calculate system functions which indicate the effectiveness of

the relevant strategies , was used in conjunction with missile firing

strategies in this case , it is readily seen that it is applicable to a

variety of problems arising in military operations research and in other

situations involving stochastic duels and programming under conditions

of uncertainty . It also provides a facile method for analyzing , by

means of an electronic computer , the effects of a change in strategy

( or programming ) or of engagement parameters or program elements and

therefore is amenable to gaming .
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THEORY AND ASSUMPTIONS UNDERLYING

THE DEVELOPMENT OF CSP-R*

Harold W. Kelley and Fred L. Abraham

U. S. Army Ammunition Procurement and Supply Agency

Joliet , Illinois

1.0 INTRODUCTION

This memorandum discusses the development of CSP-R , a continuous

sampling procedure involving normal , tightened , and reduced sampling inspection .

The memorandum discusses some of the considerations that led to its development

and the objectives set for the procedure during development . It also provides

the necessary mathematical derivations used in the development . CSP-R plans

will appear in MIL-STD-1235A , " Continous Sampling Procedures and Tables for

Inspection by Attributes . "

2.0 BACKGROUND

2.1 Reduction in Sampling Inspection

When confidence has been established that a manufacturing process is

stable and is producing a small percentage of defective material , the user of

continuous sampling plans often has the desire to reduce the amount of sampling

inspection being done .

2.2 CSP - M

MIL-STD-1235 contains a multi - level sampling plan , CSP - M , which allows

such reduction in sampling inspection . In spite of this feature , a survey of

Army Ammunition Plant inspection elements indicated that CSP - M was considered

too complicated in terms of its administration to be useful . For this reason ,

the CSP - M plans were generally ignored .

From a technical point of view , CSP - M contains another weakness ; it is

not very responsive to a deterioration in quality if one of the reduced sampling

states has been reached . As an example , suppose that we are inspecting at

sampling rate level number five , AQL = .25% , i = 287 . Suppose that a previously

low process average shifted to 1 % , or four times the AQL . The probability

of continuingl on one hundred percent inspection after finding a defect is only

.00000000946 . In fact , there is only an 80% probability that the 100% inspection

1

--that is , going progressively through the checking states to the

100 % inspection level .

* This article has previously appeared as Technical Memorandum QEM 21-230-6 .

The remainder of this paper has been reproduced photographically from the
author's copy .
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level will be reached without first reaching a certain level R or star state

( say , level 3 ) and then reverting to a lower level ( level 4 ) .

2.3 CSP- 1

The simplest continuous sampling plan is , of course , CSP wherein

the finding of i consecutive defect free units on 100% inspection allows

sampling inspection to begin , during which the finding of a defect causes

a reversion to 100% or screening inspection . CSP-1 , however , does not allow

a decrease in sampling inspection . Using a CSP-l plan with the same AOQL

but with a smaller sampling frequency may be a solution , but indiscriminate

shifting between plans without specified rules based upon the mathematical

impact of such shifting is , of course , not desirable .

2.4 CSP-2

CSP-2 , while not allowing a reduction in the sampling frequency , does

delay the resumption of screening inspection under certain circumstances .

This feature is desirable in those situations where an alert of the screening

crew seems necessary , but it offers no special advantages insofar as allowing

a reduction in sampling inspection .

2.5 MIL - STD - 105D

MIL-STD-105D allows a reduction in lot-by-lot sampling via the reduced

sampling technique . A history of good product quality allows a reduction in

sample sizes for subsequent inspections . At the same time , a history of

marginal product quality causes a tightened inspection to be initiated . This

tightened inspection sometimes requires a larger sample size , but in all

cases the probability of accepting a lot with a given percent defective is

lower under tightened sampling inspection .

3.0 OBJECTIVES

Consideration of the points mentioned above led to some general ideas

about what kinds of characteristics a continuous sampling procedure should

have , if this continuous sampling procedure were to allow a reduction in

sampling inspection after demonstration of a low process average .

3.1 Responsiveness

The procedure should be responsive to an undesirable shift in the

process average . This feature could be obtained by requiring a screening

sequence after finding a defect on a sampling sequence .

2 -other than 0% or 100% defective .
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3.2 Simplicity

The procedure should be both simple in design and relatively easy to

administer . Although simplicity is a somewhat subjective concept , it would

seem that , generally speaking , the fewer inspection states a procedure has , the

simpler the procedure would be . Likewise , a procedure with simple rules for

switching between sampling and screening states ? is simpler than one which

requires check states or similar devices . It was felt , therefore , that a procedure

with a relatively few number of states , with the switching rules similar to those

of CSP- 1 , would satisfy the objective of simplicity .

3.3
Average Outgoing Quality Limit:

The development of the procedure should be based on the concept of an

average outgoing quality limit (AOQL ) , not only to provide a limit to average

outgoing quality which will not be exceeded no matter what quality of product

is submitted for inspection , but also to establish correspondence with CSP-1

plans and other continuous sampling plans from which a user can make a choice .

3.4 Relationship with CSP-1

Common sense dictated that the procedure require less inspection than some

norm for product of high quality and more inspection for product of marginal

quality . Accordingly , it appeared reasonable that the first step of the develop

ment would be establishment of a norm . CSP- 1 was selected as this norm because it

is the most widely used of existing CSP's by Army Ammunition Plants inspection

elements .

The attainment of this objective could be demonstrated by a comparison

of Average Fraction Inspected (AFI ) curves for the developed plans with AFI

curves for corresponding CSP- l plans : An AFI curve shows the percentage of

units inspected over the long run when the process average is of a certain value .

3.5 Relationship with the Normal - Tightened -Reduced Concept of MIL - STD - 105

Purely as a matter of standardization , it was decided to develop the

procedure along the lines of the normal - tightened - reduced concept of MIL -STD - 105D .

Users of MIL-STD- 105D could adapt easily , therefore , should they have occasion to

use this procedure in MIL-STD- 1235A .

3CSP- 1 , for example , is the epitome of simplicity in this regard .

* A graphical illustration of this comparison is given in ( 7.1 ) .
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4.0 THE DEVELOPMENT

With the objectives above in mind , development of the procedure began .

Several models were formulated and weighed against the objectives stated . Actually ,

most of the objectives could be satisfied simply by designing them into the

procedure . The steps used to evaluate each model in terms of its statistical

properties are discussed below .

4.1 Determining the Parameters

After a general procedure was defined , which would satisfy , by its

construction , most of the objectives , it became necessary to investigate the

procedure's relationship with CSP-1 . In order to satisfy the objective concerned

with this relationship , representative examples of CSP-l plans were selected . The

AOQL's for these plans were used in determining the parameters ( sampling

frequencies and clearance numbers for the plans based upon the procedure under

investigation . Accordingly , the AOQ formula for each procedure had to be developed 5

and the parameters subjected to variation until the maximum resulting AOQ for any

value of the process average , P , was close to the target AOQL . In general , the

sampling frequencies were held fixed and the clearance numbers were allowed to

vary . As can be seen from a study of Appendices A and B , this was no small task .

4.2 Computing the AFI Curves

Upon the determination of the parameters of the plan , the AFI formula

developed prior to developing the AOQ formula6was used to find several points

of the AFI curve for the plan . The AFI curves were then drawn on graph paper .

4.3 Comparing AFI Curves

After determining the AFI curve for the plan under test , the AFI

curve for the corresponding ?CSP - 1 plan was drawn on the same sheet of graph paper ,

and the results were compared .

As discussed in 3.4 above , it was desired that a plan based on the

developed procedure require less inspection than a corresponding CSP-1 plan for

product of good quality and more inspection than CSP-1 for product of marginal

quality . Expressing this mathematically , we want

AFI (of CSP- 1) > AFI (of developed plan) for p < Po '
and

AFI ( of CSP-1 ) < AFI ( of developed plan) for p >
PO

where
Po

would be the " dividing line" of good and marginal quality . It was desired to

5See Appendices A and B for the work involved in deriving the AOQ formula

for the selected procedure .

6See Appendix B for the AFI formula of the selected procedure .

7The method of establishing the correspondence was defined for each

procedure but in each case depended on the AOQL .
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keep Po within the interval (0 , PL ) , where Pl is the value of the process average

for which the AOQ is equal to the AOQL . This choice , though arbitrary , seemed

reasonable .

4.4 Selection of Procedure

A procedure was finally selected which most satisfactorily fulfilled

the objectives . This procedure was designated CSP-R , and is described in block

diagram form in Figure I. This procedure , while generally satisfying all of

the objectives , does not strictly satisfy the objective relative to the AFI curves

when the clearance number is very small and at the same time the sampling frequency

is very large ? Since plans with these parameters are not used extensively ,

this limitation did not seem restrictive .

5.0 THE PROCEDURE

Although Figure I seems very self - explanatory , discussion of some of the

features of CSP-R seems in order .

There are three sampling states : normal , tightened , and reduced , and

three screening states : qualification , retrial , and tightened . It can be seen

that the three sampling states are parallel to the normal - tightened - reduced

concept of MIL - STD - 105D , and this is , in fact , why they are labelled as such . The

rationale for the three screening states can be found in the discussion below .

5.1 How the.Procedure Operates

Entrance into the inspection states was designed to be dependent upon

the demonstrated capability of the production process , as evidenced by favorable

or unfavorable inspection results . Under the system , the qualification state

is initially entered . When evidence indicates the quality of an item has stabilized

at a satisfactory level , normal sampling is initiated . Continued evidence of

the process's capability to produce satisfactory or better quality permits the

reduced sampling state to be entered . Once reduced sampling is initiated , sampling

remains in effect until a defect is found , at which time the system immediately

invokes its qualification screening provisions .

The tightened inspection phase of the system was also designed to be

entered from the normal inspection phase . However , tightened inspection

provisions are invoked only when defect ( ive) s fall too closely together ; that

is , when the separation of defect (ive ) s is less than a prescribed minimum

spacing . Tightened screening remains in effect until sufficient evidence indi

cates the process is capable of generating an item of at least marginal quality .

Once this evidence is established , tightened sampling is initiated . The normal

sampling state may then be re-entered if evidence of favorable inspection

8-those plans in MIL-STD-1235 associated with large AQL's and the lower

code letters .
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continues . If not , the system invokes its qualification screening provisions

and continues as before .

Similarity of provisions governing transitions between states in CSP-R

and those associated with the MIL-STD-105D scheme is apparent . However ,

under the MIL-STD-105D scheme there is a transition from reduced to normal

sampling not only upon an unfavorable inspection result (rejection of a lot) , but

also upon acceptance under the procedures of 10.1.4 of that Standard? We

therefore see that the reduced state is entered with difficulty , but left immediately

should doubt arise as to the continued high quality of material . The analogous

CSP-R provision is the requirement of re-entrance into the qualification screening

state . This provision , though admittedly drastic , was established to assure

performance of sufficient screening to guarantee that the previous ly good

quality level had not deteriorated .

The retrial screening provision of CSP-R was designed to represent a

reasonable balance between : ( 1 ) the need for assurance of the previously es

tablished quality level for normal sampling and ( 2 ) a desire to avoid a premature

decision to invoke the tightened provisions .

5.2 Properties of the Parameters

In common with most CSP plans , those of CSP-R were developed to be based

on AOQL and defined by the parameters fj and ik ,and ik , where fy is the sampling

frequency in the jth sampling state and ik is the clearance number in the kth

screening state . Also , in common with most CSP plans, the parameters fj and ik

of CSP-R plans determine the AOQ function , as discussed previously .

To maintain the normal , tightened and reduced inspection concept , the

following relationship among sampling frequencies was used : f1 ' EN ' fR ; where

the subscripts T , N , and R refer to tightened , normal, and reduced" sampling ,

respectively . Since CSP- 1 had been established as the norm , it was decided to

equate fn of CSP-R to f of CSP-1 for equal AOQL and production interval size .

Consequently , sampling rates ft , fn and fr in CSP-R could be the frequencies

for any three consecutive code letters under CSP- 1 for a given AOQL . This was

conducive to simplicity .

3

Two values of ik were established for the procedure : i and i* . The

relationship between i and i* is i* 1/2 (with a few exceptions ) . The choice

of this relationship between i and i* was predicated upon the need for more

stringent requirements for entering reduced sampling than for entering tight

ened inspection . It had been noted that the MIL-STD- 105D scheme generally

requires ten consecutively accepted lots (plus the defects in these ten lots

9-that is , when there is not strong evidence that quality is superior .
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being less than a prescribed minimum number ) under normal sampling to qualify

for reduced sampling, but only five consecutively accepted lots on tightened to

re-enter normal . Hence , the relationship between 1 and 1* followed by analogy .

In addition , it was noted that the MIL - STD - 105D scheme invokes tightened inspection

provisions if any two of five (analogous to 1* ) consecutive lots are rejected

on normal . CSP-R was designed to require tightened inspection when defect ( ive ) s

are separated by fewer than i* units ; one defect (ive) being permitted in normal

sampling but not another in re- trial screening .

6.0 DERIVATION OF FORMULAE

As mentioned previously , the development of CSP-R required , upon setting

up a hypothetical procedure , the determination of the mathematical properties of

the procedure , so that appropriate comparisons could be made .

6.1 The Flow Diagram

The first step in constructing the appropriate mathematical model would

be to outline the procedure in flow diagram form . Figure I is the flow diagram
of CSP-R .

6.2 Events Causing a New State /Phase to be Entered

The next step is to look over each of the blocks in the flow diagram

and determine the events causing a state and /or phase to be entered . As used

herein , " state " refers to either qualification , retrial , or tightened screening ,

or normal, tightened or reduced sampling . " Phase" refers to either the units

inspected during a sampling state , or the units skipped during a sampling state .

The followingFigure II shows the events laid out in matrix form .

notation has been used in Figure II :

O

Qualification state
N

Normal sampling state

T
Tightened sampling state

R Reduced sampling state

N*
Retrial screening state

T* Tightened screening state

The subscripts I and S in Figure II pertain to phases of sampling

states . I denotes the phase when a unit is being inspected , and S denotes the

phase when the units are being skipped .
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6.3 State Probabilities

The next step is to develop formulae for determining the percentage

of units , over the long run , which will reach the point of inspection during each

of the states . The development of these formulae for CSP-R is shown in Appendix A.

6.4 The AFI

Next , the AFI formula must be developed . This development is shown in

Appendix B for CSP-R . The resultant formula is

AFI PII + PRIPo + PN* + PN+ PT* + PTI

where Pj is the state probability of state j , where the subscripts are defined
as in 6.2 above .

6.5 TheAOC

Upon determining the expression for the AFI , the AOQ formula can be

constructed rather simply . This is shown in Appendix B. The resultant formula is

;
AOQ

p [ l - AFI ]

1 - p (AFI )

where p is the probability of a defective unit .

6.6 Determining the Parameters

Using a certain value of AOQL and establishing values for the sampling

frequencies , the AOQ formula , through an iterative process , was used to develop

the values of i and i* for the CSP-R plans which will appear in MIL-STD-1235A .

It should be pointed out here that the AOQL's used in MIL - STD - 1235A are generally

less than the corresponding values in MIL-STD- 1235 . This is because the AOQL's

in MIL-STD-1235A have been matched (with certain limitations ) to the AOQL's of

the MIL-STD-105D single sampling schemes (with the same AQL) , treating the scheme

as encompassing normal , tightened , and reduced inspection . The effect of tightened

inspection caused the resultant AOQL's to be lower .

6.7 Computing the Curve Points

During development , the curve points (AFI and AOQ ) were computed for

certain representative plans . Upon selection of the CSP-R procedure , curves for

each of the plans were computed on the Agency's RCA 501 digital computer . Addi

tionally , Operating Characteristic (OC ) Curves were computed . The derivation of

the formula for the OC Curves appears in Appendix C. These curves , should they

appear in MIL -STD - 1235A , will show the percentage of units accepted on a sampling

basis , for each value of the process average , p .
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6.8
Assumptions Used in the Derivations

Throughout this discussion , we will assume Figure I defines an ergodic

Markov process . Thus , after many steps have occurred in the system the prob

ability of being in any given state of CSP-R tends to become a steady state

probability which is independent of the number of steps but dependent upon the

state in which the system was at the last step and upon the transitional prob

abilities .

We will further assume :

( 1 ) All items are classified correctly , i.e. defect (ive) or

non - defect ( ive ) ;

(2 ) The production process is in statistical control ;

( 3 )

When sampling is in effect , every 1 / f; th unit is inspected with
screening required to begin with the next unit after a defective

is observed ( see below ) ; and

( 4 ) Defective units found are removed but not replaced by non

defectives .

We will digress here to briefly discuss the effect of these assumptions .

The assumptions above have been adopted largely because they lead to the

simplest mathematics . However , the use of these assumptions does not imply that

CSP-R plans are invalid if conditions other than those assumed apply . What their

use does imply is simply that the plans have been designed with these conditions

in mind . Deviations from the stated conditions will , in general , affect the

AFI function and result in values of AOQL higher than the theoretical values com

puted from formulae derived herein . Although the modifications of the theoretical

AOQL values resulting from such deviations have not been thoroughly explored , some

treatment of alternatives has been made [ 7.11 ] , [ 7.12 ] , [ 7.13 ) , 17.14 ) , 17.15 ) ,

[ 7.16 ) .

Assumption ( 3 ) above has been adopted solely for mathematical convenience .

It is recognized that the theoretically best method of sampling would be proba

bilistic , i.e. , each unit would be inspected with probability fj , independent of
other units . However , strict adherence to this method in an actual production

situation would be impractical , if not impossible . In some instances , block ( or

group ) sampling may be required ; in others , probabilistic or the assumed systematic

sampling method may be in order . Thus , MIL-STD-1235 provides for the selection of

sample units " so as to give each unit of product an equal chance of being inspected "

with the inspector allowing the interval between sample units to vary somewhat

rather than drawing "sample units according to a rigid pattern . " The effect of

assumption ( 3 ) is to provide AOQL values of the same magnitude as those

computed under the assumption of probability sampling .
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APPENDIX A

DERIVATION OF STATE

PROBABILITY FORMULAE

A.1 GENERAL

A.1.1

define

In deriving the steady state and state entrance probabilities , we will

р Probability of a defective unit ;

1
1

q 1 -p probability of a non-defective unit ;

i

=

clearance number for states 0 , N ;

i *

=

clearance number for states N* , T* , T ;

and for و
ل
ا

=

0 , N , N* , T , T* , R , let

Pj Prob . ( being in state ſ on the present step ) ;

Pj
Prob . ( entering state j ) ;

fj the sampling rate for state j .

A step will be defined as the inspection of a unit of product .

A.1.2 When the process is in states j N , R , T , some units are being skipped

( passed ) while others are being sampled and inspected . In the derivations the

skipped unit possibilities in these states will be considered . It is convenient ,

therefore , to partition states j = N , R , T , into skipping and sampling phases .

Let P

Bjs Prob . (being in the skipping phase of state j ) ;

and

PjI Prob . (being in the sampling phase of state j ) .

Then ,

Рі + PjI

j Bjs
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Moreover , it is convenient to partition the skipping phase , js , into skip unit

phase one and skip unit phase two . Therefore , let

Pjso Prob . ( being in skip unit phase one of state 1 ) ;

and
P
j
s
i $

Prob . (being in skip unit phase two of state j ) .

Then ,

B
j
S و+

و
ڈ

९
१
६

for

j N , R , T.

Skip unit phase one will be defined as that phase of j initially entered ,

and skip unit phase two will be defined as that phase of is in which all

subsequent skips occur . Skip unit phase one may therefore be viewed as being

a " transitional" phase between the last step in some previous state and the first

step in the present state .

The preceding state /phase symbols with primes will be used to denote the

probability of entering a given state /phase on the present step .

A.2 EXPRESSIONS FOR THE STEADY STATE PROBABILITIES

( 1 ) Ро Prob . (just entering state 0 on the last step ) +

Prob . ( entering 0 , two steps ago , and inspecting a

non-defective on the last step ) +

Prob . ( entering 0 , i steps ago , and inspecting 1-1

consecutive non-defective units )

.

Pó + Po9 + Póq ? +
+ PPóqt -1.

Pó (1-1) /2

(2)

1
1

P
N

Prob . (being in the sampling phase of state N) +

Prob . (being in the skip unit phase of state N)

P
N

PN
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( 3) PNI Prob . ( just entering phase Ny on the last step )

+ Prob . ( entering phase NI two steps ago and

inspecting a good unit on the last step )

+ ... + Prob . (entering Ni, i steps ago , and

inspecting 1-1 consecutive non-defective units )

PŘI + PNZA

+

+ Fܳ݁ܬܨܘܐ
i

a + + Pú 91-11
I

PN, ( 1-91) /p .

(4) PNS Prob . ( entering skip unit phase of N and passing

( skipping) the next ( 1 / fp) -1 units )

PÅSPŃa [ ( 1 / £n) -1 ] .

Similarly then ,

( 5 )
Pa PII

+

+
PIS

( 6 )
3

PII Pri (1 -q1*) / p

( 7 )
PIS

Pis ( ( 1 / q) -1 ]

( 8 )

P

PR
PRI + P R

S

(9)

B
R
T ( 1 / p )

PR

( 10 )
PRS 1

1

PRE [ (1 / £r) -1 ]

( 11 ) PI**

P

3

*

Pf* ( 1-qi *) /2

( 12 )
PN*

P

Pk+ ( 1-91*) / 2
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A.3 EXPRESSIONS FOR THE STATE ENTRANCE PROBABILITIES

With the aid of FIGURE II we obtain

( 13 ) Po Prob . (being in state 0 and finding a defective unit) +

Prob . (being in state R and finding a defective unit ) +

Prob . (being in state T and finding a defective unit )

1
1

Po.P + PRE: P + PTZ P.

Combining ( 1 ) , ( 6 ) , and ( 9 ) with the above , yields

( 14 ) Po PÓ ( 1 -qt ) + PRPRI
+

Prz (1-q1*) .

In a similar manner the other s are obtained :

( 15 ) PN* PN ; (1 -qt,

( 16 )
=

Pi* Pi* ( 1-71 ) + Př# ( 1-q1* )

( 17 )

PNSO Pó qt +
piss q ** +

+

Pix qi *

( 18 )

Prisi 9 + P'_9? +

PN ,

+

9
+.

xq3ܳ݁ܬP
.

PN_94-1

( 19 ) PŅI

Piso

( 20 ) 9

pisso Pf*q**

( 21 )
Pisi

3

Pica
+

PF , 92
qC +

1 * -1

a
+

( 22)
PII

eisso

( 23 )

PRSO PN ,
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( 24 )
PRST PÅq + P ?* *

+ . .. +

Pkzat + PŘy q1+1

( 25 ) 2

PRE

ERSO

By definition

( 26 )

P! p
j
s
o
+ Pisa

Then , from ( 17 ) and ( 18 ) we obtain

( 27 )
PNS

P
A
S
O +

Piisa

2

PŃy + P _9 + P.
+ ..

pix_q4-
1

Pn, (1-q + ) /p .

Similarly ,

( 28 ) Pits P (1-4 )/p

( 29 )

=

PRS PR (1 /p )

A.4 EXPRESSIONS FOR THE STEADY STATE AND STATE ENTRANCE PROBABILITIES IN

TERMS OF KNOWN PARAMETERS .

A.4.1 Equations ( 14 ) , ( 15 ) , ( 16 ) , ( 19 ) , ( 22 ) , ( 25 ) , ( 27 ) , ( 28 ) , ( 29 ) define

nine equations in nine unknown entrance probabilities . These equations and their

associated steady state probabilities may be expressed in terms of parameters P ,

q , i , i * , and fj , which are assumed known . This section discusses the derivation

of such expressions .

A.4.2
In lieu of solving explicitly for each Pị and Py , it was convenient to

first express each state entrance probability , Pj , in terms of PŘI
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Equations ( 14 ) through ( 29 ) were then used to obtain :

( 14 ' ) Po På 194 + ( 1 - q1 ) ( 1-q1 *) 21 / q1

( 15 ' )
PN* PŃ, (1-91 )

( 16 ' ) PiA PŃ, ( 1-21 ) (1-41*) /q1*

( 22 ' )
PI, Pn, ( 1-94 ) ( 1-91*;

( 25 ' )
PRI

P ^_91

( 27 ' )
PNE PŃ (1-q+)/p

PX ( 1-95) (1-22*) 2/2
( 28 ' )

=
PIS

( 29 ' )
3

PRS Piat/p
N.

When the preceding primed equations are substituted into equations ( 1 ) , ( 12 ) ,

( 11 ) , ( 6 ) , ( 9 ) , ( 4 ) , ( 7 ) , and ( 10 ) respectively , the following steady state

probability equations are obtained in terms of PNG :

( 1 ' ) Ро PŘz [ q ? + ( 1-q +) ( 1 -q +*) 2 ] ( 1-q + ) / p qt

( 3 ' )
PNI Př1 (1-q1) /2

( 4 )

B
u
s

PN, 1(1-q+)/p] [ ( 1 / £n) -1 ]

( 6 ' )
B
I
I

3

PNG ( 1-qt) ( 1-4 + * 2/p

( 7 ' )

P
I
S

PÅ, [ ( 1-q4 ) ( 1-q+* ) 21 [ ( 1 / £7) -1 ) /p
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( 9 ' )
PRI

3

PX /

( 100 )

P
R
S PŘE 1 [ ( 1 / £r) -1 ] / P

( 11 ' ) PT *
PNE

( 1-27 ) ( 1-q ** ) 2 /q7* p

PX ( 1-4 ) (1 - q1 *) / p( 12 ' ) PN*

Since £ Pj 1 , equations ( l ' ) , ( 3 ' ) , ( 4 ' ) , ( 6 ' ) , ( 7 ' ) , ( 9 ' ) , ( 10 ' ) , ( 11 ' ) , and

( 12 ' ) can be combined to obtain

( 30)

PNE
p qi* q1/ D ;

where

D = qi* ( 1 - q1 ) [ q1 + ( 1-21 ) ( 1 - q1 *, 2 ] + gt ( 1-27 ) ( 1 - * ) +

qi ( 1-q1 ) ( 1-91 * , 2 + qi* q ( 1-9+ ) / fn + q21 q1* / fR +

qi qi * ( 1-21 ) ( 1-91*32 / fr .

Expressions for the steady state probabilities in terms of known parameters can

now be obtained by substituting equation ( 30 ) into the primed number equations .

( 1 " ) Ро ( 1-91 ) [ qi + ( 1-21 ) ( 1 -q1*32 ] / D
=

a

( 3 " ) PNI

=

qi * q? ( 1-21 ) / D

( 4 " ).

P
N
S

1 *

=

a qi ( 1-q1 ) [ ( 1 / fn) -1 ] / D

( 6 " )
B
I
T qi* qi ( 1-21 ) ( 1-91* , 2 / 0

( 7 " )

B
I
S qi* qt ( 1-q1 ) ( 1-91*32 [ ( 1 / £7) -1 ] / D

i

( 9 " )
P
R
I 921 q1*/D
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( 10 " )

3

PR 921 * [ ( 1 / ER) -1 ] / D

( 11 " ) PI* 1 qt (1-21 ) ( 1-91*, 2 /D

( 12 " )
PN* q1* q ( 1-91 ) ( 1 -q +* ) / D
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APPENDIX B

DERIVATION OF AFI AND AOQ

B.1 THE AFI FUNCTION

B.1.1 By definition AFI is the expected ratio of the total number of units

inspected to the total number of units inspected or passed . Thus , by letting

Kj the number of units passing through the inspection system in

state j ;

KjI
3

the number of units inspected in state j ;

=

Kis
the number of units skipped (passed ) in state j ;

Kj * JI
+

;

and K =
[K; ; where ; = 0 , N , R , T , N* , T* ,

we may write

( 1 ) AFI = lim

{ksi

[K ] + [kis{K;

+ KRIKo + KN* + KT * + KNI + KTI

= lim

KO + K ,
+ KI* + KNI • KII + KRIK + 0

KN* +

KNS

+

KIS
+I

KRS

Po + PN* + PNI + PT* + PTI + PRI
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Using ( 1 " ) , ( 3 " ) , ( 4 " ) , ( 6 " ) , ( 7 " ) , ( 9 ' ) , ( 10 " ) , ( 11" ) , and ( 12 " ) of A.4 , APPENDIX

A , expressions for the AFI in terms of the parameters p , q , 1 , 1 * , and f

obtained .
j

are

B.2 THE AOO_FUNCTION

Dodge and Romig [ 7.17 ) , have given expressions for the AOQ functions under

two assumptions :

Case I : Defective units are removed and replaced by non-defective units .

Case II : Defective units are removed but not replaced .

Case two ( 11 ) is consistent with standard operating procedure in most

ammunition inspection situations . Accordingly , appealing to the Dodge and Romig

expression , we used the following :

; where

( 1 ) AOQ

pl - AFI

1 - p ( AFI )

3

AFI is as defined by ( 1 ) of B.1 and p is the probability of a defective unit .
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APPENDIXC

DERIVATION OF 0.C.

By definition the fraction of product accepted on a sampling basis is the

expected ratio of the number of units accepted on a sampling basis to the total

number of units inspected or passed . Now , recalling the assumption that defec

tive units are removed but not replaced , the number of units accepted on a sampling

basis must obviously consist of only those units inspected and found non-defective

plus those units passed ( skipped and therefore accepted ) in the sampling inspection

Thus , appealing to the notation of A.1 of APPENDIX A , and B.l of APPENDIX B ,

we write for j - N , R , and T

{ ( Kjs + qkg, )
( 1 ) 0.c. ( % ) lim

K + 20
X 100

K

PNG+ PTS + PRS + PPs, * 4PI ; * q?r ]
X 100

Using the equations of A.2 and A. 3 of APPENDIX A , it can be shown that

P
A
S

PN, 1 ( 1 / fp) -1 ] ,

B
B
S PRI [ ( 1 / fR) -1 ) , and

P
I
S

PI ; [ ( 1 / £ ) -1 ) ·

Therefore , equation ( 1 ) above can be written as

( 2 ) 0.c. ( % ) +

100 { [ (1/8)-1 + q ] PNI + [ ( 1 / FR) -1 + q ]PRI

[ ( 1 / £ ) -1 + q ] PIT
}

+

100 { [ ( 1 / fp) -p ] PNI + [ ( 1 / fR) -p ] PRI

[(1 /£ )- p] Prid :
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AN EVALUATION OF LINEAR LEAST SQUARES COMPUTER PROGRAMS :

A SUMMARY REPORT

Roy H. Wampler

National Bureau of Standards

Washington , D. C.

ABSTRACT . Two linear least squares test problems based on fifth

degree polynomials have been run on more than twenty different computer

programs in order to assess their numerical accuracy . Among the programs

tested were representatives from various statistical packages as well as

some from the SHARE library . Essentially four different algorithms were

used in the various programs to obtain the coefficients of the least

squares fits . The tests were run on several different computers , in

double precision as well as single precision . By comparing the coef

ficients reported , it was found that those programs using orthogonal

Householder transformations or Gram - Schmidt orthonormalization were much

more accurate than those using elimination algorithms . Programs using

orthogonal polynomials ( suitable only for polynomial fits ) also proved

to be superior to those using elimination algorithms . The most successful

programs accumulated inner products in double precision and made use of

iterative refinement procedures . In a number of programs , the coefficients

reported in one test problem were sometimes completely erroneous , containing

not even one correct significant digit .

1 . INTRODUCTION . Since the time when the electronic computer began

to supplant the desk calculator as the chief tool for solving linear least

squares problems, numerous least squares computer programs have been written .

These programs have utilized a variety of computational algorithms . Be

cause least squares problems are by their very nature frequently ill

conditioned , the numerical accuracy achieved by a least squares program

strongly depends upon the choice of the algorithm . Many programs have

been written which use methods appropriate for desk calculators but in

appropriate for computers . Anscombe [ 1 ] has aptly remarked : "Textbooks

of statistical method display a wonderful unanimity in recommending com

putational procedures that are suited to desk calculators but are perilous

for computers . Only with some determination can the statistician break

himself of bad habits and become adequately informed about round-off error .

11

The present study was undertaken to assess the numerical accuracy

of representative least squares programs from a variety of sources . Two

test problems, both fifth degree polynomials , have been run on more than

twenty different programs . Included in the study were programs from the

BMD Biomedical Computer Programs collection [ 14 ] , the C-E-I-R Multi -Access

Computing Services library [ 10 ) , the IBM SHARE library [ 23 ] , the IBM System / 360

Scientific Subroutine Package [ 22 ] , the Univac MATH - PACK ( 33 ] and STAT

PACK [ 34 ] collections , and the Project MAC 7094 disk files [ 28 ] . A listing

of the sources of the programs is given in Appendix A , together with a brief

description of each program .
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For a number of programs , the test problems were run in double

precision as well as in single precision . This , of course , necessitated

certain changes in the original programs .

The programs included in this study used essentially four different

algorithms: orthogonal Householder transformations; Gram - Schmidt ortho

normalization ; orthogonal polynomials; and , Gaussian or Jordan elimination .

...و

The linear least squares problem may be briefly stated as follows :

One has n observations or measurements of a " dependent " variable y , which

are statistically independent with common variance 02 , whose expected

values are given by a linear function of the corresponding values of k

' " variables ,
1 ,

, In matrix notation we
k !

n observations have values E Y ) XB , Y

nx 1 vector , X is an n x k matrix , and B is a k x 1 vector of unknown

coefficients . Assuming that X is of rank k , the least squares estimates

of the coefficients are given by ( x'x)-1x'y . Other quantities of

interest are î = x Ê , the vector of predicted values ; 8 = Y - î , the

vector of residuals; and s2 = 818 / (n - k ) , an estimate of the variance 02.

In running certain programs, modifications were occasionally made to

input and output formats . Other changes were made in five of the programs

using elimination algorithms because the original versions of these programs

failed to give solutions to the fifth degree polynomial problems. The

nature of these changes will be described in the discussion of the individual

programs in Section 7 .

Three computers were used : the GE 235 , the IBM 7094 , and the Univac

1108 . The 1108 which was used is located at the National Bureau of Standards ,

and the 7094 which was chiefly used is located at Harry Diamond Laboratories ,

Washington , D. C. The programs run on the 235 and the Project MAC 7094

utilized consoles at the National Bureau of Standards connected to computers

at other locations .

Previous studies appraising linear least squares programs and comparing

the results of different algorithms have been made by Cameron [ 9 ] , Freund [ 18 ] ,

Bright and Dawkins [ 7 ) , Zellner and Thornber [ 38 ] , Longley [ 25 ] , and Jordan

[ 24 ] . The present study differs from the earlier ones mainly by including a

larger selection of widely used and easily accessible programs .

A more detailed report of the present study is given in Wampler [ 36 ] .

The more detailed version contains an appendix giving the individual coef

ficients obtained in running each program , an investigation into the effect

of rounded input on the solution of a least squares problem , additional de

tails pertaining to certain programs , and results from some additional test

problems. The longer report also includes several programs designed not

specifically for solving least squares problems but for solving n equations

in n unknowns , thus forcing one to use x'x and x'Y as input . Since it is

well known that this is not , in general, a good method for solving least
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squares problems, these programs are omitted from the present summary .

report . ( There was one outstanding exception among the programs requiring

X'X and X'Y as input . This was Newman's program , described in [ 30 ] , which

requires integer input and uses integer arithmetic and congruential methods

to obtain exact solutions . ) The present report gives results of one pro

gram (BJORCK-GOLUB ) not included in the more detailed report .

It was outside the scope of the present study to make a detailed

comparison of algorithms with respect to efficiency of computation time

and storage requirements . The programs which were included in this study

exhibited considerable variation in what quantities were calculated as

well as in the methods of calculation , and output ranged from meager to

copious . Moreover , no comparative examination of the outputs provided

by the programs was made . Rather , this investigation focused attention

on the performance of existing programs .

2 . THE TEST PROBLEMS . The two test problems which were used

throughout this investigation are identified as Yl and Y2 . Both were

fifth degree polynomials , with the values of x being the integers 0 , 1 ,

2 , ... , 20. The " observations , " Yl and Y2 , were calculated from the fol

lowing equations :

23 4 5

Yl : y = 1 + x + x + x 0 ( 1 ) 20

2

Y2 : y = 1 + .l x + .01 x + .001 x1001 x° +.0001x4 + .00001 x5 , x = 0 ( 1 ) 20

+ x + X х

Thus , the values of Yl were integers having from one to seven digits , and

those of Y2 were five - decimal numbers ranging from 1.00000 to 63.00000 .

If the least squares solutions were computed with no rounding error ,

one would obtain

B ( Y1 )

1

1

1

1

1

1

8 (Y2 )

1 .

.1

.01

.001

.0001

.00001

and for both problems the residual standard deviation would be zero .

For some programs the input required was the 21 values of x and y .
Other programs required , in addition , the powers x?, x3 , x4 , and x5 to be
entered as input. The input is listed in Table 5 , along with the matrices

x'x and x'Y associated with the test problems.

105



The two test problems, Yl and Y2 , were chosen because they are so

highly ill - conditioned that some programs fail to obtain correct solutions

while other programs succeed in obtaining reasonably accurate solutions .

Polynomial problems were chosen because polynomial fitting is an important

type of linear least squares problem which occurs frequently in practice .

The ill-conditioning of the two test problems can be described more

explicitly . One measure of the condition of a matrix A is the P-condition ,

defined as

λ

P (A)
μ

where is the numerically largest eigenvalue of A and u is the numerically

smallest eigenvalue of A. ( See Newman [ 29 , p . 240 ] ) .

For A = x'x , the 6 x 6 matrix associated with Yl and Y2 , the P - condi

tion is 4.095 x 1013 . In this respect , it is similar to the Hilbert matrix

of order 10 , whose p-condition is 1.603 x 1013 ( see Fettis and Caslin ( 16 ] ) .

The P-condition of the Hilbert matrix of order 11 is 5.231 x 1014 .

relation between the Hilbert matrix and the matrix X'X which arises in a

polynomial fit is discussed in Forsythe [ 17 ] .

Most of the programs which were tested obtained more accurate solutions

for Y2 than for Yl . If we let A denote the 7 x 7 matrix

x'x X'Y

A =

Y'x 0

>we find that for Y2 , P (A) = 4.095 x 1013
13

whereas for yl , P (A) = 6.829 x 10

indicating that the system involving Yi is more ill-conditioned than that

involving Y2 .

The test problem used by Longley [ 25 ] was also highly ill - conditioned .

For the 7 x 7 matrix X'X of his problem , the P-condition is 2.361 x 1019

3 . SUMMARY OF THE RESULTS . Tables 1 to 4 present a brief summary

of the main results . A count , C ,, of the number of correct significant

digits in each computed coefficient was obtained as follows :

Let B ( j = 1 , 2 , ... , 6 ) denote the " true" value of the coefficient

that is , the value computed with no rounding error . Let B; denote the
value calculated by the computer . Then

106



-10810 O and B. # O

'j

C.

ele

| ByB; - , | , 14183 - 81+
-10810810 )

+ 0 and B
By

= 0

D , the approximate number of decimal digits with

which the machine computes , if B

f Bj
B

j

0 .

The above approach to counting the number of correct digits in a

computed value has been used by Jordan [ 24 ] and others .

Tables 1 to 4 , in the columns headed "Average Number of Correct

1

Digits " report С

6

Σ

j =1

0
6

if By

From the above definition , a negative count can occur . For example ,

1.0 , and B 136.0 , we get C = -2.130 . This indicates that

j

is wrong by roughly two orders of magnitude.В

For two programs reported in Table 1 , BMDO3R run on the 7094 and

DAM run on the 7094 , the count for several coefficients was made in a

different manner . The BMDO3R program printed the coefficients in a

fixed - decimal format , with five decimals . The DAM program used a

floating-point format with only three decimals printed . A coefficient

printed as .00010 , when the true coefficient was .0001 , was given a

count of 2 , and 0.100E01 , when the true coefficient was 1. , was given

a count of 3 . In such cases the assigned count may have been too small ,

since the coefficients may have been calculated accurately to more digits

than were printed . In running these two programs on the 1108 , the output

format was changed so that eight significant digits were printed .

Each of the tables ( 1 through 4) summarizes a set of results for a

particular machine precision . Within each table the various programs are

given a numerical rank for each of the two test problems, with rank 1

denoting the best performance according to the count C.

4 . PROGRAMS USING ORTHOGONAL HOUSEHOLDER TRANSFORMATIONS. LSTSQ is

a program written by Peter A. Businger using orthogonal Householder trans

formations . This algorithm is described by Golub [ 19 ] , and Businger and

Golub [ 8 ] . The program applies a sequence of orthogonal transformations
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to the nx k least squares matrix X to obtain a decomposition X = QR ,

where R is upper triangular and I'Q = Iz : A pivoting strategy is used

so that at each step the column with the largest sum of squares is re

duced next . Once an initial solution is obtained , the program iterates

to obtain a (possibly ) improved solution .

The BJORCK -GOLUB program uses the Householder transformation

algorithm described by Björck and Golub [ 6 ] . This algorithm takes

advantage of the fact that x's = 0 , where s is the vector of residuals ,

to obtain the solution B in XB = Y from the augmented system of n + k

equations :

Y

(1 :1 ) 0

Here & as well as B is included in the iterative refinement procedure .

Of all the programs included in this study , LSTSQ and BJORCK - GOLUB

appear to have given the best performance . In Table 3 , which reports

the performance of eleven double precision programs , we see that LSTSQ

ranked first for Yl and second for Y2 , and that BJORCK -GOLUB ranked

first for Y2 and second for Y1 . In Table 1 , which reports the performance

of 20 single precision programs , we see that LSTSQ ranked first for Yl and

fourth for Y2 , and that BJORCK - GOLUB ranked second for Yl and third for

Y2 .
Ranks 1 and 2 for the Y2 problem were obtained by ORTHOL and OMNITAB

(using ORTHO) , two programs using Gram - Schmidt orthonormalization which

will be discussed in the next section . Table 4 reports the performance of

four programs which used single precision arithmetic except for the ac

cumulation of inner products , where double precision arithmetic was used .

Here we see that LSTSQ and BJORCK-GOLUB tied to obtain the top rank for

Yl (having perfect scores of 8.000 ) , but ranked third and fourth , respec

tively , for Y2 . In Table 4 , we note that all four programs obtained

similar scores for the Y2 problem , with rank 1 corresponding to 6.530

and rank 4 to 6.227 . In the Businger -Golub and Björck-Golub algorithms ,

it is recommended that all inner products be accumulated in double pre

cision . By comparing Tables 4 and 1 we see that when LSTSQ included this

feature , the average counts increased from 4.528 to 8.000 for Yl and from

5.840 to 6.279 for Y2 . With all operations performed in double precision

( see Table 3 ) , the counts increased to 14.643 and 16.293 , respectively .

The BJORCK -GOLUB program displayed similar improvements in accuracy when

inner products were accumulated in double precision and when all opera

tions were carried out in double precision .

Another program using Householder transformations was ALSQ , a

program containing no pivoting and no iteration . In Tables 1 , 3 , and 4

we see that ALSQ performed not quite as well as the LSTSQ and BJORCK

GOLUB programs which included these features , except in one instance . In

this one instance , Y2 in Table 4 , we note that its performance was slightly

better than that of the other programs in this category .
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5 . PROGRAMS USING GRAMSCHMIDT ORTHONORMALIZATION . ORTHO is a

program written by Philip J. Walsh using a Gram - Schmidt orthonormalization

process . This algorithm is described by Davis and Rabinowitz [ 13 ] , Davis

[ 12 ] , and Walsh [ 35 ] . ORTHO exists as a FORTRAN program , an ALGOL pro

cedure , a BASIC program , and as a routine of the OMNITAB program [ 21] .

tion oj :

Starting with the nxk matrix X , the Gram - Schmidt process of ORTHO

obtains $ = XT '- 1 and @ = T ' - 1 o'y , where T ' -1 is upper triangular and ' °= Ik .

This algorithm includes a feature of reorthonormalizing the vectors of 0 ,

proceeding from a first approximation to a (usually ) better approxima
From Table 1 it is clear that this reorthonormalizing is vital

to the algorithm , for ORTHO's good performance in handling yl and Y2

deteriorated when this iteration was omitted . For Yl , the count of

correct digits dropped from 4.137 to -1.976 , and for Y2 the drop was from

5.464 to 0.419 . In Table 3 , also , we see that in double precision the

omission of the iteration resulted in a loss of about five correct digits

for both problems.

Of the six programs in Table 2 , LSFITW *** , written in BASIC , ranked

first on both problems . We note that Table 2 includes no Householder

transformation programs .

The ORTHO program was also run in a version using single precision

except for the accumulation of inner products , where double precision

was used . In Table 4 we see that there were four programs in this category ,

and ORTHO ranked third for Yl and second for Y2 .

ORTHOL is a program using a modification of the Davis-Rabinowitz

algorithm . It differs from ORTHO in two respects : (1 ) the iteration

procedure includes the dependent variable as well as the independent

variables ; and , ( 2 ) before any other operations are applied to the

matrix X , from each element of each vector of X , the truncated mean of

that vector is subtracted . ( The " truncated mean " denotes the largest

integer less than or equal to the mean if the mean is nonnegative , and

the smallest integer greater than or equal to the mean if the mean is

negative . ) ORTHOL obtained the top rank for Y2 in single precision , but

ranked sixth for Yi ( Table 1 ) . In double precision (Table 3 ) , it ranked

third on both problems .

6 . PROGRAMS USING ORTHOGONAL POLYNOMIALS . Since the two test problems

are both polynomial fits , we were able to test programs in which the

algorithm used orthogonal polynomials . This method , described by Forsythe

[ 17 ] , is attractive because it generally requires many fewer operations

than other methods .

Two such programs were included in this study . One was the UNIVAC

1108 MATH - PACK ORTHLS routine [ 33 ] . The other was POLFIT , an anonymous

program written in BASIC .
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In Tables 1 , 2 , and 3 , we see that the performance of the orthogonal

polynomial programs is not as good as that of the Householder transfor

mation and the Gram - Schmidt programs (with iteration) , but the performance

is better than that of any of the programs using elimination algorithms.

7 . PROGRAMS USING ELIMINATION ALGORITHMS . The majority of the

programs tested in this investigation used some form of an elimination

algorithm . Although this was the most popular method , it was the least

successful . None of these programs performed as well as those using

Householder's transformations , Gram - Schmidt orthonormalization (with

iteration) , or orthogonal polynomials .

Within this class of programs , there were several variations in

the method of obtaining the least-squares coefficients . In some cases ,

the matrix x'x was inverted , after which the inverse was postmultiplied

by X'Y . One program inverted the matrix Z'Z where the vectors of 2 were

obtained from the vectors of x by subtracting the mean of each vector from

every element of that vector . A number of programs obtained the solution

by inverting a matrix of correlation coefficients . The five stepwise

regression programs made use of matrix partitioning in connection with

inverting a matrix of correlation coefficients .

The five stepwise regression programs were BMDO2R , MPR3 , the STAT

PACK program RESTEM , WRAP , and STAT20*** , They all , to a greater or

lesser extent , follow Efroymson's algorithm [ 15 ] . Tables 1 , 2 , and 3

give the results of these five programs .

In running the two test problems on three of the stepwise programs ,

namely , BMDO2R , RESTEM and STAT20 *** , calculations stopped before the

solutions were obtained . These programs at various steps calculate an

F - level in connection with entering or removing variables , and a point

was reached where this F - level was calculated to be negative because of

rounding error . Since this condition caused the calculations to stop ,

certain steps of the algorithm had to be bypassed to obtain the final

solution . These steps were not , however , connected with the calculation

of the least squares coefficients .

WRAP , the program with the lowest rankings in Table 1 , computed

coefficients which were exceptionally far from the true values . These

coefficients are listed below .

1
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Yl Y2

True B Computed B True B Computed B

1 .

1 .

1 .

1 .

1 .

1 .

2991622 .

- 6065892 .

2218821 .

-296194.5

16462.20

-322.5731

1 .

.1

.01

.001

.0001

.00001

-33.84546

71.54880

-26.16913

3.493256

-.1936966

.003812985

Two other BMD programs , in addition to BMDO2R mentioned earlier , were

tested . These were BMDO3R , Multiple Regression with Case Combinations,

which inverts a matrix of correlation coefficients , and BMDO5R , Polynomial

Regression , which inverts the matrix Z'Z where the vectors of Z are formed

from the vectors of X by subtracting the mean of each vector from every

element of that vector . All the crucial operations of BMDO5R , such as

the forming of inner products and matrix inversion , are carried out in

double precision . The performance of BMDO3R and BMDO5R is shown in

Tables 1 and 3 , respectively .

DAM is a general - purpose computer program for data processing and

multiple regression [ 31 ] . In running the two test problems on DAM on

the 1108 , computations stopped after a fourth degree polynomial was

fitted . It was found that a computed variance was zero and that this

condition causes the computations to stop . By bypassing the checks on

this computed variance , results for fifth degree fits were obtained .

On the 7094 , however , the fifth degree results were reached without any

such difficulties . DAM's performance on the two computers is given in

Table 1 .

The program POLRG is the polynomial regression program of the IBM

System / 360 Scientific Subroutine Package [ 22 ] . We see from Table 1

that the single precision version of POLRG obtained rather low scores

on both test problems , A double precision version of POLRG was also

run , and the performance here as reported in Table 3 was comparable to

other programs using similar elimination algorithms .

The user of POLRG specifies m , the highest degree polynomial to be

fitted , and the program automatically reports the results of fitting

polynomials of successively increasing degrees , starting with the first

degree . If there is no reduction in the residual sum of squares between

two successive degrees of polynomials , the program stops the problem

before completing the analysis for the highest degree specified . In

running both test problems in single precision the analysis stopped

after degree four , and in lieu of a fifth degree polynomial fit , the

message " NO IMPROVEMENT " was printed . In order to complete the calcula

tions for the fifth degree , the checks on "improvement " were bypassed .

In the double precision version , fifth degree results were obtained

without any such alterations .

111



Each of the two STAT - PACK programs , GLH , General Linear Hypotheses ,

and REBSOM , Back Solution Multiple Regression , has its individual features ,

but for the two test problems the solutions were carried out in the same

manner , so that the coefficients obtained from the two programs were

identical , as is indicated in Table 1 . Both programs invert x'x by calling

the same matrix inversion subroutine which uses a Gauss-Jordan elimination

scheme with maximal column pivoting and row scaling .

The BASIC program LINFIT*** in order to obtain B inverts the matrix

x'x x'Y

A =

Y'X
Ly ,

2

i

whose inverse , if it exists , is

(x'x) -1 + BB -B

Esi
2

y '
{si

2

i

Y'ŷ

- B 1

2

{ y
Y'Î

[yz

2

i

Y'Y

í

When Y = Y , the matrix A is singular . In the two test problems Y = Y ,

so that the matrix A , if it were formed in the computer without any

rounding error , would be singular . But A , for Yl and Y2 , contains 14

digit numbers, whereas the 235 computer works with approximately nine

digit numbers , so that rounding of the elements of A is inevitable , and

the version of A contained in the computer is not singular . An " inverse"

was obtained , and from this B was immediately computed . Table 2 gives

the results .

LSCF--*** and STAT21*** are two BASIC programs available in the

C-E-I-R Multi - Access Computer Service ; results are given in Table 2 .

LSCF--*** , which obtains the coefficients by inverting x'x and then

post -multiplying the inverse by X'y , had the lowest rankings of Table 2 .

STAT21*** obtains (x'x) -1 and by applying Jordan elimination to x'x

and x'Y .

The LINFIT program included in Table 1 is one of eighteen statistical

routines described by Miller [ 28 ] which exist in the Project MAC * 7094 disk

files . The two test problems were run on the LINFIT program on a time

* A description of Project MAC is given in Crisman ( 11 ) .
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shared computer via a remote console communicating with Project MAC .

The method used by the LINFIT program is not given . By conjecture , it

has been included in this section among programs using elimination

algorithms.

8 . OTHER RECENT ALGORITHMS . Some other algorithms apparently of

high quality which have been published in the last few years were not

included in this study . Two such algorithms are given by Bauer [ 2 ] and

Björck [ 5 ] .

Bauer [ 2 ] gives an ALGOL procedure using iterative refinement for

finding the least squares solution of XB Y , where X is n xk (k < n)

of rank k and Y is n x p . The procedure is based on the decomposition

of x into UDR where U is n x k with orthogonal columns , D = (U'U ) -1 , and

Ris upper triangular . This decomposition yields a triangular system

RB U'Y which is solved by back substitution . The reduction to

RB U'Y is carried out by a Gaussian elimination scheme , but with a

suitably weighted combination of rows used for elimination instead of

a single row .

Björck's algorithm [ 5 ] ( see also Björck [ 3 ] , [ 4 ] ) using a modified

Gram - Schmidt orthogonalization process , has certain features in common

with the Björck-Golub algorithm discussed in Section 4 above . Two such

features are solving the system of n + k equations

I X 8 Y

X ' 0 B 0

to obtain B and 8 and inclusion of as well as in the iterative

refinement procedure .

Both the classical Gram - Schmidt orthogonalization process and the

modified Gram -Schmidt orthogonalization process , as described by Björck

[ 3 ] , decompose the matrix X into QR where I'Q is diagonal and R is upper

triangular . In the classical procedure , at the i-th stage , the i-th

column vector is made orthogonal to each of the i - 1 previously ortho

gonalized column vectors ; this is done for column indices i = 2 , 3 , ... , k .

In the modified procedure which Björck uses , at the i- th stage , the

( k - i + 1 ) column vectors indexed i , i + 1 , ... , k are made orthogonal

to the ( i - 1) -th column vector ; this is done for column indices i = 2 , 3 ,

Jordan [ 24 ] shows why the modified procedure is superior to the

classical procedure . Björck [ 3 ] states that his modified Gram - Schmidt

procedure is equivalent to Bauer's method using weighted row combinations

mentioned above . Björck's algorithm is generalized to handle the case

where X is of less than full rank ; here , linear constraints are entered .

k .
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Björck [ 3 ] , [ 5 ] discusses the number of operations and the storage

requirements of his algorithm , and he compares the number of operations

needed with the corresponding number needed in the Björck -Golub algorithm

[ 6 ] .

9 . CONCLUSIONS .

( 1 ) Computational procedures appropriate for desk calculators

may be perilous for computers .

( 2) Of the four procedures which were included in this study ,

orthogonal Householder transformations and Gram - Schmidt orthonormaliza

tion proved to be the best . Orthogonal polynomials ranked next . Elimina

tion methods were the least successful but the most popular .

( 3 ) Programmers who have been writing least squares programs ,

especially for statistical packages , have often not been taking advantage

of the advances in this area made by numerical analysts in recent years .

( 4 ) The importance of accumulating inner products in double precision

cannot be overstressed . A number of recent papers on least squares computa

tions have emphasized this point . These include Businger and Golub [ 8 ] ,

Bauer [ 2 ] , Golub and Wilkinson [ 20 ] , Björck and Golub [ 6 ) , and Björck [ 5] .

On many third -generation computers which have double precision built into

the hardware , double precision arithmetic is quite efficient .

( 5 ) Iterative refinement is another valuable feature of recent

algorithms. Five programs included in the present study (BJORCK -GOLUB ,

LSFITW *** , LSTSQ , ORTHO and ORTHOL ) made effective use of iterative re

finement , and the two algorithms described in Section 8 both include

this feature . Golub and Wilkinson [ 20 ) give a discussion of this topic .

( 6 ) The users of least squares programs can take certain pre

cautionary steps to gain an awareness of whether or not a rounding error

problem exists . Among the suggestions which have been made here are the

following :

Run test problems where the coefficients are known( a )

( Cameron [ 9 ] ) .

( b ) Transform the data ; e.g. , by subtracting means (Freund

[ 18 ] , Longley [ 25] ) .

( c ) Do the calculations several times , scaled differently each

time ( Zellner and Thornber [ 38 ] , Longley [ 25 ] ) .

( d ) Shuffle the columns of X and run the problem more than

once (Longley [ 25 ] ) .
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( e) Check whether x'o = 0 (Longley [ 25] ) .

( f ) Use double precision arithmetic ( Freund [ 18] ) .

(g ) Follow the initial fit by a fit to Y , the predicted values

( suggested by J. M. Cameron ; see Wampler [ 36 ] ) .

( 7 ) In any mathematical calculation carried out on a computer , it

is desirable to know whether an accurate solution has been obtained or

whether the result of a calculation is contaminated by rounding error

to such an extent that it is worthless . This goal has been achieved in

some areas . Martin , Peters , and Wilkinson [ 27 ] , in their paper giving an

algorithm for solving Ax = b , where A is an n x n positive definite matrix ,

state that their procedure " either produces the correctly rounded solutions

of the equation Ax = b or indicates that A is too ill-conditioned for this

to be achieved without working to higher precision (or is possibly singular ) . '

Similarly , Wilkinson's program [ 37 ] for the solution of an ill-conditioned

nx n system of equations Ax = b , " gives either a solution of the system

which is correct to working accuracy or alternatively indicates that the

system is too ill-conditioned to be solved without working to higher pre

cision and may even be singular ."

It appears that the goal set out above has now been achieved in the

linear least squares programs of Björck and Golub [ 6 ] and Björck [ 5 ) . The

authors state that their procedures may be used to compute accurate solutions

and residuals to linear least squares problems, but that the procedures will

fail when X modified by rounding errors has less than full rank , and that

they will also fail if X is so ill-conditioned that there is no perceptible

improvement in the iterative refinement . The user is easily informed of

these situations .
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TABLE 1 SUMMARY OF PROGRAMS RUN IN SINGLE PRECISION 8 Digits

Average Number of

Correct Digits

Yl Y2

*

Rank

Yl Y2Program Computer Algorithm

ALSQ 1108 HT 4.098 5.368 4 6

BJORCK -GOLUB 1108 HT 4.393 5.950 2 ب
ی
ا

BMDORR 1108 E -0.106 1.981 13 15

BMDOR 7094 E 0.742 1.721 9 17

BMDOBR 1108 E -0.123 2.287 14 13

DAM 7094 1.389 2.312 8 12
E
E

DAM 1108 -0.264 2.622 17 10

LINFIT ( Miller ) 7094 ? -2.756 -0.301 19 19

LSTSQ 1108 HT 4.528 5.840 1

4

북

MATH - PACK , OR THLS 1108 OP 2.118 4.363 7 7

MPR3 7094 E -0.140 1.856 15 16

OMNITAB ( Ortho) 7094 GS 3.954 5.968 5 2

OMNITAB ( Ortho ) 1108 GS 4.137 5.464 3 5

ORTHO ( no iteration ) 1108 GS -1.976 0.419 18 18

ORTHOL 1108 GS 3.593 6.197 6 1

POLRG 1108 E -0.192 2.280 16 14

STAT - PACK , GLH 1108 E 0.066 2.767 113 83

STAT -PACK , REBSOM 1108 E 0.066 2.767 114 8

STAT - PACK , RESTEM 1108 E 0.651 2.407 10 11

WRAP 7094

E

-5.300 -2.871 20 20

*E - Elimination method ; GS - Gram -Schmidt orthonormalization ; HT = Orthog

onal Householder transformations ; OP = Orthogonal polynomials .

119



TABLE 2 SUMMARY OF PROGRAMS RUN IN SINGLE PRECISION - 9 Digits

Average Number of

Correct Digits

Y Y2Program Computer

Rank

Yl 12Algorithm *

LINFIT*** 235 E 0.905 2.894 4 5

LSCF --*** 235 E 0.308 2.483 6 6

LSFITW *** 235 GS 4.102 6.354 1 1

POLFIT 235 OP 3.349 5.922 2 2

STAT204* 235 E 0.612 2.920 5 5 4

STAT21 -*** 235 E 1.169 3.183 3 3

E =
= Elimination method ; GS - Gram - Schmidt orthonormalization ;

OP = Orthogonal polynomials .
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TABLE 3 SUMMARY OF PROGRAMS RUN IN DOUBLE PRECISION 18 Digits

Average Number of

Correct Digits

Yl Y2

Rank

Program Computer Algorithm n Y2

ALSO 1108 HT 12.667 15.322 5 5

BJORCK -GOLUB 1108 HT 13.580 17.057 2 1

BMDO2R 1108

E

9.645 12.865 7 7

BMDOSR 1108 E 9.368 11.791 9 10

LSTS 1108 HT 14.643 16.293 1 2

MATH -PACK , ORTHLS 1108 OP 12.098 14.461 6 6

ORTHO 1108 GS 13.188 15.514 4 4

OPTHO (no iteration ) 1108 GS 7.963 10.354 11 11

ORTHOL 1108 GS 13.212 15.604 3 3

POLRG 1108 E 9.290 11.806 10 9

STAT-PACK , RESTEM 1108 E 9.494 12.019 8 8

TABLE 4 SUMMARY OF PROGRAMS RUN IN SINGLE PRECISION ( 8 Digits ) WITH

INNER PRODUCTS ACCUMULATED IN DOUBLE PRECISION ( 18 Digits)

Average Number of

Correct Digits

Yl Y2

Rank

n Y2Program Computer Algorithm

ALSQ 1108 HT 3.506 6.530 4 1

BJORCK -GOLUB 1108 HT 8.000 6.227 line 4

LSTSQ 1108 HT 8.000 6.279 it 3

ORTHO 1108 GS 3.904 6.459 3 2 .

E = Elimination method ; GS - Gram - Schmidt orthonormalization ; HT = Orthog

onal Householder transformations; OP = Orthogonal polynomials .
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TABLE 5 INPUT FOR FIFTH DEGREE POLYNOMIALS

X Yl Y2

.

1 .

2 .

3 .

4 .

5 .

9 .

10 .

11 .

12 .

13 .

14 .

15 .

16 .

17 .

18 .

19 .

20 .

1 .

6 .

63 .

364 .

1365 .

3906 .

9331 .

19608 .

37449 .

66430 .

llllll .

177156 .

271453 .

402234 .

579195 .

813616 .

1118481 .

1508598 .

2000719 .

2613660 .

3368421 .

1.00000

1.lllll

1.24992

1.42753

1.65984

1.96875

2.38336

2.94117

3.68928

4.68559

6.00000

7.71561

9.92992

12.75603

16.32384

20.78125

26.29536

33.05367

41.26528

51.16209

63.00000

MATRIX X'X ASSOCIATED WITH THE TEST PROBLEMS

21 . 210 . 2870 . 44100 . 722666 . 12333300 .

210 . 2870 . 44100 . 722666 . 12333300 . 216455810 .

2870 . 44100 . 722666 . 12333300 . 216455810 . 3877286700 .

L4100 . 722666 . 12333300 . 216455810 . 3877286700 . 70540730666 .

722666. 12333300 .12333300. 216455810. 3877286700 . 70540730666. 1299155279940 .

12333300. 216455810. 3877286700. 70540730666. 1299155279940. 24163571680850 .

MATRIX X'Y FOR Y1 MATRIX X'Y FOR Y2

13103167 .

229558956 .

4106845446 .

74647573242 .

1373802809082 .

25537373767266 .

310.39960

5058.55410

87258.40800

1549291.38666

28043466.66600

514843723.46850
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APPENDIX A

SOURCES OF THE PROGRAMS , " ITH BRIEF DESCRIPTIONS

ALSQ . A FORTRAN IV subroutine to solve the linear least squares prob

lem , written by G. W. Stewart , III , Union Carbide Corp. , Oak Ridge ,

Tennessee ( present address : University of Texas , Austin , Texas ) . This

program uses a modification of the Businger -Golub algorithm [ 8 ) .

BJORCK -GOLUB . A FORTRAN V program to solve the linear least squares

problem , written by Roy H. Wampler , National Bureau of Standards, using

the Björck -Golub algorithm [ 6 ] .

BMDO2R , Stepwise Regression . One of the Biomedical Computer Programs ,

written in FORTRAN ( 14 ).

BMDOZR , Multiple Regression with Case Combinations.
One of the

Biomedical Computer Programs , written in FORTRAN ( 14) .

BMDO5R , Polynomial Regression . One of the Biomedical Computer Pro

grams, written in FORTRAN ( 14) .

