UNCLASSIFIED

PROCEEDINGS OF THE FIfTEENTH CONFERENCE

ON THE DESIGN OF EXPERIMENTS IN ARMY RESEARCH DEVELOPMENT AND 'TESTING

This docament in gabject to mpeinl apport comatrole and ach tramanital to toralp govermenta or fordiga mational may bo made cif with priot
 chroling.
The frolings in thin ropert ase mot to be complened as an emelal Dupartment

Sponsored by
The Army Mathematica Steering Committee on Behalf of

THE OFFICE OF THE CHIEF OF RESEARCH AND DEVELOPMENT
U. S. ARMY RESEARCH OFFICE-DURHAM

Keport No. /0-2
July 1970

PROCEEDINGS of the fifteenth CONference

ON THE DESIGN OF EXPERIMENTS

Sponsored by the Army Mathematics Steering Committee
Host
U. S. Army Missile Command
Redstone Arsenal, Alabama
22-24 October 1969

This document is subject to special export aontrols and each transmittal to foreign govermments or foreign nationals may be made only with prior approval of the U. S. Army Research Office-Durham, Durham, North Carolina. ...77した

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authomiaed doccoments.

U. S. Army Research OfficemDurham
Box CM, Duke Station
Durham, North Carolina

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

\squareIf this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.

In a letter under the date of 2 November 1967, Dr. John L. McDaniel. Technical Director of the Research and Engineering Directorate at the U. S. Army Missile Command (MICOM), offered to hold the Fourteenth Conference on the Design of Experiments in Army Research, Development and Testing at his installation. Since arrangements were already underway to hold this conference in the Washington area, this invitation had to be declined by the Army Mathematics Steering Committee (AMSC), the sponsor of this series of conferences. Dr. McDaniel, when made aware of this situation, was willing for the Committee to treat his request to hold the confèrence as a standing invitation. Members of the AMSC were very pleased to hear this and then discussed with him the possibility of holding the Fifteenth Conference at Redstone Arsenal. These negotiations were brought to a successful conclusion; and, on 29 November 1968, Major General Charles W. Eifler issued a formal invitation to host this conference at his command on 22-24 October 1969. He appointed Dr. Siegfried Lehnigk to serve as Chairman on Local Arrangements and Mr. Raymond V. Knox to handle administrative requirements.

MICOM had already served as the host to the Ninth Conference in this series. It is interesting to note that Dr. Lehnigk, as well as Henry A. Dihm, and W. H. Ewart served as members of the Local Arrangements Comittee for the Ninth Conference, as well as the Fifteenth Conference. Those in attendance at this 22-24 October meeting are much in debt to these gentlemen, as well as to many others at Redstone Arsenal, for the excellent handling of the many details connected with a meeting of this size.

Among the many highlights of the Fifteenth Conference on the Design of Experiments was the banquet talk given by Professor Oskar Morgenstern of Princeton University and the following invited speakers:

Reliability Applied to Space Flight Dr. John E. Condon, National Aeronautics and Space Administration

Systems Reliability
Dr. Nancy R. Mann, Rocketdyne
A Probability Approach to Catastrophic Threat Dr. Clifford J. Maloney, National Institutes of Health

The Empirical Bayes Approach to the Design and Analysis of Experiments Professor Richard G. Krutchkoff, Virginia Polytechnic Institute

On Confidence i.imits for the Performance of a System When Few Failures are Encuuntered

Dr. S. C. Baunders, Boeing Scientific Researıh Laboratories
Everyone had the opportunity to hear the abovementioned talks, as they were given in general sessions. Unfortunately, one was not privileged to hear all of the thirty-two contributed papers. These covered a wide range of interesting statistical problems and had to be scheduled so chat three talks were conducted simultaneously. Following the banquet, it wag my privilege to award the Fifth Samuel i. Wilks Memorial Medal, sponsored by the American Statistical Association and the Army, to Dr. W. J. Youden. Details of this pregentation are included in these Proceedings.

This conference was attended by 156 scientists; and 52 organizations were represented. Speaicers and panelists came from: Boeing Scientific Research Laboratories; Cornell University; Honeywell, Inc.; Litton Systems, Inc.; National Aeronautics and Space Administration; National Institutes of Health; North Carolina State University; Princeton University; Rocketdyne; University of Alabama; University of Georgia; University of Michigan; University of Wisconsin; Vanderbilt University; Virginia Polytechnic Institute; and, 12 Army facilities.

Members of the AMSC would like to express their thanks to the many speakers, chairmen and panelists for all their efforts in behalf of this important scientific meeting. Most of the papers presented at the conference are being made available to the public through these Proceedings. The AMSC asked that copies of this manual receive wide distribution among Army laboratories and Technical Libraries.

At this time, let me express my appreciation to all members of the Program Commtttee (Clifford Cohen, Jr., Henry Dihm, Francis Dressel, Walter Foster, Fred Frishman, Bernard Harris, Boyd Harshbarger, Raymond Knox, Siegfried Lehnigk, H. L. Lucas, Clifford Maloney, and Herbert Solomon) for their many suggestions and advice on the selection of the speakers and the organization of the whole conference.

Frank E. Grubbs
Conference Chairman

TABLE OF CONTENTS
Title Page
Foreword. ii1
Table of Contents v
Program Ix
Reliability Applied to Space Flight
John E. Condon 1
Computer-Aided Solution of Prior Distributions for Generating Monte Carlo Confidence Bounds on System Reliability Nancy R. Mann. 7
Comparative Analysis of the LCSS-ETG-3 Performance Compability Using Statistical Probabilities Andrew H. Jenkins 27
Estimation of Vehicle Parameters for the Given Model:
$Y=\theta_{1} e^{\theta_{2} t} \sin \left(\theta_{3} t\right)$
John Howerten and D. Ray Campbell 75
A Method of Improving the Estimation of Variance
John Gurland and J. S. Mehta 97
A Classification of Bivariate Variance Comparisons Clifford J. Maloney. 113
Computerized Quality Control as Applied to Upper Atmospheric Data
Oskar M. Essenwanger 123
A Statistical Model for the Analysis of Simultaneous Two- Station Ionospheric Soundings Erwin Biser and Richard D'Accardi. 147
Position Location Via Multiple Triangulation
G. A. Staops and E. L. Spitznagel, Jr. 189
A General Computational Algorithm for Bayesian Confidence Bounds
R. W. Clarke 197
Exact Lower Confidence Limits on Normal and Lognormal Reliability
R. W. Soanes 205
Real-Time Simulation Technique for Evaluating a Gyro-Seeker Ase rmbly
blwovd u. batas 215
An Empirical Approach to Analysis of the Interaction Characteristics of a Six-Component Rocket Engine Test Stand Aubrey W. Presson. 243
Incerlaboratory Study of a Method for Measuring Ammonium fer:hlorate Particle Size hernard J. Alley 265
New Analyses and Methods Leading to Improved Target Acquisition Requirements Involving Systems, Geodetic and Re-entry Errors, and Increased Weapons Effectiveness for Conventional Weapons Hans Baussus von Luetzow 279
An Air Defense Comparative Model
R. E. Shannon, J, P. Ignizio and J. L. Stimach 293
Prubabilistic Manpower Planning for the Research and Development Organization
larry H. Johason 315
Analysis of Factorial Arrangement in Non-connected Block Design Sadrig Kurk.jian and R. C. Woodall 337
Design of Field Test Programs and Statistical Techniquea for Analysis of the Performance of Navigation and Positioning Systems
Emil H, Jebe and Ralph A. King 349
A Unified Procedure for Selecting Alternate Experimental Designs
Edwin M. Bartee 373
A Problem in Continuous Sampling Verification
Mary E. Blome. 403
Toward a Stochastic Model of Terrain
R. H. Peterson and W. C. Taylor 423
. iuggested Procedure for Analyzing Missile Performance by a Least Squares Fit to a Generalized Linear Statistical Model and a Quick Check for Normalley of the Data
Nancy R. Rich. 437
A Use of Reliability Techniques in Army Experiments
D. R. Barr and T. Jayachandran 495
Optimizing a Four-Part Assay Procedure
Walter D. Foster 509
An Application of Linear Programing to Experimental Design J. Richard Moore 515
Transmission of Infrasonic Waves Generated by Large Missile Launches
Raymond E. Lacy and C. E. Sharp 523
Determining the Flight Reliability of an Antitank Missile with side Jets
Robert G. Conard and Nancy R. Rich 535
Empirical Bayes and the Design and Analysis of Experiments Richard G. Krutchkoff 579
Youden Awarded the Samuel S. Wilks Memorial Medal Frank E. Grubbs 599
The Use of a Hybrid Computer to Evaluate Man-Machine Performances of Complex Vehicle Control Systems
Myrna L. Toivanen, Bernard S. Gurman and Erwin Biser 607
Experimental Design Considerations in Validating a Method of Modeling a Man-Organized System
B. B. Lukens and R. A. Brown 653
An Investigation of the Effect of Some Prior Dfatributions on Bayesian Confidence Intervals for Attribute Data
Alan W. Benton 663
Some Techniques for Conatructing Mutually Orthogonal Latin Squares
W. T. Federer, et al. 673
On Confidence Limits for the Performance of a System When Few Failures are Encountered
S. C. Saunders 797
A Probability Model for the Assessment of Human Incapacitation from Penerrating Missile Wounds
William P. Johnson and William J. Bruchey, Jr 83.
List of Attendees 855

fifteenth conference on the design of experimentis

IN ARMY RESEARCH, DEVELOPMENT AND TESTING
22-24 Octobes 1969
Wednesday, 22 October

0800-0830
0830-0845

1330-1515

REGISTRATION - Lobby of Rocket Auditorium, Building 7120
OPENING OF THE CONFERENCE - Rocket Auditorium
Dr. Siegfried Lehnigk, Chairman on Local Arrangements WELCOME

GENERAL SESSIO:I I ~ Rocket Auditorium
Chairman: Dr. Walter D. Foster, Biomathematics Division, Biological Laboratories, Ft. Detrick, Frederick, Maryland

RELIABILITY APPLIED TO SPACE FLIGHT
Dr. John E. Condon, Reliability and Quality Assurance, National Aeronautics and Space Administration, Washington, D. C.

SYSTEMS RELIABILITY
Dr. Nancy R. Mann, Rocketdyne, Canago Park, California
LUNCH - Officer's Club
TECHNICAL SESSION 1 - Conference Room, Building 7.101
Chairman: John S. Hagen, U. S. Army Development and Probf Services, Aberdeen Proving Ground, Maryland

DEVELOPMENT OF TESTING PROGRAMS TO MINIMIZE OVERALL PROJECT COST OR FAILURE PROBABILITY

Roger L. Lapp, Corps of Engineers, Huntsville, Alabama COMPARATIVE ANALYSIS OF THE LCSS-ETG-3 PERFORMANCE CAPABILITY USING STATISTICAL PROBABILITIES

Andrew H. Jenkins, U. S. Army Missile Command, Redstone Arsenal, Alabama

1x
Preceding page blank

Chairman: Joseph Weinstein, Electronics Computing Laboratory, U. S. Army Electronics Command, Fort Monmouth, New Jersey

ESTIMATION OF VEHICLE PARAMETERS FOR THE GIVEN MODEL:
$y=v_{1} e^{z^{2} t} \sin \left(\theta_{3} t\right)$
John Kowerton and D. Ray Campbell, Systems Evaluation Branch, Advanced Systems Laboratory, Research and Engintering Directorate, Redstone Arsenal, Alabama

A METHOD OF [MPROVING THE ESTLMATION OF VARLANCE
John Gurland, Department of Statistics, University of Wisconsin. Sponsored by the Mathematics Research Center, U. S. Army, University of Wisconsin, Madison, Wisconsin

A CLASSIFICATION OF BIVARIATE VKRIANCE COMPARISONS
Clifford J. Maloney, Biometrics Section, Department of Health, Education and Welfare, National Institutes of Health, Bethesda, Maryland

TECHNICAL SESSION 3 - Conference Rooú, Building 7101
Chairman: Eugene F. Dutoit, Quality Assurance Directorate, U. S. Army Munitions Comand, Picatinny Arsenal, Dover, N. J.

COMPUTERIZED QUALITY CONTROL AS APPLIED TO UPPER ATMOSPHERIC DATA
Oskar M. Essenwanger, Aerophysics Branch, Physical Sciences Laboratory, Research and Engineering Directorate, Redstone Arsenal, Alabama

A STATISTICAL MODEL FOR THE ANALYSIS OF SIMULTANEOUS TWO STATION IONOSPHERIC SOUNDINGS

Erwin Biser and Richard D'Accardi, Avionics Laboratory, U. S. Army Electronics Command, Fort Monmouth, New Jersey
position location via multiple triangulation
G. A. Stoops and E. L. Spitznagel, Jr., Math Sciences
Section, Litton Scientific Support Laboratory,
Litton Systems, Inc., Fort Ord, California
EAK

Chairman: Henry Dihn, Advanced Systems Laboratory, Directorate of Restarch and Development, U. S. Army Missile Command, Redstone Arsenal, Alabama

Panelists:
Robert Bechhofer, Cornell University
O. P. Bruno, U. S. Army Ballistics Research \& Development Center A. C. Cohen, University of Georgia Bernard Harris, Mathematics Research Cencer, U. S. Army Boyd Harshbarger, Virginia Pólytechnic Institute H. L. Lucas, North Carolina State University

AN EMPIRICAL APPROACH TO ANALYSIS OF THE INTERACTION CHARACTERISTICS OF A SIX-COMPONENT ROCKET ENGINE TEST STAND

Aubrey W. Presson, Test Research and Analysis Branch, Test and Research and Engineering Directorate, U. S. Army Missile Comuand, Redstone Arsenal, Alabama

INTERLABORATORY STUDY OF A METHOD FOR MEASURING AMMONIUM PERCHLORATE PARTICLE SIZE

Bernard J. Alley, U. S. Army Missile Command, Redstone Arsenal, Alabama

TECHNICAL SESSION 4 - Conference Room
Chairman: William McIntosh, U, S. Andy Test and Evaluation Command, Aberdeen Proving Ground, Maryland

A GENERAL COMPUTATIONAL ALGORITHM FOR BAYESIAN CONFIDENCE BOUNDS
R. W. Clarke, U. S. Army Watervliet Arsenal, Watervliet, New York

CONFIDENCED NORMAL AND LOGNORMAL RELIABILITY FOR ANY SAMPLE SIZE
R. W. Soanes, U. S. Army Watervliet Argenal, Watervliet, New York

Chairman: Raymond B. Schnell, U. S. Army Advanced Materiel Concepts Agency, Washington, D. C.
real.-TIME SIMULATION TECHNLQUE FOR EVALUATING A GYROSEEKER ASSEMBLY

Flwood D. Baas, White Sands Missile Range, White Sands, New Mexico
bIOCHEMICAL ASPECTS OF FEEDBACK EFFECTS IN BIOCELLULAR SYSTEMS

George I. Lavin, Terminal Ballistic Laboratory, U. S. Army Ballistic Research and Development Center, Aberdeen Proving Ground, Maryland

Thursday, 23 October
CLINICAL SESSION B - Rocket Auditorium
Chairman: David Howes, Strategy and Tactics Analysis Group, Bethesda, Maryland

Panelists:
Robert Bechhofer, Cornell University O. P. Bruno, U. S. Army Ballistics Research \& Development Center A. C. Cohen, University of Georgia Bernard Harris, Mathematics Research Center, U. S. Army Boyd Harshbarger, Virginia Polytechnic Institute H. L. Lucas, North Carolina State University

A PROBLEM IN CONTINUOUS SAMPLING VERIFICATION

Mary E. Blome, U. S. Army Ammition Procurement and Supply Agency, Joliet, IIlinois

TOWARD A STOCHASTIC MODEL OF TERRAIN
R. H. Peterson and W. C. Taylor, Army Materiel Systems Analysis Agency, Aberdeen Research and Development Center, Aberdeen Proving Ground, Maryland

Chairman: Robert G. Stimson, Air Defense Systems Group, Office of the Chief of Staff, Washington, D. C.

NEW ANALYSES AND METHODS LEADING TO IMPROVED TARGET ACQUISITION REQUIREMENTS IRVOLVING SYSTEMS, GEODETIC AND RE-ENTRY ERRORS AND INCREASED WEAPONS EFFECTIVENESS FOR CONVENTIONAL WEAPONS, PART I

Hans Baussus von Luetzow, U. S. Army Topographic Laboratories, Fort Belvoir, Virginia

AIR DEFENSE SYSTEMS COMPARATIVE MODEL
R. E. Shannon, J. P. Ignizio, and J. L. Stimach, Research Institute, University of Alabama, Huntsville, Alabama. Sponsored by the U. S. Army Missile Command, Redstone Arsenal, Alabama

PROBABILISTIC MANPOWER PLANNING FOR THE RESEARCH AND dEVELOPMENT ORGANIZATION

Larry H. Johnson, Research and Engineering Directorate, U. S. Army Missile Command, Redstone Arsenal, Alabama

TECHNICAL SESSION 7 - Control Room
Chaizman: Brucy C. Gray, Biomathematics Division, U. S. Army Biolugical Laboratories, Fort Detrick, Frederick, Maryland

ANALYSIS OF FACTORIAL ARRANGEMENT IN DISCONNECTED BLOCK DESIGNS
Badrig Kurkjian and R. C. Woodall, U. S. Army Materiel Command, Harry Diamond Laboratories, Washington, D. C.
design of field test programs and statistical techniques FOR ANALYSIS OF THE PERFORMANCE OF NAVIGATION AND POSITIONING SYSTEMS

Emil H. Jebe, Institute of Science and Technology, The University of Michigan, Ann Arbor, Michigan; and,
Ralph A. King, Department of Industrial Engineering, University of Wisconsin, Madison, Wisconsin

A UNified procedure fur selecting alternate experimental DESIGNS

Edwin M. Bartee, Center for Engineering Management Studies, Vanderbilt University, Nashville, Tennessee. Sponsored by the U. S. Artay Missile Command, Redstone Arsenal, Alabama

BREAK
CLINICAL SESSION C - Rocker Auditorium
Chairman: Frank E. Grubbs, U. S. Army Aberdeen Research and Development Center, Aberdeen Proving Ground, Maryland

Panelists: Robert Bechhofer, Cornell University 0. P. Bruno, U. S. Army Ballistics Research \& Development Center A. C. Cohen, University of Georgia Bernard Harris, Mathematics Research Center, U. S. Army Boyd Harshbarger, Virginia Polytechnic Institute H. L. Lucas, North Carolina State University

DETERMINING THE RELIABILITY OF AN ANTITANK MISSILE WITH SIDE THRUSTERS
R. G. Conard and N. R. Rich, Systems Evaluation Branch, Advanced Systems Laboratory, Research and Engineering Directorate, Redstone Arsenal, Alabama

TRANSMISSION OF INFRASONIC WAVES GENERATED BY LARGE MISSILE LAUNCHES

Raymond E. Lacy and C. E. Sharp, Acoustic/Seismic Communications Research Area, Institute for Exploratory Research, U. S. Army Electrontés Command, Fort Monmouth, N. J.

TECHNLCAL SESSION 8 - Conference Room

Chairman: Carol D. Rose, Design of Experiments Branch, U. S. Army Tank-Automotive Command, Warren, Michigan

A SUGGESTED PROCEDURE FOR ANALYZING MISSILE PERPORMANCE by a least squares fit to a generalized linear statistical MODEL AND A QUICK CHECK FOR NORMALITY OF THE DATA

Nancy R. Rich, Systems Evaluation Branch, Advanced Systems Laboratory, Research and Engineering Directorate, Reds tone Arsenal, Alabama

TECHNICAL SESSION 8 (Continued)

A USE OF RELLABILITY TECHNIQUES IN ARMY EXPERIMENTS
B. K. Barr and T. Jayachandran, Mathematical Sciences Section, Litton Scientific Support Laboratory, Litton Systems, Inc., Fort Ord, California

TECHNICAL SESSION 9 - Control Room
Chairman: Gerhard J. Isaac, Statistice Branch, U. S. Army Medical Research and Nutrition Laboratory, Fitzsimons General Hospital, Denver, Colorado

OPTIMIZING A FOUR-PART ASSAX PROCEDURE
Walter D. Foster, Biomathematics Division, U. S. Army Biological Laboratories, Fort Detrick, Maryland

AN APPLICATION OF LINEAR PROGRAMMING TO EXPERIMENTAL DESIGN
J. Richard Moore, U. S. Army Aberdeen Research and Development Center, Aberdeen Proving Ground, Marjland

LUNCH = Cafeteria - Building 7101
GENERAL SESSION II - Rocket Auditorium
Chairman: Professor Robert M. Thrall, Department of Mathemacical Sciences, Rice University, Houston, Texas

A PROBABILITY APPROACH TO CATASTROPHIC THREAT
Dr. Clifford J. Maloney, Biometric Section, Department of Health, Education and Welfare, National Institutes of Health, Bethesda, Maryland

THE EMPIRICAL BAYES APPROACH TO THE DESIGN AND ANALYSIS OF EXPERTMENTS [Part 1]

Professor Richard G. Krutchkoff, Department of Statistics, Virginia Polytechnic Institute, Blacksburg, Virginia

BREAK
THE EMPIRICAL BAYES APPROACH TO THE DESIGN AND ANALYSIS OF EXPERIMENTS [Part 2]

Professor Richard G. Krutchkoff

SUCIAL HOLR - Officer's Club

BANQULT

Master of Ceremonies: Dr. John L. McDaniel, U. S. Army Missile Command, Redstone Arsenal, Alabama

Presentation of the Samuel S. Wi.lks Memorial Award by Dr. Frank E. Grubbs, U. S. Army Aberdeen Research and Development Center, Aberdeen Proving Ground, Maryland

Banquet Speaker:

Professor Oskar Morgenstern, Princeton University, Princeton, New Jersey

Friday, 24 October

TECHNICAL SESSION 10 - Rocket Auditorium

Chairuan: Gideon A. Culpepper, Quality Control Division, White Sands Missile Range, New Mexico

THE USE OF A HYBRID COMPUTER TO EVALUATE MAN-MACHINE PERFOWMANCE OF COMPLEX VEHICLE CONTROI SYSTEMS
M. L. Toivanen, Honeywell, Inc.; Bernard S. Gurman and Erwin Biser, U. S. Army Electronics Comand, Fort Monmouth, New Jersey

TECHNICAL SESSION 11 - Conference Room
Chairman: Badrig Kurkjian, U. S. Army Matariel Command, Harry Diamond Laboratories, Washington, D. C.

EXPERIMENTAL DESIGN CONSIDERATIONS IN VALIDATING A METHOD OF MODELING A MAN-ORGANIZED SYSTEM
B. B. Lukens and R. A. Brown, Research Institute, University of Alabama, Huntsville, Alabama. Sponsoré by the U. S. Army Missile Command, Redstone Arsenal, Alabama

TECHNICAL SESSION 12 - Control Room
Chairman: Alan S. Galbraith, Mathematics Division, Army Research Office-Durham, Durham, North Carolina

AN INVESTIGATION OF THE EFFECT OF SOME PRIOR DISTRIBUTIONS ON BAYESIAN CONFIDENCE INTERVALS FOR ATTRIBUTE DATA

Alan W. Benton, Surveillance and Rellability Division, Aberdeen Research and Development Center, Aberdeen Proving Ground, Maryland

Rocket Auditorium
OPEN MEETING OF THE AMSC SUBCOMMITTEE ON PROBABILITY AND STATISTICS

Chairman: Dr. Walter D. Foster, Biomathematics Division, U. S. Army Biological Laboratories, Fort Detrick, Maryland

BREAK
GENERAL SESSION III - Rocket Auditorium
Chairman: Dr. Joseph Bluhm, U. S. Army Mechanics and Materiel Research Center, Watertown, Massachusetts

TECHNIQUES FOR CONSTRUCTING MUTUALLY ORTHOGONAL LATIN SQUARES
Professor W. T. Federer, Department of Plant Breeding and Biometry, Cornell University, Ithaca, New York. Presently at the Mathematics Research Center, U. S. Army, University of Wisconsin, Madison, Wisconsin

ON CONFIDENCE LIMITS FOR THE PERFORMANCE OF A SYSTEM WHEN FEW FAILURES ARE ENCOUNTERED

Dr. S. C. Saunders, Boeing Scientific Research Laboratories, Seattle, Washingtion

CLOSING OF THE CONFERENCE
Dr. Frank E. Grubbs, Chairman of the Conference
LUNCH - Cafeteria - Building 7101

The following paper will be presented if there is a cancellation in the program:
A PROBABILITY MODEL FOR THE ASSESSMENT OF HUMAN INCAPACITATION FROM PENETRATING MISSILE WOUNDS

William P. Johnson and William J. Bruchey, Jr., Vulnerability Laboratory, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland

PROGRAM COMMITTEE

Clifford Cohen, Jr.	Bernard Harris
Henry Dihm	Raymond Knox
Francis Dressel (Secretary)	Siegfried Lehnigk
Walter D. Foster	H, I. Lucas
Fred Frishman	Clifford Maloney
Boyd Harshbarger	Herbert Solomon

RELIABILITY APPLIED TO SPACE FLIGHT

John E. Condon
NASA Headquarters
Washington, D. C.

This month, October, marks the eleventh anniversary of NASA. Reflecting on NASA's accomplishments during the past eleven years, I feel we can point with pride to an outstanding record cif success. Our record of mission success during these eleven years is over 75%, topped by a manned flight record of outstanding success in the Mercury, Gemini and Apollo programs.

The superlatives have been exhausted in describing the success and significance of A_{p} oilo - particularly Apollo 11. I suspect that many of you are keenly interested in knowing how we have attained the level of reliability so vital to the success of the Apollo program. I have given a great deal of thought to this subject during the past three months and regretfully - though not unexpectedly - have not found a simple, concise answer to this question. There are many factors which have contributed to the reliability of Apollo and thus it is not possible to single out any one factor as being all encompassing. However, there are two areas which, in my view, are worthy of special attention:

1. major attention by top management to the reliability af Apollo hardware; and,
2. emphasis, through all phases of the program, on the engineering aspects of reliability.

I will devote my remarks to the latter of these two points following some brief comments on the former.

The effective attainment of relfable space hardware requires the attention of all members of program/project team coupled with strong management support. This has been a key factor in the success of Apollo as top management has actively participated in key milestone reviews which are so important to the successful performance of the system. To illustrate this point, the following are examples of key Apolio milestone reviews.

Critical Design Review. The purpose of this review is to formally review the design of the Contract End Item when the design is essentially complete. The: review is intended to precede the release of engineering for manufacture. Among other things, this review established the integrity of the design by review of analytical and test data, and rellability apportionment and analysis available at that particular point in time.

Certification of Flight Worthiness. The purpose of this mikeavue li ie actify that asch flight etage and monnle is a complete and qualified item of hardware prior to shipment and is accompanied by adequate and accurate supporting documentation. Through this review the Apollo program Director is informed of any deficiencies prior to shipment of the stage ur module. This review certifies, for example, that:

1. acceptance, qualification and reliability tests have been successfully completed and meet the specification requirements;
2. departures from specification and drawing requirements have been approved by Material Review Boards;
3. critical hardware failures have been analyzed and corrected.

Flight Readiness Review (FRR). This is a two part review scheduled for each mission by a joint letter signed by the Program Director and the Mission Director. The purpose of the Program Director's FRR is to determine that the space vehicle hardware and launch complex are ready to coumence the mission period. This includes consideration of the checkout and qualification status of all hardware, the summary of failures and disposition thereof, with particular emphasis on failures that have occurred during the pre-launch and checkout phase, and all modifications, deviations and waivers. The purpose of the Mission Director's FRR is to make a judgment for initiating the mission period and committing the deployment of world-wide forces to support the wisaion. Upon satisfactory completion of the Flight Readiness Review the mission period will commence.

The active participation of top management in these reviews gives mphasis to their importance, helps ensure that all factors which influance the successful performance of the hardware have received proper attention, and results in a "team" approach to system reliability,

The nature of NASA systems - highly complex, small quantity, RGD systems - requires that we concentrate on the engineering aapects of rellability rather than the analytical aspects, particularly at the system and major subsystem levels. In this regard, I would like to discuss the following:

1. adequacy of design for mission requirements;
2. Identification and control of fallure modes;
3. testing; and,
4. identification and correction of all failures.

We place heavy emphasis on the design review function and require our contractors, as part of their reliability program, to have a design review program. Contractors are required to establish and conduct a formal program of planned, scheduled and documented design reviews at the system, subsystem and component levels. These reviews are comprehensive critical audits of all pertinent aspects of the design of the hardware and software and are conducted at major program milestones beginning in the feasibility stage. Participation in these design reviews should be inter-organizational including competent personnel from such areas as design, fabrication, test, reliability assurance, quality assurance, and parts applications. In this way, interdiscipilnary engineering competence is brought to bear on all aspects of hardware design so as to identify and eliminate potential problems. NASA personnel may participate in these design reviews as deemed necessary. Each design review must be documented and the contractor's reliability organization is responsible for follow-up action to ensurè that all recommendations are satisfactorily completed. An effective * design review program pays high dividends through the early identification and elimination of problems which would manifest themselves at a later tine when correction may be more costly.

Also, as an integral part of the early design phase, we require the contractor to develop analyses. to determine possible modes of failure and their effects on mission objectives and crew safety. These analyses are corducted at the system, subsystem and component levels. Each potential failure is considered in terms of its probability of occurrence and is categorized as to probable effect on mission success; e.g., loss of life of crew member, mission termination, launch scrub or delay, etc. These analyses, generally referred to as Fallure Mode, Effect and Criticality Analyses (FMEA) have the following important applications:

1. determining the need for redundancy, fail-safe design and derating;
2. determining the need to select parts and components of higher reliability;
3. identifying single failure points and reducing such to acceptable levels of risk;
4. supporting reliability predictions and assessments;
5. supporting system safety and hazard analyses;
6. assuring that test programs are responsive to known and suspected potential fatlure rodes;
7. establishing allowing operating times or cycles; and,
8. determining uperational contingency plans.

Of particular importance in our maned flight program is the use of FMEA's to identify single failure points which could adversely effect :rew safety and mission objectives.

NASA places strong emphasis on testing throughout all phases of hardware development and fabrication. We require the contractor t. develop an integrated test program which will evaluate all aspects of system periormance capability to the extent practical. In terms "" reilability considerations we expect the testing program to be dirt: aid towards:

1. verifying the rarability of the design;
2. evaluating the susceptibility of the design and hardware to fallures;
3. identifying unexpected interactions among components and assemblies;
4. identifying failure modes which reflect defects in materiuls. workmanstip and fabrication processes; and,
5. obtaining failure rate and other reliability data.

To the extent practical, tests are planned using statistical design. of-experiment cechniques and are conducted under environmental conditions and for time periods commensurate with mission conditions.

The final area to be discussed is that of fallure reporting and corrective action. We expect all failures and nonconformances.to be identified, analyzed and effective correction action taken - we cannot tolerate unexplained fallures \therefore ineffective corrective action in our space programs. We specifically require our contractors to employ a controlled system for identification, reporting, analysis, correction and prevention of recurrence of all nonconformances and suspected nonconformance of a functional nature which occur throughout the contract: period. Some of the requirements which the system must satisfy are as fullows:

1. it shall cover hardware, tertain software, the interfaces between hardware and software and the interfaces betyeen hardware or software and test or operational personnel;
2. It shall cover all nonconformances or suspected nonconformance:; of a functional nature such as:
a. unusual condition occurring in test or handling which are suspected to have an effect on the hardware;
b. transient malfunctions and suspected malfunctions; and,
c. notable deviations from previous performance - parameter drift.
3. It shall provide for investigation of each reported failure by an engineering analyses, followed, where appropriate, by laboratory analysis of failed hardware. Such investigation shall be adequate to assess causes, mechanisms, and potential effects of the failure and serve as a basis for decisions on the most efficient remedial and preventive actions;
4. it shall provide for a review of the technical closeout decision on each reported failure by higher levels of technical management commensurate with the criticality category of the failure involved; and,
5. closeout action shall be considered complete when:
a. remedial actions have been accomplished;
b. necessary preventive design and software changes have been devised and accomplished;
c. necessary design or computer program changes have been verified in test;
d. effectivity of preventive actions have been established;
e. change has been made in existing identical items of hardware to which the change is pertinent; and,
f. closeout documentation has been signed by proper management authority.

Such a system may seem unnecessarily extensive but experience has shown triat it is necessary and pays high dividends.

In conclusion, I would like to point out that a significant portion of our reliability problems are due to nonelectronic parts and components. Such items as valves, fittings, seals, actuators, etc., continue to receive major attention as we strive to attain the levels of reliability necessary for mission success.

As we look to the future we will be striving to decrease, significantly, our cost per pound of payload, the complexity of our systems will continue to increise and, thus, our need for strong emphasis on the engineering aspects of rellability will not abate.
 MONTE CARLO CONFIDENCE BOUNDS ON SYSTEM RELIABILITY*

Nancy R. Mann
Rocketdyne
Canoga Park, California

ABSTRACT. A description is given of results of preliminary
investigations (by a group at North American Rockwell Corporation) related to the Monte Carlo generation of lower confidence bounds on the rellability of a logically complex system. In calculating system confidence bounds by use of a Monte Carlo procedure, one must generate the distribution of each independent subsystem reliability, given the life-test failure data for that subsystem. Therefore, an assumption of a specified a priori distribution for each subsystem reliability is implicit in the procedure.

In order that clues may be obtained as to optimum prior assumptions to be used in calculating Monte Carlo bounds for a complex system, the model has been restricted to a series system wherein each independent subsystem has exponentially distributed failure time and prototypes of each subsystem are tested until a fixed (but not necessarily the same for each subsystem) number of failures occurs. For this model, optimum (uniformly most accurate unblased) exact classical coinfidence bounds on the reliability $R\left(r_{m}\right)$ at a specified mission time t_{m} are available, although not easily calculated (Lentner, M. M and Buehler, R. J., 1963. J. Ainer. Statist. Assoc. 58, 670-677 and El Mawaziny, A. H., 1965. Unpublished doctoral dissertation, Iowa State Univeraity). Computer programs for calculating the optimum classical bounds and the Bayesian Monte Carlo bounds were written, and a means of numerically comparing various forms of prior distributions against an optimum standard was thus provided. One prior distribution widely used in obtaining Monte Carlo and general Bayesian exact lower oonfidenoe bowds on system reliability is thereby shown numerically to yield bounds which are aonservative in the olasaical sense for this series-system model. Another auggested prior distribution is shown to give bounds which are usually conservative but under certain conditions are liberal, and hence not truly aonfidence bounds. Moreover, it is demonstrated by a combination of nwerical and analytical results, that for a series system containing more thon one independent subsystem

[^0]
Preceding page blank

there exigta no prior listribution for subsystem reliability which is inkenembut of thite suta and whioh uielda the ontimum lower bounds. Other numerical results related to the selection of optimum methods for generating the bounds and evaluation of certain approximate methods are described.

BACKGROUND AND APPROACH

Reyiew of Pertinent Literature. If it is possible to determine confidence bounds on system reliability solely from the testing of the subsystems of which the system is comprised, saving of expensive system testing can be effected. It may, in fact, sometimes be infeasible to test the system as a whole. Furthermore, this method of obtaining system confidence bounds can be used for exploratory system design.

The subject of conifdence bounds for system reliability from subsystem testing is one about which much has been written, but not a great deal is known. Consider a series system in which the failure times of k independent subsystems are exponentially distributed; i.e., for T a random variable representing failure time, Prob ($T>t$) $\mathbb{R}(t)=\exp (-\lambda t)$, $t \geqslant 0, i>0$. Suppose n_{j} prototypes of the j th subsystem, are subjected to life test and the life test is terminated at the time of the $\underset{f}{f}$ th ordered failure, $j=1,2, \ldots, k$. For this special model, there exist optimum (uniformly most accurate unbiased) ${ }^{1}$ exact ${ }^{2}$ confidence bounds on the reliability $R\left(t_{m}\right)$ at time t_{m}, the probability that the syntem will aurvive at least until time $t_{\text {to }}$. [See Lentner and Buehler (27) and E1
Mawaziny (12)]. No such optimum bounds have been found for a model which is equivalent to this exponential-failure-time series-syatem model, except for the fact that total test time t_{j} rather than number of fallures r_{j} is specified for the life test of 1 th subsystem, $j=1,2, \ldots, k$, and number of failures is the observable random variable. For edther the fixed-time or fixed-number of failures model, optimum exact confidence

[^1]bounds have not been derived for cases in which either failure time has uthe tian an exponential distribution (or can be converted by a transformation of the data to an exponential distribution) or the system is other than an independent series system.

Another much used failure model, of ten called the "attribute" model, is one in which only pass-fail binomially distributed data are collected for each independent subsystem. For this model, optimum exact confidence bounds on reliability (or probability of successful operation) of a series system have been derived [see Buehler (6)], but the problem of actually constructing such optimum bounds has not been completely solved [see Lipow (31), Lipow (32), Lloyd and Lipow (33), Steck (48), and Schick (43)). If a Poisson approximation to the hinomial distribution is applicable, then results of Harris (22) provide optimal exacr bounds on the reliability of an independent serles system for the attribute, model if one randomizes appropriately in obtaining the bounds. One would expect the Poisson approximation to the binomial distribution to apply when the number of prototypes of each subsystem tested is large and the probability of failure for each subsystem is small. There appears to be some question, however, [see Garner (19)] as to whethar the approximation loses its applicability as the number of subsystems increases.

Many approximate and non-optimal exact confidence bounds on system reliability have been derived. There have been several approximate confidence bounds on syatem reliability at time t_{m} derived for the exponential
fixed-number-of-failures model wherein the independent aubsystems for a series system. Some of the papers containing these derivations were written prior to the publication of the derivation of the optimum bounds [see Takenaga (49) and Kraemer(25)].

Other work tras been directed at providing a more tractable method of calculating confidence bounds than that of El Mawaziny's generalization to k subsystems, $k \geq 2$, of the Lentner-Buehler bounds which apply to 2 subsystems only [see $\bar{E} 1$ Mawaziny and Buehler (12), Sarkar (41) and Grubbs (21)]. The method suggested by El Mawaziny and Buehler depends upon large-sample theory and the others use the fact that a function of the estimator of subsystem mean-time-to-failure has a chi-square distribution. The method of Sarkar does not require that the subsystems be independent and is exact for equal numbers of fallures for all subsystems.

Some rather limited numerical comparisons have been made of some of these non-optimal methods for obtaining confidence bounds by, for example, Sarkar (41) and Grubbs (21). Apparently none of these methods have, until this time, been subjected to a thorough comparison with the Lentner-Buehler-El Mawaziny bounds, which must be calculated iteratively from an expression which demands extremely complicated calculations when the number of subsystems is more than two or three. (Problems involving $108 s$ of precision and use of excessive amounts of computer time also arise in calculating the El-Mawaziny bounds when the product of the number of independent subsystems and the number of fallures for any given subsystem is more than about 50.)

Other work deali:ig with the derivation of confidence bounds
 a Bayesian approach fir a parallel system with a single failure for each subsystem by Springe, and Thompson (47) and two reports by Allen, Carlson and Hubach (2) and Saunders (42), which discuss the fixed-test-time model for a series system.
ror the case in which only pass-fail data are collected for each subsystem many methods involving large-or small-sample approximations or Bayesian techniques have been derived for obtaining confidence bounds on the prohability of successful operation of an independent series aystem. Among the large-sample methods are those suggested by Madansky (34) (based on the asymptotic chi-square distribution of $\mathbf{- 2}$ log likelihood ratio), by Myhre and Sauiders (37) (which gives a generalization of Madansky's method) and by Rosenblatt (40), DeCicco (11) and Thomas (50) (all three of which are based on the as rmptotic normality of maximum-likelihood estimators). The methods of Rosenblatt and Madansky are discussed and compared by Myhe and Saunders (38), who demonstrate that the 1ikelihood ratio method at-! tains its asymptotic properties for smaller sample sizes than the wethod suggested by Rosenblatt and in practical situations appears to yield more acculate bounds. Madansky (34), however, points out that the Rosenblatt method has slightly higher asymptotic (Bahadur) efficiency. The methods of Decicco and Thomas use laylor-series approximations to the variance of the maximuin likelifiood eatimator of the system raliability R and would be expested to have asymptotic properties like those of the Roaenblatt method.

Small-sample approximate confidence bounds on R for an independent series system and binomial data have been derived by Nishime (39), Garner and Vail (20), Connor and Wella (8), Abraham (1) and Lindetrom and Madden [see Lloyd and Lipow (33)]. The first three of these approaches use various methods of combining confidence bounds on subsystem reliability to obtain the desired bounds on syatem reliability. The others use binomial or Poisson approximations for certain atatistics. Some of these methods are sensitive to inequality of sample sizes for subsystems. Lower confidence bounds obtained by most of these approximate methods hava been compared by the use of three sets of data by Schick and Prior (44) with three different sets of "exact" bounds obtained using regults of Lipow [see (31) and (32)], based on Buehler's theory (6) and Poisson approximations. The data apply to systems composed of two subsysteme, and in aach of the three cases the sample sizes are equal. Only the Lindatrom and Madden method compares favorably with what appear to be the best of the Lipow "exact" bounds. Since there is some question about the standard Hsed to judge the quality of the approximate methods, howevar; and since only three sets of data, two subsystems and equal sample sizes have been used in the comparisons, it is very difficult to make useful general inferences concerning these results.

Another method investigated numerically by Schick and Prior (44) is the Bayesian approach wherein reliability for each aubsystem is asmumed to
have a prior distribution which is uniform over the unit interval. Confilence bounds which are exact in the Bayesian sense (under the assumed prior distribution) are derived, by Zimmer, Briepohl and
 use a Mellin transform technique for obtaining in closed form the distribution of system reliability, given all the subsystem data. A Monte Carlo application of this Bayesian model is suggested by Mastran (jう) tor a system which is logically more complex than a series system. In the numerical comparisons given by Schick and Prior (44), there apperrs to be no particular agreement between the sets of Bayesian bounds colculated on the basis of the procedure prescribed by Springer and Thompson and by Zimmer, et al. (Which incidentally agree to two or three significant figures, as one might expect) and the three sets of "exact" bounds calculated. In particular, the Bayesian lower confidence intervals on R are all larger than those besed on what is for these three sets of data the smallest of the "exact" intervals.

One would expect the Bayesian bounds to be exact in a classical sense if sample sizes for all subsystems were "sufficiently" large. This is so because a prior density of the assumed type will have less effect upon the confidence bound as the sample sizes for all subsystems increase. Whether or not the bound is exact in a classical sense has not been established. Furthermore, the accuracy of this bound (see footnote 1) has not been investigated for small sample sizes. It is interesting to note that an approximate method, described by Dalton (10) and attributed to TRW's Florida Operations, yields bounds which agree to within 3 in the third significant figure with the three examples calculated in (44) by means of this particular Bayesian approach. The TRW method has the distinction of being extremely amenable to hand calculation.

Among very recently derived approximate methods for obtaining confldence bounds on the probability of successful operation of a series system are (1) those derived by Woods and Borsting (5i) (discuased by Lieberman (30)), which are shown by Monte Carlo investigations in their paper to be very nearly exact; (2) those derived by J. R. Johnson (23) based on the exact multi-variate binomial distribution of component test data, and (3) those arising from a Bayesian approach which formally uses subjective judgment concerning prior knowledge by J. Bram (5).

The Monte Carlo Confidence Bound Problem. We now examine the problem of obtaining lower confidence bounds on the reliability of a logically complex system when testing will be performed on the k independent subsyatems only. We assume that an equation relating true subsystem reliabilities to true system reliability is available, say by means of computer programs which can provide such information [see Levy (28) and McKnight, Modiest and Schmidt (36)]. We now, in lieu of an appropriate analytical method of obtaining such bounds, consider the possibility of the use of Monte Carlo techniques as suggested by Burnett and Wales (7), Bosnikoff and Klion (4), Costello, Meisel and Letow (9), Levy and Moore (29) and Mastran (35).

At first glance the creation of a Monte Carlo computer program for obtaining the bounds seems to be a straightforward problem of simulating the distribution of system reliability for a given set of failure data in au eíificient manner. $1 t$ soon becomes apparent, however, that there are important Bayesian questions implicit in the problem. That is, in order to generate the distribution of system reliability for a given data set, one must generate for each subsystem what is essentially the posterior distribution of subsystem rellability, given the subsystem life-teat failure data. Hence, some prior distribution or something equivalent to such a prior distribution for subsystem reliability must be implicitly or explicitly assumed. In other words, in carrying out the Monte Carlo approach outlined by the authors mentioned above, one uses the densiry of some appropriate function of the data and implicitly or otherwiae combines this information with a prior density of aubsystem reliability by means of Bayes' Thecrem, $P\left(A_{i} \mid B\right)=P\left(B \mid A_{i}\right) P\left(A_{i}\right) / \sum_{\text {ali }} P\left(B \mid A_{j}\right) P\left(A_{j}\right)$, to obtain the posterior density function of subsystem reliability, given the data. In agreement with the classical analytical method derived in (48), the Monte Carlo procedures described in (4), (7), (9), (29), and (35), in some cases directly auggest and in others tacitly imply a prior distribution for subsystem reliabllity which is the appropriate prior leading to the classical optimum bounds when the system consiste of one subsystem only. One may then inquire as to whether such an assumption is appropriate when the system consists of more than one subsyatem.

Springer and Thompson (47) analytically derive thair exact Bayesian confidence bounds on $R\left(t_{m}\right)$ for an exponential-failure-time model, wherein one failure is allowed for each independent subsystem of a parallel system, using an alternative a priori assumption. They assume aniform prior distribution on subsystem reliability over the unit interval, which leads to the classical optimum bounds on sucsessful aystam operation for the pass-fail model when the system consiata of a single ubbyatem. Springer and Thompson reas on that a flat prior for subsystem raliability is in keeping with the intent of Bayes' Theorem when no prior information is known. They point out that the prior dansity $p\left(R_{j}\right)$ for the jth mbsyatem reliability yielding the classical optimum bounds for a matem containing a single subsystem and an exponential fixed-failuras model, $p\left(R_{j}\right)=$ $R_{f}^{-1}\left[\ln \left(1 / R_{j}\right)\right]^{-1}$ or equivalentIy, $q\left(\lambda_{j}\right)=\lambda_{j}^{-1}$, where $R_{j} _R_{j}\left(t_{m}\right)=\exp$ $\left(-\lambda_{j} t_{m}\right)$ and $0 \leq R_{j} \leq 1, j-1,2, \ldots, k$, is "improper" in that the area under the frequency curve cannot be made equal to unity. Mastran (35) auggests for pass-fall data that prior densities for subsyatems which lead to a unfform plifor density for system reliability might be appropriate. In other worda all the suggested prior diatributions are derived from the concept of optimality for one bubsystem for some modal, even though the model may have little relationahip to the one of interest.

In the following, a description is given of results of a study (by members of a group at North American Rockwell Corporation) to determine optimum prior assumptions to be used in generating Monte Carlo confidence Dounds on the reliability ot a logically complex system. The investigation was conducted principally by K. W. Fertig of Rocketdyne Division and the present author. Mr. Fertig wrote all computer programs needed for the investigation, except for one routine linking the Monte Carlo program to the reliability equation for the complex system. He also provided (aee (17)] the important analytical derivation of the necessary form for a special restricted model of an optimum prior density function independent of the data and proved that no such prior density exists. Jerome Spanier of the North American Rockwell Science Center provided consultation on problems related to the Monte Carlo computer program. Shirley Stoneberger of the Los Angeles Division wrote the subroutine which makes use of the reliability equation generated from engineering flow chart information by the SCOPE (28) or the ARMM (36) program for a logically complex system.

RESULTS OF INVESTIGATION

Computer Programs Written and Utilized. An optimum atandard againat which to judge suggested prior distributions provides a means of attacking the Monte Carlo problem. Therefore, the model was first restricted to a series system wherein the 1 th independent subsystem has exponentially distributed failure time T_{j} with Prob $\left[T_{j}>t_{m}\right] \in R_{j} m R_{j}\left(t_{m}\right)=\exp \left(-\lambda_{j} t_{m}\right)$ and n_{j} prototypes of the 1 th subsysten, $j=1 ; 2, \ldots, k$, are tested until r_{j} failures occur. If one can determine an appropriate prior distribution for this model, then it should also be possible to make useful inferencas concerning the fixed-failure-time series-system model and to detarmine a method of using prior information for more complex systems.

A computer program was coded in Fortran H for the IBM S/360 system for calculating for this restricted model the optimum classical confidence bounds of Lentner, Buehler and El Mawaziny discussed in the introduction of this paper. The bounds are based on the conditional diatribution of $W=\mathbf{Z}_{1}$,

with $T_{1, j}$ an observable fallure time of the ith prototype of the 1 th component, and where the subscript 1 is arbitrarily assigned. Then, when u_{j} is less than zero for $j=2,3 \ldots, k$, the optimum classical (1-a)-1evel lower confidence bound $R_{B}(\alpha)$ on $R\left(t_{m}\right)=\exp \left(-\sigma t_{m}\right)$, (where $\left.\quad \sum \lambda_{j}\right)$ is $\mathrm{j}=1$ obtained by finding the solution $\theta_{B}(\alpha)$ of the following equation and then calculating $R_{B}=\exp \left[-\sigma_{B}(x) t_{m}\right]$, with $\emptyset_{B}>0$,

$$
\begin{aligned}
& \text { (1) } \\
& \phi^{-a_{1}-\Sigma_{j}}{ }_{j}{ }^{-1} \Gamma_{\neq \omega}\left(a_{1}+\Sigma_{j} 1_{j}+1\right)=1-\alpha,
\end{aligned}
$$

where

$$
\begin{aligned}
& A(\underline{u} ; \phi)=\phi^{-1-} \sum_{1}^{k_{a}} \begin{array}{lllll}
a_{2} & a_{3} & & a_{k} \\
& i_{2} & i_{3}
\end{array} \cdots \quad \sum_{k}\left(a_{1}+\sum_{j=2}^{k} i_{j}\right) \\
& \underset{j=2}{k}\left[\binom{a_{j}}{i_{j}}\left(-\phi u_{j}\right)^{a_{j}-1_{j}}\right]
\end{aligned}
$$

and where

$$
\Gamma_{\phi W}\left(a_{1}+\Sigma 1_{j}+1\right)=\int_{0}^{\phi W} y^{a_{1}+j^{\sum_{1}} j} e^{-\phi y} d y
$$

A similar expression is used if any $u_{j}, j=2,3, \ldots, k$, is greater than zero, and the solution is obrainad by joint application of NewtonRapheon iterative procedures, the method of falee position and bisection techniques. Then a computer program for generating Monte Cario confidence bounds was coded and combined with that for obtaining the Lentner-BuehlerEl Mawaziny confidence bounda. A listing and flow chart of the combined computer program are available [see Fertig (16) and (18)].

The Monte Carlo program calculates the confidance bounds on the basis of a epecified prior density for subsyetem reliability which is member of the "conjugate" family of prior denaitiea. That is, the prior density yielde a posterior density of subsyatem reliability, givan the abbyatem data, of the same general form (belonging to the ame family of denaity functions) as the prior density. The prior density function $p_{j}\left(R_{j}\right)$ usad for the jth subsystem reliability was, therefore,

$$
\begin{align*}
& r\left(R_{j}\right)=\frac{\left(0_{0,1}^{+1)^{r_{0.1}+1}}\right.}{\Gamma\left(r_{0 j}+1\right)} R_{j}^{i u j}\left(\ln \left(1 / R_{j}\right)\right]^{r} u j \\
& B_{o f}, r_{0 j}>-1, j=1,2, \ldots, k, \text { with } B_{o g} \text { and } r_{o g}
\end{align*}
$$

subjectively chosen. This yields posterior density $f\left(R_{g} \mid \hat{\beta}_{g} ; r_{j}\right)$ ror R_{j}

$$
\begin{align*}
& \text { of the form, } \\
& f\left(R_{j} \mid \hat{B}_{j} ; r_{j}\right)=\frac{\left(\hat{B}_{g}+\beta_{0 j}+1\right)^{r}{ }^{+r_{0 j}+1}}{\Gamma\left(r_{j}+r_{0 j}+1\right)} R_{g} \hat{B}_{j}+B_{0 j}\left[\ln \left(1 / R_{j}\right)\right]^{r}+r_{0 j} \tag{3}
\end{align*}
$$

where the random variable $z_{g} / t_{m}=\left(\sum_{i=1}^{r_{1}} T_{i, j}+\left(n_{j}-r_{j}\right) r_{r_{j} j}\right)^{\prime} / t_{m}$
1s equal to $z_{j} / t_{m}=\hat{\beta}, j=1,2, \ldots, k$, for the observed set of data.

If $B_{o j}$ and $r_{o f}$ each have the value -1 , then the prior density for R_{j} corresponds to the "improper" prior which is used by (48), (14), (7); and (29) and which gives the optimal classical bounds for a system consiating of a single subsystiem [see Epstein and Sobel (14)], that is, $p\left(R_{j}\right) \uplus R_{j}^{-1}\left[\ln \left(i / R_{j}\right)\right]^{-1}, j=1,2, \ldots, k$. (It is true, therefore, that even though the prior density corresponding to $\beta_{o j}=r_{o j}=-1$ is "improper," the corresponding posterior density is proper.) If $B_{o j}$ and $r_{o f}$ are both equal to zero, $f=1,2, \ldots, k$, then each subsyatem prior density function for subsystem reiliability is uniform over the interval from 0 to 1 , as suggested by Springer and Thompson (47) for their spacial case of a parallel-system model mentioned earlier.

For generating the posterior distribution of $R_{\text {}}$ using the expression (3), a given set of data and specified values for $\beta_{o f}$ and $r_{o j}$, a random number ρ_{j} is generated for the value of the integral $\gamma_{j}=\gamma\left(R_{j} \mid \hat{B}_{j} ; r_{j}\right)$ given by the expression (3) from $R_{\gamma, j}$ to 1 . The integration is performed by an evaluation of the incomplete gamma function and the value of $R_{\gamma, f}$ deterinined iteratively. The Newton-Raphson method of iteration in conjunction with the method of false position is used. Because this procedure is quite expensive in terms of computer time, the computer
program was written to calculate tor f given get of subsystem data a table ui 100 yalue; of $R_{\gamma_{, j}}$ corresponding to equally spaced values of $\gamma\left(R_{j} \mid s_{j} ; r_{j}\right)$. The computer then samples from and interpolates cubically at this table for $a_{1}<D_{j}<a$, where a_{1} and a_{2} are functions of the data. For $j_{j}{ }^{\prime} a_{1}$ and $\operatorname{m}_{j} \alpha_{2}$, a different table is sampled. In generating values for chis table,,$\left(R_{j} \mid \hat{\hat{r}}_{j} ; r_{j}\right)$ is calculated from a sperified value of $K_{r, f}$, so that no iteration is necessary, but the values of γ_{j} are not equally spaced (makiag interpolation more difficult). The second table, which contains values of γ_{j} much closer together than the one used for non-extreme values of $R_{Y, j}$, is necessary because of the steepness of the curve relating γ_{j} and $R_{\gamma, j}$ for values of $R_{\gamma, j}$ close to 0 or 1.

The first lnvestigation made by means of the computer was of the two familiar prior distributions corresponding to $\beta_{\text {of }}$ and $r_{\text {of }}$ both equal to zero and both equal to $-1, j=1,2, \ldots, k$. The Bayesian approach corresponding to $B_{o j}=r_{o j}=-1$, incidentally, is sometimes called the fiducial model since the posterior distribution of $R_{j}, j=1,2, \ldots, k$, can be thought of as chrainable from the distribution of a function of the data for the 1 th subsystem, as detailed in (25). The preliminary phases of this investigation made use of the Monte Carlo program, but the results given below were obeained using instead a computer program which utilizea a Mellin transform technique [see Springer and Thompson (46)] to calculate the posterior distribution of $R\left(t_{m}\right)$ from the postarior distributions of the $R_{i j}$'s. This Mellin transform program was originally written to calculate the variance of the Monte Carlo confidence bound and is applicable to a series system when the posterior density of R_{j} has the form given by the expression (3) with $r_{o j}$ an integer. The Melinn transform computer program is faster than the Monte Carlo program and gives better preciaion, but in its present form cannot be used if $r_{\text {of }}$ is other than an integer.

Study of Suggested Prior Densities. For each combination of input, involving from three to twenty-five components having λ 's in various proportions, numbers of failures ranging from 1 to 10 and theee or four different values of a ranging from . 05 to .50 , data were generated and a comparison was made of the two Bayesian bounds wth the optimum clessical bound. In each case (of a total of 156 cases), the Bayesian bound based on $B_{o j}=r_{o j}-1$ is smaller than the corresponding classical bound obtained. It, therefore, appears that though exsct in a Bayesian sense (under the assumed prior distribution for $R_{j}, f=1,2, \ldots, k$), the bounds based on such a prior assumption are conservative in the classical sense.

When the optimum bound is standardized at .800 by adjusting the m ascion time r_{m} : the fidurial bound ranges from . 538 to . 793 . When the optimam bound is equal to . 368, the fiducial bound ranges from .062 to . 354.

El Mawaziny and Buehler (13) show that their large-sample approximation of the optimal bound, a bound obtained by the Rosenblatt method (40) and the fiductal bound will approach the optimal bound as numbers of failures for all subsystems become large. For three samples having ten failures fur each of three identical components, the fiducial buunds were of the order ; 787 and .341 for optimal bounds df .800 and .378 , respectively, with deviation between any two corresponding fiducial bounds less than three in the third decimal place.

Analytical results described later indicate that the fiducial bounds for a fixed number of fallures per subsystem will agree less well as the number of subsystems increases and the subsystems become more variable with respect to failure rate. Unfortunately, because of the computer-time factor and considerations of precision, it is impossible at present to compare bounds for systems containing as many as ten subsystems when as many as ten failures occur for more than one or two of these subsystems. In any case, the large-sample methods cannot be expected to giye bounds agreeing well with the optimal bounds when some of the subaystems have been subjected to few tests. Furthermore, it is imposaible on the basis of these reaults to say whether bounds based on this specified prior might be conservative, liberal, or exact for a particular logically complex system.

The uniform prior distribution for subsystem reliability gives bounds even lower than those based on the fiducial method except in 24 cases (out of 150) in which all three bounds have values fairly close to zero: In these 24 cases they are higher than the optimum classical bounds. It appears that the distribution of the bounds based on the uniform prior may be less disperse than those of the optimal boundn, but these bounds seen to be even more conservative than the "ffducial" bounds given by $\beta_{0 j}=r_{0 j}$ = -1 for true reliabilities of a reasonable size and a's of interest. For systems with low reliabilities, bounds obtained using a uniform prior density for subsystem reliability should be liberal rather than conservative when the confidence level is sufficiently low, but not exact in general. This inconsistent behavior may be due to the fact that a uniform prior density for K_{j} fomplies a prior density for λ_{j} (the failure rate for the 1th subsystem) of the form $q\left(\lambda_{j}\right)=t_{m} \exp \left(-\lambda_{j} t_{m}\right), j=1,2, \ldots, k$, or, strangely, one which is a function of t_{m}, the specified misaion time.

The result for $\beta_{0 j}=r_{0 j}=-1$ is keeping with the analysis and numerical results of Saunders (42), who studiea a fixed-test-time exponential series-system model and the Bayesian approach augsested in (2). This Bayesian approach uses a prior density for the fixed-test-time
midel equivalent to the so-called fiducial method. Saunders (42) :rints wat that in using such a Bayesian model for an exponential ieries system (and his argument applies to any true Bayesian model, that is, one based on a prior assumption which does not involve information concerning the number of components in the gyotem), one can ribtain different confidence bounds depending upon what one chooses to -all a subsystem. Saunders points out, too, that such inferences apply :o mure logically complex systems which are highly reliable, since one can approximate an extremely reliable coherent system [see Birnbam, lisary and Saunders (3) for a tefinition of a coherent system] by a series-system model, as indicated by Esary, Proschan and Walkup (15).

The Search for Optimum Prior Assumptions. Initially, it has been planned that a trial. and error procedure would be used in attempting to determine appropriate priut assumptions for our series-system model. Saunders' argument inght lead one to consider trying prior assumptions which are not truly Bayesian in that they are dependent upon the configuration (or number of components in the system). At this point in the study, however, an analytical result was derived, modifying the subsequent approach. The detalls of the analyais are given by Fertig (17) and are summarized below.

First, the form of a prior density function, or generalization of such 3 furiction, for $R_{j}, f=1,2, \ldots, k$, correaponding to the optimum classical bounds for our system model was determined. This was accomplished by setting the Laplace transform of $H_{\phi k}\left(w \mid \underline{w} ; \phi^{\prime}\right)$ equal to the Laplace transform of the posterior denaity of $\phi=\sum_{j=1}^{\infty} \lambda_{j}$, obtained under a general prior assumption (not restricted to conjugate priors) for the epecial case $u_{2}=u_{3}=\ldots=u_{k}=0$. If the prior assumptions which yield the optimum
bounds are independent of the data, true Bayesian priors, for example, then an assumption concerning the value of the u's will have no effect on the result. The fact that the optimum classical bounds arc invariant under permutations of the subsystems was used to obtain the improper "prior density" for the 1 th subsystem yielding these bounds. It is

$$
p^{\prime}\left(R_{j}\right)=R_{j}^{-1}\left[\ln \left(1 / R_{j}\right)\right]^{-(2-1 / k)} \quad, j=1,2, \ldots, k .
$$

We note that this improper density depends upon k, the number of subsystems in the series system and for $k=1$ does yield the optimum classical bound.

The Monte Carlo program was then used to test whether this prior assumption (which we may think of as a weighting function since it does nut correspond to a strict Bayesian prior density) would yield the optimum wounds for variations in the data. For the case where all the u's equal zero $\left(z_{1}=z_{2}=\ldots=z_{k}\right)$, eight values of the Monte Carlo bounde based
on 5,000 replications agree with the optimum bounds to within three in the third decimal place. Data were randomly generated for five subsyatems using the fact that $2 Z_{j} / \lambda, j$ is distributed as chi-square with ${ }^{2} r_{i}$ degrees of treedom [see Epstein and Sobel (14)], where $r_{1}=3, r_{2}=4, r_{3}=4$, $r_{4}=2, r_{5}=2, \lambda_{1}=1 / 12, \lambda_{2}=1 / 13, \lambda_{3}=1 / 15, \lambda_{4}=1 / 10, \lambda_{4}=1 / 11$. The mission time was taken as 1.0 . For ten such data sets, the Monte Carlo bounds are uniformly latger than the classical confidence bounds with deviations ranging from 1 to 6 in the second decimal place.

The confidence bound obtained from any set of data by E1 Mawaziny's formula given by Eq. (1) is the unique optimum (uniformly mast accurate unbiased) confidence bound for this exponential-fallure-number seriessystem model. This is proved "in the Appendix of Fertig's paper. Thus, any optimum bound is equivalent to the bound defined by Eq. (1) and must give the same result for any given set of data. Since the error in the Monte Carlo procedure is very small compared with the deviations obtained for the u's not all equal to zero, the empirical evidence indicates that the prior ausumptions which yield the optimum classical bounds do depend upon the data.

Fortunately, a means of proving this result analytically then presented itself [see Fertig (17) for details]. The Laplace transform of $H(w \mid \underline{u} ; \phi)$ is a horrendous expression which gives no apparent clue as to how it might be factored and assigned to the various subsystems. The problem was made tractable earlier by letting all the z 's be equal.

Another method of simplifying the expression was found to be to assume $r_{1}=r_{2}=\ldots=r_{k}=1$. If this is done, then it is possible to demonstrate that the "prior density" for the 1 th subsystem yielding the optimum bound for $r_{1}=r_{1}=\ldots=r_{k}=1$ cannot have the form $p\left(R_{j}\right)=$ $R_{j}^{-1}[\ln (1 / R)]^{-(2-1 / k)}$ unless $z_{1} "-z_{2}=\ldots=z_{k}$, as assumed in the earlier case. Hence, as indicated by the numerical evidence, one must incorporate present data into the "prior assumptions" or more properly the weighting functions, for obtaining optimum confidence bounds for the exponential fixedifailure-number seríes- system model.

[^2]this series-system subsystem by substituting a random number p_{ℓ} for
 an estimate of total system reliability given the fallure data. This method will probably not yleld confidence bound that are exact in the classical sense, though of course they are exact in a Bayesian sence. In lieu of the fiducial approach one could somehow modify the value ontained for $R_{o, f}$, in an attempt to obtain bounds exact in the classical sense. Clues as to how this might be accomplished may possibly be obtilned by investigating a simple parallel syotem (again an exponential-failure-time model with fixed number of failures) and methods of obtaining confideace bounds exact in the classical sense for the simpler model.

A considerable amount of computer time will be required with this approach when the prodict of the number of subsystems in any series system and the number of failures for any subsystem in that series system becomes large. l'erice, one might in such cases, abandon the idea of considering the series system as a single subsystem. Instead one might consider a method of approximating the optimum confidence bound for a series system by using series aystem data in the prior assumptions (or weighting functions) for the subsystems of the series system that yield the posterior distribution of series system reliability. For the casc $r_{l}=r_{2}=\ldots r_{k}=1$, one posaible factoring of the Laplace transform gives

$$
\begin{equation*}
p_{l}\left(R_{j}\right)=R_{j}^{-1-\hat{\beta}_{j}+\hat{\varepsilon}^{2}}(1) \quad\left[\ln \left(1 / R_{j}\right)\right]^{-\left(2-1 / k_{l}\right)} \quad, j=1,2, \ldots, k_{l} \tag{4}
\end{equation*}
$$

where $\hat{H}_{(1)}$ is the smallest of $z_{1} / t_{m}, z_{2} / t_{m}, \ldots, 3_{k_{l}} / t_{m}$. This function or some modification of this function involving the true values for r_{1}, r_{2}, \ldots, r_{k} could be tried. If the expression (4) is used without modification, then the posterior distribution of series system reliability, given the fallure data, depends only upon $\hat{\hat{B}}(1)$. It can be shown that, in fact,
the fiducial distribution of series system reliability for this model depends only upon $\hat{\varepsilon}_{(1)}$ if and only if $r_{1}=r_{2}=\ldots=r_{k_{l}}=1$.

The method of Kraemer (24) depends solely upon $\hat{\beta}_{(1)}$ and hence would be expected to give poor results for large numbers of failures per component. This is born out by the comparisons made by Sarkar (42) and Grubbs (21).

The bounds derived by Grubbs (21) are approximations to the fiducial bounds, and for the bounds compared during this etudy, the approximetion appears to be excellent. The Grubbs method is based on the fact that $2 r_{j} \cdot \lambda_{j} / i_{j}$ is distributed as chi-square with $2 r_{j}$ degrees of freedom,
$j=1,2, \ldots, k$, so that $\phi=\sum_{i=1}^{k} \lambda_{j}$ can be thought of as distributed as a weighted sum of chi-square variates. The welghts used oy Gruivo, umineij, $\hat{h}_{j} / 2 r_{j}, j=1,2, \ldots, k$, are appropriate for obtaining the fiducial bounds. One could obtain, instead, an approximation to the optimal bounds by adjusting the weights appropriately, obtaining clues from the expression (4) above. In this way, one can test approximations to the optimum prior assumptions and avoid the time-consuming Monte Carlo calculations. If successful in closely approximating the optimum bounds by the proper modification of the Grubbs method, one can use this approximation in place of the Lentner-Buehler-El Mawaziny bounds in considering series systems within a complex system as single subsystems.

The investigation is being continued along these ines.

REPERENCES

1. Abraham, John K., 1962. A confidence interval for the reliability of multi-component syatems. PROCEEDINGS SEVENTH CONFERENCE ON THE DESIGN OF EXPERIMENTS IN ARMY RESEARCH, DEVELOPMENT AND TESTING, ARODR 62-2, 483-518.
2. Allen, D. C., Carlson, C. H. and Hubach, C. E., 1967. Procedure for Reliability Asseasment and Confidence, Federal-Electric Corporation Document No. AS-A-86-67.
3. Birnbaum, 2: W., Esary, J. D. and Saunders, S. C., 1961, Multtcomponent systems and structures and their reliability, TECHNONETRICS 3, 55-71.
4. Bosniköff, I. and Klion, J., 1962. Development of new prediction Lechniques. PROCEEDINGS EIGHTH NATIONAL SYMPOSIUM ON RELIABILITY AND QUALITY CONTROL, 382-387.
5. Bram, J., 1969. "Confidence Limite for Syatem Reliability." ORG Research Contribution No. 79, Center for Nayal Analyses, Univeraity of Rochester.
6. Buehler, R. J., 1957. Confidence intervals for the produce of two binomial parameters. J. AMER. STATIST. ASSOC. 52, 482-493.
7. Burnett, Thomas L. and Wales, Beverly A., 1961. System reliability confidence Limits. PROCEEDINGS SEVENTH NATIONAL SYMPOSIUM ON RELIABILITY AND QUALITY CONTROL, 118-128.
8. Conner, W. S. and Wells, W. T., 1962. Simulating teate of aystem from tests of its components, PROCEEDINGS OF THE EIGHTH NATIONAL SYMPOSIUM ON RELIABILITY AND QUALITY CONTROL, 14-16.
 demonstration of a multimode system using Monte Carlo analysis. PROCEEDINGS EIGHTH NATIONAL SYMPOSIUM ON RELIABILITY AND QUALITY CONTROL, 446-457.
9. Dalton, R. E., 1966. "An Evaluation of Methods for Construction of Confidence Limits for System Reliability." TRW Systems, Florida Operations; Contract AF04 (694)-806.
10. DeCicco, Henry, 1960. "The Error in Linearized Estimate of the Variance of Products." Technical Note No. 2, Office for Reliability Research and Effects (Reliability Branch - ORDSW-DR).
11. El Mawaginy, A. H., 1965. "Chi-Square Distribution Theory with Applications to Reliability Problems." Ph.D. Thesis, Iowa State University, Ames.
12. E1 Mawaziny, A. H. and Buehler, R. J., 1967. Confidence Limite for the reliability of a series gyntem. J. AMER. STATIST. ASSOC. 62 1452-59.
13. Epstein, B. and sobel, M., 1963. Life Testing, J. ANER. STATIST. ASSOC. 48, 486-502.
14. Esary, J. D., Proschran, Frank, and Walkup, D. W., 1966. "A Mulcivariate Notion of Association, with a Reliability Application," Boeing Document D1-82-0567.
15. Fertig", K. W., 1969. "Flow Chart for Monte Carlo Program for Confidence Bounds on Sy tem Reliability." Rocketdyne Report MSM 69-11.
16. Fertig, K. W., 1969. "A Result Concerning Rayesian Prior Distributiona and Confidence Bounds on the Reliability of Serial Systems with Exponential Failure Times." Rocketdyne Research Report RR 69-6. (Submitted for publication.)
17. Fertig, K. W., 1.969. "Monte Carlo Program for Confidence Boundy on System Reliability." Rocketdyne Report MSM 69-12.
18. Garner Norman R., 1969. "Eatimation for Sarially Connected Systeme." Technical Report RCS59-4 Aerojet-General Corporation.
19. Garner; Norman R. and Vail, Richard W. J., 1961. Confidence Limite for system reliability MILITARY SXSTEMS DESIGN 7, No. 5.
20. Grubbs, Frank, 1969. "On Confidence Limita for the Reliability of a Series System for Which each Component has an Exponentisl TimetoFail Distribution." (Submitted for publication.)
21. Harris, Bernard, 1968. "Hypothesis Testing and Confidence Intervals ior Products and Quotients of Poisson Parameters with Applications to Reliability." MRC Technical Summary Report No. 923. U. S. Army Mathematics Research Center, The University of Wisconsin, Madison.
22. Johnson, J. R., 1969. "Confidence Interval Estimation of the Reliability of Multicomponent Systems Using Component Test Data." Ph.D. Thesis, University of Delaware.
23. Fraemer, H. C., 1963. One-sided confidence intervals for the quality indices of a complex item. TECHNOMETRICS 5, 400-403.
24. Kendali, M. G. and Stuart, A., 1967. THE ADVANCED THEORY OF STATISTICS VOL. 2 , Second Edition, Hafner.
25. Lehman, E. L., 1959. TESTING STATISTICAL HYPOTHESES. John Wiley.
26. Lentner, M. M. and Buehler, R, J., 1963. Some inferences about gamma parameters with an application to a reliability problem. J. AMER. STATIST, ASSOC. 58, 670-677.
27. Levy, Sherwin, 1969, "System to Compute Operational Probability Equation." Program XC0003. Space Division, North American Rockwell Corporation.
28. Levy, Louis L, and Moore, Albert H., 1967. A Monte Carlo technique for obtaining system reliability confidence limits from component test data. I.E.E.E. TRANSACTIONS ON RELIABILITY R-16 No. 2, 69-72.
29. Lieberman, Gerald J., 1969. The status and impact of reliability methodology. NAV. RES. LOG. QUART. 16, 17-35.
30. Lipow, M., 1958. "Measurement of Over-All Reliability Utilizing Results of Independent Subsyatem Tests." GM-TR-0165-00506, Space Technology Laboratories.
31. Lipow, M., 1959. "Tables of Upper Confidence Bounds on Failure Probability of 1,2 , and 3 Component Serial Systems." TR-50-000000756, Space Technology Laboratories, 2 Volumes.
32. Lloyd, D. K. and Lipow, M., 1962. Reliability: Management, Methode, and Mathematics, Prentice-Hall.
33. Madansky, Albert, 1965. Approximate confidence limita for the reliability of series and paraliel systems. TECHNOMETRICS 7, 495-503.
34. Mastran, David V., 1968. A Bayesian approach for assessing the rellability of Air Force re-entry systems, PROCEEDINGS OF THE ASME RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 380-383.
35. Mcknight. C. W., Modieat: L. T. and Schmifis: N. R., 19K5. An Automatic reliability mathematical model. PROCEEDINGS ELEVENTH NATIONAL SMMPOSIUM ON RELIABILITY AND QUALITY CONTROL, 518-532.
36. Myrhe, Janet and Saunders, Sam C., 1965. On confidence limite for the rellability of systems. ANN. MATH. STATIST. 39, 1463-1472.
37. Myhre, J. M. and Saunders, Sam C., 1968. Comparison of two snthode of obtaining approximate confidence intervala for system reliability. TECHNOMETRICS 10 , 37-49.
38. Nishime, F., 1959. Techniques for ... the Establishment of Confidance Limits for the Estimated Reliability, Unpublished memorandum, Space Technology Laboratoriea.
39. Rosenblatt, Joan R., 1963. Confidence limits for the reliability of complex systems. STATISTICAL THEORY OF RELIABILITY, 115-137. Ed. Marvin Zelen, The Univeraity of Wisconsin Press, Madieon.
40. Sarkar, Tapas K., 1969. "An Exact Lower Confidenca Bound for the Reliability of a Series System Where Each Component Has an Exponential Time to Faifure Distribution." Technical Report No. 117, Department of Operations Research and Department of Statistica, Stanford Uaivaraity.
41. Saunders, Sam C., 1969. "On Confidence Limite for the Performance of a Syatem When Few Failures are Encountered." Boeing Document D1-82-0676, Revised.
42. Schick, G. J., 1959. 'Reliabilities, Confidence Limite and Their Improvements as Applied to Misaile Reliability." Technicul Pubilcation, Aerojet General Corporation.
43. Schick, G. J. and Prior, R. J., 1966. Reliability and confidence of serially connected systems. PROCEEDINGS OF THE THIRD SPACE CONGRESS, Cocoa Beach, Florida, 352-360.
44. Springer, M, D. and Thompson, W. \&., 1906. Bayeíian confidance limits for the product of n binomial parameters. BIOMETRIRA 53, 611-613.
45. Springer, M. D. and Thompson, W. E., 1969. Bayesian confidence limits for system reliability, PROCEEDINGS OF THE ASME RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 515-523.
46. Springer, M. D. and Thompson, W. E., 1968.. Bayeaian confidance limita for reliability of redundant systeme when tests are terminated at first failure. TECHNOMETRICS 10, 29-36.
47. Steck, G. P., 1957. "Upper Confidence Limite of the Pailure Probability of Comiplex Networks." SC-433 (TR), Sandia Corporation.
48. Takenaga, R.., 1962. "Predicting System Reliability with Associated Confidence Level from Component Test Data:: Technicai Memorancium 3024-43-MA-003, Autonetics, A Division of North American Aviation, Inc., Downey, California.
49. Thomas, Ralph E., 1960, "An Improved Formula for the Standard Deviation of the Reliability Product Rule." Technical Report. No. 2, Battelle Memorial Institute.
50. Woods, W. Max and Borbting, J. R., 1968. "A Method for Computing Lower Confidence Limiss on System Reliability Using Component Failure Data with Unequal Sample Sizea." NPS 55Wo/Gg 8061A. United States Naval Postgraduate School, Monterey, Callfornia.
51. Zimmer, W. J., Prairie, R. R., and Breipoh1, A, M., 1965. A consideration of the Bayesian approach in reliability evaluation. I.E.E.E. TRANSACTIONS ON RELIABILITY R-14, No, 2, 107-113.

COMPARATIVE ANALYSIS OF THE LCSS-ETG-3 PERFORMANCE CAPABILITY USING STATISTICAL PROBABILITIES

Andrew H. Jenkins
U. S. Army Missile Command

Abstract

A test plan is formulated and executed to obtain a random sample of measurements on the U.S. Army Missile Command's Land Combat Support System Electronic Test Group equipment.

Analyses of the data establish sample estimates of bias, accuracy, and stimulus setting errors and the standard deviation of measurement on $14 \mathrm{com}-$ binations of parameters and scales (e.g., de voltage, 10 -volt acale). The analyses pose hypotheses about the statistics and test these hypotheses against appropriate frequency distributions. They include the principle of analysis of variance, which makes use of blas error, accuracy error, stimulus setting error, and sample variance. These four'parameters are used as response varlables to establish the effects of the main factors of test durations, time delays, and machines and combinations of the main factors (i.e. it interactions) oni, the computed response statistics for each of the 14 parameters and scales considered,

The overall estimates of the precision (standard error of measurement) for each parameter and scale are related to actual weapon syatem tolerances to obtain probability estimates of the risk of passing a bad unit "'undetected defect") or holding a good unit ("false alarm") in a single test in a chackout procedure. (Single checkout probibilities are related to multiple sequential checkout probabilities.

ACKNOWLEDGEMENTS

The author is grateful to the following persons and their organizations for their assistance: The LCSS Project Office of the U.S: Army Missile Command for running the test tapes; F. Seeley and W. Bartoh of the Metrology Laboratory, U.S. Army Mysile Command, for compiling the test tapes: W. Wigham, W. Jones, and C. Wood of the Computation Center, U.S. Army Missile Command, for processing the data; and Dr. B. Harshbarger of Virginia Polytechnic Institute for guidance on the statistical aspects.

[^3]
Preceding page blank

Section 1. INTRODUCTION

The purpose of the Land Combat Support System (LCSS) electronic test group (ETG) equipment is in provide maintenance support and check operational readiness of najor modules, assemblies, and subassemblies of the Shillelagh, Lance, and TOW missile systems. The pirmary requirement is for \$rect and general support missions. A detalled description of the LCSS-ETG can be found in a previous report $\{1\}$. The ETG is designed to automate the testine of witical components of the missile systems to achieve:
a) Rapid evaluation of the operational siatus of the unit under test (UUT).
b) Rapid fault 1:soiation of a defective UUT.
c) Automated decision making as to operational status by comparison of measured values with prescribed standards.
(d) A standardized automated test capability for several weapon systems.

Automation of the ETG equipment requires the preparation of a programmed test sequence. The test program instructs the operator on the required manual operations for the checkout such as external connections to "make" and "breat." The program includes all necessary tests for functional checkout of the LUT's as prescribed by the weapon system design engineers. Typical tests are to measure stimuli and responses of such parameters as ac and de voltage, resistance, optical alignment frequency, phase, and time, and to compare these measurements with prescribed values. The required values of such parameters along with acceptable tolerances (deviations) are prescribed in the test program. The test equipment makes the measurement and compares it with the specified value and dectdes on a "go/no-go" basis as to a fault determination.

