OPTIMIZING A FOUR-PART ASSAY PROCEULRE

Walter D. Foster
Biomathematics Division, Department of the Army
Fort Detrick, Maryland

ABSTRACT. Optimizing the procedure of a four-part assay of a bulk material is considered on the basis of the variance of each part versusits cost. In d replications (defined as Days), a setting Chamber is used c times to deposit organisms on p Plates per chamber run; the plates are incubated and Read r times per plate. A nested analysis of variance provided estimates of the couponents for the variance function:

$$
V(\text { Assay })=\frac{\overbrace{r}^{2}}{\text { rpcd }}+\frac{\sigma_{p}^{2}}{p c d}+\frac{r_{c}^{2}}{c d}+\frac{\tau_{d}^{2}}{d}
$$

The cost function is the sum of the cost rate x number of repeats for each part:

Cost = (unit Reading cost) rped + (unit Plating cost) pcd

+ (unit Chamber cost) $c d+$ (unit Day cost) d.
A Lagrangian multiplier approach yielded minimum variance for a fixed total cost:
$\operatorname{Min}[V($ Aneay $)+\lambda($ Cogt $)]$.
This approsch is contrasted with non-iinear programing and integer programing.

INTRODUCTION. A problem common to both bulk sampling and ample surveys is to obtain as much information about a population, usually stratified or segmented in time or space, as possible for a given budget. For axample, grain production in the mid-west or even from a specific farm would need to be sampled according to various strata defined by bagy, bushels, wapon loads, etc. To maximize the information, f.e., minimizo the variance of the ample mean for a given cost is the way the problem is unually stated.

Duncan ${ }^{1}$, among others, has written extenaively on procedures for bulk aempling and has pertinent bibliography. Similarly, Cochran ${ }^{2}$, to pick another outatanding writer, has worked extensively in the area of ample survays. The problem addressed here is in optimize an assay

Preceding page blank
procedure for a sporulating organism where the ateps may be conaidered as a three-phase procedure. This problem is anawered partly by bor-
 approached frow the point of view of integer programing.

A "day" is a natural block of work. A amell amount of the apore material in dry state is encapsulated and dispersed with a CO_{2} pistol
into a small chamber, Sevaral agar plates are at in the bottom of the chamer onto which the dispersed spores fall. Aftar a auitable incubation period in a humidity chamber, the plates are "read" until 100 organitme are counted and the percent viability is estimatad. several such readings are made. It is the purpose here to minimize the variance of this assay procedure aubject to m particular assoy cost.
I. VARIANCE EINCTION. An experiment wae designed specifically to provide estimates of the various sources of variation. In each of aeveral "days," repetied chamber runs provided an opportunity to obaerve variation from one chamber run to another within the same day. Six chamber runs per day were shoduled, three agar platen per chamber run ware prepared, and each plate was read alx timas. The axperiment continued over 18 daya. For sake of aimplicity the variation due to tachnicians in smitted in this report.

A newted analysis of variance givas both the structure of the analysis and the raaults.
aNALYSIS OF VARIANCE ON $\%$ VIABILITY

'Source	df	MS	EMS
Daye	17	315.013	$\sigma_{R}^{2}+2 \sigma_{P}^{2}+6 \sigma_{C}^{2}+36 \sigma_{D}^{2}$
Chambers in Daya	90	26.990	$\sigma_{R}^{2}+2 \sigma_{p}^{2}+6 \sigma_{c}^{2}$
Plates in chambers	216	20.981	$\sigma_{R}^{2}+2 \sigma_{p}^{2}$
Readinge in plates	324	15.012	σ_{R}^{2}

Because of the balanced arrangement, there was no problam in eatimeting the components in this hierarchical analyais according to the expectad mann equare shown in the table above. The antimates of thene componenta of variance are also hown there. In this complataly randomiend design with all factors considered random, the variance of the maan percent viability is given the following equation:

$$
V(\overline{\% V})=\frac{\sigma_{R}^{2}}{r}+\frac{\sigma_{p}^{2}}{r p}+\frac{\sigma_{c}^{2}}{r p c}+\frac{\sigma_{D}^{2}}{r p c d}
$$

This variance function permits the experimenter to obtain any degree of preciaion he is willing to pay for merely by assigning appropriate values to the number of readings per plate, the number of plates per chamber, the number of chamber runs per day, and the number of days. One criterion for this degree of accuracy is the cost of the assay. A second cricerion concerns the intended usa of the material and to what degree of accuracy he must know its vlability.
II. COST FUNTIION. Coat functions are notoriously difficult to describe realisticisly, especially when the assay procedure itself is conducted on a sporedle basis. The function chosen here was selected priaarily because of its simplicity and wan felt to be adequate for the problem at hand:
$S=\operatorname{rpcd} R+\operatorname{ped} P+c d C+d D$, where $R=.20 ; P=.50 ; C=.50 ;$ and $D=2.50$ are the (fictitious) cost per unit for Reading, Plate, Chamber and Day, and r, p, c, d are the number of unite of each.

As is clear, thic function also follows a neated conatruction and assigns to each portion of the assay a fixed cost so that total cost is obtained maraly by counting the number of component parta, Overhead costs such as equipment, utilitiea, laboratory space, atc., have bean included in the "day" costs.

If the experimenter is willing to pay S dollara for one assay of the material, than the conjunctive use of the variance and the cost function will optimize the assay procedure for that cost. Conversely, the cost function will how him what he would need to pay to obtain an dssay for prescribed precision. The optimization processes are shown in the next section.
III. OPTIMIZATION PROCESSES:
A. Legrangian Multipliers

Let us write the following function

$$
L \equiv V(\bar{X})+\lambda S
$$

which includes both the variance and the cont as quantity to minimize. Following the tandard procedure, partial derivatives of the function L are taken with respect to the parameters d, c, p, r giving four equations in five unknowns, the fifth unknown being the variable λ. The fifth equation is the cost function itself. Theae darivatives, which can be
 equations whose solutions are also shown in the Appendix and were obtained as a unique set by virtue of the simplicity of the nasted dasign.

It is clear, although not proved mathematically, that any hierarchical deaign with random effects and an asociated nested cost function will have these two properties: non-linearity and analytic solution.

The procedure involving the Lagrangian multipliers clearly treate d, c, p, r as continuous variables. Obviously thay munt be positive as well as all of the other input valuen such as cost rates and the variance componente. In keaping with this approach, we ahould then expect to find the solution for these variables to be non-integers. For a limit of S = $\$ 9.00$ per assa:, the optimum solution gave
$d=1.98 ; \quad c=.79 ; \quad p=1.73 ; \quad r=3.54 ; \quad V(\bar{X})=7.4 ; \quad s=9.0$
Because the experimenter must work with intager values of these variables, the naxt highest and lowest intager value of asch variable ware examined in combinations with similar uppar and lowar values for all other variables giving rise in general to 24 combinatione. The variance and cost functions ware computed for 8 of the 16 combinations plue one other; and, the one that minimized the variance for the allotted cost wat chosen: specifically where $S \mathrm{~m} \$ 9.00, \mathrm{~d}=2, \mathrm{c}=1, \mathrm{p}=1, \mathrm{z}=3$. These 9 combinationa are shown in the table below with the salected set shown with an asteriak.

\mathbf{d}	\mathbf{c}	\mathbf{P}	$\underline{\mathbf{x}}$	$\underline{V(\bar{X})}$	$\underline{\mathbf{S}}$
1	1	1	3	17.0	4.1
1	1	1	4	15.8	4.3
1	1	2	3	13.0	5.2
1	1	2	4	12.4	5.6
2	1	1	3	8.5	8.2
2	1	1	4	7.9	8.6
2	1	2	3	6.5	10.4
2	1	2	4	6.26	11.2
2	1	1	5	7.5	9.0

By extending the parturbation range beyond adjacent valuen, such a table also has the advantage of displaying to the exparimenter what a small increase in cost would yield in terms of increased precision. Similar solutions would be available at ocher levels of possible cost, S, per assay.

B. Integer Programing

Integer programing is that cype of mathematical programing that seeks to optimize a particular function aubject to certain constrainte
 theory to date has not discovered a general procedure for problems in integer programing but several alternative procedures are available that are felt to be optimum for well-behaved surfaces. A fuller discussion of integer programing is beyond the scope of this poper and is not pursued here. An effective alternative procedure consists of asking the computer to map the surface for all combinations which are reasonable and to select the optimum value which satisfies the cost restraint.
(1) $S=D d+C d c+P d c p+R d c p r$
(2) $L=[V(\bar{X})+\lambda(s)]=\frac{\sigma_{d}^{3}}{d}+\frac{\sigma_{c}^{3}}{d c}+\frac{\sigma_{p}^{3}}{d c p}+\frac{\sigma_{r}^{2}}{d c p r}$
$-\lambda S+\lambda D d+\lambda C d c+\lambda P d c p+\lambda R d c p r$
(3) $\lambda=\frac{\sigma_{r}^{2}}{R^{2} c^{2} p^{2} r^{2}}$
(4) $\frac{\partial L}{\partial p}-\frac{-\sigma_{p}^{2}}{d c p^{2}}+\frac{-q_{r}^{2}}{d c p^{2} r}+\lambda[P d c+R d c r]=0$
(5) $\frac{\partial L}{\partial c}: \frac{-\sigma_{c}^{2}}{d c^{2}}+\frac{-\sigma_{p}^{2}}{d c^{2} p}+\frac{-\sigma_{r}^{2}}{d c^{2} p r}+\lambda[C d+p d p+R d p r]=0$
(6) $\frac{\partial L}{\partial d} \frac{-d_{d}^{2}}{d^{2}}+\frac{-\sigma_{c}^{2}}{d^{2} c}+\frac{-\sigma_{p}^{2}}{d^{2} c p}+\frac{-\sigma_{r}^{2}}{d^{2} c p r}+\lambda[D+C c+P c p+R c p r]=0$
(7) $r^{2}-\frac{p}{R} \cdot \frac{\sigma_{r}{ }^{2}}{\sigma_{p}^{2}}$
(8) $p^{2}=\frac{c}{p} \cdot \frac{\sigma_{p}^{2}}{\sigma_{c}^{2}}$
(9) $c^{2}=\frac{D}{C} \cdot \frac{{ }_{c}^{c}{ }_{c}^{2}}{{ }_{d}^{2}}$
(10) $d=\frac{S}{D+C \sqrt{\frac{D}{C} \cdot-\frac{\sigma_{c}^{3}}{d^{2}}}+P \sqrt{\frac{D}{P} \frac{\sigma^{3}}{d^{2}}+R \sqrt{\frac{D}{R} \cdot \frac{\sigma_{r}^{2}}{d^{2}}}}}$
(11) $d=\frac{\sqrt{D} \cdot \sigma_{d} \cdot s}{D\left[\sigma_{d} \sqrt{D}+\sigma_{c} \sqrt{C}+\sigma_{p} \sqrt{P}+\sigma_{r} \sqrt{R}\right]}$

う. K̄icinard ifuoure

U. S. A. Aberdeen Research and Development Center

Aberdeen Proving Ground, Maryland 21005

It of ten happens that a number of observations (measurements) of interest can be made each time a complex system is operated. When there are seyeral different modes in whicl such a system can be operated (missions) the set of observations may be diffirent for each mission. Many observations may be commion to several modes of operation while some may be peculiar to a particular mission.

- When it is necessary to obtain a number of observations for each of a knowr set of subsystems-(or functions) the question of how many times the system must perform each type mission arises. A reliability demonstration test for a complex system is an example of the above. This paper gives an example of a procedure by which the required set of observations can be obtained at a minimum cost. Hopefully this example will heip those whol are active in research and development to recogntize situations in which appreciable saving can be effected by the use of mathematical programming. These procedures are relatively. simple to use once the problem to which they apply has been identified.

As an example, consider a complex system which consists of six major subsystems. A reliability demonstration test must be conducted for the system and also for each of the subsystems operating as part of the system. This system is capable of performing four different types of intssion. The amount of operating time (number of operating cycles) for each subsysten during a mission depends on the mission type but it is assumed that the probability that a specific subsystem will fati during a mission depends only on the amount of operating time (cycles) it accumulates during the mission and not on the type of mission which the system is performing. That is, it is assumed that the distribution of time (cycles) to failure does not depend on the type of nitssion the system is performing when the subsystem is accumulating operating time (cycles).

This article has been reproduced photographically from the author's manuecipt.

It is necessary to use a reliability demonstration plan which allows no failures because of the limited availability of test resources. For the system to de tested this dictates that, in order to demonstrate the desired retiability with the required confidence, each of the subsystems must accumulate the operating experience given in Table 1 .

TABLE I
Required Subsjstem Operating Experience

Subsystem	Operating Time (Cycles)
1	60 minutes
2	30 minutes
3	40 minutes
4	80 minutes
5	20 cycles
6	30 cycles

It is further required that the system must complete at least two of each type mission without failure.
y
The operating time (cycles) for each subsystem during each type mission is. given in Table II

TABLE II
Operating Experience for Subsystems by Mission Type

Subsystem	Mission Type			
		2	3	-
1	6	12	0	3
2	9	0	4	6
3	8	2	0	5
4	0	6	10	: 3
5	5	1	2	0
6	3	0	2	3

The units of measurement for the entries in Table II are minutes for subsjstems one through six and cyoles for subsystems seven and eight. Thus, Table II says that a subsysten one orerates for six minutes during a Type 1 mission, twelve minutes during a Type 2 mission, three minutes during a Type 4 mission ard doesn't operate during a Type ' $\grave{3}$ mission, etc.
2. The problem is to find the best way to run this test program in the sense that the tota? cost of testing is minimized. The cost of ruming each type mission is given in Table III.

TABLE III
Cost of Running Each Type Mission

Mission Type	Cost of Mission
1	40
2	38
3	43
4	39

The cost data in Table II are relative costs which are in thousands of dollars in this example.

With the preceding information available, it is seen that this is a problem in linear programming in which one must determine the minimum number of times to require the system to complete each type mission, f.e., minimize the cost of testing, subject to the constraints that each subsystem must accumulate at least as much operating experience as is given in Table 1 and also the system must complete at least two of each type mission. Since the solution will be in terms of number of tests; it also follows that the solution vector for the linear program must be integer valued. A problem of this type is called an integer programing problem.

The first step in finding a solution to the problem will be to formulate it in standard terminology. Let Y be a column vector with j th element equal to the number of times the j th type mission must be run, that is

$$
y=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)
$$

where $\mid y_{j}$) are unknown which must be determined. Let C be a row vector with elements equal to the riission costs given in Table III, B be a column vector with elements equal to the required total operating requirement for each suhsystom as given in Tah?e ! and a he a matrix with elemonts ongat tn the operating tine (cycles) for each mission type as given in Table II. With this notation the problen is to find the vector Y such that:

$$
\begin{aligned}
& C Y=\text { minimun } \\
& A Y \geq B \\
& Y \geq\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right)
\end{aligned}
$$

and all of the elements of Y must be integers. Substituting the numbers given in Table I, Table II and Table III in the above relationships leads to the following statement of the problem:

Find a vector of integers, Y, such that

$$
C Y=48 y_{1} \quad+38 y_{2}+43 y_{3}+39 y_{4}=\text { minimum }
$$

and

$$
\begin{aligned}
& 6 y_{1}+12 y_{i}+3 y_{4} \geq 60 \\
& 9 y_{1}+4 y_{3}+6 y_{1} \geq 30 \\
& 8 y_{1}+2 y_{2}+5 y_{1} \geq 40 \\
& A \cdot Y=\begin{array}{l}
6 y_{i}+10 y_{i}+3 y_{4} \geq 80=B \\
5 y_{1}+y_{2}+2 y_{3} \geq 20 \\
\\
3 y_{i}+2 y_{i}+3 y_{4} \geq 30 \\
\\
y_{1} \geq 2 \\
Y=\quad y_{2} \geq 2 \\
y_{i} \geq 2 \\
y_{1} \geq 2
\end{array}
\end{aligned}
$$

The last four constraints can be eliminated from the problem by the translation of axis

$$
\begin{aligned}
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=X=Y-\left(\begin{array}{l}
a \\
2 \\
2 \\
2
\end{array}\right)=Y-2 e \\
& \text { Where } e=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right) .
\end{aligned}
$$

This transforms the original problem to the equivalent problem: Find a vector X such tiat

| | | |
| ---: | :--- | ---: | :--- |
| | | $=$ minimum |
| $A X$ | $\geq B_{X}$ | |
| | | |
| where | | ≥ 0 |
| and | B_{X} | $=B-A M$ |
| M | $=2 e$ for this problem. | |

The next step is to inspect the vector B_{x} to determine whether the complexity of the problem can be reduced. If any element of B_{x} is zero or negative the operating requirements for the corresponding subsystem will have been satisfied when the system has completed the number of each type mission necessary to satisfy the constraints $Y \geq M$. Thus, the size of the problem can be reduced by dropping all constraints corresponding to zero or negative elements of B_{x}.

In the example $B_{x}=B-2 A e$ is

$$
B_{x}=\left(\begin{array}{r}
60 \\
30 \\
40 \\
80 \\
20 \\
30
\end{array}-\left\{\begin{array}{rrrr}
6 & 12 & 0 & 3 \\
9 & 0 & 4 & 6 \\
8 & 2 & 0 & 5 \\
0 & 6 & 10 & 3 \\
5 & 1 & 2 & 0 \\
3 & 0 & 2 & 3
\end{array}\right): \begin{array}{c}
18 \\
2 \\
2 \\
2
\end{array}\right.
$$

The second element in B_{x} is negative, which means that if each type mission is run two times in order to satisfy the requirements $X \geq 0(Y \geq 2 e)$ there will be $(9)(2)+(0)(2)+(4)(2)+(6)(2)=38$ minutes operating time on subsvstem number two, which is eight minutes more than the required thirty minute operating time for that subsystem; hence, the second element in B_{x} is minus eight. This allows a reduction in the size of the problem without changing the solution by dropping the second constraint equation.

Letting A_{0} and B_{x}^{0} represent the reduced matrix and vector resulting from the deletions, the problem is rewritten as:
Find a vector X such that

$$
\begin{aligned}
C X & =\text { minimum } \\
A_{0} X & \geq B^{\circ}{ }_{x} \\
x & \geq 0
\end{aligned}
$$

- The next step is to inspert the colurins of the matrix A_{0} to determine whether the dimension of the problem can be reduced by omitting one or more of the elements 0^{*} the vector x. If any column of A_{0} contains all zeros then none of the subsystems for which data is needed will operate during the type mission corresponding to that colunin. Requiring the system to complete such a mission would only increase the cost of testing without generating any needed data. The dimension of the problem is reduced by eliminating the zero columns from A_{0} and the corresponding elements from the vectors X and C. Letting A°, X° and C° be the new matrix and vectors which result from thistrarisformation, the problem is stated in final form as: Find a vector x° such that

$$
\begin{aligned}
C^{0} x^{0} & =\text { minimum } \\
A^{\circ} x^{\circ} & \geq B^{0} x \\
x^{0} & \geq 0
\end{aligned}
$$

In the numerical example, omitting the second row in A and the second element in B_{x} reduces the problem to the form:
$C x=\left(\begin{array}{llll}40 & 38 & 43 & 39) \\ x_{1} \\ x_{2} \\ x_{4}\end{array}\right)=$ minimum

The dimersion of the proble: can not be reduced because none of the coiumris of A_{0} contair oni. zero elilerts. Thus, it is in the final. reduced ferm.

With 52 exception of the requirenent that the elecnts of x :uct be integers, the above is simply a linear programming probien witic": can be solved using the simplax method. It can be shown that, if all of the elements of A° are either zero or one and all of the elements of B_{x}° are integers, then the solution vector obtained using the simplex method will have all integer elements. This would be the case if each of the subsysterls were of cyblic nature, e.g., relays which operate for only one cycle when required during a mission. Also, if for cach subsystem, the operating time (number of cycles) is the same during each mission in which it is required to operate and the operating requirement is a multiple of this, then the problem can be reduced to the zero-one-integer problem and the simplex method can be used to find the solution vector for the integer programming problem. It should be noted that the above remierks apply to the problem after it has been put in reduced form by making. all possible decreases in size'and dimension. That is, even though it is not possible to formulate the original problem as a zero-one-integer problem it may ve possible to do $s 0$ for the protlem in reduced form.

It shouic be emphasized that the conditions of the preceding paragraph are sufficient but not recescary to assure that the simplex method will yield an integer solution to the problem. Since the simplex method is much easier to apply than the methods of integer programming, it is advisable to first find the simplex solution and see whether it is integer valued before proceeding further.

The simplex solution for the example given here is not integer valued so a search routine was used on the computer to find the solution, which is:

$$
X=\left(\left.\begin{array}{l}
0 \\
1 \\
3 \\
3
\end{array} \right\rvert\, \text { or } Y=X+2 e=\left(\begin{array}{l}
2 \\
3 \\
5 \\
5 \vdots
\end{array}\right.\right.
$$

with minimum cost of

$$
C Y=\left(\begin{array}{llll}
40 & 38 & 43 & 39
\end{array}\right) \cdot\left(\begin{array}{l}
2 \\
3 \\
5 \\
5
\end{array}=604\right.
$$

The reader may find it interesting to show that the solution satisfies all of the constraints.

The problem formulated here is of the same structure as the nutrition or diet model found in the literature. The reader is referred to Chapter 27 of "Linear Programming and Extensions" by George B. Dantizg for an excellent treatment of the formulation and treatment of that problem.

Trancaideion of Infraconic Waves

 Generated by Large Missile Launches
by

B. E. Lacy and C. E. Eharp

Institute for Exploratory Research
U. B. Arvy Blectronice Comand

Fort Monnouth, liev Jerney
Sunmery
Inframonic preanure vares generated during launching of large aissiles can be detected at distances creater than 2000 kiloneters. On a nuber of occesions during recent years, two infrasonic wave trains apaced about 30 ainutes apart have been recorded by mensor array areas located at Fort Momputh, 四. J. Thean areas are approximately 1400 kilonaters from the lamich pads at Cape Kamedy, Floridu. Io date, no explanation for these observed carly arrivals of an infresonic wave train which appears to travel at approximately twice the normal veloc. ity of sound through the atmosphere, has proven to be accepteble. Moit recently, we have observed a relationahip between these counds and the jet: atrean traveling the proxifity of the gath from Cape ramady to Fort Mongouth. On this bacis, we here evolvad a hypothasis that auch correlation axists between the jet utream and this anomelous propegation of cound vares. Because of the layge mount of jet atream date, but relatively fer Ifacile-fizing events, s otetietical dealem of firm ther experiments adequate to test the mypothesis is plannad. A theoretical aadyais explains the preasure vave ppectre received as consisting of there soparate croups of mpectra.

Introduation

Infresonic vave propagation phanciena have been explored with renewed interest in recent yeart. In this report ve sumarise our currient findings. We are concerned her only with infrasonic frequencies traversing the atmonphere. Infresonic vaves an inaudible solud waves whose Irequancy of osciliation are below 25 Hg ; thay have the ame
 sure of 760 m Ing. The aborption of infresoum 10 conaldembly lase than absorption of audible cound of the atwonphere due to hout conduction and viscosity, 1 Because of this, the detection at long diatances of inframonic enerey genersted by the large nisalins, en reprecented by IItan III and setwre Y, lamebed from Cape Kamody, Floridian ia ponaible. Frequency analysis of a nuber of mapetic tape recordinge made at Fort-Mreqouth, M. J. during the arrival of infragonic raver generated by the minalle lamenes show the marden energy propagated to be eno-
 Intion yecorded in the Fort Mopyouth teat areae meldice exceed 2.5 dymes/ez. The "noxal" traveltim for inframonic vaven from cape kenredy to fort Momouth is between 70 to 85 minutes attar lameh. This

This articie has been reproduced photographically from the author's manuscript.
variation in arrival tim agy be du to the direction and velocities of the curface rinds along the trawil path. The duration of the infrasonlc vave trains also ha been obearved to vary between five and ten ainuies. This rariacion my be the result of the relative alpan-tonolae ratio at the sensor locmtion for each laumching. Furthermore a co-called precuraor or vave train has beon oporadicaliy observed that arrirad about 10 rinuten carlier than the "pormal" wave iraln. Figure 1 clearly abow thin precureor recorded, when the vind turbulence was practically nil, at aite 1000 merth of cape renady, Flomde.

Twe Wind Surbulence Froblem

The datection at long distances of acoustical energy produced by the large miacile Inuchen (Mtan, Atles, Batur, etc.) from Cape Kem. nody is compliceted by 10 m imal-tonnoise ratios. The acoustical enery to be detected is in thy form of atmonperic pressure waves of unually lean than 2 dymes/cis, comtributed in the selected frequency spectra 0.01 to 10 ms . At the distance of interent for this study, ap. proximately 1400 km , the amplitude and frequency range of the prescure vaves detected mave been decreaen conaldermbly by atmospheric absorption, by the dimperidive effecte of vind and theperature variationa in the lover and upper atmopheric recions, and by opherical mpreadiog. at long ranges, the combined effect of these factore results in a reduction of the miltude of the missile-produced atmospheric preasure waves to leas than the realon local atmongeric premeure vapiations, empient at the sancor location. These abient variations due to local atmose phoric copditions can heve preanur mplltudes in the order of 100 to 500 dymes/c. ${ }^{2}$ and frequanoy apactra almalar to minalie-produced waves.

We foumd the most pronising approach uned to overcons these difficulties, when the position of the inframonic source is mown, to be in the eploy ant of a large muber of sengors (aicrophones, merobargraphs, or presiur tranducers) in a ifsear array, parullel to the infrreonic presoure vere front and the une of real-tim correlation techalques. The output of each semsor in the arruy is combland with the outputs of the others by aumation or multiplicatica. If the meneoris are eurilciently mpeced in the innear axym, the pressure variations caumed by wisd turbulance at esch sancor tend to produce uncorreleted outputs. These uncorrelated outputs can be expected to eve pover-wiee to $⿴ h^{2}$, where Is the almber of samors and A is the output mplitudes; whereas the aiscile-produced presaure weves arriving in phace at all sencori in the broedolde 11 near array will utw up to $(\underline{W})^{2}$. The inprovement in the al mal-to-nolce ratio over that of a sincle sensor will be equal to
 concorn is the array, of cousee, the grester the detection inprovement ${ }^{2}$ (Fis. 2). In addtion, an effective vind acreen (rig. 3) har been defined to inclose each cencor. This sereening can result in a further ipporment in ofmal-to-noise ratio of 10 to 30 ds . The amount of im. provement is frection of the degree of vind turbulence.

A 1000 ' broadeide lhaear array of 20 acreened and equally apaced microphone sensors have been in operation for several years at a test
 arrival and deternine the velocity of propagation, a second linear array of 10 sensors is in operation at a site in Middletown, y . J., reven milos north of Wayside. Both arrays are arranged parallel to the acousticpressure vave-fronts arriving from cape kennedy. These arrays are remotely controlled and the outputs recorded ria telephone circuits teralasting in a laboratory room. The time of presaure vave arrival from launching time T_{0}, the vave durations, velocity, and other pertinent data are recorded for each array and each acheduled large misaile leunching.

Opeervations

The occasiopally observed early arrival (precursor) of infrasouic waves in the time frave of 38 to 43 minutes (pig. 1) preceding the normal arrival period is of considerable linterest to those concerned with acoustic propagation phenomena. Observed ampiltudes and durations of these early arrivals are about one-balf that of the normal arrival. In the lower atmoupharic regiona, the absorption consficient, which is a function of temperature, viscosity, and preasure, is extremely eanll at the ce lov scountic Irequencies. In the upper atmospberic recions, the abmorption coefficient is greater, principally becauee of the lower atmonpheric preseure. This lends aupport to our hypotbenis that upper atmonpharic ducting is reaponaible for the easly arriving preasure vaves at the jet atrean jevel (30000 to 40000). Apparently, eardy arrival occurs only when the jat stream flow northward along the east coast from the direction of Florida. He have obeerved this phenompan during the vinter monthe and it has been conflrmad by stualies of the tropopauce viad analysie atrean frnction charts publiabed daily by the EBSA Environmentel Date serfice. 3 the velocity of the jet etrean as given in these charts plue the velocity of coumd at the crievant altitude could account for the early arrival of the infresomic vave traln. Thals theory is further confirmed by comparing the observed reducad wave anplitudes and durations of the carly arrivale with the amplitudes and durations of the normal arrivals. A four-minute file whoring the varlation of these wind atrenne over a jeriod of a year will accoupany this precentation. These data ahow that the jet atream prevali in a vest to enst direction across the U.B.A. in the sumer. As late fall occurs, the atreans drop to the southern portion of the coumtry with an attendant curvature to the north aloug the eat coast. Pigure 5 above typical vest to east avemertime patteras, while Figuse 6 shows the winter intreane approximately parallel to the east coast. The latter in thereby in the correct orientation to account for the precursor, or earlier than pormal veve arrival.

Deain of Yreriment-Statiatical Problen Areas

During observations of the early infrasound arrivals from Cape Kery nedy. the detection of the veak infraconic vave traine from lane dietences is often magked by the effects of wind turbulepce, particulariy during the vindy winter months in the northeastern part of the U. 8. Twe broadelde array of many sensors (100 or more) eppacers to be the most pronieing solution to the reduction of the effect of rind turbulence. The aicrophone sencors presently enployed require conaiderable maintenance and therefore laye arrays of a hudred or more mencors becomp rather inprecticel. At the present tine, the problem of further reducing the effects of wind turbulence remains vith us. Invectigetion of two types of infraconic gradient ${ }^{4}$ bicrophone eapeore are currently in progrese. The gredient typen offer promise of greater reliubility, lower costs per unit, and may be less affected by vind turbulence.

Then the problem of aite selection for the cencors further broadens the experimeatal desimp problen. With but only two or three aite inatrumatations economically allowed, the question arises as to where the andpling would prove to be mot profitable in terms of helpful data. Additionalif, the correlation of the sparet experimantal data vith the volut. nous wind data provide problea areas vhich may be amomble to statistical techoiques. As chown is the accompanying e11 and Mguree 5 and 6, the wind deta bhows distinct oviner-winter varietions. But, the lamohing of misailon are relatively few and far between.

To turther ccupllcate the real aituation, there could be apd are, other hypothases attempting to explain the relative occurrences of the nosmal and precureor wave trains. For this experimental desig considertion, though, ve are corriaing our attention to the one hypothesis, 1.e., the jat itrean bypotheisis. We plan to arrange experimente to confirw, or dany, this hypothenis. Initialiy, therefore, we must determine how best to proceed in this endecvor thet is typheal of many such quente In what might be termed macroscople experimantel researeh involviag apo. radic and uncontrollable conditions.

References

1. Richard K. Cook, "Strange eounds in the atwosphere, Part 1," Sound, Vol. 1, Mo. 2, pp. 12-33, May-Jupe 1962.
2. F. B. Danifls, "Moise-raducing line micropbone for frequancied belov 1 cps," J. Acoust. Soc. Amer., Vol. 31, IO. 4, 529-531, April 1959.
"Tropopause wind analysia strean function charts," U. B. Dapartinat of Comerce, EssA, Envirommantal Date Service, Heather Bureau, Silver Springe, Maryland 20910.
3. B. B. Bauer, "Desige and measurement of jnfraconic gradient alcrophoner and vind screens," J. Acoust. Soc. Aber., Vol. 44, Io. 5, PF. $142 \boldsymbol{R}-1436,1964$.

Selected Bibliography

1. "Launch Acoustical Enviromental Sumarien," Published by the John P. Kennedy Space Center, MASA, TR 927, 30 January lyby, Office of the Director of Information Syatams.
2. C. T. Johnson and P. E. Hale, "Abnormal sound propagation over the southwestern United States," J. Acoust. Soc. Amer. Vol. 25, Ho. 4, pp. 642-650, July 1953.
3. William L. Dons, Bric Pomentier, Uri Fehr, M. K. Balachandran, "Infrasound at l.ong range from Saturn V, 1967," Science, Vol. 162, pp: 1116.1120 , o December 1468.
4. Harold N. Ballard and Mike Izquierdo, "Reduction of Mcruphone Wind Moise by the Gemeration of a Proper Turbulent Flow," Enrirommental Science Div. Report ERDA-262, February 1965.

Wave Spectru

APPMMIX I

A theoretical analysis was performed in an attenpt to explain mathrematically the total process of generation, tramsaisalon, and reception of thase pressure vaves as typified by Figure 1 . Thal theoretical approach is fundareatal in nature as it providen understanding of the char. acteristics to be expected from signals so formulated. It is planned to present this original and extensive theory in a meparate publication as yet undetermined.

Of interest, though, to those conceraed with the physics is that a close exanination of the experimenteliy obtained aigals of Fifure 1 show bigh correlation vith these theoretical findings. Pronounced characteristics that arw readily appareat in Pigure 1 coincide with the analyticel resuits. This figure bbows that between approximately 47 and 53 minutes from launch-tive, the normal sipal consists of reletively proninent groups of "agnal spectra having amplitudes clustered at posi-i tions located 48, 49, and 50.7 mantes fros launch time. It may be furither noted that the firat group of spectra at 40 minuten is relatively amil in aplitude, valle the eecond two groups are contrantiaghy large.

This clustering and relative asplitudes are in close accord with the theoretical findinge, which show an expectation that three major time periods of energien will be experienced in the reception of ouch pressure simels. The first period is mathematicaliy predicted to conaist of
reletively low-level high-frequency transients. Then folluwe two major
 laithal transient group.

This analysis therefore abow, es experienced experimentaliy, that one should expect a first-arrival lov-level responce to the initial alssile initiated energy upite. Then the two larger groups of pressure vares follov, as Pigure 1 clearly 111 ustratea.

Fig. 3. An experimental design of an inirasonic wind screen incloslre.

Fig. 4. Experimental infrasonic broadside array of 20 microphones.

FIG. 5 TYPICAL SUMMERTIME JET STREAM PATTERNS

 (OF AN ANTITANK MSSIIE WITH SIDF JETS

HY

R. G. CONARD AND N. R. RICII

U. S. Army Missile Command
Kedstone Arsenal, Alabama

Abstract

This paper deals with the probability of catastrophic failure and target miss of an antitank missile in filght resulting from failure of control jets to fire. When two failures occur in sequence, the missile deviates widely from the flight path but is recoverable. When three jets fall to fire in certain sequences, catastrophic missile failure will result.

A complete solution to this problem would involve the determination of the probability of failures of all possible combinations of successes and fallures which would result in ground impact. It would consider the random distribution of the location of the target relative to launch position and the distribution of the missile about an average flight path.

A partial solution to this problem has been found in a system of "states," or intervals in the vertical plane. The recursive equations for the probability of lying in each state have been developed and tables of state probabilities for several values of the probability of success for one jet pair.

INTRODUCTION

The specific problem addressed in this paper deals with the probability of failure for a missile which employs jet pulses as a control mechanism and as a means for overcoming gravity.

In this system pairs of jet pulses fire sequentially as the missile, which maintains a fairly constant roll rate, flies toward the target. The pairs of jet pulses are so located about the center of gravity that little or no net torque is applied to the missile body (Figure 1). The firing position of the jets is in a near vertical plane. By varying the angle away from the vertical plane, a side component of thrust may be attained. This side force makes lateral corrections in the flight path upon command (Figure 2).

Figure 1. Location of Jets (Side View)

Figure 2. Location of Jet Pulse (Rear View)

The major concern is with the effect on the flight trajectory of a pair of jet pulses failing to fire at the correct time. Since the missile is acted on by gravity, it will drop immediately unless continually sustained by these jet pulses. The lateral dispersion will be affected also; this may or nay not be serious depending on the location of the target with respect to location of missile when failure occurs and on the magnitude of such disturbing forces as cross wind. In this study, dispersion in the vertical plane alone is dealt with.

The missile is of a type which is continually commanded from launch to target. In this paper, it is assumed that failure problems do not exist in the fuidance system, but occur only in the control mechanism.

So that the missile can be brought back to original flight path, the rate of iiring inerenses as crrors become larger. The time interval between jet firings is a discrete fraction of nominal firing intervals. The nominal firing rate will just balance gravitational forces, but a more rapid firing rate will force the missile to move upward.

During the flight test programia known rate of failure has been observed. The fallures have beern in the circuitre so that dither both jets of a pair fire simultancously or both fail.

In the flight test program it has been observed that out of a total of M commands, L pairs have failed to fire. The estimated failure rate of the circuitry, therefore, has been $L /$ M. There is no reason to belicve that the rate will change unless the quality is improved at some additional cost or that the circuit is redesigned.

The effect on the trajectory has been investigated when combinations of failures have oecurred in the flight program. Even though there has been a fairly high rate of component failure in the fight test program, the missile has not hit the ground. Although the missile exceeded a desirable control band for an interval of time, it would have missed the target only if the fallure had occurred immediately before impact.

For this investigation two types of failures have been defined:

1) The missile deviates from the line of-sight to the target by more than one unit. In this case it exceeds a desirable control band which will result in a miss if the deviation oceurs just prior to impact.
2) The missile deviates downward thee units and will impaet the ground. This case is a catastrophic fallure and can never recover ow hat the inget.

COMBINATIONS OF FAIL.URE

The first approach considered for this problem was that of determining the probability of certain eombinations of failure.

If it is assumed that there are N jet pulse pars, cach with probability p of success and corresponding probabilty of failure $q \quad 1$ - pand that the pairs fail independently of one another, the probability of no failures will $\mathrm{x}_{\mathrm{x}} \mathrm{p} \mathrm{F}^{\circ}$. The following recursive equations hold:

1) Probability of no repeated failure (FFi in a sequence of X - (Table 11

$$
A_{N}={ }^{p A} A_{N-1}+p q A_{N-2}, \quad A_{0}=1, \quad A_{1} \cdot 1
$$

 3
3
3
0

$$
\begin{aligned}
& 1 . J 0 J J \\
& .75 J 0 \\
& .6253 \\
& .30 J 0 \\
& .4062 \\
& .3281 \\
& .2656 \\
& .2148 \\
& .1738 \\
& .14166 \\
& .1137 \\
& . J 920 \\
& .0744 \\
& . J 602 \\
& . J 487 \\
& . J 394 \\
& . J 318 \\
& . J 258 \\
& .0258 \\
& . J 168 \\
& .0136 \\
& . J 110 \\
& .0089 \\
& . J J 72 \\
& .0 J 58
\end{aligned}
$$

Table 1.

\square

$$
.9500
$$

$$
.9750
$$

 of $\mathrm{N}=($ Table 2)

$$
C_{N}=p C_{N-1}+q p C_{N-3}: a^{3}, \quad \because \quad \therefore \quad r \quad 11
$$

3) Probability of at least one pair of failure (FF but nos subserfuc ne:e with three or more failures in a row = (Tabla in

$$
W_{N}=1-A_{N}-C_{N}
$$

Trajectory simulation implies that when any combination of three out of four consecutive pairs or three out of five consecutive pairs of jets fail to fire in the right sequence, catastrophic failure results. Some combinations of three failures in six consecutive pairs result in marginal flight. A sequence of reven where the first, seventh, and any one other pair in between fail will not result in catastrophic failure. In fact, if every fifth jet pair failed to fire, the missile would recover but the dispersion about the desired flight path would be large.