DAM . A general purpose computer program for data processing and

multiple regression , written in FORTRAN by Rudolf R. Rhomberg , Lorette

Boissonneault, and Leonard Harris , International Monetary Fund ( 31) .

LINFIT . A program which fits a linear function to collected data via

least squares . Optional constraints may be applied to the fitting

coefficients to make them non-negative , add to a constant, etc ,
One

of eighteen statistical routines written by James R. Miller ( 28 ) .

This library of routines exists in the Project MAC 7094 in the disk

files of user number 1169 2750 .
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LINFIT*** . A program written in BASIC for linear least squares curve

fitting and computing correlations. Origin : Dartmouth College , Hanover ,

N. H. Available in the C - E - I - R Multi -Access Computer Services

library ( 10 ) .

LSCF - *** . A least squares polynomial curve fitting subroutine written

in BASIC . Origin :Origin : Dartmouth College , Hanover , N. H.
Available in the

C-E-I -R Multi - Access Computer Services library ( 10) .

ISFITW *** . A least squares curve fitting program written in BASIC .

Adapted by John B. Shumaker , National Bureau of Standards, from Philip

J. Walsh's ORTHO algorithm ( 35) . Available in the C-E-I-R Multi -Access

Computer Services library ( 10) .

LSTSQ . A FORTRAN IV subroutine which solves for X the overdetermined

system AX = B of m linear equations in n unknowns for p right-hand

sides . Written by Peter Businger , Computation Center , University of

Texas (present address : Bell Telephone Laboratories , Murray Hill ,

N. J. ) , using the Businger -Golub algorithm ( 8 ) .

MATH -PACK , ORTHLS , Orthogonal Polynomial Least -Squares Curve Fitting .

One of the Univac 1108 MATH - PACK programs , written in FORTRAN V ( 33) .

MPR3, Stepwise Multiple Regression with Variable Transformations .
A

FORTRAN II program written by M. A. Efroymson , Esso Research and

Engineering Co. , Madison , N. J. , using the Efroymson algorithm ( 15 ).

Available in the SHARE library : 7090 -G2 3145MPR3 ( 23 ) .
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OMNITAB, a general -purpose computer program for statistical and

numerical analysis . Developed at the National Bureau of Standards by

Joseph Hilsenrath et al ( 21 ) . Now available in an A. S. A. FORTRAN

version , OMNITAB allows the user to communicate with a computer in an

efficient manner by means of simple English sentences .

ORTHO . A program written by Philip J. Walsh , National Bureau of

Standards (present address : University Computing Co. , East Brunswick ,

N. J. ) , which uses a Gram - Schmidt orthonormalization process for least

( 35 ) , asquares curve fitting . ORTHO exists as an ALGOL procedure

FORTRAN program , a BASIC program ( see LSFITW *** above ), and as a

routine of ONNITAB ( 21) , where it is called by the commands FIT and

POLYFIT .

ORTHOL . A modification of the Davis -Rabinowitz orthonormalization

algorithm (12 ) , ( 13 !, written in FORTRAN II by James W. Longley , Bureau

of Labor Statistics , Washington , D. C. , and Roger A. Blau , Bureau of

Labor Statistics and Carnegie -Mellon University , Pittsburgh , Pa . [ 26) .

POLFIT . An anonymous program written in BASIC for least squares

polynomial curve fitting using orthogonal polynomials .

POLRG , Polynomial Regression . One of the programs of the IBM

System / 360 Scientific Subroutine Package written in FORTRAN IV ( 22 ) .

STAT- PACK , GLH , General Linear Hypotheses.
One of the Univac 1108

STAT-PACK programs , written in FORTRAN V (34 ) .

STAT- PACK , REBSOM , Back Solution Multiple Regression . One of the

Univac 1108 STAT - PACK programs , written in FORTRAN V ( 34 ) .
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STAT-PACK , RESTEM , Stepwise Multiple Regression .
One of the Univac

1108 STAT-PACK programs , written in FORTRAN V ( 34 ) .

STAT20 **** . A program written in BASIC for stepwise multiple linear

regression . Written by Thomas E. Kurtz , Dartmouth College , Hanover ,

N. H. Available in the C - E - I - R Multi -Access Computer Services

library (10 ) .

STAT21-*** A program written in BASIC for multiple linear regression

with detailed output . Written by Gerald Childs , Dartmouth College ,

Hanover , N. H. Available in the C - E - I - R Multi -Access Computer

Services library (10 ) .

WRAP, Weighted Regression Analysis Program . A FORTRAN II program

written by M. D. Fimple , Sandia Corp. , Albuquerque , New Mexico .

Available in the SHARE library : 7090 -G2 3231WRAP (23 ) .
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ERROR ANALYSIS FOR CONTROL SYSTEMS

T. H. Slook

Temple University and Frankford Arsenal

Philadelphia , Pennsylvania

I. INTRODUCTION . From the days following World War II to the

present time , many research papers and books have been written on

feedback control systems . In almost every case , these publications

emphasize the analysis and design of such systems . Relatively few

pages have been devoted to error analysis techniques for control

systems The important contributions which this paper makes are :

A. To exhibit an error analysis technique for an arbitrary control

system ; and ,

B. To prove , in a general setting , three theorems relating the

variances and power spectral densities of the inputs and outputs of

such systems .

II . MEASURES OF EFFECTIVENESS . Every measure of effectiveness

for a control system involves , either directly or indirectly , some

knowledge of system errors . To demonstrate this point and to make this

paper more meaningful and less abstract , let us consider a fire control

system (FCS ) . Such a control system includes tracking servos , data

transmission devices , conversion elements , analog and/ or digital

computing components and weapon pointing servos , each , of which ,

possesses errors and contributes to the overall system output errors .

Clearly , the magnitude and frequency of the output errors determine

the control system's effectiveness .

Two of the many measures of effectiveness for a FCS are hit

probability and kill probability . To be specific , the single shot

engagement hit probability is obtained by evaluating

Poloft li[ -ci1 - (A/(26073)) 9524082 ] .х dx
[ II-1 ]

where

n = the number of rounds for an engagement ,

A = target area ,

2

"of
= variance of the bias , and

2

o = variance of the dispersion .
d
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In this paper , the bias b is the deviation of the center of impact of

n rounds from the target center , and the dispersion d is the square

root of the average value of the square of the deviations of the rounds

from the center of impact .

2 2

Observe that P , defined above , is a function of o ,
*ъ

These

' and on

variances , whether used to calculate P or any other measure of effective

ness , depend upon the variance in the error in the elevation o
2 and the

EE

2

variance in the error in train o of the gun tube or launcher throughout
EI

the firing interval and each of these statistical measures depend upon :

a .

b .

errors in the inputs to the control system ,

non-ideal system element errors ,

system function approximations , and

vehicle-target paths .

C.

d .

Let us agree to call the above error sources the system input errors

for a FCS . Observe that ( a ) , (b ) , and ( c ) are system input errors

for every control system , and that ( d) is an additional error source

that must be considered in a FCS error analysis .

The fact that every control system consists of an assemblage of

a finite number of components , each of which has measurable characteristics ,

generates , in a natural way , a finite number of equations relating the

inputs and outputs of the control system . These equations are called

the system equations . of the system equations may be empirical.

For example , the ballistic functions are empirical equations in a FCS .

A relatively easy and straightforward error analysis is possible

when the system equations are not differential equations . However ,

many control systems and most FCS generate an independent set of dif

ferential equations . The inclusion of differential equations complicates

the solution of the system of error equations . This we now explain .

, }

III . SYSTEM ERROR EQUATIONS . Consider a FCS of system

elements having S independent inputs . This means that at each

instant of time , every system element will have at most I = {X2 , X2, ... ,x

inputs from outside the fcs and at most Y = {yı » Y2
a

from within the FCS ; see Figure 1 . Observe that the external inputs

X ( j = 1 , 2 , .. , s ) and the system element outputs y, (k 1 , 2 , ... , 9 )

are functions of time and it is customary to assume that these inputs

and outputs have continuous first derivatives .

... , y }yg} inputs
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th

In Figure 1 , the output at time t of the i system element

x } , a subset of X, as external inputs and
i

1 2

х
+
1
5

i

lyin

g
r
e

Yi '
"Yiz '

} , a subset of Y, as internal inputs is

described by

Yi = 8 ( * 1,: * 12
y .> ) .

Pi
( III-1 ], ••, У.

i

2

i

1
P

th

Those x's and y's which are not inputs to the i system element are

not in the domain of & . The function & is called the performance
th

operator of the i
system element , and it determines the output y .yi

of

th

this system element . Figure 1 shows that the output of the i system

element is also an input and for a feedback loop , we prefer to write

the performance equation in the implicit form ,

£ (xiz
> ) = 0 . [ III-2 ]

*12 » Yi .Yig ' Y12
Yi

i
Pi

th

The only change in the performance equation of the i system element

for a non -feedback loop would be the deletion of y; as an input variable
in equation ( III-1 ] .

Inputs from *il Output of the

i

х

outside FCS
* 12

th

th

i system
2

element of FCS

y

o

y

S
y
s
t
e
m

E
l
e
m
e
n
t

yi

Inputs which
i

w
a

$

1
2
8

are outputs

i

of system
4
1

elements of FCS

FIGURE 1
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th

In practice , each input to the i

an error and we denote the error by

system element may possess

( j = 1 , 2 ,.
1 , 2 , ... , rz ) and

も
ち

、

3

(k = 1 , 2 ,... ,P ). Since the system element is not an ideal

も
う

M

element , the output of this imperfect element is the correct output y.
i

plus the system element error m.. Each of these errors may also be
iº

considered as functions of time ; see Figure 2 .

+

+
y

y

、
+
4
2

х

も
ち
ろ
ん

ち
っ
く
ん

Х

も
ち
ろ
く
ら

I
m
p
e
r
f
e
c
ti

t
h

7Yi

4
1
2
+

6
4
1
9

+ mi

mi
is output error

th

of i system

element due to

imperfect ith

system element .

+g
i
z

E
g
e
r

S
y
s
t
e
m

E
l
e
m
e
n
t

yi + E

i

タ

マ + .

E
g
y

FIGURE 2
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Since performance operators are smooth functions , then each

87 ( = 1 , 2 , ... , q ) possesses continuous first partial derivatives

with respect to the external and internal inputs . This implies that

every fi possesses this property .possesses this property . Hence , the change in f produced
i '

by increment changes and me
mi

is

E
g
u
n>

ofi = fi (Q ) - f ; (PR )

[ III-3 ]

ri Pi
af

i

af

i

af

i

=

Σ
+

ا
خ

و
ب

i

ax

i

af
P

i

も

ち

ろ

2
9

j = 1 k=1

P

i

P

i

%

where
Pi

(xi ,

タ

ス

ク Yi ...
у . and)
iD
j

Qi - (XL
+

6
4 + ε

I i
+ ε

y

o

y

A
T
9
4
3

ベ
ス
ト

の
yi

+

+

+

タ
タ
タ
タ

mi '
も

タ

マ

ラ
) .

y
i

of fx , thus ofi
= 0 and

The points Pi and Qy are in the domain

equation ( III-3 ] becomes

Pi
[ III-4 ]

af

i

ay .

af

i

af

i
.

E
g
r
i

m

ay i
i

OX1
j

P

i

Р. P

i

k=1 j =1

1
4
4
7

th

This is the error equation for the i system element , describable by

other than a differential equation . Therefore , the set of error

equations for a FCS with s external inputs and a system elements

describably by other than differential euqations is the linear system

of equations Α ε = Β . This matrix equation we prefer to write :

y
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Pi

1

af
əf 1

28
ay I

P
1

əx1

A
l
a
t
i
o
n

く
ら
い

の P

1

k=1 j =1

( III-5 )

р

a

Σ

k=1
j =1

;***

ERNST

The above technique may be employed to generate :

əf 1
.

mi

ay 1

P1
P

1

( III-6 ]

11

afi
af1

1

6

4

Elox
P

1 əx 4
4
3

j

j = 1

A
Dkish-关公*

ERIR

o
g

a
r
t

+ぐ

y

TP

s
t
a
r

which is the set of error equations for a FCS with s external inputs

and a system elements describable by differential equations .
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Using [ III-5 ) or ( III-6 ] and a given set of system input errors ,

one can determine the system output error vector

Ey Ey, fyz!
> ) ,Eg

a

ε

providing the given set of system equations can be solved . Observe

that the coefficients in both systems of equations are functions of the

arbitrary but fixed points P. Thus , ( III-5 ] is easily solved for
i ' ey '

but ( III-6 ] is not easily solved for when one or more infinite series

у

expansions occur . It is not the purpose of this paper to discuss conditions

for a solution to [ 111-6 ] because the external input errors for a control

2

system are given as variances and not as ( i = 1 , 2 , ... , 9 ) .
0
4 Exi

Hence , the main problem is to express the variance in the output errors

as functions of the variances in the system input errors . For a FCS

2

this means : express the variance in elevation error and the varianceo

EE

2

in train error as functions of the variances in system input

ET

errors . This we now discuss .

2 2

STATISTICAL MEASURE OF OUTPUTS . To express and o as

EE ET

functions of the variances in the system input errors require that we

prove several remarkable theorems . One may omit the proofs if he so

desires , because the theorems are proved only for the sake of completeness .

IV .

-00

Let L ' ( u ) be the Banach space of summable functions defined on

X = { t : < t < + co } with
as Lebesque measure and || x | 11 = { 1x dx .

X

The following theorem exhibits a relationship between the derivative of

the variance in the variable with respect to frequency and its power

spectral density .

х

Theorem 1 . Let x EL ' ( u ) . Then

ܝ

ܘ

1 d

2

{o
х

( w) }

2
7 Qyox ( w)

ܚ
ܘ

{ (x (w ) ,? [ IV- 1 ]
dw 211 XX dw

where

2

a ) ( w) is the variance of x ,

b )
XX

( w) is the power spectral density of x ,

X ( w ) is the mean of x ..c)
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Proof : For arbitrary x € L ' , the autocorrelation function of x

T

( 1) x ( t ) x ( t + t ) dt , < t < 0
XX

lim

T

1

2T -T

exists , and for I = 0 the autocorrelation function reduces to

1

lim

T too

s t
0 ... ( 0 ) x?(e)dt = 2 ,XX 2T -T

the expected value of x?. Since

27

T1

2 TT

jwt , dw( 1) 0 ( w) -00 < I < 0
XX

lim

Tsoo

XX

-T

then for
τ

- 0

1

(0 )
XX 2 Lo exx (w) dw

Thus , we may conclude that

1
00

( IV-2 ]
х

ร
ุ
่
นS xx (w) dw

2

2

Observe that x is constant . However , equation ( IV-2 ] permits us to

2
define x ( w) as follows :

1

x ( w ) Lo sxx ( u ) du , - < W < oo
211

This implies that

d 1

2

{ xx ( w ) }

1

(w)
XX

dw 2п

for all real Using the well -known statistical equation

2 2

х (8 ) 2
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we obtain

d

? w ) }- 2x?(w)} - 2L { (xTw) ,2 ;dw lo
X

1 d2
7 Oxu

(w)

du >Tw) ) 2 }
2п XX dw

where

х(س) (W x ( t ) dt ,

<

W < + 00 .

In the above theorem , may be thought of as an input to a

system element having response The output у
for this system

element , in its most general form , is given by the convolution integral

r .

y ( t ) Loco x ( z ) r ( t - z ) dz , < t < + .

Theorem 2 gives the relationship between the power spectral density

of x and the power spectral density of y .

If rTheorem 2 .

density of

and х belong to L ' ( u) , then the power spectral

is given byу

d (w) = | R w) | 2 . xx() ( w) ( IV- 3 ]
yy

where R (w) is the transfer function of the system element . *

Proof . Since the output у is defined by a convolution function

whose determining functions and belong to L ' ( u ) , then y E L ' ( u )

and the autocorrelation function of y

r х

*It was brought to my attention by a member of the audience that

this property was known to Norbert Weiner . However , it should be

mentioned that in August of 1958 , the team of Tappert , Pfeilsticker ,

and Slook , having no knowledge of Weiner's result , proved this property

in two entirely different ways .
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Фуу
( 1)

lim

T+0 2
1

2T S_IT y ( t ) y ( t + c) dt

exists . Replacing y ( t ) and y ( t + t) by their respective convolution

integrals we obtain

т

lim

T + 0 2T

is
φ ( τ)
yy

{ loco x (u) r ( t – u) du } { Lax (v) r (t +t v ) dv } dt
-T

Let - v = t - u and p = t + T - v , then the above equation becomes

T

ST
Pyy (t) =

lim 1

T + 2T

{ co x ( t + v ) r (-v)dv} { ** (t +++ p ) r (-p ) dp } dt

27

Loco lor ( -v) r (-p) { lim
s

T

x ( t + v ) x ( t + I +p ) dt } dvdp
T+00 -T

21

[ IV-4 )

Ttv

f
x (u ) x (u + I +p -v) du }dvdp

-Ttv
Loco for (-v) r ( -p) { lim

lim 1

T +0 2T

Loco for ( v) r (-p ) 0 .ºxx ( t + p - v) dvdp

The change in the order of integration is possible because the conditions

of the Fubini theorem are satisfied .

( w) defines the power spectral densityThe Fourier integral of º
yy

y , that isof

(س) e-jwtΦ w lo ( 1 ) dt

yy yy

In this integral , replace º ( 1 ) by the last relation described in
yy

equation ( IV-4 ) . Thus Φ ( w ) becomes

yy

=

Syy (w) Loco Loco Loco r (-v ) r ( -p ) ¢xx ( t + p - v) dv do } e
deeJwt
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loco checo Sor (-v) eJwv r (-v) e
e - jwv

dixx ( + + p-v) dv dobe - jwli + p -v )

-j wp
( w) { eco r ( -v) ejwv dv } { do r ( -p ) e

a Φ

XX
p } .

The change in order of integration given above is possible as the

conditions of the Fubini theorem hold .

The Fourier transform of the response r ,

R ( w ) = Lor(v) ee - jwv-
dv

-00

is called the transfer function of the system element . Substituting

for the integral forms in equation ( IV-4 ) their equivalent functions

R ( w) and R (w ) , one obtains the desired functional relationship .

( w )

уу

R ( w ) R ( w ) xx

| R ( w) 12 ( w) .
XX

As a consequence of theorems 1 and 2 , we obtain a useful relationship

between the variance of the input and the variance of the output of a

system element . This result we embody in the following theorem .

Theorem 3 . Let x be the input to a system element having response r and

If r and x belong to l ' ( u ) and xTw = y1w ), thenoutput y .

( w) }
oo2

o

2

| R ( w) |

2

d { o

х

dw
dw

Proof : Combining the relationships of theorems ( 1) and ( 2 ) , we

obtain

do 2 (w) } d { ( y ( w ) ) }y ) ? d {0,2 )] d { (x (w) )
у

2

21
| R (w)

dw dw Idw dw

2

? +

+

which reduces to

2

d { o

у

( w) } ( w ) }
2

2

d { o
х

dw

=

= |R (w )dw
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Hence

2

2

ءهکد
d ( ?(w) }

dio ()
2 х

dw .

dwу

Theorem 3 established for a system element consisting of a single input

and a single output the functional relationship between the variances

of these variables . Applying this technique to the system element

illustrated in Figure 2 which has r .ri
+ 1 sources of error

+
P
i E

*
*

( j 1 , 2 ,
r ),

• • • (k = 1 , 2 ,Ea Pz ) and m4
1

we obtainmy '

2

do ( w) to

2

( w) }{2

aloetes
eg 'i

dw i

1
3 y
y

which reduces to

d { o 2 (w) } dform

2

( w) }

i

dw

d
w

1
4
4
3

s externalTherefore , the set of variance error equations for a FCS with

inputs and q system elements may be written :

P1 d { ơ 2 (w) }
2

1 do ( w) }
afo

E
4
3
7 do 2 (w) }

Σ δω

E

g

n

$ 1 ( w) ?| R, ( ω)12 Σ
DI

dw

d
w

dw

k=1 j =1

[ IV-6 ]t
o
e
g
a
n
t2 (w) }

r

a

1
0
6 +
0
32 ( w) } d {02 ( w) }

s ( w)
a

dw - R,(W)/2

d
w

dw

k=1 j =1

-
- - - -
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2

d { o

1
0
6
4
*
* ( w) }

( i = 1 , 2 ,Solve this system of linear equations in q)
dw

for the outputs desired . In the case of a FCS one would solve for

2

d {o 2 (w ) } d { o ( w) }

and Thus , the variance in elevation and

dw dw

E
R Erg

.

the variance in train may be calculated by using equations

d {0 2 (w )}
2

loco da

E
E

dw

E

d {o (w ) }

Loo aw
2 EIo

E
dw

E
I고

Observe that the above technique provides a means for determining

variances of the output errors of a control system describable by

differential equations . These variances , as demonstrated in the fire

control example , may be used to determine a measure of effectiveness

for the control system .
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ANALYSIS OF MULTI - DIMENSIONAL CONTINGENCY TABLES

H. H. Ku and R. Varner

National Bureau of Standards

Washington , D. C.

and

S. Kullback *

The George Washington University

Washington , D. C.

ABSTRACT . This is an expository paper on the analysis of

contingency tables given at the Fourteenth Conference on the Design of

Experiments . The principle of minimum discrimination information estima-

tion is described and used to generate estimates for tests of hypotheses

concerning second-order and higher-order interactions . All classical

hypotheses for contingency tables can be generated by the use of this

principle when certain marginals are considered as fixed .

Examples are given and two available computation programs are

described in detail .

I. INTRODUCTION . In the January issue of the Journal of Royal

Statistical Society , there is a paper by M. G. Kendall (1968 ) entitled ,

" On the Future of Statistics A Second Look ." A particular paragraph

in his paper concerns the topic under discussion today .
We quote :

19 . It is rather a hazardous task to try to forecast

the future lines of development of theoretical statistics ,

but there seem to me to be two major growing points and I

should like to consider them in some detail . The first

concerns the bridging of the gap between theory and prac

tical requirements in multivariate analysis . The problems

which are encountered in nearly all statistical enquiries

concerned with this subject are very far from being solved .

I will cite a few examples from what might be a very long

list :

( 1 ) Multiple contingency tables . The problems of manifold

classification in p dimensions are of three kinds :

the pure problem of display so that one can look at

the results as a whole ; the problem of empty cells ,

or small frequencies , which are apt to arise on the

edges of a table even for large samples ; and , perhaps

the most difficult of all , a method of analysis which

will bring out the various inter-relationships among

the classificatory variables .

*Supported in part by the Air Force Office of Scientific Research ,

Office of Aerospace Research , United States Air Force , under grant

AFOSR - 68-1513 .

141



We agree with Kendall on both counts : that the problem needs further

investigation and the problem is a difficult one . The procedure we

present today proposes a unified treatment of multi -dimensional contingency

tables , and we believe it to be a step in the right direction .

A. Formulation of the Hypothesis . The formulation of a meaningful

hypothesis of no interaction in a multi -way table is not as simple as one

might expect at first . For the simplest case beyond a two -way table ,

2 x 2 x 2 table , with modified conventional notations as shown in Figure 1.1 ,

Bartlett (1935 ) defined " no second-order interaction " as implying

a

p ( 111) p ( 221) p ( 112 ) p ( 222 )

( 1.1 ) II
p ( 121 ) p ( 211) p ( 122 ) p ( 212 )

Bartlett's Definition

No Second-Order Interaction for a 2 x 2 x 2 Table

D1 D2

C

C2
C.

C2

R

1
p ( 111 ) p ( 121 ) p ( 1.1 ) p( 112) p ( 122) p (1.2)

R2

N

p (211) p ( 221 ) p ( 2.1) p (212 ) p ( 222) p (2.2 )

p (.11 ) p ( .21) p ( .. 1 ) p (.12) p ( .22 ) p ( .. 2 )

p ( 111) p ( 221) p ( 112 ) p ( 222 )

H.

H

:

p ( 121) p ( 211) p (122 ) p ( 212 )

Figure 1.1

This definition is essentially an extension of the cross-product ratio

definition of independence in a 2 x 2 table . The hypothesis proposed

is the equality of association between classifications R and C within

D, and D2 : How would one go about to extend this formulation to higher

dimension tables with more than two categories within each classification?

How many relations of the form (1.1 ) does one need to express the hypothesis

of no second-order interaction in such cases ? These questions were studied

by Roy and Kastenbaum ( 1955) .
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B. Computation of Expected Frequencies . Once a null hypothesis

is decided upon , the next step is to estimate the expected cell frequencies

under the null hypothesis using the marginal frequencies , in the same way

as we estimate cell frequencies under the independence hypothesis in an

rx c table , using

x ( i . ) x ( .j )

p ( ij ) = P ( i . ) p ( .j )
n n

[;x (ij), x ( .j )
where x ( i . ) {zx ( ij ) , Lijx ( ij ) = n , and x ( ij ) is the

observed frequency in the ij - th cell . For expression ( 1.1 ) , Bartlett

proposed to solve for A in the expression

[ x ( 111 ) + 1 ] [ x ( 221 ) + A] [ x ( 112 ) A ] ( x ( 222 ) A]

( 1.2 )

[ x ( 121) A ] [ x ( 211 ) A ] [ x ( 122 ) + A ] [ x ( 212 ) + ^]

12 Eijk!Lijk [ 1 /x ( ijk) ] ,

which is a third degree equation in Δ . Note that this implies that the

two-way marginals are unchanged . Then a statistic x2

2

asymptotically distributed as X under the null hypothesis , can be computed

for a test with one degree of freedom . For a three -way r xcxd table ,

one has to solve ( r-1 ) ( c-1 ) ( d-1 ) third-degree simultaneous equations

in as many unknowns . The computation involved is not a trivial one !

C. Interpretation of Results . Once we have formulated the

hypothesis and performed the computations , we need to interpret the

results in terms of the actual physical variables . What does no second

order interaction in a four-way table mean ? How about no third-order

interaction? In some cases the interpretation may be quite natural , in

other cases the interpretation would be rather stretched . A general

interpretation that may apply to a majority , if not all , of the cases

would be extremely desirable .

II . SUMMARY OF A PROPOSED PROCEDURE FOR THE ANALYSIS OF MULTI

DIMENSIONAL CONTINGENCY TABLES . We now discuss a procedure for the

analysis of multi-dimensional contingency tables which we believe has

general applicability . We shall sketch the principle and structure of

the proposed analysis and then illustrate the procedure with a four-way

table . For details see ku and Kullback ( 1968 ) and Ireland and Kullback

( 1968 ) . The one by Ireland and Kullback contains the proofs of the main

results and applies the procedure to a problem of data adjustment . The

one by Ku and Kullback applies the procedure to the testing of hypotheses ,

in particular the formulation , estimation and testing of second-order and

higher-order interactions . We shall discuss the procedure for a three-way

table , using a modified form of conventional notation .
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For any observed contingency table of interest , we may visualize

three associated tables as follows :

( 1 ) The t - table { ( ijk ) }. The T-table may be specified by the

null-hypothesis , given by observations , or estimated . For example , the

T - table may specify equal probability in all the cells , three -way independence ,

etc.

( 2 ) The class of p-tables denoted by {p ( ijk) } . A p-table is a

contingency table that satisfies certain conditions of interest , usually

a specification of the marginals , for instance , the one-way marginals

p ( i .. ) , pl.j. ) and pl..k ) .

( 3 ) The pt-table { p * (ijk) } . . The pt-table is that member of the

class of p-tables which most closely "resembles " the -table in the sense

of minimum discrimination information ; i.e. , the p*-table minimizes the

discrimination information :

( 2.1 ) I ( p:) { p : en ?

over the class of p-tables .

With these three tables fixed in mind , we shall summarize the

main results given in the two references .

1
A. If we set (ijk ) the uniform r xcxd table , then the

rcd

classical hypotheses of independence , homogeneity , conditional independence ,

no second-order interaction , etc. are represented by p*-tables when certain

marginals are considered as fixed , and can be considered as " generalized "

independence hypotheses . Thus , when p ( i .. ) , pl.j. ) , p ( .. k ) are fixed , the

p*-table has the form (for any -table )

( 2.2 ) p* (ijk) a ( i ) b ( j ) c (k ) ( ijk )

where a ( i ) , b (j ) , c (k ) are determined to satisfy the marginal restraints .

1

It turns out that for (ijk )
rcd

=

>

( 2.3 ) pi-table : ) p ( i .. ) p ( .j . ) p ( .. k ) .

When two of the two -way marginals , say p ( ij . ) and p (i.k ) are specified

then the p*-table takes the form

p* ( ijk)
=

a ( ij) b ( ik ) ( ijk)

( 2.4 ) p ( ij . ) p ( i.k)
1

for TT

II

p ( i .. ) rcd
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When all three two -way marginals are considered fixed , the pt-table

has the form

( 2.5 ) p*

2PM
table : Pi (ijk) = a ( ij) b (jk ) c (ik ) ( ijk )

and the pictable satisfies Bartlett's definition on no second-order

interaction for = 1 /rcd , since

P* (111 ) p* ( 221 ) a ( 11 ) b ( 11 ) c ( 11 ) a (22)b (21) c ( 21 )

P* (121 ) p* ( 211 ) a ( 12 ) b ( 21 ) c ( 11 ) a (21 ) b ( 11 ) c ( 21 )

a ( 11 ) a ( 22 )
P ( 112 ) p* ( 222 )

PŽ ( 122 ) p+ ( 212 )
a ( 12 ) a ( 21 )

A straight forward convergent iterative procedure is given later to

determine P* ( ijk) .

TT .

A pictorial representation may be visualized as shown in Figure

2.1 . Let the ordinate represent some measure of association or dependence .

Then the uniform table would be at the zero datum . Now let the p- tables

be represented by the series of regions above . If there is no restric

tion on p , p will include and p* is With one-way marginal restraints ,

the class p becomes smaller and shrinks away from . Then the p* table

is the one closest to yet satisfies these one -way marginal restraints .

With all two-way marginals fixed (and hence also the one-way marginals ) ,

the region shrinks further and p* is the table closest to m , and is also

the table closest to P1
The observed sample table is represented by a

point p in the picture: The closeness of the resemblance from one table

to another table is measured by the discrimination information , and the

following relationships hold .

effects of marginals measure of interaction

I (p : T ) I (p *:) ICP :P2

IP:) I (P *:) I (p : p* )
( 2.6 )

I (P* : T ) I (P*:)
+

I (PPY

IP:P )
I

I (PPI) I ( PT

+

= +
1
1

=

+
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Fixed two -way

marginals

和

I (6: )

Fixed one -way

marginals

16:)
ITẬ :1)

1 ( :5)

TJ= 1/ned

Figure 2.1

Schematic Diagram of Components of Information
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In general , if page corresponds to a set Ha of given marginals and pf

corresponds to a set Hy of given marginais where → Han

I CÔ : px ) = I (P * : p* ) + I (P : p* ) .

B.
The values of the p*-table can be computed by an iterative scheme

which adjusts the ( ijk ) to satisfy successively the given marginal
restraints . For a three-way table when all two-way marginals are given ,

we cycle through

( 0 )

р ( ijk ) ( ijk )

1

rcd

p ( ij . )
(3n + 1 )

р ( ijk )
( 3n )

P ( ijk )

( 3n )

р ( ij . )

( 2.7 )

( 3n+2 )
р ( ijk )

p ( i.k )

(3n+1 )
р ( i.k )

( 3n + 1 )

р ( ijk )

p ( .jk)
( 3n + 3 )

( ijk)

( 3n + 2 )

( ,р ( ijk ) , n = 0 , 1 , ...

( 3n + 2 )
р ( .jk )

It can be shown that the iteration converges to p* and p* is unique .

For ( 2.4 ) the iteration is completed at the end of the first cycle .

c . The p*-table provides RBAN (Regular Best Asymptotically Normal )

estimates under the given constraints , and

x ( ijk)

2nI ( : p* ) = 21 (x : x* ) = 2 ]2Į x (ijk ) en

x* (ijk)

2

is asymptotically distributed as X under the corresponding null

hypothesis , including the no second-order interaction hypothesis .
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In practice , the iteration is done on the cell frequencies

n

nT x

np, and x* np * . Usually 5 to 7 cycles are sufficient
rcd

to obtain agreement between marginals to within .01 or .001 , when more

than one cycle is required .

Now let us consider these results with respect to the three

problems raised at the beginning of this paper ; i.e. , the problems in

the formulation of the hypothesis , the computation of expected cell

frequencies , and the interpretation of results .

First , we have defined a measure of " closeness" between two discrete

distributions by the discrimination information given in ( 2.1 ) . A

hypothesis of interest is usually concerned with independence or asso

ciation between various classifications . By necessity , the expected

cell frequencies under such hypotheses will have to be estimated from

observed marginal frequencies . Hence , all these hypotheses are members

of the " generalized " independence , or no interaction hypothesis , rep

resented by the table which is closest to the uniform -table , subject

to various marginal restraints . These tables are the p*-tables in our

procedure .

Second , we have an iterative scheme for the computation of p* or

np * . There are two computer programs available which we shall discuss

later .

We shall dwell on the third problem , the interpretation , at some

length , since this is the aspect in which we are most interested . We

shall give first a general interpretation and then details .

We may consider the complete sample table to contain all the

" information " available from the particular experiment . In the process

of analysis , we aim to express the sample table in a reduced number of

parameters represented by some or all of the marginal totals . In other

words , we are interested in knowing how much of this total information

is contained in a summary consisting of sets of marginal tables .

If there is no first-order interaction , i.e. , there is independence

of all classifications , then all the information is contained in the

first-order marginals in the sense that given these marginals , the

complete table can be constructed to within sampling error . If the

first-order interaction is significant , but there is no second - order

interaction , then the set of two-way marginals will be required to

summarize the data adequately . The use of two-way tables to summarize

multi -way classification data is a rather common practice , and the

implied as mption is therefore " no second- and higher-order interactions . '
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A direct consequence of this interpretation is that the analysis

can be reduced to that of the set of marginal tables if there is no

interaction of the same order .

We remark that the set of marginal tables must be considered

jointly for proper interpretation , and if one or more of these tables

show significant interactions , the results of tests of the remaining

tables could lead to erroneous conclusions . An example of such a case

was given in Simpson ( 1951 ) .

The above interpretation is not restricted to complete sets of

marginals . If the p*-table computed from three out of the six two-way

marginals in a four-way table is found to be " close enough " to the

p -table by our test , the three two-way marginal tables could be con

sidered as containing essentially all the information in the four -wa

table . The analysis can therefore be performed on these marginal

tables and the complexity of the problem reduced . For example , the

analysis for a four-way table may be reduced to that of one two -way

and two three-way tables , or to that of three two -way tables and one

three-way table , provided that the corresponding interactions are

found to be not significant .

On the other hand , we may also wish to estimate the effects , or

contributions , of the specified marginal tables . An analysis of informa

tion table can be constructed using the relationships given in (2.6 )

wherein all the components of information are additive as well as the

associated degrees of freedom . The interpretation of such a table is

very similar to that of an analysis of variance table .

We remember that

p* ( ijk ) a ( i ) b ( j) c (k ) ( ijk ) , or

(2.9 )

In pi = ln a ( i ) + ln b ( j ) + en c (k ) + en 7 ( ijk)

which compares with

( 2.10 ) E (y ) = H + P i + c

c ; tok

the usual model for analysis of variance . Thus each model can be

expressed as the sum of a grand mean , a row effect , a column effect ,

and a depth effect . Instead of a linear additive model , we have a

logarithmic linear additive model . This fact is interesting in the

sense that we did not assume such a model to start with as others have ,

nded up with this model by minimizing the discrimination information .
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We can also compare this procedure to multivariate regression

analysis . We are in fact fitting the observed frequencies using the

marginals as variables . The "a's , " "b's , " and " c's " are the fitted

coefficients . If the effects of the two -way marginals are small ,

then P = P1 , and the values of a ( ij ) , b (jk) , c (ik) are close to unity.

The additional effect of the two -way marginals given the one -way

marginals is represented by

2nI (P* : P* ) = 2 ] ijk * (ijk) en
** (ijk)

(136 )

( 2.11 )

= 2n !(p: *) - 2nI ( p : ps ) ,

or the difference between the information statistics measuring the

first-order interaction and the second -order interaction . Since

P*

en

1
1 In a ( ij ) + en b ( ik ) + In c (jk) ,

Pi

we could write also

( 2.12 ) 2nI (P* : P ) 2 { ij * (ij . ) In a ( ij ) + 2 ]

+

ik* (i.k) in b ( ik)

+ 22 jk* ( . jk)
x (.jk ) en c (jk) ,

where a ( ij ) , b ( ik ) and c (jk ) can be computed as products of ratios of

marginals in the iteration process using pi as the starting table
0

.

While ( 2.12 ) is algebraically correct , and the value of

2nI(p* : P ) is unique , the three components appearing on the right

side of the equation are not necessarily independent , and the computed

values of these terms depend on the order of the two -way marginals

within the cycle of iteration . The properties of these components

need further investigation .

Hence , if a breakdown of the two -way marginal effect is desired ,

a conditional approach is necessary ; i.e. , the two -way marginal re

straints are considered in successive sets , where each set implies the
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preceding one , and the effect of a particular two-way marginal is

computed conditioned on the preceding set of two -way marginals that

had been fixed . An example is given for a 2 x 2 x 2 x 2 table in

Appendix A , together with computer print-out and details of computation .

This procedure is discussed in further detail in Ku and Kullback (1968 ) ,

and the results of computing these effects by different approaches are

compared for two four-way tables .

The main advantage in using an analysis of information table such

as that given in Appendix A is that the table presents an additive

analysis of the complete contingency table , rather than just a special

segment of the analysis , say the hypothesis of no second-order inter

action . Therefore it aids in seeing the picture as a whole and in

understanding its underlying structure .

We list also , in Table 2.1 , a number of results from examples

appearing in current literature .

III . THE COMPUTER PROGRAMS . There are two computer programs

available for the analysis of contingency tables by the procedure

described above . These programs , designated KKV68A and KKV68B ,

respectively , are written in double precision FORTRAN V language and

are now on FASTRAND at the National Bureau of Standards for use with

its 1108 computer . *

The two programs are basically similar and can be used for the

analysis of up to four-way tables . Whereas program A allows more

categories for each classification than B , program B allows some

options that are not available in A. We shall describe these programs

in detail and note the computation and options that are available .

*Because of difference in compiler and peculiarities of behavior

of different models of computers , certain minor changes may have to be

made before these programs will work on other computers . We would be

happy to furnish , to persons interested in using these programs , card

images on a blank tape to be sent to the first two authors at :

Statistical Engineering Laboratory

National Bureau of Standards

Washington , D. C. 20234
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Data from Berkson ( 1968 )

Three -Way Tables

2 2

Comparison of 21 (x : x* ) , x and Minimum logit x ? Values

21

2

х

2

х

Min . Disc .

Inf .

MLE and Min .

Disc . Inf .Example from Min . Logit D.F.

Cochran , 2x2x3 .854 .851 .849 2

Woolf , 2x2x3 2.9655 2.9839 2.9811

2

Norton, 2x12x2 7.71 7.59 7.37 il

Bartlett , 2x2x2 2.2945 2.2704 2.2641 1

Kastenbaum

and Lamphiear, 2x3x5 3.160 3.158 3.128 8

Data from Ku and Kullback ( 1968 ), Bhapkar and Koch ( 1968)]

Four -Way Tables

Second -Order

Interaction

Third -Order

InteractionExample from D.F. D.F.

172.257 108 44.793 36Hoyt , Krishniah , and

Torrance , 7x4x3x2

9.847 9 .739 2Ries and Smith ,

2x2x2x3

Kihlberg , Narragon

and Campbell,

2x2x2x2

7.33 5 .67 1

Table 2.1
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( 1 ) Dimension limitations .

FOR R C D T

KKV68A r 59 C < 19 d < 9 t < 4

KKV68B
r 57

c < 9 d < 4 t < 3

( 1A ) Requirements for computer memory locations.

FOR Code Data Total

KKV68A 7323 41495 48818

KKV68B 9587 11670 21257

( 2 ) Input data and options .

A.
Title cards are provided for each of the classifications .

B : Tables of sampled data : X ( IJKL ) = NỘ ( ijke) . These data are

punched on cards in 7D 10.0 format , and read in by columns within each

row , row x column within each depth , and row x column x depth within each

level .

C. In program A , NT ( IJKL ) F (IJKL ) is always taken to be equal to

n/ rcdt and iterations begin with these numbers for each of the three

iterations to compute Npi ( ijke) , Np (ijke) and Np (ijke ).

In program B , there are two options : ( i ) The first option uses

F (IJKL ) = n /redt same as in program A. The computation sequence in

program B , however , differs from that of A in that the iteration begins

with F ( IJKL ) to compute the cell frequencies for the no first-order

interaction NP* then uses NP* as input to compute the cell frequencies

for no second-order interaction NP * , and uses NP * to compute cell

frequencies under the no third-order interaction NP** This computation

sequence allows the calculation of the effects of thể sets of marginals

such as 2NI(P * : T ) , 2NI (P* : P* ) and 2NI(P :P * ) , and their components.
( ii ) The second option allows the input of a table of F ( IJKL ) , after

and in the same manner as X ( IJKL ) . This choice is useful in adjusting

data to fit specified marginals - a topic not discussed in this paper .

The fixed marginals will be those of X ( IJKL ) . The table F (IJKL ) is the

observed table to be adjusted to fit the marginals of X (IJKL ) .

example is given in Ireland and Kullback (1968 ) .
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D. For program A only , option is provided for the choice of sets of

marginals if these marginals are not a complete set of one- , two- , or

three-way marginals . Iterative computations for the complete sets of

marginals are always automatically performed .

E. Options are provided to specify the maximum number of cycles of

iteration for the computation of each iteration , and also for the

specification of the tolerance desired between the original marginals

and the computed marginals . Experience has shown that 20 cycles and

agreement to 0.01 are usually sufficient for most problems.

( 3 ) Outputs and options .

The following notations are used in the output :

X ( IJKL ) Observed cell frequencies

Y ( IJKL ) Cell frequencies NP*

Z (IJKL ) Cell frequencies NP*

W ( IJKL ) Cell frequencies NP *

U ( IJKL ) Cell frequencies corresponding

to specified marginals

R ( I ) , C (J ) , etc. These are equivalent to a ( i ) ,

b ( j ) , etc. used in the text

RC (IJ) , RD (IK ) , etc. These are equivalent to a ( ij ) ,

b ( ik) , etc. used in the text

RCD ( IJK ) , RCT( IJL ) , etc. These are equivalent to a ( ijk ) ,

b ( ijl) , etc used in the text

A. In program A , there is no option , the print-out is arranged in the

following order :

( i ) Titles of classification .

( ii ) Original tables of X (IJKL ) in the form of two -way tables .

( iii ) All marginal three-way , two -way , and one-way tables and

the grand total . These tables are useful for inspection

if there are ro higher-order interactions .

( iv) All 16 sums of quantities of the form 2 {x (IJKL )LNX ( IJKL )

computed in double precision . These sums are useful in

testing certain hypotheses as illustrated in Kullback ,

Kupperman and Ku ( 1962 ) .
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(v ) Number of complete cycles of iterations performed for

each interaction computed , and the tolerance specified

for the marginal agreement .

(vi )
Tables Y ( IJKL )

2ÇY(IJKL )LNY( IJKL )

First-order interaction 2NI(ộ : )

(X-Y )
Chi-squared Σ

a

Y

Tables of residuals = X - Y

X-Y

Tables of normalized residuals
Y

(vii ) Print-outs under (vi ) are repeated corresponding for Z

and w , and U when specified .

B. Options available in print-out of program B Print-outs described in

Paragraph A ( i ) - (vii ) above for program A remain the same , except for the

following options :

( 1 ) If tables of coefficients R ( I ) , .. , RC ( IJ) , RCD (IJK ) ,

and quantities such as 2SUM X ( I ... ) LNR ( I ... ) , .. , are computed ,

then these numbers will be printed out . Both tables of residuals and

normalized residuals will be suppressed in this case .

( 2 ) Options are provided to print either the residuals or the

normalized residuals , or both if the coefficients are not computed and

printed .

A sample computer print-out is given in Appendix A , and the

setup for data cards is given in Appendix B.
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APPENDIX A

Data used in this example are taken from the Kihlberg , Narragon ,

and Campbell study of the relationship between car size and accident

injuries as quoted by Bhapkar and Koch ( 1968 ) .

There are four classifications as follows :

R : Driver ejection - not ejected or ejected

C : Accident severity - not severe or severe

D : Accident type
.

collision or rollover

T : Car weight small or standard

The data are shown in the 2 x 2 x 2 x 2 table at the beginning of

the print-out .

Before we discuss our procedure of analysis on this set of data ,

we wish to make two remarks :

First , Bhapkar and Koch condensed the original data into a

2 x 2 x 2 x 2 table presumably for convenience . The original data has 4

categories in accident type , 3 in severity and 3 in car weight , and is

a 2 x 3 x 4 x 3 table for drivers who were alone at the time of accidents .

Hence , all conclusions and interpretations given below are strictly for

illustrative purposes , and are based on data as condensed by Bhapkar and

Koch .

In

Second , in many problems of data analysis , there is usually

additional knowledge available which should be taken into account .

this example for instance , there is a time element linking the four

classifications in the sequence : car weight + accident type + accident

severity + ejection . The dependence of one classification on another can

only go from right to left and not in the reverse order . In addition ,

there is the distinction of a " cause and effect " relationship between

two classifications (by logic or by law - like long past experience ) or a

mere " associations relationship . Severe accidents are likely to cause

ejections of driver , is an example of the former ; ejection of driver and

car weight is an example of the latter . We hope to use these additional

bits of knowledge to make our analysis more meaningful .

Analysis of information Table A.1 represents a preliminary scan of

these data using our procedure . Neither the third-order nor the second

order interaction reached significance . The value for the no third-order

interaction hypothesis of .67 checks with Bhapkar and Koch's results .
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By our interpretation given earlier in the text , the six 2 x 2

marginal tables jointly contain essentially all the statistical infor

mation available in the four-way table , or , given the six two -way

marginal tables , we could approximate the four -way table to within

sampling error . Thus , the analysis is reduced to a breakdown of the

six two -way marginal effects into individual degrees of freedom . We

shall do this in two ways for illustration .

If we compute the independence component for each 2 x 2 table , we

get the values shown in the second column in Table A.2 . These computa

tions can be performed easily using the SUM 2X (xxxx ) LN X (xxxx ) values

given in the print-out . For example, the R x C independence component

is :

NX ( IJ..)

2i -

《
工

LijX(IJ ..) en
X ( I ... ) x ( .J .. )

and is the difference of two sums .

2X (IJ.. ) LN X ( IJ .. ) = 71559.893

2N LN N 81960.898

153520.791

2X ( I ... ) LN X ( I ... ) = 77938.434

2X (.J..)LN X ( .J .. ) = 75296.372

153234.806

2î 153520.791 153234.806 285.99 .

We note that the sum of these six.components , 1351.62 , is much larger

than the two -way marginal effects value of 1185.78 .

This result shows up the danger of looking at the marginal tables

one at a time , even if there is no second-order interaction . Since the

six two -way marginal tables are interrelated , interaction in one two -way

table could conceivably affect the magnitude of interaction in a

neighboring two -way table , and thus masks the actual relationship

between these classifications .

Next we use the step-wise approach ; i.e. , the cumulative addition

of one two -way marginal at a time , and compute the discrimination

information value of the effect of the m - th two -way marginal over the

marginals that had been fixed up to that time . The values so computed

for the selected sequence of marginals given in column 1 are shown in
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column 3 of Table A.2 . The total effect checks with the value of

2nI (p * : P1 ) as it should .

With six two -way marginals , we have a large number (6 ! ) of ways to

order these marginals in the sequence . Corresponding to each sequence

we could compute a set of information value effects . Obviously many of

these sequences are without meaningful interpretation .

Here we shall appeal to the additional knowledge inherent in this

set of data ; i.e. , we shall order the marginals to be fixed in the same

order as the sequence in time , and order the " cause and effect " rela

tionship ahead of " association " relationship as follows :

2 x 2

Marginal tables Association of Marginals fixed

DT accident type car weight ( ..KL ) , ( I ... ) , ( . J.. )

CD accident severity
accident type ( ..KL ) , (.JK . ) , ( I ... )

RC ejection - accident severity ( ..KL ) , ( . JK . ) , ( IJ .. )

RD ejection - accident type ( ..KL ) , (.JK . ) , (IJ.. ) , ( I.K . )

СТ accident severity car weight (..KL ) , (.JK . ) , ( IJ.. ) ,

( I.K . ) , ( . J.L . )

RT ejection car weight all two -way marginals

In choosing this particular sequence of ordering , we realize that

the logic for the selection may not be entirely free from criticism .

Nonetheless , this ordering appears to be reasonable for the particular

problem . In comparing columns 2 and 3 in Table A.2 , we note that the

same conclusions will be reached for the first four effects , but exactly

opposite conclusions are evidenced by the values of the last two effects .

We give in Analysis of Information Table A.3 a detailed analysis of

the no first-order interaction component 2nI (ộ : p* ) 21 (x : x * ), using
x* .. , x* to denote expected cell frequencies with 1 , 2 , ... , 5 two

wảy margináls fixed , and x to denote that of no second-order interaction .
We note that

xi (ijke ) = x (i ... )x (.j .. )x (..k .)x (... )/n ",

and , by ( 2.7 ) ,

x ( .. ke )

X*

** (ijke) x ( .. kl ) x ( i ... ) x ( .j .. ) /n?,

** ( .. ke )
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hence ,

nx ( .. ke)

21(x *:x*) = 2ę kex (..ke) en
x ( .. k . ) x ( ... l)

Similarly , x * (ijke) and x* (ijke) can also be expressed explicitly as

functions of the marginals , and the iteration process (2.7 ) ends at the

first cycle . X , X* , however , cannot be so expressed and a number of

cycles of iteration are necessary to obtain the desired agreement among

the marginals .

One of the useful features in these programs is that the residuals

and the normalized residuals are printed out for examination . Column 1

of Table A.4 shows the normalized residuals after all two -way marginals

have been fixed . All these residuals are small in magnitude . The largest

two are R (2121 ) = 1.084 and R ( 2122 ) = -1.819 . The addition of the three

way marginals x ( .jkl) , x ( ijk . ) and x ( i.kl) in that sequence did not change

the residuals by much . The addition of the three -way marginal x (ij.l) ,

however , improves the overall picture of these residuals . The information

value of 2.928 with 1 d.f. suggests that association between ejection

accident severity-car weight may merit further investigation .

There are many ways to construct analysis of information tables for

a four -way table - the choice of which depends mainly on the purposes of

the experiment and the hypotheses of interest . In analysis of information

Table A.5 we give an example for the analysis involving the following

hypotheses :

Hy : Given accident type and car weight, ejection is independent of
accident severity, or RxC DT. The appropriate marginals to be

considered fixed here are x ( i.kl) and x ( .jkl) . Let the expected

frequencies under this hypothesis be denoted as x * . It can be
m

x ( i.kl) x ( .jkl)

verified that x*(ijke) and can be computed>

x ( .. kl )

directly .

Since Ekexi(ijke) + x ( ij .. ) , the effect of the marginal

restraint x ( ij .. ) has not been taken in account in H, Addition

of x ( ij .. ) to x (i.kl) and x ( .jkl ) as restraints yields x * as

expected cell frequencies of independence of R and D classifica

tions given the three marginals . The statistic 21 (x * : ** ) measures

the conditional independence between R and C classifications as in

H,, but with the added restraint x ( ij .. ) , i.e. , the sum of the
expected cell frequencies over the last two classifications must

satisfy the observed frequencies . Hence , we have
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H.: Given accident type , car weight and the observed ejection-severity

frequencies , ejection is independent of accident severity . The

difference between the two components represents

Hz : The association between ejection and accident severity is independent
of accident type and car weight .

We note that x * cannot be computed directly since x ( i.kl ) , xl.jkl )

and x ( ij .. ) imply all six two -way marginals . In analysis of information

Table 1.6 we show that 21 (x : x*) is in fact a component of three -way
marginal effect .

Analysis of Information Table A.1

Traffic accidents data from Bhapkar and Koch ( 1968 )

Components due to Information Value D.F.

No first -order interaction 2nI ( : p*) 1193.ll 11

*

Effect : all two -way marginals 1185.78
6

No second -order interaction 7.33 5

2nI(P*: )

2nI( Ộ:P *)

2nI ( p) : p)

2nI ( : pm)

Effect : all three -way marginals
6.66 4

No third -order interaction .67 1

Table A.2

Analysis of Effect of All Two -Way Marginals 2nI (PŽ : P1 )

Information value ,

marginals fixed

Two -way
Independence in cumulatively in the

marginal tables each 2 x 2 table sequence given at left D.F.

DT

1

52.96 52.96

601.42 601.42 1
CD

285.99
286.00

RC

1

401.69RD
229.33

1

A

.76 14.38 1

CT

8.80RT
11.69

-
1
6

1185.781351.62
6
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Analysis of Information Table A.3

First -order Interaction 21 ( x :x) = 1193.ll

Two -way marginals given Information D.F.

a ) DT effect 1

21(x :x) = 52.96

21 (x :**)
interaction 1140.15 10

b ) DT, CD effect
21 (****)

601.42 1

interaction
21( x :** )

538.73 9

c ) DT , CD , RC effect 286.00 1

interaction 252.73 8

a ) DT, CD , RC, RD effect 229.33 1

interaction
-

23.40 7

21 (x* :** )

21 (x :**)

21 (x * :**)

21(x :xx)

21(**** ) =

21 (x :x *)

21 ( x : x * )) -

21(x :x>)

e ) DT, CD , RC, RD , CT effect 14.38 1

interaction 9.02 6

f ) DT, CD , RC, RD , CT , RT effect

=

1.69 1

f

interaction 7.33 5
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Table A.4

Normalized Residuals

Ada

x ( .jk2 )

x ( ijk . )

xli.kl)All two -way marginals All three -way marginals

R ( IJ11 )

-.126 .086-.482

.473

.825

-.576

.426

-.470

-.131

.348.487 - . 306

R ( IJ21 )

.426 .153.351

1.084

-.306

-.387

-.551

1.158

-.205

.386-.481 -.178

R( IJ12 )

.068 -.112 -.074 .050.055

- . 222

-.037

.154.374 - . 252 .188 - . 126

R ( IJ22 )

.133 -.080.293

-1.819

-.143

.608

.369

-.860

-.219

.274 -.331 .099

Components due to Information D.F.

Second -order interaction 21 ( x : x * )
2

= 7.328 5

CDT., RCD , RDT effect 3.733 3

RCT effect 2.928 1

Third-order interaction .667 1
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Analysis of Information Table A.5

Components due to Information D.F.

RxC| DT 21 (x :x*) 120.665 4

m

RxC| DT, RC 21 (****) - 115.137
1

( RxC ) (DT) 21(x :x *)
5.528 3

Analysis of Information Table A.6

Second -order interaction 7.328 5
21(x :**)

21 (****) = 1.800

21(x:**

2

= 5.528

3

21 (**** ) = 4.859
2

Third -order interaction

21 (x:x )
= .669 1
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SELECTED PRINT- OUT OF PROGRAM KKV68A

ل=2

R

C

D

T

DRIVER EJECTED

SEVERITY

ACCIDENT TYPE

CAR WEIGHT

I = 1 NO

JO1 NOT SEVERE

K - 1 COLLISION

L - 1 SMALL

I =2

J

K - 2

L- 2

YES

SEVERE

ROLLOVER

STANDARD

ORIGINAL TABLES

XCIJ11 )

350 150

2326

X ( I J21 )

60

19

112

30

X ( 1312 )

1878

111

1022

161

X ( IJ22 )

148

22

404

265

MARGINAL TABLES

THREE - WAY TABLES

X ( IJI * )

2223

137

1172

134
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X ( IJ2 * )

208

41

XCJIL )

376

173

XCJ2L )

79

192

X (1J.L )

410

262

X ( 2J.L )

45

103

-
-
-
-

X ( 1.1L )

500

49

X ( 1.2L )

172

99

516

345

1939

1183

170

669

2026

1425

133

426

2900

272

552

287

166

-

1

-



TWO- NAY TABLES

X (IJ.. )

2430

178

1638

529

X ( 1.K . )

3400

321

724

386

X (1.4 )

672

146

3452

559

XV.J. )

2365

1356

249

861

XG.J.L )

455

365

2159

1852

x ( KL )

549

271

3172

839

ONE - WAY TABLES

167

X ( 1 ... )



4124 707

XI.J .. )

2614 2217

X..K . )

3721 1110

X (... )

820 4011

TOTAL

X ( .... )

4831

PRINT OF SUMS

SUM 2X ( I JKL ) LNX ( IJKL ) = .6285850425756393+ 005

SUV 2X ( IJK . ) LNX (IJK . ) = .6718460467309936+ 005

SUM 2X 1.JKL ) LNX ( . JKL ) = .6635806581957651 + 005

SUM 2X ( IJ.L ) LNX ( IJ.L ) : .6717184045852968+005

SUM 2X ( L.KL )LNX ( I.KL ) = .6878513736364094 + 005
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SUM 2X ( IJ.. ) LNX ( IJ..) : .7155989313579511+005

SUM 2X ( I.K . ) LNX ( 1.K.) = .7313235841855975 + 005

SUM 2X ( I..L ) LNX ( I..LIE .7354647645009640 + 005

SJM 2X ( JK . ) LNX ( JK . ) - 7069003539101703 +005

SJW 21.J.LOLNX.J.L : .7089633610024700 +005

SUV 2X (..KL ) LNX (..KL ) .7240536400014229 + 005

SUM 2X ( 1... ) LNX ( I... ) : .7793842367626649 + 005

SUM 2X (... ) LNX (... ) = .7529637155223355+ 005

SJM 2x ( .. K . ) LNX (...) .7675314254771572 +005

SUM 2X1...LILNX ( ... ) .7756015555323097+ 005
.
.

2N IN NE .8196089328312467 + 005
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NO OF ITERATIONS: 1 CYCLES

AGREEMENT BETWEEN MARGINALS TO .100-02

Y ( I.J.K.L )

Y IJ11 )

291.734

50,014

247.427

42.418

Y CIJ21 )

87.026

14.919

73.809

12.654

Y CIJ12 )

1427.005 1210.279

244.639 207.435

Y CIJ22 )

.
.
.

425.595

72.978

361.035

61.894

2Y LV Y = .6166539848007271 + 005

FIRST -ORDER INTERACTIONS .1193105777 + 004

CHI -SQUAREDE . 1601.729312 + 004
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NO OF ITERATIONS 8 CYCLES

AGREEMENT BETWEEN MARGINALS TO .100-02

Y ( I.JIKIL )

Y CIJ11 )

359.131

23.698

140.235

25.935

Y CIJ21 )

57.345

14.826

115.289

83.540

Y ( I - 12 )

1875.040 1025.594

107.132 164.235

-
-

Y CIJ22 )

144.484

32.345

406.882

255.289

TABLE OF RESIDUALS

RIJ11 )

-9.131 9.765

2.302
171

-2.935



RCIJ21 )

.
.

2.555

4.174

-3.289

-3.540

R ( IJ12 )

2.960

3.863

-3.594

-3.235

R ( IJ22 ))

3.516

-10.345

-2.832

9.711

TABLE OF NORMALIZED RESIDUALS

R ( IJ11 )

-.482

.473

.825

-.576

RCIJ21 )

. 351

1.084

-.306

-.387

R ( 1312 )

, 068

.374

-.112

-.252

..RCIJ22 )

.293 -.143
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-1.819 .608

22 LN ZO .6285117708584006 + 005

SECOND -ORDER INTERACTIONS 7327171723 + 001

CHI -SQUAREDE . 7014267537 + 001

NO OF ITERATIONS 7 CYCLES

AGREEMENT BETWEEN VARGINALS TO .100-02

Y ( I.Jokoh )

Y CIJ11 )

348.393

27.507

151.607

21.393

Y CIJ21 )

61.503

17.392

110.392

81.608

-

Y ( 1J12 )

1879,608 1020.392

109.392 162.608

:

Y ( 1J22 )

146.392

23,603

405.608

263.392
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TABLE OF NORMALIZED RESIDUALS

R ( IJ11 )

.086

- , 305

-.131

. 343

R ( IJ21 )

-.205

. 386

.153

~ .178

RIJ12 )

-.037

.154

.050

-.126

R ( IJ22 )

, 133 -.080

-.331 .099

2W LV W .6285783454802709 +005

THIRD-ORDER INTERACTION= .6696095368 + 000

CHI -SQUAREDE .5714044680 + 000
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SPECIFIED " ARGINALS ..KL JK IJ .. 1.K.

NO OF ITERATIONS : 6 CYCIES

AGREEMENT ETWEEN MARGINALS TO . 100-02

Yllid , K , L )

YOIJU )

329,621

19.314

172.919

28.047

YILJ21 )

49.293

11,499

127,467

$ 2.741

YIJI 2 )

1904,476 -- .993,885

111.599 162,050

Y ( 1J22 )

152.609

35.599

394,630

256.151

2 (44 ) LN ( U4 ) - .6283510899375868 + 005

INTERACTIOS (14 ) = .2339526380-002

CHI- SQUARED 235 2315589 + 002
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SPECIFIED MARGINALS KL JK . IJ , 1.K , .لوا

NO OF ITERATIONS : Å CYCLES

AGREEMENT ETWEEN MARGINALS TO . 100-02

Y ( 1,1 , K , L )

YOIJII )

361.137

21,163

143.268

23.363

Y ( I J21 )

58.909

13,742

120.276

78.073

YIJ12 )

1 872.911 1022.615

109,740 166.735

YCJ22 )

142.994

33 , 356

401,821

260.829

2 ( 15 ) LN ( 115 ) = .6284948373955333 + 005

INTERACTIOS ( 15 ) == 902051301001

CHI - SRUAREDE 8767272159 +001
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Si'll dracuje .RUINALS ..JKL IJK . I.KL.

DUFILETATIO.SE..... 4 CYCLES .

AGREEMENT BETWEEN MARGINIALS TO 100-02 -

Y ( I , J ,KL .

۱ (iii )

352.33

23.052

i47.632

25.38

Y CI121 )

64.420 107.550

14.530_ - 84 .,420

YIL 12 )

1.0 75.032 1024.368

113,363 153.0.32 ...

LIJ22 ).

143.590 408.420

26.421 ... 260.579....
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TASLE OF NORMALIZED RESIDUALS

KIJ11 )

-.120

243,7

.195

-.470 . _

K ( J21 )

-.551

1.155

.426

-.431

li12 )

-.074.055

.222 .1نع

1 : ( 1J22 )

, 369

-.302

-.219

.274

(ا)ا(ال)= . Li ) .62351.90904321046 + 005 ......

divTERACTIUS (14 ) . 3595214353+ 001

Ci! I - SQUARED 3660335627 + 001
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SPECIFIED MARGINALS 1.KL JKL

NO OF ITERATIONS : 6 CYCLES

AGREEMENT BETWEEN MARGINALS TO .100-02

Yll , J , K , L )

Y (III )

353,366

22.634

146,634

26.366

Y ( 1J21 )

62,331

16,669

109,669

82.331

YII2 )

1881.086 1018,914

107.914 164,087

Y (122 )

139.217

30 , 783

412,783

256,217

2 (01) LN (U1) = 6285 297612235454+005

INTERACTIONS (01) 15528135209 + 001

CHI - SQUAREDE .5276909156001
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APPENDIX B

Setup for Data Cards for KKV68A and KKV68B

( 1 )

All data values must be right adjusted in the fields specified .

First card has the value of N punched in columns 1-5 .

N = 2

N 3

N = 4

for the two-way table

for the three-way table

for the four-way table

( 2 ) TheThe next set of data consists of N descriptive title cards .

information may be punched in columns 1-72 .