In the testing of missile components on'a go/no-go basis there are a combination of conditions which niay exist. A unit may be good and check gocd resulting in a go decision. The unit may be good and check bad resulting in a no-g. decision. On the other hand, a unit may be bad and check good resulting in a go decision, or it may be bad and check bad resulting in a no-go decision. There are certain probabilities associated with these combinations of actual component condition and checkout results. These are shown in Table I. The $p(a)$ is the probability that a unit checks good when in fact it is bad. The $p(\beta)$ is the probability that a unit checks bad when in fact it is good. Some authors refer to these prohabilities as an "undetected defect" and a "false alarm,"

TABLE I. CHECKOUT PROBABILITY VERSUS UNIT CONDITIONS AND TEST DECISIONS

Unit Condition and Checkout	Decision	
	Go	No-Go
```Bad Checks good (undetected defect) Checks bud```		
	$p(\alpha)$	NA
	NA	\| $1-\mathrm{p}(\beta) \mid$
Good		
Cheeks grod :	$[1-\mathrm{p}(\alpha)]$	NA
Checks bad (false alarm)	NA	$p$ ( $\beta$ )

respectively: It can be seen that the $p(\alpha)$ is related to a go decision and the $p(\beta)$ is related to a no-go decision based on the test results. A unit that is good and checks good will not result in a no-go decision. Similarly, a unit that is bad and checks bad will not result in a go decision. These combinations are not applicable and are shown as NA in Table I. In a go decision situation there is a probabllity that a bad unit has checked good; i. e., there is a $p(\alpha)$ chance that a defect exists and it is undetected by the test equipment whici is an "undetected defect." In a no-go dentsion situation there is. a probability that a good unit has chedked bad; i.e. . there is a $p(\beta)$ chance that the test equipment has falsely indicated a defect that does not exist which is a "false alarm.." Therefore, it is seen that the $p(\alpha)$ is the probability of simultaneously getting a measured value within the specification limits, (or the decision limits) and an actual value outside the specification limits. The $p(\beta)$ is the probability of simultaneously getting a measured value outaide the specification limits (or decision limits) and an actual value inside the specification limits.

In other words, given a go decision, the probability that it is wrong (bad checks good) is $p(\alpha)$ and the probability that it is right (good checks good) is [1-p( $\alpha)$ ]. Given a no-go decision, the probability that it is wrong is $\mathbf{p}(\beta)$ and the probablity that it is right is [1-p( $\beta)$ ].

The $\mathbf{p}(\alpha)$ and $\mathbf{p}(\beta)$ set for the test equipment should be realistically determined in light of the weapon mission and test equipment environment. If the probability $p(\alpha)$ is set too high, an excessive number of bad units going to the troops will result.

On the other hand, if $p(\beta)$ is too high, an excessive amount of time is spent in checking for a defect that does not exist. Therefore experience, knowledge of military tactics and good judgment should govern the compromises between logistics, field troop effectiveness, troop operational conditions, military objectives, etc., to determine the levels of $P(\alpha)$ and $P(\beta)$. (Note: $p(\alpha)$ and $p(\beta)$ refer to single test probability and $P(\alpha)$ and $P(\beta)$ refer to multiple test probability.) The determination of $P(\alpha)$ and $P(\beta)$ considering the above military factors is not germane to this effort. This effort is concerned with the analysis of probabilistic relations between error probabilities $p(\alpha)$ and $p(\beta)$, and standard deviation error of measurement instrument $\left(\sigma_{m}\right)$, standard deviation of test parameter $\left(\sigma_{p}\right)$, parameter tolerance for a given y $\sigma$ confidence level $(\theta)$, and decision limits $(\gamma)$. Also included are the relations between single test probabilities $p(\alpha), p(\beta)$ and multiple test probabilities $P(\alpha)$, and $P(\beta)$.

## 1. General

In the measurement of any one individual parameter by the ETG, there are three things to be considered. The first is the value specified by the weapous system for the UUT. This is called the nominal value of the parameter (N). The second is the actual value of the parameter ( X ). The third is the measured value of the parameter (M). It is assumed that the actual value ( $\mathbf{X}$ ) of the parameter is related to the measured value (M), according to the normal probability density function. This assumption is based on the fact that there is no inherent bias error as would be caused by coupling. feedback loops, and switching in the instrument and that all errors in measurement are completely random and normally distributed. It is also assumed that the actual value X is distributed normally aboat the nominal value N , according to a normal probability density function.

Since the go/no-go decision is made on the measured value of the parameter, the normal probability density distribution for the random measurement error is considered in the following way. The density function is considered to be centered at the measured value $M$ of the parameter. The density function with standard deviation $\sigma_{m}$ describes the distribution of the possible actual value $X_{i}$ 's that could have resulted in a given measured value $M$.

## 2. Single Check Probability

The normal probablity density distribution for the measurement erroy, for a given value $M$, has the form

$$
\begin{equation*}
\mathbf{f}(\mathbf{X})=\frac{1}{\sigma_{m \sqrt{2 \pi}}} e^{-\frac{1}{2}\left(\frac{X-M}{\sigma_{m}}\right)^{2}} \tag{1}
\end{equation*}
$$

The actual parameter value, X , is also a random variable with a probability density function $f(X)$. It is reasonable to assume that the actual value X is normally distributed about the nominal parameter value N with a standard deviation for the nominal parameter value of $\sigma_{p}$. With no bias error in the measurement device, the measured value $M$ will also be normally distributed
alout the nomina! value N with a denoty function f(M!. If the monouromont standard deviation $\sigma_{m}$ is an order of magnitude less than the parameter atandard deviation " $p$ for the nominal value $N$ then

$$
\begin{equation*}
\mathbf{f}(\mathbf{M}) \approx \mathbf{f}(\mathbf{X}) \tag{2}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
f(M)=\frac{1}{\sigma_{p \sqrt{2 \pi}}^{\prime}} e^{-\frac{1}{2}\left(\frac{M-N}{\sigma_{p}}\right)^{2}} \tag{3}
\end{equation*}
$$

The nominal vulue, $N$, as specified by the weapon system, also has prescribed tolerances. These tolerances are usually assumed to be $\pm n \sigma_{p}$ Where ${ }_{c}{ }_{p}$ is the standard deviation from the acceptable mean value of the parameter: The $+n \sigma_{p}$ value is the upper specification limit and the - no $\sigma_{p}$ value ts the lower specification limit, $S_{u}$ and $S_{1}$, respectively. The tolerances may be specified as the $n \sigma_{p}$ level, where $n=1,2,3,5$, etc. Whatever the specified no level, it represents the allowable limits for the parameter values by the weapon system for proper operation of the unit [2].

In order to assure that the probability of an undetected defect does not exceed $n$ specified maximum, the measured value, $M$, must fall between even tighter test limits, "defined as upper and lower decision limits $D_{u}$ and $D_{1}$, respectively. A go/no-go decision is then based on whether the measured value falls inside or outside the decision limits and not the weapon system specification limits. The decision limits may be set at the specification limits or some fraction of the specification limits. That is:

$$
\begin{equation*}
\left(D_{u}, D_{1}\right)=a\left(S_{u}, S_{1}\right) \tag{4}
\end{equation*}
$$

where $0<a \leq 1$.

This is shown graphically in Figure 1 [3].
In Figure 1, it can be seen that $\theta= \pm n \sigma_{p}$ and $\gamma= \pm a\left(n \sigma_{p}\right)$ represents the upper and lower specification limits and the upper and lower decision (test)

aCTUAL PARAMETER VALUE

FIGURE 1. MEASUREMENT ERROR PROBABILITY DENSITY DISTRIBUTION •
limits. The normal distribution curve around $M$ is also shown to clarify the proposition of setting the decision limits less than the specification limits.

The probability of an undetected defect $p(\alpha)$ is the probability of simultaneously getting a measured value, $M$, within the decision limits and an actual value $X$ outside the specification limits. The probablility of getting a measured value, $M$, within the decision limits is $f(M) d M$. The probability that the measured value resulted from an actual value, $X$, outside the specification limits is

$$
\begin{equation*}
i-\int f(X / M) d x \tag{5}
\end{equation*}
$$

The simultaneous probability is the product of the two individual probabilities:

$$
\begin{equation*}
[f(M) d M]\left[1-\int_{S_{1}}^{S_{n}} f(X / M) d x\right] \tag{B}
\end{equation*}
$$

The probability of an undetected defect is the summation of the above probabdity over all possible M's between the decisiop limits:

$$
\begin{equation*}
p(\alpha)=\int_{D_{1}}^{D_{u}} f(M)\left[1-\int_{S_{1}}^{S_{u}} f(X / M) d X\right] d M \tag{7}
\end{equation*}
$$

The probability of a false alarm $p(\beta)$ is the probability of simultaneoush getting a measured value, $M$, outside of the decision limits and an actual value, $X$, inside the specification limits. Similarly,

$$
\begin{equation*}
p(\beta)=\int_{-\infty}^{D_{1}} f(M)\left[\int_{S_{1}}^{S_{u}} f(X) d X\right] d M+\int_{D_{u}}^{+\infty} f(M)\left[\int_{S_{1}}^{S_{u}} f(X) d X\right] d M \tag{B}
\end{equation*}
$$

In equations (7) and (8) the limits are expressed as follows:

$$
\begin{align*}
& \mathrm{D}_{1}=\mathrm{N}-\gamma \\
& \mathrm{D}_{\mathbf{u}}=\mathrm{N}+\gamma \\
& \mathrm{S}_{1}=\mathrm{N}-\theta \\
& \mathrm{S}_{\mathbf{u}}=\mathrm{N}+\theta \tag{0}
\end{align*}
$$

and $f(X)$ and $f(M)$ are as defined in equations (1) and (3) above.
Substituting $(X)$ and $f(M)$ into equations (7) and (8) gives an intagral equation which is, according to Duncan $|4|$, in the noncumulative form and eannot be integrated in closed form. Numerical approximations have been obtalned and set up in tabular form. However, in order to obtain reasonably clone engineering estimates of $p(\alpha)$ and $p(\beta)$, an exponential of the form $e^{X}$ and $e^{-\boldsymbol{K}}$
is used and the integration performed with the limits of equation (9) substituted. In this manner, the $p(\alpha)$ and $p(\beta)$ equations are obtained in terms of $\sigma_{p}, \sigma_{m}, \theta$, and $\gamma$ (the desired parameters) and reduce to the following equations: ,

$$
\begin{align*}
& p(\alpha)=\left[\frac{\sigma_{m}}{2 \sigma_{p}-\sigma_{m}}\right]^{-1.15\left(\frac{\theta \sigma_{p}-\gamma \sigma_{p}+\gamma \sigma_{m}}{\sigma_{p} \sigma_{m}}\right)} \\
& -\left[\frac{\sigma_{\mathrm{m}}}{2\left(\sigma_{\mathrm{p}}+\sigma_{\mathrm{m}}\right)}\right]^{-1.15\left(\frac{\theta \sigma_{\mathrm{p}}+\gamma \sigma_{\mathrm{p}}+\gamma \sigma_{\mathrm{m}}}{\sigma_{\mathrm{p}} \sigma_{\mathrm{m}}}\right)} \\
& -\left[\frac{\sigma_{\mathrm{m}}{ }^{2}}{\sigma_{\mathrm{p}}^{2}-\sigma_{\mathrm{m}}^{2}}\right]^{-1.15\left(\frac{\theta}{\sigma_{\mathrm{m}}}\right)} \text {. }  \tag{10}\\
& \left.p(\beta)=e^{-1.15\left(\frac{\gamma}{\sigma_{p}}\right)}-\left[\frac{\sigma_{p}^{2}-2 \sigma_{p m} \sigma_{m}-\sigma_{m}^{2}}{\sigma_{p}^{2}-\sigma_{m}^{2}}\right] \text { e. }\right]^{-1.15\left(\frac{\theta}{\sigma_{p}}\right)}
\end{align*}
$$

$$
\begin{align*}
& -\left[\frac{\sigma_{m}}{2\left(\sigma_{p}+\sigma_{m}\right)}\right]^{-1.15\left(\frac{\sigma_{p}+\gamma \sigma_{p}+\gamma \sigma_{m}}{\sigma_{p} \sigma_{m}}\right)} \text {. } \tag{11}
\end{align*}
$$

Equations (10) and (11) were solved parametrically assuming that the weapon systems specification limits fall at the 3 -sigma points (i.e., $\theta=3 \sigma_{p}$ ) for the actual parameter value distribution for a series of values of the following ratios:

$$
\frac{\sigma_{\mathrm{m}}}{\sigma_{\mathrm{p}}}=\frac{\text { measurement deviatinn }}{\text { parameter deviation }}=\text { accuracy ratio }
$$

$$
\frac{y}{n} \equiv \frac{\text { measurement limit }}{\text { specification limit }}=\text { decision ratio. }
$$

The compuţed values were plotted as functions of $p(\alpha), p(\beta), \sigma_{m} / \sigma_{p}$, and $\gamma / 0$. The plote are shown to different scales in Figures 2, 3, and 4.

## 3. Multiple Check Probability

The discussion up to this point has been concerned with individual measurement error probawlity. It is often necessary, in the checkout of a UUT, to make two or more sequential tests on the same unit, Under such conditions the overall error probability becomes a function of the number of sequential tests, $m$, and the individual test probabilities, $p(\alpha)$ and $p(\beta)$. The multiple check probabilities $P(\alpha)$ and $P(\beta)$ may be computed from the following equations:

$$
\begin{gather*}
P(\alpha)=1-\prod_{i=1}^{m}\left[1-p(\alpha)_{1}\right]  \tag{12}\\
P(\beta)=1-\prod_{1=1}^{m}\left[1-p(\beta)_{1}\right] \tag{13}
\end{gather*}
$$

where
In - number of tests
$p(\kappa) \equiv$ Individual test probability of undetected defect
$p(, 3) \equiv$ Individual test probability of false alarm.
Assuming that $p(\alpha)$ and $p(\beta)$ are the same for all $m$ tests, then equations (12) and (13) reduce to

$$
\begin{align*}
& P(\alpha)=1-[1-p(\alpha)]^{m}  \tag{14}\\
& P(\beta)=1-[1-p(\beta)]^{m} \tag{15}
\end{align*}
$$



FIGURE 2. SINGLE TEST PROBABILITY VERSUS ACCURACY RATIOS AND DECISION LIMITS

figlire 3. sing le test probability versus accuracy batics and decision limits


FIGURE 4. SINGLE TEST PROBABILITY VERSUS ACCURACY RATIOS AND DECISION LIMITS
 and mind are shown in plots of two different scales in Figures and 6 .

I he mols tommon way of expressing measurement aceuracy is as a plus or minas peroentage ol full srale reading with a certain confidence. The
 ments are made at hearly full scale. The relationahip between a and percent is as follous 9 :

$$
\begin{equation*}
X \%=\left(\frac{\mathrm{ing}}{\mathrm{~F} . \mathrm{S} .}\right) 100 \tag{116.}
\end{equation*}
$$

wherr
$\mathbb{X}^{\prime} \equiv$ accuracy in percent full scale
$0 \equiv$ standard deviation
$n: \geq$ desired confidence level (i.e., $1,2,3, \ldots$ etc.)
F. s. ₹ full scale deflection of instrument.

A more complete and detailed discussion on the above derivation of error probability density functions and their relationship to test equipnient may be obtained from Moon $|5,6|$. The objective of this effort is to apply the mathematical models as shown to the design criteria of the LCSS-ETG equipment.


FIGURE 5. SINGLE TEST PROBABILITY $\mid p(a), p(\beta)]$ VERSUS MULTIPIE TEST PROBABILITY \| $\mathcal{F}(\alpha), \mathrm{P}(\beta) \mid$


FIGliRE f. SINGLE TEST PROBABILITY $\mid p(\alpha), p(i)]$ VERSUS MILTIPLE TEST PROBABILITY | $P(\gamma), P^{\prime}(\beta) \mid$


 fall-scale ranges of the equipment. All values arre of course, only sample ©tindtes based on limited samples of values from only two machines. Care should be tation when assuming that these wo mathines are representative of the population of wadines.

## 1. Test Design

Two ETG sets were available fo: use. In view of the complexity of the ETG, it was derided te include in the test design the effects of time delay between the measurement command and the actual measurement. ETG specifications called for various time delays. In order to check for the effects of transients and difft upon short delays and long delays, respectively, it was decided to use the specified delay, and 3 times and 5 times the specifted delay. The effects of repetitive measurements were also considered by including test time durations. The durations were established as four l-hour tests and one 4 -hour test periods per machine, and delay times. The test design is shown in Table II, from which it can be seen that each combination of machine, delay, and duration is tested for 4 hours for a total test time of 48 hours for all combinations.

In order to filter out as much test environment bias as possible, the test sequence was randomized. The randomization would tend to filter out

TABLE II. TEST DESIGN

Machine			2			5			こ hr by duration
Tape delay			A	B	C	A	B	C	
Test run duration (Nom. hr)	$\begin{gathered} \hline \mathrm{hr} \\ 1 \end{gathered}$	freq 1	4	4	4	4	4	4	24
	4	1	4	4	4	1	4	4	24
Vhrby tape			4	$\cdots$	K	$\stackrel{ }{*}$	4	4	48
$\check{\mathrm{Cr}} \mathrm{hr}$ machine			24			2.4			48


#### Abstract

   …braltuatal bit-4 atweliminated The randomization was done using a random number ge: rator coded for davs, hours, machines, and delays. The rankmizd sequctie as deternined by the random number generator is shown $i_{1}$ Tanle III. The sombines are designated as 2 and 5 corresponding to their RCA serial numbers. FTG : $:-0 n 2$ and $F$ TG $3-005$, respectively. The delay times are designated as $A, B$, and $C$ fnr the $1, \because$ and 5 multiplier of specified delass, rumectively. The numbers shown in parentheses in Table Ill refer to the t.st armers ised for int itification in the computer programming. The numbers run sequentially from 1 through 48 corresponding to the total 48 hours of testing. With Tablcs II and III, all the data can be identified, classified, and grouped in any combinction of test conditions for analysis.


## 2. Test Method

The test method was designed to simulate actual operational tests as performed on a "eapon UUT by the Enclish Language Program tapes. It was considered that this method would provide maximum data in a minimum amount of test time. Also, it was desired to leave the ETG sets available for other tests and uses as much as possible during their limited availability at Redstone Arsenal. It was designed to minimize operator error, blases, and interpretation simulating artual UUT test conditions.

A programmed semi-automatic test tape was compiled to make measurements and observations rapidly and automatically. The tapes were identical except for the programmed time delays between stimulus command and measurement execution. General instructions were provided the operator for running the tapes and all measurements were performed and printed automatically by the FTG. In programming the tapes, interrupts were inserted with the proper instructions to the operator where manual switching is required. It was specified that the operator, prior to running the test tape, would:
a) visuall: inspert the ETG machines for defective or missing components
b) cherk out the hook-up and main functional arrangement
(r) perforn all preliminary operational checks

1. make at least one sucerssful run on the FTG with the RCA callbra-

(י. Iog all unusual conditions prior to and during the test tape run.
TABLE III．RANDOMIZATION OF ICSS TEST SCHEIIT．F

Date	Hour of Test							Tust Set 00．2			Test set mas		
of Test	0900	1000	1100	1200	1300	1.400	1500	VA	ご	$こ ゙$		$\because 3$	$\because$
Feb．													
Tues 13		2C（1）								1			
Wed 14						$2 \mathrm{~A}(2)$		1					
Ther 15			2B13）						1				
Fri 16	213（1）	2B（5）	2B（6）	2B（7）					4				
rues 20	SC（））												：
Hed 21						2B（10）			1				
Tues 27	2C．11）		2A（12）					1		1			
Thur 29			$5 A(13)$	5C（14）							1		1
March													
Fri 1	2C． 1.51	2C（16）	2C（17）	2C（18）		5B（ 19 ）				1		1	
Mon 4				5B（20）								1	
Fris		2A121）	2A（22）	2A（23）	2A（24）			4					
Mon 11		2C（25）								1			
Tues 12					$5 \mathrm{C}(26)$								
Wed 13				5A（27）							，		
Thur it		5A（28）	5A（29）	5A（30）	5A（31）						1		
Fri 15	5A（32）										1		
Mon 18	5131331	5C（34）	5C（35）	5C（36）	5C（37）							1	1
Tues 19					5 C （35）								1
Wed 20	5B3 391	$5 \mathrm{~B}(40)$	5B（41）	5B（42）								＋	
Thur 21		$\overline{\mathrm{B}}(43)$										1	
Tues 26					23（11）				1				
Wed 27						2A（45）		1					

TABLE III，RANDOMIZATION OF LCSS TEST SCHEDULE（Concluded）

Date of Test	Hour of Test							Test Sct 002			Test Set（ros）		
	0900	1000	1100	1200	1300	1100	1500	$\triangle \triangle$	ご	ごく	$\triangle \mathrm{A}$	ご1	$\therefore c^{\circ}$
$\begin{aligned} & \text { March } \\ & \text { Thur } 29 \\ & \text { Fri } 29 \end{aligned}$	2A（47）			$\begin{aligned} & 2 C(46) \\ & 2 B(48) \end{aligned}$					－				
E Hours and Tapes	8	9	9	11	6	4	1	8	8	＊	$\square$	8	4
玉			48						24			24	

I he standatis used as references during the test breseram her, lerated incide or whacent to the + TG. The standards were prove ded and calibrated be
 ased ace starda, the

b) Kelvin lauley divider ESI Fe2
(.) Electronic counter

HP in 4.5
A1 Audio voltage standard
Holt Avs $32: 3$
e) Ratio transforme:

Gertsch PT-2
f) Oscillator

HP 2.11 A
g) RMS A-C differential voltmeter

John Fluke 9:31 A

The semi-automatic test tape has a general test procedure to progran the appropriate ETG system to measure and print the corresponding valucs in the following sequence:
shorted input
external reference
self test reference
stimuli
external reference.
This sequence provides data to compute estimates
measurement bias errol ( ${ }^{t} b$ )
measurement accuracs error ( a )
stimulus setting error ( f s)
all relative to a known cxtemal standard reference. The following F'TG measuremeri parameters wore written into the test program tapes as functional groups:

Test (rerration
Series Number Parameter Measured

100
2000
300
100 are voltage fon Hz
ian ar voltage f., 0 Ha

Test (peration	
Scrses Nambe:	「aramater Meanoucu
600	ac voltage ( 10 kHz )
700	ac voltage (1 MHz)
\%00	Pulse train

Eash line on the programmed printout is referred to as a single observation. All observations as printed out are identified by their operation number and parameter. On the complete tape going through all serles ( 100 through 800) there are ind obscrvations (i.c., measurements). During each hour of teat, all measurements were replicated five times. Table IV is a compilation of the complete test tape sequence of measurements showing the parameters, test operations numbers, tyo test, ETG component, ETG full-scale range, teat conditions and the expected measured value or standard value.

## 3. Test Measurements

A complete set of the test tape results are shown in Volume II, Appendix A. The data show'n therein have been corrected for obviously bad data and printout errors. In the great majority the data are duplicates of the original test tapes as printed out by the ETG.




TABLEIV. ETC TEST OPERATIONIDENTIFIGATION CHART							(Contimed)
				$\begin{gathered} \text { ETG Full-scale } \\ \text { Range } \end{gathered}$	Test Conditions	Expested Measured value for STD.	Computations
	513	SI	DMM	250 VRMS		0	
	5it	ER	DMM	250 trms	110.0 VRMS, 50 Hz	110.0 VRMS	
	515	SI	DMM	250 VRMS		0	
	:i6	ER	DMM	250 VRMS	110.0 VRMS, 50 Hz	121.0 TTPMS	(110) $\% / 10^{2}=121.0$ VTRMS
	517	SI	DMM	250 VRMS		0	
	518	ER	DMM	250 VRMS	110.0 VRMS, 50 Hz	$155.5 \mathrm{Vp}$	$11101 \sqrt{2}=155.5 \mathrm{yp}$
	519	SI	DMM	250 VRMS		0	
	520	Er	DMM	250 VRMS	110.0 VRMS, 50 Hz	311.1 Vpp	(110) $2 \sqrt{2}=311.1 \mathrm{Vpp}$
	521	SC. P	DMM ${ }^{\prime}$ WC	250 VRMS	110.0 VRMS, 20 Hz	110.0 VHMS	
	522	St; P	DMM/WC	250 VRMS	110.0 VRMS, 20 Hz	121. 0 VTRMS	$(110)^{2 / 14} 0^{2}=121 \mathrm{trRms}$
	523	SG, P	DMM/WC	250 VRMS	110.0 VRMS, 20 Hz	155.5 vp	(110) $\overline{2}=1.55 .5$
	524	SC P	DMm/wc	250 VRMS	110.0 VRMS, 20 Hz	311.1 Vpp	(110) $2 \sqrt{2}=311.1$
	52.	SG P	DMM/HC	1000 kHz	110.0 VRMS, 20 Hz	0.020 kHz	
	526	ER		250 VRMS	110.0 VRMS, $50 \mathrm{H}^{2}$	110.0 VRMS	
	. 227	ER	DMM	2.50 VRMS	110.0	12:.0 VTRMs	$(110)^{2} / 10^{7}=121.10$
	.32*	ER	D.1M	250 VRMS	110.0	155.5 Vp	$1101 \sqrt{2}=158$
	. 29	El	DMM	250 VRMS	110.0	311.1 fm	$111012 \sqrt{2}=311.1$
	601	EH	DMM	10 VRMS	0.614	0.614 ThMS	
	602	SG 1		10 VRas	1.1	1.1 Vhas	
	603	Sil		10 kHz	1.1	9.0 kHz	
	64	ER	DMM	16 VRMS	0.614 VHMS, 10 kHz	0.61 .1 Vmis	
	nits	E.LR	DMan	10 VRMS	0.614 vmas, 10 kliz		
	gior	FR	DMM	10 trms	f. 61.9 VRMS, in kHz	1. 736 fmp	(0.614,
	607	F:H	DMM	250 VRMS	11 l VRMS, 1 kHz	110 CRMS	
	sin-	ER	пиm	250 VTeMS	110 VRMS, 1 kHz	1214TRas	
	604	FR	DMM	250 VITMS	110 VkMs, 1 kltz	10. 5	
	610	${ }_{\text {FH }}$	DMM	250 VRMS	110 VRals, 1 kliz	811.14 p	
	611	sf p		250 Itas -	Ifin VRMS. 1 kHz	110 VRMAS	
	6.12	Sc: 1		-s cuas	110 VRMS: $:$ kllz	121.4 \TKMS	
	G1:?	Sir		10 kHz	IIM 1 MMS. 1 kH	1.104!	
	41	FR	minm	2.50 IRMS	110 Vmas. 1 hilz	110110 Ms	
	1.	1 H	טм9	2-5 Itas	1/4 Crams. 1 kHz	121.01TRus	
	$\therefore 1$	\%	man	250 IRMS	110 yRMS . 1 kHz	:n, ip	$1110 \cdot 12.25$
	.,1:	+ H	:19!	ajl Vms	1fo Vhms. 1 klz	:11. 1 Mm	11100.3

## Section IV. DATA ANALYSIS

## 1. General

The semiautomatio test tapes were run on the ETG- 3 machines in accorlance with the randonsized sequener shown ir. Tible lll. On the tapes are 101 measurement commands. Farh tape was roplicated fi". times in each hour. Each machine was tested for 24 hours fos a total of th homs. Therefore, the total number of observations is coneputed as follows:

$$
\therefore \mathrm{T}=101 \text { ols 'rep. } \because \text { repitur a- ti: } 2: 2+40
$$

for all combinations of machines, time delays, durations and parameters. The lol observations are broken down into a certain number for cach parameter. A breakiown of the total number of observations for any combination is shown in Table $V$.

The measurements data were printed out by the ETG-3 printer on paper tapes. The data were coded for computer use, punched on input cards, and identified by test set numbers 1 through 48 . The test set numbers included identification by machine, time delay, duration, date ard hour of the day. The data used are subject to at least two sources of error. The first is machinc printout errors. If a measurement was different from the last measurement of the same operation by less than a factor of two, it was included in the analysis as recorded. If the difference was greater than a factor of two, the measurement was excluded from the analysis and recorded as a machine "fault" or "dropout." All data replacing dropouts were estimated in accordance with established missing value procedures. Sample computations were made, including dropout values, to assess their effect on a computed statistic. The factor of two may not be the optimum factor but was selected to avold any arbitrariness on determination of which values to exclude. The second source of error is the transfer of data from machine printout tapes to input cards. Obviously all errors were not eliminated and the results include the errors which could not be identified or which were overlooked. The data used for the computations are shown in Appendix B of Volume II. Lines are drawn under values estimated for dropoute. The total number of dropouts was 54 out of 24,240 observations. A list of dropouts by operation number is shown in Table VI, which also tabulates the dropouts by machine, delay time, and duration on an hourly basis. Shown for comparison are the operational faults on the C\&M tapes which occurred at the time the test tapes were run. A description of the faults is listed below the table. Also shown ls the ETG-3 parameter being tested by each operation. The 800 series of test opeations (pulse train) had the largest

TABLE Y. SCHEDULE OF OBSERVATIONS BY MACHINE, TIME LELAYS, DURATION AND PARAMETER




Gamber of dropouts with 32 . Test hour 48 had the largest num'ser of dropouts by
 tahle the linurly test set numbers are in the upper right square. In test set 2 , npration 400 was a dropout. Operation 400 measures 10 VRMS, 400 Hz ac $\therefore$ oltage. The corresponding C\&M faults, obtained from the machine dally $\log$, Winth could br the cause, is 315 and 323 which checks the signal generator frequency. A complete analysis is beyond the scope of this effort, but would nive additional insight into test set problems.

## 2. Statistical Computations

The main objective of this program was to determine an estimate of the standird error of measurement (measurement standard devation) for the diffrent parameters and seales of the machine. This is referred to earlier is " $m$. This statistic would be used in conjunction with the weapon system paramoter stanciard deviation $\sigma_{p}$ to obtain an estimate of the accuracy ratio. This ratio is needed to determine realistically the statistical probability of uncletected defects and false alarms in the go/no-go chain. However, an attempt has been made to estimate other characteristics of the ETG-3.

When a measurement is made by the ETG-3, there are three primary sources of error. These are:
a) Inherent machine bias error', $c_{b}$
b) machine measurement accuracy error, $\epsilon_{a}$
() machine stimulus setting erior, $\epsilon_{s}$.

To illustrate, suppose the English Language Test Program Tape commancis a certain voltage be applied to the UUT with a specified response to that stimulus to be measured. The circuits providing that stimulus may be effected bs a previous operation (blas), the measuring device may sense the bias and read erroneously (accuracy) or the bias and accuracy may be acceptable but the witage applied was not the value specified (stimulus setting). Naturally, combinations of all three may exist on any given measurement.

Fstimates of bias error, ' $b$, were obtained by programming a shorted inmut ( Sl ) operation as shown in Table N and measuring for a response. Fulinates of measurement error, ' $a$ ' were obtained by measuring an accurately himwn salue from one of the external reference (ER) atandards mentioned
previously and subtracting the bias error. Estimates of the stimulus setting error were obtained by programming a timulus from one of the ETG-3 components and subtracting the bias and measurement errors.

The error estimates were computed with the following equations:

$$
\begin{align*}
& N\left(S I_{i}-E V\right) \\
& G_{b}=\frac{N}{N}, \tag{17}
\end{align*}
$$

where

SI $\equiv$ shorted input value
$E V \equiv$ expected value
$\mathrm{N} \equiv$ number of responses.

$$
\begin{align*}
& \mathrm{N}\left(E R_{i}-E V\right) \\
& \epsilon_{a}= \frac{1=1}{N}-\epsilon_{b} \tag{18}
\end{align*}
$$

where $E R_{1} \equiv$ external reference measured value.

$$
\begin{align*}
& N \\
& \epsilon_{s}= \frac{\Sigma\left(M V_{i}-E V\right)}{N}-c_{a}, \tag{19}
\end{align*}
$$

where MV = measured value of ETG-3 component (e.g., DA-1, DC-1, STR). The above computed errors are the means of the differences between the actual (or expected) value and the measured (or unexpected) value.

The standard deviation of measurement $\left(\sigma_{m}\right)$ is computed by the following equation:

$$
S_{M}^{2}=\frac{\left.\begin{array}{l}
N  \tag{20}\\
\sum(M V-E V) \\
i=1 \\
N
\end{array}(\overline{M V-E V})\right)^{2}}{N-1}
$$

Which is the measurement variance. The standard deviation is simply the
 rompled from a limited sample of data.

The statistics as computed with the above equations were computed in (uri uay.. The first computations were made for each hour (test set) of testing. The purpose of this was to use the estimates of these statistics as respense variables for a subsequent analysis of variance. The analysis of -ariance enables one to test for significant differences between factors. In aktition in testink fo: significant differences between the main factors (i.e., atachines, time celays and durations), tests can also be made for differences hetween sccond order or intaraction effects (e.g., machines $\times$ time delay cffects, as well as third order interaction effects. The second set of balculatinns inas made using all observations for each parameter. Theso are refored to as the nverall values of ' $b$. ' $a$ ' ' $s$, and $S_{M}$. These calculations are more sensitive to subsequent tests due to the much larger sample size and greater degree of freedom.

The hourly computations are shown in Volume II, Appendix C. These values wore computed with small sample size and degrees of freedom and are usod only in the analysis of variance computations. The overall statistics are shown in Table VII. Whale the statistics $\epsilon_{b}$, $\epsilon_{a}$, and $\epsilon_{B}$ give some indication of the machine error by parameter and scale, the measurement standard deviation $S_{M}$ is the important statistic from the standpoint of machine variability and determination of statistical control of desired probability levels of "unctetected defects" and "false alarms," $p(\alpha)$ and $p(\beta)$.

## 3. Analysis of Variance (ANOVA)

The hourly computations of $\epsilon_{b}, \epsilon_{a}, \epsilon_{s}$, and $S_{M}{ }^{2}$ were used as response variables for analyses of variance of all parameters and scales. Hence, there wre $4 \times 14=56$ analyses performed. The statistical models are

$$
\begin{equation*}
i_{i}(1, i k, 1)=\mu+A_{1}+B_{j}+C_{k}+A B_{i j}+A C_{i k}+B C_{j k}+A B C_{i j k}+e_{1(1 j k)} \tag{21}
\end{equation*}
$$

ath similitrly for' $a^{\prime}$ ' $s$, and $S_{N}{ }^{\text {? }}$. This model assumes that each response of croms ' $b$ ' ' $a$ ' 's and variance $S_{M}$ ? is the algebraic sum of:
TABLE VII. COMPILATION OF OVERALL COMPUTED ERRORS, STANIDARD DEVIATION AND

No.	Parameter and Scale	Computed Values					Specified		$\begin{aligned} & \because \text { Comp. } \% \\ & \text { Value } \\ & \text { Specified } \\ & \text { Value } \end{aligned}$
						$\pm \%$			
		$E_{b}$	$\epsilon_{\text {A }}$	${ }^{\text {c }}$	$\mathrm{S}_{\mathrm{M}}$	$3 \mathrm{~S}_{\mathrm{M}}$	S	(: S S	
1	10 Vdc	0. 000946	-0.00197	0.00106	0.02515	0.8	0.0013	0.04	
2	250 Vde	0. 147	-0.0798	1. 77	2.975	3. 6	0.0666	D. 108	
3	1000 mVdc	0. 349	-3. 46	0.476	2.40	0.7	3. 333	1.2	*
4	$10 \mathrm{k} \Omega$ resistance	0. 00327	-0.00171	0.00396	0.0098	0.3	0.033 .3	1. $0: 9$	*
5	1002 resistance	0.895	-0. 843	1. 32	0.658	2.0	0.387	1. 7.3	
6	$1000 \mathrm{k} ?$ resistance	0.193	-1. 13	0.758	0.747	0.2	3.33 k	1.00	*
7	1000 kHz frequency	0.00100	-0.0953	0.0485	1. 52	0.5	0.0037 k	0.0011	
8	10 VRMS ac 400 Hz .	0. 370	-0.745	0.747	0. 636	19.1	0.01	0.3	
9	10 VRMS ac 50 Hz	0. 00453	0.421	0.00304	0. 0867	2.6	0.01	0.3	
10	250 VRMS ac 50 Hz	2.93	-2.21	3.58	2. 62	3.1	0. 0666	0.09	
11	10 VRMS ac 10 kHz	0.00453	0.212	-0.0663	0.2088	6. 3	0.01	0.3	
12	250 VRMS ac 10 kHz	2.93	-2. 09	3. 48	2. 46	3.0	0.0666	0. 08	
13	10 VPP ac 1.0 mHz	0.00453	0.01520	0.00453	0.0364	1. 1	0. 00108	3.25	*
14	Pulse train	0.925	-1.67	1.52	1.96	0.6	NA	NA	

(d) a unicorsal mean of the error $\mu$ (i.e., the true error or variance
$\quad 1$, a machine effect on the error or the variance, $C_{h}$
(.) a time delat effect on the error or the variance, $B_{j}$

، a deretine effoct on the errer ar the variance, $A_{i}$
 $\mathrm{BC}_{\text {ik }}$, $\mathrm{IHC}_{\text {jik }}$

Since the model is fised, none of the effects can be determined absolutels. They com lie measterdenle as differential deviations, i.r.:
a. the $\lambda_{i}$ effects as deviations from $\mu$
b) the $B_{j}$ effects as deviations from $\mu$
(.) the ( ${ }_{i}$, vects as dertations from $\mu$
(d) the $A B_{i j}, A C_{i k}, B C_{j k}$ as deviations from the $A_{i}+B_{j}, A_{i}+C_{k}$, and $l_{j}+C_{k}$ respectively
(C) the $A 13 C_{i j k}$ as deviations from $A_{i}+B_{j}+C_{k}$.

Because of the large volume of data and the number ( 56 ) of analyses required to cover all combinations of parameters and statistics, the analyses were computer programmed. The program used was obtained from Edwin Bartee and was complled by J. A. Svestka. A printout of the computer program is shown in Volume II, Appendix D, including dimensions and correspondence statemonts and subroutines. Each combination of machines, time delays, and duration, of which there are $12(2 \times 3 \times 2)$, had four responses in each cell. Since each hour of test was replicated five times, four responses, which represents $t$ hours of testing, was the average value for that hour. Table VIII is a completely coded layout of the data Input to the analysis of variance. The table icientifics the factors in the mathematical model [Equation (21)], the test set numbers, the date, and the hour. To lllustrate, the four response values for the cell representing a 1 -hour test duration $\left(A_{i}\right)$, with the specified delay time $\left(13_{j}\right)$, on the ETG-3-0002 machine $\left(C_{k}\right)$ are data test sets $2,12,45$, and 47 which are coted as $1,2,3$, and 4 for input to the computerized analysis of variance. A enmputer printout of the input data to each analysis of variance


TABLE VIII, COMPILATION OF HOURLY TESTS BY MACHINE, TAPE, DURATION, DAY AND HOUR

Machines ( $C_{k}$ )		ETGis-(100?			ETG: 0100.5			
	$\mathrm{B}_{\mathrm{i}}{ }^{\prime}$	1	3	;	1	,	-	
	1 hr	$\begin{gathered} 2 \\ 2 / 1+-1 \mid \end{gathered}$	$\begin{gathered} 3 \\ 2 / 15-11 \end{gathered}$	$\begin{gathered} 117 \\ 2 / 13-10 \end{gathered}$	$\begin{array}{r} 2 \% \\ 2 / 19-1 . j \end{array}$	$\begin{gathered} 19^{33} \\ 3 / 61-14 \end{gathered}$	$\begin{gathered} 9 \\ 2!20-9 \end{gathered}$	2. ${ }^{\text {i }}$
		$\begin{gathered} 122^{2} \\ 2 / 23-11 \end{gathered}$	$\begin{gathered} 10^{10} \\ 2 / 21-11 \end{gathered}$	$\begin{gathered} 11^{1 \dot{x}} \\ 2^{\prime} 23-9 \end{gathered}$	$\begin{gathered} 13 \\ 2 / 29-11 \end{gathered}$	$\begin{gathered} 20: 34 \\ 3 / 04-12 \end{gathered}$	$\begin{gathered} 14 \\ \because_{1}^{\prime} 29-12 \end{gathered}$	
		$\begin{gathered} 3 \\ 3 / 27-14 \end{gathered}$	$\begin{gathered} 4^{11} \\ 3 / 26-13 \end{gathered}$	$\begin{gathered} 25^{19} \\ 3 / 11-10 \end{gathered}$	$\begin{array}{\|c} 27^{27} \\ 3 / 13-12 \end{array}$	$\begin{array}{\|c} 33 \\ 3 / 18-9 \end{array}$	$\begin{gathered} 26^{!i j} \\ 3 / 12+13 \end{gathered}$	
		$\begin{array}{\|c\|} \hline 47 \\ 3 / 29-9 \end{array}$	$\begin{gathered} 4812 \\ 3 / 29-12 \end{gathered}$	$\begin{gathered} 46^{20} \\ 3 / 28-12 \end{gathered}$	$\begin{gathered} 32^{2 \%} \\ 3 / 15-9 \end{gathered}$	$\begin{gathered} 43^{36} \\ 3 / 21-10 \end{gathered}$	$\begin{array}{\|c} 3841 \\ 3 / 19 \cdot 13 \end{array}$	
	4 hrs	$\begin{array}{r} 215 \\ 3 / 08-10 \end{array}$	$413$   2/ 16-8	$\begin{gathered} 1: 5^{21} \\ 3 / 01-8 \end{gathered}$	$\begin{gathered} 22^{29} \\ 3 / 14-10 \end{gathered}$	$\begin{array}{\|c\|} \hline 39^{37} \\ 3 / 20-6 \end{array}$	$\begin{array}{\|c} 34 \\ 3 / 5 \\ 3 / 18-10 \end{array}$	2.1
		$\begin{gathered} 226 \\ 3 / 08-11 \end{gathered}$	$\begin{gathered} 5^{14} \\ 2 / 16-9 \end{gathered}$	$\begin{gathered} 16^{22} \\ 3 / 01-9 \end{gathered}$	$\begin{array}{\|c} 29^{30} \\ 3 / 14-11 \end{array}$	$\begin{gathered} 40^{38} \\ 3 / 20-9 \end{gathered}$	$\begin{array}{\|c} 3546 \\ 3 / 18-11 \end{array}$	
		.23 7 $3 / 08-12$	615 $2 / 16-10$	$\begin{gathered} 17^{23} \\ 3 / 01-10 \end{gathered}$	$\begin{array}{\|c} 30^{31} \\ 3 / 14-12 \end{array}$	$\begin{array}{\|c} 4139 \\ 3 / 20-10 \end{array}$	$\begin{array}{\|c} 3647 \\ 3 / 18-12 \end{array}$	
		$\begin{gathered} 2+8 \\ 3 / 08-13 \end{gathered}$	$\begin{array}{r} 7^{16} \\ 2 / 16-11 \end{array}$	$\begin{gathered} 18^{24} \\ 3 / 01-11 \end{gathered}$	$\begin{array}{\|c\|} \hline 31^{32} \\ 3 / 14-13 \end{array}$	$\begin{array}{\|c\|} \hline 42^{40} \\ 3 / 20-11 \end{array}$	$\begin{array}{\|c} 37^{48} \\ 3 / 18-13 \end{array}$	
		8	$R$	8	8	8	8	$\because \mathrm{V}=4 \mathrm{~A}$
	hine	24			24			

Code:


## 4. Test of Hypotheses

A statistical hypothesis is an assumption about the population being samplet. it usuatly consists of assigning a value to one or more parameters of the popuitation. A test of a hypothesis is simply a rule by which a hypothesis is rither accepted or rejectec!. The rule is usually based on sample or test stativites used to ters the hyotheses. The critical region oi a iest statistic cons:sts of all valurs of the test statistic where the decision is made to reject or accept the hypotiesis. Since hypothesis testing is based on cbserved sample statistice computed on N oliservations, the cerision is always subject to errors.
 cror is committed. The prohability of a Type 1 error is designated as a. If the thpolksis is accepted when it is not true, i.e., if some alternate hypothesis is true. then a Type II orror has been made. The probability of a Type II erro: is designated 3.

The nerall valurs of ' $b$ ' ' $a$ ' and ; for all paramesers were tested "ith the bllowing hepotheses for the sampie error statisties:

$$
\begin{aligned}
& \mathrm{HO}_{1}=a \quad a=0.05 \\
& \mathrm{HO}_{3} \epsilon_{a}=0 \quad c=0.05 \\
& \mathrm{HO}_{3} \iota_{s}=0 \quad \alpha=0.05 .
\end{aligned}
$$

The altermate hapoheses are:


The computed estimates of the errors are the differences in means.
T!n hymothesis (Hol is that the errors are not significantly different from exero. This is based on the assumption that the universe mean of the errors is zero. It the basic hypothesis is rejected at the ( $1-$ ci) level of confidence) the altwrate ' $H_{i}:$ ) is accepted. Howeser, if the basic hypothesis is accepted at a sperified level of conficience there is still a chance that an error of the first hind has been made. In testing hypotheses pertaining to the universe mean the procrlure is simplest if the standard deviation of the universe is known. In this ce:se the sample ertors are treated as having a normal distribution with
a mean equal to the universe mean; but, the universe standard deviation is uninuma. Cituce, the correct tesi statistic is the 't'statistic. The ' $t$ ' statistic is used when the standard deviation must be estimated from the sample data. The 't' statistic is computed as follows:

$$
\begin{equation*}
' t]_{(0,} \frac{\bar{x}-\bar{x}}{s^{\prime} \sqrt{\prime}} \tag{22}
\end{equation*}
$$

wher

$$
\begin{aligned}
\bar{X} & =\text { calculated mean } \\
\bar{X} & =\text { univerte mean } \\
\forall & =\text { sample size } \\
0 & \equiv \text { risk }=0.05
\end{aligned}
$$

and

$$
S=\left[\begin{array}{l}
\begin{array}{l}
N\left(x_{i}-\bar{x}\right)^{2} \\
N-1
\end{array} \tag{23}
\end{array}\right]^{1 / 2}
$$

If the computed value of ' $t$ ' is less than the table value, for $N-1$ degrees of freedom and $\alpha=0.05$, then the basic hypothesis is accepted and the alternate is rejected. A computer printout of the results is shown in Volume II, Appendix F. A summary is shown in Table IX in the row labeled '"'t' Test of Overall Values."

In the ANOVA the basic hypotheses are as follow's:

$$
\begin{array}{ll}
\text { Ho: } A_{i}=0 & \alpha=0.10 \\
\text { Ho: } B_{j}=0 & \alpha=0.10 \\
\text { Ho: } C_{k}=0 & \alpha=0.10
\end{array}
$$

and similarly for the second order (ABij, etc.) effects and the third order (ABCijk) effects. The alternate hypotheses are:
tarle ix. compilation of results of tests of hypotheses r't test and 'f' tests



$$
\begin{aligned}
& \mathrm{H}_{\mathrm{l}} \quad \hat{A}_{\mathrm{i}} \neq 0 \\
& \mathrm{H}_{1}: \mathrm{B}_{1} \neq 0 \\
& \mathrm{H}_{1}: \mathrm{C}_{\mathrm{k}} \neq 0
\end{aligned}
$$

and similarly for the second and third order effects.

The objectives of basic hepothesie tests ayr to deternine that the main factors of duration $\left(A_{i}\right)$, time delay $\left(I_{i}\right)$ urid muchines $\left(C_{k}\right)$ as well as interactions between main fictors $\left(\because . g ., A \dot{E}_{i j}\right)$ do not significantly effect the response variables, $\epsilon_{b}, \epsilon_{a}, \epsilon_{s}$, and $S^{*}$ and they are essentially zero, i.e., there is no treatment effect. The test statistic is the $F$ distribution which is the ratio of two independent chi-square distributions. This means that the F distribution is the ratio of the mean squares between treatments to the mean squares (MS) within treatments or mean square for error.

$$
\begin{equation*}
F_{(c)}=\frac{M S \text { (treatments) }}{M S \text { (error) }} \tag{24}
\end{equation*}
$$

where

$$
\begin{align*}
& \text { MS (treatments) }=\frac{\text { sum of squares }}{\text { degrees of freedom }}  \tag{25}\\
& \text { MS (error) }=\frac{\text { Eum of squares }}{\text { degrees of freedom }} . \tag{26}
\end{align*}
$$

If the computed value of $F$ is equal to or greater than the table value of $F$ for the set level of confidence $(\alpha)$ and the proper degrees of freedom then Ho; is rejected and Hl : is accepted. A summary of the results of the ANOVA is shown in Table IX. The ANOVA printouts for each statistic and parameter are shown in: Appendix $G$ of Volume II.

## Section V. DISCUSSION

This analysis has been primarily concerned with the estimation of the measurement variance and secondarily whth the bias error, measurement error and stimulus setting error. The estimation of these statistics has been done With a sample of data taken from two machines. The analyses have also estimated the effects of time delays and duration of tests on these statistics. The statiatics were computed for fourteen different measurement parameters and scales performed by the ETG-3 test scts. These parameters are not all of the functions of the michinea and rupresint, at hest, anly $n$ purtial test program. The results reprosent estimates for a small sample of machines, factors, and measurements, and, should be accepted as such. The results shown in Tables VII and IX will be discussed briefly. The discussion will be categorized by machine paramelers which are probably of greater interest to machine users than the sample statistics.

## 1. 10.Volt de Scala

In Table Vil, the estimated value of the bias error is 0.000946 , the accuracy error is $\mathbf{- 0 . 0 0 1 9 7}$ and the stimulus setting error is 0.00106 . The standard deviation is 0.02515 . Table IX shows that the hypothesis that the hias error is not significant $H o: \epsilon_{b}=0$ is rejected. The hypotheses that $\epsilon_{a}=0$ and $\varepsilon_{s}=0$ were accepted in the ' $t$ ' tests. In the ANOVA portion of Table IX, it is shown that machine effects were significant; i, e., Ho: $\mathrm{C}_{\mathrm{k}}=0$ was rejected for both statistics $\epsilon_{b}$ and $c_{s}$. In Table VII, the $3 S$ level of standard deviation expressed as percent full scale is 0.8 as compared with the specified (assumed $3 S$ ) value of 0.04 percent. This is a factor of 20 higher than specified assuming the specified values are correct.

## 2. 250 -Voli de Scale

For this parameter, the hypotheses that $c_{b}$ and $c_{s}=0$ were rejected indicating that there are significant bias and stimulus errors on this parameter. The ANOVA reveals that the contributing factors to $\epsilon_{b}$ and $\epsilon_{s}$ are main effects of delay time and machines and Interactions between delay times and machines. The estimated values as shown i; Tuble VII are $\epsilon_{b}=0.147,{ }_{f}=-0.0798$, $f_{s}=1.77$ and $S=2.975$. The $3 S$ level expressed as a percent $=3.6$ as compared with the speciffed value of 0.05 percent, a factor of about 45 greater.

## 3. 1000 -Millivolt dc Scale

The sample of data reveals that all errors were significantly different from zero. The ANOVA indicates that all factors significantly contribute to blas error. Delay times, machines and delay time-machine interactions contribute to $c_{a}$. All factors except durations contribute to $\epsilon_{s}$ and delay times and machines contribute to the variance, $\mathrm{S}^{2}$. The estimated values in Table VII are $\epsilon_{b}=0.349, \epsilon_{a}=-3.46, \epsilon_{\mathrm{g}}=0.476$, and $\mathrm{S}=2.40$. The 3 S level is 0.7 percent a.s compared to the specified value of 1.2 percent.

The rest of the parameters are left to the reader. An overall look at Table VII shows that the machines have met the specified standard error of measurement on the 1006 -millivolt de scale, the $10-\mathrm{kilohm}$ resistance scale. the 1000 -kilohm resistance scale and the 10 -volt PP ac voltage scale at - 1 -megahertz frequency. The 100 -ohm resistance scale ls close with 2 percent as compared with 1.73 percent specifled. The 10 -volt ac 400 -hertz scale is not good with a 19 percent as compared with 0.3 percent' specified. The worst seems to be the 1.0 megahertz frequency parameter with 0.5 percent as compared with 0.0011 percent specified a factor of about 500 greater.

Table IX shows the bias error was significant for all parameters and scales. Accuracy error was significaint for all parameters except 10 volts de, 250 volts dc, and $1000-\mathrm{kilohertz}$ frequency, i.e., 11 out of 14 . Stimulus setting error was significant on all parameters except 10 volts dc, 1000-kilohertz frequency and 10 volts ac, 50 hertz, i.e., 11 out of 14.

The ANOVA portion of Table IX shows that test duration $\left(A_{i}\right)$ was detected as a significant effect on the responses of $c_{b}, \epsilon_{a}, c_{B}$, and $S^{2}$ in only 4 analyses out of 56; The main effect, delay time $\left(B_{j}\right)$ was found to be significant 21 times out of 56 . The main effect of machines $\left(C_{k}\right)$ was found to be significant 46 times out of 56 . The second order effect, $A B_{1 j}, 6$ times; $A C_{1 k}, 13$ times; $B C_{j k}, 11$ times; and $A B C_{i j k}, 8$ times out of 56 . Machine effects far outweigh the other main and interaction effects.

The estimates of the standard deviation of measurement $\left(\mathrm{S}_{\mathrm{M}}\right)$ as obtainnd from this sample will be used as an estimate of $\sigma_{m}$. Previously, the use of $\sigma_{m}$ in the determination of an accuracy ratio was discussed. Also, the use of the accuracy ratio, decision limits and $p(\alpha)$ and $p(\beta)$ in the determination of the
statistic:al capability of the test sets for single tests. With the values of ${ }^{\prime}$ as obtained a fow examples will be made with actual values of the weapon system components toleranirg $\left(\sigma_{p}\right)$. Also. decision limits will be assumed. The paramete:s $1000-\mathrm{millivolt}$ de scale, $10-\mathrm{kilohm}$ resistance seale, 1000 -kilohm wesintance scale met the MIS-60nn specifications. These parameters and theis values are used in comparison with missile specification values for component 3 which would require testing on these acales. Also, one of the parameters which did not meet MIS-f;000 specs, ther 10 -volt de scale. is included tor comparison purposes. I he sample estimaterl values of the slandarid deviatior (is ) for earh of these parameters is divided by the component standard deviation $\left(\sigma_{p}\right)$ to obtain an aceuracy ratic $\left(\sigma_{m} i^{\prime} \sigma_{p}\right)$. Decision limit ration $\{i n /$ of $1.00,0.95$, and 0.90 were assumed tor this example.

The values for each weapon system are actual values obtainerl fiom the system specifications. The TOW system tolerances are bused on $2 \sigma$ lmens and the SHILLELAGF1 system tolerances are based on bo levels The values of $\pi$ for both systems were obtained from the system tolerances accordingly. The values of $p\left(a_{i}\right)$ and $p(\beta)$ were obtained from the computer printouts used to plot Figures 2, 3, and 4. The results are shown in Table $X$.

The system components are as shown in Table XI. Similar analyses can be made for other parameters and scales and weapon systems.

Table $X$ demonstrates the relationships between accuracy ratios, decision limits, undetected defects and false alarms for single tests for actual system components. It also demonstrates the trade-offs and compromises available to hold certain $p(a)$ and $p(\beta)$. A component of Shillelagh has a 50percent tolerance of measurement on the 1000 millivolt de scale which gives an accuracy ratio of 0.014 or about 70 to 1 when compared with sample $\sigma_{m}$ found for the ETG on that acale. Therefore, the probability is that practically no undetected defects will get by the tests; however, some false alarms varying from 1 out of 1000 to 1 out of 100 depending on the decision limits will probably occur. An aceuracy ratio of 0.504 (about 2 to 1 ) shown for TOW componen: on 10 -rolt de scale will resuit in about 1.5 units out of 100 at decision limit of 1. 00 to 1.1 units out of 100 at clecision limit of 0.90 passing with "undetected defects." Similarly, $\mathbf{j} .6$ and 6.6 "false alarms" will occur out of 100 testa.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& Parameter and Scale \& \multicolumn{3}{|l|}{10 Vde} \& \multicolumn{3}{|l|}{1000 MVde} \& \multicolumn{3}{|l|}{10 k 3 Resistance} \& \multicolumn{3}{|l|}{1000 k 2 R Resibtance} \\
\hline \multicolumn{2}{|l|}{\[
\begin{array}{|ll|}
\hline \text { ETG-3 } \& \\
\text { STD Dev. } \& \sigma_{\mathrm{m}} \\
\hline
\end{array}
\]} \& \multicolumn{3}{|l|}{\(0.0252{ }^{\text {V }}\)} \& \multicolumn{3}{|l|}{2.40 mV} \& \multicolumn{3}{|l|}{0.0098 k} \& \multicolumn{3}{|l|}{0.747 k ?} \\
\hline \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{\begin{tabular}{l}
Sye. STD \\
Dev. \(\boldsymbol{\sigma}_{\mathbf{p}}\) \\
Accuracy \\
Ratio \(\sigma_{m} / \sigma_{p}\) \\
Decision \\
Limit ( \(\gamma / \theta\) ) \\
p( \({ }^{\alpha}\) ) \(\approx\) ** \\
\(\mathrm{p}(\beta)\) ) \({ }^{\text {* }}\)
\end{tabular}} \& \& 0.050

0.504

1.97 to \& \& \multicolumn{3}{|l|}{$$
\begin{gathered}
0.48 \\
(2.08 \text { to } 1)
\end{gathered}
$$} \& \multicolumn{3}{|l|}{\[

$$
\begin{gathered}
0.196 \\
(5.62 \text { to } 1)
\end{gathered}
$$

\]} \& \multicolumn{3}{|l|}{\[

$$
\begin{gathered}
\text { (. } 149 \\
\text { (5. } 72 \text { to } 1)
\end{gathered}
$$
\]} <br>

\hline \& \& 1.00 \& 0.95 \& 0.90 \& 1. 00 \& 0.95 \& 0.90 \& 1.00 \& 0.95 \& 0. 90 \& 1.00 \& 0.95 \& 0.90 <br>
\hline \& \& 0.015 \& 0.013 \& 0.011 \& 0.014 \& 0.011 \& 0.008 \& 0.003 \& 0.0018 \& 0.0009 \& 0.0026 \& 0.0015 \& 0.0005 <br>
\hline \& \& 0.056 \& 0.059 \& 0.066 \& 0. 054 \& 0.056 \& 0.060 \& 0.0166 \& 0.019 \& 0.026 \& 0.011 \& 0.016 \& 0.021 <br>

\hline \multirow[t]{5}{*}{} \& $$
\begin{aligned}
& \text { Sys. STD } \\
& \text { Dev. } \sigma_{p}
\end{aligned}
$$ \& \multicolumn{3}{|l|}{0.233} \& \multicolumn{3}{|l|}{167.0} \& \multicolumn{3}{|l|}{0.0334} \& \multicolumn{3}{|l|}{3.334} <br>

\hline \& Accuracy

$$
\text { Ratio } \sigma_{\mathrm{m}} / \sigma_{\mathrm{p}}
$$ \& \multicolumn{3}{|l|}{\[

$$
\begin{gathered}
0.108 \\
(9.26 \text { to } 1)
\end{gathered}
$$

\]} \& \multicolumn{3}{|l|}{\[

$$
\begin{gathered}
0.014 \\
(71.4 \text { to } 1)
\end{gathered}
$$

\]} \& \multicolumn{3}{|l|}{\[

$$
\begin{gathered}
0.29 \\
(3.45 \text { to } 1)
\end{gathered}
$$

\]} \& \multicolumn{3}{|l|}{\[

$$
\begin{gathered}
0.224 \\
(4.46 \text { to } 1)
\end{gathered}
$$
\]} <br>

\hline \& Decision Limit $(\gamma / \theta)$ \& 1.00 \& 0.95 \& 0.90 \& 1.00 \& 0.95 \& 0.90 \& I. 00 \& 0.95 \& 0.90 \& 1.00 \& 0.95 \& 0.90 <br>
\hline \& $p(a) * *$ \& 0.0017 \& 0.0003 \& 0.00007 \& 0.0 \& 0.0 \& 0.0 \& 0.006 \& 0.004 \& 0.0029 \& 0.0047 \& 0.0027 \& 0.0030 <br>
\hline \& $\mathrm{p}\left(\mathrm{a}^{\text {¢ }}\right.$ * \& 0.0078 \& 0.012 \& 0.019 \& 0.001 \& 0.007 \& 0.01 \& 0.026 \& 0.03 \& 0.35 \& 0.018 \& 0.022 \& 0.02 <br>
\hline
\end{tabular}

* This parameter and scale does not meet requirements of ETG MIS-6000 specifications based on the sample of data obtained in this effort.
TABLE XI. IDENTIFICATION OF SYSTEM COMPONENTS USED IN SAMPLE COMPITATIONS

Parameter	10 Vde	1000 mVdc	10-kQ Resistance	1000-k? Resistance
Tow	Yaw CsG Card, Part No. 10191893	Excitation Generator and Self Test Card, Part No. 10191908	Pitch Command Signal Generator, Part No. 10225421	Pitch Command Signal Generator, Part No. 10225121
Shillelagh	SDC Program, Test Step 304, Part No. 1500	Transmitter Signal Analyzer, Test No. 247	19 Vdc Regulator Card, G. M.   System Test Set, Test No. 41	Lamp Driver Card, G. M. System, Test No. 74, Part No. 1618

## Section VI. SUMMARY

This analysis effort has resulted in estimates of bias error, accuracy error, stimull setting error and overall standard deviation of measurement (ETG precision) for 13 different combinations of parameters and scales that the test set is capable of measuring. The sample statistics are, of course, subject to sampling errors, hidden or undetected effects and to human errors in the test program and the computations. The test program could be improved and the statistical computations expanded for a more complete and detailed analysis which may reduce some of the inherent errors in the test program and computatinns. However, the results found from this sample of data give good indications of the following conditions of the ETG-3 test sets.
a) There is significant bias error ( $t_{b}$ ) on all parameters and scales tested.
b) There is significant accuracy error $\left(\epsilon_{a}\right)$ on 11 out of 13 parameters and scales. ( $10 \mathrm{Vdc}, 250 \mathrm{Vdc}$, and 1 MHz frequency accepted).
c) There is significant stimulus setting $\operatorname{error}\left(\epsilon_{8}\right)$ on 10 out of 13 parameters and scales. ( $10 \mathrm{Vdc}, 1 \mathrm{MHz}$ frequency, 10 VRMS , 50 Hz ac excepted).
d) A significant effect of the main factor test duration $\left(A_{i}\right)$ was detected on $\epsilon_{b}$ two out of 13 parameters and on $s^{2}$ two out of 13 parameters.
e) A significant effect of the main factor delay time $\left(B_{j}\right)$ was detected on $\epsilon_{b}$ nine out of 13 parameters, on $\epsilon_{a}$ three out of 13 , on $\epsilon_{\mathrm{a}}$ seven out of 13 , and on $s^{2}$ two out of 13 .
f) A significant effect of the main factor machines $\left(\mathrm{C}_{\mathrm{k}}\right)$ was detected on $\epsilon_{b} 12$ out of 13 , on $\epsilon_{a}$ ten out of 13 , on $\epsilon_{\mathrm{s}} 13$ out of 13 , and on $\mathrm{s}^{2}$ 11 out of 13.
g) The ETG is meeting the MIS 6000 specification for precision on only four parameters out of 13 considered or about 30 percent.
h) On the basis of the weapon system tolerances used in the sample comparisons, the ETG will not be able to hold the specifled "acrose the board" 1 out of 100 probabilities for single checkouts except where the system tolerances are broad resulting in a high accuracy ratio. Multiple sequential test probabilities will be worse.
i) The present aituation of incompatibility is between

1) across-the-board 1 out of 100 probabilities
2) NIS 6000 spectfied LCSS precision
3) unreasonably close tolerances for weapon system UUT's
t) English Language Test Program requirenents which must be resolved in a comprehensive manner.

The pulse tratn is not insluded ha the parameters as no suitable spectfied capability for the pulse train was fourd and also due to the excessive percentage of the total dropouts (ijo percent) found on the pulse train portion of the test program.

The trat set functional dependence cannot be commented on even though it was considered to have had only $\mathbf{i f} 6$ command dropouts out of 24,240 commands; future tests could possibly obtain an estimate of functional dependence in light of the presently obtained estimates of precision. That is, the factor of 2 variation from an expected value used in this analysis could now be tightened up to obtain a better estimate of functional dependence. This would probably lower the variability and functional dependence.

A more complete test program is considered highly desirable. It should be performed on a continuing basis by the LCSS Project Office or the prime contractor. Tests should be conducted in the field to obtain estimates of the effects of other factors such as teniperature, humidity, pressure, dust, etc., on the ETG-3 performance. Such a program to be properly executed would require a considerable level of effort; but, it would be a notable achievement and contribution in the area of evaluation of the test capability of complex test equipment.

## REFERENCES

1. Multisystem Test Equipment System Description Report, $\underset{1}{ }$ and $\underline{2}$, RCA Aerospace Systems Division, Burlington, Massachusetts, Report No. ATE-L-45, 15 October 1966.
2. Mirick, H. L., "A Statistical Approach to Test Fquipment Reliability," Jnurnal of the Electronics Division of the American Society for Quality Control, Novernher 1962.
3. Grubbs, F. E., and Coon, H. J., "On Setting Test Limits Relative to Specification Limits," Industrial Quality Control, 10 March 1954, p. 15.
4. Duncan, A. J., Quality Control and Industrial Statistics, Richard E. Irwin, Inc., Homewood, Illinois, 1959.
5. Moon, W. D., "Periodic Checkout and Associated Errors," IEEE Transactions on Aerospace, II, No. 2, April 1964.
6. Moon, W. D.. "Predicting System Checkout Error," Electro-Technology, January 1964, p. 46.
7. Bartee, E. M., Engineering Experimental Design Fundamentals, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1968.
8. Hicks, C. R., Fundamental Concepts in the Design of Experiments, Holt, Rinehart, and Wington, New York, N. Y., 1964.

## ESTIMATION OF LAUNCH

VEHICLE PARAMETERS FOR THE GIVEN MODEL

$y=\theta_{1} e^{\theta_{2} t} \sin \left(\theta_{3} t\right)$<br>John W. Howerton and D. Ray Campbell<br>Redstone Arsenal, Alabama<br>SUMMARY

This paper presents analysis techniques of a launch vehicle of an antitank missile system. Since the development of a mathematical model from an analysis of components subsystems' responses must be checked against overall performance, it was assumed that the vehicle responded as a second order differential equation. - The solution of this equation is fitted to the experimental data.

The parameters. $\theta_{1}, \theta_{2}, \theta_{3}$ are eatimated for the model $y=\theta_{1} e^{\theta_{2}} \sin \left(\theta_{3} t\right)$ and given data points $\left(T_{h}, Y_{h}\right), h=1,2 \ldots N$. Several techniques of estimation are used. The following methods are included:
(1) Prony's Exponential Approximation
(2) Least Squares Polynomial - Taylor Series
(3) Differential Correction
(3) Gradient-Descent
(5) Modified Newton-Gauss.

A comparison of the techniques is presented and a "best" method of
estimation is selected.

This article has been reproduced photographically from the authors' manuscript.

## BACKGROUND

Dering the investigation of a particular antitank missile systen, it appeared that launcher motion max have an effect on the missile trajectory. This ohenomenon resulte from the fact that the missile is eommord euided an the tracher is mountell rigidic on the lanncher. The prograr: rembire in: a
 If a vehirlf from minalired motion of the vehicle during the iaunch phose of i-.〔!ht. It will then le po:isle to determine more readily if the wehich :: : : desmed performance requirements and to trace any degradation which mir"•• •• ater : number of hours of use in the ficld.

Tim mathematical model utilized for this investigation is a damped sino wave which comes irm the solution of a second order differential equation. For the purpose of this investigation the mathematical model has been assumed to be correct ant is of the form: $y=e_{i} e^{\theta_{2} t} \sin \left(\theta_{3} t\right)$.

## I. INTRODUCTION

If a scatter diagram in the $\mathbf{x}, \mathbf{y}$ plane indicates that a straight line will not fit a set of points satisfactorily because of the nonlinearity of the relationship, it may be feasible to fit a simple curve that will yield a satisfactory fit. Since an investigator always strives to explain relationships as simply as possible, with the restriction that his explanation be consistent with previous knowledge, he will prefer to use a simple type of curve. It follows, therefore, that the type of curve to use will depend largely on the amount of theoretical information one has concerning the relationship and, also, convenience.

In the problem under study, it was assumed that a second order differential equation described the motion of the vehicle. The data recorded $D=\left\{\left(t_{h}, y_{h}\right) \mid h=1,2, \ldots N\right\}$, which was the displacement, $y_{h}$, from equilibrium position at time, $t_{h}$. Thus, the solution to the differential equation,

$$
\begin{equation*}
Y=\theta_{1} e^{\theta_{2} t} \sin \theta_{3} t \tag{1}
\end{equation*}
$$

is to be fitted to $D$ by determining

$$
\theta=\left(\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right)
$$

so as to minimize the residuals.
An attempt is made to solve directly the least squares problem resulting from (1) and D. Let

$$
\begin{equation*}
Q(\theta)=\sum_{h=1}^{N}\left(y_{h}-\theta_{1} e^{\theta_{2} t_{h}} \sin \theta_{3} t_{h}\right)^{2} . \tag{2}
\end{equation*}
$$

By takinf partala of $Q(\theta)$ with respect to each of the parameters and wottifu the re.sill: ryuat 1 , ecs., the following nonlinear system results:

$$
\begin{aligned}
& \frac{n Q(t)}{\partial t_{t}}=\sum_{h=1}^{N} e^{2 d}=t_{h} \sin ^{2}\left(n_{3} t_{h}\right)-\sum_{h=1}^{N} y_{h} e^{\theta i t_{h}} \sin \left(0, t_{1}\right)=
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial Q(\theta)}{A \operatorname{tin}}=A_{1} \sum_{h=1}^{N} t_{h} e^{2 \theta_{2} h_{h}} \sin \left(\theta_{1} t_{h}\right) \cos \left(\theta_{3} t_{h}\right)-\sum_{h=1}^{N} t_{h} v_{h} e^{\theta_{2} t_{h}} \cos \left(a_{3} l_{h}\right)=\theta_{1} . \tag{3}
\end{align*}
$$

Although the above syetem can be reduced to a two-dimensional system, the twodimensional system Indicated that the direct approach is not feasible.

To take a slightly different approach, the Laplace transform of $Q(\theta)$ was taken. The partial derivatives of the resulting expression, $L\{Q[(\theta), t\}$, with respect to cich of the three parameters were taken and the results set equal to zern. The exponcontial and the sine function are suppressed in the resulting system, but the rational functions involved proved unmanageable and this approach was also abandoned.
tikn atternots at simplifiention by taking the logarithm of (1) and (2) proved fitile.

Sine the direct npmroach to the problem would not yleld a solution, stroun lintired methods were applied. These methods were:
(1) Proney's Exponential Approximation
(2) Taylor Series - Least Squares Polynomal
(3) Modified Newton-Gauss
(4) Steepest Descent - Method of Optimum Gradients
(5) Differential Correction.

Based on machine time, number of iterations and minimum of residuals, some methods gave better results than others. In Section III, advantages and disadvantages of each method are given and a "beat" method is chosen.

## II. DISCUSSION OF METHODS

In this section a detailed discussion of the four indirect methods is given.

## A. Prony's Exponential Approximation

From the set D, four equally spaced (with respect to time) points,
$\left(t_{1}, y_{1}\right),\left(t_{2}, y_{2}\right),\left(t_{3}, y_{3}\right),\left(t_{4}, y_{4}\right)$ are chosen. Let

$$
\begin{aligned}
& A_{1}=\frac{\theta_{1}}{2 i} \quad A_{2}=\frac{-\theta_{1}}{21} \\
& a_{1}=\theta_{2}+\theta_{3} 1 a_{2}=\theta_{2}-\theta_{3} 1 .
\end{aligned}
$$

Then $\theta_{1} e^{\theta_{2} t} \sin \theta_{3} t=A_{1} e^{a_{1} t}+A_{2} e^{a_{2} t}$. Prony's theory states that $e^{a_{1}}$ and $e^{a_{2}}$ satisfy the equation,

$$
\begin{equation*}
\mathbf{r}^{2}+C_{1} r+C_{2}=0 \tag{4}
\end{equation*}
$$

when (4) is the characteristic equation of the assumed difference equations

$$
\begin{align*}
& C_{2} y_{1}+C_{1} y_{2}+y_{3}=0 \\
& \ddots_{1} y_{4}+y_{4}=0 . \tag{5}
\end{align*}
$$

Thus, from (.! and (it, $a_{1}, 11 a_{2}$ are determined. Next, the system

$$
\begin{align*}
& \therefore=A_{1} e^{a_{1} t_{1}}+A_{2} e^{A_{2} t_{1}} \\
& \therefore=A_{1} r_{1} t_{2}+A_{1} e^{b_{2} t_{2}} \tag{6}
\end{align*}
$$

Is - - Med to lund $A_{1}$ and $A_{2}$. Since $A_{1}, \theta_{2}$, and $\theta_{3}$ are given in terms of $a_{1}, a_{2}, A_{1}$, arnl $A_{2}, H_{1}, \cdots$, and $H_{3}$ catibe found.

 that durta folyanomitil $P(t)=a_{0}+a_{1} t \div a_{2} t^{2}+a_{3} t^{3}$ was least squares fitted to the dnta. Thus. a, $a_{1}, a_{2}$, and $a_{3}$ are determined. Next, $y(t)=\theta_{1} e^{\theta_{2} t} \sin \theta_{3} t$
 firs: four forms. From the least spuares polynomial and the truncated Taylor senis, corficicnts of equid powers of tare equated yielding:

$$
\begin{gather*}
a_{11}=0 \\
a_{1}=\theta_{3} \theta_{1} \\
a_{2}=\theta_{3} \theta_{2} \theta_{1} \\
\left.a-\frac{1}{4}\left(\theta_{3} \theta\right)_{2}^{3} \theta_{1}+20_{2}^{?} \theta_{3} \theta_{1}-\theta_{3}^{3} \theta_{1}\right) \tag{7}
\end{gather*}
$$



$$
\begin{align*}
\theta_{2} & =\frac{-a_{2}}{a_{1}} \\
v_{3} & =\sqrt{\frac{3 U_{2}^{2}-B a_{3}}{A_{1}}} \\
\therefore & =\frac{a_{1}}{a_{3}} \cdots \tag{8}
\end{align*}
$$

Unfortunately, considerable error may be introduced by the least squares fit of the polynomial and by the truncation of the Taylor aeries after four terms. To improve our estimate of $\theta$, the following technique is applied. From the set $D$, the set $D^{*} C D$ is selected such that $\left(t^{*}, y^{*}\right) \in D^{*}$ and $(t, y) \in D$ and $t=t^{*} \rightarrow y^{*} \geq y$. The Taylor series - least squares polynomial method is applied to the set D* and we obtain

$$
* \theta=\left(\begin{array}{c}
{ }^{*} \theta_{1} \\
{ }^{*} \theta_{2} \\
{ }^{*} \theta_{3}
\end{array}\right) .
$$

Now select $D_{*} C D$ such that $\left(t_{*}, t_{*}\right) \in D_{*}$ and $(t, y) \in D$ and $t=t_{*} \rightarrow y_{* *} \geq y$. Again apply the Taylor series - least squares polynomial method and obtain

$$
*^{\theta}=\left(\begin{array}{c}
*^{\theta_{1}} \\
\theta_{2} \\
\theta_{2} \\
\theta_{3}
\end{array}\right) \text {. }
$$

Actually, what we want to do now is to "scan the interval between "o and ${ }_{x} \theta^{\prime \prime}$ to get the beat estumate for $\theta$.

Ideal Plcture



Let

$$
\begin{gathered}
\theta_{i}=\min \left\{*_{i} ; *_{i}\right\} i=1,2 \\
{ }_{n} \theta_{3}=\max \left\{* \theta_{3}, \theta_{3}\right\} .
\end{gathered}
$$

Ance. These choinc" irn made to help insurc that we start with 'lower" cur"." L.ent

$$
\Delta_{i}=\frac{\because_{i}^{\prime \prime}-\theta_{i}^{\prime}}{K}
$$

K in sorie preassigned eonstant that determines step length.
Lut

$$
\Delta=\left(\begin{array}{c}
\Delta_{1} \\
\Delta_{2} \\
-\Delta_{3}
\end{array}\right)
$$

For notationnd rirpose, let

$$
\begin{gathered}
\theta_{i}=j_{i}^{\theta_{i}}, \quad i=1,2,3, \quad j=0,1,2, \ldots K \\
j^{1}=\left(\begin{array}{l}
j_{1} \\
j^{\theta_{2}} \\
j^{\theta_{3}}
\end{array}\right) \quad j=0,1,2, \ldots, K .
\end{gathered}
$$

ivte: $\mid$ is the number of the step in the "scanning" procedure.
Let

$$
Q\left({ }^{H}\right)=\sum_{h=1}^{N}\left[y_{h}-j^{\theta_{1} e^{j} \theta_{2} t_{h}} \sin \left(j^{\theta_{3}}\right)\right]^{:}
$$

Now $Q\left(j^{a}\right)$ !e somputed, begnning with $!=0$
Let ${ }_{j+1} \theta=j^{\theta}+\Delta$ and $Q\left(j+1^{\theta}\right)$ is computed. If $Q\left(j+1^{\theta}\right): Q\left(j_{j}^{0}\right)$, sct $j+1^{\theta}=j_{j}^{\theta}+\Delta\left(\frac{1}{2}\right)^{m}$ beginning with $m=1$.

Again we compute $Q\left(j+1^{\theta}\right)$. If $Q\left(j+1^{0}\right)>Q\left(j^{\theta}\right)$, we put $m=2$ and repeat the above (if necessary for $m=3,4,5$ ). If $Q\left(j+1^{\theta}\right)<Q(\theta)$ for $m=1,2,3,4$, we set ${ }_{j+1}{ }^{\theta}=\theta_{j}+\Delta$ and repeat the original procedure. Then we use $m=5$; even though we may not have $Q\left(j+1^{\theta}\right)<Q\left(j^{\theta}\right)$, we put $j+1^{\theta}=j^{\theta}+\Delta$ and repeat the original procedure.

It is desirable that $\theta$ and the reaiduals be printed out in each step of the search so as to gain wome insight of the relationship between $\theta$ and the reniduals.

## C. Modified Newton-Gauss

In a complete description of the first iteration, ws are trying to
solve

$$
Q(\theta)=\sum_{h=1}^{N}\left(y_{h}-\theta_{1} e^{\theta_{2} t} \sin \theta_{3} t\right)^{2}=0
$$

for

$$
\theta=\left(\begin{array}{l}
\theta_{1} \\
\theta_{2} \\
\theta_{3}
\end{array}\right) .
$$

To this end, an initial estimate

$$
{ }_{0} \theta=\left(\begin{array}{l}
{ }_{0} \theta_{1} \\
{ }_{0} \theta_{2} \\
\theta_{3}
\end{array}\right)
$$

is made. Next $\theta_{1} e^{\prime 2 t} \sin \left(\theta_{3} t\right)$ is expanded in a Taylor serves about $H$ ind or i: Hic fir thoteri, of the series are used. The truncated Ta, or series replates $P_{1,1} H_{\text {? }}$ si, $\theta_{9}$ in $Q(A)$. Then, the partial derivalives with respect to $\theta_{1}, \theta_{2}$, and

 of the s.sterm is inverthble, ic call solve tur

$$
x_{n}=\left(\begin{array}{ccc}
n_{i} & -n_{1} \\
\theta_{i} & -n_{2} \\
n_{3} & - & n_{3}
\end{array}\right)
$$

There are casest in which the coefficient matrix may not be invertible. This is bertainly true if the parameter surface is flat. Thus, a singular coefficient matrix. in this case, is indtcutive of a non-unique solution. In cases in which a unique solution does exist, the addition of second partials in computing the corection, $\Delta 0$ helps to insure the non-singularity of the coefficient matrix.

Effectivriy, we have a new estimate for $\theta$. (This is where the differenthal correction method, allas Newton's Method, begins a new iteration.)

Next, we optimize the magnitude of the correction $\Delta \theta$. The expression $n \theta+v \Delta 0 \quad n \leq v \leq 1$ is considered.

The term $Q$ is evaluated at $, \theta, \theta+\frac{1}{2} \Delta \theta$, and $\theta+\Delta \theta$. A parabola is thin passad through these three points and the mininum of the parabola is calculated in terms of $v$. Then $Q\left({ }_{0} \theta+v \Delta \theta\right)$ ls computed. The $\theta$ associated with the $\operatorname{mln}\left\{Q(, \theta), Q\left(\gamma+\frac{1}{2} \Delta \theta\right), Q\left({ }_{0} \theta+\Delta \theta\right), Q(\theta+v \Delta \theta)\right\}$ is chosen and called 1). If $Q(, f)<Q(, \theta)$ the Initial estimate of $\theta$, $\theta$ is replaced by $\theta$ and the
entire procedure is repeated. If this is not the case, the domain of $v$ is diminished (usually by $\frac{1}{2}$ ) and the optimization of the magnitude of the correction $\Delta \theta$ is repeated the required number of times to produce $Q\left({ }_{1} \theta\right)<Q\left({ }_{0} \theta\right)$, or the domain of $v$ is sufficiently small and we terminate the procedure.
NOTE: The reason that the check of the min $\left\{Q_{i}^{\left(r_{i}\right), Q\left(i \theta+\frac{1}{2} \Delta \theta\right), Q(, \theta+\Delta \theta), ~}\right.$ $\left.Q\left(_{1} \theta+v \Delta \theta\right)\right\}$ is considered in that the minumum. of the parabola does not neces sarily occur at that value of $\theta$ that will produce the minimum $Q$.
D. The Method of Steepest Descent - Optimum Gradient

Again we consider the expression

$$
\begin{equation*}
Q(\theta)=\sum_{h=1}^{N}\left[y_{h}-\theta_{1} e^{\theta_{2} t_{h}} \sin \left(\theta_{3} t_{h}\right)\right]^{2} \tag{9}
\end{equation*}
$$

An initial estimate is made; call it $\theta \theta$. The gradient, $\nabla Q$, of $Q$ is computed at 0. Since the gradient points in the direction of maximum increase of $Q$, the negative of the gradient will point in the direction of greatest decrease of the function. Now the gradient is normalized by dividing each component of the gradient by the maximum of the absolute values of the components.

We next optimize the step-length in the direction of steepest descent by considering the function

$$
\begin{equation*}
\mathbf{g}(\alpha)=Q\left[\theta-\alpha \nabla Q\left(1^{\theta}\right)\right] i \tag{10}
\end{equation*}
$$

we find that value of $\alpha$ that will make $Q$ a minimum.
Now

$$
\begin{equation*}
g^{\prime}(\alpha)=-\nabla Q\left(i^{\theta}\right) \cdot \nabla Q\left[i^{0}-\alpha \nabla Q\left(i^{\theta}\right)\right] \tag{12}
\end{equation*}
$$

By getting $g^{\prime}(\alpha)=0 \rightarrow \nabla Q\left(i^{\theta}\right)$ and $\nabla Q_{1}{ }^{0}-\alpha \nabla Q_{1^{\theta}}$ are orthogonal to each other for the value of $\alpha$ that makes $Q$ a minimum.

We now rouplute the function values of $g$ beginning at sioy and continuing
 ur wilk.... gra-l., whichever comes first. Suppore we have the change of


1) : N


 A.tri Tr siet if $\because$ are fermasing the niagnitude of $Q$. wine the "hat" a l- determined, we put
abia compute

$$
\begin{aligned}
& i+1^{\theta}=, \quad \operatorname{a\nabla Q}\left(i^{\theta}\right) \\
& Q\left(i^{\theta}\right) \text { and } Q\left(i+1^{\theta}\right) ;
\end{aligned}
$$

(hen the whing in 1 are negligible over four iterations, the process ceases.
t. Wother of Differential Correction

$$
\begin{equation*}
Y=r\left(t, \theta_{1}, \theta_{2}, \theta_{3}\right) \tag{12}
\end{equation*}
$$

u. Nat thi: formala tala a good fit to the data $\left(t_{h}, y_{h}\right)(h=1, \ldots N)$. The :. la, al: me fiven by

$$
\left\{\begin{array}{c}
R_{1}=f\left(t_{1}, \theta_{1}, \theta_{2}, \theta_{3}\right)-Y_{1}  \tag{13}\\
R_{2}=f\left(t_{2}, \theta_{1}, \theta_{2}, \theta_{3}\right)-Y_{2} \\
\cdot \\
R_{h}=f\left(t_{n}, \theta_{1}, \theta_{2}, \theta_{3}\right)-Y_{h}
\end{array}\right\}
$$

where $y_{h}(h=1,2, \ldots n)$ are the given (observedi), values from the uriginal data.
Let $\theta_{1},{ }_{n} \theta_{2}, \delta \theta_{3}$ be an initial guess. Now we need to correct this guess by some incremental amount, say $\alpha, \beta, \gamma$ such that

$$
\left\{\begin{array}{l}
\theta_{1}=\theta_{1}+\alpha  \tag{14}\\
\theta_{2}=\theta_{2}+\beta \\
\theta_{3}=0 \theta_{3}+\gamma
\end{array}\right\}
$$

will yield a better fit to our data.
If we substitute the values of (14) Into the residuals (13) and transpose the $\mathbf{y}_{\mathrm{h}}$, we have the followinge

$$
\begin{equation*}
R_{h}+y_{h}=f\left(t_{1}, \Delta \theta_{1}+\alpha, \theta_{2}+\gamma \theta_{,} \theta_{3}+\gamma\right) . \tag{15}
\end{equation*}
$$

Expanding the right-hand side by Taylor's theorem we get

$$
\mathbf{R}_{h}+y_{h}=f\left(t_{h}, \theta \theta_{1}, \theta_{2}, \theta \theta_{3}\right)+\alpha\left(\frac{\partial f_{h}}{\partial \theta_{1}}\right)_{0}+\beta\left(\frac{\partial f_{h}}{\partial \theta_{2}}\right)_{0}+\gamma\left(\frac{\partial i_{h}}{\partial \theta_{3}}\right)_{0}
$$

$$
\begin{equation*}
+ \text { higher order terms in } \alpha, \beta, \gamma \tag{16}
\end{equation*}
$$

where $\left(\frac{\partial f}{\partial y}\right)_{0}$ ㅍ the value of the partial derivative $\frac{\partial f}{\partial y}$ at

$$
\begin{equation*}
t=t, \quad \theta_{1}=0 \theta_{1}, \quad \theta_{2}=0 \theta_{2}, \quad \text { and } \theta_{3}=0 \theta_{3} . \tag{17}
\end{equation*}
$$

Our first approximation is obtained from

$$
\mathbf{Y}^{\prime}=\mathbf{f}\left(t, 0 \theta_{1}, 0 \theta_{2}, \theta_{3}\right)
$$

so that we have

$$
\begin{equation*}
\left[\left(t_{h}, \theta_{i}, \theta_{n}, A_{3}\right)=Y_{h}^{\prime} .\right. \tag{i8}
\end{equation*}
$$

This cat alto h: frit iner cruation (16), Now let

$$
\begin{equation*}
r_{h}=Y_{h}-Y_{h} \tag{119}
\end{equation*}
$$

Ignoting tho higher orror terms the residuale now have the form

$$
I_{i}=\alpha\left(\frac{\partial f_{\mathbf{h}}}{\partial \theta_{1}}\right)_{i}+\beta\left(\frac{\partial f_{\mathbf{h}}}{\partial \theta_{2}}\right)_{U}+\cdots\left(\frac{\partial f_{h}}{\partial \theta_{3}}\right)+\mathbf{r}_{H}
$$

Which are lins: $n, i, \because$. Thereforc, we may determine the corrertior: isy the method of least squares.

## III. RESULTS AND CONCLUSIONS

These five methods of estimating $\theta$ were used on data taken from actual test firings in which we had four test modes (a standard and three modifications). Plots of typical data are shown in Figures 1 through 4. The results of all five methods are shown in Tables 1 through IV.

Snme : dvantages and disadvantages of each method are given in Table V. It turns out that the "best" method to use depends on the tools that one has on hand. For example, if one has to cstimate the parameters by use of only paper and pencil, he naturally would chose Prony's method. If one had access to a small computer, he might chose the Taylor-least squares approach. Of the five methods discussed in this paper, the method of steepest descent, and the metheri of modified Newton-Gauss are the most accurate in terms of the smallest residuale.

TABLE I. STANDARD DATA

	$\theta_{1}$	$\mathrm{A}_{2}$	$\theta_{3}$	Residual
Prony's	6.9	-1. 14	7. is	\$174
Taylor's modified	6.4	$-2.8$	7. fi	9.4
Differertial correction	Did not Áonverere			
Steepest descent	6.5	$-2.5$	7.9	91
Modified   Newton-   Gauss	6.5	-2.5	7.9	41

TABLE II, MOD 1 DATA

	$\theta_{1}$	$\theta_{2}$	$\theta_{3}$	Residual
Prony's   Taylor's   uodified	2.64	-1.24	10.3	171
Differential   correction	2.07	-1.85	12.3	68
Steepest   descent	2.07	-1.85	12.3	68
Modified   Newton-   Gauss	2.09	-1.84	12.3	68

TABLE III. MOD 2 DATA

	$\theta_{1}$	$\theta_{2}$	$\theta_{3}$	Residual
Prony's   Iavlor's   modified	5.3	-0.7	10.46	407
Differential   correction	Did not converge		177	
Steepest   descent	4.7	-1.5	9.5	8.92
Modified   Newton-   Gause	4.8	-1.5	9.4	101

TABLE IV. MOD 3 DATA

	$\theta_{1}$	$\theta_{2}$	$\theta_{s}$	Reaidual
Prony'	8.6	$-0.6$	7.2	820
Taylor's modified	8.0	-2.1	7. 7	328
Differential correction		not con		
Steepent descent	8.6	-1.4	7.3	153
Modified	Relative min due to guess 1609			
NewtonGaus 8				




FIGURE 2. MODIFICATIUN I


TME (rec).
FIGIIRE 4. MODIFICATION :

## KEFERENCES

1. Siristr, K. 1.., Methods of Numericai Anatysis. The MacMillian compre, No.b ourk, is.ai,
 Data, Jonn Wisp \& Sons, Inc , New York.
2. Hartle\%, i: O , Tuhbun:elrics, The Mondified Gaues-Newton Method
 Ful,
3. 'illy, l. (.. ' ndhooi, of Numerical ifethods and Applications.

A Methg of improving the estimaline if on: : E
John Gurland
University of Wisconsin and
J. S. Mehta

Temple Univeraity
1: Introduction.
Consider a situation where an experimenter has an unbiased estimator s ${ }_{1}^{2}$ of the population varlance $o_{1}^{2}$ from a nomal distritution. Let us furthe: suppose that another independent unbiased estimator $s_{2}^{2}$ of the population variance is also available. The two estimators may have been based cri simple: saner at
different times and places. Bacauce of the circumstances it may be kricin: that $\theta_{1}^{2}$ estimates $\sigma_{1}^{2}$ while $s_{2}^{2}$ may be estimating $\sigma_{2}^{2}\left(\frac{2}{8} \sigma_{1}^{2}\right)$. "This shift in the variance, if any, may have taken place because of the time lapse between chtaining independent samples or it could be due to the shift in places. It is ojvious that if $\sigma_{2}^{2}=\sigma_{2}^{2}$ then the two estimatory can be pooled to obtain a "bettor estimator" of $\sigma_{1}^{2}$. On the other hand, if $\sigma_{2}^{2} \neq \sigma_{1}^{2}$ then one may estimate $a_{j}^{2}$ iy $s_{1}^{2}$ alone. A preliminary test of the hypothasis $H_{0}: \sigma_{2}^{2}=\sigma_{1}^{2}$ can be carried out by utilizing the $F\left(s_{2}^{2} / s_{1}^{2}\right)$ statistic and if the hypothenis is rejected then one uses $s_{1}^{2}$ to estimate $\sigma_{2}^{2}$ otherwise a pogied estimator of $\sigma_{1}^{2}$ is obtained by pooling $s_{2}^{2}$ and $s_{2}^{2}$ appropriately, The estimator designated here as $L$ hes bean ohtained by following this approach, wich is aimilar to the approdch used bv Bancroft [1].

Another method of estimating $f_{1}^{2}$ is to use weighte which are continyous functions of $F$. The estimator $S$ described below is constructed in this manner and turns out to be mon effective than the estimator $U$.

$$
\text { Let } x_{11}, x_{12}, \ldots, x_{2 N} \text { and } x_{21}, x_{22}, \ldots \ldots, x_{2 N}
$$

be indopendent samples from nomal populations with unknown variances of and $\sigma_{2}^{2}$ respectively, and let $k=\sigma_{2}^{2} / \sigma_{1}^{2}$. It la required to estimate $\sigma_{1}^{2}$. Define at usual

$$
s_{1}^{2}=\frac{1}{N-1} \sum_{j}^{N}\left(x_{1 j}-\bar{x}_{1}\right)^{2}
$$

$$
; m_{2}^{2}=\frac{1}{N-2} \sum_{f: 1}^{N}\left(x_{2 j}-\bar{x}_{2}\right)^{2}
$$

We consider an estinator $T$ of weifhted sums of $e_{1}^{2}$ und

of t:

 estiratar of $0_{i}$ is that $\therefore$ is an estimator based only on the first sample .15:

is an esfimator based on combining the two samples when $\sigma_{1}^{2}=\sigma_{2}^{2}$. As an es:inatur ef $\sigma_{1}^{2}$ we eonsider a subclass $S$ of $T$ which reduces to the formp

$$
\begin{equation*}
\left.s=s_{1}^{2} \frac{a_{1}-a_{2} r+a_{3} z^{2}}{1_{1}-b_{2} E^{2}+B_{3} E^{2}}\right] \tag{2}
\end{equation*}
$$

where the constarts of $\alpha_{i}$ and $B_{i}$ are givan below. This estimator has also been ansidcerrd eisewhere (Mehta and Gurland [6] but we include it here for cerparison.

The estinator $i$ rencioned above is also a subclass of $T$ with the waipr: Emets : u' given Ey
 prelimixary test for equality of variances.

The behaviour of $S$ and $U$ will be investigated in regard to exfected mean square and relative bias.

## 2. The estimator $U$

The estimator $U$ is of the rorm $T$ wath the weatot function $\psi$ datined Ly (3) above. It is based on the randen outceme of a preliminary test of whether $\sigma_{1}^{2}=\sigma_{2}^{i}$. If the preliminary test rejects equaility of variances then $\sigma_{j}^{\prime}$ is employed as the estimator; but if it does not reject equality of variances then the average of $s_{1}^{2}$ and $s_{2}^{2}$ is used as the estimator of $\sigma_{1}^{2}$. This estimator is similar to one used by Bancroft [1] axcept that we use a twonsided test for equality of variances whereas he uses a cre-sided test.

First we consider the expected mean square of $U$ and compare it wi-h that of $s_{1}^{2}$ which utilizes only the first sample. Since $s_{1}^{2}$ is unbiased we define the efficiency of $U$ as

$$
\begin{equation*}
\text { Eff } U=\frac{\operatorname{Var~} s_{2}^{2}}{E\left(U-\sigma_{1}^{2}\right)^{2}} \tag{4}
\end{equation*}
$$

Gubcequently wo shall also consider the relative bias of $U$ given by

$$
\begin{equation*}
\frac{E(U)-\sigma_{1}^{2}}{\sigma!} \tag{5}
\end{equation*}
$$

In order to obtain expressions for the efficiency and bias of $U$ we need to eraluate the first two moments of $U$.

It cun be shown by :."ysirht-forward inierration that


$$
2(i-1)^{2} k\left\{I_{0}\left(\frac{i+1}{2}, \frac{X+1}{2}\right)-I_{y_{0}}\left(\frac{N+1}{2}, \frac{N+1}{2}\right)\right\}+
$$

$$
\left.\left(n^{2}-1\right) k^{2}\left(I_{x_{0}}\left(\frac{N-1}{2}, \frac{N+3}{2}\right)-I_{y_{0}}\left(\frac{N-1}{2}, \frac{N+3}{2}\right)\right)\right]+
$$

$$
\sigma_{1}^{\prime \prime}\left[\frac{\because i+1}{1-1}\left\{I_{y_{0}}\left(\frac{:+3}{2}, \frac{\ddot{2}}{2}\right)-I_{x_{0}}\left(\frac{N-1}{2}, \frac{\left(N^{\prime}+1\right.}{2}\right)+1\right\}\right]
$$

 $\therefore$ : u ent be witten as follews

$$
!\& \in U=\frac{\operatorname{var}\left(s_{2}^{2}\right)}{\because^{2}\left(U^{2}\right)-[E(U)]^{2}+[E+a s U]^{2}}
$$

$$
\begin{aligned}
& \therefore=\frac{i_{0}}{1+k \Gamma_{6}} \quad: \quad, \quad \therefore \frac{5}{2} \\
& 2(a, t) I_{0}(a, 2):!^{i}=2-1(2-t)^{j-1} d t
\end{aligned}
$$

## where

$$
\text { Eias } U=E(\because)-c_{i}^{i}
$$

and $E(U), E\left(U^{2}\right)$ are given above.
3. Soma corputed values of Efficiency and Relative Bias of U.

I: Tables $1-5$ are giver calculated valucs of the efficicnc: of U. Ec:

 Examira:ion. of these tables reveals that there is a gain of efisicisac\% $\leq 0:$. some vailies of $k$ and a loss for other vaiues of $k$. Furthemmore the extert oz tinesc gains or losses depends on sampie size. for $k$ L therc is generally a gain in efficiency but the magnituce of this gain cesreases with incracase ir.
 t:ers is evin a juss of efficienc; a: N bocomes yarger.

As far as values of $k>1$ are concerned there $i=$, without excertion, a general loss of efficiency as manifested for all the sample sizes consicered. The relationship of this loss with she values of $k$ and $\because$ is more complicated than for the case $k \leq 1$ considered above. For some values of $k>1$, e.E: $k=2$, the loss in efficiency becones mone promouncec as in acreases while for other values of $k>1$, e.g. $k=10$, it becomes less pronounced.

For all values of $x$ and $i$ consilered the relation of efficiensy to $=: \mathrm{c}$ value of the constant $F_{0}$ follows a definite pattern. hitatever be ti.e saroie size, the efficiency for values of $k>1$ increases with decrease of $5_{C}$ (on equivaiently with increase of level of significance of the prelininary test). On the other hand for $k \leq 1$ the trend is reversed, that is to say. the efficiency cecreases with increase of the level of sipnificarce of the preliminary test.










 Ghar 20. tie efficiency will be hiphor tut the relative bias will aduo be
 veil controlied for $0.1 \leq k \leq 1.0$ and at the same thre there are godis o: efficiciay, at least in a subset of this range. On refering to tabie 26 w rote that ti, maximum relative bias in this range of $k$ for sample size $\because=11$ ib $i$, anc for $\mathrm{N}=3$ it is $14 \%$
4. The es-i-maton $S$

In find enenal estimator $T$ defined by (2) let us regard $\psi$ Eer the for:ifit at cunctant, and minimise tho expected mean square error of : wi:t, me:nc: tu $\therefore$ The minilum i: reachu: when
$\psi=\frac{N-3-2 k(N-)+k^{2}(y+1)}{(N+1)-2 k(N-1)+k^{2}(N+1)}$