This approach was abandoned since the important missile position could be found only by taking a particular combination of failures and running a trajectory simulation. The approach did not provide direct information on the probability of missile failure. For example, the missile would fail catastrophi cally if failures and successes alternated (SFSFSF...), but this case would be included in the calculation of A_{N}.

dISCRETE STATE STOCHASTIC MODEL OF VERTICAL DEVLATIONS

The next approach taken involved a simplified model of the vertical deviation from an average or nominal trajectory.

The average trajectory was computed by a least squares fit of the trajectory when all jets are firing in the proper sequence and at expected time intervals. The least squares lit established an average or expected trajectory about which the missile osclllated (Figure 3). In making the fit to the average trajectory the data immediately following the time when the failure occurs were discarded. The data were again used when the firing rate once more became normal.

At the time of firing of the $\mathbf{N}^{\text {th }}$ jet pair, the missile can be considered in one of seven "states." Each state is an Interval in the vertical plane.

In a system of N independent subsystems that are employed consecutively, each with probabinty of
success, W is the probability of at least one pair of consecutive failures but no more than wo failures in a

Table 3.

deviation

Figure 3. Vertical Deviation from Average Flight Path

If there are no jet failures, each pair will fire when the missile is in state 0 (Figure 4). The missile is considered to be in state 0 when the first pair is fired. Let $\mathrm{XO}(\mathrm{N})$ deuote the probability of being in state 0 at the time of firing for $\mathrm{N}^{\text {th }}$ pair, then $\mathrm{XO}(1)=1$.

rigure 4. Nominal Trajectory (No Jet Failures)

When the first failure occurs, the missile will drop into state 2 (Figure 5). If the fallure is followed by a success, the thrust of the jet pair does little more than arrest the missile in its fall; thus, the missile remajns in state 2 . The next success will bring the missile to state 1 and the next success brings the missile to state 0 . For example, for the sequence S, S, F, S, S, S, the states will be $0,0,2,3,1,0$.

Figure 5. Vertical Deviation (One Jet Fallure)

Two jet failures in a row after a series of successes will drop the missile into state 4 (Figure 6). If the next firings are successes, the missile will stay in state 4 one time and then climb up one state at a time. Thus, the sequence $S, S, F, F, S, S, S, S, S$, will result in the states $0,0,2,4,4,3,2,1,0$. For the sequence S,S, F,S,F,S,S,S,S,S,S, as shown in Figure 7, the state sequence is $0,0,2,2,4,4,3,2,1,0$.

Three failures in a row will place the missile in state 6 (Figure 8). This Is a captive state representing the catastrophic failure of hitting the ground. Once in state 6 , the missile remains in this state.

The recursive equations tor this model are given in Table 4. Here XI(N) is the probablity of being in state 1 at the time of the $N^{\text {th }}$ pair firing. These were developed through the following type of reasoning: The missile can be in

Figure 6. Vertical Deviatiry (Two Jet Failures)

Figure 7. Vertical Deviation (Failure-Success-Failure Sequence)

Figure 8. Vertical Deviation (Three Jet Fallures)

```
(1) XOIS = pX01N-11 + pX11S - 11
```



```
(5) X4(N) = qX2(N - 11-qpX2(N-2, - qpix3(N-3)
(6) X5/N)=qXI(N-11-qpX3IN - 21
(7) X6(N)= X6(N-1) & qXin(N-1) - qX4(N - 11
```


Table 4.

siaite 0 at the time of the $x^{\text {th }}$ finting coly if it wore in state on or stato 1 at the previous firing and that firing was successful. Thus, Prob (state 0 at time N $=$ Prob (state 0 at time $N-1$) - Prob (success) + Proh (state 1 at time N - 1) - Prob (success), or $\mathrm{X} 0(\mathrm{~N})=\mathrm{pX} 0(\mathrm{~N}-1)+\mathrm{PXI}(\mathrm{N}-1)$. It is assumed that the probability of success is independent of the state. The initial conditions for this set of recursive equations are given in Table $\overline{5}$. The values of the state probabilities for $N=1, \ldots, 25$ and $p=.30 . .90 . .95, .99$ are shown in Tables 6 through 9.

N						
States	1	2	3	4	5	
0	1	p	p^{2}	p^{3}	$p^{4}+p^{3} q$	$p^{5}+2 p^{4} q$
1				$p^{2} q$	$p^{3} q$	$p^{4} q$
2		q	$2 p q$	$2 p^{2} q$	$2 p^{3} q$	$2 p^{4} q+2 p^{3} q^{2}$
3					$2 p^{2} q^{2}$	$4 p^{3} q^{3}$
4			q^{2}	$3 p^{2}$	$4 p^{2} q^{2}$	$4 p^{3} q^{2}$
5						$2 p^{2} q^{3}$
6				q^{3}	$4 p^{3}+q^{4}$	$q^{5}+5 p q^{4}+8 p^{2} q^{3}$

Table 5.

The probability of catastrophic failure (hitting the ground) is the probability of being in state 6. If a target were of such a size as to cover states 0 , 1, and 2 exactly, the probability of hitting the target would be the probability of being in any of these three states.

There are several drawbacks to this approach. The target might not cover an exact number of states so that the distribution within states is of importance. The range of the target should be considered to be variable: thus, the time between "times of firing" needs to be taken into account. As the pairs are fired, the number of available jet pairs decreases. Thus, if a failure occurs near the end of flight, the time until another unused pair is in position to fire is longer than it would be at the beginning of flight and the missile might drop further. For this reason, the model does not provide a uniformly good approximation to reality.

One of the limitations of this approach is the difflculty of relating the position of the missile in one of the various states to its position along the trajectory since the rate of firing of the side thruster is not always a nongtant. In order to compensate exactly for gravity there must be a predictable amount of impulse imparted to the missile during a given time interval. If ove side jet pair fails to fire at the proper time and the missile develops a vertical acceleration due to gravity, the acceleration must be corrected and the missile brought back to its appropriate flight path by more rapid firing of the side thrusters.

If the success-failure sequence is known, the number of successful side jet firings required to bring the missile back to its original flight path can be determined by flight simulation. For the simpler cases this has been done and a time relation between state position and the required number of successful firing results has been determined explicitly. The more complicated sequences would present some difficulty especially if the supply of available side jets is exhausted. On the average, however, a missile in a given state whose vertical acceleration has been arrested will have experienced a predictable number of successes within a given time.

QUESTIONS TO BE CONSIDERED

The following questions are submitted for consideration by the panel.

1) The distribution of the miasile deviation about an average flight path will involve the diapersion of a properly functioning missile as well as the dispersion resulting from jet failure. A technique is required for combining the two sources of error.
2) Since the target is at a random position relative to the launcher, the probability of hit may be related to the range of the target. How should the target range be included as an error source?
3) Toward the end of Ilght, the number of jets to be fred becomes limited. Therefore, if a failure occurs late in the flight, there might be empty rows of jets. This would result in a delay in tiring after the failure until a pair of jets would be in the proper position to be fired. How should this problem be handled?

A PROBABILIT APPROACH TO CATASTROPHIC THREAT

Clifford J. Maloney*

Bethesda, Maryland
I. INTRODUCTION. Prior to World War II statistical methods were viewed as a body of techniques appropriate to scientific research and to a limited range of other activities, primarily insurance. The war and the immediate post war years saw an enormous expansion of the application of statistics to quality control of incoming supplies, operations research as a replacement for trial and error in the choice of operational organization and technique, and sample surveys as a substitute for complete canvass for obtaining socio-economic data needed in decisionmaking. Developments more purely mathematical in nature, including linear programing, development of the electronic computer, finite mathematics and the like served to help foster an increasing mathematical, probabilistic, and statistical approach to decision-making in all aspects of human activ: \because.

Perhaps the one aspect which has so far not attracted the attention of scholars has been the anticipation, prevention, and/or amelioration of unexpectad but costly contingencies; an activity the businessman has long known as "putting out fires." But despite the fact that, superficially at least, "every case is different," the vary fact that in the aggregate these occurrences are both frequent and costly, suggests that at the very least we can attempt to codify the techniques by which the successful practitioners cope with these pheonomena, however diversifled, and that a possibility as well exists that some underlying structure will be discovered.
II. THE NATURE OF CATASTROPHE, The Statistical Department of the Metropolitan Life Insurance Company defines a catastrophe as any accident In which 25 or more itves are lost. Two incidents will. show that an event may be a disaster despite the fact that no loss of iffe occurred or was even threatened. The first was the Pueblo incident where the chief cost was the severe. and continuing, but unmeasurable contribution to the threat to peace. The second was the pubilic reaction to the charscterization of a military briefing as a "brainwashing." One suspects that, two years later, the reaction would be very different. A first attempt to list the characteristics of a disaster is given in Figure 1. The ensuing six figures give a few ill-chosen examples under each of $s i x$ disaster characteristics to which the reader can undoubtedly add an indefinite number of more suitable examples.

My claim that while, in fact, unexpected the disastrous event was "predictable" can be illustrated by the seizure of the Pueblo. All parties recognized that such an act was conceivable. The difference lay exclusively in their assessments of its likelihood. All I mean by
*iews expressed herein are those of the author and not to be construed as official.
 occurrence. Contamination of the moon by earth microbes, or of the earth by organisms returning with the astronauts is another such case. Earth rupture, tsunami, or earthquakes are all conceivable consequences of underground nuclear tests. It is unnecessary to argue that the incanceivable never happens in order to make it clear that most catastrophes are of an ordinary garden variety; that their catastrophic nature lies in their (1) severity and (2) unexpectedness, not in their absolute novelty.

That geastrophe severity is as much paychological as real, may not be at once apparent. Such loss (other than one ship and the suffering of the men and their families) as was sustained in the Pueblo incident, lies in the threat to world peace - i.e., is psychological. The Dugway sheep kill created a great public outcry - yet the anticipation that several workmen will lose their lives when the Washington, D. C. subway is built, won't raise an eyebrow. The brainwashing episode was an extreme example.
III. DECLSION-MAKING DOMAINS. To decide to ignore or to anticipate a threat is to make a decision, and decision-making is one of the more recent and more prestigious applications of probability. If, as claimed, catastrophic threat has not hitherto been recognized as an appropriate application of decision theory, there must be something about the material that conceals its appropriateness for the technique. We can at once expose this unconscious assumption, show how to remove it, and show the absolute necesisity of doing so by reviewing the circumstances in which the application of probability is currently fully recognized. First, partly as a horrible example, partly because all prablems not treated with a formal algorithm are necessarily so treated, and partly to show the absolutely fundamental role of probability in all of life's decisions, the universally applied method of comon sense will be listed as a specific method and discussed. Its characteristics are given in Figure 8. Many, if not most, of life's decisions hinge on an estimate of probability. To portray this rule in a military context, I have extracted certain sentences from the chapter on the Anzio Campaign from the book COMMAND DECISIONS, published by the Office of the Chief of Military History in 1959, and present them in the appendix. Figure 9 is a map of the theater involved. By reading these extracts, which are limited to only those sentences in which a probabilistic concept is essential, in order one can gain a picture of the campaign almost as complete as by reading the full text.

Two further points should also be clear. The various generals assessed the probabilities very differentiy. In particular, General Mark Clark feared over-precipitate advance because of his one-time experience at Salerno. The English authorities geemed to feel that the German Cassino Line would crumble the moment the Allies had gained a foothold. No Allied comander seems to have contemplated the possibility of an unopposed landing - which in the event is what happened. What I

EEck te fafer from thio orample is that up to the time of Worid War II, no formalized procedure existed for dealing with the probability component of comand decision-making and that that lack proved costly.

The application of probability considerations first occurred, and by now is well established, in the situations which grew out of, or which can be logically reduced to, games of chance. In practice, these cases arise in designed experiments or in sample surveys where the sample is drawn by "probability sampling." This situation is characterized in Pigure 10.

In a closely related but distinguishable situation, characterized in Figure 11, the sample is not drawn from a preformed population but from a growing one. Both of these cases (Figutes 10 and 11) involve probabilities and sample sizes in a middle range.

In the next situation (Figure 12) we are dealing with a case where, again, probabilities are, or at lease often are, in.the middle range, but sample sizes are usually not even defined. During World War II, the Weather Bureau developed a so-called 30-year series of Northern Hemisphere maps to enable military forecasters to make forecasts by matching the current weather map with an earlier situation, on the assumption that the aucceeding weather should also be a repetition. Unfortunately, matching is never exact. At this point a new factor is brought into play, which goes back to the earliest recognition of a role of chance assessment'in decision-making, but which was relatively neglected in the century preceeding World War II, while an objective foundation for probability seemed to be proving adequate. This new factor was the concept of personal probability, not as a quantity having external reality, but as a measure of subjective mind state whether shared by several minds or peculiar to one. It will be argued below that this factor hae been incorrectly apprehended. Here it is sufficient to note that on this foundation a super-structure for dealing with forecasting, technological and otherwise, has been elaborated and is being increasingly widely adopted. A good introduction is afforded by Bright (1968) and the references there included.

Finally, we come to the situation contemplated in this paper. Like the case above, sample size is essentially non-existent. But here the 'probabilities are so low that no hope exists of accumulating a fund of cases, sufficiently "similar" co provide more than the most tenuous basis for probability quantitation even as a belief state. This is the case described in Figure 13. The essential difference between this case and that of Figure 12 is that, whereas in the latter, probabilities are fairly high, here they are low. For example, stock market, weather or weapons syatem foracasting cannot successfully be based on simple sample statistics, as for instance is done when the number of telephones or children per household, or the weight gain due to a ration additive is
assayed in a controlled trial; still the market opens, the next day comes and brings with it an after the fact verifiable weather outcome, and whatever weapon system is chosen for development, five to cen years justifies the decision or reveals its invalidity. But catastrophic threat may or may not come to pass. The air defense of the United States againat a bomber attack by the Soviets was incredibly expensive. Was it a success? No such attack occurred, but would one have had one if the defense been less effective or less costly? We will never know. The current debate over ABM deployment would not continue a day if all concerned were agreed that within the decade of the seventies one or more technologically effective nuclear missiles were highly likely to be launched against one or more of our cities. The ABM proponents, quite as much as the opponenta, not only hope that the event will not occur, but assess its likelihood as low. The disagreement is entirely over how low is low enough.
IV. PROBABILITY FOUNDATIONS. Three times in the past the development of a new foundation for quantitative probability has resulted in a major success in the increase in understanding and control of the real world. The two "objective" foundations, the a priori or necessary of Cardan Galileo, Fermat and Pascal, and the frequency foundations of Graunt and Halley, developed about the same time, proved adequate as a foundation for all applications of probability prior to World War I . They were abstracted to a formal mathematical calculus at the end of that period by Kolmogoroff and others.

For the most part the necessary and the frequency foundation for probability are complementary. There is, however, one aspect in which they give conflicting counsel, the problem of outliers. On the frequency definition an outlier is meaningless - for that approach takes experience as given. On the contrary, the a priori or necessary approach rejects experience whenever it is in conflict with doctrine. Adherents of both approaches, being sensible men, adhere neither to the one extreme nor to the other. Nor, indeed, do they in practice achieve a comfortable compromise.

As suggested above, notions of "degree of belief" as a foundation of probability theory, while studies in the years following World War I, were not widely employed until after World War II. Most adherents of personal probability adopt a concensus form of the approach. It is not what one believes, but what one ought to belleve that matters. DeFinetti and Savage, however, go all the way and allow everyone his own private degree of belief, divorcing the concept entirely from external world eventa.

[^0]One gchieves a chance structure by neglecting most of these latter. Then the precise value of the predicted variable depends on the contribution of the neglected variables, which being unknown makes the predicted value a chance one. Each of the other theories can be obtained by making assumptions about this formula. The a priori definition assumes that the relative frequency of possible values of X can be inferred because the values of the independent variables are known, whenever individually important. The frequency definition conversely finds the values only of a fraction of the parameters, age, sex, occupation and so on in the case of mortality schedules ascertainable, but a number of essential parameters remain unknown, so that observations on X, as well as calculations on the known right hand terms, are required. Either subjective theory would differ from the a priori approach only in that the values of the parameters and the form of the function would be apprehended intuitively rather than be calculated from theory or inferred from sampling experiments. How does a batter hit a ball is the classic example to distinguish between the rational, algorithmic approach to nature and the intuitive subconscious unanalyzed approach. The batter seldom regards a graduate degree in mechanics as essential for success - though he does indeed bear in mind all the identifiable admonitions which can be derived either from theory or experience.

Personal probability is to be distinguished from objective probability not because it is an entirely diffarent - an unrelated - species, but because it stresses a component always present when a mind contemplates the external world. The mind never knows the world, it has only beliefs about it. These beliefs are a substitute, or better, an alternative for objective measures: In some contexts, the objective criteria prove more successful, in others the aubjactive judgments. These beliefs can have ilttle value if not verified in practice, and verified in just the way that objective deductions are - by the observed outcome. If the odds makers pick the wrons team to win the World's Series, all agree that the choice was an error. One is entitled to his opinion - but only before the game. The several bases for the concept of probability are set out in Figure 14 .
V. A NEW VIFA OF PROBABILITY. It was remarked above that the requirements of supplying a foundation for decision theory in circum stances where evaluating parameters by ampling of many indistinguishable elements is not available, has since World War II been furnished by the concept of probability as "degree of belief." It was further asserted that the true nature of personal probability is not, as often thought, something apart from objective probability. There is only one probability. That is the success ratio in a series of trials. A logical complication arises frow the fact that the series is necessarily infinite and therefore necessarily conceptual rather than actual. It may be eatimated in each of three ways. The first way is the a priori or necessary approach.

If the possible results can be enumerated, if they possess an adequate degree of symmetry, and if they are independent: we annly the principle of insufficient reason. This approach has always been intuitively appealing, logically intractable, and limited in application. The device of just trying or observing a large number of trials, partially overcomes this latter difficulty, shares in a different way the intuitive appeal, but iatroduces its own logical difficulties. The degree of belief approach possesses the prime advantage of always being applicable, but only to the perceiving mind, never to the real world. For this latter to occur we must appeal to a method of verification. For example, comsider a weather forecaster. Each newscast he prenents a "fearleas forecast" preceded by an explanation of why his last forecast failed. Weather forecasts are made on the basis of much data, much theory, historical records, or Farmer's Almanacs. The basis is irrelevant. The verification is the thing. If the forecasts are verified, the forecaster is a success. The sequence of trials is thus the successive forecasts periods. The successes are the verified forecasts, all others are fallures. The process is just as objective as was Graunt's birth series. That the forecaster used his degree of belief in formulating his forecast is an incidental as the use by a batter of his in deciding to awing at a pitched ball. Each man functions as a measuring instrument. A person is often superior to a machine in auch functions.

The catastrophic threat problem does introduce a complication. In most, if not all, realiatic applications of personal probability the verification is not long in coming. That is why people forecast. But a catastrophic threat is necensarily a rare eveat, if it happens at all. Just as we cannot, before the avent, accumulate an adequate fund of experience upon which to base an eatimate of probability, so we cannot after the verification atep accumulate a sufficiant fund of verified or disproved forecasts to establish a success ratio in a trial sequance known to be homogeneous in the probability aense. Fortunately, the occurrence compensates for its severity by ita rarity. The new element which the present analysis seeks to supply to the contribution of probability to decisionmaking is a new technique of verification.

For this purpose conaider Figure 15, Here we have listed not one stochastic aequence, but three labelled as conditions $A, B, C . A, B$, and C could be threats of aggression by three differant nations, or the threat of war, of famine and of major epidemic. Each reprenents what would usually be chosen to characterize one teries of trials as ordinarily described in discussions of probability. But the types of catastrophic threat are not limited; they are legion. Suppose we employ the methode of personal probability to assign "degrees of belief" to occurrence of each. Further, let this be done not by one individual, or by one forecasting team, but by many, each applying whatever "betting ayatem" is most attractive. We would get as a result a two-fold matrix of assigned probabilities such as is diagrammed in Figure 16.

While it is true that the probabilities subjectively assigned to the contingency that a catastrophe of specified nature would occur in a specific interval of time is low, and in general varies as between the types of contingencies involved, the possible contingencies are legion, so that it is to be expected that on any given estimation procedure a fairly high number of possible catastrophes would be assigned the same or nearly the same value of the probability of occurrence in a specific time frama. In Figure 17, this is indicated by assigning probabilities not to individual catastrophic contingencies, but to classea characterized by the property that within a class, each individual catastrophe is regarded as equally likely. The grouping may well be different as between rowa. Hence, the columns do not refer to the same contingencies in every row. The letter \underline{k} in each cell represents the number of contingencies all assigned the same probability of occurrence by the technique of that given row.

As each period of observation passes, the occurrence of the various typen of catastrophe would be notad. The ubjective probabilities assigned by any one procedure (in any one row) would be verified or refuted according an the empirical minccess ratio was eufficiently close to the ex ante assigned probability or not. This empirical ucceas ratio would be calculated in a slightly different manar from that utilized at present, whare it is assumed that every sequence of trials is studied in imolation and without ragard to what is happening in any other. Let the succesn ratio at a certain observation period be n / m; where n is the number of catastrophea, all having been assigned the same probability, which have so far occurred and m is the product of the number of such catastrophes by the number of observation perioda. Here k equals the number of catastrophes grouped as having the same aubjective probability of occurring, and p ia the probability itnelf. Lat h be the number of catastrophes of this class which occur in the next observation period. Of course, h will almost always be zero, rarely be unity and almost never be greater. Then the success ratio at the end of this period becomes

$$
\frac{n+h}{m+k}
$$

The essence of this procedure is that we are judging, not the success in ansigning aubjective probabilities to specific types of catastrophes, but the betting aystem itself (at this level of probability). If the probability assignment for one class of catastrophe is verified, our confidence in the assignment of all classes is strengthened.

So far we have pooled experience in assessing the efficacy of a particular "betting system," i.e., method of assigning subjective probabilities, but only at a specific level (or limited range of levels) of the assigned probability. As first ahown by Karl Pearson, we can use chi-square or some alternative approach to get a combined teat of the procedure irrespective of level.

Particularly in a medicai envitumeni Lit need to eñouse a very high level of safety for products produced for human consumption has received increasing attention. The Polio and Thalidomide incidents are instances. The cigarette and cyclamate episodes provide an illustration of variation in response to evidence. These cases have been studied (so far as the author is aware) by extrapolation of conventional statistical rechniques from regions of relatively high probability ($B 0$ that evidence is attainable) to the region of intereat where probability of occurrence is extremely low = one in a million exposures or leas. The present paper seeks to provile a procedure for catastrophes where even this extrapolatory technique is unavailing, but there is no reason why, when it is, that the evidence from both approaches should nor be pooled.
VI. THE COST FACTOR. Costs, like threats, are some real and some imaginary. A perfect system of probability assessments would still not be adequate for decisionmaking, if costs are ignored, except in those instances where the probability concerned is negigible.

There is a vague appreciation that in a military context "negligible" probabilities are a trap. Defenders, particularly budget officers who are to fund protection from uch "impossibla" threats, or competitors for those funds inevitably dismise auch probabilities as nagigible, yet often in fact, fust that atratagem will be selected by attackera in the very knowledge that it will be unanticipated by the defendere. Instances arc the Pearl Harbor attack; the choice of land over aea approach at Singapore; the Black Forest end run of the Maginot Line; the "post season" sea assault at the Battle of Hanting. Two famous examples from the history of mathematics describe the failure of Saccheri, and the success of Hamilton from a confrontation with the unthinkable.

As this paper treats catastrophic threat the costs are by ansumption high. But a closer estimate is needed. Perhaps the outstanding characteristic of disaster costs is that the ex post ${ }^{2}$ estimatea of costa "always" outweigh the ex ante ${ }^{1}$ cost estimates, and by a huge factor. This is recognized by every parent who tries to get his teenage offspring to cross a colleige campus or to drive the f amily car with due caution. The military aeets this problem in stark terms when it tries to indoctrinate habits of safety in new recruits. Live amunition in field exercises represents one attempt to secure credible reality. However, no adequate technique has been found.

[^1]But while a closer approximation of ex ante to ex post costs assessments by new troops would reduce the incidence of nerannal tragedy, and shorten the battle seasoning of troops, the wide discropancy inevitably existing in assessing the costs of catastrophes, is the essence of the catastrophic threat problem. Indeed, in practice a!l or nearly all the discussion will be found to turn on an estimation of the probabilities, and little of it on assessment of the costs, though a great deal of attention is devoted to deprecating the costs of prevention or of protection predicated on this presumed negligible risk. With a one-sided consideration of both costs and probabilities, there is litcle chance of efficient decision-making.

The instinstive impulse of the matinematically, or philosophically minded is to generalize the problem and then return to the apecific example - in our case the unreality of ex ante eatimates - on the basis of supposedly clearer insight. To estimate is to make a decision, and decision-making is intrinsically emotional. This point was graphically demonstrated by Koehler in experiments during World War I, Figure 18.

If a chicken is placed close to a short atretch of fence and a handful of grain is placed on the other aide close to the fance, but beyond reach through it, the chicken will excitedly press against the fence and never step back to seek a way around it. if the grain is moved farther away, the emotional attraction will be raduced, and the hen will have better chance of solving the problam.

So true is it that deciaion-making is an emotional procase that advertising and political diacuasion are directed almost exclusively at emotional, and only incidentally at logical components of issues. In consequence persona who will make daciaions are eelected on the basis of emotional, not rational, characteristics. So wideapread is this process that it almost becomes a "first law of management" that, when it comes to making decialona "thone with the powar lack the knowledge, those with the knowledge lack the power." In consequence, the "on tap" become the "untapped."

This lack of knowledge has not merely been recognized, but has been deplored through all of history. Even so, courts of inquiry, inquests, grand furies, staffa, study groups and a host of other techniques, have evolved to supply knowledge deficiencies of those in power. However, in power rather than information dominated environment, all such devices tiend to be ineffective because they tend to be ignored. Where power makes decisions, only power can influence decisions Where decisions are out of touch with reality because information is ignored, and countervailing power is laking feedback from consequences is avoided. Figure 19 ifstar certain principles which seem applicable.

As cendency of emotional over informational factors in decisionmaking leads to a widely recognized, widely deplored, oscillation in efforts at averting or dealing with catastrophic threat. The soldiar
knows this oscillation in the contrast between his hero's role in times of threat. and scappgar'g rele in zecming peace. The iin-rooi . parable is known to all, but heeded by few. The technique outlined in this paper represents only what could be done, but not what will be done, until the forces producing this violent oscillation are rendered impotent. A aingle incident at this Deaign Conference will llluatrate the situation. One talk at the Conference was given by Dr. Condon, in charge of the afaty program for the moon landings. After explaining that the success of the afety program was due, in large part at least, to his refueal to adopt a "good enough" attitude, the speaker conceded that the program was thereby made costly and comented that, in the days ahead there will be "pressures on us in the way of costs."

This is the universal story of the fight against catastrophe. The expense ensures success; the success breeds lack of support. It will always be thus where decision-making is a budgetary process.

REFERENCES

Bright, Jaraas R. ed. [1968]. Technological Porecasting for Industry and Government. Prentice-Hall, Englewood Cliffs, New Jermey.

DeFinetti, Bruno [1937]. Forasight: Itw Logical Lawa, Ita Subjectiva Sources. Annales de J.'Institut Henri Poincare, Vol. 7. Reprinted in Studies in Subjactive Probability, Kyburg \& Smokler, ada. Wiley.

Quade, E. S.ed. [1964]. Analysis for Military Dacieions. The Rand Corporation, Santa Monica, California Report No. R-387-PR.

Savage, Leonard J. [1954]. The Foundation of Statietice. John Wilay 6 Sone, Inc. Available from Univaraity Microfilma, Ann Arbor, Michigan.

SURDEN

EXTREME
UNEXPECTED
PREDICTABLE
PSYCHOLOGICAL
RARE

Figure 1. Characteristics of Catastrcphes

SUDDEN
Donota vs. Los Angelea Smog
Iran Earthquake vs. Erosion
Epidemice va. Normal Death Rate
Air Crash va. Automobile Deaths
Poliomyelitia vs. Cardiac Arrest

Figure 2. illustrativa Examples

EXTREME

Date
1947

Place	Type	Deaths
Texas City	Fire-exp.	561
Boston	Club Fire	492
Port Chicago	Ammo Ships	322
Hartford	Circus Fire	168
Southweat	Tornado	167

Figure 3. Illustrative examples

UNEXPECTED
 Thalidc:-ide Teratogency
 Fearl hambor Attack
 Prince of Wales and Repulse Virginia Flood (1969)
 Figure 4. Illustrative examples

PREDICTABLE
Radium illuminated dials
Giant Solar Flare
Urknown Moon Agent
Smallpox among natives
Nuclear test triggered tsumami
Figure 5. Illustrative examples

PSYCHOLOGICAL
Battle of Big Bethel
Sheep deaths near Dugway
D. C. Subway deaths
"Brainwash" political death
Figure 6. Illustrative examples

Figure 7. Putting out fires

RANGE - - - - . - . . . - - all
\therefore CANIQUE - - - - - - - - - "educated" guess
SAMPLE SIZE - - - - - - - unknown
VALIDATION- - . . . - - - experience

tixure $9 . \quad$ Comon sense

Preceding page blank

Figure 9. Theater of Anzio campaign

RANGE - - - - - - - middle
rechaiqui - - - - - iurmai statistics
SAMPLE SIZE - - - large
VALIDATION- - - - - experiment

Figure 10. Formal statiatics

```
RANGE - - - - - - - middle
TECHNIQUE - - - - - quality control
SAMPLE SIZE - - - - large
VALIDATION- - - - - feed back
```

 Figure 11. Process monitoring
 RANCE - - - - - - middle
TECHNIQUE - - - - - forecast
SAMPLE SILE - - - - none
VALIDATION- - - - - feed back

Figure 12. Technological forecasting

RANGE - - - - - - extreme

TECHNIQUE

SAMPLE SIZE — - - nore
VALIDATION- - -•- - feedback
Figure 13. Catastrophic threat

PROBABILITY FOUNDATIONS

Necessary	Fermat, Pascal
Frequency	Graunt, von Mises
Abstract	Rolmogoroff
Personal	Bernoulli, Bayes
Neglected Causes	

Figure 14.

Cond	Ralt	Cond	Ralt	Cond	Rs1t
A	F	B	S	C	S
A	S	B	S	C	F
A	F	B	S	C	F
A	F	B	F	C	S
A	S	B	S	C	F
A	F	B	S	C	F

Figure 15. Examplea of chance sequences

$$
\begin{array}{llllll}
\mathbf{P}_{11} & \cdots & \mathbf{P}_{12} & \cdots & \mathbf{P}_{1 j} & \ldots \\
\mathbf{P}_{21} & \cdots & \mathbf{P}_{1 c} \\
\mathbf{P}_{22} & \cdots & \mathbf{P}_{2 j} & \ldots & P_{2 c} \\
& \cdots & \cdot & \cdots & \cdot & \ldots
\end{array}
$$

Figure 16. Matrix of probabilicies assigned to catastrophes (columas) by different procedures (rows)

$$
\left.\begin{array}{ccccc}
K_{11}, P_{11} & K_{12}, P_{12} & \cdots & K_{1 c}, P_{1 c} \\
K_{21}, P_{21} & K_{22}, P_{22} & \ldots & K_{2 c}, P_{2 c} \\
\cdot & \cdot & \cdot & \cdot & \ldots
\end{array}\right) \cdot, \quad . \quad .
$$

Figure 17. Matrix of catastrophes assigned a common probability

KOEHLER EFFECT

Figure 18. Effect of emotional intensity on decision-ma'ing

Feedback necessarily occurs
Information feedback is cheapest
Information feedback is ignorable
Feedback through channels is no feedback

Pigure 19. Principles of decision-making verification

APPENDIX

1. A convonler can make a decision simply by ruling out what appears to him to be impractical or unfeasible. (244)
2. General Alexander felt that ... allied tronps on the enemy flank ${ }^{4}$ below Rome might so threaten German commuications as to compel the enemy to retreat. (248)
3. Link-up between the main and the Anzio fronta, it was assumed, would take place no later than seven daya aftar the landing. (248)
4. A strengthened Anzio force, if assurad continuous resupply by water, could, he believed, consolidate a beachhead.... (249)
5. Whether the 60 miles between Anzio and the Garigliano was toi great a distance for action on une front to influence the other was als.absed, but it was accepted as an unavoidable risk. (249)

6: It was, impossible to predict the exact German reaction to a landing, but the most probable reactiona aeamed dasirable from the Allied standpoint. (250)
7. The Anzio force might provoke the Germans ... to withdraw. (250)
8. ... intelligence officers of the 15 th Arwy Group were rather optimiatic. (251)
9. ... they 'counted on' the effect of westher and on harassmant by the Allied air forces to interfere.... (251)
10. The [ambiguity of orders to Sixth Corpa] arose from the difficulty of judging (252)
11. Fifth Army intelifgence estimates were leas optimistic.... (252)
12. The enemy was judged to have. (252)
13. By the third day the Germans could perhapa. (252)
14. Two additional divisions could probably. (252)
15. The Fifth Army assumed that the VI Corpa would meet atrong rasishat... on the beaches (252)
16. It expected the Corps to receive heavy counterattacks.... (35'.
17. ... having underestimated German atrangth at Salerno.... (252)
18. The Fifth Army - and with it the VI Corps - expected the sadu: pattern.... (252)
19. The Fifth Army expected the VI Corps to be ready to do one of two things upon landing. (253)
20. The operation becomes such a desperate undertaking. (254)
21. Otherwise "a crack on the chin is certain" (254)
22. A failure now would ruin Clark, probably i ill me, and cortainly prolong the war... (254)
23. A week of fine weather at the proper time and I (Lucas) will make it.... (255)
24. Alexander told Lucas "we have every Confidence in you" (255)
25. What troubled General Lucas... was the contrast between his own concern... and nonchalance in the higher echelons.... (255)
26. Lucas was not so sure. (255)
27. The chances are seventy to thirty that (256)
28. He [Lucas] believed his forces lacked the strength (256)
29. The general idea seems to be... (256)
30. I wish the higher headquarters were not so optimistic.... (256)
31. Securing a beachhead was all Fifth Army expected.... (257)
32. Lucas [was not] to push on to the Alban Hill wass at the risk of sacrificing his corps (257)
33. Such a poasibility [moving on the Alban $H \neq 11 \mathrm{~s}$] appeared silm to the Fifth Army Staff (257)
34. The ataff quedtioned Lucas' ability.... (257)
35. It was obvious what the loss of the supply base would mean (257)
36. If the enemy came to Anzio in strength (257)
37. The Britiah feared they might mistake Americans for Germasis (257)
38. What everyone had overlooked... was the possibility of achieving complete surprise (258)
39. The Germans always regarded the long sea flanks in Italy as exposed.... (258)
40. To reinforce [local troops Kesselring] expected to call on Tenth Army for a division.... (259)
41. He hoped to have the Fourteenth Army in north Italy move ... the equivalent of about one or two divisions (259)
42. Fearing that the Fifth Army was about to make a breakthrough.... (259)
43. Feeling that the fate of the Tenth Army (259)
44. According to the German estimate the landing had a good chance... (259)
45. Field Marshall Kesselring assumed that the troops would probably try. to seize the Alban Hills (260)
46. The Germans were considerably reassured by Allied behavior at the landing (261)
47. Kesselring's order to stand fast on the Garigliano-Rapido line was... In the nature of a gamble.... (261)
48. If the Allies attacked on January 23 or 24 , German forces would not: ba strong enough to hold (26i)
49. The evening of 23 January, Kesselring "believed" that the danger of a beachhead expansion was no longer imminent (261)
50. By 24 January the German comand considered the danger of an Allied breakthrough removed. (261)
51. Alexander was very optimistic, Clark omewhat abbdued (261)
52. Lucas' concern with logiatical apacta came not only from prudence (262)
53. He believed the Germane could incraase their build-up (262)
54. He belleved the Germana would stop his VI Corps before it could cut their line of communication (262)
55. His intelifgence officers informed him that the Germans were taking troops from the Fifth Army main front to oppose him (262)
56. This might permit the Fifth Army to advence (262)
57. The Fifth Army, Lucas was certain, would still have to fight powerful rear guards (262)
58. He expected no apectacular rapidity of movement (262)
59. ... he sought to build up his strength and his supplies to remain intact even though isolated (263)
60. I feel now [January 25] the beachhead is safe (263)
61. Lucas expected the 1st Armored Division to arrive soon (263)
62. That is about all I can supply but I think it will be enough (263)
63. I must do nothing foolish (263)
64. I must hold it "..." I think t can (263)
65. Kesselring came to the conclusion that the Allies were preparing a full scale attack (263)
66. The best defense, he felt, was an attack on his own (263)
67. Lucan thought he could attack in a few daye (264)
68. He axpectad 30 LST's to be unloaded at Anzio 27 January (264)
69. Clark "received the impression" that the outcomc of the struggie depended on who could increase his forces more quickly (264)
70. Though the istuation was not clear to Clark (26ش)
72. Apparantly, mome of the higher levels think I have not advanced with maximum speed (264)
73. I think more has been accomplished than anyone had a right to expect. (264)
71. He urged Lucas to take bold offonaive action (264)
74. This venture was always deaperate one (264)
75. I could nuver mae much chance for it to uucceed (264)
76. Without Anzio our aituation would have been desperate (264)
77. Had I rushed troops to Albano and Velletri they would have been destroyed (264)
78. The only thing to do was what I did (264)
79. Kaep the enamy off balance until the Corp was ashore and everything was eet (264)

r!.. situation is crowded with doubt and uncertainty (265)
: explet to be counterattacked in the morning. (265)
i chink he realized the seriousneas (265)
3s. He [Clark] thinks I should have been more agresaive on D-Day (265)
Ther: $h a s$ been no chance to build "Shingle" up to decisive atrength (265)
Arone could have geen that from the atart (265)

- an winif I un left alone (265)
: Uu't know whether I can stand the atrain (265)
'ur'. all chose above him thought Anaio would ahake the Casaino धधe it unce (266)
uey had no right to think that (266)
It was clear that the attack had not accomplished much (266)
?'s langer force met unanticipated opposition (266)
lhi enemy had an unexpectedly strong and well organized defenaive 1 \because (206)
: Gomblour the Germans has built up their forces around Anzio (266)
:11 thi. Ailles did.not know was how close they came to breaking out - ?abhorat (266)

: : : intellfgence officers had to assume (266)
$\therefore \therefore$ a. \because (ripht he could support two more divialons at Anzio on -. : •••?