( 3 ) The next card consists of data in the following columns :

Col. 1-5 Ml = number of categories in the row classification

Col. 6-10 M2 = number of categories in the column classification

Col. 11-15 M3 = number of categories in the depth classification

Col. 16-20 M4 = number of categories in the level classification

Col. 21-25 NSETS = number of specified sets of marginals < 5

For program KKV68B , NSETS = 0 .

Col. 26-30 ITMAX = maximum cycles of iterations

Col. 31-50 CONST = tolerance required between marginals

Col. 51-55 IFCR = 1 , compute F (IJKL ) = n /redt

IFCR = 2 , input F (IJKL )

Col. 56-60 IRCD 1 , coefficients not calculated

IRCD 2 , coefficients calculated

Col. 61-65 IPRINT = 1 , print residuals

IPRINT = 2 , print normalized residuals

IPRINT 3 , print both

If IRCD = 2 , IPRINT has no effect .

For program KKV68A , cols- 51-65 are not used .

( 4 ) The next group of data cards consists of the specified marginals if

NSET # 0 in program KKV68A .

The first card contains NMARGS in col . 1-5 . NMARGS < 6 .

The second card contains MARGN in 6A4 format .

MARGN is specified as , e.g. , IJ ..

( 5 ) The next set of cards is the input X ( IJKL ) specified using format

7D10.0 .

(6 ) If IFCR = 2 in program KKV68B , the next set of cards are the F (IJKL )

values in 7110.0 format . The cards for (5 ) and ( 6 ) are punched by

column with each row , row x column within each depth , and row x column

by depth within each level .

Repeat from ( 1 ) through ( 6 ) for each set of data to be analyzed .
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NEYMAN AWARDED THE 1968 SAMUEL S. WILKS MEMORIAL MEDAL

The Recipient of the Fourth Samuel S. Wilks Award

Announced by Frank E. Grubbs

Professor Jerzy Neyman of the University of California , Berkeley ,

has been awarded the Samuel S. Wilks Memorial Medal for 1968 .

announcement of Professor Neyman's selection for the 1968 Wilks Award

was one of the highlights of the Fourteenth Annual Conference on the

Design of Experiments in Army Research , Development , and Testing ,

which was held at the Army Chemical Center , Maryland , 23-25 October

1968 . Professor Neyman has long been recognized as one of the fore

most statisticians in the entire world , having made many fundamental

contributions to the theory and application of statistical methodology .

The citation for Professor Neyman reads as follows :

" To Professor Jerzy Neyman , whose extensive contributions both to

the theory and practice of statistics have led to fundamental changes

in the thinking and methodology of scientists all over the world . He

has inspired and led more than a generation of students and his continued

leadership is effective today . Both by precept and by example , he is one

of the foremost statisticians in the entire world . "

The Samuel S. Wilks Memorial Medal Award is administered by the

American Statistical Association , a non-profit , educational and

scientific society founded in 1839 . The Wilks Award is given each

year to a statistician and is based primarily on his contribution to

the advancement of scientific or technical knowledge in Army statistics ,

ingenious application of such knowledge , or successful activity in the

fostering of cooperative scientific matters which coincidentally benefit

the Army , the Department of Defense , and the Government .

The Award consists of a medal , with a profile of Professor Wilks

and the name of the Award on one side , and the seal of the American

Statistical Association and name of the recipient on the reverse ; a

citation , and an honorarium related to the magnitude of the Award funds .

The Annual Design of Experiments Conferences , at which the Award is

given each year , are sponsored by the Army Mathematics Steering Com

mittee on behalf of the Office of the Chief of Research and Development ,

Department of the Army .

The funds for the Wilks Memorial Award were donated by Philip G.

Rust , Thomasville , Georgia .

With the approval of President Geoffrey Moore of the American

Statistical Association , the Wilks Award Committee for 1968 consisted

of the following :
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Professor Robert E. Bechhofer

Professor William G. Cochran

Dr. Francis G. Dressel

Dr. Churchill Eisenhart

Professor Oscar Kempthorne

Dr. Alexander M. Mood

Major General Leslie E. Simon

Dr. Frank E. Grubbs , Chairman

Cornell University

Harvard University

Duke University and the

Army Research Office - Durham

National Bureau of Standards

Iowa State University

University of California

Retired

Aberdeen Research and

Development Center

Professor Jerzy Neyman was born in Bendery , Bessarabia of Polish

parents . He was educated in Russia at the University of Kharkov and

when Poland again became an independent state , he went to Warsaw where

he received the Ph.D. degree from the University of Warsaw .

several positions in Poland : as a Lecturer at the University of Warsaw

and the University of Cracow and was Head of the Biometric Laboratory of

the Nencki Institute in Warsaw . Dr. Neyman received a Rockefeller

Fellowship which allowed him to study at the University of Paris and

at University College , London . In 1934 , he became a member of the staff

at University College , remaining there until 1938 when he went to the

University of California , Berkeley as Professor of Mathematics . He has

remained at Berkeley for 30 years as the Director of the Statistical

Laboratory and Professor first of Mathematics and then , in 1955 , when

the Statistics Department was established , as Professor of Statistics .

Professor Neyman has been a Visiting Lecturer at many universities in

the United States and abroad . He is now Professor Emeritus recalled to

active duty and Director of the Statistical Laboratory .

Professor Neyman has received many awards and honors including an

honorary degree from the University of Chicago , the University of

California , and the University of Stockholm . He has also received the

Guy Medal in Gold of the Royal Statistical Society , (London , England)

the Newcomb Cleveland Award of the American Association for the Advance

ment of Science and the Centennial Award of the Academic Senate of the

University of California at Berkeley . In 1963 , he was elected to the

National Academy of Sciences , U.S.A. , and as a foreign member of the

Royal Swedish Academy . In 1966 , he was elected to foreign membership

in the National Academy of Science of Poland . He was elected an honorary

member of the International Statistical Institute , a Fellow of the

American Statistical Association , of which he was Vice President

1947-48 , and a Fellow of the Institute of Mathematical Statistics of

which he was President in 1949. Dr. Neyman is a Fellow of several other

societies including the Econometric Society , the Biometric Society , the
Mathematical Society of France , and the Polish Mathematical Society . He

is a member of several other mathematical societies and of several

astronomical societies including the International Astronomical Union .

He is President-elect of the International Association for Statistics

in Physical Sciences .
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Professor Neyman's research can be divided into three parts . First ,

he worked in pure mathematics , but , then beginning in the late 1920's ,

he turned to the theory of statistics . He developed , jointly with E. S.

Pearson , the theory of testing hypotheses and also developed the theory

of confidence intervals . Even while Dr. Neyman was in Poland and in

England , he was concerned with the application of statistics . After he

came to the United States , his interests turned more towards applications

of statistics , especially sampling theory and applications in the various

sciences including astronomy , biology , and health and weather modification .

His principal recent theoretical work has been the development of the

c ( a) test for testing composite hypotheses .

During World War II , Professor Neyman and the Berkeley Statistical

Laboratory worked on tactical problems of the Air Force under the National

Defense Research Committee . He has served on many committees concerned

with statistics in branches of the Government , in scholarly societies and

in education .

Professor Neyman is the author of Lectures and Conferences and of

First Course in Probability and Statistics . He is the editor of

Bernoulli -Bayes - Laplace Jubilee Volume and of the Proceedings of the

Berkeley symposia , which now amounts to 17 volumes running to more than

7,600 pages . In addition , he is the author or co-author of more than

200 scientific papers in scholarly journals . As noted above , his

publications form the very basis of modern testing hypotheses and

interval estimation . Indeed , they are now regarded as classical and

the earlier papers have been republished jointly by the Cambridge

University Press and the University of California Press in two volumes :

one contains the paper joint with E. S. Pearson ; the other contains the

remaining important papers published before 1945. Several of his books

and papers have been translated into Spanish , Polish , and Russian .

It is probably correct to state that Professor J. Neyman is one of

the most outstanding statisticians in the world today , due not only to

his extremely important basic contributions , but also to his great

activity in using the fundamental concepts in many fields of applica

tion and in constructing stochastic models with such diverse and important

phenomena as a two-stage theory of carcino-genesis and the distribution

of galaxies in space .

Professor Neyman has many students and by now grand students and

great-grand students all over the world . Almost all of his students in

Poland were killed by the Nazi invasion . However , since he attracts

students to Berkeley from every country , there is by now a new generation

of Polish students of Professor Neyman's . Today , his doctoral students

are working in theoretical statistics , in problems arising in the design

of weather modification experiments , in carcino-genesis , in the transfer

of nemory , and in several intricate problems in cell biology .
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Professor Neyman is admired by his colleagues and his students in

creating a stronger science , a more meaningful education , and a better

world in which to live . In addition to the high esteem of his colleagues

and students , Neyman enjoys their affection . Distinguishing characteristics

are his intellectual inspiration and dedication .
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PROBLEMS IN EVALUATING TREATMENT RESPONSE

OVER UNEQUALLY SPACED TIME INTERVALS

Gerhard J. Isaac

U.S. Army Medical Research and Nutrition Laboratory

Denver , Colorado

ABSTRACT. Test subjects are first conditioned and then various

physiological parameters are measured at a sea level location to provide

base- line values . After moving to high altitude the measurements are
repeated several times at unequally spaced time intervals . Final

measurements are made upon return to sea level . Interest exists in such

findings as the initial impact of high altitude exposure , possible adjust

ment to altitude and effect of return to sea level . What statistical

analysis will provide the most appropriate basis for inferences about

the questions of interest ? Analyses considered include analysis of

variance and paired t tests against control .

The problem I am going to outline for you became of special interest to

me in connection with certain high altitude studies carried out by our

Laboratory . Basically these studies involved the moving of test subjects

from sea level to high altitude ( 14,100 ft . ) and back to sea level .

primary interest was in the effect of altitude on performance . Also of

interest were possible explanations of the physiological basis for changes

in performance and in ways of ameliorating the effects of abrupt movement

to high altitude .

Parameters selected for measurement include those which prior studies ,

or knowledge of physiological processes , suggest may be responsive to

changes in altitude . Initial measurements made at sea level , after a

period of training , provide the control of base-line values for each subject .

The effects of altitude are reflected in subsequent measurements on selected

days at altitude . This might follow a pattern like days 1 , 3 , 7 and 14

after arrival at altitude . Final measurements are made upon return to sea

level .

An appropriate statistical analysis is desired to provide a basis for

answers to a series of questions about the parameters measured . Inference

drawn will reflect not only comparisons among the findings , but also will

deal with the physiological aspects of the parameters . In a given case

the fact of signigicant change may be more important than the direction

of change , though direction also may be of concern .

It may be useful to list some of the questions that arise in a study

of this kind .

1 . What is the initial impact of a move to high altitude ?

a ) Is the parameter significantly modified in any way by the change

in environment ?
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2 . What is the effect of remaining at high altitude ?

a ) If the initial impact is a modification of the control values ,

do they tend to subsequently return to normal , do they tend

to modify further or do they remain about as initially modified ?

b ) If there is no significant initial impact at altitude , is there

a tendency for values to change gradually as exposure to altitude

continues ? Is there reason to believe there is a training effect ,

an adjustment to altitude , or that some other factor is operating ?

3 . What is the effect of returning to sea level after a period at altitude ?

a ) Is there an immediate return to control levels ?

b ) Is there a delayed return to control levels ?

c ) Do values find a level different from both control and altitude

levels , as in the case of a continuing training effect ?

The obvious overall problem is that of selecting statistical procedures

that are both valid and appropriate for testing the various hypotheses

implied in the series of questions posed . Also to be considered is ,

which statistical procedures will contribute the most toward extracting

the maximum amount of useful information from the data .

Let us consider first a statistical evaluation that starts with an

analysis of variance . This permits inference regarding the presence of

significant differences among the means for the measurement days . At this

point , however , there is no direct information as to which differences

between days are significant . For example , we have to look further for

information about the significance of the initial impact of moving to

altitude as reflected in the control measurement and the first one at

altitude . Furthermore , the size of the difference between these measurements ,

or any other pair , may reflect both treatment effect and the number of days

elapsed between measurements .

At this point I became disturbed at the implications of using an overall

anova as the basis for some critical difference which would be used to test

for significant differences between various means . The difficulties seemed

to be much the same whether I thought of unusual variability among the

subjects at this time because of accidents of selection , variability in

the state of conditioning or adjustment to the test procedures . Of course ,

especially when numbers are small , the usual observations about the paired

t procedure are in order . A minus factor is the loss of degrees

of freedom , and a plus factor is the incorporation into the calculation

of the correlation between the two sets of response data . Thus this

analysis places a premium upon consistency of direction and extent of

change among the subjects . As we well know , if all subjects tend to move

in the same direction and in about the same proportion , even a small relative

change may show up as highly significant . But such a comparison utilizes only

a portion of the data in determining the error component , whereas anova

utilizes the entire set of data .

-
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The main argument for the paired t test seemed to lie in the

directness of the inferences that could be drawn . The test between

control and initial altitude values would provide an answer to the

question about possible significant changes due to the initial impact

of altitude . Comparisons with subsequent days would reveal if significant

changes persisted and for how long . Or , in the case of a delayed reaction ,

when a significant difference developed . Comparisons between control and

final sea level values would reveal the extent to which there was , or

was not , a return to original levels . This would reflect possible training

effects or carryover effects related to the stay at altitude . Similar

paired t tests made between altitude days would throw light on the effect

of sustained living at altitude . Or comparisons could be made between

final altitude and final sea level measurements .

It would seem that in the paired t approach the emphasis is on

changes in the levels of the measurements under the various test and

there is a minimum concern over the length of time intervals between

measurements .

An extension of the problem occurs when the test subjects are subdivided

into treatment groups . A common procedure is to put all subjects through

a conditioning program at sea level before making control measurements . When

the subjects are moved to altitude one group may be fed a diet , or a drug ,

that it is hoped will mitigate some of the undesirable responses to altitude

exposure . If the randomization process used to make assignments to the

treatment groups is successful , the control values of the groups will be

in close agreement . By the same token , if the treatment is successful ,

there will be divergence at altitude , and possibly a return to

agreement when again measured at sea level .

A two -way anova can be performed but questions of logic arise because

of the patterns in the responses . Often , the response curve is essentially

parabolic in form and is anchored at control and final sea level values .

Only the "middle" is really subject to treatment response . It would seem

that this would lead to understating the average difference between groups

because the " end" values , by design , have minimal variation , whereas , treatment

response , if present, is concentrated in the "middle " values .

It would appear that there are several options for approaching this

problem . If there are only two treatments , it would seem appropriate to

first run a t test of differences between treatments at control and at

return to sea level . Non-significant differences at final sea level might be

said to confirm this . On the other hand there could be significant differences

because of treatment carry - over effects on a particular parameter . Or for

that matter , training effects not related to treatment could also be present .

By means of t tests , the differences between treatment groups could be

evaluated at any time -point . It is possible to determine if significant

differences between treatments appear as a reflection of the initial impact

of altitude , staying at altitude , or returning from altitude to sea level .
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If more than two treatments are involved , the problem is somewhat more

complex , It would appear appropriate to evaluate differences at each time

period separately . Anova is a possibility .Anova is a possibility . This could be followed by some

of the tests of all differences between means , to find which treatment

differences contribute the most to overall variability .

Under either approach , when treatment groups differ significantly at

control , no simple answer follows from comparisons at later times . If

significance disappears at subsequent dates , it may be that the passage

of time , training or adaptation to environment , tend to make the response

in the treatment groups the same . If the groups are significantly different

on all measurement days , the interpretation is at best ambiguous . It could

be that all of the test subjects happen to be responsive to altitude in

the same way regardless of treatment . Quantitatively the values may be

at different levels for the various treatments . Again this could be due

to chance , or poor judgment (or lack of randomness) in assigning the test

subjects to treatment groups .

The problem we have been considering is not unique to the experiments

I have been using as examples . There are parallels in other areas . A

common experimental procedure in nutrition research is to feed test and

normal diets to groups of rats during their most active growth period .

This may cover a period of 8 to 12 weeks immediately after weaning . Comparison

of the growth curves during this period is one way of evaluating the

response to the test diet . Usually initial group-average weights are very

close together . This is partly by intent , and is accomplished in any of

several ways . The experimental animals may be purchased under specifications

limiting the weights to a fairly narrow range . The animals may be assigned

to treatment groups entirely at random , or arrayed by weight and weight

pairs distributed to treatments randomly . Either method usually results in

treatment averages that agree closely .

The experimenter may be interested in either the final weights or in

the route by which they got there . With initial weights not significantly

different , the final weights for the two treatment groups can be examined .

A t test of the difference between the group means seems appropriate . If

the difference is significant , there may be interest in when this became

apparent . In a 12-week experiment , differences might be tested at 6 , 8 and

10 weeks to locate when the divergence became significant . Actual times

could be selected from examination of the raw data in chart form . In most

of these experiments the precise shape of the growth curves is less interest

than evidence of significant divergence . In any event , it would be possible

to establish whether differences became significant early or late in the

experiment . Also in the case of non significance of final differences ,

it might be useful to know if significant differences appeared at midpoint

and then disappeared as the laggards " caught up ." In general , however , the

primary emphasis has been on differences and not on levels of weight

achieved at any particular time . In some experiments , such as involving

mature animals , there could be interest in level changes within treatments

as well as in differences between treatments .
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To get back to the altitude problem , are there other alternatives ?

One that occurs to me is to express a parameter in some other form to

facilitate comparison . Perhaps values for each subject expressed relative

to his control as 100 percent might permit meaningful evaluation . Or

would it suffice in a given case simply to note that under one dietary

regimen , values at altitude are not significantly different from control

while under another regimen , they are .

I have not found a satisfactory and definitive answer of universal

application in experiments of the kinds I have used as illustrations .

It would seem that a large dose of judgment is essential to guide a

statistical evaluation of this kind . The reaction of the panel to the

various possibilities is solicited . Suggestions for entirely different

approaches also are in order .
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ANALYSIS OF DATA FROM THE WOUND DATA AND

MUNITIONS EFFECTIVENESS TEAM IN VIETNAM

W. Bruchey , L. Sturdivan , and R. Whitmire

Terminal Ballistics Laboratory

U. S. Army Aberdeen Research and Development Center

Aberdeen Proving Ground , Maryland

I. INTRODUCTION . Efforts of the U. S. Army to gather data on wound

ballistics dates back into the 19th century . In " modern " times , the

laboratory experiments have been supplemented by data gathered in the

battlefield . We refer , of course , to the U. S. Army Surgeon General's

report on a number of engagements in the second World War and Korea ,

entitled , " Wound Ballistics . " Until the Vietnam conflict , however ,

efforts to collect field data were rather limited in both breadth and

depth . In August , 1966 , the Vice Chief of Staff , U. S. Army , made

known the requirements that a study be undertaken to gather data

pertinent to evaluating the effectiveness of antipersonnel munitions

deployed in Vietnam , including a comprehensive study of wounds and

post -wounding behavior of resultant casualties . The Wound Data and

Munitions Effectiveness Team , called WDMET , was organized to fulfill

this mission . A data collection format with eleven ( 11 ) sections

dealing with specific areas of interest was compiled from the require

ments of relevant government agencies . A team of forty-three ( 43 ) men

with various military specialties was given training in ballistics ,

wound ballistics and collection procedures in late April and early May ,

1967 at the Army Chemical Center , Edgewood Arsenal , Maryland . By late

July , 1967 , the Team was in operation in Vietnam . Another group of

about ten ( 10 ) men was assigned to Edgewood Arsenal as a center for

receiving , processing and analyzing the data from the Vietnam Teams .

In conjunction with the Wound Ballistics Group of the Ballistic Research

Laboratories ( BRL ) , Aberdeen Proving Ground , a complete system for

storage , retrieval , and analysis of the WDMET data was designed for

the BRL electronic computer , BRLESC .

The WDMET Team in Vietnam was organized into four ( 4 ) sections :

( 1 ) Headquarters and Support Section in Saigon ; ( 2 ) Section I in An Kae ,

following units of the 1st Air Cavalry ; ( 3 ) Section II at Cu Chi , covering

elements of the 25th Infantry Division ; and , ( 4 ) the Pathology Section at

the Saigon Mortuary . Each section studies American casualties from a

battalion-sized unit . Section I reported on 100% of the casualties in

its selected units , while Section II covered all casualties in selected

engagements . The Pathology Section autopsied the "killed - in -action " and

"died -of-wounds" casualties which had been covered by the field teams .

In addition , they performed autopsies on selected cases not covered by

the field sections , but which could contribute to fulfilling the WDMET

mission .
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Due to the irregular character of the conflict in Vietnam , most

cases contribute useful information to only a small part of the WDMET

area of interest . The cases are not randomly selected , and they are

" typical" only insofar as the war in the two areas covered is typical

of Vietnam as a whole . The enemy's weapons are often improvised or not

seen , making identification or characterization of the weapon difficult

or impossible in those cases . This type of data was collected under

most unfavorable conditions , to say the least . The WDMET personnel , of

course , were never allowed to interfere with the mission of the units

being covered or with the proper medical treatment of the wounded. Data

could not be obtained until the engagement was terminated .

In addition to the problems inherent in the method of data acquisition ,

biases are present in the data selection procedures . As stated previously ,

Field Section I attempted to get information on all casualties from a

selected unit . This was done whenever feasible . However , due to the

limited number of personnel available for data acquisition and the nature

of the Vietnam conflict , there were periods of intense activity during

which it was not possible to cover every casualty . There was necessarily

some case selection on an individual basis with the team member forced to

select the "most valuable " cases . Field Section II , on the other hand ,

selected incidents from which all casualties were covered . Incidents

were generally selected on the basis of weapon or weapons involved and

the availability of information .

As the completed casualty reports are received at WDMET ( C ) , Edgewood

Arsenal , they are coded onto punch cards and are submitted to the Wound

Ballistics Group at BRL for processing on the BRLESC computer . The

actual processing of the coded information is handled by three separate

computer programs : ( 1 ) an error checking program ; ( 2 ) a print-out pro

gram ; and , ( 3 ) an analysis program . The error checking program checks

for selected punching errors in the input data ; the print-out program

reads the input data and produces a narrative print-out for each

casualty report . It is the third program which is of interest here .

At present , the analysis program produces a simple enumeration of

the frequency of occurrence of the various factors contained in the

study and correlations among the factors (frequency of occurrence of

two or more factors in the same case ) . Presented here is a selection

of correlations generated by this computer program . These specific

correlations were chosen because of their interesting content and the

likelihood that they would contain the largest number of data points

for our limited size sample .

Our problem centers about the interpretation of selected correlations

and methods of determining if significant differences exists between the

istribution of groups of data as it is received from Vietnam .
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II . FREQUENCY OF OCCURRENCE OF FACTORS . The eleven ( 11) sections

of the data collection format are composed primarily of coded information .

For example , the type weapon carried by the casualty was coded as follows :

Code No. Weapon

0

1

2

3

4

5

6

7

Unknown

M16

M14

M79

M60

Mortar

Rocket

Other

In this manner , it was possible to determine if a factor occurred and

how often . The following three tables represent this type of enumeration

of factors .

The data presented in Table 1 represents the number of casualties

associated with each injury type for the first 930 cases received and

coded onto punch cards by WDMET ( C ) . The totals on injury type come to

904 cases ; adding to this the 26 cases which had no information on

injury type bring the total to 930 . It should be understood that this

distribution is not truly representative of the Vietnam conflict as a

whole in that there is a higher percentage of fatalities than is found

in the casualty distributions as compiled by the Office of the Surgeon

General . This is due primarily to the fact that the personnel located

at Saigon Mortuary performed a number of autopsies in wound pathology

studies apart from cases studied in the field . When this is taken into

consideration , much of the difference between the true distribution and

the WDMET distribution is removed .

The upper half of Table 2 lists the types and frequency of occurrence

of body armor encountered in the study thus far . The total number of

casualties who were wearing body armor was 139 ; those known not to be

wearing armor , 565 . This gives a ratio of 4 to 1 of armor not worn to

armor worn .

The number of hits on the body armor and helmet is shown in the

upper half of Table 3 . In general , one would expect the quantity of

hits on the helmet and body armor to be large . Out of 139 casualties

wearing body armor , more hits should have been on the armor . Likewise ,

there were 585 casualties known to be wearing a helmet; this is 80% of

the 721 cases which contained the body armor set . Using information

compiled from the analysis program , it was found that the average number

of hits per casualty was 3.4 . Using this information , the following

table may be constructed :
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B.A. Helmet

No. Known to be Wearing Equipment

Avg . No. Hits Per Casualty

Expected No. of Hits

% Body Area Covered by Protective Gear

Expected No. of Hits on Equipment

Actual No. of Hits on Equipment

Actual No. as Percent to Expected No.

139

3.4

473

23%

109

49

45%

585

3.4

1989

7%

139

66

47%

From these calculations , it is concluded that more than half the

armor and helmets are not available for examination or that hits are

not noticed on the equipment examined (e.g. , in a helmet which is badly

battered from driving tent stakes or armor with worn or frayed spots

concealing small hits ) .

The lower half of the table shows the quantity and boot type worn .

The table for the " no boot" category suggests that during the shelling

of base camps many troops are in bed or relaxing with their boots off .

III . TWO -WAY CORRELATIONS OF FACTORS . In addition to simple

enumeration of the various factors studied , correlations between pairs

of factors were also found , an example of which is presented in Table 4 .

The correlation is between wound location by six body areas and activities

accomplished or not accomplished . The intent in gathering this informa

tion was to explore the relationship between wound location and incapacita

tion . The speed with which the casualties are evacuated seldom leaves

the soldier time to attempt any task . The data seems to show that the

soldier seldom tries something he cannot do ; as activities accomplished

outnumber those not accomplished by over nine to one .

Another two factor correlation , weapon versus location of hit , is

contained in Table 5 . The right hand column is the total of the row

for each weapon . To circumvent the overwhelming quantity of numbers ,

two major groups of weapons were extracted to make the last two rows .

These two groups will be referred to as rifles and fragments hereafter .

To further simplify matters , the wound distribution for rifles and

fragments is transformed into percentages in Table 6 .

Table 6 also shows the distribution of wounds of body area correlated

with a number of other factors . The first column shows the wound distri

bution compiled by accumulating the total number of hits in a body area

then transforming those totals into percentages . The second column was

compiled by accumulating presence of a hit in each body area over all

casualties then transforming these totals into percentages . For instance ,

if a casualty received twelve ( 12 ) hits in the head or thorax , the

sample number under " total number of hits" would be increased by 12 ;

however , the sample number under " presence of a hit " would be increased
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by 2 , one for presence of a hit in the head and one for presence of a

hit in the thorax . As is evident from a comparison of the percentages

in these two columns , there is no great difference between the two

methods of accumulating the wound distribution . Evidently , the body

area which receives the most hits is also the area most likely to be hit

( one or more times ) . The one possible exception is the lower extremity .

When it is hit , the lower extremity seems to get more hits than other

areas . This could be because the lower extremity tends to have more

shielding from fragmenting munitions than the upper parts of the body ,

so when a fragmenting munition does detonate near enough to the man

that the legs are exposed, the probability of multiple hits , especially

to the lower extremity , is quite high .

The next pair of columns was derived from Table 5 where the numbers

of hits by rifle bullets and fragments have been converted into percent

ages . The percentages for fragmenting munitions are almost identical to

those of presence of a hit (by any weapon ) , but the increased percentage

of hits in the combined head , neck , and thorax areas for rifles might well

be an indication of aimed fire .

The next group of correlation in Table 6 shows wound location versus

three categories of body position , upright , " doubled -up , " and lying

(which is 90% prone ) . Percentages do not differ enough , column to column ,

to be highly significant. However , in each case the small difference is

in the direction which one would expect . For instance , in moving from

the upright into a doubled-up position the head , neck , thorax , and upper

extremities do not change in presented area ; however , the lower abdomen ,

pelvis , and lower extremity are those parts which are doubled -up , proving

shielding to each other , and thus losing presented area . The relative

percentages of hits under these two areas reflect these observations .

The mean presented area of the head and neck to horizontal hits is

about 6.5% of the total presented area of the upright man . Why , then ,

is there such a large percentage of hits on the head and neck of the man

in an upright position ? Part of the reason has already been mentioned :

in a ground burst the fragment sprays will be limited by earth , irregulari

ties in the surface flora , stones , or other low -flying cover , so that there

will be some angle with the horizontal below which few or no fragments will

be found . Thus , the upper parts will receive more hits , on the average ,

than their mean presented area warrants . If , on the other hand , the

fragments are from direct fire artillery or proximity fuse munitions

the burst is considerably above the ground . In this case , the presented

area of a man is like his appearance if one is standing on a building

looking down at him . The majority of his presented area in this case

is head , thorax and shoulders . For the soldier in the lying position ,

cover is a major factor in wound distribution . More cover is offered

near the ground , and that is usually the reason the man is lying there

in the first place , to take advantage of whatever cover is available .

Therefore , we would expect that with this highly variable factor , the

195



wound distribution would be very erratic , which it is . We also would

expect that the tendency toward greater numbers of hits in the higher

parts of the body would disappear , which it does .

The last three columns of Table 6 correlates injury type , fatal

and non-fatal and cause of death to body area wounded . As expected ,

for the WIA's the larger proportion of hits occur on the least vulner

able parts , the extremities ; while for the KIA and DOW's the larger

percentages occur in the head , neck , and thorax . The last line in

the table shows that the average casualty received 3.50 hits in 1.82

body areas . Since each casualty received (on the average ) several

wounds in two body parts , the distribution of wounds in the KIA and

DOW's does not show the true distribution of cause of death . For

instance , a fatality may have a bullet wound of the leg , but it was

the bullet through the heart that killed him . When only the wound

causing death is considered , the last column of Table 6 results .

In Table 7 , the rifle bullet and fragment wound distributions of

Table 6 are further broken down into hits on the front or back of the

body . The purpose therein was to determine if hits about the body are

truly random for bullets or fragments . The differences which stand out

in this comparison are the front and back of the head and neck for

fragments and the front and back of the upper extremity for bullets .

Considering the latter first , we note that the body diagrams used in

this study consider the man to be standing in the standard anatomical

position ; i.e. , with the palms of the hands facing forward . In the

battlefield , the soldier can be envisioned to be holding his arms in

almost any other position rather than the standard anatomical position ,

resulting in considerable ambiguity in what is the front and what is

the back of the arm . As a matter of fact , the palms are usually turned

toward the body with the result that a large part of what is called the

front of the lower arm is usually shielded from being hit by the trunk .

The much lower incidence of fragment hits on the back of the head

and neck , mentioned earlier , is due to the ability of the helmet to

defeat most incoming fragments and the much greater shielding that the

helmet provides the back of the head and neck . When the effect of

helmet protection from fragments and the ambiguity of which is the

front or the back of the arm are removed , the lower part of Table 7

follows . Here it is seen that there is an insignificantly small dif

ference between the percentage of fragments striking the front or back

of the soldier . For bullets , on the other hand , a difference was

expected because of the highly directional nature of rifle fire ; viz . ,

in a fire fight the troops are usually facing each other across some

kind of battle front .

Table 8 shows the number of injuries and fatalities due to enemy

fire as a function of weapon . The first two columns contain the numbers

of fatal and non-fatal cases while the third column lists the ratio for
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the two . The quantity NF /F will be referred to as the "survival

index . " Thus , weapons such as rifles and the Claymore mine have a

low survival index (or , conversely , a high fatality rate ) . The

recoilless rifle and large land mine display a moderate survival

index while most other fragmenting munitions show a moderate to high

survival with hand grenade and artillery showing a very high index .

In the lower part of the table , the rifle and fragment combination

groups are listed .

IV . THREE -WAY CORRELATION OF FACTORS . Figures 1 through 6 all

show the results of one correlation of three factors , injury type

(KIA , DOW , WIA , etc. ) , weapon , and distance between the casualty and

weapon ( or detonation) . Figure 1 displays graphically the cumulative

distribution of fragment and rifle bullet injuries regardless of injury

type . The curves show that fragmenting munitions are much shorter range

weapons than rifles , as would be expected. To quantitate this , note

that 90% of the fragment wounds occur at 40 meters or less whereas 90%

of the bullet wounds are accumulated only at 160 meters . Figures 2 and

3 split the data in Figure 1 into fatal and non-fatal wounds . Ninety

percent (90% ) of the fatal fragment wounds occur at ranges less than

30 meters . Ninety percent (90% ) of fatal bullet wounds occur at ranges

of 125 meters or less . Figures 4 and 5 show the same data presented in

a slightly different manner .

Figure 6 shows a slightly different method of presenting a three

way correlation .
The factors correlated are weapon , range , and number

of hits a casualty received . Specifically , the curve in Figure 6 is

the cumulative distribution of number of hits for fragments . The

family of curves represents categories of range . Similar data was

obtained for bullets , but the sample sizes were too small to give a

coherent form to the curves . These last five curves indicate the

difficulty one has in displaying multiple correlations even when the

weapons were combined into only two categories . Presenting a full

four -way correlation in a reasonable space borders on the impossible.

In the future , as more cases are entered on punch cards , a similar

" analysis" will be conducted using more factors and more extensive

correlations . It is hoped that sample sizes will be large enough , and

definite enough , to clear up the inconclusiveness in some of the data

presented here .
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EFFECT OF NUMBER OF OBSERVING STATIONS

ON FLIGHT MEASUREMENT PRECISION

Fred S. Hanson

National Range Operations

White Sands Missile Range, New Mexico

ABSTRACT. Estimation of the standard error of a measured space

position is reviewed . Pooling such standard deviations for the portion of a

trajectory covered by a given measuring system - and for a series of tests on

the same missile - is discussed . Results are presented showing the dependence

of average position-precision on number of stations used in the solution . The

correlation of these variables in operating data is dominant and the

magnitude of the effect is profound. The exponential improvement of

position -precision by increasing stations can be as much as four times the

effect of increased sample-size on the standard - error-of-the -mean of a normal

distribution . Mechanisms considered embrace : geometric convergence ,

observational constraints, methodological deficiencies, and statistical con

siderations. The exponential dependence of position-precision on number of

cinetheodolites may be an index of the measurability of the object

(*readability of its point-of-reference ). Statistical measures-of-goodness of

geometric convergence are derived. A procedure is suggested for rating

test -configurations. It is shown that calculating observationally - redundant

precision of nonredundant solutions is a generalization of the classical

calculation of the precision of single observations from the precision -of- the

mean of a sample of a given size . A need is suggested for a statistics of

observations which define geometric surfaces in space. (This may be a

generalization of numerical statistics . ) Results are also presented showing the

dependence of precisions of derived velocity and acceleration on number of

stations . A probabilistic improvement of physical accuracy ( bias ) by

increasing stations in flight-measurement is hypothesized . A summary is

appended .

This paper has been reproduced photographically from the

manuscript submitted by the author .
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INTRODUCTION . Our reviews of over- and under-meeting of quality requirements made it necessary

to investigate the relationship between quality and resources in our data -support operation.

We had been aware of the statistical improvement of precision in which ordinary averages bunch closer

together in proportion to the square root of the number averaged.

Much of the following work was published in in te mal memoranda during the fall of 1967.

BACKGROUND. This paper is clinical in the sense that it is exploratory.

Since January 1963 , White Sands Missile Range has built a sufficient, standard basis for a

data -precision spec into its user -document format - in the interest of comparability. (We say what we mean

by our numbers, and that we assume the user's numbers mean the same thing - unless he makes it very clear

otherwise .) WSMR -standard precision is the average standard error of component values of data , obtained

by propagation from the previous stage of the collection -reduction process. This precision -index can be tied

back directly to station quality, and film - reader quality. It applies to the data in the form in which it is

reported.

Our data -precision is many things. It's the radius of confusion of a data value, due to the disagreement

among the stations. It's how well we can know from the observations what the value is . When related to a

valid requirement, it's a measure of Range effectiveness. Precision is available in current operation . It

affords a means for operational control , and suffices for some of the user's needs. Apparently, in

flight-measurement, optimizing system precision tends to optimize system accuracy. We furnish our users

the precision of each data value. And , we use root-mean -square average precisions - by segment, by test , by

month , and by program - for operating and management control .

I gave a historical and exploratory paper on data -support quality control three years ago at the Design

of Experiments Conference (Ref. 1 ). Our monthly Data Quality reports ( Ref. 2) give actual average

precisions by station , by measuring system , and by missile along with the requirements and

commitments. Averages are monthly, and cumulative for the fiscal year. Being definite and quantitative,

keeping usable scores on data quality, and controlling closely on the basis of results are a bit of a departure

from missile -range tradition . Personally, I feel it is to the advantage of mission personnel to provide

management quantitative bases for decisions.

ESTIMATION OF PRECISION . Figure 1 is a summary of the math we use to calculate precision of

observed position for cinetheodolites.

This is from our Data Reduction Handbook - ‘ R. C. Davis'method (Ref. 3) . We solve for position by

minimizing the sum -of-squares of the deviations of the stations in azimuth and elevation , from their

least-squares point. In the first equation , cos e; allows for the fact azimuth circles get smaller as one goes up

· until the universe comes to a point directly over each of our stations'. As the azimuth circles get small we

lose resolution ; the azimuth error becomes something between ungodly and unknown . So , we temper it by

the cosine of the elevation angle "). We average the angular deviations as their squares. The square root of

1)Reference 14 is a formal explanation of this correction.
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that ( 0A ) is our measure of the average disagreement among the angular observations. Use of the

3 -dimension al degrees-of-freedom ( 2N-3 ) yields an estimate of the population standard deviation of angular

observations (of what it would be if we could repeat them indefinitely ).

Now , we least -squares in 3 dimensions. But , forever after we treat the components separately ; as

though they had been independently determined ( we'll come back to that ) . Multiplying the variance of the

angular deviations by the cofactor of the proper element of the ( principal) diagonal of the determinant of

the least- squares matrix , then dividing by the (value of the) determinant is said (by a liberal interpretation )

to transform the angular variance to a linear -component variance of the least -squares position mean . It is

planned to verify this last point by : converting angular residuals to their linear-component equivalents ;

calculating standard deviation and standard -error-of -mean of each set of these (about the least-squares

mean ); noting which is closer to the matrix result.

We finally multiply each standard deviation by the proper value of the ' t ' statistic , to correct for the

relatively small departure from normality at the 68.3% probability level due to the small sample-size alone

( to the small degrees-of- freedom ). Additionally, we usually obtain a precision of smoothed position by

dividing the standard -deviation of a series of points , about its 2nd-degree fit, by the proper reduction -factor

in terms of the number-of-points. (We are not yet incorporating lack -of -fit into smoothed -position

precision . ) Our precisions of velocity and acceleration are obtained by propagating smoothed -position

precision thru the Ist and 2nd derivatives of smoothed position .

AVERAGING PRECISION. It is physically necessary to describe measurement quality in terms of

frequency distributions. It is operationally and managerially necessary to describe data quality in job lots

(segments or tests ) - and wholesale ( series -of-tests ). Since January 1963 , WSMR has officially defined data

quality as the average precision for the firings covered by the documentation .

an

When a requirement or commitment is met asirms-average, approximately 68.3% of the data values fall

within the stated tolerance of their statistically- true values . (i.e. , When compliance of the individual

standard deviations is 50%, average compliance of the data values which they characterize approximates

68.3%. )

In root-mean -squaring a component precision for a segment or a test , our denominator is the number

of component values. Then, our test-average quality is the root-mean -square of the 3 test -average

component precisions . (Yielding the radius of that sphere which conventionally approximates the average

error-ellipsoid .) In our monthly and cumulative project averages, tests are given equal weight.

What constitutes a statistical population is an operational decision . Our average precisions are

calculated by the same procedures each time ; so they have an operational validity (we're not in the rigor

business) . We are interested in knowing the magnitude and direction of the errors resulting from our

nonivory tower applications of ivorytower methods .

One purpose of statistics is to numerically characterize errors. This paper suggests that includes

numerically characterizing the errors incurred in applying statistics to the real world .

Let's look at some operational findings.
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EFFECT OF NUMBER OF STATIONS. In this investigation , test-average precisions were sorted by

average -number-of -stations (to the nearest integer) in the solution. Each group of precisions was then

root-mean -squared ; the denominator being the number of rounds.

Figure 2 shows average precision of position of Navy bombs vs average number of Askania

( cinetheodolite) stations computed ( Jan -Jul 1967). The horizontal ticks are the plotted points. Numbers on

the graph are the number of rounds ( tests ) represented by each plotted point . The number of

position -points in one of our tests varies widely . Typically , it is a few hundred , times 3 components . The

Navy bomb-drop is a highly diversified program . In a manner of speaking, the range and user ‘did their

worst ’ ; but the average quality depended on only one variable (except for the limited 5-station data) . That

data is shown both as is, and after deleting the worst round . It may indicate they were running out of

reasonably well -located stations for covering the bomb, which impacts the ground.

GENERALIZATION OF MODEL. Please tum to Figure 3. This merely looks hard . It's only one

equation ( equation ( 5 )) - transformed ( equation ( 1 )) - and generalized in both forms). If our only effect

were numerical redundancy, position quality would improve in proportion to the square root of the

number -of-observations (Ref. 4) . Or , to the square-root of the number-of -stations, since the number -of

observations per station is constant for a system . Equation (5) is the basic form , for optics, of this classical

theorem (for x normally distributed ). For radar the 2 becomes 3 ; for DOVAP it becomes 1 .

When the only effect is number of observations, the population standard deviation of individual

observations (0 ) is of course unchanged. So , if equation (5 ) is used twice in constructing a curve, it reduces

to its working form, equation ( 1 ). You might guess that (6), (7), (8) and (2), (3 ), ( 4 ) were empirically

derived by generalizing the exponent in ( 5 ) and in ( 1 ) . Equations (5), (6) , (7), and (8) are hyperbolas of the

respective types:

x y = k , xy = k , x3 12 y = k , x y = k .

In Figure 4 , the operational curve is the solid one . The working form of the classical-statistical

equation was used both ways from a midpoint to construct the curve shown as a string-of-beads. This didn't

do the job so we had to look further. The upper half of the Navy -bomb curve is closest to improvement of

precision as N32. The lower half is closest to N2 . Overall, it's a tossup between those two . Physical

interpretations of these 3 hyperbolas are possible at each 4 -station , for optics. At 1 -%% stations, the curves

represent standard deviations of single observations of a point- in - 3 -dimensional-space. The interpretations

of infinitely-poor precision for zero stations and of infinite stations for perfect precision are obvious.

VARIABILITY AT A GIVEN NUMBER OF STATIONS. Curvilinear correlation coefficients might be

calculated for equation (7) applied to the upper half of the Navy-bomb data and for equation (8) applied to

the lower half. Differences between these and unity would estimate the relative influence of all factors

other than number-of- stations. Further, the standard deviations of individual-round precisions about the

pooled values, at each number of stations, could be calculated from the round-average data. Or , they could

be calculated about the corresponding points on the fitted curves. These sigmas could be used to set current

individual-round tolerances for the models, at each number of stations (it is planned to use this approach ).
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The corresponding tolerances of pooled (cumulative) precisions could be estimated as the appropriate

standard deviation of individual rounds divided by the square root of the number in the average. In

calculating correlation of round -average precision , or in controlling a cumulative average, the average

number of stations should be carried to the first decimal place (it is available to 4 places) .

Dr. H. H. Germond suggests plotting average precision vs number of stations on log-log paper. That , in

this way , the data may be fitted with straight lines whose slopes are negatives of the corresponding powers

of N of the hyperbolas (Ref. 5) . Straight lines fit people better . This investigation has emphasized direct

study of the relationships. Linear correlation coefficients would of course apply to log precision vs log

number-of -stations, rather than to precision vs number -of- stations.

FURTHER DATA. Figure 5 shows average precision of position of Navy aircraft vs average number of

Askania stations computed (Jan-Jul '67) . The curve is less steep than for the bombs . There is no clear

indication they were running out of stations well-located for covering the aircraft. Figure 6 shows that, for

the aircraft, precision came closest to improving in direct proportion to number-of- stations.

Mr. Frank Hemingway suggested we look at the vertical component separately . In Figure 7 , the dashed

curve is the average quality of Navy aircraft x , y , and z from Figure 5. The solid curve is the precision of the

vertical component only . From inspection of other WSMR cinetheodolite data, this better precision of the

vertical component appears to be a general result. Without z in the composite , the difference would be half

as much again. Please note that these are parallel , except that the z -curve is a bit flatter near the right-hand

end .

Figure 8 shows the effect of number -of -stations on Redeye Contraves ( cinetheodolite ) precision -of

position was dominant and profound, even with less data (Jan-May '67) than on the Navy tests . In Figure 9 ,

the upper part of the Redeye curve was about a tossup between N$ 72 and N2 . The lower part was N2 . I

gave N ? a little edge , overall .

Figure 10 shows the precision curve was slightly less steep for the Redeye target ( Jan -May ’67). In

Figure 11 , this relationship was a tossup between N and N312 for the upper half, N3 2 lower and overall.

Figure 12 shows precision of Askania position -measurement on the PEARL aircraft radome (Jan-Jul

° 67 ) improved approximately as n'h, if we lightly regard the poorer 4 -station data. If we delete the worst

rounds, as indicated by Figure 13 , the 3-station data was better than the trend of the rest ; the 4 -station data

was on the curve ; the upper half improved only as N1 /3 .

In Figure 14 , if we didn't take our result too seriously, we might approximate this Redeye

fixed -camera data (Jan -May '67) by the solid curve which turned out to be nearest to improvement of

precision in direct proportion to number-of -stations.

Figure 15 shows a similar situation held for this limited DOVAP data on Lance (Oct '66 - June '67) .

Because of the very small amount of data , it appeared desirable to also look at 2 of the averages on the

assumption that they might not be representative samples. In Figure 16 , our solid approximation tumed

out to fall closest to improvement of precision in direct proportion to number-of -stations.
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Preliminary indications were that the average standard deviation of least -squares-mean space-positions

determined by FPS - 16 radar typically improved as the 3/2 power of the number-of-stations.

Apparently , our cumulative-average component-precision of observed position converges rapidly to

correlation with number of stations .

It was noted from plotting the foregoing data -curves on the same graph that the exponential rate of

proportional ( percentage ) improvement of precision, with increase in number-of-stations, depends on the

magnitude of the precision values as well as on the steepness of the curve. Smaller numerical values ( better

precision ) require less numerical improvement ( less steepness) for a given exponential rate of proportional

improvement.

VALUE OF APPROACH. Findings of this paper are being used in management reviews to express

over- and undermeeting of requirements in terms of resources ( resource -equivalent ratios of precisions ) . The

foregoing data - curves provide specific resource -capability relationships by project. These are relevant to

data -support committing , control, and planning. The data will lend itself to further structuring of our

capabilities by graphing in various ways . Also , to advancing the state - of-the-art and the state -of-the

understanding - as the following pages indicate .

SUMMARY FOR CINETHEODOLITES. Figure 17 is a summary for Askania and Contraves

position -precision , based on all the cine -position data I have plotted to date .

The upper half of this table shows the (approximate) spectrum of dependence -of-precision on various

powers of N which was produced by the interaction of cinetheodolite systems with various flight-measure

ment tasks. Relative point-of-reference difficultymay explain the broad precision -response spectrum of the

cines . The PEARL radar pod is a large, black hemisphere without distinguishable markings. It is more

difficult to establish a consistent reference on large aircraft than on small , and more difficult on small

aircraft than on small or medium missiles or bombs . The exponential dependence is apparently an index of

the measurability of an object.

Our management reviews show the factor of over- or undermeeting of requirements in terms of

resources ( stations) - where this is not identical with effective ratio of average -precision to its requirement.

The proportionalities of numbers of stations to precision are, of course , the inverses of the upper table in

Fig. 17 - as shown in the lower table . We use relationships specific to projects where they are available. If

dependence must be obtained from the table, we show the resource-equivalent ratio in parentheses.

Now , it's easy to say precision can improve in proportion to as much as N2 in flight-measurement

because it's a 3 -dimensional process. But what are the mechanisms by which this takes place - and what is

the relative importance of each ? We have tumed over a few stones , and here is a list :

MECHANISMS.

1 . The decrease through increase in sample -size alone of our uncertainty as to what the

observations say the data value would be if we could repeat the same measuring process indefinitely. This is
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the well-known statistical convergence (Ref. 4 ) . It is generally accepted, locally , that our ‘Davis' method for

cine data effectively takes this into account.

So , öc = f (Nm ) , where m = f ( sample size ;

Let's call this one improvement by overcoming small sample -size.

2 . Improvement, through increase in sample -size, of the average goodness of the intersection -angles

of the lines -of- sight from the stations ( less chance of only bad intersections). The relationship of

in tersection -angle to both precision and accuracy was treated in my earlier clinical paper (Ref. 6) . The

angle -of- intersection mechanism has some diminishing returns as the useful cones (with vertex at the

missile ) become divided into smaller, less desirable intersection -angles. In multi -station measurement, the

projected intersections of each station -line with each of the others are relevant to linear precision .

Simulations , informally communicated by Mr. W. V. Hereford of Sandia Corp. (Ref. 7) , showed a

first-power improvement in rms position -error while overcoming his 'worst -case' geometries; only a

half -power improvement while interacting with his 'best- case' geometries . (Gradual expanding of a narrow

baseline vs gradual spacing- in of a wide one . ) This establishes an effect of geometry on the power of the

precision -response.

on numericalMultidimensional measurement depends on geometric convergence as well as

convergence.

Figure 18 shows an acute convergence -angle ( smaller than the 90° convergence which Reference 6

deduced to be the general optimum ). Figure 18 can be any plane through 2 stations and the missile. Let the

# angular dispersion about the direction lines be an average angular standard -deviation (02 ).

in the
The diagonals of the smaller almost -diamond are its linear-standard deviation subtenders of

directions perpendicular to and parallel to the baseline .

Solving either error -triangle, SMO, which contains the vertical diagonal ( given the angles and the slant

range ):

r sin OA r sin
'A

r sin o a

11

01
sin ( 180° – 0/2 – 0A ) sin (0/2 + 0A ) sin 0/2

The horizontal diagonal may be obtained from :

01/2

cot 0/2

5
/
5011/2 oll
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whence :

0
r sin o

A
r sin o

on
sin

A

011
cot 0/2 sin 0/2 cot 0/2 cos 0/2 sin 01

where is the parallel convergence -angle.

o may be taken as a measure of the badness of the convergence for measuring perpendicular to the

baseline. | may be taken as a measure of the badness of the convergence for measuring parallel to the

baseline. (They are inverse measures of the goodness of the convergence for these purposes )

In Figure 18 is a vertical plane parallel to the baseline, q , measures the goodness of the vertical

projection of the convergence ( in terms of the other projected quantities) for measuring the z coordinate of

the missile. This measurement depends only on the elevation readings. Here , measures on (of linear

observations la ) , not our standard precision of the least-squares mean ). Its units are those of the slant

range .

Per the first of the above 3 equations:

Vertical convergence Precision and Variance Factors

Vertical

Convergence (0 )

1

sin 0/2
Cubasin 0/2

180°

135 "

909

459

1.00

1.08

1.41

2.61

7.66

22.9

114.4

1.00

1.17

2.00

6.82

58.6

524 .

13,120 .

15 °

59

1

This table compares the goodness of vertical convergence at any constant value of projected slant range ,

which avoids confusing the effect of range on linear precision with the effect of convergence-angle. It

indicates that the optimum vertical convergence , per se , is not 90° . That the most precise measurement of

the vertical, as far as geometry goes , is when the object is in the line -of-sight between the stations.

Vertical convergence, in Fig . 18 , can be easily calculated for a given case as :

0 2 arc tan

baseline

2 ( altitude )

The keys to good vertical convergence are , of course , long baselines.

1 a ) The mode of O , is defined by the mode of on ( e.g. , observations, mean , series, curve, etc. ) .
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If Figure 18 is a horizontal plane, q measures the goodness of the horizontal projection of the

convergence for measuring perpendicular to the baseline, and o |measures the goodness of the horizontal

projection of the convergence for measuring parallel to the baseline. (When the baseline is east-west , g

measures and
o measures y . ) Since the two horizontal measurements share their plane of projection , a

gain in convergence for one is a loss in the other . In general, it's not sound practice to improve data in one

coordinate by making it worse in another. So , the practical optimum horizontal convergence is 90 °.

Ox

The separate formulas for 01
and

011
are of relative value for horizontal measurement.

Otherwise, by the second of the above 4 equations:

Horizontal Convergence Precision And Variance Disparity

2

0Perpendicular

Convergence

179°

175°

165°

1350

120 °

o1

0

1 / 114.6

1 / 22.9

1 / 7.60

1 / 2.41

1 / 1.73

1.00

1.73

2.41

7.60

22.9

114.6

011

1 / 13,140

1/525

1 /57.6

1 /5.83

1 / 3.00

1.00

3.00

5.83

57.6

525

13,140

90 °

60 °

45 °

15°

5°

1 °

This table compares the disparity of the two horizontal convergences at any given ground range . The ratios

of precisions approximate the ratios of width/length (or length/width) of the actual horizontal

linear-observation - error ellipses. The ratios of variances approximate the ratios of areas of circles whose

dameters are the two diameters of the ellipses. ( These ratios would be the same for the least -squares means

as for their linear observations.)

Perpendicular convergence in Fig. 18 is, of course , calculated for a given case as :

0 = 2 arc tan

baseline

2 (perpendiculardistance)

One key to optimum horizontal convergence is the set of optimum configurations in Figure 19 , which

were demonstrated in Reference 6. The least that should be done is to compensate a narrow convergence in

any horizontal direction with another that is roughly perpendicular to it .

The numbers in the above 2 tables are similar , but only the first table is a direct measure of loss . The

second is the ratio of loss in one direction to loss in the direction at right angles.
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A direct measure of the combined goodness of horizontal convergences is the root-mean -square

average of their perpendicular and parallel precisions.

Per the first and third of the above 5 equations :

1

sin ? 0/2
+

1

cos2 0/2OH ã r sin o
A

2

Horizontal Average Precision And Variance Factors

2

° H /r sin o

Perpendicular

Convergence (0 )

179 °

OA (ºu/r sin o )

175°

165°

135 °

90 °

81.0

16.2

5.46

2.00

1.41

2.00

5.46

16.2

81.0

6561

263

29.8

4.0

2.0

4.0

29.8

263

6561

45°

15 °

5°

1 °

This table compares the goodness of horizontal convergences , at any given ground range , in terms of the

average quality of horizontal-component data . It confirms the 90° optimum . Average horizontal quality is

somewhat less affected than vertical quality by a given narrowness of convergence, but it enters twice into

data quality . Comparing twice the variance in this table with the variance in the first of the above tables, it

is seen to be equally important to avoid narrowing horizontal and vertical convergences in the region from

45° to 0° . Over convergences from 45° to 90° , the Hottest goes from being equally important to being

twice as important.

The case of the missile in the plane normal to a 2-station baseline at its midpoint ( Figure 18) was

picked to simplify the math - in the interest of physical understanding .

I think we can say our net station configuration is as much a chance proposition as our net number of

stations . Of course , our results reflect our average station -configurations.

The above analytical approach has demonstrated ample potential for improving position -precision by

improving the average goodness of intersection -angles, through increase in sample-size. (Toward a

happy-medium convergence.) For the z coordinate , the first of the above tables indicates the direct effect

of average convergence -angle on precision . For x and y , the last of the above tables indicates the direct

effect of average convergence -angle on their average precision . ( 2 optical stations have 1 convergence , 3

stations 3 , 4 stations 6 , etc. ) .
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The “readability ' mechanism speculated under SUMMARY FOR CINETHEODOLITES would differ

from the others in this paper in being a degradation of gains that would otherwise be made . I am inclined ,

now, to explain our cine precision spectrum as due to readability and /or to increasingly vertical trajectories

in going from left to right in the upper half of Figure 17 .

So , öc = f ( nm ) , where m = f ( ; test configuration ;

Let's call this mechanism improvement by overcoming non optimum test configuration .

3 . Another possibility is that limitations of our least-squares methods are being averaged-out by

( sheer) number of stations . I have attempted to state what might be called practical theorems about

optimum least-squares (Ref. 8). These are given in Figure 20 .

( 1 ) Statistical optimum (minimizing variation among individual observations ). WSMR's Davis

methods for cines and for DOVAP (Ref. 9) are optimum by this criterion . Its Odle and Bodwell (Ref. 10)

cine methods , used to some extent in the past , crippled their own ability to estimate statistically -true

population -means and population -variances, by deterministically cutting their sample-sizes in half

( least-squaring deviations of direction -lines ). Until recently , WSMR's multistation -radar method determin

istically cut its sample -sizes to one -third (by least- squaring deviations of 1 -station solutions). Our new

multistation - radar method is optimum by this criterion . Our Davis cine method is not statistically -optimum

in estimation - of - quality, because it propagates an average angular-precision .

(2) General optimum ( transforming residuals from station -variable to missile- variable before

optimizing) . Our former Odle and Bodwell cine methods and our recent radar method were optimum by

this criterion , in the sense that they optimized linear deviations of ' observations'. This paper suggests that

our Davis cine method is not optimum by this criterion , because it optimizes only similarity at the stations -

not overall congruence ; that is , it treats stations equally regardless of their slant- ranges from the missile and

of the convergences of their lines -of-sight with those of the other stations. It optimizes angular quality of

the stations, it does not optimize linear-position quality of the missile. (Some work has been done at WSMR

toward a linear least -squares method for cinetheodolites.)

( 3 ) Quality optimum (avoiding the probable loss of accuracy inherent in geometric-averaging of

angular observations). Per right triangles: If 2 azimuth planes both miss a least-squares position solution (in

general they will ) , their intersection will miss it farther than either plane (hypo tenuse vs perpendiculars ).

Ditto for 2 elevation cones . If the azimuth plane and elevation cone of a station both miss a least-squares

solution ( in general they will) , their intersection ( the missile direction ) will miss it farther than either

surface . It follows that the linear errors of our former Odle and Bodwell , and recent radar, methods were

probably larger than those of methods which least-square the original observations. So , those methods

probably degraded physical accuracy . Our Davis cine and DOVAP and our new multistation - radar methods

are optimum by this criterion .

(4) Summary. It seems clear that the criterion of a totally -optimum reduction can be met only

by minimizing the sums-of -squares of the linear perpendiculars to : azimuth -planes, elevation -cones,

range-spheres and loop -range -ellipsoids. That results by such optimum methods will be somewhat different,

more precise , and probably more accurate than by our current methods.
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Mr. Darold Comstock suggested accomplishing the proposed least -squaring of linear residuals by

multiplying elevation residual by slan t - range and azimuth residual by ground -range. This is radius times

( angle in ) radians. Algebraically it is a 'weighting'. Geometrically (and physically) it is a conversion . The

subsequent algebra must be changed accordingly. ( It is still necessary to propagate these linear standard

deviations into those of the components of the least -squares point . )

It should be apparent that mechanism 3 interacts with mechanism 2 and with differences in slant

range .

Let's sample the potential of linear least -squares for improving precision and probably accuracy).

The configuration at the top of Figure 21 can show ; a vertical projection of 2 stations at any point on

their respective ‘azimuth ' circles about OM ; or , a horizontal projection in any direction about point 0. (S'

can also 'flop' 180 °). In the graphical representation , next : starting with the angular- LS solution , the

* direction - line' is allowed to swing until the linear residuals are equal. Total linear error , summation to point

‘T' , is also shown for each method . In doing this arithmetic, I actually used the slant range (or ground

range ) in the radius -times -radians approximation of arc for perpendicular to projection of El-cone or

Az-plane.

Taking it slowly :

Angular least -squares yields the arithmetic ) mean of the angular residuals . ( In this simple case , it

makes the angular residuals equal.)

Linear least-squares yields the mean of the linear residuals. (In this simple case , it makes the linear

residuals equal.) The angular subtends of the linear residuals are not equal , because their unequal scales of

observation have been taken into account. By incurring a little bigger error with respect to s' , we minimize

the total error . (Optimizing our end - result seems a little unnatural in our range environment.) The

improvement is 38% in precision ; 61 % in variance. In a redundant case , use of degrees of freedom in

calculating these would increase the differences. Finally, the change in the position component would

generally lie between the minus 10.1 and plus 3.0 ft ballparks (of the changes in the linear precisions ). On

the average, I feel it should represent that much improvement in physical accuracy .

If one faces the linear errors behind our angular errors , to the point of a linear LS, the foregoing

dependence of linear error on slant-range nullifies an assumption of ‘rigorous' derivations of the

least-squares principle - that the variances are not significantly different. Least-squares still yields the

minimum vector- resultant of the observed errors.

It has been suggested that the large linear deviations should be weighted. Perhaps inversely as their

slan t-ranges ! In effect, angular least -squares does that. This paper suggests we may be deceiving ourselves, in

linear measurement, if we least -square angular residuals in order to perform our least-squares with ‘nearly

equal variances. Slan t-range is a physical variable - not a statistical weight. (The differences which it causes

in linear error are not due to random sampling.) Our example indicated which procedure yields the smaller

variance of our end- result. Implicit inequality of variances in our angular-LS apparently does more harm to

our result than if this inequality were minimized by linear- LS .
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Mr. Comstock's ro is a very good approximation of the actual ‘linear-equivalent of an angular

residual ( r sin 0A- that subtender of which is perpendicular to the El-cone or Az-plane) .

In Figure 7 , you saw our linear precision of a cine vertical component better than the linear precision

of the horizontal components (FURTHER DATA, above). This does not hold true for the corresponding

angular residuals ( the angular precision of the vertical runs a bit worse). It appears this anomaly is all due to

the interaction of our angular 'Davis' method with convergence, slant-range, and the azimuth - elevation

system .

As you can see in Figure 22 , the vertical subtender of a given angular error increases with elevation

angle, for a given horizontal range . In the top drawing this actually overcompensates the effect of the

difference in slan t- range - which is the cause of the difference between angular and linear ‘Davis'methods .

This compensative case is the whole story for the vertical plane - that half the story for the horizontal plane

wherein we subtend with the normal -to -the - line -between -the -stations. The bottom , additive case, is the

other half of the story for the horizontal plane . What we can win in one direction we more than lose in the

other . The net is an average uncompensation of the equality of x and y . So , our Davis precisions of x and y

do not approach the optimum of a linear least -squares.

This appears to explain the better precision of WSMR's vertical component . But , how much of the

effect of number of stations can it account for ? It turns out, the left end of the curve of oz is slightly

steeper relative to its N -to -the - first-power curve than is the left end of the curve of the composite o. The

right end is slightly shallower ; but the curves are equally close to N -to -the- first -power, overall. So , the

deficiency of our angular Davis does not appear to be a large part of the particular answer we set out to find

in this paper (a little more on this under mechanism 5) .

Let's combine the effects of slant-range and convergence to evaluate the net implications for

linear-vs-angular LS and for z vs x , y .

Our first equation under mechanism 2 approximates any station's separate contribution to projected

baseline-perpendicular measures-of -goodness of its measuring-convergence, at any point within - or -between

the baseline-normal planes which pass through it and through any other station - regardless of the separate

angles of their projected lines -of -sight with the baseline -normal through the projected object. Repeating this

equation :

I sin o

0
sin 0/2

А

For the top drawing of Figure 22 , it turns out that the relationship of the normal subtenders of g is

(sliderule calculation ):

0160°

1.0020130°
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(The relationship of the corresponding chords which reflect only slant- range is :

C60 ° 0.583C30° :)

So , in the 60 ° - 30° case , the normal compensation of slant- range by observing -angle is virtually perfect.

When the stations are not equidistant, the opposite diagonals of the convergence error-figure are no

longer perpendicular. The third equation under mechanism 2 still approximates the parallel subtenders in

the bottom drawing of Figure 22. It turns out that :

$1130°
2.94551160°

The chords are unchanged and their relationship may be written :

C30° 1.714C60° :)

Considered with the normal, this gives some feeling for the net uncompensation of slant- range by

observing -angle in the horizontal plane.

For our LS example of Figure 21 , it turns out that the normal subtenders of o , is:

0160°

0.5780115

( The relationship of the corresponding chords which reflect only slant-range, is :

C60 ° 0.299C15° :)

So , in the 60° -15° case , the normal compensation of slan t-range by observing- angle is quite inadequate. (In

the 60° -45° case , there is over-compensation - by 1.16 . )

It appears that if we took slant-range into account in our estimation of position, we could produce

more precise and accurate data ( from the same records).