```
Tf wn sutctitutn tnis valun for l
whic: is,of course, unknown, by c+er, where c and d are arbitrary censtar.ts,
we obtain the estimator S given by (2), where
```

$$
\begin{array}{ll}
\alpha_{1}=(N-1)(1-2 c)+(N+1) c^{2} & B_{1}=(N+1)\left(1+c^{2}\right)-2(N-1) c \\
\alpha_{2}=2\{(N-1) d-(N+1) c d-1\} & \beta_{2}=2 d((N-1) c(N+1) c\} \\
\alpha_{3}=(N+1) c^{2} & B_{3}=(N+1) d^{2}
\end{array}
$$

The relevant underlying details involved in ottaining the above estimator $S$ are outlined in the paper by Nehta and Gurland [4].

Estimation of $k$ by a simple function such as $c+d F$ has been applied similarly in other contexts (cf.[2],[3]). The constants $c$ and $\dot{c}=$ be appropriately chosen, and the results of certain choices will appear in Tables E. 7, 8, 9, 11, 12 considered below.

As in the case of $U$ we require the first two moments of $S$ in oder to evaluate its efficiency and relative bias. For odd values of the sample sine $N$ these moments can be expressed as a finite series of integrals which can be evaluated by reduction. The precise form of these moments appeare in the work by Mehta and Gurland [6] citad above.

## 5. Some cemuted values of Efficiency and Relative Blas of $S$

In examining the behaviour of the estimator $S$ we employ the same criteria of efficiency and relative bita defined above as in (4), (5), for the estimator $U$. The behaviour of the estimator $S$ has been considered previousiy in [6], but for conveniance of making comparisons with the estinctor $U$ we sketch these resulte heme briafly. In table 6 the efficiency is sh., mom
when viexis $0: \therefore \because, i s i a n=s$ and $d$ have been eelcciod to emitis:ze the
 the ridin in efticierey is not 5 bstantial. In fart, a loss in efficency E:Gits tu cecur :cr ant be size 7 end for lager valufs of $k$.
 and d which emphasite the ranfe $0.1<k \leq 1.0$. There is a considerable


 c and $d$ a:r chosen so that the relative ojas remains numericaily briow 10 部

 below 5\%. In thin case the gain in efficiency is glight, aspecialiy for Larger iam:le sizus.
 in tho clurs $S$ for which the efficiency has been discussud in Tabies 8 atci 9.





 : : : i:"..: :re: tionover, it is of interest if one is mainly interested ir. G,:.:.: : ine bids.
 rai.c $0 . i \leq k \leq 10$ and for all the samble sizes coreiderec is lús. i. ic diso evident that for many of these vajuce of iof for tice sample dize: considered ihis relative bias is very smali. Tnis control of relative bias together with the gain in efficiency discuased previously would ircicate that this member of the class $S$ merits consideration as an estimator of $\sigma_{2}^{2}$.

## 5. Comparison of the behaviour of estimators $U$ and $S$

In comparinf the teaviour of 5 and $U$ it is necosuary to kec: ir. ...ind that the parameter $k$ can assume values greater than or less trian one., It is evicent that we can find nembers of the class $S$ which in most of the range $0.1 \leq k \leq 10.0$ are more efficient than members of U . For example o: comparing the estimator $S$ in Table 8 corresponding to $N=9$ and the estinator $U$ ir Table 4 cormesponding to a preliminary test at a $20 \%$ level wh ubserve that for all values of $k>1$ the efficiencies of $S$ are very much higher tian those of $U$. For the range $0.1 \leq k \leq 1.0$ the efficiencies of $S$ excead trose. of $U$ except for values of $k$ in the subset $0.7 \leq k \leq 1.0$ in which subset the efficiencies of $U$ are only slightly greater than those of $S$. The conparative behaviour of 3 and $U$ for other sample sizes considered follows a simisar patiern. Generally speaking therefore in the whole range $0.1 \leq k \leq 10.0$ the estimator $s$ appears preferable as far as efficiency is concormed,

Let us now consider the relative bias of these estimators, Vaiwes of the relative bias of $S$ and $U$ are given in Tables 11 and 10 respectively. $0:$ comparing these biases corresponding to sample size $N=9$, for example, the relative bias of $S$ in the range $1.0<k \leq 10.0$ is very much less tran tuat of $U$, while for $k$ in the range $0.1 \leq k \leq 1.0$ the relative bias of $S$ remains less


#### Abstract

          example, wi scasiden the ciass $U$ with a level of $50 \%$ for the preliminary  axceptions. arn and jecs than those of $S$. On the other hand if we consicer the class $U$ with a proliminary test at a low level, for example $1 \%$ the efficiengio: for $i, 1$ mencra? 4 exseec those of $s$ : however, the dicadvantares cerch a $U$ would be overwhelming because its relative bias   enniciered :er the comparison. In Tubles $\epsilon$ and 7 , for example, cotimators  resnestively. on the other nama the estirators consicered in Tables 9 and 12 coniroi the relative biss within a maximum of $5 \%$. For the whole rarpe $0.1 \leq i \leq 30.0$, however, the estimator considered in Table 8 is worth necomancin ratiuse the reiative bias is reasonabiy well controlled and there are noticcatic riains of efficicncy.


Examples:

practical situation. For this we have drawn a sample of size 7 from $\mathcal{N}(3,1)$ and named it as the first sample. The unbiased estimate of $\sigma_{1}^{2}=1$ as given by $s_{1}^{2}$ from this sample is $s_{1}^{2}=2.652$. We draw another sample of size 7 from
$N(5,0.36)$ and designate it as the second sample. The unbiased estimate of $o_{2}^{2}=0.36$ as given by $s_{2}^{2}$ is $s_{2}^{2}=0.448$. Consequentiv $F=s_{2}^{2} / s_{1}^{2}=0.271$ and the hypothesis that $k=1$ is rejected at the $2 \%$ level of significance. Thus $U=1.653$. On the other hand we obtain

```
S = 1.527 if we restrict the relative blas to be less than l0%:
 = }1.623\mathrm{ if we restrict the relative bias to be less than 5%.
 = 1.011 if we use the estimator S which emphasizes the range 0.1\leq < < < 1.0.
 = 0.969 if we use the egtimator S which emphasizes the range 1.0 < k \leq 10.0.
```

In all the cases we note that $S$ nearar the true value of unity than $U$.
(2) : The example considered here differs"from, that of (1) in that here the value of the ratio $k$ is greafer than 1 . Suppose now we have a second sample also of size 7 from $N(4,4)$. The unbiased estimate of $\sigma_{2}^{2}=4$ is $s_{2}^{2}=4.305$. The value of $F=s_{2}^{2} / s_{2}^{2}$ is now 2.603 which is not significant at 204 level of sigrificance and consequantly the null hypothesis that $k=1$ is not rejected. Therefore in this case the esfimate $U=\frac{1.653+4.305}{2}=2.979$.
On the other hand we obtain

```
S = 1.660 if we restrict the relative bias to be less than 10%.
 = 1.660 if we restrict the relative bias to be less than 5%.
 =1.881 if we use the estimator s which emphasizes the range 0.1<k< < 0.0
 = 1.663 if we use the estimator S which amphasizes the range 1.0 < k \ 10.0.
```

In all the cases we note that the entimator $S$ is nearer the true valuc than $U$.

$\qquad$





$\stackrel{5}{\square}$ $\therefore \because a c a:$


 esti－ntors of the mean whici corsicen inecuaity of whenen vamiances．Soumal of the Arer．Stat．Assoc．54，i042－16：5．



 5ンフロラ3ニ．



INIPODCTION. Eisenhart (1947) distinguished iwo uses of amaiysis of variance which he desigrated as Type i ard Iype iI. Type I provides a test of significance of the difference between estinates of popilation means. Type II prorides a test for estimates af popuiation variances. Eiserharr's treathert overed the goneral aace of ar.aiŋsis of variance-but involved two impcrtant types of restrictions. Eurst tint 'resicual error' was asslmed homogeneous with zero expected value. Second, ain other parameters in Type I were assumed to have zero variances, and in Type II to have zero means. In the mixed model, paraneters could be of either form, but, individually, where the means are not assumed zero the variances are and vice versa.

The presert paper is linited to the case of two classes (the bivariate case) but removes both of these restrictions. This leads to a greatly enlarged variety of types and to a close parailelism with bivariate correlation. Two special cases, not previously treated, are discovered and appropriate formilae derived.

## II MATHEMATICAL MODEL. Given

$$
x=\alpha+\beta+Y+\delta+\varepsilon+\ldots .
$$

we have

$$
\begin{gathered}
E(x)=\bar{a}+\bar{\beta}+\bar{\gamma}+\bar{\delta}+\bar{\varepsilon}+\ldots \\
V(x)=V(a)+V(\beta)+V(\gamma)+V(\delta)+V(\varepsilon)+\ldots
\end{gathered}
$$

This article has been reproduced photographically from the author's ganuscript.
$\therefore \because$
 vaives or zerc variances, but not woth. In an exactly parallel way we tay express a sece: e Vin :st : y a?

$$
y=\bar{z}^{k}+\bar{a}^{n}+\bar{i}^{k} \cdot \cdot \cdot \cdot a^{\mu}+3^{k}+r^{k}+\cdot \cdot \cdot
$$


 Fintre ateruate for the purpese in tand. If in particular, $x$ and $y$ are aisoricused in a bivariate romma, then the distribution factors into the product of one involving the mans only, and the other involving the vaniances ans ruvaiaxces. For oun purposes, it will be enough to ignore the distribution of the means, and to express $x$ and $y$ as the sum of two variabies of the form

$$
\begin{equation*}
\binom{x=\tau+\zeta}{y=\tau+n} \tag{1}
\end{equation*}
$$

If this is done, the variance-covariance (dispersion) matrix
becames
where

$$
\left(\begin{array}{cc}
\sigma_{x}^{2} & \rho_{x} \sigma_{y}  \tag{2}\\
\sigma_{x} \sigma_{y} & \sigma_{y}^{2}
\end{array}\right)
$$

$$
\left(\begin{array}{cc}
\sigma_{1}^{2}+\sigma^{2} & \sigma^{2}  \tag{3}\\
\sigma^{2} & \sigma_{2}^{2}+\sigma^{2}
\end{array}\right)
$$

$$
\sigma^{2}=V(\tau) ; \sigma_{2}^{2}=V(\zeta) ; \sigma_{2}^{2}=V(\Pi) .
$$


and (3) becones

$$
\begin{equation*}
\binom{x=\tau+5}{y=-\tau+\eta} \tag{4}
\end{equation*}
$$

so that corparison of the two models can be obtained from (2) and (3).

III QRREMTION YODE: Viewed as a purely mathematical object, the various special estimating and testing problums in the literature and certain sinple extensions can be classified on the basis of restrictions on the elements of matrix (2) as follows:
A. Estimate $\rho, \sigma_{x}^{2}$ ard $\sigma_{y}^{2}$. Test $\rho=0$. This is the most corman situation. The t-test applies; most naturally as a test of $\rho$.
B. Given $\sigma_{x}^{2}$ and $\sigma_{y}^{2}$, test $\rho=0$. The t-test with infinite ciegrees of freedom, the normal test, for $\rho=0$ applies.
C. Given $\rho=0$, test $\sigma_{x}^{2}=\sigma_{y}^{2}$, and estimate the common variance. This is the now classic case of estimating and testing equality of two independent variances.
D. Given $\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{c}^{2}$, estimate $\rho$ and $\sigma_{c}^{2}$, test $\rho=0$. This example was treated by Delury (1938).
E. Test $p=0, \sigma_{x}^{2}=\sigma_{y}^{2}$. This is the compound symnetry probiem of Mauchly (1940).

* This possibility seems to have previously been overlooked (Anscumbe).
; $x$. - lut ronin tert $\mathrm{j}_{i}^{2}: 0_{0}^{2}$ this

G. $\quad$ aitan a $a x$ test $a_{x}^{2}=\sigma_{y}^{2}$ whatever the value of $p$. This test was incaperntintiy mipitied by $\mathrm{Si} \operatorname{Tan}$ (1939) and Morpan (1939). It is des:-ibed in inedeoor and Cochnan (1067), Section 7.12.
intw suppose $\lambda$; the sum of two ixcependent rindom variables $T$ and 6 and sinijarily $Y$ is the sur of $T$ and $n$, as given in ayuation (i). Then $p$, the orrelation coeffieient of $X$ and $Y$ is greater than on equal to zero and the matrix $V$ was onow above to be

$$
v=\left(\begin{array}{cc}
\sigma_{1}^{2}+\sigma^{2} & \sigma^{2}  \tag{3}\\
\sigma^{2} & \sigma_{2}^{2}+\sigma^{2}
\end{array}\right)
$$

The various possible tests in this formulation are:
ii. Test $\sigma^{2}=0$. Estimate $\sigma^{2}, \sigma_{2}^{2}$, and $0_{2}^{2}$. This is a tes: of the correlation of $X$ and $X$, expreased in the Language of common and specific variances.
I. Given $\sigma_{1}^{2}$ and $\sigma_{2}^{2}$, test $\sigma^{2}$ : 0. This is the conponents of varriance analogue of $B$ above. The aupe test applies.

is the usual case of repeated measurements on constant but nort necessarily equal standands; more generaliy, the test for equality of two independent variances as in $C$.

K, Given $q_{2}^{2}=\epsilon_{2}^{2}=\theta_{c}^{2}$, ectimate $\sigma_{0}^{2}$ and $\sigma^{2}$. Tast $\sigma^{2}=0$. This is Delury's problem expresseci in the language of variance components. Burt whereas in its correlation formulation the problem appears to arise infrequently, in its components of variance formulation it is Eisenhart's Model II for Analysis of Variance.
L. Test $\sigma^{2}=0, \sigma_{1}^{2}=\sigma_{2}^{2}$. This is Mauchly's problem expressed in the language of variance components. The components of variation interpretation of this test would be applicable Wherever (a) observations occur in paire, ( $b$ ) the variance of the first member of each pair is to be compared with the variance of the second member. Thus in a paired compmison experiment, the residuals of the firet members of each pair could be coupared with the second as a test of the mathemationl model underdying the design.
M. Test $\sigma_{1}^{2}=0$. This tests the legitinacy of treating the precision of one of two instruments, standards, or techniques as subject to no (negligible) exror. The test is eupplied in Malcney and Rastogi.
N. Given $\sigma^{2}$ known, test $\sigma_{1}^{2}=\sigma_{2}^{2}$.


Fo: arge $n,-2 \log i$ is a $\therefore i-3 z u m e r . v$, with one d.f. (see

 square idrisam varızile with one jegree of freedon.

Eivataon (23) car: be writter: in a form which will be useful :aiow and is macticic as well. Since $S_{x} S_{y}$ is the gecmetric mean of $S_{x}^{2}$ and $S_{y}^{2}$ and $\frac{1}{2}\left(S_{x}^{2}+S_{y}^{2}\right)$ is their arithmetic mean, equation (23) becomes:

$$
\begin{equation*}
\lambda^{2 / n}=\frac{(G M)^{2}-e^{2} \sigma^{4}}{(A M)^{2}-e^{2} \sigma^{4}} \tag{24}
\end{equation*}
$$

writing $G M$ for geometric mean, AM for arithmetic mean, and $e=n /(n-i)$.

Returnirg to equation (23) if, in particular $\sigma^{2}=0$, the likelihood ratio becomes

$$
\begin{equation*}
\lambda^{2 / n}=\frac{S_{x}^{2} S_{y}^{2}}{\left(\frac{S_{x}^{2}+S_{y}^{2}}{2}\right)^{2}}=\frac{(G M)^{2}}{(A M)^{2}}=\frac{4 F}{(1+F)^{2}} \tag{25}
\end{equation*}
$$

where $E=S_{x}^{2} / S_{y}$ is distributed as Snedecor's $\bar{F}$ r.Y. with ( $n-1, n-1$ ) d.f., since, when $\sigma^{2}=0, X$ and $Y$ are independent r.v.'s.

eqioivalent to $=<F<k_{1}$ or $k_{2}<F$; wher: $k_{1}<\ldots$ A; $I$ is always iaken to be greater than $I$, Uhe ruie ieconmes reject in if $F$; k" at the chosen probability level, i.e., our test raciuces to the ordinary $I$ test when it is known that the population variance is zero.

Comparison of equations (24) and (25) exhibits the effect on the test of the existence and magnitude ot population variarice. Equation (24) is

$$
\begin{aligned}
\lambda^{2 / n} & =\frac{(G M)^{2}}{(A M)^{2}} \cdot \frac{(A M)^{2}}{(G M)^{2}} \cdot \frac{(G M)^{2}-e^{2} \sigma^{4}}{(A M)^{2}-e^{2} \sigma^{6}} \\
& =\frac{(G M)^{2}}{(A M)^{2}} \cdot \frac{(A M)^{2}(A M)^{2}(G M)^{2}-e^{2} \sigma^{4}(A M)^{2}}{(G M)^{2}-e^{2} \sigma^{4}(G M)^{2}} \\
& \leqslant \frac{4 F}{(1+F)^{2}}
\end{aligned}
$$

(using 25)
since $A M \geqslant G M$ for any set of positive numbers. It follows that, if a standard $F$ test is applied to the variance estimates for the two instruments or procedures as if the effect of population variance were vero (equation (25)) the test will sometimes accept when the correct test (equation (23)) might reject. Conversely, when equation a (25) is appropriate, discrinination will be sharper than in a test. situation where population variance is present so that equation (23) mist be used. In addition equation (23) an be used to gain insight into the benefit to be derived, hence into the care and expense which is justified, when the population variance is reduced; whethen by

 c. $: \therefore \pi \cdot \equiv$ test $c_{1}^{2}=\sigma_{2}^{2}$ whatever the value of $\sigma^{2}$.
 in tiat here $\sigma_{j}^{2}+\sigma^{2}>\sigma^{2}$, whereas in their case the range of the
 the ij:elitron ritis mis cuse 0 has beer shown elsewhere.
$\because \therefore \because \because \because \because \operatorname{An}$ assanand into a table that brings cut ite -intriny ix,wer, vorresponding correlational and omponents of "L-i ?ne zom of expossion.

## Varicus ment of Pracesir



Fest ef siprificance for variance-covariance parameters of a bivariate reia:ic:i accurcing to all possible non-trivial parameter restrictions. For Eil comeiaticnal models, the corresponding components of variance model $y$ jelds the sare test (not the same estimates) as its commelational analogue. :io correlational model exists corresponding to item M.

## REIERENCES

DeLfry, D. ,. [:939].:-te cr omelations. Annals of Mathematical Statis:i.え, ؛: 44:-101.
 Bioretrics, $5: 1-21$.

FTONL, D.U. [2933]. Fit istrisitifn of the ratio of estimates of the two variances in 3 saple firni a nomal bivariate population. Biomerikn, 30: 190-92.



MAUCHLY, iCHN W. [1940].A significance test for ellipticity in the harmanic . Jjai. "!rrestrial Magnetism and Atnospheric Electricity, 45: $145-148$.

MKKAN, W.A. [i9:3].A test for the significance of the difference between the two variances in a sample from a normal bivariate population. Bionetrika, 31: 13-19.

PMAMiN, E.J.G. [1939].A note on normal correlation. Bionetrika, 31: 9-12.
SNEDEOOR, G.W. and W.G. COCHRAN [1967].Statistical Mathods, sixth edition, Iowa State University Press.

WILKS, S.S. [i963].Matheratical Statistics, John Wiley and Sons, New York.
MSCOMBE, F.J. [2948]. Conteribution to the diroungion on D. G., Crmpmomin's "Sumpling theary epplied to artoragresalve aqumoes". Journil of Royal' Statistics Society B, 10: 239.

```
COMPUTERIZED QUALITY CONTROL RE APFIIEA MJ
 USFEN AmMcc=ampt E:O.
 Oskar M. Essenwanger
U. S. Army Missile Commana
 Redstone Arsenal, Alabama
```


#### Abstract

Any observational program, even it amrind out with the best available iras rumentation and carefuiness to avoid instrumental  mission of data. Thus a good concept of quality gsourance must rresede any data analysis to avoid distortion and bies of res:ats by erroneous records.

Three groups of analytical methods of quaity assurince are discussed, inconsistancies, interrelationship of dats, and frequercy distributions. These methods have been developed at the Army Missile Cominand for screening radiosonde data by high speed computers. The gon is flugging of orroneous or auspicious records that 'these may be corrected.

Checking procedures include tests for trivial errors such as duplication, wrong sequence, missing data, special checiks on identification numbers, etc. Other procedures utilize data interrelationships, in this special case the vertical structure of the atmosphere. Further checks employ screening of maxima and minima by exseedance criteria derived from the frequency distribution. The Weibuil distribution has proven especially useful in this last phase of the checking procedure. Some pitfalls and limitations in the utilization of evaluation criteris are discussed.


The remainder of this article has been reproduced photographically from the author's manuseript.
b. INTKOJUCTivis

 curefully prepared and ld carited out with the best available instru-


 Lransmission.

A•Esiac: becervationt daia san be no betser than the quality of the svailable data. Thus a careful atcention to quality agsurance of the data must precedf any data analysis. This vital part of any investigation should ld a majer ecucorn to all investigators. Its main purpose is to avoid distortion $\partial$ the analygis resulting fromerroneous observations. This goal will derermine the magnitude of the effort to be put into a quality controi program and will influence the methoda selected for quality asaurance. Some results can be evaluated for soundness by qualified professfonals and then a quality check could be omitted. The complexicy of the atmosphere or the amount of the end product (such as tables of matrices or computer produced maps, etc.) made it virtually impossible in our case to judge correctness of the results afterwards.

Of course, one cannot make good data out of bad recorde, but a socalled "editing" process can make data more useful for analytical purposes. No editing program can eliminate the mall randomerror. It is
 needs correction. Since the influence of erroncois rocords on results increases as the length of the observational suries wl record decreases, the need for quality assurance is the greater the shorter the record.

In some instances censoring of frequency distributions by eliminating extreme values may save el. itrrate ocreening procejures. This cannit be applied, however, fif ete of the andivis guls ls thr stury of extremes. In the case of radiosonde data a seond roison apajnst censoring can be pointed out. Because of vertical consigtency, data elimination mi oue level without attempt of correction may lead to discontinue the ascent Irom the censored level up. Thle mity Euther radice the already decreasimg number uf obsarvations with altitude and may leave very lew data raaching a top level of $\therefore$ kin, for example. Thus the cure 18 worse tinan the disease. The availability of high specol computers his opened a new field in applying qualiry control methode and many methods considered too elaborate and cumbersome without computer use can now be employed without diffi= culties.

Some of the few basic principles, which reappoar and can be commonly applied, may be domonstrated from the Army Missile Comand' sereening program of radiosonde date.

Since the author's detailed article is already scheduled for publication, (See 1969c) only some basic principles will be presented here.

Any automated screuning procedure must be so designed that particular (consistent) trors as well as inconsistent errors can be recognized. This goal ia rendered more difficult by the requirement that screening procedures should have a simple logic for computerized treatment.

1. Trivial Errors Check

Under this first category fall all errors which are easily recognized, and in may instances an automatic correction can be made. The errurs can be divided largely into three groups: coding errors, data and limit chacks.

In the firat group one may encountar errors such as wrong location number, incorrect elevation, false identification code, miataka in coding the type of observation, erroneous tima, atc.

A second group comprises checks for completenese (miseing data), duplication and sequance of the records. If it is intended to supplamant the original data by automatic fill-in procedures, they can be incorporated in this phase of the screening procedure or at a later date. The last group is the imitation violation, e.g. data are outside established tolarance limits or physical boundarias. For example in our case the dow point temperature cannot be graatar than the air temperature and the wind direction cannot exceed 16 compase points or 360 degreas.

The exemplas given for the above error groupa are some guidelines and are not exhaustive. They serve only as a demontration for the type
 depends largely on the type of available data. The correction of the deficiency may also vary, e.g., if dealing with one station, an automatic correction could be made for wrong station code. In other instances alimination of the data may be necessary. It onc had to establish a map by computer, this may be the only way $t 6$ suduce the effect ci lurge errors, while for other analyses time and personncl may be available to go through flagged observations and to painstakingly check their validity.
ch. Error Checking by Adjacent Data
In this group inconsistenciea are checked against adjacent data or afield of data in the horisontal (mep or equations), vertical (cross-anctions or equations), or by time relationship. The chocking procedure depends largely on $\begin{aligned} & \text { atablished physical or derived empirical }\end{aligned}$ lawn. Again, procedures aim at flagging suspicious values by computer methode or correcting them if uch procedures can be established, Tolarance limits of differences between two or more observations must be derived firat.
a. Horizontal Chack:

This type of checking process can be applied if computerizad maps are avallable or become the end product or if records for neighboring stations for the ameriod of record are given. Under physical lave one may understand conditions like the gradient wind relationship etc. Empirical relationships between neighboring stations or thresholds of

those vaparical zobicionships are derived in tabular form or as analytical expressions is not important, except that it is more convenient to work with mathematical atatements for which computer programing is usually very simple, Changes of errors are considerably lomer ne opposed to table inputs, eapecially when thege have more than one entry.
b. Vertical $R \in$ l.i!iunship

The !. S. Army Missile Command's procedure of screening zidinsonue dit.i celtes nuavily on vertical relationships. Crosamectiona could be used, but only if chey are readily available or calculation of the cross-section by computer methods is the goal. The uthor doan not know of any program at the present where epace cropeseictions bave been utilized for data control. Timentection have beon employed by canfiald et al. (1966).

Our program checke two groups of elenante, themodymande quantities and wind. In the thermodynamic portion the lapee rate butween two consecutive observation at different altitudes la computad and comm pared with the dry adiabatic lapas rate. Thia mathod has proven quite efficient and sacisfactory, as ususily any error in proanura or tampara* ture will show up eventualiy in e suparadiabatic lapse rate olther at b.: tested data pair or at the naxt step. For example, asume a $10^{\circ}$ negative error in the temperature. If it is the higher of two altituder, it creates a superadiabatic lapas rate. If the error is positive, one
would have an inversion for this step of the progran atid the recurd is not flagged, The next etep; however, would give a superadiabatic lapse rate.

The last observation of a radiosonde ascent cannot be checked by this mechod, as there is no other observation to compute the lapse rate. This last point cauld be checked $7 y$ colerance limit; or ath.. cools.

It should be added that superadiabatic lapse rates are nof automatically eliminated by our program. The cause can be manituld. There may exiat the unusual case of a true suparadiabatic lapse rate in nature. One may hava a temperature or pressure error or the data can be out of esquence by erroneous pressure. Thus all "suspicious" data are flagged and checked by a qualified meteorologist.

Since this aimple tool worked so well for the thermodynamis parametara aimilar principle was eought for the wind. In the beginning Wind data were chacked by the frequancy diatribution of wind shear with techniques , tabliohed by Easenwanger at al. (2961). This is usually cumbersome und expansive, at computations of frequency distributions are genarally costly. The ditticulty in establishing a unique relationship was recognized by Finger et al. (1965) who astablishad vertical shear 11mite for wind chacke in tabular form for a few thresholds of layer thicknass. Howaver, their mathod requires detalled criteria depending on layer thicknass, wind epeed, and differance of direction or speed of

betwesn the vector shear $(\Delta v)$ and the shear interval ( $\Delta \mathrm{h})$

$$
\begin{equation*}
\Delta v: a_{0}(\Delta h)_{1}^{a} \cdot \tag{1}
\end{equation*}
$$

The exponent for extreme value was found to be $1 / 3$ (see also Esuemanger and Reiter $\left.1+j_{a}\right)$. Fo: $1, j e$ in our program eqn. (1) had to be modified to accommodate rio mal. eed shear interval, thus $\Delta y=V_{i} \Delta h$, resuiting in

$$
\begin{equation*}
v_{e}=a(\Delta h)-\frac{\pi}{3} \tag{2}
\end{equation*}
$$

Where $V_{t}$ denctes the total vector shear. With $a=6.5$, a reasonable threshold $V_{\text {e }}$ ( $m$ sec ${ }^{-1}$ per intervai) is found, All values axceading $V_{e}$ are tlagged.

Equation (a) expresses anique relationship similar to the Lapse rate as a convanient and simple tolerance criteria.

## c. Time Series

All elamants showing some form of tima rolationship could be checked by method taking advantage of this relationchip. It does not matter whather the time relationahip ia pariodic or apariodic. Howevar, in all time related checking proceduree the time relationehip must be established firat.

In case of pertodic variations it is quite conveniant to represent records by a Fourier coriat and check an expected varaus an observed value. A tolarance limit for a maximum (absolute) diffarance
from the expected valus may be determined by statistical methods of error theories. Sometres it may be quite sufficient and suitable to use subjective tolerance limits.

If an aperiodic time relationship (e.g. persistence) has becn found, tolerance criteria for time differences can be esployed. In all casen an expected vaiue is tested against the observation.

A time checkiag procedure can be applied, even if no
functional relationahip can'be found. Although time differences may be randomly distributed, a tolerance criterion can be developed simiiar to that described in a later chapter onfrequency distributions. If the diffarence exceeds a certain magnitude, it may indicate an erroneous observation.
?. Frequency - otrarution Checks •
Altnojg.i met.ich: deacribed in the previous sections should catch the bulk of errors, some nistakes may alip through. Liet us assume that the surface observa:inr of a radiosunde ascent is missing. Vertical consistency could not discover this aistake. Although it could have been flagged in the trivial arror checa, flir axamples can be given where vertical cons stan: existed, but t'. sutal ascant was either toc watm or culd. Tirst er-is can be checked igalnst a frequency distribution.

In $t \rightarrow$ Acmy Misgile Comand' earlier screening procedure preLiminary trequency distributions wele established, with printout of the firgt five maximu and minima, mean and atandard deviation, Viaual inspection of the frequency distribution then revealed Lsolated observations. Vertical profiles for the maxima and minima were drawn and subpicious reccrds could be detected by irregularities in profiles.

This precess was the consuning, and not too many erroneous afents were discovered, since the majority of corrections had been made. Nevertheless, all frequency distributions had to be inspected. This phase of the program was costly, too, as frequency distributions had to be grouped by small class intervals to detect isolated records and class intervals shifted from month to month or by altitude. This phase of the program was modernized by utilizing only mean and standard deviation and selecting suspicious values by a predetermined threshold $x_{\text {th }}$ to be exceeded only a certain percentage of the time. This eliminates the establishment of frequency distributions and reduces the printout as only flagged observations appear.

It is evident thac coriect as weli as incorzect observations will be flagged and printed out, as one should expect a number of obser* vations exceeding the threshold $x_{\text {th }}$ in agreement wich the selected percentage figure. Unfortunately there if no easy way to separate the two groups by computer methods, as large deviation can be caused by extreme Weather events. All cases mast be judged by thetr own merits. It is reiteřated that scceptance, correction or deletion of an observational recurd depends largely on the purpose of any anelysis and existing poasibilities. We have found it quite convent"ent to make available for any flagged value the threshold for $99 \%$ and the frequency of occurrence . which the flagged observation would have Ln a theoraticki diatribution
 nut sufficiant by shemelves for adecision that the observation is erroneous or not. It should further be pointed out that censoring of the frequency distribution cannot be applied in our particular case. Eopecially axtrem value data analysis is part of the subaequent research topics. Censoring would not solve the quality assurance problem.
a. Gaussian Distribution

The critical problem is the determination of the threshold $x_{t h}$, outside of whose boundary observations should be flagged. In statise tical terms, one has to salact a certain point of the cumulative distribution on one or both sides of this curve. The computation of the cumulative distribution ib cumbersone for most types of distribution lawn
is th arualves : ites : ing frequency deasity fanctions. In the Army Missiie Comman'a exylicx jersion emplrical cumulative distributions were computed ts secure ctase agreement with the observed frequency. This had the advantage of the frequency curve being independent from the statistical type, or the mean and the atandard deviation of the distribution. Later this wer replaced by eetablishment of frequency distributions, which disp: sy less complexity in computer programing. If t'ie $\cdot$.er. . it follows an approximate Gausaian nomal distribution, one could determine the threshold by

$$
\begin{equation*}
x_{t h}=\bar{x} \pm a_{0} \tag{3}
\end{equation*}
$$

where $\bar{x}$ is the man value, $\sigma$ the standard deviation and the coefficient " "a" would be detemined by the desired percentage axceedance, e.g. a $=3.0$ for . $135 \%$ of the observation beyond that point. All obaervation above $x_{t h}$ would then be flagged and printed out.

Since the ralationship betwaen the cumulative dietribution and the standard deviation is know for the Gausian distribution, the establishment of thresholds should not create any problem for meteorological elements following this dietribution law. Gausian lawe apply to most thermodynamic quantities.
b. The Weibuli Distribution

If Eqn. (3) were applied to meteorological elements not in agreement with the Gausian law, one would have either tou many flagged observations or not enough, depending on the deviation. Since the
relationahip between atandard deviation and cumalative distriburion for other types of distributions is complex and generally cannot be found in simple tables, the ideal solution would be a cumulative frequency law versatile enough to adfust to a variety of types with good approximation. Thus we applied the Weibull distribution with considerable success in our screening procedure.

The Weibull distribution is defined as a sumulative type

$$
\begin{equation*}
F(x)=1 \cdot e^{-\left(\frac{x-2}{\theta}\right)^{\theta}} \tag{4}
\end{equation*}
$$

with $\%$ and $B$ ds the reference, acale and shape parameter, reapecively. Any percuatage f(x) can be related to $x_{\text {th }}$ by the modification of aquation (4) to

$$
x_{t h}=\theta \sqrt{\ln p+\gamma}
$$

where

$$
\begin{equation*}
P=i /(1-P(x)) \tag{5a}
\end{equation*}
$$

The astimation of the parameters is the only difficulty left. Maximum likelihood estimation for all three parametera cannot be performed analytically and solution is vary time consuming. Thus the utilization of the maximum likelihood method for three parametera would have increased costs compared to frequancy distributiona. Simpler methods exist when $\gamma=0$ (eee Kao, 1958 or Menon, 1963), however, the

As surptinf $=$ Foul! rocucc the flesiblilty of adjustment for the Weibuli digiribution and would limit the ability to fit the frequency distribution. Since the major goal in the chacking procedure is the establishment of a thteshold value $x_{t h}$, the reader may find a parameter estimation by moments. develeped by the author (1968, 1969b) quite convenient.

$$
\gamma_{2}=\dot{\left.-j a b+a^{3}\right) /\left(b-a^{2}\right)^{3 /} \quad, ~}
$$

$y_{i}$ denotes the skewnese, the ratio of the third moment (raterence mean) Co the cube of the standard deviation, $\gamma_{1}=\mu_{s} / 0^{3}$ since $a, b$ and $c$ depend on $\beta$ only, a computer solution of (6a) is relatively vasy or tables can be used (see Easenwanger, 1968, 1969b)

$$
\begin{align*}
& a=\Gamma(1+1 / B)  \tag{7a}\\
& b=\Gamma(1+2 / B)  \tag{7~b}\\
& c=r(1+3 / B) \tag{7c}
\end{align*}
$$

With a known, the other parameters become

$$
\begin{gather*}
\theta^{2}=o^{2} /\left(b-a^{2}\right)  \tag{6b}\\
\gamma=\bar{x}=\theta \cdot a \tag{6c}
\end{gather*}
$$

The three moments of the distribution must be known for application of equs. 5,6, and 7 . In two cases two moments are ufficient.

As ahown by the author (1968) the $\gamma$, can be approximated $B ;$

$$
\begin{equation*}
\gamma_{1}=1.4047 E-.0646 \sigma+.0587 \tag{8a}
\end{equation*}
$$

for wind and by

$$
\gamma_{\perp}=3.12235-.36800-.4515
$$

for the total vector wind shear

$$
\begin{equation*}
E=\epsilon_{3} / \sigma^{2}=\bar{x}\left(1+3 d+i d^{2}\right) / \sigma^{3} \tag{gai}
\end{equation*}
$$

with

$$
\begin{equation*}
d+1=\sigma^{2} / \bar{x} \tag{9b}
\end{equation*}
$$

The second case employs the Waxbull distribution for elements whose distributions follow the Gaussian law.

Thus gan be determined a priori. Eqn. (6a) givas ? 3.50 . If the equared difference of the Gacsian and the Weibull distribution at steps of half a tandard deviation $\sigma$ within $\pm 3.50$ is computed and surand up, a minimum is discoverad it $B=3.55$. Table la axhibits the Erequenctes for the Gausaian and the Waibull dietribution (cumulative at Left and density at right) for $\beta=3.35$. All differences are less chan $1 \%$. The last colume in both section contain the differances for the $\beta$, if selection is made for the smalest posible maximum devietion of any frequency within $\pm 3.50$ range.

Of more importance may be the agreement betwean the $x$-values
as these are used to establioh the flagging limit of Eqn. (5). The
Table 1. Comparison of Weibull Disiribucion With Gausian Distribution
Frequency (in \%)


Frequency Density
$p=3.35$
Difference

 Weibull distribution for half units of $\sigma$ within $\pm$ 4o lies at $e=4.36$ (Table 1b). It should be noticed, however, that the differences for the two-sided fit increase towards the marginal classes. Itis is a handicap, but is acceptable since it is preferable to flag more than the expected number of observations rather than less. The threshold could be adjusted, too. Again, if a minm of the absolute deviation is desired, one would select $\beta=4.26$ with ieviations smaller than $\cup .60$ at tat ends.

Since it is known whether an observation is belvis or above the mean value, a one sided fit solves the problem of poor agreement towards the anda. Good approximation for the minxmum threshold can be obtained with a $B$ of 5.53 or 5.54, while one may select a $\beta$ of 2.96 or 2.97 for the maximum and. The differences are displayed in the right portion of Table lb.

The advantage in uaing the Weibull distribution for flagging Instead of the concept of the normal distribution lies in the easy computation of related frequancy values for the flagged obsarvation with Eqn. (5) and (5a). This eliminates any tabular input as necessary for Eqn. (3) and one program can bn appliad to all typar of fraquancy diatributions.
c. Elemants with Various Types of Distributions Tharmodynamic quantities and wind can be treated with techniques as outlined previously. The Weibull distribution is very flaxible and thus can be utilized for the purpose of fiagging for numerous elements. Som diatributions may displey untolarable discrepancies.

Transformation of scale sometimes helps, such as a logarithmic progression of visibility data. Thia must be left to the individual analyst. The Weibull distribution is very flexible and transformation can usually be avoided.
i., , sh: Reritis. f Caution

It 18 reiferated that no quality assurance program can make gond data out oi baj rasuris. These prograns con onjy contribute to an "editing" of datt, litur which the larger errors (hop. Eully) have bean eliminated. Since these large errors can bias any statistical or computar result, the corrocel in of these obvious mistakes is nacessary. It must
 rxpecisd ala:ysl! Fru!t, as all observations contradictory to an assumed hypothesis co be tested by these datia are then eliminated. correction methods inst be independent of subsequent analysis. One cannot check peralstance, for example, if the majority of data heve bean filled in by methols der:ved from persistence.

The edli:1ng process by "experte" is usully cumberiona, but correction methods by computere must be carefully designed. Where conm sistency equations can be obtiained, methode for random error correctiona can be developed With the complexity of the atmophere it is difflcult, however, to pinpoint unequivocally differences batween a rare event and an obrious mistake.

Any corraction method should be based upon known or derived principles of error sources. Somatiman data are rectified which later prove correct in the light of expanded knowledge.

Eatablishment of threnhold values is arbitrary. Threahold values must be designed to catch all the large errors without the burden
of reviewing two many data ty the expert, finy line a large pile of flagged data appears for a particuiar data sample, a search for a syatematic error should precede any detatled currection operation. This syetematic error can then be corrected befor. other computer runs are made. Sometimes a bis bult. of prifutout can be caused by improper belection of the treshellis. Then in adjustrient will dive reasonable amounts.

It should be further mentioned that selet:tion of threstulds succeads for unlimited diatributions only. It would be absurd, for instance, to flag all calms in aurfice wind distritutions or all dry racords for precipitation data. Elements with U-shaped distributions could in generul not be checkfit by frequency methods.
it!. Cinctusewi.
Analytical mellivits for the editing of obervational datai have teeli divided inlo threc aijor groups, the checkiug of inconsistencies (trivial errors). the p:ocedures employing a set of data with intera relationship, and utiilzation of frequency distributions. The methods presented may serve as $r$ fildel lne and cannot be exhaustive, as the complexity of the at cepiro with ftg differgnt metenrilegical parameters nocespitios incuids 1 :prhniques depending on the treated element. The threc described groups of erros checks are common with any quality assurance program.

It is repeated that editing of data cannot replace a carefully cerried out obscivitional program. with adequate inistrumentation. Orie can assure, how'ver, that large mistakes and ayatematic errors from various sources are discovered and any bias of the results due to erroneoun datn is largely reduced. The small random error cannot ordinerily be elininated.

Although the data rusy have gone through quality asourance programs several times before they reach the investigator, it is neverthelese advisable to resutmit the data to acreaning procedure. Editing of data by other investigators or installations does not automatically guarantee that the recoived data are free of miatakes.

The goal of the editing process ahould not be to correct nature and reject data which do not fit into a predetermined model or hypothesis,


```
somered source: of etsor only. If the latter i, kepe in mind, analyri-
cal methods of quality assurance will serve their useful purpose.
```

REFERENCES

Canfieid, N. L., Siaith, I. E., dad Vaughtn, N. W., lofö: Progresa in Circumventing Limitations of Upper Wind Records, J. App. Meteor. 5 , No. 3, 3u․ - 3.3.

Essenwanger, O. M., Jaughan, W. W. and Bradford, R., 1961: On Verification of Upper Air Wands by Vertical Shears and Extremes, Mon. Hea. Rev., 89 , 197 - 204.

Essenwanger, O. M., 1963: On the Derivation of Fiequency Distributioma of Vactor Wind Shear Values for Small Shear Intervals. Geofis. Pura Apple, 56, 216 - 224.

Essenwanger, 0. M., 1968: On Deriving 90-99\% Wind and Wind Shear Thresholds from itatistical Parameters. Proc. of the Third Conf. on Aerospace Meteor., New Orleans, publ. by Am. Meteor. Soc., Boston, Masa.

Essenwanger, O. M. and Reiter, E. R., 1969a: Power Spectrum, Structure Function, Vertical Wind Shear and Turbulence in Troposphere and Stratosphere. Archiv. Meteor., Geoph., Bioklim, in print 1969.

Essenwanger, 0. Mi, 1969b: Fitting of the Weibull Distribution with NonZero Location Parameter, AMICOM Techn. Report, in publication.

Essenwanger, O. M., 1969c: Analytical Procedures for the Quality Control of Metcorological Data. Proc. Symp. Meteor. Observations and Instrum., (published by Am. Meteor. Soci, Boston).
Finger, F. G., Woolf, H. M. and Anderson, C. E., 1965: A Method for Objective Analysis of Stratospheric Constant Pressure Charts. Mon. Nea. Rev; 93, 619-638.

Kao, J. H. K., 1958: Computer Methods for Estimating Weibull Parameters in Reliability Studies. Inst. of Radio Engr. Trans, on Rel. and Qual. Cont. PGROC, 15 - 22.

Menon, M. V., 19 $h^{3}$ : Pistimation of the Shape and Scale Parameters of the Weibull Distribution. Technometrics, 5, No. 2, 175-182.

## ABSIRACT

## A STATISTICAL VIODEL FOR THE ANALYSIS OF SJMULTANEOUS TWO. STATION IONOSPHERIC SOUNDINGS

Dr. Erwin Biser<br>Mr. Richard D'Accardi

US Army Electionics Command, Fort Monmouth, NJ

1. Jonospheric sounder data charactexistics change as the distance between two sounder stations is increased from $0 . .500 \mathrm{~km}$. It is therefore desirable to know about the degree of correlation one car expect between vertical incidence (single station) data and oblique incidence (two-station) data. It will be shown that a single 1 nospheric sounder (ionosonde) operating in the vertical incidence mod car provide useful data over an area of 60 Km radius.
2. Experimentation was performed in the $2-16 \mathrm{MHz}$ frequency range using two ionosondes, one as a fixed terminal and the other as a mobile terminal. Each terminal made scheduled soundings every ten minutes from 0530 to 1730 hours for ten days. While the fixed terminal was transmitting and receiving its own signal, the mobile terminal would simultaneously receive the aame transmission; likewise for the mobile with respect to the fixed terminal. As each ionosonde transmitted and repelved in the vertical incidence mode, the other sounder, receiving the same transmission, completed the obilique ionospheric mode. (An oblique mode or path is one between two stations space a distance apart; a vertical mode or path occurs when either station receives its' own transmission.)
3. The experiment was designed primarily for a paired difference model, that is, the palring of data occurred as planned by the experiment. The data we're also analyzed by a paired comparison method to focus on the gain of information achieved with the paired difference or randomized block design, and to show that vertical incidence and ublique incidence fonosonde data are good estimators of each other over short distances.
4. The application of a similar method of analysis will hopefully be used in future experimentation to substantiate a high degree of correlation between vertical and oblique incidence soundings over field army distances ( $0-300 \mathrm{Km}$ ).

This article has been reproduced photographically from the authors manuscript.

The objective of the present data anaiysis is to show that daily ionospheric soundings taken at vertical incidence (VI) are very nearly the same as oblique incidence (OI) soundings taken over a 60 Km path (see Figure 1). We are interested in formulating hypothesis tests to determine whether or not the Vertical Incidence data (population I) is nearly the same or ia, in fact, identical to the Oblique Incidence data (population II). The analysis investigates a total, 85 daty ricasurements of critical frequencies performed over a nine-day period, taken every ten minutes from 0530 hours to 1930 hours, for a 60 Km path (see Figures 6, 7). This yielded nine observations of critical frequency per time alot. Samples of raw data appear in Figurea 2, 3, 4,5. In order to test whether or not a given hypothesis is aupported by a get of data, we devised a rule of procedure dependent upon certain calculations obtained from a sample of the data, and decided to accept or to reject the hypothesis formulated ${ }^{(3)}$. Two experimente, $E_{1}$ and $E_{2}$ were used in comparing the means of population I (VI) and those of population II (OI) . The homogeneity of variance was tested by the use of the $F$ test, where $\sigma_{0}{ }^{2}$ was compared to $\sigma_{v}{ }^{2}$.

To test homogenelty of variance, the variances of the vertical and oblique incidence data were paired. The 85 grouped values were:

$$
\begin{equation*}
T=\left\{\left(\frac{s_{0}^{2}}{s_{v}^{2}}\right)_{1},\left(\frac{s_{0}^{2}}{s_{v}^{2}}\right)_{2}, \cdots,\left(\frac{s_{0}^{2}}{s_{v}^{2}}\right)_{8 B}\right\} \tag{1}
\end{equation*}
$$

Tests of hypotheses for the equality of two rariances were formulated do follows:
(2)

$$
H_{o}: \sigma_{0}^{2}=\sigma_{v}^{2}
$$

ve.
$H_{i}: \sigma_{o}{ }^{2} \neq \sigma_{v}{ }^{2}$
or:

$$
H_{0}: \frac{\sigma_{\Delta}^{2}}{\sigma_{v}^{2}}=1
$$

vs. $H_{i}: \frac{\sigma_{0}^{2}}{\sigma_{V}^{2}} \neq 1$

The rejection region is: $\frac{\sigma_{0}^{2}}{\sigma_{v}^{2}} \geq k$, where $k$ is found by specifying the significance level $\alpha=.01$. The following probability function describes the relationship:

$$
\begin{equation*}
\operatorname{Pr}\left[\left.\frac{\sigma_{0}^{2}}{\sigma_{v}^{2}} \geq k \right\rvert\, \frac{\sigma_{0}^{2}}{\sigma_{v}^{2}}=1\right]=0 \tag{3}
\end{equation*}
$$

Under the null hypothesis $H_{o}^{\prime}, \frac{\sigma_{0}^{2}}{\sigma_{v}^{2}}($ has an $F$ distribution with ( $n-1$ ), ( $n-1$ ) degrees of ireedom, which results in $k=F\left[(n-1),(n-1) ;\left(1-\frac{\alpha}{2}\right),\right]$ and the rejection regions are:
(4)

$$
\frac{\sigma_{0}^{2}}{\sigma_{v}^{2}} \geq F\left[(n-1),(n-1) ;\left(1-\frac{\alpha}{2}\right)\right]
$$

$$
\frac{\sigma_{0}^{2}}{\sigma_{v}^{2}} \geq F\left[\left(n-1,(n-1) ; \frac{\alpha}{2}\right] \quad \text { for } \alpha=.01\right.
$$

If these inequalities are satisfied by $\mathrm{S}_{\mathrm{O}}{ }^{2}$ and $\mathrm{S}_{\mathrm{v}}{ }^{2}$, then we can conclude that the estimated variancen are significantly different at $\alpha=.01$ level of significance. That is to say, $H_{o}$ is rejected when:
(5)

$$
\ddot{F}\left[(1,-1),(n-1) ; \frac{\alpha}{2}\right]=\frac{\sigma_{0}^{2}}{\sigma_{v}^{2}} 2 F\left[(n-1),(n-1) ;\left(1-\frac{\alpha}{2}\right)\right]
$$

By letting $S_{0}^{2}$ and $\therefore, ?$ the sample variances, estimate $\sigma_{0}^{2}$ and $\sigma_{v}{ }^{2}$, we form the $F$ ratio: (1)
(6)

$$
F=--\frac{\frac{S_{c_{0}^{2}}^{2}}{Q_{0}^{2}}}{\frac{S_{y^{2}}^{2}}{1 \cdot u^{2}}}
$$

which has the $F$ distribution with $(n-1),(n-1)$ degrees of freedom. $F$ involves the ratio $\frac{\sigma_{0}{ }^{2}}{\sigma_{\gamma}^{2}}$ but is independent of $\sigma_{0}^{2}$ and $\sigma_{v}{ }^{2}$, therefore:

$$
\begin{equation*}
\left.\operatorname{Pr}_{1} F^{-}\left[(n-1),(n-1) ; \frac{\alpha}{2}\right] \leq\left(\frac{\frac{S_{0}^{2}}{\sigma_{0}^{2}}}{\frac{S_{v 1}^{2}}{\sigma_{v}^{2}}}\right) \leq F\left[(n-1),(n-1) ;\left(1-\frac{\alpha}{2}\right)\right] \right\rvert\,=1-\alpha \tag{7}
\end{equation*}
$$

In testing the means the observations were grouped into 85 values for each experiment:

$$
\begin{equation*}
E_{1}=\left\{\bar{d}_{1} ; \bar{d}_{2}, \ldots, \cdot, \bar{d}_{85}\right\} \tag{8}
\end{equation*}
$$

where $d_{1}=x_{0}-y_{v}$, and $\bar{d}=(1 / n) \sum_{1}^{9} d_{i}, 1.1, \ldots, \ldots, 9$ per time blot.
(9) $\quad E_{2}=\left\{\boldsymbol{\delta}_{1}, \delta_{2}, \ldots, ., \delta_{85}\right\}$ where: $\boldsymbol{\delta}_{j}=\bar{x}_{O_{j}}-\bar{y}_{v_{j}}$ per time slot

$$
\bar{y}_{v_{j}}=(1 / n) \sum_{1}^{y} y_{v_{i}} \text { per time slot }
$$

These sete consist of the mean values of the differences between $O$ and VI, ( $E_{1}$ ), and the differences betweer we means of the two populations, ( $\mathrm{E}_{2}$ ), repentedly taken at the same time daily for nine days. These two sets are assumed to be normally distributed with variance $\sigma_{d}{ }^{2}$ and $\sigma_{p}{ }^{2}$ so that the means of differences, $\bar{d}_{1}$, and the difference between the means, $\sigma_{i}$, are normally distributed. Since $\sigma_{d}{ }^{2}$ and $\sigma_{p}{ }^{2}$ are unknown, take estimates of the variances for each time slot for $E_{1}$ and $E_{2}$ are:
(10)

$$
\operatorname{Sa}_{1}^{2}=\frac{1}{n-1} \sum_{1=1}^{9}\left(d_{1}-\bar{d}\right)^{2} \text { for } E_{1}, \text { where }
$$

$n=9$ samples per time slot.
$\bar{d}$ - mean of the differences between OI and VI per time slot. $d_{i}$ " difference between $f_{\mathrm{OI}}$ and $\mathrm{f}_{\mathrm{VI}}=\mathrm{x}_{\mathrm{O}_{1}}-y_{\mathrm{V}_{1}}$
(11)

For $E_{2}, S_{p}{ }^{2}=\frac{\left(n_{1}-1\right) S_{0}{ }^{2}+\left(n_{2}-1\right) S_{v}{ }^{2}}{n_{1}+n_{2}-2}=\frac{S_{x_{0}}{ }^{2}+S_{y_{y}}{ }^{2}}{2}$ where $n_{1}=n_{2}$, and:
$S_{x_{0}}{ }^{2}=\frac{1}{n-1} \sum_{1}^{9}\left(x_{n_{1}}-\bar{x}_{0}\right)^{2}$

$$
\begin{aligned}
& s_{f_{v}}^{2}=\frac{i}{r \cdot i} T_{i}\left(y_{i}-y_{v}\right)^{2} \\
& S_{p}^{2}=\text { pooled estimate of variance for } F_{2} \\
& n=9 \text { samples per time slot } \\
& \bar{x}_{0}, \bar{y}_{v}=\text { means of OI and VI populations per time slot. } \\
& x_{O_{i}}, y_{v_{i}}=O I \text { and VI data per time slot. }
\end{aligned}
$$

The $t$-statistics emplc, ed are: ${ }^{(2)}$

$$
\begin{equation*}
t_{n-1}=\frac{\bar{d}_{1} \sqrt{n}}{S_{d_{1}}} \text { for } E_{1} \text {, and } \tag{12a}
\end{equation*}
$$


whore $n=9$ samples per time slot, and $n^{*}=n_{1}+n_{2}-2=16$
degreen of ireedom
$S_{p}=\sqrt{S_{p}^{2}}$, the pooled standard deviation for $E_{2}$,
$S_{d_{1}}=\sqrt{S_{d_{1}}}{ }^{2}$, the standard deviation for $E_{1}$.
Therefore, the populations are $t$-distributed with $(n-1)$, and $n^{*}$ degrees of freedom. The first experiment or "paired" difference test, $\mathbf{E}_{1}$, concerned itself with analyzing the means of the differences between OI and VI data. The second experiment or "paired" comparison test, $E_{2}$ was
concorned with angivzing the difference botweer the means of the two populations. Fior $E_{1}$ the following hypothesis was formulated:

$$
\begin{equation*}
H_{0}: \mu_{0}=\mu_{v} \quad \text { vs. } \quad H_{1}: \mu_{0}, \neq \mu_{v} \tag{13a}
\end{equation*}
$$

where

For En the fullowilig hionothesi was forminiated:
(13b) $\quad H_{0}: \mu_{0}=\mu_{V} \quad$ vs. $\quad H_{1}: \mu_{0} \ngtr \mu_{v}$
where

$$
\begin{aligned}
& \delta=\bar{x}_{0}-\bar{y}_{v} \quad \text { for each time slot, } \\
& \ddot{x}_{0}=(1 / n) \sum_{[=1}^{g} x_{o_{i}}, \\
& \bar{y}_{V}=(1 / n) \sum_{i} y_{V_{j}},
\end{aligned}
$$

and $x_{0}$ and $y_{v}$ are oblique and vertical incidence data respectively, That is to say, we will tast a rull hypothesis $H_{0^{\prime}}$ (that $\bar{d}_{1}$ or $\left.\delta_{i}=0\right)$ vs. H. If we accept tho hypothesis, this would, of course, indicate that the difference betweon $\mathrm{OI}=\mathrm{VI}=0$ for anch time slot at $\alpha=.01$. If we assume the alternate hypothesis $H_{1}$ to be true, then the $O I$ and VI data would be algnificantly difierent.
The critical region of these tests are: ${ }^{(2)}$
(14) $\frac{\overline{d_{1}} A}{S_{d_{1}}}>t[(n-1) ; \alpha / 2]$ for $E_{1}$, which can be written as:

$$
t:(n-1) ; \alpha / 2]>\frac{\bar{d}-n}{S_{d_{i}}}>t[(n-1) ;(1-\alpha / 2)] \quad \text { for a two- }
$$ tailed test, and

(15)

$$
\begin{aligned}
& \frac{\bar{x}_{O}-\bar{y}_{V}}{S_{p} \sqrt{2 / n}}>t\left[\left(n^{*}\right) ; \alpha / 2\right] \quad \text { for } E_{2} \text { which can be written as: } \\
& t\left[\left(n^{\prime}\right) ; \alpha / 2\right]>\frac{\bar{x}_{0}-\bar{y}_{y}}{S_{p} \sqrt{2 / n}}>t\left[\left(n^{\prime}\right) ;(1-\alpha / 2) g\right.
\end{aligned}
$$

where $n * 9, n *=(2 n-2)=1 i$ degrees of freedom, and with $n=9,(n-1)=8$ degress of freedom. This indicates that if (14) is satiafied by $\bar{d}_{i}$ and $S_{d_{1}}$ and (15) is satisfied by $\delta_{1}$ and $S_{p}$, the tests are rejected under the null hypothesis $H_{0}$ and that $\bar{d}_{1}$ and $\delta_{i}$ doas differ aignificantly from " 0 ". In the critical region (region of rejection).

The critical regions can be explained by the following probabilities: ${ }^{(5)}$

$$
\begin{equation*}
\operatorname{Pr}\left[\frac{\left|\bar{d}_{j} \sqrt{n}\right|}{S_{d_{1}}}>t[(n-1) ; \alpha / 2]\right]-\alpha \text { for } E_{1} \text { which can be } \tag{16}
\end{equation*}
$$

written:

$$
\operatorname{Pr}\left[t[(n-1) ; \alpha / 2]>\frac{\bar{d}_{i} n}{S_{d_{1}}}>t[(n-1) ;(1-\alpha / 2)]\right]=\alpha,
$$

and

$$
\begin{equation*}
\operatorname{Pr}\left[\frac{\left|\bar{x}_{0}-\bar{y}_{y}\right|}{S_{p p} \sqrt{2 / n}}>t\left[n^{*} ; \alpha / 2\right]\right]=\alpha \text { for } E_{2} \text { which can be written: } \tag{17}
\end{equation*}
$$

where $\alpha=.01$ is the pre-detesmined critical rugion, or region of rejection. Regarding the comparison of means abd of variances, if the null hypothesis $H_{0}$ is frund to : false, then the pover function, $T$, would be used t. find the rowability that the alternate hypothesis $H_{1}$ will fall completely in the critical region. Let $\beta=$ repion of acceptance of the alternate hypothesis $H_{1}$. Normally $\pi=1-\beta$ should be very large or $\beta$ very small. To illustrate the concept of a rejection regjon, suppose we havo the following hypothetical probability density function of a variable X :



Illustration (a) $\operatorname{Pr}\left\{X / H_{0}\right]$ vs. $X$


In illustration (a):
(18)

$$
\int_{X_{c}^{\infty}}^{\infty} \operatorname{Pr}\left\{X / H_{0}\right\} d X=\alpha
$$

Therefore, if $H_{0}$ is true (so that $X$ has the probability distribution $\left.\operatorname{Pr}\left\{\mathrm{X} / \mathrm{H}_{\mathrm{o}}\right\}\right)$, the probability of a random observation falling in the critical or rejection region, $X>X_{c}$ is $\alpha_{1}{ }^{(4)}$ that is: $X_{c}$ satisfies illustration (a). Now consider $H_{1}$ true and $X$ having the density function $\operatorname{Pr}\left\{X / H_{1}\right\}$. The probability of a random observation falling in the acceptance region (illustration (b) ), $X<X_{c}$ is $\beta$, that is:

The probability of correctly rejecting $H_{o}$ is calles? the power of test where:
(20)

$$
\pi=1-\beta=\int_{\gamma_{c}}^{\infty} \operatorname{Pr}\left\{X / H_{1}\right\} d_{\lambda}
$$

In addition to hypothesjs testing, the analysis estimates intervals $I$ and I' for which we can expect, with $39 \%$ confidence, that $\overline{\mathrm{d}}_{\mathrm{i}} \in \mathrm{I}$, and $\frac{S_{0}^{2}}{S_{v}^{2}} \in I^{\prime}$

That is, we utilize the information at each time slot using the $t$ tests $\cdot$ described in equations 12 , and place a $99 \%$ confidence bound on the trie state of pature at these points, i.e. $d_{i}=\left(x_{O_{i}}-\dot{j}_{v_{i}}\right)$ for $E_{1}$ and $\delta_{1}=\left(\bar{x}_{O_{1}}-\bar{\Psi}_{v_{1}}\right)$ for $E_{2}$ respectively." This means that if experiments $E_{1}$ and $E_{2}$ were to be performed say, 100 times, we could be confident that $99 \%$ of such intervals will contain the true state of nature at each time slot. Thus by putting confidence bounds on each set of data points, we would have 85 upper and lower bounds which would generate an envelope. From this envelope we can conclude that for the spectrum of data generated in this experiment, we are $99 \%$ confident that the data will be contained with the envelope.

Interval estimation aicis in obtaining limits $C_{i}$ qud $C_{2}$ whirh are functions of the sample values \{ $f_{c}$ \} or functions of the sample values and known population parameters $\left\{\bar{d}_{1}\right\},\left\{\delta_{i}\right\}$ and $\left\{\frac{S_{0}^{2}}{\mathrm{~S}_{\mathrm{v}}{ }^{2}}\right\}$. The limits are determined so that the probability:
(21)

$$
\operatorname{Pr}\left(c_{1}<\theta<c_{2}\right) \geq 1-\alpha
$$

where $\theta$ is the parameter belng estimated and ( $1-\alpha$ ) is the confidence probability. Consider ise problem graphically, where $f_{1}(\theta)$ and $f_{2}(\theta)$ are drawn 80 that $c_{1} \in f_{1}(\theta), c_{2} \in f_{2}(\theta), \operatorname{Pr}\left[f_{1}(\theta)<\theta<f_{2}(\theta)\right]=1$ and $\hat{\theta}$ is a sufficient estimator of $\theta$ obtained from the data,


The line segment $\left(c_{1}, c_{2}\right)$ will intersect $\theta=\theta_{0}$ (true value of parameter) if and only if $f_{a} \leq \hat{\theta}_{o} \leq f_{b}$. This is to say that $\operatorname{Pr}\left(f_{a} \leq \hat{\theta}^{s} \leq f_{b}\right)=1-\alpha$; this is also the probability that $\left(c_{1}, c_{2}\right)$ incicides $\theta_{0}$.

It will be shown subsequently that we can be $99 \%$ confident, ( $1-\alpha=99$ ), that $\mathrm{F} *$ and $\mathrm{t} *$ will be between the calculated upper and lower limits of the confidence interval. In the paired difference test, the probability of accepting $\mathrm{II}_{0}$ :
(22a)

$$
\operatorname{Pr}\left[t\left[(n-1) ; \alpha / 2 \hat{k} t_{1}^{*}<t[(n-1) ;(1-\alpha / 2)]\right]=1-\alpha\right.
$$

where ${ }^{i}{ }^{*}{ }_{1}=\frac{\bar{d}_{i} \sqrt{n}}{S_{d_{i}}}, \quad$ From this equation and the of (16) we obtain the confidence interval:
(23a)

$$
\left.\left[\bar{d}_{1} \pm \operatorname{ti}(n-1) ; \alpha / 2\right]\left(\frac{S_{d_{1}}}{n}\right)\right]
$$

This means that we can be $100 \cdot(1-\alpha) \%$ confident that this interval contains $\bar{d}_{i}=0$ under $H_{0}$. (The critical region is: $\left.t *[(n-1) ; \alpha / 2]>t *>t=[(n-1) ;(1-\alpha / 2)]\right)$. Likewise, for the paired comparison test, the probability of accepting $H_{0}$ is:

$$
\begin{equation*}
\operatorname{Pr}\left[t\left[n^{\prime} ; \alpha / 2\right]<t_{2}<t\left[n^{\prime} ;(1-\alpha / 2)\right]\right]=1-\alpha \tag{22b}
\end{equation*}
$$

where $\quad t^{*}=\frac{\bar{x}_{0}-\bar{y}_{v}}{S_{p} \sqrt{2 / n}}$

This equation and equation (17) lead to the confidence interval:
(2.36)

$$
\left.\left(\vec{x}_{0}-\bar{y}_{\checkmark}\right) \& \because r_{i}, \alpha / 2\right] S_{p} \sqrt{2} T n
$$

The $F$ test for the variances as given in equation (7) can now be rewritten:

$$
\begin{align*}
& \left.\operatorname{Pr}\left[\left(\frac{S_{0}^{2}}{S_{v}^{2}}\right) F[(n-1),(n-1) ; \alpha / 2]<\frac{\sigma_{0}^{2}}{\sigma_{v}^{2}}<\frac{S_{0}^{2}}{S_{v}^{2}}\right) F[(n-1),(n-1) ;(1-\alpha / 2)]\right]=  \tag{24}\\
& =1-\alpha
\end{align*}
$$

where the confidence interval is: ${ }^{(1)}$

$$
\begin{equation*}
\left[\left(\frac{S_{0}^{2}}{S_{v}^{2}}\right) F[(n-1),(n-1) ; \alpha / 2] ;\left(\frac{S_{0}^{2}}{S_{v}^{2}}\right) F[(n-1),(n-1),(1-\alpha / 2)]\right] \tag{25}
\end{equation*}
$$

The probability that $\left(\frac{S_{0}^{2}}{S_{v}^{2}}\right)$ will be contained within this interval, under $H_{0}$ is $(1-\alpha)$.

## CONCLUSIONS:

For EZ, the paiced_comparison teat, the computed value of $t$ used to test the hypothesis $\mu_{0}=\mu_{1}$ at 10:00 is 0.0174 , (see Figure (16)). The corresponding confidence interval for the gime time slot in: Im $\{-0.0405,0,9293\}$. Note that the interval is quite wide conisidering the gmall difierence between the sample means (for 10;00 hours). Examination of the data, Figures 8, $9,10,11$, show a marked consistency with this conclusion. The VI measurements (fixed atation) are generally amaller than the corresponding value for the OI (mobile atation) measurements. Their differences are recorded as: $\quad d_{i}=f_{0}-f_{v}=x_{0}-y_{v}$.

The paired comparisell tex, Eg, Figures 16, 17,18, J', requirrs fhat two random sampies be independent. The data shows, however, that a pair of measurements for VI and OI for any particular time are of approximately the same iragnitude. In other words, the variance within the blocks is small compared to the variance between the blockis, The following data from Figure (9) were taket at 11:30 hours:

Day	$\mathrm{x}_{0}$		人80	yv	$\Delta y_{V}$	$\underline{x_{0},-y_{V}}$
1	10.80			10.80		0
2	10.00	-	0.80	9.80	1.00	0.20
3	9.00		1.00	9.20	0.60	0.20
4	9.50		0, 50	9. 50	0.30	0
5	10.00		0.50	10.00	0.50	0
6	10.50		0.50	10.50	'0. 50	0
7	9.50		1.00	9. 60	0. 90	0.10
8	9.50		0	9. 50	0.10	0
8	10.50		1.00	10.40	0. 90	0.10

In other words $\Delta x_{0} ; \Delta y_{v}>x_{0}-y_{v}$; as a result of the homogeneity within the blocke, the new experimental design, that of Paired Differences, utilizes the nine difference measurements, $d i$, per time slot to test the hypothesis:
$H_{0}: \quad \mu_{V}=\mu_{I}$ vs.
$\mathrm{H}_{1}: \quad \mu_{\mathrm{V}} \neq \boldsymbol{\nu}$

14, 23 . This atitustical design is a simple example ot a randomized
block deslign. The test is commoniy called a paired difference test. It is emphasized that the pairing was part of the planning of the experiments, and was not done after the data were collected. Each of the blocks consiats of the two observations $x_{0}$ and $y_{v}$ for the same day at a gpecific time, (See Figures 8, 9, 10, and 11.)

By comparing the compited confidence intervals for the 85 time slots for the paired difference model with those of the unpaired model, see Figures $14,15,18,19$ we see a decided gain in information favoring the randomized block dewign. The gain of information in reflected in the difference in the width of the confidence intervals. Again using data at 10:00 hours, in Figure 20, the interval for the paired comparison test $I_{p c}=(=.9405, .9293)$. The interval for the paired differencetest $I_{p d}=(-.1859, .1961)$, and $\quad I_{p d}<I_{p c}$.
 experiment. Figures $20,21,22$, and 23 how the comparison of the confidence limits fur both methods, as well as a large reduction in the tandard deviation $S_{d}$ as compared to the pooled standard deviation, $S_{p}$ of the unpaired observations. Variances are presented graphically in Figures 24, 25.
 ionosondes for a distince of 60 Km . The data of the fixed torminal is very nearly identical to those of the mobile terminal for this distance. This means that only une telmanids needed at this distance to provide useful fonospheric data under these given conditions. The resuit bears out the expectation. Experimentation $i_{\text {a }}$ planned for investigeting critical proquencies al. distances bivond 60 Km , (1p to 500 Km ), 10 determine the distance within 500 hin k nere the conclusion becomes invalid. This worid provide ingight as to an extreme distance limit for the usefulness of vartical incidence lonospheric soundings with respect to crittical frequency.

## Bibliorraphy

1. Ehrenfeld, S. and Littauer, S., (1964), Introduction to Statistical Method, McGraw-Hill.
2. Hala, A., (1952), Statistical Theory with Engineering Applicationg J. Wiley.
3. Anderson, R. L. and Bancroft, T. A., (1952), Statistical Theory in

Research. McGraw-Hill.
4. Brownlee, K. A., (1960), Statistical Theory and Methodology,
5. Mood, A. M. (1950), Introduction to the Theory of Statistics, McGraw-Hill.




FIG. 3
$\rightarrow$

FIG. -



FIG. 5

の	
픙．	
氧－	
管 0	
边	－
言－	
－	
－	
宸部言	






䦠
-

,
PRELIMINARY CALCULATIONS



## PAIRED DIFFERENCE TEST

WEA, UALIES
BF DTFFEDEFEES
0. FIG. 14







 Stainatitutidity