[^2]102. General Devers thought Lucas should have gone on - on landing (268)
103. "Had I done so, I would have lost my corps" (268)
104. Clark thought Lucas had done all he could at Anzio (268)
105. I thought I was winning something of a victory (268)
106. General Clark thought Lucas could have taken the Alban Hills but could not have held them (268)
107. Clark thought British G-2 intelligence was always over optimistic (269)
108. The Germans built up their differences at Anzio much faster than the British believed possible (269)
109. Clark had always felt that Anzio had ifttle chance of auccess (269)
110. In retroapect Clark felt that the total losses at Garigliano and at Anzio might have been afer and as productive at Garigliano alone (269)
11.1. A powerful counter attack at Anzio could well have wrecked the entire Italian Campaign (269)
112. By the and of January, Clark was disappointed by Lucas' lack of aggressiveness (269)
113. Clark believed Lucas should have made a reconnaiasance in force to capture Cisterna and Campoleone.... (269)
114. Clark thought such an effort to be not incommensurate with Lucas' forces (269)
115. Others felt much the same (269)
116. Genaral Marahall thought Lucas could have taken the Alban Hills (269)
117. However, he thought Lucas had acted wisely (269)
118. Marshall felt Lucas could not have hald the Alban Hills and the port at Anzio (269)
119. The theater G-2 had held the ame opinion at the Christmas Day Conference at Tunis (269)
120. G-2 thought Lucas would have been in a bad way without a main front breakthrough. (269)
121. The Allies wouid be unable to kecp the Germans from shifting forces co Anzio from eouth Itaily as well as elsewhere (269)
122. General Lemnitzer also felt the Allies did not have the strength to hold the Alban Hills (269)
1.23. Lemnitzer thought that filexainder hoped that the Angio operation plus a main force attack "might" force a German withdrawal (270)
124. The advance "on" the hills was exactly what Alexander thought possible (270)
125. When Alexander visiied tise beachhead on D-Day he approved the decision not to push out far from Anzio. (270)
126. Lemnitzer thougnt that Alexander thought that Lucas had done no wrong. but was under too much strain (270)
127. By that time it was clear the Anzio operation would involve a long, hard strugsle (270)
128. It would geem that Lucas' action during the first few days was justified (270)
129. The main German drmy showed no signs of withdrawing (270)
130. The Allies saw no imediate prospect of forcing a general retrear (270)
131. It became far more likely the Germans would move in strength against Anzio (270)
132. If the VI Corps went too far inland it would risk annihilation (270)
133. Allfed intelligence judged the German strength as sufficient but not overwhelming (270)
134. It would seem that the Allied hesitation on the Anzio shore stemmed irom a belief in German invincibility (270)
-35. This belief was a product of doubt and uncertainty hoth before and suring the operation (270)
: r. This belief was used later to explain the inevitability of the actual course of events (270)
137. The only thing that disturbed Lucas was the necessity to safeguard the port (271)
:33. Nithout it the swift destruction of the corps was inevitable (271)
139. Lucas thought he could not have done differpntly (971)
140. Nevertheless the alternative remained a disturbing possibility to h1m (271)
141. He admitted a mass of armor and motorized infantry might have reached the Alban Hills (271)
142. He was sure he could not have remained there (271)
143. Any force that far from Anzio would have been in the greatest jeopardy (271)
144. Lucas did not see how it would have escaped annihilation (271)
145. As it turned out he believed he had reached positions from which the enemy was unable to dislodge him (271)
146. Lucas believed the whole operation a mistake (271)
147. Anyone who expected him to puah to the Alban Hills was bound to be disappointed (271)
148. Lucas had nover considered doing so (27:1)
149. He considered his mission to be taking the port and its surroundings (271)
150. Parhaps this was an influence of the Navy (271)
151. Admiral Cunningham asserted no reliance could be placed on over the beaches maintenance (271)
152. Unfavorable weather was probable (271)
153. General Clark ald: "You can forget this goddam Rome Business" (271)
154. The capture of Anzio was an obvious objective (271)
155. But early occupation of the Alban Hills was vital (271)
156. The Anzio forces later realized the importance of the hills (272)
157. Was General Lucas fustified in delaying seven days before starting his offanaive? (272)
158. Could he have gotten away with the gamble of an immediate drive to the Alban Hille (272)
159. Certainly the complete arprise achieved at the landing could have been exploited (272)
160. According to Tenth Army estimates only a quick cutting of lines of communication would have led to major Allied success (272)
161. Such a ouccess would be more likely to capture Rome (272)
162. According to Kesselring's Chief of Staff, an audacious flying column could have penetraced to the city (272)
163. He was astonished at the Allied passivity (272)
164. Could the Germans have withstood a dynamic front as they did the static front? (272)
165. Would they have dared to hold both at Anzio and at Garigliano (272)

16th. An Allied force ensconced on the Alban Hills would have been a much greater threat than those or Anzio (272)
167. The answer can only be speculation (272)
164. Alexander thought an aggressive commander'would have acted differently than Lucas (272)
169. He would and could have pushed regiaental strength patrols to the hills (272)

1\%. The shock of Allied troops directly threatening Rome might have by itself permitted Allied retention of bath the hills and a supply corridor (272)
171. A bluff might have worked (272)
172. General Patton might have been succeasful (272)

FROM: COMMAND DECISIONS - Office of the Chief of Military History Department of the Army 1959

EMPIRICAL BAYES AND THE DESIGN AND

 ANAIVGIS OP EYPERTMENTSRichard G. Krutchkof f
Virginia Polytechnic Institute Blacksburg, Virginia

Let me start with an introduction to Empirical Bayes. Consider the simple estimation situation in which we observe a value x of the random variable X which has distribution function $F(x \mid \theta)$, and must estimate θ with small squared error. In the parametric situation, the form of the distribution function is known except for the value of the parameter θ. Both x and θ may be vector valued.

For Empirical Bayes to be applicable here we consider the case in which the estimation problem is routiue. That is, we observe x_{1} from $F\left(x_{1} \mid \theta_{1}\right)$ and must estimate θ_{1}; then some time later, in a similar but independent situation, wa observe x_{2} from $F\left(x_{2} \mid \theta_{2}\right)$ and must estimate θ_{2}. This routine situation continues until at present we have the observation x_{n} from $P\left(x_{n} \mid \theta_{n}\right)$ and we must estimate θ_{n}. These estimating situations we call experiences. As an example consider the situation encountered at the Radford Arsanal. Every aix weeka base graln was mixed and aubiequently cured with Nitroglycerine in order to form propelient for the Nike miseile. It was desired to estimate the parameters for each base grain separately since it was believed that the parameters would vary from base grain to base grain in some unpredictable maner. Since the θ values $\theta_{1}, \theta_{2}, \theta_{3}, \ldots, e_{n}$, vary in an arbitrary and unpredictable manner, we assume that θ is a random variable but with a completely unknown distribution. It is important to note that we do not use our ignorance of the distribution as a justification for choosing a diffuse or uniform dietribution.

If one were to take a completel. classical approach to the problem he would note that X_{n} is a sufficient tatistic for σ_{n}. This is easily seen by noting that

$$
F\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n} \mid \theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n}\right)=\prod_{i=1} F\left(x_{i} \mid \theta_{i}\right)
$$

The classical solution to the problem therefore must completely ignore the observations $x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}$ and use only the observation x_{n} in eatimating θ_{n}. Even intuitively this is an unfortunate result.

Tite puit bayesian approach to the problem assumes a form for the distribution of \because, say $G(11)$, and then obtains the estimator

$$
E\left(\because \mid x_{n}\right)=\frac{\operatorname{idF}\left(x_{n} \mid \theta\right) d G(\theta)}{\int d F\left(x_{n} \mid \theta\right) d G(\theta)}
$$

(the posterior mean) as the minimizing estimator. If the choice of $G(\because)$ is correct then this is indeed the minimizing estimator. If the choice of $G(j)$ is not correct then the estimator may have a very large mean squared error. Note that the Bayes estimator ignores the past experience $x_{1}, x_{2}, x_{3}, \ldots, x_{n-1}$, as did the classical estimator. Surely, we should be able to use chis experience in some way.

The Empirical Bayes approach to this problem is now very simply stated. We find the Bayes estimator $E\left(\theta \mid x_{n}\right)$, which is usually given In terms of the unknown distribution function, and express it in a form which can be estimated from the data, $x_{1}, x_{2}, x_{3}, \ldots, x_{n}$ without knowledge of, or assumptions about, the unknown prior diatribution. The proper forms for E(0|x ${ }_{n}$) are given in Rutherford and Krutchioff [11]
for four general families of distributions, Examples of members of these general families are the Poisson, Negative Binomial, Logarithmic, Gama, Normal (unknown mean), Normal (unknown Variance), Exponential, and the Uniform Distributions. In Lemon and Krutchkoff [5] an Empirical Bayes estimating procedure is proposed for any discrete conditional distribution. This procedure has now been extended to include any conditional digtribution.

Let me now briefly mention some recent applications of this approach. First, consider the simple linear orthogonal model

$$
x_{1}=1+B\left(X_{1}-\bar{X}\right)+\varepsilon_{1}
$$

where the errors are assumed to be normal and where we must routinely estmate , and \therefore This problem is considered in Clemmer and Krutchkoff [1] and the example analyzed there is worth rementioning here.

Every six weet.s Ridford Army Arsenal mixed Base Grain for their Nike missiles. The Base Grain was then cured with Nitroglycerine to form rocket propelient. Estimates of the parameters in a linear model were requifed for each Base Grain. Since the chemicals were purchased at diferent times and mixed at different times under different atmospheric conditions, the parameters were expected to vary in an unpredictable minner, lising the estimator for the normal distribution given in Rutherford and Krutchkoff [11], Clemmer and Krutchkoff [1] found the desired estimators as

$$
E(\alpha \mid \hat{\alpha})=\hat{\alpha}+\frac{\sigma^{2}}{\tilde{\hat{N}}} \frac{f^{\prime}(\hat{\alpha})}{i(\hat{\alpha})}
$$

and

$$
E(\beta \mid \hat{\beta})=\hat{\beta}+\frac{\sigma^{2}}{S_{X X}} \frac{f^{\prime}(\hat{B})}{\hat{f}(\beta)}
$$

where $\hat{\alpha}$ and $\hat{\beta}$ are the usual Least Squares or Maximum Likelihood estimators for a and B, σ^{2} is the arror variance, N is the number of observations taken in the $n^{\text {th }}$ experience, $S_{X X}$ is the usual sum of squares of the independent variable $\left(\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}\right) ; f(\hat{\alpha})$ is the marginal density of the least squares estimator; and, $f^{\prime}(\hat{a})$ is the derivative of this density estimated at the same point. In general, the form of the estimator in simply the laast aquares astimator plus a correction factor. The correction factor is the variance of the least quares antimator timan the ratio of the derivative of the marginal density to the marginal density itself evaluated at the present value of the least equaras estimator. It is worth noting here that if the parametar has a diffuse prior distribution then the ratio of the derivative of the density to the density will in effect be zero and the Empirical Bayes estimator will be the Classical eatimator. Thus, whan the prior information is of little value this correction term disappears rather than bianing the result undully.

The estimate of the ratio recommended in the paper [1], can be simply writton as

where

and where

$$
h=n^{-1 / 5}\left\{\max \left[\frac{1}{n} \quad \sum_{i=1}^{n}\left(\hat{\alpha}_{i}-\overline{\hat{\alpha}}\right)^{2}, \frac{1}{N} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)^{2}\right]\right\}
$$

$$
\text { with } \overline{\hat{a}}=\frac{1}{n} \sum_{i=1}^{n} \hat{a}_{1} \text {, and } \bar{y}=\frac{1}{\bar{N}} \sum_{i=1}^{N} y_{i} \text {. }
$$

Note that we are ubing \hat{a}_{i} to represent the least squares estimate for in the $i^{\text {th }}$ experience and $\frac{\sin 0}{0}$ is to be interpreted as unity. An estimate of $\frac{f^{\prime}(\hat{\beta})}{f(\hat{B})}$ in obtained by simply replacing the $a^{\prime} \mathrm{s}$ with $B^{\prime} s$.

The improvement of this Empirical Bayes eatimating procedure is then compared with the Clasaical procedure by taking a ratio of the mean equered errors. Thia was done by choosing a distribution for a and B and generating a_{1}, B_{1} from thi diatribution and then generating several obeerved values y_{i} from the regrecsion equation
$y_{1}=a_{1}+\varepsilon_{1}\left(x_{1}-\bar{x}\right)+\varepsilon_{1}$ with ε_{1} being randow normal arrors. This was done fifty times obtaining new values for the observations at each experience. The Empirical Bayes estimator was obtained using the $1-1$ previous eats of data as past experience. The entire run of 50 experiences was then repeated 500 times. The average ratio of the Empleical Bayes squared errors to the Classical variance was then plotted as a function of the number of experiances. This was then repeated for many different prior distributions, error variancem and experimental designe. It was found that the mean squared error for the Empirical Bayes procedure was never greater than that of the classical procedure with the ratio of the Empirical Bayes mean aquared error to the Classical mean squared error often dropping well below unity. It was also determined that the ratio of the mean squared errors depends not on the prior diatribution or the error variance or the design but solely on one relation involving them; namely,

$$
z=\frac{\operatorname{Var}(\hat{a} \mid a)}{\operatorname{Var} \alpha}
$$

for a and a similar expression for β. Thls index is the ratio of Line leasi squares variance to cie variation in the patameter. iniuitively, if the least aquares variance is amall and the parameter variation large not much information can be extracted from past experience. This is, in fact, the case. When Z is extremely small, below 0.1, we find that the derivative of the marginal on is is small compared with the density itself and the correction fortor disappears. On the other hand, when the least squares variance is large and the parameter variation amall, much is to be gained from past experience. However, when Z is very large (say 10) then one $m i g h t$ as well assume that the parameter is not varying at all and pool all the data. The interesting and raalistic range is when 2 is about unity. Figures 1 , 2 , and 3 given here are for Z values of $0.5,1$ and $\frac{2}{2}$ with past experience ranging from one to fifty. The solid line is for o^{2} known, obtained by pooled data or estimated from the present data with $\mathrm{N} \geq 20$. The broken inne is for σ^{2} estimated from the present set of data with $N=8$. The reduction in mean squares error obtained from nineteen batches of Base Grain is given here in Table 1.

Then in Martz aud Krutchkoff [6] the regression model was extended to the multilinear model

$$
y_{1}=a+\beta X_{1}+\gamma x_{1}^{2}+\ldots+\varepsilon_{1}
$$

where orthogonality was not requirad. This required obtaining the multivariate axtanaion to the astimatora prasented in Clemmer and Krutchkoff [1] and finding eatimetore for joint marginal densities and their vector derivatives. The man equared errors once again were never greater than those of the least squares estimators with their ratio of ten dropping wall below unity for the usuht 2 values.

The model was then extended to allow for the possibility that 0^{2} varien in an unpredictable way from experience to experience, Consider the model

$$
y=\begin{aligned}
& x \beta \\
& z= \\
& z
\end{aligned}
$$

where $\not \subset$ is a k.p matrix of known fixed quantities which remains the same from experiment to experiment and ε is diatributed $N\left(0, n^{2} I\right)$. We assume β and σ^{2} vary randomily from experiment to experiment according to the unknown prior distribution $G\left(\beta, \sigma^{2}\right)$.

If X is of rank p, the unal least aquares estimators for β and 3^{2} are

$$
\underset{Z}{\hat{B}}=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

and

Denote $(k-p) \dot{\sigma}^{2}$ by S. For this situation, the Empirical Bayes estimators are given by

$$
\dot{\hat{\beta}}=\hat{\beta}+\frac{S\left(X^{\prime} X\right)^{-1}}{k-p-2} \frac{f_{N, \hat{B}}, k-p-2(\hat{B}, S)}{f_{N, k-p}(\hat{\beta}, S)}
$$

and

$$
\sigma^{2}=\frac{S}{k-p-2} \frac{E_{N, k-p-2}(\hat{B}, S)}{E_{N, k-p}(\hat{B}, S)}
$$

The past axperience for this is in the form of the vectors

$$
\binom{\hat{S}_{1}}{S_{1}} \quad\binom{\hat{E}_{2}}{S_{2}} \quad \cdots\binom{\hat{B}_{n}}{S_{n}}
$$

The ratio of densities given here are estimated in a way eimilar to the exprasions already given but a bit more complicated. The actual formulas are not yet published, but can be found in the Virginia Polytechnic Institute Ph.D. dissertation of one of my sudents (see Rencher (8]). Needless to say, many simulations were run and never was the Classical squared error for any component of 8 amaller than that of the Empirical Bayes procedure for as faw as one past exparience. The amount of improvement was similar to the figurea already shown. On the other hand, there were cases in which we neaded as many as five experiences before the Empirical Bayes procedure had a smaller squared error than the Maximum Likelihood procedure when eatimating d^{2}. See for example figure 4.

Another example of an Empirical Bayes application ia in Sequential Estimation. Here we considered the case in which one must sequentially estimate the mean of a Normal distribution, the cost being the am of the mean squared error and a constant times the number of observations
taken. Although the big problem was the atopping rule, we had some difficulry in handlizg the pasi, experience, since the number of observations taken differed from experience to experience. This problem was solved, however, and the molution ia generally applicable to this rype of past experience. The resulta, i.e., the ratio of Empirical Bayes cost to Classical cost plotted as a function of the number of experiences is typically as shown in the solid line of figure 5. The dotted line is the improvement obtained by using the Clasaical stopping rule and then the Empirical Bayes estimator. Since determining the stopping time by the Empirical Bayea approach is so very tedioun we recommend using this hybrid approach. Unfortunately, the details of these procsdures have not as yet baen submitted for pubilcation.: They are available, howevar, in the Ph.D. dissertation of another one of my tudenta (ace Lemon [4]).

Andther project preaently underway is the estimation of the power spectral density function in a time series. In a time series situation one often has past experience from eimilar aituations or one can break the prement time series into parta which can be considerad expariences. For exmple, in testing atrese on airplane winge in a wind tuanel one has the reaults of tasts on other winge, When the Navy obtains a tim serias aigal from the path of a submarine, it is marely one experiance in many such experiences. In each of theme the object is to obtain the powar amplitude of the various frequency components. We have used the Empirical Bayes approach to obtain efficiencies of the order of 150% that of the atandard approach. This work is atill in progroes.

A projact which is funt about complete now involven entimeting the arrival and service paramater in a que. Wa have estimators for ques involving the axponential and the Ehrlang diatribution. As usual, the Empirical Bayas astmators have a aignificantly smailer mean equarad error then the unval eatinators. A typical example is depicted in Figure 6. λ is the man arrival time, μ the man service time, and p is the trafilic intensity for an $M / M / 1$ Que.

Now let us discuas the Analysis of Variance, pirat, we considered the random effects model:

$$
y_{i j}=\mu+a_{i}+c_{i j}
$$

with I effecte and J repetitions per effect. We were able to estimate the variance σ_{A}^{2} of the effects as well as the error variance by using
past exparience. By making a ratio of theme two atatistice, we came up with an anclog to the F atatistic. The percentage points of this atatiatic were found by Monte Carlo mimulation for several values of I, J and numberm of experiences. We found that these tables depend only on J and N and not on I. Many typical altuations were then
simulated and the power for the Empirical Royoe teat of the typathiása ${ }^{\prime} A=0$ was always significantly greater than that of the usual F-test for the same size; After as few as ten or fifteen past experiences the power was as much as $50-80 \%$ higher for the Empirical Bayes teat.

For the fixed effects model

$$
y=x \underline{x}+c
$$

we had to reparameterize to full rank before proceeding. Onca this was done, the estimates were the game as for the innear regreasion situation. In order to test the Hypothesis $\varepsilon=0$, we made an analogy to the Fstatistic ty using the sum of squares of the Empirical Bayes estimators for the pirameters in the numerator and the estimated error variance in the denominator. Here the percentage points were found to depend on the number of repetitions, the number of experiences and also the number of effects. Only tables for up to six effects were simulated, Once again the Empirical Bayes test wad always more powerful than the usual F-test (when there were at least four past experiences). Unfortunately, the details of this topic are not yet in print, but can be found in Rencher [8]:

Before leaving parametric Empirical Bayea, I've been aaked to briefly dention the results we obtained in long range prediction of, rainfall. The Weather Burwau puts out a map, twice a month, predicting rainfall in the categories of light, moderate and heavy for a pariod of 30 days. The predictions are for large areas and not for particular locations. We were asked to use this map and predict for each city the amount of rainfall within the next 30 days. We were able to do just this.: We found a procedure for predicting the probability distribution of rainfall in inches for any location that had been collecting such data for at least fifteen years. The resulta were ramarkably successful. One could only compare with the Weather Buraau, however, for the categories Lhght, moderate, and heavy, The Weather Bureau, for example, was correct In Roanoke, Virginia, but 30% of the time while we were cortect more like 70% of the time. The details of this project can be found in Philpot and Krutchkoff [7].

Let us now turn to another type of Empirical Bayes Estimation, Cunsider the situation where the distribution of the observation is itsulf unknown; a non-parametric situation. Here, we observe the value x ot the random varlable X whose distribution depends in some unknown way un \because and we are asked to estimate G with small squared error. Such cstimation is of course impossible. For this situation, we assume that there is a supplementary observation obtained after the estimate is kiven, perhaps in the form of customer feedback. To be more specific, let us say we have observed an x from some unknown distribution and must estimate the a value related to it in some unknown way. Later,
we are given an observation y from the random variable Y whose
 is, our supplementary sample is an unbiased estimate of θ. Unfortunately, this estimate is too late. In Krutchkoff [3] the problem is assumed to be routine with the θ values varying in an unpredictable way. The Empirical Bayes estimating procedure for this oituation is very aimple. If the present observed values is x and there are several past. experiences with this same value of x, then use as your estimate the average of the supplementary values y which occurred after the occurrence of the value x. If there is not a sufficient number of past experience at $x_{1}=x$, then make a
linear regregsion using the past y values as the dependent variable and the past x values as the independent variable and find the regression value of y at x. The results of such a situation are given in Krutchkoff [3]. Generally, after a few past experiences the Empirical Bayes mean squared error drops below the mean squared error of the Classical estimator which would be used if the distribution of X were actually known. Here we have not only am eatimator which we can use whan nothing alse exista, but one which is better than the usual entimator when one does exist.

An extengion of this non-parametric appraach was given in Gabbert and Krutchkoff [2]. Here we assumed that a machine producing itume whe to be checked to determine when it was Out of Control. The innear regression form of the estimate wis employed but using only the past fifteen experiences.

A ample of defectives was taken and x, the sample proportion of defectives found. The value y was later supplied by some other procedure such that $E Y=P$, the true proportion of defectives. Clearly, each box is an axperience with the true proportion of dafectives varying randomly. The estimate of the prasant proportion was obtained from x by using the past fifteen values of x, y, in a linear regresaion; and obtaining the regreasion value of y for the preaent value of x. The variance needed in the control chart was also obtained from the innar regrassion as the variance of the ragrassion line at the present value of x. A typical power function for the Empirical Bayes procedure is given in. figure. 7. Here the machine was caused to go out of control, producing a proportion of defectives varying randomly about some undesirable proportion P_{1} (P_{0} is the in control valus). The power for the procedure is seen to startsout balow the ulual control chart procadure but after a few experiences with the out of control machine the power increases rapidly. In this example, the Empirical Bayen procedure detects the out of control situation at about the twelfth consecutive eample whereas it takes the usual procedure about 18 samples. Of course, ance this Empirical Bayea procedura doen not make uese of the fact that the sample ia Binomial, it can be applied in situation where the distribution of the first sample is itsalf unknown. We are presently working on a ingle sample non-parametric approach but not enough resulta are as yet available to present anything here.

Although the title of this paper contains the "design of experiments." I have virtually nothing as vet to report. Several results, however, can easily be predicted. For the non-parametric supplementary sample situation we did not require the present suppiementary sample to determine the estimator or its squared error. If the squared error is within tolerable limits, we need not take the supplementary sample at all. We can, in effect, calibrate the preliminary sample eliminating. the need for talking the more costly supplementary samplea.

In the parametric situation we recall that our squared error was smaller than that of the Classical procedure. By entimating the prior variance we can estimate the efficiency of this procedure and thus be able to predict the number of observations one needs to obtain a predetermined squared error. This number will, of course, be malier than that required by the Classical Procedure.

No doubt there are optimal designs for the Empirical Bayes procedures. Since Erapirical Bayes is more efficient than the Classical approach using the clasaically optimal design it makea good sense to hope for an even better efficiency when we find the Empirical Bayes optimal design. This question is, as yet, unanawered, but we are working on it.

REFERENCES

1. Clemer, B. A. and Krutchkoff, R. G. (1968). The use of Empirical Bayes estimators in a inear regression model, BIOMETRIKA, Vol. 5 55, Pp. 525-534.
2. Gabbert, J. T. and Krutchkoff, R. G. (1970). Supplementary Sample Non-parametric Empirical Bayes in a Quality Control Situation, BIOMETRIKA, to appear.
3. Krutchkof f, R, G. (1967). A supplementary Sample non-parametric Empirical Bayes approach to some statistical decision problems, BIOMETRIKA, VO1. 54, pp. 451-458.
4. Lemon, Glen H. "Emprifal Bayes Analysis of Some Sequential Experiments." Virginia Polytechnic Institute Ph.D. Dissertation, December, 1968.
5. Lemon, G. H. and Krutchkoff, R. G. (1969). "An Empirical Bayes Smoothing Technique." BIOMETRIKA, Vol. 56, pp. 361-365.
h. Martz, H. F. and Krutchkoff, R, G. (1969). Empirical Bayes estimators in a multiple Einear regression model. BIONETRIKA, vol. 56, pp. 367-374.
6. Philpot, J. W. and Krutchkoff, R. G. (1969). Probability Forecasts of 30 -Day Precipitation. Published by the Water Resourcer Research Center of Virginia, Bulletin $\$ 2,145$ pages.
7. Rencher, Alvin C. "The Empirical Bayes Approach to the Analysis of Variance and Linear Regression." Virginia Polytechnic Institute Ph.D. dissertation, August, 1968.
8. Rutherford, J. R. and Krutchkoff, R. G. (1967). The Empirical Bayes approach: Estimating the prior distribution, BIOMETRIKA, Vol. 54, PP. 326-328.
9. Rutherford, J. R. and Krutchkoff, R. G. (1969). E asymptotic optimality of Empirical Bayes estimators, BIOMETRIKA, Vol. 56, pp. 220-222.
10. Rutherford, J. R. and Krutchkoff, R, G. (1969). Some Empirical Bayes techniques in point Estimation, BIOMETRIKA, Vol. 56, pp. 133-137.

TABLE 1

NIKE MISSILE RESULTS

MAXIMUM PRESSURE VS. AGE:

FOR a:			FOR B:	
n	z	R	2	R
2	. 43	. 98	1.34	. 93
3	. 51	. 95	1.72	. 88
4	. 45	. 95	1.08	. 87
5	. 23	. 97	. 53	. 90
6	. 45	. . 91	. 89	. 85
7	. 42	. 91	. 98	. 83
8	. 74	. 86	1.38	. 75
9	. 64	. 88	1.30	. 75
10	. 59	. 86	1.23	. 72
11	1.04	. 77	5.01	. 58
12	. 95	. 77	3.69	. 56
13	. 30	. 91	. 71	. 81
14	. 69	. 81	1.72	. 80
15	. 54	:.86	1.36	. 70
16	. 54	. 86	1.57	. 69
17	. 41	. 89	2.51	. 61
18	. 52	. 86	1.57	. 69
19	. 17	. 96	. 45	. 87

NUMBER PAST EXPERIENCES WITH MEAN FRACTION DEFECTIVES P P_{1}
 Power curves for 3 control limits when $P_{0}=.10$ and $P_{1}=.15$

FIFTH SAMUEL S. WILKS AWARD

Presentation made by

Dr. Frank E. Grubbe

Preceding page blank

$6: 0$

Dr. W. J. Youden, now retired from the National Bureau of Standards, has been awarded the samuel s. Wilks Memorial Medal for 1969. The announcement of Dr. Youden's selection for the 1969 Wilks Award was one of the higtilights of the Fifteenth Annual Conference on the Design of Experiments in Army Research, Development and Testing, which was held at the U.S. Army Missile Comand, Huntsville, Alabama, 22-24 October 1969. Dr. Youden has long been recognized as one of the outstanding applied statisticians by both the U. S. A. and countries abroad, as well, having made many fundamental contributions to the design and analysis of statistical experiments and methodology. The citation for Dr. Youden reads as follows:

To Dr. W. J. Youden, father of 'Youden Squares' and the 'Youden Diagram,' for his extensive contributions to the art and practice of experimentation in the sciences and engineering, through conception and lucid exposition of novel, yat rather elementary, techniques of statistical analysis and crafty application of standard methods; and through his exceptional productivity as an author, indefacigable energy and phenomenal effectiveness as a speaker, by which he has inspired a whole generation of acientists and engineers to greater achievements through application of his unique statistical precepts.

Previous recipients of the Samuel S. Wilks Memorial Medal include: John W. Tukey, of Princeton University (1965); Major General Lesile E. Simon (1966); William G. Cochran of Harvard University (1967); and, Jeray Neyman of the Univeroity of California (1968).

The Samuel S. Wilks Memorial Medal Award is administered by the American Statistical Association, a non-profit, educational and scientific society founded in 1839. The Wilks Award is given each year to a statistician and is based primarily on his contributions to the advancement of scientific or technical knowledge in Army statistics, ingenyous application of such knowledge, or successful activity in the fostering of cooperative scientific matters which coincidentally benefit the Army, the Department of Defense, the U.S. Government, and aur country generally.

The Award consists of a medal, with a profile of Prufessor Wilks and the name of the Award on one side, the seal of the American Statistical Association and name of the recipient on the reverse, and a citation and honorarium related to the magnitude of the Award funds. The annual Army Design of Experiments Conferences, at which the Award is given each year, are sponsored by the Army Methematics Steering Committee on behalf of the Office of the Chief of Research and Development, Department of the Army.

The funds for the S. S. Wilks Memorial Award were donated by Philip G. Rust, Thomasville, Genrgia.

[^3]Professur Robert E. Bechhofer - Cornell University
iruiessur wiilian G Loctran - Harvard University
Ur. Francis G. Dressel - Duke University and the Army Research Office-Durham
Dr. Churchill Elsenhart - National Bureau of Standards
Professor Oscar Kempthorne - Iowa State University
Dr. Alexander M. Mood - University of California
Major General Lesiie E. Simon - Retired
Dr. John W. Tukey - Princeton University
Dr. Frank E. Grubbs, Chairman - U. S. Army Aberdeen Research and Development Center, Aberdeen Proving Ground, Maryland
bi)GRAPHICAL SKETCH. Dr. Youden was born in Townsville, Australia, ut Aril 12, 1900. Two years later his father returned to his birthplace, Dover, England, with his wife and young son; and the three resided there April 1902-June 1907. During these years a sister, Dora Alice, and irother, Harry, were born. In 1907, the family of five set out for America, and entered the United States through the Port of New York in July 1907. They lived for a while at Ivoryton, Connecticut, and at Niagara Falls, New York, where Jack attended the local public schools; then they moved to Rochester, New York, in 1916, for Jack's senior year 'of high school. Youden spent the years 191.7-1921 at the University of Rochester, except for one brief interruption to serve his new country as a private in the U. S. Army, Dctober 15 - December 12, 1918. At the University of Rochester, Jack was elected to the National Phi Beta Kappa honor society, and was awarded a B. S. in Chemical Engineering in June 1921. The following academic year, 1921-22, he continued at the University if Rochester as an instructor in Chemistry, then went the two succeeding years, 1922-24, to Columbia University as a graduate fellow in chemistry, uarning an \because. A. (Chemistry) in 1923; and a Ph.D. (Chemiatry), in 1924.
lmmediately following receipt of his doctorate, Dr. Youden joined the staff of the Boyce Thompson Institute for Plant Research in Yonkers, Niew Mork, as a Physical Chemist. He continued with the Institute in this capacity, with two short leaves of ahsence and one 3 -year assigment as in Operations Analyst with the Army Air Force, until he joined the ataff if the National. Bureau af Standards in May 1948 as Assistant Chief of the tat itioll Engineering Laboratory, which was then beginning fts second Yrar ne existence.
1)r. Yuden was often heard telling a "client" in consultation on idatistical aspects of experimentation, or an audience at one of his well -tulnd lectures on stitistical methodology, that he is a "chemist," irriyis, it would appear, that he is really not a statistician. Well,
 Boyce Thompson Institute, hut by september ly'l he had already begun to dish out advice on the statistacal asprcts ot .xiprimentatinn Tho evidence is : o be found in his paper eniltled, "A Nomogram for use in connection with Gutzeit arsenic determinations on apples," published in Vni. 3. Nc. 3 of the Contributions fium Lite Boyce Thompson Ingtitute, pp. 363-374. And from impeccable authority we learn that during the academic year 1931-32 he comuted on his own volition from Yonkers to Morningside Heights in New York City to attend Professor Haridd Hotelling's lectures on "Statistical Inference" at Columbia University. He was on hia way to becoming an experc on statistical aspects of experimentation. Prom then on he became more and more of a statistician.

The paper that was ultimately to make his name a laboratory, if not a household word, saw publication in early 1937: "Use of Incomplete Block Replications in Estimating Tobacco Mosaic Cirus" (Contributions from Boyce Thompson Institute, Vol. 9, No. 1, pp. 41-48). Here he gave examples and illustrated the application of a new class of symetrical balanced incomplete block designs that possessed the characteristic "double control" of Latin square designs, without the restriction that the number of replications of each "treatment" (or "variety") must equal the number of "treatmants" (or "varieties"). This paper and its ner designs led to Dr. Youden obtaining a Rockfeller Fellowship that enabled hin to take his first leave of absence from Boyce Thompson, and to devote the academic year 1937-38 to further work in the field of experiment design under the direction of R. A. Pishar himself at the Galton Laboratory, University College, London. Youden's new rectangular experiment designe, timmed "Youden Squares" by Fisher and Yates in the introduction to the firat edition of their Statistical Tables for Biological Agricultural and Medical Research (1938), were found immediately to be of broad utility in biological and medical research generally; applicable but of less value in agricultural field trials; and with the coming of World War II, Youden Squares proved to be of great value in the scientific and engineering experimentation connected with the research development activities of the war effort of the British and their allies.

Following Peari Harbor, Dr. Youden took a somewhat longer leave of absence from the Boyce Thompson Institute to serve as an Operations Analyst with the United States Army Air Forces, 1942-45, first as head of the Bombing Accuracy Section of the Operations Analysis Unit of the U. S. Eighth Air Force in Britain, where he directed a group of civilian scientists seeking to determine the controlifing factors in bombing accuracy; then, in the latter part of World War II, he was transferred to the Pacific to conduct similar studies preparatory to the B-29 assult on Japan. Stories are legion among the members of the Operations Reaearch Group of the U.S.A.A.F. Eighth Bomber Comand about Dr. Youden's exceptional skill in the invention of novel and the adaptation of standard statistical taols of experiment design and analysis to cope with various problems arising in these studies of bombing accuracy. Some of these military applications
-: itten up tor immedtate use, and embalmed for posterity in his

 $\because \ldots: \cdot 1$: \because. \because, April 1y4s. He was awarded the Medal of Freedsm in 1946 \because. \because is important sontributions to the allied vicrory.

In 1947 Dr. Youden took his third and final leave of absence from : : f Boyce Thompson Institute: irom May to November 1947 he was employed $b \%$ Yroject RAND, Douglas Aircraft Company, Santa Monica, California, as i fonsuit: on statistical problems in design and use of military aircraft.

As stated earlier, Ur. Youden joined the staff of the National Bureau of Standards on May 10, 1948, as Assistant Chief of the Statistical Eingineering Laboratory, Applied Mathematics Division. Three years later ie became a Consultant (on statistical design and analysis of experiments) to the Chief, Applied Mrtnematics Division, a post that he held until his \because :irement on June 30,1965 . Since then he has enjoyed the privileges of s Ciucst Worker at the NBS.

During Dr. Youden's first two years at the NBS, a fraction of his saiary was underwritten by the Research and Development Division, Office of the Assistant Chief of Staff, G-4, Department of the Army. This involved coordination with Dr. Merrill M. Flood and others at the headquarters office in the Pentagon; visits to Dr. Ellis Johnson's group at Ft. MeNair; and, quite characteristically, Dr. Youden took a number of trips to Army research and development installations in various parts of the country, to size-up "the problems" in their actual habitats.

Dr. Youden's first decade at the National Bureau of Standards saw the invention and publication of his two-sample chart for "Graphical diagnosis of inter-laboratory test results" (Industrial Quality Control, Vol. 15, \therefore : 11, May 1959), now called the "Youden Diagram," which has proved to bo an indispensable tool in the inter-laboratory test programs on the : itional Conference of Standard Laboratories that provide continuing , Arveillance on the central calibration programs of the U. S. National Mensurament System.

The early 1960's saw Dr. Youden's exploitation of a class of selected in:ormplete block designs of block aize two for the specific purpose of : Jentification and estimation of the effects of sources of systematic cror, the central theme of his paper, "Systematic Errors in Physical :ant.." (Physics Trday. September 1961).
…t the least among Dr. Youden's assets are the effectiveness with . h he commalcates boch in writing and speaking; his exceptional : ductivity In both areas; and the inspiration with which he amuses $i \because$ readers and audiences. During Dr. Youden's almost two decades at - Itinnal Bureau of Standards he was the sole author of thirty, and … mithor of fifteen publisted research papers; the sole author of
two books and of seven chapters in other books; and for six years (13541959) he authored a highly original bi-monthly column on Statistical Uesign in the protessional journal, industrial Eingineering chemistry. (These colums have since been brought together and issued in booklet form by the American Chemical Society under the title, "Statistical Design.") During this same period, Dr. Youden gave 211 talks around the country on topics in Statistical Methodology and Experiment Design, under 125 titles, the repetition of some talks being by demand. In addition, he made two lecture tours on behalf of the American Chemical Society, addressed the NBS Scientific Staff Meeting twice, and was called upon repeatedly by the Bureau to address special groups (e.g., high school science teachers). Almost without exception, he was the speaker most highly spoken of afterwards by such audiences.

Dr. Youden's first book, STATISTICAL METHODS FOR CHEMISTS (1951) has had a sale of well over fiteen thousand copies. Together with his "column," this book constitutes one of the best sources of real-life examples of effective applications of statistical principles and techniques in physicalsciences research and development work.

As part of the program of the National Science Teachers Associacion to place soma of the most recent advances in science before funior and senior high school students, Dr. Youden prepared one of the NSTA's Vistas of Science Booke, EXPERTMEATATION AND MEASUREMENT (1962). As of July 1969, this booklet has sold over 52,000 copies; and is continuing to sell at the rate of over 1,000 copies per year.

Dr. Youden's total contribution to the art and science of statistics in experimentation is r.ruly impressive. A few weeks befure Dr. Youden's retirement from the National Bureau of Standards on June 30, 1965, the Royal Statistical Society elected Dr. Youden to Honorary Fellowship at its annual meeting in London on June 2 , 1965. There can be no question that $D r$. Youden is a very derserving recipient of the Samuel S. Wilks Memorial Medal for 1969.

Myrna L. Tolvanen, Human Factors Engineering and Simulation, Systems and Research Division, Honeywell Inc.. Minneapolis, Minn.
Bernard S. Gurman, Avionics Laboratory, U.S. Army Electronics Command, Fort Monmouth, N. J.
Dr. Erwin Riser, Avionics Laboratory, U.S. Army Electronies Command, Fort Monmouth, N. J.

Abstract

Summary

This paper describes the role of systematic real-time man-in-the -loop simulations in evaluating man/machine performance of complex vehicle control systems. The simulated system consists of: 1) a hybrid (digital and analog) computer system which is used to simulate the vehicle dynamics and the environmental conditions defining the system state, to drive pilot information displays, and to translate the pilot's control inputs into vehicle responses; 2) electro-mechanical flight displays and/or a computer-addressed cathode-ray-tube (CRT) display which are used to provide the pilot with the information required to perform the defined control tasi; and, 3) a fixed-base control station which is configured to represent control characteristics of the vehicle being studied. The important considerations in the formulation of the experimental design and schedule are discussed. The performance measures used to evaluate overall system performance are described. The limitations on the application of the simulation study results to the real-world situation are dis cussed. A summary of the simulation mechanization, methodology, and results of a previous study of helicopter IFR formation flight system requirements is provided as an example of the use of man-in-the -loop simulations to cvaluate system performance.