The above analytical approach has demonstrated potential for improving position -precision by

overcoming the deficiency of an angular LS , through increase in sample-size. (Toward a happy -medium

slant-range .)

So, öc = f (NM ) , where m = f ( ;;optimization criterion ;

Let's call this mechanism improvement by overcoming nonoptimum choice of variable-to-be

optimized .
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4 . The decrease , through increase in sample - size, of the uncertainty of the directional aspect of

position and position - quality. This is associated with the increasing probability ( as we increase stations) that

the 3 -dimensional least-squares optimum will also be the least-squares optimum for each component.

In simpler language, we are talking about the probability (at each data -point) that the 3 -way -average

position will also be the average position in x , the average position in y , and the average position in z. A

small sample that satisfies these 3 conditions seems about as likely as 3 -cherries - in - a -row ( on a slot

machine).

An analytical approach to 3 -dimensional vs 1 -dimensional sampling is not within the scope of this

paper . The following table gives some feeling for the extent to which these differ.

NUMBER

OF SIGMAS

% LINEAR

PROBABILITY

% SPHERICAL

PROBABILITY2)

1

2

3

68.3

95.5

99.7

19.9

73.9

97.1

In connection with verifying that our matrix algebra yields the standard - error of a mean

(ESTIMATION OF PRECISION , above ), the standard -deviation and standard - error-of-mean of each set of

linear-component equivalents of angular residuals will be calculated about its own mean (as well as about

the least-squares mean ). The differences in the variances of each component for the two means will sample

the statistical- error in our assumption that the 3 -dimensional least - squares optimum is also the least-squares

optimum for each component . The component differences in the two means will sample the bias of

measurement of each component relative to measurement of the 3 -dimensional quantity (or vice versa ).

The above discussion has indicated a potential for better optimizing the precision of each component ,

through increase in sample-size. (Toward a happy 3 -dimensional medium .)

So, öc = f (NM ) , where m = f ( ; ; ; 3 -dimensional sampling;

Let's call this one improvement by overcoming our inability to optimize each dimension .

5 . WSMR's Final Data Reports show how the normal -distribution value of 1.650 at 90% probability

increases for individual standard -deviations at the small numbers of stations used for a position -estimate. As

tempered by dividing out the corresponding smaller increase of the factor 1.00 at 68.3% probability ,

routinely introduced by Data Analysis Directorate ( 't' statistic , ESTIMATION OF PRECISION , above ).

Figure 23 lists values of the ' t ' correction at 68.27% probability (Ref. 11 ) .

This paper suggests that our t.6827 correction to individual standard deviationsshould also be divided

out when the degrees -of -freedom are increased by averaging. That the average position -precision should

2) These valueswere obtained independently by Mr. Gideon Culpepper and by Dr. H. H. Germond.
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then be multiplied by the value of t.6827 for the degrees-of-freedom in the average (where this value of t is

not negligibly close to unity).

We are concerned with the quality of our data in the form that it is reported to the user. Our basic

unit of position - quality is the population -estimate of the quality of each component-value. This is properly

normalized for sample -size and reported to the user in our Final Data Reports.

Our test (or segment) qualities are clearly the average quality of their individual component-values. If

these data -values were independent, normally -distributed , and equivariant, the degrees-of-freedom in the

average -quality of a round (or segment) would be : 2-3 times the-number -of- component-qualities

averaged. Regardless of limitations of the validity of these statistical assumptions, this apparent

degrees- of -freedom in the average is still our best- available estimate - incomparably better than using 2N-3

( the average degrees-of-freedom of an individual component-value ). Averaging is a normalizing process.

Our various cumulative -average qualities, in which rounds are given equal weight , are practical

approximations of the cumulative-average quality of their individual component-values. The best -available

estimate of their degrees -of -freedom is 2-3 times the-average-number-of-component-values- in -a-round

times the -number -of-rounds-averaged.

Our ( equivalent) linear-component deviations are not independent , because we least-square observa

tion al-deviations simultaneously in 3 dimensions. Component variances are further lacking in independence,

because we propagate them from an average angular -variance. Now, effective degrees -of- freedom of these

less than their 2N-3 means that our individual precision estimates are too good. Also , trajectory

measurements closely -spaced-in-time cannot reasonably be assumed independent . Effective sample-size of

averages less than their number-of-component-values means that our estimated average precisions are too

good.

It is planned to follow -up Mr. Charles Bicking's suggestion to rms random samples of 25 -or -less

position -component sigmas from a given test ; also , from a given series-of -tests - to get around lack of

normality , independence, and homogeneity among our component-values. Then , to compare these and our

regular -average sigmas with ASTM control-chart limits for their respective sample-sizes' - to sample the

error in our assumption that our data -values have the above properties. Suggestions: That sample-size which

places a regular-average sigma in the same proportional relationship to its control -chart limits as the

corresponding random -sample sigma will be its effective sample-size. (If upper and lower limits yield

different values, these may be averaged.) An appropriate set of sample- size conversion -factors for our

average - sigmas can be generated in this manner. Use of effective sample -size will yield valid average - sigmas.

(An existing average may be corrected by dividing by the square -root of its sample - size conversion -factor.)

One minus the ratio of an average- sigma calculated from its apparent sample- size to its value calculated

from its effective sample- size will be an estimate of the coefficient-of-linear- correlation of its component

values . (More simply obtained as one minus the square-root of its conversion -factor.)
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Prof. William Kruskal's Comments on my paper show how negative3) correlations of observations

increase the precision -response exponent.

The ' t ' correction normalizes the distributions of samples . In Figure 23 , the larger values of t at low

degrees-of -freedom reflect our inability to know the quality represented by one small sample. But, we know

the round- and cumulative-average qualities of our low -degrees-of-freedom data quite well .

The foregoing implies that the WSMR average -precision -vs-number-of-stations data in Figures 2 and

4-16 should be divided by the values of t in Figure 23. That the average -precision of WSMR's 2-station ( 1

degree-of-freedom ) optical position -data is substantially better than has been realized . 3 -station (3

degrees -of -freedom ), somewhat better. And, so on . (Similarly for DOVAP .)

On this basis, Figure 24 is the corrected version of Figure 9 (Redeye Contraves-precision vs

number-of- stations and its exponential models). Comparing : Between 2 and 3 stations, our curve went from

somewhere among its N2 and 13 models to somewhere among its N3 2 and N models . Between 3 and 4

stations, our curve went from N2 to N3/2 . Between 4 and 5 and 5 and 6 stations, there was little change .

So , mechanism 5 accounted for N3 14 between 2 and 3 stations and for N1 12 between 3 and 4 stations. (For

nothing between 5 and 6 and 6 and 7 stations .)

Figure 25 is the correspondingly corrected version of Figure 11 (Redeye target Contraves -precision vs

number-of -stations and its models ). Our 'fitted curve went from being closest to N3 12 to being closest to N.

It turns out that mechanism 5 changes the upper-half of our Lance DOVAP-precision curve (Figures

15 and 16 ) from proportionality to N to proportionality to N1 12. The lower-half of the same curve remains

at proportionality to N.

Mechanism 5 leads me to put more weight on the right-half of my comparisons of precision of z and of

x , y , z ( Figure with their models . The right-half of the curve of oz is slightly shallower relative to its

N - to - the-first power curve than is the right-half of the curve of the composite . This appears to show some

effect of mechanism 3 on the power of the precision response (more room for overcoming the horizontal

plane's net-uncompensation of differences in slant-range ).

So, öc = f (Nm ) , where m = f ( ; ; ; ; estimating degrees- of -freedom ;

Let's call this one improvement by overcoming nonoptimum estimate of degrees-of -freedom .

6 . The open -ended residue of other possible mechanisms of improvement of flight-measurement

precision by increasing stations.

In this paper, we're talking about how fine a tolerance we can meet by increasing (and optimizing)

comparisons in flight-measurement. Number of possible minimum solutions expresses the number of

possible comparisons of observations on the common basis of our end-result. For optics:

3 )

When one increases the other decreases. This is commonly the case in 3 - dimensional LS solutions.

These are usually influenced by measurement in one dimension only at the expense of measurement in

the others .
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NUMBER OF

STATIONS

NUMBER OF

OBSERVATIONS

D. F. OF

OBSERVATIONS

NUMBER OF

SOLUTIONS

D. F. OF

SOLUTIONS

1 212

1

12

2

212

2

3

4

5

1

0

1

2

3

1/3

2/3

1

4

9 or 10

19

-2/3

-1/3

0

3

8 or 9

183 6

etc.

It tumed out that replacing number -of-observations by degrees - of -freedom (degrees -of -redundancy) of

observations in the models of Figure 3 gave curves whose shapes were less like our operational curves.

Curves based on degrees-of- freedom (degrees-of-redundancy ) of solutions, and on number -of-solutions,

would be still less so .

However, number of possible comparisons and number of independent ) comparisons (D.F. of

solutions) may be relevant to learning the degree to which stations are capable of mutual calibration (to

improve system-precision ) and of calibrating one another (EFFECT ON PHYSICAL ACCURACY, below ).

Figure 26 shows the frequency -distributions of the squares of the precisions which were sorted by

number-of-stations in Figure 2. It appears that correlation of other determinants of position -quality with

number-of -observations clearly corresponds to contraction of extended frequency-distributions ofvariance

through increasings ) degrees-of-freedom chi-squared (or less -skewed normal) distributions, as number-of

stations increases. This change of shape is an effect, not a cause .

Figure 27 summarizes the five clear-cut mechanisms of this paper , plus its open-ended 'catchall ’ . My

present guess is that the order of descending (but real) magnitude of the effects of the first five mechanisms

is : 2 ; 1,5 ; tie between 3 and 4 .

RATING CONFIGURATIONS OR STATIONS. Suggested procedure:

1. Generate a more complete version of the 1st and 3rd columns of the first table under mechanism

2 , above. Also , a more complete version of the 1st column and of twice the 3rd column of the third table

under mechanism 2. This is properly done with a trig . table and a slide-rule .

2. On a reproduction of a map or scale -drawing of a given (or proposed) configuration , draw all

possible sides and diagonals. (A diagonal can be external . ) Estimate , and 'x ' , the configuration's

center-of-gravity on the basis of visual judgment - aided somewhat by little -circles around all intersections

of its diagonals. The configuration should be chosen so the nominal trajectory will pass near its

center -of -gravity.

4 ) In the sense of affording a choice .

5 ) But effectively very low .
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3. For some given (or proposed ) altitude above this C.G. - or above the nearest point to it on the

nominal trajectory - approximate the projected vertical convergence for each possible ( 2 -station ) baseline

as :

= 2 arc tan

baseline

2 ( altitude )

where each baseline is measured graphically. The altitude will generally be that of the nominal trajectory at

the midpoint of this planned segment.

4. Look up in the first table , list , and add the variances of these vertical convergences.

5. Approximate the projected horizontal convergence for each possible baseline as :

baseline
e 2 arc tan

2 ( perpendicular distance)

where its 1 distance is measured graphically from the C.G. - or, better, from the nearest-point-to-it under

the nominal trajectory. Or, preferably, read these horizontal-convergences with a protractor. (Using the

' nearest-point ' includes the neamess of the configuration's C.G. to the trajectory in the rating. )

6. Look up in the second table , list , and add the double -variances of these horizontal -convergences.

7. Combine totals from steps 4 and 6 .

8. For a given number of stations, pick the configuration with the smallest total variance.

9. In adding a station to a given configuration, pick the station for which the sum of its

convergence -variances (with all the others) is the smallest .

the

10. In deleting a station , drop the one/sum of whose convergence-variances is the biggest.

The above proximate method should work fairly well , because of the big variances of bad

intersections. It is valid for optics and radar . Possible refinements include:

( 1 ) Finding the true C.G. by graphical or analytical methods.

( 2) Multiplying each vertical-convergence variance by the square of its projected slan t-range :

r
2 baseline ) + ( altitude )II

2
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And, multiplying each horizontal-convergence variance by the square of its projected ground -range:

r2

( baseline)
baseline

2

+ (1 distance)

(The latter r may also be obtained by averaging the graphical distances from the ends of the baseline to the

C.G .. or to the nearest-point . )

The two tables described under step 1 are optimum figures-of -merit of the various convergence-angles.

As such they are suitable for general use . The overall measuring-effectiveness of most actual convergences

will fall short of their projected-equal-baseline optima . But , losses in going to unequal slant-ranges and to

convergences-external-to - the baseline should be reflected well enough for ordinary purposes through the

badness of such convergences.

COMPONENTS OF COXVARIANCE (GDOP MADE EASY ). "Geometric dilution of precision ' most

usefully refers to the geometric components of position-measurement variance. Somewhat less definitively :

... the magnitude of the position errors caused by random measurement errors ... depends on the

particular parameters measured , the measurement system , location of the measuring equipment and the

location of the missile with respect to the equipment. Variation of the effect of random errors is measured

by a quantity defined as the Geometrical Dilution of Precision (GDOP). ' ( Ref. 12) .

From MECHANISM 2 , above, our equations for the vertical and horizontal projections of

linear -measurement variance are :

r2 sino
0A

sin2 0/2
Oy

2011
2

r2 sin ? OA ( sinal or Cogor )
1

cos ? 0/2

These apply when the missile is in the plane normal to a 2 -optical- station baseline at its midpoint. The first

equation also applies to any optical station's separate contribution at any point within-or-between the

baseline-normal planes which pass through it and through any other station - regardless of the separate

angles of their projected lines-of- sight with the baseline -normal through the projected object. These

equations also serve fairly well for radar under these conditions.

Ov ? and 201² are the vertical and horizontal components of position -measuring variance under the

conditions described .

sin ?
OA is the instrument-component of both vertical and horizontal position -measuring covariance ,

under these conditions. The remainders of the right-hand sides of the above equations are the

geometric -components of vertical and horizontal position -measuring covariance (under the conditions

described ). r is the ' scale' subcomponent of the geometric-components of both vertical and horizontal
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sin ?

subcomponents of the geometric -measuring covariance. The latter are , then , simple trig .- functions of

convergence -angle. (The square roots of all the above are the components' of position -measuring precision

or coprecision .) Our Davis cine method does not optimize the geometric components of position -measure

ment covariance .

For a given instrument-precision , the above 2 equations are the vertical and horizontal "GDOP'

equations - for these conditions. They are a bridge between partial-differential equations , their matrix

representation , and nonspecialists - for the 2-station optimum (baseline-midpoint) set.

REDUNDANT PRECISION OF NONREDUNDANT SOLUTIONS. It is operationally necessary to

compare the quality of non redundantsolutions for missile-position with the quality of redundant solutions.

( Examples ofnonredundantsolutions are : 1 -station radar , 1 - station optics, and 3-station DOVAP .)

The uncertainty of a non redundant ( zero -degrees-of-freedom ) solution is not a problem if one has

sufficient info on the statistical population of which the solution is a sample (of size one) - or on

comparable populations.

The commonest example of a nonredundant solution is a single observation of a one-dimensional

quantity . The concept of the standard deviation of ( single ) observations is the best -known of all precision

concepts. It is , of course , the characteristic statistical uncertainty of a single observation .

Usually , the parameters of the population -of -observations are estimated from a sample of ( several)

observations. The precision of the sample -mean is then given by the relationship:

X=

s
t
e
s

1/2
n

where Ox is the estimate of the standard -deviation -of-observations, and n is the sample size (Ref. 4) .

If only the precision of the mean of a given number of someones observations (of a one-dimensional

quantity ) is available , it is routine to use this equation to calculate the uncertainty of a single

( nonredundant) observation .

In flight-measurement terms, the above equation takes the form of equation (5 ) of our Figure 3. Or its

working form - equation ( 1 ) of the same figure. Empirical generalization of the latter may be written :

8c7 AM ".
of

And, we have found that we can determine, by trial -and-error , a power of the ratio of numbers of stations

which makes this equation closely fit a segment of a given plot of average-precision vs number-of -stations.
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From the foregoing, this relationship for 1 and 2 degrees-of-freedom position -data can clearly be used

to calculate the average component-precision of the corresponding zero-degrees-of-freedom (nonredundant)

solution . As our reductions are presently carried out, this means using 2- and 3 -station precisions of radar or

optics or 4 and 5 -station precisions of DOVAP. ( 3 -station optics is actually 3 degrees-of-freedom and

3- station radar is 6. ) The result will be as representative as the 1 and 2 (or 3) degrees -of-freedom data . The

solution of the above equation for the exponent reduces to :

N

m = log ; log

す
2

which can be carried out to the degree-of-fineness desired ( three digits are ample). The value of m for 1 thru

2 degrees-of -freedom is , of course , used in the previous equation with the 1 degree-of -freedom data to

calculate the zero -degrees -of-freedom precision. If the 1 degree -of -freedom data are limited to a particular

combination of stations, the result will be average for those stations - slightly influenced by the makeup of

the second (or third ) degree -of-freedom .

If one desires to calculate average x , y , and z precisions of nonredundant solutions , the above may be

carried out separately for average x , average y , and average z precisions.

If one desires to calculate average precisions of the observations of azimuth , etc. in a nonredundant

solution , the above may be carried out separately for average azimuth , etc. residuals from 1 and 2

degrees-of-freedom solutions. (Preliminary indications are that , in our process , time-rmsd deviations of an

observational parameter are not independent of number-of-stations.)

If one desires to calculate average component -precisions, or x , etc. precisions, or azimuth, etc.

precisions of a particular nonredundant solution , the above may be carried out separately for average

component residuals, average x , etc. residuals, or average azimuth , etc. residuals of that particular

non redundant solution , from 1 and 2 degrees-of-freedom solutions. These precisions will of course be

somewhat influenced by the makeup of the first (and even second) added degrees-of- freedom .

Combining x , y , and z precisions of nonredundant solutions calculated by any of the above, as an rms,

then comparing with the similarly -calculated corresponding average component precision can serve to check

the coherent execution of the methods. (When desired coherence is not attained , the best result is the rms

of the two . )

The foregoing applies equally well to nonredundant solutions for attitude - or for any other measured

missile -flight variable.

The above method is empirical only to the degree that improvement of the particular precision by

increasing stations exceeds the purely repetitive ( statistical) amount.

So , there are no conceptual difficulties - physical or statistical - in calculating the average -precision of

nonredundant solutions on the same (WSMR standard ) basis as the average precision of redundant
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solutions . The former may be calculated from the latter , for the same or comparable measuring situations.

Where there is overlap, the result may be used in quality -control of the non -redundant solutions. Where

redundant precisions from comparable current measuring situations must be used, the result is still a basis

for stating non redundantcapability.

GEOMETRICAL STATISTICS. Geometry is used here in its plane, solid , and mensuration senses .

I am inclined to consider geometrical statistics a boundary -discipline of geometry and numerical

statistics . Our concem here is with the statistics of geometry (not with the geometry of statistics) .

Regardless of terminology, our subject includes the following elements :

1. Individual measurements of object -position define geometric surfaces in space. (Or geometric

curves in the plane of object and observer.) The particulars of these for a station are its own coordinate

system . The particulars of these for a system are its reduction geometry. In general , 3 individual

measurements of magnitude or direction determine a space-position ) . The ox of our Davis cine method is

a parameter of an error-ellipsoid which is definable only in terms of the particular measurement

configuration . This paper suggests our use of an average angular precision evades the issue of how the 3

degrees of freedom used by the LS determination of a particular 3 -dimensional -Cartesian position are

effectively distributed between azimuth and elevation ; and, hence , how they should be distributed for

estimating the separate effective precisions of azimuth and elevation (which would be more useful). This is

a question of measuring the relative degree to which x is determined from azimuth and from elevation;

ditto for y . (2 competes with x and y for elevation . We can consider it subtracts 1 degree -of -freedom from

what they leave . ) Because of the smaller separate sample -sizes , and because of the physical imbalance of

3 -dimensional degrees- of-freedom between azimuth and elevation ), it may be concluded our average

angular precision makes our separate angular measurements look a little better and a lot more alike than

they are .

It is suggested that , in evaluating effective azimuth and elevation precisions, one would apply their

separate corrections . And , that one would bypass or divide out said corrections for quality control

averages of these separate precisions. Perhaps the method of generating ' t' tables will work for a fraction of

one degree-of-freedom ! (And for fractional interpolation .)

The above suggestion differs from present practice in 4 ways : The problem of determining the separate

effective degrees-of-freedom of azimuth and elevation ; QC -averaging of estimates of station -quality which

would be based on degrees -of-freedom ; estimating separate effective-precisions of azimuth and elevation for

each data -point; the problems of propagating these precisions of azimuth and elevation into effective

precision of the x -component and effective-precision of the y -component, and of this elevation precision

into effective -precision of the z -component. It may also be concluded our average -angular precision - as far

as it goes - makes our 3 precisions of linear -measurement look a little better and a lot more alike than they

are ,

6)

Azimuths alone cannot determine the vertical coordinate. Although it is not widely realized , elevation

residuals have x and y components as well as z . (At high elevation -angles, they are mostly x and /or y ! ) Of

course (in the physical sense that is relevant here) , azimuth residuals have only x and y components.
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This paper recommends the above suggestion be carried out for one high -altitude round , reduced as 2- ,

3- , 4, etc-sta . solutions - to see where we stand and whether a change -of-procedure is needed .

Suggested approach to relative degree x depends on azimuth and on elevation ; ditto for y . (And to

how they divide up azimuth . ) : Calculate separate precisions of azimuth and elevation based on N - 3/2

degrees -of-freedom . Propagate each of these sigmas into the x -component of the LS-solution by multiplying

it by the rms of the partial-derivatives of the x -component with respect to its set-of -angular -measurements.

The ratio of the variance of the x-component propagated from azimuth to the sum of the variances of the

x -component from azimuth and from elevation is the fractional dependence of x on azimuth . One minus

that is its fractional dependence on elevation . Ditto for y . ( The ratio of the variance of the x-component

from azimuth to the sum of the variances of the x- and y -components from azimuth is the x - fraction of

azimuth. One minus that is its y -fraction . ) N minus the fractional dependences of x and y on azimuth is the

degrees-of-freedom to use in recalculating the effective-precision of azimuth. (N - 1 ) minus the fractional

dependences of x and y on elevation is the degrees -of - freedom to use in recalculating the precision of

elevation . Iterate propagation of these revised sigmas into x- and y. components as many times as

necessary . (One iteration may suffice .) Effective-sigma of the x -component is the rms of its final

effective- sigmas from azimuth and from elevation . Ditto for effective- sigma of the y-component . Propagate

final effective-sigma of elevation into the z -component, to get the latter's effective- sigma.

One of the operations of geometrical statistics , then , is transformation of precision indices from

instrument -coordinates to data-coordinates . Our Davis cine method accomplishes this, in its way,

simultaneously with (multivariate ) statistical transformation of the precision indices from observations to

data. This paper suggests that its procedure , above, would do the same thing much more validly .

The foregoing suggestion would also apply to the totally -optimum linear least -squares proposed under

MECHANISM 3, above. The computing would simplify, since propagations would be only (multivariate )

statistical transformations of precision indices from observations to data .

A second element :

2 . Geometric convergence . This element was treated under : MECHANISMS 2, 3 ; RATING

CONFIGURATIONS OR STATIONS ; and COMPONENTS OF COVARIANCE (GDOP MADE EASY).

These effectively disimbed GDOP from its matrices, in forms that are more easily understood and used .

This was done by graphical representation and elementary trigonometry . Jeffreys ( Ref. 13) has shown that

(the) trig. functions are laws of (physical) mensuration , not merely mathematical definitions.

It was feasible, in this paper , to deal with the projected planar convergence of the linear intersections

of the two angular observations of each of two optical (or radar) stations . This approach is certainly one of

the practical optimums. From MECHANISM 3 , dealing simultaneously with the multiple spatial

convergence of the individual observational- surfaces of the total number of simultaneously -tracking stations

would be the statistical and quality optimum (criteria 1 and 3 of Figure 20) . In Figure 18,0
can be o

The values of these may differ, but the value of each must be the same for both stations .

AZ

or OET
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A third element :

3. ( Theorem ) Totally -optimum measurement analysis optimizes the geometric components of

position -measurement covariance , as well as the instrument components. Taking slant-range into account -

transforming residuals from station -variable to missile -variable - before least -squaring was treated under

MECHANISM 3. Taking convergence -angle into account before least-squaring is treated in this paper only

to the point of station -selection (RATING CONFIGURATIONS OR STATIONS).

4 . ( Theorem ) The multidimensional -optimum position is generally not optimum for any single

dimension . This element was treated under MECHANISM 4 .

As long as we deal with vectors in terms of their components, it is valid to characterize precision by

three 1 -dimensional frequency distributions. But , if one deals with a 3 -dimensional vector as an entity (e.g. ,

in vector analysis ), the standard deviation of its value (quality of the vector) is :? )

VosOy
22 +

gy? h ?
+ 0² v

2

х

= 0

where a , b , and v are the vector's respective direction cosines. Our t.6827 corrections to individual

component-sigmas should be divided out beforehand.8) This formula applies to any performance variable.

For the case where y? = oz ?, the direction cosines drop out . For the position vector , Oy is how

well we know the distance of the missile from its launcher reference. It's the precision of the radius vector

( r ) of spherical coordinates. (So , the above is one of the 3 geometrical -statistics formulas required to

transform precision indices from Cartesian coordinates to spherical.) For the velocity or acceleration vector ,

Oy is (correspondingly ) the precision of the missile's radial-velocity or radial- acceleration . The formula

without the direction -cosines is also the vector representation of 3 -dimensional precision ( vector of the

quality )

Though not commonly considered a geometric dimension , overcoming effective time-measurement

differences among station -observations - toward a happy -medium difference - is part of our open-ended

MECHANISM 6. This is not limited to differences in the time-signal, but includes all differences in

synchronization throughout the data-process (Ref. 6) . It shows up as an unbalanced contribution to

position -measurement variance (maximum in the direction of the velocity -vector - zero, normal to that).

5 . ( Finding) In flight-measurement, curves of average precision vs number-of-observing -stations may

be fitted by generalizing, to a variable degree, the exponential dependence of the standard-error-of-the

mean -of- a -normal-distribution on sample -size. The exponential improvement of position -precision by

increasing stations can be as much as 4 times that of the classical relationship of numerical statistics. (2

projects in which the improvement was 5 times are disregarded , because data were somewhat limited .)

In this sense , at least , geometrical statistics is a generalization of numerical statistics. In addition to

numerical convergence , the above exponential dependence of precision -response is clearly a function of

7) This equation was derived for the writer by Mr. W.E. Mimmack. It checks a classical source (Ref. 15).

8 ) To normalize, the 3 -dimensional sigma should be multiplied by a 3 - dimensional ' t' . These can be deduced ,

for either the general or equivariant case , from Reference 16.
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geometric convergence (the configuration subcomponent of the geometric component of position

measuring covariance ); is apparently a function of slant-range ( the scale subcomponent of the geometric

component) ; and is probably a function of multidimensional sampling. It may also depend to some extent

on precision - indices being variant under coordinate -transformation - and on time-measurement.

A negative view might be that classical numerical statistics is not applicable to flight-measurement,

because observations and component-values of flight-data lack normality, independence, and homogeneity.

This paper suggests that the ' random -error' concept of numerical statistics is not adequate by itself for

flight-measurement. That , besides more concern with the physical and geometrical meanings of our math ,

more formal development of the boundary -discipline of geometrical statistics might be helpful.

The findings of this paper logically lead to the following statistical ‘ heresies ':

( 1 ) We should average our precisions in whatever exponential form is proportional to

sample -size for that vehicle . This calls for an averaging-spectrum ranging from averaging variances to

averaging square - roots of standard -deviations.

(2) Our results call for an optimizing spectrum ranging from least-squares to least-square-roots.

We aren't doing these heretical things because : it's inconvenient ; we want to maintain our bridge to

standard methodology ; it's desirable for a data -quality index to be sensitive to bad data ( as variance is) .

Each of the foregoing elements of geometrical statistics is also relevant to station and system

calibration and residual bias, and their statistical uncertainties. (See EFFECT ON PHYSICAL ACCURACY,

below .)

EFFECT ON PRECISIONS OF VELOCITY AND ACCELERATION . Figure 28 shows average

precision of velocity of Chaparral missile (Feb · Nov '67) vs average number of Contraves stations

computed. Its hyperbolic models show it closest to improvement of precision in direct proportion of

number-of-stations.

Over 6 sets of Contraves and one set of DOVAP data , there was a slight tendency for velocity precision

to depart from proportionality to N in the direction of N3 2. Also , a slight tendency for the curves to be

straighter than the hyperbolic model .

Figure 29 shows average precision of acceleration of Redeye target (Mar - May '67) vs average number

of Contraves stations computed. The upper half of the curve was closest to improvement in proportion to

N ; the lower half closest to N312 . Overall, it was a tossup between those two .

Over 6 sets of Contraves and one set of DOVAP data , acceleration precision was evenly divided

between proportionality to N and proportionality to N32 . More than half the curves tended to be

straighter than their closest hyperbolic model. The tendency for average quality to be influenced by a bad

round increased in going from position to velocity to acceleration.
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It is planned to look at the above relationship for smoothed position , which occurs in our process

between measured -position and velocity .

Propagating the effect of number -of -stations on precision -of-measured-position through : time series,

polynomial fit, lack -of-fit, Ist derivative, and 2nd derivative is not attempted in this paper . It is reasonable

that the precision of a position time series reflects to a considerable degree the precision of its values. (And,

so on . )

Some of the variability of our observations is 'short-period' , so their numerical convergence

(MECHANISM I , above) should be reflected to some extent in time-varying precisions. The difference

between 3 - dimensional and 1 -dimensional sampling (MECHANISM 4) should also have a 'short-period'

component . Mechanisms 2 and 3 are time-varying, but not clearly short -period .

The ' t'correction to position -precision (MECHANISM 5) does not enter time-varying precisions. These

' start over ' with the time- series 'observations' of position . (t corrections have not been applied to our

time-varying precisions.) Calculating effective position -component precisions from effective-precisions of

azimuth and elevation (under element 1 of GEOMETRICAL STATISTICS ) would not enter time-varying

precisions .

Effective time-and - sync. differences among station -observations (under element 4 of GEOMETRICAL

STATISTICS) should have a short -period component . Overcoming this through increase in sample- size -

toward a happy-medium difference - would be doubly reflected in actual precisions of velocity and

acceleration . ( Indirectly through space -measurement and directly through time-measurement.) We are not

yet propagating time-precision through the derivatives.

Our smoothing interval is usually constant for a project. Number-of- stations should influence the

relationships between smoothing-interval and time-varying precisions .

EFFECT ON PHYSICAL ACCURACY . The effect of number of observing stations on flight

measurement accuracy (bias) is a subject for further investigation .

I am willing to postulate a probabilistic improvement of physical accuracy by increasing stations in

flight-measurement - because we thereby increase the probability of mutual compensation of station biases

in both magnitude and direction .

Churchman (Ref. 17) notes that the true value is not a random variate , that it is a unique element

among the real numbers, and that the probability of its lying in any interval is therefore either exactly one

or exactly zero . ' However, such absolute knowledge is not granted us. Our estimates of physically -true

values - or of bias therefrom are random variates. (In the sense that physical info is unavoidably

probabilistic .)

System precision (data precision) is a collective measure of the mu tual calibration of its stations in

space and time. System bias (data accuracy) is the net (uncompensated) sum of its station biases ( in space
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and time). On the average, improving both individual and mutual station calibrations (station accuracy and

system precision ) should improve the net calibration (system accuracy) more than would individual

calibrations alone .

MECHANISM 2 treated the error in Figure 18 as a dispersion (or precision ) index. Let's consider it a

discrete bias . Then , in Figure 30b, if the discrete angular errors happen to have opposite signs, only the

baseline-normal diagonal of the smaller almost- diamond in Fig. 18 exists. From MECHANISM 2 :

r sin SA

A1 sin 0/2

And, the first two columns of the first table under MECHANISM 2 also compare the accuracy of

perpendicular convergences for either horizontal or vertical planes. In Fig.30a , if the discrete angular errors

happen to have the same sign , only the baseline -parallel diagonal of the smaller almost-diamond in Fig. 18

exists . From MECHANISM 2 :

I sin AA

cos 0/2

This equation is meaningful only for the horizontal plane.

The following table averages the accuracies of the vertical convergences for the (even) chances that

station biases will have the same or opposite signs?):

Vertical Average Accuracy Factors

y
aVERTICAL

CONVERGENCE ( 0 ) sin 0/2

180°

135 °

90 °

45°

150

5°

1 °

0.50

0.54

0.71

1.31

3.84

11.5

57.2

The above values are half those of the first table under MECHANISM 2. (When signs are opposite , there is

no net bias .) So, vertical convergences rank the same for average -accuracy as for average-precision , but the

effect of a given departure from the 180 ° optimum is only half as great.

9 )

Even chance , because · to the extent bias of a given -type instrument consistently has the same sign it is

more likely to be adjusted or corrected for.
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The following table averages the accuracies of the horizontal convergences for the ( even ) chances that

station biases will have the same or opposite signs. (In each case , a zero enters for the other diagonal.)

Horizontal Average Acaracy Factors

1PERPENDICULAR

CONVERGENCE (0) y unava
1

sin 0/2

+

cos 0/2

179°

1750

165°

135°

90 °

28.9

6.0

2.17

0.92

0.71

0.92

2.17

6.0

28.9

45°

15°

5°

1 °

Horizontal convergences rank the same for average -accuracy as for average -precision ( third table of

MECHANISM 2), but the effect of a given departure from the 90 ° optimum is less than half as great .

Still , there is plenty of potential for improving position accuracy by improving the average goodness of

intersection -angles through increase in sample -size. Mechanisms 3 and 4 (Fig. 27), and our time-measure

ment possibility, also apply to accuracy as well as precision .

SUMMARY. Supplementing the ABSTRACT: WSMR -standard precision of a measured component

value reflects the agreement among its station -observations at that point in time. We use rms-average

precisions for operating and management control . It was found curves of average precision vs

number-of -observing- stations may be fitted by generalizing the exponential dependence of the standard

error-of -the-mean of a normal distribution on sample -size. The precision -response of cinetheodolite

position - data ranged from proportionality to N1 / 2 to proportionality to N2 . Five mechanisms seemingly

involved in this profound effect, plus an open-ended catchall, are summarized in Fig. 27. (My present guess

as to their descending magnitude: 2 ; 1 ; 5 ; tie between 3 and 4.) This investigation has led to

methods-improvement suggestions for collection , reduction , and quality -estimation. A marriage of

geometry and statistics has been partly consummated , on simple terms. Previous work on optimum

convergence ( Ref. 6) was extended to quantitative evaluation of the precision and accuracy of all linear

convergence-angles - for measuring the vertical and horizontal components of space-position. It appears that

if we incorporated slan t-range ahead of our least-squares estimate of position , we would produce more

precise and accurate data. ( Implicit inequality of variances in angular least- squares apparently does more

harm than if this inequality were minimized by linear least-squares.) A sufficient reason for using

least- squares: Even when all the rigorous assumptions of the Least-Squares Principle are violated,

least-squares still yields the minimum vector- resultant of the observed errors . A method was given for

evaluating our assumptions that propagating variance into a least-squares position component yields the

standard - error of a mean , and that a 3 -dimensional optimum is optimum for each component. It was
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suggested the ' t' correction to individual position -precisions should be removed before averaging these. An

approach to evaluating the effective sample- size of our average-precisions has been described. The procedure

suggested for rating measuring -ability of test -configurations can be set up with trig .-table and slide-rule, and

operated with an adding -machine. Components -of-position -measuring -copfvariance and GDOP (geometrical

dilution -of -precision ) were presented in forms easily understood and used. Some elements of the

boundary -discipline of geometrical statistics have been discussed. A way was suggested of taking the

physical imbalance of degrees-of-freedom between azimuth and elevation into account - to calculate more

valid angular and linear-component precisions. Relationships between component- quality and vector- quality

were touched on . The entire paper is relevant to geodesy as well as flight-measurement.
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FIGURE 27

MECHANISMS OF IMPROVEMENT OF

FLIGHT MEASUREMENT PRECISION

BY INCREASING STATIONS

1. BY OVERCOMING SMALL SAMPLE-SIZE .

2. BY OVERCOMING NONOPTIMUM TESI CONFIGURATION .

3. BY OVERCOMING NONOPTIMUM CHOICE OF VARIABLE TO BE

OPTIMIZED .

4. BY OVERCOMING OUR INABILITY TO OPTIMIZE EACH COORDINATE .

5. BY OVERCOMING NONOPTIMUM ESTIMATE OF DEGREES -OF - FREEDOM .

6. BY OVERCOMING ERRORS INCURRED IN APPLYING STATISTICS TO

FLIGHT-MEASUREMENT.
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COMMENTS ON PRESENTATION BY FRED HANSON

William Kruskal

Department of Statistics

The University of Chicago

Chicago, Illinois

You will recall that , when we met at the Edgewood Arsenal conference, I expressed regret that I could

not attend the session at which you presented your problem , and I added that I would look at the materials

you had sent to me .

Not everything in those materials is clear to me, but I take it that your major worry is that the

empirically determined standard deviations of position determinations, as a function of number of stations,

N , decreases faster when N grows than the N rate that would be expected under standard circumstances.

You apparently have evidence that the rate is more like N -312 . -

The first thought that comes to mind is that the standard Not rate depends squarely on the

assumption that the observations are uncorrelated and have equal variances. In particular, if the

observations have equal variances but negative correlations, then the standard deviation of the sample mean

is less than that expected under the standard assumptions.

Let me make this specific. Suppose, for simplicity, that we are dealing with N random variables, all

with variance o ? and such that any pair of variables has correlation p. It is a standard fact that p cannot be

less than - 1 /(N- 1 ).

Under these circumstances, the standard deviation of X ( the average of X ;) is

ola

N

+ (N- 1 ) p

Suppose that

C. N2

p =
N2 (N- 1 )

for some positive constant c . Then , substituting back , we would have for the standard deviation of X,

0

N3 /C

It seems to me conceivable that something like the above may be taking place for your radar

measurements. Suppose that a measurement error comes from small changes in the angular orientations of

the object measured. Then the effect of such a small change on one radar station might be nearly linearly

related to the effect on another station , and with a negative slope .
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Of course this is all speculation because I do not understand the measurement set-up and the data

reduction method . In particular, it would be strange for p to depend strongly on N.

With cinetheodolites, it is hard for me to see offhand how large negative correlations could be

effective.

More basically, it is not clear to me how your empirical standard deviations were obtained . Is it

possible that your results are a result of something about that method?
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EVALUATION OF NICKEL - IRON AND NICKEL - ZINC BATTERIES

Martin J. Sulkes

Power Sources Division , Electronics Components Laboratory

USAECOM , Fort Monmouth , N. J.

Most Army communication missions requiring secondary batteries

are presently being met by the nickel - cadmium (Ni-Cd) system , with

silver-zinc (Ag-Zn) filling the remainder of the missions that require

low weight . Both of these systems contain expensive, limited-supply

materials . Namely , silver at $ 32 / lb . or cadmium at $ 3.25 / lb .

The nickel - iron (Ni-Fe ) and nickel-zinc (Ni-Zn ) systems are

potential low cost replacements for the Ni-Cd and Ag-Zn systems , since

Zn and Fe are less than $0.15 / 1b . Ni-Fe and Ni-Zn batteries have been

known for many years , however , until the present they have not developed

the energy densities and life of which they are theoretically capable .

For example , iron has a theoretical capacity of 0.98 Ah / gm compared to

0.47 Ah / gm for Cd and approximately 5% higher voltage . However , the

Ni-Fe (Edison) cell has low energy density ( 8 Wh / lb ) compared to 12-15

Wh / lb for Ni-Cd . In addition , the Edison cells low temperature and

high rate performance are poor . Its cycle life , however , is excellent .

Since much of the Edison cells ' poor performance is due to the iron

electrode , an improved iron such as was developed by GT & E labs could

make this an attractive system .

The nickel - zinc system has had limited cycle life because of

shorting by zinc dendrites and loss of capacity due to zinc electrode

shape change . Energy density has been limited by the need to include

a large excess of zinc . Recent work on Ag-Zn batteries and fundamental

investigations of the zinc electrode have indicated how dendrite forma

tion could be controlled and zinc shape change reduced . It was , therefore ,

estimated that through the use of an improved zinc electrode and the con

tractor's high energy nickel electrode a battery capable of delivering

up to 30 Wh / lb for 200 or more cycles could be developed . However , a

great deal of investigation of the various interrelated cell construc

tion factors was required to successfully achieve the desired goals .

The objective of this work , therefore , was to optimize a design for

nickel - zinc and nickel - iron and evaluate such cells in standard line

configuration as possible low cost replacements for existing systems .

A comparison of the discharge curves for an equal weight of all 4

electrochemical systems is shown in Figure 1 . Specifically , this

evaluation explored the construction of Ni-Fe and Ni-Zn cells for

various design parameters , and tested them over a variety of rates and

temperatures .

4

The nickel - iron system was investigated in two , 2 design

experiments, while thenickel- zinc systemwas studied in a replicated 23
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experiment . Each experiment had 16 cells . In all cases , the assembly

of cells , electrolyte fill and position on various tests were carried

out in random order as determined from a table of random numbers . All

experiments were analyzed by the technique of multiple linear regression .

The calculations were made on a Scientific Data Systems 930 computer

using the Multiple Linear Regression program from the IBM 360 SSP

( Scientific Sub routine Package ) . Surprisingly , when the calculations

from the first experiment were checked by the Yates method , an error

was discovered in the IBM program . This was then corrected and the

results obtained through manual and computer calculation were then

equal .

The multiple linear regression technique used for data analysis

assumes that the total response ; i.e. , the faradaic capacity , is a

linear function of the independent variables (factors ) being studied .

The general equation is

n

YE

= b +
+ b

i XL + b22 X2 + ... + box
= b

nn

+

-b.
K

i i

i=1

X are

n

where Y is the dependent variable ( response ) and XX1 , X2 :

the factors in the experimental study . The coefficients 62 , 62 b

( partial regression coefficients ) were determined by fitting the response

data to the general equation . Each coefficient then became an effect

value and an indicator of the effect of its factor on the total response ,

independent of the other factors . The sign of the coefficient ( + ) deter

mined the direction of the effect in going from one level to another of

the factor .
The constant b. is the intercept on the Y axis .

The first nickel - iron experiment consisted of 16 cells made with

four variable construction factors each at two levels as bhown in

Figure 2. These cells were given a total of 16 charge -discharge cycles .

Based on the pre-tested capacity of the positive electrodes , it was

expected that these cells would have a nominal capacity of 6Ah in the

normal , positive limiting design . However , when these cells were

cycled , lower than normal capacities were obtained after several cycles .

This low capacity was traced to difficulties in control of the chemical

activation process for the iron electrodes used in these cells . To

eliminate this problem , the next experiments were assembled with iron

electrodes made by a controlled electrochemical activation process .

Despite this setback with the Experiment 1 cells , valuable

experience was gained by the contractor on cell assembly techniques .

Furthermore , the data from cycle one ( Figure 3 ) upon statistical

analysis did demonstrate the dependence of cell capacity upon the

variable factors studied in the experiment . This analysis , shown in
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Figure 4 was run after non -significant interactions were eliminated

from the analysis . The F value of 38.188 indicates that the data fit

the assumed linear relationship . With 9 and 6 degrees of freedom an

F value exceeding 18.69 is significant at the 0.999 probability level .

Since the computed t values are not mutually independent , they could

only be used for ranking the order of importance of the variable factors

and for showing the direction of effect of the variable levels . Thus ,

it can be said that variable C (electrolyte concentration ) with a computed

t value of 11.544 had the major effect on the cell capacity . The + sign

shows that the high level ( 31% KOH) of this variable gives more capacity

than the low level ( 21% KOH) ; in fact , the 31% KOH yielded 37% more

capacity than the 21% KOH . Figure 5 ranks the variables in order of

importance and shows the preferred variable level . Similar analyses

of data from later cycles of the cells in Experiment 1 gave similar

results , thus strengthening these conclusions . However , it should be

pointed out that each succeeding cycle is not independent of the first

cycle data , since the cell construction is fixed .

Preliminary studies of the dependence of cell capacity on charge

rate and Ah input indicated that higher charge rates (c/ 2 to c/ 4 were

more beneficial and more efficient than low charge rates ( < c/ 8) . Since

the cells were positive limiting , this effect is a function of the

positive plate , verifying previous experience with positive-limiting

nickel-iron and nickel - cadmium batteries . Further studies are necessary

to determine optimum charging conditions .

A second , 16 cell nickel - iron experiment was setup in accordance

with the design shown in Figure 6 . These cells all contained electro

chemically activated iron electrodes as opposed to the chemically

activated ones in the first Ni-Fe experiment . Because of the change

in the iron electrodes , it was thought necessary to repeat the two most

significant factors found in experiment 1 .

A total of 8 charge - discharge cycles were run in accordance with

the regime given in Figure 7 and analyzed . In the analysis the variable

factors and their first -order interactions were the independent variables ,

while the Ah capacity was the dependent variable . In addition , percent

capacity retention in Ah was analyzed by comparing the Ah capacities on

cycle 4 with that obtained on cycle 5 after a 7 day charged stand .

Figure 8 gives the actual effect values of the various factors on the

dependent variable during the eight cycles run .

It is apparent that LiOH content (D ) , KOH concentration ( C ) and

the interaction of these two variables have the greatest effect on Ah

capacity , at C/ 4 rates , with the saturated LiOH better than no LiOH and

31% KOH better than 21% KOH . It is also interesting to note that the

charge retention cycle ( -5) and the high rate cycle ( - 7 ) disrupted

the relative ranking of effects on subsequent cycles . Also , with respect
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to percentage Ah charge retention ( -5) , the KOH concentration was the

variable with the major contributing effect .

Therefore , on the basis of the two nickel-iron experiments the

following design features were chosen for the optimum Ni - Fe cell

design .

1 .

2 .

3 .

4 .

5 .

Electrolyte Concentration

Additive

Electrode Geometry

Separator

Electrode Thickness

31% KOH

LiOH saturated electrolyte

End plates are positives

Nylon -Cellophane -Nylon

0.037 "

.

These factors by no means completely define the system and , there

fore , additional experiments will have to be run to determine the

influence of such factors as positive to negative - capacity ratios ;

and quantity of overcharge per cycle which were at fixed levels in

the experiments .

Nickel-zinc Cell Experiments

One experiment was run to date on Ni-Zn cells . The design of

this experiment , shown in Figure 9 , contains only 3 variable factors ,

each at two levels . Replication was provided since it was known that

zinc systems are more erratic , particularly with regard to cycle life

than the long-lived Ni - Fe or Ni-Cd system . Therefore , additional cells

are required to achieve more reliable data analysis and also to provide

for substitute cells in the case of premature failure .

Seven cycles were given to the cells in Ni-Zn experiment 1 . The

first cycle analysis is given in Figure 10. An F value exceeding 2.75

is significant at the 0.90 level , and a value exceeding 3.73 is significant

at the 0.95 level . Thus , the fit of the Ni-Zn first cycle data to the

regression curve is only fair . However , if non - significant interactions

are eliminated the fit is greatly improved .

The computed t values indicate that interaction between the zinc

electrode substrate thickness and electrode geometry ( AB ) is the major

contributor to the ampere -hour variation observed . Electrode geometry

(B ) is the second most important contributor with the 15 negative , 14

positive cells (B+) producing more ampere -hour capacity than the 14

positive cells (B-) . This result is to be expected , since the outer

two positive electrodes in the 15 negative cells are probably more

completely utilized and would show as increased capacity in these

positive limiting cells . The zinc electrode substrate thickness (A)

is the third most important variable , and the negative t value shows

that the low level (0.0025 inch thick ) is better than the high level

(0.005 inch thick ) of this variable . The excess Zno variable

apparently had little effect on initial Ah capacity . This was

expected as its effect , if any , was more likely to show on cycle life .

-
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The large interaction effect shown in Figure 11 , required some

study to explain , since the factor levels should not have been suf

ficient to produce changes of the magnitude found . However , since the

main effect of this interaction was to reduce the performance below

acceptable level , the cause had to be determined to avoid repeating

it in future designs . Cell teardown analysis determined that all

cells had been constructed so as to be tight . However , with the

thick substrate (A+) and the lower number of negative electrodes

(B-) there was an insufficient amount of compressible zinc to pre

vent excessive tightness in the cell , which was responsible for the

significant reduction in cell capacity .

On the second and succeeding test cycles on the Ni-Zn experiment 1

cells , an intermittent internal shorting problem became apparent . No

further data is presented , since this shorting problem made statistical

data analysis unreliable . The shorts were particularly evident after

a seven -day charge retention test . Only 6 of the 16 cells showed ap

preciable charge retention ( from 33 to 77 percent ) . Examination of

the internal structure of the shorted cells indicated that it was

caused by zinc growth at the top edge of the electrode shorting over

to the adjacent positive electrodes . In future experiments , this will

be corrected in three ways : ( 1 ) coating the edges of zinc electrodes

with an inert film forming agent ; ( 2 ) additional separator height

above electrodes ; and , ( 3 ) less initial electrolyte fill .

Though this initial experiment did very little toward achieving

optimization , it did succeed in pointing out several critical design

parameters that must be considered before satisfactory performance

can be obtained in a high energy density Ni-2n cell . Two additional

design experiments are planned to evaluate such construction factors

as the negative to positive capacity ratios , the total number of plates

(plate thickness ) , separator type and number of layers , amount of

amalgamation of the negative , etc. These factors must all be explored

before a Ni-Zn battery meeting the required goals can be fielded .

In Summary : The use of factorial design experiments has greatly

reduced the number of cells required for the evaluation of these two

electrochemical systems . This reduction in the number of cells is

particularly important for secondary batteries , since by their nature ,

each cell can tie up testing space for many months as it repeatedly

cycles . Several important design factors have been optimized for both

systems though much more work remains .

This work was carried out by General Telephone and Electronics

Laboratories , Inc. , under Contract DAABO7-68 - C -0102 . Complete data

for the experiments reported on , may be found in R & D Technical Report

ECOM - 0102-1 by Mr. T. Blickwedel of GT&E Labs issued in September 1968 .

The suggestions and assistance of Mr. Joseph Weinstein of the Electronic

Components Laboratory , USAECOM is gratefully acknowledged .
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DESIGN OF EXPERIMENTS AND A STATISTICAL PERFORMANCE MODEL

FOR A RADAR ALTIMETER

Erwin Biser

Avionics Laboratory , U. S. Army Electronics Command

Fort Monmouth , New Jersey

GLOSSARY OF TERMS AND SYMBOLS .

n Number of observations

N ( + d ) Number of positive deviations

N ( -d ) Number of negative deviations

H

m

Height observation measured by Honeywell Altimeter ,

Model 7091-A (Modified) ; Test Item 1

H
Height observation measured by AN / APN - 22 Altimeter ;

Test Item 2

HR Reference height observation measured by RCA Laser

Range-Finder AN /GVS - 1 ( XE-6 )

d

mR

= H

m HR
H

R

d

OR - H.
H

R

d

mR
Average deviation of the RCA Laser Range-Finder AN /GVS - 1

(XE-6 ) height observations from the Honeywell Altimeter ,

Model 7091-A (Modified) height observations

à
OR

Average deviation of the RCA Laser Range -Finder AN /GVS - 1

(XE - 6 ) height observations from the AN / APN - 22 Altimeter

height observations

o

р

Angle of pitch measured by the attitude indicator from the

vertical ( 90 ° ) as established by the Honeywell Vertical Gyro ;

positive angles of pitch indicate the nose of the aircraft is

up ; negative angles of pitch indicate the nose of the aircraft

is down .

r
Angle of roll measured by the attitude indicator from the

vertical (90 ° ) as established by the Honeywell Vertical Gyro ;

positive angles of roll indicate the aircraft rolling to the

right ; negative angles of roll indicate the aircraft rolling

to the left .
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ө

р

Average deviation of the pitch angle observations from the

vertical ( 90 ° ) as established by the Honeywell Vertical Gyro

T
o

r
Average deviation of the roll angle observations from the

vertical (90 ° ) as established by the Honeywell Vertical Gyro

S

( Ꮎ )

Sample standard error of the deviations of the angle of pitch

observations from the vertical ( 90 ° ) as established by the

Honeywell Vertical Gyro

$ (0 )
Sample standard error of the deviations of the angle of roll

observations from the vertical (90 ° ) as established by the

Honeywell Vertical Gyro

S

( d )
mR

Sample standard error of the deviations of the RCA Laser

Range - Finder measured observations from the 7091-A

Altimeter (Modified) measured observations

sidor Sample standard error of the deviations of the RCA Laser

Range-Finder measured observations from the AN / APN - 22

Altimeter measured observations

N ( a) Total number of positive and negative deviations
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BACKGROUND. Experiments conducted in 1963-4 in the Arctic region

by the U. S. Army Electronics Command Avionics Laboratory have confirmed

that the electrical properties of polar ice and snow do , in fact , cause

microwave frequencies to suffer high surface reflection losses , and low

transmission losses within the medium . These results correlate well

with the theoretical predictions . Specifically , these experiments re

vealed that , for standard 4.3GHz radar altimeter frequencies , normally

incident electromagnetic waves impinging upon essentially uncontaminated

snow surfaces effectively penetrate the snow / ice media to depths of

several hundred feet . In many instances , sub-surface interfaces provide

signal reflections which are of substantial amplitude and are readily

detectable at the radar altimeter receiver . These sub-surface reflections

can be as much as 20 db stronger than the surface reflections .

Findings further showed that radar altimeters employing nanosecond

pulse leading-edge-tracking techniques are significantly more accurate

than those utilizing frequency modulation . The accuracies of these

techniques differed greatly because the pulse system measured altitude

from the closest terrain surface ( the leading edge of the reflected

RF pulse) whereas the FM - CW system integrated all the surface and sub

surface signal returns , with no discrimination against the more distant

radar echoes .

Specifically , CW altimeter errors as great as 150 feet were

recorded for an actual altitude of 300 feet . Pulse altimeter errors

were considered negligible ; in fact , they were not measurable since

they did not exceed the instrumentation error inherent in the experiment.

In April 1967 , Research and Development personnel of the U. S. Army

Electronics Command Avionics Laboratory conducted radar altimeter tests

in a Choctaw CH-34C helicopter over the three - story high rain forests

of the Panama Canal Zone . These tests , the first of their kind , were

made possible through the use of specially designed instrumentation

including an air - portable range finder with a height -measuring accuracy

of one meter .

During the tests , altimeter data was continuously gathered and

recorded while the project aircraft was flown 1000 miles over dense

jungle . The project personnel previously conducted experiments in

Greenland , which first showed the unique potential of this nanosecond

pulse radar , with its leading - edge -tracking technique, for providing

accurate height measurements over deep ice and snow of the Arctic

region .

While most radar altimeters provide relatively accurate height

information over large , flat airstrips they typically become highly

unreliable and grossly in error when employed over varying terrain such

as deep polar ice and snow or high jungle foliage .
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In addition to providing radar altimeter performance data not

heretofore obtained , the technical information resulting from these

tests proved a significant factor in selection of radar altimeter design

techniques most suitable for Army aircraft applications . More recently ,

procurement of the AN /APN - 171 Radar Altimeter , employing this recommended

design concept , has been initiated for Mohawk aircraft applications .

1 . INTRODUCTION . Through the support of USATTC (USA Tropic Test

Center ) , Ft . Clayton , Canal Zone , including the Army Aviation Detachment

at Albrook AFB , radar altimeter tests were conducted over the high jungle

canopy in the vicinity of Rio Chagres and Rio Pina , with three flights

on April 4 , 5 , and 7 . The tests were conducted in accordance with the

procedure and objective as stated in the test plan prepared by the

Office of Operations Research entitled : Design of Experiments for

Radar Altimeter Techniques at the Tropical Test Center , Panama Canal
Zone . Data was obtained from 16 hours of flight time at altitudes of

600 feet and 1000 feet , using a CH-34C helicopter bearing tail #34508 .

Altogether , approximately 500 bits of data were obtained , each

representing a comparison of the indicated attitude of one of the test

item radar altimeters with actual aircraft height measured through use

of a precise laser distance measuring equipment with a l -meter accuracy .

2 . SUMMARY AND CONCLUSIONS . It is to be understood that these

conclusions are primarily statistical in character , and hence , are

(statistical ) inferences drawn from the evidence based solely on the

observations . Furthermore , the observations in this analysis are

deviations of measurements from the reference measurements of altitude ,

pitch , and roll .

The following conclusions emerge from this analysis :

2.1 The 7091-A Altimeter observations were predominantly negative

and , hence , the readings were consistently less than the respective RCA

Laser reference readings on all flights (see Table 2 ) .

2.2 The AN /APN - 22 Altimeter readings were predominantly positive

and , hence , the readings were consistently greater than those of the

respective RCA Laser reference readings with the exception of readings

taken at a height of 600 feet and a velocity of 70 knots (see Table 2 ) .

The following plausible explanation for conclusions 2.1 and 2.2 is

offered by the Project Engineer : It appears that the narrow ( one milli

radian) laser beam penetrated some appreciable distance through openings

in the rain forest canopy before striking the uppermost foliage layer .

2.3 The analysis of variance technique shows that the population

means of the test items , namely 7091-A and AN / APN - 22 Altimeters , are

significantly different at a level of significance of .01 on all flights

for which data were obtained .
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2.4 The standard deviation of pitch angle observations taken

during the use of the AN /APN - 22 Altimeter were consistently less than

the respective standard deviations of pitch angle observations taken

during use of the 7091-A Altimeter ( see Table 3 ) .

2.5 For the combined positive and negative observations at a

at a height of 1000 feet at both velocities , the absolute magnitudes

of the means and the standard deviations of the 7091-A observations are

consistently less than the respective means ( absolute magnitudes ) and

standard deviations of the AN /APN - 22 observations . The opposite results

are obtained at a height of 600 feet and at a velocity of 70 knots ( see

Table 1) .
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7091 -A and AN /APN- 22 ALTIMETERS
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CUMULATIVE FREQUENCY COMPARISON OFALTIMETERDEVIATIONS :

80

70

60
7091 -A ALTIMETER

50 -100 %

90

40

E
S

70

30 60

P
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r
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e
n
t

20

10

C
u
m
u
l
a
t
i
v
e

10

0

2.5 12,5 2.5 32.5 42.5 52,5 62,5 72.5 82.5

7.5 17,5 27.5 37,5 47.5 -57,5 67,5 77,5 87.5

d(feet )

Ht: 600 Vel:(55 + 5 )kts

Hm =height measured

by Honeywell

Altimeter 7091 - A

HR = reference height

obtained from RCA

LaserRange Finder

AN /GVS - 1

d = Hm - HR

Peviations are Negative

N (-d) = 51

NOTE: No experimentation was performed with

the AN /APN - 22 Altimeter at a height of

600 feet and a velocity of (55 + 5) knots .
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CUMULATIVE FREQUENCY COMPARISON OF ALTIMETERDEVIATIONS:

Ht: 1000 ' Vel (55 + 5 )kts
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by Honeywell
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CUMULATIVE FREQUENCY COMPARISON OF ALTIMETER DEVIATIONS :
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3 . DESIGN OF EXPERIMENT .

3.1 Objective of Experiment : The objective of the experimental

test is to evaluate the accuracy of the Honeywell Model 7091-A Altimeter

(Modified ) in a tropical zone , utilizing the nanosecond pulse leading

edge-tracking technique .

3.2 Test Item 1 : The Honeywell Model 7091-A Altimeter (Modified)

utilizing the nanosecond pulse , leading-edge-tracking technique appeared

capable of reasonably good accuracy in previous tests in the temperate
and arctic zones . ( See "Radar Altimeter Techniques in the Arctic Environ

ment " .' ... R . J. Lucas & R. C. Cruickshank , Presentation at 1966 Meeting of

the AGARD Avionics Panel ( NATO ) , Avionics Laboratory , USAECOM , Ft . Monmouth ,

N. J. ) Thus , the same altimeter was selected for testing to determine the

accuracy of its design technique in a tropical zone . The Honeywell Model

7091-A Altimeter (Modified) will be referred to as Test Item 1 .

3.3 Test Item 2 : In the statistical analysis of this experiment ,

the accuracy of the AN / APN -22 Altimeter , utilizing a frequency modulation ,

continuous -wave design technique is compared with the accuracy of the

Honeywell Model 7091-A Altimeter (Modified) . The AN /APN -22 will be

referred to as Test Item 2 .

3.4 Standard of Reference : The standard of reference for evaluating

and comparing the accuracies of the two test items is the RCA Laser

Range-Finder AN /GVS - 1 (XE - 6 ) which has a one ( 1 ) meter error (one sigma) .

The test items and the instrumentation were installed in the CH-34C

( CHOCTAW ) , a helicopter capable of seating twelve people .

3.5 Measured Observations : The measured observations consisted of

height readings above the closest foliage at height levels of 600 feet

and 1000 feet for the following pieces of equipment :

a . Honeywell Model 7091-A Altimeter (Modified)

( 1 )

( 2 )

The observations were measured in feet

The measured observations of height using the

Honeywell Model 7091-A Altimeter are symbolized

by Hm:

b . AN / APN - 22 Altimeter

( 1 )

( 2 )

The observations were measured in feet

The measured observations of height using the

AN / APN - 22 Altimeter are symbolized by H.

c.

RCA Laser Range -Finder AN /GVS - 1 (XE - 6 )

( 1 ) The observations of height from this piece of

equipment serve as a standard reference to deter

mine the deviations of height for both the Honeywell

Model 7091-A Altimeter and the AN / APN - 22 Altimeter .
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( 2 ) The measured observations of height using this

piece of equipment are symbolized by the

( 3 ) The observations were measured in meters and

converted to feet in the calculations .

( 4 ) The Laser Range-Finder has an accuracy of + 1 meter

( = 1 sigma ) .

( 5 ) Environmental specifications :

ӘН

1 o errorã + [ 5 E5 ft + 3%H + 5 ° ( 이at

aH

where is the altitude rate .
at

( 6 ) It was intended to obtain measured observations

of height at the following levels of height :

н .

1 H2 H3
H ,

4 H5
н .

6

400 600 800 1000 1200 1400

However , the data was obtained only at the 600 ft .

and 1000 ft . height levels in the actual experimenta

tion . Data was recorded at the rate of one observa

tion every minute at the 600 ft . and 1000 ft . height

levels .

The means and standard deviations of d were computed

and also the number (N ) of positive and
mR

negative

deviations from H.:
:

H.

1

600 ft .

H

m

н.

R

d = H -H

mR m RHR

Likewise for 1000 ft . , etc.

d

mR
;

ora
; N ( + d . )

mR
; N ( -d )

mR )
MR)
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3.6 Controlled Parameters ( constraints ) :

a . Velocity of Aircraft (CH- 34C )

( 1 ) (55 + 5 ) knots

( 2 ) (70 + 5 ) knots

( 3 ) The quantal error is 5 ; i.e. , the velocity is

between 50 and 60 knots or between 65 and 75

knots .

b . Aircraft Attitude

( 1 ) An attempt was made to maintain the aircraft

attitude to within + 2 ° from the vertical (90 ° ) ;

i.e. , the deviations of pitch angle ( 0 ) and
P

the deviations of roll angle ( e ) should each

be within +2 ° of the vertical .

r

( 2 ) For each RCA Laser Range -Finder measurement

taken , corresponding measurements of ө and

o were taken .
р

r

( 3 ) A positive measurement of o indicates the nose

р

of the aircraft is in an upward position ; a

negative measurement of indicates the nose

р

of the aircraft is in a downward position .

( 4 ) A positive measurement of o indicates the

r

aircraft is rolling to the right ; a negative

measurement of o indicates the aircraft is
r

rolling to the left .

( 5 ) It was intended to select from the data a set of

observations H corresponding to the low attitude
m

angles o and o arranged in order of magnitude

р r

for each level of height (H) :

н .