```
 *)
```




\section*{PoSITTOS OCATlOi, ViA MULTIPLE TRIANU!LATION*}

Litton Scientifle Sipport Laborati:y Fort Ord, California
1. Lianoducriua. Classical tramgulation in the plate involve: lorating, an unknown ;osition by measuring its direction irrat wo known poinis athd finding the intersection point of the two location ines. \(\quad\) it, matererally, there are \(n\) known points reporting directions-and there are errore in the observed directions--then the \(n\) lines cannot be expected to intersect in a common point. fwo different metnods of obtaining a closed form estimate of the true position, with variations on each. will be derived and discutsed, along with an error aililygis .f each method.
2. ESIIMATION MELHUDS.
a. Least Squares (LSQ). The \(n\) known positions are denoted by \(P_{i}\left(x_{i}, y_{i}\right), i=1,2, \ldots, n\), and the observed directions by the respective angles \(;_{i}\). This yields an equation for the \(i\) th direction line \(L_{i}\) :
\[
y-y_{i}=\tan \leftarrow_{i}\left(x-x_{i}\right)
\]
line perpendicular distance \(d\) from an arbitrary point \(p(x, y)\) to the line \(L_{i}\) is given by:
\[
d\left(P, L_{i}\right)=\left|\left(x-x_{i}\right) \sin \phi_{i}-\left(y-y_{i}\right) \cos \phi_{i}\right|
\]

The \(L S Q\) method, roughly, determines a point that is close to all the lines \(i_{1}\), in the least squares sense. Specifically, define the function
\(f(P)=f(P(x, y))\)
\(=\prod_{i=1}^{n}\left(d\left(P, L_{i}\right)\right)^{2}\)
\(=\because d^{2}\left(P, L_{i}\right)\)
\(=\ddot{Z} I\left(x-x_{i}\right)^{2} \sin ^{2}{ }_{i}+\left(y-y_{i}\right)^{2} \cos ^{2} i_{i}\)
\[
\left.-2\left(x-x_{i}\right)\left(y-y_{i}\right) \sin i_{i} \cos f_{i}\right]
\]

The (unweighted) \(L S Q\) estimate is the point \(p\) that minimizes this fumeti.m. A slightly more general function is
\[
g(P)=\sum \lambda_{i} d^{2}\left(P, L_{i}\right)
\]
where \(\left\{{ }_{i}\right.\), is a set of fixed, but arbitrary, nonnegative numbers. Physically, the minimization of this function corresponds to weighting sume of the
*This article has been reproduced photographically from the author's manuscript.



 1: t:



 fino their equations and is given by:
 Mme
 \(\therefore\) :11: 1:••

\(\because r u l=i: j j^{\prime} \ddot{j}_{i j} /{ }_{i} \sum_{j}^{i}{ }_{i j}\)


 sinall, then the following aproximation \(\mathfrak{t}\) a very sound ohe and aids considerably in the error analyses. ante that the error in lociting an unknown position is in general a function \(u\) the position, so that in this sente the errors derived are conditional errors, conditioned by the actual (unknotn) position.

LAt (ii \(i_{i}\), ; \({ }^{\prime}\) denute the true distance and direstion of the unknown



geonetry of the error analyses is cased conslderably if line \(L_{j}\) is replaced by line \(\therefore_{i}\), parallel to the line trom \(p_{i} t_{0} p_{0}\) and displaced by an amount \(R_{i}:_{i}-{ }_{i}\) in the appropriate direction. Lines \(L_{j}\) and \(i_{i}\) art virtually indistinguishable, and both wiss \(p_{0}\) by the same amount.
 and \(P(\kappa, y)\) denotes the conputed estimate (via either bis or pol), then

 The ondy assumptions made about the randoa variables \(:_{i}\) are that they be independent, unbiased, and have coman variance : \(:^{2}\).
a. LSQ Method. Ising the counterclocliwise convention for positive angles, one can show that tic distance from an arbitrar: joint \(P(x, y) t o\) \(\therefore i\) is given by:

 the way it was computed, also :ininizes the function \(h\left(l^{\prime}\right)=\ldots d^{2}\left(1, j_{i}\right)\).
 !!: : 'e at. . '..; !!: expressions are:

and bindatiy for \(y_{1 S O}\). Note immediately that \(x_{L S Q}\) and \(y_{\text {LSQ }}\) are linear
 tunction only of the variance of \(\left(\Phi_{1}{ }^{-\theta_{i}}\right)\) (and the geometry).

The crov xrression, \(H\left[\left(x_{L S_{4}}-x_{0}\right)^{2}+\left(y_{L S Q}-y_{J}\right)^{2}\right]\), is still reativaly


\[
\begin{aligned}
& +1\left(\ldots \operatorname{lin}_{1}\right)^{2}+\left(2 \alpha_{i} \cos \theta_{i} \sin \theta_{i}\right)^{2} j\left(\pi \ell_{i} R_{i} \cos ^{2} v_{i}\right)
\end{aligned}
\]
\(\therefore\) Poll Method. Tיe coordinates of the point \(P_{i j}\) are determined - Dprusinatcly by find:ag the intersection of \(\Lambda_{i}\) and \(\Lambda_{j}\). This yields:
\[
\begin{aligned}
& \left(R_{i}\left(:_{i} \cdot{ }_{i}\right)\right) \cos i^{-\left(R_{i}\left(D_{j} \theta_{j}\right)\right) \cos _{i}}
\end{aligned}
\]

Sines the estinate \(\left(x_{p, I}, y_{01}\right)\) is given by
:crin, . terms, etc., squaring, and careful bookkeeping, noting again Ut independence and common variance \(g^{2}\) of the random variables. For
 : \(口\), all \(i \neq j\). Then the mean squared radial error is given by:
5. iYPKOVEMENTS BY ADJUSTING THE NEIGHTS. The derived error expressions are too complex to permit many general observations to be made. Extensive stud; of examples indicates that the \(L S Q\) method leads to smaller error than does the POi method. In particular, it is conjectured that unweighted LSQ is always better than unweighted POI. However, either method can be corisfierably fnuroved through rhe use of even inpetfect infurmation about the unknown location. In the following subscetions idealized weight: are dstived for each method, weights that minimize the respertive error expressions but are unattainable because they require perfect information about the unknown locations. In later sections these idealized weights are interpreted as yielding lower bounds on the error expressions, bounds that cannot be attained but can be approached by varlous iterative schemes.
a. LSQ Method. The intention here is to find the set of nonnegative veight: \(i_{i}\) \} that minimizes the (conditional) error expression, E , for a. particular unknown location \(F_{0}\). Of course the set is different for each \(P_{0}\) and thus cannot be derived, even in theory, without perfect knowledge of \(p_{j}\) itself. However, the mere existence of such a minimal set indicates a lower limit on how much improvement can be expected even with partial information about \(P_{0}\).

Hote first that \(E\) is homogeneous in the \(i_{i}\) 's, that is, multiplying the \('_{i}\) 's by a comucn facto: ieaves \(E\) unchanged. Note also that a minimum could not oceur along a boundary (one or more \(i_{i}\) 's equal to 0 ), since this means ignoring some of the data. Thus, a necessary condition for a local minimum to occur is that all the partials, \(; E / O \Omega_{i}\), be equal to 0 at some point (or any multiple thereof). One solution (and, it is coniectured, the unique one) is:
\[
\varepsilon_{i}=k_{i}^{-2}, \text { for all } 1
\]
igain, this solution was suggested through study of numerous examples, and it can be checked, through straightforward but tedious computation, that
it does indeed satisfy \(\overline{j E / \partial i_{i}}=0\), for all 1 . The simplicity and plausibility ut this solution, once attained, make it a most likely candidate for unique global minimum. In particular, the data from more remote points \(P_{i}\) should obviously be weighted less heavily. Interestingly, the minimal weights do not depend on the angles \(\left\{u_{i}\right\}\). The error expression, \(E_{M I N}\), for \(R_{i}=R_{i}{ }^{-2}\), is given by:
\[
\Sigma K_{i}^{-2} /\left[\left(\Sigma R_{i}^{-2} \cos ^{2} \dot{v}_{i}\right)\left(\Sigma R_{i}^{-2} \sin _{i}^{2}\right)-\left(\Sigma R_{i}^{-2} \cos u_{i} \sin \theta_{i}\right)^{2}\right]
\]
a relatively simple expression.
b. PC! Method. Since \(i\) is a simple: expression in the POI 1 ase, it would be expected that minimization is also easier and this is true. In fact, since \(E\) is a quadratic function of the \(i_{i j}\) 's (or \(\lambda_{i j}{ }^{\prime} s\) ) and the constraint, \(\lim ^{i} i j=1\), is linear, the minimization problem--via partial differentiation and Lagriange multipliers--reduces to solving a set of simultaneous Linear equations in \(\ell_{i j}\). Unce more, study of examples suggested a solution, hence the solution, which is given by:
\[
i_{i j}=\|_{i}^{-2} K_{j}^{-2} \sin ^{2}\left(\theta_{i}-\theta j\right) / \ddot{i}_{j} K_{i}^{-2} R_{j}^{-2} \sin ^{2}\left(\theta_{i}-\theta_{j}\right) .
\]
for all icj. As noted, the optimal weights for POI involve both the \(R_{i}{ }^{\prime} s\) and the \({ }_{i}\) 's, perhaps because the points of intersection are so intimately tied to both. The rost motriking fate is that the error expression, inds"
 (In inct, the "ophal" estimates themselves are identleal as well.) Cortainly Lhis fact is mure than colncidence, and some of its unffying Leplisations will be discussed in a later section.
 weigntings were derived tur each estimation method, given a particular Po. As stated, these weights are unattainable, requiring omiscience, but they indicate directions for improvement of the respective unweighted methods. Simply stated, some information about the location of \(P_{u}\) is better than none at all. This suggests that an initial (unweighted) estimate, \(p_{(1)}\), be couputed, via either method, and the distances \(\mathrm{E}_{\text {il }}\) (and angles "if) from \(\therefore \Delta c h P_{i}\) to \(P_{(1)}\) be determined. Then these \(R_{11}\) 's (and \({ }_{11}{ }^{\prime} s\), if applicable) call be used to compute a second, welghted estimate, \(\boldsymbol{P}_{(2)}\). Since \(\mathrm{f}_{(2)}\) is
 compute d thited, weighted ustimate, \(P_{(3)}\). aiaturally tais iterative scheme can be continued as lung as desired. buiuthmalely, \(\because\) bry little worb has been dente at this time to investigate convergence, and rate of convorgence, Uf the iterations to any type of best estibate, but this is certainly an ared for continued fesuarch. It is felt that the ileration:i for the LSQ method probibly converage rather well, wheteas the rul iterations, becausic they involve angles as well as distances and the data is faterms of anglus, allow the possibility of circuli.rity and lustability.

 Clused iorth iormidas for the estiolates were dorivad, ati wbll as general expressions for the mean squaled radial error of the two methods, luast squares (LSQ) and point of inturdection (PUI). In addition, ldealized "upt Linal" welghts were derived for each method, weights that reduce the fespoctive errors to their smallest possible valuns, comditioned by the tran Jocatinn of the manown polnt.

IL was nowed In Suction 0 that the optimally wedghted solutions tor the two methods ure identical. 'lo underetind the underlyfing reason lor this, cunsider the following estimation method: for an arbitrary polat
 Find, if possible, the paint \({ }^{\prime}\) that minimizos \(f(P)\). To the degree of approximation used throughout the paper, this \(P\) fo fdentical to tho optimal LSQ or POL point. To see this, rewrite \(F(\mathbb{P}\) ) as:
\[
\left.\because(1): \sum_{i=1}^{n} R_{i}^{-2} i R_{i}^{2}\left(i_{i}^{-r_{i}}\right)^{2}\right\} \quad \therefore i^{2}\left(\mu, \therefore i_{i}\right)
\]
whure : " \(\}\) is the optimal set of welghts for laSQ. Ihis mothod, finding; a least squares fit to thu raw data itself, isi, was not used until late in Lhe investigation and still is not proferable to the others merely bosiause it dues not lend itself to a blosed furm solution. Comsuivably, with sulifelent computational facilitice, this mothod may be proforable toelther LSQ or POI, particularly if the latter require a largu number of iturat fons. Note that this estimate is in fact the maximum likellhond estimate fn the catie where the \(\dot{i}_{i}\) 's are normilly distributed.

In sumary, hat two methods, LSQ and POI, were presented sepirately
 fie two wide: (ne \(\because \because: \mathrm{A}\) theory. Eaphasized wis the simplicity of both mothous, espectally in the absence of unequal weights. The POI method is casier to visualize graphlcally, while the \(L S Q\) merhod has fewer romputations and smaller associated error. Both methods are systematic and casy to apply in many practical situations.

\section*{d General Computational Algorithm for Rayesian Confidence Bounds}
by Richard hi. Clarke
WATERVLIET ARSENAL
WATERVLIET, NEW YORK

\section*{INTRUDUCTION}

For anyone unfamiliar with Bayesian analysis this paper should serve as an introduction to this very useful confidencing technique. The aspect of this paper which mignt be interestin to those almady familiar with this subject is simply that I have outlined a computational algorithm whicn will eliminate the very messy mapping whicn arises in applying the Bayes formulation.

I found it conve.iont in what follows to work with a specific example in order to make a few basic points. A more general ereatment may be found in a Watervliet Arsenal technical report by the same title. \({ }^{1}\)

\section*{A bayesian Confidence bound on reliability}

The basic mntention of the Bayesian analysis is that any physical parameter about which we have less than precise knowledge may be treated as a random variable. For instance, the shape and location Weibull parameters might be treated as random varigbles if we are using the Weibull density to represent a set of failurt data. If from the data we can construct the joint density of those parameters, then rhe reliability density for a given safe life or the safe life density for a given reliability will follow directly.

To arrive at that joint parameter density we must first specify some prior knowledge of those parameters. This consists of stating that, from prior testing of similar items, these parameters are likely to be within certain bounds. If very little information is available we might say only that a certain parameter can take on any value between two limits, and that each value between those bounds is equally likely before testing.

Suppose that five components have been cycled, under actual conditions of field use, to failure and that these failures (cyeles or hours, etc.) aro \(X_{1}, A_{1} . . . X_{5}\). From, irior testing of similar mechanical components we deluce thät the population from which these failures come can be reasonably approximated by the two parameter Weibull density. Then the density of \(X\) is given by:
\[
\begin{equation*}
f(x / \beta, T)=\frac{\beta}{T}\left[\frac{x}{T}\right]^{\beta-1} \exp \left[-\left(\frac{x}{T}\right)^{\beta}\right] \tag{1}
\end{equation*}
\]

This article has been reproduced photographically from the author's manuscript.
in wien \(x\) is a random variable drawn from wip,if. For any ser of weloull parameters we have that the joint density of the above five inde;eri.ent observations is:
\[
\begin{equation*}
\mathcal{q}\left(x_{1}, x_{2} \cdot x_{5} / \beta, T\right)=\prod_{i=1}^{5} f\left(x_{i} / \beta, T\right) \tag{2}
\end{equation*}
\]
or:
\[
\begin{equation*}
q(X / \theta)=\prod_{i=1}^{5} f\left(x_{i} / \theta\right) \tag{3}
\end{equation*}
\]

Now let our prior knowledge of the parameters be represented by:
\[
\begin{equation*}
\bar{g}_{1}(\xi)=\bar{i}_{1}(\beta, T) \tag{4}
\end{equation*}
\]

In this case we might say, for instance, that:
\[
\begin{array}{rlrl}
g_{1}(\beta, T) & =\frac{1}{Q_{1} Q_{2}} & & \beta_{0}<\beta<\beta_{0}+Q_{1} \\
T_{0}<T<T_{0}+Q_{2} \\
& =0 & & \text { ELSEWHERE }
\end{array}
\]

Bayes theorem then states that the posterior knowledge available on the parameter space for these five observations is:
\[
\begin{equation*}
g_{1}(\hat{\theta} / X)=\frac{g(X / \theta) g_{1}(\theta)}{\left.\int_{\theta^{\prime}} g(X / \theta) g_{1}(\theta)\right) d \theta} \tag{6}
\end{equation*}
\]

In the example we've been following, noting that \(g_{1}\) is a constant:
\[
\begin{equation*}
g_{2}(\hat{\omega} / \bar{X})=\frac{\prod_{i=1}^{5} f\left(x_{i} / 1 \omega_{i}\right)}{\int_{0}^{Q_{1}} \int_{0}^{Q_{2}} \prod_{i=1}^{5} f\left(x_{1} / \omega_{1}\right) d T d \beta} \tag{7}
\end{equation*}
\]

We now have an expression which assigns a probability density to each point in the parameter space.
life ( \(X_{s}\) any point in that space we can related reliability ( \(R\) ) to safe
\[
\begin{equation*}
R=1-\int_{0}^{x_{5}} f(x / \theta) d x \tag{8}
\end{equation*}
\]
or for the weibull example:
\[
\begin{equation*}
R=\exp \left[-\left(\frac{X_{s}}{T}\right)^{\beta}\right] \tag{9}
\end{equation*}
\]

Then for a given safe life the density of the reliability estimator may be found by mapping the parameter joint density ( \(\mathrm{g}_{2}\) ) onto reliability \((R)\) through Eqn. (8). Analytically:
\[
\begin{equation*}
r(\hat{R})=\int_{0}^{\infty} g_{2}(\hat{\beta}, \hat{T})\left|\frac{\partial(\hat{\beta}, \hat{T})}{\partial(\hat{R}, \hat{T})}\right| d \hat{T} \tag{10}
\end{equation*}
\]

In which the Jacobian is evaluated from Eqn. (8). A one sided, ( \(1-\alpha\) ) 100: lower confidence bound on reliability is then the \(100 \alpha\) th percentile in the reliability estimator density or:
\[
\begin{equation*}
\alpha=\int_{0}^{\hat{R}_{c}} r(\hat{R}) d \hat{R} \tag{11}
\end{equation*}
\]
!expression (lU) is not particularly simple to evaluate. If we happend to be working with a three parameter density the Jacobian would contain three terms instead of two and two of the variables would have to be eliminated by integration instead of one. In general, that is for most two and three parameter densities, the integrat ions could not be carried out in closed form and some numbrical or computer solution would be required.

A SUBSTITUTE FOR THE ANALYTICAL MAPPING
Instead of the usual analytical mapping as defined by Expression (10). de can start directly with the poscerior joint parameter density and do numerical mapping onto reliability as follows.

In specify g tie prior parameter density ( \(\mathrm{N}_{1}\) ) choose a rectanmalar region of risinition such as in Eqn. (5) above. Then divide that region into small subregions by dividing the parameter axes into equal intervals. In the Weibull example we have been following the midpoint of a specific subregion would be represented by:
\[
\begin{align*}
& \beta_{i}=\beta_{0}+\frac{Q_{1}}{N_{p}}(i-1 / 2) \quad i=1,2, \cdots N_{f}  \tag{12}\\
& T_{j}=T_{0}+\frac{Q_{2}}{N_{T}}(j-1 / 2) \quad j=1,2, \cdots N_{T} \tag{13}
\end{align*}
\]

In which \(\eta_{1}\) and \(Q_{2}\) represent the ranges over which the parameters and \(T\) are defined (See Eqn. (5)), and \(N_{\rho}\) and \(N_{T}\) are the number of intervals into which those ranges have been partitioned. (See Figure 1)


Figure I

If these subregion are "small" enough (how small will be discussed
 be reasonable approximation throughout the subregion. Then the nrobability that any subregion contains the actual population parameters \(c a n\) be represented by
\[
\begin{align*}
& P_{i j}=g_{2}\left(\beta_{i}, T_{j}\right) V  \tag{14}\\
& V=\frac{Q_{1}}{N_{\beta}} \frac{Q_{2}}{N_{T}} \tag{15}
\end{align*}
\]

This probability ( \(\mathrm{Di}_{\mathrm{i}}\) ) can then be associated with an interval on the range of possible reliabilities by calculating the reliability for the parameters \(\beta i\) and \(i j\) :
\[
\begin{equation*}
R_{i_{i}}=\exp \left[-\left[\left(\frac{x_{i}}{T_{j}}\right)^{8]}\right]\right. \tag{16}
\end{equation*}
\]

An actual mapping of the ijth subregion onto reliability might look like Figure II below.


Figure II
te will appmxinate this mapping by dividing the reliability axis into intervals and assigning the entire pig to the interval in mich Rig fulas Mathematically, calculate:
\[
\begin{align*}
\triangle R & =\frac{R_{\text {MAx }}-R_{\text {MiN }}}{M_{1}}  \tag{17}\\
\text { with } R_{M A i} & =\text { Maximum reliability possible } \\
R_{M I N} & =\text { Minimum reliability possible } \\
M & =\text { Number of intervals on the reliability axis }
\end{align*}
\]
then :
\[
\begin{equation*}
I_{i j}=\frac{R_{i j}-R_{\text {nw w }}}{\Delta R}+1 \tag{18}
\end{equation*}
\]

Trincating \(l_{i j}\) to an integer value then defines the interval number to whiten Pij is to be assigned.

By running through all the ( \(\beta i, T j\) ) combinations and assigning each Pig to an interval on the reliability axis wo are constructing a histogram which approximates the reliability estimator density. (See Figure III)


Figure III

The accuracy of the process depends only on the interval sizes chosen. We have simply replaced the integral evaluation of the mapping process (Eqn. 10), by a much more straight forward numerical evaluation. Confdenced reliability follows from the histogram by replacing Eqn. (11) with a summation.
looking back on the process we can note that certain simplications are possible. The evaluation of the posterior parameter joint density could be written:
\[
\begin{equation*}
g_{2}(\hat{\theta} / \bar{X})=k g\left(\bar{X} / \theta_{1}\right) g_{1}\left(\theta_{\theta}\right) \tag{19}
\end{equation*}
\]
in which the constant is:
\[
\begin{equation*}
K=\frac{1}{\left.\int_{0=1} g(X / \theta) g_{1}(\theta)\right) d \theta} \tag{20}
\end{equation*}
\]

Then:
\[
\begin{equation*}
P_{i j}=K V q\left(X / \beta_{i}, T_{j}\right) g_{1}\left(\beta_{i}, T_{j}\right) \tag{21}
\end{equation*}
\]

But the sum of all Pig should be unity so that:
\[
\begin{equation*}
K V=\frac{1}{\sum_{i=1}^{K_{\beta}} \sum_{j=1}^{N_{T}} g\left(X / \beta_{i}, T_{j}\right) g_{i}\left(\beta_{i}, T_{j}\right)} \tag{22}
\end{equation*}
\]

In other words we do not have to evaluate the integral in Eqn. (20).
GRID SIZE
The remaining problem then is to determine in any case what interval size is sufficiently "small." No satisfactory solution to this problem is presently available. In applying the technique to actual data sets, however, the following points were noted.
1. One specific application to the lognormal density with a uniform prior parameter density yielded the following confidence bounds on safe life for a given reliability:
\begin{tabular}{cc} 
Grid Size & Bound \\
\(\left(N_{\mu} \times N_{r}\right)\) & (Cycles) \\
\(15 \times 15\) & 800 \\
\(40 \times 40\) & 1150 \\
\(70 \times 70\) & 1150
\end{tabular}

In this case \(15 \times 15\) was too coarse, but \(40 \times 40\) was agood as \(70 \times 70\).
2. An application of the three parancter Weibull seemed to converge with grid size of \(5 \times 5 \times 5\). Finer grids resulted in a negligible change in the confidence baund.
3. For very high reliabilities (.999, .9999, etc.) the lower confidence bound on stfe life seems to increase as the grid is made finer. This would incicate that this method yields, for given grid size, a confidence bouid which is on the conservative side of the "exact". Bayesian confadence bound.

\section*{CUNCLUSION}

The point which nakes this computational mapping extremely interesting is that it can be extended to any distributional form it can be extended to system reliebility work in wich the joint posterior parameter space for all components is mapped onto system reliability, and so on. It's drawback, of course, is that it is completely computer dependent and for \(13^{-1}\) : \(\boldsymbol{7}\) rameter spacis : :ta nomputations can be expensive.

References:
1
1. Clarke, R. W., "A General Computational Algorithm for Bayesian Confidence Bounds," Natervliet Arsenal Report WVT-6911
2. Clarke, R. W., "Statistical Determination of Confidenced Safe Fatigue Life for the 175 min M1I3El Gun Tube," Watervliet Arsenal Redort WVT-6909

Exact Lower Confidence Limits on Normal and Lognomal Reliability
\[
\text { by Royce } W \text {. Soanes, Jr. }
\]

WATERVLIET ARSENAL
WATERVLIET, NEW YORK
This paper is a synopsis of References (8) and (9) which were written in order to document more fully the solution to the problem of concern:

Given a population having a normal or lognornal life distribution, and a representative sample of failures drawn from this population, calculate an exact ilO C lower confidence limit on population celiability ( \(k\) ) for a given mission life (or calculate the mission life ( \(x\) ) corresponding to a given lower confidence limit on reliability.)

The normal reliability estimator* is given by
\[
\begin{equation*}
\hat{N}=1-\boldsymbol{Q}\left(\frac{x-\mu^{1}}{\hat{0}}\right) \tag{1}
\end{equation*}
\]

By performing a bivariate change of variable, the joint density of \(\hat{R}\) and \(y\) may be obtained in terms of the joint density of \(\hat{y}^{\hat{L}}\) and \(\hat{\alpha}\).
\[
\begin{equation*}
h(\hat{p}, \hat{\sigma})=f(\hat{u}, \hat{\sigma}) \sqrt{2 \pi} \hat{\sigma} e^{\frac{1}{2} \partial_{\hat{2}}^{2}} \tag{2}
\end{equation*}
\]

The joint density of \(\hat{\mu}\) and \(\hat{\theta}\) may be determined from the fact that:
(1) \(\hat{\omega}\) and \(\hat{\sigma}\) are independent random variables
(2)

has a chi-square distribution with n-1 degrees of freedom and
(3)


\footnotetext{
*Estimates are maximum likelihood
This article has been reproduced photographically from author's manuscript.
}

The joint density of \(\hat{\mu}\) and \(\hat{\sigma}\) is therefore:

The joint density of \(\hat{R}\) and \(\hat{\sigma}\) is therefore:
but by definition,
\[
\begin{align*}
& \hat{\mu}=x+\hat{\sigma} z_{\hat{A}} \\
& \mu=x+\sigma z_{R} \\
& \text { letting } N=\frac{2 \sqrt{m}\left(\frac{m}{2}\right)^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)} \\
& h(\hat{R}, \hat{\sigma})=\frac{K}{\sigma}\left(\frac{\hat{\sigma}}{\sigma}\right)^{n-1}-\frac{n}{2}\left[\left(\frac{\hat{\sigma}}{\sigma}\right)^{2}+\left(\frac{\hat{\sigma}}{\sigma} z_{\hat{R}}-Z_{R}\right)^{2}\right]+\frac{1}{2} \frac{3}{R}_{2}^{2} \tag{5}
\end{align*}
\]

Now \(\hat{\sigma}\) is integrated out to obtain the density of \(\hat{R}\) :
\[
\begin{aligned}
h(\hat{R}) & \left.=\int_{0}^{\infty} \frac{k}{\sigma}\left(\frac{\hat{\sigma}}{\sigma}\right)^{n-1}-\frac{n}{2}\left[\left(\frac{\hat{\sigma}}{\sigma}\right)^{2}+\left(\frac{\hat{\sigma}}{\sigma}\right\}_{\hat{R}}-Z_{R}\right)^{2}\right]+\frac{1}{2} \hat{Z}_{\hat{R}}^{2}
\end{aligned} d \hat{\sigma}
\]

Since \(s\) is a dummy variable of integration and \(\hat{R}\) is the argument of \(h\), the only numbers upon which the form of \(h\) is dependent are \(R\) and \(n\). The density of the reliability estimator is therefore a one parameter ( R ) density which is independent of the life density population parameters and mission life.

Changing the argument of \(n\) to avoid confusion and adding the subscript \(k\) to \(n\) to indicate its dependence on the population reliability \(k\), the density of \(\hat{R}\) is:

The distribution function of \(\hat{R}\) is therefore given by:
\[
\begin{equation*}
H_{R}(r)=k \int_{0}^{\infty-1} e^{-\infty}-\frac{n}{2}\left[s^{2}+\left(3-A_{R}^{3}\right)^{2}\right]+\frac{1}{2} 3_{v}^{2} \text { dadv-} \tag{8}
\end{equation*}
\]

The meaning of the Neyman method of finding a one sided confidence interval for \(R\) may ne oxplained through the following diagram:


The .uris 1 in determined by:
\[
(\hat{k}(\hat{k}<r ; k)=C
\]
or
\[
\begin{equation*}
H_{k}(r)=C \tag{9}
\end{equation*}
\]
ie., 1 is determined such that for any population reliability \(R\), the reliandity estimator \(\hat{R}\) falls below 1 lu J \(C\) \& of the time. Suppose now that the true value of population reliability is \(R\) as shown in the fleury, We lon't know \(R\) or \(r\) but we do know 1 . If the experiment 1 s now performed and the reliability estimate \(R^{*}\) is calculated, the lU C lower confidence limit on \(K\) is \(R_{c}\) from the diagram. This is so because if the experiment is performed many times, \(R^{*}\) will be below \(r\) iou C t of the time and hence \(\mathrm{K}_{\mathrm{c}}\) will be below R 100 C of the time.

Confidence reliability \(R_{c}\) is therefore determined by solving for \(k_{c}\) :
\[
\begin{equation*}
H_{c}\left(R_{c}^{*}\right)=C \tag{10}
\end{equation*}
\]

Before this is done, however, the distribution function of \(\hat{R}\) should be simplified. thanging the order of integration in Eqn. (8) and making some appropriate changes of variable, one has:

\(H_{R}(r)=1-\frac{2\left(\frac{n}{2}\right)^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)} \int_{0}^{\infty} A^{n-2} e^{-\frac{n n^{2}}{2}} \Phi\left[m\left(\eta_{R}-\infty \partial_{r}\right)\right] d s\)

Using Eqn. (12), Eqn. (10) now becomes:
\[
\begin{equation*}
\frac{(1-c) \sqrt{\left(\frac{n-1}{2}\right)}}{2\left(\frac{n}{2}\right)^{\frac{n-1}{2}}}=\int_{0}^{\infty-2} a^{-\frac{n-A^{2}}{2}}\left[\sqrt{n}\left(3_{R}-A_{c}^{3} \partial_{R}\right)\right] d a \tag{13}
\end{equation*}
\]

If \({ }^{*}\) * were calculated using the desired mission \(1 i f e\) and the sample parameter estimates, tin. (13) could be sol vel numerically for Re, but for purposes of calculating tables, it is better to stipulate \(R_{c}\) and solve Eqn. (13) for \({ }^{2}{ }_{R}\) instead. This was done for confidence levels of 90 and \(95 \%\), confidence reliabilities of .999, .995,.99, \(.975, .95, .925, .90, .875, .85\) and sample sizes of 2-10, 15, 20, 25, 30.

The equations used with the tables to calculate mission life for the normal and lognormal models are:

\[
\begin{equation*}
x=m^{e^{*}-o_{e}^{*} \theta_{R}} \tag{15}
\end{equation*}
\]
 because the lugnomal reliability estimator is
\[
\begin{equation*}
\hat{R}_{l}=1-\Phi\left(\frac{\hat{w}_{n} x-\hat{\mu}_{l}}{\hat{\sigma}_{l}}\right) \tag{10}
\end{equation*}
\]
and the logs of the data are by definition normally distributed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \({ }^{\text {P }}\) & & & & & & n & & \(C=9\) & & & & & \\
\hline & 2 & 3 & 4 & - 5 & 6 & 7 & 8 & 9 & 10 & 15 & 20 & 25 & \\
\hline .399 & 34.764 & 11.820 & 8.232 & 6. 833 & 6.086 & \(5.619^{-}\) & 5.297 & 5. OEO & 4.879 & 4.363 & 4.113 & & \\
\hline . 995 & 28.972 & 9.311 & 6.414 & 5.742 & 5. 115 & 4.722 & 4.451 & 4.252 & 4.749 & 3.663 & & & \\
\hline .99 & 26.163 & 8. 990 & \(6.280^{\circ}\) & 5.217 & 4.647 & 4.250 & 4.044 & 3.862 & 3.123 & 3.325 & 3.131 & & \\
\hline .975 & 22.042 & 7.647 & 5.354 & 4.451 & 3.966 & 3.661 & 3.450 & 3.294 & & & & & \\
\hline .95 & 18. 512 & 6.505 & 4.569 & 3.801 & 3.387 & 3.126 & 2.944 & 2.811 & 2.707 & 2.411 & 2.265 & 2.176 & 2. \\
\hline .925 & 16.232 & 5. 772 & 4.064 & 3.383 & 3.015 & 2.781 & 2.619 & 2.499 & 2.407 & 2.139 & 2.008 & 1.927 & 87 \\
\hline . 90 & 14.500 & 5.215 & 3.681 & 3. 066 & 2.732 & 2.520 & 2.372 & 2.262 & \(2.17 \%\) & 1.932 & 1.811 & 1.737 & 1.685 \\
\hline . 875 & 13.083 & 4.760 & 3. 367 & 2.806 & 2.500 & 2.305 & 2.168 & 2.067 & 1.989 & 1.762 & 2.649 & & \\
\hline . 85 & 11.877 & 4.371 & 3.099 & 2. 583 & 2.300 & 2.120 & 2.994 & 1.900 & 1. 827 & 1.615 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(R_{c}\)} & \multicolumn{7}{|l|}{n} & \multicolumn{3}{|l|}{C= 953} & \multirow[t]{2}{*}{20} & \multirow[t]{2}{*}{25} & \multirow[t]{2}{*}{30} \\
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 20 & 15 & & & \\
\hline . 999 & 69.687 & 16.971 & 10.64 & 8.387 & 7.243 & 6.548 & 6.080 & 5.742 & 5.445 & 4.769 & 4.430 & 4.228 & 4.091 \\
\hline . 995 & 58.084 & 14.241 & 8.947 & 7.058 & 6.097 & 5.312 & 5.118 & 4.832 & 4.625 & 4.010 & 3.722 & 3.550 & 3.434 \\
\hline . 99 & 52.458 & 12.924 & 8.132 & 6.419 & 5.545 & 5.014. & 4.654 & 4.394 & 4.395 & 3.0644 & 3.381 & 3.223 & 3.110 \\
\hline . 975 & 44.205 & 11.006 & 6.945 & 5.488 & 4.742 & 4.288 & 3.980 & 3.757 & 3. 3.95 & 3.110 & 2.883 & 2.746 & 2.E5 \\
\hline
\end{tabular}


 87526.2736 .8914 .4063 .4953 .0222 .7302 .5312 .3862 .2741 .9581 .8041 .7111 .647


References
1. Suewhart, n. . : Scatistical Method from the Viewpoint of Quality Control

Graduate School, U. S. Department of Agriculture, 1939
2. Johnson, N. L., and Welch, B. L. : "Applications of the Non-central t-Distribution" Biometrika, 1940
3. Wald, A., and Holfowit2, J. : "Toierance Limits for a Normal Distrioution" Annals of Mathematical Statistics, 1946
4. Eisenhart, C., Hastay, M. K., and Wallis, W. A. : Techniques of Statistical Analysis, McGraw Hill, 1947
5. Resnikoff, C. J., and Liaberman, G. J. : Tables of the Non-central t-Distribution

Stanford University Press, 1957
6. Bowker, A. H., and Lieberman, G. J. : Engineering Statistics, Prentice-Hall, 1959
7. Lloyd, D., and Lipow, M.; : Reliability: Management, Mathods, and Mathematics, Prontice-Hall, T902
8. Soanes, R. W., "Confidenced Nomal and Lognomal Reliability for Any Sample Size"

Watervliet Arsenal Report WVT-6910 196?
9. ----a-=: "Tables Faciliteting Confidenced Reliability Calculations for the Normal or Lognormal Distribution"

Watervliet Arsenal Report WVT-6937 1969

\author{
Elwood D. Baas \\ Systems Analysis Directorate \\ White Sands Missile Range, New Slexico
}

ABSTRACT. Missile simulations of systems including a gyro-seeker guidance assembly have often excluded the gyro-seeker representation by assuming that gome ideal proportional tracking ratio will be achieved. Thus, some of the basic characteristics of the guidance loop are omfted or approximated. This paper develops a real-time simulation technique so as to include the basic functions of the gyro-seeker assembiy such as trecession, nutition, drift, gain, noise, etc.

In the first siction of the paper, the model equations are ferived and are used in a discussion of the system parameters and syster dynamics.

The second section of the papar presents the analog computer mechaniation and results of the simulation, some of which have bead verified by syatem experiments, and some predicted by analytical theory.

SYSTEI DESCRIPTION. The basic gyro-seeker unit consists of a gyroscope, rotating gyro magnet, and atationary induction coils about the gyro. (See Figure 1.) Target source energy is collected and focused to produce a spot lmage on a reticle centered on the epin axis.. When the image pot is off center the reticle pattern produces an error signal whichis modulated at spin frequency. The amplitude of the error signal. is a function of the radial diaplacement of the image from the reticle center, while the phase corresponds to azimuthal position about the seeker axis. After being amplified and filtered, the signal is fed to the precesaion coil which torques the gyro magnet so as to preceas the gyro toward a null position with respect to the line of sight. The procensed a.c. signal can also be demodulated into orthogonal components using reference coils. The demodulated d.c. components can be used for tracking or guidance signals.

ACKNOWLEDGMENT. The author wishes to thank George E. Hoffman, Karl G. Goodloe, and Nancy M. Wade fur their assistance in the preparation of this paper.
-

The remainder of this article has been reproduced photographically from the outhor's manuscript.

REFERENCE COIL leneed


Figure 1

\section*{Mathematical Model}

Two coordinate systems will be referenced in the model derivation. The g> system, or ground system, will be fixed at the initial gyro position with \(\overline{\mathbf{g}}_{1}\) axis horizontal and pointed at the initial target ground position. The s> coordinate system, or seeker system, will be fixed to the center of gravity of the gyro assenbly. The \(\overline{\mathbf{s}}_{1}\) axis is along the gyro spin axis and \(\overline{\mathbf{s}}_{\mathbf{2}}\) is along the North-South axis of the gyro magnet. (See Fig. 2).


Figure 2

The yaw, pitch, roil sequence for the Euler transformation hetween coordinate systems is given by,
\(s>=M\left(\phi_{1}, \phi_{2}, \phi_{3}\right) \mathrm{g}\), where the subscript denotes rotation about the respective axis. In detail then, the model Euler equations are:
\[
\begin{aligned}
& \left(\begin{array}{l}
s_{1} \\
s_{2} \\
s_{3}
\end{array}\right)=\left[\begin{array}{lll}
c \phi_{3} c \phi_{2} & s \phi_{3} c \phi_{2} & -s \phi_{2} \\
c \phi_{3} s \phi_{2} s \phi_{1}-s \phi_{3} c \phi_{1} & s \phi_{3} s \phi_{2} s \phi_{1}+c \phi_{3} c \phi_{1} & c \phi_{2} \\
s \phi_{1} \\
c \phi_{3} s \phi_{2} & -\phi_{1}+s \phi_{3} s \phi_{1} & s \phi_{3} s \phi_{2} c \phi_{1}-c \phi_{3} s \phi_{1} \\
c \phi_{2} & c \phi_{1}
\end{array}\right]\left(\begin{array}{l}
g_{1} \\
g_{2} \\
g_{3}
\end{array}\right) \\
& \phi_{3}=\sec \phi_{2}\left(\omega_{2} \sin \phi_{1}+\omega_{3} \cos \phi_{1}\right) \\
& \phi_{2}=\omega_{2} \cos \phi_{1}-\omega_{3} \sin \phi_{1} \\
& \dot{\phi}_{1}=u_{1}+\sin \phi_{2} \dot{\phi}_{3} \\
& \phi_{3}=\left(\phi_{3}\right)_{0}+\int \phi_{3} d t \\
& \phi_{2}=\left(\phi_{2}\right)_{0}+\int \phi_{2} d t \\
& \phi_{1}=\left(\phi_{1}\right)_{0}+\int \dot{\phi}_{1} d t
\end{aligned}
\]

To derive an equation for the seeker output signal we assume that the reticle is parallel to the \(\overline{\mathrm{s}}_{2}-\overline{\mathrm{s}}_{3}\) plane and centered on the \(\overline{\mathbf{s}}_{1}\) axis. The optics produce a target image point on the reticle, as show in Fig. 3, whenever the \(\overline{\bar{S}}_{1}\) axis deviates from the line of sight. The radial displecenent d of the image point from the reticle center is proportional to the angle \(c\) between the \(\bar{s}_{1}\) axis and the line of sight vector to the target. The distance \(d\) is now modeled by deriving a distance \(r\) in the \(\bar{s}_{2} \cdot \bar{s}_{3}\) plane which is proportional to d . Let \(\bar{\sigma}\) be the untt


Figure 3
vector along line of sight vector in the ground coordinate system. Then,
\[
\begin{aligned}
& \bar{\sigma}=\frac{X}{R} \bar{g}_{1}+\frac{Y}{R} \bar{g}_{2}+\frac{2}{R} \overline{\mathrm{~g}}_{3}, \text { where } \\
& R=\sqrt{X^{2}+Y^{2}+Z^{2}} .
\end{aligned}
\]

Let \(\sigma_{S_{2}}\) and \(\sigma_{s_{3}}\) denote the components of \(\ddot{\sigma}\) in the seeker coordinate system. (See Fig.4). Theri \(1=\sqrt{\sigma_{s_{2}}^{2}+\sigma_{s_{3}}^{2}}\) depends on \(c\) and


Figure 4
not on the length of \(\bar{\sigma}\). Also the length \(r\) is proportional to the actual displacement d which depends on the optics and other physical parameters. The azimuthal phase determined by the angle \(\theta\) measured from the \(\overline{\mathbf{s}}_{2}\) axis to the image point line is given by \(\sin \theta=\frac{{ }^{\sigma} s_{3}}{\mathbf{r}}\). (See Fig.4). This derivation assumes that reticle modulated output has the form of a sine wave. Otiner wave shapes could be generated by using various reticle patterns and electronic processing. For a discussion st other wave forms and their effect on gyyo precession see reference 1 . Then \(0_{0}=K r \sin \theta=K_{\sigma_{3}}\) is an equation which represents the seeker output signal. To compute \(\sigma_{s_{3}}\) we recall that, \(\bar{\sigma}_{s}=M\left(\phi_{1}, x_{2}, \phi_{3}\right) \bar{\sigma}_{g}\), so that

\(+\frac{Z}{R} c_{q_{2}} c_{\phi_{1}}\).
The signal \(\theta_{0}=\mathrm{Kr} \sin \theta\) is amplified and applied to the coil about the gyro whose field acts on the permanent gyro magnet to precess the gyro. The variation of the magnetic field is thus proportional to \(r \sin \theta\) and its direction is perpendicular to the plane of the coil as shown in Fig. 5 . Suppose that the magnetic field \(\bar{S}_{c}\) of the coil makes an angle \(\lambda\) with respect to \(\overline{\mathrm{s}}_{1}\), then, \(\left|\bar{B}_{c}, \overline{\mathrm{~s}}_{1}\right| \overline{\mathrm{s}}_{1}=\left|\overline{\mathrm{B}}_{\mathrm{c}}\right| \cos \lambda \overline{\mathrm{s}}_{1}\). The magnetic field of the permanent magnet can be written simply


\section*{Figure 5}
as \(\bar{B}_{m}=\left|E_{m}\right| \bar{S}_{2}\). The interaction of the two magnetic fields produces a torque which tends to align the two fields. This torque is siven by the vector cross product,
\(T_{3} \bar{s}_{3}=\left|\bar{B}_{m}\right| \bar{s}_{2} \times\left|\bar{B}_{c}\right| \cos \lambda \bar{s}_{1}\) where \(\left|\bar{B}_{c}\right|=K r \sin \theta\) and \(\left|\bar{\sigma}_{m}\right|\) is constant. Note that the torque \(T_{3}\) will be a maximum when the spot line is along the \(\overline{\mathbf{s}}_{3}\) axis, then the rotation of the magriet will be in the \(\bar{s}_{2}-\bar{s}_{1}\) plane and the precession in the \(\bar{s}_{3}-\bar{s}_{1}\) plane. Let \(\mathrm{T}=\mathrm{T}_{1} \overline{\mathrm{~s}}_{1}+\mathrm{T}_{2} \mathrm{~s}_{2}+\mathrm{T}_{3} \overline{\mathrm{~s}}_{3}\) be the total external torque acting on the gyro. Then the angular accelerations are given by, \(\dot{\omega}_{3}=\frac{T_{3}}{I_{3}}-\omega_{1} \omega_{2} \frac{\left[I_{2}-I_{3}\right]}{I_{3}}\)
\(\omega_{2}=\frac{T_{2}}{T_{2}}-\omega_{1} \omega_{3} \frac{\left[I_{1}-I_{3}\right]}{I_{2}}\)
\(w_{1}=\frac{T_{1}}{I_{1}} \cdot w_{3} \omega_{2} \frac{\left[I_{3}-I_{2}\right]}{I_{1}}\)

If we assume that the only torque acting is \(\mathrm{T}_{3}\) as derived above, and that the transverse moments are equal, then the equations reduce to:
\(\dot{w}_{3}=\frac{T_{3}}{I_{3}}-\frac{\left[I_{2}-I_{1}\right]}{I_{3}}\)
\(\dot{w}_{2}=-w_{1} w_{3} \frac{\left[I_{1}-I_{3}\right]}{I_{2}}\)
Integrating the components of \(\bar{\omega}\) yields the angular velocity components of of the seeker relative to the seeker coordinate system. Using the seeker to ground transformation, \(\bar{w}\) can be transformed to \(\bar{\omega}_{g}=\dot{\phi}_{1}+\dot{\phi}_{2}+\dot{\phi}_{3}\) by,
\(\phi_{2}=\sec \phi_{2}\left(\omega_{2} \sin \phi_{1}+\omega_{3} \cos \phi_{1}\right)\)
\(\dot{\phi}_{2}=\omega_{2} \cos \phi_{1}-\omega_{3} \sin \phi_{1}\)
\(\phi_{1}=\omega_{1}+\sin \phi_{2} \phi_{3}\).
Integrating \(\phi>\) yields the angles \(\phi>\) of the ground coordinate system which are needed to compute \(d_{s_{3}}\). Thus the loop is closed.

Orthagonal components of the seeker signal are obtained by demodulating the signal using two roference signals. Reference signials can be obtained by mounting coils about the gyro \(90^{\circ}\) apari. (See Fig. 6). A sinusoidal voltage is produced by each coil as the flux lines of the gyromagnet cut the windings of the coil. These signals can simply be modeled as Ksin ( \(\left.\phi_{1}+\gamma\right)\) and Kcos \(\left(\phi_{1}+\gamma\right)\) where \(\gamma\) is the angle the coils are rotated


Figure 6
from the pi reference. The inputs to each demodulator are the seeker signal and one of the reference siemals. The filtored output is a d.c. level which is proportional to the error amplitude component in the respective plane or direction determines by the angle \(\gamma\). The mathematici: representation for the phise demodulator is not given since the actual electronic network is easily adapted to the analog computer components. Fig. 7 shows a typical phase demodulator bridge network used for one plane.

The basic gyro-seeker model which has been developed can easily be expanded or modified to include hardware changes or known parameter variations. For example, the actual seeker output signal could be a function of source intensity, target range, noise, filtering and other phase and amplitude


Figure 7
 transfer function additions or multiples of the signal \(e_{0}=K r \sin \theta\).

\section*{Simulation}

The simulation of the gyro-seeker employs the mathematical equations as derived in the math model with the following exceptions:
1. It was assumed that the gyro speed was constant. This is the case in a gyro when the motor-driving torque just balances the fr.ction torques so the gyro spins at a constant rate. Thus \(\sin \phi_{1}\) and cos \(\phi_{1}\) were obtained by rumning in oscillator at the required spin frequency.
2. The equation \(\phi_{1}=\omega_{1}+\sin \phi_{2} \dot{\phi}_{3}\) was approximated by the equation, \(\dot{\phi}_{1}=\omega_{1}\), i.e., it was assumed that \(\sin \phi_{2} \dot{\phi}_{3}<\omega_{1}\). The cormputer mechanization diagrans are presented on pages 13 to 13. Since this particular mechanization is part of a hybrid missile simation, some of the computations are shown as digital. It should be clear to the reader how on all-analog simalation sould be obtained from the given mechanization. The parameters such as spin frequency, monents of inertia and loop gains were obtained from experimental data taken from the seeker hardware. After all parameters were obtained, the simulation was verified by comparing the response characteristics of the hardware with those of the simulation.



DIGITAL COMPUTATION




reference coil sianals

Some sinulation recordings and description of results are presented on the foilowing pages.

Pages 21 and 22 show the response of the gyro alone to a constant amplitude simsoidal torque at spin frequency applied about the \(\overline{\mathbf{g}}_{3}\) axis and phased so as to precess the gyro in the \(\phi_{3}\) plane. The difference in the two recordings is the result of a change in the moment of inertia ratio \(\rho=I_{3} / I_{1}\) whien can be seen as a change in the sutation frequency on the \(\omega_{2}\) arin -3 channels. The frequency of the mutation is determined by \(w_{1}(1-\rho)\) while the amplitude depends on the initial conditions \(\left(\omega_{2}\right)_{0}\) and \(\left(\omega_{3}\right)_{0}\) (Sce, e.g., reference 3 for an analytical derivation). The gyro precession which is seen as a change in \(\phi_{3}\) is proportional to the amplitude of the applind torque,

Page 23 shows the closed \(100 p\) response for a given gain \(K_{1}\) as a multiple of the feedback signal \(r \sin \theta\). In this case the seeker was not tracking (as can be seen by \(\phi_{2}\) and \(\phi_{3}\) ), but was locked to a stationary target, \(X=C, Y=0, Z=0\). Thous \(K_{1} r \sin \theta\) has a small amplitude and a phase which is changing rapidiy to compensate for directional changes of the spin axis from the line of sight. Page 24 shows the response to a target noving at a constant rate in the \(Y\) direction. This condition results in an error signal \(K_{1} r \sin \theta\) which has a constant amplitude, reflecting the constant target rate, and a fixed phase dictated by the

Y direction. (Note that since the torque applied to the gyro is acout the \(\bar{s}_{3}\) axis, it appears on the \(w_{3}\) channel.) The denodulated outputs of the error signal for target rates in the \(Y\) and \(Z\) direction are shown on pages 25 and 26 respectively. In this case \(\gamma\) was chosen as \(0^{\circ}\), so that \(r \sin \theta\) was in phase with one reference signal and \(90^{\circ}\) out of phas: with the other reference signal, for each tracking conlition. Thus the perpendicular tracking directions result in alternate full value and zero value readings on the denodulated outputs \(R_{1}\) and \(R_{2}\) as shown on pages 25 and 26 . The slow rise of the \(R_{1}\) and \(R_{2}\) signals is due to filtering on the demochulated outputs and not to the demodulator circuits. Error signals can also be produced by gyro motion such as gyro drift. If we assume a constant gyro drift rate and stationary target conditions then an error signal is produced to overcone the drift. Page 27 shows the simulation results for these conditions. In this case drift was procuced by an appropriate torque in the \(\$_{3}\) plane. The result of the error signal, \(\mathrm{Kr} \sin \theta\), generated by those conditions can best be observed on the demodulated outputs. One can think of these outputs as false tracking commands caused by gyro drift.













\section*{REFERFIMES}

\section*{1. Mathenatical Theory of the Sidewinder Gyro and Tracking Loop, Philco Ford, Oct 15, 1954}
2. Tracking Accuracy of Infrared Trackers, Mengers, Paul E., General Electric Co., Ithaca, New York
3. The Cymscripe, 7lecry of Applications, Scarhorough, J. B. . Interscience Publishers. Inc. New York, 1958
\(\therefore\) Nyrnccopes, Thenry \& Design, Savet, P. H., MrGaw-Hill heck i.,. , ith "oll, 19ti

ת CHARACTERISTICS OF A SIX-COMPONENT ROCKET ENGINE TEST STAND

\author{
Aubrey W. Presson \\ U. S. Army Missile Command \\ Redstone Arsenal, Alabama
}

INTRODUCTION. LANCE Developmental testing within the T\&RE Laboratory has been accomplished on teat stands designed to measure the six compnnents of thrust reaction. The basic.problem inherent in such stands is that of restraining the engine with a measurement system that permits the engine six degrees of freedom, without the introduction of uniknown effects upon the engine. This, if course, in further compounded by the requirement to supply propellants thru a high pressure plumbing system that shunts the measurement system. It is obvious that a thorough stand calibration program must be implemented to resolve this problem.

The facility requirements atated for the present phase of LANCE are presented in Table I. Paralleling these are our estimates of our then exiating capability. These eatimates were derived from extansive calibration tents performed on the original test atand, Only a casual observance is required to realize that this represente a aignificant stap forward. A less casual but limited preliminary error analysis indicated more clearly the difficulties involved and concluded that a portion of the requirement was clearly beyond the state-of-the art. Briafly this is indicated, when load cell accuracy requirements are derived from conaideration of the aagularity and position requirements. Considering only the load cell capacities, dictated by the thrust magnitude and the practical geometry of the stand, the position requirement means a vertical load cell resolution of \(0.05 \%\) F.S. and the angularity requirement a side load cell resolution of 0.3\% F.S. The thruat and side force requirements are much less severe approximately by a factor of 3 times.

This dilemas was resolved by a joint decision to proceed on a best efforts basis. It is this effort that \(I\) will mumarixe this afteroon.
II. PRINCIPAL DESIGN FBATURES. The present Thruat Meaiuremant Syatem, (Bigure 1) like ite predecessor system, contains seven load cells. This is the TP series itand with component convention illustrated. The four vertical cells are parallel and aymetrically placed about the vertical centerline or \(Z\) axis. These cells react thrust as well as the moments about the two horizontal axis designated MX and MY. Side forces deaignated \(X\) and Y are reacted by the horizontal cella placed on or parallel to these axea. . The pair of cells paralleling the \(Y\) axis also reacta the roll momant (MZ). Each load cell is assombled with flexures to permit maximum compliance with all modes of loading except those acting directly along the cell axia. Thus, the magnitudes of force interaction inherent in the system are minimized.

Pigure 2 illuatrates additional features. These views are of the present system, Features to be noted are:
1. The unsupported long elbor sections of pipe in the propellant line approaches to the engine.
2. Arrangement of the three lines approaching the enfine symetrically about the vertical centerline in an attempt to balance the restraints.
3. Displacement of the plumbing from the centerline to permit application of single point calibration loads.
4. Inclusion of rupture disc housings (appearing as boxes between the lines and engine) that permit the pretest installatic' of these disce without disturbing the propellan: line connections to the measurement system.

Load cell placement and alignment of the syatem and especially the alignment of the calibration input devices are of critical concern. Optical tooling was used to control these factors to precisiona of better than .005 inches in position and .05 mil radians in orientation.

The basic calibracion scheme developed for the original atand was first employed in the calibration of this atand. The premise of this calibration attempt was that there are many sources of interaction which combine to produce the net effect on the systam. These include each of the components of force input, the static pressurimation of the propeliant lines, the dynamics of flow through thene lines and the effects of temperature over the conditioned range of -40 to \(160^{\circ} \mathrm{F}\). Thus, each source was tested and its effects observed. It was further preaumed that these Independently derived effects could be aummed to exprese the net affact. This approach is illustrated in the slide by the multiple calibration devices.

IIF. REVISED CALIBRATION METHOD. Time will not permit a detailing of the extensive calibration program by which it wan determined that thia latter premise was invalid. Perhaps it is sufficient to say that this led to a phase that is often referred to al an agonizing reappraisal. If the basic premise that there were no synergistic characteristics was invalid, how then could the stand be calibrated. Alternate shames ware. considered but the one adopted involved the use of an existing program from the Computation Center files. This program - a so called Nonsimple Stepwise Multiple Linear Regression Analysis shortened herein to MLR Analysis was used to fit the data to empirical expressions of the input components in terms of the outputs. These expressions need be limited only by the capacity of the program which permits up to 59 independent terms. The scheme was attempted on data then availabla to us and a very close fit was obtained. This data did not cover the full ranges of
 hardware was designed to permit the acquisition of data sufficient for this purpose. The plan was first implemented in January 1969 for ambient temperature condition and analysis of results were completed in March 1969. Due to a stand renovation, a repeat of ambient condition calibrations have been made as well as a calibration at each of the temperature extremes. Analysis is in progress on this data. The scheme developed for the January 1969 effort was used thru out and is the primary subject to be presented to this panel.

The loading scheme for this series of tests involved a series of input vectors whose locations, attitudes and magnitudes were closely controlled and/or measured. The input assembly, (Figure 3) starting at the "hard" point, involved a bi-dicectional translation device with planned displacements indexed by a series of dowel pin holes. This device was centered on the vertical centerline through the use of optical tooling. Upon this device was mounted a hydraulic jack which was linked to the input load cell through a universal flexure. A rod extended from the load cell' to another flexure near the engine mounting fixture and another smaller bi-directional translation device connected this flexure to the mounting fixture. It, too, was indexed for the planned displacements. During loading operations, initial displacements ware set with these translation devices to effect either vector displacement; vector angularity, or a combination of both. Then, to assure that any change in these initial conditions was known, displacement gages were used to monitor any lateral displacements above the upper flexure or below the lower flexure. . The loade were then cycled under control of a servo loop to create the load sequence depicted in Figure 4. To combine the static pressure effects each of the four cyclew were run at different line pressure conditions as noted. Four cycles of this type constituted a test run. The recalibration plan involved 30 runs.

Digital data acquisition and processing techniques were employed throughout the cafibration process except for the displacement gages used to monitor the input rod attitude. The analog data obtained from these were manually reduced and entered into the digital analyses. Many of the features contained within the computer programs are illustrated in Figure 5. Automatic normalizing of all output data at the zero input point eliminates the negative thrust portions of our load cycles. Redundant data sections are also eliminated by an edit routine." The low range bridge of the input cell defines the austain level sections indicated while the high range bridge defines the original boost level segments indicated by solid black lines. A range limiting feature that was subsequently added redefines the boost level to conform to the designated upper range segments.

For each of these aegments, the 200 ample/sec acquisition rate was reduced by editing and averaging to approximately 1 sample/sec for boost data and \(10 \mathrm{a} / \mathrm{s}\) for sustain data. Computation of input and output components were then made at these data rates and taped for input into
the MLR Analysis. Inputs were based on initial and monitored change of rod attitudes while outputs were functions of the stand geometry and the load cell results. Tabulations and CRT type plots were prepared to aid in analysis.

The' MLR Analysis determined the empirical equation coefficients for each component in turn. Data from 25 of the 30 calibration runs was considered collectively. The determined codfficients were then programmed to provide predictions of the input components which were then compared to the known inputsfand a residual error computed. When applied to runs 26 thru 30 , a validity check was made of the total process. When applied to all 30 runs in turn a standard error is obtained for each run. It is the combination of these errors that determined our estimate of measurement system capability.

Several forms of the MLR"Analysis were performed as indicated in Table II. To understand this table, you must realize that these are the stand output parameters that are considered as independent variables in each of six equations involving the known input values or dependent variables. The equation form; as noted, is Input Component = \(\varepsilon A_{n} T_{n}\) with \(A_{n}\) the unknown coefficients and \(T_{n}\) the terms selected from the chart. The analysis is performed on each of these equations in turn to determine a best fit set of unknown coefficients, one for each of the independent terme. Having determined these value by calibration, it is assumed that the equation holds for unknown input conditions and thus these conditions can be predicted from any set of output values contained within the calibration ranges. The original ptemise was that irrelevant terms would be effectively eliminated by the analysis and a 59 cerm form was chosenh The highest order terms used were eecond degree terms and their cross products. This provided a very good fit for the 25 runs used in the analysis but prediction for runs 26 thru 30 were very poor. It was reasoned that this was due to the, inclusion of too many irrelevant terms and the equations were reduced to a 16 term form. (Diagonal shadingi) All crose products axe eliminated." This produced' ignificantly improved prediction results even though the atandard errors from the MLR Analyais were increased. 'This form was adopted for the sustain range of data. An addendum note should be made at this point. In setting the program controls, no test was made on the exclusion of terms. Present analysis includes this feature but its effectiveness is not yet known.

The next significant step was taken when it was observed that even though the standard error for an over-all fit was acceptable, the fit at the upper limit of the range was at times unacceptable. This led to a revised analysis based on data contained within the interval of 25 to 4OK. The 16 term form was selected for this analysis. The residual error plots seemed to suggest a correlation with the ratios of \(Z\) input with each of the components. Thus, two forms containing 23 terme in the equations were attempted next. These forms include the 16 terms
and thuse shown in dots in Table II. Alternates shown involve the products or ratios with " 2 ". Resulta were only \(g\) ! ighely improved in
 plots printed-up a preference for either of these over the 16 term torm for most of the aix components. This will be demonstrated in tuture figures. Attempting further imprnvement, two additional forms witn 33 teriss wire uspl. The first attenpt adced tiat terms identified with horizontil shadirig. The second was broken into two sub-analyses the 16 term form plus an analysis of the residual errors in terms of the balance of 17 terms. Significantly improved 3 tandard errors were obtained with the first of these but again the results of both produced poor predictions for the confirmation runs. A comparative charting of the five turins is they \(A F\) ?:' to rua:, 26 tirough 30 are stown in Table III. The best equation results are in shaded areas for each component. The 16
 balanes. Tre \(3: 1 p\) : for Run 27 whith dre typleal ot the runs examaned
 resurial errs: \(: \therefore\) irpur niots from the 16 term ana;ysis with dat: points plotiteci: A computes deterinf ned best fic is line ploted thed these points and appears as a broken.line. Similarly determined beet f:L plots for each of the 23 term forms have been manually transferred t.) these plots for comparison. Comparison should be made between the line plots. The ldeal result would appear as a zero error through out the range. Figure 6 is the \(X\) component plot. The 23 term results are obviously hest with maximum error for the mean data fit of approximately 3 pounds. Figure 7 is the \(Y\) plot with a maximum error of 8 pounds. The 7 . plots (Figure B) show a slight preference for the 23 term ratio form. - All data is under 50 pionds of error int the presence of inputs ranging to iok of chrusri, 700 lbs . of side force and \(200 \mathrm{ft}-\mathrm{lbs}\) of moments. The MX plots (Figure 9) show a mean error of less than 30 ft-1bs. The MY plots (Figure. 10) show error ranging to 100 ft-lbs for this run but this is snmawhat liacger than the normal MY error. The MZ plots (Figura 11) show inttle freference between these three forms but the standard error is leas than" 4 ft-lbe for 11 formaf

The furegoing description suggesta a much more direct path than that of our actual experience. From an experiment standpoint there were apveral areas that could have been explored in greater depth but were ignofed since this was oprimarily an attempt to define the specific capabllities of the stand as they related to the LANCE facility requirements. A final sumary of the attainment of this goal is presented In a comparison of the facility requirements with the demonstrated capability (Table IV). Based on these results and our continued survelliance of the stand through verification teating, we are confident that our data quality must be rated equal to or superior to that obtainable at any facility of this type.

A concise sumary of the major points of the calibration problem, the implemented solution and the clinical questions to be asked of this panel is now in order.

THE PROBLEM. Since it is desired to resolve a force vector in -1x degrees of freedon it in necoseary to evaluate the intaraction
 freedow. For cais purpose an exparimant ie required that vill adequately messure these effects throughout the range of interest and determine the precision characteriacics of the total maguremat proceas.

THE MPLEMENTED SOLUTION.
A. An experiment of 30 inpur vectora involving diffaring combinatione of the aix components of force input and atatic pressurisation leviels vith ranging of each parameter to near maximun axpected value.
B. An evaluation of the aix eapirical "best fit" cransfar equationa relatiag ere observed input and output data. The teres of the equatione wor: arbitrarily selected and foeffiente derivation made by a multiple linear regression analyais.
C. A derivation of precision linits besed on the combination of the overall experiment data fit preciaion with etandard deviation valued for the laboratory otandard and for the tranafer to the fioid etandard. This condbation is by the aquare root of the sue of variances method.

THE CLINICAL QUESTIONS.
1. Ie method valld?
2. If so, are the thirty tast axcessive or inadequate?
3. Are more practical mathode known'?

TABLE I. REQUIREMENT VERSUS CAPAFILITY ESTIMATE - . AT START OF XRL PROGRAM
\begin{tabular}{|c|c|c|}
\hline Prameter \({ }^{\text {¢ }}\) & Requirement (3 figna & Capability Estimate ( \(05 \%\) confidence) \\
\hline Side forces (b) & \(\pm 50\) & \(\pm 105^{\circ}\) \\
\hline Sustain phase thrust (lb) & \(\pm 160\) & \(=100\) \\
\hline Boost phase thrust (lb) & \(\pm ? 00\) & + 250 \\
\hline Boost phase vector location (in.) & \(\pm 0.03\) & \(\pm 0.125\) \\
\hline Boost phase vector angularity (mrad) & \(\pm 0.372\) & \(\pm 2.6\) \\
\hline
\end{tabular}





FIGLRE 3. CALIBRATION FORCE INPUT ASSEMBLY


(qा凶) 32vos 1ndNI
-

HVHOOHD SISXTYNV AA • IGATMISNOO GONGOBAS DNIGVOT JO SLNGINDGS -S GYODIA
(18d) 3ynss3yd 3MIT
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{(1)} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{Fox}} \\
\hline & & & & & & & \\
\hline Ex(m) \(=\) & EXAY & ximer & Vr(mx) & Erar) & - &  & 3mx)(m2) \\
\hline & & & & & & & \\
\hline MyMze & \(\mathrm{x}^{2} \mathrm{y}\) & \(\mathrm{x}^{2} \mathrm{z}\) & \(\mathrm{x}^{2}(\mathrm{mx})\) & \(x^{2}\) (my & \(\mathbf{x}^{\mathbf{2}}\) (Mz) & \(\mathrm{r}^{2} \mathrm{x}\) & \(\mathrm{r}^{2} z\) \\
\hline \(r^{2}\) (mx) & \(r^{2}(\underline{M} Y\) ) & \(r^{2}(m \mathrm{C})\) & \(z^{2} x\) & \(z^{2} \mathrm{r}\) & \(z^{2}\) (mx) & \(\mathrm{I}^{2}(\mathrm{mr})\) & \(z^{2}\) (mz) \\
\hline \((m x)^{2} x\) & (mx) \({ }^{2} \mathrm{y}\) & \((m x)^{2} z\) & \((m x)^{2}(m y)\) & \((m x)^{2}(m z)\) & \((m y)^{2} x\) & \((m r)^{2} r\) & \((m r)^{2} z\) \\
\hline \((m r)^{2}\) ! mx \({ }^{\text {a }}\) & \((\mathrm{MY})^{2}(\mathrm{MX})\) & \((m z)^{2} x\) & (mz) \({ }^{2} 4\) & \(( \pm z)^{2} z^{\bullet-}\) & \((m z)^{2}(m x)\) &  & \\
\hline
\end{tabular}

IABLE II. VARIOUS FORMS OF MLR ANAIYGIM (ON:SHEHFI)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline sevaticn & \multicolumn{5}{|l|}{\(\times\) COHPOMENT (tos} & \multicolumn{5}{|l|}{Y COMPOMENT (b)} & \multicolumn{5}{|l|}{2 COMPONENT: 5} \\
\hline -0nm & \[
\begin{aligned}
& \text { RUN } \\
& \text { 26 }
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& \text { RUM } \\
& 21
\end{aligned}\right.
\] & \[
\begin{gathered}
\text { RUR } \\
\text { 2: }
\end{gathered}
\] & \[
\begin{aligned}
& \text { RUX } \\
& 29
\end{aligned}
\] & \[
\begin{aligned}
& \text { RLN } \\
& 30
\end{aligned}
\] & \[
\begin{gathered}
\text { KUNi } \\
26
\end{gathered}
\] & \[
\begin{gathered}
\text { RUM } \\
27
\end{gathered}
\] & \[
\begin{aligned}
& \text { RUN } \\
& 28
\end{aligned}
\] & \[
\begin{gathered}
\hline \text { RUN } \\
20
\end{gathered}
\] & \[
\begin{aligned}
& \bar{\Gamma} \cdot \overline{J M} \\
& 30
\end{aligned}
\] & \[
\begin{aligned}
& \text { RUN } \\
& 76
\end{aligned}
\] & \(\square\) & \[
\begin{gathered}
\hline \text { RUN } \\
28
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { PUY } \\
? 9
\end{gathered}
\] &  \\
\hline 16-TERH & 6 & 12 & 19 & 10 & 15* & \[
12
\] &  &  & E2t & - & 13 & 26 & 14 & 1. & \(\bigcirc\) \\
\hline \[
\begin{aligned}
& \text { 23-TERNM } \\
& \text { PROOUCTS }
\end{aligned}
\] & \(3{ }^{-}\) & 7 & - & 7* & 17 & \(11^{*}\) & 8 & \(9 *\) & 21 & 15 & \(15^{*}\) & 28 & 1:* & 14 & \\
\hline 23-TERM RATIOS &  &  &  & 7* & \[
17
\] & 12* & 8 & 90 & 22 & : &  & 25 & \% & 14 & 3 \\
\hline 33-TERM & 21 & 16 & 5 & B & 10 & 13 & 11 & 13 & 10* & 10 & \(\cdots\) & 19 & 20 & 15 & 44 \\
\hline 16 ANO 17 & 14 & 25 & 18 & E & 17 & 22 & 29 & 19 & 22 & 16 & 19 & 59 & 20 & \(1{ }^{*}\) & 35 \\
\hline & & COH & OEN & (f-16) & & & COM & OMENT & (ft-ib) & & & 2 CO & PONEN & \(T 16\). & \\
\hline 16-TERM &  & 27 & \[
19
\] &  & Ex & 21 & 55 & 34 & 33 & \(4:\) & 3.5 & 3.5 & 2.4 & 4.1 & ' \\
\hline \begin{tabular}{l}
23-TERM \\
PRODUCTS
\end{tabular} & 35 & 25* & 70* & 79 & 102 & 17* & 82 & 31* & 30 & 45 & 1.6 & 1.9 & 2.2 & 4. & 1.4 \\
\hline 23-TERM RATIOS & 35 & 15* & \(70^{\circ}\) & 70* & 103 &  &  & \(31=\) & Cige: & 848 & 3.5 & 2.1 & 2.2 & 1. & \\
\hline 33-TERM & 233 & 256 & 219 & 83 & 119 & 43 & \(18{ }^{*}\) & 59 & 31 & \(3{ }^{\circ}\) & 0 & \(0{ }^{2}\) & 0.4- & \(\therefore\) & \\
\hline 16 AND 17 & 216 & 237 & 137 & 84 & 119 & 20 & 74 & 43 & 37 & 40 & \(0.2^{\circ}\) & 10.6 & 3.5 & 3.6 & \\
\hline
\end{tabular}
"BEST RESULTS FOR TEST RUN IMDICATED
"BEST EDUATIOM" RESULTS IN SHADED BL
ABLE III. STANDAHD ERHORS RESULTING FROM WIIR MRFDIC TIONS.
HOGST RANGE 25 TO \(\ddagger 0\) KILOPOUNDS


Flillek \(\quad\). RESIDtiAl ERROR PLOTS, Y COMPONENT


FIGURE 8. RESIDUAL. ERROR PLOTS. 7 COMPONENT




FICURF 10. RESIDUAL ERROR PLOTS, MY COMPONENT


FIGURE 11. RESIDUAL ERIROR PLOTS, MZ COMPONENT

「ABLE iV. REQUHEMENT VERSUS DEMONSTRATED CAPABILITY AT FND OF CALIBRATION ANALYSIS
\begin{tabular}{|c|c|c|c|}
\hline Phasc & Parameter & Requirement & Capability \\
\hline Panst & \begin{tabular}{l}
Side force (lb) \\
lertical lorce (thrusi) itt: \\
\(\checkmark\) setor location in. 1 \\
\(\because\) ctor ansularity (mrad)
\end{tabular} & \[
\begin{aligned}
& =30 \\
& =200 \\
& =0.03 \\
& =0.372
\end{aligned}
\] & \[
\begin{aligned}
& =10 \\
& -110 \\
& =6.00 \\
& -1.2
\end{aligned}
\] \\
\hline Sustai, & \begin{tabular}{l}
Nide force (lb) \\
Vertical force (lb) \\
Vector location (in.) \\
Vector angularity (mrad)
\end{tabular} & \[
\begin{gathered}
\therefore 50 \\
+160 \\
- \\
-
\end{gathered}
\] & \[
\begin{aligned}
& =00 \\
& =32 \\
& =0.15 \\
& =4
\end{aligned}
\] \\
\hline
\end{tabular}

\title{
 amasilum percllijraie particly size
}

Bernard J. Alley
Army Propulsion Laboratory and Center Research and Engineering Directorate
U. S. Army Missile Command

Redstone Arsenal, Alabama 35809

\begin{abstract}
An interlatora:cr, study of a method ior measuring the particle size distrioucion of finely ground ammonium perchlorate was conducted by the Analytical Chemistry Working Group of the Interagency Chemical Rocket Propulsion Group (ICRPG). The primary objective of the study was to determine the suitability of the method for use as a standard specification procedure by evaluating its precision. Single analyses of two different amonium perchlorate samples, having weight median diameters in the range of \(20-30 \mu\) were made by each of nine laboratories, using the same liquid sedimentation technique and equipment. The randow error wichin laboratories and the systematic error among laboratories were resolved, and confidence intervals were placed on the deteruinatian of specific surface areas and weight mean diameters. The zandom error estimate was acceptably small; however, the systematic error estimate was so large that the method is not recommended for use as a standard specification procedure.
\end{abstract}

\section*{INTRODUCTION}

Ammonium parchlorate (AP) is widely used as an oxidizer in composite and cmuposite-modified double-base propellants. The particle size distribution of the AP has a pronounced effect on the propellant processing characteristics and ballistic properties, and therefore tust be precisely measured and controlled. The recent use of finely ground Af in high burning rate propellants places greater demands on the preciston of particle size analysis.
wora! anily, is methods were evaluated and compared during a


 Corquan, ": gave prosise results and was recommended for the general analunis of finc AD. The method was used with guceass by a number of lahoratories throughout the propulsion industry.

The interlaboratory study (Round Robin) described here was subsequently conducted by the Analytical Chemistry Working Group of the Interagency Chemical Rucket Propulsion Group (ICRPG), with nine laboratories participating. Ine onjectives were: (1) to determine tin suitability of the M-S-A method for use as a standard specificat.an prosed.ec based on an ustimatint of its precision; (2) to deterri: : . . pffertivenes nt i. stmple experimental design; and (3) to Uluater ad somart : erformances of the participatirg laboratories.

\section*{EXPERIMENTAL}

Each of the nine laboratories was sent three samples of nominal 20-3014 AP mixed with an inert polymer, one selected at random from each of three different batches. One of the samples was provided ainply for practice prior to initiation of the Round Robin. The ocher two, degignated materials \(A\) and \(B\), were to be analyzed in accurdanci with tite detailed Round Robin procedure. The inatruccions spestified that the analysis be conducted by a skilled operator, and that tice \(A\) and \(B\) samples be analyzed on different days.

Hriefly, the particie analysis procedure \({ }^{1}\) was as follows. A \(15-\pi g\) sample of the material was dispersed with a surfactant and suspended in a freding liquid composed of \(60 \%\) chlorobenzene and \(40 \%\) benrene by volume. The particle suspunsion was placed on top of chlorobenzenc in a special centrifuge tube. The larger particles were allowed to fall under the influence of gravity, and the emaller particles werc centrifuged, All of the particles were collected in - unilom bore capillary at she bottom of the centrifuge tube. The diameter schedule used in the Round Robin and a topical analysis are sinown in Table 1 .

The sodiment heipit at ach particle diameter of the achedule was eajure: as a function at setting times precalculated from Stofes law. The percentage by weight (volume) of particles greater than each successive diameter was calculated by dividing the corresponding sediment height by the total height at the end of the analysis. It will be noted from the table that the percentages are not independent.

Table 1
Tupi:cl Ammonim Percillorate Particle size Analysis with the Mine Safety Appliances ( \(\mathrm{M}-\mathrm{S}-\mathrm{A}\) ) Analyzer
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\begin{tabular}{l}
Diameter \\
(b)
\end{tabular}} & \multicolumn{2}{|l|}{Sedimentation} & \multirow[t]{2}{*}{Sedimentation Time (min, sec)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Sediment } \\
& \text { Height } \\
& \text { (Relative) }
\end{aligned}
\]} & \multirow[b]{2}{*}{Weight \% > DLameter} \\
\hline & Mode & Rate (rpm) & & & \\
\hline 200 & Gravity & & 0, 4.1 & 0 & 0 \\
\hline 149 & & & 0, 7.5 & 0.5 & 1.45 \\
\hline 105 & , & & \(0,15.0\) & 1.0 & 2.90 \\
\hline 74 & 1 & & 0, 30.2 & 2.2 & 6.25 \\
\hline 52 & & & 1. 1 & 5.5 & 15.94 \\
\hline 37. & & & 2, 1 & 10.8 & 31.30 \\
\hline 25 & \(\downarrow\) & & 4, 25 & 16.5 & 47.83 \\
\hline 18 & Centrifuge & 300 & 0,27 & 21.0 & 60.87 \\
\hline 9 & & 600 & 0, 58 & 26.2 & 75.94 \\
\hline 5 & & 1200 & 0, 52.5 & 29.5 & 85.51 \\
\hline 3 & & 1800 & 1, 19 & 31.5 & 91.30 \\
\hline 2 & & & 2, 2 & 32.5 & 94.20 \\
\hline 1.2 & & & 5, 16 & 33.5 & 97.10 \\
\hline 0.6 & & 3600 & 6, 2 & 34.2 & 99,13 \\
\hline 0.4 & \(\downarrow\) & & 9,55 & 34.5 & 100 \\
\hline
\end{tabular}

\section*{RESULTS AND DISCUSSION}

The particle size distribution data are given in Tables II and IIJ. The data for laboratories 3 and 8 were onitted from the calculations of averages and the estimates of variances ( \(\mathrm{S}^{\prime \prime}\) ) and standard deviariona (5) because of the outliers in Table III and the abnormal shapes of their particle aize distribution curves.

The average particle size distribution data are plotred on logprobability scale in Fig. 1. The shapes of the curves are typical of those obtained for finely ground unimodal amonium perchlorate. The difference between the particle size distributions of the AP in the two materials was purposely made small so that the random artors for their respective analyses could be assumed to be equal.
Table II
Marticle Size Analysis Data for Amonium Perchicrate in Material A
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Diameter } \\
(\mu)
\end{gathered}
\]} & \multicolumn{9}{|l|}{Laboratories} & \multirow[t]{2}{*}{Average \({ }^{\text {a }}\)} & \multirow[t]{2}{*}{\(\mathrm{S}^{23}\)} & \multirow[t]{2}{*}{\(S^{3}\)} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \(\stackrel{ }{*}\) & 9 & & & \\
\hline \multicolumn{13}{|l|}{200} \\
\hline 149 & & & & & 0 & & & 0 & & 0 & - & - \\
\hline 105 & & 0 & & 0 & 0.59 & 0 & 0 & 3.16 & 0 & 0.08 & 0.0497 & 0.2230 \\
\hline 74 & 0 & 0.86 & 0 & 2.12 & 5.14 & 0.31 & 2.19 & 7.91 & 0.88 & 1.64 & 3.071 & \(\therefore .752\) \\
\hline 52 & 5.17 & 6.90 & 3.77 & 9.39 & 15.41 & 3.38 & 10.38 & 19.30 & 8.21 & 8.41 & 15.33 & \(\therefore .915\) \\
\hline 37 & 17.24 & 20.26 & 10.46 & 24.85 & 27.47 & 15.38 & 23.77 & 35.44 & 23.75 & 21.82 & 18.92 & 4.350 \\
\hline 25 & 34.48 & 35.34 & 18.83 & 42.42 & 46.05 & 32.00 & 38.52 & 51.90 & 41.06 & 38.55 & 24.55 & 4.955 \\
\hline 18 & 50.29 & 46.55 & 37.24 & 58.79 & 58.89 & 45.85 & 56.01 & 59.81 & 53.37 & 52.82 & 29.54 & 5.435 \\
\hline 9 & 68.97 & 68.53 & 68.62 & 83.94 & 82.21 & 72.92 & 78.42 & 77.53 & 75.95 & 75.85 & 37.00 & 6. 083 \\
\hline 5 & 81.03 & 82.76 & 83.68 & 90.30 & 93.48 & 86.15 & 89.89 & 91.77 & 87.39 & 87.29 & 19.19 & 4.381 \\
\hline 3 & 89.66 & 91.38 & 90.79 & 93.33 & 98.62 & 92.00 & 94.54 & 96.52 & 92.96 & 93.21 & 8.088 & 2.844 \\
\hline 2 & 93.39 & 93.53 & 94.14 & 96.06 & 100.00 & 95.69 & 96.72 & 98.10 & 95.89 & 95.89 & 4.912 & 2.216 \\
\hline 1.2 & 95.69 & 95.69 & 96.23 & 97.88 & & 98.46 & 98.36 & 99.37 & 98.24 & 97.76 & 2.447 & 1.564 \\
\hline 0.6 & 98.56 & 99.57 & 100.00 & 100.00 & & 99.38 & 100.00 & 100.00 & 99.71 & 99.60 & 0.2705 & 0.5201 \\
\hline 0.4 & 100.00 & 100.00 & & & & 100.00 & & & 100.00 & 100.00 & - & - \\
\hline
\end{tabular}

\footnotetext{
Laboratories 3 and 8 oaitted.
}
Table III
Particle Size Analysis Data for Amondum Perchlorate in Material B
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Dineter - } \\
(\mu)
\end{gathered}
\]} & \multicolumn{9}{|l|}{Laboratories} & \multirow[t]{2}{*}{Average \({ }^{\text {b }}\)} & \multirow[t]{2}{*}{\(s^{2} \mathrm{~b}\)} & \multirow[t]{2}{*}{\(s^{\text {b }}\)} \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & & & \\
\hline 200 & 0 & & & 0.35 & & & 0 & 0 & & 0.05 & 0.0175 & 0.1323 \\
\hline 149 & 1.45 & & & 2.48 & 0 & 0 & 1.41 & 4.64 & 0 & 0.76 & 1.028 & 1.014 \\
\hline 105 & 2.90 & 0 & & 4.26 & 2.88 & 0.49 & 4.24 & 17.19 & 2.81 & 2.51 & 2.802 & 1.674 \\
\hline 74 & 6.38 & 4.65 & 0 & 9.93 & 7.05 & 4.41 & 10.73 & 33.75 & 6.25 & 7.06 & 5.942 & 2.438 \\
\hline 52 & 15.94 & 13.95 & 7.07 & 22.34 & 18.27 & 10.29 & 20.62 & \(49.37{ }^{\text {a }}\) & 20.00 & 17.32 & 17.81 & 4.220 \\
\hline 37 & 31.30 & 31.01 & 14.13 & 38.30 & 31.09 & 24.51 & 35.87 & 63.44 & 36.25 & 32.62 & 21.41 & 4.627 \\
\hline 25 & 47.83 & 49.61 & \(28.27^{\text {a }}\) & 53.90 & 52.24 & 43.14 & 53.95 & 76.56 & 53.13 & 50.54 & 15.91 & 3.989 \\
\hline 18 & 60.87 & 58.14 & 53.00 & 66.67 & 65.38 & 57.84 & 69.49 & 80.94 & 65.00 & 63.34 & 19.87 & 4.458 \\
\hline 9 & 75.94 & 76.74 & 81.27 & 86.17 & 83.65 & 78.43 & 86.72 & 86.56 & 83.13 & 81.54 & 19.89 & 4.459 \\
\hline 5 & 85.51 & 87.98 & 92.93 & 94.33 & 93.31 & 89.22 & 94.35 & 96.87 & 91.25 & 90.85 & 11.66 & 3.415 \\
\hline 3 & 91.30 & 94.57 & 96.82 & 97.52 & 98.40 & 94.12 & 97.74 & 99.37 & 95.94 & 95.66 & 6.32' & 2.315 \\
\hline 2 & 94.20 & 96.12 & 99.29 & 99.29 & 99.04 & 97.55 & 99.47 & 100.00 & 98.13 & 97.69 & 3.735 & 1.933 \\
\hline 1.2 & 97.10 & 97.67 & 100.00 & 100.00 & 99.68 & 99.02 & 100.00 & & 99.38 & 98.98 & 1.330 & 1.153 \\
\hline 0.6 & 99.13 & 99.22 & & & 100.00 & 100.00 & & & 100.00 & 99.76 & 0.1627 & 0.4034 \\
\hline 0.4 & 100.00 & 109.00 & & & & & & & & 100.00 & - & - \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {a }}\) Outliers by Dixon's test.
blaboratories 3 and 8 omitted.
}


Flg. 1. Asmonium Perchlorate Particle Size Diseribueion Curves

Of the las'ze number of aingle-valuad variables that can be caiculated from the particle eize distribution data, the two chosan for this progry warc apecific aurface area ( \(S_{W}\) ) and waight man diamater \(\left(d_{w}\right)\). The apacific aurface area corrolaten wall with propeliant burning rates \({ }^{2}\) and is very senoitive to variations in the dimeters of amali particles; the waight man dimeter is vary saneltive to variations in the dimatari of large particias. The \(\mathrm{s}_{\mathrm{w}}\) and do values, astuning apherical particles, ware calculated from the data in Tables II and III by the following formulaa:
\[
\begin{align*}
s_{w}\left(m^{2} / g\right) & =3.077 \sum_{i=1}^{n} \frac{W_{i}}{d_{i}}  \tag{1}\\
d_{w}(u) & =\sum_{i=1}^{n} d_{i} W_{i} . \tag{2}
\end{align*}
\]

Whire \(W_{1}\) is the weight fraction of particles in the 1 th aize interval, and \(d_{1}\) is an average diameter of the \(i^{\text {th }}\) interval.

 short in Fig. 2. Horizontal and vertical lines were drawn through the medians of the points, and a \(45^{\circ}\) line was drawn through their intersection. The perpendicular distances between the points and the \(45^{\circ}\) line are a measure of the random error within laboratories, and the spread of points along the \(45^{\circ}\) line is a measure of the systematic error among laboratories.


Fig. 2. Two-Material Plot of Ammonium Perchlorate Specific Surface Areas

The arrangement of points shows that the laboratories tended to get either high or low results on both materials. Moreover, the systematic error is appreciably larger than the random error. Most of the leboracories have a mall random error, indicating that they did careful work, The differences between the two materiale for laboratoriet 3 and 5 were found to be atatistically aignificant at the \(95 \%\) confidence level when compared with the average difference for all laboratories.

Pipure 3 is the roomaterial XY plot for \(d_{\text {d }}\). The laboratory 8 vaiue differ: markedly from the nthers, particulariy for the analyais of rite:ial s, and was not considered when drawing the horizontal and vertical lines. The random error for \(d_{0}\) appeara to be greater than that for \(s_{w}\). It should be recognized, however, that the \(d_{w}\) values are larger and that \(t_{w}\) and \(s_{w}\) were colculated from the same particle size distribution data. The systematic error among laboratories is not noticeably larger than the random error within laboratories.


Fig. 3. Two-Material Plot of Ammonium Perchlorate Weight Mean Diameters

The extremely high \(d_{w}\) value for laboratory 8 clearly indicates some deviation from the recommended procedure, and this laboratory was omitted from some of the statistical analyses described later. Laboratory 3 was also omitted from some of these analyses because of its low \(d_{w}\) value and the outliers and abnormally shaped curves nentioned earlier.

An anglysis: of variance \({ }^{6,7}\) is given in Table IV. The resulcs, as expected, agree with the qualitative incerprerations of the data ir. Figs, 2 and 3 . The variance of \(S_{w}\) averages among laboratories is statistically significant when compared with the estimated random error variance ( \(\mathrm{S}_{\mathrm{k}}^{\mathrm{R}}\) ); whereas that for \(\mathrm{d}_{\mathrm{w}}\) is not statistically significant. The laboratories \(x\) materials mean square (MS) LM 18 considered to be the best estimate of the true random error variance.

Table iv
Arialy is of Variance (Laboratories 3 and 8 Omitted)


\footnotetext{
\({ }^{\text {a }}\) Statiatically bignificant at the \(95 \%\) or higher confidence level.
}

The estimate of the systematic error variance among laboratoriea ( \(S_{i}^{*}\) ) is also an important couponent of the aetimate of the overall variance ( \(S_{d}^{2}\) ) of the method. The formulas for calculating \(S_{L}^{2}\) and \(s_{d}^{2}\) are given in the cable. The expected man squares (EyS) are for a random model, which was assumed in this case.

Estimated random and syatematic error variances are given in Table \(y\) for various combinations of the \(s_{w}\) and duta. The \(S_{2}^{2}\) and \(S_{L}\) values for apecific surface area determinetiona are not ignificantly affectid by omitting laboratoriae 3 and 8 , but they are aignificantly rgduced in the case of maight man dimeter determinations. The value of \(S_{R}\) for the detemination of apecific aurface area is significantly reducid when laboratories 3 and 5 are owitted, as could have been expected irom Fiy. 2. However, a comparimon with the 0.00137 value independently \(i b\) ained by replicate determinations within laboratory 1 (the originating laboratory) indicates that the value of 0.000048 is not a good eatimate of the true random error veriance.

Table V
Estimated Random and Syatemetic Exror Variameas
\begin{tabular}{|c|c|c|}
\hline & \(\mathrm{s}_{\text {d }}^{2}\) & \(\mathrm{s}_{\mathrm{L}}^{2}\) \\
\hline \multicolumn{3}{|l|}{Specific Surface Area ( \(\mathrm{m}^{2} / \mathrm{g}\) )} \\
\hline All Laboratories & 0.001171 & 0.006192 \\
\hline Omit Laboratorias 3 and 8 & \(0.000779^{6}\) & \(0.006328{ }^{\text {b }}\) \\
\hline Onit Laboratorias 3 and 5 & 0.000048 & -- \\
\hline Within Laboratory \(1^{\text {a }}\) & 0.001374 & - \\
\hline \multicolumn{3}{|c|}{Weight Mas Diamatar ( \(\mu\) )} \\
\hline All Laboratories & 48.78 & 62.94 \\