This artiete has been reproduced photographically from the authors manuscript.
607

1HE: USE OF A HYBRID COMPUTER SYSTEM TO EVALUATE PERFORMANCE OF COMPLEX VEHICLE CONTROL. SYSTEMS

Introduction

The evaluation of the performance of complex systems would be prohibitively expensive if it were necessary to wait until the system were built and only then test it under actual environmental conditions. The cost involved in redesigning and rebuilding the system at this point in its development would probably increase the cost of production systems by at least an order of magnitude. If the system is man-oriented and there is a chance that system inadequacies may result in catastrophic human injury or loss of life, the risk of system failure is too great and evaluating system performance in this manner becomes unthinkable.

Tests of aircraft or spacecraft systems involve unusually high risks, both in terms of human life and equipment loss. It has been necessary, therefore, for spacecraft and aircraft systems and design engineers to develop alternative techniques for evaluating performance of such systems prior to actual flight tests. The most comprehensive and flexible technique which has been developed has been that of computer simulation.

A computer simulation to be used for system performance analysis consists of an approximate model of both the system and its relevant relationships with its environment mechanized in the form of computer programs (see Figure 1). The system and those environmental conditions which affect system performance are defined in terms of mathematical equations. Then computer programs are written to mechanize models via appropriate computers and algorithms.

Thic simulation wi man-irientel serstem inust inclade an additional math nirdel for fiuman behavior or millst alluw the human operator to be included as part of the simulated system:. In noist coniplex man-orientec systems the operator's function is a signif:an: factor in total system performance and is ton complex to be represente! ly existing human fehavior models. When this is the case, the human opidatis is included as one of the subsystems of the samulation. Then the simulation must include sensory cues to provide the operator with necessary informatiom and physical apparatus which allows him to perform his function in the simuiatid system.

In addition to being much less expensive than actual system tests, analysis by simulation is much more flexible. After a simulation is developed, it is possible to systematically investigate system performance resulting from changes in one or a number of the subsystem models or environmental conditions by merely changing the values of the selecied parameters in the computer programs. The system design can be changed and tested in much less time and at relatively low enst compared to that involsed in rebuilding and reinstalling hardware in the actual systeni. The system can be tested step by step, analyzing one subsystem while holding other system parameters constant, adding to the complexity of the medel only as greater levels of detail are required.

The proper selection of the computers to be used for a simulation depends on the oljectives of the study and the nature of the system being simulated. The most appropriate computer is not necessarily that which has the greatest sophistication or capability. Most digital computers are at a point of development now which makes them suitable for use in simulations (i.e., computation speed has been increased to a point where it is suitable for solution of at least the low-frequency system dynamics). The high accuracy, exact repe atability, and nexibility of the digital make it the most appropriate choice for overall simulation control and for simulation of the subsystems which are nonlinear in nature. The analog computer, although not as accurate as the digital, provides contiauous solutions and is more appropriate for solving higher frequency system dynamics. It is also more appropriate for simulating characteristics of system hardware which operates in a continuous fashion. Other advantages of the analog for simulation of vehicle dynamics are more operational in nature. The analog 'can be programmed to represent linear vehicle dynamics more easily and debugged more quickly than the digital computer. A1so, it can be changed on-line without going through the somewhat time-consuming processes of making card changes, recompiling the deck of cards, and reloading the program as required for digital programs. Because of the unique characteristics of the analog and digital computers, a combination of these two computer types, or, a "hybrid" computer system, is extremely attractive for the simulation of real-time, man-oriented systems involving vehicle dynamics.

The extensive use of computer simulation techniques by aircraft and spacecraft systems engineers has made the computer an integral part of the systems design and analysis process. This paper explains how and where the computer, specifically the hybrid computer system, fits into the design and analysis process of man-oriented systems involving vehicle dynamics. Although the discussion will be based on this specific class of systems, most of the techniques and methodology discussed would be applicable to evaluation of a wide variety of complex systems.

The specific system which will be provided as an example is a manual IFR formation flight system. This system is being investigated by Honeywell under the Joint Army-Navy Aircraft Instrumentation Research (JANAIR) Program, a research and exploratory development program to define and validate advanced concepts which may be applied to future, improved Naval and Army aircraft instrumentation systems. This system would allow a pilot to fly at a fixed position (fixed rarge and bearing) with respect to another aircraft under poor visibility conditions. The primary elements of the envisioned system (Figure 2a) would be: 1) an on-board special-purpose computer to calculate infor mation regarding aircraft position in the required f.rmat for display presentation; 2) a display which will present the necessary information for position control to the pilot; 3) the pilot, who must make control inputs based on the information displayed to him; 4) the controls of the vehicle, which will move the vehicle control surfaces as dictated by the pilot's control movements; 5) the vehicle dynamics, which will result in rotational and translational movements; 6) attitude and/or rate sensors on-board the vehicle which will sense the rotational dynamics of the vehicle; 7) an autopilot, which will provide feedback into the pilot's controls and/or the vehicle dynamics; 8) navigation sensors, which will sense the aircraft's position with respect to the lead aircraft; 9) and a filter which will smooth the data obtained from the sensor, As mentioned previously, the simulation of the system must include relevant environmental conditions; two of these are shown in Figure 2a-i.e., system disturbances, such as turbulent wind conditions (10), and the learer flight profiles (11).

Figure 2b shows a block diagram of the organization of Honeywell's hybrid system in the mechanization of the formation flight system model. Honeywell's hybrid system includes a high-speed digital computer with a real-time capability, a number of analogs, a hybrid link for two-way communication between the digital and analog, a cathode-ray-tute which can be used for generation of

Figure 2a. Manual IFR Formation Flight System Model

Figure 2b. Simulated TFR FF System
 ment panel with a number of conventional flight instruments, a fixed-base pilot control station, and standard peripheral equipment which allows communication between the computer and the user. Figure 3 shows the control station located in front of the cathode ray tube display and Figure 4 shows the control station and the simulated aircraft instrument panel.

In the investigations of this simulated formation flight system, pllots have been included in the simulation loop. The flight control and management task which must be performed by the human operator consists of multi-axis aircraft control and three-axis control of position with respect to another aircraft. This task is much too complex to be represented by existing math models of human behavior, which are generally used to represent only single-axis control tasks.

When simulation runs are made, the pilot ls seated at the control station in front of a display which provides him with information about his position in space with respect to the lead alrcraft. The display can also provide him with aircraft control commands, in which case the position control task becomes primarily one of three-axis tracking. The flight profile of the lead aircraft (programmed on the digital computer) results in the sequential per formance of a number of basic maneuvers. The pilot's task is to maintain his position with respect to the lead aircraft throughout these maneuvers. Since this system is to be used for low visibility conditions, the pilot is provided with no visual cues other than the CRT display or specific flight instruments in the simulated cockpit.

System Analysis and Design Process

The process of system analysis and design by simulation and empirical evaluation can be broken down into the following tasks: 1) development of the system

Figure 3, Pilot's Station at Cathode-Ray Tube Display

Figure 4. Pilot's Station in Cockpit Mockup with ElectroMechanical Flight Instrument Display
model; 2) development of the experimental plan for systematic investigation of system performance; 3) development of the computer simulation; 4) preliminary simulation runs to optimize the simulation; 5) conduct of man-in-the -loop simulations according to the prescribed experimental plan; 6) analysis and interpretation of system performance data; 7) system recommendations and formulation of conclusions. As noted in Figure 5, these tasks are interdepend ent, with both the sequences and relationships between them being important factors in the effective evaluation of system performance,

One of the mistakes commonly made in the use of simulation techniques is to begin the programming of the computer prior to developing the math models of the system and the experimental plan to be followed in the evaluation of this system. Efficient organization of the program requires at least 90 percent completion of both these tasks prior to development of the simulation programs.

Development of System Model

The definition of the system to be simulated in terms of math models is probably the most difficult task in the system design and analysis process. The difficulty of this task varies with the number of subsystems of the model which have not been previously defined. If the study is a design problem rather than an evaluation of an existing system, the number of such undefined system variables is usually greater. However, even when subsystems are previously defined in terme of hardware characteristics, there are not necessarily existm ing math models to describe them. Thus the development of a number of math models is usually necessary for any system analysis problem.

The complexity of the simulation to be developed depends on the number of math models required to define the system adequately and the extent of detail necessary for each model. The validity of the simulation, of course, depends on the level of complexity selected for the modeling of the system. DeterminIng the exact level of complexity suitable for a given study is one of the most

 simulation validity and the scope of the study. Determining exactly what this tradeoff should be requires a combination of good judgement and a great deal of previous simulation experience. Unfortunately, as the simulation model approaches exact duplication of the real world. the cost of simulation analysis also approaches the cost of fl ight testing the actual system.

The subsystems which have been defined for the manual formation flight sys tem model are those shown in Figure 2 a (subsystems numbered 1-11). Since the primary objective of this research program has been to develop appropriate cockpit displays for manual IFR formation flight with existing aircraft, the models of the vehicle, the autopilot, and vehicle controls have been predefined at the outset of the investigations. With a human operator as a part of the simulated system, of course, it has not been necessary to develop a math model for the pilot. The remaining subsystem models have been developed during the course of this research program. The greatest amount of time and effort has been devoted to the development of alternative display models. Development of the display model consists of the following tasks:

1) Identifying the information required by the piiot to perform the manual IFR formation flight control task.
2) Incorporating this required information into a total display configuration, which requires:
a) development of display format (i.e., display symbology) of the primary display,
b) development of display driving functions (i.e., those equations used to control motion of display eloments),
c) selection of standard cockpit instruments which should be included to provide the required information which could not he incorporated into the primary display.

Two of the display configurations investigated for use in this system are shown in Figures 6 and 7. It may be noted that both display configurations shown provide the pilot with tracking symbols which indicate how he should manipulate the controls to achieve the desired positions. The multi-axis control task required for a high-order control system such as this becomes prohibitively difficult if the pilot must wait for the aystem's response before receiving feedback regarding the accuracy of his control input. For example, suppose that a pilot makes a roll input to correct a lateral position error. His control input will instantaneously effect a control surface deflection, producing a roll rate, which in turn will result in a significaut change in roll attitude within a second or two, which will produce a suading change and lateral rate of movement of the aircraft, which finally, after several seconds, will produce a significant change in the aircraft's lateral position with respect to the leader. In other words, the input response must pass through several inte grations before the system finally responds with a change in aircraft position.

To provide immediate knowledge of the results of his control actions, lead information which is based on anticipatory knowledge of the system response must be presented to the pilot. One means of providing this information which has been used successfully in the investigations of this manual IFR formation flight system is display "quickening". Quickening refers to the display of higher-order deriviatives of the system response, which in this case would be time derivatives of the follower aircraft's position errors. Complete quickening, (i.e., presenting the sum of the position error and its derivatives in one element on the display), was utilized to drive the tracking symbols shown in the display formats.

Use of Computer in System Model Development

The computer can be used to aid in developing the system model. Either the digital, the analog, or both can be used for the configuration of a simplified

MDICATED ARRSPEED DML

KEY: \triangle LEADER AIRCRAFT SYMBOL
O FOLLCNER AIRCRAFT SYMBOL O FOLLOWER AIRCRAFT SYMBOL
LATERAL AND LONGITUDIMAL
TRACKING SYMBOL QUICKENINC + PILOT'S COMMANDED POSITION PILOT'S AIRCRAFT SYMBOL WITH OHEADWG REFERENCE

> ALTITUDE ERROR ANALOG

Lattitude nomeator
Figure 6. Horizontal Situation Formation Flight Display (Used for the Conventional Helicopter Study)

BEARING
DISTANCE
HEADMG
MDICATOR

KEY

VERTICAL SITUATION DISPLAV:

* LATERAL AND VERTICAL PRACKING SYMBOL (BASED ON QUICKENING)
-] PILOT'S COMMANDED VERTICAL AND LATERAL POSITION
- O- PILOT'S OWN AIRCRAFT SYMBOL

HOKIZONTAL SITUATION DISPLAY:

- LEADER AIRCRAFT SYMBOL
+ PILOT'S COMMANDED LATERAL AND LONGITUDINAL POSITION
d oII.OT'S AIRCR.AFT SYMBOL WITH HEADING REFERENCE
Figure 7. Vertical Situation Formation Flight Display (Used for the Advanced Rotary-Wing and Jet Fighter Study)
model of the system to empirically evaluate preliminary designs of subsystems. For exampie, in developing appropriate display driving functions for the display in the manual formation flight system, performance of a simplified system model can be observed to determine which combinations of fuedback terms are more appropriate. This simplified model could consist of only one axis of the vehicle control dynamics, a simple model of human behavior (perfaps only a lag) in response to the specified display driving function, and a continuous (analog) recording of vehicle response in terms of position and attitude. Small programs can be written to analytically evaluate specific subsystem math models. For example, to determine the relative velocity required by the follower aircraft to maintain his position with respect to the leader during a turn at various ranges and bearings, the mathematical relationships defining this required velocity are quickly programmed with the ranges and bearings being the variables in the model. Then by merely typing in the desired ranges and bearings, the corresponding relative velocities can be calculated in a fraction of a second.

In addition to the incorporation of the system model, the digital computer programs must include the capabilities of overall simulation control and computer/user communication through appropriate input and output channels. The programs should be organized sothat it is easy for the user to change the values of any of the system parameters which are independenf variables in the study. They should calculate, record, and output the desired performance measures and be structured to correspond to the experimental procedure to be followed during the course of the man-in-the-loop simulation runs. These additional functions of the computer simulation programs make it necessary that the experimental plan for the study be developed prior to simulation development.

Devolopment of Experimental Plan

The analysis of system performance by simulation, especially when the human bperator is included in the simulated system, can invoive many hours of simulator runs. If too little time and cffort is devoted to planning the experiffents, the results of all these hours of simulator runs may turn out to be completely meaningless. No matter how complex or valid the simulation, its usefulness as a tool in cvaluating system performance depends on the experimental plan followed in collecting the performance data.

When human performance is one of the contributors to system performance, the system evaluation is based primarily on statistical inference from the performance data collected. The statistical techniques which can be used in interpreting the performance data are necessarily limited by the experimental designs and procedures which have been followed and the exact performance measures which have been recorded. When developing the experimental plan, therefore, it is necessary to select the desired statistical analysis techniques and system performance measures, as well as the experimental design and pracedure. The tasks involved and some of the factors which should be considered in developing the experimental plan are shown in Table 1. Specific measures used to describe performance of the manual formation flight system model are shown in Table 2.

Computer Program Development

After the syotem model and the experimental plan are well defined, it is possible to develop the computer simulation programs in an efficient manner. The digital computer programs are written to incorporate all those subsysiem models not programmed on the analog, to calculate and record performance measures, and to allow effective communication between the user and the computer. It should be organized in accordance with the planned

Table 1. Development of Experimental Plan

Identily Independent Variables (IV)

- W'ill depend on study objectives
- Number of IV's limited by time and money available
- In man-oriented system, human element will be an IV

Identify Dependent Variables (DV)

- Complex system performance evaluation usually requires a number of different performance measures
- When the computer is used to record, calculate, and output performance measures, additional costs associated with additional data are minimal
- Desired statistical analysis techniques should be considered.

Identify Conditions Which are to Remain Constant

- Will include all subsystems of the simulated system which are not independent variable's

Determine most Appropriate Experimental Design

- Limited by scope of study
- Should be based on study objectives and nature of the selected IV's

Determine Experimental Procedure to be Followed

- Should minimize learning and order effects
- Should maximize control over experimental constants

Determine Statistical Techniques to be Utilized

- Limited by experimental design and performance measures selected
- Should relate to practical application of study results

Tabie 2. Performance Measures Used in Analysis of the Manual Formation Flight System
-e Mean, standard deviation, and RMS (root-mean-square) error in:

- Longitudinal position wrt leader
- Lateral position wrt leader
- Vertical position wrt leader
- Range from leader

These measures are used to indicate the pilot's level of position control precision.

- RMS control stick rates (e.g., $\sqrt{\sum_{i=1}^{N} X_{i}^{2}}$, where X_{i} is r ate of control stick deflection in inches or degrees per second). This measure is used as an indication of the extent of pilot control activity.
- Collisions with other aircraft
- Continuous time histories of position error, aircraft attitude, and control inputs
- Proportion of time subject utilizes a given display
- Number of attention shifts between displays
 as possible and to free the experimenter from trivial tasks such as timing or data recording. It should be organized such that changing values of system variables can be accomplished easily and quickly.

The analog computer is wired to incorporate those subsystem model.s which can be more conveniently programmed and debugged on the analog (such as rotational vehicle dynamics) and the control station is configured to represent the controls of the vehicle being simulated.

Once the simulation is developed, it can be used over and over again for a long period of time. It should, therefore, be well-organized and documented so that it can be used and/or modified in the future with minimal difficulty The digital computer programs should be modular in design for ease of checkout and modification. The wiring diagram of the analog simulation should be detailed and complete. The program development should not be considered complete until the program is well documented.

After the entire system model is mechanized in the form of computer programs, the simulation is operational and sirnulator runs can be conducted.

Preliminary Simulations - System Optimization

Preliminary simulation runs are required to optimize all subsystem models based on man-in-the-loop system performance, to optimize simulation procedures, and to experiment with the ranges of the independent variables of the study. It is usually only after this phase of the systems analysis process that the system modelis totally defined. Although the basic math models for the system must be developed prior to writing the computer prugrams, it is usually desirable to experiment with the parameters which define the exact characteristics of a given model after the simulation is operable. For example, the model of a digital filter may be specifically characterized
by parameters which eifeci difitrenilal lags and vasiance aciuciiuns. The optimal values of these parameters are dependent on the specific system application. For complex, man-oriented systems it is usually easier to determine the most appropriate values for such subsystem parameters empirically by means of preliminary simulator runs.

When system response depends on the performance of a human operator, there is often no analytical way to accurately estimate the effect of specific system designs or parameter variation on total system performance. When this is the case, the only way to determine whether a given system model is functional is to test it empirically with a human operator in the simulation loop.

The preliminary simulation phase of the study provides the analyst with rough estimates of system performance. As a result of this preliminary investigation, he can select optimal values for parameters of the subsystem models, select reasonable ranges for the independent variables of the study, and redesign parts of the system if necessary. For example, in the investigations of the manual formation flight system, it was found that the position control task was unreasonably difficult when the display provided only position error information. The analyst experimented with various feedback terms and found that the addition of position error rate and aircraft attitude terms to the position error information made the task much easier. Such preliminary investigations prove to be very valuable in maximizing the effectiveness of the formal experimental tests conducted in the next phase of the system analysis process.

Systematic Man-in-the-Loop Simulation for Collection of Performance Data

After the computer simulation has been completely developed and optimized through preliminary simulator runs, it is finally in the appropriate stage to
begin the systematic tests required for performance evaluation. Although conducting real-time man-in-the-loop simulator runs may be the most timeconsuming portion of the system evaluation, if preceding phases of the system analysis process have been conducted with care, it is also generally the most straight-forward part of the study from the system analyst's point of vew. This phase of the system analysis process consists of familiarizing the subjects with their task under the various experimental conditions and then conducting the simulated runs as prescribed by the experimental plan. For example, in the investigations of the manual formation flight system, the pilot-subjects "fly" the simulated aircraft through the programmed mission repeatedly under each of the experimental conditons until very little further improvement is noted in their position control performance. Then cach subject "nifes" the required number of missions for the various experimental treatments in the exact sequence prescribed for him by the experimental plan. System performance data are recorded and output for each simulator run.

The most important points to remember in this usually extensive and repetitive process of system testing is that the value of the results depends on strict adherence to the prescribed experimental plan and frequent checks on the accuracy of the simulation programs. The experimenter must guard against becoming lax in his experimental procedure and should frequently, preferably before each simulator run, perform a diagnostic check on the simulation to assure that the programs are working correctly.. Although exact repeatability is a characteristic of the digital computer, it is not so for the analog or the link between the digital and the analog. The analog and digital may be improperly connected, some of the potentiometers may be set incorrectly, there may be an amplifier or integrator which is not plugged in securely or not working correctly because of some defect, etc. A diagnoatic check can be performed which will usually identify the se problem areas quite quickly.

After all prescribed simulator runs have been completed, the system performance data is sorted and collated for interpretation and analysis in the next phase of the system evaluation.

Statistical Analysis and Interpretation of Performance Data

There are numerous statistical techniques which can be employed in analyzing the performance data. The most appropriate techniques depend, of course, on the study objectives and the nature of the system being evaluated. As previously emphasized, the techniques to be used should be selected when the experimental plan and procedure are being defined, to assure that the performance measures recorded and the plan followed will allow valid application of the desired techniques.

The digital computer can be used to perform the lengthy calculations required for the statistical tests. Most large digital computer facilities have a number of general-purpose statistical programs available for performing the more commonly used and well-known statistical tests. A number of such programs are available at Honeywell and have been used in analyzing data obtained in tests of the formation flight system.

When the computer is used both for calculating and recording data and for performing the statistical tests, the added expense associated with recording additional performance measures and/or performing a number of different tests on this data is relatively low. Since it is often difficult for the analyst to determine which performance measures are more appropriate until after. the data has been collected and analyzed, it ia a good idea for him to record all those measures which seem to be relevant. If digital computer programs are available for performing the desired statistical tests, the same philosophy can be followed in determining the number of teste to be applied to tie data. Hiven when the scope of the study limits the statistical analysis effort, it is
important that sufficient performance data be collected and saved. It is often desirable to perform further tests later as additional funding becomes available. Also, it may be that a future study with different ohjectives requires different mothods of data analysis but could be based on the same system performance data. Some of the statistical techniques which have been used in evaluating the manual formation fight system are shown in Table 3.

After results of the stexstical tests are obtained, they must be interpreted in terms of their implications in designing or developing the system. Sometimes results which are statistically significant are not significant from a practical systems application standpoint. For example, suppose that the results of a statistical comparison of two displays for the manual formation flight system showed that lateral position control performance was significantly better for one display, and that the average position errors for this display were consistently five fert lower than those for the other display, No matter what the level of statiatical aignificance, this small difference in position error may not be of practical significance in terms of system development. If performance resulting from two such displays were this similar, the system analyst would probably recommend that display which ;would be less expensive to incorporate into the sysiem. Since the only results of real signdficance to the system analyst are those which can be related to the design or development of the system, it is important that sufficient time be devoted to interpreting the results of the statistical tests accordingly.

After the analyst has decided what the important study results are, litese results should be presented clearly in the final study report. Since the graphical form of presenting data is usually more easily interpretable for the reader than the tabular, it may be helpful to slow at least the more important results graphically.

Table 3. Statistical Tests Used to Evaluate Performance of Manual IFR Formation Flight System

Statistical Procedures:	Based on Following Performance Measures:
Factorial analyses of variance	1) RMS position error 2) RMS control stick rate 3) Mean position error
Calculation of mean and/or median position errors for factorial combinations of independent experimental variables.	Mean position error for a specific subject, treatment, and maneuver.
Calculation of mean and/os median variances for factorial combinations of independent experimental variables.	Standard deviations around the mean position error for a apecific subject, treatment, and maneuver.
Calculation of correlation and/or regressions between system variables.	E. g., between lateral and longitudinal position errors, or between fore-aft and right-left control stick movementr, etc.

Formulation of Conclusions and System Recommondations

The final stop in the system evaluation process is the carcful examination of study results to formulate conclusions and make system recommendations, Sometimos in the early phases of the system investigation, recommendations rugarding system implementation--such as required hardware character-istics--cannot be made until further research hat: been conducted. The study conclusions at this point usually relate primarily to the feasibility of syatem concepts. The primary system recommendations made will be suggested areas for further investigation, utilizing those effective system concepts and models which have been developed during the previous system studies as a basis for future studius. The system analysis process described in this paper would then be repeated a number of times until sufficient system aspects have been investigated to alluw recommendations regarding hardware characteristics and specifications,

Hesults and conclusions of the formation fight system research are provided below as an example of the steps which must be completed prior to actual system development and the type of conclusions which can be drawn from system evaluation studies basced on computer simulation analysis,

Results and Conclusions of Rosearch on Manual IlFR Formation Filight Systom

The research on the formation Night system has not yet roached the point where the exact specificution of required hardware characteristics would be desirable. The philusuphy followed in this system investigation has beun to first dotermine the feasibility of basic system concepts and associuted system performance, assuming no limitations imposed by system hardware. Then, one by one, thr system limitations imposed by reallstic hardwaro characteristics and expected environmental conditions
have been added and resultant system performance evaluated. Since there are so many system variables in a complex system such as this, it has not been desirable, either from a cost or operational standpoint, to investigate all these variables simultaneously. Instead, a number of different studies have been conducted and each new study has utilized results of previous studies as a basis for evaluating additional system variables. The atudies Which have been performed to investigate the manual IFR formation flight system and the majnr results of these studies are described briefly below.

The first study (Reference 1) of this program was conducted to investigate basic information requirements for the manual IFR formation flight control task for rotary-wing aircraft and to evaluate display concepts for a com-puter-addressed cathode-ray tube display. The effects of turbulent wind conditions and subsidiary pilot workload were also investigated in this study. This study assumed no limitations on sensor outputs (i. e., high data transmisaion rate and no measurement noise). Some of the study results are shown in Figures 8 through 11 . The major conclusion of the study was that formation flight under IFR conditions appears to be a realizable goal with the aid of the computer-generated display formats developed.

The second study (Reference 2) was conducted to evaluate an exdsting helicopter formation flight syetem. This atudy assumed the eensor, computer, and display characteristics of the system being evaluated. Results of this study demonstrated the important effects of filtering techniques, data transmission rate, and display driving functions on total system performance (see Figures 12 through 14).

A third study (Reference 3) was conducted to evaluate the effectiveness of conventional flight instruments in a monual IFR helicopter formation fight system, Two state-of-the-art electro-mechanical displays, i.e., a flight director and a horizontal situation indicator, were used in conjunction to display the required information and were evaluated under alternative display formats. This study again assumed no limitations on sensor system outputs.

THE CRAPH BELOW SUMMARIZES THE KESUITS OF THE PRELIMIMARY

DISPLAY CONFIGURATIONS

- Chosen for further study ard evaluation

Figure 8. Original Study of Concept Feasibiltiy and Display Requirements for the Conventional Helicopter

Figure 9. Comparative Evaluation of Display Formats for Conventional Helicopter Study

Figure 10. Effects of Turbulence on System Performance Conventional Helicopter Study

Figure 11. Effects of Subsidiary Piiut Workload on System Performance - Conventional Helicopter

THE GRAPH BELOW SHOWS MEAN RMS ERRORS PLOTTED AS FUNCTIONS OF THE SYSTEM UPDATE TIME INTERVAL. SYSTEM UPDATE RATE IS THE RECIPROCAL OF JYSIEM UPDATE TIME INTERVAL.

Figure 12. Sample Prototype System Evaluation - Effect of System Update Rate on System Performance Conventional Helicopter

Figure 13. Sample Prototype System Evaluation - Effects of Terms in Display Quickening Equations on System Performance

MSSION PHASE, P
this graph shows median rms errof S by:maneuver as a function of the filter
 YOISE DECREASES.

The results of this study (see Figures 15 and 16) indicated that it was possible to obtain position control with the electro-mechanical displays comparable to that obtained with the computer-generated displays.

The fourth study (Reference 4) investigated the relationship of variations in the effective data transmisaion rate (i, $e_{\text {, }}$ defined as the update rate of the information presented on the displays) and the effective level of measurement noise (i.e., noise which appears on the display after filtering) on pilot/ system performance in the helicopter IFR formation flight mode. Results (see Figures 17 through 19) showed: 1) that position control performance degraded with increasing measurement noise; 2) that position control performance did not improve significantly by increasing the update rate above 4/second; and 3) that optimal display driving functions and data filtering techniques are dependent on the data update rate and accuracy characteristics of the system.

The objective of the fifth study (Reference 5) was to evaluate the effect of varying levels of automatic control assistance on pilot/system performance In the simulated helicopter IFR formation flight mode. An information update rate of 4 /second and a moderate noise level were assumed throughout this study, Results of the study (see Figures 20 and 21) indicated that increasing the level of automatic control assistance provided greater system stability and made the pilot's control task less demanding, but did not significantly improve position control performance over that obtainable manually with the aid of the quickened display.

The sixth study (Reference 6) was conducted to define information and display requirements and investigate variable sensor output characteristics for two additional vehicle classes, i. e., the advanced rotary-wing and the jet fighter aircraft. The results (sec Figures 22 through 25) indicated that manual IFR formation flight with the envisioned system appears to be feasible for the advanced rotary-wing and the jet fighter aircraft and that the effects

Figure 15. Comparative Evaluation of Two Flight Director Displays for Conventional Helicopter

Figure 16. Computer-Generated Display versus Conventional Flight Director Display - Conventional Helicopter

Figure 17. RMS Position Errors by Data Rate Conventional Helicopter

Figure 18. RMS Position Errors by Data Measurement Noise Level - Conventional Hellcopter

Figure 19. Horizontal Position Errör Envelope for Conventional Helicopter

Figure 20. Mean RMS Errors by Autopilot Mode for Conventional Helicopter

Figure 21. Aircraft Pitch and Roll Activity as a Function of Level of Automatic Assistance - Conventional Helicopter

MENN POSITION * 3 STANDARD DEVIATIONS

Figure 22. Horizontal Error Envelope by Maneuver for the Advanced Rotary-Wing

Figure 23. Horizontal Position Error Envelope by Maneuver for the Jet Fighter

Figure 24. Effects of Data Update Rate on System Performance Jet Fighter

Figure 25. Effects of Sensor Measurement Noise on Syatem Performance - Advanced Rotary-Wing
on system performance of variation in measurement noise and display update rate were the same as found previously for the helicopter.

Sorne of the basic conclusions which have been drawn as a result of these research studies are summarized below.

Display driving functions are more important than the display format in determining the pllot's control performance. The results of the various display evaluations suggest that as long as the basic display/control relationships are satisfied, all required information is presented, and the display formats are interpretable, a number of different display formats (in terms of specific symbology and orientation) are appropriate for the envisioned IFR formation flight syetem,

Manual IFR formation flight with the mystom as modeled for these remearch studies appears to be a realizable coal for the conventional helicopter, the advanced rotary-wing, and the jet fighter. The level of position-control preciaion to be expected for a specific aircraft class, given the presentation of all required information, the use of an appropriate display format, and optimal display quickening, will be a function of at least the following variables:

1) Rate at which new information is available for display
2) Level of measurement noise on poiston information.
3) Filtering technique used to amooth the noisy data
4) Experience level and capability of the individual pilot
5) Extent of pllot worklopd required for subsidiary tasks.

It is suspected that other variables, such as pilot fatigue, aircraft separation distances, formation geometry, formation airspeed, command mode (i.e., fly-to or fly-from), lead aircraft perturbation, etc., also effect
postion-control performance. Current research under the JANAIR program includes investigation of a number of these additional system variables. Prior to exact specification of the hardware required for the manual IFR formation fliglit system, these and other seemingly relevant system variables should be investigated.

The Valuc of Simulation in System Performance Evaluation

The conclusions summarized above are sompwhat tentative in nature and do not specify the exact level of system performance which can be expected with the developed system under actual flight conditions. It must be emphasized that simulation analysis can not be a substitute for actual system'tests. Rather, simulation is a compromise method of evaluating system performance with a degree of validity which falls somewhere between preliminary pencil-and-paper analyses and tests of an actual breadboard system. Exactly where it falls in terms of validity depends on the complexity of the system model which is developed for the simulation.

The value of simulation as a system cvaluation tool is greatest for those systems which cannot be casily defined analytically (such as those involving complex human behavior) and.which cannot be tested under real-world conditions without extremely high risks (i, e., in terms of human life and/or system coists). For this type of system, compromise methods of system evaluation are necepsary, and they are not meant to replace actual system tests, but to precede and minimize the extent of these tests.

Although there are inherent constraints and limitations in the evaluation of system performance by simulation analysis, it is extremely useful in answering questions such as the following:

- Is a given system design or concept feasible?
- How does one method or design compare to another?
- What are reasonable minimum and maximum limits on the variation of a given system parameter?
- What are the effects of varying two or more system parameters simultaneously?
- Can the human operator perform the required task?
- Which system tasks should be performed automatically?
- What is the general relationship between system performance and a given gystem parareter or environmental condition?

If the system analyat couducts his aystem investigation scientifically and if be tempers his formulation of conclusions and system recommendations by acknowledgement of/the constraints and limitations of the simulation, he will find computer pimulation techniques to be an invaliaable tool in the eystem analysis and design process.

Activity indices;

A/C
Autopilot mode

Concomitant tasik

Mean-square pitch and/or oll rates of the simulated aircraft

Aircraft
Level of autematic control included in the aircraft control system. Ranges from simple damping in a single axis of the aircraft to control of the aircraft's heading and altitude.

A class of secondury task which is performed sinultaneously with the primary task ard is h!ghly quantifiable in nature. In the study referenced in this paper, the primary aircraft position control taak was performed continuously and the pilot's formation night display was intermittently blanked out. Then secondary task cues were provided, requiring that the pilot simultaneously perform the secondary task at a forsed-pace (i.e., the frequency and time interval of the formation night display interruption yas controlled by the experimenter rather than left to pilot discretion). The levels of the secondary workload were defined in terms of percentage of time the pilot was reyuired to perform the secondary task.

Uata transmission and/or update rate

Dependent variables

Double-cue flight director

Filter

IFR

The rate at which new information about the follower aircraft's position in space ; with respect to the lead aircraft of the formation) is available for display.

Variables of an experiment which describe system performancA. These performance measures are assumed to reflect changes in the levels of the independent variables of the experiment and are thus considered to be "dependent".

Electro-mechanical flight instrument currently used in both fixed-wing and helicopter aircraft to provide information about aircraft pitch and roll attitudes. The "double -cue" filght director has two separate moving elements, one representing pitch and the other roll attitude deviations.

In the referenced studies the filter simulated was a digital $\alpha-\beta$ iliter. The filter la required to smooth the aircraft positicin information obtained from the assumed sensor system. Sensor systems are ueualiy characterized by a certain level of mensurement noise.

Instrument Fighr Rules -- This term is used In this report to refer to very luw visibility conditions when pilot would have to depend primarily or: instrumentr for visual cues.

Perspective display format

PPI display

Quickening

A display format configured for the fermation flight mode which provided the pilot with a three-dimensional representation (in two dimensions) of his formation position with respect to the leader.

Plan Position Indicator - A display format configured for the formation llight mode which presented a horizontal view of all aircraft in the formation.

A method of providing lead or anticipatory information regarding the system's response. As used in the referenced studies, it consisted of adding higher order derlvatives (i.e., rate of change of position) of the system's response (change in aircraft position) to the actual position error. The resultant sum was used to drive one element on the display.

Root-Mean-Square-. $\sqrt{\sum_{i=1}^{N} X_{i}{ }^{2} / N}$, where
X_{i} was the measured position in a specific axis during a specific maneuver and \mathbb{N} was the totel number of position measurements recorded durlng the maneuver. The RMS measure was also used to represent the levela of pllot and aircraft control activity during a given maneuver, in which case X_{1} represented reapectively the rate of movement of the control stick or the aircraft's attitude.

Single -cue flight director

SK/FF'

Standard deviation

Subsidiary pllot workload

System update time interval
α
β

An electro-mechanical Might display which has only one moving element to represent both pitch and roll attitudes of the aircraft. The element represents both aircraft axes by movement in two different axes on the display.

Stationkeeping/Formation Flight.
$\sqrt{\sum_{i=1}^{N}\left(\bar{X}-X_{i}\right)^{2} / / N}$, where \mathbb{X} is the mean value of the observations (X_{l}) and N is the total number of observations,

The pilot's workload on tasks other than his primary tank (aircraft position control in the referenced studles). See the description of "concomitant task" for more detail on how this subsidiary workload was simulated.

Reclprocal of the rate at which the pllot received new information about his position with reapect to the formation leader for display.

Coefficient of $\alpha-\beta$ digital flltering model whlch determines weight of current raw position measurement versus average over old measurements.

Coefficient of $\alpha-\beta$ digital filtering model which determines weight of current velocity measure ment versus average over old measurements.

REFERENCES

1) "Display Requirements Study for Helicopter IFR Formation Flight", Honeywell Document No, 12543-FR1, AD 665-277, JANAIR Report NR 213-054, January 1968.
2) "Experimental Evaluation of a Formation Flight System", Honeywell Document No. 12543-IR5, JANAIR Report 6804002, July 1968.
3) "Evaluation of Conventional Flight Inatruments for Use in Helicopter IFR Formation Flight ${ }^{\prime \prime}$, Honeywell Document No. 12543-FR2, JANAIR Report 680204, February 1968.
4) "Effect of Variations in System Data Rates and Measurement Accuracies on Pilot Performance in the Helicopter IFR Formation Flight Mode", Honeywell Document No, 12543-FR3, JANAIR Report 680408, April, 1969.
5) "Effect of Varying Levely of Autopilot A ${ }^{\text {sisistance on Plot Perfor- }}$ mance in the IFR Formation Flight Mode". Honeywell Document No. 12543-FR4, Preliminary JANAIR Report, June, 1888.
6) "IFR Formation Flight Diaplay/System Requirement for Advanced Rotary-Wing and Jet Fighter Aircraft", Honeywell Document No. 12543-FRS, Preliminary JANAIR Report, June, 1969.

EXPERIMENTAL DESIGN CONSIDERATIONS IN VALIDATING A METHOD OF MODELING A MAN-ORGANIZED SYSTEM

Bob B. Lukens and Robert A. Brown University of Alabama Huntsville, Alabama

ABSTRACT. During the past decade, significant advancements in buainess organization modeling have been achieved. The man-organized system is a system whose elements conaist of people, material, money, and information. Various methods and procedures have been developed to model this business organization. The purpose of the research project is to invastigate the theoretical aspects of validating a method of modelirig a man-organized ayatem.

A new approach to modeling the organization is a method called Dynamic Organization Network Analysis (DONA). The basis for this method is the use of state variable equations. A question arises concerning the validity of the DONA model. This is answered through an experimental system designed to test the model. The experimental syetem incorporates a computer simulation with known characteristics. The amulation is uned an atandard for comparing the performance characteristics of the DONA model.

[^4]
EXPERIMENTAL DESIGN CONSIDERATIONS IN

Introduction

During the past decade, significant advancements in business organization modeling have been achieved. Various procedures and mathods have been developed to model systems including man-organized systems. The man-organized system is characterized by elements such as people, material, money, and information. A method widely used in modeling large organizations is computer simulation. One of the most extensive works on computer simulation of large organizations is by Jay W. Forrester. ${ }^{3}$ In his book "Industrial Dynamies" he introduces his concept of medeling orgonizations and he describes a now computar language; DYNAMO, to implement the modeling technique, forrester's method is sulted to a project which requires modeling of fine details of an organization. However, the method may require yaars to fully model a large organizarion. The need for a method of modeling to be accomplished in a timely manner coused a search for other approaches.