1H
= 600 ft .

o

р

H

m

ө

r

2 °2 °

2.5 ° (Likewise for

H2
= 1000 ft . )
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c . Aircraft Height (H) - Levels of height are 600 ft .

and 1000 ft . However , it was intended to use height

levels of 400 ft . to 1400 ft . in steps of 200 ft .

3.7 Comparison Between Test Items 1 and 2 : For each of the

two levels of H , height readings were to be taken as recorded from

the AN / APN - 22 . These will be compared with the output of 7091-A (Test

Item 1) and , of course , with the Standard of Reference , the RCA Laser :

Н.

1

600 ft .

LASER 7091-A AN / APN - 22

( old equipment )

HH

mHR
d

OR

d

mR

Where H Height recorded by old equipment

( AN /APN -22 Altimeter )

The standard deviations of the observations from the reference

data was computed to obtain the distribution of the errors . However ,

in the actual experimentation , data was obtained only at the 600 ft .

and 1000 ft . levels of height .

3.8 List of Equipments :

a . Equipment Items to be Tested :

( 1 ) Test Item 1 Honeywell Model 7091-A

Altimeter (Modified )

( 2 ) Test Item 2 - AN / APN - 22 Altimeter

b . Test Instrumentation and Accuracies :

( 1 ) Meter ( 1 o ) RCA Laser Range-Finder AN /GVS - 1 (XE - 6 )

the output of the Laser is recorded on a decimal

drum readout in digital form .

( 2 ) Five-foot ( 5 ft . ) Recorder , Mark 280 , Brush

(Precision Servo Penmotor Recorder ) , 2 - Channel

with two events channels
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( a ) Two DC analog channels recorded test item

altimeters ' height data

(b ) One event mark channel were synchronized with

the laser-firing ( once every minute) .

( 3 ) 0.5 ° 1 o Vertical Gyro , Cageable , Honeywell Mfr .

Part No. JG 7044 A - 35 , SN.04

( a) Used to establish vertical standard for

measurements of the deviations of pitch

angle and roll angle from the vertical

(90 ° )

(b ) Pitch attitude deviations recorded as positive

or negative

( c ) Roll attitude deviations recorded as positive

or negative

( d) The above gyro outputs are displayed on a

zero-center meter and are recorded with each

laser firing on the decimal drum readout .

( 4 ) TS-352 /U Multimeter , Tektronix Model 422 scope , HP

Model G382A Variable Attenuator (Precision) . The

HP Model is used to check the sensitivity ( loop

gain) of the Test Items .

NOTE : It is to be emphasized that velocity was not

treated as a factor , since the radar response (with

1000 pulses per seconds ) would not be affected by

velocities below 300-400 knots . This is the reason

that no interactions were computed .

* The remainder of this paper was reproduced photographically from the

author's manuscript.
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4 Analysis of variance Computations:

( For Testing the Hypothesis of Equal Means Between Test

Item Height Observations )

Flight # 3 Height 600 feet Velocity (70 + 5 ) knots

7091 - A ( Test Item 1 ) AN/APN - 22 (Test Item 2 )

n =
4 + 25 = 29 na = 35 + 35 = 70

Xs -979.0 Xa . : 20. 6
.

12 . 20. 6 = .29 feet

70

X, . -979.0 -33 . 75 feet

29

ni

Σ x ? = 5751 7. 12

ij

na

x = 56241. 78

T = N. = 29 + 70 = 99

.. = -979.0 + 20. 6 = -9 . 68

99

k ni

Σ Σ X2

ij

= 5751 7. 12 + 56241. 78 = 113758. 90

TW .. = 99 ( -9 . 68 ) 2 = 9276. 54

Sum of Squares Between Groups (SSB ) :

k

SSB = Σ

n; °i .
TX .. = 29 ( -33 . 75) 2 + 70 (. 29) - 9276.54 = 23762.16

Sum of Squares Within Groups ( SSW ):

n ;
k

SSW = Σ Σ

ij
i .

Total Sum of Squares (SST) :

k ni

SST = ç xºij - TX ?.. = 113758.90 - 99 ( -9.68 )2 = 104482.36
)

df SS MS

Source of

Variation

Between

Groups

Within

Groups

1 23762. 16 23762.16

97 80720.20 832.17

Total 98 104482. 36

Fcomputed (1,97) = 23762. 16 = 28.55
832.17

F. 99 (1,100) = 6.90 (tabular value of F -distribution)

Since 28. 55 >> 6.90 , the population means are highly signif

icantly different at a significance level of .01
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Flight # 3 Height ~ 1000 feet Velocity ( 70 + 5 ) knots

7091 - A (Test Item 1) AN /APN - 22 (Test Item 2)

ni = 7 + 45 = 52 na
53 + 5 = 58

1
1

X. -
-151 7. 20 • X2.

3563. 90

X1 .

X

=

-29 . 18 feet 2 .
-

-151 7. 20

52

3563. 90 = 61. 45 feet

58

ni na

Σ Χ . = 82670. 32

ij

j

Σ xo.

ij

291629.06

j

TEN = 52 + 58 = 110

1.. 18. 61= -1517. 20 + 3563. 90

110

k ni

EÇ X?..

ij

82670. 32 + 291629.06 = 374299 , 38

TX?.. = 110 ( 18 . 61 )2 = 38096. 30

Sum of Squares Between Groups (SSB ) :

k

SSB = Σ = 52 ( -29.18 )2 + 58 ( 61. 45 )2 - 38096.30niki. - T ..
= 2251 93. 94

Sum of Squares Within Groups ( SSW ):

k

SSW Σ Σ xo. Σ = 374299. 38

ij

k ni

.

263290. 24 = 111009. 14

Total Sum of Squares (SST) :

k ni

SST

Fş xij - ti ?.. = 374299. 38 - 38096.30 = 336203. 08

df SS MS

Source of

Variation

Between

Groups

Within

Groups

1 225193. 94 2251 93. 94

108 111009.14 1027. 86

Total 109 336203.08

F (1,108 ) =
computed

219.09225193. 94

102 7.86

F99/ 1 , 100 ) = 6.90 ( tabular value of F -distribution)

Since 219.09 >> 6.90 , the population means are

highly significantly different at a significance level of .01.
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Flight # 2 Height ~ 1000 feet Velocity (55 + 5 ) knots

7091- A ( Test Item 1 ) AN /APN -22 (Test Item 2 )

na = 12 + 79 = 91 na 78 + 13 = 91

X, . = -3135.00 Xa. - 3374.80

Xi . - 3135.00 = -34 . 45 feet

91

Xa . = 3374.80 - 37.09 feet

91

Ex?

j

180825. 10

na

Ex? = 239507. 26

j
ijij X

T = N. = 91 + 91 = 182

X ..
-3135.0 + 3374.8

182

= 1.32

kni

£ x?. = 180825. 10 + 239507. 26 = 420332. 36

ij

TX2 .. = 182 (1.32 )2 = 317.12

Sum of Squares Between Groups (SSB ) :

k

SSB = > n ^ 2 - TX° .. - 91 ( -31 . 450° + 91 (37. 090° - 31 7.12 = 232867. 70
i

Sum of Squares Within Groups (SSW ) :

k

SSW = 1 , Xij - ? n;* 420332.36 - 233184.82 = 187147. 54

k ni

Total Sum of Squares ( SST ) :

kn,

SST Σ Σ Χ. Ti ... 420332. 36 - 317. 12 = 420015. 24

ij

2

Nij
-

df SS MS
Source of

Variation

Between

Groups

Within

Groups

1 232867. 70 232867. 70

180 187147. 54 1039. 71

Total 181 42001 5. 24

compulda
180 ) = 232867 , 70 = 223.97

1039. 71

F.99 (1,150) = 6.81 ( tabular value of F - distribution ))

Since 223, 97>> 6. 81 , the population means are

highly significantly different at a significance level of .01
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5 . t - Test Computations :

Testing the Hypothesis of Equal Means Between Test Item

Height Observations

Only negative deviations for the 7091 -A Altimeter and positive deviations

for the AN / APN - 22 Altimeter were used in the following calculations be

cause of their predominant occurrence in the data .

Flight # 3 Height ~ 600 feet Velocity : (70 + 5 ) knots

7091 - A (Test Item 1 ) AN APN - 22 (Test Item 2 )

ni 25 na = 35

X , -40.96 ta = 22.61

S , = 24.15 Sa = 16.82

One -Sided Test:

t = ( 1 , -12 )- )
nina (n , + na - 2 )

Tn , + ng) in, sz ? + n , sa ?

t = ( -40.96 - 22.61 ] •

(25+35]
( 25x35 ) ( 25+ 35-2 )

(25 + 35 )[ 25 (24.15 ) 2+35 (16.82 ) 2 ]

t = -20 . 91

For a significance level of a = .05, the tabular value of the

t-distribution table is : ty - .05( 50 ) = t . ( 50 ) = 1.6795"

Since -20.91 << -1.67, the population means of the test items

are highly significantly different at Q = .05 level of significance .

α ΞFurthermore, for a significance level of 005 , the tabular

value of the t - distribution table is : t1 - .005 ( 50 ) = t.995( 50 ) = 2. 68

Therefore , since -20.91 << -2 , 68 , the population means

of the test itemsare also highly significantly different at a = .005

level of significance .

Two-Sided Test :

.

For a significance level of a = .05 , the tabular value of the

t - distribution table is : +1-.05(50) = t . 975( 50 ) = 2.01

Sincelt |= 20.91 >> 2.01 , the population means of the test

items are highly significantly different at Q = .05 level of significance.

Furthermore, for a significance level of Q = .01 , the tabular

value of the t- distribution table is : t - .01(50 ) - t ( 50 ) = 2.68

995

2

Since It |= 20.91>> 2.68, the population means of the test

itemsare also highly significantly different at levelof

significance.

a = .01
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Flight # 2
Height 1000 feet

Velocity : ( 55 + 5 ) knots

7091 - A (Test Item 1 )
AN /APN - 22 ( Test Item 2 )

na
ni = 79

= 78

X = -40.96
X2 = 46. 73

Si
= 24. 35 sa = 28.01

One - Sided Test :

t = ( -40.96-46 . 73 ) . 179+ 78)[ 79(24. 35)2+ 78(28.01) ]
( 79x78 )(79 + 78-2)

t = -20.80

For a significance level of Q = .05 , the tabular value of the

t- distribution table is : t ( 100 ) - t

*
( 100 ) = 1.66 .

1 -.05 . 95

Since -20.80<<-1.66 , the population means of the test items

are highly significantly differentat a = .05 level of significance.

Furthermore, for a significance level of Q = .005 , the tabular

(100 ) = t (100 ) = 2.63

value of the t - distribution table is : ti ..'1 - .005 ..995

Therefore , since -20.80<< -2.63, the population means of the

test items are also highly significantly different at Q = .005 level of

significance.

Two- Sided Test :

For a significance level of Q = .05 , the tabular value of the

t - distribution table is :
ti ..

( 100 ) ( 100 ) = 1.98

1 - .05 .975

Since lt | = 20.80>> 1.98 , the population means of the test

itemsare highly significantly differentat Q = .05 level of significance.

theFurthermore , for a significance level of Q = .01 ,

tabular value of the t- distribution table is : t1 -.01(100 )= t. 995 (100 )=2.63

2

Since It | = 20.80>> 2.63, the population means of the test

items are also highly significantly different at Q = .01 level of

significance.
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Flight # 3 Height = 1000 feet Velocity : (70 + 5 ) knots

7091 -A (Test Item 1 ) AN /APN- 22 (Test Item 2 )

-

ni
45

na 53

X

I
I -34.57 X = 67.96

Si = 24.01 Sa 29.52

One - Sided Test:

t = ( -34.57 - 67.96 ] ·
T45x53 ) 745753-21

(45 +53) [ 45 (24. 01) 2 +53(29.52 ) 2 ]

t = -18 . 42

For a significance level of Q = .05 , the tabular value of

the t- distribution table is : t -.05( 80 ) = t (80 ) = 1.66 .
95

Since -18 . 42<< - 1.66 , the population means of the test items

are highly significantly different at 0 = .05 level of significance.

Furthermore, for a significance level of Q = .005 , the tabular

value of the t - distribution table is : ti - .005( 80 ) =
(80 ) = 2. 64

* .995

= t

i

Since -18 . 42<< -2.64, the population means of the test items

are also highly significantly different at Q = .005 level of significance.

Two - Sided Test:

For a significance level of Q = .05, the tabular value of

the t - distribution table is : ..05(80) = t (80 ) = 1.99

1975

241-

Since It | = 18. 42>> 1.99 , the population means of the test

itemsare highly significantly different at Q = .05 level of significance .

Furthermore, for a significance level of a = .01 , the

tabular value of the t - distribution table is : t ( 80 ) = t (80 ) = 2.64 .

1 - .01 .995

2

Since It | = 18. 42>>2.64, the population means of the test items

are also highly significantly different at a = .01 level of significance .
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6 . HOMOGENEITY OF VARIANCE COMPUTATIONS:

F - Test Computations for Testing Homogeneity of

Variance Between Test Item Height Observations

Only negative deviations for the 7091 -A Altimeter and positive deviations

for the AN APN- 22 Altimeter were used in the following calculations be

cause of their predominant occurrence in the data .

Flight # 3 Height ~ 600 feet Velocity ( 70 + 5 ) knots

7091 -A (Test Item 1 ) AN /APN- 22 (Test Item 2 )

nı 25 na = 35

s (d
= 24.15

sid
16.82

MR) OR )

s
a

= 583. 22
sa

(d

mR

(d J)= 282.91

OR

583.22

282 , 91

2.06

Ecomputed (24, 34 ) =

F 95(24, 34) = 1.84 ( tabular value of F -distribution)

F.99 (24 , 34) = 2. 38 (tabular value of F - distribution)

(d
Since 2.06 > 1.84 , the hypothesis that o?

(d
MR)

is contradicted by the observed data at a significance level

OR )

a = .05 .

Since 2.06 < 2.38 , the hypothesis that 02

( (
doR

mR

is not contradicted by the observed data at a significance level

Q = .01 .
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Flight # 3 Height = 1000 feet Velocity ( 70 5 ) knots

7091 - A ( Test Item 1 ) AN /APN - 22 ( Test Item 2 )

ni 45 na = 53

= 24. 01
sidor

= 29.52
Sid )
mR

s

2

= 576. 48 s2 = 871.43

(AMR )

OR )

OR )
(d

F (52 , 44 ) = 871. 43 = 1.51
computed

576. 48
computed

F.95( 50, 44) = 1. 63(tabular value of F -distribution )

F.99(50 ,44) = 2.00 (tabular value of F -distribution )

o2
( d

Since 1.51 < 1.63 and 1.51 < 2.00, the hypothesis that

is not contradicted by the observed data at either

significance level of a = .05 or a = .01 .

02

(dorMR) OR

Flight# 2 Height = 1000 feet Velocity ( 55+ 5 ) knots

7091 -A ( Test Item 1 ) AN /APN- 22 (Test Item 2 )

ni 79 na = 78

= 24. 35 sid = 28. 01
sid )

MR

sa

OR )

s2

)
= 592.92

(d
= 784. 56

( d

MR) OR

F

computed (77, 78 ) = 784. 56 = 1.32
592.92

F.9575, 80 ) = 1. 45( tabular value of F - distribution)

F.99( 75, 80 ) = 1. 70(tabular value of F - distribution )

oºd

Since 1.32 < 1.45 and 1.32 < 1.70 , the hypothesis that

o?
is not contradicted by the observed data at either

( dor )
OR ' significance level of a = .05 or a = .01 .MR
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Computations: Confidence Intervals for Means of 7091- A

AltimeterMeasurements

The following confidence interval computations were performed only

with the negative deviations of the 7091 -A Altimeter because of their

predominant occurrence in the data .

S

Confidence Limits = X + t
a

Jn - 1

Flight # 1 Height = 600 feet Velocity : (55 + 5 ) knots

n = 51 S = 21.39 X = -32,10

21.39

95% Confidence Interval = -32 . 10 £ 2,01(2039)
= -32.10 +6.0802

= -38.18 to - 26.02

(21.39
99% Confidence Interval= -32,10 + 2 , 68 ) = -32,10 + 8. 1070

750

= -40.21 to -23.99

Flight # 3 Height ~ 600 feet Velocity: (7035 ) knots

n = 25 s = 24.15 = -40.96

95% Confidence Interval -40 . 96+ 2.06

( 24,15 )
24. 15

24

=-40.96 $ 10.1549

=-51.11 to -30.81

99% Confidence Interval = -40.96 £ 2.80 24.15 ) = -40.96 $ 13 , 8028

w 24

= -54 , 76to -27 , 16

Flight # 2 Height 1000 feet Velocity: (55 +5 ) knots

n = 79 S = 24 , 35 X = -40.96

24.35

95% Confidence Interval = -40,96 1.99 = -40.96 + 5. 4866
✓78

= -46 . 45 to -35 . 47

(24.35 ) --40.96 + 7. 278799% Confidence Interval = -40.963 2,64

778

= -48. 24 to -33 . 68

Flight # 3 Height ~ 1000 feet Velocity : ( 70 +5 ) knots

n = 45 S = 24.01 X = -35.34

(24.01
95% Confidence Interval == -35 , 34 + 2.015 = -35 , 34 £ 7.2934

= -42 , 63 to -28.05

99% Confidence Interval = -35.343 2. 69
24.01

♡ 44

= -35 , 34 £ 9. 7367

= -45 , 08 to -25.60
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Computations: Confidence Intervals for Means of AN APN - 22

Altimeter Measurements

The following confidence interval computations were performed only

with the positive deviations of the AN / APN- 22 Altimeter because of

their predominant occurrence in the data .

Confidence Limits =
* 土 ta

S

Nn - 1

Flight # 3 Height = 600 feet Velocity : (70 + 5 ) knots

n = 35 s = 16.82 X = 22.61

16.82

95% Confidence Interval = 22 , 61 + 2,03 6,93 =22 . 61 5,8557

34

=16 . 75 to 28. 47

99% Confidence Interval = 22.61 +2 , 725 16,82 ) -22.61 7.8605

W34

=1 4. 75 to 30. 47

Flight #2 Height 1000 feet Velocity: (55 + 5 ) knots

n = 78 S = 28.01 X= 46. 73

95% Confidence Interval 46. 73 $ 1.99
28,01

777

=46 . 73 $ 6. 3520

= 40.38 to 53.08

99% Confidence Interval = 46. 73 $ 2.64.64 (2
28.01

777

- ) = 46. 73 8. 4268

= 38, 30 to 55.16

Flight #3 Height ~ 1000 feet Velocity : ( 70 +5 ) knots

n = 53
X = 67.96S = 29.52

95% Confidence Interval = 67.96 + 2,01

29.52

/52

=67.96 £ 8. 2281
.

= 59 , 73 to 76.19

(29.52 )99% Confidence Interval = 67.96 + 2. 68
=67.96 10.9708

w 52

= 56. 99 to 78. 93
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Computations: Confidence Intervals for Standard Deviations

of 7091 - A Altimeter Measurements

The following confidence interval computations were performed only

with the negative deviations of the 7091 -A Altimeter because of their

predominant occurrence in the data .

2

VS ?

2

X
ν , 1 - α

> O2 is the 100 ( 1-0)% upper confidence

interval for 02

2

us so2 lower confidence
2

Χν, α

is the 100 ( 1-0)%

limit for 02

Two - sided confidence interval for the unknown o2 :

vsa V

< p> < ys?a

X
V , α ,

Χν, 1- α-a

2

where represents the

number of degrees of freedom,

a is the level of significance ,

is the Chi - Square

distribution .

and X

Flight # 1 Height = 600 feet Velocity: (5565 ) knots

n = 51 S = 21.39

95% Confidence Interval : 50 (21.39)

71.4202

< 0? <
50 (21.39)

32.3574

320. 31 < 02 < 706. 9976

17.90 < o < 26.59

99% Confidence Interval : 50 (21.39)

79. 4900

< o2 <
50 (21.39 )

27.9907

287. 7922 < p < 817.2930

16.96 < o < 28 , 59

Flight # 3 Height = 600 feet Velocity : (7035 ) knots

n = 25 S = 24. 15

95% Confidence Interval : 24 (24.15 )

39.3641

< o² <
24 (24 . 15 )

12. 4001

355. 5864 < ? < 1128. 8086

18.86 co < 33. 60

99% Confidence Interval : 24 (24.15 )

45. 5585

< 02 <
24 (24.15)

9. 88623

307. 2388 < 02 < 1415.8463

17.53 < a < 37.63
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Computations: Confidence Intervals for Standard Deviations

of AN /APN - 22 Altimeter Measurements

The following confidence interval computations were performed only

with the positive deviations of the AN / APN-22 Altimeter becausė of

their predominant occurrence in the data .

The confidence interval for the unknown 02 is :

us
a

2 02

x "

2

vs?

2

ν , 1 -αν, α

Flight # 3 Height=600 feet Velocity : (70 + 5 ) knots

n - 35 S = 16.82

95% Confidence Interval :: 34 (16 . 82 )

46. 9792

< o2 <
34 (16 . 82 )

16. 7908

204 , 7506 co2 < 572.8745

14, 31
< o < 23.93

99% Confidence Interval : 34 (16.82 )

53. 6720

< o? <
34 (16 . 82 )

13. 7867

179 , 2186 < o2 < 697. 7029

13.39 < o < 26. 41

Flight # 3
Height 1000 feet

Velocity: (7035) knots

45
S = 24.01

n =

95% Confidence Interval::
44 (24.01 )2

59. 3417
< ? <

44 (24.01 )

24. 4331

427. 4418 so
2 < 1038. 1459

20.67 < o < 32,22

99% Confidence Interval : 44 (24.01 )2

66 , 7659

< oa <

44 (24.01 )2

20. 7065

379.9113 < o? < 1224. 9836

< o <19.49
35.00
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Flight # 2 Height - 1000 feet Velocity: (55 + 5 )knots

n = 78 S = 28. 01

95% Confidence Interval:: 77 (28.01 )

106. 629

< o² <
77 (28.01)

57. 1532

566.5543 < o2 < 1057. 0034

23. 80 < o < 32,51

99% Confidence Interval :
77(28.01) 2 sove < 77 (28.01 )

51.1720116 , 321

519. 3484 < 02 < 1180 , 5504

22 , 79 <
34. 36

Flight # 2 Height = 1000 feet Velocity: ( 55 5 ) knots

n = 79 S = 24.35

95% Confidence Interval: 78 (24 , 35 )

106. 629

< o² <
78 (24 . 35 )

57. 1532

433 , 7277 < o2 < 809.1927

20.83 < o
<

< 28.45

99% Confidence Interval:
78 (24 . 35 )

116. 321
coa <

78 (24.35 )

51.1720

397. 5890 < o? < 903 , 7746

19,94 < O < 30.06

Flight # 3
Height = 1000 feet

Velocity: (70 + 5 ) knots

53n =
s = 29.52

5229, 52 )

71.4202

< o? <
52 (29. 52 ) 2

32.3574

634. 4756 < o2 < 1400 , 4333

25. 19 < o < 37. 42

52 (29 , 52 )

79. 4900

< o? <
5229, 52)

27 , 9907

570.0639 < ? < 1618 , 9084

95% Confidence Interval :.

99% Confidence Interval :

23.88 < o

<

40.24
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8 .
MEAN SQUARE SUCCESSIVE DIFFERENCE: A Test for Randomness

One of the tests used to detect randomness is the mean square

difference method . A brief discussion of this method is deemed ad

visable because of the sensitivity of this method to non- random fluctu

ations . This method is particularly sensitive in detecting long- term

trends, periodic or excessively rapid oscillations in observed data .

nLet us assume that X1 , X2: Xn represent successive

observations from a population which obeys the normal distribution law :

f(x )
1

[- (x - w) ? / 2 0% ]exp

0,27

The sample mean andwith the mean H and standard deviation O .

standard deviation are defined respectively:

n

X = 11 x ;

s = body (x; - x)
n

The mean square difference is :

82 =
n -1 (X1 + 1 - X;)

n-1 successivei . e . , we compute the mean of the squares of the

differences between the observations.

It can be shown that:

E

[ 2-] = 11 ,
and thus 62/2 is an unbiased

estimate of 02

The variance is :
n-2

(n - 1 ) (n+ 1 )
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82 182 ,

In this test we are comparing the values

of 82 and s2 ; we are particularly interested in the ratio :

since the disparity between the values of 82 and s2

will indicate the trend or short period oscillations in the observations.

It is assumed that the value of 82 will not be increased by the trend

as appreciably as sa ; hence a small value of the ratio 82 / S2

will indicate trends in the observations. In the case of short periods

of oscillations both 82 and s2 will increase ; and the increases

in 82 will be proportionately greater .

82

The distribution of 1 6
2s?

is symmetrical with a verage value zero for random samples drawn from

a normal population . For values of n > 25, is very nearly normally

distributed with a verage zero and variance equal to

n 2

( n - 1 ) (n + 1 )

elseWe can use the statistic : t = and the percentage point,

for a standard normal deviate in testing for significance of A for

large values of n . Long term trends in the observations would be

indicated by high negative values of t ; and high positive values of

t would be symptomatic of short rapid oscillations in the observations.

Significance levels for the 82 / s? ratios have been tabulated by B.I.

Hart (Significance Levels for the Ratio of the Mean Square Successive

Difference to the Variance, Annals of Mathematical Statistics, Vol. XIII,

1942 , pp . 445-447 ) .

It is clear from Tables 7 and 8 on the following pages that

the values of_t60) at the 95 % confidence level are not statistically
significant. This means that the hypothesis of randomness of the data

is not rejected at the 5% significance level .
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AN EXPERIMENT USING NUMERICAL ANALYSIS TO MODEL A

FUNCTIONAL RELATION BETWEEN ABM SYSTEM SENSOR

RESPONSES AND REENTRY VEHICLE CHARACTERISTICS

Andrew H. Jenkins

U. S. Army Missile Command

Redstone Arsenal , Alabama

INTRODUCTION . It is believed that prediction models can be developed

by the analysis of experimental data in light of the known physical laws

pertinent to high speed reentry . The development of the model is accom

plished by numerical analysis of the full-scale reentry experimental data

obtained on the eastern and western test ranges .

In the past , considerable effort has been expended to rigorously

and theoretically describe the interdependent and interacting phenomena

of hypervelocity reentry . This is a very complex and difficult job . In

general , the basic theoretical relations are not adequately described

for ideal conditions . Of more importance , the real case of reentry is

usually described with even less precision than the ideal case .

not to say that progress has not been made in the purely theoretical

approach nor is it to imply that it should not continue . The selection

of the proper variables and stratification of empirical models depends

upon such efforts .

The phenomenological processes which occur during reentry couple

with the radar sensor to produce gross effects in the measurable re

sponses . These gross effects are considered to be typical from test

to test , and differ only in the degree or level of effect on the response .

The empirical determination of the degree or level of effect is to relate

the sensor responses to the body parameters and the trajectory parameters

by experimental observation without the full benefit of a complete theore

tical knowledge to describe the underlying physics and chemistry of the

phenomena . This is graphically depicted in Figure 1 .

The variables used are those which are recorded by the radar system

on data tape or published in data reports and are , of course , representative

of the real - case responses in a real time frame . Accurate estimates of

body characteristics made continuously in real time are the ultimate goal

of this approach . Also , it is desired that the prediction models contain

sufficient physical variables representative of the sensor , body , and

trajectory parameters that the simultaneous masking of all measurables

becomes economically and practically infeasible for the offense .

In the development of empirical prediction models , the operational

conditions should not be ignored . The final utility of any techniques

of target identification depends upon the capability of the model to make
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accurate real-time estimates . Also , the models should be fairly easy

and economical to incorporate into the defense system . It should be

one which can be improved in accuracy and updated as more knowledge

of the problem is accumulated .

In the real operational situation , the defense system essentially

stands alone . The identification of the objects in the reentry complex

must be done in real time . This can be less than 60 seconds . The

models should be able to provide continuous estimates of the characteris

tics of the objects in the reentry complex . It is also highly desirable

that the model estimation process converge as soon as possible in the

real-time track to the best estimate of the true value of the particular

body parameter (for example , weight) . This provides a longer time for

decision making or for intercept at the highest possible point . The

estimation of as many body parameters as possible is obviously highly

desirable . The body parameters can be used for cross -checks on the

estimated values of each other . Every object in a reentry complex will

not be a simple decision case of " warhead -decoy" even with a very precise

model . There will be grey areas . Therefore , it is believed that several

models for different characteristics of the body will be essential in the

final decision to commit an interceptor .

It has not been determined just how more than one body parameter

estimate will be made in real time . It may be required to tabulate

the data in the form of discrete time (for example , altitude ) intervals

and develop prediction models for each time increment and body charac

teristic rather than use one model throughout the reentry track .

It is mentioned that the material presented in this report represents

a minimal effort which is neither complete nor concrete . Some of the

variables used in this " first cut" numerical analysis were selected

because of expediency and availability in order to make a beginning in

this approach .

FORMULATING THE MODEL . The most common physical characteristics

of the body are weight (w) , diameter (D) , and length (L ) . The drag

area product used in conjunction with weight can provide an estimate

of ballistic coefficient ( B ) . Shape is one characteristic that affects

the drag area product (CA) for a given set of reentry trajectory condi

tions and is reflected in the value of CoA . This value in turn is
reflected in the ballistic coefficient .

Some measurements that can be made by the radar are radar cross

section ( o ) , velocity (V ) , time derivative of velocity (V ) , and

altitude (h) . There are characteristics of radar such as wavelength

( 1 ) and aspect angle ( 0 ) on which the above measurements depend .

The first body characteristic selected to empirically determine

the functional dependence is vehicle weight (W) . It is hypothesized
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that the estimated weight W ' is not a function of sensor characteristics

and trajectory parameters as measured by the sensor system . That is

Ho : W ' * f ( 5,1 ) ,

and similarly for the other physical characteristics of the body

Họ : D ' + f ( s ,T )

(1)

H : L ' * f ( S , T ) .
+ ( T

The alternate hypotheses are

H4 : W ' = f ( 5,1 ) ,

and similarly

H,: D ' = f ( SAT )

( 2)

H, :
: L ' = f (ST)

where W ' , d ' , L ' = estimates of the true values ,

S = sensor parameters ,

T = trajectory parameters .

The null hypothesis Hy is tested against the alternate hypothesis H, by

deriving a model of W , D , and L as a function of S and T by regression

analysis .

The general multivariate linear regression analysis is written

y ' = 20ao + a,1
+

+

a2*2
... a x

app
( 3 )

where X

th

= the p independent variable
P

а

=

the true intercept

th

a = the P true coefficient

р

y ' = the regression estimate .
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An analysis of actual range data is made to test the null hypotheses

that an estimate of a physical characteristic is independent of sensor ,

trajectory , and body variables . The range data are analyzed with a

computer program that calculates the regression of the dependent vari

ables on the independent variables by a stepwise technique . The regres

sion program analysis is a linear relationship , but it can be made to

accommodate nonlinear functions by any one of 20 different transforma

tions , such as logarithms. The analysis first calculates the simple

correlation coefficients between each independent variable and the

dependent variable . The variable with the highest correlation is

selected for the first regression calculation . The linear regression

of the form

y = ao
ao + a21

( 4 )

is therefore calculated for one of the physical characteristics ; say W ,

as y , and the independent variable with the highest simple correlation

as xy . Each of the remaining independent variables was then correlated

with y and xi : The variable (x2 ) was then selected as the variable that

produced the highest of these correlations . A second step regression was

then calculated for the form

y = a + 0,11
+

22*2 .
( 5 )

If the correlation of regression relationship should be reduced by

the addition of another variable , this variable was removed . If , however ,

the correlation increased , the variable was retained and the step procedure

th

is repeated for another variable up to the p variable and coefficie
nt

as shown in Eq . ( 3 ) .

Currently , it is believed that the best body parameter for target

identification is the weight of the reentry vehicle . Therefore , weight

was selected for the initial effort . Quantitative measurements of

parameters obtainable from the field sensor are V , V , h , and o . The

operational problem requires that the prediction model be expressed in

terms of the parameters measured by the sensor . The radar cross section

is dependent on the ratio of the plasma frequency to the incident radar

frequency The plasma frequency is in turn dependent on the strength of

the shock front and viscous forces . The viscous forces determine velocity ,

acceleration , and altitude changes as a function of time . The interaction

and interdependency of these parameters (as well as others ) determine the

effects of the entire reentry environment perturbations on the magnitudes

of these parameters as measured by the sensor , as well as their histories .
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Hence , the change in the inertial force ( FA) of the body is caused

by the drag force (FD ) acting on the body as it penetrates the earth's

atmosphere . As an initial effort in the development of a prediction

model , these forces were assumed proportional , neglecting gravity . That

is

F. F.

A D '
( 6 )

This simple assumption is used as a basis to postulate an equation in

which the constants and coefficients are assumed unknown or at least

different from the Newtonian values . F and F can be expressed as
A D

F

A

= ma

W

V

8

( 7 )

1

FD pv?cpA. ( 8 )

Equating ( 7 ) and ( 8) and solving for W , it is found that

pv?C A &

W =

(9)

2v

The independent variables of Eq . (9 ) are P , V , CA , and V. Opera

tionally the radar cannot provide estimates of p and CDA directly .

Therefore , these variables must be expressed in terms of measurements

available from the radar . The density can be expressed as

D

-Bh

- Poe
( 10)

where

Ро
= standard density ,

B = a constant ,

h = the altitude .

Hence , density is expressed as a function of altitude , a variable which can

be obtained from the radar . The remaining variable CoA can be expressed as
CA

a function of the radar cross section (o ) .

Bethe , Edwards and McDonald , and Martin have studied the functional

relationship of o and CA. The relationship developed is of the form
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oa K (CA) N ( 11)

where K = a constant ,

N = the exponent .

Substituting Eq . ( 10 ) and ( 11) into Eq . ( 9 ) and rearranging terms , the

following is obtained

y? 1 /N
°08

W ( 12 )

1/N Bh

2 (K) je

In the above expression , W is expressed as the function of a constant

times the ratio of v2 and oand 01/N to V and h . Since the relationship is

nonlinear , it must be linearized for the regression program . The equation

is expressed as

vai a3

W =

ao
( 13 )

ja2 ea4h

where ao the regression constant

al ' a2 a3 ;
= regression coefficients .

4

Since Eq . ( 13 ) is nonlinear and the regression program is linear , then

the equation must be linearized . Natural logarithms (which may not be

ideal ) were used to linearize the equation . It can be expressed as

InW = ln

ao
+ a , 1nV +

a azıný + azino + a
h .

zlo
v ( 14 )

4

SELECTION AND REDUCTION OF REENTRY TEST DATA . Analysis of actual

full-scale reentry test data requires that a historical sample of tests

be selected . The selection of the tests requires the establishment of

certain criteria .

The criterion for numerical analysis is that the test data be

essentially complete throughout a prescribed trajectory range . That is ,

the radar must have maintained nearly continuous track . Also , it was

imperative that each channel of track be accurately identified as to the

type of information . (This is to avoid a mixing of the data sets . )
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The trajectory criteria were established on the basis of the

deposition of momentum energy into the disturbed medium through which

the vehicle passes . The deposition of energy begins to be appreciable

in the continum flow regime when the shock forms and viscous effects

come into play on the body . The effects produced in this regime provide

measurable variables which relate to the underlying physics of the inter

change of momentum and energy between the body and its environment and

the coupling of these phenomena with the sensor responses . If these

phenomena are assumed to be typical , then it remains only to relate the

amplitudes of the sensor returns to the levels of body parameters . For

a typically sized reentry body at typical reentry velocity these energy

interchange effects become pronounced at about 300 kft . However , the

portion of the trajectory selected is from 150 kft . to 60 kft . in order

to bracket a region of maximum kinetic and dynamic interchange for the

sample of venicles selected .

The body criteria were selected simply to obtain a sample with wide

ranges of body characteristics such as weight , length , diameter , drag

area , and shape . One restraint placed on the initial selection of

sample bodies is that all bodies be of the ablative type . The rationale

behind this on the initial study was to have all bodies of the type

which would at least unintentionally and somewhat randomly contaminate

the flow field with typical reentry vehicle materials for data consistency .

One other constraint placed on the selection of the data sample

was a constant radar frequency . Future analyses could relax this con

straint and the data of several different frequencies could be used to

develop a more universal model . In the operational mode bistatic

measurements may be made . It would be desirable to have the frequency

variable included . The prediction model could be adjusted for each

particular discrete radar frequency used by the system .

After the criteria for selection of the sample were established , the

data had to be actually selected and reduced to a usable format . The

radar data tapes were located and presumably the proper information

channels identified . A coupling program was developed so that the data

could be directly machine fed from the tapes into the regression pro

gram . A printout of the smoothed values of the sensor measurements

recorded on the tapes was programmed for a check on the data tapes

input to the regression program . The data were taken from the data

tapes at the appropriate time after lift-off , corresponding to the

established trajectory altitude limits . The data were smoothed to

obtain discrete values in 0.5-sec . intervals . (The intervals could

be shortened to , say 0.25-sec . intervals . ) The 0.5-sec . intervals

provide an average of about 15 matched set data points for each

reentry test selected . A total of 10 reentry bodies were included

in the first analysis . The range of body characteristics selected

is shown in Table I.

355



TABLE I

Body shapes : Simple spheres to complex sphere- cone-cyl-flare

Body diameters : 7.5 inches to 90 inches

Body lengths : 7.5 ind es to 169 inches

Body weights : 17.5 pounds to 7181 pounds

ANALYSIS RESULTS . The reentry data sets as compiled were subjected

to analyses . The values were programmed into the regression analysis on

the computer , a total of 150 matched data sets . As mentioned above , the

data sets are over the altitude regime of approximately 150 kft . to 60 kft .

They represent about 7.3 sec . of reentry time .

These data were run on two different types of regression programs

Thewhich computed the same values for the constants and coefficients .

general regression equation is

InW ' 3

Ina, + a ,Inv + azIný + agino + aa ,h . ( 15 )

Each regression coefficient was statistically tested for significance .

Let

al ' '
az , az , and 4 be the true values of the regression

coefficients whose estimates are az , az , az , and a4 , respectively .

following hypotheses are tested :

The

a1
= 0н .

0

H

1

: > 0

az
= 0

Ho :

H : az
> 0

( 16 )

Hн

HO
: = 0

аз

az
Н. : > 0

HO :
d
h

= 0

H
: ماب > 0 .

1
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The t test used is as follows :

ai - ai

ti
( 17 )

S

i

where Si
= standard deviation of regression coefficient , az , i=1,2,3 , and 4 .

The computed values for S are as follows :

3

aj : Si
1.218

az : S2
= 0.0761

az: 53
= 0.4234

= 0.0206 .
4

a,: S

The calculations of t are :

ai - a
8.741 - 0

=

3

ti
7.175 ( 18)

si
1.218

az - az
-0.08688 - 0

=-1.14

t2
( 19 )

S2
0.0761

მვ
0.2640 - 0

ن
ی
ا

аз

t3
= 0.6236 ( 20 )

sz
0.4234

a
u -0.1414 0

* 4

= -6.842 ( 21 )

S

4

0.0206

0.05 ) , the critical value for tFor a 95 percent confidence level ( a

is 11.960 ) . Therefore

09ti
= 7.175 > l1.960 ) , Reject H,

t2 = -1.141 > | 1.960 ) , Accept Hoº

tz = 0.6236 > | 1.960 ) , Accept Ho,

t2 = -6.842> | 1.960 ) , Reject Ho .
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are not significant .Therefore , the regression coefficients
a2

and
аз

The regression equation is now recalculated as

In W ' = +

ao ai
ln V + anh, ( 22 )

which expresses the weight of a reentry body in terms of the velocity

and altitude as determined from the radar sensor . The regression

equation was calculated to be as shown in Eq . ( 23 ) . The actual values

are not shown for security reasons .

ln W '
Inao + a, InvInv - ah , ( 23 )

The correlation coefficient is

v = 0.602

The final equation ( 23 ) was used to calculate point-by-point

estimates of 13 independent reentry object weights . The range of

characteristics of these objects is shown in Table II .

TABLE II

Shape : Simple sphere to sphere-cone- cylinder-flare

Diameters : 4 inches to 40 inches

Lengths : 12 inches to 167 inches

Weights : 7.5 pounds to 3,390 pounds

The calculated values are shown in point plots of estimated weight

versus altitude simulating real time estimates of object weight . These

plots are Figures 2 through 14 .

A composite plot of all thirteen bodies is shown in Figure 15 .

This is a semi - log plot of the best estimate of weight versus altitude

which comes out of a reasonably straight line which is expected in view

of the transformation of the data to fit the hypothesized equation .

You have noticed that the plots show positive or negative slopes

indicating increasing or decreasing weight estimates as a function of

altitutde ( for example , time ) . Only two plots have indicated both

positive and negative slopes where the true weight was estimated twice

during the time - frame of calculation . The desirable shape of the real

time plots of individual objects is shown in Figure 16 . It would be

desirable to have the estimate converge to an asymptote to the true

weight within some established confidence limits . All bodies displaying

these curve forms could be classified as decoy or RV . Thos e outside the

confidence limits would be engaged .
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DISCUSSION . The results of the regression analysis computations

indicate that the two variables , acceleration and radar cross section ,

do not significantly relate to the body dimension weight. This is not

to say that they are not significant , but rather that with the data

sample used they could not be established as significant . There are

reasons which could account for the failure to establish significance

of these two variables . One reason could be the poor distribution of

these variables in the sample of data . The poor distribution could

be due to the error of estimating these quantities by the radar

sensors . Considerable error could be contained in the estimates of

the negative acceleration of the body because of the azimuth and

elevation rate changes of the antenna caused by shifts in tracking

the electromagnetic centroid of the reentry complex . The error con

tained in the radar cross section is possibly caused by the inherent

error in the C,A radar cross section relationship used in the develop

ment of the hypothesized equation .

Another reason is that the 95 percent confidence level may be too

high for the degree of precision in making the measurements . A further

stratification of the data could be made that would provide a range of

more consistent variation in the acceleration and radar cross section

readings . However , this would be useful only for study purposes and

would not improve the inherent inaccuracy of the radar system estimates

in the real operational case . The improvement in the accuracy of the

values would establish their significance and raise the present cor

relation coefficient of 0.602 . Weight estimates of the reentry vehicle

would be more accurate with an improved correlation coefficient .
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SOME EXPERIENCES IN LABORATORY CONTROL INVESTIGATION *

Sigmund P. Zobel

Cornell Aeronautical Laboratory , Inc.

Buffalo , New York

1 . INTRODUCTION . Statistical quality control as a way of life

in American , Canadian , and British industry is over twenty years of

age . Further , as a logical extension of the scope of applied statistics

in industry , statistically designed experiments and analysis of variance

have been increasingly used over , perhaps , the last fifteen years .

phase of industrial operations , however , still appears to be rather slow

in making use of the applications of statistical methods to the analysis

and control of its routine activities . I refer to the typical chemical

laboratory , wherein there are frequently many ways in which the opera

tion can be made more efficient in terms of precision and accuracy and

overall reliability of analysis . Much of the potential improvement in

effectiveness can be delineated , achieved , and preserved through the

use of statistical experimental and control techniques .

In the past few years , my colleagues and I have had the opportunity

to participate in the study of one such laboratory , whose director

realized he had many problems connected with the achievement of improved

precision and accuracy in the analytical results , and was quite coopera

tive in permitting experiments designed to shed light on the specific

problem areas , so that control measures may be instituted and/ or proce

dures changed . Since more or less standard techniques of analysis were

used , describing some of our experiences in that laboratory may be of

possible use to others confronted with similar situations . Objectives ,

means of accomplishment , and conclusions will be discussed to the exclu

sion of technical details of computations , or theory .

Let me describe the setting for you . A wet chemistry laboratory

routinely analyzes samples resulting from a particular event . Several

hundred samples , over a wide concentration range , are delivered to the

laboratory for analysis . The analysis is performed colorimetrically ,

and the goal is to optimize the precision and accuracy of the results .

There are two different colorimetric instruments , with two units of

each , in service . One instrument is mainly automatic in its sample

preparation and analysis ; the other is largely manual . There are four

analysts available , and any combination or all four may be assigned to

the job when it comes into the laboratory . The number of samples which

may result from the event is usually larger than can be handled by all

four analysts during a regular 8 hour shift . When the budget permits ,

*This work was performed under Contract No. DA 18-035 - AMC - 280 (A ) , Field

Evaluation Division , Technical Support Directorate , U. S. Army Edgewood

Arsenal , Maryland .
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overtime is used to complete the analyses within one calendar day .

Otherwise , the work may require two , or even three calendar days .

Since the reagents and standard solutions have varying degrees of

perishability , delays may be deleterious to the yield estimated from

the analysis .

With this background in mind , the need will be rather obvious

for the various experiments to be discussed in this paper . The first

two or three will be presented in greater detail than the latter

illustrations .

2 . ANALYSIS OF ALIQUOT VOLUMES . One factor contributing to bias

and variation in results was believed to be lack of uniformity in the

aliquot volumes in the test tubes containing the samples . To obtain

the aliquot volumes , the samples are originally collected in larger

vessels , an amount in excess of that prescribed is poured into a test

tube , and a suction apparatus is used to draw off excess liquid to a

purportedly reproducible level . The test tubes are in racks which

hold 40 tubes in a 4 x 10 rectangular array . Since many racks are

used for the analysis of a given event , it was suspected that rack to

rack variation* and tube to tube variation may be to blame for some

bias and variation in the analytical results .

A components of variance model approach was selected , since the

interest lay in estimating variances .

2.1 Estimation of Rack Variance .

For the estimation of rack variance , ten test tube racks were

randomly selected . Similarly , forty test tubes were randomly selected

and tared . The test then proceded as follows :

The forty test tubes were placed in one rack , filled and drawn

down to volume . The tubes and their contents were weighed , and the

total weight of liquid determined by subtracting the tare weight of

the empty test tubes . The test tubes were then returned to the same

rack , refilled , and again drawn down to volume . Reweighing of the

test tubes and correction for tare weight then provided a duplicate

weight determination for the given rack . Upon repeating the above

procedure for each of the ten racks , one obtained ten pairs of

determinations . The measure of variance provided by variations among

the means of the ten pairs includes rack variance as well as other

random effects . On the otherhand , differences between duplicate

determinations made in the same rack provided a variance estimate

from which the rack combination was eliminated . In this way , it was

possible to isolate the rack component and compare its magnitude with

* Since the suction apparatus is applied to tubes positioned in a rack ,

variations in racks due to nonuniform depths of tube bottom recesses

may contribute to nonuniformity in residual volumes .
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the magnitude of the residual variance . Weight , of course , is being

used as a proxy for volume . Table I contains the results of the

analysis of variance .

ANALYSIS OF VARIANCE OF CODED DATA

Source of

Variance

Sum of

Squares

Degrees of

Freedom

Mean

Squares

Expected

Mean Squares

Between Racks

2

18,122.8 9

2

o + 2O22013.6
OR

Within Racks 524.0 10 52.4

2

0o?

TABLE I

2

O
B

2

From the above , one can solve for
since o is given as

2

52.4 . OR“ proves to be 980.6 . Additional calculations provided the

interesting result that the coefficient of variation representing the

total variance for a random determination on a random test tube in a

random rack was 11.4% , while if determinations are constrained to the

same rack , or if rack variance is eliminated , the coefficient of

variation could be reduced to 2.6% .

The data also permitted an analysis to be made of error contributions

by the individual racks . Noting that the error contribution from any

rack will appear as a bias for all test tubes within that rack , the

rack bias may be estimated by examination of the mean weights of the

40 aliquots in each rack . Table II shows some interesting data .

One way to eliminate the error contributions from a rack is to

establish a correction factor , as function of the bias , for each rack .

A second and immediately applicable method would consist of isolating

the most heavily biased racks , such as those starred in Table II , and

either retiring them from service or making some physical adjustment

to eliminate the bias . The actual outcome was an even better corrective

measure . When the laboratory management was made cognizant of the

facts , it obtained a specially made rack , and required that all tubes

were to be drawn down to volume only in that rack , although this

necessitated one extra handling step .
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RACK BIASES

Rack

Number

Deviation from Mean

Weight for all Racks

-

1

2

3

4

5

6

7

8

9

10

+ 4.9

+ 1.9

+ 20.4*

2.6

+ 2.9

+ 14.4*

85.6*

+ 31.4*

+ 4.4

+ 7.9

*A Significant Deviation

TABLE II

2.2 Estimation of Test Tube Variance .

For the estimation of test tube contribution to the variance of

aliquot weights , forty test tubes were randomly selected , tared , and

placed in a particular rack . These test tubes were then filled , drawn

down to volume , and weighed individually . Correction for the tare

thus yielded an estimate of the volumes of 40 randomly chosen test

tubes . The same test tubes were then replaced in the same rack ,

refilled , and the process repeated . Thus , a pair of determinations

was obtained for each of the forty test tubes in the rack . The

measure of variance provided by variation among the means of the

forty pairs includes test tube variability and lack of reproducibility

of the suction device , but does not include variance introduced by

racks since only one rack was employed . On the other hand , differ

ences between duplicate determinations made on the same test tube

provides an estimate of the variance attributable only to lack of

reproducibility of the suction process .

An analysis of variance similar to that discussed above was

performed to investigate test tube effects . The between test tubes

mean square was significant compared to the within test tubes mean

square . Now , the within racks variance found earlier is another

independent estimate of the between tubes variance . That the two

such estimates are in excellent agreement may be seen from Table III ,

which shows the pertinent coefficients of variation . In addition , the

measure reflecting the degree of reproducibility of the suction

process is included , as is the rack to rack measure .
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COEFFICIENTS OF VARIATION

Based on Rack to Rack

Based on Within Racks

Based on Between Test Tubes

Based on Within Test Tubes

11.4%

2.6%

2.4%

0.4%

TABLE III

Table III affords a summary of the two experimental studies .

Obviously , the rack to rack variation is the largest . As has been

noted above , however , appropriate corrective action was taken to

eliminate this effect . The fact that the two independent estimates

of the tube to tube variation are so close to each other clearly

establishes this as a real source of variation in volumes . Further

investigation revealed differences in tube diameters and bottom

curvatures . These are standard laboratory supplies , however , and

could not be ordinarily obtained at better quality levels . But , а

policy was established to request that new orders be filled from one

production lot whenever possible , and some inspection procedure was to

be set up to examine receipts of new tubes . The data also reveal that ,

since the within test tubes coefficient of variation is so small , and

it reflects the filling reproducibility of the suction device , there

is probably no problem on that account .

3. STUDY OF COLORIMETERS AND ANALYSTS . In the study of any

operation , for the purpose of enhancing its effectiveness , all sensitive

phases must be considered . In the preceding section , the drawing down

to volume step was examined , and placed under a better state of control .

This section will be directed at consideration of the equipments and

operators .

As noted earlier , there are two instruments of each of two types ,

and four analysts . Thus , an analysis or group of analyses may be

performed on any one of four instruments . Unless all four possess

the same intrinsic properties of variation , color perception , transla

tion of color perception to signal output , etc. , each machine represents

a different analytical system , and hence , as its output , produces results

which may not be completely comparable to the outputs of the others .

That is , a set of results may be high or low , more dispersed or less ,

as a consequence of the particular instrument which generated it . Such

a situation dilutes the effort of a laboratory , since , on the one hand

real differences between batches may be masked by the analytical system ,

or , at the other extreme , minor differences might be exaggerated by the

system .

Much the same might be said with regard to the several analysts

who share the bench work responsibilities .
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Because of these possibilities , the four instruments and the four

analysts were studied through a 3-factor experiment designed to yield

information on accuracy and precision of each instrument and analyst .

The third factor was concentration level , since this also was suspected

of contributing to bias and loss of precision . The data output was

combined with data obtained earlier in another connection .

3.1 Drift and Bias .

Earlier in the study program , the presence of instrument drift was

suspected , and reaffirmed in subsequent data analyses . Accordingly , one

output of the experiment was a set of data deliberately designed to pro

vide evidence pertaining to instrument drift . This was accomplished by

comparing results from each of three concentrations which were used .

Comparisons were made between first and second members of pairs of con

secutive samples of the same concentration , and early in the run and

late in the run analysis .

The first comparison type revealed clearly that there is a carry

over effect in the automatic analyzer . Rather conclusive evidence

showed that if two samples of the same concentration followed a higher

concentration , the first of the two showed a higher concentration than

the second . If two samples of the same concentration followed a lower

concentration , the first of the two showed a lower concentration than

the second . And , when two samples of the same concentration were first

in a series of unknowns , the first was lower than the second .

it may be concluded that there is indeed a carry - over effect .

Thus ,

The same study showed that the manual instruments did not exhibit

a significant drift , except in one instance of an apparent interaction

between one of the analysts and one instrument . Since the samples

presented to the manual device are each in its own test tube , this is

further confirmation of the possibility that the common test cell in

the automatic is not sufficiently purged before entry of the next

sample . As still further evidence to support this thesis , it should

be noted that all four analysts ' work showed the upward drift in the

calibration groups on automatic No. 2. , and all but one did so on the

automatic No. 1 . On manual No. 1 , all four analysts had little or no

drift indications , while on manual No. 2 three of the four did so . It

may also be noteworthy that one analyst was the exception in each of

the two cases cited . The difference between his performance and that

of the others will also be evident below .

Analysis for instrument bias revealed that the two manuals and

one of the automatics had positive bias , while the other automatic

had a negative bias . If only one analyst had made all determinations ,

on only one concentration , the above conclusion would be relatively

firm . However , since several concentrations were used , interactions

may have influenced the results . That is , the amount and direction
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of bias on each instrument may vary with the concentrations , or with

the analyst . The instrument - concentration interaction is shown in

Table IV .

AVERAGE BIAS BY INSTRUMENT - CONCENTRATION COMBINATIONS

Concentration Level

Instrument 850 2540 50 70

Automatic 1

Automatic 2

Manual 1

Manual 2

All

+ 48

+ 48

+ 94

+ 85

+ 69

+ 100

+ 15

+ 48

+ 62

+ 56

51

114

18

+ 20

27

Bias as % of Concentration 8% 2% 5%

TABLE IV

It can readily be seen that , with but one exception , bias is an

inverse function of level , so that the low concentration has the highest

bias and the high concentration has either a negative bias or the least

positive bias for a given instrument . Stating it differently , lower

concentrations tend to be measured higher than actual levels , while

higher concentrations tend to measure lower than actual values . However ,

the order of magnitude of the bias does not appear to be any clear

function of the particular instruments .

The ultimate breakdown of bias is according to instrument ,

concentration , and analyst . Since this three factor interaction was

also statistically significant , further insight can be gained by examina

tion of the three factor bias components , as in Table V.
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AVERAGE BIAS BY ANALYST - INSTRUMENT - CONCENTRATION COMBINATIONS

Instrument

Concentration Analyst
M. M2 AL A2

850 1

2

3

4

123

70

130

30

167

70

75

60

97

37

25

40

103

17

22

30

2540 1

2

3

4

140

73

- 07

- 13

113

60

- 07

80

153

107

170

- 30

117

93

120

- 83

5070 1

2

3

4

57

- 20

-155

83

27

93

11

117

-133

93

82

- 90

70

-293

- 45

-157

TABLE V

A quick confirmation of the concentration effect noted above may be

obtained from the first appearance of the negative biases in the middle

concentration , and the greater number of negatives in the high concen

tration .

More importantly , however , Table V provides an entree ' for drawing

inferences on analyst bias . For example , there are 12 instrument con

centration combinations . In 9 of these , analyst 1 has an extreme amount

of bias , and in 2 others is close to an extreme . Thus , he is outlying ,

or out of line , in 11 of 12 possible cases . Similarly , analyst 3 is out

of line in 7 cases , followed by analyst 4 who is out of line 5 times ,

and analyst 2 , with 3 times . Further , from the original data analyst 1

has an over-all bias of +82 , analyst 3 has +25 , analyst 2 has +18 , and

analyst 4 , +06 . Analyst 1 is the same one who was the exception to the

general pattern of drift shown by the analysts , as discussed earlier .

While analyst 1 is almost consistently high , having the largest

positive bias on both manuals and automatic 2 , the others were quite

inconsistent . Analyst 2 has the largest negative bias , under analyzing

on automatic 2 , although his biases on the other three instruments are

positive ; analyst 3 has negative bias on both manuals , and positive on

both automatics . Analyst 4 shows a bias pattern just opposite so that

of analyst 3 .
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3.2 Precision .

A similarly detailed analysis was made of precision . In the

interests of brevity only the findings are presented herein . Analyst

1 stood out again , this time for having the largest variances . The

other three analysts showed some inconsistencies , but not approaching

the degree indicated by No. 1. In terms of the instruments , the two

manual instruments had higher variances than the two automatics , but

not significantly so . An important finding , and one that corroborated

early suspicions , was that variance increased with concentration levels .

Indeed , a good linear fit was obtained by taking the logarithm of the

variance as a function of the logarithm of the concentration level .

4 . STABILITY OF STANDARDS . By now , the overall program has

indicated the need for control over supplies , instrument operating
characteristics , and efficiency of the individual analysts . One

important phase of the operation which had not yet been examined was

the stability of standard solutions used for obtaining calibration

curves and checks on machine drift .

Happily , a large test run was in the offing , and we were able to

design an experiment using several standard solution concentrations .

Samples were inserted as blind samples in each rack of 40 tubes of

ostensible production samples . The quantity of samples , coupled with

no overtime allowed , dictated that three working days be required to

perform the chemical analyses . Since by now the laboratory management

was convinced of the upward drift trait of the automatic colorimeters ,

they decided to use only the manual instruments for this particular

job . Hence , one variable was eliminated from the areas of concern .

The results of the analysis were again in part confirmatory of

other findings , and in part substantively directed at support of an

important hypothesis . Once more , for the third or fourth independent

case , variance was found to be related to concentration level . But

more importantly , the data showed that over a three day period , con

centrations were not stable , definite and significant losses in levels

were determined on the second day as compared to the first day , and

the third day compared to the second . This effect was present

independently of instrument or analyst . In the course of any one day ,

there was some hint of deterioration from start to end , but it was not

sufficiently clear cut and persistent to permit a positive assertion .

5 . CONCLUSION . I would like to conclude this paper by summarizing

the various applications of statistical methods which we have found

useful in laboratory control investigations , and the kinds of answers

that were obtained . And , since this audience has its primary interests

in the applications of statistical quality control to laboratory problem

areas , we may note the implied laboratory controls which were recommended

to management in this particular case .
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5.1 Summary :

It is obvious from my remarks in Sections 2-4 that designed

experiments and analysis of variance are well suited to the study

of laboratory operations for the purpose of pinpointing problem areas .

Less obvious are several other techniques which were used to good

advantage in this particular program .

Significance tests on means and variances helped to evaluate the

merits of an analyst versus another , or one instrument versus another .

Nonparametric tests for trend assisted in the investigation of instru

ment drift and stability of solutions . Regression and correlation

analysis were also used in the study of the volumes and concentration

In an ancillary part of the overall investigation response

surface analysis was also used to good advantage .

On the strength of the findings resulting from the applications

of these techniques , it was possible to confirm many conjectures which

had previously existed , as well as absolve of responsibility for bias and

variation one or two aspects of the operation . On net balance , many

recommendations were tendered the management , including those discussed

in the next section .

5.2 Statistical Control Recommendations .

A laboratory control program administered by a suitably trained

individual would be highly desirable . It would serve the purposes of

keeping management informed , pointing out where corrective action is

required , and helping the analysts to do their best .

As a minimum , the following elements should comprise the control

effort :

1 . Control charts for each colorimetric instrument , to maintain

surveillance over bias and precision . A multi -vary chart may be useful

here , or a combination of differences and range charts . *

2 . Control charts on each automatic colorimeter , for drift control .

Individuals and moving ranges charts may be useful here .

3 . Control charts on selected reagents and other critical solutions ,

to avoid using one which has been degraded . Averages and ranges control

charts should be useful here , application being made to reagents obtained

from vendors as well as those prepared in house . In the former case ,

the procedures can be related to acceptance sampling .

*Those unfamiliar with multi -vary charts may find explanations in either

reference given above .
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4 . Control charts on each laboratory analyst , using standards

inserted into the production stream as unknowns . Differences and range

charts are again useful , and should be maintained for each regular

procedure.

Finally , I would like to point out the findings and recommendations

discussed above are not unique to the particular laboratory concerned .

I have had very similar experiences in working with several establishments

of a completely different nature . The same kinds of problems were found

in all of them ; all of them could be helped by an appropriate statistical

control program . I'm sure your laboratory can , too .

Acknowledgement : I am grateful to H. T. McAdams , a colleague at

CAL , for his permission to draw upon one of his studies for a portion

of the above .
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SOME STATISTICAL ANALYSIS WITH RESPECT TO COMPOSITING

IN THE SAMPLING OF BULK MATERIAL

A. J. Duncan , The Johns Hopkins University

1. INTRODUCTION

The sampling of bulk material differs in a number of respects from

the sampling of individual items . These differences are discussed at

some length in reference ( 1 ) . One difference is that bulk material can

be physically composited whereas individual items cannot . It is thus

possible in the case of bulk material to take a physical average in

lieu of an arithmetic average . Although mixing and reduction may be

expensive , the great decrease in the number of tests that have to be

run with physical compositing is likely to yield considerable economy .

To illustrate bulk sampling with compositing consider the follow

ing example . An inspector wishes to determine the percent nitrogen in

a given lot of fertilizer . The lot contains 200 bags . He selects 20 bags

at random and with a sampling tube draws a small portion of fertilizer

from each of the 20 bags . These portions are poured on to a rubber

mat , are thoroughly mixed and hand-quartered until there is just

enough to fill a laboratory bottle . Two tests are run on the reduced

composite sample .

2

r

It is to be noted that the reduction of the composite sample is

a form of subsampling and is thus accompanied by sampling variability .

The variance of this is called the " reduction variance " (0,2 ) . There

is thus a greater variability with compositing than with arithmetic
averaging . In the analysis that follows o . will be one of the terms

in the sampling variance whenever there is compositing . Generally it

is assumed that the reduction variance is the same whether we are

reducing a large or somewhat smaller quantity . Of course , if the

composite sample that is being reduced is not large relative to the

part retained , a finite population correction factor may have to be

applied .

Before we discuss the statistical aspects of compositing , let us

look at the statistical procedures pertinent to a case in which there

is no compositing .
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2 . SAMPLING WITH NO COMPOSITING

Let us consider a modification of the ASTM Tentative Recommended

Practice for Sampling Industrial Chemicals (E 300-66 T ) . Let us

consider only a single stage instead of the two-stage plan that is

actually discussed in the Recommended Practice . To keep a concrete

example in mind suppose the bulk material comes in cans and is homo

geneous within cans , but varies in quality from can to can . Assume

that we have an isolated lot of this material and are interested in

the mean of the lot . With our modification of E 300-66 T the procedure

would go as follows :

1 . Take a preliminary sample of ni (e.g. 10 ) cans and measure

the quality characteristic of the contents of each can .

2 , Compute X1 EX , /nı and

i522 (= { (x, - X; ) 2 / ( ny - 1 )

3 . Use these data to determine on overall sample size ( n) that

would yield certain desired criteria .

4 . Take an additional n ni cans and test the contents of each .

5. XCompute X = {x , /n and s2
{ X /n and s2 = £ ; (X. - x) 2 / (n − 1) .

Determine 0.95 confidence limits for the mean of the lot .

Thus 0.95 confidence limits for w would be X + +0.025s /Vn where t.025

is the 0.025 point of a t distribution with n 1 degrees of freedom .

6

3 . SAMPLING WITH COMPOSITING

Now
consider the above example if after the n cans are selected

they are physically composited and a single test made on this composite.

Assume that the ni preliminary cans are measured as before . By this

compositing we have reduced the cost of inspection by the cost of

n - ni 1 tests . We have added , however , the cost of compositing n

cans and reducing this for running a single test .