\hline Onit Laborstories 3 and 8 & \(7.60{ }^{\text {b }}\) & \(10.25{ }^{\text {b }}\) \\
\hline Within Laboratory \(i^{\text {a }}\) & 1.73 & -- \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
\[
a_{D F}=5 .
\] \\
bvalues used for calculating confidence intervals.
\end{tabular}} \\
\hline
\end{tabular}
 within laboratory 1 is aignificantly amaller at the \(95 \%\) confidence level than \(s\) for the lound Robin data with laboratories 3 and 8 omitted.

The preciaion of the method is defined by the confidence limits ( \(X \pm L_{k}\) ), where \(X\) is an analysis remult and \(L_{k}\) is one-half the lenych of the conifiance interval, in this case it the \(95 \%\) level. These onehalf valuen are siven in Table VI. They were calcylated from the formulas in the table and the astimated \(S_{R}^{2}\) and \(S_{L}^{2}\) variance components noted in Table \(V\). The degreas of freedom associated with \(S_{d}\) were estimated by sacterthwaltes approximation. \({ }^{7}\)

Table VI
Practsion of M-8~A Analysis Method
(L4 at the 95\% confidence level)
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Number of Analyses ( \(n\) )} & \multicolumn{2}{|l|}{Spectific Surface Axen (n/8)} & \multicolumn{2}{|l|}{Weight Mean Diameter ( \(\mu\) )} \\
\hline & Within a Laboratory & Laboratory at Randon & Within a Laborstory & Laboratory at Random \\
\hline 1 & 0.0683 & 0.201 & 6.75 & 9.55 \\
\hline 2 & 0.0483 & 0.196 & 4.77 & 8.47 \\
\hline 3 & 0.0394 & 0.194 & 3.89 & 8.08 \\
\hline 4 & 0.0341 & 0.193 & 3.37 & 7.88 \\
\hline \[
\begin{aligned}
& { }^{a} L_{\frac{x_{2}}{}}= \\
& b_{L_{\frac{1}{2}}}=
\end{aligned}
\] & \[
/ \sqrt{\mathrm{n}}, \quad \text { wh }
\] & \(t_{f}\) is stud \(f\) degrean o
\[
\begin{aligned}
(f & =6.69 \\
f & =9.02
\end{aligned}
\] & \begin{tabular}{l}
eedom. \\
apecific sur waight mean
\end{tabular} & \begin{tabular}{l}
\[
(f=6)
\] \\
ce area, ameter).
\end{tabular} \\
\hline
\end{tabular}

The estimated precision of amayzing Ap amples within a single laboratory (random error) is given by the confidence intervals in the second and fourth colums of Table VI. These intervals apply for the analysis of AP aples havin particle size diatributions within the range shown in Fig. 1. Note that the praciaion improves with an increase in the muber of roplicate analyaes.

The estimated precision of analysea, conaidering the random plus the systematic error, by any laboratory selectad at random is given by the confidence incervals in the chird and fifth columas. Ansuming the participating laboratories are representative of the entire population of laboratories, these preciaion estimes detarmine the suitability of the method for use as a standard specification procedure. The error is larger than for analyses within a single laboratory because of the contribution of the systemetic error variance ( \(\mathcal{S}_{\mathcal{L}}\) ). Nor is the precision improved much in this case by replicate malyaes, becmee the replicaces ( \(n\) ) reduce only, the smaller \(g_{R}^{2}\) component of \(S_{d}\).

Perhaps in actual practice a higher degree of confidence than 95\% would be desired. Ior higher degrees of confidence the value of \(t_{f}\) would be larger, and the confidence intervals would increase accordingly. The accuracy (bias) of the method could not be eatimated in this Round Robin, bec. Lise a standard AP sample of accurately known particle size is not available.


Fig, 4. 95\% Confidence Intervals on the Percentage Points of the Particle Size Analyais of Ammonium Perchlorate in Material A by Laboratory 1
 c: a ictticle site distribution curve. This iz illuetrated in Fig. it ior tir analysis of a single sample of material \(A\) by latoratory 1. ".he corifdence irtervals were calculated using tho viriance escimains in iable II. Such a precision istmate is of vaiue for detemining wnether the variations in particie size distr, bution ure due to the analysis procedure or the grinding process.

\section*{CONCLUSIONS AND RECOMMENDATIONS}

The precision of analyses within a single laborascry is conatdered adenuate, and the fict that a number of laboratories are successfilly ising the procedure supports this conclusion However, the methoc is nut recommented as e standard specification procedure tus the pirt ele
 large systemati: arror among laboratories in the determination of specific surface area. The great difference between thesc two ertors could be due to some deficiency in the analytical procedure that permits laboratordes to introduce their own variations. One likely area of inconsistency is in the dispersion of the AP parcicles, but there are no known alternative techniques that would not also affect the aceuracy of analyses.

The simple eqerimental design, without replication, encouraged laboratories to participate, thus enabling a more reliable estimate of systematic error among laboratories. Past experience has showit tha' this systematic error is aliost always significantly greater than the random error within laboratories.

The coments and suggestions of the clinical session panelists are particularly solicited with respect to the following elements of the Round Robin statiscical analysis:
(1) Estimation of the degrees of freedom associated with \(S_{\text {d }}\). and \(S_{\text {I. }}\).
(2) Determination of confidence intervals or regions for particle size distribution curves.
(3) Criteria for the rejection of extreme laboratories and data.
(4) Experimental design for Round Robins and possible alternatives.

\section*{REFERENCES}
1. Alley, B. J., Dykes, H. W. H., and Howard, W. W., "Particle Size Analysis of Pine Ammonium Perchlorate and Correlation with Propellant Burning Rates (U)," Raport No. Rx-TR-68-4, U, S. Army Missile Command, Redstone Arsenaly Ale., April 1968 (Confidential report).
2. M-S-A Particle Sire Andyzer, Oparatipa Procedures and Application, Mine Safety Appliances Company, Pittaburgh, Pemaylvania.
3. Whitby, K. T., "A Rapid General Purpose Centrifuge Sedimentation Method for Measurent of Size Diatribution of Suril Particles," Heating. Piping and Air Conditioning, 61, June 1955.
4. Dixan, W. J., and Massey, P. J., Jr., Introduction to Statistics Analysis, McGrawnill Book Co., New York (1957).
5. Youden, W. J., "Graphical Diagnoais of Interlaboratory Test Resulta," Industrial Ouality Control, Vol. 15, No. 11 (1958).
6. Youden, W. J., "Statistical Techniques for Collaborative Tests," The Association of Official Analytical Chomists, Washington, D. C., 1967.
7. Hicks, C. R., Fundsmantal Concenterin the Donten of Fmarimante, Holt, Rinehart, and Winston, New York (1964).

\author{
NEW ANALYSES AND METHODS LEADING TO LMPROVED TARGET ACQUISITION REQUIREMENTS INVOLVING SYSTEMS, GEODETIC AND RE-ENTRY ERRORS, AND INCREASED WEAPONS EFFECTIVENESS \\ FOR CONVENTIONAL WEAPONS* \\ Hans Baussus-von Luetzow \\ U. S. Army Engincer Topographic Laboratories \\ Fort Belvoir, Virginia
}

SUMMARY. After a cursory critique of currently used methodology for the study - carget-accuracy requirements for artillery weapons, this research note is concerned with the development of analytical methods and two different though interrelatable and essentially additive optimization concepts. If implemented within the context of TACFIRE, these methods are conservatively estimated to provide on the average a \(30 \%\) greater weapons effectiveness. Although the intra and extra weapons systems employment parameters are interdependent, variable, and changing, an integrated operational optimization is achieved. The methods outlined are also useful in weapons R\&D and related aystems analyses. Furthermore, the rather cogent requirement and related recomendations or conclusions arrived at may be of considerable significance for certain R\&D and combat development activitles.

FOREWORD. It was originally contemplated to finalize this study in 1967. The author who was also investigating more powerful methods in connestion with burst and target height varlabilities and the use of conventional cratering and nuclear weapons became; however, increaslngly convinced that rudimentary or ahort-cut methods had to be considered unsatisfactory. A more rigorous and mature approach required time and concentration in view of the slow progress made in the past and also because of a satellite syatems study performed during 1967. As to the word "improved" in the title, this should rather be interpreted as "less restrictive," Implementation of the methods and concepts developed would undoubtedly lead to a significant increase of Army weapons effectlveness. In addition, the new methods are expected to have some ramifications pertaining to a variety of R\&D and combat development activitles. The technical responsibility for this study is exclusively the author's who appreciates USAETL's continued interest in this kind of effort.

\footnotetext{
*This article appeared as Research Note No. 35, U. 5. Army Engineer Topographic Laboratories, Fort Belvoir, Virginia.
The remainder of this article has been reproduced photographically from the author's manuscript.
}

\section*{NEW ANALYSES AND METHODS LEADING TO IMPROVED TARGET ACQUISITION REQUIREMENTS INVOLVING SYSTEMS, GEODETIC AND RE-ENTRY ERRORS, AND INCREASED WEAPONS EFFECTIVENESS FOR CONVENTIONAL WEAPONS}
1. Introduction.
1.1 The essential ideas underlying this report were developed in August 1966 after an evaluation of the following material: "Target Acquisition Accuracy Requirements, 1965-1975 (U)" (1): "A Mudel for Determining Target Location Accuracy Requirements" (2); "Trip Report to CDC Artillery Agency" (3); and "A Technical Analysis to Support Map Accuracy Requirements" (4).
1.2 According to Ref. (3). additiomal contractual work, to start in July 1967 and experted to last one year. was considered necessary by USACI)( in order to improve the methodology report (1). It led to the report "A Study of Target Location Accuracy Requirements for Artillery Weapons - Army 1975 (U)" (5). This study, conducted at the Combined Arms Research Office, Fort Leavenworth, Kansas, and coordinated with the USACiDC Artillery Agency, Fort Sill, Oklahoma, applied the methodology of Kef. (I) to all artillery weapons of the 1966.1975 time frame.
1.3 The methodulogy in both Ref. (1) and Ref. (2) is essentially restricted to the 2-dimensionul problem of fragmentation projectiles with impact fuzes and thus less applicuble with respect to height bursts. It consists of computing a measure of effectivenesw f (nee Kef. (1), 13-1, eq. (2)) and a fractional coverage C ( \(\mathrm{Cl}^{\mathrm{l}}\) in Ref. (2)) so that the fraction of casualties \(F=f \cdot C\). Although it has not been spelled out explicitly, \(f\) is the probability of hitting the target which is computed by dividing the common area beIweren target and effecte pattern, \(a_{\text {, by }}\) bye target urea \(A_{T}\). The determination of \(f\) involves the use of a quantity \(A_{L_{1}}\) called the lethal area. A \({ }_{L}\) and \(C\) are calculated under the assumption of a uniform target distribution. As to multiple volleys, the assumption is made that the percentage reduction \(g\) in \(F\) will be directly proportional to the respective \(g_{n}\) in \(F_{n}\) ( \(n\) volleys). Through the use of this methodology, Spears strives to arrive at the eanclusion that "Changes in single-volley coverage of a target by a weapons effrots pattern (a quantity relatively casy to determine) can be used as a basis for determining eriticul reductions in effretiveness of multi-volley fire (a quantity difficult to determine arenrately.." Through the introduction of \(\frac{a}{A_{p}} \sum_{i} \Lambda_{L i}\) as a measure of the
1. Numbers in parcotheres appraring in the text refer to "lartERATURE CITEI)," p. I3, while mumbers in puremthesen on the right margin refer to equations.
ancrane fraction of the fircpower which hits the target. i.e. . Ihe total casualty pollonial
 "їі"

 Ines. it is all approximation within an approximate fratmeworh. Refercome (t) states
 the werakest link in the methodulogy employed in Ref. (1) and (2) and eriticize's various wher asomphions made. Inder the critcrion that the target acepuisition deses not de-
 -Implien that the map areduracy or error is the prime ipal combributor to the wrapen site surve! error amil the target leration error, it is comeluded in Ref. (4) that present map arrurarider can be relawed or that the Class A Xational Map Standards hawr aboul Iwire the reguired provision. This result has bren ohtaimed by simple raleulations hamed on the amomption that the lotat varianere is the sum of the individual varianere ine hating


I. 4 In virw of the shortomings emomerated in paragraph 1.2 and in order to provide a soumel husis lor decrision making, this report was undertaken. Objertises of the repore are am lollows:
1.4.1 A rigorons malhematical-statistical analysis insolving a dirnet. physi-



 or promralits.
1.4.3 Ophimization for multiple volle'ys as a men and most signifirant disronery.
1.4.t lionsideralion of inhomogromeons targel distributions and its chamge aflor the lirsl vallan.
1.4.i Incorporation of !uedrorologiral error variances.
I.t.6 I tilization of nomerircular distribution parametors.
1.4.7 Ippliaation ol nime-inotropic frapmentation patherns.
1.4.8 I total s-stcms optimization or marginal utility analysis involsing the whole range and rimplosment speretrom of a wrapors systems, i.c., a grand optimum.
I.5 A contemplated Part II of this study will include a supplemental analysis for height bursts (timu and ambient fienes) including vertical larget location errors. \({ }^{\mathbf{z}}\) Parts III and IV will deal with eratering conventional weapons and nuchar worapons respecetively, and a partially different methorlology will be required in these areas.
1.6 The optimal aiming pattern analysis together with the optimal owrall wrapons-systems amplos ment concept developed in this report allow -on the averagea considerable relaxation pretaining to stringent target-acquisition requirements in gencral and map-arcurary requirements in particular. They tend to shorten the firing engagement time and are also advantageous in case of ammunition shortage. An exception would be hardened-point targets. According to the experience gained (as mentioned in footnole +). target-location proors can be very large, and identification and loceation problems will probably exist for longer distances if direct distance and azimuth measurements are preformed. though to a lesser extent. Meteorological errors are also not supposed to become negligible under many combat conditions.' In view of the above, numerically fixed and extreme accuracy requirements synonymous with sophisticaled and very expensive equipment which very often dees not live up to experctations under realistic conditions are tinnecessary. The R\&D process in the areas of more accurate mapping and target locration being cessentially independent of that pertaining to new weapons systems should be pursued at a normal lechnological pace and should not overemplasize aceuracy but rather concentrate on versatility, reliability, and survivability. This is also consistent with a recent directive of the Army Chief of Staff.

As exhibited by this study. the intra and (exira weapons systems employment parameters are interdependent, variabte, and changing but nevertheless allow a continuous integrated operational optimization. In so far, the study is also of significance for the Geographic Intelligroner and Topographic: Supporl Systems Slody (GIANT), the development of the Position and Aaimuth Detormining System (PADS), and the develop. ment of the l.ong Range Position Determining System (L,RPIS). Finally, the methods:
 Developments Command and the Nateriel Command.
2. In this regart. it may the worthwhile to mention that actording to Ref. (3). (). s. Sipars. Seionlific Adisor to CDIC. Artillery Agenes . has stated the following: "Il is not that we don't comeider the vertiral component important, we simpls reatiar that it is a difficult problem to solve. Onere we get a complete handle on the hori-

2. Individual Hit Probabilities. The fragment damage pattern of a particular artillery shell is not isolropic as can be inferred from Fig. I. It depends also on range, helght of burst, and impact angic. Taimiations contain. in gernerai, insitupir daiu ine cluding distance from burst, total number of effective fragments, and averager number of effective fragments per arca unit.

An example from Hef. (6) is given below: \({ }^{3}\)
Fragment Damage of Shell. IEE, \(155-\mathrm{mmI}\). N10::
Initial Fragment Velocity \(\mathbf{3 , 5 0 0} \mathrm{f} / \mathrm{s}\)
Source: Army TM 9.1907, Table XXXY
\begin{tabular}{|c|c|c|c|c|}
\hline Dist from & \begin{tabular}{l}
Total \\
Number of
\end{tabular} & Average Number of Effective & For the Effecti & \\
\hline Burst & Effective & Fragments & Weight & ल \\
\hline in Fret & Fragments & \(\operatorname{Pers} \mathrm{S}_{\mathrm{g}} \mathrm{Ft}^{\text {d }}\) & uzs & 1/8 \\
\hline r & N & B & m & 1 \\
\hline 20 & 1880 & . 374 & . 0108 & 2340 \\
\hline 30 & 1740 & . 154 & . 0148 & 2000 \\
\hline 40 & 1640 & . 0816 & . 0195 & 1740 \\
\hline 60 & 1450 & . 0321 & . 0310 & 1380 \\
\hline 80 & 1300 & . 0162 & . 0440 & 1160 \\
\hline 100 & 1220 & .00971 & . 0562 & 1030 \\
\hline 150 & 1040 & . 00368 & . 0832 & 84.5 \\
\hline 200 & 940 & . 00187 & . 109 & 738 \\
\hline 300 & 770 & . 00068 & .166 & 598 \\
\hline 400 & 640 & . 00032 & . 235 & 503 \\
\hline 700 & 420 & .00007 & . 515 & 340 \\
\hline
\end{tabular}

From individual, i.e., unaveraged. fragment patterns, it is possible to determine through the use of sampling techniques individual hit prohabilities, Thus, \(p_{1}\) (F. \(\rho . \phi\) ) would be the average probability that a person or item with eross section \(F\) which is located at a distance \(\rho\) and azimuth \(\phi\) from the burst suffers exactly one hit. In this respect, the, azimuth is to be counted counterelockwise from the line of fire. By \(P_{1}(F, \rho, \phi)=P_{1}+P_{2}+\ldots\). we designate the probability of at least one hit. With reffrence to human beings, it would be possible to drop the letter \(F\). For identification purposes, we denotr a semi-fixed pattern of human beings by superseripts and have
3. An excellemt introduction into kinds and chararturistien of explosiver (munitions) is given in Ref. (7).

Fig. 1. Damage pattern - 1.5.-mm HE कhell. vint.


3. Diatributions and Distribution Parameters. Wrapon distribution parameters for a specifie range are the line of fire and lateral standard deviations \(S_{r}\) and \(S_{Q}\). As at ready mentioned, height uncertaintie:- are considered ungligible in this invertigation (Part I). In addition, we have target-loration errors depending, e.g.. oll map accuracy. target identification, and location, \({ }^{4}\) and meteorological errors. The corresponding dis-tributions may for simplicity be deseribed by the two parameters \(\sigma_{\mathrm{f}} \mathrm{f}\) and \(\sigma_{\mathrm{y}}\). Since we restrict ourselves to normal distributions, we may establish the relation
\[
\begin{equation*}
\operatorname{var}_{r_{T}}+\operatorname{var}_{M}=\operatorname{var} \ell_{T}+\operatorname{var} \ell_{M}=o_{T}^{2}+o_{M}^{2}=\sigma^{2} \tag{1}
\end{equation*}
\]

It is important to remember that \(\sigma^{2}\) and \(\sigma^{2}{ }^{2}\) need not be considered constant for a certain range. Hence, \(\boldsymbol{o}^{2}\) may allow a few classis of variability depending on circumstancres.
4. Formulation of Multiple Volley Optimization Problem for Stationary Personnel Distribution. In Fig. 2, the general target coordinate system for aiming purposise' is denoted by \(x, y\). At the origin, the combined target location distribution

\[
\begin{equation*}
f(\bar{\xi}, \bar{\eta}) \mathrm{d} \bar{\xi} \mathrm{~d} \bar{\eta}=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{1}{2} \frac{\bar{\xi}^{2}+\bar{\eta}^{2}}{\sigma^{2}}} \mathrm{~d} \bar{\xi} \mathrm{~d} \bar{\eta} \tag{2}
\end{equation*}
\]
has a maximum. The aiming point for the first volley is represented by \(\mathrm{O}_{2}\). with we ordinates a,\(b_{1}\) : and the respective gun-aiming points separated by the distance e are
4. The accuracy of a class A map of \(1 / \mathrm{D} 0.000\) seate within a single shotet cam be ex. pressed approximately by a standard deviation of 25 m . Though this is not a mog . ligible parameter and aceuracies derrease with reference to lower quality maps, additional crrgrs enter in case of target identification (which insludes determination of a reference point for the whole targel configoration) and target loration on the map. The latter type of error can be very sizable, and standard deviations of the order 500 m have been found according to Ref. (8), (9), and (10). For simplicity. we lump map. target identifieation and target lowaton varianese together into var ry. Smaller op'rare, of course. to be apereded in case of a direct link ins. cluding distance and azimuth measurements between ohererer and a suitable target reference point. Dincetional \(\sigma_{\text {pl }}\) 's might alse lor gromerated by mosing targets and target configurations.

Fig. 2. The general target coordinate system.
\(C_{1}, C_{2}, G_{3}, G_{4}\). The burst point for which a total impact probability is to be comput ed and which lies in a finite area element (for numerical purposes) is B. Only one individual target, \(T_{1}\), is indicated within the target area with boundary \(\Gamma\). The distance from \(B\) to \(T_{I}\) is \(\rho\) and the azimulh is \(\phi\) commensurable with the denotation: of para. 2.
for the first volley, we have four burst distributions designated by
\[
\begin{equation*}
\lambda_{1}\left(x \cdot y: a_{1}+\frac{c}{2}, b_{1}+\frac{c}{2} ; S_{r}, S_{Q}\right) d x d y \cdot \lambda_{2}\left(x, y: a_{1}-\frac{c}{2} \cdot b_{1}+\frac{r}{2}: S_{r}, S_{Q}\right) \cdot c \cdot l c \tag{3}
\end{equation*}
\]

For sufficiently small area elements \(\Delta x \Delta y\). we arrive then in integral form at an intermediate average probability of hitting ' T ] at least once,
\[
\begin{equation*}
P_{i l}^{1}=\int_{-\infty}^{+\infty} \int_{-\infty}^{4} \sum_{1} \lambda_{v} \cdot p_{1}^{1}(\rho, \phi) d x d y=\iint_{-\infty}^{+\infty} \sum_{l}^{4} \lambda_{v} p_{l}\left(x, y, \xi, \bar{\eta}, \xi_{1}, \eta_{1}\right) d x d y \tag{4}
\end{equation*}
\]
and, since \(\mathbf{0}_{3}\) obeys a distribution law, at
\[
\begin{equation*}
P_{1}^{1}=\iint_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{1}^{4} \sum_{1} \lambda_{v} P_{1}\left(x, y, \bar{\xi}, \bar{\eta}, \xi_{1}, \eta_{1}\right) f(\bar{\xi}, \bar{\eta}) d x d y d \bar{\xi} d \bar{\eta} \tag{5}
\end{equation*}
\]

For \(k\) volleys and \(\mu\) individual targets, we obtain the total expected casualty result
\[
\begin{equation*}
\left.n_{l} \sum_{1}^{k}=\sum_{r=1}^{r=k} \sum_{\mu=1}^{\mu=N} \int_{-\infty}^{+\infty} \iint_{-\infty}^{+\infty} \int_{-\infty}^{v=4} \sum_{v=1}^{\lambda_{v}}\left(x, y ; a_{r}, b_{r}\right) p_{l} i x, y ; \bar{\xi}, \bar{\eta} ; \xi_{\mu}, \eta_{\mu}\right) f(\bar{\xi}, \bar{\eta}) \mathrm{dxd} y \mathrm{~d} \bar{\xi}_{\mathrm{\xi}} \mathrm{\eta} \tag{6}
\end{equation*}
\]

The optimization conditions can be formulated as
\[
\begin{equation*}
\frac{\partial}{\partial a_{r}} n_{1} \sum_{1}^{k}=0 ; \quad \frac{\partial}{\partial b_{r}} n_{1} \sum_{1}^{k}=0 \tag{ㄷ}
\end{equation*}
\]

For a circular and homogencous (uniform) target distribution conditions ( 7 ) reduce to fewer rquations, i.r., the respective aiming pattern, consisting of asel of \(k\) origins \(\mathbf{0}_{2}\) would tee invariant under a rotation about \(\mathbf{0}_{\mathbf{1}}\).

A fter the first volley which has in many cases a surprise effect, a degradation with respect to \(P_{l}\) can be expected which can be expressed as a transition from ground to air
burst \({ }^{5}\) and by ant empiriral reduction factor \(K<1.00\). Taking this into consideration, a morr general result corresponding to eq. (6) reads as

In ef. (8). the first term refers to the first volley. The second term containing the reduction fartor \(R\) reflects a changed hit probability function and includes the factor \(\pi_{\mu}(2)\).

A parlicular \(\pi_{\mu}(2)\), say \(\pi_{3^{(2)}}\), requires the computation of the individual \(P_{1}^{3}\) from eq. (5). It is then
\[
\begin{equation*}
\pi_{3}(2)=1-k \mathrm{p}_{1}^{3} \tag{9}
\end{equation*}
\]
where \(\kappa\) denotes the (avirage) prohability that an individual, hit at least once, remains at the initial position. The index (2) in \(\pi_{3}(2)\) indicates the transition from the initial target configuration to a second, more protective one.

It should tre mentioned that, in connection with an evaluation of eq. (8), an averape \(n_{1} \sum_{2}^{k}\) for typical target distributions under consideration of protective obstacles can ler determined. It is also possible to classify targets by size and concentration indices ('f. para. 7). Furthermore, it is possible to split \(P_{1}\) up into probabilities for exactly 1 hit, 2 hits, ite.
5. Probability IDistributions. The probability distribution associated with \(\mathrm{n}_{\mathrm{I}} \frac{\mathrm{k}}{\mathrm{L}}\) of eq. (8) can casily (though approximately) be found by setting \(\bar{p}=\frac{n_{1} \sum_{1}^{k}}{N}\) where \(N\)
5. Acrording to Krf. (6), p. 181, ground bursts generally are more effective against material and personned in case of nos shielding by revetments, but personnel in foxholes or tremehes should ber attareked by air-burst fire.


\[
\begin{aligned}
& \mu, ~ \ i \pi \quad \bar{\eta} \cdot 1-\bar{p}
\end{aligned}
\]
 imoomplete If-fumetion. Altornalivels. the binomial distriloution and associated tables might lor used:
6. Symmetric Aiming Palterns. Is all illustration, some symmelric aiming palturns applicable for circular and "ompletely homogeneons conditions arre showin in lig. 3. Bapiailent molutions would resall thromphath arbitrar! rotation.






I'ig. is. Sismetric aiming palterns.
7. Compulation and Utilization Considerations. A particular kind of quasirircular turget could prolitably though not exdesively be characterized by r (range to
 wet locution error. 3 or 4 indiees). \(k\) (number of volleys). From these data, \(k\) aximuth illd angular heright corrertions for the optimal aiming points would be immediately anailalile. Of course. the optimization computations should the condueted by a largearale digital vompular. i.s... nol in the field. 'The corrections • functions of variable impol data would be asailahbe as stored digital information an a ineorporated in T:AC: lillef proverdurs. I'robabilit! siutements depending on \(k\) could be added. Too many indieres are lo ber averided. Is to l). there are \(3^{4}\) variations (with three clements of the fiorrth class and reprelitions). Some of these variations cran be omitted bercanse of praceliral reasoms. Vine quadrumls leading lo \(3^{9}\) eomplexions would be prohibitive. From a
 wrapons system (battery) represents a rather formidable problem.

\section*{8. Virws on Optimal Weapons Systems Employment.}
8.1 With reference to optimization considerations, we assume the existence of the following seheme:


In thix diserete seheme, valid fur a particular weapons system (e.g., artillery battery), the symbols \(r\). \(h\). \(l\), and \(k\) denote range, relative frequency of employment, mean weapons effect for a particular type of target, and number of 'volleys respectively. Strictly spraking, there has to be a greater number of discrete schemes with assoxiated wheme frequeneies in order to account for variations in target size and larget location. This involves an additional frequency matrix with rlements \(j_{a, b}\). The total mean weap. ons systems effeet lan then be formuluted as
\[
\begin{equation*}
\bar{l}=\sum_{a, \beta} h_{a, \beta} \sum_{a, b} j_{a, b} l_{a, \beta: a, b}\left(k_{a, \beta ; a, b}^{\prime}\right) \tag{11}
\end{equation*}
\]

We shall distinguish betworn \(\overrightarrow{\mathfrak{C}}\) and \(\hat{\mathfrak{l}}\) with \(\hat{\mathbb{C}}\) eonwidered optimized by the analysis outlined in para. 4. In other words, \(\bar{C}\) 'deses not imply the utilization of optimal aiming palleris.

If we apply the rather cesual eriterion of \(30 \%\) damage or casualties with a \(90 \%\) aswurancer, we arrine at
\[
\begin{equation*}
\bar{\Gamma}_{30} ; / 100^{\prime} ; \quad k={\underset{a ß}{ }}_{\Sigma}^{\sum_{u . b}} k_{a \beta: a, b} \tag{12}
\end{equation*}
\]
allil
with \(\overline{\mathbf{l}} \approx \hat{\mathbf{l}}:\) and \(\hat{\boldsymbol{K}}<\boldsymbol{h}\).

A reasonable measure for the effectiveness merease expresied in prerent in cevidentiy
\[
\begin{equation*}
\eta=100 \frac{\hat{K}-\hat{k}}{\hat{h}} \tag{14}
\end{equation*}
\]
8.2 A different approach would consist of stipulating a ronatraint. say
\(\hat{\mathbf{K}}^{(2)}=\sum_{a, \beta} \sum_{a, b} \mathbf{k}^{(2)} a, \beta: a, b \leqslant i\)
and to compute the \(\boldsymbol{k}^{(2)}\) sin such a way that
\[
\begin{equation*}
\hat{u}^{(2)}=\text { Max. } \tag{16}
\end{equation*}
\]

For the purpose of comparisoli, we may assume
\[
\begin{equation*}
\hat{\mathrm{K}}^{(2)}=\hat{\mathrm{K}} \tag{17}
\end{equation*}
\]

The optimization expressed by eq. (1.5) and (16) implias a forteriori
\[
\begin{equation*}
\hat{u}^{(2)}>\hat{\imath^{\prime}} \tag{18}
\end{equation*}
\]
and a relatively greater expansion of volleys with respect to closer range targets and those involving amaller \(\sigma^{\circ}\) s. On the other hand, for some targets with less favorable characteristics, the \(30 \% / 90 \%\) eriterion might not be fulfilled. \({ }^{6}\) What can be suid with certainty is that the utilization of optimal aiming patterns makes the ground optimization deseribed in para. 8.2 quite attractive. It is conservatively estimated that optimal, aiming-pattern utilization incorporated in TACFIRE would result in a 13 Fincrease in systems' effectiveness. The systems" overall optimization would yield an additional \(15 \%\) increase and thus load to a combined improvement of \(30 \%\).
6. This is, however, not a serious limitation since it ran be partially or completely overcome by a greater A in eq. (15). This would particularly upply to derensive positions with a large ammunition supply.

\section*{LITERATURE CITED}
1. L'. S. Army Combal Developments Command, Artillery Agency, "Target Aequisition Aerurary Requirements. 1965-1975 (U)," Fort Sill, Oklahoma, Junc 196.5.
2. Sprears, Otis S.. "A Model for Determining Target' Location Accuracy Requirements," ISACDC, Artillery Agency, Fort Sill, Oklahoma (paper presented at the Operations Research Symposium, Fort Monmouth, N. J., 29.31 March 1966).
3. USACDC, Artillery Agency, "Trip Report to CDC Artillery Agency," Fort Sill, Okluhoma. 12.19 April 1966.
4. Autometric Opreations. Space and Information Systems Division, Raytheon Co., "A Trehnical Analysis to Support Map Accuracy Requirements," Alexandria, Virginia, 23 July 1966.
5. Beoz-Allen Applied Research, Inc., "A Study of Target Location Accuracy Requirements for Artillery Weapons-Army 1975 (U)," Fort leavenworth, Kansas, June 1967.
6. Department of the Army Technical Mauual TM 9-1907, "Ballistic Data Performance of Ammunition." U. S. Government Printing Office, Washington, D. C., July 1948.
7. "W'eapons Systems Fundamentals NA VWEPS OP 3000 (Volume 2)," U. S. Govornment Printing Office, Washington, D. C.
8. "Fivaluation of Photo Based Map Substitute Produrts of Ft. Sill, Field Test Fivaluation." Army Nap Test, August 1966.
9. "(iround Observer Probabilities of Aequisition Adjustment," Volume I of 2 (AC:N 7305). USACDICFC, Fort ()rd, California, September 1968.
10. Shaffer, F. B., "Execrpts from the Aceuracy of Maps in Tactical Operations." Stanford Rewereh lostituto, Draft \(196 \%\).
11. Kendall. V. (i., "The Advanced Theory of Statistics," Volume I, Charles Griffin and (io. Lomdon. 19)48.

\author{
Robert E. Shannon \\ James P. Ignizio \\ James L. Stimach \\ University of Alabama Research Institute \\ Huntsville, Alabama
}

\section*{ABSTRACT}

This paper proposes a new and unique approach for conducting comparative experiments or evaluations between existing or proposed air defense weapon systems. It is based upon the game theory "minimax" philosophy and provides several distinct advantages over the use of computer simulation methods. Submadels for abjectively determining the optimal deployment of the defense and the optimal atrack routes to be used by the attacking aireraft are diseussed.

\section*{INTRODUCTION}

Development and deployment of air defense systems having a large degree of effectiveness against high altitude aircraft, has resulted in increased interest in the operation of tactical aircraft at low altitudes [1]. As a result many weapons systems analysts have become deeply involved in arialytical and experimental studies evaluat ing the effecHiveness of existing or proposed defense systems for defeating the low altitude threat. Historically, war games hove been extensively used to "model" militury situations for Thif article has been reproduced photographically from the authora' manuscript.
such experimental and evaluative purposes. The different types or classes of war games that have been used are: (1) field exercises, (2) board games, and (3) computer simulations.

When considering air to ground conflict situations, experimentation using the computer simulation technique has proven to be the most feasible and efficient. Consequently, computer simulation models have evolved from very simple and basic models into those which are now very large, complex and time consuming. This increase in size and complexity has arisen due to the desire to approach, as near as practically possible, an exact model of the real life situation. Unfortunately, as realism has increased, so too has the computer time required to run the experiments.

This paper proposes a new approach for conducting comparative experiments or evaluations between existing or proposed air defense weapon systems. It is based upon the game theory "minimax". philosophy and provides several dist inct advantages over existing computer simularion models. These include:
1. Les!s čomputation time required.
2. Fewfer necessary assumptions and simplifications, hence greater realism.
3. Additional useful information is generated such as optimal defense system dep loyment, optimal attack routes, etc.
4. Real world scenarios, (actual situations) may be used.
5. Only one computer run per defense system is required.

\section*{MODEL PHILOSOPHY}

The scenario used for the Air Uetense Comparative Miodei shouid ide areui wuidu siluation i.e. a specific piece of terrain which is to be defended. The concept of the low oltitude attack is to utilize the masking effects of the terrain (hills, valleys, etc.) and of the earth's curvature, to prevent the defense from being able to detect and engage the attackers until the targets are reached [1]. Hence, any experimental evaluation of the defense system must take this into account.

The defensive problern in our scenario can be stated as follows:
1. Given a specific sector of terrain (with hills, valleys, etc.) which is to be defended by \(n\) or less defensive units.
2. Given the characteristics of the defense system (i.e, range, maximum and minimum elevatian angles, azimuth sean angle, etc.).
3. Given the feasible locations and pointing angles for the placement of defensive units. (i.e. connot be located in middle of lakes, bottom of ravines, atc. .).
4. Find those \(n\) locations and pointing angles which (a) minimize the range from any atracker to a systems radar and (b) maximizes the visibility of the combined radar systems. This must take into account the masking effects of terrain features and earth's eurvapure.

Likewise, we can state the problem faced by the offense or attackers in our scenario. This can be done as follows:
1. Given a set of targets to be destroyed which are contained
 of ground based air defense missile systems which are optimally deployed.
2. Given that the attacher or penetrator has complete knowleage from intelligence operations of these allocations and of the defensive capabilities.
3. Determine the best location to enter the defended sector, and then the least risk route to follow in order to reach a designated target. The least risk route is that which minimizes the visibility time and maximizes the survival probability.

In the proposed Air Defenue Comparative Model, these problems are solved objectively and optimally by sub-models. The objective, oftimal solution to'both problenis, is a unique feature of the proposed model. The tactics are not determined by educaied guess as in other war game models. It should be pointed out however, that the two submodels (optimal allocarion of defense units and optimal attack route analyzer) can be used to set the scenario and tactics for other computer simulation models. It is a firm conviction of the authors, that where tactics are determined by educated guess, the experimenter may inadvertently penalize o system by his choices. Allocating or placing the defensive units by the use of the optimal allocation madel on the other hand, allows each different system to capitalize on its strength and minimize its weaknesses.

The concept of the proposed comparative model can now be stated. The philosophy follow: \(\begin{gathered}\text { is: } \\ \text { : }\end{gathered}\)
1. Determine the oplimal defense system deployment for each system to be considered, based upon its own characteristics and the terrain features of the sector to be defended.
2. Determine the optimal attack routes against each defense system which minimizes the risk to the altacking aircraft.
3. Determine the risk incurred by the attacker for each defense system to be compared.
4. The defense system that maximizes the enemy's risk is the preferred system.

Maximization of risk to the enemy has been chosen as the measure of effectiveness for a very straightforward reason. The purpose of the air defense system is to protect field army value units such as supply depots, vehicle concentrotions, artillery positions, troop cancentrations, etc. The purpose of any offensive weapons system is to destroy a given sot of targets (value units) with the leasl possible cost. It is a generally accepted fact that a defensive system cannot prevent a determined and powerful offense from destroying a given number of these targets if the offense is willing to pay the price. The defense objective then is to try to extroct a high cost from the offense. In gaming theory terms then, the goal of the defense is to maximize the offensive cost while minimizing the defensive cost. Both offensive and defensive costs are direct functions of the risk incurred by the offense in carrying out its attack.

The proposed Air Defense Comparative Model is a Game Theoretic Model utilizing the maxi-min principle of optimality. [2] Stated simply the defense chooses that strategy
which maximizes minimum risk while the offense chooses that strategy which minimizes maximum risk. The value of the game is then calculated for each defensive system to be compared and the one which extructs the highest risk to the attackers, is the preferrable system.

An overall schemat ic of the madel is shown in Figure 1. Due to space limitations, it will not be possible to give detailed descriptions of the sub-models in this paper. However detailed descriptions of the component sub-models, including computer programs, may be found in references \(3,9,10\), and 11 . Short descriptions of the sub-models are given in the following sestions.

\section*{MAVD MODEL}

Basic to the proposed Air Defense Comparative Model is the visibility subroutine called MAVD (Minimum Altitude Visibility Diagram). MAVD is a new concept and subroutine for calculating the visibility of largets to the defensive system sensor units [3].

The input to the MAVD Model is an arroy of digitized topographis data which is stored on magnetic tape. The Arrny Map Service has expended a considerable amount of time and effort in the digitization, and storing on magnetic tape, of topographic data. An \(m \times n\) grid of horizontel \((m=1,2, \ldots, i)\) and vertical \((n=1,2, \ldots, j)\) lines is overlaid over the topographical mep of the piece of terrain of interest. The spacing or grid interval between the lincs is equal. The standard army battle map is a transverse Mercator projection of the Gauss-Kruger type ? 4?. The primary coordinate system for the map is a square grid system called the Universal Transverse Mereator grid [5]. Points of interest can be located on the map, by thei, UTM gid eวord:rates. The UTM grid will appear on any map as a
square grid system where the numerical values of the coordinates of a point are positive, ond increase as one moves the point east and north. For good terrain detinition, it has been found that the grid spucing should not exceed about 1,500 feet or 300 meters. The local altitudes above sea level for the grid points thus defined are read off the topogrophical map and entered along with their grid point designation ( \(i, j\) ) as inputs.

MAVD (Minimum Altitude Visibility Diagram) is a geographic representation of the minimum local altitude at which a target may fly above the local terrain and still be * visible to the given air defense sensor. Thus a MAVD value of 150 feet at point 5, 45 (the \(i, j\) grid representation of a specific point on the terrain) means that any aircraft of 150 feet altitude or above is visible to the sensor, or conversely any aircraft below 150 feet altitude is not visible (either masked by terrain irregularities or the curvature of the eath) to the sensor.

The MAVD routine is used to compute all the MAVD values for every designated point (i.e. , a point defined by the intersection of two grid lines) on a grid for all given sensor locations. Figure 2 represents an example of a MAVD display. The top figure (2a) Is the original terrain map and the bottom figure (2b) is the MAVD display where each MAVD value is given for the corresponding point on the original terrain map. In stiree dimensions a surface through all the MAVD values could be represented and any olrcrofi on or above this surface is visible to the given sensor(s).

The values on the MAVD represent, as mentioned, the minimum altitude values at which a penetrator is visible to a sensor at any given grid point (intersect ion point represented by the intersection of an " \(i\) " and " \(j\) " line). The effect of the curvature of the earth's surface and all terrain irregularities are considered in the computation of these
values. The calculation procedure is straightforward and uses basic plane and analytical
 IV) may be found in reference 3. The present program is capable of handling a \(211 \times 211\) grid size.

\section*{DEFENSE ALLOCATION MODEL}

The secend sub-routine utilized is the Allocation program which provides a systematic, objective method for computing the optimal deployment of any air defense system. Allocation is defined, with respect to this paper, as the assignment (or placement) of air defense system sensors at specific points on the given piece of terrain. The optimal allocation is that deployment which maximizes the atracker's risk. It may be also thought of as that deployment which minimizes the probability that an attacking aircraft or missile penatrates the defensive system underected.

A survey of the literature uncovered an almost negligible amount of effort towards devising any systematic, objective, assignment of sensor units to terrain. The majority of models surveyed assigned sensor locations at random or at best, use an educared guess based on an "analysis" of the terrain involved. This analysis consists of little more than looking ot the terrain map and atrempting to visualize the effect of placing a sensor at a certain point. Such methods of choosing sensor locations are far from optimum. It is highly subjective and consequently it is doubtful that any two people would choose the same locations.

The mathematical formulation of optimal deployment problems falls into a sub-. class of non-linear, zero-one programming problems. Although this has been previously
recognized, [6] it has not been possible to apply the existing methods of zero-one programming to any practical size problem due to the severe limitations of these mathematical methods. A new procedure called Complementary Programming, was therefore developed as a part of this research [7] and is applicable to very large problem types. For example, It was used to compute the optimal deployment of radars within the continental United States. The results were then compared with those previously proposed by Smallwood [B] utilizing a much more involved and time consuming procedure. The Complementary Programming method achievad an improved deployment over Smallwood's "optimal method."

Tests conducted during the evaluation of an early version of the Allocation Program showed that optimal deployment was sensitive to both range and visibility. The tests showed that, for a large terroin area, the primary factor in deployment was renge, and yisibility was only secondary. This observation led us to divide the original allocation program into two separate programs. We have designated the first program as the Coarse Allocation Program and the second as the Fine Allocetion Program. The main concem of the Coarse Allocation Pragram is the minimization of range distance while the purpose of the Fine Allocation Program is the maximization of radar system visibility. The two programs are then used sequentially (see figure 3). A good analogy to this method is the process used in furning to a station on the radio. One first furns the selector to the vieinity of the station In one rapid motion. When the station vicinity on the dial is reached, you then fine tune the selector until the station is optimally received. The Coarse Allocation Program achieves an initial, coarse deployment based primarily on range considerations. This coarse deployment is then used in conjunction with the Fine Allocation Program to achieve a new final deployment based primarily on visibility considerations. The sequential operation of the two
programs thus provides a final deployment that has both minimized the range from any attacker to a systems radar and maximized the cambined radar system visibility.

It now becomes necessary to define o measure of the "goodness" of the coverage or visibility of the sensor for the points within its defined sector. Visibility was previously defined as a measure of the ability of a sensor or sensors to detect a target (or targets) within the air space over a given terrain area. This measure can be represented by a range of numerical values from zero to one and will be called the Visibility Value. A value of zero will be defined as there being no visibility over a given grid point for a specified altitude range. For example, if a grid point is not within the sector or range of a certain sensor, a zero is given to the Visibility Value for that sensor for the grid point. Another example of zero Visibility Value would be if the MAVD value for a grid point (for a given sensor) was 10,000 feet and the probability of an atrack at that altitude or above was zero. We then would assign a zero to the Visibility Value. A value of one would require that, for the grid point, there exists visibility for all possible altitudes of ortack.

The mathod used to convert MAVD values to visibility values is simple. First a limit is set on the altlitude values of Interest. Since the emphasis for this papar is on low altitude artacks and since an artack at high altitudes is visible to almast any sensar allocation, it is unnecessary to consider any aliftudes above a specified ALT MAX. ALT MAX will be assigned a value for which there is (a) essentially zero probability of attack at altitudes \(\geqq\) ALT MAX or (b) considering terrain altitudes and irregularities, there is an almost certain probability of detection of any targets above ALT MAX.

The Visibility Value would then be calculated as:
\[
\text { Visibility Value }=\frac{\text { ALT MAX }- \text { MAVD }}{\text { ALTMAX }}
\]
where if the MAVD exceeds ALT MAX we assign a Visibility Value of zero i.e., we do not allow negative Visibility Values. Thus the Visibility Value is proportional to the per cent of air space that the sensor can see between the point on the suiface of the local terrain and ALT MAX.

The Visibility Values as computed are then written on the computer drum in the order shown below:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{7}{|c|}{Visibility Values on Drum} \\
\hline B Grid Point & 1 & 2 & 3. & 4 & 5 & ...... & 240 \\
\hline 1,1 & . 000 & . 900 & . 905 & 1.000 & . 500 & ...... & . 000 \\
\hline 1,2 & . 100 & . 000 & . 810 & . 150 & . 400 & ...... & . 200 \\
\hline 1,3 & . 000 & . 800 & . 000 & . 300 & . 200 & ...... & . 800 \\
\hline - & & & - & & - & ...... & \\
\hline - & . & & - & & - & ...... & \\
\hline - & & & - & - & - & ...... & \\
\hline 50,50 & :900 & . 900 & . 000 & . 600 & . 750 & .... & 1.000 \\
\hline
\end{tabular}

Thus each column represents the Visibility Values for a possible sensor location for all points on the grid. Our objective is then to combine a specified number of the above possible sensors so that the resulting "sum" of their coverage is maximum.

As perviously mentioned a now heuristic programming method called Complementary

Programming was derived for accomplishing this. The method is based upon the basic principle of the union of sets from set theory, where each of the columns in the above table of Visibility Values is considered an ordered set. The development, justification and complete computer programs for occomplishment can be found in references 9 and 10. The present computer program will handle a situation with \(199 \times 199\) grid size over the terrain, 38,601 possible candidate radar locations and/or.463,212 possible candidate location = pointing angle combinations (if radar has less than \(360^{\circ}\) azmith capability).

\section*{ATTACK ROUTE MODEL}

Having determined the optimal deployment of the defense, the next step is to turn our attention to the offense. As stated earlier, the problem of the offense may be stated as, "given an airspace over a specific piece of lerrain that is defended by a ground based air defense system, find the least risk route that may be taken over this terrain to reach an assigned target. Based on the mini-max principle, it is assumed that the air defense system is optimally deployed over the terrain and thet the offense has complete knowledge of both the defense system deployment and capabilitiss. The least risk route solution would then specify of which point(s) to enter the defended air spuce, the path to follow through the air space to the target, and the probability of survival. Such a computer model has been developed [11] and will now be briafly described.

A survey of the literature showed that very little had been accomplished in the area of the systematic, objective determination of optimal attack routes. Furthermore, of the few methods proposed, none was capable of handling anything except very small problems. It wa, the:efore, decided to provide a relatively new approach rather than
try to build onto or refine an older approach. The oplimal atiack route problem was formulated in terms of a cl ussical network problem. This was a notural approach in view of the grid overlay used for the terrain description in the MAVD and Defense Allocation models. With regards to the network description, we can state our problem as: "Determine the least risk route through the network, where we may enter the network at any outer node (Intersection of grid lines) and travel on any branch (grid line between nodes) in either a forward or lateral direction.

The risk in traveling from one node to another in the network is then expressed as follows:
\[
R=f(V, R e, t)
\]
where:
\(R=\quad\) Risk
\(V=V i s i b i l i t y\) factor (i.e. is the target visible or not)
\(R_{a}=\) Range from target to defense system
t = The time in which the target is visible to the defense system.

Consequently, a least risk path would in general minimize the time the target is visible, minimize the number of times the target is visible, and maximize the range to the defense system (for the times in which the terget is visible). Under this deseription, each node of the network may be assigned a value of risk. The "cost" of going from one node to the other is then the difference in risk from one node to the next, or the probability of survival from one node to the next.

Under the network formulation, several methods for solving the clossical "shortest reute through a network" are available. The most efficient methods are lineor programming
and dynamic programming. While either of these methods can solve a small problem, it was found necessary to utilize dynamic programming for the larger real world problem because of computer storage requirements. For example, the solution of a problem by linear programming (Hungarian algorithm) would require storage of at least \(\mathrm{N}^{2}\) points (where \(\mathbf{N}\) is the number of grid points). The storage requirements of dynamic programming are more on the order of 4 N . Since determination of a flight path is a multi-stage decision process, dynamic programming was particularly well suited to the problem.

The method of dynamic programming is discussed in detail in the literature [12] and thus will be touched on only briefly. Generally speaking, dynamic progromming is a method of solving multi-stage decision decision problems. Unlike linear programming, there is no standard mathematical formulation of the problem. It is a general approach and the particular equations used must be developed to fit each separate case af hand.

As stated, we use the same grid overlay as used in the MAVD and Allocation Models. But under our dynamic programming formulation we let each row (i.e. nodes i.j with \(i\) constant) represent a decision stage (see Figure 4). Each stage in turn, has a number of states associared with it. In our case, the states of each stage are simply The nodes of each row. In general, the states are simply the various possible positions in which the aireroft might be at any stage of the problem. In a multi-stage problem with discrete stages, (as in this problem) decisions are to be made at the beginning of the stages. The policy decision to be made at each stage is the destination for the next stage i.e. which state in the next stage. It is dependent upon the situation at the time of decision, upon the decision itjelf and upon the stage of the system. Each decision
affects not only the next stage but all subsequent stages. The solution of the problem is a sequence of decisions thar yieiás the ieast risk roure. Tinis is essenioily ôeiiman's principle of optimality, "An optimal policy has the property that whatever the in itial state and initial decisions are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision."

The particular version of dynamic programming used in this problem computes \({ }^{\text {. }}\) the flight path in a "backward" manner. That is, one first starts at the target and then determines the optimal paths from each state in the previous stage to the target. Once this is done, the optimal paths from each state in the \(M-2\) stage to the \(M-1\) stage is computed. At each stage only the values of optimal paths need to be stored. This procedure is repeated until we are at the initial stage (i.e. row one). At this point all of the optimal paths from any of the entry points to the target are avallable.

As with the allocation model discussed in the previous section a two phase sequence is used. The first phase or calculation of the course attack route is primarily predicated on minimizing visibility (or risk) and the second phase or calculation of the fine course route is primarily to minimize exposure time. The solution procedure requires data in the form of two matrices. These matrices are (a) visibility matrix and (b) missile flight time matrix. .

The visibility motrix provides the probability of detection for each node of the terrain sector. The aircraft altitude, \(h\), and the MAVD values for each node are compared, If the MAVD value is greater than \(h\), the aircraft is invisible and the risk is zero. It should be noted that the MAVD value to be compared with the aircroft alt itude is always the minimum value of all the radar sitos within range of the node. If the M.AVD value
is less than \(h\), then the visibility value for that node has some probability value asso-
 Range from the target, reflective surface of the target, transmitter power, size of the ontenna, etc. are all variables which may affect the visibility of a target to a radar. A review of the variables affecting visibility indicates that the effect of each is dependent To a large degree, upon the range of the aircraft from the rador. For this reasonr the range of the target from the radar having the best MAVD value was selected as the best single variable to measure visibility. The relationship of range to probability of detection can be expressed graphically and is obtained from an analysis of the perforinance specifications of the missile system under consideration. The range value is thus converted to a visibility probability value based on each missile systems specifications. The risk is set equal to the probability value for the specified range. The detailed development of the model with the procedure coded in FORTRAN \(V\) language is given in reference 11.
\(\dagger\)

\section*{SUMMARY}

This poper has proposed a new and unique approach for conduct ing comparative experiments or evaluations between air defense weapon systems. The sub-models which were briefly discussed were developed as mewis of improving existing digital, computer stimulation experiments. It is believed, however, that these submodels and developed methodols jies can te uilized as the basis for a completely independent, "unified air deferse system comparison model." Such a model could be used for realistically analyzing and evaluating air defense systens in what we believe would be a for more economical and accurate manaer than is prejen:ly available from simulation models.

\section*{ACKNOOWLEDGEMENT}

The sub-models discussed in this paper were developed as a part of the research under contracts DA-AHO1-67-C1630 and DA-AHOI-69-C1015, "Air Defense Modeling Studies," supported by the Systems Analysis Office, Future Missile Systems Division, Research and Engineering Directorate of the U. S. Army Missile Command, Redstone Arsenal, Alabama.

\section*{REFERENCES}
1. B. Kovit, "Low-Altitude Penetration," Space/Aeronautics, 76-83, (May 1965).
2. J. Von Neuman and O. Morgenstern, Theory of Games and Economic Behavior, Princeton, University Press, Princeton, N. J., 1947.
3. R. E. Shannon and J. P. Ignizio, "Minimum Altitude Visibility Diagram--MAVD," UARI Report No. 50; University of Alabama'Research Institute, April 1968.
4. M. R., Weldon, "Map Oriented Terrain Simulation," U. S. Army Missile Command Report No. RF-TM-64-34, November 1964.
5. '"Universal Transverse Mercator," Technical Manual No. T. M. 5-241-8, Headquarters Department of the Army, July 1958.
6. B. J. Dunn et. al., "A Model for Allocating Interceptors with Overlapping Batteries: A Method of Nonlinear Programming," Braddock, Dunn, and McDonald, Inc. , Report BDM-241-68-T, April 1958.
7. J. P. Ignizio and R. E. Shaninon, "The Complementary Pragramming Method for Solving Certain Non-Linear, Zero-One Programming Problems," UARI Report No. 52, University of Alabama Research Instifute, August 1968.
8. R. D. Smallwood, "Minimax Detection Station Plasement," Operations Research, Vol. 13, 632-646, July-August 1965.
9. R. E. Shannon and J. P. Ignizio, "A Method to Achieve Optimum Air Defense Sensor Allocation," UARI Report No. 51, University of Alabamo Research, April 1968.
10. J. P. Ignizio and R: E. Shannon, "Improved Visibility and Deployment Models for Air Defense Studies," UARI Report No. 74 , Uniiversity of Alabama Research Institute, February 1970.
11. J. P. Ignizio, R. E. Shannon and J. L. Stimach, "Determination of Optimal Aircraft Artack Routes," UAN Keport No. 75 , University of Alabama Research Institute, February 1970.
12. R. Bellmian, Dyrdrinic Programming, Princeton University Press, Princeton, N.J. 1957.

HCURE:



2a: TERPNN MAP


FIGURE 2: MAVD

SCHEMATIC - GAME THEORY
COMPARATIVE MODEL
figure 3


FIGURE 4

\title{
PROBABILISTIC MANPOWER PLANNING FOR THE RESEARCH AND DEVELOPMENT ORGANIZATION
}

\author{
Larry H. Johnson \\ Redstone Arsenal, Alabawa
}

\section*{midubucirin}

Tuis paper proposes a statistical approacit to one of the problens confronting all Arny researci, develoment and tcatirg orgenizations. That is, nanpofer planning.
 that the inthe:ratical tuc niques are avilicaisle to all types of inventory by redefining the paramaters involved.

The question for long-range planning is not :inat should he done tomorrois, but ration inat can be done today to cope best rith the uncertain tomorrow. Jlanagement must understand tile alternatives available to them, the risle associated sith aach, and cipose ration:lly anons the alternatives rather than plunge into uncertiainty only on tic basis of intuition or previons experience.

\section*{DEFITIMTM OF PROBLT:}

If a given organization has a large number of jrozrans planned for the future, it is usually \(\dot{\text { inasonable to assiune tinat the manpo rer roquirement }}\) is somemat normally distributcd. Ho:rever, nos't iA"D organizations do not have a large muber of outstanding orograns and, thorefore, the gain or Loss of a single program can have gross affects on the requirad manposer. This problem requires that fine "exact", probability distribution be fnom and solutions for this aroblen are not availablc in the literature.

The current need for manzgement planning technfiques initil relauively fer outstanding progra\%s :1oilvatad tico study describod herein.

\section*{ASSU:PTIURS}

This study makes four basic aosumptione:
1. First it is assumed that the organization rill not be requircd to perforn overy program for ithich current planning extsts and that a subjective probability can be associatod rith the cain or loss of cach procram.

This article has been reproduced photographically from the author's manuecript.





 さッジここいい。










\section*{}
 as．olo





itue \(\mathcal{O}\) \＆\(t / i\)

\(U\left(r_{k}\right)=\sum_{i=1}^{n} \sum_{j=1}^{k}\left(P_{i}\right)\left(p_{j}\right)\left(\alpha_{j}\right)\)

\(3_{i}=\) cajuin



Figure 1 - Time Adjusted Manpower Array and Probable Start Date
PROBAGILITY OF GO-AHE:AD

PRODAELLITY OF CAPTURE \(\left(P_{i}\right)=1\)
mANPOUER REQ'mTS

Figure 2 - Actual and Expected Manpower Requirements for January Start Date

OEUINODY SZM 20 UN

Figure 3 - Actual and Expected Manpower Requirements for February Start Date


CONTRACT I C:MANPO:IER
PEQ'GTS: FEC:TUARY
GO-AHEAD
it this roint the roblen solution secur guite simple; no:cver,
 soliution camot be evaluated unloss there is a larec numion oi atistarding projects (inich usially is not the case for an in
 crac. statistical disiribution. Fo: \(\because\) is situation an chiccration .rosess has jeen dereloued and is inlururaced in iifurc 5. itrcry possivic :.or: 工and is identified and the probability of occirenrs for eacia is cvalunted. Considoring that the gomanead dato for the pravires ray not be "fixcd" but rather can be expressad as a probabilizitic function, ve expand the onmoration orocedure as illuetrated in idevere \(C\) incre the additional uncertainty is accounted for brf \(t_{1}, t_{2}\), eic.

A technique has thus been acveloped for enimerating tha towall array of possible ;rorkloads for an orfanization and the probabilitij asceciatod riti each. This concept can readily be adaptod to fit any particular yroblem that one nay have.

\section*{}

Given the total array of possible mansoiver requirements develjeed. above, the corporation is now faccd with the problem of determintre ihe rost economical mothod of perfomang any given workload. That is, if manesement sore to assume tinat they jenev specifically wich ono of tize workloads rill occur, hoir can they most economically perform the tasie reelizing that if the rorkioad exceeds capacity, they may choose to:
1. hire additional cmployees
2. worit on an overtime basis or
3. subcontract a portion of the :roric.

If capacity exceeds the workload, management may.choose to:
1. continue on an orer-staffed basis or
2. lay-off same enployces
linnagoment mast recognize tiat irith eaci alternative, wire total cost for conducting tike :rorinow ifll varif. For examplo, no:r aniblojecs :تlst ic trained, overtime costu promim rage, enployee efficiency cecreunes inth overibine and subcontract personnel may not be as aifictive as regular employoos.

Total capacity for tise organization curing any period is tinereforo riven by:
\(z_{2}=\lambda_{1} x_{1, t}+\lambda_{2} x_{2, t}+\lambda_{4} x_{4, t}+\lambda_{65} x_{5, t}+\lambda_{6} x_{6, t}\) incre:
\(\lambda_{n}\) is the efficiency factor for each type of monower lovciti::e, subcontract, otc.)
Figure 5 - Enumeration Process When Initiation Date is Fixed


\footnotetext{
NOTE: \(p_{i}=\) PROBABILITY OF GETTING PROGRAM
\(P_{1}^{*}=\) PROBABILITY OF NOT GETTING PROGRAM
\(P_{1}+P_{1}^{*}=1\)
\(j M_{1}(1)=\) NR. OF TYPE j PEPSO:LIEL IOR JOB 1
OURING PERIOD :
}
Figure 6 - Enumeration Process for Variable Initiation Date



\(\therefore\), t is the number of ne:s cmplojecs available during poriod t.
\(X_{a, x}\) is the nurnber of overtime unitu which can be :orked by experionecd onnloyoes during poriod \(t\).
\(X_{5, t}\) is ine numicr ois overtine units which nes employces can work during period t.
\(X_{6, t}\) is the number of subcontract parsannel available durine period \(t_{0}\)
:rote that \(X_{3, x}\), inicil is the number of full time amployecs to bo torrizated during pariod t, is not inclucied in tho equation. Unit cosis for each type of nanpover must also be availablo.

The oroblem is one of determining the optimum nanpoirer schedule for a civen :rorkload athich jermits the organization to operate for the duration of the planning poriod vith mindmum labor costs.

Requirocents and deta inputs for the rinimization problen are ideal for solution by the Similax Linear ixograming Technique where the cmstrainis, duc to management policies, labor agreements, etc., limit tise range of valuos for \(X_{i}\). The Simplex not only provides a manpoter plan for each workload but also tise total cost for each plan.

Note that in sane cases the Simplex may indicate to hire employees onc month and terminate them the next. This is not iault with tine zathemaics but rather fault with management policies. The ilinimu Cost Tecinique is therefore a good indicator for restraining managonent labor policies.

In the previous discussion it may be noted that the probability associated uith each workload was ignored. How then can the element of risk be considered in the management plan?

Given the probabilistic manjoirer requirements, managenont needs a docision-maicing policy wich allo:ts tham to plan for a theorotical
 :ich it occurs. The linnimu iisk liothod will provide such a plan.



 cosi of adjusting to the wor:lload timat actually occurs. Once "ice :rorbload becomes korm, an adjusmont or iransition is macie and tine a.propriate liznimen Cost sciocule is follored.

The problen no: is to identisy a ranpoicr planning level inict minimizes total risk for the enumeratid range of aorkloade.

Levting \(Q\) respesont tine minjmun cost for the \(k^{\text {th }}\) worlcload and C. icpresent tife cost of adjusting from tive planned level to the ajpropriate jininum Cost rlan and completing the job, then the risk \(\mathrm{R}_{2}\) is given by
\[
z_{k}=c_{k}^{\prime}-c_{k}^{*}
\]

The expected risk ( \(\mathrm{R}_{k}\) ) for each of the \(k\) rorkloads is piven by
\[
x_{k}^{\prime}=R_{k} R_{l}=\left(P_{k}\right)\left(c_{j}^{\prime}-C_{k}^{*}\right)
\]
incre \(P_{k}\) is the probability of occurrence detergined by enuraration. The total risk \(\mathrm{i}(\cdot)\) for any manower plan is therefore given by
\[
R(\cdot)=\sum_{k} R_{k}^{\prime}=\sum_{k} P_{k}\left(Q_{k}^{\prime}-C_{k}^{\prime}\right)
\]

Our problem is nois to identify a manower plan ibich minimizes \(R(\cdot)\). A dynamic progranming toclunique for minimizing \(R(\cdot)\) ins not been developed; hovever, ;e can iterate a solution as illusirated ir. tise following problem. .

\section*{Brample Froblam}

Suppose tine schoculing period is 4 montha and the initial number of crecrienced enployces is 60. The organization has tiro outstanding project istit ostimated capture probabilities of 0.6 and 0.3 respectivelij anc it irill not be lenorn until 1 Jonunry if the projects will be funded. The to ze A manjoiser requirenentif for each project are precented in Table 1. T:ce rojected manpoirer racuiroment ritinout consideration of the tiro no: convacts is also shom.
\begin{tabular}{|c|c|c|c|c|c|}
\hline . .nciat:"cuion oi A...a) owne Reguirements & Paobabitity & January & February & \multicolumn{2}{|l|}{March Agis:} \\
\hline Wurinond without new cointazets & 1.0 & 50 & 70 & 90 & 60 \\
\hline Contract: & 0.6 & 10 & 10 & 20 & 30 \\
\hline Coniract II & 0.3 & 30 & 20 & 20 & 10 \\
\hline
\end{tabular}
a い...
\[
\begin{aligned}
& 0 \leq X_{1, t} \leq 200 \\
& 0 \leq X_{2, t} \leq 20 \\
& 0 \leq X_{3, t} \leq 20 \\
& 0 \leq X_{4, t} \leq 30 \\
& 0 \leq X_{5, t} \leq 30 \\
& 0 \leq X_{6, t} \leq 20
\end{aligned}
\]

\footnotetext{
\(\ldots\).. iociu and anicianc, factore for the various wyocs of :mono:0r ane \(\therefore\) эeb:. ved in iable 2. It is alco assumod that now arployees can be "jained ritutin one time period.
}
rable 2. Unit Costs and Efficiency Data for lianimm Risk rrublem
\begin{tabular}{|c|l|l|}
\hline Unit Costs \((\$)\) & \multicolumn{1}{|c|}{ Identification } & Efficiency Factors \\
\hline\(C_{1}=100\) & Experienced employees & \(\lambda_{1}=1.00\) \\
\(C_{2}=130\) & New employees & \(\lambda_{2}=0.50\) \\
\(C_{3}=50\) & Mandatory terminations & \\
\(C_{4}=150\) & Experienced employee overtime & \(\lambda_{4}=0.70\) \\
\(C_{5}=150\) & New employee overtime & \(\lambda_{5}=0.35\) \\
\(C_{6}=170\) & Subcontracts & \(\lambda_{8}=0.80\) \\
\hline
\end{tabular}

The robler is to cietimine theoretical valucs for \(i, 1, \ddot{2, i}\), \(:\) c.,
Referring to the complcto enumeration technique, whoro arc four possible workloads with probabillities of occurrence as calculacid ank! sho:m in Table 3. Tho :inimu Cort , lion ace eacin of tho four possible


Since the orimary intorest for planning is full time equloyeus, and the kindmum Cost plans of rablo 4 indicato tiat jortions of inc irorkload should be saboontractied, tio :orkload and iinimum Cost arrajo aro modificd to refloct only the in-housc oifiorts. Tio in-houno offorts are determined by aubtracting the subcontracts from Tables 3 and 4 , and results of this operation arc jresented in raisles 5 and \(C_{0}\)

Table 3. Emmorated \(:\) forkload Requiraments for Iitimum Risk troblem
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Possible Workloards} & \multirow[t]{2}{*}{Probsibility of Occurrence} & \multicolumn{4}{|c|}{Manpower iscquirements} \\
\hline & & Jambaty & Februnry & March & April \\
\hline \(W_{1}=M_{j}^{\mu_{j}} M_{2}^{*}\) & \(p_{1}^{*} p_{2}^{*}=0.28\) & 50 & 70 & 90 & 60 \\
\hline \(W_{2}=M_{1} M_{2}^{\prime \prime}\) & \(p_{1} p_{2}^{4}=0.42\) & 60 & 80 & 110 & 90 \\
\hline \(W_{3}=M_{1}^{*} M_{2}\) & \[
p_{1}^{* *} p_{2}=0.12
\] & 80 & 90 & 110 & 70 \\
\hline \(W_{1}=M_{1} M_{2}\) & \(p_{1} p_{2}=0.18\) & 90 & 100 & 130 & 100 \\
\hline
\end{tabular}
anh . \(\because\) :


\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Possible \\
In-lionse \\
Workloads
\end{tabular} & \begin{tabular}{c} 
Probibility \\
of Occurrence
\end{tabular} & January & February & March & April \\
\hline\(W_{i}^{\prime}\) & 0.28 & 50 & 70 & 80 & 60 \\
\(W_{2}^{\prime}\) & 0.42 & 60 & 80 & 94 & 90 \\
\(W_{i}^{\prime}\) & 0.12 & 70 & 85 & 94 & 70 \\
\(W_{:}^{\prime}\) & 0.15 & \(7 i\) & 90 & 114 & 100 \\
\hline
\end{tabular}

Teble 6. Miniman Cost Plans for In-House ifortcloads
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Minimum Cost Plan for & Probability & January & February & March & April & Total Cost (\$) \\
\hline \(\cdots \mathbf{W}_{1}^{\prime}\) & 0.28 & \(\mathrm{X}_{1,1}=60\) & \[
\begin{aligned}
& X_{1,2}=60 \\
& X_{2,2}=20
\end{aligned}
\] & \(\mathrm{X}_{1,3}=80\) & \[
\begin{aligned}
& X_{1,4}=60 \\
& X_{3,4}=20
\end{aligned}
\] & 29,600 \\
\hline \(\mathrm{w}_{2}^{\prime}\) & 0.42 & \[
\begin{aligned}
& X_{1,1}=60 \\
& x_{2,1}=10
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,2}=70 \\
& X_{2,2}=20
\end{aligned}
\] & \[
\left\{\begin{array}{l}
x_{1,3}=90 \\
x_{4,3}=5.71
\end{array}\right.
\] & \(\mathrm{X}_{1.4}=90\) & 35, 757 \\
\hline W: & 0.12 & \[
\begin{aligned}
& X_{1,1}=60 \\
& x_{2,1}=20 .
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,2}=80 \\
& X_{2,2}=10
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& X_{1,3}=90 \\
& X_{4,3}=5.71
\end{aligned}\right.
\] & \[
\begin{aligned}
& X_{1,4}=70 \\
& X_{3,4}=20
\end{aligned}
\] & 35,757 \\
\hline \(\mathrm{w}_{4}^{\prime}\) & 0.18 & \[
\left|\begin{array}{l}
X_{1,1}=60 \\
X_{2,1}=20 \\
X_{4,1}=5.71
\end{array}\right|
\] & \[
\begin{aligned}
& X_{1,2}=80 \\
& X_{2,2}=20
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& X_{1,3}=100 \\
& X_{4,3}=20
\end{aligned}\right.
\] & \(\mathrm{X}_{1,4}=100\) & 43, 057 \\
\hline
\end{tabular}

The next procedure is to iterate costs and risks fo Tlues of \(X_{1,1}\) and \(X_{2,1}\) so that the minimm \(R(\cdot)\) can be \(i\)险 be noted in Table 6 that \(I\) es is 60 for all four wort there is only ane feasible salution for \(X_{0,1}\). However: 0 to 20. The problem then is to determine a value ( \(x_{2}^{\prime}\),
all feasible ntified. It - 's; therefore, ©. 1 varies from mich minimizes \(R(\cdot)\) keeping in mind that the objective is to a djust to \(r_{\text {t }}\) - lifiniman
plan in the most expedient and economic manner consistent with the mapower constraints.

The retulte of the iteration process for each of the four possible worclands is presented in Tables 7 through 10 ihere \(X_{2}^{\prime}, 1\) was varied from 0 to 20 in increments of 5 units. Increments of five units each sere arbitrarily selected for simplification of calculations in this illustrative problem. ioje the hew. Tine in oach of the tables. This ifne indicates when the level of fuli time emoloyment reaches the ifinimum Cost plan for that particular rorkioad. Total cost for each of the trial solutions is also presented in Tables 7 through 10.

Sumanry of the expected risk \(\mathrm{f}_{\mathrm{k}}^{\prime}\) calculations with the cost data from Tables 7 through 10 is presented in Table 11. The tern \(\mathrm{E}\left({ }^{-}\right)\), may then be calculated by the equation \(R(\cdot)=\sum_{k}^{\prime}\) for each of the \(x_{2,1}^{\prime}\) solutions. The \(R(\cdot)\) dsta are tabulated in Table 12 where it is shwon that \(R(\cdot)\) is minismon when \(X_{2,1}^{\prime}\) is 10 units.



\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & In & itai & damanar & Fedratar & Matreh & April & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Coht } \\
C_{2}^{\prime} \\
(\$)
\end{gathered}
\]} \\
\hline \multirow[t]{2}{*}{Sontion} & \multicolumn{2}{|l|}{1} & 6 & N11 & 9.1 & 90 & \\
\hline & X & X \({ }_{2} 1\) & & & & & \\
\hline \({ }_{i} S_{i, 1}\) & 60 & 11 & \(\boldsymbol{N}_{1.1}=60\) & \[
\begin{aligned}
& X_{1,2}=60 \\
& X_{2,2}=20 \\
& X_{4,7}=14.3
\end{aligned}
\] & \[
\begin{aligned}
& x_{1,3}=80 \\
& x_{2,3}=10 \\
& \dot{X}_{4,3}=12.9
\end{aligned}
\] & \[
X_{1,4}=90
\] & 36,980 \\
\hline \(\mathrm{S}_{2.2}\) & 60 & 3 & \[
\begin{aligned}
& X_{1,1}=60 \\
& X_{2,4}=j
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,2}=6.5 \\
& X_{2,2}=20 \\
& X_{1,1}=7.1
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,3}=85 \\
& X_{2,3}=5 \\
& X_{:, 3}=9.3
\end{aligned}
\] & \(\mathrm{X}_{1,4}=90\) & 36,360 \\
\hline \(\mathbf{S}_{2,3}\) & \(00^{\circ}\) & 311 & \[
\begin{aligned}
& x_{i, i}=60 \\
& X_{i,:}=10
\end{aligned}
\] & \[
\begin{aligned}
& X_{i, i}=70 \\
& x_{2,2}=20
\end{aligned}
\] & \[
\left\{\begin{array}{l}
X_{1,3}=90 \\
X_{5,3}=5.7
\end{array}\right.
\] & \(\mathrm{X}_{1,4}=90\) & 35,757 \\
\hline \(S_{\text {S, }}\) & (1) & 3.5 & \[
\begin{aligned}
& \boldsymbol{X}_{1,}=60 \\
& \boldsymbol{x}_{2,:}=1.5
\end{aligned}
\] & \[
\begin{aligned}
X_{1,2} & =75 \\
X_{2.2} & =15
\end{aligned}
\] & \[
\left\{\begin{array}{l}
X_{1,3}=90 \\
X_{4,3}=5.7
\end{array}\right.
\] & \(\mathrm{X}_{1,4}=90\) & 36,255 \\
\hline S. 5 & in) & 20 & \[
\begin{aligned}
& x_{1,:}=60 \\
& x_{2,1}=20
\end{aligned}
\] & \[
\begin{aligned}
& \boldsymbol{X}_{1,2}=80 \\
& \boldsymbol{X}_{2,2}=11
\end{aligned}
\] & \[
\left\{\begin{array}{l}
x_{1,3}=90 \\
x_{4,3}=5.7
\end{array}\right.
\] & \(\mathrm{X}_{1,4}=90\) & 36,755 \\
\hline
\end{tabular}

Table 9. Emmeratrd Risk ilan if Con'ract \(I\) is luceived
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Solution} & neat & & บӑ & Fabumay & Sium & Aprii & \multirow[t]{3}{*}{Cost \(\mathrm{C}_{3}^{\prime}\) (3)} \\
\hline & \multicolumn{2}{|l|}{\(\mathrm{W}_{3}^{+}\)} & 70 & 8.5 & 94 & 70 & \\
\hline & X \({ }^{1,1}\) & X \({ }_{2}\) i & & & & & \\
\hline \(S_{3,1}\) & 60 & 0 & \[
\begin{aligned}
& X_{1,1}=60 \\
& X_{4,1}=14.3
\end{aligned}
\] & \[
\left\{\begin{array}{l}
X_{1,2}=60 \\
X_{2,2}=20 \\
X_{4,2}=21.4
\end{array}\right.
\] & \[
\begin{aligned}
& X_{1,3}=80 \\
& X_{4,3}=20
\end{aligned}
\] & \[
\begin{aligned}
& x_{1,4}=70 \\
& x_{3,4}=10
\end{aligned}
\] & 38,455 \\
\hline \(\mathrm{S}_{\mathbf{3 , 2}}\) & 60 & 5 & \[
\begin{aligned}
& X_{1,1}=60 \\
& X_{2,1}=5 \\
& X_{4,1}=10.7
\end{aligned}
\] & \[
\begin{aligned}
& X_{2,1}=65 \\
& X_{2,2}=20 \\
& X_{4,2}=14.3
\end{aligned}
\] & \[
\left|\begin{array}{l}
X_{1,3}=85 \\
X_{4,3}=12.9
\end{array}\right|
\] & \[
\begin{aligned}
& X_{1,4}=70 \\
& X_{3,4}=15
\end{aligned}
\] & 37,685 \\
\hline \(\mathrm{S}_{3,3}\) & 60 & 10 & \[
\begin{aligned}
& X_{1,1}=60 \\
& X_{2,1}=10 \\
& X_{4,1}=7.1
\end{aligned}
\] & \[
\left\{\begin{array}{l}
x_{1,2}=70 \\
x_{2,2}=20 \\
x_{4,2}=7.1
\end{array}\right.
\] & \[
\begin{aligned}
& x_{1,3}=90 \\
& x_{4,3}=5.7
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,4}=70 \\
& X_{5,4}=20
\end{aligned}
\] & 36,917 \\
\hline \(\mathbf{S}_{3,4}\) & 60 & 15 & \[
\begin{aligned}
& X_{1,1}=60 \\
& X_{2,1}=15 \\
& X_{4,1}=3.6
\end{aligned}
\] & \[
\begin{aligned}
& x_{1,2}=75 \\
& x_{2,2}=15 \\
& x_{4,2}=3.6
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,3}=90 \\
& X_{4,3}=5.7
\end{aligned}
\] & \[
\begin{aligned}
& x_{1,4}=70 \\
& X_{3,4}=20
\end{aligned}
\] & 36,335 \\
\hline \(S_{3,5}\) & 60 & 20 & \(X_{1,1}=60\)
\(X_{2,1}=20\) & \[
\begin{aligned}
& X_{1,2}=80 \\
& X_{2,2}=10
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,3}=90 \\
& X_{: .3}=5.7
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,4}=70 \\
& X_{3,4}=20
\end{aligned}
\] & 35,757 \\
\hline
\end{tabular}

Table 1, I. Inneratod aisi: slan if Contracts I and II are Reccived
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Solution \(\frac{P_{4} \cdot 1}{10}\)}} & \multirow[t]{2}{*}{\[
\frac{\text { ariod }}{1:!}
\]} & \multirow[t]{3}{*}{\[
\frac{\text { sume:ry }}{7-1}
\]} & \multirow[t]{3}{*}{\[
\frac{\text { Frbinasy }}{00}
\]} & \multirow[t]{3}{*}{\(\frac{\text { Anardi }}{11!}\)} & \multirow[t]{3}{*}{\[
\frac{A p r i l}{100}
\]} & \multirow[t]{3}{*}{\[
\begin{gathered}
\text { Cost } \\
C_{4}^{\prime} \\
(\$)
\end{gathered}
\]} \\
\hline & & & & & & & \\
\hline & & \(\mathrm{N}_{2,1}\) & & & & & \\
\hline \(S_{4,1}\) & 60 & 0 & \[
\begin{aligned}
& X_{1,1}=60 \\
& X_{4,1}=20
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,2}=60 \\
& X_{2,2}=20 \\
& X_{4,2}=24.6
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,3}=50 \\
& X_{2,3}=20 \\
& X_{4,3}=30 \\
& X_{5,3}=8.6
\end{aligned}
\] & \(\mathrm{X}_{1,4}=100\) & 48.280 \\
\hline \(\mathrm{S}_{4.2}\) & 60 & 5 & \[
\begin{aligned}
& X_{1,1}=60 \\
& X_{2,1}=5 \\
& X_{4,1}=16.4
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,2}=6.5 \\
& X_{2,2}=20 \\
& X_{4,2}=21.4
\end{aligned}
\] & \[
\left\{\begin{array}{l}
\mathrm{X}_{1,3}=85 \\
\mathrm{X}_{2,3}=15 \\
\mathrm{X}_{1,3}=30 \\
\mathrm{X}_{5,3}=1.4
\end{array}\right.
\] & \(\mathrm{X}_{1,4}=100\) & 46,580 \\
\hline \(S_{4,3}\) & 60 & 10 & \[
\begin{aligned}
& X_{1,1}=60 \\
& X_{2,1}=10 \\
& X_{4,1}=12.9
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,2}=70 \\
& X_{2,2}=20 \\
& X_{4,2}=14.3
\end{aligned}
\] & \[
\left\{\begin{array}{l}
X_{1,3}=00 \\
X_{2,3}=10 \\
X_{4,3}=27.1
\end{array}\right.
\] & \(\mathrm{X}_{1,4}=100\) & 45,345 \\
\hline \(\mathbf{S}_{4,4}\) & 60 & 15 & \[
\begin{aligned}
& X_{1,1}=60 \\
& X_{2,1}=15 \\
& X_{5,1}=9.3
\end{aligned}
\] & \[
\begin{aligned}
& x_{1,2}=75 \\
& x_{2,2}=20 \\
& x_{4,2}=7.1
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,3}=95 \\
& X_{2,3}=5 \\
& X_{4,3}=20.6
\end{aligned}
\] & \(X_{1,4}=100\) & 44,200 \\
\hline \(\begin{array}{ll}\mathbf{S}_{4,5} & \\ & \\ & \ddots\end{array}\) & 60 & 20 & \[
\begin{aligned}
& X_{1,1}=60 \\
& X_{2,1}=20 \\
& X_{1,1}=5.7
\end{aligned}
\] & \[
\begin{aligned}
& X_{1,2}=80 \\
& X_{2,2}=20
\end{aligned}
\] & \[
\begin{aligned}
& x_{1,3}=100 \\
& x_{4,3}=20
\end{aligned}
\] & \(\mathrm{X}_{1,4}=200\) & 43,057 \\
\hline
\end{tabular}

Table 11. Risl: Surmary for imale froblem
\begin{tabular}{|c|c|c|c|c|c|}
\hline Solution & \(\mathrm{P}_{\mathrm{k}}\) & \(c_{k}^{\prime}\) & \(c_{k}^{*}\) & \(k_{k}\) & \({ }^{\prime} k\) \\
\hline \(\mathrm{S}_{1,4}\) & 0.28 & 31,000 & 20,600 & 1500 & 420 \\
\hline \(\mathrm{S}_{1,5}\) & 0.28 & 31,600 & 29,600 & 2000 & 360 \\
\hline \(\mathrm{S}_{2,1}\) & 0.42 & 36,980 & 35.757 & 1223 & 514 \\
\hline \(\mathrm{S}_{2,2}\) & 0.42 & 36,360 & 35,757 & 603 & 253 \\
\hline \(\mathrm{S}_{2,3}\) & 0.42 & 35,757 & 35,757 & 0 & 0 \\
\hline \(\mathrm{S}_{2,4}\) & 0.42 & 36,255 & 35,757 & 498 & 209 \\
\hline \(\mathrm{S}_{2,5}\) & 0.42 & 36,755 & 35,757 & 998 & 419 \\
\hline \(\mathrm{S}_{3,1}\) & 0.12 & 38,455 & 35,757 & 2698 & 324 \\
\hline \(\mathrm{S}_{3,2}\) & 0. 12 & 37,685 & 35,757 & 1928 & 231 \\
\hline \(\mathrm{S}_{3,3}\) & 0.12 & 36,917 & 35,757 & 1160 & 139 \\
\hline \(5_{3,4}\) & 0.12 & 36,335 & 35,757 & 578 & 69 \\
\hline \(\mathrm{S}_{3,5}\) & 0.12 & 35,757 & 35,757 & 0 & 0 \\
\hline \(\mathrm{S}_{4,1}\) & 0.18 & 48,280 & 43, 057 & 5223 & 940 \\
\hline \(5_{4,2}\) & 0.18 & 46,580 & 43,057 & 3523 & 634 \\
\hline \(5_{4,3}\) & 0.18 & 45,345 & 43, 057 & 2288 & 412 \\
\hline S4,4 & 0.18 & 44,200 & 43, 057 & 1143 & 206 \\
\hline \(\mathbf{S}_{4,5}\) & 0.18 & 43, 057 & 43, 057 & 0 & 0 \\
\hline
\end{tabular}

Table 12. Risk :nalysis for Example Problem
\begin{tabular}{|c|c|c|c|c|}
\hline\(X_{1,1}\) & \(X_{2,1}^{\prime}\) & \(\Sigma S\) & \(\Sigma R_{k}\) & \(R(\cdot)\) \\
\hline 60 & 0 & \(S_{1,1}+S_{2,1}+S_{3,1}+S_{4,1}\) & \(0+514+324+940\) & 1778 \\
60 & 5 & \(S_{1,2}+S_{2,2}+S_{3,2}+S_{4,2}\) & \(140+253+231+634\) & 1258 \\
60 & 10 & \(S_{1,3}+S_{2,3}+S_{3,3}+S_{4,3}\) & \(280+0+139+412\) & 831 \\
60 & 15 & \(S_{1,4}+S_{2,4}+S_{3,4}+S_{4,4}\) & \(42 v+209+69+206\) & 904 \\
60 & 20 & \(S_{1,5}+S_{2,5}+S_{3,5}+S_{4,5}\) & \(560+419+0+0\) & 179 \\
\hline
\end{tabular}
mat does this solution mean? The linima iisk plan for this illustrative iroblem is to retain the 60 cxerienced employees ino will be available for Jamuary and, in addition, hire 10 no: orplojces before January so that their services will be available during the flrst month. if workload \(f\), occurs, tive corporate plan will be as ahown in Table 13. If ::orkloads.\(_{4}\), \(I_{3}\), or if \({ }_{4}\) occur, the corporatc plan rill be as shown in Tables 14 tirough 16 ros.jectively.

Table 13. Minimen Risk Plan . Fithout iNow Contracts
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(X_{1,1}\) & \(X_{2,1}^{\prime}\) & January & February & March & April \\