Within the last fow years, state variables have gained attention as a tool to be used in.systems analysis. $1,4,6,7$ The state variable equations have found use in mechanical, hydraulic and electrical systems. Herman E. Koenig, at. al. in the book "Analysis of Diserete Physical Systems" ${ }^{7}$ proposed that the analysis may be carried into socio-economic systems. The strength of this approach lies in the fact that the systems is considsred from a control-systempoint of view. The baxic postulate is that the system is regarded as a conservative system. The matching of inputs to outputs requires for-
mulation according to energy considerations. This approach differs from the economists opproach in that the economist views the sysiem as a biack bux witit urity iniuits and outputs. Other quantlitics such as internal performance characteristics are not given detailed consideration by the economists. By using the control theory point of view, the analyist is capable of manipulating those quantities which control the performance of the organization.

The Dynamic Organizational Network

Analysis Mudel

The state variable approach was used in the modeling of a socio-economic system by Koenig. ${ }^{5,8}$ Koenig's procedure paralleled Forrester's in that mathematical rolationships have to be developed for all significant operations. This is very time consuming for a large organization. The fact that only two forms of equations are needed in the state variable approach caused further considerations of this approach. The state variable equations are as follows:

$$
\begin{aligned}
& Y(t)=P Y(t)+Q X(t) \\
& Y(t)=M Y(t)+\dot{N} X(t)
\end{aligned}
$$

where P, Q, M, and N are matrices characteristic of the system, $X(t)$ is the vector of inpuls, $Y(t)$ is the vector of outputs, and the $\Psi(t)$ are state variables.

Rewriting these equations in matrix multiplication form yields:

$$
\left[\begin{array}{l}
\dot{Y}(t) \\
Y(t)
\end{array}\right]=\left[\begin{array}{l}
P Q \\
M N
\end{array}\right] \cdot\left[\begin{array}{l}
Y(t) \\
X(t)
\end{array}\right]
$$

This form suggests a form appearing in multiple regression analysis. ${ }^{2}$ With these concepts in mind, a modeling methot called Dynamic Organizational Network Analysis (DONA) evolved.

The DONA method of modeling is a self-generating procedure in that the motrices characterizing the system are generated from the system through regression analysis. Regression analysis requires data from the system and this data will certainly consist of diserete quantities or measurements taken at some time interval. Since the state variable equations describe continuous functions, , a discrete form may be derived by writing the equations in difference-equation form.

$$
\cdot\left[\begin{array}{l}
Y(t+h) \\
Y(t)
\end{array}\right]=\left[\begin{array}{cc}
(h P+l) & h Q \\
M & N
\end{array}\right] \cdot\left[\begin{array}{l}
Y(t) \\
X(t)
\end{array}\right]
$$

Taking first differences to high-pass filter the records, thus eliminating trends, yields

$$
\left[\begin{array}{l}
\Delta^{\prime}\left(Z^{\prime}\right) \\
\nabla(Y)
\end{array}\right]=\left[\begin{array}{cc}
(P+1) & Q \\
M & N
\end{array}\right] \cdot\left[\begin{array}{l}
\nabla(\psi) \\
\nabla(X)
\end{array}\right] \text { for } h=1
$$

where

$$
\begin{aligned}
& \Delta(\Psi)=\Psi(t+1)-\Psi(t) \\
& \nabla(\Psi)=\Psi(t)-\Psi(t-1)
\end{aligned}
$$

Letling the matrix $\left[5 ?=\left[\begin{array}{cc}(P+1) & Q \\ M & N\end{array}\right]\right.$ and substituting yields

$$
\left[\begin{array}{l}
\Delta(:) \\
V(Y)
\end{array}\right]=\left[\begin{array}{l}
i \\
S
\end{array}\right] \cdot\left[\begin{array}{l}
V(y) \\
\nabla(X)
\end{array}\right]
$$

The $\nabla X, \nabla Y, \nabla y$, and $\dot{X} \psi$ are determined from calculations using actual data produced by the reai system to be madeied. The time iniervai may be one hour, unte week, etc. By the use of a computer program for multiple regression analysis, the characteristic matrix, S, can be determined.

The Laboratory Concept for Validation

A question arises concerning the validity of the DONA model and the method which produced the model. The usual procedure for validating such a model is by using information from the real system and determining if the model predicts in an acceptable manner when compaind with the performance of the real system. It was felt that a better method could be usedto validate the DONA model. A laboratory concept was developed to validate the method, which in turn validates the model produced by the method. In this concept the paramaters can be controlled to determine the range and responsivenass of the model. The experimental system shown in Figure 1 is used for the validation procedure. The block marked "SIMCO" is a computer simulation of a sales company. This simulationtwas developed by C. 'MeMillan and Richard 'Fó"Gonzales.9 As orginally wpitten SIMCO was a distributor operation for a single product . Stochastic demand and lead times were incorporated. SIMCO was modified to handle a second product and to simulate parsonnel actions; i.e. hires, fires, and transfers. These madi$\$$ ficat ions were made to widen the scape of operations through the addition of the second product and to have some interaction of elements; e.g. the transfer of personnel from one product line to the other. All of the characteristics of SIMCO are knowin. Since SIMCO is a subroutina, it can easily be replaced to study the validity of DONA as
applied ta.any other simulated activily.
 analysis procedure for developing the "5" matrix. In the laboratory system the "S" matrix will characterize the SIMCO Sales Company. The DONA model block in Figure 1 represents the following molrix equation.

$$
\left[\begin{array}{l}
Y(r+1) \\
Y(t)
\end{array}\right]=\left[\begin{array}{l}
s
\end{array}\right] \cdot\left[\begin{array}{l}
Y(t) \\
X(t)
\end{array}\right]
$$

The left side of the matrix equation is the DONA output.
The outputs of SIMCO and the DONA model are finally compared as shown in Figure 1. The comparison is made on all parameters desired or deemed apprapriate for consideration. For example, the DONA model not only produces the aystemoutputs but also predicts for the next time interval the value of the stote variables.

Experimental Design Considerations in the Validation Procedure

The problems revealed in this project have provided some valuable insights into modeling of a man-organized system using this method. The laboratory, concept described above has been fully implemented. The entire concept has been written into a computer progrom and the program has been run and dobugged.

Since thi: is a laboratory, the generation of stimulus data was the first big problem. Even though the computer program could handle a total of 40 input and state variables the problem vies not the number of variables. The problems centered around the beheavior of the variables.

It was iearned that a run-organized systern as simylated produces variables some of which cause redundancies in the equations. This of course causes singularities in the mutrix. A particular variable of the stimulus data, though time-varying over the long ierm, may have a constant value for the simulated time period; and when the forward and backward differences are taken, the value of the difference is zero. This same problem can uecu: with a parameter whose first derivative is a constant. The forward and backward differences'will be consiant but in the mult iple regression analysis, a. zero varionce is computed. A possible solution to the problens of zero values for the variances is the use of a "dithering signa!," much the same as the dithering signal used in conirol systems. The redundancies in the equations can be overcome by careful selection of the aystem paismeters.

After taling edreful note of the above condifiens, attention is then directed to the types and levels of stimulus data. The prediction sapabilities of the DONA model can be tested through its ability to "track" the real system or, as in the case of the laboratory concept, to "track" the SIMCO simulation. The inputs to SIMCO and DONA may be any one or a combination of signals composed of random naise, sinusoids, impluses or step furictions. A particular characteristic to observe is the frequency response of the DONA model. The interaetions designed into the SIMCO simulation were part of this test to determine the "worth" of the DONA model and the method to produce the model.

Problems can also arise in the comparison phase of the laboratory concept. The criterion for agreemerit in the outputs is based on the quadratic form of the covariance matriy. A recert book by Jenkin: en:d Watts 10 describes this procedure when en analysis
is required of a multivariate system. The equation of the quadratic form of the covariance matrix is as follows:

$$
\begin{aligned}
& \text { Probubility }\left\{[\vec{x}-\vec{i}]^{T} V^{-1}[\vec{x}-\vec{\mu}]\right\}=\text { Probobility }\left(\chi^{2} m\right) \\
& \text { where } V=\left[\operatorname{cov}_{T}\{y(j, t), y(k, t)\}\right], t=\{\ldots, T \\
& m=\text { degrees of freedom }=\text { order of } V \text { matrix }
\end{aligned}
$$

This equation is used in two different stot istical tests. First, the equation is used to test the prediction capability of the madel as a function of time. It can be determined when in the time domain the model ceases to predict with the specified confidence. The! equation then moy be used to test the zignificance of each dimension (variable) in the model. Instead of measuring the variability as a function of time the variability is measured as a function of a variable in the model with the time fixed. Agoin it can be observed when the model ceases to predict with the specified confidence. Using this method for comparison of the oulputs quantitative information is generated which gives the performance characteristics of the DONA model and the method used to produce the DONA model.

Figure 1 The Laboratory System

BIBLIOGRAPHY

1. Bashkow, Theodore, R., "The A Matrix, New Network Description." IRE Transactions on Circuit Theory, Vol. CT-4, No. 3, (September, 1957), pp. 117-17
2. Duncan, Achesan J., Quality Contral and Industrial Statistics. Homawood, III. , Richord D. Irwin, Inc., 1965.
3. Forrester, Jay W. , Industrial Dynamics. New York, the M.I.T. Press and John Wiley, 1961.
4. Frame, J. S. and Koenig, H. E., "Matrix Functions and Applications. Part III-Applications of Marrices to Systems Analysis." IEEE Specirum, May, 1964, pp. 100-109.
5. Koenig, H. E., "Marhematical Models of Socio-Economic Systems: An Example." IEEE Transactions on Systems Science and Cybernetics, Vol. SSC-1, No. 1 (Nov., 1965), pp. 41-45.
6. Koenig, Herman E., Tokad, Yilmaz, and Kesaven, Analysis of Diserate Physical Systems, New York, McGrow-Hill, 1967.
7. Koenig, H. E., and Tokad, Y. , "State Models of Systems of Multi-Terminal Linear Components." IEEE 1964 International Convention Record, Part 1, Vol. 12, pp., 318-329.
B. Koenig, H. E., Kenney, M. G., and Zenach R., A System Model for Mandgement, Planning, and Resource Allocation in Instifut Tons of Fígher Educotion: Flinal Report to the National Sclence Foundarion, Washingron, D. C. Project C-518. September 30, 1968.
8. McMillan, Cloude, and Gonzalez, Richard F., Systems Analysis: A Computer Approach to Decision Models. Homewood, III., Richard D. Irwin, Ine., 1965.
9. Jenkins, Gwilym M., and Watts, Donald G., Spectral Analysis and Its Applications. San Francisco, Calif., Holden-Day, 1969.

An Investigation of the Effect of Some Prior Distributions on Bayesian Confidence Intervals For Attribute Data
\section*{Alan W. Benton}
Aberdeen Research and Development Center Aberdeen Proving Ground, Maryland

ABSTRACT
One method of obtaining confidence intervals on the reliability of a system or component whose sample outcomes are either a success or failure is founded on Bayes theorem. In the Bayesian formulation of the problem one must assume a prior distribution on the random variable of interest, namely, the reliability. The purpose of this investigation was to determine the effect of some prior distributions on Bayesian confidence intervals in which it was assumed that the prior distribution may be represented by the beta distribution. It was my intent to restrict attention to alternative priors one might use when no previous data or experience exists on a system.

INTRODUCTION

Of primary importance to Bayesian státistics is the attáchment of probabilities to various possible hypotheses, or in this case probable reliabilities. The mechanism that performs this role is the prior distribution. The plausible values which the random variable might take on do not necessarily imply that one believes the probability exactly, they are only a measure or rough indication of what one tends to believe are the most likely values:

In Bayesian analysis the prior distribution is combined with the test date to yield a modified distribution of reliability, namely, the posterior distribution. That is, the information that we have on a component by way of the prior distribution is updated with the latest test results. If we let This article has been reproduced photographically from the author's manuseript.
$W=\operatorname{Reliability}, 0 \leq W \leq 1$
n = Number of tests
r - Number of successes
then by Bayes theorem

$$
f(W / n, r)=\int_{W}^{g(n, r / W) f(W) f(W) d W}
$$

where
$f(W)=$ Prior diatribution of W
$g(n, r / W)=$ Probability of observing r successes in n trials, given W.
$f(W / n, r)=$ Posterior distribution of W.
In practice it is quite comon to assume a beta for the prior distribution. There are several reasons for suggesting the beta, among them are (1) its random variable has range $[0,1]$, (2) the beta can fit almost any unimodal or nonmodal distribution for a r.v. over the unit interval, and (3) Its ease in computations. The beta density is given by

$$
\begin{aligned}
f(W) & =\frac{(a+b+1)!}{a!b!} W^{a}(1-W)^{b}, 0 \leq W \leq 1 \\
& =0 \quad \cdots \quad \text { elsewhere }
\end{aligned}
$$

where a, b-1. It may be shown that by altering a and b the shape of the distribution is changed. See Figure 1 . These didtributions indicate the plausible values which the random variable might take on.

Assuming $f(W)$ to be beta distributed and $g(n, r / W)$ to be a binomial distribution, the posterior distribution is given by
$f(W / n, r)=\frac{g\left(n_{2} r / W\right) f(W)}{g(n, r / W) f(W)} d W$

$$
=\frac{\binom{n}{r}^{r} W^{r}(1-W)^{n-r} \frac{(a+b+1)!}{a!b!} w^{a}(1-W)^{b}}{\int_{0}^{1}\binom{n}{r}^{r}(1-W)^{n-r} \frac{(a+b+1)!}{a!b!} W^{a}(1-W)^{b} d W}
$$

$$
=\frac{(a+b+n+1)!}{(a+r)!(b+n-r)!} W^{a+c}(1-w)^{b+n-r}
$$

which is also beta distributed.
CÔnsiñicilan or confinence interyais
Since the posteriar distribution was found to be beta distributed, it follows that a confidence interval for a beta variate is desired. If we let $W^{2} B(a, b)$, then $100(1-a) \%$ one sided confidence interval is given by

$$
\operatorname{Pr}\left[W_{L}^{1}<W<1\right]=\int_{W}^{1} f(W) d W=1-a
$$

L.

An exact lower bound is given by

$1+\frac{-}{a+r+1} F_{1-a}$
where
$F_{1-\alpha}=(1-a)$ percentile of the $F-$ distribution with $2(b+n-r+1)$ and
$2(a+r+1)$ degrees of freedom.
$a, b=$ parameters from the prior
\mathfrak{n} = sample size
r - number of successes
The use of the F - distribution may be seen from the following, From the change of variable theorem of integral calculus we may write
$g(F)=h(W=U(F)) \frac{d W}{d F}$.
Let
$W=\frac{\frac{a+r+1}{b+a-r+1} F}{1+\frac{a+r+1}{b+n-r+1}} F$
then
$\frac{d W}{d F}=\frac{\frac{a+r+1}{b+n-r+1}}{\left(1+\frac{a+r+1}{b+n-r+1} F\right)^{2}}$
and on substitution

$$
g(F)=\frac{(a+b+n+2)}{(a+2+1)!(6+a-a+1)}\left(\frac{a+r+1}{b+n-n+!}\right)^{a+r+1} \quad\left(\frac{F^{a+r}}{\left(1+\frac{a+z+1}{b+n-r+1} F\right.}\right)
$$

which is the $F-$ distribution with $2(a+r+1)$ and $2(b+n-r+1)$ degrees of freedom. Now recall

$$
\int_{W_{L}^{1}}^{l} f(W) d W=\int_{-\frac{R F}{+R F}} f(W) d W=1-a
$$

where

$$
R=\frac{a+r+1}{b+n-r+1}
$$

Noting that $F_{b}^{a}(a)=1 / F_{a}^{b}(1-a)$, the lowar limit is given by

$$
W_{L}^{1}=\frac{1}{1+\frac{b+n-r+1}{a+r+1}} F_{1-a}
$$

One of the reasons for using the $E-$ distribution is that tables of this distribution are frequently more readily available than those of the incomplete beta. Also, they are convenlent for those values of a most often used. e.g., $0.10,0.05,0.01$.

For sufficiently large sample sizes the normel approximation may be employed, the approximation being best in the vicinity of W equal to onemalf. For the posterior distribution the expected value and variance of W are:

$$
E(W)=\frac{a+r+1}{b+n-r+1}
$$

and

$$
a^{2}=\frac{(a+r+1)(b+n-r+1)}{(a+b+n+2)^{2}(a+b+n+3)}
$$

Thus, the $100(1-a) \%$ lower 1 imit is given by

```
E(W)-20
```

where ${ }^{2}{ }_{l-a}$ is such that

$$
\frac{1}{\sqrt{2 \pi}} \int^{2,1-n}-t^{2 / 2} d t=1 \cdot a
$$

DISCUSSTION
As indicated in the previous section, the lower confidence limit (LCL) was computed for 111 ustrative purposes. A confidence level of 95% was. chosen and the following prior distributions were selected:

$$
\begin{array}{l|lllll}
a & -1 & -1 / 2 & 0 & 1 & 6 \\
\hline b & -1 & -1 / 2 & 0 & 0 & 1
\end{array}
$$

References [1] and "[4] give discussion on the reasons for assuming prior distmbutions when a and b are both set equal to $-1,-1 / 2$, and 0 . By letting $a=6$ and $b=1$ we give more credence to moderately high relialifities, which would appear to be a likely area of interest. For large andor b one gets into the problem of the prior distribution far outweighing the most recent evidence or sample.

In Figure 2 the lower 95\% limit is plotted againet the number of fal1ures observed in a sample of size twenty. In general, the results are quite similar for the other ample aizes inventigated ($n=10(5) / 25$). It may be noted that the number of failures begins at one; This was done aince when using the ($-1,-1$) prior one must assume the occurrence of at least one puccess and at least one fallure in the sample.

An examination of the lower limits plotted on Figure 2 yields the follow1ng general results:

1. The ($-1,-1$) prior resulta in shorter confidence intervals than a($-1 / 2,-1 / 2$) prior which in turn giges a shorter confidence interval than the $(0,0)$ prior: This holds true for moderate to high reliabilities. The
order is reversed for low reliabilities.
2. The differences in confidence interval length become amaller as n, the sample size. increases.
3. All three priors $[(-1,-1),(-1 / 2,-1 / 2),(0,0)]$ result in shorter confidence intervals than those obtained with classical methods.
4. The (6,1) prior does not result in a unfformiy shorter confidence interval far moderate to high reliabilities.

Now, let r / n (\#success/sample) be an indicator of reliability and rank the priors according to their interval lengeh. Thus the shortest confidence interval indicates the most optimistic result and the longest the most pessiminstic result for sample estimates of reliability. The followIng table presents a sumary of these rankings.

Sumary of Length of Confidence Intervala for $(-1,-1),(-1 / 2,-1 / 2),(0,0),(1,0)$ Priors

r / n	Shortest			
$\geqslant 0.85$	$(-1,-1)$	$(-1 / 2,-1 / 2)$	$(1,0)$	Longest
$0.75-0.85$	$(-1,-1)$	$(1,0)$	$(1 / 2 ;-1 / 2)$	$(0,0)$
$0.65-0.75$	$(1,0)$	$(-1,-1)$	$(-1 / 2,-1 / 2)$	$(0,0)$

Thus, for r/n greater than 0.75 the ($-1,-1$) prior givas the shortest interval while the uniform prior (0,0) gives the longest interval.

1. Lindley, D. V., Introduction to Probability and Statistics froma Bayesian Viewpoint, Part 2, Cambridge University Press, New York, 1965.
2. Mood, A. M., Graybill, F. A. Introduction to the. Theory of Statistics, McGraw-Hill Book Co., Inc., New York, 1963.
3. Savage, L. J., The Foundations of Statisticg, John Wiley and Sons, Inc. New York, 1954.
4. "Planning Guide for Demonstration and Assessment of Reliability and Durability", AMC Pamphlet AMCP 702-5. .

Figure 2

SOME TECHNIOUES POR CONSTRIMTING: mutually orthogonal latin squares*

W. T. Federer, A. Hedayat, E. T. Parker
B. L. Raktoe, Esther Seiden; and R. J. Turyn

Mathematics Research Center, U. S. Army
Madison, Wisconsin

ASSHact. Vartous methods of contritcting a set of matually
orthogonal latin squares are presented and the theoretical aspects of various methods are discussed. Illustrative examples of constructing latin squares and sets of mutually orthogonal latin squares are given. The methods of constructing latin squares and sets of orthogonal latin squares are complete and partial confounding, fractional replication, analysis of variance, group, projecting diagonals, orthomorphism, pairwise balanced design, oval, code, product composition, and sum composition. The sethods of construction designated as partial confounding, fractional replication, analyais of variance, and aum composition appear not to have beon discuseed proviously in the literature. The mode of complete confounding and of projecting diagonals have been given only a pasing refarence with no indication as to the actual construction procedure. The um composition method has interesting consequences in combinatorial theory as well as in the construction of orthogonal latin squares. Lastly, equivalences of fourteen combinatorial system to orthogonality in latin squares has been inveatigated and described.
*This article hat appeared as Technical Summary Report No. 1030 of The Mathematics Research Center, U. S. Army, The University of Wisconsin, Madison, sponsored under Contract No.: DA-31-ARO-D-462. The ramainder of this article has been reproduced photographically from the authors' manuscript.

TABLi: ul CONTENTS

Section and [itle

1. Int uduction and Some Terminology W. T. Federer and A. Hedayat
2. Factorial Confounding Construction of $O(n, t)$ Sets
3. 1 Complete Confounding.............. T. Federer and B. L. Raktoe
II. 2 Partial Confounding
W. T. Federer

1II. Fractional Replication Construction of $O(n, t)$ Sets . . . W. T. Federer
IV. ANOVA Construction of O(n.t) Sets W. T. Federer
V. Group Construction of $O(n, t)$ Sets
A. Hedayat
VI. Projecting Diagonals Construction of O(n,t) Sets . . . W. T. rederer
VII. Relations Between Cumplete Canfounding and Simple. . Orthomorphisms
B. L. Raktoe
VIII. Some Remarks on "Orthomorphism" Construction of O(n.t) Sets E, T. Parker
DX. Oval Construction of Oin.t) Set: Fisther Seiden
X. Code Construction of $O(n, t)$ Suts . . . R. J. Turyn and W. T. Federer
XI. Pairwise Balanced Design Construction of Uin, thits L. T. Parker
XII. Product Composition of $O(n, t)$ Sets
A. Hedaydt

XIIL. Sum Composition of $U(n, t)$ Sots A. Hedayat and Esther Seiden
XIV. Computer Construction of OIIO.t) Sets E. T. Parker
$X V$. Equivalences of Oin,il Sets with uther Combinatorial. Systems
A. Hedayat
XVI. Acknowledgements

Yill. Literature Cited

ORTHOGORAL LATIN SQUARES

W. T. Federer ${ }^{1}$, A. Hedayat ${ }^{2}$, E. i. Parker ${ }^{3}$
B. L. Raktoe ${ }^{4}$, Esther joumen ${ }^{\text { }}$. and !?. J. Turyn"

I. Introduction and Some Terminolugy

The purpose of this paper is to present a set of methods for construeting mutually orthogonal latin squares and to rxhibit some squares produced by each of the methods. The set of methois prosunter herein was discussed in a series
 authors at Cornell University. Tho ri, thestion tor thrise diszussions was derived

 theor; of mutual orthogonalit; in hata: siadärfs.

[^5]As may be noted from the :able of contents, the different sections were witten by different authors. An attempt was made to have a consistent notation and a unffurt style. Although mach more work is required to finalize the method in several of the sections enough is known about the method to use it to construct a latin square of any order ir t eonstruct a set of two or more mutually orthogoral latin squares. Also, a number of equivalences may be noted for some ui th. :nethous.

The theory of mutual orthogonallty in datin squares has application in the Cunstruction of many classes of rxpriment dosigns and in many combindtoriad systenis. The latter subject is disciussud in section XV where the equivalences of various combinatoral systems are presunted. With regard to the former subfect. there is an ever present need fur nou oxperinent dusigns for new experirental situdtions in order for the wi.fimenter not whave to conduct his expertment to tit krown expertinent designs.

Soln" of the notation and tormarobigy that will bo atilized is presented below.

Definition bel. A datin square ot crior n on wet \sum^{\prime} with n distinct elements is an $n \times n$ matrix each of whos: rows mad colurins is a pormutation of the set -
"xample:

1	2	3
2	3	1
3	1	2

 sadd tobe orthogonal if the n^{2} orderespatis $\left.w_{11},_{11}^{\prime}(1,1)=1,2, \ldots, n\right)$ are all distinct. Note that L_{1} and 1_{2} neacinut: jefined un the same set.

Example:

Definition de3. [h \quad nembers wa se't ot 1 datin squares $L_{1}, L_{2}, \ldots, l_{t}$ ef

!xomple:

Latin squares and orthogonal latin :aturt:s adve at danst 187 yoars of history. Hedayat [1984-soction $D X$] has presentola rowsonably guod pature of this history which will not be repeated herr. It is fhanned ti, prepare a historical account of devalopments related to orthogutiality in latan syuaris and to publish this material together with a biblingraph: alic:who..

1. iaciorial Cinicunding Enstruction of Oin, ti Sets

ii. i. Compicte sonfouncing

The n^{2} row-columin intersections may be related to the treatment combinations in a n^{2} factorial treatment $d \cdot \operatorname{sign}$. To lllustrate let us consider the 4^{2} factorial-and the-latin squareot order-4. The levels of the man effects, A ard B. in the factorial will br us.e tw designate the rows and the columns of

lathn syunges ciordef 4

r OW $1=\left\|A_{1}\right\|$,	00	01	02	03
HNL $=\left.1\right\|_{1}$	10	11	12	13
rciov $3=1 \dot{1}$,	20	21	22	43
rowi $=$ 'A',	30	: 1	32	\$3

Thu: , tou: combinations out of ine le, wach have $1=0$ in the subscript 11 ,
 inuming thas procidure the rematndr if tit: if combinations are allocated to the remamang rows and to the colunins a sh in above.

Now, three wher effects with 4 levels each can be set up from the pro-
 fit ${ }^{3}, U_{1} \cdot w_{3}$, . The levels of these effects and the corresponding latin square produces if letting all cumbinations of the level of an effect be a symbol in the Lath square are isee page 33 i of henithorne [1952], e.g. 1:

$\left(A B^{u^{3}}\right)_{U_{i}+u_{3} u_{j}}=\left\{\begin{array}{ll|l|l|l|l|}0 & 00+12+23+31 \cdot W & W & Z & X & Y \\ 1 & 02+10+21+33 \cdot X & X & Y & W & Z \\ 2 & 03+11+20+32 \cdot Y & Y & X & Z & W \\ \hline 3 & 01+13+22 \cdot 30 \cdot Z & Z & W & Y & X \\ \hline\end{array}\right.$
In the above the complete cunfounding scheme of sources of variation in the $O(4,3)$ set and the effects in the factorial may be lllustrated in the following analysis of variance table wherein the sums of squares in the lines of the analysis of variance are orthogonal to each other:

Source of variation

Degrees of freedom

Roman numbers $=\left(A B^{U_{1}}\right)$ effect
3
Greek letters $=\left(A B^{U_{2}}\right)$ effect $\quad 3$
Latin letters $=\left(A B^{\mathbf{W}_{3}}\right)$ effect $\quad 3$
Total

Correction for mean
Rows = A effect : 3
Columns = Beffect
3
1
)

Instead of relating the mutually orthogonal latin squares of order 4 to a 4^{-}factorial we may relate them to a 2^{4} factorial in the following manner, Let the 16 row-column intersections be numbered as follows:

	column			
	1	2	3	4
	0000	0001	0010	0011
	0100	0101	0110	0111
	11100	1001	1010	1011
4	1100	1101	1110	1111

Let the factors be a, b, c, and I with two levels $(0$ and 1$)$ each. The rows correspond to fäctorial effects. A, B. und $A B$ and the columns correspond to factoral efterets C, D, and $C D$. Thas furm of cunstructing latin squares has been usod by lisher and Yates (1957) for dutin squares of ordar 8.) Then, lat the symbols in the 3 latin squares be represented by the following scheme:

iactorid gonerators	Combinations		latin squares		
$(A C)_{0},(B D)_{0},(A B C D)_{0}$	$0000+0101+1010+1111=1$	1	II	111	IV
(AC) ${ }_{0}$, 18 D$)_{1},{ }^{(A B C O D)_{1}}$	0001-0100 - 1011+1110=11	II	1	IV	III'
(AC) , $1 B D)_{0},(A B C D) 1_{1}$	0010+0111+1000 + 1101 $=111$	111	IV	1	11
$(A C)_{1},(B)_{1},(A B C D)_{0}$	$11011+0110 \cdot 1001+1100=1 V$	IV	III	II	1
18[)$_{0},(A B C)_{0},(B C D)_{0}$	0000 - 0110 + $1011+1101=W$	W	Z	X	Y
$(A D)_{1},(A B C)_{1},(B C D)_{1}$	$0010 \cdot 0100 \cdot 1001+1111=x$	X	Y	W	z
$(A D)_{1},(A B C){ }_{0},(B C D)$	$0001+0111+1010+1100=2$	Y	X	2	W
(A!), (ABC), (8CL)	0101+001! $+1000+1110=Y$	7	W	Y	X

$$
\begin{array}{ll}
(A C D)_{0},(B C)_{0},(A B D)_{0} & 0000+0111+1110+1001=\alpha \\
(A C D)_{0},(B C)_{1},(A B D)_{1} & 1010+0100+0011+1101=\beta \\
(A C D)_{1},(B C)_{0},(A B D)_{1} & 1000+0110+1111+0001=\gamma \\
(A C D)_{1},(B C)_{1},(A B D)_{0} & 0010+0101+1011+1100=\delta
\end{array}
$$

α	Y	σ	β
β	γ	γ	a
γ	a	β	ℓ
δ	γ	α	γ

The correspondence of the latin squares obtained from complete confounding considering a 4^{2-1} actorial and considering a 2^{4} factorial is defionstratedIn the following analysis of variance table:

Source of variation

Correction for mean
Rows $\quad=$ A effect in 4^{2} factorial
A effect in 2^{4} factorial
B " " 2^{4}
$A B \quad " \quad " 2^{4} \quad "$
Columns $=B$ effect in 4^{2} factorial
\dot{C} effect in 2^{4} factorial
D " " 2^{4} "
CD " " 2^{4}
Roman numbers $=A B^{u_{1}}$ effect in 4^{2} factorial $A C$ effect in 2^{4} factorial BD " " 2^{4} ABCD " " 2^{4} "
Greek letters $=A B^{{ }^{2}}$ effect in 4^{2} factorial
degrees of freedom
1
3
1
1
1
3

3
1

1
1
3

$$
\text { ACD effect in } 2^{4} \text { factorial }
$$

$$
\begin{array}{cccc}
B C & " & " 2^{4} & " \\
A B D & " & " 2^{4} & "
\end{array}
$$

Total
16

It should be noted here that the effects in the 2^{4} map directly into the 4^{2} projective geometry or $P G\left(1,2^{2}\right.$, Likewise, even though one more set of generators is available, viz.

Generators interaction

Roman numbers $-A D, B C$	$A B C D$	
Greek letters	$=A C, A B D$	$B C D$
Latin leters	$=B D, A B C$	$A C D$

the three orthogonal latin squares produced are the same ones. Since the third effect above is obtained as the product of the two generators, mod 2 , we nend consiler only the generators. Multiplying these by $C D(\bmod 2)$ we ubtain the generators of the preceding scheme. Hence, even though two different complete confounding schemes are available thore is a simple one-to-one mapping of one set into the other set. Although nothing interestirig turns up here, it would be interesting to study the various completr confounding schemes in the latin square of order 9 as related to the 3^{4} factoral.

As a second illustration of the use of complete confounding to construct 13tin squares, let us consider the latin square of order 6 . Using the notation
 represent a combination by ghij where q, h are members of $I(3)$ and $1, j$ are members of 1 (4). The effects in the 2^{2} and in the 3^{2} factorials are denoted respectively by:

The remaining interactions are given below in the analysis of variance table:

Source of variation
Correction for mean
Rows $=A^{3} C^{4}$
A^{3}
c^{4}
$A^{3} \times C^{4}$
Columns $=B^{3} D^{4}$
B^{3}
D^{4}
$B^{3} \times D^{4}$
Treatments or symbols $=A^{3} B^{3} C^{4} D^{4}$
$A^{3} B^{3}$ $C^{4} D^{4}$ $A^{3} B^{3} \times C^{4} D^{4}$

Degress of frocdom
1
5
1

2

2
5
1
2
2
5
1

2

2

Remainder	20
$C^{4} D^{2}$	2
$A^{3} \times D^{4}$	2
$A^{3} \times C^{4} D^{4}$	2
$A^{3} \times C^{4} D^{2}$	2
$B^{3} \times C^{4}$	2
$B^{3} \times C^{4} D^{4}$	2
$B^{3} \times C^{4} D^{2}$	2
$A^{3} B^{3} \times C^{4}$	2
$A^{3} B^{3} \times D^{4}$	2
$A^{3} B^{3} \times C^{4} D^{2}$	2
Total	36

Let us now set up the 6 rows and the 6 columns of a latin square of order 6 with the corresponding designation of the 36 combinations as follows:

Columns

Rows	$\left(B^{3} D^{4}\right)_{0}$	$\left(B^{3} D^{4}\right)_{1}$	$\left(B^{3} D^{4}\right)_{2}$	$\left(B^{3} D^{4}\right)_{3}$	$\left(B^{3} D^{4}\right)_{4}$	$\left(B^{3} D^{4}\right)_{5}$
$\left(A^{3} C^{4}\right)_{0}$	0000	0304	0002	0300	0004	0302
$\left(A^{3} C^{4}\right)_{1}$	3040	3344	3042	3340	3044	3342
$\left(A^{3} C^{4}\right)_{2}$	0020	0324	0022	0320	0024	0322
$\left(A^{3} C^{4}\right)_{3}$	3000	3304	3002	3300	3004	3302
$\left(A^{3} C^{4}\right)_{4}$	0040	0344	0042	0340	0044	0342
$\left(A^{3} C^{4}\right)_{5}$	3020	3324	3022	3320	3024	3322

Now let the levels of $A^{3} B^{3} C^{4} D^{4}$ correspond to the symbols in a latin square of order 6 as follows:

Levels

Combination for which $39+3 h+4 i+4 j$ mod 6 , is constant Symbol

$\left(A^{3} B^{3} C^{4} D^{4}\right)_{0}^{0}$	$0000+3342+0024+3300+0042+3324$	\bullet	0
$\left(A^{3} B^{3} C^{4} D^{4}\right)_{1}$	$0304+3040+0322+3004+0340+3022$	\bullet	1
$\left(A^{3} B^{3} C^{4} D^{4}\right)_{2}$	$0002+3344+0020+3302+0044+3320$	\rightarrow	2
$\left(A^{3} B^{3} C^{4} D^{4}\right)_{3}$	$0300+3042+0324+3000+0342+3024$	\bullet	3
$\left(A^{3} B^{3} C^{4} D^{4}\right)_{4}$	$0004+3340+0022+3304+0040+3322$	\cdots	4
$\left(A^{3} B^{3} C^{4} D^{4}\right)_{5}$	$0302+3044+0320+3002+0344+3020$	\cdots	5

This produces the following latin square of order b_{1}

0	1	2	3	4	5
1	2	3	4	5	0
2	3	4	5	0	1
3	4	5	0	1	2
4	5	0	1	2	3
5	0	1	2	3	4

Alternativaly we could have used levels of $A^{3} B^{3} C^{4} D^{2}$ to construct the following latin square of order 6 :

Levels
$\left(A^{3} B^{3} C^{4} D^{2}\right)_{0}$
$\left(A^{3} B^{3} C^{4} D^{2}\right)_{l}$
$\left(A^{3} B^{3} C^{4} D^{2}\right)_{2}$
$\left(A^{3} B^{3} C^{4} D^{2}\right)_{3}$
$\left(A^{3} B^{3} C^{4} D^{2}\right)_{4}$
$\left(A^{3} B^{3} C^{4} D^{2}\right)_{5}$
Combinations for which $30+3 h+41+21$, mod 6,18 constant Symbol $0000+3344+0022+3300+0044+3322 \quad 0$ $0302+3040+0324+3002+0340+3024 \quad 1$
$0004+3342+0020+3304+0042+3320 \quad 2$
$0300+3044+0322+3000+0344+3022$
$0002+3340+0024+3302+0040+3324 \quad 4$
$0304+3042+0320+3004+0342+3020$
5
latin square of ordar 6

0	5	4	3	2	1
1	0	5	4	3	2
2	1	0	5	4	3
3	2	1	0	5	4
4	3	2	1	0	5
5	4	3	2	1	0

Thus, the above square is simply a column permutation of the previous one. As there are no other sots ut 5 degrees of freedom leading to a latin square of order 6 Hi, e. A^{3}, B^{3}, and $A^{3} B^{3}$ exhaust the three single degreos of freedom from the 2^{2} factorial and $C^{4}, D^{4}, C^{4} D^{4}$, and $\left.C^{4}\right)^{2}$ oxhaust all gets of 2 degrees of froedom from the 3^{2} factoriali, It is not pussible to obiain a latin square of order or orthogonal to etther of thי preseding unes using complete confounding schemes.

For a latin square of order lo wr may use levels of $A^{5} A^{5} C^{6} D^{6}, A^{5} B^{5} C^{6} D^{2}$, $A^{5} B^{5} C^{6} D^{4}$, or $A^{5} B^{5} C^{6} D^{4}$ to form foul difforcont latin squares of ordor 10 .

11. L. Partial Confounding

In the last section use was mable wi complete sonfounding of effects in a factorial with the rows, columns, whation in a datin square, Instead of completely confuanding an effect, it wuld be partially confounded. fin eximple, the latin square of order 4 could be considered as a 2^{4} factorial as in the preceding section, with the following scheme of confounding:

Rows	$1=(C)_{0}$	$2=(C)_{i}$	$3=(D)_{0}$	$4=(D)_{i}$
1	$(A)_{0},(B)_{0}$	0000	0011	0010
$2(A)_{0},(B)_{1}$	0101	0110	0100	0111
$3(A)_{1},(B)_{1}$	1000	1011	1010	1001
$4(A)_{1},(B)_{1}$	1101	1110	1100	1111

If we set up the latin square symbols for the akove as

ther.
the symbols correspond to the fullowing combinations:

It is known that this datin square has no orthogenal mate (Hedayat [1469] 1 .
This maans that no orthogenal partitun if the remaining sum of squares can be made whach forms a latin square.

If on the other hand, the latin square usod is

, the combliations

Eurresponding to the Greek letters are:

$$
\begin{array}{ll}
\therefore & 0000+0110+1010+1111=(A B C D)_{0}+\text { othet effects } \\
\therefore & 0011+0101+1001+1100=(A B C D)_{0}+1 \\
\because & 0010+0111+1000+1110=(A B C D)_{1}+(A C)_{1}+\text { other effects } \\
\therefore & 0001+0100+1011+1101=(\text { ABCD })_{1}+\text { other effects }
\end{array}
$$

Inas square has two matually orthogonal mates and hence there must be partitions .f the sums of scuares nto orthognal components which correspond to the spmevels a: 1 bata squate.
instead of insertang sumbols an the latin square of order 4, denote the symbols in thir tatan square by the following partial confounding scheme:

11 add the two lis repheates generated by $\left.((A))_{0},(D)_{0},(B C)_{0}\right)$ and
 $11010 \cdot 11111$ and denute thrish + combinations as symbol α,
(11) ada th. iwo $1 / x$ rephoates generated by $\left.(1 D)_{1},(A B)_{1},(A C)_{0}\right)$ and
 mioh and dencte these 4 combinations as symbol β^{3},

 1llla and jenote these 4 as symbol y,
\because idj the two lif repheates generated by $\|(A)_{0},(A C)_{1},{ }^{\left.(D)_{1}\right)}$ and ${ }^{\left(A B_{1}\right.}{ }_{1}$ ($)_{0}$, (BD) $\left.)_{1}\right)$ to outain the combinations $(1101+0011)$ + (1010) - 11011 and denote these 4 as symbol δ.