3.1 WHEN BASIC VARIANCES ARE KNOWN

The variance of the single composite measurement ( x ) will be

02

92
X

σ
2
+ o

2

r a ( 1 )

2

where of is the product variance , o is the variance of reduction and
r

is the variance of analysis . If we knew all three of the variances ,
2

а
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0.95 confidence limits for u would be given by

1/2
2

o

X
+ O

r

+ 1.96
2

X

с

+
2

a

3.2 WHEN BASIC VARIANCES ARE UNKNOWN

Let us see what we can do if we do not know the basic variances .

Note that

X

с

μ vn (x - 1 )

of + no? + no
02

X

1/2

n02) 1/2

+

? + 02
r a

Also noteis normally distributed with zero mean and unit variance .

that sı ? contains both the product variance (04? ) and the analytical

variance ( 022 ) which we will assume are independent so that

E ( 512 ) ox?2 +

(ni 1 ) s , 2

Then distribution with ni - 1 degrees of freedom .

2

a

has a x
02 + 0

2 2

X a

It follows that

S

Vn( x - )

(og + no? + n02,11

1

( 0? + 02 )
1/2

) ?X a

has a t-distribution with ni 1 degrees of freedom .

The above statistic would appear to be of little use to us since

we do not know the basic variances . Note , however , that it can be

rewritten in the form :

Tacxc - u )
1/2

a

1 to 2 / 0 ,, 2
X

1 + no 10 ,
2

r X

( 2 )

Si + no 270 , 2
а X

210 and o2
Thus if we know the ratios o 2702 , the statistic could

r X X

be used and good guesses as to the ratios might work out fairly well .

а
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For example , with n = 20 variation in the ratios from .8 to 1.2 causes

the factor in brackets to vary only from .208 to .234 , so that a 20%

margin of error in estimating the ratios would cause only a deviation

of 0.02 to 0.03 in the value of t , hardly enough to have a significant

effect on the probabilities involved .

If we wish to set up approximate 0.95 confidence limits for u in

this case , we would have

0.95 confidence limits for u

1/2
S 1 + no, 2 /0,2 + no 2 /0 ?

r a

= X

с

+ •

to.025 (n , - 1 )
Vn 1 + 0 2 / 0,2

Xa

3.3 WHEN OUTSIDE ESTIMATES OF VARIANCE ARE AVAILABLE

2
o

>

r

2
o

a

2

If we do not know O.
2

but have independent estimates ,
X

we can proceed as follows . Lets be an estimate of the reduction

variance based on f , degrees of ffeedom and let s be an independent

estimate of the analytical variance based on f degrees of freedom .

Then we will have

2

a

a

E ( s12 S2)
2

x

+ o
2

a

2
o

a

2
o

ºxa

and an estimate of the variance of X will be

с

22
S

1

S

2
- S

a

+ S
2 2
+ s

n a r + (n = 1)
S

22

a

+ S

n n

This is a weighted sum of variances so that following Satterthwaite [ 4 ]

( n 1 )
2

u [s ? +
2

+ s ]S

аn r

xܗ
2

X

+ o
2
+

n a

2

r

will have approximately a x distribution with degrees of freedom given by

2

2
S

1 ( n
+

1) 2
S

2
+ S

а rn

U

( s , 2 /n) 2 ( (n 1) s 2 /n )2 (s . 2) 2
a r

f
ni

fa r

-
-
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Hence the statistic

( x - u )
с

1/2
2

1
( n 1 )

+
2

2.

S

a

+ S

rn n

will have approximately a t distribution with u degrees of freedom and

0.95 confidence limits for u will be given approximately by

1/2

X
2

.025 (U )

2
S

n 1)
+

2
S + s

a

)
(3)

n n

4 . SAMPLING A STREAM OF LOTS

The preceding discussion was concerned with an isolated lot and

what kind of inferences we could make about the mean of the lot under

varying circumstances . The approach to the analysis was strictly

classical . Here we shall consider ASTM Tentative Methods for Mechanical

Sampling of Coal (D2234-65T) and the point of view will be Bayesian .

4.1 ASTM D2234-65T

Sampling of coal on a conveyor belt consists of taking n increments

of coal systematically from the belt , compositing these increments ,

reducing the composite sample to a laboratory sample and making a

determination of quality such as ash content or the like . D2234-65T

offers a solution to the problem of how many increments should make up

the sample . The solution calls for a preliminary determination of the

basic variances and is based on the assumption that the values so

determined continue to be valid for routine sampling of subsequent lots .

4.1.1 THE STOCHASTIC ASSUMPTIONS ABOUT THE STREAM OF COAL

The program offered by this standard is based on a hypothesis

regarding the nature of the coal being sampled . This is that the

variations of quality in the stream consist of two kinds ; one is a

local variance , the other a " trend" or " segregation " variance . It

is as if* the coal came in large segments which varied in average

quality from segment to segment , a measure of which is the trend

variance o
2

while within the segments there is random variability

the variante of which is designated as 0,2 ( since it applies to one

1b . increments ) . The within-segment variance is assumed to be the

same for all segments . Measurements of the quality of individual

*Note that this is considered to be an approximate working model ,

not a true model . cf. ( 5 ) .
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increments of w lbs . of coal taken at random from various segments with

no more than one increment per segment would thus have a variance equal

to
2 2

+ o
2

0
2

+ (where in this case o
2
refers to the variance

Or?1

+ 0

t r a

resulting from the reduction of the w lbs . of coal . )

4.1.2 THE PILOT STUDY

D2234-651 calls for a pilot study for determining the basic

variance components for a given coal . The study provides for the

collection of 30 sets of two samples from a stopped conveyor belt .

" Each of the 30 sets of samples includes a very small sample, to

furnish data for the random variance , and a large sample , to furnish

data for the system ( trend) variance . Since one of the important

components of variance is that due to segregation it is essential

that the 30 sets of samples be so distributed with respect to time

that coverage of all subtypes of coal are represented" [ 6 ) . The samples

are to be taken by a two section Belt Divider . " One of the sections

should be approximately the width corresponding to three times the

top size of the coal and should trap a sample of between 4 and 20

lb. The other section should be approximately the width corresponding

to 20 times the top size of the coal and should trap a sample between

80 and 150 lb." [ 6 ] . Designate the small samples by the letter A

and the large samples by the letter B. The subsamples A are reduced

say by a riffle to laboratory samples of between 100 and 200 grams .

These are ground to -60 mesh for analysis . The subsamples B are also

worked down to laboratory samples and ground to -60 mesh for analysis .

The variances of the A and B results are measured by the usual

formula
(x ,

s2

n - 1

{

2 be

Now if the weight of the A samples is wi and that of the B samples

is w2 , then assuming w2 /w1 to be an integer and letting o
Wi

the random variance for increments of coal , weighing w1 lbs . , we have

2 22

Expected value of s
A

o + O

W

+ o
2
+ O

2

r a

and

W

2 2 1+ 2 to 2
Expected value of s.

B

o
2

+

W r

2
1

An unbiased estimate of o
w

2 will be given by

1
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s
2

A

ô
2

W

1
W2

W1

and for 1 lb. increments , the random variance can be estimated at

Ô
2

1

2
w Ô

? 1 w
1town

2 2

To estimate the trend variance oot?, multiply s by wi and s .
A

and subtract . This yields

SB
by W2

W2

2
s

B

W

1

2
S

A
2

t

2
S

r

2
3

aW

2

W

1

and s

a

where
2 2

S are estimates of the reduction and analytical variances
r

obtained from another pilot study that need not be reviewed here . The

above estimates can be used to obtain an estimate of the variance of

an increment of any weight w . Thus

ô.2

@
2

+ Ô
2
+ s

2
+ s

2
1

W w r a

A composite of n increments would have an estimated variance equal to

Ô ,
2

+ Ô
2

t

+ s

n

2
+ s

2

a

( 4 )

4.1.3 DETERMINATION OF N FOR SUBSEQUENT SAMPLING

The last formula is employed by the ASTM standard to determine

how many increments should be used in future routine sampling of a lot .

Thus , proceeding in a crude manner , the standard notes that 0.95 confi

dence limits for the mean of any given portion of coal from which n

increments of weight w have been taken , composited , reduced and tested

would be given roughly by

1/2

+ Ô

2
X † 1.96 + S

ô
2

1
2

tw

+ s
2

aс n

so if we wish the confidence interval to be of width 21 , then we would

take

2
1/2

1

+ ô
2

t

A = 1.96 + S
2
+ s

2
W

n a

and solve for n . The standard takes A = .10 u where u is a good guess

as to the mean quality of the consignment of coal .
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4.1.4 ESTIMATION OF THE MEAN OF THE CURRENT LOT

With the number of increments determined as described in 4.1.3 ,

the mean of a current lot is estimated by taking the prescribed number

of increments from the current lot , compositing them , reducing the

composite to a laboratory sample and analyzing a specimen from this

sample . The result X is taken as an estimate of the quality of the

lot . From the way in which the number of increments was decided this

estimate is expected to be within 10% of the true mean of the lot .

If confidence limits are desired , they could be crudely determined by

. 1/2
1

+ Ô
2

+ 1.96
2

U = X + S

2

w t

+ s
2

aс n r

4.2 USE OF PRIOR INFORMATION IN ESTIMATING THE MEAN OF A CURRENT LOT

It will be noted that while the prior information in variances is

used in Section 4.1.4 to set up crude confidence limits for the lot mean ,

no use is made of the mean of the pilot study . The question may be

raised , however , as to whether the mean of the current lot would not

be better estimated by a weighted average of the pilot study mean and

the measurement X made from the current lot , The argument would run

like this . If the various lots of coal were really large samples from

the stream of coal, their individual means would probably differ very

little from the mean of the whole stream and the best estimate we

could make of the mean of a current lot would be an estimate of the

mean of the stream based on all the information available for making

such an estimate . Suppose , for example , that in the pilot study the

mean of the 30 large (W2 lb. ) samples was X and the mean of the 30

W2

small (wi lb. ) samples was X then an estimate of the mean of a
wl '

subsequent lot on which we have a composite sample measurement Xx
could be taken as

+ 30w1 TW + nwx
W2

X1

30w2 + 30w1 + nw

where w is the weight of the n increments composited in the sampling

of the current lot . An alternative estimate that omits the small

samples of the pilot study would be

30w2Xw , + nwx
X2

с

30w2 X
с

с

30w2

+

nw

This would be based on less data . The reduction in the amount of data

would not be great , however , and as discussed below , it might be feasible

to use X2 in a supplementary test of significance but not X1 .
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Pooling the pilot study with the current lot measurement should be

preceded by a statistical test to determine whether the assumption that

the two sets of data came from the same population is a reasonably valid

one . Actually it will be sufficient to test whether the means differ

signigicantly . If we plan to use X1 above , the test would be based on

30w2Xw + 30w2X

a comparison of with X or if we plan to use X2, on
30w2 + 30w1

a comparison of TW, with X :

W

с

It is necessary at this point to interrupt the argument and to

note that if the sampling and analyticial procedures used is as

described in Section 4,1.4 above , there will be only one measurement

made on the current lot , viz . , X , and this will provide us with no

information on the variance of tfié current lot . In order to be able

to run the suggested significance test , it will be necessary for the

sampling and analyticial procedures to be modified to give some

information on variability of the current lot . To accomplish this

it is recommended that in lieu of a single composite sample , 4 separate

composite samples be formed * and measured separately . The mean of the

four separate composite measures ( ) would take the place of the

single composite measure X and the variance of the 4 separate composite

means would yield an estimate of the variance of the current lot .

Thus , we would have

Xci
+ X + X + X

c4
X

4

C2 C3

and

E (X. , - )X 2

2
S

ci

4

ai
2

S would be an estimate of the variance of increments of weight w
с

from the current lot .

Returning to the discussion of the significance tests , it is to be

noted that if we set a = 30w2 / ( 30w2 + 30w ] ) and b = 30wil ( 30w2 + 30w1) ,

the variance of the weighted mean of the pilot study data would be

02 a20 =
2

' x

- aweighted mean

+ b20-2
'x + 2abrox
wi Wi

xw1xW2W2

where r is the correlation between X1 and X2. In practice this would be

estimated by a? sp? / 30 + b25A2 / 30 + 2abrsg%A730 where

*If the increments are taken systematically from the lot then incre

ments 1,5,9 , ... could be mixed to form composite 1 , increments 2,6,10 , ...

could be mixed to form composite 2 , increments 3,7,11 , ... could be mixed to

form composite 3 , and increments 4,8,12 , ... could be mixed to form composite 4 .
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Xiwą- ws] (***
X

iwl

r =

Σ

i

iw 2

295B % A

2

A

BA

and so ? and s are as defined in Section 4.1.2 above . The variance of x .

would be estimated by s 214 . A crude test of the difference between the

two means would therefore be given by treating

30w2Xwx + 30w .Xowy

- 原 。30w2 + 30w1

1/2

253 +628

30

-

(5)

2

2 + 2abrsBⓇAA

s

с

"
+

4

as if it were normally distributed . If this does not fall beyond +1.96 or

-1.96 , we could conclude that it is safe to make the pooled estimate . If

the given statistic falls beyond +1.96 , pooling is not recommended and X

alone should be taken to estimate the mean of the current lot .

с

The quantity r would have to be computed from the original pilot

study data . If this information is not available , then

30w2Xw
+ nwX

W2

X2
30w2 + nw

could be used in place of Xy . In this instance a crude significance test

would be given by treating

x

W2

( 5a )
2 ) 1/2

2
S S

B с

+

30 4 .

as if it were normally distributed , again comparing it with + 1.96 .

If there is a series of lots to be inspected from the stream of

coal , the mean of each lot that passes the significance test could be

pooled with the pilot study mean and other past lot means that have met

the significance tests . This pooled mean would then become the point of

reference with which the mean of the current lot (x ) would be compared .

The significance test would in this case be carried out by treating

* Pooled -Pooled

( 5b )

s2

Pooled MeanFooled 4

Sc ? 1/2
+
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m

as if it were normally distributed , where for m past means

30w2X + nw . , X

i = 1 ci

Xpooled 30w2 + mow

W2.2

30w2
nw

and for g and h

30w2 + mnw 30w2 + 'mow

m

sooled = g ? sť /30 + h2, 5,527 /4i = 1 ci

Comparison would again be with 1.96 , although owing to truncation the a

risk would now he less than 0.05 . The basic variances are assumed unchanged .

4.3 A MORE GENERAL BAYESIAN PROCEDURE

An all around and somewhat more sophisticated approach as to how to

use the pilot study data in making inferences about the lot mean would be

to use Bayes Theorem in which the prior distributions are based on the

pilot study data . Our probabilities would now become rational degrees of

relief , but they would not be entirely subjective in that if the mathema

tical procedure is accepted , the degrees of belief , i.e. the probabilities ,

follow directly from the analysis . The procedure will be to note the

various likelihoods and prior distributions and then apply Bayes theorem

to get the posterior distribution for H , the lot mean .

to be distributedWe shall begin by taking the composite mean X

normally about the lot mean u with variance equal to

101 ? /w + 0.2
2
+ o

2

r a

If we set o.ox ? = 0,2/w + 0 , ? , this becomes

22

X

σ
2

r

o

+

a

+

n 4

Then the density function for x given u is,

(Ă - H ) 2/2 (o
vy 0,270,27

f (x ) 1 ) =
= e

( 6)
1/2

2
o

X

2
o

+
r

a

2

a+

V21

n

N 1
1

Next , let the variance of the four composites Xic be s

( 4 - 1 ) . The expected value of sc ? will be

2 (%ic - Ž) 21с
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40 .
2

X

+ o
2

r

+ 0

E (s ?)
2

an

2

r

and 2

a

and we shall assume that 3s? divided by

this expected value has a x?distribution with 3 degrees of freedom .

Thus the distribution of sź , given the variances ox?, 0 ;
will be

4 - 2 ) / 2

h ( s ? lo/?, Or ?
2 ) exp( -382/2( [40x2/n ] + Or? + oa ?) )

4/2

(83) ( 4
o

a

= K ( 7 )
40

X
+ O

2
+ o

2

an

where K is a factor of proportionality . Since the two densities are

independent of each other their joint density will be the product of

the two individual densities .

We shall express our degrees of belief about prior distributions

as follows :

( 8 )

0

1 M ( HO ) 2/20 .
2

?Prior distribution for u is proportional to X

'x

where M is the size of the lot and Ho is the grand mean of the pilot study .

The assumption here is that the lots are merely large samples from the

stream of coal .

Prior distribution for ox ? is proportional to

(
(0.x )

-f

e 2)120g?. 2. fox/2
( 9 )

+ o

t oX

1 + f

ох

X

012

where o 2 is the pilot study estimate of 2
and f is the degrees

oX

of freedom on which it is based . This is a congugate prior for the distri

bution of s ?

Prior distribution for ora is proportional to

.

-f

or

e

(0,2)/202
.

2

r

or

1 + f

or

o , ) or

12
(10 )

( o 2 )

-400



Prior distribution for o
2

a
is proportional to

(o 2 ) /202
2

-f

oa

e

oa foa /2
( o 2 )

оа

( 11 )

1 + f 12

oa

(023) ?

2 .These are similar in form to the density assumed for o
X

2

The product of all the above densities would be the joint distribution

of the likelihoods and priors . Unfortunately the expression is too compli

cated to handle analytically . It is possible to do something, however

if we neglect o and o 2 and merely include u and Since o and o
r

are likely to be small relative to o,? , the approximation may not be bad .

Confidence limits based on it will indicate limits that are less than

the true ones . They will offer a lower bound , however .

2

r ox ?.
2

aa

0 0 OX oX

Proceeding as indicated , we would have , omitting non-relevant factors ,

the following joint distribution of likelihoods and priors . ( Note that

f and o are now used instead of f and o since there is no longer a

need to distinguish pilot study variances . ) Thus f ( , s?, H , 0,? ) would

be proportional to

(40

-n( ž. - u ) 2/20x?

4/2

6x//n X

( 12)

-MC4 – H. )2 /20x? -f. (0,2) / 20x f 12
1

(o )
1 + f

(0,2 )
X

(82 )e-352 /264042/n)
е

2

e

Ox 87
2

.60
3,6

12

where u

O? is the pilot study mean and 0.2 is the pilot study variance .

If we integrate ( 12 ) over 4 , this leaves , except for factors not

containing ox?

( nX + Mu O2. + Mụ
+ ΜΗ nx

4 f.º

2

3ns
O с

exp
2
+ nx

2

O с

2

+

+ f 20
2

X
n + M

( 0/2,1 / 2 (ove( 0x2)
1 + f / 2

5./2 . (40x2/n)40 4/2

Set the expression in brackets equal to H , so that the quantity becomes ,

except for factors not involving ox?,
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-H /20 /? - ( f. + 7 ) / 2

( ox? )
e

.

so that

do 2

The next step is to integrate over o.
og?. If we set x2 = H/ox?

Gayz dx?, the integral becomes
X

e-x212 h- ( f. + 5 ) /2.

( x2 ) - (f. + 3 ) /2 dx2

which is proportional to

-( f. + 5) /2

The joint posterior distribution is therefore given Sexcept for a

proportionality factor ) by Expression ( 12 ) •

O
is

To get the marginal distribution for , which is the posterior

distribution of u , we integrate the joint posterior distribution over

( f . + 5 ) / 2

Ox ?.
The part of Expression ( 12 ) H

2

containing ox?

3ns ?

+ MCH - H.) ?
2 +

2 2

4 X

( f + 8 ) / 2

eIn(X - u ) 2 +

o

( 0x2)

If we set G equal to the expression in the brackets and put x2 = G /ox?,
the integral becomes

00

e
-x212

(f . + 8 ) / 2
ó ( G /x2 )

G

( x2 )

dx2 which is proportional to

G- (f. + 6 ) / 2 . Accordingly , except for a proportionality factor ,

G- ( f. + 6 ) / 2 is the posterior distribution of H.

Now G can be put in the form

- (o + m [a - -*
nx + Mu

O

G = (n + M) ( u -) 2 + V+ v ]
( 13 )

n + M
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2

nă + MM

1

2

nx

+ с + MM2 + f o 2
4 0 оо

where V = +
( 14 )

n + M n + M

Dividing by V and absorbing V

f + 6

O

2

in the proportionality factor , we have

nă
12 f + 5 + 1

o

น 2
n + M

VW/ (f + 5)

+ Μμ O

с

-

f + 6
O

2

G is proportional to + 1

f + 5

O

2?

V + 1

2

Since the above expression is of the form + 1) it follows

that the posterior distribution of a function of u ( not u itself ) has the

form of a t-distribution and that Bayesian confidence intervals for u can

be obtained from this .

nx + MU

с o

น

n + M

Thus the probability that

V (f + 5 )

' / '
0

lies between -t and + t

1.025 -.025

for

f . + 5 degrees of freedom equals 0.95 .

Hence the probability is 0,95 that u lies between

nk + MY
с

#lf + 5) • tt.025
for f + 5 degrees of freedom (15 )

nt M O

o
2

r

These are consequently the Bayesian 0.95 confidence limits for Ho The limits

given by ( 15 ) are tighter than the true ones since it will be recalled that

and o 2 have been neglected .
a

It is interesting to note that the sample size n appears in V in a

peculiar way . If we divide both the numerators and denominators of the two
2

terms of V by n , we get in the numerators the quantities

2
f μ

and and in the denominators M/ n . If we increase n , M / n goes down

Μμοί foHo

less rapidly than
and the reduction due to is gratis .

MHO
MHO

> >

n n

O O

n

Mhe
2

or

n n n
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This verifies what should be the case , viz . , that as n increases the

confidence interval becomes smaller .
The same applies to fo the degrees

of freedom for the pilot study of ox?. Likewise for the lot size M.

Finally it should be noted that the analysis indicates that the lot

size M should be taken as the weighting factor for u in getting the average

estimate of H. This stems from the special assumption that was made about

the prior distribution , viz . , that the lots were merely large samples from

the process of size M and thus had a variance of 0,2 /M. If the special
X

assumption about the prior distribution of u is that it is normal with

mean but with variance 02/ M where M is an arbitrary constant , the

model would still hold . In either case the weighting would be inversely

proportional to the variances , as would be expected .

4.4 A COMPARISON OF APPROACHES

It is of interest to conclude with a comparison of the results yielded

by the formula of Section 4.1.4 with Bayesian confidence limits yielded by

formula ( 15 ) . The comparison will be made by numerical examples .

Suppose that 20 increments of 50 lbs . each are taken from a current

lot to form a composite sample the measurement on which ( x ) is 10 . Suppose

that the random variance for 1 lb. increments ( 012 ) and the trend variance

( 04 ? ) have been estimated from a pilot study to be 7.6 and 1.2 respectively . *

And suppose another pilot study yields an estimate of the sum of the reduction

and analytical variances ( sca + $a ? ) as equal to 0.0465 . * Then using the

formula of Section 4.1.4 above , approximate 0.95 confidence limits for the

mean of the lot would be
7.6 1/2

+ 1.2

50

10 + 1.96 + 0.0456
20

=

= 10 + 0.66

Suppose now that instead of a single composite , 4 composite samples are

taken from the current lot each based on 5 increments of 50 lbs . each so that

n still equals 20 . Let the mean of the 4 composite measurements (X ) be 10

and let their variance (s ?) be 0.32 . Let the mean of the pilot study data

( 4 ) be 12 and let the size of the lot (M) , measured in 50 lbs . increments,

*These figures are taken from the illustrative material given in the

ASTM standard Methods for Sampling of Coal (D2234 ) .
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2

and s

r a

be 800 such increments . Finally, let the number of degrees of freedom (f )

on which the pilot study estimate of the product variance o is based

be 30. * Then with the same values for ô12 , ? and s 2 2
as before

we will have
Ô

2

2
1 7.6

2
+ Ô + 1.2 = 1.35

t 50

and the 0.95 Bayesian confidence limits for the mean of the current lot

would be (according to formulas ( 14 ) and ( 15 ) )

o

0 W

s

*The number of degrees of freedom f is derived by Satterthwaite's

approximation as follows : Thepilot study referred to in the coalsampling

standard D 2234 yielded s
2

29.2 and s .
2

1.3 ( See Section 4.1.2 of this
A SB

paper ) . In deriving thesë variances , wi 0,27 lb. was taken as the size

of the small samples and w2 10.6 lbs . was taken as the size of the large

samples.
With W = 50 , these figures yielded ( in accordance with Section 4.1.2

above )

1 0.27 ( 1.00255 ) ( s.? - 532 )
2

+ o
2

50 50

ô2

O t

+ 1.00255
-2

B

0.002554 s
2

A

2
S

ra

This canwhere s
2

is the sum of the reduction and analytical variances .

be put få the form

2 2 2
= 0.004725 s

2

+ 0.9825

A SB ra

so

O

Each of the estimates of variance was based on 29 degrees of freedom so that

the degrees of freedom for o 2 [ following Satterthwaite ( See A.J. Duncan ,

Quality Control and Industriål Statistics, 3rd ed . , p . 605 ) ] was

S

ra

f

(0.004725 s
2
+ 0.9825 s

2

2 ) 2
A B

( 0.004725 s . 2 ) 2 6.9825
SB
2 ) 2

A
(s. 212

+

29 29 29

ra+

which with s
2

А

29.2 ,
2

s,PB
= 1.3 and s

ra2 = 0.0465 , gives f .
30 .
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20 ( 10 ) + 800 (12)

20 + 800

+ t

1.025 ( 30 )

/ v / 35

where

3 (20 ) (0.32)

4
+ 20 ( 10 ) 2 + 800 ( 12 ) 2 + 30 ( 1.35 )

V
20 ( 10 ) + 800 ( 12)

20 + 800 2]
+

20 + 800

-142.80 +

4.8 + 117200 + 4.05

820

-142.80 + 142.93 +
4.8 + 40.5

820

.13 +
45.3

820

= 0.19

This yields

H = 11.95 + 2.041.0054 = 11.95 0.15 .

as

0

As could have been anticipated , the relatively heavy weighting given u

compared with that given X causes the Bayesian limits to be centered close to y

Further , the assumption that the lots are merely random samples from the
process yields a prior distribution for the lot mean that has a variance

02/M which for large M is small . This is what accounts for the much tighter

confidence limits . With large M therefore there will be a marked difference

in the results yielded by the two procedures .

X

It is not necessary , however , for the validity of the Bayesian model

that the various lots be assumed to be random samples from the process with

a variance equal to 0,2 divided by the lot size . As noted above it is
Xx

possible to view M simply as an arbitrary constant which expresses the

assurance we have about the location of the lot mean . Thus , if we take

M = 80 instead of 800 as in the previous example , the prior distribution

for u will have much greater dispersion which means that our prior know

ledge as to the value of u is much less certain . In this case , the

Bayesian confidence limits for the mean of the current lot will be

20 ( 10 ) + 80 ( 12 )
μ : + t

100 t.025 ( 30)
v / 35 .

where

20 ( 10 ) + 80 (12)
V = +

20 ( 10 ) 2 + 80 ( 12 ) 2

100

+

45.3

100

134.56 + 135.20 + .453 = 64 + .453 1.093 .

This yields

u = 11.6 + 2.04 10.0512 = 11.6 + .46

a result that is much closer to that yielded by the formula of Section 4.1.4

above .
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If now we do not wish to assume any prior knowledge regarding the mean

of the current lot ( even the mean of the pilot study data is considered

irrelevant ) , but we are willing to assume a prior distribution for the

variance , then we can modify the Bayesian analysis by putting M = 0 . If

we do this , our confidence limits for u become

u = x + 2.047V / 35
Xс

where

3ns 2/4 + fo

V =

2

оос

n

which for the example in hand becomes

V =

45.3

20

2.27

This yields

= 10 +2.04 0.0649 = 10 + .52 .

If we allow for the omission of the variances of reduction and analysis ,

this is almost the same result as that given by the formula of Section 4.1.4 .

The conclusion seems warranted therefore , that the formula of Section 4.1.4

is the practical equivalent of a Bayesian confidence interval when we are

willing to use the pilot study data to give us prior distributions for

the basic variances , but are unwilling to make any prior assumptions about

the lot mean .

Selected References

( 1 ) A.J. Duncan , " Bulk Sampling : Problems and Lines of Attack , "

Technometrics , Vol . 4 , 1962 , pp . 319-44 .

( 2 ) A.J. Duncan , " Contributions of ASTM to the Statistical Aspects of

the Sampling of Bulk Materials " , Materials Research and Science , Vol . 4 ,

1967 , pp.477-85 .

( 3 ) D.V. Lindley , Introduction to Probability and Statistics , Pt . 2

( Cambridge University Press ) .

( 4 ) F.E. Satterthwaite , " An Approximate Distribution of Estimates of

Variance " , Biometrics Bulletin , Vol . II ( 1946 ) , pp . 110-14 .

( 5 ) J. Visman , Towards A Common Basis for the Sampling of Materials ,

( Dept. of Mines and Technical Surveys , Ottawa , Canada , Mines Branch

Research Report R-93 . )

( 6 ) 1965 Book of ASTM Standards , Pt . 19 , pp . 414-15 .

407





PANEL DISCUSSION ON BULK SAMPLING

Chairman : Walter D. Foster , Biological Laboratories , Fort Detrick ,

Frederick , Maryland

Discussant : Acheson J. Duncan , The Johns Hopkins University ,

Baltimore , Maryland

Panelists : Boyd Harshbarger , Virginia Polytechnic Institute ,

Blacksburg , Virginia

Henry Ellner , U. S. Army Materiel Command ,

Washington , D. C.

Gene Ray Lowrimore , Hercules , Inc. , Radford Army

Ammunition Plant , Radford , Virginia

Joseph Mandelson , Edgewood Arsenal , Maryland

Vernon H. Rechmeyer , Thiokol Chemical Corporation ,

Huntsville Division , Redstone Arsenal , Alabama

Since the host installation for the Fourteenth Conference on the

Design of Experiments has a special interest in chemical and other forms

of bulk sampling , the Program Committee decided to have a group discus

sion in this area of statistics . Dr. Walter Foster agreed to serve as

chairman of the panel and to select several experts to help him explore

this field .

Three papers on bulk sampling appear in this technical manual . The

preceding article by Professor Acheson Duncan , and the next two papers ,

one by Joseph Mandelson and the other by Gene Lowrimore .

CHEMICAL SAMPLING

Joseph Mandelson , Edgewood Arsenal , Maryland

The problem of sampling of chemical materials has never been solved

on an overall basis and is not likely ever to be solved in this manner .

By an " overall basis , " I mean the establishment of a standard such as

Military Standard 105 applicable to all materials which contain classi

fiable quality characteristics and to which an AQL can meaningfully be

assigned . In the past , a number of standards have been prepared governing

the sampling , inspection , and test of chemicals (e.g. , ASTM , AOAC , etc. ) ,

but each standard is specific for one material and usually applicable to

only one type or grade of that material. Thus , an ASTM standard for

testing quicklime will tell you nothing about sampling of reagent grade

Cao . And that is as it should be .
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I believe we can handle the problem only by recognizing , in detail ,

what our objectives are and by indicating what can be done to handle each

type of objective .

First off , there are three general ideas which are of the greatest

significance in this area .

а . The concept of percent defective , which is basic to Military

Standards 105 and 414 , and in terms of which AQL's are expressed , has

no meaning in connection with testing chemicals per se. Of course ,

inspection of factors such as packaging , packing, and marking of

chemicals can be accomplished using AQL's and Military Standard 105 ,

but not the actual testing of the chemical .

bi
Probably the most important characteristic to be defined in

planning chemical sampling is the degree of lot homogeneity required .

This must be determined within the framework of the actual way the

material is used and by the importance of the material in that usage .

Examples of this will be indicated later on .

C. While Military Standards 105 and 414 assume that no inspection

error occurs and their OC curves are plotted accordingly , the actual

existence of error merely results in the translation of the OC to the

right or left depending on the kind of error made . In chemical sampling ,

we have no OC curve (because the abcissa is a percent defective) , but we

do have an experimental error which may or may not be large enough to

be significant . In any case , the size of experimental error can be

determined ( assuming competent testing personnel ) and the causes thereof

as certained . In every case , the acceptance criteria set must reflect

the irreducible experimental error while the actual sampling and test

procedures must be hedged about with specified technical precautions

to hold these errors to as near these minima as possible .

Now , let us see how these general ideas affect the problem of

chemical sampling :

a . Military Standard 105 has appeared to many , if not most

Quality Assurance engineers like Lydia Pinkham's pills , a cure-all

for whatever ailments you have . They prescribe its use for anything

and everything - including chemical sampling and sampling for des

tructive test . The small sample sizes contained in the S levels of

Military Standard 105 are particularly cited though unsuited for these

two purposes . For chemical sampling, the sample size indicated in the

S levels depends upon the AQL prescribed and , as already indicated ,

AQL is rarely of significance in chemical testing . For example ,

for lot size of 1000 ( packages , I suppose) level S- 2 , Military

Standard 105 prescribes sample code letter C , which calls for a

sample of 3 for 4.0% AQL , a sample of 8 for 6.5% AQL and a sample

of 5 for all other AQL's . Of course , the allowable number of defects ,
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which has little if any meaning in chemical sampling , differs with

sample size and AQL . So what do we do ? Obviously , we had best avoid

quoting Military Standard 105 and put a sampling table of our own into

the specification . As an afterthought : suppose we write a specifica

tion for technical grade acetone . This can come in any number of

commercial packages , from 5 -gallon cans , 55-gallon drums , to tank

cans . Imagine using level 5-2 or any other quote from Military

Standard 105 !

b . Before we discuss the problem of homogeneity , I'd like to

point out that chemical tests are or should be specified for accomplish

ment in replicate ( that is , in 2 or more parallel determinations ) .

Results are expected to vary due to experimental error so it is

possible ( and it frequently occurs ) that one replicate will appear

to fail with respect to one or more quality characteristics while

others may meet the requirement . We usually allow the average to

govern . But this is not always spelled out in the specification .

Furthermore , the use of such undeclared decision criteria ignores the

fact that certain requirements are far more important than others so

that the average , by itself , may be insufficient to insure a desirable

product . In fact , in many cases , an exact parallel exists with the

concept of classification of defects as used in sampling and inspection

in accordance with Military Standard 105 .

For instance , for a vaccine , acceptance will require that no living

virus be observed in any of the many replicate samples taken from the

batch . This corresponds to the Military Standard 105 critical defect .

Further , the number of units per gram or ml . of material is very

important since dosage depends on precise control of this figure .

It may be possible to admit of some variation such that one or more

of the replicates may be permitted to fall somewhat below the specified

minimum provided the average is not less than this minimum while the

variation , measured as a standard deviation , is not greater than some
prescribed maximum . This corresponds to the major defect concept .

There may be additional requirements ( e.g. specific gravity , etc. )

of lesser importance where the average alone may be permitted to

govern . These are equivalent to the minor defect .

We can see , therefore , that the more important the requirement ,

the greater the need for the lot to be homogeneous and the more

stringent the evidence required to prove it . Also , you must now be

aware that the requirement for homogeneity stems from the way the

material is used and what it is supposed to accomplish .

-

By contrast with vaccine , let us consider FS : chlorosulfonic

acid soz solution . The most important requirement is total acidity .

However , in its use as a smoke agent , if the total acidity were 5%

below the specified minimum , it is doubtful that you could see any

difference in the smoke it made . So this would be a minor characteristic ,

even though it is the most important one , and the average of replicate

determinations on a composite sample would be sufficient to govern .
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In determining homogeneity , it is usually possible to test

single characteristic , not necessarily the one which is of critical

interest , to prove it . Major characteristics require a number of

individual samples and replicate tests of each but all minor charac

teristics can be determined on a composite sample. With this general

guidance and your knowledge of the material and how and why it is used ,

meaningful , economic chemical sampling can be devised . One way of

insuring a degree of homogeneity is to prescribe that product shall

contain material from not more than one batch of chemicals . The batch

is defined as that quantity of material manufactured by some unit

chemical process or subjected to some physical mixing operation in

tended to make the final product substantially uniform . This is a

minimum requirement in production of a homogeneous product .

C. In all chemical measurements explicit consideration must be

given to the experimental error of the specified procedure . It is

frequently taken that , in a well-run laboratory , the most common

source of error lies in reading the instrument ; e.g. , 0.02 ml for

ordinary burettes , 0.1 mg for the analytical balance , etc. Any

experienced analyst knows this premise is highly optimistic and that

reading errors comprise only a fraction , perhaps , but a small fraction ,

of the total error . Most important , however , is recognition of the

fact that the assumption of a constant laboratory-wide error is pure

fantasy , that every procedure has its own inherent error , and that

this is modified by the personal error of the analyst , sampling , and
the like . For this reason , specification criteria can be intelligently

and fairly established only when and if a valid estimate of experimental

error is provided . This is easier said than done .

If we want to determine the experimental error of a procedure , we

must ask whether this will be done under " ideal" conditions or under

those obtaining in an ordinary laboratory using " normal" precautions ;

whether to use the most proficient analyst or the journeyman . Merely

to state the question is to indicate how difficult it is to implement

the decision .

So you see , there is no quick and easy answer to chemical sampling .

Each case must be considered by itself . Frequently , a recognized

sampling standard for a material of similar characteristics may be

used as a guide but considerable technical soul-searching is required

before you snatch at this straw . The excellent specifications put out

by ASTM , AOAC , etc. , are based on long experience with the specified

commercial chemicals but each refers only to the specific material

covered . They provide excellent guidance - but they are only guides

not answers to all problems .

The importance of proper sampling is stressed in many texts on

chemical analysis but the advice given is frequently ignored in practice .

It is well known that a sample , improperly taken , can vitiate the results

obtained by the most competent analyst using the most sophisticated methods
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and apparatus available . Yet , in practice , because the actual preparation

of a sample usually requires considerable physical exertion , the task is

allowed to devolve upon laborers , operating under vague , imprecise in

structions which they understand imperfectly , if at all . For example ,

what do laborers , indeed many professional analysts , know of the special

connotations hidden in the deceptively simple requirement " take a random

sample ?" What do they know of the techniques and tools which must be

employed to insure true randomicity ?

Ideally , the analyst will be thoroughly trained in the art of taking

samples , in seeing and knowing how to overcome the many unforeseen dif

ficulties which arise in every sampling environment . Such a man should

take and prepare the sample himself , but this is rarely practical .

an alternative , there is no objection to the expedient of having the sample

taken by non-professional personnel provided always they are under the

direct , personal supervision of a competent individual . Indeed , if they

have been suitably trained in every aspect of the task under the conditions

they will face , the continual presence of the supervisor may not be re

quired . However , assurance must be given in all cases ; that the individual

taking the sample is himself knowledgeable or that he is acting in accord

ance with the explicit instructions of a competent person , preferably an

experienced analyst . All too often environmental changes , not necessarily

always meteorological in nature , produce conditions not envisioned by the

specification writer , which must be overcome to produce a proper sample .

Only a competent , knowledgeable supervisor of sampling personnel can be

entrusted with the responsibility for devising necessary additions to and

modifications of the prescribed procedure (and documenting these ) to insure

that a proper sample is taken in the circumstances .

A great weakness in many analytical chemists is their lack of

familiarity with the statistical considerations involved in the phenomenon

of experimental error . This is not to say that chemists are unaware of

or underestimate the importance of experimental error . It is simply the

case that so many of them do not know how to handle it or even know it can

Fortunately , modern curricula have replaced old-fashioned ,

inefficient statistics ( e.g. , average deviation , etc. ) with more modern ,

efficient concepts such as standard deviation but it remains a matter of

concern whether sufficient emphasis has been placed on teaching the student

the dangers of bias and how to avoid them , the true meaning of randomicity

and how to effect it , the components of variance and how to calculate them

and , more generally , how to employ statistics in analytical chemistry .

error . o

S

Sampling error ( os ) is a significant factor in overall experimental

When determined as part of a factorial experiment , will fre

quently turn out to be surprisingly high as compared with other components

of experimental error . For this reason , the reduction of to a minimum

is an important factor in improving chemical testing . To effect this

o

S
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objective , it is essential to use valid statistical methods to determine

o so that alternative methods of sampling may be evaluated by quantitative

determination of o and that procedure adopted which has demonstrated the

lowest sampling erior . It is interesting to note that normal statistical

test methods (e.g. , analysis of variance ) will not only measure o. , but

will usually identify the causes of error , thus furnishing leads as to

what can be done to reduce or eliminate them .
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COMMENTS ON BULK SAMPLING

Gene R. Lowrimore

Hercules , Inc. , Radford Army Ammunition Plant

Radford , Virginia

Professor Duncan , in his presentation , discussed compositing as an

integral part of the methodology of bulk sampling. My comments will

not be directed to bulk sampling , per se , but , I think they are pertinent

to the question of what happens when we composite , or blend . Normally ,

when we draw a test unit in a bulk sampling situation , we assume that

it consists of a very large number of , say , particles . In contrast , if

the test unit consisted of only one particle , we would be in a discrete

sampling situation .

At Radford Army Ammunition Plant , we manufacture a number of cannon

propellants . The smallest identifiable unit of one of these propellants

is a grain or fairly large particle , for example , .1 " by .8 " . These

propellants are manufactured in a stream of batches and a large number

of batches are combined through a blending process to form a lot . Test

units are drawn from the lot and , consequently , contain grains from a

number of batches .
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Because a charge weight correction is made for every lot at firing ,

the lot mean is of secondary interest to us . The within - lot variance is

our primary concern , since it is directly related to landing round after

round on target .

We have undertaken a mathematical investigation of the test-to-test

or within-lot variability in terms of the batch - to -batch and within -batch

variability In our investigation , we assumed that the true value for

the test unit is the sum of the values for the particles making up that

test unit . This assumption allowed us to exploit the analogy between this

situation and the situation in sample survey theory where we are estimating

a total from a stratified sample . We have some results for the case where

the number of grains in the test show , Nt , is much greater than the number
of batches blended , N ,

No:

We are currently studying the situation where N may actually be less

than No :
All batches cannot now be represented in the testunit. We hope

to gain some insight into what happens to the within-lot variability in

this case .

These investigations have provided us with valuable insight into the

relationship between discrete and bulk sampling and what compositing does

in some bulk sampling situations .
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SOME STATISTICAL ASPECTS OF ASSURANCE OF STERILIZATION

F. M. Wadley

Consultant to Fort Detrick , Frederick , Maryland

In biological research , we often deal with assurance of sterilization

or disinfection , especially in microbiological work and in pest quarantines .

We desire assurance that our procedures will give protection against sub

sequent infection .

Often , we cannot be entirely sure of 100% kills ; circumstances of

treatment may not be perfect , or the population treated may be very

slow in approach to 100% mortality . The probit transformation , widely

used in dosage-mortality studies , does not allow mathematically 'for 100%

kill , though it can be approached as closely as desired .

qualified workers in the mortality field prefer to define experimentally

a very small risk , which can be accepted . The assurance is then that

the probability of any survival is very small indeed , and that with

ordinary numbers treated , survival of even one individual will be rare .

This viewpoint is discussed by A. C. Baker ( 1939 ) . It seems more

realistic than speaking of 100 % kill , and helps to keep preliminary

tests to a manageable volume .

For this reason , studies of assurance may deal in very low

probabilities ; perhaps one survival in thousands or millions . The

probabilities are defined by preliminary work , which must obviously be

quite extensive and involve great numbers of individuals . Sometimes a

limited extrapolation to greater numbers or lower survivals is used .

It is desirable to be thorough in preliminary tests without going to

a prohibitive amount of work .

Very low percentage counts are involved , and these can be treated

as binomially distributed if care is used . The close relation of the

Poisson distribution to the binomial can be utilized with some gain in

convenience , where percentages are near zero or 100 , and numbers are

large . For example , suppose an estimate of 3 per 10,000 average survival ,

or a proportion of 0.0003 . Using the binomial estimates of distribution

of survivals can be made from several terms of the binomial (0.0003 +

Using the Poisson , distribution of survivals can be

estimated simply by expanding the Poisson with mean 3 , or by looking

in published tables . This is true for survival estimates of 3 per

10,000 ; 3 per 1,000 ; or 3 per million . Student ( 1907 ) showed that the

binomial approaches the Poisson at its extreme proportions with n large .

0.9997) 10,000

A recent inquiry to the Physical Defense Department at Fort Detrick ,

referred to establishing an assurance that chance of contamination be

not over 1 in 1 million . The material in question was a biological fluid

to be transported under stressful conditions . The frequently used method

417



of heat sterilization could not be used because heat would alter the

fluid . Filtration was to be used . The treatment is described by

Portner , Phillips , and Hoffman ( 1967 ) .

Extensive tests were made with reusable and disposable filters ,

dealing with large populations of Serratia marcescens . The best

filters gave no survival out of an estimated total of 240,000,000

organisms in replicated trials . Referring to the Poisson , it is

found that populations averaging 3 will give an occasional zero ; with

means of 4 or more , zero is rare . Thus , a tentative maximum of 3

passing per 240,000,000 ; or 1 for 80 million , is reached . If the

sirvivors average 1 in 80 million , and there are only 80 organisms

in the material , the chance of only 1 in 1 million is tentatively

reached . Other good filters gave occasional survivals of 1 or 2 ,

and seemed to be in the same class .

The material seems likely to have much more than 80 in a typical

sample . The solution reached was to use a second filtration , which

would seem to give ample assurance . This second filtration also aids

in the question of possibly defective filters . An occasional defective

filter in a disposable lot , or a proven but deteriorating filter from

a reusable lot , is to be avoided . The second filtration with new

filters from good lots seems to reduce this hazard to insignificance

without an inordinate amount of work .

Another case of use of very small probabilities is given by Baker ,

in the case of fruit sterilization by moderate heat , to kill fruit fly

stages . This was in quarantine work . Populations were estimated by

rearing the adults out , both in a check sample and in treated samples .

A graded series of time exposures was used , and time was treated as

dosage in a probit analysis . Several thousand individuals per dose

were used , and probit values up to more than 8 were secured . The

lines were extrapolated to estimate dosage required for 9 probits

( 3 survivors per 100,000 ) , which the author believed to be an acceptable

risk .
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RESEARCH AND DEVELOPMENT MATHEMATICAL EQUATIONS

AS RELATES TO AN ARMY AIRCRAFT SYSTEM

Tony N. O'Truk *

U. S. Army Aviation Materiel Command

St. Louis , Missouri

ABSTRACT . This paper covers the life cycle of the Research

and Developmental Phase of an Army aircraft system . It also covers

the preparation of mathematical equations as pertains to the hardware

under the prototype aircraft , as well as the training , maintenance

support , and administration of the prototype aircraft system .

This article has been issued as Technical Report C/A 20-68

as of 11 March 1968 . A copy of this paper can be obtained by

requesting it from the following address :

Cost Analysis Division

Directorate , Systems and Cost Analysis (Prov )

' U. S. Army Aviation Materiel Command

Twelfth and Spruce Streets

St. Louis , Missouri 63166

*Mr . O'Truk is no longer at the U. S. Army Aviation Materiel Command .

His new address is Belleville Area College , 2555 West Boulevard ,

Belleville , Illinois 62221 .
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HYPOTHESES TESTING AND CONFIDENCE INTERVALS FOR PRODUCTS AND QUOTIENTS

OF POISSON PARAMETERS WITH APPLICATIONS TO RELIABILITY

Bernard Harris

Mathematics Research Center , United States Army ,

The University of Wisconsin , Madison , Wisconsin

areABSTRACT. X4,X2...,,Y1ºY22-0,8kg ki + ky mutually independent

Poisson random variables with parameters 11°12 *** Ak ?"1" 2***,Hk2

respectively . Confidence intervals and tests of hypotheses for the

11 12 k,
are obtained .

Mk2

suitable conditions these procedures may be used to obtain approximate

parameter Ꮎ = 141 42
Under

1

confidence intervals and tests of hypotheses of the parameter

p= P1P2
Pk , tk2Pk , ' Pk , +1 Pk , +2

where the Pi's ,

i = 1,2 , ... , ky +k2 are binomial parameters . This problem is of

importance in reliability analysis and some applications to reliability

analysis are exhibited .

The remainder of this article has been reproduced photographically

from the author's copy . It was issued by the Mathematics Research Center

as MRC Technical Summary Report No. 923 .
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HYPOTHESES TESTING AND CONFIDENCE INTERVALS FOR PRODUCTS

AND QUOTIENTS OF POISSON PARAMETERS WITH APPLICATIONS

TO RELIABILITY

Bernard Harris

; Y , Y22 be ky + k21. Introduction and Summary. Let X , X23

*

mutually independent Poisson random variables with parameters ^ j : 123

4
7

2

exi
;

M1 M2 ••

"k2
respectively . In this paper, we obtain confidence intervals for

the parameter Ø = 1,42 · 1x /M,M2
" k, -- . Р. ,

and the corresponding tests of

hypotheses . The required theoretical development is given in section 2. In

section 3 , we examine the particular case ky
2 ,

k = 0 because of the specific

2

nature of the answer obtained in this case . In section 4 , some of the concrete

situations which lead to this problem are pointed out and some numerical illus

trations are given . In particular , the reader should note that for k . =
2

0 , the

parameter 0 is a product of Poisson parameters and the solution to the present

problem can be interpreted as an approximate solution to the corresponding problem

of finding confidence intervals for the product of binomial parameters. Estimation

of the product of binomial parameters has been investigated by A. Madansky [[ 2 ]

and R. J. Buehler [ 1 ] . Their results and methods will be compared with those of

the present paper in section 4 .

2. Determining Confidence Intervals for 0 . The joint distribution of X , X2 ..

X ; Y ,, Y2 , ... , *
*2

is given by

Sponsored by the Mathematics Research Center , United States Army, Madison ,

Wisconsin , under Contract No .: DA- 31-124-ARO-D- 462 .
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( 1 )
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=
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-

where ^, > 0 , x = 0,1,2 , ... , i = 1,2 , ... ki M; > 0 , y: 3 0,1,2 , ... , jj = 1,2 , ... , k2

Assume k , > o . Then , let Vi X and for i = 2 , 3 ,2 , 3 , ... ,ky define

Ui = X - X ; for ; 1,2 , , ka , define vV ; = Y; + X, . The joint distribution of

Uj•U2 ? , Uky ! Vi V.2, ... , Vk is then given by

( 2 ) p （ uz， u2，..
120122 . MyyM2 , sro , Mke

ki

- Σλ, -ΣΗ,
V - 4

/ u !
4, 4/64;+1TT 1 ,) ! TT :

/1v,-4 )

ןי

V; V. ;. .

>

1° 29.k Y .. kr.
2

K2

k k

2

i = 1 j = 1

")
i2 i =

4 , = 0,1,2, ... , 4 = -42, -4, +1, -4 ,+ 2 , i = 2 ,3 , ..., ky;V; = 47, 4,+1, 4 + 2, ... ,

j = 1,2,...,k2 .

Consequently , the conditional distribution of U , given U2 = U2 , U3 = 43 ,

= U, V ,; V1 = V1 V2 = V22
U V. ง is6

2

' ki *21

(u2 : 43
V. ; Ꮎ )

k

21

( 3 ) polu ,luzy,432 V1,V22
>

K

* 1n- 1
1° V2

ki k ,

u !! TT (u,tu,)! TT (V; -4,)!
i = 2 j = 1

and

where max (0 , max 1-4; ) ) = ų , = min v

2 ziski 1 < i < kz
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( 4 ) h (uz:43. V1,V2,..
200 %( r ! TT (4 , + r ) ! TT (v(v;-r) !)

j =1

the sum running from max ( 0 , max ( -u ; ) ) to min
In particular , note that

j

22 < i< k 1 < i < k 2

the probability distribution ( 3 ) depends only on 0 and not on the individual l's

and u's . Since the probability distribution ( 3 ) is a member of a one -parameter

exponential family, one and two- sided tests of size a of hypotheses concerning

ө can be written down as follows .

To test H : 0 = 0

0 ,

against alternatives 0

0

reject H if U , = k and
1

( 5 ) Σ Po u(u,luz,uz... ) < a
V1,V22k K

> k

To test H : 0 = 0
0

against alternatives 0 < o
o '

reject H if U , = k and

1

( 6 ) Σ

, < k
Po 142(u,luz,Ugnoro,W , V1: V22 ..VkZ! sa

0

To test H : 0 = 0 against the alternative 0 0700 , reject Hreject H if U , = k andU = k and

either

( 7a ) Σ (u , luz , 432
. ) <a /2.

V1 , V22
.

' kk

K
2

Po
4 , < k

0

or

( 7b ) Σ
P% ( ,

u , k

( u , luz,Uzo. " x;}YyoYppers Vk,'< 2/2
) 2 .

0

The tests given by ( 5 ) and ( 6 ) are uniformly most powerful similar tests .

The test given by ( 7 ) is similar , but in specifying the right hand sides of both
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( 7a ) and (7b ) as a/2 , this will generally not be a uniformly most powerful similar

test . This choice is suggested for ease of computation , since the " optimal"

>

1

. P
o >

k K.

choices for the right hand sides of ( 7a ) and ( 7b ) will depend on (u2 , 43 ,

) It should be noted that since

V1 , V22 ( u , luz , Uzu " K
V1 , V2

) is discrete , the tests given above actually are tests of size not ex

kz

ceeding α . In order to produce tests of exact size a , randomized tests will

2 0

usually have to be employed . The required modifications can easily be carried

out .

Confidence intervals of confidence coefficient l - a can be easily obtained

for each of the above tests .

Upon observing U.
1

= k , the l - a upper confidence limit 02 for con

ditional on Uz = U2 , U3 U = 1 = V.

Vi = V1 , V2 = V2
0- u

3 '

is

k 2 '
"
K
2น• kz

( 8 ) 02 = sup {0 : Σ Polu,luz, uzu .

u , sk
Up?V22 ***,VkZ!> a} .

Similarly, the corresponding lower confidence limit
0 ,

for after observing
1

U.

1

Ek is

( 9 )
o

1
inf {0 : 2 poru , lu2 , 433 '

4k , ' VyrV2.no,Yk !20 } .
uk

From ( 7a ) and ( 7b ) , we can obtain a two - sided l - a confidence interval

upon observing U , = k by

( 10 )
P {0, (k) < o < 02 (k ) } 21 - a ,

where
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( 10a ) 0 , ( k ) = inf {e : 2 polu , luz, 43, V1 , V2k
) > a/2 }

' K

12
2

and

( 106 ) ez (k ) sup {0 : { polu,luz,uz, V1,V22
) > 0/2 } .

ןי

*ų,k

(M,M2. •• MK2
the pre

>

-1

k = 0 , then 0 = and upon defining Ꮎ = Ꮎ
1

2

ceding tests and confidence intervals ( ( 6 ) through ( 10 ) ) are readily transformed

to provide the corresponding results for this case . That is , let u , = Y , V = Y ; - Y, ,

i = 2,3 , ... , k2 Then , in precisely the same manner as before , we obtain tests

**

for e

*

and confidence intervals for A which are completely equivalent to tests

and confidence intervals for 0. These facts are briefly summarized below .

The conditional distribution of U , given U
= U2 , U3 = uz ;

U

2
= u

"kz

*

is

1 .
*-1

(u2 : 43
u , ; Ꮎ )
k

2

( 11 ) px(4,luz , 4z , .. >
k

2

un – max (0, max ( -u-u ;))
0

2 <i <k2

u ,! TT (u; + u )!
i =2

where

k2

;0*) = { 0*+/[ r ! TT (4, +r) !) ,

*r

( 12 )
h ,142:43,

r i = 2

the sum running from max ( 0 , max
Then a size α test of the

( -u; ) ) to ..

2 < ickz

hypothesis H : 0 = 0 , against the alternative o < 0 . is given by the rule : reject

H if U , = k and

u 1
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( 13 ) Σ Ρ ( u , luz , uz
3. og 4k ?!

) < a ,

uzko

-1

0where 0

0

--

Similarly, a test of the hypothesis H : 8 = 0 , against the alternative 0 > 0 .

is given by the rule : reject H if U , = k and
1

( 14 )

Eck Pot ( ,142,43.oo,uk, sa
) sa .

u , < k 0

Finally, to test H : 0 = 0 , against the alternative 0 0
reject H if

o '

U = k and either
U

( 15a ) Σ р

kө

(u , luz,Uzo. sovke!Sa/24,5ko

or

( 15b ) рΣ

uk po
vu,luz,Ugnoro, ! sa/2

) < a / 2 .
**

Upon observing U , = k the l - a upper confidence limit oz for o conditional on

Uz = U2 , U3 = uz , ... , U , is given by= uմ .

kz
# 2

*

( 16 ) ө = inf {0 :
Σ P ,( ,ru,luz,Uzs.cc,Uk?! ?2 .

) > a } ,
1

> k Ꮎ

1and 02 = 1/0

Similarly , the corresponding lower confidence limit º for o after observing

U
U = k is

1

( 17 )

=

Ꮎ .

2
sup {e*: { pxlu, luz,43,.

.

u ) > a } ,
2

uzko

and 0

0 , 1/02
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Finally , the two- sided l - a confidence interval upon observing U , = k is

( 18 )
P {0 , ( k ) < e < ez ( k ) } > 1 - a ,

where

-1

( 18a ) 0 , "( k ) = sup {e* : P * ( 4, luz,uz?3 , .. , ) > a/2 }

ų , ko

and

( 18b ) ez ' ( K ) = 0"inf{e*: { p * lu , luz,43!

4,5k
ke

1
1Remark. When ki = 0 we could also have proceeded by letting V, = -Y , V

j

= 2, 3 ,...,kz;
then the conditional distribution of V, given V2 = V2

2 ,

V2 = V3
would depend on My M2 ' only through . The

2

tests and confidence intervals obtained by repeating the analysis leading to ( 3 )

Y; - Yj, j =

V.

' . k2 k2 **2

through ( 10 ) would give precisely the same results as ( 11 ) through ( 18 ) .

Tests and Confidence Intervals for the Product of Two Poisson Parameters . In

this section we exhibit some specific properties of the particular case k , = 2 ,

k2
0 ; that is 0 = \

1 ,A2
In this case ,

( 19 ) Polu,luz) -o % 0,164,+42 ) ! h(u2:0), 42 max ( 0 , -uz ) ,

where

( 20 )
h (u2; )

=

Σ 05(r! (uz + r ) ! ) ·

r =max (0, -uz )
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Define

I, ( t , x) = ( /21 " } (x?/43"
2 k

(K / 4 )

k ! ( vtk ) !
k =0

where 1,100, K) = I , ( k) is the modified Bessel function of order v ע.

Then , if u
uz> 0 ,

۔اي/2
.

h (uz ; o ) = { 0 %(r ! ( + r ) !) = 0 I (217 )

r =0

and

Σ Θ,
-us /22

/(u ! (4, + uz) !)= I (t, 2NO ) .
( t

u ; =0

Thus , for t an integer > 0 ,

( 21 )

Po {U,stlu , = 42 ) = 4 ,(*, Zvo 1/1, ( 20Ő )

Similarly , if uz < 0 , let v = -U2 ; then

h (uz ; 0 ) = o % e1 (r=v ) ) = { or*%«r!(r+v)1) = 0 V/21/12vē).
r=V r =0

Further

Ž 0 °%/ ,! (4,-v)9 = 2*o*++/6t!(r+v)!)= 0) E /2 t .
4 , =V

r =0

Thus , for t an integer > - uz

( 22 )
Pe {u, stlu , = uz } = 1_u , (t +42

2No )/I ( 217 )
-U2 ال2

ه
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Combining ( 21 ) and ( 22 ) , the cumulative distribution function of U , given
1

U₂ = U₂
is

2

( 23 ) Po {u, stlu , -u, -

( t , 2N7 )/I. (2NO ),
t 2vo "₂20

(t+u,,20©)/1_u,(2/7 ), u < 0 ,
I

-u2

where t is an integer > 0 , if u2 > 0 , and an integer > -U2 '
if

u₂
< O .

It seems natural to name this distribution the " incomplete modified Bessel

function :.

Returning to the tests and confidence intervals given earlier, the l - a upper

confidence limit 02 for conditional on Uz = uz may be written

( 24a )

© 2 = sup 69: ( , 217 )/ ( 2 vo 12 a } ,U2
U2 0

and

( 245 ) 0

2
= sup{ o : I

-U2

( k + uz ?
NO )/1

sillua(2NO ) > a} , uz" 2 < o ,

where k is the observed value of U
U ,

The other confidence intervals and tests given in ( 5 ) to ( 10 ) admit of similar

representations , which will not be explicitly given here . In this case , it is also

quite reasonable to ta bulate this distribution and we hope to produce such a tabu

lation in the near future .

4. Applications . Despite the fact that the problem of hypothesis testing or con

fidence intervals for the parameter 2 = 1 ;^ 2 ..
where

*K , , M2 "k2
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^i , My
i

= 1 , 2 , ... , kje j = 1 , 2 , .. , ky are each Poisson parameters , may arise

as a problem of interest in its own right, the procedures described in this paper

may be of more interest and will presumably be applied more often as approximate

techniques for statistical inference questions concerning products and quotients of

binomial parameters . We proceed to give some illustrations of this usage . Through

out the subsequent discussion we shall assume that the relevant parameters of all

binomial distributions being considered are such that the Poisson approximation

to the binomial distribution is satisfactory to the user .

Consequently, assume that we have ky + k2 binomial populations with

parameters ( ng , P , ) , ( n2 , P2 ) , ( max , PX ,', (194,+1°px,+1%,(1k +2 PX +z), ... ,

( x,tk ?Pk,tk₂

variables X , X2 )
, .. X, + 1 ' * , + 2 )

Xk Yky +2?

) respectively and that the mutually independent binomial random

*x +k2
have been observed . Then , let

PLP2
Pk1

( 25 ) > P > 0, 1 = 1,2 , ... , k , + kz

Pk,+1°k,+
+2

Pk, tk 2

Replace n Pi
by λ'j ; i = 1, 2 ,..., kj, and for i == k +1, k ,+ 2 , ... , ky + ką replace

Mj where j = i - kı · Then , assuming that X7 , X2 :

each approximately Poisson distributed, we have from ( 10 ) ,

n.p.

i ' i

by P
are

**x,tkz

1,12

( 26 )
P {0 , < 0 =

MyA 2***MK2
< 0x } ~ 1-2

This is equivalent to

k

( 27 ) P {0 , < TT

i = 1
itni P /

ktk

1

TT

i =k , +1

n , p ; < 02} ~ 1 - a

k
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and from ( 27) , we obtain an approximate confidence interval for p by

k ,tk 2
k

k ,+k2
k

1

( 28 ) P {0 , TT n;/ Tin;< p < 0, İT in

1=k ,+1
// TTn;} ~ 1-22

1 - Q .

i = 1 i =k . +1 i =1

The process for getting approximate upper ( lower) confidence limits for p is

quite similar to the derivation of ( 28 ) and will not be explicitly stated here . In

addition , in testing hypotheses , we clearly have that a test of any hypotheses con

cerning is an approximate test for the corresponding hypotheses for p .

We now turn to some concrete illustrations.

In reliability analysis , a mechanism may fail if and only if each of k com

ponents fail . Let E; be the event that the ith component fails , i = 1,2 , ... , k

and assume that the events E.EL are mutually independent . Then , the probability

k k k

of failure = P E ) = Пр. If each component is tested separately

i = 1 iel i = 1

ni Bernoulli trials , and if the pi's are " small " and the ni's are " large " ,

ĪT PIE;
i

in n .

then ( 28 ) or the equivalent formula for upper ( lower ) confidence limits for p

applies . For this problem R. J. Buehler [ 1 ] gave a procedure employing a Poisson

approximation . However , Buehler's procedure does not readily extend to products

of more than two binomial parameters without introducing extensive computational

difficulties. On the other hand , for k > 2 , the series ( 4 ) introduced in this

paper, whose individual terms give the conditional distribution (when normalized

by ( 4 ) ) , converges more rapidly than the exponential series and can be easily

evaluated in any specific case by hand computation . The individual terms can

each be computed recursively . A. Madansky [ 2 ] employed the likelihood ratio

statistic L ( p ) and used the approximate distribution theory, namely that
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2

-2 log L ( p ) has asymptotically the X distribution with one degree of freedom .