\hline 60 & 10 & \(X_{1,1}=60\) & \(X_{1,2}=70\) & \(X_{1,3}=80\) & \(X_{1,4}=60\) \\
& & \(X_{2,1}=10\) & \(X_{2,2}=10\) & \(X_{6,3}=12.5\) & \(X_{3,4}=20\) \\
\hline
\end{tabular}

Table 14. Hinimm Riak ilan if Contract I is Received
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(X_{i, 1}^{\prime}\) & \(X_{2,2}^{\prime}\) & January & Fcbruary & March & April \\
\hline 60 & 10 & \(X_{1,1}=60\) & \(X_{1,2}=70\) & \(X_{1,3}=90\) & \(X_{1,4}=90\) \\
\(X_{2,1}=10\) & \(X_{2,2}=20\) & \(X_{6,3}=5.7\) & \\
\hline
\end{tabular}

Table 15. Pifimu Risk Plan if Contraci II is Received
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(X_{1,1}^{\prime}\) & \(X_{2,1}^{\prime}\) & January & February & March & April \\
\hline 60 & 10 & \(X_{1,1}=60\) & \(X_{1,2}=70\) & \(X_{1,3}=90\) & \(X_{1,4}=70\) \\
\(\vdots\) & & \(X_{2,1}=10\) & \(X_{2,2}=20\) & \(X_{4,3}=5.7\) & \(X_{3,4}=20\) \\
& & \(X_{4,1}=7.1\) & \(X_{4,2}=7.1\) & \(X_{6,3}=20\) & \\
& & \(X_{6,1}=12.5\) & \(X_{6,2}=6.25\) & & \\
\hline
\end{tabular}

Table 16. Findman Ris': Lan if contracts I and II anceived
\begin{tabular}{|c|c|c|c|c|c|}
\hline\(X_{1,1}^{\prime}\) & \(X_{2,1}^{\prime}\) & January & February & March & April \\
\hline 60 & 10 & \(X_{1,1}=60\) & \(X_{1,2}=70\) & \(X_{1,3}=90\) & \(X_{1,4}=100\) \\
& & \(X_{2,1}=10\) & \(X_{2,2}=20\) & \(X_{2,3}=10\) & \\
& & \(X_{4,1}=12.9\) & \(X_{4,2}=14.3\) & \(X_{4,3}=27.1\) & \\
& & \(X_{6,1}=20\) & \(X_{6,2}=12.7\) & \(X_{6,3}=20\) & \\
\hline
\end{tabular}

The orcanization is hereby srosented rith a strategr for Janning the futurc manporer revuirc:ionts in Hice fecc of uncostaint. A mathematical sinulation has beem developed rhich cail assist managonent in understanding the probler and the eficets of various slais available to tizem. It is felt that this aumpaci can be copputerized and urovide magament ritil a rapid assessilent of tur dituation at ani" givoir time.
B. M. Ku kjian and R. C. Woodall

Harr Diamond Laboratories
Washington, D. C.
1. Introduction

The object of the arairsis is to estimate lit effect of \(v\) treamente on the response of a device in tie rresence of bextranecus zide erfects (biocks), whose effects are removed from the treatmert effects. Tie treatments may be simple treatments involvint cn \(1 \because\) cis factor, or they wa: ce treatront-cuminations involvine several factone applied si-miterecusl; to the cievice. In the latter cese, the effect of each actor and the effects of interantion dequeenfactors are also estirated. The resiivs pmsented reme ropure no restricticns on the experimental design. \(7 \mathrm{at}=\mathrm{is}\), the desim ray te urbaianced, treatments ray be missing, there may be an wequal numer of observations per cell, etc.

\section*{2. Model}

The model is the fixed effects model:
\[
\begin{align*}
& y_{i j k}=\mu+t_{i}+b_{j}+\varepsilon_{i j k} \\
& \text { where } \mu \text { - overall constant }  \tag{1}\\
& t_{1}=1^{\text {th }} \text { treatment effect, } 1=1, \ldots, v \\
& b_{j}-j^{\text {th }} \text { block effect, }\{=1, \ldots, b \\
& y_{1, j} k^{-k^{t / d}} \text { observation of treatment } 1 \text { in block } j \\
& k=1, \ldots, 1_{1 j} \\
& c_{1 j k^{-}} \text {experimental error in } y_{i j k} \text { assumed to be } M\left(0,0^{2}\right)
\end{align*}
\]

\section*{3. Incidence Matrix}

The debign of the exceriment is characterized by the incidence matrix, \(N\), which is a vxb matrix whose elements \(u_{1 f}\) are one if trwatment is applied in block \(j\), and are zero otherwise. For example, if \(v=3\) and \(b=3\), the incidence matrix might be:


Lat \(l_{1 j}\) be the number of observations on treatment 1 in block g . Then
\[
L=\left(\left(\varepsilon_{i j}\right)\right)=\left(\left(n_{1 j} \ell_{i j}\right)\right)
\]

\footnotetext{
Whis is condensed version of a paper which is to appear in a national journal. This article has been reproduced photographically from the author's manuacript.
}

\section*{4. Definition of Connected Desicns and Sets of Connected Blocks}

A connected design is one in which all the blocks are connected by a chain of treatments. In the example, nr. 1 , blocks 1 and 2 are comected by treatment 1 and blocks 2 and 3 are connected by treatment 2 - hence all blocks are connected and the design is said to be a connected design. The number of sets of connected blocks is one, and the set consists of \(\left\{b_{1}, b_{2}, b_{3}\right\}\).

In the example below, bloct:s 1 and 2 are connected by treatment 1 , but there is no treatment which connects either block 1 or block 2 to block 3 - hence the design is sald to be non-connected. There are two sets of connected blocks \({ } b_{1}, b_{2}\) ) and \(\left.b_{3}\right\}\).
\[
N=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\]

\section*{5. Review of Solution for Connected Designs with No Missing Treatments}

The least--squares solution obtained by minimizing
\[
S=\sum_{1=1}^{v} \sum_{j=1}^{b} \sum_{k=1}^{e_{1 j}} n_{1 j}\left(y_{1 j k}-\mu-t_{1}-b_{j}\right)^{2}
\]
with respect to \(u, t_{1}\), and \(b_{j}\), and eliminating \(\mu\) and \(b_{j}\), gives the recuced normal equations: \(\quad C \hat{E}=\hat{Q}\), where
\[
\begin{align*}
& \hat{t}^{\prime}=\left(\hat{t}_{1}, \hat{t}_{2}, \ldots \hat{t}_{v}\right), \text { the vector of treatment effects } \\
& C=R-L K^{-1} L^{\prime}  \tag{2}\\
& Q=T-L K^{-1} B
\end{align*}
\]
and: \(R\) is a diagonal matrix with diagonal elements equal to the number of observations on \(t_{1}\), 1.e. \(r_{1}=\sum_{j=1}^{b} \ell_{1 j, 1-1, \ldots, v}\) All \(r_{1}>0\) in the no missing treatments case
\(K\) is a diagonal matrix with diagonal elements equal to the number of observations in block \(j\), i.e. \(k_{j}=\sum_{i=1} \ell_{1 j}>0, j=1, \ldots, b\)
\(L\) is the matrix: \(L=\left(\left(\ell_{1 j} n_{1 j}\right)\right)\)
\(T^{\prime}=\left(T_{1}, T_{2}^{\prime}, i_{i j}, T_{v}\right)\) is a vestor of treatment totals, i,e.
\(T_{1}=\sum_{j=1}^{p} \sum_{k=1}^{i} n_{1, j} y_{1, j k}, 1=1, \ldots, v\)
\(B^{\prime}=\left(B_{1}, B_{2}, \ldots, B_{b}\right)\) is a vector of block totals, i,e.
\[
B_{j}=\sum_{1=1}^{v} \sum_{k=1}^{L_{1 j}} n_{1 j} y_{1 j k}, j=1, \ldots, b
\]

The solution \(\hat{t}=C^{+} Q\), where \(C^{+}\)is the generalized inverse of \(C\), gives the minimum-vamaner : unbiased estimates of the \(t_{1}, 1=1, \ldots, v\), subject to the constraint \(\sum_{i=1}^{v} t_{i}=0\). The rank of the matrix \({ }^{+} C\) gives the number of ineariy independent treatment effects which can de estimated, hence the degres of freedom associated with treatments. Thus for the conncted design, no missing treatments case, we have the following:

Treatment effects
\[
\hat{t}=C^{+} Q
\]

Variance-covariance matrix
\[
V(\hat{t})=c^{+} 0^{2}
\]

Sums of squares due to treatments \(S S(t)=\hat{t}^{\prime} Q=\hat{t}^{\prime} C \hat{t}\)
Degrees of freedan \(\quad\) d.f. \((t)=\) Ranlk \(C=v-1\)
Let: \(w\) be the total number of observations in the experiment,
\(\mathbf{Y}\), the vector of observations, \(\left(\left(n_{1, j} y_{1, k}\right)\right)_{w} \times 1\)
\(G=\sum_{1=1}^{v} \sum_{j=1}^{0} \sum_{k=1}^{2 j} n_{1 j} y_{1 j k}\), the Erand total of the ebservations.
Then the analysis of varlance table is given by:
\begin{tabular}{lcc}
\begin{tabular}{l} 
Source of Variation \\
Treatments \\
(adjusted for blocks)
\end{tabular} & Sums of Squares & Degrees of Freedom \\
Blocks (unadjusted) & \(\hat{t}^{\prime} Q\) & Rank \(C=V-1\) \\
Error & \(B^{\prime} K^{-1} B-G^{2} / W\) & \(b-1\) \\
\hline
\end{tabular}

For the factorial case, the notation developed by Kurkjlan and Zelen in "A Calculus for Factorial Arrangements", Annals of Math Stat, Vol. 33, No. 2, June 1962, will be used. Two operators, 0 , symbolic direct product (SDP), Erid \(x\), direct product (DP) are needed.

The SDP is used to order the combinations of levels of the various factors, 111ustrated by the following example: Assume three factors in the experimenta, two at two levels and one at three levels. Let \(\theta^{\prime}=\left(1,2, \ldots, m_{s}\right)\) be a vector designating the levels of the \(s\) factor, "which has \(m_{s}\) levels. Then:
\[
\theta_{1} \cdot \theta_{2} \theta_{3}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \theta\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \otimes\left[\begin{array}{l}
111 \\
112 \\
113 \\
121 \\
122 \\
123 \\
211 \\
212 \\
213 \\
221 \\
222 \\
223
\end{array}\right]
\]

The flral vector fives a particular order of the combinations of the levels of the three factors, and is obtalred by setting the first two factors at level 1 and runime thomei 212 levels of the third factor; setting the second factor at level 2, rundres throunh all levels of the thind factor again; and finally setting the riset factor at its second level and repeatins the sequence on the second and third factors afain. The procedure can easily be generalized to any number of factors at verious levels.

The DP is the matrix mutiplication derined as follows:
\[
A_{m \times n} \times B_{p \times q}=\left[\begin{array}{cccc}
a_{11} B & a_{12} B & \ldots & a_{1 n^{B}} \\
a_{21} B & a_{22^{B}} & \ldots & a_{2 n^{B}} \\
\vdots & \vdots & \vdots & \vdots \\
a_{m 1}^{B} & a_{m 2^{B}}^{B} & & a_{m n^{B}}
\end{array}\right] \quad \pi p \times n q
\]

That is, each element of \(A\) is multiplied times the entire matrix B, by ordinary multiplication of a scalar times a matrix.

Now let \(A_{1}, A_{2}, \ldots, A_{n}\) be \(n\) factors in the experiment
at \(m_{1}, m_{2}, \ldots, m_{n}\) levels, respectively.
The number of treatments (or treatment-combinations) resulting from apolying all the factors simultaneousiy at all combinations of their levels is \(v m_{i} \mathrm{l}_{1} \mathrm{~m}_{1}\).

Let \(\left(1_{1}, 1_{2}, \ldots, 1_{n}\right)\) be the \(1^{\text {th }}\) treatment-cambination where factor \(A_{1}\) is at level \(1_{1}\), factor \(A_{2}\) is at level \(1_{2}\), etc., and order the treatments by the SDP of the levels of the factors.

For example, if \(n=2, m_{1}=2, m_{2}=3\), then:
\[
\theta_{1} \otimes \theta_{2}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \otimes\left[\begin{array}{l}
11 \\
2 \\
3 \\
3
\end{array}\right]=\left[\begin{array}{l}
t_{2} \\
12 \\
t_{2} \\
21 \\
22 \\
23
\end{array}\right] ;\left[\begin{array}{l}
t_{21} \\
t_{3} \\
t_{4} \\
t_{4} \\
t_{5} \\
t_{6}
\end{array}\right]=\left[\begin{array}{l}
t_{21} \\
t_{22} \\
t_{23}
\end{array}\right]
\]

Thus treatment 1 is the orbination ith both factors at level 1 , treatrent 2 is the combination with the ilrst factor at level 1 and the second factor at level ?, etc.

Let \(a_{s}\left(1_{s}\right)\) be the main effect of fastor \(A_{s}\) at the \(1_{s}\) level, \(a_{r s}\) ( \(1_{s}, I_{r}\) ) be the second-order interantion effect vetween factors \(A_{r}\) and \(A_{s}\) at levels \(i_{r}\), and \(i_{s}\), respectively,
\(a_{12} \ldots n^{\left(1_{1}, 1_{2}, \ldots, 1_{n}\right)}\) be the \(n^{\text {th }}\)-crder interaction effect between the \(n\) factors at levels \(1_{1}, 1_{2}, \ldots, 1_{n}\), respectively.
Then the \(1^{\text {th }}\) treatment expressed in terms of the main and interaction effects of the factors is:

For the previous example; we get the relationships:
\[
\begin{aligned}
& t_{1}=t_{11}=a_{1}(1)+a_{2}(1)+a_{12}(11) \\
& t_{2}=t_{12}=a_{1}(1)+a_{2}(2)+a_{12}(12)
\end{aligned}
\]
\[
\begin{equation*}
\vdots \quad \vdots \quad \vdots \tag{5}
\end{equation*}
\]
\[
t_{6}=t_{23}=a_{1}(2)+a_{2}(3)+a_{12}(23)
\]
\(t_{6}=t_{23}=a_{1}(2)+a_{2}(3)+a_{12}(23)\)
\[
\begin{align*}
& \left.t_{1}=t_{\left(1_{1}\right.}, 1_{2}, \ldots, 1_{n}\right)= \\
& \sum_{s=1}^{n} a_{s}\left(1_{s}\right)+\sum_{s \leq s<r} \sum_{i \leq s<n} a_{d s}\left(1_{r}, 1_{s}\right)+\ldots+a_{1,2} \ldots n^{\left(1_{1}, 1_{2}, \ldots 1_{n}\right)} \tag{4}
\end{align*}
\]

Let \(a_{x}\) represent a general interaction term vector of effects where \(x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)\) such that
\(x_{1}=115\) factor \(A_{1}\) is present in the interaction term and \(x_{1}=0\) if not.

The rumber of elements in the vector is \({ }_{1} \prod_{1} m_{1}{ }^{x_{1}}\), again the elements are assumed to be in the order defined by the SDP of the levels of the factors involved, and the order of the Interaction is given by \(p=\sum_{i=1}^{n} x_{i}\).

The number of interaction terms for an n-factor expermment is \(2^{n}-1\), which is the number of combinations of zeroes and ones in the vector \(X\), excluding all zeroes.

Continuing with the example, there are \(2^{n}-1=3\) interaction terms as follows: \(X=(10)\) denotes the main effect (first order) term for \(A_{1}\) and
\[
a_{x}=a_{1}=\left[\begin{array}{l}
a_{1}(1) \\
a_{1}(2)
\end{array}\right]
\]
\(X=(01)\) denotes the matn effect term for \(A_{2}\) and
\[
a_{x}=a_{2}=\left[\begin{array}{l}
a_{2}(1) \\
a_{2}(2) \\
a_{2}(3)
\end{array}\right]
\]
\(X=\) (11) denotes the second-order interantion term \(A_{1} A_{2}\) and
\[
a_{x}=a_{12}=\left[\begin{array}{l}
a_{12}(11) \\
a_{12}(12) \\
a_{12}(13) \\
a_{12}(21) \\
a_{12}(22) \\
a_{12}(23)
\end{array}\right]
\]

1

Adding the constraints that the sum of the effects in an interaction term over all levels of any cone factor is zero, i.e.
\[
\begin{align*}
& \sum_{i_{s}=1}^{m_{s}} a_{s}\left(1_{s}\right)=0  \tag{6}\\
& \sum_{i_{r=1}}^{m_{r}} a_{r s}\left(1_{r}, 1_{s}\right)=\sum_{1_{s}}^{\sum_{s}} a_{r s}\left(i_{r}, 1_{s}\right)=0 \quad \begin{array}{l}
r=1, \ldots, n \\
s=1, \ldots, n^{2} \neq s
\end{array}
\end{align*}
\]
the relationships in (4) can be solved uniquely for the interaction effects in terms of the treatment eifects, giviris:
\[
\begin{align*}
& \hat{a}_{X}=\frac{1}{v} M_{X} \hat{t} \quad \text { where }  \tag{7}\\
& M_{X}=M_{1}{ }^{x_{1}} \times M_{2}^{x_{2}} \times \ldots M_{n}^{x_{n}} \text { (Usins DP multiplication) } \\
& \text { and } M_{1}=M_{1}=m_{1} I_{1}-J_{1} \text {, if } x_{1}=1 \\
& =I_{1}^{\prime}{ }^{n \prime}(1,1, \ldots, 1) 1 \times m_{1} \text {, if } x_{1}=0
\end{align*}
\]
whem \(I_{i}\) is the identity matrix of order \(m_{1}\), and \(J_{1}\) is a matrix of all ones of order \(m_{1}\).

Thus for the exanple, the constraints are:
\[
\begin{aligned}
\sum_{i=1}^{2} a_{1}(1) & =\sum_{i=1}^{3} a_{2}(1)=\sum_{1=1}^{2} a_{12}(11)=\sum_{i=1}^{2} a_{12}(12)=\sum_{1=1}^{2} a_{12}(13) \\
& =\sum_{i=1}^{3} a_{12}(1 i)
\end{aligned}=\sum_{1=1}^{3} a_{12}(21)=0 \quad l
\]

And the interaction effects expressed in terms of the treatment effects are given by:
\(x=(10): \hat{a}_{X}=\left[\begin{array}{l}\hat{a}_{1}(1) \\ \hat{a}_{1}(2)\end{array}\right]=\left[\begin{array}{rrrrrr}1 & 1 & 1 & -1 & -1 & -1 \\ -1 & -1 & -1 & 1 & 1 & 1\end{array}\right] \quad \hat{t}\)
\(x=(01): \hat{a}_{X}=\left[\begin{array}{l}\hat{a}_{2}(1) \\ \hat{\partial}_{2}(2) \\ \hat{a}_{2}(3)\end{array}\right]=\left[\begin{array}{rrrrr}2 & -1 & -1 & 2 & -1\end{array}-10\left[\begin{array}{rrrrr}-1 & 2 & -1 & -1 & 2 \\ -1 & -1 & 2 & -1 & -1\end{array}\right] \quad 2\right] \hat{t}\)

Having the interaction effects expressed in terms of the treatment effects, then the following equations hold for the cormected block, no missing treatments case:
\[
\begin{align*}
& \hat{a}_{x}=\frac{1}{v} M_{x} \hat{t}=\frac{1}{v} M_{x} c^{+} Q \\
& \operatorname{var}\left(\hat{a}_{x}\right)=\frac{o^{2}}{v^{2}} M_{x} c+M_{x}^{\prime}=\sigma^{2} \sum_{x} \\
& \operatorname{cov}\left(\hat{a}_{X_{1}}, \hat{a}_{X_{j}}\right)=\frac{o^{2}}{v^{2}} M_{X_{1}} c^{+} M_{X_{j}}^{\prime}, 1 \neq j \tag{8}
\end{align*}
\]

Sums of Squares due to \(a_{X}=S S\left(a_{X}\right)=a_{x}^{\prime} \sum_{x}^{+} \hat{a}_{x}\)
\(\operatorname{SS}\left(a_{x}\right) / \sigma^{2}\) is chi-square distributed with \(\mathrm{r}_{\mathrm{X}}=\operatorname{Rank}\left(\sum_{X}\right)={ }_{1 \Pi_{1}}^{\mathrm{n}}\left(m_{1}-1\right)^{x_{1}}\) degrees of freedom.

If the design is comected, and orthogonal (i.e. \(\operatorname{cov}\left(\hat{a}_{X_{1}}, \hat{a}_{X_{j}}\right)=0\) for all \(1, j, 1 \neq j)\)
then:
\[
\sum_{1=1}^{e^{n}-1} S S\left(a_{x_{1}}\right)=\hat{t}^{\prime} Q=S S \text { (treatments). }
\]

If the desigy is not orthogonal, the \(S S\left(a_{X}\right)\) are not additive, but each \(S S\left(a_{X}\right) / \sigma^{2}\) is statistically independent of the error term, so that F-tests are valid.

The analysis of variance table is given by:


From a computational viewpoint, the calculations involved in (8) can be greatly reduced by eliminating the elements of each an which are linearly dependent because of the constraints in (6). The total number of elements in all the ax vectors is \(\eta_{i=1}\left(m_{1}+1\right)-1\), while only \((v-1)\) are linearly independent in the connected design case. If all elements involving any factor at its highest level (each of which can allays be expressed in terms of other elements in that team using the relationships in (6)) are eliminated, there will result ( \(\mathrm{v}-1\) ) independent elements.

Then let \(\overline{\hat{a}}_{X}\) be a vector containing the 1 nearly independent elements of \(\hat{a}_{X}\) (selected as above) and let \(\bar{M}_{X}\) be the corresponding rows of \(M_{X}\). Then the equations corresponding to those in (8) become:
\[
\begin{align*}
& \bar{a}_{X}=\frac{1}{v} \bar{M}_{x} \hat{t}=\frac{1}{v} \bar{M}_{x} c^{+} Q \\
& \operatorname{Var}\left(\overline{\hat{a}}_{X}\right)=\frac{\sigma^{2}}{v^{2}} \bar{M}_{X} c^{+} \bar{M}_{X}^{\prime}=\sigma^{2} \bar{\Sigma}_{X} \\
& \operatorname{cov}\left(\bar{B}_{X_{1}}, \bar{a}_{x_{j}}\right)=\frac{\sigma^{2}}{v^{2}} \bar{M}_{x_{1}} c+\bar{M}_{X_{j}}^{\prime}, 1 \neq j  \tag{10}\\
& s s\left(\bar{a}_{X}\right)=\operatorname{ss}\left(a_{X}\right)=\bar{a}_{X}^{\prime}{\overline{L_{X}}}^{-1} \bar{a}_{X} \\
& \bar{\Gamma}_{X}=f_{X}=\operatorname{Rank} \bar{\Gamma}_{X}=\prod_{1=1}^{n}\left(m_{1}-1\right)_{1}
\end{align*}
\]

The dimensions of the var and cov matrices are reduced from \({ }_{i=1}^{n} m_{1} x_{1}\) to \({ }_{1} \bar{n}_{1}\left(m_{1}-1\right)^{x_{1}}\), and the matrix \(\bar{\Sigma}_{X}\) is non-singular, so \(S S\) can be computed using the regular inverse.

The analysis of variance table (9) remains the same, since the sums of squares and degrees of freedon are equal.

\section*{6. Non-connected Desims and \(\because\) Issing Treatment Solutions}

If the design is not connected, then additional constraints are needed to find a unique solution to the reduced normal equations \(C \hat{Z}=Q\).

Let \(z_{1}\) be the number of sets of connected blocks and let \(S_{1}\) be the \(1^{\text {th }}\) set, \(1=1,2, \ldots, z_{1}\). Let \(z_{2}\) be the number of missing treatments (i.e. the number of \(r_{i}=0\) ). Then there must be \(z_{1}+z_{2}\) constraints to find a unique solution to the reduced normal equations.

If the constraints are tajen to be:
\[
\begin{array}{ll}
\sum_{j} t_{1}=0 & j=1,2, \ldots, z_{1}, \text { and } \\
t_{1}=0 & \text { for each } 1 \text { such that } r_{1}=0,
\end{array}
\]
that 1s, if the sum of the treatments associated with each set of connected blocks is zero, and each treatment that is mssing is assumed to be zero, then the solution \(\mathrm{E}=\mathrm{C}^{+} Q\) with \(C\) and \(Q\) as previousiy defined, satisfies the constraints. The analysis or varlance table (3) remains the same except that the degrees of freedom for treatments, Rank \(C=v-z_{1}-z_{2}\).

Now, in the factorial case, the problem is to flnd the relationships resulting fram the additional constraints on the \(t, ' s\), select a set of ( \(v-z_{1}-z_{2}\) ) independent \(a_{X}{ }^{\prime} s\), and compute the cortesponding sums of squares and degrees of freedom for the analysis of variance table.

To determine ti:e relationships on the a's in addition to those in (6) let


That is, \(\overline{\hat{a}}\) consists of all the elements in the \(\overline{\hat{a}}_{y}\) vectors, as defined in (10) and \(\bar{M}\) consists of the correspondin rows of each \(\bar{i}_{X}\). Then the system of equations to calculate the ( \(v-1\) ) \(\overline{\hat{a}}\) elements is:
\[
\begin{equation*}
\overline{\hat{a}}=\frac{1}{v} \bar{M} \hat{t}=\frac{1}{v} \bar{i} C^{+} 2 \tag{11}
\end{equation*}
\]

Linear relationships amons the rows of \(\bar{\Pi} \mathrm{C}^{+}\), and hence amorg the elements of \(\overline{\hat{a}}\), can be detemined by numerical techniques. If she rows of \(\bar{M} \mathrm{C}^{+}\)are arranged so that rows corresfond:: to elements of rain effects are first, then those of second-order interaction terrw, then third-order, stc. and a pivotal-method is used in which rows are interchanmed only ihen nec:ssary to romove a zero element from the diazonal, elements of terms of lonest orier fossible can be selected for the independent elements, and the rerainder expressed in terms of those elements.

The linear relationships so detemined can ce used to catergorize terms involving the dependent elements as beins allased oith independent terms for which the coefficients are non-zero, or unestimable if all coefficients are zero.

Having so detemined a set of linearly independent elements, reduce \(\overline{\hat{a}}\) by eliminating the dependent elements, getting
\[
\overline{\overline{\hat{a}}}=\left[\begin{array}{c}
\overline{\hat{a}}_{X_{1}} \\
\vdots \\
\overline{\hat{a}_{x_{k}}}
\end{array}\right]=\frac{1}{v} \overline{\bar{M}} c^{+} Q
\]
where \(\bar{M}\) contains the rows of \(\bar{M}\) corresponding to the elenents in \(\overline{\hat{a}}\), and where the \(X_{i}, 1=1, \ldots ., k\), represent those interaction terms for which at least one element is among the final set of independent elements. Some terms may not appear at all (If all elements associated with that ter: have been eliminated), while others may have degrees of freedam less than \(\prod_{1=1}^{n}\left(m_{1}-1\right)^{x_{1}}\) (if only part of the elements have been eliminated). Then the following relationshifs hold;
\[
\begin{aligned}
& \overline{\bar{U}_{X_{1}}}=\frac{1}{v} \bar{M} \hat{t}=\frac{1}{v} \bar{M} c^{+} Q \quad 1=1, \ldots, k \\
& \operatorname{Var}\left(\overline{\hat{a}}_{X_{1}}\right)=\frac{\sigma^{2}}{v^{2}} \quad \overline{\bar{M}}_{X_{1}} \quad c+\overline{\bar{M}}_{X_{1}}^{\prime}-\sigma^{2} \overline{\bar{L}}_{X_{1}}
\end{aligned}
\]

If the desim is orthogonal, then \(\sum_{i=1}^{k} S S\left(a_{X_{1}}\right)=\hat{t}^{\prime} Q=S S\) (treatments). The analysis of variance table is given by:
\begin{tabular}{|c|c|c|}
\hline Source of Varlation & Sums of Squares & Degrees of Freedom \\
\hline \(x_{1}\) & SS( \(\mathrm{ax}_{1}\) ) & \[
\text { Rank } \overline{\bar{\Sigma}}_{X_{1}}
\] \\
\hline \[
\begin{aligned}
& x_{2} \quad \text { (adjusted } \\
& \text { for blocks) }
\end{aligned}
\] & \(\operatorname{ss}\left(\mathrm{a}_{\mathrm{X}_{2}}\right)\) & Rank \(\overline{\bar{\Sigma}}{ }_{x_{2}}\) \\
\hline ; & : & : \\
\hline \(x_{k}\) & SS( \(\mathrm{arx}_{\mathrm{k}}\) ) & \[
\begin{equation*}
\operatorname{Rank} \overline{\bar{I}}_{X_{k}} \tag{12}
\end{equation*}
\] \\
\hline Blocks (unadjusted) &  & b-1 \\
\hline Error & \(Y^{\prime} Y-\hat{t}^{\prime} Q-B^{\prime} K^{-1} B\) & w-Rank C-b \\
\hline Total & \(Y^{\prime} Y-a^{2 /}{ }_{w}\) & w-1 \\
\hline
\end{tabular}
design of field test programs and statistical techniques

Emil H. Tehe
University of Michigan
and
Ralph A. King
University of Wisconsin

\section*{GLOSSARY AND DEFINITIONS}
1. Analysis of Variance .. A statistical technique based on a linear model and the application of least squares for subdivision of the total variability in a sample into components specified by the model.
2. \(A C E(S)\) - Along course error of the aystem position.
3. \(b_{\text {EO }}\) - Slope of the orthogonal regression line describing tha aystem's path based upon external position data.
4. CRD - Completely randomized design, the simplest type of experimental deaign or pattern of experimentation. The treatment combinations are randomly asaigned to the entire set of experimental units.
5. CCE(S) - Cross-course error of the system position.
6. CCE(SP) - Cross-course error based' upon the system's estimate of its own position.
7. CCE(E) - Cross-course error (external) - length of a perpendicular from point ( \(X_{E}, Y_{E}\) ) to the programmed path as determined by external measurements.
8. Correlation - A measure of linear association between two random variables: \(0=o_{x y} / o_{x} \sigma_{y}\), i.e., a ratio of the covariance to the product of the standard deviations. Sample eatimator, \(r{ }^{*} s_{x y} / s_{x}{ }^{8} y^{\prime}\)
9. Chi Square Distribution - The probability distribution of the square of a standard normal variable. Let \(z\) be \(N(0,1)\), then \(z_{i}{ }^{2}\) has Chi Square distribution with one degree of freedotu.
*This paper also was presented by the senior author at the "Technical Symposium on Navigation and Positioning," 23-25 September 1969, USAECOM, Fort Monmouth, New Jersey.
10. \(\Delta x=X_{S}-X_{E}=\) deviation of the system's indicated position ( \(X\) coordinate from an external measure of system's location.
11. \(\lambda y=Y_{S}-Y_{E}=\) deviation of the system's indicated position (Y coordinate) from an external measure of system's location.
12. \(d=\) radial error \(=\left[(\Delta x)^{2}+(\Delta y)^{2}\right]^{1 / 2}=\) straight line distance from system's indicated position to position determined by external measuring equipment. Note that if \(\Delta x\) and \(\Delta y\) are normal random variables, then \(d^{2} o^{2}\) is distributed as Chi Square with two degrees of freedom.
13. Duplicate \(=A\) subsample of an experimental unit; one of two measures of system performance for the same experimental unit.
14. Degrees of freedom = Formally, a parameter of the Chi Square probability distribution. In application, the number of independent deviations available for estimating a variance or mean square.
15. Experiment \(=\) Study of system performance over a set of experimental units.
16. Experimental error m A mean square or quadratic measure of system variability about its average performance measured over a set of homogeneous experimental units.
17. Experimental unit = A period or segment of system operation for which an independent measure of system performance can be obtained.
18. F ratio m A ratio of two independent estimates of variance for which under the "null hypothesis" both numerator and denominator are distributed as (Chi Square) ( \(0^{2}\) ) with degrees of freedom, say \(f_{1}\) and \(f_{2}\).
19. Interaction - A situation in which the observed resulta for the simultaneous application of two or more factors cannot be explained by addition of the direct effects of each factor separately estimated.
20. Local Contral - (Blocking) a subdivision of the total set of available experimental units into relatively homogeneous subsets. Each subset is called a block. A complete block contains one experimental unit for each treatment combination. Two or more such blocks then comprise a RCB.
21. Median - A value which divider a population or a sample into two equal parts.
22. Orthogonal regression line - A least squares fitted line such that the sum of squares of normal distances from points to the line is minimized.
23. Position error (refer text)
24. Quartile - The quartiles are values that divide a population or a sample into four equal parts. The second quartile is the median.
25. Radial error \(=d\) (see 12 above).
26. RCB - Randomized complete block design (see 20 above).
27. Response - A measure of syst:em performance. May be univariate but is of ten multivariate.
28. Replication - In a simple measurement situation a single independent observation of system performance. Othemwise, one replicate comprises one obsarvation of system performance for each treatment combination of the entire set of treatment combinations being investigated.
29. Regrassion mean square - The mean square of deviations of points from a. regrassion line (based upon division by the degreas of freedom).
30. Sample size - The number of observations on each treatment combination or the number of complete replicates. Note: this is not the total number of experimental units.
31. Standard deviation - Square root of the variance; a measure of variability about the average of observations from a homogeneous set of experimental units.
32. Structure of a Test Program or Experiment - The overall arrangement of a test program which includes the treatment combinations to be investigated, the environments and locations in which the system is to be operated and the experimental design imposed.
33. Treatments (and Treatment Combination) - If a ayatem is to be tested at altitudes, ay Low and High, we say that altitude is a factor at two levela. We also refer to altitude as a treatment imposed on the system. Suppose we also wish to test the aybem over land and over water. Then water and low altitude and water and high altitude are two different treatment combinations. Two factors each at two levela provide a total of four treatment combinations.

Field Test programs are fraught with many difficulties. Developmental equipment just never seems to perform as well as desired by its producers or as hoped for by the Army. Characteristics of the field environment may not have been adequately anticipated by the development engineers. of ten an extensive shakedown period is required before a system is really ready to be entered into a field test program.

Even before the shakedown trials are started a complete TEST PLAN must be developed for the field test program. The field test envisaged may comprise several parts with each part designed to exercise the system in a different way. When this is the case, a specific TEST PLAN should be developed for each part.

It has been our experience that field test programs are of ten inadequate or incomplete in several respects. Therefore, we need to consider the question, "What are the GENERAL FEATURES OF A TEST PROGRAM?" These features are set out as a list of ten items (prepared by the senior author at a time when he first came in contact with the study of navigation and positioning systems) [1].

\section*{GENERAL FEATURES OF A. TEST PROGRAM}
1. Careful delineation of the problem and thorough understanding of the system or systems to be examined.
2. Definition of the phenomena to be studied. (Including "What are the requirements?")
3. Selection of the response (i.e., performance characteriatica) and the technique of measurement for each response. Know the standards that should be applied.
4. Determination of a suitable experimental unit.
5. Sélection of treatments to be studied (i.e., equipment parameters to be varied.
6. Selection of environmental conditions or parameters to be varied.
7. Choice of a pattern of experimentation (suitable combinations of experimental units, treatments and enviromment). Rasult is an experimental plan or design that includes the randomization procedures, adequate local controls and sufficient replication.
8. Complete layout of the plan for analyais of the responses or measurements to be obtained (before the data are taken).
9. Interpretations to be made from all possible experimental results.
10. What is the next experiment that may be relevant after the currently proposcd one is completed?

\begin{abstract}
Let us consider these ten items in turn. Item 1 , we leave to the engineers although much questioning is of ten required to obtain a clear statement of the problem. Item 2, we also regard largely as an engineering area. Spelling out what is expected of the system in realistic and useful terms is a major step. Later, the question is to be asked and answered, "Does the system fulfill the requirements?" To a considerable extent the answer will depend on the data acquired and our analysis of these data. Examples of requirements might be, "Take off from Dulles International for Paris; make landfall in France with cross-course deviation less than 5 miles with respect to a designated point." Or, "Take off from Field A; fly over point \(X\), \(Y\) with an average radial error not to exceed 20 meters; land at Field B."

Succeeding items on the list lead us more into the statistical and experimental design problems. Determination and definition of the relevant response (Item 3) for judging the performance of the system is basic to all that follows. Yet many "test programs" have been written without having the performance' measures for the system quantified and the methods of measurement clearly stated. Related to the performance measure is the selection of the standard for assessment of that performance. With respect to navigation and positioning syatems we may ask,
\end{abstract}
(1) Do we need photo-theodolite data?, or
(2) Is a radar network required?, or
(3) Will the measurcments from a single radar such as the FPS-16 be sufficient? or
(4) Can we rely on a higher resolution non-radar electronic network?, or
(5) Will cruder methods, simple photographs or visual observation, be sufficient?

Depending on the stated requirements, we may select one or more of these alternatives.

After much though about item 4, we have reached the conclusion that for an electronic system mounted in a land vehicle, a ship or an \(A / C\), the entire mission on a given day must be regarded as the experimental unit. In this mission we include -
starting up the system warm-up
citeci uni
calibrations
departure from base calibrations enroute
traversing selected courses
return to base
checking calibrations
shutting down the system
complete return to ambient conditions.

This view of the experimental unit means that any repetition maneuvers performed by the system within the same misgion must be regarded as duplicates and not as replicates. Of course, we are interested in the variation among duplicates but major interest centers on the replicates, that is, the repeated performance of the system over a set of experimental units that we regard as similar or sufficiently homogeneous for the problem under study. By definition, experimental error is the failure of a system to produce identical responses over a set of independent trials (or experimental units). The key word here is independent; we believe that repeated maneuvers in any one mission are likely to be highly correlated. Therefore, we insist that an independent trial for an electronic system include the complete sequence given above from "starting up the system" through "return to ambient conditions."

A system may have several "modes" of operation, threshold settings may be required and variation of diat settings may affect the performance of the system. All these equipment parameter variations we include under the set of treatments that may be invesitigated (Item 5). Further, we usually extend our concept of the treatments of interest to include the variations external to the system which may or may not affect (hopefully not) the performance of the system. Under Item 6, we include weather, altitude, day or night operation, electromagnetic disturbances (natural or man-made), terrain, direction orer a course, etc.

The result of considering Items 4,5 , and 6 leads us to selection of a pattern or program for the system test. The structure of the test program is determined by the factors (conditions and parameter settings) which we wish to investigate. The simpler this structure can be made, the easier it will be to:
(1) Cope with the inevitable modificatio:s of the test program that arise due to revision of test objectives, unexpected equipment limitations, or failure to obtain adequate data for some courses; ind,
(2) Analyze the data.

\begin{abstract}
 Randomized Design (CRD). This design is preferred when it is feasible. A simple deacription is that we write down on slips of paper each combination of conditions and parameter settings that is to be included in the test program. Then we put the slips into a hat, mix thoroughly, draw them ont one at a time and write out a complete list of the consecutive drawings. Suppose altitudes of one thousand and 12,000 feet were included in the test program for an airborne system. If any part of the consecutive sequence of drawings came out with altitudes (in thousands of feet) \(12,1,12,1,12\) for the sequence of courses to be flown the pilots would object; hence, we regard a CRD as not feasible for such a situation. Therefore, split-plot stractures or nested designs must be worked out when some of the treatments cannot be submitted to
\end{abstract} complete randomizations.

Performance of systems tends to vary with time, or for a development item prototype the performance is even likely to deteriorate with time. Such results are to be expected when the "bugs" are not all ironed out, and the test program covers a 3 to 6 month period. Because of this time variability in performance, it is highly desirable to introduce a "blocking with respect to time. Such blocking is a form of what is generally known in experimental design as "local control"" This local control permits the removal of (or elimination) of time variation so that any two treatment combinations (choice of parameter settings) can be compared withoút time bias. What this means in practice is that if two particular combinations are run in, say, the second week of: the test program, and if one or the other is scheduled again for the 7 th and 13 th weeks of the test program, then if both are run in the 7 th and 13th week, then the time differences (if any) apong the 2 nd, 7 th, and 13 th weeks can be removed in making the desired comparison. The balancing of the experimental proyram againat time or some other possible source of undesirable variability is accomplished by setting up a Randomized Complete Block design. We regard the use of local control by blocking as a necessary requirement in the study of complex systems used for navigation and position determination. Here, we have assumed one week as comprising a block.
it is to be noted that each block as just described forms one complete replicate for a set of treatment combinations. The time period included In the block can be any reasonably short period of homogeneous test conditions, say, one day, three days, or one week. Thus, the number of blocks completed determines the total number of replicates for this set of treatment combinations. The number of blocks completed then determines the sample size so the natural question is, "How many blocks do we need?"

Two considerations enter into the determination of the desired sample size. First is the requirement of obtaining a stable estimate of the experimental error. It is our experience that an eatimate with 10 to 20 degrecs of freedom may oftan be adequate for development test programs. Such an estimate can be obtained with as few as three blocks when eight
or more treatment combinations are to be investigated in each block. Larger blocks, however, may introduce other problems; e.g., lack of hemeananisy ef expertmental untts. The second esnetderation le the magnitude of real differences in system performance that may be associated with environmental and/or parametric changes for the system. Again from experience we have found that system developers and system users have limited information on the magnitudes of these differences. It can be shown from theory that for a specified probability a "large" sample is required to detect "small" differences, but that a "modest" sample may detect easily "large" differences. These vague words (large, small, modest) can be given numerical values only when we are able to insert in the available formulae actual values for (1) the standard deviation of our experiment the (experimental error) \({ }^{1 / 2}\) previously described) ; and (2) the magnitude of the difference to be detected.

The discussion of Item 7 of the "General Features" has been rather lengthy, but we have tied together in this discussion the preceding Items 4, 5, and 6 with Item 7. In this discussion we have covered some aspects of the choice of experimental pattern and its associated randomization, local control by blocking on time, and the choice of sample \(3 i z e\).

Item 8 follows quite easily if we have done our homework well in covering Items 3 through 7. Perhaps, we should note that it. is easy only in principle. We recall a paragraph from our abstract as follows:

When these 'GENERAL FEATURES' have been closely adhered to, then the work of summarization and analysis of data and the final interpretation of results becomes much simpler. An.experimental design for the field test program has associated with it a mathematical model; the two together determine the analytical procedures. One of the most useful and severe disciplines to impose on the military personnel and the development contractor is to require that a set of tables be prepared before the field test is started. This set of tables should include the detailed format of the summary data on which the performance of the system is to be judged. Further, the parties should agree that the performance is to be fudged on these criteria.

The last two ltems, 9 and 10, are essentially self-explanatory. It is usually salutary to give them some consideration, however, before the first experiment is begun. As the test program proceeds, other considerations will appear or come to bear on the problem. Thoughts about 9 and 10 will then take new directions. Without the pre-first-experiment considerations well though out and written down, the new directions may turn out to be undesirable tangents. The "whole forest needs to be kept in view rather than the interesting trees that appear as we walk in the woods." A remark on the use of the term experiment may be added here. Physical scientists of ten think of an experiment as a single trial under carefully specified
conditions. From the analysis point of view, which must be taken by the statistician, an experiment comprises all replicates of a set of treatment combinations among which comparisons are to be made. The TEST PLAN (or test program) for a given system may consist of only one, or two or more experiments.*

We now turn to the consideration of the second area of our paper as indicated by our title. Analysis of the performance of a navigation and positioning system must describe this performance quantitatively in terms of precision and accuracy [5]. Various statistical techniques may be required to describe this performance. In order to give concreteness to this section of the paper we shall base our discussion upon the analysis of the performance of an airborne navigation system in which we were engaged several years ago [6].

The field test program for this system included a requirement that the syatem depart from a base, fly over a calibration check point, and then proceed to maneuver the A/C over a series of six parallel flight paths whose end points were defined by specified longitude and latitude coordinates (see Figure 1). In Figure 1, we show two series of six parallel ilnes, sets \(1 A\) and 1B. The set \(1 B\) was actually laid over the same ground area as set 1 A . Each line of a set of six we refer to as a LEG, so that the total flight course comprised six LEG's. Starting with LEG 1 in series 1 A as shown we refer to this pattern as a Zero Degree flight forward over the course (AO,F). Beginning with LEG 6 and reversing direction over each LEG is called (AO, R). Using series \(1 B\) in the direccion shown starting with LEG 1 is designated as 90 degrees forward (B90, F). Similarly, reversing course beginning with LEG 6 is designated as (B90, R). Other designations are possible such as starting at other end of LEG 1 in each series, which gives (A180, F) and (B270, F).

With this view of the flight area pattern we may approach the details of describing the syatem performance. Assessment of the system performance will be based largely on a position error; i.e., the difference in location of the system as determined by an external measuring system and the system's own indication of its location (at a given time). This pooition error information is to be analyzed by averaging and/or decomposition to provide descriptions of syatem performance. Among these descriptions are:
(1) The difference between the average location of the system over a number of repetitions under essentially similar conditions for a programmed flight over a palint or a course and the desired point or course is a measure of system accuracy [7]. This accuracy, however, may vary over the filght area ( \(1 \mathrm{~A} \& 1 \mathrm{~B}\) ) for a variety of reasons. Thus, it may be useful to speak of the system's predictability or reproducibility for a group of points or LEG's in the assessment of accuracy,

\footnotetext{
*Appropriate references for this first section of the paper are [2], [3], and [4].
}

(2) For precision or repeatability assessment we may describe the performance along a specific LEG or segment of a course which was programmed for the system, or
(3) We may describe the repeatability of the system in flying over the same programmed course a number of times, each time appearing on a different day.

Thus, it is seen from (2) and (3) that we can describe precision over experimental units (replicates), which is of greatest interest, and also in terms of within replicates over a segment of a LEG, a whole LEG or the set of LEG's. Replications of any LEG or part of a LEG on the same day may be regarded as duplicates from the viewpoint of sampling the system performance. We note that within a single programmed flight on the same day all individual position determinations made by the system must be regarded as inherently correlated to some greater or lesser but unknown degree. This point of view is conceptually correct in regarding the output of a single programmed flight as one "realization" in the sense of the theory of stochastic processes. 'The degree of correlation, of course, depends on the time and/or distance separation between any two position determinations. The actual magnitude or form and shape of this correlation function may be quite relevant for system design but need not be of major concern for evaluation of system performance. The realization of its presence, however, requires the definition of a single trial or experimental unit in the way already described and then it guides our analysis.

The discussion thus far has been general in the evaluation of system performance. It will be helpful to list some of the actual variables measured in relation to the determination of position error. These random variables were:
(1) \(\Delta x=X_{S}-X_{E}\)
(2)
\[
\Delta y=Y_{S}-Y_{E}
\]
(3) \(\operatorname{CCE}(S)=\) Cross-course error for the system
(4) ACE(S) = Along course error for the system
(5) \(d=\left[(\Delta x)^{2}+(\Delta y)^{2}\right]^{1 / 2}=\) Radial error for the system.

A rectangular grid system was laid out over the area indicated in Figure 1 with the point \((0,0)\) arbitrarily selected. At time \(t_{i},\left(S_{s i}, Y_{S i}\right)\) was the system's indicated position while ( \(X_{E i}, Y_{E i}\) ) was the actual position of the system as determined by an external means. Thus, \(d_{i}\) was the radial error at time \(t_{i}\). The time interval from \(t_{i}\) to \(t_{i}+1\) was five seconds.

The assessment of repcatability is most easily begun by examining the performance within a single LEG. For each LEG a number of summary statistics were compuced for the variables just listed. These statistics included:
(1) Average value for the variable.
(2) Mean square deviation of the individual values from the average. Note that this quantity although calculated like a sample variance does not have the usual Chi Square distribution with \(n-1\) degrees of freedom because of the correlation of data points within a given LEG (as already discussed).
(3) Minimum value.
(4) Maximum value.
(5) Median value.
(6) First and third quartiles.

In this paper we can illustrate only a few analyses of these many statistics. A mere tabular sumary, of course, gives some description of repeatability. A further analysis considers the behavior of these LEG statistics from LEG to LEG, from (programmed) flight to filght, at different altitudes, orientations (or direction of filght), and even over different areas. The statistical technique used for this further analysis is known as the analysis of variance. This technique has been well described by Kempthorne and Scheffe in its applícation to the analysis of experimental data [8, 9]. Briefly, the technique may be described as a procedure for evaluating the variation of averagas and the variation of individual observations. These evaluations, called mean squares, may be compared by forming Snedecor's Fratio in order to make inferences about the magnitude of the variations of the averages. Specific assumptions, of course, are made in the application of the technique. Currently, most attention is given to these assumptions: (1) the specified inear model adequately represents the experimental structure; and, (2) independence, i.e., the data comprise a random sample from the universe of interest.

A simplified example will illustrate the application of the analysis of variance to a possible set of data from the flight program described above. Let us suppose a series of filghts made over the area of Figure 1 with variations in altitude and heading. The series of flights is carried out in a completely randomized design with the results obtained as in Table 1. There are two replicates of each combination of conditions. Note that only average results for each entire flight are presented.

The analysis of variance appears in Table 2.

\section*{TABLE 1}

\section*{ FOR YICHT MIM:TS FOR CO:OI:ATIONS OF O ALTITLיִ}

Flight \(\therefore\) :
Altitude
\begin{tabular}{ll} 
Heading & Average Radial \\
(Degrees) & frror (Meters)
\end{tabular}
\begin{tabular}{lccc}
1 & \(i, 00 n\) & \(n\) & 90 \\
2 & 7,000 & 90 & 90 \\
3 & \(1 r, 009\) & 0 & 30 \\
4 & 7,000 & 0 & 90 \\
5 & 15,000 & 90 & 40 \\
6 & 7,900 & 90 & 100 \\
7 & 15,000 & 0 & 50 \\
8 & \(15,0 \% n\) & 90 & 60 \\
\hline
\end{tabular}
liA I.: :
Analygis of Viryiance of Averape Radtal Irror
\begin{tabular}{|c|c|c|c|}
\hline Source of Variation & Degrees rit Freectorn & cum of snuares & \begin{tabular}{l}
"enn \\
Square
\end{tabular} \\
\hline & & & \\
\hline Total & 9 & \(\therefore 2809\) & -*** \\
\hline Averinge & 1 & 37200 & "--" \\
\hline Altitude & 1 & 3?n年 & 33.10 \\
\hline Heading & 1 & 50 & 50 \\
\hline Altitude E : "eading Interaction & 1 & 50 & 50 \\
\hline Remntrier & 6 & \(3 n 7\) & 75 \\
\hline
\end{tabular}

The model upon which this analysis is based is written as \(Y_{i, j k}=u+A_{i}+\mu_{j}+(A \mu)_{i j}+E_{i j l}\)
where \(Y_{ \pm 4 \leq}\) is an average radial error as shown in Table 1 and the terms on the right in order are -
a general mean,
an altitude effect,
a heading effect,
an altitude-heading interaction, and
a random component associated with the ijk th experimental unit (filght).

It is the variation among these eight averages given in Table 1. which is to be subdivided into parts associated with tho sources of variation present. We note that the altitude means are: \(1 / 4\) ( \(80+90+\) \(90+100)=90\) at \(7,000^{\prime}\), and \(1 / 4(50+40+50+60)=50\) at \(15,000^{\prime}\). Similarly, the Heading means are: 67.5 at 0 degrees and 72.5 at 90 degrees.

Thus, the \(2 \times 2\) table of means for average radial error is


Detaila of the calculations, the assumptionis underlying the analyais and interpratiation of the reaulta are given in most modern texts on statistical theory or techniques \([10,11]\). We cannot conaider these matters further here, but we point out two aspects of this hypothetical example: (1) The "Remainder" with 4 degrees of freedom is an appropriate estinate of experimental error, so that (75) \(1 / 2=8.66\), is a standard deviation that estimates the repeatability of the Systam over repeated filghts; and, (2) that the Mean Square for Altitude, 3200, when comparad with the Remainder Mean Square provides basis for ansesing the effact of Altitude. If Altitude variation did not affect the System, we would expect these Mean Squares to be about equal. From Table 2 we would conclude by looking at the interaction componant ( \(F\) ratio \(=50 / 75\) (1) that the Altitude effect does not vary with Heading. Tho Heading effact
appears negligible (F ratio \(50 / 75\) 1). Finally, we would conclude that perfurmance differs with altitude (F ratio \(=3200 / 75 \simeq 43\) ) ( \(P\) < 0.01 ). From the averages, we see that the radial error is much smaller at the higher altitude.

In reference to the description given above for the analysis of variance as a technique for studying the variation of averages in contrast to the variation of individual observations, there is a point to be noted in relation to the hypothetical example just given. In the example, the individual values analyzed are themselves averages. Thus, there is a further component of variation associated with individual observations or points within LEGS, that has been suppressed in the example. Generally, in analyzing data for studying the system we followed this same procedure of studying averages. Thus, a simple LEG average provided a single datum and we analyzed the variation of these averages in relation to other factors.

There are several reasons for following this procedure. First, this approach, of course, has implified some problems in analysis due to unequal numbers of observations within LEGS. Second, even though numbers of observations on a given LEG varied from as low as 80 to around 200, there was no reason for giving more weight to one flight; over a given LEG than another if a reasonable set of data were obtained to represent that flight over that LEG. Thus, using averages and giving each average equal weight seemed a proper procedure for assessing the overall performance. Third, the use of averages, even though each' average is computed from data with considerable correlation, will prot vide values of a random variable which more closely approach the assumptions of the analysis of variance technique. In analyzing the repeatability within LEGS as measured by the variances of designated random variables (Mean Square Deviations from Average or from an Orthogonal Regression Line), these variances may also be considered as "avarages." Because of the greater apparent dispersion of these variances, it seemed desirable to analyze the natural logarithms of these quantities to obtain a transformed variable more suitable for the analysis of variance technique. Fourth, and lant, this approach in terms of further analysis of original statistics (averages, variances, slopea of regression lines and deviations from such lines) is in keeping with the spirit of Professor John W. Tukey's suggestions [12].

The preceding example was made small in order to be easy to follow. The conclusions atated relate only to the hypothetical data of Table 1 as if they were real data. We now present in Table 3 some real data for six flights over the area represented by Figure 1. These flights were flown at three altitudes with zero degree heading (1.e., AO, F as noted above). Table 3 gives averages of \(\Delta x\), \(\Delta y\) and \(d=r a d i a l\) error for each LEG of each flight. Hence, 36 averages are shown for each variable. The

Table 3
Tabu!ation of Leg Means for Selacted Variables from Glx Fllghta Nour the Fixire 1 trea (Units are Meters)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Flight Vumber & \[
\begin{gathered}
\text { (Altitude/ } \\
\left.l, M^{n}\right)
\end{gathered}
\] & 1 & 2 & \[
\mathrm{Lag}_{3} \mathrm{Num}
\] & : & 5 & 6 & \\
\hline \multicolumn{9}{|c|}{} \\
\hline 5 & 7.5 & 143 & 12 & 9.4 & 107 & 129 & 116 & \\
\hline 6 & 7.5 & 103 & 3.9 & 51 & 91 & 108 & 115 & \\
\hline 1 & 11 & 3:1 & -193 & -9 & 51 & 71 & 86 & \\
\hline 7 & 11 & 95 & 79 & 74 & 101 & 124 & ; 39 & \\
\hline 3 & 15 & 121 & 81 & 117 & 88 & 125 & 116 & \\
\hline 4 & 15 & 91 & 89 & 59 & 119 & 47 & 140 & \\
\hline \multicolumn{9}{|c|}{Variahle: \(\Delta v=Y_{5}=v_{1}\)} \\
\hline 3 & 7.3 & -71 & -1.35 & -3'33 & -341 & -144 & \(+11\) & \\
\hline 6 , & 7.5 & -75 & -101 & -233 & -257 & -80 & +45 & \\
\hline 1 & 1.1 & +3\% & -334 & -7\% & -1.39 & +19 & +185 & \\
\hline 7 & 11 & -92 & -130 & -341 & -373 & -172 & +3 & \\
\hline 3 & 15 & -109 & -19n & - 14 r & -374 & -95 & +3 & \\
\hline 4 & 15 & -103 & -273 & -331 & -391 & -122 & -3 & \\
\hline , & \multicolumn{8}{|c|}{Variable: Radial frror \(\sim\left((\$ x)^{2}+(6 .)^{2}\right\}^{1 / 2}\)} \\
\hline \$ & 7.5 & 319 & 187 & 349 & 371 & 219 & 159 & 267* \\
\hline 6 & 7.5 & 279 & 139 & 237 & ? 288 & & 142 & 216 \\
\hline 1. & 11 & 278 & 378 & 176 & 159 & \(168{ }^{\circ}\) & 212 & 230 \\
\hline 7 & 11 & ? 5 ? & 2.53 & 350 & \(4 n 2\) : & 231 & 175 & 280 \\
\hline 3 & 15 & 264 & 186 & 371 & 344 & 2 nf & 138 & 252 \\
\hline 4 & 15 & 260 & 298 & 3.57 & 412 & 207 & 196 & 287 \\
\hline & & 277** & 2411 & 310 & 331 & 204 & 170 & \\
\hline & & & & & & & & *** \\
\hline
\end{tabular}

\footnotetext{
\#fighe Averages;
* Log Averagos:
***Overall Average.
}

Tatlo 1
Analugis of Varfance of the Lep Averages for the Variable: Radial Frror
\begin{tabular}{|c|c|c|c|}
\hline Source of Varation & Neprepa of Freedom & Sum of Squares & Mean Square \\
\hline Total & 36 & 2582140 & \\
\hline Average & 1 & ? 346756 & \\
\hline Altitudes & \(?\) & 6778 & 2380 \\
\hline Flighta at Same Altitude & , & 10n9.? & 6374 \\
\hline (Pooled Vartation for filghts) & (5) & 2-307n & (4774) \\
\hline Legs Over All Flights & 9 & 195059 & 23194 \\
\hline Legs \(x\) Altutures Intaractions & 10 & \(4 n 3 n n\) & 4030 \\
\hline Legs \(\times\) Fitghts at Same Altitures & 1.5 & 55847 & 3723 \\
\hline (Grouped legs x Flights) & (25) & (16147) & (3846) \\
\hline
\end{tabular}
analysis of variance for one of the variables, radial error, is given in Table 4, Therefore, Table 3 also shcis the marginal averages for this variable, that is, over all LEG's of the aame flight, and over all flights for the same LEG.

The model for the analysis of Table 4 is writtei: as -
\[
Y_{i j k}=\mu+A_{i}+\varepsilon_{i j}+L_{k}+(A L)_{i k}+\delta_{i j k}
\]
where \(Y_{i j k}\) is average radial error as given in Table 3 and the terms on the right are -
a general mean,
an altitude effect.
an error component for flights at same altitude,
a LEG effect,
an ALTITUDE \(x\) LEG interaction, and
a residual which measures failure to obtain saina results for a LEG when a repeated flight is made at the 3 ame Altutude.

Major interest in Table 4 first centers on the Altitude Comparison. The mean square for Altitudes is 2389 while the mean square for repeated flights made at the same altitude is 5364. The latter is our measure of experimental error for Altitudes; hence, the \(F\) ratio is 2389/6364< 1 . We conclude that altitude variation did not affect the performance of the system cver' the range of altitudes selected (our choico of altitudes was limited by the performance capability of the A/C carrying the navigation system).

Next, we examine the varlation within flights or between LEGs. : The "LEGs over all flights" mean square is 23194, a large value relative to all other mean squares in Table 4. Thus, we are inclined to conclute that there are large differences among the six LEG of the programed flight pattern. The remaining two mean squares, LEGs \(x\) Alititudes \(=4030\) and LEGs \(\times\) Flights at same Altitude \(=3723\), indicate the consistency of these large LEG differences. Pooling of the last two ources of variation yields a mean square of 3846 with 25 degrees of freedom. An approximate \(F\) ratio for comparing LEGs could be formed by \(F=23194 / 3846 \geqslant 6\). We regard this ratio as an approximate \(F\) in distribution because of the correlatiun of LEGs within the same flight although this may be small because of the apparently large LEG differences. Perhaps, a multivariate test could be devised for comparing LEGs; we have not considered this approach. In view of the consistency of these LEG differences over different days throughout the test program it seemed reasonable to us to conclude that natural electromagnetic field variations over the six LEGs affected the system performance.
 about the repeatability or precision of the system which produced the data given in Table 3. It is our purpose here merely to present statistical methods and techniques for securing such information about any navigation system. It will be useful to give one more table, however, to show another aspect of the repeatability. In Table 5, we give the mean square deviation of the radial errors from the average radial error (given in Table 3) arranged by Fiights and LEGs as in Table 3. We shall not give the analysis of variance for the daca in Table 5 but we note that natural logarithms of these mean square deviations were taken before computing the analysis of variance. This log transformation is usually applied before analyzing variances of observations.

Aithough we have given only a small sample of the large amount of repeatability information obtained for the system we have been using for our discussion, we turn now to the system accuracy. If the system exhsibits accurate performance we may say that it has predictability or reproducibility. In addition to the variables listed above, which, were used for examining the system repeatability, we also obtained the cross course error-of the system location from the external measurements, \(\operatorname{CCE}(\mathrm{E})\), which was the distance of the point ( \(X_{E}, Y_{E}\) ) from the programmed path (ines shown in' Figure 1). Ant average of these values would show the bias or systematic error of the system in flying the programmed course. If this bias were negligible over all flights we would regard the system as accurate or that its performance is reproducible.

Further, from the ( \(X_{E 1}, Y_{E 1}\) ) data we obtained a derived quantity, the slope of the orthogonal regression line, \(b_{\text {gO }}\), through the points traversed by the system. The slope of this line for each LEG of the programmed path then could be compared with the actual slope, 8 , of the programmed path in terms of the arbitrary \(X\); \(Y\) coordinate system imposed on the area of Figure 1. Departures of the observed slopes, \(b_{\text {go }}\) from the desired slope, \(B\), then give further information on the system predictability.

Before presenting actual resulta it will be helpful to discuss briefly the use of the orthogonal regression line. Trom the above, it is clear that both \(X_{E}\) and \(Y_{E}\) are random variables. The usual regression models conaider \(X_{E}\) to be aut independent variable observed or measured with no error or negligible error. Natrella in "Experimental Statistics" gives a good discussion of regression analysis for functional and statistical relations [13]. It is clear that none of the standard models apply to thid navigation system analysis. After considerable study, we concluded that fitting the orthogonal regression line would best describe the system performance. Dexivation of the normal equations for fitting this line was given by Coleman in 1932 [14]. To our

TABLE 5

\section*{Sean Scuare Devfations by Leris for Six Flights Variable: Radial frror}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{7}{|c|}{Variable. Radial firror} \\
\hline . & \multicolumn{7}{|c|}{LEG} \\
\hline Plight Nunber & Altitude & 1 & : 2 & 3 & 4 & 5 & 6 \\
\hline & & & & & \multicolumn{3}{|c|}{\%} \\
\hline 5 & 7.5 & 5.3240 & 15630 & 1274.9 & 5215 & 12720 & 6883 \\
\hline 6 & 7.5 & 41050 & 7854 & 2678n & 5716 & 7835 & 1017 \\
\hline 1 & 11 & 22700 & 1:510n & 1 n 2rio & 4622 & 333. & 6304 \\
\hline 7 & 11 & 39499 & 27780 & 33510 & 6991 & 12897 & 4270 \\
\hline 3 & \(13:\) & \(3640 n\) & 23000 & ?62nn & 2? \(6_{1}\) & '337? & 1227 \\
\hline 4 & 15 & 3417.9 & 288S0 & 254?n & 3276 & 7804 & 8589 \\
\hline
\end{tabular}

Tabulation of Altitute Averages and General Average for Variables 'hich lescribe System Predictahilitv (based on ziC: \(A \cdots i\) ficts reighted equallu)


\footnotetext{
* Hased on averape of 36 values : six !ifights of six Lfics.
** Hased on averagu of 12 valusa; two fjfinhes of mix tufin.
}
*** Vote: \(=-1.717 ?\)

11.17
liabulation of Fllyht Averages for Varlablus
;hich nescribe systeri 'redictahilit:
(based on Lap dverages keinhtel enunl!)
fintes are metoral


Varlables


\footnotetext{

** This etanicif cieviation if leaived fram the flieht mean square in the
 arises froly the alesafing nver six legs within sach ilfght.
}

Lnouledge, houguar, the sampling theovy fer the slepe of thit axthosionch regression line has never been presented (approximations could be obtained, perhaps). In a replicated experiment, this lack of adequate sampling theory does not create an impasse. Independent estimates obtained from repeated flights will permit direct estimation of the variability of the orthogonal regression slopes.

Along with computation of the orthogonal regression line we also present the regression mean square for deviations from the regression line. The magnitude of this mean square indicates the scatter of the \(X_{E}, Y_{E}\) points about the fitted line. The system whose data we have been presenting also provided an estimate of its own position which we designate as \(X_{S}\), \(Y_{S}\). From this data series we calculated a CCE(SP) Cross Course Error of the system's indicated position. Table 6 presents average values of these four statistics for the six flights over the area of Figure 1.

As averages, these numbers in Table 6 speak for themselves. With respect to cross course error, if the system actually was on the left side of the programed path, the deviation was designated as negative. Thus, we see that the system generally directed the flight slightly to the left of the programed path. On the other hand, the syatem's indication of its position on the average was an even amaller deviation but to the right of the programmed path. For reference, the slope of the parallel lines comprising the programmed path was -1.3032. Thus, the average slopes shown in Table 6 agree quite well with the desired direction.

Overall averages, however, do not tell the whole atory. Hence, we present average values for the six individual flights for these same Variables in Table 7. The right hand column in Table 7. shows the tandard deviations of these averages as obtained from the analyses of variance for these four variables. Again, these data need little explanation. We note that for Flight No. 4 the average of the systems' indicated position also was to the left of the programed path. Furthermore, the largest CCE(E) was observed for this flight. We have discussed the estimation of sampling error for the regression orthogonal slope. Here we see the application of this estimation even though we have no direct samplirg theory for \(b_{\text {EO }}\). The values shown for each flight are based on average slopes for all six LEGs. The estimated pooled standard deviation for these slopes is only 0.0038 .

SUMMARY. In this paper we have considered the assessment of the performance of navigation and positioning systems. Such assessment comprises two parts: (1) the development of a comprehensive TEST PLAN; and, (2) adequate atatistical analyses of the data collected. We emphasize that no more information can be extracted from data than has been built into the structure of a test program [15]. This structure is created by the TEST PLAN.

Ouz diocuī̃ina af the TEST PIAN has hopn developed from an Outline of the "General Features of a Test Program." Among the ten items included in this outline we have directed particular attention to the following:
(1) Selection of the system response or performance measures.
(2) Definition of an experimental unit.
(3) Selection of the treatment combinations.
(4) Determination of the pattern of experimentation or choice of experimental design.
(5) Blocking of the test program againgt time or other sources of variation in the test program, and,
(6) The sample size or how many experimental units should be completed.

For analysis of the test, data we have considered the assessment of both precision and becuracy. There are many ways of presenting data sumaries to provide information on both of thase characteristics of aystem performance. We have illustrated the application of the analyuis of variance in different ways. Generally, we prefer this approach because of the ability to aubdivide the total experimental variation into dources associated with the structure of the TBST FLAN. In using aome results obtained from the flight tent program for a navigation syatem We have been able to give only a mall aampie of the many analywes performed for meanuring both precision and accuracy. The latter we note also has been referred to as: (1) predictability; and, (2) reproducibility. For one meaaure of predictability, the slope or direction of a flight path, we showed how to measure directly the variability of the slope entimates.

\section*{REFERENCES}
1. Enil H. Jebe, "General Features of a Tent Program," unpublished, dated 5 December 1962 (circulated for various purposes aince that date).
2. E. B. Wilson, Jr., "Intro. to Scientific Research," N.Y., McGraw-Hill (1952). (Now available in paperback).
3. D. J. Finney, "The Theory of Experimental Design," Chicago, Univerifity Press (1960) (in paperbsck).
4. D. R. Cox, "Planning of Experiments," N.Y., J. Wiley and Sons (1958.
3. ASIM Vesignation: \(E-1 \bar{\prime}-b \Delta L\), "Use of the Terms Precision and Accuracy as Applied to Measurement of a Property of a Material," Phila., ASTM (1968).
6. James O'Day, et al., "Field Test of a Navigation System," Vol. I, Rpt. of Project Michigan, December 1966, Willow Run Laboratories, IST, The University of Michigan, Tech. Rpt. ECOM-00013-58(I), USAECOM, Contract DA-28-043 AMC-00013(E).
7. Henry W. Bigelow, USN Oceanographic Office, "Electronic Poaitioning Systems," Undersea Technology, April 1964 (pp. 24-28).
8. 0. Kempthorne, "Design and Analysis of Experiments," N. Y., J. Wiley \& Sons, (1952).
9. H. Scheffe, "The Analysis of Variance," N. Y., J. Wiley \& Sons (1959).
10. W. J. Dixon \& F. J. Massey, Jr., "Intro, to Stat. Analysis," N.Y., McGraw-Hill, 3rd ed. (1969).
11. G. W. Snedecor \& W. G. Cochran, "Stat, Methode," Ames, Ia., University Presis, 6th ed. (1967).
12. J. W. Tukey, "The Future of Data Analysis," Anals of Math. Stat. 33, 1 (1962).
13. Mary Natrella, "Experimental Statiatics," NBS Hdbk 91, USGO (1963) (also ORDP 20-110-20-114 and AMCP-706-110-114).
14. J. B. Colaman, "A Coefficient of Linear Correlation Based on the Method of Least Squares and the Line of Best Yit," Annals of Math. Stat. 3, 79 (1932).
15. C. R. Rao, "Adv. Stat. Methods in Biom. Research," N.Y., J. Wiley \& Sons, (1952) (aee quotation from R. A. Fisher, preceding the Preface).

> Edwin M. Bartee
> Vanderbilt University Nashville, Tennessee

Considerable knowledge has beun developud in the ilteraturo that piovidas for the more effoctive design of experiments using, primarily, certain otatistiall techniques for analysis purposes. Such mothode are concerned, for the nost. part, with analyaing the degroo of dopendence botreon the variablos. These techniques have exerted a significant influonce upon the amount of precision and acouracy that is realizod in many experimants.
ddditional impact on the optimization of experiments is potentially possible thsough the application of modeling techniques in the syntheais of experimente. Suoh techniques are concemod sith the design of thi axporgmantal modol, prom viding a basia for systomatic optimization of the diosign oriteria,

\section*{Dantan Gyturns}

As in any engineoring deaign problen, tho ultimato obaractor of tho final design is diotated by oortain dosign oritoris. Some typioal oriteria for an oxperimontal dosign are as follows:
1. The mimber of frotors to be varied
2. Tha numbar of levela to be macaured for cech factor
(a) Are Iovole qualitative or quantitativop
(b) Are nonlinoar offoots to be meaburedi
(o) Aro doviations to be meagurod from a nominali
(d) Are all factors to be sot at an equal nunber of levols?
3. The mumber of manouranents of the response variable to be taken
(a) Are interections to be measured?
(b) Are there any physical idmitations on the number of meacurements in the exporiment?
(o) What precision is required for measuring exporimental orrory

\footnotetext{
This article has been reproduced photographically from the author's manumeript.
}

The aynthesis of an oxperimental model will be disoussed in three steps:
i. Īesign oí tine gingciuraì minisi
2. Deaign of the Aunctional model
3. Deaien of the expertmental model

The first two oritoris are important in the determination of the otructural. modal. Gerteris 3 (a) and 3 (b) are important in the doaign of the funotional. model. Criterion 3 (c) in the major considoration in the desisn of the experimental modol. The uitirate experimental model is the objeotive of the design procese disoussed in this paper. Altornate standard experimental designs are compared to the developed expermental model so that a design choice oan be mede that will optiadso complianop with design ordtorin;

Such an optimization effort differs with the traditional type in atatiatical deaign of experiments. This traditional optimization proceas is typically concerned with a erademoff between the cost of exparimentation and the atatiatical decision. Such optimization would provide the demign critarion in 3 (c); 1.e., a determination of the number of measurements required to provide cartain preciaion in estimating experimental error so that certain risk and/or cost requirements can be met. Optimization of the experimental design in thia paper is concerned uith the selection of the deaign that will beat meat the deaign exiteria established for the experiment. One of these design criteria ulually consists of the number of measurements to be made in order to optimize certain statistical and cost requiromenta.

\section*{The Struothrel Model}

The etructural model of an experiment is desoribed by
\[
\begin{equation*}
n_{1} \cdot k_{1} \cdot k_{2} \cdot k_{3} \cdot \cdots k_{2} \cdot \cdots k_{p} \tag{1}
\end{equation*}
\]
\(N_{\text {. a }}\) number of cells (defined below) in the experiment
\(k\) number of lovels for a factor or independent variable
\[
j=1,2,3, \ldots, i
\]
\(m\) a: the \(m^{\text {th }}\) factor or independent variable; 1, 2, .... \(p\)
\(p=\) the total number of factors in an experiment

The simplest form of an experiment is the case of one factor, for example \(x_{1}\), at one level, so that
\[
p=1 . \quad k_{1}=1
\]
and thus, from Eg. (1), the structural model becomes
\[
N_{B}=k_{1}=1
\]

This model is colled a enin, the basic struotural undit of an experiment. The next form of an experiment is the oase of one factor at two or more lovels, so that
\[
p=1_{1} \quad j_{1}=2,3 \ldots \ldots k_{1}
\]
and thus, the atruotural model becomes
\[
N_{5}=2,3, \ldots, k_{1} \operatorname{col} 128
\]

The next form or level of an experiment is 311 ustrated by a case in which there are two factors at two or more levals. Thus
\[
p=2, \quad j_{1}=2,3, \ldots k_{1}, \quad j_{2}=2,3, \ldots k_{2}
\]
and the etmuatural model becomes
\[
N_{1}=k_{1} \cdot k_{2} \text { cells }
\]

Consider another example. A three-factor experiment is described by
\[
p=3, \quad k_{1}=2, \quad k_{2}=3, \quad k_{3}=3
\]
and
\[
N_{8}=k_{1} \cdot k_{2} \cdot k_{3}=2 \cdot 3 \cdot 3=18 \text { cells }
\]

A special case of the structural model occurs when the experiment is symotrical, meaning that all factors have an equal number of levels. Therefore, when
\[
k_{1}=k_{2}=k_{3}=\cdots=k_{m}=\cdots=k_{p}
\]

Eq. (1) beccues
\[
\begin{equation*}
N_{1} \cdot k_{1} \cdot k_{2} \cdots k_{n} \cdots k_{p}=k^{p} \tag{2}
\end{equation*}
\]

To 11ustrate, let us consider an experiment with two factors, each at two levels, desoribed by
\[
p=2, \quad k_{1}=k_{2}=k=2
\]

Thus.
\[
u=x^{p}=2^{2}-400118
\]

For another example consider a case of the gymetrical model with three factors, oach at two level.s.
\[
\begin{array}{r}
p=3 \\
H_{1}=N_{1}=2^{3}=8
\end{array}
\]

Thus, Eq. (2) detemines the number of colls for any symuetrical model with \(p\) factors asch, at an equal number of \(k\) lovils.

The deaten oxiteria that are desoribed by the structural model ares
1. The mumber of factors
2. The muber of 2ovele por factor

These oriteris are determined by the objeativea of the experiment, the measurebility of the faotors, the intorest in nonlinear offects, oto. They should not be dictated by any limitations upon the total number of mearurements that can be made of the response variable. Such limitations, or lack of them, 18 the concern of the functional model.

The Functional Model
The functional model determines how many cells in the structural recdel will contain a response measurement. Such functional models are either compl.oto or incomplete. A functional model is considered to be complete when all cells contain a response. A functional model is incomplicte when the number of responses are systematically limited, so that the number of/responses is less than the number of cells. Each of these basic types of functional models will now be discussed.

The necessary and sufficient conditions for a complete functional model are:
\[
\begin{equation*}
N_{I}=N_{s}=k_{1} \cdot k_{2} \cdots k_{m} \cdots k_{p} \tag{3}
\end{equation*}
\]
wheres
\[
\begin{aligned}
& \mathrm{H}_{s}=\text { the number of cell in the experiment. } \\
& H_{f}=\text { the number of responses in the experiment. } \\
& x \text { - the mumber/of factor levels } 亠 2 \text {. } \\
& p \text { m the total number of factors } \geqslant 1 \text {. } \\
& m=1,2,3, \ldots \ldots p \text {. }
\end{aligned}
\]

For the special case of symmetry where
\[
k_{1}=k_{2}=k_{3}=\cdots k_{p}
\]

Equation (3) an be written as
\[
\begin{equation*}
N_{f}=N_{B}=k^{p} \tag{4}
\end{equation*}
\]

In both Eq. (3) and (4), it can be observed that the number of cells in the structural model \(\left(N_{8}\right)\) and the number of responses in the functional model ( \(N_{f}\) ) are equal. This equality is the basic oharactoristio of a complete model. In other words, for every cell these is a response, or
\[
n_{s}=N_{P}
\]

For acanple, given the experiment with two factors, \(x_{1}\) and \(x_{2}\). one at two levela and the other at three levels, wo have
\[
\begin{aligned}
& p=2, \quad k_{1}=2, \quad k_{2}=3 \\
& x_{2}=x_{f}=k_{1} \cdot k_{2}=2 \cdot 3=6
\end{aligned}
\]

A Aunctional model is incomplote when

or wen the muber of responses in the experimental model aro determined, in some systematio marner, to be loss than the muber of cells, Our concern at this point is to consider the sundarental mothods that are involvod in designing such an incemplete model.

Nunctional models can be made incouplete in thxee fundamontal ways. The Eirat of these is the restricition of responses exponentially, so that the nubber of excluded responses are detormined by rastriction with the factora in the model. The second method for designing incomplete motels is to restrict the responses' 14nearly, so that the number of exaluded responses in a model are dotemained by reatriotion with a certain number of levels of a aingle faotor In the model. The thind mothod consists of a combination of the first two, in which case the restriction of responses is accompliohed by both exponential urd linear methods. Each of these methods will now be discuseed.

Fron Ea. (3). the necessary and sufficient conditions for an incomplete functional model whose responses are restrictod with factors are
\[
\begin{equation*}
\mathbf{x}_{\mathbf{t}}=\frac{k_{1} \cdot k_{2} \cdot \cdots k_{1} \cdot \cdots k_{p}}{k_{1} \cdot k_{2} \cdot k_{1} \cdot k_{q}} \tag{5}
\end{equation*}
\]
where:
\(q=\mathrm{the}\) number of factors restrioting the number
of responses in the model. \(1=0,1,2, \ldots 9\)
(Non-nggative integers.)
\[
m=1,2 ; \ldots, p
\]

When \(q\) is equal to zero, no restriction on responses exists. Consider the oase of structural model with three factore, \(x_{1}, x_{2}\), and \(x_{3}\), with
\[
N_{3}=k_{1} \cdot k_{2} \cdot k_{3}=2 \cdot 4 \cdot 2=.16
\]
in which the number of responses is to be restrioted by ons factor, for axample \(x_{2}\). Therefore, we have one restricting factor, making
\[
q=1
\]
and, thus Iron Eq. (5)
\[
n_{1}=\frac{k_{1} \cdot k_{2} \cdot k_{3}}{k_{2}}=\frac{2 \cdot 4 \cdot 2}{4}=4^{6}
\]
siving four responses that are contained in the sixteen cells of the structural model.

Consider another case. Suppose that a structural model contained four factors \(x_{1}, x_{2}, x_{3}, x_{4}\), with
\[
N=k_{1} \cdot k_{2} \cdot k_{3} \cdot k_{4}=4 \cdot 5 \cdot 4 \cdot 4=320
\]

Suppose that the number of responses in the functional model is to be restricted by the "tivo factors, \(x_{2}\) and \(x_{3}\). Thus, we have the \(1^{\text {th }}\) factors \((1-2,3)\) restrioting, 80 that
\[
p=4, \quad q=2 ; \quad k_{2}=5, \quad k_{3}=4
\]
and from Eq. (5)
\[
N_{1}=\frac{k_{1} \cdot k_{2} \cdot k_{3} \cdot k_{4}}{k_{2} \cdot k_{3}}=\frac{4 \cdot 5 \cdot 4 \cdot 4}{5 \cdot 4}=16
\]
giving that 16 responses will be contained in the 320 oells.
For the oymmetrical functional model, the exponential characteristic of this restriction method becomes more apparent. From Eq. (5), when
and
\[
k_{1}=k_{2}=k_{m}=k_{p}
\]
\[
k_{1}=k_{2}=k_{1}=k_{9}
\]
then:
\[
\begin{equation*}
k_{2}=\frac{k_{1} \cdot k_{2} \cdot k_{m} \cdot k_{p}}{k_{1} \cdot k_{2} \cdot k_{2} \cdot k_{q}}=k^{p-q} \tag{6}
\end{equation*}
\]

\section*{where:}
\(q<p\) and is a non-neaative integer.
The \(q\) restriction becones a negative exponent of the number of equal factor levels. An example is a case in which a synmetrical model contiains three factors, \(p=3\), each at two levels, \(k=2\). The structural model is
\[
N_{8}=k^{p}=2^{3}=8
\]

Suppose that the functional model is to be incauplete by restricting the mumber of responses with one factor, so that, frem Eq. (6)
\[
\begin{gathered}
q=1 \\
N_{1}=k^{p-q}=2^{3-1}=4
\end{gathered}
\]
giving the funotional model contalning a total of four responses in eifht cells.
Consider another example. Suppose that for the structural model
\[
N_{c}=k^{p}=3^{4}=81
\]

It is desirable to limit the number of responses in the functional model to nine. The value for \(q\) to accomplish this is deterrined as follows:
\[
\begin{aligned}
N_{f}=k^{p-1} & =3^{4-2}=y=\frac{3^{4}}{3^{q}} \\
& 3^{q} \\
& =\frac{81}{9}=9 \\
\quad q & =2
\end{aligned}
\]

The second method for restricting the responses in an incomplete functional model linits the responses within the levels of a particular factor rather than with \(q\) number of factors. This is done by subtracting the total number of blank colls fon a particular facter from the total number of cells in the etructural modal. Thus, from EA. (3), we have
\[
\begin{equation*}
n_{f}=k_{1} \cdot k_{2} \cdot \cdots k_{m} \cdot \cdots k_{p}-c_{m} k_{m} \tag{7}
\end{equation*}
\]
where:
 \(m^{\text {th }}\) factor. (a non-negative integer)
\(k_{m}=\) the number of Levels of the \(m^{\text {th }}\) factor.
\[
c_{m} \div k_{m}
\]

The \(m^{\text {th }}\) factor can be any one of the \(p\) factors in the modol. for example, a \(p=2\) model can be systematically limited by axbitrarily determining the number of blank cells to exist in "each level of one of tho two factors, \(x_{1}\) ard \(x_{2}\). This 18. \(c\). The number of responses, \(N_{f}\), is then caloulated from Eq. (7). Consider an axample in wich the levels for the first factor are six, \(k_{1}=6\), and the Levals for the accond factor are three, \(k_{2}=3\). If we choose to rectrict the first factor, \(x_{1}\), so that each factor level has one blank cell, then,
\[
k_{1}=6, \quad k_{2}=3, \quad=1, \quad c_{1}=1
\]

The number of colls are
\[
n_{3}=k_{1} \cdot k_{2}=6 \cdot 3=18
\]
and the number of responses are, froi\# Eq. (7)
\[
N_{f}=k_{1} \cdot k_{2}-c_{1} k_{1}=k_{1}\left(k_{2}-c_{1}\right)=6(3-1)=12
\]

In the case of a symmetrical nodel, we determine the incomplete functioned nodel from Eq. (7) to be
and sincei
\[
x_{f}=k_{1} \cdot k_{2} \cdots k_{n} \cdots k_{p}-c_{n^{2}} k_{n}
\]
\[
\begin{align*}