This procedure results in the following latin square of order 4:

α	6	γ	$\boldsymbol{\beta}$
β	α	σ	γ
γ	β	α	δ
δ	γ	β	α

Obviously, one could take any pair of $1 / 8$ replicates such that the 4 combinations are in different rows and in different columns to form the combinations for a given symbol.

The above type of partial confounding results in the class of latin squares denoted as half-plaid latin squares. If partial confounding were utilized in rows as well as in columns the resulting square would be dencted as a plaid latin square (so-called because of its resemblence to plaid cloth if the effects confounded were of different colors). The three types of squares are illustrated below for a latin square of order 6:
jumbet cunfounding of effects
Columns

	$1=$ $(A)_{0},(C)_{0}$	$2=$ $(A)_{0},(C)_{1}$	$3=$ $(A)_{0},(C)_{2}$	$4=$ $(A)_{1},(C)_{0}$	$5=$ $(A)_{1},(C)_{1}$	$6=$ $(A)_{2},(C)_{2}$
$1=(B)_{0},(D)_{0}$	0000	0010	0020	1000	1010	1020
$2=(B)_{0},(D)_{1}$	0001	0011	0021	1001	1011	1021
$3=(B)_{0},(D)_{2}$	0002	0012	0022	1002	1012	1022
$4=(B)_{1},(D)_{0}$	0100	0110	0120	1100	1110	1120
$5=(B)_{1},(D)_{1}$	0101	0111	0121	1101	1111	1121
$6=(B)_{1},(D)_{2}$	0102	0112	0122	1102	1112	1122

Partial confounding of effects with columns

	Cows							$1=(C)_{0}$	$2=(C)_{1}$	$3=(C)_{2}$	$4=(C D)_{0}$	$5=(C D)_{1}$	$6=(C D)_{2}$
	$1=(B)_{0},(D)_{0}$	0000	0010	0020	1000	1010							
$2=(B)_{0},(D)_{1}$	0001	0011	0021	1021	1001	1017							
$3=(B)_{0},(D)_{2}$	0002	0012	0022	1012	1022	1002							
$4=(B)_{1},(D)_{0}$	1100	1110	1120	0100	0110	0120							
$5=(B)_{1},(D)_{1}$	1101	1111	1121	0121	0107	0111							
$6=(B)_{1},(D)_{2}$	1102	1112	1122	0112	0122	0102							

Partal confounding in both rows and columns

Rows	Columns					
	$1=100$	$2=\left(C_{1}\right.$	$3=\mathrm{CCl}_{2}$	$4=C D D 0_{0}$	$5=(C D)_{1}$	$6=(C D)_{2}$
$1={ }_{1} \mathrm{DI}_{0}$	00	10	20	10	10	20
2=(D)	01	11	21	21	01	11
$3=(\mathrm{D})_{2}$	02	12	42	12	22	02
$4=\left(C D^{2}\right)_{0}$	00	$1!$	22	00	22	11
$5 \cdot 10 D^{2}$	0.2	10	21	21	10	02
$2=100^{2}$	01	12	20	12	01	20

In the last table above only the subseripts for combinations of factors c and d have been inserted. There is some difficulty in inserting subseripts for faztors a and b such that these difects are orthogonal to both rows and columns. In any event, this problem requares further study to determine if half-plaid latin squares ard plad latin squares lend t, latin squares not of the same type as given by complete confuunding. If the three types of latin squares of order 6 can be produced by partid! and complete contounding, this would be an interesting result.

III. Fractional Replication Construction of $O(n, t)$ Sets

Any latin square may be considered as an n^{-1} fraction of an n^{3} factorial where the rows represent levels of one factor, the columns represent the levels of the second factor, and the symbols in the latin square represent the levels of the third factor. As an illustration, consider the latin square of order 3 where the 9 rombinations represent the $1 / 3$ fraction of a 3^{3} factorial as follows:

Columns			
	0	1	2
	000	012	021
1	102	111	120
2	201	210	222

The above is the $1 / 3$ fraction of a 3^{3} corresponding to $(A B C)_{h+i+j}=0, \bmod 3$. Since this is a regular fraction we may write out the aliasing structure in this fraction as follows:

$$
\begin{aligned}
& M \cdot A B C \\
& A+A B^{2} C^{2} \cdot B C \\
& B+A B^{2} \because \cdot A C \\
& C+A B C^{2}+A B \\
& A B^{2}+A C^{2} \cdot 3 C^{2}
\end{aligned}
$$

where the effects connected with a plus sign are completely contounded with each other. In the above latin square the symbols $0,1,2$ correspond to the levels of the third factor, c. Now if we set up a second latin square in which the symbols. say a, β, γ, correspond to the levels of $A B^{2}$, the resulting square will be orthogonal to the first one. The square corresponding to levels of $\left.\left(A B^{2}\right)_{i+2}\right)$, mod 3 is

```
000+111+222=cr
02! : 2!0: !02= 1
201+012+120= 1
```

α	Y	β
β	ω	γ
γ	β	α

The class of fractional replicates constituted as an n^{-1} fiaction of an n^{3} factoral secomes an important one to study as it relates to construction of mutually orthogonalimetin squares. In particular, all 2^{-3} fractions of a 2^{9} and all 3^{-2} fractions of a 3^{6} with all possible aliasing structures could produce several sets of mutually orthogonal latin squares. This could have interesting consequan:es in finite geomeiry.

The structur. u, the left-hand sit uf parameters in an aliasing structure will have a pattern; for example, tor $n=4,5$, and 7 , the patterns are:
$\frac{n=t}{M+A B}$
A
B
Q
$A B^{2}$
$A B^{3}$

$n+A B C$	$n=7$
A	A
B	B
C	C
$A B^{2}$	$A B^{2}$
$A B^{3}$	$A B^{3}$
$A B^{4}$	$A B^{4}$
	$A B^{5}$
	$A B^{6}$

\therefore :r that althugh fikc was omplratrif contounded with the mean, any one of the wher thru-facter interaction components $A B^{L L} C^{v}, u, v=1,2, \ldots, n-1$ could $\therefore: \because$ beven uthlazed equally woll. Alsc. note that the levels of C corresponding \therefore. \because rimels produce a latin square, and that the levels of effects below the :Aㅅ, 3 produed a set of $n-1$ mutually urthogonal latin squares.

In yeneral we want to look at all possible n^{-1} fractions of an n^{3} factorial. 1. ... th. subset of $\binom{n^{3}}{r_{1}}$ combinations for which the levels of C are the symbols
in a latin square and to study their patterns especially for $n=7,8$, and 9. All possible fractions, or rather all forms of the allasing structure, could be classified into all types of t mutually orthogonal latin squares, $O(n, t)$ for $t=1,2$, ..., n-1. Perhaps this is the manner in which the geometries of various values of n can be exháustively studied, In fractional factorial notation we want to study all possible patterns of $X_{11}^{-1} X_{12}$ in the following matrix equation:
$\left(\begin{array}{c}M \\ A \\ B \\ C \\ \vdots\end{array}\right)+X_{11}^{-1} X_{12} B_{0}=Y_{r}$
where the form of the first vector below the letter C will be determined by the values in $X_{11}^{-1} X_{12}$; the candidates for entry in the vector β are the remaining two- and three-factor interactions, and Y is the particulat set of n^{2} out of n^{3} combinations for which the levels of any fourth effect in the first vector form a latin square. Thus, it becomes important to study the properties of $X_{11}^{-1} X_{12}$ even for the 2^{m} system. The irregular fractions would appear to be the most interesting for $n=7,8$, and 9 since regular fractions can be related to complete confounding in section 11.1 and to flats and points in the projective geometry.

We now wish to illustrate the use of fractional replication procedures to construct latin squares which are mateless and which have orthogonal mates. To Illustrate let us consider the four standard latin squares of order 4 which are (Fisher and Yates [1957]):

Square:

Square II

Square III

A	B	C	D
B	A	D	C
D	D	A	B
D	C	B	A

Square IV

It is known (Hedayat | 1969]) that thoifot throe squares are mateless and that the last square belonge to an $0(4,3)$ set.
 a: number the columns as $0,1,2,3$, ard as $0,1,2,3$ for A, B, C, D, respectively, and senot: these as levels of thr focter \equiv. Then, in factorial notation the above 16 combinations form a one-fourth fraction of a 4^{3} factorial treatment design.

The altasing scheme for the frational replicate given as square IV is

$$
\begin{aligned}
& M+A B C \\
& A+B C \cdot A R^{2} C^{2}+A B^{3} C^{3} \\
& B+A C+A S^{2}:+A B^{3} C \\
& C+A B+A B C^{2}+A B C^{3}
\end{aligned}
$$

whor. An יflots conoctod with a plus sign are completely confounded with

 tw. Ita:

$$
\begin{aligned}
& A B^{2} \cdot A B^{2} \cdot A E^{3} B^{2} \\
& A B^{3} \cdot A B^{2} \cdot B^{3}+A B^{2} C^{3}
\end{aligned}
$$

Now, let us return to the set of four standard squares given above and we note that only four mombinatiens in senura ! Yare replased to ohtain squares I, II, and III. These are:

		additional combinations	combinations replaced in IV
Square I	$112,130,310,332$	$110,132,312,330$	
\ldots II	$113,120,210,223$	$110,123,213,220$	
\ldots	III	$213,230,320,331$	$220,231,321,330$

The aliasing structure (wityout the coefficients is given on the following page for all four standard latin squares of order 4 . The $1 / 4$ repllcate given by square IV forms a regular fraction. The remaining threc fractional replicates are such that none of the additional effects are uncenfounded with the effects A, B, or C of the ordginal latin squares of order 4. Since this is true ne linear combinations of these effects will be fnconfounded, in order to form a latin square which is orthogonal to the given ohe it is necessary that there be a set of effects which is unconfounded with th feffects th the given square. This is impossible for the three squares $1, \mathrm{II}$, and III and hence the squares are mateless as is well-known.

It would be interesting to ascertan the aliasing structures for the six standard latin squares of order 5 belonging to the $O(5,4)$ set and for the fifty standard latin squares of order 5 for which are known to be mateless (Hedayat [1969]). After a study of these fractions, one should continue such a study for $n=7,8$, and 9. It is suggested that one consider a 2^{6-2} fraction instead of a 4^{3-1} fraction for $n=4$ and a 2^{9-3} fraction instead of an 8^{3-1} fraction for $n=8$. The reason for this is that there is much more theory avallable for the

Aliasing structure of effects in the four $1 / 4$ fractional replicates of a 4^{3} factorial for four standard latin squares of order 4

$s=2$ in the s^{m} series than for any other value of s. Also, one may use the generalized defining contrast which has been developed by Raktoe and Federer [1969] to a considerable advantage in writing out aliasing structures in these cases. Investigation of the regular and irregular fractional replicates obtainable for vardous values of n could lead to considerable advances in the theory of mutually orthogonal latin squares.

IV. ANOVA Construction of $O(n, t)$ Sets

Theres should be some procedure which would utilize the orthogonality of single degree of freedom contrasts in the analysis of variance (ANOVA) and which could be utilized to construct orthogonal latin squares. For example, one could make use of orthogonal polynomial coefficients for row and column conirasts and then construct mutually orthogonal latin squares from these. To illustrate, consider the latin square of order 4 used previously wherein the row-column rabisections are numbered as a 2^{4} factorial, i.e.:

Row	1	2	3	4
1	0000	10001	0010	11011
2	0100	0101	0110	0111
3	1000	1001	1010	1011
4	1100	1101	1110	1111

Mhe redatiun betwecn the 16 contrasts using orthogonal polynomial coefficients and ther 2^{t} factorlal is given below:

Source of variation

di
C.F.M.

Row contrasts
$A-R_{L}-2 R_{C}$
$E=-2 R_{L}+R_{C}$
$A B=R_{Q}$
1
3
$\left.\begin{array}{l}1 \\ 1 \\ 1\end{array}\right\}\left\{\begin{array}{cc}1 & \text { Rows linear }=K_{L}=A+\angle B \\ 1 & " \\ \text { quadratic }=R_{Q}=A B \\ 1 & \prime \prime \\ \text { cubic }=R_{C}=2 A-B\end{array}\right.$

Column contrasts
$C:-C_{L}-2 C_{C}$
$D:=-2 C_{L}+C_{C}$
$C D=C_{O}$
Roman numbers $=\left(A B{ }^{4}\right)$

$$
\begin{aligned}
& A C=R_{L} C_{L}+4 R_{C} C_{C} \\
& B D=4 R_{L} C_{L}+R_{C} C_{C} \\
& A B C D=R_{Q} C_{Q}
\end{aligned}
$$

Greek letters = $\left(A B{ }^{{ }^{4}}\right.$),

$$
\begin{gathered}
A B D=-2 R_{Q} C_{L}+R_{Q} C_{C} \\
B C=2 R_{L} C_{L}-2 R_{C} C_{C}^{+} \\
4 R_{L} C_{C} C_{C} C_{L} \\
A C D= \\
\hline\left(-R_{L}-2 R_{C}\right) C_{Q}
\end{gathered}
$$

Latin letters $=\left(A B^{u_{3}}\right.$,

$$
\begin{array}{r}
A D=2 R_{L} C_{L}-2 R_{C} C_{C}^{-R_{L} C_{C} C^{+}} \\
{ }_{4 R_{C}} C_{L}
\end{array}
$$

$A B C=R_{Q}\left(-C_{L}-2 C_{C}\right)$
$B C D=\left(-2 R_{L}+R_{C}\right) C_{Q}$
$\left.\begin{array}{l}1 \\ 1 \\ 1\end{array}\right\} \quad\left\{\begin{array}{cc}1 & \text { Columns Anear }=C_{L}=C+2 i \\ 1 & " \\ 1 & \text { quadratic }=C_{Q}=O \\ 1 & \text { cubic }=C_{C}=\angle C-E\end{array}\right.$

3

$\left.\begin{array}{l}1 \\ 1 \\ 1\end{array}\right\} \begin{cases}1 & R_{L} C_{C} \\ 1 & R_{Q} C_{L} \\ 1 & R_{C} C_{Q}\end{cases}$

The individual degree of freedom contrast matrix for the above 16 wimping
tons is:

Contrast	Combination															
	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
Mean	+	$+$	4	t	t	+	+	t	r	$+$	4	t	4	$+$	\downarrow	+
$\mathbf{R}_{\mathbf{L}}$	-3	-3	-3	-3	-	-	-	-	$+$	4	+	$+$	3	3	3	3
R	\dagger	t	\pm	4	-	-	-	-	-	-	-	-	\pm	+	$+$	$+$
$\mathbf{R}^{\text {c }}$	\pm	4	t	4	-3	-3	-3	-3	3	3	3	3	-	-	-	-
C	-3	-	t	3	-3	-	4	3	-3	-	$+$	3	-3	-	+	3
C	+	-	-	+	$+$	-	-	t	+	-	-	+	+	-	-	$+$
$\mathrm{C}^{\text {c }}$	$+$	-3.	3	-	$+$	-3	3	-	\pm	-3	3	-	\pm	-3	3	-
R.C	9	3	-3	-7	: 3	+	-	-3-	-3	-	+	3	-9	-3	3	9
$R_{1} C_{0}$	-3	3	3	-3	-	t	$+$	_-	4	-	-	+	3	-3	-3	3
R.	-3	9	-9	3	-	3	-3	+	t	-3	3	-	3	-9	9	-3
$\mathrm{R}_{\mathrm{O}} \mathrm{C}_{1}$	-3	-	\dagger	3	3	+ ${ }^{*}$	-	-3	3	+	-	-3	-3	-	t	3
$\mathrm{R}_{0} \mathrm{C}$	t	-	-	$+$	$-$	\pm	t	-	-	+	t	-	+	$=$	-	$+$
R_{0}	t	-3	3	-	-	3	-3	$+$	-	3	. -3	+	\pm	-3	3	-
$\mathrm{R}_{C} \mathrm{C}_{\mathbf{L}}$	-3	-	+	3	9	3	-3	-9	-9	-3	3	9	3	t	-	-3
${ }^{\text {C }} \mathrm{C}_{0}$	+	-	-	+	-5	3	3	-3	3	-3	-3	3	-	4	+	-
${ }^{C_{C} C_{C}}$	+	-3	3	$\because-$	-3	9.	-9	. 3	3	-9	9	-3	-	3	-3	+

The corresponding single degree of freedom contrast matrix for the $\mathbf{2}^{\mathbf{4}}$ factorial is:

17

The particular contrast matrix utilized is not unique as has been demonstrated above, All orthogonal contrast matrices resulting in latin squares could be considered. For example, other gets of contrasts among rows (or columns) could be:

	1	2	3	4		1	2	3	4
Mean	+	+	+	+	Mean	+	+	+	+
R_{1}	+	+	0	0	R_{1}	+	+	0	0
R_{2}	0	0	-	+	$0 r_{1}$	R_{2}	+	+	-2
R_{3}	+	+	-	-	R_{3}	+	+	+	-3

The interaction of row and column contrasts posisibly could be utllized to allocate the symisols in the datin square

We wish to illustrate the methoc of constructing latin squares using orthugonal polynomal coefficients. We shall first consider the construction of three mutually orthogonal latin squaros of order 4 and then we shall consider the construction of a single latin squarg of order 6. In the preceding table on crihogonal polynomials for $n=4$ denote all combinations with a plus sign as belonging to $\left(R_{L} C_{L}\right)_{l}$ and those with a minus sign as belonging to $\left(R_{L} C_{L}\right)_{0}$. Lo dakewise for the $R_{Q} C_{Q}$ and $R_{C} C_{C}$ effects. Then, the four latin square symbols are obtained as follows:

$$
\begin{aligned}
& \left(R_{L} C_{L}\right)_{1},\left(R_{Q} C_{Q}\right)_{1},\left(R_{C} C_{C}\right)_{1}=0000+0101+1010+1111=A \\
& \left(R_{L} S_{L}!_{1},\left(R_{U} C_{U}^{\prime}\right)_{U}^{\prime},\left(R_{U} C_{U}^{\prime}\right)_{U}=0001+0100+1011+1110=B\right. \\
& \left(R_{L} C_{L}\right)_{0},\left(R_{Q} C_{Q}\right)_{0},\left(R_{C} C_{C}\right)_{1}=0010+0111+1000+1101=C \\
& \left(R_{L} C_{L}\right)_{0},\left(R_{Q} C_{Q}\right)_{1},\left(R_{C} C_{C}\right)_{0}=0011+0110+1001+1100=D
\end{aligned}
$$

This results in the following latin square of order 4

A	B	C	D
B	A	D	C
C	D	A	B
D	C	B	A

Likewise, if we use the following polynomial contrasts we obtain the two mutually orthogonal mates of the above square:

$$
\begin{aligned}
& \left(R_{L} \dot{C}_{Q}\right)_{1},{ }^{\left(R_{Q} C_{C}{ }^{\prime} 0\right.}, \cdot{ }^{\prime} R_{C} C_{L}^{\prime} 0=0001+0110+1000+1111=\alpha \\
& \left.\left(R_{L} C_{Q}\right)_{1},\left(R_{Q} C_{C}\right)_{1}\right):\left(R_{C} C_{L}\right)_{1}=0010+0101+1011+1100=\beta
\end{aligned}
$$

$$
\begin{aligned}
& \left(R_{L} C_{Q^{\prime}}^{\prime},\left(R_{Q} C_{C}\right)_{1},\left(R_{C} C_{L^{\prime}}^{\prime}=0111+1001+1110+0000=\theta_{5}\right.\right.
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(R_{L} C_{C}^{\prime}\right),\left(R_{Q} C_{L}\right)_{1},\left(R_{C}^{\prime} C_{Q}\right)=0011+0101+1009+1110=1 \\
& \left(R_{L} C_{C}^{\prime}\right)_{1},\left(R_{Q} C_{L}\right)_{0},\left(R_{C} C_{Q}\right)=0001+0111+1010+1100=11 \\
& \left(R_{L} C_{C} C_{0}^{\prime},\left(R_{Q} C_{L}\right)_{0},\left(R_{C} C_{Q}\right)=0000+0110+1011+1101=111\right. \\
& \left(R_{L} C_{C} C_{0}^{\prime},\left(R_{Q} C_{L}\right)_{1},\left(R_{C} C_{Q_{0}^{\prime}}^{\prime}=0010+0100+1001+1111=1 V\right.\right.
\end{aligned}
$$

The above results in the following two latin squares of order 4

δ	α	β	γ
γ	β	α	δ
α	δ	γ	β
β	γ	σ	α

III	II	IV	I
IV	I	III	II
I	IV	II	III
II	III	I	IV

The above method of constructing mutually orthogonal latin squares using polynomial coefficients works for latin squares of order n where $n=2^{p}$. We need another procedure for other values of n and shall now construct a latin square of order 6 from the urthogonal polynomial coefficients in the table of single degree of freedom contrasts for 36 combinations. If we observe only the signs of contrasts we notefthat the 36 combinations may be classified into six sets of four with like signs and two additional sets of six. The latter two sets will be used to build up the six sets of four into $51 x$ sets of six as fellows where all combinations with a plus sign go in the one level and all those with a minus sign go in the zero level:

$$
\begin{aligned}
& \left(R_{2} C_{2}^{\prime}\right)^{\prime},\left(R_{3} C_{3}\right)_{1}^{\prime},\left(R_{4} C_{4}\right),\left(R_{5} C_{5}\right)^{+2} \text { from }\left(R_{1} C_{1}\right)_{1},\left(R_{2} C_{2}\right)^{\prime}\left(R_{3} C_{3}\right),\left(R_{4} C_{4}\right),\left(R_{5} C_{5}\right) \\
& \left(R_{2} C_{2}\right)_{0},\left(R_{3} C_{3}\right)_{0},\left(R_{4} C_{4}\right)_{1},\left(E_{5} O_{5}\right)_{0} \text { ! }
\end{aligned}
$$

$$
\begin{aligned}
& \left(R_{2} C_{2}\right)_{0} \cdot\left(R_{3} C_{3}^{\prime}\right)^{\prime},\left(R_{4} C_{4}\right)_{0},\left(R_{5} C_{5}^{\prime} 1+2 \text { from }\left(R_{1} C_{1}\right)_{0},\left(R_{2} C_{2}\right)_{1},\left(R_{3} C_{3}\right),\left(R_{4} C_{4}\right)_{1} \cdot \cdot R_{5} C_{5}\right)^{\prime} \\
& \left(R_{2} C_{2}^{\prime}\right)^{\prime}:\left(R_{3} \mathrm{C}_{3}\right)_{1},\left(R_{4} C_{4}\right)_{1},\left(R_{5} C_{5}^{\prime}\right)^{+} \\
& \left.\left(R_{2} C_{2}\right)_{1}, R_{3} C_{3}\right)_{0},\left(R_{4} C_{4}\right)_{0},\left(R_{5}^{\prime} C_{5}\right)_{1}+
\end{aligned}
$$

from these sets we obtain

$$
\begin{aligned}
& (12+21+34+43)+(00+55)=A \\
& (02+20+35+53)+(11+44)=B \\
& (01+10+45+54)+(22+33)=C \\
& (04+15+40+51)+(23+32)=D \\
& (03+25+30+52)+(14+41)=E \\
& (13+24+31+42)+(05+50)=F
\end{aligned}
$$

This results in the following latin square of order 6:

00	A	10	C	20	B	30	E	40	D
01	C	11	B	21	A	31	F	41	E
02	B	12	A	22	C	32	D	42	C
03	52	E							
03	E	13	F	23	D	33	C	43	A
04	D	14	E	24	B	34	A	44	B
05	54	C							
0	15	D	25	E	35	B	45	C	55

The pair of treatments in the second set of parentheses, e.g. $(00+55)$, were picked from the set of six in such a manner as to have 1 and j in the combination 11, contain $0,1,2,3,4$, and 5 sincc uach letter must appear once in each row and once in each column.

It would be interesting and perhaps enlightening to carry out the above procedure for $\mathrm{n}=10$ and 12 and to exhaustively study the complete set of 35 contrasts for $n=6$.

V. Group Construction of $O(n, t)$ Sets

V.0. Introduction. The construction of $O(n, t)$ sets based on groups and their associated mappings such as automorphism, complete mapping, and orthomorphism is the oldest and still the most popular method for n not of the form $4 t+2$, Euler (1782] implicitly utilized some properties of finite groups of order $2 t+1$ and $4 t$ for his construction of $O(2 t+1,2)$ and $O(4 t, 2)$ sets, respoctively. It was MacNeish (1922) who, for the first time, explicitly (however, not rigorously) utilized group properties for his construction of $O\left(q^{m}, q^{m}-1\right)$ sets and $O(n, \lambda)$ sots, where q is a prime, m is a positive integer and if $n=q_{1}{ }_{1} q_{2}^{i}{ }_{2}^{\prime} \ldots q_{r}^{i}$ is the prime power decomposition of n then $\lambda=\min \left(q_{1}{ }_{1}, q_{2}{ }_{2}, \ldots, q_{r}{ }^{r}\right.$). The field construction of $O\left(q^{m}, q^{m}-1\right)$ sets found independently by Bose (1938) and Stevens [1939] is based on the additive group of $G F\left(q^{m}\right)$ and its related cyclic group of automorphisms. The $O(n, n-1)$ sets for $n=3,4,5,7,8$ and 9 exhibited by Fisher and Yates [1957] are based on cyclic group and abelian groups. Several beautiful applications of group theory to the existence and non-exisionci: of $O(n, t)$ sets have been found by Mann $[1942,1943,1944]$. The $O(12,5)$ suts found by fohnson at al. [1961] and Bose et al. [1960] are based on abelian groups of order 12. Hedayat [1969] and Hedayat and Federer [1969] have fourd a series of results on the existence and non-existence of $O(n, t)$ sets througn the group theory approach. The interested reader on this subject will find the following references together with the references given to these papers very useful: Page [1951], Page-Hall [1955], Singer [1961], Bruck [1951], and Sade [195 1].

The author has no doubt that the reader can find many more interesting papers directly or indirectly related this rich subject.

V.1. Definitions and Notations.

There are several forms of definitions of latin squares and orthogonal latin squares. The following forms are useful for the results which will follow:
 whose rows and columns are each a permutation of the set \sum. Every latin square of order n may therefore be identified with set of n permutations ($p_{1}, p_{2}, \ldots, p_{n}$) where p_{l} is the permutation associated with the ith row. Definition $V V_{1}$. Let L_{1} be a datin square of order n on an n-set \sum_{i}, $i=1,2, \ldots, t$. Then, the set $S=\left\{L_{1}, L_{2}, \ldots, L_{t}\right\}$ is sade to he mutually orthogonal set of latin squares if the projection of the superimposed form of the t latin squares on any two n-sets y_{i}^{\prime} and $j_{j}^{\prime}, 1 \neq j$, forms a permutation of the cartesian product set of ${\underset{-1}{1}}^{1}$ and $\underset{-j}{ }{ }^{\prime}$. Such a set ia denoted as an - $O(n, t)$ set.

Defindion $V_{1,3}$. If $L_{1}=\left(P_{11}, P_{12}, \ldots, P_{1 n}\right)$ and $L_{2}=\left(P_{21}, P_{22}, \ldots, P_{2 n}\right)$ are two latin squares of order n on an n-gat \sum^{\prime}, then we may define $L_{1} L_{2}$ to be $L_{3}=\left(P_{11} P_{21}, P_{12} P_{22}, \ldots, F_{1 n} P_{2 n}\right.$ '. The generalization to the produat of $t>2$ latin squares follows immediately.

V.2.2. Construction of $O(n, t)$ Sets Based on a Groun:

We shall divide the problem into three parts based on whether n is a prime, or a mixture of prime powers. The proof of the subsequent results can be found in the references related to this section.
V.2.1. $n=q$ a prime. Recall that any prime ordered group is cyclic.

Theorem V.2.1.1. Let $G=\left\{P_{i}, P_{2} \ldots \ldots P_{4}\right\}$ be a cyclic permutation group of degree q and order q. Then, $S_{11}=\left\{L_{1}, L_{2}, \ldots, L_{q-1}\right\}$ is an $O(q, q-1)$ set, where $I_{1}=\left(P_{1}^{1}, P_{2}^{1}, \ldots, P_{q}^{1}\right)$.
Demonstration $V, 2,1$. . Let $q=5$. Select any arbitrary generator such as $\left(\begin{array}{ll}12 & 3 \\ 3 & 4 \\ -2 & -1 \\ 4\end{array}\right)$ whith generates a cyolic permutation group G and, hence, a latin square L_{1}. Then,
$L_{1}=$

4	3	1	5	2
5	1	4	2	3
2	4	5	3	1
3	5	2	1	4
1	2	3	4	5

fror those who do not like to work with permutation groups we present the following theorem:

Theormin V_2, 2. Let $L(r)$ bean $n \times \pi$ soinare with $r i+j(\bmod q)$ in its (i, 1 ith gell, $1,1=0,1, \ldots, q-1$. Then, $S_{12}{ }^{r}\{(1), L(2), \ldots, L(q-1)\}$ is an $0(q, q-11$ Set if a is.a_prime.

Demonstration $V, 2,2$, Let $9=5$; then,
$L(1)=$

0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

, $L(2)=$

0	1	2	3	4
2	3	4	0	1
4	0	1	2	3
1	2	3	4	0
3	4	0	1	2

$L(3)=$

Note that $L(1)$ in theorem V.2.1. 2 is based on the cyclle permutation group generated by $t_{1} 12 \ldots 3 \ldots 0^{-1} ;$ and $L(1)=L^{1}(1), 1=2,3, \ldots, q-1$, Hence theorem V.2.1.L is a special case of theorem V. 2.1.1. V.2.2. $n=q^{m}$ where q is a prime and m anypositive integer. Note that this case in particular for $m=1$ includes case 1 . We shall present three theorems for this case. The first two are based on oyolic groups and the third one is based on any group which admits an automorphism of order t.

Theorem $V, 2,2_{1} 1_{1}$ Let $G=\left\{P_{1}, P_{2}, \ldots, P_{n}\right\}$ be a cyclic permutation group of degree n and order in. Then, $S_{21}=\left\{L_{1}, L_{2}, \ldots, L_{\lambda}\right\}$ is an $O(n, \lambda)$ set where $n=q^{m}$ and $\lambda=q-1$.
Demonitration $V_{1} Z_{2} z_{\text {a }}$ Let $n=3^{2}=9$. Select any arbitrary generator auch as $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 6 \\ 3 & 4 & 5 & 1 & 6 \\ 3 & 9 & 9\end{array}\right)$ which generates a eyclic permutation group G and hence, a latin square L. Then, since $\lambda=2$,

$L_{1}=$| 3 | 4 | 5 | 1 | 6 | 7 | 8 | 9 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 1 | 6 | 3 | 7 | 8 | 9 | 2 | 4 |
| 6 | 3 | 7 | 5 | 8 | 9 | 2 | 4 | 1 |
| 7 | 5 | 8 | 6 | 9 | 2 | 4 | 1 | 3 |
| 8 | 6 | 9 | 7 | 2 | 4 | 1 | 3 | 5 |
| 9 | 7 | 2 | 8 | 4 | 1 | 3 | 5 | 6 |
| 2 | 8 | 4 | 9 | 1 | 3 | 5 | 6 | 7 |
| 4 | 9 | 1 | 2 | 3 | 5 | 6 | 7 | 8 |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

and L_{2}

5	1	6	3	7	8	9	2	4
7	5	8	6	9	2	4	1	3
9	7	2	8	4	1	3	5	6
4	9	1	2	3	5	6	7	8
3	4	5	1	6	7	8	9	2
6	3	7	5	8	9	2	4	1
8	6	9	7	2	4	1	3	5
2	8	4	9	1	3	5	6	7
1	2	3	4	5	6	7	8	9

is an $O(9, i)$ set.
Consecture. The set S_{21} ds orthoyonally locked, meaning that there does not exist a latin square L^{*} such that $S_{21} U\left\{L_{1}^{*}\right\}$ is an $O(n, \lambda+1)$ set if n is not
a prime. Note that for n even this conjecture is correct since any latin square of even order based on cyclic permutation group is orthogonally mateless.

An analogous theorem to theorem V.2.1. 2 for this case is:
Theorem $V, 2,2,2$ Let $L(r)$ be an $n \times n$ square with $r i+1(\bmod n)$ in its (1,1) cell, $1=0,1,2, \ldots, n-1$. Then $S_{22}=\{L(1), L(2), \ldots, L(\lambda)\}$ is an $O(n, \lambda)$ set if $n=q^{m}$ and $\lambda=q-1$.
Demonstration $V, 2,2,2$. Lit $n=q=3^{2}$ then,
$L(1)=$

0	1	2	3	4	5	6	7	8
1	2	3	4	5	6	7	8	0
2	3	4	5	6	7	8	0	1
3	4	5	6	7	8	0	1	2
4	5	6	7	8	0	1	2	3
5	6	7	8	0	1	2	3	4
6	7	8	0	1	2	3	4	5
7	8	0	1	2	3	4	5	6
8	0	1	2	3	4	5	6	7

$L(2)=$

0	1	2	3	4	5	6	7	8
2	3	4	5	0	7	8	0	1
4	5	6	7	8	0	1	2	3
6	7	8	0	1	2	3	4	5
8	0	1	2	3	4	5	6	7
1	2	3	4	5	6	7	8	0
3	4	5	6	7	8	0	1	2
5	6	7	8	0	1	2	3	4
7	8	0	1	2	3	4	5	6

is an $\cup(9,2)$ set. Note that theoren V.2.2.2 is a special case of theorem V.2.2.1 viz., $L(1)$ is based on the cyclle permutation group generated by $\begin{array}{lllll}0 & 1 & 2 & \ldots & n-1, \\ 1 & 2 & 3 & \ldots & 0\end{array}$ and $L(t)=L^{i}(1), i=i, \ldots, \lambda$.

Theorem $V_{1} 2_{2} 2_{2} 3$, Let $G=\left\{a_{1}=0\right.$ the identity, $\left.a_{2}, \ldots, a_{n}\right\}$ pearoupal order n and a an automorphism of order t on G. Then,

1) $s=\left\{L_{1}, L_{2}, \ldots, L_{t}\right\}$ is an $O(n, t)$ sot where

$L_{i}=$| e | a_{2} | \cdots | a_{n} |
| :--- | :---: | :---: | :---: |
| $a^{1}\left(a_{2}\right)$ | $a^{1}\left(a_{2}\right) a_{2}$ | \cdots | $a^{1}\left(a_{2}\right) a_{n}$ |
| $a^{1}\left(a_{3}\right)$ | $a^{1}\left(a_{3}\right) a_{2}$ | \cdots | $a^{1}\left(a_{3}\right) a_{n}$ |
| \vdots | \vdots | \ddots | \vdots |
| $a^{1}\left(a_{n}\right)$ | $a^{1}\left(a_{n}\right) a_{2}$ | \cdots | $a^{1}\left(a_{n}\right) a_{n}$ |

$1=1,2, \ldots, t$.
2) If in partioular $t=n-1$, then one oan almblify the eonatruction of an $O(n, n-1)$ set from the following key datin square bya cyollo permutation of it last $n-1$ rewn.

a	$a(x)$	$a^{2}(x)$	\ldots	$a^{t}(x)$
$\alpha(\alpha)$	$a(x) a(x)$	$\alpha(x) \alpha^{2}(x)$	\ldots	$a(x) \alpha^{t}(x)$
$\alpha_{0}^{2}(x)$	$a^{2}(x) a$	$\alpha^{2}(x) \alpha^{2}(x)$	\ldots	$a^{2}(x) \alpha^{t}(x)$
\vdots	\vdots	\vdots	\ddots	\vdots
$a^{t}(x)$	$a^{t}(x) a(x)$	$\alpha^{t}(x) \alpha^{2}(x)$	\cdots	$a^{t}(x) \alpha^{t}(x)$

forany \times th G exopptitheidentity element.

We see, therefore, that by means of theorem V.2.2.3 one can construat an $O(n, t)$ set if we can find a group G and an automorphism a of order t. In particular, if $t=n-1$ the whole task of construction reduces to the construction of L_{0} as described above, If $n=q^{m}$ then becouse every olementary
abelian \mathbf{q}-group \mathbf{G} of order n admits an automorphism α of order $n-1$, we
 general method of constructing such an automorphism for any $n=q^{m}$. in particular, we shall exhibit such an automorphism for the following n :
$n=2^{m_{4}}, m=2,3, \ldots, 9$
$n=3^{m}, m=2,3, \ldots, 6$
$n=5^{m}, m=2,3,4$
$n=7^{m}, m \equiv 2,3$
$n=11^{2}, 13^{2}, 17^{2}, 19^{2}, 23^{2}, 29^{2}$, and 31^{2}.
This will then perhaps be the largest table that has ever been produced so far for $O(n, n-1)$ sets.

Note that there is no loss of generality lif we limit ourselves to the following elementary abolian q-group of order $n=q^{m}$.

$$
G^{\prime \prime}=\left\{b_{1} b_{2} \because \ldots b_{m}, b_{j}=0,1,2, \ldots, a-1,1=1,2, \ldots, m\right\}
$$

The binary operation on G^{*} is addition mod q componentwise, , wiz, $b_{1} b_{2} \ldots$ $\left.b_{m}\right)+\left(b_{1}^{\prime} b_{2}^{i} \ldots b_{m}^{\prime}\right)\left(c_{1} c_{2} \ldots c_{m}\right)$ where $c_{1}=b_{1}+b_{1}^{\prime}(\operatorname{miod} q)$. Note that the alements of $G^{\text {it }}$ are simply the treatment combinations of m factors each at a levels. The reason why we havo chosen this particular elementary abelian g-group is that it has a well-known structure to those who are concerned with cxperiment design construction. Note also that G^{*} is the direct product of m Galols tields, eath of order 9.

The generator set for every elementary abelian q-group of order q^{m} consiste of m elements, and for uniformaty, we may choose the following ordered
generator set for G^{*}.

$$
g=\{(100 \ldots 0),(01,00 \ldots 0), \ldots(00 \ldots, 010),(00 \ldots 01)\} .
$$

Note that the structure of every automoriphism a. on G^{*} is completely defined if we know the image of each element of g under $a . G^{*}$ is a vector space of dimension m over GF(q).

Before proceeding further we need the following well-known results
Theorem $V, 2,2,4$ Let G be an elementary abelian garoup of order $n=q^{m}$. Then, Auto G is isomorphic to the (multiplicative) group of all non-singular $m \times m$ matrices wath entries in the ficld of integers mod q.

The construction of an automorphism of order $n-1$ for G^{*} is equivalent to the construction of $3 n m \times m$ matrix A such that $A^{n-1}=1$ but $A^{t} \geqslant 1$ if t is not a muluple of $n-1$ over the field of integers $\bmod q$.