He compared this with the approximate confidence regions that would be obtained

by " linearization " methods . Madansky also noted that the application of the

asymptotic distribution theory for either the likelihood ratio statistic or the " linear

ized " statistic is not too satisfactory for the case of very high reliabilities . How

ever , this last concern is precisely what motivated the present investigation .

To see how one may obtain ratios (k2 > 0 ) , we state the specific problem

which was posed to the author . Let E2 , Ez ' be arbitrary events . A con

fidence interval for P (EZ N EZ NEE) is required , which we write as

E

3 '

E

4

( 29 ) P ( E, NE,NE,IE ) = P ( E , NEZ ) P (E ,IE, NEZ ) P ( E4 / E , NE, NE // P(E ) :

Separate sequences of Bernoulli trials are conducted for each of the four factors in

( 29 ) . Thus , we seek to obtain a confidence interval for a parameter of the form

P = P2PP3 PA/P1 ; and ( 28 ) applies . In this illustration , we have kz = 1 ; clearly,

the above illustration can be extended to exhibit experiments with other values for

ka
.

Experiments such as the type leading to ( 29 ) are useful in situations re

quiring very high reliability , inasmuch as the conditioning appearing in terms like

P (E4 / E , NE NE ) may be needed in order that the probability of occurrence of
2 3

a failure will be sufficiently high so that a failure may be observable in a moderate

number of trials . In addition , this type of experiment may also be used to eliminate

the need for assuming independence in reliability problems . However, it does

introduce the difficulty of requiring conditional experiments .
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METHODOLOGY OF ASSESSMENT OF BIOCELLULAR PERFORMANCE

George I. Lavin

Terminal Ballistic Laboratories , Aberdeen Research and Development

Center , Aberdeen Proving Ground , Maryland

ABSTRACT . Our laboratory is interested in problems which are

concerned with the assessment of the effect of absorbed energy on the

efficiency of performance of bio-cellular systems as modified by the

absorption of external energy . The type of specific , non - destrictive

analytical procedures which are designed for this purpose and which

have been the subject of previous presentations to The Design of

Experiments in Army Research Development and Testing , are listed below .

Microscopy A spectrum line (Mercury 2537 Aº ) is used as the light

source - for better optical resolution .

-

Spectroscopy A continuous light source (hydrogen discharge tube )

together with a spectrograph of low dispersion . The combination allows

the detection and identification of large molecules in a mixture .

Microspectroscopy - Both sources are used . The line source for

miscoscopical structure . The continuous source brings our absorption

band details which is needed for compound ( amino acids etc. ) differentia

tion and identification .

Model Simulation - A three dimensional model is described which

simulates the action of an animal which senses the presence of an object

and then reaches for it . The many unrealities of task performance of

this model are pointed out . These include the lack of biochemical

reality which means no biochemical feedback with no replacement of

material as action performance continues .

Biochemistry of Tissue Systems The relationship of specific task

performance to the chemical composition of the particular tissue system .

Subjects considered : Proteins , Nucleic Acids , Lipoids , Carbohydrates ,

Polysaccharides , Enzymes , etc.

Bionics and Cybernetics - A consideration of the application of systems

analysis in relation to animal performance . Feedback effects .

Mechanism of Energy Absorption by Cellular Systems - An analog is

drawn between the origin of optical spectra and the amount of energy

absorbed by the system on exposure to ultraviolet , visible or infrared

radiation .
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-Consequences of Energy Absorbed by Biocellular Systems Initiation

of atom and free radical chain reactions which result in the formation

of wound tracts and stress . Levels of damage .

The last presentation was a summary of the above .
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MONTE CARLO INVESTIGATION OF THE ROBUSTNESS OF DIXON'S CRITERIA

FOR TESTING OUTLYING OBSERVATIONS

Jerry Thomas

Surveillance and Reliability Laboratory

Aberdeen Research and Development Center

Aberdeen Proving Ground , Maryland

ABSTRACT .
An investigation of the effect of non - normality on the

distribution of Dixon's criteria for detecting outlying observations is

presented here . Monte Carlo techniques were used to determine the

distributions of the Dixon statistics when observations are selected

from specific non -normal distributions with varying degrees of abnormality .

Two such distributions whose degree of abnormality , as determined by the

coefficient of skewness , may be varied by changes in the parameters of

the distributions are the beta and gamma distributions .

A measure of the lack of robustness , that is the sensitivity to

departures from normality , in the Dixon criteria may be determined by

comparison of the frequency distributions of the Dixon type statistics

computed from sampling the non - normal distributions with those values

obtained by Dixon when sampling from the normal distribution .

Based on the distributions of the Dixon statistics computed from the

non - normal distributions , it has been shown that Dixon's criteria is not

robust and its wide use may result in incorrect decisions when the under

lying distribution is asymmetric or skewed.

I. INTRODUCTION . After experimental data has been collected , and

before it can be analyzed , the observations must be carefully screened

to determine if they come from the same population . If any of these

observations appear to be radically different from the majority of the

other values obtained in the experimentation , it is necessary to deter

mine if the suspect value is an extreme value or an outlying observation

( commonly called an outlier ) . By an outlier , we mean an observation that

did not come from the same population as the remaining values . In order

to do this , a knowledge of the testing procedures , the manner in which

the data was collected and recorded , and some prior knowledge as to what

the range of the observations should be , are very helpful in deciding

whether a value should be retained in the analyses or be thrown out as

an outlier .

To be consistent in this process , statistical procedures have been

developed to determine whether a value is an outlier or not . One of

these procedures was developed by W. J. Dixon ( 1 ) . Dixon's statistics

have the advantage of being easily computed and are thus widely used in

applied statistics . However , Dixon's statistics were developed for
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normally distributed variates . The question was posed as to whether or

not Dixon's tests for outliers were robust tests . By this , we mean ,

are the tests insensitive to deviations from normality . In order to

check the robustness of Dixon's test statistics , the coefficient of

skewness was chosen to measure the degree of departure from normality .

Two distributions whose coefficients of skewness may be varied by

changes in the parameters of the distributions are the beta and gamma

distributions . Thus , these two distributions were chosen to be used

in this paper .

II . TEST OF ROBUSTNESS OF DIXON'S CRITERIA .

2.1 Definitions of Statistics to be Investigated. The four statistics

proposed by Dixon for testing extreme values are defined below , where

the X's are the observed values from a normal distribution arranged in

ascending order such that , x, < x2 < X3 < *n-1 < xn
X .

For a single outlier , X,

.

1

110

X2 - X

* -

[ la ]

X

or for a single outlier , X
n

xn - Xn - 1

10
[ 16 ]

xn - XL

For a single outlier X1 , avoiding ' n

X2 - X1

=

[ 2a ]
11

Xn - 1 - X1

or for a single outlier XXn, avoiding X

X

n

X

n-1n

[ 26 ]
-11

x - X2
n
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For outlier Xy , avoiding X, and Xn

X3 - X2

121
[ 3a ]

Yn -1 - X

or for outlier 'n ' avoiding X, and Xn - 1

X

n

х

n-2

121 [ 36 ]

X
X

- X2

For outlier Xy , avoiding X2 , X. - 1 and X
n

xz - X

I 22 [ 4a ]

Xn -2 - X1

or for outlier Xn, avoiding X2 , X2 , and XXn - 1

X

n

X

n-2

r22
[ 45 ]

xn- *3

If fj , 1-1

These computations are widely used in applied statistics . One of

the main advantages in using these statistics is the ease with which

these tests for outliers may be performed . It is a simple matter , especially

for small samples , to visually order the data such that the values needed

for the test statistic , i.e. , X1 , X2 , Xn - 1: Xn, can be determined . Then

using these values , r
Fj , 1-1

is computed and compared to the critical value

listed in tables that are readily available . ( the computed

j

value ) is greater than R ( the critical value) , at the desired risk level ,

Q , then X (k = 1 or n) is determined to be an outlier with 1 - a confidence .

Since Dixon's critical values were derived using the normal distribution ,

the question was posed as to how departure from normality would affect these

critical values . In order to investigate this , the Pearson Type I curve ( 2 )

or beta distribution was chosen as the underlying distribution . This dis

tribution was used with various a's and B's to give distributions with

various degrees of skewness .
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IlDixon computed the distribution of the ratio , r
Fj , i- 1

(*. - *; ) / (*. - x ) using the following function :

i-1
0

n !

ST
f ( t ) dt f (x-v )

( i-1 ) ! (n-j - i-1 ) !

[ 5 ]
IST

(S.réce) at

n-j -i-1 j -1

x - rv

·IS****
f ( t ) dt f ( x - rv ) f (x ) dvdx

X-V

Where j 1 , 2 ; i 1 , 2 , 3 ; v = X=
X, ; rv = X
Xi nn

X.; X = X

j nX;;
2

t
1

f ( t ) e If instead of the normal distribution , the

27

beta distribution is used in [ 5 ] , the following function is obtained :

i- 1

1 x X - V

n !

I. (1-1) ! (n -3-1-1
) ! (3-1):

f ( t ) dt f (x-v)

[ 6 ]

n - j - i - 1 j -1
X - rv

location . ,
f ( t ) dt f (x-rv) f ( x)

cul
f ( t ) dt dvdx

X-V X - rv

Where j = 1 , 2 ; i = 1 , 2 , 3 ; v = X X.; rv = X X.; X = X and

j
n n

( a + B + 1 ) !

f ( t ) = ta ( 1- t) .

a ! B !

It is apparent that this integration is very difficult for

sample sizes of n = 3 and becomes more difficult as n increases . In

fact Dixon used numerical integration for only a few sample sizes and

interpolated to obtain the remaining values . Thus , due to the problems

of integration and the fact that Mowchan ( 3 ) has demonstrated that

using Monte Carlo techniques for obtaining the distributions of the

i-l's were very accurate , it was decided that Monte Carlo techniques

would be used in this paper .

rj , i- 1
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2.2 Monte Carlo Techniques . In order to use Monte Carlo techniques , it

was necessary to draw random samples from the beta distribution . Since

beta random numbers are not usually readily available in the form of

subroutines , the following method was used .

The Ballistic Research Laboratories Electronic Scientific Computer

( BRLESC ) at Aberdeen Proving Ground , Maryland was used to generate a

random number , y , from the uniform distribution over the unit interval .

This uniform random number , y , was considered to be the area of interest

from a cumulative distribution , F (x) . The cumulative form of the dis

tribution was integrated from 0 to X , where x is the point on the distri

bution that would define an area equal to y . For the beta distribution

this is as follows :

0 x < 0

X ( a + B + 1 ) !

Ste ta (1 -t ) dt 0 < X < 1

F (X) =
a ! B !

1 X > 1

thus

X (a + B + 1 ) !

SI ta (1 -t ) ß dt .
a ! B !

This procedure for generating X's was used to obtain samples of

size n = 6 , 10 , and 15 for this paper .

2.3 Determination of Critical Values . An extreme value may occur as

either a high value or a low value . Thus , since the beta distribution

is generally not symmetric , it was necessary to construct test criteria

for testing either high or low values . To do this , both forms of

equations ( 1 ) through [ 4 ] were used .

< x .

-

n

' s .

Six hundred samples of size n were drawn . Each sample of size n was

ordered such that X, < X2 · · Then using the appropriate X's

the test statistics were computed using each of the formulas to obtain

the r After 600 r .

j , i-1-
' s were obtained for each test statistic ,

Fj , i- 1

the cumulative distribution of these r Various' s was constructed .
j , i -1- 1

percentiles were computed ranging from 10 to 99.5 . These percentiles ,

along with Dixon's percentiles from the normal distribution ( 4 ) are
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given in tables I through XII . These percentiles are given in terms of

a , where a is equal to one minus the various percentiles . Thus a is

equal to the significance level of the test at which the suspect outlier

is being tested , with the values in the tables being the critical values

at the given significance level . These critical values are tabulated

for F10 , F11 ' 521 , for both upper and lower tails using the
22

following parameters of the beta distribution with their skewness

coefficient , Yı , as identification .

+11 ° +21 , and r

a

B

B

o
l ܐ

ܢ
ܐ

y

1

5

7

8

9

10

19

5

4

3

2

1

1

0

-0.24

-0.42

-0.64

-0.96

-1.14

E ( X
These skewness coefficients were computed using x - 1 ) 3

£
Y.

a

.3

0

Where E ( X - u) 3u ) 3 - 1 3 - 3 w' H'2 + 2 ( x 2) 9. For the beta

distribution

( a + 1 ) ( a + 2 ) ( a + 3 )

3

E (X - )

(07 1
a

( a + B + 2 ) ( a + B + 3 ) ( a + B + 4 )

( a + 1) ( a + 1 ) ( a + 2 )

+

3

( a + B + 2 ) ( a + B + 2 ) ( a + B + 3)

( a + 1 )+ 1) 3

2

( a + B + 2 ) 3

and

3/2

( a + 1 ) ( a + 2 ) ( a + 1 ) 2

03

( a + B + 2 ) ( a + B + 3 ) ( a + B + 2 ) 2
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These values of a and B were chosen so as to give various degrees

of skewness . When a = B then the beta distribution is symmetric and

the skewness coefficient is equal to zero . In order to minimize computer

time , it was desired to keep the sum of a + B as small as possible , since

as this sum increases , so does the computing time . However , it was desired

to get various degrees of skewness , thusawas increased and B decreased .

By choosing to do this , negative skewness coefficients were obtained .

Positive skewness coefficients could have been obtained by increasing B

and decreasing However , the only difference a positive skewness

coefficient would make is that the skewed tail would be on the right

instead of on the left . Thus , if the skewness coefficients were positive

the upper and lower tail values would be reversed .

a .

Since the beta variates range in value only from 0 to 1 , the question

arises as to how sampling from a distribution which has an infinite limit

on one tail would affect the critical values . Thus , the Pearson Type III

Curve or gamma distribution , which has as its limits 0 too , was chosen .

The cumulative distribution for the gamma distribution is

0 X < 0

1

X

F (X ) =

S.
α

t " e- t / Bat X > 0

al
Ba
xi

with a> - 1 and B > 0. SinceSince a change in B only changes the scale and

he general shape of the curve , without loss of generality = 1

was used with a = 0 , 1 , 2 , 3 , 4 , 5 . Y1 was computed for the gamma

E (X - ) 3

distribution using Y1 3

where

E (X -4) 3 = ( a + 1 ) ( a + 2 ) ( a + 3 ) -

3 ( a + 1) 2 ( a + 2 ) + 2 ( a + 1 ) 3

and

03 = (a + 1) 3/2
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Y1

ß

B

a

a

1

1

1

1

1

1

0

1

2

3

4

5

2.00

1.41

1.15

1.00

0.84

0.82

The same general techniques described previously were used . Again

600 samples of sizes n = 6 , 10 , and 15 were drawn from the gamma dis

tributions . Both forms of equations [ 1 ] through [ 4 ] were used in

computing the test statistics since the gamma distribution is also

usually not symmetric but skewed .

The cumulative distributions of these test statistics were formed

and the critical values were computed for the various levels of con

fidence . These critical values from the normal distribution for the

same levels of confidence , are given in tables XII through XXIV .

From the Dixon Statistics that were computed using the beta and

gamma distributions , it is apparent that for a given confidence level

the critical values in the skewed tail (the lower tail for the beta

distributions and the upper tail for the gamma distributions ) increase

as the absolute value of Y, increases . Vice versa , in the tail opposite

the skewness , the critical values tend to decrease as the absolute value

of decreases .Y
g

The reason for this might be described in the following manner :

Let us look at the Dixon test which uses the statistic r
r10

where

X х

n n - 1

for the test of an observation that appears to be

xn - 91

I 10

larger than the other observations in the sample . It is obvious that

for r

r10
to become smaller , the numerator (the difference between the

largest and the next largest observation ) must become smaller faster than

the denominator ( the difference between the largest and the smallest

observation) . It should also be noted that for the beta and gamma

variates used in this paper the absolute value of
Yi

increases as the

variance decreases .
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Beta Distribution Gamma Distribution

2

11

2

o

Y1

0

-0.24

-0.42

-0.64

-0.96

-1.14

.019

.017

.015

.013

.009

.004

0.82

0.89

1.00

1.15

1.41

2.00

6.0

5.0

4.0

3.0

2.0

1.0

This can be intuitively demonstrated when considering the fact that

as the skewness increases , the distribution becomes clustered at

one end of the range of the distribution , with only a small portion

of the distribution lying in the skewed tail . For example , using

the beta distribution with a large skewness coefficient , let the

suspect outlier to be a value larger than the other sample observations .

Thus , the majority of the values are generally clustered in the upper

tail , close to the upper limit of one . It would , therefore , be very

unlikely for the difference between the largest and the second largest

observation to be very large . On the other hand , since the skewed tail

of the distribution goes to 0 , it is likely that in a sample , at least

one of the observations will be small in comparison with the other

samples . Therefore , when a distribution is markedly skewed , it is

expected that the values of r10 will be small for the skewed tail .

The critical values obtained using the beta and gamma distributions

were compared to Dixon's critical values by using the Kolmogorov - Smirnov

statistic ( 5 ) . The empirical distributions were tested against those

derived by Dixon and the level at which these tests of equality were

rejected is given in tables XXV and XXVI . The distributions of the

Fj , i- 1
were listed as not significantly different from those obtained

by Dixon for the normal distribution at the .10 level .

It can be seen for the beta distribution variates , that the

significance level generally decreases as the absolute value of the

skewness coefficients increase . For gamma distribution variates , the

significance level is generally .01 for all degrees of skewness . Since

the distributions of the r
Fj , i- 1i- 1's obtained using the beta and gamma

distributions are significantly different from those obtained by Dixon

using the normal distribution , some examples are given to show how it

is possible to make the wrong decision in deciding whether or not an

observation is an outlier .

2.4 Examples . Suppose for example we had the following observation

from a beta distribution with a skewness coefficient of Yi
-0.42
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X.

1

.2319
x2 = .6516 X2

: .7453

X

4

= .7555

X5
.8547

Xo
: .9690

=

.6516 . .2319

Let X, be our suspect outlier and using r10
0.569 .

.9690.- .2319

Comparing this with Dixon's critical value of 0.560 , we would designate

X, as an outlier at the .05 level of significance . However , using the

critical values in table 1 , Lower Tail under Y1 = -0.42 , we see that

the critical value is 0.6085 at the .05 significance level . Thus , X1

would not be an outlier .

As the second example , take the 10 observations drawn from a beta

distribution with
Y1

-0.64

x,
= 0.2306

X2
= 0.3312

X2
= 0.4317

X 0.4814 = 0.5489
4 5 Xo

= 0.5806

x ,
= 0.6548

Xg
= 0.6637

X,
0.73626

X

10
- 0.9701

*10 - X,
r

X10 - X2

see if it is an outlier .

as our test statistic , we test X,
10

.9701 .7363

F11
= .3660

.9701 - .3312

Using Dixon's criteria , X10 would not be an outlier at the .05

significance level . However , using the critical value listed in

table VI , Upper Tail , under -0.64 , we see that its critical value

is 0.3466 . Thus , XThus , X10 would be an outlier .

For example three , let us look at a sample drawn from a gamma

distribution with
Y1

1.15 .

x2
= 0.4790

X2
= 0.9628

X3
1.4398

Xo = 2.8963
X ,

4

= 1.8540
X

= 2.5660

x
3.4193 X.

8X
3.6188

X ,
6.6278

X

10

= 9.00
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Using 121
21

X10 - Xg
9.0973 3.6188

to test X10 , we get
0.6735

X10 - X2
9.0973 - 0.9628

which is significant at the .05 significance level , using Dixon's critical

value of 0.612 . However , using table XIX , Upper Tail , under Y1
1.15 ,

we see that the critical value at this .05 significance
level is 0.7514 .

Thus , X10 would not be an outlier .

As example four , take a sample of size n = 15 from a gamma

distribution with

Y1
1.15 .

X

1

- 0.2129
X2

1.1867

X
X

3

= 2.3271

X4
= 2.7486 X

5

= 2.8934 X

6

= 3.0924

x,
3.4674

Xg
= 3.6631

X,
3.8998

X

10

= 4.1009

X11
= 4.3123

X12
= 4.5184

* 13
= 5.6396 X

14

= 5.7802

X15
= 6.0301

Using X, as our suspect outlier ,
and

r22

X3 - X1

X13- X1

we get

2.3271 - 0.2129

=122
0.3896 . Dixon's critical value at .05

5.6396 0.2129

0

significance level is 0.525 . Thus , x , would not be an outlier at the
1

.05 significance level . However , using table XXIV , Lower Tail , under

Y1
1.15 , we see that the critical value is 0.353 . Thus , X, would be

an outlier at the .05 significance level .

Thus ,

From these examples , it is easy to see that there are two types

of errors that can be made if the sample observations are not from a

normal distribution and if Dixon's critical values are used for testing

extreme values . These values can be called outliers when , in fact ,

they are not outliers at the chosen significance level or they can be

outliers at a chosen significance level and not be so designated .

from these examples , it can be seen that the Type I or a errors , i.e. ,

the rejection of the hypothesis when it is in fact true and the Type II

or B errors , i.e. , the acceptance of the hypothesis when it is false ,

are not what they are specified to be when operating under the assumption

of normality when in fact , the observations come from a non-normal

distribution .
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III . CONCLUSIONS . It has been shown , on an empirical basis , and

using the Kolmogorov -Smirnov goodness-of-fit test that there is a

difference in the cumulative distributions of the r

fj , i-1
statistic

obtained using the normal distribution as opposed to distributions that

are non -normal . These differences are usually significant at a low risk

level .

Also , it has been shown that the effect of departure from normality

is dependent on whether the suspect outlier is a large or small value .

Thus , it is necessary to have critical values for testing either large

or small values .

It is also evident that the degree of skewness of the distributions

affects the critical values . That is , these critical values tend to

depart more from those values derived by Dixon for the normal distribu

tion as the skewness increases .

For a symmetric distribution , that is , one for which the skewness

coefficient is zero , Dixon's criteria is robust . However , as the

distribution becomes asymmetric and the absolute value of the skewness

coefficient increases , Dixon's criteria becomes less robust .
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TABLE 1

BETA DISTRIBUTION

N : 6

PRIr >R ) : a

UP PER TAIL

aly ,
D.C. * 0.00 -0.24 -0.42 -0.64 -0.96 -1.14

0

.900

.800

.700

.600

.500

.400

.300

. 200

. 100

.050

.020

.010

.005

.038,0435 .0378 0244 0243 .0215 .0199

.079 .0809 .0668.0530 .0560 .0453 .0430

.121 1214 1077 0888 .0895 0713 .0694

.164 1639.1427 1280 1226 . 0972.0909

.210 .2089 . 1827 .1650 .1596.1250 .1214

.261 24 79 .2147 .2083 .2011 1600.1507

.318 3109 .2733 .2572 .2486 .1923 1972

.386 3703.3399.3271 3112 .2429.2686

.482 .4797 .4280.4260 .4180 .3201 3663

.560 5756 5043.4984 5045 .4014 .4386

.644 .6453 .6014 .5810 .5903.5334 5806

.698.6865 7085.6515 .6039 .5896 6342

.740.7289.7444 6716 .6124 .6304 .6601

LOWER TAIL

aly ,
D.C. 0.CO -0.24 -0.42 -0.64 -0.96 -1.14

.900

.800

.700

.600

.500

.400

.300

.200

. 100

.050

.020

.010

.005

.038.0353 0376.0537 .0474 . 0530 .0508

.079 0753 0837 0997 .1074 .1137 1130

.121 1160.1339 .1412 .1614 .1773 1700

. 164 1559 1817 1810 .2046 .2394 .2363

.210.1934 .2311 .2274 .2715 .3072 .2948

.261 2517 2787 2899 .3317 .3750 .3575

.318 .3124 .3276 .3418 .4004 .4369 .4364

.386 .3667 .4079 .4253 .4729 5135 .5203

.482.46 37 .4975.5363.5555 .6045.6258

.560.5416 5800.6085.6296 .6760 .6868

.644 6264 .6696.7150.7011 .7472.7565

.698 6889 .7125 7491 .7252 .7794 .8308

.740 7161 .7571 .8002 7600 .8249 .8571

0

Dixon's critical values from normal distribution
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TABLE II

BETA DISTRIBUTION

N = 6

PRC rii > R )

UPPER TAIL

x1/ܘ 0ܨ0ܙ 0.00 -0.24 -0,42 -0.64 -0.96 -1.14

.900

.800

.700 ܝܐ391ܝܐ05ܝܐܘ9

ܕ600

.500

.400

.300

. 200

.056 .0584 .0510 .0366 .0403 .0312.0327

.113.10 74 0987 0861 .0951 0715 .0695

.169 1647 1559 .1274

.227 2192 .2007 1786 1815 .1579 .1500

.288.2746 2538 2356 2334 1961 1994

.350.3419 .3087 3044 .3022 .2456 .2460

.420 .4035 .3704 .3566.3644 .3084 .3099

.502.4905 .4585.4474 .4526 . 3789 3906

.609 .6250 .5621 5490 .5610 .4838 .5049

.689 16865 .6345 .6513 .6272 .5957 .5934

.763 17818 .7146 7322 .7489 .6832 , 7051

.805 18203 8122 7815 .7750 . 7773 . 7651

.839 8369.8446.8166 8434 8016 .8072

ܫܐܘܘ

.050

.020

.010

.005

LOWER TAIL

z/x1
0ܝ0ܝ 0.CO -0.24 -0,42 -0.64 -0.96 -1.14

ܫܐܐ3ܫܐܘ22ܝܐ144ܝܐ1387.332 ܝܐ468ܝ11ܕ

.900

.800

.700

.600

.500

.400

.300

.200

.056 .0460 0557 .0724.0660 .0681 .0660

!

.169.1602 . 1765.1820 .2106 .2161 .2162

.227 2135 .2397 2340 .2657 .2897 2851

.288.2661 2954 .2910 .3339 .3767 .3684

.350.3265 .3516 3610 .4186 . 4453 .4443

.420 3929 .4192.4332 .4873 .5155 5095

.502.48C3.5150.5319.5655 .5900.5911

.609.5946.6201 .6398 .6722.6952.7030

.689 .6859 .7093 .7371 .7336 .7719 .7638

.763 .7686 7809 8101 8011 8256 8649

.805 .8506 .8452 .8311 8738 .8515 .8858

.839 .8775 .8538 .8674 8837 8762 .8960

ܝܐܘܘ

.050

.020

ܝܘܐܠܘ

.005
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TABLE III

BETA DISTRIBUTION

N : 6

PR (r27 > R ) = a

UPPER TAIL

a/y ,
D.C. 0.00 -0.24 -0.42 -0.64 -0.96 -1.14

.900

.800

.700

.600

.500

.400

.300

.200

.100

.050

.020

.010

.005

.268.2530 .2521 1961 .1903 . 1866 1851

.364 3614 .3321 .2969 .2917 .2584 .2522

.439.4396 3876.3703 .3668 . 3238 .3145

.504 .4966.4634 .4430.4356 .3848 .3840

.563 5486 .5199 5064 .5012 .4401 .4571

621.6162 .5842.5698 .5623 . 5203 .5176

.680 .6797 .6412 .6450 .6138.5819 .5828

.745 7527.7083.7049.7051 .6475 .6654

.821 8364 .7992.7836 .7985 . 7547 .7534

.872 .8823 .8605 .8416 .8643 .8138 .8079

.924 ' , 9169 .9147 .9121 9031 8809 .8852

.951 9393 .9303 .9428 .9296 .9045 .9248

.970 .9553 .9476.9509 .9607 .9291 9623

0

LOWER TAIL

aly
D.C. 0.00 -0.24 -0.42 -0.64 -0.96 -1.14

.900

.800

.700

.600

.500

.400

. 300

..200

. 100

.050

.020

.010

.005

.268 .2345 .2667 2757 .2735 .2971 3122

.364 .34 C2 .3803 .3781 3768 . 4300 .4151

.439 .4195 .4617 .4685.4617 . 4685 .4729.4729 .5388 .5003

.504 .4802 .5074 5290 .5405. 5405.6001.5748

.563 .5359 5682 .5941 .6000 .6595 .6428

.621 .5951.6332 .6491 .6739 . 7254 .6994

.680.6662.6888 .7174.6888 .7174 .7263 .7639 .7544

.745 .7398 7476 .7819 .7883 .8168 .8161

.821 .8160 .8127 8407 8606 8812 .8780

.872 8589 .8730 8814 .9139 .9202 9039

924 .91 85 9091 .9228 .9507 .9484 .9354

.951 .9442 9281 .9599 .9639 .9566 .9560

.970 .9533 .9477 .9669 .9725.9741 9671
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TABLE IV

BETA DISTRIBUTION

N = 6

PRI r > R ) : a

22

UPPER TAIL

a /r1
D.C. 0.00 -0.24 -0.42 -0.64 -0.96 -1.14

O

0

.900

.600

.700

.600

.500

.400

.300

.200

.410 .4132 .3692 .3419 .3234 .3042 .3144

.540 5269.4974 .4803 .4703 . 4300 4177

.640.6116 .5838.5869.5654 .5550 .5145

.720 .6912 .6613 .6578 .6406 .6316 .5943

.780 .7548 7273.7213 . 7002 . 7059 .6815

.830.7981 7816 7806 . 7682 .7799 .7467

.8577 8445 .8458 .8269 .8335 8321

.930 .91 28 .89989011.8939 .8955 . 8867

.965 .9521 9614 9573 .9539 .9410 .9472

.983 .9793 .9788 9776 9763 . 9646 . 9757

.992 : 9904 9932.9920 .9905 .9849 .9921

.995 .9972 9959.9949 .9966 .9912.9966

.998.9985.9968.9961.9982.9960.9984

.880 .

0

ܝܐܘܘ

.050

.020

.010

.005

LOWER TAIL

D.C. 0.CO -0.24 -0.42 -0.64 -0.96 -1.14

alla

.900

.800

.700

.600

.500

.400

.300

.200

.100

.050

.020

.010

.005

.410 .3726 .4277 .4209.3983 , 4205 .4233

.540.4999.5369.5539 .5300 .5921 5606

.640 5979 .6289 .6390 .6321 .7011. 7011 .6735

.720 .6793 .7110 .7135 .7088 .7608 .7423

.780.7617 .7588.7731 .7876 8263.7979

.830 8093 .8147 8324 .8385 8759 8523

.880 8543 .8721 8861 8806 9082 8990

.930.9026 9160.9273 9243 9345.9243.9345.9366

.965 .9563.9567 .9630 .9664 . 9678 .9690

.983 97 86 9796 9820 . 9878 . 9838 9872

.992 .9903.9901 .9909 .9941 .9926 .9962

.995 .9980 .9956 .9938 .9969 .9958 .9987

.998.99909968.9972 .9990 .9967 .9992

.
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TABLE V

BETA DISTRIBUTION

Nܕܐܘ

PR r .
10

>8ܙ ܗ

UPPER TAIL

all
Doco 0.CO -0.24 -0.42 -0.64 -0.96 -1.14

ܢ025܂ܘ102267ܐ0܂ܘܐܐܕܙ0157ܫܘܐܐ0123.8

.051 .0509 .0384 .0379 .0325 .0223.0223 .0249

.080 .0784 0596 .0552 .0523 .0345 .0348

.110 .10 54 0873.0838 0696 .0510.0462

.900

.800

.700

.600

.500

.400

.300

.200

ܙܐ42ܝܐ354ܫܐܐ58ܝ11ܘ7ܝ0898ܝ0680ܝܘ579

ܝܐ78ܝܐ69ܘܝܐ506ܝܐ324ܝܐܐܐ5ܝ0868ܝ0774

ܝ1ܘܘ

.050

.020

.010

.005

.219.2132.1832 1568 .1384 . 1092 1015

.273 2611 .2252 2079 1734 .1372 1269

.349 3340 .2841 2550 2326 1881 1762

.412 .3791 3471 .2969 2801 .2283 .2115

.483 .4545 .4109 .3813 3385 2882 .308 !

.527 4923 .4359.4154 .3773 .3249 .3437

.568 .5219 4626 .4232 3968 . 3566 3624

LOWER TAIL

alvi
0ܝܝ 0.CO -0.24 -0.42 -0.64 -0.96 -1.14

ܫ11ܘܨ694ܐܝܐܐ42ܝܐ413ܝܐ39ܐܝ1527ܝܠ829

ܫܐ42ܝܐ209ܝܐ476ܨܕ823ܝܐ823ܝܐ951ܝ2286

.900 .025 .0252 .0255 .0326 0421 0382 .0464

.800 .051 .05 34 .0556 .0710 .0650 .0755 .0905

.700 .080 0766 .0827 1037 1004 11140 . 1280

.600

.500

.400 .178.1535.1763.2
211

.2288 .2426 .2733

.300.219 .1865 .2263 .2636 .2704 .3032 .3404

.200 .273.24 46.2718 .3163.3410 .3742.4006

.349.3257 3431 3939.4069 . 46 86.4986

.050 .412.3894 .4193.4352.4666 5311 .5751

.483 44 86 .4922.5065.5065 .5528 . 5955 .6392

.527 .4718 5186 .5296 .5791 .6286 .6877

.005 .568 .4970 5596 5513 .6208 .6832 .6931

ܝܐܘܘ

ܝo2ܘ ܢܘܐܘ

O
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TABLE VI

BETA DISTRIBUTION

N 10

PRII >8ܙ - &

11

UPPER TAIL

w /x1
0ܝ0ܝ 0.CO -0.24 -0.42 -0.64 -0.96 -1.14

.053

.303

.030 .0322 0273 0222.0234 .0168 0151

.063 .0597 .0457.0479 .0432 .0296 0333

.098 0940 .0753.0747 0672 .0472 .0496

.0896 .0693.0659

ܝܐܘܘ

.300 .34ܙܐ26ܐܝܐܘ9ܐܙܐ063ܢܘ896

ܝܐ16273ܐܝܐ4ܘ0ܝܐ383ܝܐܐ840858ܝ0842 ,

157ܝܐ059

0

O. 400

.300

ܝܺܝܺܝ݁ܒ

oܝ:ܘ

.216 .2008 1818 .1638 1412

.265 25 28.2269.2050 .1774 1430 .1353

.325 .3085 .2758.2592 .2217.1808 .1736

.409 .38 30 .3573.3328 2739 2389.2256

.477 .4544 .4241.3903 . 34 66 2822 .2873

.551 .5257 .4845 .4279 . 4217 .3671 .3753

.597 5641 .5097 .4491 .4585 .3852 .3999

.639.5729.5625.5128 .4911 .4312 .4262

.050

.020

.03ܘ

.005

LOWER TAIL

saly1
0ܝ0ܝ 0.CO -0.24 -0,42 -0.64 -0.96 -1.14

܂900

.0979

.134ܝܐܐ9ܝ1364ܝܐ1605.672ܝܐ2022,696 .

.800

.700

600

.500

.400

.300

.200

0

.030.0301 .0304 .0384 .0489 . 0429.0531

.063 0649 .0664 0820.0762 0848

.098 0932.0999.1166 1157 . 1237 . 1421

1615

.173.1461 .1703 2064 2056 21472147 .2503

.216 1831 .2124 2520 .2488 . 2687 .3021

.265.2307 2662 .3031 . 3093.3333.3672

.325.2929 .3251 . 3687 .37213251 .3687 .3721 .3947 .4297

.409.36 25 .4069.4349.4577 . 4910 .5333

.477 .4463.4873.5091 .5113 .5635 .6081

.551 5322.5709.5786 .6211.6361 .6765

.597 .5748.6072 .6099 .6770 .68006800 . 7071

639 .5951 .6521 .6374 .6882 7080 .7297

ܝܪ0ܘ

.050

.020

ܕܘܐܘ

.005

.
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TABLE VII

BETA DISTRIBUTION

N = 10

PRIr >R )

21

UP PER TAIL

a /y1
D.C. 0.CO -0.24 -0.42 -0.64 -0.96 -1.14

.900 .130 . 1226 .1066 .1048 .0960 .0748 .0676

.800 .189.1804 1653.1515 1297 1079 1062

.700 .240.2343 .2080.1937 . 1683.1367.1348

.600 .286 .2746 2481.2283.2055 .1636 .1618

.500 . 329 3156 .2839.2651 .2431 .1910 1909

.400 .374 .3555 .318ó .3049 .27463049 .2746 .2156 .2212

.300.420 .4058 .3603 .3468 .3179 .2532 .2529

.200 .474 . 4608 .4158 3938 .3556 .2986 .2962

. 100 .551 .54 20.4953.4719.4269 .3809 .3605

.050 .612.5987 .5534 5296.4894 4334 .4193

.020 .678.64 54 .6264 .6133 .5712 .5145 .5279

.010 .726 17241 6717 .6282.6346 5731 .5455

.005 .760.7353 .7402 .7318 .6637 .6049 .5853

LOWER TAIL

aly1
0.C. 0.CO -0.24 -0.42 -0.64 -0.96 -1.14

O

O

0

.900

.800

.700

.600

.500

.400

.300

. 200

.100

.050

.020

.010

.005

.130 .1243 1340 .1545 .1540 .1651 .2016

.189 .1776 .1946 .2194 2270 .2502 .2846

.240 .2225.2447 .2700.2947 .3111 .3384

.286 .2643.2940.3213 . 3425 .3595 .3917

.329 .3065 3373 3706 .3847 .4036 .4381

.274 .3479.3795 .4169.4349 . 4613.4898

.420 39C4 .4314 .4689.48405114 5375

.474.4458.4879.5157 .5403 .5761 .5955

.55 ! .5281 .5766 5969 .6104 6559 .6747

.612.5742 .6287.6523 .6644 . 7005 .7221

.678 .6381.6877 .7063 .7140 .7462 .7662

.726 .6722.7427 .7641 7532 .7709 .8032

.760.7129.7652.7784 . 8059 8101 8526
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TABLE VIII

BETA DISTRIBUTION

N 10

PRII a>R )

22

UP PER TAIL

a / v1
D.C. 0.CO -0.24 -0.42 -0.64 -0.96 -1.14

.900

.800

.700

.600

.500

.400

.300

.200

.100

.050

.020

.010

.005

.150.1492 .1327 . 1320 1206 0979.0905

.231 2192 1988 1929 1648 . ! 364 .1379

.285.2718.2540.2325 2058 . 1706 1768

.335.3194 2960.2783.2545 2096 2090

.384 3690 .3398.3158 2935 .2432 .2470

.433.4201 3822 3660.3364 2790 .2804

.483.4613.4251 4130 3814 .3289.3215

.543 .5202.4925 .4752 4291 .3857 3765

.620 , 6175 5767 5632 .5146 .4560 .4499

.682.6593.6439 .6220.5922.5046 .5078

.749.7297 .7070.6896 .6801 .5705 .6303

.79 ! .7710 .7555.7193 , 7235 .6604 .6660

.826 .8133.7619.7586 .7506 .6813 .6853

LOWER TAIL

alvi 10.C. 0.CO -0.24 -0.42 -0.64 -0.96 -1.14

.900 .150 1438 .1538 .1871 1802 .18761876 2247

.800 .231 .2047 .2257 2570 .2628 .2789 .3154

. .285 .2575.2845 .3086 3224 .3378 3778

.600 .335.3135 3330 .3599 .3809.3967 .4246

.500.384 .3593 .3817 .4191 .4311.4448 .4786

.400 .433 .4085 .4332.4671 .4797 .4941 .5315

. 300 .483 4613 .4960 .5289.5312.5533.5834

.200 .543.52 20.5608.5766 5944 6246.6352

. 100 .620.60 32.6407.6538 .6724 .6995 .7106

.050 .682.6596 .692871157115 7212 . 74 31 .7680

.020 .749 .7206 7636 7780 .7803 .7955 .8182

.010 .791 .7325 .7892 8072 .8196 .8321 8528

.005 .826 .7565.8023 .8214 .8609 .8578 .8757

.
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TABLE IX

BETA DISTRIBUTION

N 3 15

PRܕܗ ( r > R )

10

UPPER TAIL

alvi 0.CO -0.24 -0.42 -0.64 -0.96 -1.14

ܝ9ܘܘ ܝܘ9ܝ0172ܝܘܐ6ܐܝܘܐܘ6ܝ0125ܝܘܐܐܕܝ0669 .

.800

ܝ70ܘ

.040 .0365 .0353 .0202 .0269 .0206 .0136

.062 .0565 0496.0364 0379 .0281 .0204

.085 .0772 0642.0525 .0514 0394 .0282

1002 0817 0694 0660 .0495 .0410

.141 .1268 .1059.0891 0836 0601 .0543

ܐܐܐ

.600

.500

.400

.300

.200

0

.175ܙܐ557ܝܐ326ܝܐ142ܝܐ017ܕ0719ܝܘ717

.220.1983 1749.1451 1301 .0923 0907

܂1ܘܘ .163619122277,2527.285ܝܐ267ܝܐܐ8ܘ

.050

.020

.338.2976 2652.2371 .2018 .1599 . 1442

.399 : 3428 .3140.2830 .2497 2103 . ! 790

.438 .3702 .3319 . 3160 .2789 .2605 .1981

. 475 .4068 .3591 3398 .2919 .2819 .2040

ܫܘ:ܘ

, 005

LOWER TAIL

D.C.

w /x1
0.CO -0.24 -0.42 -0.64 -0.96 -1.14

ܝ900

,20ܘ

.019 .0164 0211.0266 .0280 .0318 .0290

.040.0366 0418.0461 .0503 .0619 .0676

.062 0554 .0620.0738 .0802 0870 .1086.700

.500

.500

.400

.300

.200

.085.ܘܐ83ܨܘ8ܟܘܝ0971ܝܐ071ܝ264ܫܐ51ܐ

ܝܐܐܐ0960ܫܐܐ1255.23ܫܐ432ܝܐ2012,144

ܝܐܟܐܝܐ266ܝܐ412ܝܐ603ܝܐ2343,2212,165

ܝ:00

.050

.020

.175.15 65 1828 . 2012 .2216 .2607 .2862

.220.2062.2265 .2579 .2669 .3230 .34 76

.285.2610.3071 .3353.3459 .3891 .4248

.338 .3155 .3570 .3746.3984 . 4651 .4919

.399 .3735 .4239.4221 .4625.5313.5524

.438 2943 .4390 4543 5034 .5651 .6045

.475 .4060.4800 .5262 .5150 ,6813 .6121

ܝ:ܘ 0

.005
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TABLE X

BETA DISTRIBUTION

N ܒ 15

PRIr >R ) s &

11

UPPER TAIL

0.CO -0.24 -0.42 -0.64 -0.96 -1.14
a /rı 0.c.

.900

܀600

.700

.600

.023 205.0194 .0127.0149 .0144 0063

.047 0422 .0404 0264 0313 .0256 .0164

.072 .0646 .0593 .0433.0465 .0364 0275

.099 .0870 0769.06400630 .0495 .0375

.129.1168 0986.0816.0800 .0611.0530

.164 .1439.1267 1043 1006 .07480748 .0696

.203.1773 1583.13591359 . 1225 .0960 .0886

ܝ500

.2278,253ܝܐ955ܕܙ781ܝܐ535ܕܐ182|ܐ097

.400

.200

.200

106

.050

.020

.323.2809.2606 .2258 . 2025 .16031472

.381.3313 3062.2687 2566 .1938.1897

.445 .4104 .3579 .3252 .2753 .2595 .2179

486 24276.3792 .3595 .3147 .3204 .2709

.522 4608 .3844 .3921 3303 .3688 2813

ܝܘܐܘ

.005

LOWER TAIL

x1/ܗ
0ܝ0ܝ 0.00 -0.24 -0.42 -0.64 -0.96 -1.14

.900

.800

.700

.023 0188 0231 .0291 0314 .0329 .0326

.047 0408 .0458.0525 .0560.0665 0764

.072.0627 0704 .0821 .0863 0944 1163

.099 .08 88 0931 .1075 1170 .1384 ܢܿܘ160930.

܀500

CO+ܝ

ܫܐ29ܝܐܐ1259.32.ܐܢܟܘ8ܝܐ569ܝܐ86ܐܝ226 O

.300

ܝ260

. 100

.050

.020

0.0

.005

.164 1485 1622 1771 1940 .2314 .2476

.203.1773 2090 .2237 2340 2797 3048

.253.2368 2565 .2845 .2865 .3439.3696

.323.2933.3301.3627 .3707 4201 .4453

.381 34 51 .3868.4089.4316 .4803 .5164

.445 .4093.4518.4624 .4890 .5664 5992

.486 .4398.4840.4951 .5226 .5877 .6197

.522 4650 5251 .5339.5471 .6842.6389

459



TABLE XI

BETA DISTRIBUTION

N : 15

»Rܐ PRܗ ( r

21

UPPER TAIL

w/x1
0,0 0.CO -0.24 -0.42 -0.64 -0.96 -1.14

.900

.300

.094 0850 .0788 0600 .0675 0460 , 0398

.138 1317 1139 0922.0946.0653 .0623

ܕ70ܘ 0802.8 % ܫܐ75ܝܐ1421.679ܐܐ89ܐܐ7ܐܝܘ8

.600

ܝ509

.400

ܝ30ܘ ܐܐܐ6ܝܐܪܐܐ

. 200

.208.1976 .1742.1449 .1390 .1073 .1006

.245 .22 74 .2011 1694 1603 .1278 .1168

.280.2637 .2255.2052 1848 .1455 .1328

.319 .2909 .2621 2322 .2168

.366 3326 .2988 .2673 2534 .2018 1779

.431 .4038.3604 .3324 .3004 . 2467 .2263

.483 .4481 .4069.3666.3391 .2911 .2722

.537.4925 .4773 .4163 .3869 . 3444 .3145

.574 .5187 .5111 .4462 .4036 . 3908.3367

.607 .5741 5415.4856 .4320 .4633 .3957

ooܫܪ

.050

.020

ܝܘܐܠܘ

.005

LOWER TAIL

ܗ/Yܕ
0ܝ0ܝ 0.CO -0.24 -0.42 -0.64 -0.96 -1.14

ܝܐܐ61ܝ230 ܕܬ1270230
.900

800

.700

.600

.500

400

.300

200

, 094 0861 0867 .1046 .1161

.138.1336 .1455 . 1453 . 1635 . 17821782 .2043

.175 1649.1848 .1874 .2050 .2328 . 2500

.208 1940 .2202 2281 2444 2830 .3080

.245 .22 32 2545 .2717 2758.3304 .3563

.280 .2553 .2861 3090 .3154 .3731 .4031

.319 .2974 .3353 .3576 3593 . 4255 .4435

.366.3417 3926.4084 .4171 .4739.5041

.431 .40.3 .4504 .4715 .4780 .5378 .5812

.483.45 23 .4822.5188 .5337 .5837 .6307

.537 .4950 .5491 .5768 .5846 .6532 .6842

.574 .5309.5883 .6181 .6237 .7050 .7200

.607 .55 56 .6138.6430 .6332.7393.7437

ܟܪܘܘ

050

J2cܫ ܫܘܐܘ

.005
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TABLE XII

BETA DISTRIBUTION

N = 15

PRI >R ) S a

22

UPPER TAIL

a /Y1
0.C. 0.00 -0.24 -0.42 -0.64 -0.96 -1.14

.900

.800

700

.600

.500

.400

.300

200

100

.050

20

010

.005

. 109,0935 0967 0746 .0764 .0525 .0480

.156 1440 .1322 1078 1068 0780 , 0734

.196.1903 .1623.1356.1373.1007 1001

.234 .2172.1988.1660 1617 . 1293 1194

.273.2522 .2291 .2004 1820 . 1504 .1371

.312 2864 2633.2319.2113.1744 .1586

.353 .3259 2916 .2565 .24842484 .2012.2012 1901

.402 .3661 3305 .3084 2388 . 2325 .2120

.472 .44 55 .3913 .3600 .3457 .2859 .2569

.525 4975 .4657 .4032 3860 .3402 .3047

.579.5352 .4990.4545 .4375 .3985.3508

.616 15765 5373 .4935 .4584 .4508 3346

.647 6157 .5717.5311 .4852 .5004 .4271

LOWER TAIL

a /r1
lo.c. 0.00 -0.24 -0.42 -0.64 -0.96 -1.14

.900

.800

.700

.600

.500

.400

.300

.200

.100

.050

.020

.010

.005

.109.0955 .0984 1144 1285 .1307 1365

.156 .14 80.1584 1627 1793 .1915 .2163

.196 1863.20391863.2039 2032 .2208 . 2448 . 2600

.234.2192 2455 2512 .2644 .3033.31 92

.273 2472 .2773.2965 .2965 .3497 .3757

.312 28 74 3153.3343 .3435 3968 . 4224

.353 .3243 .3577 .3773 . 3864 .4484 4671

.402 .3755 .4292.4353 .4437 .4944 .5239

.472 .4412 .4838 5058 . 5056 .5599 .5964

.525 .4944 .5248.5442 .5552 .6056 .6498

579 .54 70 5657 6177 .6204 .6858 , 7056

.616.5795.6172.6424.6446.7139.7390

.647 .5923 .6477 .6462 .6607 .7508 .7640

.
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TABLE XIII

GAMMA DISTRIBUTION

N 36

PRIE&ܗ > R )

10

UPPER TAIL

ܕ...
u/ xn

0.62 0.89 ܐ,00 ܐܝ;5 ܐܝܟܐܠ 2 , co

9ܘܘ

| 860

700ܙܐ2ܐ

.600

.500

.

odܝ

.300

.039 .0453 .0535 .0483 .0499 .0727..0710

.079 . 1023.1137 . 1025 .1047 . 1339 . 1455

. 1493 1539 . 1926 .2214

.164 2107 .2343 1990 2099 .2533 .2928

.210 .2632 .2922 .2576 .2709 .3179 .3687

.261.32
62 3437 3185 .3360.3

915 . 4389

.318.40 74.427
5.3871 .4221 .4645 5308

.386.47
01 .4977.4

930 .4994 .5414 .5132

.482.56
95 .5955.5

875.588
5.6302.

7130

560 .6702 .6773 .6616 .6507 .7092 .8088

644 .7417 .7380.733
3

.7249 .7895 .8497

.693 7618 .7761 .8036 .7929 8144 8756

.740.7854 .8056.827
4

. 8434 .8408.90
24

ܝ206

. 100

5oܫ

.020

,:o܀

.005

LOWER TAIL

0ܝ0ܝ 0.82

aly1
0.89 1.00 1 , ; 5 1.41 2.00

ܝ900

.800

.700

.600

.5000 . .

܀܀00

.300

.200

.038 0232 0255 .0305 .0237 .0172 0117

.079 .0508.0529 .0503 .0507 .03540354 0222

12 ! .0732 .0773 .0792 .0714 .0546 .0352

164 .1037 0994 .0323.0823,0518

.210.14 52 1528.1367 1048 0546

.261 1830 .1900 1699 1679.13100894

.318.2255 .2347 2119 .2044 . 1683 1262

5

.422.36
39.4029

.3748

.3469.2
842

.2574

.550.4
57.485

3.4640

.4037 .3444 .3270

.644 .55 73 5556.54
64

.4859 .4338 .4399

.698 .6253 .5813 .5946.5
366

, 4762.53
22

.740.64
44

.6919.6
387

5852 53 25 5828

ܝ:ܺܝܳܕ.,2874ܝ28,3103]3ܝ25?܀ܝ2:;7ܝ886 O .

ܝܐܘܘ

050

.020

ܝܘ1ܘ O

.005
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TABLE XIV

GAMMA DISTRIBUTION

N! : 6

PRIE 11 > R ) ܪܗ

UPPER TAIL

0ܝ0ܝ ܘ.62 0.89 ܐܝܘܘ

alr1
ܐܝ15 ܐܙܪܕ 2.00

0e4f|056ܝ6:06ܝ6810ܝ0604.0662.,88ܐ. ܙܐܐ3|ܐ286ܫܐ515

.ܫܐ309ܢܐ7,6،1632.230 .

.900

.800

.700

.600

.500

.400

200

.

aaJܝ

.169.1972 .2296.1868 1836 .2294 .2624

.227.2647 .3034 2552 .2638 .3019.3369

.288.3319 .36853162.32403668

.350.4058.4345.3839.4211 .4559.5027

.420.4766 5090 .4853.5003 5254 .5798

.502.5607 5941 .5706.5787 .6051.6051.6580

.609 66829.7026 .6788 .6534 .7193 .7684

.689.75 79.7837 .7589 .7375 7961 .8425

.763 .7993 .8418 .8325 , 8170 .8323 .8971

.305 .8220 .8768.8870.8793 8723.9283

.839 8513 .9231.8995.9071 .8982 9429

.. ; 56

ܝܘܪܘ

.020

ܝ01ܘ

o5ܫܘ

LOWER TAIL

|D,«ܝ 0.32 0.89 ܐܝܘܘ 1.15 ܕܨܟܕ 2.00

aly

.900 O

oܝ3ܘ ܝ;0747.13ܝ0857 ܝܐ69ܝ1159ܝܐ276

700..ܐ162

.600 .

ܝ500

.400

.300

. 200

.056 0333 0448 .0452 0383 .0304 0219

.0758 .0726 06150615 0426

1136 .0959 .0661

.227.1665 1775 1584 .1552 .1260.0975

.288.2147 .2187 2069 .1947 1646 1288

.350 .2773.2885.2608 2510 .2135 .1726

.420.328.3717.3164 .3064 2661 .2259

.502.3995 .4374 4100 3809.3244 .2894

.609.4970.5627 .5121 4744 .4176 .4128

.689.5893.6559.6126.5625.5625 .5347.5347 5008

.763 .6855 7403 .7372 .6683 .6351 .5640

805 .7770 .8347 .7731 .7477 .7134 .7671

.839.8150.8578.8318.7666 . 7767 .7840

ܝܕ00

.050

.020

ܝܘ1ܘ

ܝܘܘܪ
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TABLE XV

GAMMA DISTRIBUTION

N = 6

PRI r21 > R )
= a

UPPER TAIL

aly 10.c. 0.82 0,89 1.00 1.15 1.4 ! 2.00

.

.900

.200

.700

.600

.500

.400

.300

. 200

. 100

.050

.020

.010

.005

.268 .3243 .3152 .3060.3070 .34203420.36 : 2

.364 .4033 .4553 4153 3940 . 4599 .3085

.439.49174917 .5220.5220 .4885 .4939 .5460 .5929

.504 .5552 5791 .5604 .5788 .6066 .6375

.563 .6211.6367 .6314 .6475 .667 ! .7118

.621.6830.6988 .6838.6949.7103 7665

.680.74 53 .7500 7321 .75067505 9136

.745.8105.8009 .7991 .8102 .8164 . 8675

.821.8616.8658.8671 .8739 .8852 .9252

.872.8928.8960.9181 .91709170 .9262 9512

. 924 9231 9338.9587 .9559.9543 .9731

.95.9462 9664 9662.9545 9671 9761

.970.9662.9736.9742.9762 . 97499792

LOWER TAIL

alla
D.C. 0.82 0.89 1.00 1.15 1.41 2.00

.900

.800

.700

.600

.500

.400

.300

. 200

.100

.050

.020

.010

.005

.263.2056 2025 .1843 1913 1522 1044

.364 2805 2902 .2700 .2697 2271 .1946

.439 .3545 .3601 3220 .3419 .2882 .2436

.504 .4161 .4369.3836 .4062 .3366 2900

.563.4761 .4915 .4450 .4568.3923.3477

.621 .5448 .5526 .5163 .5193 .4682.4156

.660.5998.6130.5772.5865.5454 . 5002

. 745.6813.6846.5611 .5599 .6267 .5766

.82.7765 .7736.7909.7838.7336.3922

.872 8552 .8418 .8382.8403 .8275 7644

.924 9049 .8903 .8916 .9030 .8942 .8429

.951 .9487 .9164 9160.9385.9153.8824

.970 .9745 9434 9340 .9568 .9253 .9108
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TABLE XVI

GAMMA DISTRIBUTION

N 5 6

PR ( >8ܐܠ
I

22

ܗ

UPPER TAIL

Y/ܗ
Doc . 0 , 82 0ܕ89 ܕܘܘ ܐܝ;5 ܐܙܟܕ 200

ܫ930 ܂860 ܙ4ܬܐ1
ܝ4é84܂ܟܳܕܟܰܘ

ܝ168ܐ 700.ܝܐ326

. 500

.500

܀܀00

.300

.200

.410.4385 .4711 .4499

.540 .5787 5968 5518 .5719.6240.6420

.640.6702.6703 .6579 .6939

.720 74 26 .7385 .7329.7626.7594 .7916

.780.7944 .7927 .7941.7927 .7941 .8161 3061 8432

.830.8390 .3461 8441 .8592.8495 .6825

880 .8884 8929 .8774 .9023 8867 91 8C

.930 9310.9182.9192.9381 .9297 .9468

.965 9679 .9534 9610.9676.9614.9758

.983 .9853 .9918 .9819.9866.9763.9904

.992 9933 .9941 .9933 .9955 .9884 9970

.995 9950 .9974 .9965 .9976 .9925 .9989

.999.99 €0.9986 .99829984 .9963 .9993

ܝܬܘܘ

.050

.020

ܝܘܐܠܘ

.005

LOWER TAIL

ܐܕܘܘ ܝ43

ܝ6352

0.82

a /Y1
0 , [ .

/ !
0.89 1.15 2.00

.900 1 .410 .3562.410.3562.3423.2097 .3433.2939.2369

800 .540.48 40 4730.4327 .4763.4011 .3656

.700 .640 .5595.5607 .5443 .5657 . 4918.46 : 2

.600 .720 6335 .6148.5340 .5689.5418

500 .780.6933.7368 .68687082 .6477 .6278

.400 .830.76 79 7657 .7516.7758.7657 .7516 .7758 .7198 .7067

300 .880.8276.3247.81828382.7764 .7703

. 200 .930.8830.8779.88768949.8458.8490

.965.9439.9293.9371 94959188.9189

.050 .933.9769.9693.96199776.9516 9628

.020 .992 .9898 .9902 9647 .9899 , 9780

.995 9941 .9944 9921 9947 .9902 9962

.005 .998 19978 9979 9990 .9966 .9922 9980

idoܝ

ܝ9909

ܝo:ܘ
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TABLE XVII

GAMMA DISTRIBUTION

N ܐܘ

PR(ro >R ) - ܗ

10

UPPER TAIL

6,0ܝ 0.82 0.89 ܐܝܘܘ 1.15

d /x1
3,41 2.00

ܫ900

ܝ800

.700

ܝ603 ܝܕܐܘܝܕ1635.163.504܂1807

.500

܂ܕܘܘ

.025 .04 CO.0447 0382 .0359 . 0400 .0552

.051.0739 0817 0747.0821
.0842 1190

.080.1069 .1221 .1210 .1292 .1383 . 1723

.1807 1827 .2259

.142.1924 2021 2054 .2273.2383.30 ! 9

.178.2377 .2461 .2672 .2770 .3036.3607

.219.2901 .3009.3226 3393 .3612.4280

.273.3608 .3814.4021 4184 .4426,4977

. 349.43 !9.4715.5030 .5276 5359 .6 !62

.412.5027 5266 5511 .5898 .6073 .6979

.483 657 67 .6053 .6274 .6585 .6652.7458

.527 .6351 6357 .6589 .6819.6819 7121.7121 .787 ?

.568.6445 .6662.6882.7243 .7281.80.3

-300

200

0

oܝ:ܘ .

. 050

.020

ܝܘܐܘ

.005

LOWER TAIL

c/x1
0 , [ , 0. & 2 0.89 1.00 ܕܝܐܪ ܐܝܪܙ 2,00

.900

܀800

.

.700

.600

.500

. 400

.300

200

.025 .0151 0179 .0163 0150 .0096.0033

.051.0362 .0347.0299 .0289 .0204 .0077

.080 .0532 .0517 .0447 .0393 .0303 .0130

110 .0741 0726 0621 .0560 .0426 0202

. ! 42.0953 0918 60840 .0721 .0550 .0277

.178.1229 11681027 0932.0678 0376

.219.14491423 1291 .1177 .0885 .0491

.273 1852 1719 1658 1532 .1147.0643

.349.2420 .2291 .2301 2036.1619.0922

.412.30 73.2860.2743 . 2441 .2025 1270

433.3354 .3631.33713631 3371 2802 2671 .1575

.527 .3629.3993 3774 .3394 .3120 . ! 735

.568 3690 4483.3974 .3512.3445 1835

ܝܘܪܘ

.020 •

܀010

.005

ܐ

-

1
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TABLE XVIII

GAMMA DISTRIBUTION

ioܕ#

PRlr PR )

11

UPPER TAIL

all
|0ܕ0ܕ ܘܝ82 0.89 ܐܝ00 1.15 ܐܝܪܕ 2,00

.;;ܘ

acoܝ 09ܝܐ265 ܫ088ܐ|09ܐܐ4

700ܝܐ035ܝܐ:2

.600

.500

.00

300

.200

.030 .0435 .0507 0438 .0405 .0422.0576

.063 0829.0924 .0881

.098 1220 1384 1376 1478 1602

.134 .1678 .1839 1886 . 20062006.2009.2009.2346

! 73 .2220 .2335 .2315 2521 .2624 .3039

.216 .2675 2791 .2944 .3105 .3234 .3745

.265 .3275 .3404 .3551 .3797 .3870.4441

.325.3927.4221 .4365 .4508 .4742.5172

.409 . 4991 .5175.5454 .5653.5767 .6305

.477 5494 .5794.6118 .6340 .6404 .7276

.551.6458 .6443 .6619 6952 7094 .7714

.597 .6959 .6893 .7169 .7348 .7278 .7899

.639 .7200 7412 7473 .7725 7815 .8183

ܝܐܘܘ

.050

, 30

oioܫ

.005

LOWER TAIL

2/ Yg
0,[ܝ 9,62 0.89 1ܝ00 1,15 ܐܝܐ 2.00

.900

܀800

.700

܂.500

osܝܪ ܝ400 .1230,1277.172ܝ

.030 .02.1 .0236.0236 .0244 .0219 .0138.0052

.063 .0433 0473 0418 .0405 .0303 .0130

.093 0721.0709 .0618 0579 .0449 .0203

.134 0949 .0961.0852.0795 .0634 0293

. : 134 1019 .0774 .0406

.216 .1537 .1568.1385.1314 .0974 .0588

.265 1923 1944 1702

.325 .2459.2304 2108 2081 .1624.0970

.409 .3180 .3013.2985 .2598 . 218 ? 1421

.477 .3803.3769.3358 .3127.2619.1858

.551 .4277 .4534 4714 .3633.3816 2323

.597 .4716.5138.5006 .3858 .4028 .2845

.639 .4994 5336 .5449.4244 4391 3072

.200

.200

6ܫܐ23ܕ0760 : ܕܐ702ܐ9

.10ܘ

.050

.020

ܝܘܕܘ

ܝܘܘܪ
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TABLE XIX

GAMMA DISTRIBUTION

Nܕܐܘ

PR)-ܗ ( 21 >R

UP PER TAIL

c/ Yn
0 , C , 0.82 0.89 ܐܙ00 1.15 ܐܕ41 2,00

16.130.903܀6561.6ܙܐ2:511918894

. 500

.700

ܝ606

.500

.400

.300

. 200

.2265

.189.234
9.2521 .2599 .2771 3004 .3280

.240 .2934 .3166.320
6 .3431 .3582 .3963

.286.3456 3716.369
9.3992 : 4153.473

8

.329.3993 .4207 .4209.450
7

.4629 5256

.374 . 4614 .4674 4669 5023 . 5220 5831

.420 . 5766.6354

.474 .5619 .5728 .5955 .6197 .6296 .6943

.551 54 23 .6456 5606.6983.693 : .7589

.512.7103 .6878 .7209.7514 .759.8166

.678.7755.7550.7660.7975 .8004 .3510

.726.78 90.7686.8088.8196 .828.8827

.760.8346.79598174 8414 .8501 6926

ܝ܀26:ܝܪ35 6:5.ܪܐ576655755255.35

ܝܕܘܘ

.050

.020

.010

.005

LOWER TAIL

w/ x1
0 , [ , 0.32 0.89 ܕܝܘܘ ܐܕ15 ܪܨܪܕ 2.00

.963

.800

܂.760

.600

.500

. 400

ܝܪܘܘ

.130 .0923 09860933 .0885 .0763 0351

.189 1290 1306 1301 1222 . 1028.0567

.240.1743 1726 1617 1580.1286 0749

.286 .2048 2055 .1931 1818 ..484 .0935

. 329.24012401 2408.2408 .2230 .2185 .1749.1104

.374 .2934 2698 .2586 .2512 .2067 .9335

.420 3387 .307 ! .2960 2847 163 ?