& k_{1}=k_{2}=k_{m}=k_{p} \\
& k_{f}=k^{p}-c k^{p-1} \tag{8}
\end{align*}
\]
where: \(. . \quad c=\) the number of blank cells in the level of any \(p\) factor.
Eq. (8) gives emphasis to the Iinear feature of this method. In the cease of the model
\[
N_{B}=k^{p}=3^{4}=81
\]
we could 2irit the number of responses by creating blank cells in the factors. For example, with \(0=1\), we can alloulate from Bq. ( \(B\) )
\[
\begin{aligned}
u_{f} & =k^{p}-d k^{p-1} \\
& =3^{4}-(1) 3^{4-1}=81-27=54
\end{aligned}
\]

The model can be used in a different, and more usoful, way from a design otandpoint. As an example, what value of o is required to reduce the model
\[
u_{a}=k^{p}=5^{5}=3125
\]
to the functional model of
\[
y_{f}=625
\]

Thls is determined fron Eq. (8) thus:
\[
\begin{aligned}
& y_{f}=k^{p}-c k^{p-1}=625 \\
& 5^{5}=05^{4}=625
\end{aligned}
\]
\[
c=\frac{3125-625}{625}=4
\]

Therefore, the functional model can be restricted to 625 responses by providing for four blank cells in each factor level.

In order to further increase the possible combinations of \(\mathrm{N}_{2}\) values, the third method utilizes both the \(q\) and \(e\) criteria. This can be accomplished by M. (6) and Eq. (8) to 'become
\[
\begin{equation*}
H_{f}=k^{p-q}-c k^{p-q-1} \tag{9}
\end{equation*}
\]
os that the number of restricting factors, \(q\), and the number of blank cells per factor level, \(a\), can be used to dotennine a particular number of responses for a given model. The application of Eq. ( 9 ) will be illustrated by an example. Suppose" that it is desirable to restrict the number of responses for the model
\[
y_{a}=x^{p}=4^{3}=64
\]
to eight responses. this can be done by using Eq. (9), and following a systematic procedure. First, assume \(c=0\), and \(q=1\)
\[
\begin{aligned}
x_{f} & =k^{p-q}-c k^{p-q-1} \\
& =4^{3-1}-0=16
\end{aligned}
\]
which is greater than the desired number. Next. keep o \(=0\) and assume \(9=2\)
\[
v_{1}=4^{3-2}-0=4
\]
which is lesa then the desired number. Therefore, hold \(q=1\), and assume \(0=1\)
\[
x_{t}=4^{3-1}-4^{3-1-1}=16-4=12
\]
which is more than desired. Next, hold \(q=1\) and set \(0=2\)
\[
v_{f}=4^{3-1}-(2) 4^{3-1-1}=16-8=8
\]
which is the desired number of responses.

Suppose that wo wanted to determino how to design a iunciionai mocioi witin nine responses for the model
\[
N_{0}=k^{p}=3^{6}=729
\]
with \(k=3\), the deaired number of reoponses is \(k=9\). It can be saen thit such a value for \(H_{f}\) is possible in two ways. Mret, \(N_{f}=k^{2}\) for the case when
\[
\begin{aligned}
& q=p-3=6-3=3 \\
& 0=k-1=3-1=2
\end{aligned}
\]

Therefore, in this problem
\[
\begin{array}{rl}
q=31 & c=2 \\
H_{f} & =k^{p-q}-\subset k^{p-q-1} \\
& =3^{6-3}-(2) 3^{6-3-1} \\
& =27-18 \cdots 9
\end{array}
\]

The same number of responses can be obtained with a different combination: of 9 and c. \(n_{f}=x^{2}\) in possible with
\[
\begin{aligned}
q-p-2 & =6-2=4 \\
0 & =0
\end{aligned}
\]

Therofore, the model becones
\[
M_{1}=k^{p-q}=3^{6-4}=3^{2}=9
\]

A complete functional model is the sama a factorial axperfment, with a single reoponse in each coll. An incomplete functional model is deatrable whon there is no interedt in interaction effects and the total monber of mansurments required is leas than \(N\). An incomplate model is necessary when the totitl possible number of madeuraments is less than \(N_{s}\). More speoifioaliy, the dasign of the functional model is made to moet the following design oriteriat
 than \(N_{0}{ }^{\circ}\)
2. The total mumber of measurements is limited to nome mumber less than \(\mathrm{N}_{\mathrm{a}}\) becauce of some physical linutation of the experimental situation or. equiprent.

\section*{The Experimental Moded}

The final step in the synthesis of an experiment is to design the experimental model. The experimental model is describod by
\[
\begin{equation*}
N=n N_{f} \tag{10}
\end{equation*}
\]
uhere:
\(n=\) the number of repiliations of the axperiment
\(\mathrm{N}_{\mathrm{I}}=\) the number of recponses in the functional model
\(\mathrm{N}=\) the total number of responses in the experiment

From Eq. (9) and Eq.(10) we got
\[
\begin{equation*}
N=n N_{f}=n\left(k^{p-q}-o k^{p-q-1}\right) \tag{11}
\end{equation*}
\]
which provides a general expression for a symbetrical experimental model.
Eq. (1d) thus defines the experimental model as follows
The"total number of iespionses in an experimont is a funotion
of the number of frotors ( \(p\) ), the nuraber of factor levels ( \(k\) ), the) mumber of factor restrictions (q), the number of cell restriotions (o), and the mumber of replications ( \(n\) ).

Oiven the number of factors and factor levels, the number of possible values for \(N\) can be determined by certain combinations of values for \(n, q\), and c. For example, if it is desirable to design an exporimental model with 54 responses of the type
\[
w_{3}=\underline{k}^{p}=3^{4}-84
\]
we can set \(q=0, c=1\), and \(n=1\) and get
\[
\begin{aligned}
N & =n\left(k^{p-q}-0 k^{p-q-1}\right) \\
& =13^{4-0}=(1) 3^{4-0-1} \\
& =81-27=54
\end{aligned}
\]

Table 1 provides a general tabulation of the experimental model in eq. (11)

TABLE 1. Values of \(N\) for All Values of \(q, c\), and \(n\) in a Symmetrical Experimental Model


The number of responses, \(N\), for a symmetrical experimental model can be determined if given the values for \(p, k, q, 0\), and \(n\). \(A_{s}\) an
arpmple of 14.! use : mingose that we have a model with \(0=5\) factors and each factor has \(k=5\) levels so that
\[
N_{2}=5^{5}=3.125
\]

Assume that the experimental model is to contain forty-five responses. The responses are first limited by
\[
q=p-2=5-2=3 \text { factors }
\]

A1s0, the responses are furthor reatricted by
\[
0=k-3=5-3=2 \text { blank cells per factor }
\]

When \(q=p-2\) and \(c=k-3\)
\[
X=3 \mathbf{n k}
\]
and with \(k=5\)
\[
\begin{gathered}
N=3 n(5)=15 n=45 \\
n=3
\end{gathered}
\]

\section*{Solaction of Optamat Alternath Destrens}

The experimental model providos the" opeoifleations neoessary for the final experimental design to meot the established design oriteria, as to total mumber - Of responses. Such a selection is not conceftied with the problome of balanaing the responses in the celle or randomielne the arrangement of the responsos. These are conelderations made in certain standerd designs with which the subjeot destign prooedure in not concorribe.

The synthesis of any experiment can be deseribed by ite experimental model. For example, acmplate factory experiment 18 described by the followm ing neoessary and sufficiont conditions:
\[
\dot{n}=1,2,3, \ldots, \quad \dot{k}=2,3,4, \ldots, \quad p=2,3,4, \ldots, \quad q=0,0=0
\]

\[
n=1, \quad k=3, \quad k=4, \quad q=0, \quad c=0
\]
and from Eq. (11)
\(v=n\left(k^{p-q}-0 k^{p-q-1}\right)=(1)\left(4^{3}\right)=64\)
Examples of other models for certain traditional experiments are listed as Sol20w:
1. A one-rar clasatifogtion experiment with five responses in each of four colum of a single factor is described by
\[
\begin{aligned}
n=5 . \quad p & =1, \quad k=4, \quad q=0, \quad c=0 \\
n & =n\left(k^{p-q}-c k^{p-q-1}\right) \\
& =(5)\left(4^{1-0}\right)=20
\end{aligned}
\]

Such a model thus explains the oneway classification experiment as a single factor experiment that is repiloated.
2. Consider a nested experiment with thee factors: \(x_{1}\), with two levels. \(x_{2}\), with four levels, and \(x_{3}\) with two levels. Factor \(x_{2}\) is audi that only half of its levels are crossed with each of the two levels of \(x_{1}\). Thus:
\[
p=3, \quad k_{1}=2, \quad k_{2}=4, \quad k_{3}=2
\]

From Eq. (1)
\[
n_{5}=k_{1} \cdot k_{2} \cdot k_{3}=2 \times 4 \times 2=16
\]

Since factor \(x_{y}\) restricts the number of responses in the experiment
\[
\theta=1, \quad k_{1}=k_{1}=2
\]
and, thus, from Eq. (5)
\[
N_{1}=\frac{k_{1} \cdot k_{2} \cdot k_{3}}{k_{1}}=\frac{2 \cdot 4 \cdot 2}{2}=8
\]
with only one replicate
\[
N=n N_{X}=(1)(3)=8
\]

A hiomarchical layout becomes
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{16}{|c|}{Factor \(\mathrm{X}_{1}\)} \\
\hline \multicolumn{8}{|c|}{1} & \multicolumn{8}{|c|}{2} \\
\hline \multicolumn{8}{|c|}{Factor \(\mathrm{X}_{2}\)} & \multicolumn{8}{|c|}{Factor \(\mathrm{I}_{2}\)} \\
\hline & & \multicolumn{2}{|c|}{2} & \multicolumn{2}{|c|}{3} & \multicolumn{2}{|l|}{0.4} & \multicolumn{2}{|c|}{1} & \multicolumn{2}{|c|}{2} & \multicolumn{2}{|c|}{3} & \multicolumn{2}{|c|}{4} \\
\hline & & \multicolumn{2}{|c|}{\(x_{3}\)} & \multicolumn{2}{|c|}{\(\mathrm{x}_{3}\)} & \multicolumn{2}{|r|}{\(x_{3}\)} & \multicolumn{2}{|r|}{\(\mathrm{I}_{3}\)} & \multicolumn{2}{|r|}{\(\mathrm{I}_{3}\)} & \multicolumn{2}{|c|}{\(\mathrm{X}_{3}\)} & \multicolumn{2}{|c|}{\(\mathrm{x}_{3}\)} \\
\hline 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 \\
\hline I & K & X & X & & * & & & - & & & & X & \(x\) & \(x\) & X \\
\hline
\end{tabular}

A matrix layout becomes

3. Considor a Letin Square experiment. The nocessary and suffioient conditions for this symmetrioal restricted model are
\[
p=3, \quad q \pi p-2, \quad k=p+1, \quad 0=0
\]

The windmum case oocurs whon there are three factors, each at two Lovols, with
\[
p=3, \quad k=2, \quad q=p-2=1
\]
and the number of cells and responses are
\[
\begin{aligned}
& N_{1}=k^{p}=2^{3}=8 \\
& N_{f}=k^{p-q}=2^{2}=4
\end{aligned}
\]

30 the axperiment contains a total of four responses in oight cells.

A Mierare:lial layout beromes
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{1} & \multicolumn{3}{|c|}{2} \\
\hline \multicolumn{2}{|c|}{\(X_{2}\)} & \multicolumn{3}{|c|}{\(x_{2}\)} \\
\hline 1 & 2 & 1 & & \\
\hline \(\mathrm{X}_{3}\) & \(\mathrm{x}_{3}\) & \(\bar{X}_{3}\) & & \\
\hline a 1 b & a b & a 1 b & 2 & b \\
\hline \(\pm 1\) & I X & \(\mathbf{X}\) & \(\mathbf{X}\) & \\
\hline
\end{tabular}

A matrix layout becutes
\begin{tabular}{|c|c|c|c|}
\hline & & \multicolumn{2}{|c|}{\(x_{1}\)} \\
\hline & & 1 & 1 \\
\hline & 2 \\
\hline\(x_{2}\) & 1 & \(a\) & \(b\) \\
\cline { 2 - 5 } & 2 & \(b\) & 2 \\
\hline
\end{tabular}
4. A Graeco-latin Square experiment is described by the following necessary and sufficient conditions
\(c=0, \quad k \geqslant 3, \quad p=4, \quad q=p-2=2\)
For the case in which \(k=3\), the number of cells in the structural model would be
\[
N_{s}=k^{p}=3^{4}=81
\]
and the number of responses would be
\[
N_{f}=k^{p-q}=3^{4-2}=9
\]

Only one replicate is taken. Thus,
\[
n=n N_{f}=(1)(9)=9
\]
5. An incomplete block experiment is represented by the incauplete functional model whose necessary and sufficient conditions are
\[
N=n\left(k_{1} \cdot k_{2} \cdots k_{m} \cdots k_{p}-c_{m} k_{m}\right)
\]
where:
\[
p=2, \quad k_{1} \doteq 3, \quad k_{2} \geq 3, \quad n=1
\]

Thus:
\[
N=k_{1} \cdot k_{2}-c_{m} k_{m}
\]
where: \(m=1\) or 2
cna the number of black or?ls in the \(j_{\text {m }}^{\text {th }}\) level.
One of the two factors is a block.
An example would be a model as follows:
\[
\begin{aligned}
& k_{1} \text { (blocks) }=6 \quad k_{2} \text { (treatrents) }=3 \\
& c_{1}=1, \quad c_{2}=\frac{k_{1}}{k_{2}} c_{1}=\frac{6}{3}(1)=2
\end{aligned}
\]

Therefore:
\[
\begin{aligned}
& N_{s}=k_{1} \cdot k_{2}=6 \cdot 3=18 \text { cells } \\
& n=1 \\
& N=k_{1} \cdot k_{2}-c_{2} k_{2}=6 \cdot 3=2(3)=12
\end{aligned}
\]
\(s 0\) the twelve responses are to be balanced in the eighteen cells of the incomplete blook design.
6. A grmatrienl inomplate block experiment is described by the necessary and oufficient conditions from Eq. (R)
\[
k \pm 3, \quad p=2, \quad c=1,2, \cdots, k=1
\]
\[
\begin{aligned}
& n=1 \\
& n=t^{2}-c k
\end{aligned}
\]
:Here: Cne of the two factor: is a block.
7. A. Youden Souare experiment is described by the following necessary and suffioient conditions from Eq. (9)
\[
N=n\left(k^{p-q}-c k^{p-q-1}\right)
\]
\[
k \geqslant 2, \quad p=3, \quad q=1, \quad c=1,2, \cdots, k-1
\]
\[
n=!
\]

A specific example is a case in which
\[
\begin{aligned}
p=3, \quad k & =4, \quad q=1, \quad c=1, \quad n=1 \\
N_{B} & =k^{p}=4^{3}=64 \\
N & =k^{p-q}-c k^{p-q-1} \\
& =k^{p-q}\left(1-\frac{c}{k}\right)=4^{3-1}\left(1-\frac{1}{4}\right)=12
\end{aligned}
\]
8. A lattice square experiment is described as a type of incomplete block (See 6 above) that is replicated. Thus
\[
N=n\left(k_{1} \cdot k_{2}-c_{2} k_{2}\right)
\]
where:
\[
2 \leqslant n \leq t+1 ; \quad t \geq 3
\]
\[
k_{1} \geq m t \text { (blocks) }
\]
\[
k_{2}=t^{2} \text { (treatments) }
\]
\[
c_{2}=k_{1}-1
\]

Example:
\[
\begin{aligned}
& t=3, n=4, k_{1}=12, k_{2}=9, c_{2}=11 \\
& x_{2}=12 \cdot 9=108 \\
& N=4(12 \cdot 9-11 \cdot 9)=36
\end{aligned}
\]

Another example of a lattice square will demonstrate the relationship between the structural, functional, and experimental model more clearly. a \(13 \times 13\) balanced lattice square will be used to 111 lustrate. ( \((=13, \mathrm{n}=7\). Structurally speaking, the experiment consists of two factors: blocks at \(k_{1}=21\) levels and treatments at \(k_{2}=169\) levels. Thus
\[
\mathrm{N}_{8}=k_{1} \cdot k_{2}=21 \cdot 169=3,549 \text { ce 218 }
\]
 only one treatment can occur in each replicate. Thus, the functional model is restricted so that for each treatment all cells are empty except one. Thus \(c_{2}=20\), giving
\[
N_{1}=k_{1} \cdot k_{2}-c_{2} k_{2}=3,549-20(169)=169
\]

The experiment is replicated 7 times, thus the experimental model
becomes
\[
N=n N_{f}=7(169)=1,183 \text { responses }
\]
which is the total number of responses to be balanced.
9. Following are a nuber of miscelluneous incomplete block degigns with their corresponding itruotural, functional, and experimental nodels,

BAIANCED DESION FOR 9 TREATMEVTS IN BLOCKS OF 3 UNITS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Block & Rep. I & \multicolumn{2}{|r|}{Rep. II} & \multicolumn{2}{|r|}{Rep. III} & & Rep. IV \\
\hline (1) & 123 & (4) & 147 & (7) & 159 & (10) & 186 \\
\hline (2) & 456 & (5) & 258 & (8) & 726 & (11) & 429 \\
\hline (3) & 28.9 & (6) & 369 & (9) & 483 & (12) & 25 \\
\hline
\end{tabular}
\[
\begin{aligned}
& p=2, k_{1}=9, \quad k_{2}=12 \\
& H_{1}=k_{1} \cdot k_{2}=9 \cdot 12=108 \\
& c_{1}=-11 \\
& N_{1}=N_{2}-c_{1} k_{1}=108=(11) 9=9 \\
& n=4 \\
& N=n N_{1}=4(9)=36
\end{aligned}
\]

BALAVCED USII \(\therefore\) FOR 7 TREATEIETTG IN BLOCKS OF 3 UNITS Block
(1) \(\overline{124}\)
(3) 246
(5) 156
(7) 137
(2) \(\hat{\mathbf{c}} \hat{j}\)
(ii) i4 5
(6) 267
\[
\begin{aligned}
& p=2, k=7 \\
& N_{8}=k^{p}=7^{2}=49 \\
& 0=4 \\
& N_{f}=N_{8}-c k^{p-1}=49-(4) 7=21 \\
& n=1 \\
& N=n N_{I}=(1) 21=21
\end{aligned}
\]

BALANCED DESION FOR 9 TREATHENTS IN 4 LATLICE SQUARES
Rop. I
Rep. II
Rop. III
Rop. IV
Columns
Rows (1)(2)(3)
(4)(5)(6)
(7) (8) (9)
(1) 123
(4) 142
(7) 168
(10)
(2) 456
(5) 258
(8) \(2 \quad 24\)
(3) 789
(6) 369
(9) 523
\[
\begin{aligned}
& p=31 \quad k_{1}=9, k_{2}=12, \quad k_{3}=12 \\
& N_{8}=k_{1} \cdot k_{2} \cdot k_{3}=9 \cdot 12 \cdot 12=1,296 \\
& c_{1}=143 \\
& N_{1}=N_{8}-c_{1} k_{1}=1,296=143(9)=9 \\
& n=4 \\
& N=n N_{1}=4(9)=36
\end{aligned}
\]
(10)(11)(12)
\(1 \quad 9 \quad 5\)
(11) 627
(12) \(8 \quad 4 \quad 3\)
bhlanced design for 7 treatments in an incorflicte latin square

(1) (2
(3) (4) (5)
(6)
(7)

Rows
\begin{tabular}{llllllll}
\((1)\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\((2)\) & 2 & 3 & 4 & 5 & 6 & 7 & 1 \\
\((3)\) & 4 & 5 & 6 & 7 & 1 & 2 & 3 \\
\hline
\end{tabular}
\[
\begin{aligned}
& p=3, k=7 \\
& N_{8}=k^{p}=p^{3}=343 \\
& q=1, \quad c=4 \\
& N_{1}=k^{p-q}=0 k^{p-q-1}=7^{3-1}=(4) 7^{3-1-1}=21 \\
& n=1 \\
& N=n N_{2}=21
\end{aligned}
\]
10. A composite desion is used to estimate the regression coefficients for a second degree ploynomilal. These designs are traditionally constraoted by adding further treatment combinations to those obtained from a \(2^{p}\) faotorial. Suoh designs are described here as replicated incomplete medels with \(N_{s}=\mathcal{F}^{2}\). Such an approach recognizes the necessity for three factor levels to measure second degree effects. Thus
\[
\begin{aligned}
& q=p-1 \quad c=2 \\
& N_{f}=3^{p-p+1}-(2)(3)^{p-p}=3-2=1 \\
& n=2^{p}+2 p+1 \quad \text { (central design) } \\
& n=2^{p}+2 p+p \text { (noncentral design) } \\
& N=n N_{f}=2^{p}+2 p+1 \quad \text { (central) } \\
& N=n N_{f}=2^{p}+2 p+p \quad \text { (noncentral) }
\end{aligned}
\]

Examplos
1. Desinn Criteria. A Might vehicie trajectory is to be designed \(s 0\) that \(a\) mitistage rocket may place a payload into a circular orbit about the earth. An orgarinont ig te he degizion to detuamano hou the firgt stage boostcr thrust program affects the amount of mass which is injected into a circular orbit with an altitude of 100 miles, The thrust program of the booster consists of programed ad justments in the angle of attack for a given timo poriod. The length of the first stage burn, \(t_{b,}\) is determined by the propellant loading of the first stage. The parameters that control the thrust program are (1) the initial rate of increase of the angle of attack, \(R\), and (2) the length of time this rate is flown, \(t_{1}\).

The factor, \(R_{1}\) is to be sot at ofr different rates of increase and \(t_{1}\) is set at four time lovels. The Night is to be simplated on a digital computer. Previous copporience in aimilar etardies indicates that each run (responso) requires about \(3 / 4\) of a minute of computer time. The couputer "tum around" tire is very slow. It is neoessary to obtain the maximumpriority time requised on the computar, which is 10 minutes. Thorefore, ataximin of 13 runs can be rade. There is no interest in interaction effects.

Model Synthesis. The etructural molel, acsording to the above design criteria, is determined to be
\[
\begin{aligned}
& p=2 \text { factors, } k_{1}=6 \text { levels, } k_{2}=4 \text { levels } \\
& N_{8}=k_{1} \cdot k_{2}=6 \cdot 4=24 \text { cells }
\end{aligned}
\]

The maximum number of responses requires an incomplete functional nodel restricted by the e criteria. Thas
\[
N_{f}=k_{1} \cdot k_{2}-o_{1} k_{1}
\]

Setting \(N_{f}=13\) (macimun) we calculate
\[
c_{1}=\frac{6 \cdot 4-13}{6}=11 / 6
\]
which is not an integer. Osing \(N_{f}=12\) wo get
\[
c_{1}=2
\]

Therefore, the number of blank cells per level of factor \(R 182\), providing a total of 11 degrees of freedom. With the two main effocts requiring 5 and 3 degrees of freedom, respectively, the experimental omror is estimated with three degrees of freedom since the experiment is not replicated. Thus
\[
\begin{aligned}
n & =1 \\
N & =n N_{1}
\end{aligned}=(1)(12)=12 .
\]
2. Desien Ceiteria. Two different analogue-to-digital convertors are contained in test otations used in checking out a particular instrument unit. An experiment is designed to determine the causes of variation in the digital output of these converters. The response variable is the difference between input voltage and output voltage. The variables to be measured are (1) input voltage, (2) converter units, and (3) adjustmente. the input voltage is to be set at two levels. -10 volts and +10 volts. The number of converters are 1imited to two. The adfustments consist of gain and balance settings as specified by the manafacturer. Four different adjustments will be made. The adjustments are unique with each unit and, therefore, they cannot be duplicated between the two converters. Thus, the first two adjustments will be unique with the first unit and the second two adjustments will be unsque with the second unit. All possible interactions are to be measured. The optimal degrees of ireedom for the error estimate, considering cost of experimentation and desired decision confidence levels, has been deterwined to be 16 in a previous study.

Yodel Synthesis. The structural nodel is
\[
\begin{aligned}
p-j_{1} & i_{1}-i_{0} \\
n_{3} & =k_{1} \cdot k_{2} \cdot k_{3}=2 \cdot 2 \cdot 4=i_{0}
\end{aligned}
\]

The convorter factor restricts the adfustmerit factor thus providing conditions for an incorplete functional model, restricted by the \(q\) criteria. Thus
\[
\begin{aligned}
& c=0, \quad q=1 \text { (converters, } k_{2}=2 \text { ) } \\
& N_{f}=\frac{k_{1} \cdot k_{2} \cdot k_{3}}{k_{2}}=\frac{2 \cdot 2 \cdot 4}{2}=8
\end{aligned}
\]

The optimal degrees of freedon for the error estimato, 16, is provided by replicating the functional model. Thus
\[
\begin{array}{r}
n=3 \\
H=n H_{f}=3(8)=24
\end{array}
\]

The degrees of freedom are partitioned as follows:
\begin{tabular}{|c|c|}
\hline Source of Varjation & Degrees of Ereedom \\
\hline Converters (C) & 1 \\
\hline Adjustrsents ( \(A\) ) & 2 \\
\hline Voltage (V) & 1 \\
\hline C V & 1 \\
\hline 1 V & 2 \\
\hline Error & 16 \\
\hline Total & 23 \\
\hline
\end{tabular}

A layout of the selected experiment, which is a nested factorial, is show in Table 2.


Fable 2. Layout of Analogue-to-Digital
Converter Experiment
3. Dasien G-itoria. An electronic manf: irer has desigred a component board using four capaoitors to estab? a a time base. Be wishes to teat Ifve difforent brands of the capzi.tors in the compenant boards. Four capaoitors are placed in parallel and then connected through a resistor to an input plug where a fixed voltage may be applied. The voltage across the capacitors is connected to an cotpat jack. The test is made by applyling a fixed voltage to the plug at the input of the component board. The output jack is monitored with an oscilloscope to measure the time required for the output voltage to rise to a specified amplitude.

The response variable (T) is the time required for the output of the component boand to rise to a specified amplitude upon application of a fixed inpat voltage. The factors of interest are capacitor
brands (C) and conponont boards (B). Since both factors are qualitative. nonlinear effects are not applicable. Also, past experience in tests of tinis type nas shown negiiginic interaction detween the capacitors and corponent boards. Since infornution is desired on the capacitors only, the same resistor 1111 be used for each test. a set of terminals allows the resistor to be pluged in or removod from the component board. Five different capacitor brands are, therefore, to be tested in a circuit that is limited to four capacttors. A minimum of 10 degrecs of freedom is required to make an error estimate. Model Synthesis. Since five brands are taing tested, it would seem reasonable to test theso brands in five different component boards. We, therefore, have a symatrical model. The structural model 18
\[
\begin{aligned}
& p=2 \\
& N_{8}=k^{p}=5^{2}=25
\end{aligned}
\]

Since there are four capacitors in the circuit but five different brands we will have one missing value in each level of capacitor brand. Tius, the functional model is incomplete with
\[
\begin{aligned}
& q=0, \quad k=5, \quad p=2 ; \quad c=1 \\
& N_{P}=k^{p}-c k^{p-1}=5^{2}=(1) 5^{2-1}=20
\end{aligned}
\]

The degrees of ireedon are


Oniy one replicate is reguired since the minimum of 10 degrees of freedom is met. Tine experirental model is
\(n=1\)
\(N=n N_{P}=(1)(20)=20\)
A balanced layout of the exporiment is shown in Table 3, as an incomplete block design.
\begin{tabular}{|c|ccccc|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Component \\
Boards
\end{tabular}} & \multicolumn{5}{|c|}{ Capacitor Brands } \\
\cline { 2 - 6 } & 1 & 2 & 3 & 4 & 5 \\
\hline\(I\) & \(X\) & \(X\) & \(X\) & \(X\) \\
\hline II & \(X\) & \(X\) & \(X\) & \(X\) & \(X\) \\
\hline III & \(X\) & \(X\) & & \(X\) & \(X\) \\
\hline IV & \(X\) & \(X\) & \(X\) & \(X\) & \(X\) \\
\hline\(V\) & \(X\) & \(X\) & \(X\) & \(X\) \\
\hline
\end{tabular}

TABLI: 3. Incomplete Block Design for Capacitor Fxperiment

\section*{Sumpary}

The modeling of experiments has been described as 2 three-phase process, namely
1. Designing the structural model
2. Designing the functional model
3. Designing the experimental model

The structural wodel determines the number of cells in the experiment as a function of the number of factors and the levels for each factor. For the symetrical case the structural model is
\[
N_{s}=k^{p}
\]

The functional model deternines the number of responses to be taken in the structural maiel. A complete symmetrical functional model is expressed as
\[
N_{f}=N_{s}=k^{p}
\]

A functional model can be incomplete in three ways. First. if the responses are restricted by \(q\) mumber of factors, the symmetrical functional model becomes
\[
H_{\mathcal{I}}=\mathbf{k}^{p-q}
\]

Second, if the responses are restricted by c cells within a factor, the symmetrical functional model becomes
\[
\begin{aligned}
N_{f} & =k^{p}-c k^{p-1} \\
& =k^{p}\left(1-\frac{c}{k}\right)
\end{aligned}
\]

Thind, if the responses aro restricted by both \(q\) and \(c\) the symmetrical functionsi model becomes
\[
\begin{aligned}
N_{I} & =k^{p-q}-c k^{p-q-1} \\
& =k^{p-q}\left(1-\frac{c}{k}\right)
\end{aligned}
\]

The final experimental model is defined as
\[
N=n N_{f}
\]
for the symmetrical case, where \(n\) is the number of replications. All types of matrix experiments can be described by such models.

The unified procedure for selecting alternate experimental designs can be summarized as
1. Deteraine experimental design criteria
2. Synthesize the experimental model
3. Compare nodel to standard experimental desiens and choose the optimal design.

A PROBLEM IN CONTINUOUS SAMPLING VERIFICATION

\author{
Mary E. Blome
}
U.S. Army Ammuition Procurement and Supply Agency

Jollet, Illinois

There are basically two types of ampling inspection procedures in use today. These are lot-by-lot and continuous mpling procedures. In addition to the two types of sampling inmpection, thare are also two different methods of inspection, manely, by attributes and by variables. Inspection by attributes is on a gomongo basia. That 1s, a unit of product is inspected and determined to be either antiafactory or umatiafactory with respect to the characteristic under consideration. Under inapection by variables, the actual value of the messurement of measurable characteristic is recorded. Several of these measurements might then be used togethar to entimete some parameter upon which a lot of product may be fudged relative to ite conformity to specification requiraments. Our diacuesion ahall be limited to inspection by attributes. Under inspection by attributas, the impection can be performed on a lot-by-1ot basis or continuousiy, Let us firet conalder the lot-by-lot ease. The unite of product axe divided into identifiabla lots, and a lot is judged either conforming or nonconforming on the baele of the number of defective unita found in a sample from the lot.

One of the most widely used Military Standards listing ampling plans for this type of inspaction 10 MIL-STD-105D, "Sampling Procedures and Tables for Inspection by Attributes," 29 April 1963. When using this Standard, a sampling plan ie determined by the following:

\footnotetext{
This article has been reproduced photographically from the author's manuscript.
}
9. the size of the lot,
b. the specified acceptable quality level (AQL),
c. the specified Inspection Level (when none is specified, Inspection Level II is used), and
d. the type of plan specified or approved for use (single, double, or multiple).

The size of the lot may be stated in the specifications, or it may be up to the supplier, subject to approval by the consumer, to determine a suitable lot size. The AQL is the maximum percent defective of product which can be considered satisfactory for the process. For example, in this Standard possible AQL values are \(.010 \%, 1.0 \%\) and \(10 \%\). Once a plan has been determined, the plan parameters (sample sizes and acceptance and rejection numbersl can be found.

As an example of a lot-by-lot plan, consider a single sampling plan where the lot size is 1000 , the sample size is 100 , the acceptance number is 3 and the rejection number is 4 . Then, under this plan a random ample of 100 units would be selected from the lot. I'he number of defective units would be counted, and if the number were 3 or less the lot could be submitted to the consumer for acceptance. If, however, the number of defective units in this ample were 4 or more, then the lot could not be submitted to the consumer for acceptance, and it must be rejected.

Let us now turn our attention to continuous sampling inspection. A limited Standard which defines various types of these sampling plans is MIL-STD-1235 (ORD). "Single and Multilevel Continuous Sampling Procedures and Tables for Inspection by Attributes," 17 July 1962. It is a 1 imited Standard
in that it is applicable only to the Army. This Standard is a composite of Inspection and Quality Control Handbooks (Interim) H106, 'Multi-level Continuous Sampling Procedures and Tables for Inspection by Attributes," 31 October 1958 and H107, "Single-level Continuous Sampling Procedures and Tables for Inspection by Attributes," 30 April 1959.

In order to use these plans the following criteria must be met:
a. the units of product must be moving, which means that they must pass by the inspection station by means of a conveyor belt or some other conveyance, such as a tote box or skid,
b. the proceas must produce homogeneous material or be capable of producing homogeneous material,
c. there muat be relative ease of inspection, and
d. there must be ample phyaical facilitias for rapid \(100 \%\) inspection.

All continuous ampling plans are characterized by periods of screening and sampling. The aimpleat CSP plan is designated CSP-1 and was developed by Dodge (See Annals of Mathomatical Statiatics, Sept., 1943). Under this plan, 100\% inspection (screening) is parformed until 1 consecutive good units have passed inspection. The prescribed value "f" may be gome valua between 4 and 2000, depending upon the apacific plan being used. After i consecutive good units have passed inspaction, ampling is begun at a certain prescribed frequency, \(f\). The value of \(f\) may be some value between \(1 / 2\) and \(1 / 200\), again depending upon the apecific plan being used. Since each unit of product should have an equal chance of being selected, the interval between the sampled units
should vary somewhat. Sampling is continued until a defective unit is icand. When this occurs, screening ( \(100 \%\) inspection) begins and continues until 1. consecutive good units have passed inspection, at which time sampling will again be introduced.

A sampling plan under MIL-STD-1235(ORD) is also determined by the following factora:
a. the number of unts in a production interval,
b. the specified ACI., and
c. the specified Inspection Level (when none is specified, Inspection Level II \(1 s\) used) and
d. the type of continuous sampling plan apecified or approved for use (CSP-1 or one of the other typea of plana provided in the Standard).

The production interval is that period of time, usually a day or thift, during which conditions of manufacture can reasombly be axpected to remain stable. Of the four continuous sampling procedures provided in MIL-STD-1235(ORD) CSP-1 18 the simplest. It will be the only one considered here.

As an example of a CSP-1 plan, consider one in which \(1=20\) and \(f=1 / 10\). Screening would be performed until 20 consecutive good units had paseed inspection. When this had been accomplished, ampling could begin at the rate 1 in 10 . This means that the ampling inspector would select 1 out of 10 units but would vary the interval between these gelacted unite to give each unit of product an equal chance of being included in the ample. Sampilng would continue until a defective unit is found. At that time screaning would again be instituted, and it would be necessary to screen 20 consecutive good unita before sampling could be resumed aguin.

\footnotetext{
\(V\) irification of the supplier's inspection records is advantageous to the corisumer because he would like to ascertain that the supplier is following the inspection plan and classifying inspected units properly. That is, inspected units which are defective should be classified defective and inspected units which are non-defective should be classified non-defective. In order to achieve this afm, AMSMU-P-715-503, "Army Ammunition Plant Quality Assurance Procedures," December, 1966, describes the appropriate procedures to be used by Army Ammunition Plants for verification purposes. This document is designed to be used in conjunction with either lot-by-lot or continuous sampling inspection, and can therefore be used with MIL-STD-105D or MIL-STD-1235 (ORD). In the lot-by-1ot case, it is a relatively easy matter to perform verification. First, the supplier selects a random sample from the lot in question and counts the number of defective units in this sample. He then compares the number of defective units to the acceptance number for his specified sampling plan from MIL-STD-105D. If the number of defectives is equal to or less than the acceptance number, the lot may be submitted to the consumer for acceptance. The consumer takes a sample from the lot, and counts the number of defective unita. The conamer in then ready to compare his results with those of the contractor using Table \(I\) of quality Control and Reliability Handbook (Interim) H109, "Statistical Procedures for Determining Validity of Suppliers' Attributes Inspection, " 6 May 1960. For purposes of this comparison, it is assumed that the consumer has classified all of his sample units properly. The H-109 comparison is in effect a test of significance between the number of defectives found by the supplier and the number of defectives found by the conoumer, siven
}
a cercain value \(r\), which is the ratio of the supplier's sample size to rit consumer's ample size. Rejection under this teat wlli cause the supplit.', data to be considered invalid.

Verification of inspection results when the sampling inspection is done by continuous sampling procedures is more complicated. Under the provisions of MIL-STD-1235(ORD) and AMSMU-P-715-503, the supplier performs checking inspection at rate \(f\) Juring all periods of screening, in order to ascertair: that the screening crea is doing an efficient job. The units inspected during this checking inspection plus the units inspected by the aupplier's sampling inspector form the supplier's sample for comparison purposes, where the period under consideration is a production interval.

Concurrently with the inapection by the auppliar described above, the consumer is performing verification inspection at rate \((1 / r) f\), where \(r\) is the ratio of comparison sample sizes described previously and \(f\) is the prescribed ampling frequancy. The method of detarmining the particular value of \(r(1,2\), 3, 5 or 8) to be uade is outlined in AMSMU-P-715-503 and is not important to our discussion here, since we will only concern ourselves with the case rme.

The various typas of inapaction described above are ammarized in Tabie I. Reviewing the Table, and from the preceding diucuasion, it can be noted that only one type of inapection is parformed by the consumer, namely, verification inspection, and this is done at a definite sampling frequency which is proportional to that used by the supplier (in the case to be considered here, the proportion is one-eighth). The unite inspected in this manner constitute the consumer's verification ample which is used for comparison purposes with
 Se :alled tite comparison sample hereafter, is composed ot anits which miy have come from the screening or sampling phase witi tine proportion of units from any phase for a production interval dependent upon the amount of time spent on this phase by the supplier. The consumer usually has no knowledge as to which units came from which phase since verification inspection minht be performed at a place far removed from the inspection conducted by the supplier.

Let us consider how these inspections function. Since we are considering on \(y\) continuous operations under CSP-1 procedures, the units of product will be moving past the various inspaction stations via conveyor belts, tote boxes or some other conveyance. Let us first consider the mupliar's function. As the operation beging, the product is inepected \(100 \%\) to remove any defective units and to see if 1 consecutive good unita can be found. Concurrently with this fintial product inspection ia checking inqpection which in performed at a rate f (the apecified sampling frequency) and is a means of checking the effectiveness of the screening operation. The units sampled during this checking inapection will form part of the gupplier's comparison sample. Once 1 consecutive good units have been found, ampling inapection of the product is initiated. This sumpling of the unite of product is done in a random manner at some specified ampling frequency, f. Tha units sampled form the remsinder of the supplier's comparison sample.

Let us now teview the consumer's inspection function. As can be geen from Table \(I\), there is only one type of inspection which the consumer performs, namely, verification inspaction. This inspection is done concurrently with
the sufplier's inspection. The point at which the consumer conducts this inspection may be far ramoved from the site of the aupplier's inspection operations. Since the units of product are not marked or designated as to which units came from which phase, the consumer generally is ignorant of this information. The consumer amples the unite in a random manner at a sampling frequency which is proportional to the ampling frequency used by the supplier. This value of the sempling frequency is \([(1 / r)(f)]\), where \(1 / r\) is the proportional factor (one-elghth for purposes of discussion here) and \(f\) is the prescribed sampling frequency. Because the ampling is done in a random mannar without requiring a certain number or percentage of the inspected units to be from any one phase, there might be considerable difference in the proportion of unite from one of the phases for the conamer and aupplier during the production interval.

To use Table I of E-109 to compare \(d_{s}\left(=d_{s, 100}+d_{s, f}\right)\) with \(d_{c}\) ( \(\left.-d_{c, 1} 100+d_{c} f / 8\right)\), the probability of accepting the hypothesis of validity should remin the ana at raflected on the O.C. curves (See Figure I, extracted from H-109) for the teat to be of the leval a and probability of acceptance over the paramater apace as ahow on the O.C. curves. By way of explanation the parameter under considaration is the ratio of fractions defective, \(P_{c} / P_{g}\), which can be thought of an

Prob (defective ingpected unit will be clagaified dafective by consmer) prob (defective Inepected unit will be claseified defective by supplier)

This, then, is our problea: To ahow that the probability of accapting the hypotheais of validity over the parameter apace is approximately the same as that shown on the O.C. curves.

To simplify the remainder of the discussion and the problem definftion, the notation below shall be used.

Let
\[
\left.\begin{array}{rl}
n_{8,100}= & \text { number of units in supplier's comparison sample } \\
& \text { coming from the screening phase, }
\end{array}\right\}
\]

Let \(d\), subscripted as above, refer to the number of defective units found in the portion of units identified by the subscripts.

Let us now reflect on some aspects of the problem.
Since there are two phases, namely, the screening phase and the sampling phase, from which the verification sample as well as the supplier's comparison sample can come, there is a possibility of considerable variation between the two in the proportion of units from any one phase. That is, for example, i
\[
\frac{n_{8,100}}{n_{8,100}+n_{8, f}}
\]
different from
might be considerably
\[
\frac{n_{c, 100}}{n_{c, 100}+n_{c, f / 8}}
\]

Let us now consider only one value of the parameter space, \(\mathrm{Pc}_{\mathrm{c}} / \mathrm{P}_{\mathrm{a}}=1\), which is equivalent to saying that the supplier has perfect inspection
efficiency. Then no defectives should be found in the samples from the screening phase since these should have been removed during the screening phase of product inspection. Hence, any defective windsh would te found in either of these samples would come from the sampling phase.

Wr reflection will show, if the units comprising the samples were selected completely independently of order or position in the production interval, we would have a situation equivalent to a lot-comparison situation. and the 0.C. curves would be exactly as defined for H-109. Purther, if the proportions described previously were exactly the same, that is, the fraction of the supplier's comparison sample coming from the screening phase were exactly the same as the fraction of the coisumer's phase, we would have essentially a stratified sampling problem, and again the O.C. curves would be exactly as defined in \(\mathrm{H}-109\).

Since che prescribed method of sampling, however, is to take about one out of every \(1 / f\) units, ailowing the interval between inspected units to vary somewhat, we have neither of the situations described above. This brings us to the reason why we are only considering the case r=8. It is reasonable to assume that the greatest variation from the O.C. curves of H-109 is possible for the largest value of \(r\). Therefore, if this variation is insignificant for \(r=8\) it shocld be insignificant for the lower value of \(r\). Let us now consider a specific example.

Since screening need only be done at the initiation of production, and thereafter only when a defect is found during a period of sampling inspection, it is not necessary in our example to assume that screening is inftiated at
\(\therefore\) in stait of the production interval, but for sake of discussion let us as sume that it coes. Suppose the supplier is sampling a: a frequency of i/10, and the consumer is using a ratio of r=8. Therdicre, the consmer would be sampling at a frequency of \(1 / 80\). First, the supplier's screening crew inspects all units of product until the appropriate number of consecutive good units has been cieared. At the same time, the checking inspector is selesting one unit sut of sen in a random manner to see if the screening crev is doing its job ;orerly. After the necessar: nambe of consecutive gooc units has beet cleared, sampling inspection is begun whexelay one out of ten units is selected for inspection. There is no checking inspection during this phase.

During the entire production interval, the consumer's verification inspector seiects one out of elghty units in a random manner. At the completion of the production interval, the supplier's and consumer's comparison sample inspection results can be compared. The supplier's sample consiuts of those units inspected by the checking inspector during the screening phase plus the units inspected by the supplier during the sampling phase. The consumer's sample consists of all units inspected by the verification inspector, whether these units came from the screening or sampling phase,

Let us assume that the production interval encompasses 80 units and 76 of these units were subjected to screening while the remaining 4 units were part of the sampling phase. Let us suppose the sampling frequencies are as above, samely, \(f=1 / 10\) for the supplier and \(f=1 / 80\) for the consumer.

Reifection will show that there are many possible variations in the values of \(n_{B, 100}, n_{s, f}, n_{c, 100}\), and \(n_{c, f / 8^{\circ}}\). It is possible, for example, that all of the units for the supplier's sample came from the screening phase while the single unit composing the consumer's sample came from the sampling phase. In this case, the proporion of units in the supplier's sample from the screening p: wis is 1.0 whereas the corresponding proportion of units in the consumer's sample from the same phase is 0.

Since the probabili, \(\mathrm{o}_{\mathrm{i}}\) each possible variation is not known, since strict probabilistic sampling is not performed, the effective O.C. curve cannot be determined simply.

Ideally then, a mathematical model describing the \(O . C\). curves would be desirable.

In lieu of such a mathematical model, we conducted Monte Carlo simulation of the process. Twenty different simulations of various CSP-1 and CSP-2 plans were considered. A few selected AQL's ranging from \(0.01 \%\) to \(4.0 \%\) ware used, with production intervals ranging from 70 units to 1000 unfts. The value of \(p\) was set equal to the AQL in each case on theae first attempta. Ten production intervals were considered for each simulation. Finally, it was assumed that the screening crew was \(100 \%\) efficient, i.e., all defective units were removed during the screening phase.

Random numbers were used to designate the defective units. Once this had been determined, the inspection processes could be simulated. First, the units from the initial screening phase were identified, and then random numbers were used to select the first unit to be sampled by the supplier.
for cinvenience on these first attempts, a systematic sample followed the radom selection of the first unit. When all ten production intervala :lad been completed in this manner, the units inspected by the checking inspector during the screening phase needed to be specified. Randow numbers were again employed to designate the initial units ampled during these phases and systematic sampling ensued. When this had been coapleted, the proportion of units from the screening phase for each production foierval and for the tei production intervals as a whole could be calculated. iden, the consumer's inspection had to be simulated. Since the sampling was done at a specified ampling frequency without regard as to which phase the supplier was on, a random number was used to indicate the first unit of the aanple, and a systematic sampling followad for the duration of the ten production intervals. Upon the completion of the tan production intervals, the proportion of units from the screening phase for each production interval and rior the ten production intervals as a whole could be tallied. Theae proportions could then be compared to the corresponding one for the supplier. Table 2 shows the results of one of these simulations. por thin simulation, the production size was 70; the AQL was \(2.5 \%\); the 1 value was 25 ; the supplier's sampling frequency was \(1 / 5\), and the conamer's sampling frequency was \(1 / 40\). There does not appear to be too much difference between the proportions except for the seventh production interval where the supplier's proportion was .357 , and the conamer's proportion was 0.

In order to use the \(0 . C\). curves from \(\mathrm{H}-109\), some calculationa needed to be performed. The fractions defective for the supplier and consumer as
well as the expected number of defective units in the supplier's sample needed to be specified. Since it was assumed that the screening crew was \(100 \%\) efficient, theoretically no defective unita should have appeared in either the supplier's or the consumer'a sample from the acreaning phase. Therafore, the fraction defective for either the aupplier or consumer is the proportion of unita from the screening phase times the appropriate \(A Q L\) (since \(p\) was set equal to the \(A Q L\), as mentioned previously). Then, the ratio of the consumer's fraction defective to the supplier's fraction defective was calculated. Finally, the expected number of defective units in the suppliar's ample was eatimeted by the number of unite in the production interval times the fraction defective described above. The rasults of these computationa for each of the ten production intervals and for the ten production intervals as whole are sumarized in Table 3. The lant two columa are of more interest. It will be noted that most of the ratios are around 1.0 except for production interval \(\$ 7\) where the ratio is 2.6040 .

Note that all of the expected number of defective unite in the supplier's sample for our example are considarably las than the malleat value, indexing the \(\mathrm{H}-109\) curves (see figure at and of paper), namely, 0.75. Hence, the O.C. curves for these figurea would be above that for 0.75 . Also, some of our ration are less than 1.0 which is the amallest ratio given on the chart. This means that the probability of acceptance for these ratios would be even greater than 0.95 which is the corremponding value when the ratio is 1.0 .

While we were unable to develop a suitable model to determine whether the probability of acceptance over the long run would be of any important difference from that yielded by the \(h-1090 . C\). curve formula described by Ellner (see Technometrics, February 1963, pp. 23-46) it seemed reasonable to assume that if the variation of individual simulation results from the \(H-109\) value were small, the probability of acceptance under the continuous sampling verification method could be adequately descrine! by the Ellner formula.

To simplify uur work, we arbitrarily decided to concern ourselves only with the frequency of simulation for which the probability of acceptance was less than .90 . . This would allow us to get a quick picture of the results without having to compute an O.C. curve point for each simulation.

If we consider all of the production intervals, it can easily be secin that they meet the criterion of having a probability of acceptance of greater than .90. Therefore, in this example, it seam reasonable to assume that the O.C. curve under the continuous samiling asaumption is probably close to the range of values (94\%-96\%) provided by the Eliner formula.

Thus, it is possible to study this problem using aimulation methods. However. it obviously would be preferable to have a mathematical model. Therefore, to reiterate the problem: a mathematical model describing the operating characteristic of the procedure deacribed is desired.

\(x \quad x\)


TABLE I
INSPECTION REqUIRED UNDER CSP-1 AND ASSOCIATED checking and verification inspectio:;
 Supplifer
Supplier Supplier
Supplier Supplier
Congumer 1. Product screening 2. Product sampling
Checking
4. Verification

\section*{TABLE 11}

PROPORTION OF UNITS SUBJECTED TO 100\% INSPECTION
\begin{tabular}{|c|c|c|}
\hline Production Interval & \multicolumn{2}{|c|}{Screening Phase} \\
\hline 1 & 0.357 & 0.500 \\
\hline 2 & 0.000 & 0.000 \\
\hline 3 & 0.000 & 0.000 \\
\hline 4 & 0.000 & 0.000 \\
\hline 5 & 0.000 & 0.000 \\
\hline 6 & 0.000 & 0.000 \\
\hline 7 & 0.357 & 0.000 \\
\hline 8 & 0.357 & 0.500 \\
\hline 9 & 0.067 & 0.000 \\
\hline 10 & 0.308 & 0.500 \\
\hline Cumulative & 0.143 & 0.150 \\
\hline
\end{tabular}

TABLE III
\begin{tabular}{|c|c|c|c|c|}
\hline Production Interval & \(\underline{\text { Peff }}{ }^{\text {c }}\) & \(\underline{\text { Peff }_{\text {S }}}\) & \[
\frac{P_{c}}{P_{B}}
\] & \begin{tabular}{l}
\[
n_{g} P_{g}
\] \\
Cexpected number of defectives in supplier's semple)
\end{tabular} \\
\hline 1 & . 0125 & . 0161 & . 7760 & . 2250 \\
\hline 2 & . 3250 & . 0250 & 1.0000 & .3500 \\
\hline 3 & . 0250 & . 0250 & 1.0000 & . 3500 \\
\hline 4 & . 0250 & . 0250 & 1.0000 & .3500 \\
\hline 5 & . 0250 & . 0250 & 1.0000 & .3500 \\
\hline 6 & . 0250 & . 0250 & 1.0000 & .3500 \\
\hline 7 & . 0250 & . 0096 & 2.6040 & . 1340 \\
\hline 8 & . 0125 & . 0090 & 1.3020 & . 1340 \\
\hline 9 & . 0250 & . 0230 & 1.0900 & .3450 \\
\hline 10 & . 0125 & . 0173 & . 7225 & .2250 \\
\hline Cumulative & . 021 & . 021 & 1.00 & . 294 \\
\hline
\end{tabular}


NOTE:
Pigures on curves are the expected numbers of defectives (defectal in the iupplior's aemple

\section*{TOWAPD A STOCHASTIC MODEL OE TERRAIN}
R. H. Peterson, Methodology and Cost Effectiveness Office
Axwy Materiel Systems Analysis Agency
US Arwy Aberdeen Research and Development Senter.
Aberdeen Proving Ground, Maryland
and
William Clare Taylor, Applied Mathematics Division
' Ballistic Research Laboratories
. US Army Aberdeen Research and Development Center
Aberdeen Proving Ground, Haryland

ABSTRACT

We present an account óf an attempt to find useful random models of temain. Heasurements have shown that the distribution of slopes is what has been called the bilateral exponential distribution, definitely not normal. The problem is to find a convenient random function of geographical positions of two real variables which has this distribution for slopes and fite, in some approximaticons, the dependence of slopes in various directions at neighboring pointe. A family of random functions, the probability distributione in function space which are apherically symetric in a Hilbart norm suitable to the puposes of the atudy, was introduced with an onormous latitude in the choice of parametric functionals. We felt sure that rendom functions with the required properties must be included. Sad to relate further mathmatical derelopmente which we deem intrinsically intwesting have shown it not-to be mo. We know not how to proceed. Help!

\footnotetext{
This article has been reproduced photographically from the authors' manusiript.
Precoulling page llank
}

We have found it easier to separate our contributions to this exposition although they are interdependent. Peterson has written the first paragraphs and Taylor the laxer ones as is indicated in the text.

Terrain, being the medium of ground combat, has been the subject of many investigations by analysts in the fleld of weapon systems analysis. Most of these studies have been focused on the pairticular role played hy terrain in the particular problem at hand. Othere have been more general in nature with a goal of giving more inaight into the qurntitative aspects of describing terrain.

I would like 0 indisate a sample of the \(t\) pe of protlems that arise involving terrain and its influence on the ou come of combat that have received attention. In order to lend aome sellance of order to such a listing I have attempted this simple two way blassification of these roles. (Figure 1) For lack of better terns i have jaboled tham scales and mechanisms. For scales I have fallen back on tre vernacular of micro and macro, micro generally, referring to distances of up to a few meters and macro from there on out to perhaps several kiloneters. . Hechanisms I have broken into a clear dichotomy of contact and non-contact. By contact i mean that the terrain is actually supporting the objects whether they be vehicles or other pieces of equipment being conildened. By non-contact I mean we are concerned with the existence of a line-af-sight. I have listed those roles of terrain which can be fairly well catugorized but \(I\) will also try to indicate problam aress where there is not a clear distinction or there are strong interactiots.

Under contact with the micro structure of terrain I have linted \(V_{\text {RIDE }}\) and posture. \(V_{\text {RIDE }}\) has come to be used an an indication or the speed of a vehicle that is tolerable to both the occupants and to the vehicie itself due to roughness of terrain. It is noncerned with dynmica of the vehicle over the terrain.

\section*{FIGURE I}

\section*{ROLES OF TERRAIN IN COMBAT}
\begin{tabular}{ccc} 
Scale & \begin{tabular}{c} 
Micro \\
Mech.
\end{tabular} & \begin{tabular}{c} 
Macro \\
Contact
\end{tabular} \\
Non-Contact
\end{tabular}\(\quad\)\begin{tabular}{c} 
Fragment \\
Shielding
\end{tabular}\(\quad\)\begin{tabular}{c} 
Ranges of \\
Engagement
\end{tabular}

Ponture refers more to the atatic role of the vehicle and is concernel with the capability of a weadon system. As an oxamnle, if a tank is annted and the gun is elevated, this elevation will introduce a horizontal component of error into the aim of the gun.

Under contact with the macro characteriatics of terrain I have listed simply routes. Factors other than slopes influence the routes taken by a vehicle, of course.

Under non-contact in the micno regime I have indicated the fragment shielding which has been quantified in terns of "cover functions". The non-contact aspects of the macro relief are closely tied up with the ranges of engagement. A defender may choose fields of fire to get his opponent out into the open and yet there may be draws and gullies which can allow the attacker to approach under cover.

As an example of the multiple interaction of all of these moles, we might consider the case of a tank hastily taking up a firing position. The tank is advancing along some preplanned axis -- his route has been established. The enemy is encountered -- the approximate range of engagement has been established. The tank may stop or head for a nearby rise in the terrain to get into huil defilade -- \(V_{\text {RIDE }}\) and shielding come into play. How the tank is canted in position may influence hia accuracy -- hence the role of pasture.

We see then that there are a number of properties of terrain that are of concem to the military \(O R\) analyst and, as I have mentioned at the outset, there are number of ways that terrain has been categorized, measured, stored in machine memories for retrievel, generated by Monte Carlo means, etc. In order to stats the problen which we bring to this clinical session I'd like to discuss two observations concerning the nature of terrain which we feel have not been exploited to their fullest in dealing with this problem area. One concerns the resulta of a statistical atudy of terrain slope. The other concerme the underlying gecmetry of the matur of terrain.

The statistical study to which I refer was conducted to determine the posture of tanks as measured by the pitch and cant of the trunnion after taking up simulated firing positions. A sampling of widely varying termin types was obtained in that the test was run at Fort Knox, Fort Bragg, Fort Hood, Camp Pickett and Camp Erwin. The pattern that emerged indicated that the distributions of slopes in these firing positions were not normal but seemed to be much more like the bilateral exponential distribution. (Figure 2) Moreover the mean absolute slope varied greatly from one test site to another. In order to check out the possibility that this non-normal characteristic of these distributions was due to the selection of the firing positions sample profiles of each of the test sites were constructed from maps of each of the installations and the distributions of slopes measured over 200 yard intervals were obtained. Here again, the bilateral exponential distribution seemed to be the natural means of desaribing these slopes.

A detailed map study of the type mentioned above was made of the region around Houffalize, Belgium (based on a map we happened to have available). It showed that the distributions of north-south slopes and of east-west slopes both seemed to fit the bilateral exponential, the inadequacy of the normal distribution for generating profiles from which lines-of-sights can be determined was demonstrated some 20 years ago by people in the U. K. (personal communication from Mr. Eddie Benn then at the Armament Reseaych and Development Establishment). This finding has seened to influence their aubsequent investigations along this Line. (See Forbes, "The Generation of Temrain on an Electronic Computer," A.R.D.E. Memorandum (B) 75/60).

In several of the studies mentioned above, attempts were made at establishing distributions of the height or elavation of temain itself. The results were erratic and no pattern was observed. Such behavior is probably due to general trends which can be attributed to near-zero frequency componente in the spectrum.

\section*{FIGURE 2}

THE FREQUENCY FUNCTION OF THE BILATERAL EXPONENTIAL DISTRIBUTION
\[
f(a)=\frac{1}{2 a} e^{-|a| / a}
\]
where

> a - mean absolute deviation
\[
a^{2}=\sigma^{2} / 2
\]
characteristic function
\[
\phi(a)=\left[1+o^{2} a^{2} / 2\right]^{-1}
\]

> In addition to the non-normal nature of terrain therc is the nmhiom nf dimenginnality. Mony of the evigting schemes fon genenating random terrain profiles proceed in the same manner that one would treat a time series. This approach cannot be used to generate a surface, as two neighboring rays say emanating from a point, will be completely independent. Put in terms of statistically describing terrain rather than generating it we must think in terme of the gradient of a surface rather than the slope of a curve. We know from vector analysis that the curl of a gradient is zero. In other wonds there are constraints between the two perpendicular components of the grailent at a point. In the one dimensional case, as typified by a time sez ies, the random function or stochastic process is readily expressed in terms of sourier series, i.e., sines and cosines. In the two dimensional case the functions which replace the trigonometric functions in a natural way are the Bessel functions. Other areas of endeavor on which reference to two dimensional random fumetions have been found include windblown waves, agricultural productivity and images both photographic and video. The household term of now as applied to a tolevision pioture is just an adoption of the television ongineer's term "white anow" which is his extension to two dimansions of the concept of "white noise" in the one dimensional process. (We might add in passing that the mote well known application of three dimanaional randam functions is in the field of turbulence.)

We have briefly stated two characteristics of temain which we belinve to be pertinent to the statistical description of terrrain. One based on data analysis that, whereas terrain hoight itself does not aeem to have any pattern to ite distribution, its difference field as measured over a fow meters or a few hundrad matere has a common non-normal distribution which can be expressed in terme of a angle parameter. The other based on geometrical reasoning indioaten that the tools developed for one dimensional processen are not adequate for dasoribing a two dimensional random surface.

We are now at a point of being able to atate the problam which has plagued un for anmer of years. In it posithle to conatruet a maningfil atochastic model of temain which abodien these two considerationa?

Jurstions for which we would like to get more insight, includs the
 simply manifesta:ions of the same basic model with different scale factors in the horizontal and vertical directions, 2) to what extent can we use easily obtained information for a region and infer the details from the model and/or 3) can we build a composite model from which we can infer both the micro and macro characteristics of a given terrain type?

In closing my part of this presentation \(I\) want to stress that we are not posing the general question as to how to statisticalily categorize terrain but as to what extent the theory of two dimensional random functions can cortribute to our basic understanding of the statistical properties of terrain.

Dr. Tayion will now describe one approach we have taken to this problem along with its triumphs and pitfalls.

\section*{A Class of Random Functions}

After careful consideration of some mequirements on a random function that it be elisible for conaideration as andom terrain, Petarson was led to propone the following wide class of random functions as candidates for inveatigation. let
\[
\begin{equation*}
P: x=\left(x_{2}, x_{2}\right) \tag{1,1}
\end{equation*}
\]
be rectangular coordinates of a point \(P\) in a horizontal datum plane. Let \(u(x)\) be the height of terrain above the datum plane at the geographieal point P. For our purpose \(u(x)\) in a complate deacolption of the texrain. We are concernad with a randon function \(U(x)\), a probability distribution on certain subsets of set, say \(B\) of functions \(u(x)\). We consider inene set \(B^{\prime}\) of linear functionals \(\ell(u(\cdot))\) and uppose that the expection
\[
\begin{equation*}
E(L(U))=0 \tag{1,2}
\end{equation*}
\]
for ald \(l\) of the aet. By the variance of \(l\) we man
\[
\begin{equation*}
E\left(\ell(U)^{2}\right)=\operatorname{var} \ell \tag{1,3}
\end{equation*}
\]
and \(\mathrm{L} y\) the characteristic functional of \(\ell\) we mean the expectation of the exponential
\[
\begin{equation*}
E(\exp i \ell(u))=\operatorname{Ch} \ell \tag{1.4}
\end{equation*}
\]

The proposal is to limit our discussion to those random functions for which there exists a complex valued function of a real positive argument \(g(z)\) such that, for all \(\ell\),
\[
\begin{equation*}
\operatorname{Ch} \ell=g(\operatorname{Var} \ell) \tag{1.5}
\end{equation*}
\]

Example: For a gaussian random function \(U\),
\[
E(\operatorname{xf} i \ell(U))=\exp \left(-\frac{1}{2} E\left(|\ell(U)|^{2}\right)\right)
\]
since \(E(\ell(U))=0\).

\section*{Spherical Symmetry}

We may introduce also the inner product
\[
\begin{equation*}
\left\langle\ell_{1}, \ell_{2}\right\rangle=E\left(\ell_{1}(U) \ell_{2}(U)\right) \tag{2,1}
\end{equation*}
\]
and
\[
\begin{align*}
\ell^{2} & =\langle\ell, \ell\rangle \\
& =\dot{E}\left(\ell(U)^{2}\right) \\
& =\operatorname{Var} \ell . \tag{2,2}
\end{align*}
\]

It is but a amall stop to extend our discusaion to the Hilbert space, \(H\), of linear functionals and to suppose further that this upace is aufficient in the following sense: for any \(u(x)\) under diecuseion
\[
\begin{equation*}
\ell(u(x))=0 \text { for all } \ell \in H \tag{2,3}
\end{equation*}
\]
implies \(u(x) \equiv 0\). This is not necessary for the rather loose discussion we are presenting but it may aase the reader's way. Now a function \(u(x)\) defines on \(H\) a linear functional whose vilue at the olement \(\ell\) is \(\ell(u)\). Whether every linear functional in \(B^{\circ}\) is thus represented by some function \(u(x)\) is of no importance to our discussion. What is very important is to
realize that the linear functional defined by \(u(x)\) need not be in any fixed sense a bounded linear functional and indeed, for agiven \(\ell \in H\), \(\ell(U)\) need be defined only with probability one.

The preceding discussion of Hilbert spaces has been principally only for orientation. We need at first be concerned only with finite dimensional subspaces defined as follows: disregard all but a finite set of the linear functionals, along with their linear combinations. We define the projection of the measure space, and the measure, into this finite dimensional space by identifying all functions \(u(x)\) which agree in the values taken for them by each of this finite set of linear functionals. Thece finite dimensional spaces are euclideain with the inner product we have introduced, The characteristic functional and the varimece of each of these finite dimonsional projections of the probability measure will have the same valuas as when they were considered to be defined on the infinite dimensional apace and the characteristic functional defined on the conjugate apace will thus be a function only of the diatance from the origin. That is to aly that it will be apherically aymetric. It follow imsadiately that the \(n\) dimansional measure is spherically symetric and must be descoibed by a epherically symmetric density -- at least if wo aname it to be daseribad by a dansity at all, and'we do. Even though no spharas nos radil are definad on our infinite dimanslonal apace (at leat not with positive probability) we may nonotheleas define aphorical symmetry of the mecoure: \(A\) meanus is ophowionlly symotric if all its projections into finite dimanional subapaces are aphoricaliy aymotric.

Characteriration of Spherically Symotric Moanume on Infinite Dimansional Spaces由

In auch finite dimenaional projection of apherically symatric measure the density, if supposed to exist, must be the ame function of the dietance from the conter as in any other projection of the suma dimension, In \(n\) dimensions, let the donsity at diatence m from the oenter

We are indebted to J. Feldman and R. M. Dudioy for the information that this result concorning ophericaliy aymotric manures in infinite dimensional spaces is not new. It was pubilehed in 2962 by Unainere, who obtained it in a more mocndite content.
be \(P_{n}\left(r^{2}\right)\). Then, considering the projection of the measure from \(n+2\) dimensions to an \(n\) dimensional subspace, an easy argument shows that
\[
\begin{equation*}
p_{n}^{\prime}\left(r^{2}\right)=-\pi p_{n+2}\left(r^{2}\right) \tag{3.1}
\end{equation*}
\]

From this it follows that the derivatives of each of the p's alternate in sign. Such functions are called completely monotone. There is a theorem of S. Bernstein [see e.g., Feller, Th, of Probability, Vol II, p 415] which states that a completely monotone fumetion \(p(z), 0 \leq z \leq \oplus\), with \(p(e)=0\) oan be expressed as a lincar aggregate of decreasing exponentials with positive confficinnts:
\[
\begin{equation*}
p(z)=\int_{0}^{\infty} e^{-\lambda z} d \phi(\lambda), 0<z<\infty, \tag{3.2}
\end{equation*}
\]
with \(d \phi(\lambda) \leq 0\).
setting \(=x^{2}, \lambda=1 / 2 \sigma^{2}\) and meodosining the macaum \(\left.d\right\rangle(\lambda)\), we may then woite
\[
\begin{equation*}
P_{n}\left(x^{2}\right)=\int_{0}^{\infty} P_{n \sigma}\left(z^{2}\right) d \phi(\sigma) \tag{3.3}
\end{equation*}
\]

Whare
\[
\begin{equation*}
P_{n, \sigma}\left(x^{2}\right)=(\operatorname{or}(2 \pi))^{-n} \cdot x^{2} / 2 \sigma^{2} \tag{3.4}
\end{equation*}
\]

Is the \(n\) dimansional gavisian denaity. This formula, once obtainad for any value of \(n\), implies the same formula for all lowar dinensional denaitios, we is saen by succeseive integration with reapect to each of an orthogonal set of coordinates. The integrala are all absolutely convergent and may be integrated freely in any order. The same tatmont is then true for all n. Further the comreaponding statement may be asserted exprosaing the given macure meinilurly in term of the gavesim macures \(\mathrm{m}_{\mathrm{o}}\) ?
\[
\begin{equation*}
m=\int_{0}^{\infty} m_{0} d \phi(\sigma) \tag{3,5}
\end{equation*}
\]

Aljustin? the Paraneters of the Model
The prococure we are to follow is now quite clear. Whatever may be the distribution of the individual linear functionals, we shall adjust the density \(p_{1}\left(r^{2}\right)\) to it by choosing the waights \(d \boldsymbol{(}(\sigma)\) in (3.3). A necessary condition is of course that the density be a completely monotone function of \(r^{2}\). But., as Peterson has point:ed out above, it lies very near an exponential function \(e^{-a r}\), which, fortmately, atiafies this condition. We shall need only to be fimm with the small residue, if there be any, and its derivatives, and iusist that it conform. There will then be the task of fitting the remainir 3 free element, the variance of a innear functional. Here there is a great de a : more freedom. There is a functional to be adjusted to approximate as best we can the statistical interdependence of the valuas of \(U(x)\) at neighboring values \(x\). (We want tham to becowe independent at distant points.) But this is just the game problem to be faced in fitting a gauseian random function. For any \(\ell(u)\) we nead only go to the sumples we Wish to fit and actimate. \(E\left(\ell(U)^{2}\right)\), or what is aimplar to tabulate, for some IInear basis \(l_{1}, l_{2}, \ldots\) of the linear functicals we eatimate \(E\left(\ell_{i}(U) \ell_{j}(U)\right)\) from the amplea for all paise \(i, j\). There is no axbitraxy decision left to be made. It' fuet a quastion of whother it works or not or how well it worko!

Sad to say, it doesn't work at all. We shall sec this without any frether examination of eamples. The meason lies in an additional aignificant diffarence betwan the finite and infinite dimamional ones.

\section*{Lack of Errodicity}

We shall see that ( 3.5 ) is, in a maconable sanse, an orthogonal representation of the measure. \({ }^{( }\)For this purpose it is convenient (and

\footnotetext{
由For the source of the train of thought which iad to this analysis, we are indebted to Jacob Peldman for a lucid and provocative briefing on relatively singula metames, briafing which grew ovt of a diaduaion nom yours ago of the eppilantig of information theory to amploioni fumotions, But the simple case with which alone wo noed be concemend here wa known to us as woll may other people long ago. It appeer. fow anmple, in a paper of W. T. Martiti and R. H. Comeres in the \(1040^{\prime} \mathrm{E}\).
}
perhaps something equivalent is also necessary) to introduce a sequence of linearly independent bounded linear functionals \(\ell_{i}(u), i=1,2, \ldots\), which we can then as well suppose to have been replaced by an orthonormal sequance, so that
\[
\begin{align*}
E\left(\ell_{i}(u) \ell_{j}(u)\right) & =\delta_{i j} \\
& = \begin{cases}0, & i \neq j, \\
1, & i=j .\end{cases} \tag{5,1}
\end{align*}
\]

The question of when and in what sense does a sequance of numbers \(w_{i}, i=2,2, \ldots\), repsesent a function \(u\) such that
\[
\begin{equation*}
t_{i}=\ell_{i}(u) \tag{5.2}
\end{equation*}
\]
will not be discussed.
The random variables
\[
\begin{equation*}
w_{i}=l_{i}(U), i=1,2 \ldots, \tag{5.3}
\end{equation*}
\]
are uncomselated but not neceasanily independent. However, for any one of the gavasian maturas, \(m_{\sigma}\), aalling the random function \(U_{\sigma}\), the random variables
\[
\begin{equation*}
w_{01}=\ell_{i}\left(U_{0}\right) \tag{5,4}
\end{equation*}
\]
are uncorralated gaumian variables and hence independent. Since
\[
\begin{equation*}
E_{m_{0}}\left(w_{\sigma i}^{2}\right)=\sigma^{2} \tag{5.6}
\end{equation*}
\]
we have, with probability 1 .
\[
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} H_{\sigma 1}^{2}=\sigma^{2} \tag{5.7}
\end{equation*}
\]

The maasure \(m_{\sigma}\) is not essentially altared if we trim its space to the set \(A_{\sigma}\) of Eequances \(W_{1}, W_{2}, \ldots\) for which (5.7) is trwe and to those fumctions \(u(x)\) which give rise to such sequances. We restrict our masure, supposed to exiet and to be given, to the set
\[
\begin{equation*}
A=\sum A_{\sigma} \tag{5.8}
\end{equation*}
\]
\(\therefore f\) :uctichs \(u(x)\). We do not disciss which subsets of \(A\) have probability
 difficult.

Suppose now that we test the distribution of slopes in A in the same fashion that was described above. That is, we draw a single sample function and measure slopes at many points on it. Further, for simplicity, suppose thase points are far enough apart that we may ignore stetistical dependence of the slopes. Each sample function from A is, for some \(\sigma\), taken from \(A_{0}\). Slopes at distant points on it are then independent, identical, zaussian variahles and the sample values of a large number of them wili characterize their common distribution as gausian with whatever assurance their number'pervits. But haven't we brought this about by artificial tampering with the ensemble? No. We have only turned a statement true with probability one into a true statement. Devise a statistical test for the nomality of the distribution from which a sample is taken, using statistics whose distribution is independent on the variance of the ensemble. The result of the test will (at least at any specified stage) depend on only a finite mample. A finjte met of linear functionala has the same distribution in \(A\) as in the original probability measure, on the space we have callied \(B\), and the distribution of the statistics of the test will thus have the same distribution in \(B\) as in \(A\) and as in a gaussian ensemble.

In short tion, these random functions fail to represent a random terrain since an orthonormal sequence of linear functionals read off any one sample function have values distributed like independent samplings from a univariate gnussian ansemble. We damand of our model of terrain on the contrary that slopes read at widely separated points have a different distribution, approximately the one deacribed by a bilataral axponential density. More gemerally, in urder to make sense our random function model must have the argodic property: independent identionl functionals (auch as siopas at widely anpasated points) must show the sumetribution whether read from a single asmple or ach from a different randomiy chosen one.

\author{
N. R. RICH
}

Systems Evaiuation Erarich
Advanced Systems Laboratory
Resoarch and Engineering Lirectorate Redatone Arseaal, Huntoville, Alabama

\begin{abstract}
The data talien it a series of minsile tests are cften in the form of a variable of interest (such as radial miss diutence trom a given target) and several dependent variables (e. g. , range, temperature, type of misalle modification) for each test made. In such casen, it may be posaible to construct a linear statistical model relating the matn variable, \(y\), to the others, \(x_{1}\) through \(x_{k}\). The coefficients of thia mpdel can be eatimated by a least equaree procedure.
\end{abstract}

The difference between each meaaured \(y\) and the \(y\) predicted by the unear model is called a residual. If the set of reatcuals is normally diatributed, several well-known tests of statistioal hypotheses and methods of setting confidence intervalis are applicable. A procedure for graphically validating the normality of the residuale hae aleo been developed.

\section*{1. NTRODUCTION}

In the summer of 1968 the Byateme Evaluation Branch* had the trak of determining which, if my, of three modifications of a cortain missile wan "bent." A modification wat connidered "best" if the average radial miss distance measured from the center of a target of fixed alze was significantly less for the modification than for the other two modificsifions.

There was no lack of data for this project; in fact, data had been reccurded for over 1000 tirings of the misalie. For each firing, the following had been recorded: radial miss di tance ( \(y\) ), target altitude at intercept ( \(y_{j}\) ), range of the target at lamch \(\left(v_{2}\right)\), range of the target at intercept ( \(v_{3}\) ), target closing velocity at inten cept ( \(V_{4}\) ), missile modification ( \(v_{5}\) ), target type ( \(v_{6}\) ), and radar power ( \(v_{p}\) ).

The data were sorted for duplications and misaing values. There remained data on over 900 firings. Of these, approximately 6 porcent were Mod 1 firings, 15 percent were Mod 2 and 79 percent were Mod 3. For thle peper, 200 firings were chosen from the total; 6 of Mod 1, 15 of Mod 2 and 79 of Mod 3. Since the origina! data were clanstifed, the values were codied or trinsformed to nonetandard, undeflned "initte." The coded data are shown it Table.I.

The following simple procedure was considered: divide the data into three groupe accorcting to modification. Calculata the anmple average and sample vuriance of the radial mien tietances for each group. Teat these valued for equality using the \(F\) and \(t\) itatiatical tents. This procedure was rejected for the following reason: the tomting procedure was not planned in advance to insure sets of comparable conditions for each modinaation. For exampla, most of the firings for Mod 1 were with tho second target type ( \(v_{6}=2\) ). Thut, if tho above test procedure had been used, the effect on the radial mias diatunce of the modinuation would have been confounded with the effect of the target type. The conclusiond would then be questionabls at beat.

\footnotetext{
* Advanced Systemi Laboratory, Hosearch and Engineering Directorate, U. S. Army Missile Command, Redstone Arsenal, Alabama.
}

\section*{TABLE I. CODED MISSILE DATA, EXAMPLE 1}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \(y\) & \(v_{1}\) & \(v_{2}\) & " & \(\mathrm{V}_{4}\) & \(\because 5\) & \(v_{6}\) & \(i\) \\
\hline 3.8 & 1. 11 & 27.1 & 24.3 & 110.0 & 3.0 & 1.0 & 1.0 \\
\hline 4.7 & 1.88 & 27.1 & 20.1 & 108.2 & 3.0 & 1.0 & 1.0 \\
\hline 5.0 & 2.90 & 31. 3 & 24.0 & 187.4 & 2.11 & 2.0 & 2.0 \\
\hline 3.0 & 1.24 & 24.3 & 20.1 & 103.7 & 2.0 & 1.0 & 2.0 \\
\hline 5.0 & 1.67 & 15.9 & 12. 1 & 127.1 & 3.0 & 1.0 & 1.0 \\
\hline 5.0 & 1.55 & 29.9 & 24.3 & 101.0 & 3.0 & 1.0 & 2.0 \\
\hline 5.6 & 2.32 \({ }^{\text {a }}\) & 45.3 & 35.5 & 160.4 & 3.0 & 2.0 & 1.0 \\
\hline 6.2 & 6. 46 & 42.5 & 27.1 & 191.0 & 3.0 & 2.0 & 2.0 \\
\hline 6.8 & 6.06 & 36.8 & 27.1 & 204.5 & 3.0 & 2.0 & 2.0 \\
\hline 7.1 & 7. 15 & 16.7 & 32.7 & 174.8 & 2.0 & c. 0 & 2.0 \\
\hline 7.4 & 1.55 & 32.7 & 27.1 & 108.2 & 3.0 & 1.0 & 1.0 \\
\hline 7.4 & 1.33 & 29.9 & 25.7 & 110.0 & 3.0 & 1.0 & 2.0 \\
\hline 7.7 & 1.73 & 34.1 & 25.7 & 128.0 & 1.0 & 2.0 & 2.0 \\
\hline 7.7 & 3.64 & 31.3 & 25.7 & 123.5 & 3.0 & 1.0 & 1.0 \\
\hline 8.0 & 2.34 & 45.3 & 35.5 & 112.7 & 2.0 & 1.0 & 2.0 \\
\hline 8.0 & 2.32 & 29.9 & 21.5 & 108.2 & 3.0 & 1.0 & 2.0 \\
\hline 8.3 & 1. 11 & 31.3 & 25.7 & 107.3 & 3.0 & 1.0 & 1.0 \\
\hline 8.3 & 10.02 & 43.9 & 31.3 & 191.9 & 3.0 & 2.0 & 1.0 \\
\hline 8.9 & 2.21 & 24.3 & 20.1 & 123.5 & 3.0 & 1.0 & 1.0 \\
\hline 9.2 & 1.66 & 38.3 & 29.9 & 108.2 & \(2.0{ }^{\circ}\) & 1.0 & 2.0 \\
\hline 9.2 & 1.88 & 28.5 & 20.1 & 110.0 & 3.0 & 1.0 & 1.0 \\
\hline 9.2 & 1.22 & 28.5 . & 22.9 & 108.2 & 3.1 & 1.0 & 2.0 \\
\hline 9.5 & 2.87 & 31.3 & 25.7 & 108.2 & 3.0 & 1.0 & 1.0 \\
\hline 10.1 & 1.34 & 28.5 & 21.5 & 182.0 & 3.0 & 2.0 & 1.0 \\
\hline 10.1 & 1. 11 & 29.9 & 20.1 \({ }^{\prime}\) & 114.5 & 3.0 & 1.0 & 1.0 \\
\hline 10.1 & 1.67 & 35.5: & 25.7 & 188.3 & 3.0 & 2.0 & 2.0 \\
\hline 10.4 & 6.02 & 29.9 & 24, 3 & 123.5 & 2.0 & 1.0 & 2.0 \\
\hline 10.7 & 1.88 & 22.9 & 17.3 & 174.8 & 1.0 & 2.0 & 2.0 \\
\hline 10.7 & 1.66 & 28.5 & 24.3 & 110.0 & 3.0 & 1.0 & 2.0 \\
\hline 11.0 & 1.55 & 24.3 & 20.1 & 108.2 & 3.0 & 1.0 & 2.0 \\
\hline 11.0 & 1. 11 & 38.3 & 32.7 & 114.5 & 3.0 & 1.0 & 1.0 \\
\hline 11.3 & 1.55 & 32.7 & 27.1 & 108.2 & 3.0 & 1.0 & 1.0 \\
\hline 11.6 & 2.32 & 25.7 & 21.5 & 110.0 & 3.0 & 1. 0 & 2.0 \\
\hline 11.9 & 2.98 & 24.3 & 21.5 & 107.3 & 3.0 & 1.0 & 1.0 \\
\hline 11.9 & 1.33 & 29.9 & 22.9 & 108.2 & 3.0 & 1.0 & 2.0 \\
\hline 12.2 & 1.24 & 35.5 & 28.5 & 108. 2 & 2.0 & 1.0 & 2.0 \\
\hline 12.2 & 2.21 & 27.1 & 20.1 & 88.3 & 3.0 & 1.0 & 1.0 \\
\hline 12.5 & 1.66 & 28.5 & 24.3 & 110.9 & 3.0 & 1.0 & 1.0 \\
\hline 12.8 & 1.88 & 32.7 & 25.7 & 114.3 & 3.0 & 1.0 & 1.0 \\
\hline 13.1 & 1.50 & 31.3 & 25.7 & 107.3 & 2.0 & 1.0 & 2.0 \\
\hline
\end{tabular}

TABLE I. CODED MISSILE DATA, EXAMPIE I (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline y & \(\mathbf{v}_{1}\) & \(\mathbf{v}_{2}\) & \(v_{s}\) & \(v_{4}\) & \(\mathbf{V}_{5}\) & \(v_{6}\) & \(\mathrm{v}_{7}\) \\
\hline 13.1 & 2.98 & 27.1 & 21.5 & 95.6 & 3.0 & 1.0 & 1.0 \\
\hline 13.4 & 2. 10 & 45.3 & 32.7 & 164.0 & 3.0 & 2.0 & 2.0 \\
\hline 13.7 & 1.67 & 50.9 & 36.8 & 161.3 & 1.0 & 2. 0 & 2.0 \\
\hline 13.7 & 2.65 & 25.7 & 22.9 & 121.7 & 3.0 & 1.0 & 1.0 \\
\hline 14.0 & 2.98 & 34, 1 & 29.8 & 105.5 & 2.0 & 1.0 & 2.0 \\
\hline 14.0 & 1. 11 & 28.5 & 21.5 & 123.5 & 3.0 & 1.0 & 1.0 \\
\hline 14.3 & 1.33 & 25.7 & 21.5 & 117.2 & 3.0 & 1.0 & 2.0 \\
\hline 14.9 & 6.06 & 49.5 & 29.9 & 107. 3 & 3.0 & 2.0 & 2.0 \\
\hline 14.9 & 1.88 & 17.3 & 14.5 & 122.6 & 3.0 & 1.0 & 1.0 \\
\hline 15.5 & 1.67 & 41.1 & 28.5 & 209.0 & 2.0 & 2.0 & 2.0 \\
\hline 15.5 & 1. 77 & 31.3 & 27.1 & 108. 2 & 3.0 & 1.0 & 1.0 \\
\hline 16. 1 & 3.42 & 28.5 & 18.7 & 144. 2 & 3.0 & 1.0 & 1.0 \\
\hline 16. 1 & 4.30 & 48.5 & 35.5 & 211.7 & 3.0 & 2.0 & 1.0 \\
\hline 16.7 & 1.88 & 28.5 & 20.1 & 117.2 & 3.0 & 1.0 & 1.0 \\
\hline 17.0 & 1. 55 & 27.1 & 22.8 & 101. 0 & 3.0 & 1.0 & 2.0 \\
\hline 17. 6 & 3.84 & 49.5 & 32. 7 & 200.8 & 2.0 & 2.0 & 2.0 \\
\hline 17.6 & 2. 10 & 25.7 & 22.8 & 108.2 & 3.0 & 1.0 & 1.0 \\
\hline 17.9 & 2. 00 & 25.7 & 21.5 & 81.2 & 3.0 & 1.0 & 2.0 \\
\hline 18.2 & 1.67 & 28.5 & 24.3 & 85.7 & 3.0 & 1.0 & 2.0 \\
\hline 18.5 & 1.22 & 28.5 & 24.3 & 108.2 & 3.0 & 1.0 & 1.0 \\
\hline 18.5 & 1.56 & 29.9 & 34.3 & 108.2 & 3.0 & 1.0 & 1.0 \\
\hline 18.8 & 1.33 & 38.5 & 25.7 & 198.2 & 3.0 & 2.0 & 2.0 \\
\hline 19.4. & 2.65 & 88.5 & 18.7 & 121.7 & 3.0 & 1.0 & 1.0 \\
\hline 19.4 & 1.85 & 28.5 & 24.3 & 110.0 & 8.0 & 1.0 & 2.0 \\
\hline 20.0 & 1.89 & 24.3 & 14.5 & 316.1 & 1.0 & 2.0 & 2.0 \\
\hline 20.3 & 1.77 & 21.5 & 0.8 & 108.2 & 3.0 & 1.0 & 1.0 \\
\hline 20.3 & 5.95 & 31.3 & 25.7 & 114. 5 & 3.0 & 1.0 & 2.0 \\
\hline 20.6 & 1.25 & 22.8 & 18.7 & 112.7 & 2.0 & 1.0 & 2.0 \\
\hline 21.2 & 2.65 & 21.5 & 17.3 & 101.0 & 3.0 & 1.0 & 1.0 \\
\hline 21.2 & 1.33 & 28.5 & 25.7 & 108.2 & 3.0 & 1.0 & 2.0 \\
\hline
\end{tabular}

TABLE I. CODED MISSILE DATA, EXAMPLE 1 (Concluded)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline y & \(\mathrm{v}_{1}\) & \(v_{2}\) & \(\mathbf{v}_{3}\) & \(v_{4}\) & \({ }^{\prime} 5\) & \(\mathrm{v}_{5}\) & \(v_{7}\) \\