We know from dinear algebra that if ϕ is a linear map on a vector space V ard if x, V such that $x \neq 0$ but $\varphi(x)=x$, then \downarrow is an eigenvalue of ϕ. Morcover, if $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{t}\right)$ is the set of eigenvalues of " ϕ_{1} then $\left(\lambda_{1}^{s}, \lambda_{2}^{s}\right.$, \ldots, λ_{t}^{s} is the set of elgenvalues of a^{s}. Therefore, for our problem we must find a linear map on $C^{\prime \prime}$ with a set of eigenvalues" λ_{i} having the property that (or oach $1, \lambda_{i}^{s} \neq 1(\bmod q)$ tor all $s=1,2, \ldots, n-2$ and $\lambda_{i}^{n-1}=1$. To do so let F bea $\left.G r^{m}\right)^{m}$ and let is be a qenerator of the multiplicative cyclle group of $\operatorname{or}\left(q^{m}\right)$, .c. $\beta^{1} \neq 1,1=1,2, \ldots, n-2$ while $\beta^{n-1}=1$. Let $f(x)$ be a monis arnousible polyriomial over $G F^{\prime}(q)$ for β. Note that $f(x)$ has degree m. a is sometime's called a primitive root or mark of F. NcW, if we let a be the companion matrix for β, then it is easy to see that A has the desired property.

Example

Let us find an automorphism of order 3 for $G^{*}=\{(00),(01)$, (10), (11) $\}$. It is sufficient, by previous arguments, to find a 2×2 matrix A of order 3 over the field of integer $\bmod 2$. Let $\dot{G} \Gamma\left(2^{2}\right)=\{0,1, \beta, \beta+1\}$ with the followIng addition (+) and multiplication (.) tables

+	0	1	β	$\beta+1$
0	0	1	β	$\beta+1$
1	1	0	$\beta+1$	β
β	β	$\beta+1$	$!$	1
$\beta+1$	$\beta+1$	β	1	0

	0	1	β	$\beta+1$
0	0	0	0	0
1	0	1	β	$\beta+1$
β	0	β	$\beta+1$	1
$\beta+1$	0	$\beta+1$	1	β

Note that β is a primitive root for Gif(2^{2}, and $f(x)=x^{2}+x+1$ is a manic irreducible polynomial for β, since $(\beta) \equiv O(\bmod 2)$. The companion matrix associated with $f(x)$ is

$$
V_{1}=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] .
$$

As a check
($\operatorname{Cr}(2), A^{3}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \equiv\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
over Gr (2).
Let us now determine the image of the ordered generator set $g=((10),(01)\}$ under A.

$$
A g=\left[\begin{array}{ll}
0 & 1 \\
1 & \vdots
\end{array}\right]\left[\begin{array}{l}
(10) \\
(01)
\end{array}\right]=\left[\begin{array}{l}
0(10)+:(01) \\
1(10)+1(01)
\end{array}\right]=\left[\begin{array}{l}
(01) \\
(11)
\end{array}\right] .
$$

Therefore, $A(10)=(01), A(01)=(11)$, and since $(1)=(10)+(01),(00)=2(10)$ $+2(01)$, we have $A(11)=(10), A(00)=(00)$.

Now, we have a group G of order 4 and on automorphism of order 3 on G^{*}. We can now construct an $O(4,3)$ set. Since $e=(00)$, and if we let $x=(10)$ in theorem V.2.2.3, we obtain:

$I_{0}=$| (00) | $A(10)$ | $A^{2}(10)$ | $A^{3}(10)$ |
| :---: | :---: | :---: | :---: |
| $A(10)$ | $A(10) A(10)$ | $A(10) A^{2}(10)$ | $A(10) A^{3}(10)$ |
| $A^{2}(10)$ | $A^{2}(10, A(10$, | $A^{2}(10) A^{2}(10)$ | $A^{2}(10) A^{3}(10)$ |
| $\left.A^{3}, 20\right)$ | $A^{3}(101 A(10)$ | $A^{3}(10) A^{2}(10)$ | $A^{3}(10) A^{3}(10)$ |

(00)	$101)_{1}$	(11)	(10)
(01)	$100)$	(10)	(11)
$(111$	(10)	$100)$	(01)
$(101$	(11)	(01)	(00)

The other two latin squares are obtained by a cyclic permutation of the last three rows of L_{0}. Tnus,

$L_{1}=$	1001	1011	(11)	1101	(00)	(01)	(11)	(10)
	100	1111	1011	(100)	(11)	(10)	(00)	(01)
	1011	(00)	1101	(11)	(10)	(11)	(01)	(00)
	(11)	(10)	(00)	1011	(01)	(00)	(10)	(11)

To simplify the notation we set $(00)=1,(01)=2,(11):=3,(10)=4$ to obtain:

We are now ready to exhibit a generating matrix of order $n-1=q-1$
with entries from Gria) for those n promised before.

n	Generator	Order	m	Generator	Order
2^{2}	$\left[\begin{array}{lll}0 & 1 \\ 1 & 1\end{array}\right] \cdots \cdots$	3	2^{3}	$\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1\end{array}\right] \quad \because$	7
2^{4}	$\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0\end{array}\right]$	15	2^{5}	$\left[\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0\end{array}\right]$	31
2^{6}	$\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0\end{array}\right] \cdots$	63	2^{7}	$\left[\begin{array}{lllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0\end{array}\right]$	127
2^{8}	$\left[\begin{array}{llllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 10 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0\end{array}\right]$	255	2^{9}	$\left[\begin{array}{lllllllll}0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1\end{array}\right]$	5511

To shed more light on the given procedure we go through another example. Let $n=2^{3}$. Then

$$
G^{i=}=\{(000),(001),(010),(011),(100),(101),(110),(111)\}
$$

$g=\left\{(100),(010 i,(001)\}\right.$ and $A=\left[\begin{array}{lll}0 & i & i \\ 0 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$
$A g=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}(100) \\ (010) \\ (001)\end{array}\right]=\left[\begin{array}{l}(010) \\ 1001) \\ (101)\end{array}\right]$.
Let x in theorem $V, 2,2,3$ be (100); Then,

$$
\begin{aligned}
& A(100)=(010), \\
& A^{2}(100)=(001), \\
& A^{3}(100)=(1011, \\
& A^{4}(100)=(111), \\
& \left.A^{5}(100)=1110\right), \\
& A^{6}(100)=(011), \text { and } \\
& \left.A^{7}(100)=1100\right),
\end{aligned}
$$

Therrfore, we obtain L_{0} as follows:

$L_{0}=$| (000) | (010) | (001) | (101) | (111) | (110) | (011) | (100) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (010) | (000) | (011) | (111) | (101) | (100) | (001) | (110) |
| (001) | (011) | (000) | (100) | (110) | $\times 11)$ | (010) | (101) |
| (101) | (111) | (100) | (000) | (010) | (011) | (110) | (001) |
| (111) | (101) | (110) | (010) | (000) | (001) | (100) | (011) |
| (110) | (100) | (111) | (011) | (001) | (000) | (101) | (010) |
| (011) | (001) | (0101) | (110) | (100) | (101) | $1000)$ | (111) |
| (100) | (110) | (101) | (011) | (011) | (010) | (111) | (000) |

Satting $(000)=1,(010)=2,(001)=3,(101)=4,(111)=5,(110)=6$, $(011)=7,(100)=8$, then L_{0} in a compact form will be:

$L_{0}=$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 7 | 5 | 4 | 8 | 3 | 6 |
| 3 | 7 | 1 | 8 | 6 | 5 | 2 | 4 |
| 4 | 5 | 8 | 1 | 2 | 7 | 6 | 3 |
| 5 | 4 | 6 | 2 | 1 | 3 | 8 | 7 |
| 6 | 8 | 5 | 7 | 3 | 1 | 4 | 2 |
| 7 | 3 | 2 | 6 | 8 | 4 | 1 | 5 |
| 8 | 6 | 4 | 3 | 7 | 2 | 5 | 1 |

Now, we can derive L_{1}, L, \ldots, L_{6} from L_{0} by a cyclic permutation of the last i rows of L_{0}. for example,

$L_{1}=$| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | 6 | 4 | 3 | 7 | 2 | 5 | 1 |
| 2 | 1 | 7 | 5 | 4 | 8 | 3 | 6 |
| 3 | 7 | 1 | 8 | 6 | 5 | 4 | 4 |
| 4 | 5 | 8 | 1 | 2 | 7 | 6 | 3 |
| 5 | 4 | 6 | 2 | 1 | 3 | 8 | 7 |
| 6 | 8 | 5 | 7 | 3 | 1 | 4 | 2 |
| 7 | 3 | 2 | 6 | 8 | 4 | 1 | 5 |

1	2	3	4	5	6	7	8
7	3	2	6	8	4	1	5
8	6	4	3	7	2	5	1
2	1	7	5	4	8	3	6
3	7	1	8	6	5	2	4
4	5	8	1	2	7	6	3
6	8	5	7	3	1	4	2
6	8	5	7	3	1	4	2

and so on. Note the way L_{1} is derived from L_{0} : except for the first row of L. And $!1$. which are dientical, the $1^{\text {th }}$ row of L_{0} becomes the $(i+1)^{\text {th }}$ row of L_{1}, and the last row uf L_{0} becones the second row of L_{1}. In general L_{j} is derived from L_{j-1} in the same fashion as $L_{!}$is derived from L_{0}. V. ८. 3. $n=q_{1}^{m_{1}} q_{2}^{m_{2}} \ldots q_{r}^{m_{r}}$, where q_{i} is a prime such that $q_{i} \neq q_{j}$ if $i \neq j$ and m_{1} is a positive integer, $1=1,2, \ldots, r$.

Theorem $\dot{V}, 2,3,1$. Let $n=q_{1}^{m_{l}}, q_{2}^{m_{2}}, \ldots, q_{r}^{m_{r}}$ be the prime power decomposition of n. Then, there exists an $O\left(n, \gamma\right.$ set based on a group, where $y=\operatorname{minic}_{1}{ }_{1}$, $q_{2}^{m_{2}}, \ldots, q_{r}^{m_{1}-1}$.
Constinction. Let $n_{i}=q_{i}^{m_{i}}$. Then, by the method of theorem V,2,2.3 construct an $O\left(n_{1}, n_{1}-1\right)$ set $s_{1}=\left(L_{11}, L_{12}, \ldots, L_{i n}-1,1=1,2, \ldots, r\right.$. Now, let $s_{i}^{*}=\left\{L_{i 1}, L_{i 2}, \ldots, L_{i \gamma}\right\}, i=1,2, \ldots, r$. Then, $H=\left\{A_{1}, A_{2}, \ldots, A_{\gamma}\right\}$ is an $O(n, \gamma)$ set where $A_{j}=L_{L_{j}} \otimes L_{L_{j}} \otimes \ldots L_{r j}$. denotes the Kronecker product operation.

Demenstration V 2, 3, 1. Let $n=12=2^{2} \cdot 3:$ Then, $y=2$,

$$
\begin{aligned}
& s_{1}=L_{11}=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 2 & 3 & 1 \\
\hline 3 & 1 & 2 \\
\hline
\end{array}, \quad I_{12}=\begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 3 & 1 & 2 \\
\hline 2 & 3 & 1 \\
\hline
\end{array}, \\
& s_{2}=L_{21}=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline 2 & 1 & 4 & 3 \\
\hline 3 & 4 & 1 & 2 \\
\hline 4 & 3 & 2 & 1 \\
\hline
\end{array}, L_{L 2}=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline 4 & 3 & 2 & 1 \\
\hline 4 & 1 & 4 & 3 \\
\hline 3 & 4 & 1 & 2 \\
\hline
\end{array}, L_{23}=\begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
\hline 3 & 4 & 1 & 2 \\
\hline 4 & 3 & 2 & 1 \\
\hline 2 & 1 & 4 & 3 \\
\hline
\end{array} \\
& S_{1}^{*}=\left\{L_{11}, L_{12}\right\} \text { and } S_{2}^{*} \text { say }\left\{L_{21}, L_{22}\right\}^{\prime} \text {. Then, the reader can easily }
\end{aligned}
$$

verify that

$$
H=\left\{A_{1}=L_{11} \otimes L_{21}, \quad A_{2}=L_{12} \otimes L_{22}\right\}
$$

is an $O(12,2)$ sot.
Remark. Let n and γ be the same as in theorem V.2.3.1. Then it can be shown that automorphism method falls to produce more than y mutually orthbgonal latin
squares. We shortly show that this inherent defect is due to the mapping not it the ytoup structure.

Definition $V, 2.1$. Consider for each positive integer n an abstract group G of order n with binary operation $*$. Let Ω be the collection of all one-tomend mappings of G into itself. Then two maps σ and ψ in Ω are maid to be orthogonal If for any g in G.

$$
(\sigma Z):(\psi Z)^{-1}=9
$$

has a unique solution Z ir G. In particular if σ is an identity map then ψ Is said to be an orthomorghism map. At-subset of Ω is said to be a mutually orthogonal set if every two maps in this t-subset are orthogonel.

Let $L(\cdot)$ be an $n \times n$ square. We make a one-tomone correspondénoe between the rows of $L(*)$ and the elements of G. Thus, by row x we ahall mean the row corresponding to the elemont x in G. Similarly we make a one-to-one correspondence between the columas of $L(\cdot)$ and the elements of G. The cold of $L(\cdot)$ which occurs in the intersection of row x and column y is called the cell (x, y).

Theorem $V, 2,3,2$ Let σ oe in $\%$. Putinthe $\alpha e l l(x, y)$ of $L(\cdot)$ the element $(\sigma x) \Rightarrow y$ of G. Call the regulting square $L(\sigma)$. Then $L(\sigma)$ is a datin souare of order n on G. Moreover if $\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{t}\right\}$ lsa set of t mutually orthogonal maps then $\left\{L\left(\sigma_{1}\right), \ldots, L\left(\sigma_{t}\right)\right\}$ is an $O(n, t)$ set Demonstration $V, 2,3,2$. Let $G=\{0,1,2\}$ with the binary operation $x_{1}+x_{2}$ $x_{j}(\bmod 3), x_{i}$ in G. Then the maps σ and ψ with the following definitions are orthogonal.

$$
\begin{array}{ll}
\sigma(0)=0 & \psi(0)=0 \\
\sigma(1)=1 & \psi(1)=2 \\
\sigma(2)=2 & \psi(2)=1
\end{array}
$$

The corresponding latin squares to a and ψ are:

which are orthogonal.

V.3. Constryction of $O(n, t)$ sets based on t different groups of order n

Up to now we have been concerned with the conatruction of $O(n, t)$ sets waing a group of order n which admite certain mappings, In this section we want to show that for some n 'a and t 's one can constiuct $O(n, t)$ sets based on t different groupt each of order n. This approach proved useful because it lead to the construction of an $O(15,3)$ set. We should mencion that our motivation to search along theselines has stemmed from the following theorem, with a nega= tive flèvor, proved by Mann (1944].
 ferent permutation aroups.

For a while we thought that this theorem might be true for other orders. However, it was found that, fortunately, this is not the case as the following two theorems show:

Theorem V, 3,2, It is possible to construct $O(7,2)$ sets based on two different cyalic parmutation groups of order 7 .

Proof: By construction $\left\{L_{1}, L_{2}\right\}$ is an $O(7,2)$ set where
$L_{1}=$

1	2	3	4	5	6	7
3	7	6	1	4	2	5
6	5	2	3	1	7	4
2	4	7	6	3	5	1
7	1	5	2	6	4	3
5	3	4	7	2	1	6
4	0	1	5	7	3	2

$L_{2}=$| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 4 | 5 | 6 | 7 | 1 |
| 3 | 4 | 5 | 6 | 7 | 1 | 2 |
| 4 | 5 | 6 | 7 | 1 | 2 | 3 |
| 5 | 6 | 7 | 1 | 2 | 3 | 4 |
| 6 | 7 | 1 | 2 | 3 | 4 | 5 |
| 7 | 1 | 2 | 3 | 4 | 5 | 6 |

L_{1} and L_{2} are based on two different permutation groups as can easily be seen from the different structure of their rows. To be specific L_{1} la based on the cyclic permutation group generated by $\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 7 & 6 & 1 & 4 & 2 \\ \hline\end{array}\right)$ and L_{2} is based on the cyclic parmutation group generated by $\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 7 & 7\end{array}\right)$. Note that, aince L_{1}, and L_{2} are based on eycliep permutation groups, then by theorem V.2.1.1 \{ L_{1} \} and $\left\{L_{2}\right\}$ can be embedded in $O(7,6)$ sets. However, whether or not $\left\{L_{1}, L_{2}\right\}$ can be embedded in a larger set is an open problem.

Theorem V, 3, 3. It is possible to construct $O(15,3)$ sets_based on three different ciyclic permutation groups of order 15.

Weremind the reader that every group of order 15 is cyclic.
Prouf: By construction $\left(L_{1}, L_{2}, L_{3}\right\}$ is an $O(15,3)$ set where
$L_{1}=$

0	1	2	3	4	5	0	7	8	9	10	11	12	13	14
2	3	4	5	6	7	8	9	10	11	12	13	14	0	1
4	5	6	7	8	9	10	11	12	13	14	0	1	2	3
6	7	8	9	10	11	12	13	14	0	1	2	3	4	5
8	9	10	11	12	13	14	0	1	2	3	4	5	6	7
10	11	12	13	14	0	1	2	3	4	5	6	7	8	9
12	13	14	0	1	2	3	4	5	6	7	8	9	10	11
14	0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	2	3	4	5	6	7	8	9	10	11	12	13	14	0
3	3	5	6	7	8	9	10	11	12	13	14	0	1	2
5	6	7	8	9	10	11	12	13	14	0	1	2	3	4
7	8	9	10	11	12	13	14	0	1	2	3	4	5	6
19	10	11	12	13	14	0	1	2	3	4	5	6	7	8
11	12	13	14	0	1	2	3	4	5	6	7	8	9	10
13	14	0	1	2	3	4	5	6	7	8	9	10	11	12

generated by: $\left(\begin{array}{rrrrrrrrrrrrrrr}0 & 1 & 2 & 3 & 4 & 5 & 0 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 2 & 3 & 4 & 5^{\prime} & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 0 & 1\end{array}\right)$,

generated by $\left(\begin{array}{rrrrrrrrrrrrrrrrr}0 & 1 & 2 & 3 & 4 & 5 & 0 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 1 & 11 & 10 & 7 & 9 & 14 & 13 & 6 & 0 & 3 & 4 & 2 & 8 & 5 & 12\end{array}\right)$, and

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
7	4	8	9	11	2	5	12	13	10	0	14	1	3	6
12	11	13	10	14	9	2	1	3	0	7	6	4	9	5
1	14	3	0	6	13	8	4	9	7	12	5	11	10	2
4	0	9	7	5	3	13	11	10	12	1	2	14	0	8
11	5	10	12	2	9	3	14	0	1	4	8	6	7	13
14	2	0	1	8	10	9	6	7	4	11	13	5	12	3
6	8	7	4	13	0	10	5	12	11	14	3	2	1	9
5	13	12	11	3	7	0	2	1	14	6	9	8	4	10
2	3	1	14	9	12	7	8	4	6	5	10	13	11	0
8	9	4	6	10	1	12	13	11	5	2	0	1	14	7
13	10	11	5	0	4	1	3	14	2	8	7	9	6	12
3	0	14	6	7	11	4	9	6	8	13	12	10	5	1
9	7	0	8	12	14	11	10	5	13	3	1	0	2	4
10	12	5	13	1	0	14	0	2	3	9	4	7	8	1

generated by $\left(\begin{array}{rrrrrrrrrrrrrrr}0 & 1 & 2 & 3 & 4 & 5 & 0 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 7 & 4 & 8 & 9 & 1 & 1 & 2 & 5 & 12 & 3 & 10 & 1 & 0 & 14 & 1 \\ 3 & 6\end{array}\right)$
Whether or not $\left\{L_{1}, L_{2}, L_{3}\right\}$ san be embedded in an $O(15, t), t \geqslant 3$, set is an ouen problem.

V. 4. Soncluding Remark

johnson 으 al. $[1901]$ and Bose et al. $\{100 \mid$ independently found, by an electronic computer. five mutually forthogonal latin squares by first finding five mutually orthogonal maps for an abodian group of order 12 . The $O(12,5)$ set oxhbited below is the set found by juhnson et al [1961]. Note that the top square is obtained, after a proper renaming, as the direct product of a datin square of order 4 and a cyclic latin square of order b being both orthogonally mateless. Aoriover, every uther square is. ubtained by proper row permutations, determined b: an orthomorphasm, from the top square.
linad Ronirick. The group method falls to produce an $O(n, t)$ set, $t \geq 2$ for any n $1: 6 \mathrm{~h} \cdot \mathrm{Stri}+\mathrm{t} \cdot 2$. This is so because the Cayley table of any group of order $n: 4 t \cdot \therefore$ which is a datin square of order n, is orthogonally mateless.

0	1	2	3	4	5	6	7	8	9	10	11
5	0	1	2	3	4	11	6	7	8	9	10
4	5	0	1	2	3	10	11	6	7	8	9
3	4	5	0	1	2	9	10	11	6	7	8
2	3	4	5	0	1	8	9	10	11	6	7
1	2	3	4	5	0	7	8	9	10	11	6
6	7	8	9	10	11	0	1	2	3	4	5
11	6	7	8	9	10	5	0	1	2	3	4
10	11	6	7	8	9	4	5	0	1	2	3
9	10	1	6	7	8	3	4	5	0	1	2
8	9	10	11	6	7	2	3	4	5	0	1
7	8	9	10	11	6	1	2	3	4	5	0

0	1	2	3	4	5	6	7	8	9.	10	11	0	1	2	3	4	5	6	7	8	9	10	11
6	7	8	3	10	11	0	1	2	3	4	5	3	4	5	0	1	2	9	10	11	6	7	8
10	11	6	7	8	9	4	5	0	1	2	3	6	7	8	9	10	11	0	1	2	3	4	5
4	5	0	1	2	3	10	11	6	7	8	9	5	0	1	2	3	4	11	6	7	8	9	10
11	6	7	8	9	10	5	0	1	2	3	4	9	10	11	6	7	8	3	4	5	0	1	2
5	0	1	2	3	4	11	6	7	8	9	10	7.	8	9	10	11	6	1.	2	3	4	5	0
9	10	11	6	7	8	3	4	5	0	1	2	4	5	10	1	2	3	10	11	6	7	8	9
7	8	9	10	11	6	1	2	3	4	5	0	10	11	6	7	8	9	4	5	0	1	2	3
2	3	4	5	0	1	8	9	10	11	6	7	1	2	3	4	15	0	7	8	9	10	11	6
8	9	10	11	6	7	2	3	4	5	0	1	2	3	4	5	10		8	9	10	11	6	7
\square	2	3	4	5	0	7	8	9	10	11	18	11	6	7	8	9	10	5.	0		1	3	4
3	4	5	0	1	2	9	10	11	6.	7	8	8	9	10	11	6	7	2	3	4	-5	0	1

0	1	2	3	4	5	6	7	8	9	10	11
10	1	6	7	8	9	4	5	0	1	2	3
5	0	1	2	3	4	11	6	7	8	9	10
7	8	9	10	11	6	1	2	3	4	5	0
1	3	3	4	5	0	7	8	9	10	11	6
9	10	11	6	7	8	3	4	5	0	1	2
3	4	5	0	1	2	9	10	11	6	7	8
8	9	10	11	6	7	2	3	4	5	0	1
4	5	0	1	2	3	10	11	6	7	8	9
11	6	7	8	9	10	5	0	1	2	3	4
6	7	8	9	10	11	0	1	2	3	4	5
2	3	4	5	0	1	8	9	10	11	6	7

0	1	2	3	4	5	6	7	8	9	10	11
2	3	4	5	0	1	8	9	10	11	6	7
7	8	9	10	11	6	1	2	3	4	5	0
8	9	10	11	6	7	2	3	4	5	0	1
4	5	0	1	2	3	10	11	6	7	8	9
11	6	7	8	2	10	5	0	4	2	3	4
10	11	6	7	8	9	4	5	0	1	2	3
6	7	8	9	10	11	0	1	2	3	4	5
9	10	11	6	7	8	3	4	5	0	1	2
5	0	1	2	3	4	1	6	7	8	9	10
3	4	5	0	1	2	9	10	11	6	7	8
1	2	3	4	5	0	7	8	9	10	1	6

a

VI. Projecting Diagonals Construction of $O(n, t)$ Sets

A very simple procedure (sort of the "man-on-the-street" approach) of constructing balanced incomplete block and partially balanced incomplete block designs for $v=k^{2}$ ittems in incomplete blocks of size k hatis been utilized since the late $1940 \times$ doy the author and has dts counterpart in con trueting $O(n, t)$
sets. First we shapl illustrate ats use in incomplete block experiment design cunstruction, and then we show how it applies to the construction on $O(n, t)$ set. Thי: theoretical basis for this method may be derived directly from the preceding secrion.

The procedure becomes apparent through an example. Suppose that $\mathbf{v}=9$ and $k=3$. After writing the first square as illustrated below, take successive diagonals of the preceding square and use them to form the incomplete blocks of a square, thus:
Square 1

1	2	3
4	5	6
7	8	9

Square 2
1 5 9 2 6 7 3 4 8

Square 3

1	6	8
2	4	9
3	5	7

Square 4

1	4	7
2	5	8
3	6	9

As we have noted this is a resolvable balanced incomplete design with the param.eters $v=9: k^{2}, k=3, r=4=k+1, b=12=k(k+1)$, and $\lambda=1$, where the r. wis the above squares form the Incomplete blocks.
I. form a partially balanced incomplete block design for $v=k^{2}$ in incomplete blocks of size k one may use any 2 , any 3 , ..., any k arrangements (or squares). To illustrate the formation of a partially balanced incomplete block
design for $v=6=k(k-1), r=2$ or $3=k$, and $k^{\prime}=2$ bimply delete the numbers 7,8 , and 9 from the last $k=3$ arrangements. The deletion of certain symbols from the set $1,2, \ldots, \dot{v}$ is known as "variety cutting". For $k^{2}=25$ and $k=5$ partially balanced incomplete block designs may be constructed for $v=10$ and $k^{*}=2, v=15$ and $k^{+}=3$, and $v=20$ and $k^{\prime}=4$ by the above "variety cutting" procedure.

Also, the successive diagonals method is useful for $v=k^{2}$ in incomplete blocks of si:e k for any odd k. For example, for $v=225$ and $k=15$ four arrangements or squares may be quickly constructed by the above method. Likewise, the "variety cutting" procedure may be utilized to obtain 2 or 3 arrangements for $v=15 p, 2 \leq p \leq 15$, varieties,

The above method has its counterpart in constructing mutually orthogonal latin squares and this possibility is briefly mentioned in Fisher and Yates [1957] in this context. Agath the method becomes apparent through an example. First write the latin square in standard order and of the form given below for the first square, then project the main right diagonal of the preceding square into the first column of a square, and then write the symbol order in the same manner as in the first square. As a first example, let the order of the datin square be 3; the squares are:
first square

1	2	3
2	3	1
3	1	2

second square

1	2	3
3	1	2
2	3	1

1	2	3
1	2	3
1	2	3

Thus, the main right diagonal of the first square is $1,3,2$ which becomes the filsi column ot the second square. Then, write the first row as $1,2,3$, the second row as $3,1,2$, and the third row as $2,3,1$. For the third square, which is not a latin square, the right main diagonal of the second square is $1,1,1$ and this becomes the first column of the third square; the rows are then completed: If we then take the right main diagonal of the third square, we obtain the first square.

As a second illustrative example, the five squares for order $n=5$ which are constructed by successively prolecting diagonals, are:
first square

1	2	3	4	5
2	3	4	5	1
3	4	5	1	2
4	5	$!$	2	3
5	1	2	3	4

second square

1	2	3	4	5
3	4	5	1	2
5	1	2	3	4
4	3	4	5	1
4	5	1	2	3

third square

1	2	3	4	5
4	5	1	2	3
2	3	4	5	1
5	1	2	3	4
3	4	5	1	2

fourth square

1	2	3	4	5
5	1	2	3	4
-4	5	1	2	3
3	4	5		2
2	3	4	5	1

fifth square

1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5
1	2	3	4	5

The ifth square is not a latin square out may be utilized to construct the first square through use of the method of successive projections of the main diagonals.

The me:hoz may be uthized for any odd order n and will produce $q_{1}-1$ crihugenal latin squares for $n=q_{1}, q_{2}, \ldots, q_{s}$ where $q_{1}<q_{1+1}$ and $q_{1}, q_{2}, \ldots, q_{s}$
is the prime power decomposition of n. Thus, for $n=15=3(5)$ a pair $\left(q_{1}-1=3-1=2\right)$ of orthqgonal latin squares is easily produced. For $n=35=$ 5(7), a quartet of mutually orthogonal latin squares is readily produced by the projecting dlagonals method.

VII. Relating Between Complete Confounding and Simple Orthomerphiams

We shall illustrate the ideas by golng through a complete example taking $n=12=2^{2} \times 3$. For this purpose we take the ring of 12 elements (obtained by utilizing Raktoe's [1969] results) as follows:

$R_{12}=I_{3}: I_{4}=\{0,1,2,3,4,5,3 x, 3 x+1,3 x+2,3 x+3,3 x+4,3 x+5\}$
R_{12} is a commutative fing under addition and multiplication (moddd6, $\left.3 x^{2}+3 x+3,4 x+4\right)$ in the following sense:
e.g.: (a). $(3 x+3)+(3 x+4)=6 x+7=1$; here: we have to reduce only mod 6 to get the answer.
(b). $(3 x+1) \cdot(3 x+4)=9 x^{2}+15 x+4$
$=3 x^{2}+3 x+4$
$=[3+10] x^{2}+[3+0] x+[0+4]=\left(3 x^{2}+3 x\right)+4$.
$=3+1=1$; here first we had to reduce
mod 6 , then mod $3 x^{2}+3 x+3$ leaving us immediately 3 and 4, which is irreducible mod $4 x+4$, thus resulting in 1 .

Explicitly, to facilitate arithmetic, the addition and mutliplication of these 12 elements are:

$+$	0	1	2	3	4	5	3x	$3 x+1$	'3x+2	$3 x+3$	$3 x+4$	$3 x+5$
0	0	1	2	3	4	5	3 x	$3 x+1$	$3 x+2$	$3 x+3$	$3 x+4$	$3 x+5$
1		2	3	4	5	0	$3 x+1$	$3 x+2$	$3 x+3$	$3 x+4$	$3 x+5$	3 x
2			4	5	0	1	$3 x+2$	$3 x+3$	$3 x+4$	$3 x+5$	3 x	$3 x+1$
- 3		-		0		2	$3 x+3$	$3 x+4$	-3x+5	3 x	$3 x+1$	$3 x+2$
4					2	3	$3 x+4$	$3 x+5$	3x	$3 \mathrm{x}+1$	$3 x+2$	$3 x+3$
5						4	$3 x+5$	3x	$3 x+1$	$3 x+2$	$3 x+3$	2x+4
3 x							0	1	2	3	4	5
$3 x+i$								2	3	4	5	0
$\therefore 3 x+2$						(4	5	0	1
$3 x+3$										0	1	2
$3 x+4$											2	3
$3 x+5$												4

-	0	1	2	3	4	5	3 x	$3 \mathrm{x}+1$	$3 x+2$	$3 x+3$	$3 x+4$	$3 x+5$
0	0	0	0	0	0	0	0	0	0	0	0	0
1		1	2	3	4	5	3 x	$3 x+1$	$3 x+2$	$3 x+3$	$3 x+4$	$3 x+5$
2			4	0	2	4	0	2	4	0.	2	4
3				3	0	3	3 x	$3 x+3$	3 x	$3 \mathrm{x}+3$	3x	$3 x+3$
4					4	2	0	4	2	0	4	2
5						1	3 x	$3 x+5$	$3 x+4$	$3 \mathrm{x}+3$	$3 x+2$	$3 x+1$
3x							$3 x+3$	3	$3 x+3$	3	$3 x+3$	3
$3 x+1$								$3 x+4$	5	3x	1	$3 x+2$
$3 x+2$									$3 x+1$	3	$3 x+5$	1
$3 x+3$										$3 \mathrm{x}+3$	3	3x
$3 x+4$											$3 x+1$	5
$3 x+5$												$3 x+4$

Now, associate with a latin square of order 12 the $3^{2} \times 4^{2}=[3 \times 4] \times[3 \times 4]$
$=12 \times 12$ lattice square with the following breakdown of the 143 degrees of frecidom:

For any row or column confounding we need to confound effects totaling up to 11 degrees of freedom. There are natural candidates avallable. In fact, we may choose for our first lattice square the confounding scheme in many ways. A sicheme resulting in a pair-of orthogonal latin squares is the following:

LATIN SQUARE 2: Treatments identified with $A^{4} B^{2} C^{3} D^{3 x}$

n \pm \vdots 	-	$\begin{gathered} \text { m } \\ \stackrel{\rightharpoonup}{x} \end{gathered}$	^	$\stackrel{ \pm}{ \pm}$	m	N	$\begin{aligned} & + \\ & + \\ & \underset{\sim}{x} \end{aligned}$	0	\xrightarrow{N}	+	$\underset{\sim}{x}$
$\begin{aligned} & \underset{\sim}{+} \\ & \underset{\sim}{x} \end{aligned}$	0	$\underset{\sim}{\underset{\sim}{x}}$	+	$\underset{\sim}{x}$	N	-	$\begin{aligned} & m \\ & \stackrel{\rightharpoonup}{x} \\ & m \end{aligned}$	\cdots	$\underset{\sim}{\underset{\sim}{x}}$	m	n
$\begin{gathered} \underset{m}{\underset{~}{x}} \end{gathered}$	in	$\underset{\sim}{ \pm}$	m	$\begin{aligned} & \text { in } \\ & \stackrel{y}{x} \end{aligned}$	- 0	\bigcirc	$\begin{gathered} N \\ \underset{\sim}{*} \end{gathered}$	*	x	0	
a \pm \times	7	$\underset{\sim}{x}$	\sim	$\underset{\sim}{\underset{\sim}{+}}$	\diamond	$\cdots \begin{array}{cc} \cdots & - \\ \text { in } \end{array}$	$\underset{\sim}{\underset{\sim}{x}}$	m	$\begin{gathered} \text { nn } \\ \pm \\ \pm \end{gathered}$	-	
F + m	m	$\begin{aligned} & \text { in } \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$	-	$\underset{\sim}{m}$	in	7	M	N	+ + \times \times	0	\sim + ¢ \sim
${ }^{x}$	N	+	0	$\begin{aligned} & \underset{\sim}{\underset{x}{x}} \end{aligned}$	\because	m	$\begin{aligned} & 10 \\ & \underset{\sim}{x} \end{aligned}$	-	$\begin{gathered} \mathrm{M} \\ \stackrel{+}{\star} \\ \underset{\sim}{n} \end{gathered}$	\cdots	$\stackrel{ \pm}{\text { - }}$
\cdots	$\stackrel{+}{ \pm}$	n	$\begin{aligned} & \text { in } \\ & \underset{\sim}{x} \end{aligned}$	-	$\begin{aligned} & m \\ & 1 \\ & \text { n } \end{aligned}$	$\begin{aligned} & A \\ & \dot{x} \end{aligned}$	T	${ }^{x}$	\sim	+ \pm \pm	0
\cdots	¢	\sim	$\underset{\sim}{\underset{\sim}{x}}$	c	$\begin{aligned} & \text { n } \\ & \dot{x} \\ & \dot{\sim} \end{aligned}$	I	m	$\begin{aligned} & \text { n } \\ & \substack{x \\ \\ \hline} \end{aligned}$	\cdots	$\begin{aligned} & \text { m } \\ & \stackrel{\rightharpoonup}{x} \end{aligned}$	in
n	$\stackrel{i n}{\underset{\sim}{x}}$	-	$\stackrel{\substack{\mathbf{x} \\ \underset{\sim}{+}}}{ }$	in	$\overline{\dot{x}}$	突	\sim	+ \pm +	∇	$\xrightarrow{\sim}$	*
\sim	$\underset{\underset{\sim}{\underset{~}{*}}}{\underset{\sim}{2}}$	0	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{\sim}{x} \end{aligned}$	\%	$\underset{\sim}{x}$	$\stackrel{18}{+}$	-	$\stackrel{\sim}{x}$	in	$\stackrel{-4}{*}$	m
-	$\underset{\sim}{x}$	in	-	n	$\stackrel{r_{1}^{\prime}}{\stackrel{1}{x}}$	$\stackrel{+}{ \pm}$	c	$\begin{aligned} & \underset{\sim}{x} \\ & \underset{\sim}{x} \end{aligned}$	T	즈N	N
0	\xrightarrow{N}	\pm	m	N	+	$\stackrel{n}{ \pm}$	in	ت	m		- \downarrow

Using the complete confounding approach as outlined above, one can construct min $\left.i^{\left(i 2^{2}\right.}-i\right),(3-1) j=2$ mutually orthogonal latin squares and no more as can easily be observed from the degrees of freedom table.

From the multiplication table of our ring R_{12}, we observe that $1,5,3 x+1$, $3 x+2,3 x+4$ and $3 x+5$ are the 6 non-zero divisors (i. e. elements with multiplioative inverses), rollowing Bose, Chakravarti and Knuth [1960], we consider simple automorphisms in R_{12} of the form:
$u(r)=r r$
where $\mathrm{r}^{\prime \prime}$ is a given fixed element having a multiplicative inverse because only these elements are capable of producing automorphisms of R_{12}). Let now our aim be to produce two orthomorphisms which in turn will produce an $O(12,2)$ set. For this purpose consider the automorphisms:,
$f(r)=r$
$u(r)=r \cdot r$.
Now $\left[\right.$-a imples the condition that r in the equation $\left\{r^{\prime \prime} \cdot r-r \mid=c\right.$ has a unique solution for every c of R_{12}. In our setting this means that $r\left(r^{*}-1\right)=0$ has a unique solution, i.e., $r(r+5)=c$ has a unique solution which in turn amplles that $\left(r^{*}, 5\right)^{-1}$ exists in R_{12}^{\prime}. Substituting in the values of r we see that:

$$
\begin{aligned}
& {[1+5]^{-1} \text { does not exist in } R_{12}} \\
& {[5+5]^{-1} " \mid " \quad " \quad "} \\
& \left.[13 x+1]^{-1}+5\right]^{-1} \text { does not exist in } R_{12}
\end{aligned}
$$

$$
\begin{aligned}
& {[(3 x+2)+5]^{-1}=[3 x+1]^{-1} \text { exists in } R_{12}} \\
& {[(3 x+4)+5]^{-1} \text { does not exist in } R_{12}} \\
& {[(3 x+5)+5]^{-1}=[3 x+4]^{-1} \text { exists in } R_{12}}
\end{aligned}
$$

Hence we have obtained two pairs of orthomorphisms namely:

$$
\begin{aligned}
& I(r)=r \quad \text { and } \quad l(r)=r \\
& \alpha_{1}(r)=(3 x+2) r \quad \alpha_{2}(r)=(3 x+5) r
\end{aligned}
$$

ing complete confounding corresponds to the first pair of maps. It may be easily shown that simple maps of the type $\alpha(r)=r^{*} \cdot r$ lẹad to $O(12,2)$ sets or in gemeral tolan $O(n, a)$ set, where $a=\min \left(p_{1}^{n_{1}}-1, p_{2}^{n_{2}}-1, \ldots, n_{k}^{n_{k}}-1\right)$ and $n=\prod_{1 \pm 1}^{k} p_{1}^{n}$ so that the epmplete confounding approach is equivalent to the construetion of a set of a orthomorphisms.