.474 .3894 .3656 .3385 .3293 . 2813 . 2006

.551 .4510 .4429 .4116.3876 .3538 .2569

.612.5099 5048 .4791 .4488 .4288 .3124

.678.6154 5889 .5640 .5054 5024 .3930

.726.6751.6391 .6322.5609.5521 .4209

.760 7087 .6638.6746 ,6026 . 5785 .4629

. .2384 .

.200

oܝܐܘܘ

.050

.020

ܝܘ1ܘ

co5܂
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TABLE XX

GAMMA DISTRIBUTION

5Nܘ

PRIE22
> R , ܗ

UPPER TAIL

s/71
6.c. 5 , 32 0.89 1.00 ܐܝ15 ܐܝ4ܪ

2.00

.996

.800

.700

ܝܪܘܘ

.500

ܝ439

.300

.200

. 100

.6 ; O

.020

.010

.005

.150.1946 1882.2196 .2127 .2404 2424

.231 .2716 .2816.2954 .3122.3273.356

.285 3300 .3548.3544 .3766.391 ! .4327

.335.3856 .4138.4109.4367 .4511 5006

.384 .4480.4672.4622 .4943 .5039 .5520

.433 .5000 .5147 .5179.5503 5590.6084

.483 5610.5648 5705 .6078 .6183 .6548

.543 6192 6214 .6285 .6685 · 6670 7226

.620.6651.6370.7081 .7353.7484 8029

.682..7500 .7348 7662 .7907 .79 : 7 , 3502

.749 .80 78 8062 .8169 8329 8400 E 788

.791 .8349 .8319.8399.8579.8691 .8999

.826 8810 8597 8527 . 8708 .6870 9082

LOWER TAIL

s/71
!0ܝ6ܝ 0.82 0.89 1.00 1ܝ15 ܕܝܟ 2,00

900..:1258.1140,50ܝܐܐ98ܝܐ:59.ܐ6523.050

.869

.700

1

ܝ500

booܝ

.400 ܕܕ

3ܘܘ

1050

.23 ! 1697 1653 1598 .1573. 1598 .1573.1385 .0807

.285 2164 2136 2050 .2017 1700 .1043

.335 .2551 .2530 .2413 2381 .1974 1317

.384 .3082 2940 .2795.2698.2327 .1576

.433 3510 3303 .3239 2092 2646 1896

.483.4116 .3752.3645.3592 .3086 .2214

.543.4624 .4388.4222.4082 . 3638 .2674

.620.5397 .5175 .4883 .4368 . 4433 .3542

.682.5994 .6095 .5649 .5460 .5229 .4250

.749 .6866 .6629 .6499 .6136 .5971 5:72

.791 .7281 7042.7076 .6519 .6555 5842

.826 8212.7063.7444 .6746 .6745.6113

.200

ܝܐܘܘ

.050

.020

ܝܘܐܠܘ

.005
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TABLE XXI

GAMMA DISTRIBUTION

N 15

& d
PR {rio > R )

UPPER TAIL

C / Y
,

0,6ܕ 0.82 ܘ.89 ܐܫ00 ܕܝ15 : , 4 : 2,6o

3 : 0

ܝܘܘܘ . 0990

700

.533

.500

doܝ

.3 :

.200

.019.0340 .0263.0263 .0339 .0330 .0351 .0431

.040.0653 0563.0645 .0691 074 !

.062 0981.0865 0962 .1056 . 1184 .140 :

.085 1600

. 1557 1760 1857 2033 .2409

. ! 41.2189 1901 .2211 .2293 .2570.2970

.175.2586 2425 .2756 .2863.3162 .3707

.220.3140.3159.3358 .3611.3861.4452

..285.3890.3947.4249.4423 .4764 5327

.333 .4499 .4646 +354 .5055 .5561 .5910

.399 5068.5068 .537.509.5535.6232.6915

.438.5414 5649.5781 .594.5678.7512

.475.5769.5859.6267 .6126.6997 .7628

ܝ:03 ܘ050

c020

܂ܘܕܘ

.005 .

LOWER TAIL

; 00ܝ

aly ,
0.82 0.89 ܙܝܘܙ 1ܝ15 ܕܝܪܕ 2.00

. 900

.300

.700

ܝ3ܘܘ.

sonܫ

ܝܳܢ30

܀30ܘ

.019 .0123 .0103 .0116 .0090.0069 .0027

.0400269 .0202 .0237 0190 . 0145 .0046

.062.0416 0315 .0370 .0284 .0214 .0076

085 .0578 .0433 0511 0394 0287 01 : 7

. !!! .0705 .0572.0639 .0513.0366 .016 !

. !4.082.0751.0796.0638 0464 0210

175 1099 0915 0982.0798 . 0623.0276

.220.1352 1205 1226 1017 0934 .0250

.285.1819.1564 .1598 .1349 . 1108 .0555

.2208.1964 1900 1681 1376 0698

.399 .2813 .2480.2407 1930 .1723.1007

.433.31 24 2704 .2757 .2272.1985.1307

.4 75.3543 .2339.2854 2377 .2332 .1463

.200

ܫܐ30

܂.50 .333

.020

ܝܘܢܘ

ܝܘܘܪ
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TABLE XXII

GAMMA DISTRIBUTION

N = 15

Prirl1
ܶ>ܐ

ܗ

UPPER TAIL

|0ܕ0ܕ ܘܨ82 ܘܝ89

z/x1
1.00 1.15 1.41 2.00

.900

.333

.023 .0362.0297 .0370 .0364 .0372.0449

.047 0731 .0509 .0693.0759 .0795 .1003

sp?ܝ ;;o:0964ܝܘ72ܕܐܐܕܛܝ . ܝܐ29ܝ:2܀8ܝ!?:

600.ܝ:552

.500

.400

.300

.200

.099 1528 1313 .1494 .1684 1982

.129.1920 1674 1907 1984 2185 2450

.164 23 50 2079 .2386 .2413.2686 .3031

.203 28 22 2582 29233066 3254 .3801

.253.3454 .3356 3616.3811 .4030 .4519

.323.4.78 .4242.4483 .4593.4954 .3432

.381 .4776 .4841 .5126 53835383 .5820.5820.5245

.445.5309.5595.5587 .5778.5778 .6515 .701 ?

.486 .5796 .6098.5988 6237 .6976 .7572

.522.61 38.6292.6508 .6413.7217 .7703

ܝܪ0ܘ

.. ; 50

020

010

.005

LOWER TAIL

0ܝ0ܝ ܪܝ00 ܐܝܟܕ

܂936

0,82 0.89 1.15

a /y1
2.00

.023 .0171 .0123 0170 .0127 .0100 .0040

.800 .047 .0332 0263.0317 .0244 0201.0072

.700 .072 .0525 .0406 .0465 .0365 .0295 .0117

.600 .099 .0742 0536 .0632 .0520 .0373 0166

500 . 129.0923 0715 0788 .0685 0508 0227

.400 .164 11 !3.0944 . 1032 .0814 .0653 0300

.300 203 .1 350 .1 : 56 ! 261 . 1019 .080 ! .0376

.200 .253.1605 .1404 1590 1335 .1082 0493

.323 .22.0 .1935 .2005 1745 .1436 .0719

.050 .381 .2778.2433.2453.2067 .1805 . 1024

020 .445 33 75 2923.2879 .2541 .2183.1290

.486.384 ! .3295 .3081.2885 .2411 .1564

.005 | .522 .4126 .3547 .3214 .3081 .2938 .1502

:

ܝ;ܘܘ

oioܝ
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TABLE XXIII

GAMMA DISTRIBUTION

V : 15

ܗ
PRO > 8 )

21

UPPER TAIL

c/yܕ|ܕ... 9. 82 0.89 ܐܝܘܕ 1.15 1.42 2.00

.900

.600

. 700 0 .

܀609 .208

.500

. – 60

ܟ300

.094.1296 12461246 1329 1342 .16701670.1959

.138 .1926 1787 1862 .1950 .2247 2663

.175.2435.2379 .240 ! 2446 2854 .3232

.2833 2831 .2902 2852 .3337 . 3816

.245 .3251 .3251 .3409 3353 .3896 . 4286

.280.37 26.3746 .3919 .3928 .4392 4771

.319 .4247 4226.4410.4493 .4884.5296

.365 .4754 .4710.4959.5038 5443 5940

.431.53 52 5410 5609 .5850 .6212.6522

.483.58 86.5343 .6202.6312.6769.7143

.537 .6353 .6803 .6645 .6677 .7445 .7718

.574 .5750 7164 .6973 .7007 .7936 .7999

.607 .7013.7227 7663.7264 .7977 .8134

200

. : oo

.050

.020

;

ܝܘܕܘ

.005

LOWER TAIL

0ܝ0ܝ 0 , 32 0.89 ܐܝ0ܘ 115 ܕܨܟܕ 2.00

alla

9caܝ ܙ

s00܀

ܝzoo;.:75ܝ:293

ܝ:094,1:23,283܂ܝ9451

ܝ500 0544.C0?:3391.5 17ܫ:494-:6: :2.2 ܝ5

& os

, 400

.336

.200

.094 0658 .0593 .0555 .0521 .0432 .0172

.138.09790228.0829.0785 0500 .0262

1293 .1077. 1077 1058 .0967 0770 .0368

.208.15 29.1303 ; 0451

.245

.280 .1956.1769 1793 1555 1203 .0657

.319.2222 .205 ! 2088 1793.1547 0807

.366 2552 .2444 2453 2142.1793 0995

.431.3203.2918.2936 .2512 .227 . 1360

.483.35 73.3419.3273 2859.2554 . 1594

.537 .4169.3777 .3612 .3589 .2927 2033

.574 .4545 .4146 .4038.3752 .3084 .2335

.607 .5040 .4885 4327 .4313 .3541 .2409

;o:ܝ

050

.020

ܝܘܐܘ

.005
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TABLE XXIV

GAMMA DISTRIBUTION

N 15

PRlr (R<܂ ܗ

22

UPPER TAIL

alre ....
ܘ,? 0.39 ܕܝ00 ܐܝ35 ܐܕܪܐ 2.00

܀;:ܘ܂ܕܘ9ܝ1ܟܐܝܐ142,392:.34ܳܝ5ܕ1583ܝ2030

܂80

. 700

ܝܪ0ܘ

ܙ500

osܝܳܕ

. •.300

200

. : 56 .2146.1966.2001 2081 2515 2745

.196 2607 2585.2585 .2553 .26032553 . 2603 2994 .3365

.234 .3077 .3045 .3086 .3051 .3530 3902

.273.3429.3553 . . 3563 4359

3 : 2 .3989 .3939 .4093.4093.4136.4573 4979

353 .45 20.4514 , 4647 . 4764 .5096 5404

.402.5051 .4986 .5249 .53395249.5339.5694.6056

.472 57 : 7 .5665 5886 .6150 .6459 .6775

.525 .6190.6294.6390.6528 .6990.7293

.579.6732.6866.5936 .6967 .7551 .7765

616 6935 .7294 .7267 .7269.7926 .8035

.647 .75.4 .7752.77
81

7348 . 50 : 9 8 278

ܝܘܘ

.050

.020

0 : 0

, 005

LOWER TAIL

c / y ' De Co ; . 32 0.59 ; , 60 ; , 35 ' .- ; 2.00

. 500 . : 09 .0736 0735 0649 0636.0636 .0537 .0223

.155 .1179 .1022 . 1018 0919

.195.1521 1283.1278 1137 0992.0474

.30ܕ.,,6755ܝ0355

ܝ700

܂.630

܀563

ܝܰܟ00

.23%܂ܕܐܪܪ܂15.1524;ܝ:35?;:971ܝ0559 ܝ;

300..2171,2402ܝܐ708

.200

ܝ:39

.273.1993 1822.1764 1592 . ! 364 .0720

.312 .2261 .2160 2087.1327 1616 .0846

353 .257 ? 2448 3 C3 3

.402.3027 29 : 6 28202916 .2820.2493.2134.1256

.472.3617 .3478.3447.2877 .2635 1628

.525 .4246.3541.3843.3530 .2014 1905

.579.4701 .4433 .4280.4177 .3656 2501

.616.5227 .4800.4676.4403.3955 2333

.647 .5442.5258 .4969 .4579 . 4055 .3124

..050

20

. , ; ;

. 055
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APPENDIX B

TABLES LISTING SIGNIFICANCE LEVEL AT WHICH

BETA AND GAMMA STATISTICS DIFFER FROM

NORMAL STATISTICS
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T.3LE XXV

KOLMCGOROV - SWIVOV GOODNESS - OF - FIT TEST RESULTS

C -.24 -.42 -.54 -.96 -1..4

ชา

270

11

27

22

V.S , 0

.S . .01

N.S. .0 :

.ON

UPPER TAIL

, 01 .01 .01

.01 .01

. : .01

10 : .O i , 01

02

.01

.01

.0i

.0i .

.05 .

rio

ri?

LOWER TAIL

N.S. N.S , 10.01 .00

N.S , V.S. N.S. .0 ! .0 :

ii.S. V.S. 05 , 03 .0 :

N.S.V.S. N.S. .01

.0 !

.0 :

.0 !

N.S.
27

22

V = 10

90 N.S. .07

i N.S. .01

r27 p.s.M.S. .0 :

722 N.S. , ci

UPPER TAIL

, 01 .01 .62

. : .01 , 21

.01 .02

.01 .01 .01

.01

.0 :

.0

.0 !

.0 :

ro

971

40 .01

LOWER TAIL

N.S. .01 .01 .61

N.S. 0 ; .0 ! .C :

N.S. .01 .01 , 0 i

N.S , , 01 .01 .0 !

CI

.0ܕ01.

2.ند .

ra

22 .C !

N = 15

ro こう.ܝܘ܀

.05
11

21

22

.0

.02

.0

.01

UPPER TAIL

, 01 .01

.0 : C :

.0 : .0 : .01

. :

,

.0 !

.0

r
.0 :

10.05 0 :

LOWER TAIL

Nis . , 05

1. S. 1S .
rii

21
r

22

05

0

.0 !

1.5 . 02 0 :

N.S , .0 : .01 .01

N.S. .05 .01 .ū

0 .

.01

* V.S. MEANS NOT SIGNIFICANTLY DIFFERENT

FROM DIXON'S VALUES AT 10 RISK LEVEL OR LOWER
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TSILE XXVI

KOLHOGOROV - SMISNOV GOODNESS - OF - FIT TEST RESULTS

[Y.49;.03:::5ܐ.ܳܝܐܬ.ܘܘ J . “ ? c

! 6

*:ܘ

UPPER TAIL

... .0 ! .01

.01 .01

ܝܘܐ

ܝ0ܕ

?dܝ

܀0ܐ

:oܝ 0ܙ

.ܘܬ

ܝܘܕ

in
r

21

22

܀20:9; ܝ01 !Gܝ

ܝ01

ܝܘܕ ܝܘܐ

1 , S , .65 N.S.

LOWER TAIL

rro
.01 10ܕ ܙ5ܕܝܘܕ

ܝ0: , 03

ܝ01,01 ܝ0!

ܝܘܕ ܝ01

:oܝ ܝܘܪ

oiܝ

1o܂ ܝܘܕ

.0

01.C1

.01

01

.01

.

21

22
10 ; ܝܘܐ

N ܶܪܘ

UPPER TAIL

10
ܝ: C0ܕ :

C :r ; 20 i .3 :

ܝ0ܙ

ܝ63

ܝܘ

܂ܘܐ

:Cܝܘܐܝ ܝܘܕ

ܝܘܐ ܝܘܐ

:Oܝ

27

ro

22

ܝܘܕ

ܘ:

ܝܪܕ

:oܝ

:o܂ ܝܘܐ

.0ܕ

Q

LOWER TAIL

.01 .3 :

, 0 : .01

ܝܘܕ

Oܝ0ܕ

fo

:

27

22

11

ܝܘܕ

ܝ;!

ܝ0!

ܝܘܕ

:Cܝ

ܝܘܐܠ

ܫ0ܐ

.0 :

.010 :

.01

ܝܕܐ

ܝܘ:

ܝ::

ܫ0ܐ ܝܘ

N 15

UPPER TAIL

. C ! :oܝ ܝܘܕ .01

0

; 1
r

21

ro

22

.03

. & !

ܝܘܐ

ܝ01

ܝܘܕ

ܝ0ܕ

ܝ0ܐ

!oܝ

:oܝ 51.ܝܘܕ

.01

ܝ0ܐ

. 6 ::o܂

ܝ01ܝ0ܕ ܝ0ܐ .01 ܝܘܕ

LOWER TAIL

ܝܘܕ ܝܘܕ
f - 0

fi

Cܪ ܂ܪܕ

01 .01O?

. 0 :

ܝ0,01; ܝ31

,;ܕ

ܝ01ܝܘ!

ܝܘܐ ܘ:

ܝܘܕ ܝܘܬ

ܝܘܕ

'Qܝ

ܝ0ܕ
21

*
ri ܝ0ܕ .01 03

22

* V.S. MEANS NCT SIGNIFICANTLY DIFFERENT

FROM DIXON'S VALUES AT 10 RISK LEVEL OR LOWER
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APPENDIX C

MACHINE PROGRAMMING OF DISTRIBUTIONS
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START

AGAIN

ALPHA

1.0

JERRY THOMAS BETA DISTRIBUTION

BLOC (RR - RR600 )

BLOC ( QQ -OQ599 ) HH- HH599 )BB - BB599 ) $

BLOCICC -CC599 )DD - DD599 )EE - EE599 )

BLOCAZZ -ZZ 1300ZZZ - ZZZ13 )

BLOC IQ - Q600 )

BLOCINI -N801Y1 - Y40 ) GG1-GG400 )A1- A40 )81-840 ) $

SYN ( x1 = N2 ) GX =GG1)GY =GG101)GZ =GG201 )GW = GG301 )

ENTER ( SETOPO )

READCRCC ) $ ENTERICUFTOII ( RCCI ( RC )

zzz = .90 $ 22 ! = . 80 $ 2222 = .70 $ 11 3= .60 $ lil += . 50

2125 =.40$ 1226-30 $ /i27=.20$ liz8 = 10 $

1129 = .05 $ 11 / 10 = .02 $ 112 ! 1s015 12 = .005 $

SET ( HP = 1 ) W = 15 ) G= 0 ) $

READ-FORMAT ( H ) - ( 80 )NOS.AT (NI ) $ STOR = 08

INC ( HP= HP + 1 ) $

NEX= 09 $ ENTERPRINT B )

MM= 0 $ MMM = 0 $ SET ( WW =0 ) $ ENTERPRINT 8 ) $

ENTERIZEROCC ) $ SET ( ALP= ALP1 ) ( BTA = BTAI ) $

SET ( K = 0 ) L = 0 ) $ EPS = .00001 $

N= N1 , K $ X = X1 , K $ DE C $ IF ( X < 100 )GOTO ( 1.1 ) $

IF ( N - X < 2 GOTO ( 1.1 ) $ Y= X /N $ GOTO ( 1.7 )

A= 1 / ( N + 1 ) $ B= 1 $ C = X + 1 $ J = N - X $ I = 1 $ INT ( RBERB *RA ) $

BRL ESC $ 88 ( R8 ) ( / OOMMM ) (RB ) $

ENTER ( CVXTOF ) (RB ) ( R )

IF ( B > J )GOTO ( 1.3 ) $

A= A * B/ C5 B = B + 15 C = C + 1 $ GOTO ( 1.2 )

A = ASGOTO ( , BTA ) $

YY = Y / ( 1 - Y ) $ F = ( 1 - Y > $

IFTYCOOR ( Y > I )GOTO ( 2.3 )

SS= EXP ( X* LOG ( Y ) + J * LOG ( F ) )

D = D + 1 $ IF ( D > 50 )GOTO ( 2.0 )

IF ( D >47 )GOTO ( 2.1 )

IF Y > 95 )GOTO ( 1.8 )

S= SO = SS * Y / ( x + 1 ) $ I = 1

IF ( I = 3 + 1 )WITHINC.001 ) GOTO ( 1.6 )

S = S * YYJ- 1 + 1 ) / ( x + + 1 )

SO = SO + S $ = [ + 1 $ GOTO ( 1.5 )

GOTOGALP ) $

ET= ( SO - A * R ) / SS $ IF ( D > 2 ) GOTO ( 1.61 ) $ ET = ET / 2

Y = Y - ETS IF ( Y = 1 )WITHIN ( .0001 )GOTO ( 1.7 ) $

IF ( Y> 1 )GOTO ( 2.4 )

1

1.2

... 3

1.4

1.41

3.43

1.5

06

ALP3
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1.65

1.7

17.8

TSTFWD

10.44

10.22

11.55

IF - ABSTETXEPSIGOTO ( 1.4 )

IF ( Y > I )GOTO ( 2.4 ) $ Yl , L = Y

INC ( K= K + 2 ) $ INC ( L = L + 1 )

IF - INT ( L < STOR )GOTO (1.0 ) $ INC (RESCERESC + 1 )

SET ( M = 0 )

MM = MM +Y1 , M $ MMMNMMM + ( Y1 , M * Y1 , M ) $

COUNT ( W ) INOM ) GOTO ( 17.8 ) $ SET ( M = 0 ) $

IF ( Yi , M < = Y2 , M )GOTO 110.221

Y50 = Y1 , M $ Y1 , M = Y2 , M $ Y2 , M = Y50 $ P = M

IF - INT ( P = 0 )GOTO ( TSTFWD ) $ INC ( P = p - 1 )

IF ( Y ) , P < = Y2 , P )GOTO ( TSTFWD ) $

Y50 = Y1 , P $ 71 , p = Y2 , P $ Y2 , P = Y50 $ GOTO ( 10.44 ) $

COUNT ( W- 1 ) IN ( M ) GOTOITSTFWD )

Q , WW = { Y , W - Y , ( W - 1 ) ) / ( Y , W-Y2 ) $

BR , WW = ( Y , W -Y , ( W - 211/ 1Y , W - Y2 ) $

QQ , WW = ( Y , W - Y , ( W - 1 ) ) / ( Y , W-Y ! ) $

HH , WW = ( Y2- YI ) / ( Y , W - Y1 ) $

EE ,WW = ( Y3 - Y1 ) / ( Y , ( W - 2 ) -Y1 )

CC , WW = ( 93- YI ) / ( Y , ( W- 1 ) -91 ) $

DD , WW = ( Y , W - Y , ( W - 2 ) ) / 1Y , W-Y3 ) $

RR ,WW = ( Y2 - Y ! ) / ( Y , ( W- 1 ) -91 ) $ INC ( WW =WW + 1 ) $

IF - INT ( RESCURC )GOTO (ALPHA )

ENTERICVITOF ) ( W ) ( FQ ) $ DI O =MM / ( FQ *600 ) $

SID = ( FQ * 600 * MMM - MM * MM ) / (FQ * 600 ( FQ* 600-1 ) ) $

PRINT MEAN = >DID VARIANCE = > SID

SET ( P = 0 )

SET ( M = 0 )

IFIQQ , M < = QQ1 , M ) GOTO ( 3.22 )

Y50QQ , M $ QQ , M = QQI , M $ QQ1 , M = Y 50 $ L = M

IF - INT ( L = 0 )GOTO 13.0 ) $ INC ( L = L - 1 )

IFIQO , L < = QQ1 , L )GOTO ( 3.0 ) $

Y50 = QQ , L5QQ , L = QQ1 , L $ QQI , L = Y505 GOTO 13.115

COUNT ( 599 ) IN ( M ) GOTC ( 3.0 )

ZZ , G= Q059 $ ZZ1 , G = QQ1195 ZZ2 , G = QQ179 $ ZZ3 , G = Q0239

ZZ4 , G= QQ299 $ ZZ5 , G = QQ359 $ 226,6 = QQ419 $ 227 , G =QQ479

ZZ8 , G= QQ539 $ ZZ 9 , G = QQ569 $ Z210 , G= QQ587 $

ZZ11, G = QQ593 $ ZZ12 , G = QQ596 $ INC ( G = G + ! 3 ) $

INC ( P = P + 1 ) $ IF - INT ( P > 7 )GOTO ( 18.69 ) $

IF- INT ( P = 1 )GOTO13.3 ) $ IF- INTIP = 216OTO13.41 $

IF - INT ( P = 3 )GOTO (3.5 ) $ IF - INTIP = 4 )GOTO13.6 )

IF - INT ( P = 5 )GOTO (3.7) $

IF - INT ( P = 6 )GOTO ( 3.03 )5IF - INT ( P = 7 )GOTO13.8 ) $

MOVE ( 600 ) NOS FROM (FH ) TO ( QQ ) $ GOTO ( 3.01 )

MOVE1 600 )NOS . FROM ( Q ) TO ( QQ ) $ GOTO13.01 )

MOVE 1 600 ) NOS . FROM (RR ) TO ( QQ ) $ GOTO ( 3.01 )

MOVEI 600 INOS . FROM ( 28 ) TOI QQ ) $ GOTO13.01 )

MOVE 1600 )NOS . FROM ( CC ) TOIQQ ) $ GOTO13.01 )

MOVE ( 600 ) NOS . FROM ( CD ) TO ( QQ ) $ GOTO 13.01 )

3.11

5.01

3.0

3.1

3.22

3.3

5.4

3.5

3.6

3.7

3.03

479



3.8

18.69

..8

2.0

2 .:

2.2

2.3

2.4

2.5

2.6

MOVE ( 600 )NOS.FROM ( EE ) TO (QQ ) $ GOTO 13.01)

PRINT RB >

ENTER ( SEXAPR ) (RB ) ( RB )

CLEAR (400 )NOS.AT(GG1 ) $ SET (RESC = 0 ) $ V = 0 $ VA= 0 $

M3 = 0 $ UA= 0 $ UB= 0 $ UC = 0$ UX = 0 $ UY= 0 $ UZ = 0 $ M4 = 0 $

M1 = 0 % M2 = $UD= 0 $ UW= OS SET ( K = 0 ) L = 0 $

IF- INT ( HP > 6 ) GOTO ( 16.11 ) $ GOTO ( AGAIN ) $

S = SO = SS * FI ( +1 ) $ 1 = 1

S = S ( X - 1 +1 ) /YY ** | J + +1 )

SO = SO + S 5 1 = 1 + 1 $ ( F ( 1 = < x + .001 )GOTO11.91

SO= A- S05 GOTO11.6 )

PRINT ERROR

PRINT ( R )YNX ) ET ) $ GOTO ( 1.0 )

PRINT ( R ) Y ) N ) X ) ET ) D ) $ GOTO ( 1.43 )

Y = EXP (LOGIR ) / ( N + 1 ) ) $ GOTO11.7 ) $

PRINT (YN) X )RET ) D ) $ GOTO ( 1.41 )

SET ( PP = 0 )

ET = ARSCET / 2 ) $ Y = Y - ET $ INC ( PP PP + 1 ) $

IF- INT ( PP > 20 ) GOTO ( 2.6 ) $ IF ( Y> 1 )GOTO ( 2.5 ) 6

IF ( Y = 1 )WITHINC.CO01)GOTO (1.7 ) $ GOTO ( 1.65 )

CLEAR ( 400 ) NOS . ATIGG1 ) $ SET ( RESC = 0 ) $ V = 0 $ VA = 0 $

M1 = 0 $ M2= 0 $UD= 0 $ UW= 0 $

M2 = 0 $ UA = 0 $ UB= 0 $ UC = 0 $ UX = 0 $ UY= 0 $ UZ = $ M4= 0 $

IF - INT (HP > 6 ) GOTO ( 16.11) $ GOTOT AGAIN ) $

FORM ( 3-14 ) 12-4 ) 3-211-1112-613-1 ) 1-6 )

FORM ( 10-10 ) 10-10 )

SEXABRLESC TOOL7NJ68L3K 5LS003 ) $

SEXABRLESC ( 00422NK 8 SOK COK 425 )

Y = ( x - 1 ) / N $ A = A ' ( N + 1 ) / X $ X = X - 1 $ GOTO ( 1.4 ) $

X = X + 1 $ IF ( N < X + 1 +.001 )GOTO (BT2 : 1 ) $ Y= ( x + 1 ) / N

A = A ' ( N + 1 ) / ( N - X ) $ J = J - 1 $ GOTO ( 1.4 ) $

SO = A = 1 $ GOTO ( , ALP ) $

Y = X / N $ IF ( N = X ) WITHINC.001)GOTO (2.2 ) $ GOTO ( 1.4 ) $

Z1 = ( x- 1 ) / N $Z 2= ( x + 1 ) / N $ IFIZ 2 < 1 ) GOTOI2.7 ) $ 22 =1

Y = Z1 + ( Z2-21) ( R - A1 , L ) / ( B1 , L - A1, L ) $ GOTO ( 1.7 )

A1 , L = SO / ASSET ( ALP = ALP2 )GOTO (BTA2 ) $

B1 , L = SO / A $ INC ( K = K + 2 ) ( L = L + 1 ) $

SET ( ALP = ALPI ) (BTA = BTA1) $

IF - INTIL STOR GOTO ( 1.0 ) $

SET ( ALP = ALP3 ) (BTA = BTA3 ) GOTOLALPHA ) $

SET ( M = 0 ) K = 0 ) $

PRINT- ( F5 ) - ( ZZZ , KI ( 6 ) NOS . ATIZZ , M / 208 ) $

INC ( K = K + 1 ) $ INC ( M = M + 1 ) $

IF - INT ( M > 207 )GOTO ( N.PROB ) $

IF - INTIK ( 13 ) GOTO ( 14.4 ) $ SET ( K = 0 ) $ GOTO ( 14.4 )

LIST

END GOTO ( START )

5

H

2B

RA

BTA1

BTA2

BT2.1

BTA3

2.7

ALP1

ALP2

16.11

14.4
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JERRY THOMAS GAMMA DISTRIBUTION

BLOC ( U -U600 ) V - V600 ) W - W600 ) XX - XX600 )

BLOC ( 0-0500 ) RR-RR600 )

BLOC WW -WW500 ) VV - VV600 ) X - X700 ) EE - EE12 )

BLOCI S - 550 ) Y - 750 )

SYN ( Z = 09611CV= 087 ) ( ZZ =G1 =088 ) ( G2 = 089 ) ( j = 02 ) $

SYN ( ZI = OSS ) ( T1= 08K ) )

START READ- (F1 ) - (NRM ) $

ENTER ( SETDPO ) $

EE? = . 25 EE8 = . 1 $ EEG = .05 $ EE10 = .02 $

EE = .95 EE1 = .85 EE2 = . 7 $ EE3 = , 6 $ EE4 = .5 $

EE5 = .45 EE6= . 3 $

EE115.0 ! $ EF 12 = .005 $

SET ( HP = 0 ) $ SET ( H = 0 ) $

PRINT ( 23 > < R > 14 > ALPHA > 19 > < z > 17 > $$

2.3 READ- ( F2 ) - ( A ) $

INCI HP= HP + 1 )

SET ( E = ) P = 0 ) D= 0 ) $

IF- INT ( 09 = 0 ) GOTO110.0 ) $ SET ( K = 0 ) $

IF ( A = 0 )GOTO (2.2 ) $

SET I FL = 1 ) $ A ' = A + 1 $ ENTERILGAMMA )A. ) LGA ) $

ENTERICVFTOTAAI ) $

GOTO ( 2.3 ) $

2.2 SET ( FL = 2 ) $

2.25 SET ( K= 0 ) 5

2.3 B4 ( IR2 ) ILLZ ) ( IR2 )

2.3 MXR ( IRITIR210 ) $ SHR ( O ) O ) IR2 ) $ R = IR2 $

TP ( / 77L ) IZLL ) R ) $ A ( R ) 050 ) R ) $

IF ( R> I OR (RO)GOTO ( 11.0 ) $

GOTO , FL ( 2.4 ) 2.8 ) $

2.4 Y = A $ CFY = 1 - R $

2.5 S = EXP ( A * LOGIY ' ) -YI - LGA ) $ SET ( 1 = 1 ) $ CON = 0 $ SUM = SO

2.5 S , I = ( A - CON ) * S , ( I - 1 ) / Y $ SUM = SUM + S , I $$

CON = CON + 1 % COUNT AI + 1 ) IN ( I )GOTO (2.6 ) $

DY= (CFY - SUMX/ S $ y ' = Y -DY $

IF - ASS -NOT (DY < .0001)GOTO12.5 ) $ GOTO ( 3.0 ) $

2.8 Y ' = - LOGII - R ) $

Y , K = y's

COUNT ( M ) INOK )GOTO / 2.3 ) $ SETIK = 0 ) $

TSTFWD IF ( Y , K < = Y1 , K ) GOTO ( 10.22 )

Y60 = Y ,KY, K = Y1 , K $ Yl , K = Y60 $ PEK $

0.44 IF - INT ( P = 0 )GOTO ( TSTFWD ) $ INC ( P = p - 1 ) $

IF ( Y , P < = Y1 , P ) GOTO ( TSTFWD ) $

Y60 = Y , P $ Y , P = Y1 , P $ Y1 , P = Y60 $ GOTO ( 10.44 ) $

ژد0
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10.22

10.331

9.5

1.1

11.44

1.22܀

COUNT ( M - 2 ) IN ( K ) GOTO ( TSTFWD )

Q , E = ( Y , ( 4-1 ) -Y , ( M - 2117 ( Y , ( M- 1 ) -Y )

U , E = ( Y , ( M - 1 ) -Y , ( M - 21 ) / 1Y , ( M - 1 ) -Y1 ) $

V , E = ( Y1 - Y ) / ( Y , ( M - 2 )-Y ) $

W , E = ( Y , IM- 31 - Y , ( M - I ) ) / ( Yl - Y , ( M - 11 ) $

XX , E = ( Y2 - Y ) / ( Y , ( M - 2 ) -Y )

WW , E= ( Y , ( M - 3 ) -Y , ( M - 1 ) ) / ( Y2 - Y , ( M- 1 ) ) $

VV , E = ( Y2 - Yilly , ( M - 31 - Y )

RR , E = ( YI - Y ) ( Y , ( M - 1 ) -Y ) $ INCI E = E + 1 ) $

COUNT (NR ) IN ( D )GOTO ( 2.25 ) $

PRINT R10 LOWER )

SET ( P = 0 )

SET ( E = 0 )

IF (RR , E < =RRI , E GOTO ( 11.22 )

Y60 = RR , E $ RR , E = RRI, E $ RRI , E =Y605 L = E

IF - INT (LEO )GOTO (11.1 ) $ INC ( L - L- i )

IF ( RR , L < = RRI ,LIGOTO ( 11.1) $

Y60 = RR , L $ RR ,LERRI , L $ RR !, L = Y60 $ GOTO ( 11.44 ) $

COUNT (NR - 1 ) IN ( E )GOTO ( 11.1 )

X , HERR59 $ x1 , HERRI 19 $ x2 ,HERR 179 $ X3 , H = RR239 $

X4 , H= RR299 $ X12 , HERR 596 $

X5 , HERR3595 X6 , HERR419 $ X7 , HERR479 $ X8 , HERR539 $

X9 , H= RR569 $ X10 , H= RR587 $ X11 ,HERR593 $

INC ( H = H + 13 ) •

INC ( P= + 1 ) $ IF- INT ( P > 7 ) GOTO1 6.31

IF - INTIP = I )GOTO ( 3.31$ IF - INT ( P = 2 )GOTO 13.4 ) $

IF- INT ( P = 3 )GOTO ( 3.5 ) $ IF - INT ( P = 4 )GOTO13.6 ) $

IF - INT ( P = 5 )GOTO ( 3.7 ) $

IF - INT ( P = 6 )GOTO ( 3.8 ) $ IF - INT ( P = 7 )GOTO 13.9) $

MOVE (600 )NOS . FROM ( QITO ( RR ) $ GOTO ( 9.5 )

MOVE (600 )NOS . FROM ( U ) TO ( RR ) $ GOTO ( 9.5 )

MOVE (600 )NOS . FROM ( V ) TO ( RR ) $ GOTO ( 9.5 )

MOVE 1600 )NOS . FROM ( W ) TO ( RR ) $ GOTO ( 9.5 )

MOVE ( 600 )NOS . FROM ( XX ) TO ( RR ) $ GOTO ( 9.5 )

MOVE1600 )NOS . ROM (WW ) TO (RR ) $ GOTO ( 9.5 )

MOVE1600 )NOS . FROM ( VV ) TO ( RR ) $ GOTO 19.5 )

IF - INT ( HP < 6 ) GOTO ( 2.1 )

SET ( H = 0 ) ( P = 0 )

PRINT- ( F6 ) - ( EE , P ) ( 6 )NOS.AT ( X , H / 104 )

INC ( H= H + 1 ) $ INC ( P = P + 1 ) $ IF - INT ( H > 103 )GOTO ( 10,0 ) $

IF - INT ( P < 13 ) GOTO ( 13.0 ) $ SET ( P = 0 ) $ GOTO ( 13.0 ) 6

ENTER (SEXAPRJIR2 ) IR2 ) $

GOTO (N.PROB ) $$

PRINTER = > ( R ) $ GOTO ( N.PROB ) $

PRINT- ( F3 ) - (RAY )DY ) $ GOTO ( N.PROB ) $

TP6 (SELF + 1 ) ( 045 ) ( ALPH ) $ J ( ALI ) ( AL2 ) ( SELF + 2 )

TPII (SELF - 1 ) ( 046 ) ( ALPH ) $ AX ( 1 ) ( EX1 ) ( EXIT ) $

3.3

3.4

3.5

3.6

3.7

3.8

3.9

6.3

13.0

10.0

:: . 0

ERROR

GAMMA

LGAMMA
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1.1

1.2

1.3

: .4

ALPH

hi ?

bi :

STOR

EXIT

EX :

O
O
O
O
p
a
l

t
i
l

m
i

O
0
3

>

TP ( 3 ) ( 047 ) ( STOR ) $

Z = , 2 $ Z ! = , 25 CV = 1 $

IFIZ > D ! )GOTO ( 1.3 ) $

CV = CV * Z Z = 2 +051 , $ GOTO ( 1.1 )

CB12 ( CV ) E . ! ) $ IF -ABSICVK1) GOTO ( 1.2) $

ZZ = 1 / Z * Z $ SETIJEO ) $ B12 ( CO ) ) ) $

PMA ( ZL ) ( O ) (C1 , J ) $ LPil , J ) ( 6 ) ( 1.4 ) $ D101 ( Z ) (GI ) $

G2 = LOG ( Z ) S SIZ ) (D2 ) ( 0 ) $ M ( G2 ) ( O ) (G2 ) $

AA ( GI ) ( 03 ) ( G2 ) $ G2 =G2 - Z $

GOTOAL
1 ) $

GI= ABS ( CV ) $ G ! = LOG ( G1 ) $ S ( G2 ) ( GI ) ( 0 ) $ GOTO ( STOR ) $

IF ( G2 > 04 )GOTO ( E.1 ) $ G1 = EXP (G2 ) $ DIGI ) ( CV ) ( 0 ) $

B12 ( 0 ) 10 ) ( 0 ) $

GOTO ( EXIT ) $

GOTO ( I ) S

SX ( EXIT ) ( EXI ) ( ) SETI2 = EWD ) ( 3 = 21 )GOTO (060 )

ALENGAMMA

DEC ( 10. )

DEC ( 5 )

DEC 1.91893853320467267301 )

DEC 1.00641025641 )

CEC ( -.001917526918 ) . C008417508416 ) ( -.0005952381 )

DEC 1.0007936507936508 ) ( - . 002777777777777777 )

DEC 1.083333333333333333 )

DEC ( 350 )

CEC ( 17450580596923828125 )

SEXA (0579K2F5959820KS 6 )

FORM ( 4-1011-2 )

FORM ( 10-10 )

FORM ( 12-613-211-10 )

FORM ( 12-6-13 ) 3-2 ) 12-2-613-4 ) ! 2-6-1313-2 ) 12-6-13 ) $

FORM13-14 ) 12-6-1313-10 )12-2-6 ) 3-10112-6-1313-14 ) $

FORM ( 3-14 ) 12-4 ) 3-2 ) 1-1 )12-613-1 ) 1-6 ) $

LIST

END GOTO ( START ) $ $

Q
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A METHOD FOR APPROXIMATING

PROBABILITY FUNCTIONS DEFINED ON FINITE DOMAINS

Joseph S. Tyler , Jr.

Systems Analysis Office

Edgewood Arsenal , Maryland

I. INTRODUCTION . The incentive for this paper arose from the

requirement to determine approximately the probability density function

h (d ) of the random variable D from a knowledge of the first r -moments

( about the origin ) of that variate .

Specifically , the moments are computed from equation ( 1.0 ) .

( 1.0 ) M (D) = SSSS D* ( 5 , n , u , v ) f ( 5 , n , u , v ) d çdndudv

for ( r=0,1,2 , ... , N) .

12

Where D is a known continuous function and f is a known continuous

probability density function of the variates 5, n , u , v . Moreover ,

the range of D is known , 0 < D < l , and the integration is performed

over the Euclidean four -dimensional space o

It has been demonstrated , by H. Hamburger 1920 (Ref 1 ) , that

when the domain of definition of a probability function is finite

then that function is uniquely determined by the set of all of its

moments . A method of constructing a probability density function

defined on [ -1,1 ) , from the infinite set of its moments , has been

published by Philip Davis in his book , INTERPOLATION AND APPROXIMA

TION , 1961 (Ref 2 ) . The method is essentially an infinite series

expansion in Legendre polynomials . However , from a statistical

viewpoint , it is not practical to construct the required function h

from the entire set of its moments . The purpose of this paper ,

therefore , is to present a method , employing only the first r -moments ,

by which nonnegative approximations of probability density functions

on [ 0,1 ) can be constructed .

Essentially , the approximation method is based on an iterative

procedure . The first step utilizes the first r - moments of the random

variable D to specify the initial approximation to the function h .

Secondly , successive improvements over the initial approximation are

achieved by applying a modified version of the classical method for

representing continuous functions by orthonormal polynomials . The

error of the approximation is measured in terms of the given original

first r -moments of the variate D.

II . ESSENTIAL ASPECTS FROM THE CLASSICAL THEORY . In general ,

any continuous function g (x ) defined on the finite interval [ 0,1 ] ,

can be expanded in a series of weighted orthonormal polynomials

( ) Σ ө

ci
(x) .

i
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Specifically , it will be required that the following set of

conditions be satisfied :

A. 8 (x) E C ' [ 0,1 ] , (i.e. , the function g and its first

derivative be continuous on the closed interval [ 0,1 ] ) .

B.

A sequence of polynomials { on (x) } continuous , bounded

and orthonormal with respect to some weight function

w (x) > 0 [ 0,1 ] are known .

w (x) g (x) and w (x) 82 ( x) be integrable on ( 0,1 ) .C.

The sequence of polynomials {0 (x ) } satisfy the following
properties :

1

[ PL ]
w (x) 0. (x)

i

0. (x) dx = 0 ,

j

itj

0

1

(3)روا

(2)رهم

(3)رد

w ( x ) (x)e. (x) dx = 1

1

[ P3 ]
I xx" w (x)

&{ (x) dx = 0 ,
r<i

0

1

[ P ] P. (x ) w (x) 94 ( x) dx = 0 ,
m<i

0

a >0 , denotes the coefficient of x " in %. (x)

an+1'0 , denotes the coefficient of xn+1 in
[ PS ]

өOntı ( x )

(Pm (x) denotes any polynomial of degree m) .

{ 2 , } , the expansion ofUnder the orthogonality conditions on

g (x ) can be expressed as :

į .ew . -S.
( 1) g (x) =

41.04 (x) , c, w (x) g (x) (x) dx .

i=0
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Let S (x) denote the partial sum ,

n

n

( 1.1 ) S (x)

Σ

n

° (
0, (x) .

i=0

Then by the definition of c, ' s and the orthonormal properties of

the ex's , we have

i

1 n

( 1.2 )

2

5 w (x) [ g (x ) - S (x )]? dx = w(x) ( g (x) ] ?dx -

a
w
i

ch
i=0

Now that the first member of equation ( 1.2 ) is nonnegative , the same

is true of the second member and ,

( 1.3 ) w (x )[g (x) ]? dx , for all values of n .

i=0

Consequently ,

n

( 1.4 )

n
i
n

is convergent , for n + , and

i=0

limit 0 .C.

i
oo

i

Hence , we conclude that S ( x ) converges to g (x) in the least square

sense over the finite interval [ 0,1 ] .

n

Under the assumption that g ' (x) is continuous on ( 0,1 ) , it can

be demonstrated that S (x) converges to g (x) for every xe [ 0,1 ] as n
n

increases without bound .

The Christoffel-Darboux identity (Ref 3 ) provides the following

symmetric kernel function K ( x , t ) , of order n , for the system of

polynomials . (x) . That is ,

n

( 2 )

Kn (x ,t) = kn (t, x)

s
w
i

0

i ( t )
0. (x)
i

i=0
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or

а

n n+1 ( t ) ( x) - n (t ) Pn + 1 ( *)

K_ ( x , t )
n t - Xa

n + 1

where

a

n
> 0 is the coefficient of x " in 0 (x)

> O is the coefficient of xn + 1a

n + 1 in Pn+1 (x)

a

n + 1n
> a

nan

By utilizing this identity , we may express S ( x ) , equation ( 1.1) ,
n

as

( 2.1 ) S ( x) -5.n
w ( t ) g ( t ) K (x , t ) dt ,

0

n

and from the orthonormal properties of the Oz'ss we have ,

( 2.2 ) .is
1 w ( t ) K (x , y ) dt .

n

Multiplication of equation ( 2.2 ) by g (x) , which is constant with

respect to the variable of integration gives

( 2.3 ) g (x) =

- s. w ( t ) g (x) K (x , t ) dt .
n

0

Hence , by subtraction of equation ( 2.3 ) from ( 2.1 ) ,

-1

.So( 2.4 ) Sn ( x) - 8 (x) w ( t ) [ g ( t ) g (x) ] K ( x , t ) dt .) n

0

Then , by substitution of K ( x , t ) , equation ( 2 ) , in equation ( 2.4 ) one

obtains , for an arbitrary XE [ 0,1 ] , the relation .

n
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a

n
8 ( t ) -g (x)

S (x) - g (x)
x -

=

0 (x)
n

w ( t ) 0 ( t ) dt

n + 1n

Lan + 1
t - X

( 2.5 )
1 g ( t ) -g (x)

-O
Pn +1

( x ) w ( t )

0

en ( t ) dt
t - X

The proof that sh (x ) converges to g (x) on [ 0,1 ] consists of

showing that equation ( 2.5) approaches zero as n becomes infinite .

Since , by hypothesis , the ez's are bounded and an > 0 , an + 1 > 0 ,

then (anlanti) is also bounded . Moreover , the derivative g ' is

continuous on ( 0,1 ) .

That is ,

8 ( t ) -g (x)

( 2.6 ) g ' (x) limit

t + x t - X

and from equations (1) and ( 1.4 ) , it follows that

1

8 ( t ) -g (x)

( 2.7 ) limit

j +

w (x )

limit

t +

j

s Oj
0. (x) dx = 0 .

t - X

0

where the index j denotes either n or n + 1 in equation ( 2.5 ) . Therefore ,

S. ( x ) approaches g (x) for every xe [0,1 ] and the expansion of g (x) can

be written as

n

8

( 2.8 ) g (x) Σ=

ci : ¢ (x) , for xɛ [ 0,1 ] .

i=0

In the derivation of the method of approximating probability

functions defined on finite domains , the following theorem for weighted

orthonormal polynomials will be required :

Theorem 1 . Let H (x) denote a polynomial of degree m that is

nonnegative on ( 0,1 ) . Let 6. (x ) , i=0,1 , ... , be the orthonormal

polynomials corresponding to the weight function w (x) on ( 0,1 ) . Let

94 (x) , i = 0,1 , ... , be the orthonormal polynomials associated with the

weight function ( x ) w ( x ) . Then boundedness of the ez'0.'s assures the

boundedness of the ' s .aj
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Proof .

The product H (x) qn (x) is a polynomial of degree ntm ,

and can be expressed in the form

ntm

( 3 ) H (x ) 4. (x) Σ3

ni
0. (x)

i=0

where

1

- 5 w (x ) H (x) 4 (x) °: (x ) dx ,ni

0

If i < n , then c. = 0 as a consequence of the orthogonality properties

(x) with respect to the weight function H (x) w (x ) . So that ,

Cni

of an

ntm

( 3.1 )
H (x) 9n (x)

Σ ni 04 (x).
i=n

As for the coefficients Cni which do not vanish ,

( 3.2 )

0

| caels llwcyj'2 cw) / 2,6w ) [:cw6w)3+1270,6)|dx

w(x)[H (x) } ? [4 (x)]? dx si }

1 1

2

ni
w (x) [ 0 , (x ) ] 2 dx .

i

0 0

The last expression follows from Schwarz's inequality , and the last

integral is equal to 1 , since the o.'s are normalized .
, i

Let G = [ H (x) ) , thenMax

xe [ 0,1 ]

1

2

هرک
( 3.3 ) [4 (x) ] 2

2

dx = G.ni SG w (x) H (x) [qm

I

0

So that , <
and since o is bounded , that is

ni i

for all xe [ 0.1 ] , we have from equation ( 3.1 ) .

-

1

1

--
-
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( 3.4 ) | H (x ) 4, (x) | |H (x)|| q.(x) < 61/2 A ( m + 1 ) .
n

The polynomial H (x) by hypothesis has a lower positive bound on

[ 0,1 ] ; therefore , the polynomials 4, (x) are also bounded on ( 0,1 ) .

III . APPROXIMATING PROBABILITY DENSITY FUNCTIONS ON [0,1]. The

information and results discussed in Section II , is next utilized in

the formulation of a method for constructing nonnegative approximations

of continuous probability density functions defined on the closed domain

[ 0,1 ] .

A. Assumptions and Notations

1 .
Let f (x) denote a probability density function , and

f ' (x ) its first derivative , and assume that both f (x)

and f ' (x) are continuous on (0,1 ) .

2 .

mj
j 0,1 ,It is assumed that the first r -moments ,

... , r , of f (x) are known .

9

3 . Let P (x ) denote a polynomial of degree r .
r

4 .. It is assumed that the orthonormal polynomials

{ 0. (x ) } associated with weight function w (x) , are
i

known .

B. The Initial Approximation

The probability density function f (x ) , by equation ( 2.8 ) ,

can be represented by the following expansion :

f (x)( 4)
g (x) Σ qi : (x ) , for xe [ 0,1 ]

w (x)
i=0

or

8

f(x) = w (x ) [ 4. 04 (x).
i=0

The coefficients C ' ss are computed from the relation
i

( 4.1 )

4-6.
0. (x) f (x) dx .

( x )i
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Now that 0, (x) is a polynomial degree i , it can be written as
i

( 4.2 ) 0. (x)x į Srots op > 0i

j =0

and equation ( 4.1) can , therefore , be expressed as

i

( 4.3 )
aij s xsi

f (x ) dx

j =0 0

or by

i

( 4.4 )
Σ

ajj >

j=0

where

1

:
x ] .f (x ) dx , (j =0,1 , ... , r ) .

0

The finite set of moments m,

mj, 8 ,
(j =0,1 , ... , r ) , are reproducible

from the expansion given by equation ( 4 ) . That is ,

j 1

-Ssme
x] f (x ) dx =

mi Σ ريف
xj w ( x )

ci
0. (x) dx
i

0 i=0 0

( 4.5 )

8 1

Σ as

+

C1 xuw (x) @_ (x) dx .

i=j+1 0

By property [ P3 ] , the last integral is zero ; therefore ,

j

( 4.5.1 ) m

j Σ &as x3 w (x) + (x) dx . ( j =0,1 , ... , r )

i=0 0
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As a consequence of equation ( 4.5 ) , the initial approximation for

the density function f (x) , based on its r-moments m , has the following

form

r '

r

( 4.6 )
f (x) = w (x) [ i (x) .

i=0

Moreover , it is observed that the reproducibility of the moments

possessed by f (x) , is independent of the choice of the weight function .

C. Successive Improvements Over Initial Approximation

It may happen that the initial approximation may become

negative on ( 0,1 ) , and in this event it is not a satisfactory rep

resentation of the given probability density finction f (x) . The

following approximation scheme is introduced so as to remove the

possibility of obtaining a negative approximation for f (x) . For this

purpose , the initial approximation can be rewritten as

r

(4.7 ) f (x) = f (x ) = w (x ) { ¢ ¢ { (x) .
i

i=0

o

If f (x ) is nonnegative on [ 0,1 ] , then the approximation of

f (x ) by f (x ) possesses the same first r-moments as possessed by

f ( x) , by equation ( 4.5 ) , and the process is therefore terminated

at this step . However , if this is not the case , then a positive

constant h can be determined such that
1

w (x) r

( 4.7.1) =

W (x) +

hi
0. (x)
i

> 0 , for Xe [ 0,1 ] .
i

17 +1 i=0

( The method by which hy > 0 is determined is presented in subsection F. )

o
The first improvement over the initial approximation f (x ) is

obtained by constructing a new sequence of orthonormal polynomials

( 1 )

{ q } (x) , i=0,1 , r } with respect to the new weight function ( x)
" 1

( 1 )

( the sequence { 91 } can be obtained by applying the Schmidt ortho

normalization process (Ref 3 ) and then computing a new approximation

by applying equations (4.4 ) and ( 4 ) . The new approximation has the

following form
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r

( 1 ) ( 1 )
( 4.8) f (x ) fy (x ) = w/ (x),(x) Σ ci

ܪ
ܦ

(x)

i=0

for

1 i(1)

-Ś
( 1)

9 (x) f (x) dx =
Σ

( 1)

ijmmj .

0 j =0

Moreover ,

( 4.8.1) wy (x ) { .42) = w (x)

Σ
ci

( 1)
(x )

i=0

or

f ( x) = w (x) P2r (x) ,

and since P2r (x) is a polynomial of degree 2r we can write equation
( 4.8 ) as

2r

( 4.8.2 )
f (x ) = f (x ) - w (x) [ d, 4 (x)

i=0

where ,

1

di- 5 (x) f (x) dx .

0

If f , ( x) , equation ( 4.8) , is nonnegative on [ 0,1 ] , then the

process is terminated with the first improvement over the initial

approximation . If , however , fj (x) becomes negative on [ 0,1 ] , then a

second positive constant hy is determined and the computations in

dicated by equations (4.7.1) and ( 4.8 ) are repeated .
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The results obtained after repeating the above process n times

is expressed by the following relations :

(n ) (n )
( 4.9 ) f ( x ) = { (x ) = w (x ) ai (x )

i=0

where ,

i

(n )

.os
(n)

(М)-

c
i (x ) f ( x ) dx =a

i
(n)

aijj

0 j =0

Wn- 1
( x )

(n- 1 ) (n- 1 )

]( 4.9.1 ) w (x )
=

h +1

i=0

w ( x ) = W
.

n
Pr (x )n - 1 ( x)

" n (x)
= w (x )

Por (x )nr

( 4.9.2 )
.

f ( x ) = fn (x) = w (x) P(n+1 ) x (x )

( n + 1 ) ;

fh ( x ) = w (x)
d

i @z (x)

i=0

where
1

di
0. (x ) f (x ) dx .)i

D. Convergence of Process.

The convergence of the above process can be demonstrated

by applying equation ( 1.2 ) along with the following replacements or

substitutions :
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f (x )

1. g (x) =
a = di

w (x )

2. Sn ( x)
= f ( x ) n = ( n + 1 ) r

n

Equation ( 1.2 ) then becomes ,

1 2
1 f? (x)f ( x )

( n+1 ) r

( 4.10 )

Ś
2

w ( x ) f ( x )

-] -5
dx = dx

Σ

a

> 0
n i

w (x ) w (x)
0 0 i=0

( n + 1) r f (x )

and

Σ
d? is convergent provided is integrable over

w (x )

i=0

[ 0,1 ] as n + co , also limit

di
= 0 .

n

E. The Error en
r

Having assumed that the finite set of moments
{m;, j =0,1 , ... , 1 }

are known , we then essentially carry out the approximation f ( x ) by

(n)
applying equation ( 4.9 ) . The coefficients ci are computed from the

given set of moments and it appears natural to measure the error of the

approximation in terms of the moments .

(n)
The error E is defined by

( n)

( 4.11 )
(n )

E

j .
(n )

j ol
for j =0,1 ,... , r

with

1

(n)

-و
xH f (x) dx ,

0

1940-1. ***(n](a) ds.
Next let ,
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- -

r

1

( 4.11.1)
f1 (x ) = w1 (x ) h , w (x ) +w (x) { cz • ( x)

h2 +1 i = 0

then

1

1

( 0 )

1,1)
မှု (၆)

+ m

+1

1

and

h

( 1)

E1)

E

=

1990)
h2 + 1

( 2 )
The errors E

j

are determined as follows :

1

1
( 1)

( 4.11.2 )
f2 ( x ) = w2 (x)

(x) + w , ( x )
1 1

(x ) .

h2+1 i=0

So that

( 2 )

5(1)

( 1 )
+ m

j

h2+1

and

h2
( 1 )( 2 )

E

j

=

6

2 m;

h2 +1

(n)
The error E

j
form

En)
associated with the n- th approximation has the>

h

n

( 4.12 )
(n )

E

j
( j =0,1 , ... , r )

h +1

and this error approaches zero , as n + , provided that h
+0 .

n
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F. Construction of Positive Constants h .
n

It has previously been shown that the approximation f (x ),

equation ( 4.9 ) , has the same first r - moments that are possessed by

f (x) . In order that f ( x ) represent a probability density function

it is necessary that f ( x ) be nonnegative on the domain (0,1 ) .

n

n

The nonnegativity of the approximation is next considered .

The approximation , at the n-th step , can be expressed as follows :

( 5 ) f (x) – w (x ) h (x) , X € [ 0,1 ]

where ,

r

( 5.1 ) h (x ) =
¢ ¢{ ( x )

i=0

and

i

-
W( 5.2 )

=

94 ( x)
aij

x
م
ل
ت

j = 0

By substituting 44 (x ) equation ( 5.2 ) in equation ( 5.1 ) , h (x ) can be

written in the form of a polynomial . This is ,

r

( 5.3 ) h (x)
Ari

xi

i=0

for

r

( 5.4 )
Ari Σ ci aij

j =i

By definition w (x) is nowhere negative on [0,1 ] , and if the

approximation becomes negative on (0,1) it is due to h (x) being

negative on that interval . Therefore , if the polynomial h (x) has a

real root , of order one , on (0,1 ) it implies there exist at least one
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point x. € (0,1 ) such that h (x) < 0 . The following two theorems can

be applied to determine the possibility of a real root of h (x) on (0,1 ) .

Theorem2: On the upper bound for the real roots of a polynomial.

(k)

Let R (x) be a polynomial of degree r , and let R (x= 1 ) > 0 for

(k)
(k=0,1 , ... , r ) , where R denotes the k-th derivative of polynomial

R (x) . Then the point x = l is an upper bound for the real roots of R (x) .

Proof : By Taylor's formula , the polynomial R (x) can be expanded

about the point x = 1 .
That is ,

(x- 1 ) k

( 5.5 ) R (x ) = R (x=1 ) +

Σ
R (k ) ( x = 1 ) .

k !

k=1

By hypothesis

( 5.6 )
R (k )

( x= 1 ) > 0 , for (k=0,1 , ... , r ) .

Therefore ,Hence , R (x ) for x > 1 , by equation (5.5 ) is also positive .

x= l is an upper bound for all the real roots of R (x) .

On the lower bound for the positive real roots of aTheorem 3 :

polynomial .

Let h (x) be a polynomial of degree r , and denote its real roots

by the set {x ,{ , x } .
r

That is ,

( 5.7 )

r r-1

h (x) = b x= b x + b , x

1

+ + b- bry or

( 5.8 ) h (x) = b. (x-xz ) (x-x2 ) (x -x ).

Next , let polynomial R (x) be defined in the following manner

( 5.9 ) R (x) XT h ( 1 /x) , or
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( 5.10 ) R (x) = X

-r

+x * [ b . * + bc ) , or

( 5.11) R (x) = b +62*= b + b , x +

... ++ bxx" ,
or

( 5.12 )
R (x) = b ( 1 -xx)b. ( 1-x,x ) ( 1-x2x ) ( 1-x-x) .

The polynomial R (x) equation ( 5.11 ) simply reverses the order of the

coefficients of h (x) and the roots of R (x) equation (5.12 ) are simply

the reciprocals of the roots of h (x) .

If no real root of h (x) lies in (0,1) , then no real root of R (x)

lies in the interval ( 1,0) and by theorem 2 , x=l is an upper bound for

the real roots of R (x) . Moreover , x=1 is a lower bound for the positive

real roots of h (x) .

Proof : The roots of R (x) are the elements of the set ( 1/x :

( i=1,2 , ... , r ) ] . Moreover ,

( 5.13 ) (1) . *

1

< 0 , and

x
i

< 0 implies

1

( 5.14 ) ( 2 ) . X

i
> 1 implies < 1 .

X

i

Hence , ( 1 ) and ( 2 ) together imply that R (x) has no real roots in the

open interval (1 , 0) . Therefore , x=l is an upper bound for the real

roots of R (x) . Moreover , x = 1 is a lower bound for the positive real

roots of h (x ) which implies that h (x) has no real roots on the interval

( 0,1 ) .

By the application of theorems ( 2 ) and ( 3 ) , a test can be con

structed to determine the positivity of the polynomial h(x) on (0,1 ) .

From equation (5.3 ) h (x) is defined as

r

( 5.15 ) h (x) =

Σ
A

ri

xi

i=0

Let R (x) be the polynomial

r

r

( 5.16 ) R (x )

ܙܗܙ.-.ܐ̈ܪ|.ܼܼܲܐ܆܇
= x h =

Σ
r- i

x

Ari

i = 0
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Then the k-th derivative of R (x ) is denoted by

(r-k)

( r- i ) !

( 5.17 ) R (k ) (x) I
w
i
l Art

r-i-k

X

( r -i-k) !
i=0

or

j

r !

R(j ) (x) =( 5.18)

( r -i ) !

A

Aro x3 + ArixJ-1
j ! ( j -i ) !

1=1

and if h (x ) has no real roots on (0,1) , then by theorem ( 3 ) ,

j

r !
( j )

R

( r-i ) !

( 5.19 ) (x=1 )

+

A

ro Σ Art 20 .
j ! ( -i ) !

i=1

That is ,

j ! ( r-1 ) !

( 5.20)
Aro -

М ..
I
M

A

ri

r ! ( j -i ) !

for ( j =0,1 ,( j =0,1 , ... ,... , r ) .

When the relation on Aro (equation 5.20 ) is satisfied the

approximation , equation ( 5 ) , is positive on (0,1 ) and represents the

probability density function .

)
( x=1) < 0 , for any value of j , then h (x) must

be modified such that its modified form becomes a positive function

on (0,1) . Essentially , the constant term Aro is increased by some

positive constant h until equation ( 5.20 ) is satisfied for all values

of j =0,1 , ... , r .

However , if R ( j )

The product of w (x) and the modified positive function h (x)

produces a new weight function and this new weight function is then

used to generate a new set of orthonormal polynomials ( q_ (x ) : 1=0,1 , ... , r }

needed to obtain the next improved approximation . The process is
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terminated when the succeeding approximation becomes positive on (0,1 )

and the succeeding weight function has moments that are arbitrarily

close to the moments of f (x) .
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