\hline 21.8 & 2.32 & 31.3 & 25.7 & 96.5 & 3.0 & 1.0 & 1.0 \\
\hline 22.1 & 5.40 & 34. 1 & 27.1 & 114.5 & 3.0 & 2.0 & 1.0 \\
\hline 22.4 & 1.77 & 31.3 & 25.7 & 108.2 & 3.0 & 1.0 & 1.0 \\
\hline 23.0 & 1. 11 & 28.5 & 21.5 & 114.5 & 3.0 & 1.0 & 1.0 \\
\hline 23.3 & 2.32 & 35.5 & 28.5 & 115.4 & 3.0 & 1.0 & 2, 0 \\
\hline 23.9 & 1.11 & 27.1 & 18.7 & 110.9 & 3.0 & 1.0 & 1.0 \\
\hline 23.9 & 1.88 & 20. 1 & 17.3 & 103.7 & 3.0 & 1.0 & 1.0 \\
\hline 24.2 & 2. 34 & 22.9 & 18.7 & 120.8 & 2.0 & 1.0 & 2.0 \\
\hline 24.2 & 1.99 & 25.7 & 18.7 & 114.5 & 3.0 & 1.0 & 1.0 \\
\hline 24.8 & 2. 88 & 24.3 & 18.7 & 107. 5 & 3.0 & 1.0 & 1.0 \\
\hline 24,8 & 1.22 & 29.9 & 25.7 & 101.0 & 3.0 & 1.0 & 2.0 \\
\hline 26.8 & 1.99 & 34.1 & 25.7 & 183.8 & 3.0 & 2.0 & 1.0 \\
\hline 28.4 & 4. 08 & 22.9 & 17.3 & 137.0 & 3.0 & 1.0 & 1.0 \\
\hline 29.3 & 1. 11 & 28.5 & 24.3 & 107.3 & 3.0 & 1.0 & 1.0 \\
\hline 30.2 & 2.00 & 45.3 & 31.3 & 181.1 & 1.0 & 2.0 & 2.0 \\
\hline 30.2 & 5.07 & 42.5 & 28.5 & 225.2 & 3.0 & 2.0 & 1.0 \\
\hline 31.1 & 1.55 & 27.1 & 21.5 & 108.2 & 3.0 & 1.0 & 2.0 \\
\hline 31.4 & 1.29 & 34.1 & 28: 5 & 101.9 & 2.0 & 1.0 & 2.0 \\
\hline 32.3 & 1.77 & 32.7 & 27.1 & 108.2 & 3.0 & 1.0 & 2.0 \\
\hline 34. 1 & 1.33 & 43.9 & 29.8 & 210.8 & 3. 0 & 2.0 & 2.0 \\
\hline 35.0 & 3.20 & 48.8 & 31.3 & 184.7 & 3.0 & 2.0 & 1.0 \\
\hline 37.1 & 1.55 & 21.5 & 18.7 & 110.0 & 3.0 & 1.0 & 2.0 \\
\hline 38.6 & 1.88 & 20.1 & 17.3 & 101.0 & 3.0 & 1.0 & 2.0 \\
\hline 41.3 & 1.88 & 28.3 & 24.3 & 119.0 & 3.0 & 4.0 & 1.0 \\
\hline 41.6 & 1.11 & 46.7 & 27.1 & 374.6 & 1.0 & 2.0 & 2.0 \\
\hline 45.8 & 5.73 & 32.7 & 24.3 & 141.6 & 3.0 & 2.0 & 1.0 \\
\hline 48.5 & 1.89 & 32.7 & 28.5 & 110.0 & 8.0 & 1.0 & 2.0 \\
\hline 57.5 & 1.13 & 56.5 & 31.3 & 386.3 & 3.0 & 2.0 & 2.0 \\
\hline 66.5 & 1.22 & 24.3 & 18.7 & 174.8 & 3.0 & 2.0 & 2.0 \\
\hline 69.5 & B. 02 & 27.1 & 22.8 & 108.2 & 2.0 & 1.0 & 2.0 \\
\hline
\end{tabular}

\section*{2. THE LINEAR STATISTICAL MODEL FOR THIS MISSILE}

It was decided to set up a linear atatiatical model ! 1! relating the radial miss distance, \(y\), to functions of the 7 other variables, \(v_{1}\) through \(v_{7}\). Through engineering conaiderations, the model chosen was:
\[
\begin{aligned}
& y=b_{0}+b_{5} x_{1}+b_{2} x_{2}+b_{3} x_{9}+b_{8} x_{4}+b_{5} x_{5}+b_{8} x_{8}+b_{7} x_{7}+b_{7} x_{8}+b_{8} x_{7} \\
& +b_{10} x_{10}+e \\
& X_{1}=\mathbf{V}_{1}=\text { target altitude at intercept } \\
& x_{2}=v_{2}=\text { range of target at launch } \\
& x_{3}=x_{2}^{2}=v_{2}^{2} \\
& X_{4}=V_{3}=\text { rance of target at intercept } \\
& x_{5}=x_{1}^{2}=v y_{3}^{2} \\
& x_{4}=V_{4}=\text { target closing velocity at intercept } \\
& x_{7}=\left\{\begin{array}{r}
-0.5 \text { if Mod } 1 \\
0.5 \text { if Mod } 2 \\
0.0 \text { if Mod } 3
\end{array}\right. \\
& x_{8}=\left\{\begin{array}{r}
0.0 \text { if Mod } 1 \\
-0.5 \text { if Mod } 2 \\
0.5 \text { if Mod } 3
\end{array}\right. \\
& x_{9}=\left\{\begin{array}{r}
-0.5 \text { if target type } 1 \\
0.5 \text { if target type } 2
\end{array}\right. \\
& x_{10}=\left\{\begin{array}{r}
-0.5 \text { If low intenalty radar } \\
0.5 \text { If high intensity radar }
\end{array}\right. \\
& \text { e= random error }
\end{aligned}
\]

\section*{3. GENERAL LINEAR STATIGTICAL MODELS}

Frequently the remulte of experimente or measurements are given as a set of independent variables and as acsooiated reault or dependent variable. The data discuased above provides ono example. Ae another example, the velocity of the vehicle could be meanured tot virious thme pointe.

The result or observation, \(y\), is comsidered as a function of the independent variables, \(v_{1}, v_{2}, \ldots, v_{m}\), and random nolse e and written:
\[
y=y\left(v_{1}, v_{2}, \ldots v_{m}, e\right)
\]

The observation noise or measurement noife e 18 a resuit of the inaccuracy oi the measuring devices and of variables which are not included in the model but which do affect the observation. If the model is corrcct, \(e\) is the random fluctuation of \(y\) for the fixed values of \(v_{1}\) through \(v_{m}\).

The moat convenient and frequently used model is the linear atatistical model:
\[
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{k} x_{k}+e .
\]

Here the \(x_{1}\) 's are funitions of the basic variables \(v_{1}\), e.g., \(x_{1}=v_{1}, x_{2}=v q_{1}\), \(x_{3}=v_{2}, x_{1}=v_{1} v_{2}\). On? restriction on the \(x_{1}{ }^{\prime}\) is that they be linearly independent; e.g., if \(x_{1}=v_{1}\) and \(x_{2}=v_{i}\), then \(x_{3}\) cannot be set to \(\left(v_{1}+v_{2}\right)\). The other reatriction ls that the \(x_{1}\) 's be known or measured without error. (Both reatriction can be relaxed in more advanced work.) The model is termed "Hinear" becaume it is linear in the coeffliente \(b_{1}\). The \(b_{1}\) 's are connidered to be fixed but unknown and must be entimated from the data.

It mould be noted that this is not the only atatintical model poanible and may not apply in some cames. However, it can be used auccenufully in a large number of aituatione and it doen ponsend manipulative ense. The model ahould be conetructed trom phyoion and engineoring conalderationa. As will be beun later, atatiction teatia can be wed to determine whioh terme can be droppad from the model without ceriounly affecting the accuracy; however, they give no indioation of which new terme mould be added to the model.

The results on the milaile dincusced above, hereatter known an Example I, are of conoern here. IHowevar, in order to Illustrate the method with a emall, uncompliosted case, a aimple example (Example II) was concocted. The calculations of Example II can be done by hund in a "reasonable" (compared to Example I) length of time.

In Example II, the amount of catalyat added to uach of two vata in a chemleal plont was varied from 0 to 5 unlis. The renulting yielde are liated in Tuble \(\overline{1}\).

TABLE II. CHEMICAL YIELD, EKAMPLE II
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
\(V_{1}\) \\
Amount of \\
Catalyat
\end{tabular}} & \multicolumn{2}{|c|}{\(y\)} \\
\cline { 2 - 3 } & \begin{tabular}{c} 
Yield for \\
Vat 1
\end{tabular} & \begin{tabular}{c} 
Yield for \\
Vat 2
\end{tabular} \\
\hline 0 & 8.81 & 7.02 \\
1 & 10.00 & 10.02 \\
2 & 13.25 & 10.15 \\
3 & 14.51 & 13.43 \\
4 & 11.36 & 10.40 \\
5 & 8.58 & 4.33 \\
\hline
\end{tabular}

The yields are plottea in Figure 1 as functions of the amount of catalyst.


FIGURE 1. CHEMICAL YIELD VERSUB AMOUNT OF CATALYBT, EKAMPLE I

The plot eugreste that an appropriate model would be ateoond degree polynomial:
\[
\begin{aligned}
y & =b_{0}+b_{1} v_{1}+b_{2} v_{1}+c \\
& =b_{0}+b_{1} x_{1}+b_{2} x_{2}+c
\end{aligned}
\]
where
\[
x_{1}=v_{1}, x_{2}=v i
\]

Without loss of generality, it can be assumed that the nolse e hes zero mean [If not, the mean, \(E(e)\), could be included in the term \(b_{0}\) so that the recurineu noise \(\mathrm{e}^{\dot{\tau}}=\mathrm{e}-\overline{\mathrm{E}}(\mathrm{e})\) has zero mean .

If a total of \(n\) obscrvations are taken, then the model can be written as:
\[
y_{j}=b_{0} x_{0}+b_{1} x_{1, j}+b_{2} x_{2, j}+\ldots+b_{k} x_{k, j}+e_{j}, j=1, \ldots, n
\]
where \(x_{0}=1\) and \(x_{i, j}\) is the value of \(x_{i}\) for the \(j^{\text {th }}\) data point. To shorten the above equations, the following vectors and matrix are defined:

The above equation becomel
\[
y=X \underline{b}+\underline{e}
\]

\section*{4. ESTRMATION OT THE COEPFICIENTS}

A linear etiatiatical model has been postulated in Section 2. In adation, the noise \(e\) is assumed to have zerb mean and covariance matrix \(=\sigma^{2} I\), where I is the identity matrix and \(\sigma^{2}\) is a conatant thet may be unknown. That is, for \(1, j=1, \ldots, n, E\left(e_{j}\right)=0\), var \(\left(e_{j}\right)=\sigma^{2}\) and \(\operatorname{cov}\left(e_{i}, e_{j}\right)=0\) if \(1 \neq j\). If this aneumption is not met, the proper tranaformation of variables, in mont cases, will reduce the model to one in which the aneumption does hold.

A method must be fownd for determining \(\hat{b}\), the eetimate of the coeffcients \(b\). There is uavally a lons incurred when the estimate \(\underline{b}\) is not the true value b. Usually, the further \(\underline{6}\) lien from the true value \(b\), the greater the loss becomen. Bince the valuee of \(X\) and \(y\) are civen, it is dosirable to choone \(\underline{G}\) so that the predicted value of \(y, \hat{y}=X \underline{D}\) will be clone, in some seane, to the sotual observation vector y. \(\mathbf{A}\) convenient way of doing this is to choose \(\mathfrak{B}\) so that the quadratic loes
\[
\text { Lose }=(\underline{y}-X \underline{b})^{T}(\underline{y}-X \hat{b}),
\]
 equivalent to
\[
\text { Lose }=\sum_{j=1}^{n}\left(y_{j}-\bar{x}_{j} \underline{6}\right)^{2},
\]
where \(\bar{x}_{j}\) in the row vector
\[
x_{j}=\left(1, x_{1, j}, x_{2, j} \ldots, x_{k, j}\right) .
\]

Because of the abo:e form, the entimate \(\underline{\hat{b}}\) which minimizes the quadratic loss to called the least equaren eatimetor.

The quadratic lose can be expanded
\[
(\underline{y}-X \hat{\underline{b}})^{T}(\underline{y}-X \underline{\hat{b}})=\boldsymbol{y}^{T} \underline{y}-2 \dot{\underline{b}}^{T} x^{T} \underline{y}+\underline{\underline{b}}^{T} x^{T} x \dot{\underline{b}} .
\]

If this quantity is differentiated by \(\hat{b}\) and set equal to the zero vector, the result is
\[
\begin{aligned}
-2 x^{T} y+2 x^{T} x \dot{\underline{b}} & =\underline{0} \\
x^{T} \dot{x} \underline{\underline{b}} & =x^{T} \underline{y} \\
\dot{b} & =\left(x^{T} x\right)^{-1} x^{T} y
\end{aligned}
\]

In Example \(M\), the quantition of intereat are


The quantitiea \(X^{T} \mathbf{Y}\) and \(X^{T} X\) are calculated to be
\[
X^{T} Y=\left(\begin{array}{r}
121.86 \\
302.23 \\
1035.99
\end{array}\right), X^{T} X=\left(\begin{array}{rrr}
12.0 & 30.0 & 110.0 \\
30.0 & 110.0 & 450.0 \\
110.0 & 450.0 & 1958.0
\end{array}\right)
\]

The inverse of \(X^{T} X\) is
\[
\left(X^{T} X\right)^{-1}=\left(\begin{array}{rrr}
0.4107 & -0.2946 & 0.0446 \\
-0.2946 & 0.3634 & -0.06 / 10 \\
0.0446 & -0.0670 & 0.0134
\end{array}\right)
\]

The eatimate of \(b 1 s\)
\[
\hat{\mathrm{b}}=\left(\mathrm{X}^{\mathrm{T}} \mathrm{X}\right)^{-1} \mathrm{X}^{T} \mathrm{Y}=\left(\begin{array}{r}
7.249 \\
4.549 \\
-0.924
\end{array}\right)
\]

The prediction equation for \(y\) is thus
\[
\begin{aligned}
& \hat{y}=7.249+4.849 x_{1}-0.924 x_{2} \\
& \hat{y}=7.249+4.549 v_{1}-0.824 v!
\end{aligned}
\]

Listed bolow are \(\underset{L}{ }, \hat{y}\), and the error in the prectiction of \(\underset{y}{ }, \underline{y}-\hat{y}\).


Plotted in Figure 2 are the data point and the prediction equation.


FIGURE 2. PREDICTED YIELD, EXAMPLE II

Notice that no mention has been made of the probability distribution of the measurement noise \(\theta\) except that the covariance matrix is \(\sigma^{2} I\) and the mean is this cero vector. Thus, the formula for the least squares estimator is free of the distribution of e . Also, no matter what the distribution of \(\underline{e}\), if \(\mathrm{F}(\underline{e})=0\) and \(\operatorname{cov}(\underline{a})=\sigma^{2} I\), then
\[
\begin{aligned}
E(\underline{y}) & =E(X \underline{b}+\underline{e})=X \underline{b} \\
\operatorname{cov}(\underline{y}) & =\operatorname{cov}(X \underline{b}+\underline{e})=\sigma^{2} \underline{I} \\
E(\underline{b}) & =E\left(\left[X^{T} X\right]^{-1} X^{T} \underline{y}\right)=\left[X^{T} X\right]^{-1} X^{T} E(\underline{y})=\underline{b} \\
\operatorname{cov}(\underline{b}) & =\left[X^{T} X\right]^{-1} X^{T} \operatorname{cov} \underline{y} X\left[X^{T} X\right]=\sigma^{2}\left[X^{T} X\right]^{-1}
\end{aligned}
\]

Thus, no matter what the distribution, the least squares estimator is unbiased \([E(\hat{\underline{g}}): \underline{b}]\) and has covariance matrix \(\operatorname{cov}(\hat{b})=\sigma^{2}\left(X^{T} X^{-1}\right.\).

An appealing estimate of the variance \(\sigma^{2}\) is the "average" loss. After the coefficient vector \(\underline{b}\) has been estimated by \(\hat{\underline{b}}\), the predicted value of the dependent variable the the point is \(\hat{y}_{j}=\bar{x}_{j} \dot{\vec{b}}\). The difference between the actual or measured value of \(y_{j}\) and the predicted \(\frac{1}{j}\) is called the \()^{\text {th }}\) residual, \(r_{j}=\left(y_{j}-\right.\) \(\left.x_{j} \stackrel{\rightharpoonup}{b}\right)\). The sum of the squares of the remicuala lo called the sum of squares for error (SSE) and can be shown to equal:
\[
\operatorname{SSE}=\sum_{j=1}^{n} r_{j}^{2}=\sum_{j=1}^{n}\left(y_{j}-\tilde{x}_{j} \hat{b}\right)^{2}=(\underline{\underline{v}}-\mathbf{X} \underline{\hat{\mathbf{t}}})^{T}(\underline{\mathbf{y}}-\mathbf{X} \underline{\hat{b}}) .
\]

One estimate of the variance \(\sigma^{2}\) is then
\[
s^{2}=\frac{S S E}{n-k-I}
\]

How well \(s^{2}\) estimates \(\sigma^{2}\) depends upon the forms of the probability distribution of the nolse \(e\).

In Example I:
\[
\begin{aligned}
\text { SSE } & =25.0 \\
s^{2} & =2.78 \ldots
\end{aligned}
\]

The covariance matrix of \(\dot{\hat{b}}\) is \(\left(X^{T} X^{-1} \sigma^{2}\right.\) and if estimated by
\[
\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathrm{~s}^{2}=\left(\begin{array}{ccc}
1.14 & -0.82 & 0.12 \\
-0.82 & 1.01 & -0.19 \\
0.12 & -0.19 & 0.037
\end{array}\right)
\]
5. TWO TYPES OF INDEPENDENT VARLABLES - QUANTITATIVE AND QUALTATIVE

For the misaile model (Example I), \(y\) is the dependent variable, \(v_{q}\) through \(v_{7}\) are the basic independent variables; \(x_{1}\) through \(x_{10}\) are the expended variables. The expanded variables \(x_{1}\) through \(x_{8}\) are quantitative variables and \(\mathrm{x}_{\mathrm{p}}\) through \(\mathrm{x}_{10}\) are qualitative variables.

A quantitative variable is one to which auch units as meters, degrees, and pounds can be attached. The quantitative vairiables include velocity, time, angle measurement, dietance and amount.

The other kind of variable is the assigned or qualitative yarisble which represents such things as missile modification, type of mimuli, which of several measuring devices were used to obtain the data, etc. These variables munt be assigned values and cannot logically be given units. Certain conventions for the assigning of values have been set up for this paper.

In Example II, the model could be expanded to include a term for the vat used. The expended model is
\[
y=b_{n}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+e
\]
where
\[
\begin{aligned}
& x_{1}=v_{1} \\
& x_{2}=v_{2} \\
& x_{3}=\left\{\begin{array}{r}
-0.5 \text { if the first vat is used } \\
0.5 \text { if the second vat is used. }
\end{array}\right.
\end{aligned}
\]

The matrix \(X\) becomes
\(X=\left[\begin{array}{rrrr}1.0 & 0.0 & 0.0 & -0.5 \\ 1.0 & 1.0 & 1.0 & -0.5 \\ 1.0 & 2.0 & 4.0 & -0.5 \\ 1.0 & 3.0 & 9.0 & -0.5 \\ 1.0 & 4.0 & 16.0 & -0.5 \\ 1.0 & 5.0 & 25.0 & -0.5 \\ 1.0 & 0.0 & 0.0 & 0.5 \\ 1.0 & 1.0 & 1.0 & 0.5 \\ 1.0 & 2.0 & 4.0 & 0.5 \\ 1.0 & 3.0 & 9.0 & 0.5 \\ 1.0 & 4.0 & 16.0 & 0.5 \\ 1.0 & 5.0 & 25.0 & 0.5\end{array}\right]\)

The vector \(X^{T} y\) and the matrices \(X^{T} X\) and \(\left(X^{T} X\right)^{-1}\) are
\[
\begin{aligned}
& X^{T} Y=\left(\begin{array}{c}
121.86 \\
302.23 \\
1035.99 \\
-5.585
\end{array}\right), X^{T} X=\left(\begin{array}{rrrr}
12.0 & 30.0 & 110.0 & 0.0 \\
30.0 & 110.0 & 450.0 & 0.0 \\
110.0 & 450.0 & 1958.0 & 0.0 \\
0.0 & 0.0 & 0.0 & 3.0
\end{array}\right), \\
& \left(X^{T} X\right)^{-1}=\left(\begin{array}{cccl}
0.4107 & -0.2946 & 0.0446 & 0.0 \\
-0.2946 & 0.3634 & -0.0670 & 0.0 \\
0.0446 & -0.0670 & 0.0134 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.3333
\end{array}\right) \text {. }
\end{aligned}
\]

The estimate \(\hat{b}\) is thus
\[
\underline{b}=\left(\begin{array}{r}
7.249 \\
4.549 \\
-0.924 \\
-1.860
\end{array}\right)
\]

The prediction equation is
\[
\hat{y}=7.249+4.549 x_{1}-0.924 x_{2}-1.860 x_{3}
\]

The estimate of the variance is
\[
s^{?}=1.83 .
\]

The covariance matri: and the correlation matrix of \(\hat{\mathbf{k}}\) are given beiow:
\[
\begin{aligned}
\operatorname{cov}(\hat{b}) & =\left(\begin{array}{cccc}
0.75 & -0.54 & 0.082 & 0.0 \\
-0.54 & 0.66 & -0.12 & 0.0 \\
0.082 & -0.12 & 0.24 & 0.0 \\
0.0 & 0.0 & 0.0 & 0.61
\end{array}\right) \\
\quad \operatorname{cor}(\hat{b}) & =\left(\begin{array}{rrrr}
1.00 & -0.77 & 0.65 & 0.00 \\
-0.77 & 1.00 & -0.96 & 0.00 \\
0.65 & -0.06 & 1.00 & 0.00 \\
0.00 & 0.00 & 0.00 & 1.00
\end{array}\right) .
\end{aligned}
\]

In this case, two curven are predicted
\[
\begin{aligned}
& \hat{y}=8,179+4.549 v_{1}-0,924 v_{1}^{2} \text { if vat } 1 \text { is used } \\
& \hat{y}=6,319+4.549 v_{1}-0.924 v_{1}^{2} \text { if vat } 2 \text { is used. }
\end{aligned}
\]

Thus, the difference between the predicted yields from vat 1 and vat 2 with the same amount of catalyst is eatimated at \(\hat{y}_{\text {vat } 2}-\hat{y}_{\text {vat } 1}=\hat{b}_{3}=-1,860\). The two curves are plotted in Figure 3.

This fit may be compared with the preceding fit without the term for vat differences.

In the previous example, there were two vats used and the values of -0.5 and 0.5 were rather arbitrarlly assigned to represent the vat used. It is noticeable that the qualitative variable occuples one place in the model and one column in the X matrix; this corresponde to the one difference between two factors.


FIGURE 3. PREDICTED YIELD FOR THE EXPANDED MODEL, EXAMPLE II

In Example I, there were three modifications of the missile. There are two linearly independent differences among the three effects, \(A, B\), and \(C\) of the modifications. Thus, one could choose \(\mathrm{B}-\mathrm{A}\) and \(\mathrm{C}-\mathrm{B}\); in this caise, \(\mathrm{C}-\mathrm{A}\) is a linear combination of the others, \(C-A=C-B+B-A\). Another choice of linearly independent defferences is \(\mathrm{B}-\mathrm{A}\) and \(2 \mathrm{C}-\mathrm{B}-\mathrm{A}\). In this case, two terms are added to the model and two vectors are added to the matrix.

In this work the following values were asaged to the expanded variables for the morifications:
\begin{tabular}{crr} 
Modification & \multicolumn{1}{c}{\(x_{7}\)} & \(x_{0}\) \\
& & \\
1 & -0.5 & 0.0 \\
2 & 0.5 & -0.5 \\
3 & 0.0 & 0.5
\end{tabular}

If there are four types for a qualitative variable, then there are three independent vectors. They could be as signed the following values:
\begin{tabular}{crrr} 
Type & \(x_{1}\) & \(x_{2}\) & \(x_{3}\) \\
1 & -0.5 & 0.0 & 0.0 \\
2 & 0.5 & -0.5 & 0.0 \\
3 & 0.0 & 0.5 & -0.5 \\
4 & 0.0 & 0.0 & 0.5
\end{tabular}

The same pattern is followed for other numbers of types.
6. THE ESTIMATED COEFFICIENTS FOR THE MISSILE MODEL

Tha dota for the micol!e \{Example ! ! wore tnput tnte the
Gencralized Least Squares Fit (GELSF) digital computer program [2], which was written to do the above calculations. The results are shown in Tables III through VI. The predicted model is
\[
\begin{aligned}
\hat{y}= & 24.103+0.086 x_{1}-1.496 x_{2}+0.020 x_{3}+0.666 x_{4}-0.016 x_{5}+0.087 x_{6} \\
& +6.719 x_{7}+6.413 x_{8}-2.061 x_{9}+3.753 x_{10} .
\end{aligned}
\]
a. The Advantages of Normal Nolse

In the special case of Gaussian or normal noise, the least squares estimator is a.so the maximum likelihood estimator. The likelihood function is the joint probability density of the observations. Assuming \(X\) is known perfectly, \(\underline{b}\) is fixed but unknown, the noise e Gauesian with mean \(\underline{0}\) and covariance matrix \(\sigma^{2} I\), the observations will be Gausaian with mean Xb and covariance matrix \(\sigma^{2} I\). Thus, the likelihood function la given by
\[
L h_{1}=\left(2 \pi \sigma^{2}\right)^{-\frac{n}{2}} \exp \left[-\frac{1}{2 \sigma^{2}}(y-X \underline{b})^{T}(y-X \underline{b})\right]
\]

If the derivative of the likelihood, function with respect to \(\underline{b}\) is set to zero, the value \(\underline{\underline{b}}\) which maximizes the likelihood is
\[
\hat{\underline{b}}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{Y}
\]

This is identical to the least squares estimator. If, however, the distribution of the noise is other than Gausian, the likelihood function and, thus, the maximum likelihood estimator, may be different from the least squares eatimator.

Furthermore, if the covariance matrix is of the form \(Q=\sigma^{2} I\) and the noise is Gaussian, then it can be shown that the ratio \(\frac{(\underline{y}-X \underline{\hat{b}})^{T}(\underline{y}-X \underline{\underline{G}})}{\sigma^{2}}\) has a Chi-square distribution with ( \(n-k-1\) ) degrees of freedom where \(n\) is the number of data points or observations and \(k\) is the number of \(X_{d}\) 's in the model, and thus, \(\frac{(y-X \hat{b})^{T}(y-X \vec{b})}{n-x-I}\) is an umbiased eatimator of \(\sigma^{2}\). This is the \(s^{2}\) discussed in Section 4.
TABLE III. THE ESTIMATED COEFFICIENTS, EXAMPLE I

THE CUM CF SOUALES FQR ERRCE IS C. 13922442 F 05
the estiwate ff tre vaciance is c. 15 e43194e c3
THE ESTINATE SF THE, STANCAPD DEVIATICN IS O. 125 CT 275 CZ
THE NIJMBEF OF DEGREES OF.FREECCW IS RS.

TABLE V．THE ESTTMATED COVARIANCE MATRIX，EXAMPLE I




とこごすごさべすこ



 운

 0.46
\(c .21\)
0.49
0.62
0.14
7.85
0.22
7.68
0.14
6.86
出宸出出出出出出出出






\section*{1 ThFOLEF. 4 OF THE CJDFELATIDN MATPIX}



\footnotetext{

}
- 3.23126270E NO



TABLE VI．THE ESTIMATED CORRELATION MATRDX，EXAMPLE I（Concluded）

c？lomes

岁出出出出出出出出岩出出路出出出出出 \(\pi\)


Further, the assumption of normally distrituted noise is used in the ataciatical tests and confidence intervals to be discuased in Section 10 .

The data for Exampie II was generated under the assumption of normal
 Example I

7 'IESTING THE MISSILE DATA FOR NORMAL NOISE
Before conclusions based upon the aseumption of normally distributed noise can be drawn for Example \(I\), a test for normality must be made. The residuals (actual y . p:edicted \(y\) ) esimate the error \(e\) and, thus, should be tested for normality.

It was decided to use the method of normal probability paper and control bands to test the residuals for normality. The Teating for Normality by Control Bands (TEN COB) digital computer program was used.

\section*{8. NORMAL PROBABILITY PAPER}

The construction of normal probability paper is similar to that of logarithmic paper. Assume that the random variable \(r\) has a normal (Gaussian) diatribution with mean \(\mu\) and variance \(\sigma^{2}\). Then the reduced variate \(v=(r-\mu) / \sigma\) has a standard normal diatribution, i.e., \(v\) has mean 0 and variance 1 . If is plotted on a borizontal linear acale and \(v\) is plotted on a vertical linear acale, the etraight line \(r=\sigma v+\mu\) will result (Figure 4).

Since \(v\) is a standard normal random variable, the cumulative distribu- . . tion function of \(v\) is given by
\[
F(v)=\int_{-\infty}^{v} \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} t^{2}} d t
\]

On a second vertical scale the distribution function \(F(v)\) is plotted (Figure 5). The values of \(F(v)=0\) and \(F(v)=1\) never appear on the scale, since these correspond to values oi \(v=-\infty\) and \(v=\infty\), respectively. If the lines are drawn for the function \(F(v)\) instead of \(v\), a nonlinear vertical scale is shown (Figure 6).

\section*{a. Plotting of Pointe on Probability Yaper}

It is desired to test whether the underlying probability diatributhon of the n residuals is normal or can be approximated by a normal distribution.


FIGURE 4, THE i:EDUCED VARIATE


FIGURE 5. REDUCED VAMIATF AND DISTRIBLTION FLNCTION


FIGURE 6. EXAMPLE OF NORMAL PROBABILITY PAPER

If the distribution is indeed normal, the residuals, when plotted against \(F\) (v) In the manner discussed below, should approximate a stratght line, \(r=\gamma+v / \delta\). The deviations from the line are caused by the finite random character of the sample of size \(n\) and such errors as round-oif.

Let \(r_{1}, r_{2}, \ldots, r_{n}\) be the \(n\) residuala arranged in ascending order.
Several methods of plotting thin sec,uence of numbers against \(F(v)\) are considered by Gumbel [3]. The best method is that of plotting \(r_{j}\) against \(\mathcal{V}(n+1)\). This mothod is distribution free and all observations can be plotted. Further, the plotting positiono are simple to calculate.

Listed in Table VIl are the 100 residuals ar ranged in ascending order. The corresponding values of \(F(v)=j /(n+1)\) and \(v\) are also listed.
\begin{tabular}{|c|c|c|c|}
\hline Dhe licaindana: in Ascending Order & \begin{tabular}{l}
। \\
The Rent
\end{tabular} & \begin{tabular}{l}
 \\
Fum ion llotting Pristiont
\end{tabular} & \begin{tabular}{l}
\(\because\)-rsen \\
Potting \\
IPemitions
\end{tabular} \\
\hline -19.799 & 1 & ก. 0099 & -2.324 \\
\hline -17.531 & 2 & c.0.198 & -2.05- \\
\hline -17.314 & \(\cdots\) & 0.0297 & -1.885 \\
\hline -15.828 & 1 & I. 0396 & -1.75\% \\
\hline -13.749 & \% & 11. 2195 & -1.644, \\
\hline -13.479 & \(\checkmark\) & \(\therefore\), idy & - - . 5 Si \\
\hline -12.993 & 7 & (1. . 15:33 & - : 4 . \\
\hline -12.793 & 5 & ก. 9762 & -i.111 \\
\hline -12.161 & 9 & 11.1801 & -2.34i \\
\hline -11.332 & 10 & 0.0990 & -1.285 \\
\hline -11.606 & 11 & 0.1089 & -1.232 \\
\hline -11.548 & 12 & 0.1184 & -1.180 \\
\hline -11.071 & 13 & 0.1287 & -1.132 \\
\hline -10.949 & 14 & 0.1386 & -1.086 \\
\hline -10.74\% & 15 & 0.1485 & -1.042 \\
\hline \(-10.701\) & 16 & 0.1584 & -1.001 \\
\hline -10.677 & 17 & 0.1683 & -0. 960 \\
\hline -10.18\% & 18 & 0.1782 & -0.922 \\
\hline -9.863 & 13 & 0.1881 & -i). 884 \\
\hline -9.328 & 20 & 0.1980 & -0. 848 \\
\hline -9.088 & 21 & 0.2079 & -0.813 \\
\hline -9.008 & 22 & 0.2178 & -0.779 \\
\hline -8.835 & 23 & 0.2277 & -0.746 \\
\hline -8.666 & 24 & 0.2376 & -0.714 \\
\hline -7.695 & 25 & 0.2475 & -0.682 \\
\hline -7.629 & 26 & 0.2574 & -0.651 \\
\hline -7.568 & 27 & 0.2673 & -0.621 \\
\hline -7.251 & 2: & 1. \({ }^{\text {a }}\) (29\% & -0. 5 51 \\
\hline -7.065 & \(\because\) & 11. \(2 \times 7 \mathrm{i}\) & -19. 3 fil \\
\hline -6.615 & 30 & 0.2970 & -0.5332 \\
\hline
\end{tabular}

「ABLE VII. KESIICALS OF EXAMPLE I WITH COREESPONLING REDUCED VIPIATE (Continued)
\begin{tabular}{|c|c|c|c|}
\hline The Residuals in Ascending Order & \begin{tabular}{l}
j \\
The Rank
\end{tabular} & \begin{tabular}{l}
\(F(v)=j / 101\) \\
Distribution \\
Function Plot- \\
ting Positions
\end{tabular} & \begin{tabular}{l}
\(v\) \\
Reduced Variate Plotting Positions
\end{tabular} \\
\hline -6.495 & 31 & 0.3069 & -0.504 \\
\hline -6.351 & 32 & 0.3168 & -0.476 \\
\hline -6. 185 & 33 & 0.3267 & -0.448 \\
\hline -5.644 & 34 & 0.3366 & -0.421 \\
\hline -5.636 & 35 & 0.3465 & -0.394 \\
\hline -i). 313 & 36 & 0.3564 & -0.367 \\
\hline -4.996 & 37 & 0.3663 & -0.341 \\
\hline -4.921 & 38 & 0.3762 & -0.315 \\
\hline -4.733 & 39 & 0.3861 & -0.289 \\
\hline -4.729 & 40 & 0.3960 & -0.263 \\
\hline -4. 103 & 41 & 0.4059 & -0.238 \\
\hline -3.852 & 42 & 0.4158 & -0,212 \\
\hline -3.833 & 43 & 0.4257 & -0.182 \\
\hline -3.593 & 44 & 0.4356 & -0.162 \\
\hline -3.563 & 45 & 0.4455 & -0.136 \\
\hline -3. 373 & 46 & 0.4554 & -0.112 \\
\hline -3.156 & 47 & 0.4653 & -0.086 \\
\hline -2.919 & 48 & 0.4752 & -0.062 \\
\hline -2.874 & 49 & 0.4851 & -0.037 \\
\hline -2.775 & 50 & 0.4950 & -0.012 \\
\hline -2.548 & 51 & 0.5050 & 0.012 \\
\hline -2.464 & 52 & 0.5149 & 0.036 \\
\hline -2. 188 & 53 & 0.5248 & 0.062 \\
\hline -1.814 & 54 & 0.5347 & 0.086 \\
\hline -1.039 & 55 & 0.5446 & 0.112 \\
\hline -0.617 & 56 & 0.5545 & 0. 136 \\
\hline -0.374 & 57 & 0.5644 & 0.162 \\
\hline -0. 122 & 58 & 0.5743 & 0. 187 \\
\hline 0.120 & 59 & 0.5842 & 0.212 \\
\hline 0.276 & 60 & 0.5941 & 0.238 \\
\hline
\end{tabular}
 REDI(; Fi) VARAATE (continufd)
\begin{tabular}{|c|c|c|c|}
\hline The Residuals in Ascending Order & \begin{tabular}{l}
j \\
The Rank
\end{tabular} & \begin{tabular}{l}
\(F(v)=\mathrm{J} / 101\) \\
Distribution \\
Function Plotting Positions
\end{tabular} & Reduced Variate Bletting Positions \\
\hline 0.279 & 61 & 0.6040 & 0.263 \\
\hline 0.592 & 62 & 0.6139 & 0.289 \\
\hline 0.616 & 63 & 0.6,238 & 0.315 \\
\hline 0.690 & 64 & ก. 6.337 & 0.341 \\
\hline 1.535 & 65 & f.f.436 & の. 367 \\
\hline 1.941 & 66 & 0.55335 & 1. 394 \\
\hline 2.05: & f 7 & ก.6634 & 0421 \\
\hline 2.420 & 68 & 0.6733 & 0.448 \\
\hline 2.880 & 69 & 0.6832 & 0.476 \\
\hline 3.507 & 70 & 0.6931 & 0.504 \\
\hline 3.649 & 71 & 0.7030 & 0.532 \\
\hline 5.142 & 72 & 0.7129 & 0.561 \\
\hline 6.212 & 73 & 0.7228 & 0.591 \\
\hline 6.216 & 74 & 0.7327 & 0.621 \\
\hline 6.254 & 75 & 0.7426 & 0.651 \\
\hline 6.630 & 76 & 0.7525 & 0.682 \\
\hline 6.901 & 77 & 0.7624 & 0.714 \\
\hline 6.943 & 78 & 0.7723 & 0.746 \\
\hline 7.071 & 79 & 0.7822 & 0.779 \\
\hline 7.351 & 80 & 0.7921 & 0.813 \\
\hline 7.716 & 81 & 0.8020 & 0.848 \\
\hline 7.864 & 82 & 0.8119 & 0.884 \\
\hline 7.940 & 83 & 0.8218 & 0.922 \\
\hline 8.111 & 84 & 0.8317 & 0.960 \\
\hline 9.085 & 85 & 0.8416 & 1.001 \\
\hline 9.664 & 86 & 0.8515 & 1.0 .42 \\
\hline 10.505 & 87 & 0.8614 & 1.086 \\
\hline 12.326 & 88 & 0.8713 & 1.132 \\
\hline 13.307 & 89 & 0.8812 & 1. 180 \\
\hline 13.396 & 90 & 0.8911 & 1.232 \\
\hline
\end{tabular}

TABLE VII. RESIDITAIS OF EXAMPLE I WITH CORRESPONDING REDUCED VARIATE (Concluded)


Figure 7 shows the points plotted on normal probability paper by a modified version of the TEN COB program. The horizontal scale is the r-scale; the horizontal line defining the grid extends from -37.655 to 69.981 for the case. The vertical scale is the rectuced variate or v-scale; the vertical line defining the grid extends from \(v=-4.0\) to \(v=4.0\).

\section*{b. Fitting the Straight Line}

If the scatter of the plotted points is very small, the best fitting straight line can be found by lining up a ruler through the points. However, in many cases this is not satisfactory. It is then necessary to estimate \(\delta\) and \(\gamma\). the two parameters of the straight line;
\[
\mathbf{r}=\gamma+\frac{\mathrm{v}}{\delta} ; \quad \mathrm{V}=\delta(\mathbf{r}-\gamma)
\]

Fur : he estimation of thesc parameters, the classical method of least squares will be employed.

In the method of least squares, either the sum of squares of the horizontal deviations of the points from the estimated straight line,

figlie 7. residuals of example i plotted on normal probability paper
\[
\sum_{i=1}^{n}\left(r_{i}-g_{1}-\frac{v_{i}}{a_{1}}\right)^{2}
\]
or that of the vertical distances,

If minimized. Here \(a_{1}\) and \(a_{2}\) represent the two estimates of \(\delta\), and \(g_{1}\) and \(g_{2}\) represent the two estinates of \(\because\). If the partial derivatives of the first sum with respect to \(a_{1}\) and \(g_{1}\) ari set to zero, the results are
\[
-2 \sum_{i=1}^{n}\left(r_{i}-g_{1}-\frac{1}{a_{i}} v_{i}\right)=0
\]
and
\[
\frac{2}{a_{1}^{2}} \sum_{i=1}^{n} v_{i}\left(r_{i}-g_{1}-\frac{1}{a_{1}} v_{i}\right)=0
\]
or
\[
\begin{gathered}
\bar{r}-g_{1}-\frac{1}{a_{1}} \bar{v}=0, \\
\bar{r} \bar{v}-g_{1} \bar{v}-\frac{1}{a_{1}} \overline{v^{2}}=0,
\end{gathered}
\]
where
\[
\begin{gathered}
\bar{r}=\frac{1}{n} \sum_{i=1}^{n} r_{i}, \bar{v}=\frac{1}{n} \sum_{i=1}^{n} v_{i}, \\
\bar{r} v=\frac{1}{n} \sum_{i=1}^{n} r_{i} v_{i}, \overline{v^{2}}=\frac{1}{n} \sum_{i=1}^{n} v_{i}{ }^{2} .
\end{gathered}
\]

For a normal disiribution, \(\bar{v}=0\). Thus, the solution is
\[
\begin{aligned}
& \frac{1}{a \cdot} \cdot \frac{\overline{r v}}{a_{v}^{2}}{ }^{2} \\
& a_{1} \cdot \ddot{r} .
\end{aligned}
\]
intiei.
\[
\varepsilon_{\because} ? \overline{v^{2}}-\bar{v}=\overline{v^{2}} .
\]

If the sum of squares of the vertical deviations is tr, be minmized, the partials with respect to \(g_{2}\) and \(a_{2}\) are set to 0 ,
\[
\because \ddot{i}_{i=j}^{n}\left[v_{i}-a_{?}\left(r_{i}-g \cdot\right)\right]=0
\]
and
\[
-2 \sum_{i=1}^{n}\left(r_{i}-g_{2}\right)\left[v_{i}-a_{2}\left(r_{i}-g_{2}\right)\right]=0
\]
or
\[
\begin{gathered}
\bar{v}-a_{2} \bar{r}+a_{2} g_{2}=0 \\
\bar{r} \bar{v}-a_{2} \overline{r^{2}}+a_{2} g_{2} \bar{r}=0,
\end{gathered}
\]
where
\[
\overline{r^{2}}=\frac{1}{n} \sum_{i=1}^{n} r_{i}^{2}
\]

With \(v=0\), the solution ts
\[
\begin{gathered}
\frac{1}{\mathrm{a}_{2}}=\frac{\overline{r^{2}}-\overline{\mathrm{r}}^{2}}{\overline{\mathrm{r}}} \\
\mathrm{~g}_{2}=\overline{\mathrm{r}}
\end{gathered}
\]

The estimate \(1 / a_{2}\) is altered slightly to
\[
\frac{1}{a_{2}}=\frac{s_{r}^{2}}{\overline{r v}}
\]
where \(s_{r}^{2}\) is the sample variance,
\[
8_{r}^{2}=\frac{1}{n-1} \sum_{i-1}^{\overline{1}}\left(r_{i}-\bar{r}\right)^{2}=\frac{\left(\overline{r^{2}}-\bar{r} \cdot n\right.}{n-1}
\]

In order, 10 combine the two estimates of 1 , 0 and eliminate the crose protuct \(\sim\). the geometric mean of \(1 / a_{a}\) and \(1^{\prime} a_{2}\) is found. Thus, the two combined estimates are
\[
\begin{gathered}
\frac{1}{a}=\sqrt{\frac{1}{a_{1}} \frac{1}{a_{2}}}=\frac{s_{r}}{g_{v}} \\
g-\bar{r}
\end{gathered}
\]

There eptiriates require the caiculation of only \(\overline{\mathbf{r}}\) and \(\boldsymbol{s}_{\boldsymbol{r}}\) from the sample. The value of \(f_{v}\) depends only upon the number of points \(n\). As the sample size \(n\) increases, \(s_{v}\) approaches 1 and the estimate \(\bar{r}\) and \(i_{x}\) approach the true values \(\mu\) and \(\sigma\); thus, the equation of the straight line approaches \(r=\mu+\sigma v\), discussed in Section \(s\).

The estimated straight line,
\[
\mathbf{r}=\overline{\mathbf{r}}+\frac{{ }^{\mathbf{s}} \mathbf{r}_{\mathbf{r}}^{\boldsymbol{r}_{\mathbf{v}}} \mathbf{v}, ~ ; ~}{\text {, }}
\]
is plotted on the amme paper as the points. If the points lie close to the estimated line, the distribution is considered to be approximately normal. If the scatter is toc great with respect to the line, the diatribution is considered nonnormal. To determine whether the acatter is too great, control bands are placed around the line.

For Fixanple I, the values range from -19. 799 to 51.625 . The end-points of the graph are - 37.655 and 69.481. The average realdual, \(\bar{r}=0.00286\); the estimate of 1 . \(\delta\) is \(\mathrm{L}^{\prime} \mathrm{a}=12.353\). In Figure 8 are shown the points of Example I plottrd along with the estimated straight line, \(\mathbf{r}=\mathbf{0} 0.00286+12.353 \mathrm{v}\).

FIGURE 8. RESIDUALS and best fitting line uf example i

\section*{c. Control Bands}

The \(j^{\text {th }}\) largest observation \(r_{j}\) in a sample of alze \(n\) is called the \(j^{\text {th }}\) order statistic. Each observation was drawn from a population with density function \(f\) and distribution functicn \(F\). In this case, the initial distribution is assimed to be normal. The \(j^{\text {th }}\) order statistic \(r_{j}\) has a derived density \(f_{n}\left(r_{j}\right)\) that depends upon the initial distribution \(F\) and upon the values of \(j\) and \(n\). It can be shown that this derived density tunction is
\[
f_{n}\left(r_{j}\right)=\frac{n!}{\left.r_{-j}\right):(j-1)!} F^{j-1}\left(r_{j}\right)\left[1-F\left(r_{j}\right)\right]^{n-j} f\left(r_{j}\right)
\]

Substituting the equati ns for a normai variate for \(F\left(r_{j}\right)\) and \(f\left(r_{j}\right)\), one ubtains
\[
\begin{aligned}
& f_{n}\left(r_{j}\right)=\frac{n!}{(n-j)!(j-1)!}\left\{\int_{-\infty}^{r_{j} \exp \left[-\frac{1}{2 \pi^{2}}(t-\mu)^{2}\right]} \sqrt{\sqrt{2 \pi} \sigma} d t\right\}^{j-1} \\
& \text { - }\left\{1-\int_{-\infty}^{r} \frac{\exp \left[-\frac{1}{2 \sigma^{2}}(t-\mu)^{2}\right]}{\sqrt{2 \pi \sigma}} d t\right\}^{n-j} \\
& \left\{\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\frac{1}{2 \sigma^{2}}\left(r_{j}-\mu\right)^{2}\right]\right\} \quad .
\end{aligned}
\]

This complicated form does not reduce to anything more reasonable and is difficult to manipulate and calculate. Thus, asymptotic distributions of the order statistics are used.

As \(n\) becomes larger, either \(j\) will increase with \(n\) so that \(j / n\) remains approximately constant or \(j\) will remain constant so that \(\mathcal{V} / n\) decreases. In the former case, the \(j^{\text {th }}\) value \(r_{j}\) le called the \(j^{\text {th }}\) central value; in the second case, the values \(r_{j}\) and \(n-j+1\) are called extreme values.

It can be shown that as \(n\) increases, the distribution of the \(j^{\text {th }}\) central value, \(r_{j}\), becomes asymptotically normal with mean and varlance
\[
\begin{gathered}
E r_{j}=\mathbf{r}_{j}^{\star} \\
\operatorname{var}\left(r_{j}\right) \div r_{j}^{2}-\frac{\left[F\left(r_{j}^{\star}\right)\right]\left[1 \cdot F\left(r_{j}\right)\right]}{n f^{2}\left(r_{j}^{\star}\right)}
\end{gathered}
\]
where \(r_{j}{ }^{*}\) is the solution of
\[
F\left(r_{j}^{*}\right)=\frac{j}{n+1} .
\]

The asymptotic distribution is used within the interval \(0.15 \leq F \leq 0.85\), although its accuracy within tlis interval depends upon the sample siac.

For the reduce' sariate \(v_{i}=\alpha\left(r_{j}-\gamma\right)\), the variance is given by
\[
\operatorname{var}\left(v_{j}\right)=\alpha^{2} \operatorname{var}\left(r_{j}\right)
\]
and is independent of the parameters a and \(g\). The product \(\sqrt{n \cdot \operatorname{var}\left(v_{j}\right)}\) is independent of the sample size and is a function of the initial diatribution only. A. chart of this product for several values of \(F\), assuming that the initial standard deviation \(\sigma=1\), is shown in Table VIII.

\section*{TABLE VIII, REDUCED STANDARD ERRORS FOR UNIT STANDARD DEVIATION}
\begin{tabular}{|c|c|}
\hline Probability, \(F\) & \(\sqrt{n \cdot \operatorname{var}\left(v_{j}\right)}\) \\
\hline 0.15 & 1.632 \\
0.20 & 1.429 \\
0.25 & 1.363 \\
0.30 & 1.318 \\
0.35 & 1.288 \\
0.40 & 1.268 \\
0.45 & 1.257 \\
0.50 & 1.253 \\
0.55 & 1.257 \\
0.60 & 1.268 \\
0.65 & 1.288 \\
0.70 & 1.318 \\
0.75 & 1.363 \\
0.80 & 1.429 \\
0.85 & 1.532 \\
\hline
\end{tabular}

Because of the relationship \(r=\frac{1}{\alpha} v+\gamma\), the standard deviations are \(\therefore\) infed w. s.d. \(\left(r_{j}\right)=\operatorname{s.d} .\left(v_{j}\right) / \alpha\). This can be written in the form
\[
\text { s.d. }\left(r_{j}\right)=\frac{\sqrt{n \cdot \operatorname{var}\left(v_{j}\right)}}{\alpha \sqrt{n}}
\]

Thus, the standard error of the \(j^{\text {th }}\) value, \(r_{j}\), can be estimated by multiplying the vilue \(\sqrt{n \cdot \operatorname{var}\left(v_{j}\right)}\) by \(\left(\frac{1}{a} \times \frac{1}{\sqrt{n}}\right)\). For evarnple, for the data given in Scotion s.a, \(n: 110\) and \(\frac{1}{a}:=12.353\), so s.d. \(\left(r_{20}\right)=1.429(12.353) / 10=1.756\). fhis standard errol 18 used in the construction of control bands.

Assume that a and \(g\) have been estimated and that the observations and the estimated straight line
\[
r=g+\frac{1}{a} v
\]
have been plotted. For each probability value listed in Table VIII, the estimate i) \(r_{i}\) is found by intercepting the estimated line with a horizontal line from the poohbility value and reading the corresponding \(r\) value, \(r_{j}\), est \({ }^{\text {. The standard }}\) crior, s.d. \(\left(r_{j}\right)\), is added and subtracted from the value \(r_{j}\), eat. The points \(r_{j, \text { est }}+\) s.d. \(\left(r_{j}\right)\) are joined to form one curve; the points \(r_{j}\), est - s.d. \(\left(r_{j}\right)\) ar: joined to form another curve.

To complete the curves, it is necessary to find the standard error of some of the extreme values. The asymptotic distribution of the extremes is not normal and is, in fact, very complicated. In Table XX are given some values of the reduced standard error for the largest reduced order statistic. By the symmetry of the normal distribution, this is also the standard error for the smallest reduced order statistic.

The values in Table IX are approximated in the TEN COB program by f.|ce lu: mala,
\[
\text { a.d. }\left(v_{n}\right)=\text { s.d. }\left(v_{t}\right)=0.71-0.061 \ln e^{(n)}
\]

Whish is fairly accurate for samples of 20 to 500 points. The atandard error of the reduced largest (or smallest) value is multiplied by the estimate \(1 / a\) to

TARIF. ix STANDARD ERIIORS FOR REDUCED LARGEST AND SMALLEST VALUES
\begin{tabular}{|c|c|}
\hline Sample Size & E.d. \(\left(\vartheta_{n}\right)=\) s.d. \(\left(v_{1}\right)\) \\
\hline 20 & 0.52 \\
25 & 0.51 \\
30 & 0.60 \\
40 & 0.48 \\
50 & 0.46 \\
75 & 0.45 \\
100 & 0.43 \\
20 & 0.40 \\
\hdashline 0 & 0.36 \\
\hline
\end{tabular}
obtcin s.d. \(\left(r_{n}\right)\) (or s.d. ( \(\left.r_{1}\right)\) ). This value is then added to and aubtracted from \(r_{n \text {, est }}\) or \(\left(r_{1, ~ e s t ~}\right)\) to give the points \(r_{n \text {, est }}+n . d .\left(r_{n}\right)\) and \(r_{n \text {, est }}\) + s.d. \(\left(r_{n}\right)\) or \(\left[r_{1, e s t}+s . d .\left(r_{1}\right)\right.\) and \(r_{1, ~ e s t ~}-\) s.d. \(\left.\left(r_{1}\right)\right]\). These points are adderi to the proper curves to extend the control curves. There is a probabluty nf 0.68 for each \(j^{\text {th }}\) observation to lie within the band formed by the two control curves. Figure 9 ghows the 08 -percent control band for Example 1 .

Multiplication of E.d. \(\left(r_{j}\right)\) by \(9.6745,1.960,2.576,2.807\), and 3.290 leads to bande corresponding to the probabilities \(0.50,0.95,0.99,0.995\), and 0.999 . In Figure 10 the 95 -percent control band has been added. This is the standard graph produced by the TEN COB program.

\section*{d. Testing for Normality by Control Bands}

The method of control bands used by the TEN COB program gives a graphical criterion for the goodness of fit between the theoretic normal distribution and the observations.

If almost all of the observations fall within the 95 -percent band, the underlying distribution can be assumed to be normal for most purposes and statistical testa and confidence intervale that depend upon an underlying normal distribution (such as the student's \(t\), the Chi-square, and the \(F\) tests) can be applied. If almost all of the observations fall within the 68 -percent band, more confldence can be placed on the population's being normal. The term "almoat all"

FIGURE 9. RESIDUALS. BEST FITTING LINE, AND 68-PERCENT CONTROL BAND FOR EXAMPLE I

FIGURE 10. RESIDUALS, BEST FITTING LINE, 68-PERCENT CONTROL EAND, AND 95-PERCENT CONTROL BAND FOR EXAMPLE I
is necessarily vague since the degree to which the diatribrition must match a normal one varies with each set of observations.

In tixample 1 , \(6 \%\) percent of the resiauais ieil outside tine of-percent control curve and 18 percent fell outaide the 95 -percent control band. Thus, the data are probably not normally distributed.

When the observations are shown to he not normally distributed, one of two methods can be employed. The data can be teated against other typen of distributions, such as the negative expmential, the log normal, etc. There are disadvantages to this approach. For one, the list of diatributions to be tried is long. Further, even if a datributicn in found that will approximate that of the observation, it woulc not huve as many well-known assoclated tests and procedures as the noimal distribution.

The other appr ach is to find a transformation of the observations that will reault in noranally distributed tranainomed ubservations. A list of suggested transformations can be found in Snedecor and Cochran [5].

\section*{9. REVISED MODEL FOR THE MISSILE DATA}

Since the reaiduals for the radal miss diatance of Example I were not normally distributed, it was decided to try transforming the miss detancen to obtain normality of the residuals. The transformation \(2=\ln y\) was made and
the data were used in the GELSF program. The resulting calculation are shown in Tables \(X\) through XID. The prediction equation was:
\[
\begin{aligned}
\ln y= & 2.758-0.00947 x_{1}-0.0363 x_{2}+0.000632 x_{3}+0.0165 x_{4} \\
& -0.000726 x_{8}+0.00301 x_{8}+0.0910 x_{7}+0.250 x_{8}-0.167 x_{8} \\
& +0.134 x_{20} .
\end{aligned}
\]

The residuals were plotted by the TEN COB program, as shown in Figure 11. These residual appear to be normally distributed. Thus, this was the model upon which the conclusions were drawn.

\section*{10. INTERPRETING THE RESULTS}

The probability distribution of the reaiduals when the logarithme of the radial mise distances are used in Example I is approximately normal. Thus, several methods of tenting hypotheals and setting contidence regions are applicable. A few of these are discussed below.
table \(x\). THE ESTIMATED COEFFICLENTS USING LOG. iRITHMS, EXAMPLE I
yumbef rf vertifes
\begin{tabular}{|c|c|c|c|}
\hline I & betalil & RASIC TYDE & IDENTIFICATİP: \\
\hline 7 & C.<757c525F 01 & & CTNSTANT \\
\hline 1 & - ?.c4657267E-02 & 1 & TAFGET ALT. \\
\hline 2 & C. \(363 \mathrm{CC47EF-01}\) & 1 & DANGE.LAUACH \\
\hline 3 & C.E324ECTEEC3 & & \\
\hline 4 & C. 1651196 EE-01 & 1 &  \\
\hline 5 & - . \(7261275 E E-C 3\) & & \\
\hline 6 & C. 20117154 E -C2 & 1 & TAE. CL.VEL. \\
\hline 7 & \(\cdots .9103674 E E-01\) & 2 & MISSILE MCN. \\
\hline \(p\) & r.25)(47cee co & & \\
\hline 0 & - \(0.166 ¢ 1359690\) & 2 & TAPGET TYDE \\
\hline 10 & 2.13372C51E 00 & 2 & fadar prweq \\
\hline
\end{tabular}




山ш 山突




\footnotetext{

}


\(-0.45007491 \mathrm{E}-92\) \(-0.36673246 E-n 3\)
 \(3.5599770 C E-04\)
\(0.16359211 F-01\) 3.18043062 F nr
 20-1252015 \(25^{\circ} \mathrm{C}\)

\(0.218 \mathrm{CC} 713 \mathrm{E}-04\) 0.1CCEE -0.27066586F-04
 C. 0 .1E369211E-03

 \(\tan\)
\(0.21: 37471\) 亿E. 92

table xir. the estmated covariance matrix using logarithms. evample i (Concluded)
columns 9 thpougr 10 df the c'jvapiance matrix




-9.62A070~TE-C

xlaty v \(0.204405 C 5 E\) OO
\(0.10471233 E\) OO
\(-0.219043 C 0 E-O C\)
\(-0.23574 E 22 E\)
\(0.2 C 6 C G E 79 E C C\)
\(0.16 C C C C C O E\)
\(0.165 C 8550 E\)
\(0.156 E 5727 E\)
\(-0.4572 E C 76 E\)
\(0.61697 C G O E-31\) \(0.204405 C 5 E\) OO
\(0.10471233 E\) OO
\(-0.219043 C 0 E-O C\)
\(-0.23574 E 22 E\) CO
\(0.2 C 6 C G E 79 E C C\)
\(0.16 C C C C C O E\)
\(0.165 C 8550 E\)
\(0.156 E 5727 E\)
\(-0.4572 E C 76 E\)
\(0.61697 C G O E-31\)










0.1 ODOONCCE - ヨSLZICOEE*O
-0.33Mn127FF-01


0.1
01
\(c 0\)


TABLE XII. THE ESTIMATED CORRELATION MATREX USING LOGARITHMS. EXAMPLE I (Concluded)
columns 9 thrcugr 10 off the coppeiaticn matpix


FIGURE 11. POINTS, BEST FITTING LINE, G8-PERCENT CONTROL BAND, AND 98-PERCENT
CONTROL BAND FOR THE RESIDUALS USING LOGARITHMS IN EXAMPLE I

\section*{a. Testing \(b_{i}=b_{i}^{*}\) Using a Student'a \(t\) Random Table}
 estimates \(\hat{b}_{1}\) through \(\hat{b}_{k}\) of the coefficlents of the linear statietical model. The \(i^{\text {th }}\) diagonal element of the covariance matrix, \(c_{i i}\), entimates the variance of \(\dot{b}_{i}\). The ratio \(\frac{\hat{b}_{i}-b_{i}}{\sqrt{c_{i i}}}\) has a Student's \(t\) distribution with \(n-k-1\) degrees of treedom.

Suppose that a predetermined estimate \(b_{i}^{*}\), of \(b_{i}\), the true value, is available and the following hypotheses are postulated:
\[
H_{r}: b_{i}=b_{i}^{*} ; H_{1}: b_{i} \pm b_{i}^{*}
\]

This is a two-sided test since there is no advantage if \(b_{i}<b_{i}^{*}\). As before, the level of the test is \(\alpha\). The critical \(t\) value is foumd for the level of the teat, the number of degrees of freedom and the fact that it is a two-aided tent, \(t\left(\frac{\alpha}{2}, n-k-1\right)\). Since the \(t\) distribution is symmetric, the probablity that at random variable is greater than \(t\left(\frac{\alpha}{2}, n-k-1\right)\) or less than \(-t\left(\frac{\alpha}{2}, n-k-1\right)\) is \(\alpha\),
l.e.,
\[
\operatorname{Prob}\left[|t|>t\left(\frac{\alpha}{2}, n-k-1\right)\right]=\alpha
\]
where |t is the absolute value of \(t\). This defines the critical region of the teat. If Ho is true, then \(\frac{b_{i}-b_{i}^{*}}{\sqrt{c_{i 1}}}\) is a \(t\) random variable and
\[
\operatorname{Prob}\left[\left|\frac{\hat{b}_{1}-b_{1}^{*}}{\sqrt{c_{1 i}}}\right|>t\left(\frac{a}{2}, n-k-1\right)\right]=\alpha
\]

Thus, the dectsion is
\[
\text { Reject } H_{0} \text { if }\left|\frac{\hat{b}_{i}-b_{i}^{*}}{\sqrt{c_{41}}}\right|>t\left(\frac{a}{2}, n-k-1\right)
\]

Do not reject \(\mathrm{H}_{0}\) otherwise.

It it is ciesired "otrat whether the variable \(x_{i}\) has a "significant effcct" upon \(y\), than set \(i_{i}^{4}=10\) and neriorm ine aiuve ieri.

\section*{b. Teating the Coefficients for Mtasile Modifications}

In the revised model for the missile, using \(z=\ln\) (radial miss distance), the coefficient \(b_{7}\) represents the difference in \(z\) caused by a difference in Mod 1 and Mod 2 misulle. That \(1 s, b_{i}=z_{\text {Mod } 2}{ }^{-2} \operatorname{Mod} 1^{\circ}\) From Table X the eatimate of this coefficient is
\[
\hat{b}_{y}=0.0910=\hat{z}_{\operatorname{Mnd} 2}-i_{\operatorname{Mod} 1} .
\]

Since \(z=\ln \cdot \because\), a positive it:crease \(i\). z corresponds to a positive inctojne in \(\because\) Ilus, it would appear that the radial miss distance would be larger for Mod is misslle than for Mod 1 missiles. To see whether this difference is statistically significant, attest is performed, with \(b_{7}^{*}=0\).

It was decided to set \(0=0,10\). The number of degrees of freedom is, from Table X, 89. The hypotheses are:
\[
H_{0}: \quad b_{7}=0, \quad H_{7}: \quad b_{7} \neq 0
\]

The critical \(t\) value is
\[
t(0.05,89)=1.64 .
\]

The eatimate of the variance of \(\hat{b}_{p}^{\dot{p}} \mathrm{fB}\), from Table XII,
\[
c_{77}=0.1804 .
\]

The trat statistic is
\[
\left|\frac{b_{1}-0}{\sqrt{c_{91}}}\right|=\frac{0.0910}{\sqrt{0.1804}}=0.21 .
\]

The teat atatistic is less than the critical value of 1.64 . Therefore, it cannot be concluded that there is a significant difference in the radial miss distance for Mod 2 and Mod 1 misailes.

A similar test is made for the difference in 2 of Mod 3 and Mod 2 missiles. Again, \(\alpha=0.10, t(0.05,89)=1.64\). The hypotheses are \(H_{c}: b_{g}=0\). \(H_{i}: \quad b_{8} \neq 0\). From Tablea \(X\) and XII, \(\dot{b}_{8}=0.250, c_{89}=0.0740\). The test statiatic is thus
\[
\left|\frac{\hat{b}_{8}-0}{\sqrt{r_{\hat{\theta}}}}\right|=\frac{0.250}{\sqrt{n, n^{n 7 n}}}=0.92 .
\]

This is less than the critical value. It cannot be concluded that there is a significant difference in the effect of Mod 3 and Mod 2 on radial mise distance.

There is one more difference to be examined; that between Mod 3 and Mod 1. To estimate this difference, the folluwing sum in used:
\[
\begin{array}{r}
\hat{b}_{7}=\hat{z}_{\operatorname{Mod} 2}-\hat{z}_{\operatorname{Mod} 1} \\
\hat{b}_{8}=\hat{z}_{\operatorname{Mod} 3}-\hat{z}_{\operatorname{Mod} 2} \\
\hat{b}_{7}+\hat{b}_{8}=\hat{z}_{\operatorname{Mod} 3}-\hat{z}_{\operatorname{Mod} 1}
\end{array}
\]

In this case
\[
\hat{b}_{q}+\hat{b}_{g}=0.0910+0.250=0.341
\]

Since \(\hat{b}_{7}\) and \(\hat{b}_{9}\) are normally diatributed, then \(\hat{b}_{7}+\hat{b}_{8}\) in also normally distributed with mean \(b_{7}+b_{g}\) and varlance
\[
\operatorname{var}\left(\hat{b}_{7}+\hat{b}_{g}\right)=\operatorname{var}\left(\hat{b}_{7}\right)+\operatorname{var}\left(\hat{D}_{g}\right)+2 \operatorname{cov}\left(\hat{G}_{7}, \hat{b}_{8}\right) .
\]

This variance is estimated by
\[
c_{77}+c_{8 \mathrm{~B}}+2 \mathrm{c}_{78} .
\]

From Table XII, \(c_{78}=0.0770\). Thus
\[
c_{77}+c_{88}+2 c_{78}=0.1804+0.0740+0.0770=0.3314
\]

To test the hypotheses
\[
H_{0}: b_{4}+b_{8}=0 ; \quad H_{1}: b_{1}+b_{g} \neq 0,
\]
for \(\alpha=0.10\), the critical value is \(t(0.05,89)=1.64\). The teat atatietic is
\[
\left|\frac{6_{7}+6_{7}-0}{\sqrt{c_{77}+c_{81}+2 c_{78}}}\right|=\frac{0.341}{\sqrt{0.3514}}=0.59 .
\]

Again, there is insufficient evidence of a difference in misa distance between Mod 3 and Mod 1.

\section*{c. Using the F Test in Analysis of Varlance}

Suppose that a model, ralled Model 1 or the complete model, has been ittu: 'la a set of data and it is desired to reduce the model by dropping all terms whichi do not test as aignificant. Assume that the level of each test is 0.05 and that the tesis are independent. If only one term is tested without posilive results \(\mathrm{d} y\) a \(t\) test and dropped from the model, then the probability of falsely rejecting is 0. OF. If two terms are tested separately with \(t\) tests and dropped, the probability of falsely rejecting at least one coefficient becomes \(1-(0.95)^{2}=0.0975\). If four terms are tested and dropped, the probability of falsely rejecting \(a\) : least one coefficient \(/ \mathrm{s} 1-(0,95)^{4}=0.1855\). If this is extended to eight iarms, it becomers \(1-(0,95)^{9}=0.3366\). Thus, the t test ran bre gafely uged only \(v\) itien one torm alon. is to be dropped. If more than one term is is he testg, the method of anal. Aifi of variance shonld be used.

Let Mo.fol (the emplete model) be the following:
\[
\text { Model I: } y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{k} x_{k}+e
\]

Model I has been fitted to the data and the sum of squares of error, SSE \({ }_{f}\), and the eatimate of the variance, \(s_{1}{ }^{2}\), have been calculated.

Now suppose that it ia desired to teat the significance of k-g of these terins. For convenierice, assume that the last \(k-g\) terms are to be tested. The null hypothesis is then
\[
H_{0}: b_{g+1}=b_{g}+2=\cdots=b_{k}=0
\]

If \(\mathrm{H}_{0}\) is true, then the system can be described by a shorter or deleted model, Model II:
\[
\text { Model II: } y=b_{0}+b_{1} x_{1}+\ldots+b_{g} x_{g}+e
\]

Model II is then titted to the data and the sum of aquares of error, \(\mathrm{SSE}_{2}\), and the esimate of the variance, \(s n^{2}\), are calculated.

Fiven if \(H_{0}\) is true, the estimates of \(b_{g+1}\) through \(b_{k}\) will not be zero because of the finite random sample of observation noise. Thus, fitting Model I Inatead of Mindel II will reduce the sum of aquares for error, SSE \(_{1} \leq\) SSE \(_{2}\). In faot, \(\mathrm{SSES}_{2}\) can be partitioned into two positive quantities
\[
\mathbf{S B E} E_{2}=S S E_{1}+\left(S S E_{2}-88 E_{1}\right)
\]

It can be shown that if \(\mathrm{H}_{0}\) is true, \(\frac{\mathrm{SSE}_{1}}{\mathrm{n}-\mathrm{k}-1}\) and \(\frac{\mathrm{SSE}_{2}-\mathrm{SSE}_{1}}{\mathrm{k}-\mathrm{g}}\) provide unbiased estimates of \(\sigma^{2}\) and that \(\frac{5 \overline{E_{1}}}{\sigma^{2}}\) and \(\frac{\operatorname{SoE}_{2}-S S E_{1}}{\sigma^{2}}\) are independent Chi-square random variables with \(n-k-1\) and \(k-g\) degrees of freedom, respectively. Thus, the ratio of these two independent Chi-square random variables divided by the respective degrees of freedom is an \(F\) random variable, if \(H_{0}\) is true.
\[
F=\frac{\frac{8 S E_{2}-S 8 E_{1}}{\sigma^{2}(k-g)}}{\frac{S 8 E_{1}}{\sigma^{2}(n-k-1)}}=\frac{S S E_{2}-S S E_{1}}{(k-g) I_{1}^{2}}
\]

To test \(H_{0}\), a oie-sicied test on this \(F\) ratio is used. The level of the tert \(\alpha\) must again be spectili The critical value ci \(F\) depends upon \(\alpha\) and upon the degrees of freedom, \(k-g\) and \(n-k-1 ; F_{\text {arit }}=F(\alpha, k-g, n-k-1)\). This is found in statistical tables.

The decision ic then based upon a comparisen of \(\bar{F}\) with the critical value:

> If \(F>F(\alpha, k-g, n-k-1)\), reject \(H_{0}\)
> If \(F \leq F(\alpha, k-g, n-k-1)\), do not reject \(H_{0}\).

If \(\mathrm{H}_{0}\) is rejected, the model cannot be shortened by dropping the entire group of \(\mathrm{k}-\mathrm{g}\) terms. Possibly, a aubgroup of these \(\mathrm{k}-\mathrm{g}\) terms can afely be dropped, but other modela must be postulated and tested to decide which can be dropped.

\section*{d. Teating the Effect of Misaile Modiflestion Upon Radial Mipe Distance Using the F Statistio}

A reduced model, without the terms for misuile modification, was set up as:
\[
\begin{aligned}
z= & b_{11}+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{4} x_{4}+b_{6} x_{8}+b_{6} x_{8}+b_{8} x_{8} \\
& +b_{10} x_{10}+e
\end{aligned}
\]

The estimated coefficients for this model are shown in Table XIV.
The null hypothesis for this test is \(H_{0}: b_{7}=b_{8}=0\). It was deoided to set \(\alpha=0.10\). The critical \(F\) value is
TABLE XIV. THE ESTIMATED COEFFICIENTS FOR THE REDUCED MODEL USING LOGARITHMS, EXAMPLE I DOERTIFICATICN
number of vectiras

the sum nf souarfs for errif is 0.355674)IE 02
the estimate jf the vafiancf is c. 3908505 fe co
the estimate df the stancacc deviaticn is 0.625igeム2e co
\(\dot{\circ}\)
-re fijmbff df degrees rf freedem is
\[
F(0.10,2,89)=2.77
\]

Erom Tahte \(Y\) for the momplate model.
\[
\mathrm{SSE}_{1}=35.1213
\]
\[
s_{1}^{2}=0.3946
\]

From Table XIV for the reduced model,
\[
\mathrm{SSE}_{2}=35.5674
\]

The test statistic is
\[
-\frac{S E_{2}-S S E_{1}}{(k-g) 8_{1}^{2}}=\frac{35.5674-35.1213}{(2)(0.3946)}=0.57 .
\]

This value is less than the critical value. It cannot be concluded that missile modification affects the radial miss distance.

\section*{11. CONCLUSIONS}

Often observations or reaults of experiments can logically be represented by a linear atatistical model relating the observation \(y\) to various known quantitative and qualitative variables \(x_{1}, \ldots, x_{k}\), random noise \(e_{\text {, }}\) and fixed but unknown coefficienta \(b_{0}, b_{1} \ldots, b_{k}\) :
\[
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\ldots+b_{k} x_{k}+e
\]

The least squares entimates of the coetficients \(b_{0}, b_{1}, \ldots, b_{k}\) have been developed theoretically and are calculated by the GELSF program.

If the noise e is Gausian (normal) with zero mesn and covariance matrix \(\sigma^{2} I\), where \(I\) is the identity matrix, then certain quantitien have well known distributions. A graphical procedure for malding tente for normality of the noise ia described.

Crucial in the entire discussion is the model. The model must be of the correct form or the theory collapses. Statictical tente, In particular the analysis of variance, can suggest which terms should be retained in the model, but they cannot prescribe which new terms should be added. The model must be constructed from phyascal considerations and sound judgment.

Sound jurigment should also be employed in the statietical evaluation of the data. In no case should etatistical techniques described here or elsewhere be applied in a purely mechanical manner or divorced from the other aspects of the system under consideration.

\section*{REFERENCES}
1. Mendenhall, W., An Introduction to Linear Models and the Design and Analysis of Experiments, Wadsworth Publishing Co., Belmont, California, 1968.
2. Rich, N. R., "The Theory Behind and the User's Manual for the Generalized Least Squares Fit (GELSF) Digital Computer Program," U. S. Army Miasile Command, Redstone Arsenal, Alabama, October 1988, Report No. RD-TR-68-13.
3. Gumbel, E. «., Statistics of Extremes, Columbia University Press, New York, 1938.
4. Greene, L., and Rich, N. R., "Testing for Normality by Control Bands Digital Computer Program User's Manual and Theory," U. S. Army Missile Command, Redstone Arsenal, Alabama, May 1989, Report No. RD-TR-69-8.
5. Snedecor, G. W., and Cochran, W. G. , Statictical Methods, Lowa State Univeraity Press, Ames, Iowa, 1967.

\author{
INFERENCE PROCEDURES BASES ON \\  \\ Donald K. Barr and Toke Jayachandran Litton Scientific Support Laboratory Fort Ord, California
}
1. Introduction. Frequently. experiments are conducted in such a way that they may be considered to cionsist of \(n\) trials, where in each trial, the tine required to achie: ; some ob, ective ("success") ls observed. If an upper limit. is. is placed upon the possible duration of each trial, then the vutcome on earlitrial is either the tene until success, or \(T_{0}\). whichever is amallel. Such observations are satd to be censored at \(T_{0}\) For example, it might be desired to determine whether a certain type of combat aid, such as a target detection device, is effective, or whether one type of device is better than another. In order to make such inferences about a single device, often an experiment of the following design is concucted: n players are selected, and each player uses the device in an attempt to detect a target. If a given player has not succeded within 4 minutes (say). Bistrial terminates and the next player begins. The observed data then consists of the times of detection for those trials terminating before \(T_{0}=4\) (together with the number of trials terminating at \(T_{0}=4\) ). If it is cesired to compare two devices, then samples on each device may be taken as described above.

If the distributions of (uncensored) time until success are identical exponentials, this situation falls under the body of results generally known as "life testing." In what follows, we shall discuss statistical procedures for making inferences about the mean rate \(\lambda\) of success (the reciprocal of mean time to success), bused upon such censored time dependent observations. These inference techniques include point eatimators, confidracc intervald and tests of hypotheses for both the single population case, and that of comparing two populations. Since there is a strong parallel between making a confidence interval for a parameter and tests of hypotheses concerning that parameter, we shall discuss only one or

This article has been reproduced photographically from the authord manuacript.
the nther of theae in each of the anproaches considered below. While it is assumed that the populations involved are exponentially distributed, attention is given to the robustuess of the procedures under departures from exponential distributions.

In Section 2, we discuss procedures for making inferences about one population (one-sample inferences), including a review of several approaches in the literature and an easily applied approximate procedure that we have been investigating. A similar treatment for two-sample inferences is given in Section 3.
2. One-Sample Proi \({ }^{2}\) dures. Suppose that \(Z_{1}, \ldots, Z_{n}\) is a random sample of size \(n\) from an exponential population with mean rate \(\lambda\). Let \(X_{i}=\min \left\{Z_{i}, T_{0}\right\} ; i=1,2, \ldots, n\). Based upon observations \(x_{1}, \ldots, x_{n}\) on the \(X^{\prime} s\), we wish to make inferences concerning the parameter \(\lambda\). The (point) estimation of \(\lambda\) has been discussed by several writers (see. for example. Bartholomew [1]). Theyhave shown that the maximum likel ihood estimate of \(\lambda\) is
\[
\begin{equation*}
\hat{\lambda}=k / \sum_{i=1}^{n}\left\{a_{i} x_{i}+\left(1-a_{i}\right) T_{0}\right\} \tag{1}
\end{equation*}
\]
where
\[
a_{i}= \begin{cases}1 & \text { if } x_{i}<T_{0} ; i=1,2, \ldots, n \\ 0 & \text { otherwise }\end{cases}
\]
and
\[
k=\sum_{i=1}^{n} a_{i} .
\]

While \(\widehat{1 / \lambda}\) is asymptotically normal with mean \(1 / \lambda\) and variance
 samples, \(\hat{X}\) is seriously biased \(\lceil 0]\). The exact distribution of \(1 / \lambda\) is given by Bartholomew [1] in a form useful with small samples, along with some approximations that are useful with moderate sized samples.

Several procedures for obtaining eonfidence intervals for. \(\boldsymbol{\lambda}\) and \(1 / \lambda\), based upon approximate distributions for certain functions of \(1 / \lambda\), have been suggested. Bartholomev [ 1\(]\) discusses two procedures based upin normal distributions. and a technique given in NAVORD O. D. .2930t [ fi]uses an approach based upon a Poisson distribution. The statistical properties of confidence intervals obtained by these approximations are apparently not fully known at the present time.

We have investigated a method for obtaining confidence intervals for \(\lambda\). based upon a general approach given by Halperin [4], described as follows: Let
\[
\begin{equation*}
p=1-e^{-\lambda T_{0}} \tag{1}
\end{equation*}
\]
denote the probability that the result in a given trial is not censored (i.e., \(p=P\left[X_{1}<T_{0}\right]\) ). Then each experimental trial may be viewed as a Bernoulli trial, where "success" is associated with non-censoring and occurs on each trial with probability \(p\). Based upon the observed number \(k\) of success in the \(n\) experimental trials, a \(100(1-\alpha)\) percent upper confidence bound. say \(P_{U}\), for \(p\) can be constructed using well-known methods. Using equation (1), this bound can be "inverted" to obtain a \(100(1-\alpha)\) percent upper confidence bound for \(\lambda\) as
\[
\begin{equation*}
\lambda_{U}=\frac{-\ln \left(1-P_{U}\right)}{T_{0}} \tag{2}
\end{equation*}
\]

Intervals and bounds of this type are very easy to compute, and appear to perform nearly as well as those based upon approximating distributions. The results of a Monte Carlo study on the performances of the two procedures based upon the Poisson distribution [6] and the binomial distribution [4] are prosented in Tables 1, 2, and 3 below. 1000 samples of size \(n\) \((\mathrm{n}=20.30,40,50\) ) were generated from exponential distributions \(w\) ith mean rate \(\lambda(\lambda: .1, .2, .5,1,2,5,10)\). For different truncation times \(T_{0}\) the upper confiderce limits \(\lambda_{U}\) were culculated using both procedures. Fable 1 gives the aver: ge value of the upper confidence limit \(\lambda_{U}\). , For each choice of \(\lambda\) and \(T_{0}\) the first row contains \(\bar{\lambda}_{U}\) for the \(O\). D. 29304 [6] procedure (based on the poisson distribution); the numbers in the second row are those for the binomial procedure. Table 2 contains the sample varlunce of the upyer bounds \(\lambda_{U}\). In Table 3, the empirical coverage probability l.e., the proportion of the \(\lambda_{U}\) which actually exceed the true parameter value \(\lambda\) is given. The relative sensitivity of these procedures to depurtures from the exponential distribution are apparently not known al present.

Finally, we mention another approach to finding confidence intervala for \(\lambda\). which seems to have recelved less attention in the literature than it deserves. Imagine that the time censored trials are conducted sequentially in time and that we disregard the times betwaen when each trial terminates and the next begins (see Figure 1). Then the times between successive successes is exponential with parameter \(\lambda\). so that the "success arrival
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\lambda\)} & \multirow[b]{2}{*}{To} & \multicolumn{8}{|c|}{} \\
\hline & & . 95 & . 99 & . 95 & . 99 & . 95 & .99 & . 95 & . 99 \\
\hline . 1 & 8. & \[
\begin{array}{r}
.165 \\
.178 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.109 \\
.209 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
151 \\
.15 甘 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
177 \\
.183 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
144 \\
.140 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.164 \\
.168 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
138 \\
142 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
156 \\
-159 \\
\hline
\end{array}
\] \\
\hline . 2 & 2. & \[
\begin{array}{r}
.379 \\
.397
\end{array}
\] & \[
\begin{array}{r}
.477 \\
.478 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.340 \\
.352 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.408 \\
-.408 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.316 \\
.324 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.375 \\
.376 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.299 \\
.305 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.352 \\
.352 \\
\hline
\end{array}
\] \\
\hline . 5 & 1. & \[
\begin{array}{r}
.919 \\
.969 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1.12 \\
& 1.13 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.804 \\
.836 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.975 \\
-985
\end{array}
\] & \[
\begin{array}{r}
.752 \\
.772 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.890 \\
-904 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.723 \\
.738 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.840 \\
-846 \\
\hline
\end{array}
\] \\
\hline 1. & . 7 & \[
\begin{array}{r}
1.68 \\
-1.78 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.05 \\
2.13 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 1.53 \\
& 1.60 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.82 \\
& 1.86 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.44 \\
& 1.49 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.68 \\
& 1.71 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 1.40 \\
& 1.43 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
1.60 \\
1.62 \\
\hline
\end{array}
\] \\
\hline 2. & . 3 & \[
\begin{aligned}
& 3.50 \\
& 3.72 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
4.28 \\
4.39 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.10 \\
& 3.23 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3.74 \\
3.82 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.97 \\
& 3.07 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3.47 \\
-3.52 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 2.84 \\
& \underline{2} .92
\end{aligned}
\] & \[
\begin{aligned}
& 3.26 \\
& 3.30 \\
& \hline
\end{aligned}
\] \\
\hline 5. & . 05 & \[
\begin{array}{r}
10.6 \\
11.2 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
14.5 \\
14.3
\end{array}
\] & \[
\begin{aligned}
& 9.46 \\
& 9.80 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
12.0 \\
11.9 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 8.63 \\
& 8.76
\end{aligned}
\] & \[
\begin{aligned}
& 10.7 \\
& 10.6 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 8.14 \\
& 8.33 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 9.95 \\
& 9.88
\end{aligned}
\] \\
\hline 10. & . 06 & \[
\begin{aligned}
& 17.0 \\
& 18.0
\end{aligned}
\] & \[
\begin{aligned}
& 21.6 \\
& 22.2
\end{aligned}
\] & \[
\begin{aligned}
& 15.6 \\
& 10.2
\end{aligned}
\] & \[
\begin{aligned}
& 18.8 \\
& 19.2
\end{aligned}
\] & \[
\begin{aligned}
& 14.6 \\
& 15.1
\end{aligned}
\] & \[
\begin{aligned}
& 17.2 \\
& 17.3
\end{aligned}
\] & \[
\begin{aligned}
& 14.1 \\
& 14.5
\end{aligned}
\] & \[
\begin{aligned}
& 16.3 \\
& 1.6 .5
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE 1. Average upper \(100(1-\alpha)\) percent confidence bounds \(\bar{\lambda}_{U}\) for the O. D. and the binomial procedures.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|r|}{20} & \multicolumn{3}{|c|}{Sample Size \(n\)} & 40 & \multicolumn{2}{|c|}{50} \\
\hline \(\lambda\) & \(\mathrm{T}_{0}\) & . 95 & . 99 & \multicolumn{2}{|l|}{\[
\begin{array}{r}
.95 \\
\hline
\end{array}
\]} & . 95 & . 99 & 95 & 98 \\
\hline 1 & 8. & \[
\begin{array}{r}
.002 \\
.003 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& .002 \\
& .004
\end{aligned}
\] & \[
\begin{array}{r}
.001 \\
.001
\end{array}
\] & \begin{tabular}{l}
.001 \\
.002 \\
\hline
\end{tabular} & \[
\begin{array}{r}
.001 \\
.001 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.001 \\
.001
\end{array}
\] & \[
\begin{aligned}
& .000 \\
& .001 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
.001 \\
.001
\end{array}
\] \\
\hline . 2 & 2. & \[
\begin{array}{r}
.012 \\
.014 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.015 \\
.017 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.008 \\
.008 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.009 \\
.010 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.005 \\
.006 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.006 \\
.007 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.004 \\
.004 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.005 \\
.005 \\
\hline
\end{array}
\] \\
\hline . 5 & 1. & \[
\begin{array}{r}
.067 \\
.080 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.076 \\
-.094 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.036 \\
.042 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.045 \\
.053 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.028 \\
.030 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.033 \\
.038 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.020 \\
.021 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.022 \\
.024 \\
\hline
\end{array}
\] \\
\hline 1. & . 7 & \[
\begin{array}{r}
.194 \\
.265 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.267 \\
. \quad 56 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
124 \\
146 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.142 \\
.175 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.086 \\
.102 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.096 \\
.119 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.063 \\
.073 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.074 \\
.088 \\
\hline
\end{array}
\] \\
\hline 2. & . 3 & \[
\begin{array}{r}
.874 \\
1.11 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
1.08 \\
1.40 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
44 \\
.578 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
630 \\
+759 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.375 \\
.481 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.485 \\
.567 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.264 \\
.306 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
.353 \\
.388 \\
\hline
\end{array}
\] \\
\hline 8. & . 05. & \[
\begin{aligned}
& 12.7 \\
& 14.0 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
16.8 \\
18.5 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 7.30 \\
& 7.80 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
9.34 \\
10.2 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 5.02 \\
& 5.24 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
6.68 \\
6.96 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3.88 \\
& 4.05 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 4.74 \\
& 4,96 \\
& \hline
\end{aligned}
\] \\
\hline 10. & . 00 & \[
\begin{array}{r}
10.8 \\
25.0 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
20.4 \\
40.1 \\
\hline
\end{array}
\] & \[
137
\]
131.3 & \[
\begin{aligned}
& 10.8 \\
& 20.0 \\
& \hline
\end{aligned}
\] & \[
\begin{gathered}
9.15 \\
10.6 \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& 11.0 \\
& 12.4
\end{aligned}
\] & \[
\begin{array}{r}
6.78 \\
7.60 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 7.96 \\
& 9,29 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}

TABLE 2. Sample Variances of \(\lambda_{U}\)


TABLE 3. Proportion of the \(\lambda_{U}\) that exceed the true. parameter value \(\lambda\).


FIGURE 1.
process" is a poisson process with mean rate \(\lambda\) per unit time. Suppose that \(k>0\) successes are observed in \(n\) experimental trials. Then the conditional distribution of the wailting time to \(k\) th arrival, \(W_{k}\), given \(k\), is approximataly gamma distributed. Thus \(2 \lambda W_{k}\) is chi-square distrity tod with \(2 k\) degrees of freedom. Using the tabulated \(X^{2}\) distribution, and given \(k>0\), one can easily find an interval \(\left(C_{L}, C_{U}\right)\) which will contain \(2 \lambda W_{k}\) with probability \(1-\alpha\). Algebraic manipulation upon this interval yields
\[
\left(\begin{array}{ccc}
\frac{C_{L}}{2 W_{k}} & , & \frac{C_{U}}{2 W_{k}}- \tag{3}
\end{array}\right)
\]
as a \(100(1-\alpha)\) percent conditional confidence intorval for \(\lambda\). The sensitivity of this approach to departures from 'exponential distributions depends upon \(T_{0}\); with sufficiently small \(T_{0}\), the interarrival timen should bo nearly exponential even with non-exponentially diatributed times to success within the individual trials.
3. Two-Sample procedures. In this section, techniques for comparing two exponential populations bascd on censored obser vations, are discussed. Suppose independent samples of sizes \(n_{1}\) and \(n_{2}\) are drawn from two exponential populations with means \(1 / \lambda_{2}\) and \(1 / \lambda_{2}\) respectively, it will be assumed that both sets of sample obser vations are censored at the same time point \(T_{0}\); that is, an upper limit \(T_{0}\), is placedrupon the possible duratior of sach trial. Let \(k_{2}\) and \(k_{2}\) denote the number of uncensored obser 'ations in the first and second sample respectively and let \(p=k_{1}+k_{2}\). Vethods for testing the typothesis \(H_{0}: \lambda_{2}=\lambda_{2}\) and obtaining confiden e antervals for \(P \quad \lambda_{1} / \lambda_{2}\) and \(\psi: \lambda_{1}-\lambda_{a}\) are discussed below.
a. \(F\) test for \(H_{0}: \lambda_{2}=\lambda_{g}\) : Let \(W_{1, k_{1}}\) denote the total elapser tinie time until \(k_{1}\) uncensored observations are obtained from the first sample. Then, as mentioned earlier, \(2 \lambda_{1} W_{1, k_{1}}\) has a chi-square distribution with \(2 k_{1}\) degrees of freedom. If \(W_{2,} k_{2}\) is similarly defined for the second sample, so that \(2 \lambda_{2} W_{2, k_{2}}\) is distributed as a ohi-square with \(2 k_{2}\) degrees of freedom, then, if \(\mathrm{H}_{0}\) is true, the ratio
\[
\begin{equation*}
W=\frac{2 W_{1,} k_{1} / 2 k_{1}}{2 W_{2, k_{1} / 2 k_{1}}} \tag{4}
\end{equation*}
\]
hus an F distribution with \(\left(2 k_{1}, 2 k_{2}\right)\) degrees of (reedom. The hypothesis \(H_{0}\) will be rejected in favor of \(H_{1}: \lambda_{1}<\lambda_{2}\), at aignificance level \(\alpha\), If the observed value \(W\) exceede the \(100 \alpha\) th percentile of the \(F\) distribution with ( \(2 k_{1}, 2 k_{2}\) ) degrees of freedom. A confidence interval for \(p=\lambda_{1} / \lambda_{2}\) can be obtained, based on the \(F\) distribution of \(k_{2} \lambda_{1} W_{1, k_{2}} / k_{1} \lambda_{2} \dot{W}_{2, k_{1}}\).
b. Cox's \(F^{\prime}\) test: Let \(n=n_{1}+n_{2}\) and let the scores \(t_{r, n}\) ( \(r=1.2, \ldots, n\) ) denote the expected values of the order statistics of a random sample of size \(n\) from an exponential distribution with mean equal to 1 . It can be shown that
\[
t_{r, n}=\sum_{s=0}^{r-1} \frac{1}{n-s} \quad(r=1,2, \ldots, n)
\]

Combtne the \(p=k_{1}+s_{2}\) uncensored observations, defined in the beginning of the section and rank them. Replace the observation with rank \(r\) with the corresponding score \(t_{r n}(r=1,2, \ldots, n)\). If two or more of the censored observations are equal, replace each one with the average of the corresponding scores \({ }^{t}{ }_{r n}\). Let \(\bar{t}_{1}\) denote the average of the scores assigned to the observations fron the first sample and \(\bar{t}_{2}\) the average of the scores assigned to the ubservations from the second sample, Cox [?. has shown that the ratio
\[
\begin{equation*}
W^{\prime} \quad\left[\frac{\left.k_{1} \bar{t}_{1}+\left(n_{1}-k_{1}\right) t_{p+1, n}\right] / k_{1}}{\left[k_{2} \bar{t}_{2}+\left(n_{2}-k_{2}\right) t_{p+1, n}\right] / k_{2}}\right. \tag{5}
\end{equation*}
\]
is approximatcly distributed as an \(F\) with \(\left(2 k_{1}, 2 k_{2}\right)\) degrees of freedom, when \(H_{0}: \lambda_{1}: \lambda_{2}\) is truc. The rejection region for the hypothesis \(H_{0}: \lambda_{1}=\lambda_{2}\) can be determined from the \(F\) tables. A confidence interval for \(p=\lambda_{1} / \lambda_{2}\) can be obtained using this approximate distribution of \(W^{\prime}\), as follows: Multiply each of the uncensored observations from the second sample by a fixed number \(p_{0}\) and apply Cox's procedure. This will lead to a test of the hypothesis \(H_{0}^{\prime}: \lambda_{1}=\rho_{0} \lambda_{2}\).

For a given significance level \(\alpha\), the set of all values of po that will lead to rejection of \(H_{o}^{\prime}\) will fromaconfidence interval for \(\rho\) with confidence coefficient 1- \(\alpha\).

Recently, Gehan and Thomas [3] have reported a Monte Carlo study comparing the powers of the \(F\) and \(F^{\prime}\) tests for small sample sizes. It was found that, when the assumption that the two samples are from exponential distributions is valid, these tests have comparable operating characteristics, (sece figure 2 below). However. If the samples are from Weibuli distributions. the \(F\) test is not robsest and the \(\mathrm{F}^{\prime}\) test \({ }^{\prime \prime}\) s superior. It should be noted that the \(\mathrm{F}^{\prime}\) test refuires that both sets of sumple observations are censored at the same time point \(T_{0}\) : the \(F\) inst is not constrained with this requirement.


FIGURE 2. Operating Characteristic Curves for the \(F\) and \(F\) " Tests

Distribution. \(\quad\left(n_{1}=n_{2}=20, \alpha=.05\right.\) and \(\left.\lambda_{2}=1.0\right)\)
c. Confidence intcival for \(-\quad \lambda_{1}-\lambda_{2}\) : Suppose \(W_{1}\) and \(W_{2}\) are independent random variables with famnal distributions with paraneters \(\lambda_{1}\) and \(\lambda_{\underline{2}}\). Lonter and Buchler .i] obtuined the conditional distribution of \(\|(u / v ; \psi)\) of \(U \cdot W_{1}\) given \(V=W_{1}+W_{1}\). This conditional distribution function involves only the parameter \(\psi=\lambda_{1}-\lambda_{2}\). A confidence interval for canbe obtainedas follows: Set \(H\left(u / v^{\prime}: \psi\right)\) equal to \(\alpha / 2\) and \(1-\alpha / 2\) respectively and sulve for \(\llcorner\). The two solutions for \(\psi\) will be the lower and upper confidence limits for \(\downarrow\) with confidence coefficient \(i-\alpha\).

The Lenter-Buchizr technigue can be used to derive a confidence interval for the differece \(\lambda_{1}-\lambda_{2}\) for two exponential distributions when the observations a.e censored. As was pointed out earlier in this paper, if the censored observations from an exponential distribution are treated as having been obtained sequentially, then \(2 \lambda \mathrm{~W}_{\mathrm{k}}\), where \(\mathrm{W}_{\mathrm{k}}\) is the waiting time till kth arrival, given \(k\), has a Chi-square distribution with \(2 k\) degrees uf ireedom. Thus \(W_{k}\), has a gamma distribution. We can now form two gamma distributed variables from the two sets of observations from the dxponential distributions and apply Lenter-Buchler [5]
- technique to obtain a confidence interval for \(\lambda_{1}-\lambda_{2}\).
i 1 j bartholomew. 1). . The ampling distribution of an estimate arising in life tosting. Technometrieq \%. No. : pp 301-374 (19:3)
[2] Cox, D. R. . Some applications of exponential order scores. Journal of the hoyal statistical societs, Series B. eng. pp 10:1-110. (1964)
(3] Gchan. E. \(A\), and Thomas. D. G. . The performane of some trosample lest. in small samples with and without censoring Biometrika :id, 1, pp 127-1:32 (1964)
[4] IIalperin, M. Confidence intervals from censored samples. Annals of Mathematical Statistics. 32, 3, pp 828-37 (1961)
[5] Lentner: M. M, and Buehler. R. J., Some inforences about gamma parameters with an application to a reliability problem, Journal of the American Statistical Association 58, pp 1870-77 (1963)
[6] NAVORD OD 29304/ADDENDUM. Statistical exposition of guide manual for reliability measurement program. 15 November \(196 \%\).```


[^0]:    *This research was sponsored by the Mathematics and Statistics Panel of the Aerospace and Systems Group (A\&SG) of North American Rockwell Corporation and funded under the Internal Research and Development program of the Executive Offices of A\&SG.

[^1]:    $1_{\text {The definitions of }}$ uniformly most accurate and unbiased confidence bound are as given by E. Lehman (26). They are as follows: A confidence bound $\underline{\theta}(X)$ satisfying $P_{\theta}\{\underline{\theta}(X) \leq \theta\} \geq 1-n$ for all $\theta$ and for all $\theta^{\prime}<\theta, P_{\theta}\left\{\theta(X) \leq \theta^{\prime}\right\}=$ minimum is a uniformiy most accurate lower confidence bound for $\theta$ at level 1-a. A family of lower confidence bounds at level l-a is ald to be unblased if $P_{i j}\left(\underline{\theta}(X) \leq 9^{\prime}\right\} \leq 1-a$ for all $\theta^{\prime}<\dot{\theta}$ for all $\theta$.
    ${ }^{2}$ A lower confidence bound at level $1-x$ is said to be exact if
    

[^2]:    Now that we have established what is not fruitful for obtaining the optinal bounds, one may properly inquire as to the next step in the investigation with respect to confidence for a complex system. Two approaches present themselves. The first is to consider each series system which is a part of the complex system as a single subsystam of the toral system. It the fiducial approach were to be used, une could obtain an estimate $R_{p, \ell}$ of true reliability, given the failure data, for the $f^{t h}$ subsystem consisting of the $k_{\ell}$ independent aubsystems making up

[^3]:    This articie has been reproduced photographically from the author's manuscript.