> vill. jume Rerarks on "arthorwohism" Construction of Oin, i) Sets

 ti cut icion in computer (tme, tollowed by computer runs) that there are obtainable only 5 orthogonal la min squares of orde: 12 , all restricted to be copies of the nen-equlc aodian group with fatin squares related by row permutations. The researchers cited call this the method of orthomorphisms. Parker considers
 wrifumudprasin dunatis nu pletbot weftation. I

Part.r mace another indirg, also br hard dassification of cases followed by computer ians, whach Marsinall Hall feels is tnore important than that cited
 tencej to a curplete se: ut ar.; sort; :.e., farther orthogonal latin squares are allownit be complutedy goneral.

Un: mint on chtarazto sernogorish squares of order 20 in like

 crtiogural squa: 5 : orier 15 .
 Irwestagator, (The facts for order th mentioned adova rule dut charces here. i Gne might produce sots of orthogonal latn squargs of row-pernutect group type, ding autormerphisms of the group latir squares to elminate - or, that failing reduce - isomorptic repetition. It would riol be shrews to program a computs

 datin squares ipossably exhastivo for oroer i5, but almost certaind; o.ly is sanpli ior orier 2, , arge reough inat computer searching would requart

\therefore is well-x:m what removing one line from the plane, usually called
the line of infinity, the remaining $n^{?}+n$ lines can be arranged into $2 n$ lines
passing through two points at infinity which are arbitrary up to notation and coordinatization of the plane, and $n^{2} n$. Lines belonging to n-1 mutually orthogonal latin squares. If the line at infinity is chosen to be a secant and there are ar lites. ihe lit: pass through the two pents of the oval such that eazh of the $n-1$ latin squares consists of $\frac{n}{2}$ secants and $\frac{n}{2}$ nonIntersectors pessing inrough eacn of the $n-1$ points at infinity other than the peines of the rval.

Y'sing ihe described meinod. It was assumed that a plane of ordar 10 exists. Or meras assumton 2l haes coult ze exnioited arbitrarily up to

 usa; Pares:rat itare aquares anfars from the ore described in literature.

computer establist:et that the :w squares dat not fold ar additond matiolly
orthogonalmate. Clearly it could happen inat the choice wi the first two was
unfortunate, The same method was applied to the plane of order 12 . Here
the trial afid error method failed to produce even two orthogonal squares. it

the search for crthogonal latin squares dces not require the assumption that the oval consists of the maximum number of points $r_{1}+2$. However. if the plane does not include an oval consisting of $n+2$ points the lines could nc: be classified into two categorirs only dad this complicates the consiruction \therefore
the plane. Let us illustrate the method in the case a equals 14 . $1: 1:$
eas; to show that in this case the oval :nast corsis: of at least 6 pumt:

However, the case of an of of points would be ignored sinc. in ans

hand, a plane of order ten must be a ron-Desarguessian and hence was: a : : : : :

 plase contains an oval consisting of seven points then the 104 points of the - plane wr in do not belong to the oval could be classified into three categories.:
(i) points lying on 3 secants, 1 tangent 7 nonintersectors

1111	$"$	$"$	$"$	2	$"$	3	$"$	6	$" 1$
11111	.$"$	$"$	$"$	1	$"$	j	$"$	5	$"$

Let us name the number of points in each category by x, y, z respectively.

Clearly $x+y+z=104$.
Counting the intersections of thr: secants and the tangents we get the further equations:

$$
\begin{aligned}
& 3 x \cdot:-105 \\
& \because \cdot 102 \cdot 525
\end{aligned}
$$

The unique solutions of this system of nquations are $x=20, y=45, z=39$. Ore coula start the construction if the plane under the present assumption and avestagate the possibulities ot watama orthugonal latin squares in this way.

X. Code Construction of (un, u) .rets

Given an n-symbol alphabet. e.r., $1.2, \ldots, n$, and a set cix-iapi of the n symbcils. we denote the set of ail $\mathrm{x}-\mathrm{trpits} \mathrm{by} \mathcal{C}_{\mathrm{k}, \mathrm{n}}$. Thic sot may be thought of as a vector space or as a k-dimensicnal hypercube with edges of length n. Any subset of $C_{k, n}$ is denoted as a block code with a block lencith of k. The elements of the subset are denoted as code words. The numberof symbols by which any two code words differ is called the Hamming distanec. If any pair of code words in the subset differs by a Hamming differencen a: least r. the block code is called a distance r code. A distance r woi... called an $(r-1) / 2$-error correcting code because fewer than $1 r-1 / / 2$ changes leaves the word closer to its original form than to any other code word in the subset. For similar reasons. a distance r code has also been designatei as an $(r-1)$-error-dectecting code,

In an interesting paper. Golomb and rosner (1964) discuss the relationships between a subset of n^{2} code wurds and an on, w set and :elat: .n.... to deas developed from a consideration of a set of n^{2} super roons at inio: on the n^{t+2} chessboard such that no two super rooks attack oncin witir. \quad :i, new concepts of rook domains and ropk packing were found to be ver: whe: providing a geometrical view of the results.

Any subset of n^{2} words from $C_{3, n}$ which forms a singlemerrcimation: code may be used to construct a latin square of order n as any pait of \cdot.. triples differs by at least two symbols. Likewise, any subset of n , wir
from $i_{i+2, n}$ with a Hammita distance of $i+1$ nay be utllized to construct ar $\sigma:!$ set. These results arn embodied in the follawing theorem ifram Golomb and Posner [1964]):

Theorem $\mathrm{X}, 8.1$ The following three concepts are equivalent:

1) an $O(n, t)$ set
2) Aset of n^{2} nonattacking super rooks ff power ton the $n^{t 2}$ bodr. for even t, also the following, a set of n^{2} super rooks of power $t / 2$ on the n^{t+2} board such that no coll is attacked twice; that is, such that the rook domains are ronoverlapeing.
(ii) Adistance $t+1$ code of block length $t+2$ with n^{2} wordefroinan n-symbol alphaber.

Por those interested in code construction, reference may be made to Mann $|1968|$ and Peterson $[19 h 1]$ and the literature citations therein. We shall metely llustratc the method of construction of an $O(n, t)$ set from n^{2} words of lengtn $t: 2$ ard llamming distance $:+1$ through an example. Let $n=3$ and $t, 2$. Then ine $n^{2}=0$ code words with length 4 and Hamming distance 3 and the corresponding latin squares are:

latin squares of order 3

nonon	$011:$	0226
1012	1120	1201
2021	2102	2210

0
0

1 \begin{tabular}{c|c|c|c|c|c|c|}
0 \& 1 \& 2

0 \& 1 \& 2

\hline 1 \& 2 \& 0

\hline 2 \& 0 \& 1

\hline

\quad

0

0

\quad

0 \& 1

\hline
\end{tabular}

where the first symbol corresponds to row number, the second to column number,

The third in symbols in the tirst latin square. and the fourth to symbols in the? second latin square. The two latin squares form an J! $3.2!$ set. Note that any pali of tite quadruples differs in at least three symbols.

The analogy of the above with many of the concepts from fractional replication and orthogonal arrays is immediately apporent. The equivalences of many of the results in these fields need to be systematically noted much in the same manner that Golomb and Posner [1964] note various equivalences among Oin,t, sets, error-correcting codes, and n^{2} nonattacking rooks on an n^{t+2} chessboard.

X1. Parwise Balanced Design Construction of $O(n, t)$ Sets

Ceriral to the constructions of orthogonal latin squares of Bose and Shrikhande $[1959$) and of Parker $[1959,1960]$ is the following which might be called a "Folk theorem," being credited to no specific investigator: From a set of orthogön 1 wh soudes oforder n onemay producen set of n ordered (t + 2i-tuples on n^{2} symools such that each pair of distinct positions contains each ordered part of symbols (exactly once) ithe converse construction can also De cartied out. ISome, such as Busc, prefer to call the set of ($t+2$)-tuples ar. orthogonal array., There is ncthing difficult to prove in this construction. Two arbitrary positions in the $1 t+2, t u p l e s$ are identified.with row and column indices In matrices, and each other position with entries in one of the matrices. The equivalence between orthogonality of latan squares and the conditions on the it-2i-tuples is then farly apparent.

Parier $|1960|$ contributed the following to the construction of orthogonal latr: squarus. lifinre exists a palr of orthogonal latin squares of order m, then thur. exisis a pare ciforthogonal hathn squares of order $3 m+1$.

Let ine $3 m$. 1 s;mbols $: 4, x_{1} \ldots, x_{m}$ and the residue classes $(\bmod 2 m+1)$.
Fore :he atats säuare, array

x_{i}	1	1	-1	
i	x_{1}	-1	1	
1	-1	x_{1}	0	
-1	1	0	x_{1}	.

ice cact $i, 1 \leq i \leq m$, each row is one of the ordered quadrupits. In iurfi, thi is: ©f quadruples is built up by adding each integer imod 2 m + 11 to all hiur positicns at once, the X_{i} symbols being uncharged by the addition. Ine set of $4 m(2 m+1)$ ordered quadruples just described contains in each parar of distanct pesitions exactly one occurrence of each ordered pair made up of an X_{1} and a : ssidue class in either order, and of each ordered pair made up of iwo jistinct residue classes. The required set of ordered quadruples is completed by adjom1rg: 11 all ordered quadruples (1,1,ر., $), \quad=0, \ldots, 2 m$, til a sut of ordrand quadruples on the X_{i} symbols corresponding to a pair of orthogonal latin squates ci crder " m guaranteed by the hypothesis to exist.

Bose and Shrikhande (1959, published 1959 and 1960 partly in a 3 -author japer with Parker) developed a sequence of anstructive theorems which led in steps to disproof of Euler's conjecture for all ordors. it $+2>6$. Their central therem given here does not exhaust their methods, but virtually all thear results res: on this theorem. We begin wath definition. A parwise balanced design, PBin; $k_{1} \ldots . k_{t}$, is a collection of subscts of a set of n elements, each subset having number of elements une of the k_{1}. and such that each pair of distinct clements in the set of n occurs in a unique subset of the $P B$. (Note: unlike in balanced incomplete block designs, the subsets of a $P B$ are not restracted to nave equal numbers of elements. 1 Now for the main theorem of Buse and Shakhande. If a PB(n; k_{1}, \ldots, k_{t} exists, and for each $i, 1 \leq i \leq t$, a set of m orthogonal latin squares of order k_{1} exists, then a set of $m-1$ orthogonal latin squares of prder n_{1} exists. Loosely speaking, the sets of ordered tuples for each subset
of the PB are construcied and these fit together to form a set of ordered tuples fur the full set of, n elements. The decrease from m to $m-1$ orthogonal latin squares occurs because in fitting the pieces together to form the large set of ordered tuples, it is necessary that each set of ordered tuples formed from a
 of-that subset. (If is sufficient that this condition be fulfilled in the construction. Thus the theorem might be stated in slightly stronger form: "If... $1 \leq i \leq t$, I set of m orthogonal jathn squares of orcier k_{i} with a transversal exists, then d set of m orthogonal datin squares of orger n extsts. ") Now for a more nearly formal version of the proof. If there exists a set of m orthogonal latin squares of order n, "then there exists a set of the appropriate sort of n^{2} ordered ($m+1$-tuples with each symbol repeated in an $(m+1)$-tuple $m+1$ times. (The condition mentioned is satisfied with ($m+2$)-tuples if the set of orthogonal latin squares has a transversal. $)$ One need simply put together the ordered tuples on adch subset of the $P B$ in turn, subject to the important condition that within edeh subset of the $P B$, each tuple of repetitions of each symbol be included. Garring this out on the alphabet of the symbols in each subset of the $P B$, one has the construction for the set of orthogonal latin squares in the conclusion: auh ordared tuple of a repeated symbol among the n is used only once. A representative and very interesting oxample (Bose and Shrikhande intormed Parker that this was the first case of disproof of Euler's conjecture produced in their loint work at a blackboard) yields 5 mutually orthogonal latin squares of order 50 via the $P B$ construction. One forms the affine plane of

Erder 7 , then adjotns exactly one iffal point on each line of one class of parallel lines. This yields a $\operatorname{PB}(50 ; 8,7)$. Since there exist 6 orthogonal latin squares of each order 8 and 7 , there exist $6-1=5$ orthogonal latin squares of-order 50.

Therets andaton on the Bose-Shrikhande PB constructon Aside trotm
trivial $P B$ designs, having a single subset of all elements, any $P B$ has a subset with at most one more element than the square root of the number of elements in the large set. Thus other techniques are requisite to produce more than \bar{n} orthogonal latin squares of order not a prime-power.

About TO years ago, for the first time, Tarry [1899] in his half-page note asserted that if there exists an $O(a, 2)$ set and if there exsts an $O(b, 2)$ set then there exists an $O(a b, 2)$ set. He exhibited the following $O(12,2)$ set, by composing two $O(3,2)$ and $O(4,2)$ sets, to demonstfate the truthothis osser-
tion. Note shat in the following square the set of first integers belong to one latin square and the set of second integers belong to the second latin square. Nu inore description is qiven by Tarry.

2-3	1-1	3-2	8-12	7-10	4-11	11-6	10-4	12-5	5-9	4-7	6-8
3-1	2-2	1-3	?-10.	'8-11	7-12	12-4	11-5	10-6	6-7	5-8	4-9
1-2	3-3	2-1	$7-11$	0-12	8-10	10-5	12-6	11-4	4-8	6-9	5-7
11-9 10	10-7 1	12-8	5-6	4-4	t-5	$2-1$?	1-10	3-11	8-3	7-1	9-2
12-7	$\|1-8\|$	10-9	6-4	5-5	$4=6$	3-10	2-11	1-12	9-1	8-2	7-3
10-8	:2-9	$11-7$	4-5	6-6	5-4	1-11	3-12	2-10	7-2	9-3	B-1
5-12	4-10	b-11	11-3	10-1	12-2	8-9	7-7	9-8	2-6	1-4	3-5
$n-10$	5-11	$4 \cdot 12$	12-1	11-2	10-3	$9-7$	8-8	7-9	3-4	2-5	1-6
+-11	6-12	5-10	10-2	12-3	$11-1$	7-8	9-9	8-7	1-5	3-6	2-4
8-t:	7-4	3-5	2-9	1-7	3-8	5-3	4-1	6-2	11-12	10-10	12-11
9-4	$x-5$	F-h	3-7	2-4	1-4	6-1	5-2	4-3	12-10	11-11	10-12
7-5	$9-6$	8-4	1-K	304	$2-\bar{i}$	$4-2$	6-3	5-1	$10-11$	12-12	11-10

Tarry did not observe any generalization of his method. Perhaps this was due to the fact that he, like so many other researchers, was only concerned with sets of type $O(n, 2)$. Probably hr was not aware of the existence of a larger set.

RHOH: 23 years later MacNeish [1922] demonstrated:

1) The existence and a construction of an $O(n, n-1)$ set for n a prime or prame power integer.
2) A generalization of Tarry's procedure viz., if there exists an $O(a, r)$ set and If there exists an $O(b, r)$ set then there exists an $C(a b, r)$ set.

is the prime-power decomposition of n then there exists an $O(n, r)$ set where $r=\min \left\{p_{i}^{\alpha}-1, \quad i=1,2, \ldots, t\right\}$.

MacNeish comld not embea his $O(n, r)$ set generated ir 3) in a larger
set. This unsuccessful attempt, reinforced by Euler's confecture, led MacNeish to prove (erroneously) geometrically that $O(n, t)$ sets do not exist for $t>r$, and therefore, as a confirmation of Euler's conjecture. The preceding argument cf MacNeish is known as MacNeish's conjecture in the literature. By constructing an C(21,3) set Parker [1959] gave a counter example to MacNish's conjecture. Later Bose, Shrikhande, and Parker $[1960]$ completely demolished Euler's conlecture except for $n=6:$ It should be mentioned that MarNeish's conjecture has no: been totally disproved yet. For instance, no one as yet as far as we know, has constructed an $O(15,4)$ set (an $O(15,3)$ set is given in section V for the first tıme) or an $O(20,3 i$ set. We belleve that MacNeish should be given substantial credit for his non-erroneous contributions. It is to be regretted that MacNeish is often cited in the literature only for his false conjecture.

Even though Tarry and MacNeish did not attach any name to their procedure, it is not difficult to see that it is the method of Kronecker product of matrices. Therefore, we can state, more formally, thear rosults as follows:

Theorem frarry-MacNeish). If $\left\{A_{1}, A_{2}, \ldots, A_{r}\right\}$ is an $O(n, r)$ set and If $\left\{\vec{D}_{1}, \bar{B}_{2}, \ldots, B_{r}\right\}$ is an $O(m, r)$ set, then $\left\{A_{1} \otimes B_{1}, A_{2} \otimes B_{2}, \ldots, A_{r} \otimes B_{r}\right\}$, where donotes the Krunecker product operation of matrices, is an $O(n m, r)$ 3tt.

The preceding arguments clearly support the choice of the title for this 1. $-\quad$ section and is in contrast to the choice of the name for the procedure given in section XIII.

XIII. Sum Composition Construction of $O(n, t)$ Sets

XI11.1. Introduction. Perhaps one of the most useful techniques for the construction of combinatorial systems is the method of composition. To mention some, here are few well-known examples: (1) lf there exists a set of t orthogonal latin squares of order n_{1} and if there exists a set of t orthogonal latin squares of order n_{2}, then there exists a set of t orthogonal latin squares o: order $n_{1} n_{2}$. 2) If there are Steiner triple systems of order v_{1} and v_{2}, there is a Steiner raple system af crder $v=v_{1} v_{2} .31$ If H_{1} and H_{2} are two Hadamard matrices of order n_{1} and n_{2} respectivaly, then the Kronecker product of H_{1} and H_{2} is a Hotamard matrix of orcler $\mathrm{n}_{1} \mathrm{n}_{2}$. 4) If Room squares of order n_{1} and n_{2} exist, then a Room square of order $n_{1} n_{2}$ exists. i) If BIB $\left(v, k, l_{1}\right)$ and $B I B\left(v_{2}, k, l_{2}\right)$ exist and if $f\left(t_{2} v_{2}^{2}\right) \geq k$, then
 straints which are possible in an orthoyonal array of size $\quad 1_{2} v_{2}^{2}$, with v_{2} levels, strength 2 , and index 1_{2}. 0$)$ As a inal example, the existence of orthogonal arrays $\left(\lambda_{i} v_{i}^{t}, q_{i}, v_{1}, t\right), i=1,2, \ldots, r$ implies the existence of the orthogonal array $\left(t v^{b}, q, v, t\right)$, where $\lambda=1_{1}{ }_{2} \ldots{ }^{\prime}, v=v_{1} v_{2} \ldots v_{r}$, and $q=\min \left(q_{1}, q_{2}\right.$, \ldots, q_{r}.

The reader will note that each of the above examples involved a product type composition. The method that wo will describe utilizes a sum type coniposition, by means of which one can possibly construct sets of orthogonal latin squares for all $n \geq 10$.
XIII.2. Definitions. In the sequel by an $O(n, t)$ set we mean a set of t mutually orthogonal latin squares of order n.

```
    N
```

a) A rransversal (directrix) of a latin square L of order n on an $n-s e t \Sigma$
 2 and every row and column of 1 te represented in this collection. Two transversals are sad to be parallel if they have no cell in common.
b) A collection of n cells is said to form a common transversad for an $O(n, t)$ sel H-the collecton-is dransversal for each of these t Jatin dquares. Simatary, two common transversals are said to be parallel if they have no cell in common. Example. The wherlined and percotnosized eells form two parallel common iratoversas : : me :ublowny $\mathcal{U}(4,2)$ seb.

$$
\left\{\begin{array}{cccccccc}
1 & 2 & (3) & 4 & 1 & 2 & (3) & 4 \\
(2) & 1 & 4 & 3 & (4) & 3 & 2 & 1 \\
3 & (4) & 1 & 2 & \underline{2} & (1) & 4 & 3 \\
4 & 3 & 2 & (1) & 3 & 4 & 1 & (2)
\end{array}\right\}
$$

XIII. 3. Composing Two latin Squares of Order n_{1} and n_{2}

A very natural question in the theory of latin squares is the following:
Given : wo litin squares L_{1} and i_{2} of order n_{1} and $n_{2}\left(n_{1} \geq n_{2}\right)$ respectively. In bux many ways an one compose L_{1} and L_{2} In order to obtaln a latin square !. : Urine m, whers m as a funcion of n_{1} and n_{2} only? This question or :artally answered as follows. Mirs:, it is well-known that the Kronecker
 vombinatcral stu-ture of L_{1} and $!_{2}$, Seccndly, we show that if L_{1} has a -ribin .-anatornal structur., then ofle can construct a latin square L of
order $n=n_{1}+n_{2}$. Naturally enough we call this procedure a "method of sum composition".

Even though our method of sum compusition dues not work for all palrs of latin squares, it has an immediate application in the construction of orthogonal latin squares including those of order $4 t+2, t \geq 2$. We emphasize that: the combinatorial structure of orthogonal latin squares constructed by the method of sum composition is completely different from those of known orthogonal latin squares in the literature. Therefore, it is worthwhile to study these squares for the purpose of constructing new finite projective planes.

We shall now describe the method of "sum composition". Let L_{1} and L_{2} be two latin squares of order n_{1} and $n_{2}, n_{1} \geq n_{2}$, on two non-intersecting sets $\Sigma_{1}=\left\{a_{1}, a_{2}, \ldots, a_{n_{1}}\right\}$ and $\leq_{2}=\left\{b_{1}, b_{2}, \ldots, b_{n_{2}}\right\}$ respectively. If L_{1} has n_{2} parallel transversals then we can compose L_{1} with L_{2} to obtain a datin square L of order $n=n_{1}+n_{2}$. Note that for any pair $\left(n_{1}, n_{2}\right)$, there exists L_{1} and L_{2} with the above requirement, except for $(2,1),(2,2),(6,5)$ and $(6,6)$.

To produce L put L_{d} and L_{2} in the upper left and lower right corner respectively. Call the resulting square C_{1}, which locks as follows:

Name the n_{2} transuersals of L_{1} in any manner from 1 to n_{2}. Now thll the cell ($1, n_{1}+k$), $k=1,2, \ldots, n_{2}$, with that element of transversal k which appears in row $1,1=1,2, \ldots, n_{1}$. rill also the cell $\left(n_{1}, k, 1\right), k=1,2, \ldots, n_{2}$,

with that element of transversal k which appears in column $j, j=1,2, \ldots, n_{1}$. Cail dite rexiang square \mathcal{U}_{2}. Now every entry of \mathcal{C}_{2} is occupled with an element elther from S_{1} or S_{2}, but C_{2} is obviously not a latin square on $z_{1} U z_{2}$. However, if we replace cach of the n_{1} entries of transversal k with b_{k}, it is easily verified that the resulting square which we call 1 is a latin square of order n on $\Sigma_{1} \sum_{2}$.

The procedure described for filling the first n_{1} entries of the row (column) $n_{1} \cdot k$ with the corresponding entries of transversal k is, naturally enough,
 $n_{1}+k$.

We shall now elucidate the above procedure via an example. Let $\Sigma_{l}=$ $(1,2,3,4,5\}, 2_{2}=\{4,7,4\}$,

Note that the cells on the same curve in L_{1} form a transversal.

$$
\left.U_{1}=\begin{array}{|lllll|l}
1 & 4 & 3 & 4 & 5 \\
5 & 1 & 2 & 3 & 4 \\
4 & 5 & 1 & 2 & 3 \\
3 & 4 & 5 & 1 & 2 \\
1 & 3 & 4 & 5 & 1 & \\
\hline & & & & & \\
& & & 7 & 4 \\
7 & 8 & 6 \\
i & 6 & 7 \\
\hline
\end{array}\right] \quad \begin{array}{|ccccc|ccc|}
\hline 1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 \\
5 & 1 & 2 & 3 & 4 & 4 & 5 & 1 \\
4 & 5 & 1 & 2 & 3 & 2 & 3 & 4 \\
3 & 4 & 5 & 1 & 2 & 5 & 1 & 2 \\
2 & 3 & 4 & 5 & 1 & 3 & 4 & 5 \\
\hline 1 & 3 & 5 & 2 & 4 & 6 & 7 & 8 \\
5 & 2 & 4 & 1 & 3 & 7 & 8 & 6 \\
4 & 1 & 3 & 5 & 2 & 8 & 6 & 7 \\
\hline
\end{array}
$$

And finally
$L=\left[\begin{array}{lllll|lll}6 & 7 & 8 & 4 & 5 & 1 & 2 & 3 \\ 7 & 8 & 4 & 3 & 6 & 4 & 5 & 1 \\ 8 & 5 & 1 & 6 & 7 & 2 & 3 & 4 \\ 3 & 4 & 6 & 7 & 4 & 5 & 1 & 2 \\ 2 & 6 & 7 & 8 & 1 & 3 & 4 & 5 \\ \hline 1 & 3 & 5 & 2 & 4 & 6 & 7 & 8 \\ 5 & 2 & 4 & 1 & 3 & 7 & 8 & 6 \\ 4 & 1 & 3 & 5 & 2 & 8 & 6 & 7\end{array}\right]$
which is a latin square of order 8 on $\Sigma_{1} U \Sigma_{2}=\{1,2, \ldots, 8\}$.
Remark. Note that it is by no means required that the projection of transversals or the rows and columns should have the same ordermg. Irdeed, for the fuxed set of orderea n_{2} transversals, we have n_{2} ! choices of projections on columns and n_{2} cholces of projections on the rows. Hence we can generate at least $\left(n_{2}!\right)^{2}$ different datin squares of order $n=n_{1}+n_{2}$ composing L_{1} and L_{2}. XIII. 4. Construction of $O(n, 4)$ Sets by Method of Sum Composition. In order to construct an $O(n, 2)$ set for $n=n_{1}+n_{2}$, we require that $n_{1} \geq 2 n_{2}$ and there should exist an $O\left(n_{2}, 2\right)$ set, and an $O\left(n_{1}, 2\right)$ set with $3 n_{2}$ parallel transuersals, it is easy to show that any $n \geq 10$ can be decomposed in at least one way into $n_{1}+n_{2}$ which fulfill the above requirements. We now present two theoroms which state that for certain n one can construct an $O(n, 2)$ sct by the method of sum composition.

Theorem XIIl, 4, Let $n_{1}=p^{*} \geq 7$ for any odd prime p and positive inteqei a, excluding $n_{1}=13$. Then there exists an $O(n, 2)$ set which can be constrypted by composition of iwo $O\left(n_{1}, 2\right)$ and $O\left(n_{2}, 2\right)$ sets for $n_{2}=\left(n_{1}-1\right) / 2$ and $n=n_{1}+n_{2}$.

We shall first give the method of construction and then a proof that the constructed set is an $O(n, 2)$ set.

Corsiruction. Let $B(r)$ be the $r_{1} \times n_{1}$ square with element $r a+\alpha_{j}$ in its ($\left.1, j\right)$ cell, $a_{i}, a_{j}, 0 \neq r$ in $\operatorname{Gr}\left(n_{1}, i, j=1,2, \ldots, n_{1}\right.$. Then it is easy to see that $\left\{B(11, B(x), B(y)\}, y \neq x^{-1}, x \neq 1\right.$, is an $O\left(n_{1}, 3\right)$ set. Consider the n, cells in $B(1)$ with $u_{1}+a_{1}=k$ a fixed element in $G\left(n_{1}\right)$. Then the corresponding cells in $B(x)$ and $B(y)$ form a cemmon transversal for the set $\{B(x), B(y)\}$. Name this Eommon transversal by k. It is :hen obvious that two common transversals k_{1} and $k_{2}, k_{1} \neq k_{2}$ are parallel a, dhence $\{B(x), B(y)\}$ has n_{1} common parallel trars:ersais. Now let $\left\{A_{1}, A_{2}\right\}$ bo any $O\left(n_{2}, ~ \&\right)$ set, which always exists, on a set : non-intersecting with $G \Gamma\left(n_{l}\right)$. Tor any λ in $G F\left(n_{1}\right)$ we can find (n, $-1 \cdot 2$ pairs of distinct elements belonging to $G i\left(n_{1}\right)$ such that the sum of the $t w o$ elements of each pair is equal to $1 . \operatorname{Let}\{S\}$ and $\{T\}$ denote the sollection of the farst and the second elements of these $\left(n_{1}-1\right) / 2$ palrs respecWuely. Note that for a fixed 1 the s.t $\{S\}$ can be constructed in $\left(n_{1}-1\right)\left(n_{1}-3\right)$ $\ldots 1$ antunct ways, Now $f x$, and let L_{1} denote any of the $\left(n_{2}!\right)^{2}$ datin squates that can be generated oy the sum composition of $L(x)$ and A_{1} using transuorsabs determaned by the n_{2} tlements of $\{S\}$. Let L_{2} be the datin square
 :wirir : : ; :ne elweents of $\{T\}$ in: the following projection rule: Project transversals $t_{1}, 1=d, \alpha_{1}, \ldots, n_{2}$ on the row (column) which upon superposition of A., an L_{1} this row (column) should colncide with the row (column) stemmed from inc transversal $1=t_{i}$. Shortly we shall prove that $\left\{L_{1}, L_{2}\right\}$ forms on $O(n, 2)$ \therefore - 4.

$$
\operatorname{rig}_{i} 1
$$

The preceding arguments shows that $\left\{L_{1}, L_{2}\right\}$ can be constructed nonisomorphically in at least $\left(n_{1}-3\right)\left(n_{2}!\right)^{2}\left[n_{1}\left(n_{1}-1\right)\left(n_{1}-3\right) \ldots 1\right]$ ways. For instance in the case of $n_{1}=7$, there is at least 12096 non-1somorphic pairs of orinogonal latin squares of order 10 . Therefore, Euler has been wrong in his conjecture by a very wide margin.

Note that we can construct infinitely many pairs of orthogonal latin squares
of order $4 t+2$ by the method of theorem XIIL. 4,1 . For $p \equiv 7 \bmod 8$ and add $\left.p^{\omega}=(8 t+5) / 3\right)$. Hence $n_{1}+n_{2}=4 t \cdot 2$.

Prof: The constructional procedure clearly reveals that:
A. L_{1} and L_{2} are latin squares of order n on $G F\left(n_{1}\right) U \Omega$:
B. Upon superposition of L_{1} on L_{2} the following are true:
b_{1}. Every element of $\Omega \Omega$ appears with every other element of Ω.
b_{2}. Every element of s_{1} appears with every element of $G F\left(n_{1}\right)$.
b_{3}. Every element of Cf' $^{\prime}\left(n_{1}\right)$ appears with every element of $\$ 2$. Therefore, all we have to prove is that every element of $\operatorname{GF}\left(n_{1}\right)$ appears with every other element of $G\left(n_{1}\right)$. Tu prove thas recall that $B(x)$ is urthogonal to $B(i)$. However, since we remuved the n_{2} transversals from $B(x)$ determined by the n_{2} elements of $\{S\}$ and n_{2} transversals from $B(y)$ determined by the n_{2} elements of $\{T\}$ therefore the following $2 n_{2} n_{1}$ pairs have been lost.

$$
\left(x a_{i}+a_{j}, y a_{i}+a_{j}\right) \text { with } a_{i}+a_{j}=\text { y for any } \gamma \in G F^{\prime}\left(n_{1}\right), \gamma \neq \lambda .
$$

We claim that the given projection rules guarantee the capture of these lost pairs by the $2 n_{2} n_{1}$ bordered cells. To show this note that the supernosition of the

projected transversal s from $B(x)$ on the projected transversal $t=\lambda-s$ from $B(y)$ will capture the n_{1} pairs.

$$
\left(x a_{i}+\alpha_{j}, y a_{i}+a_{j}\right) \text { with } a_{i}+\alpha_{j}=k=[y(\lambda-s)+s] /(1+y)
$$

- It these transverstels have been projected on row border and n_{1} pairs

If these transversals have been projected on column border. Now because $k+k^{\prime}=\lambda$ and if $s_{1}+s_{2}$ then $k_{1} \neq k_{2}$ and $k_{1}^{\prime} \neq k_{2}^{\prime}$ hence the $2 n_{2} n_{1}$ pairs whith nave been resultec from the projection of transversals determined by $\{S\}$ and $\{T\}$ will jointly capture the $2 n_{2} n_{1}$ lost pairs and thus a proof. We shall now clarify the above constructional procedure by an example. Example. Let $n_{1}=7, G(i) \quad\{0,1,2, \ldots, 6\}$. Ther. for $x=2, y=x^{-1}=4$ we have
$\{B(1), B(2), B(4)\}=$

0	1	2	3	4	5	6	0	1	2	3	4	5	6		0	1	2	3	4	5	6
1	2	3	4	5	6	0	2	3	4	5	6	0	1		4	5	6	0	1	2	3
2	3	4	5	4	1	1	4	5	6	0	1	2	3		1	2	3	4	5	6	0
3	4	5	6	1	1	2	6	0	1	2	3	4	5		5	6	0	1	2	3	4
4	-	1	0	1	2	3	1	2	3	4	5	6	0		2	3	4	5	6	0	1
7	1	1	1	2	3	4	3	4	5	6	0	1	2		6	0	1	2	3	4	5
1	1	1	2	3	4	5	5	6	0	1	2	3	4		3	4	5	6	0	1	2

Γ or $\because,=n_{a}-1 / 2=3$ let $a_{2}=\{7,8,9\}$ and

$\{T\}=\left\{h_{1}, 5,4\right\}$ we have $\left\{I_{1}, I_{2}\right\}=$

0	7	8	9	4	5	6	1	2	3	0	1	2	3	7	8	9	6	5	4
7	8	9	5	6	0	1	2	3	4	4	5	6	7	8	9	3	2	1	0
8	7	6	0	1	2	7	3	1	5	1	2	7	9	0	6	0	5	4	3
9	0	1	2	3	7	8	4	5	6	5	7	8	9	2	3	4	1	0	6
1	2	3	4	7	8	9	5	6	0	7	8	9	5	6	0	1	4	3	2
3	4	5	7	8	9	2	6	0	1	8	9	1	2	3	4	7	0	6	5
5	6	7	8	9	3	4	0	1	2	9	4	5	6	0	7	8	3	2	1
2	1	0	6	5	4	3	7	8	9	3	0	4	1	5	2	6	7	8	9
4	3	2	1	0	6	5	8	9	7	6	3	0	4	1	5	2	9	7	8
6	5	4	3	2	1	0	9	7	8	2	6	3	0	4	1	5	8	9	7

the reader can easily verify that $\left\{L_{1}, L_{2}\right\}$ is an $O(10,2)$ set.
Remarks.
() The method of theorem XIII. 4.I falls for $r_{1}=13$ only because there is no $O(6,2)$ set. Otherwise, there will be no orthogonality contradiction on the other parts of L_{l} and L_{2} with their 6×6 lower right square missing.
2) In the case of $n_{1}=7$, if we let $\{S\}=\{0,1,3\}$ and $\{T\}=\{2,4,5\}$ then the requirement $y=x^{-1}$ is not necessary. llowever then we do not have a unified projection rule for the formation of L_{2} as was provided for the case $y=x^{-1}$ by theorem XIII. 4. 1. To give the complete list of solutions let $\mathrm{ta}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}$) and $\left(b_{1}, b_{2}, b_{3}\right)$ be any two permutations of the set $\{8,9,10\}$. If we project transversals $(0,1,3)$ on the rows $\left(a_{1}, a_{2}, a_{3}\right)$ and columns $\left(b_{1}, b_{2}, b_{3}\right)$ in the formation of L_{1}, then the following table incilcates what permutation of transversals $\{2,4,5\}$ should be projected on the rows $\left(a_{1}, a_{2}, a_{3}\right)$ and columns $\left(b_{1}, b_{2}, b_{3}\right)$ In the formation of L_{2}. Obviously these permutations will be a function of the pair (x, y).

$\begin{aligned} & \text { fois } \\ & (x, y) \end{aligned}$	nums a_{1}, a_{2}, a_{3}	Coluans b_{1}, b_{2}, b_{3}
$(2,3)$	4, 2, 5	4, 2, 5
$(2,3)$	2,5,4	2,5,4
$(2,4)$	-2, 5, 4	$4,2,5$
$(2,5)$	4, '2, 5	4, 2, 5
$(2,6)$	2, 5,4	2, 5, 4
$(3,4)$	2, 5, 4	2,5,4
$(3,5)$	2,5,4	4, 2, 5
$(3,5)$	4,2,5	5, 4, 2
$(3,5)$	4, 2. 5	2, 5, 4
$(3,5)$	5,4.2	2, 5, 4
$(3,6)$	4, 2, 5	2, 5, 4
$(3,6)$	5,4,2	4, 2, 5
$(4,5)$	2, 5, 4	2, 5, 4
$(4,6)$	54.2	4, 2, 5
$(4,6)$	2, 5, 4	2, 5, 4
(4, 6)	5, 4, 2	. 5, 4, 2

This table is by nu mans exhaustive.,
' Tie reader may note that whenever $y=x^{-1}$ in the above table the given solution(s) are different from the one provided by the method of theorem XIII. 4. . . Thus we can conclude that any pair of ortiogonal latin squares of order 7 based on the GYi7) can be composed witit a pair of orthogonal latin squares of
order 3 and make a pair of orthogonal latin squares of order 10. In addition, since we have six choices for (a_{1}, a_{2}, a_{3}) and (b_{1}, b_{2}, b_{3}) hence from every line in the above table we can produce 36 non-isomorphic $O(10,2)$ sets or $16 \times 36=576$ sets for the entire table. Since all these pairs are non-isomorphic with all previous pairs, produced by theorem XIIf 4.1 , thus by the method of sum
composition one can at least produce 12,672 non-isomorphic $O(10,2)$ sets. We belleve that for other values of n_{1} there are sets of $\{S\}$ and $\{T\}$ together with proper p:ojections which makes the restriction $y=x^{-1}$ unnecessary. Theorem XIII, 4.2. Let $n_{1}=2^{a} \geq 8$ for any positive integer a. Then there exists an $O(n, 2)$ set which can be constructed by composition of two $O\left(n_{1}, 2\right)$ and $O\left(n_{2}, 2\right)$ sets for $n_{2}=n_{1} / 2$ and $n=n_{1}+n_{2}$.

We shall here give only the method of construction. A similar argument as in theorem Xill, 4.1 will show that the constructed set is an $O(n, 2)$ set. Construction. In a similar fashion as in theorem XIII. 4.1 construct the set ($B(1)$), $B(x), B(y)\}$ over $G F\left(2^{\alpha}\right)$. Let also $\left\{A_{1}, A_{2}\right\}$ be any $O\left(n_{2}, 2\right)$ set, which always exists, on a set Ω non-intersecting with $\operatorname{GF}\left(2^{\alpha}\right)$. For any $\lambda \neq 0$ in $\operatorname{GF}\left(2^{\alpha}\right)$ we can find $n_{1} / 2$ pairs of distinct elements belonging to $\operatorname{GF}\left(2^{a}\right)$ such that the sum of the two elements of each pair is equal to λ. Let $\{S\}$ and $\{T\}$ denote the collection of the first and the second elements of these $n_{1} / 2$ pairs respectively. Note that for a fixed λ the set $\{S\}$ can be constructed in $n_{1}\left(n_{1}-2\right)\left(n_{1}-4\right) \ldots 1$ distinct ways: Now form L_{1} from the sum composition of $B(x)$ and A_{1} and L_{2} from the sum composition of $B(Y)$ and A_{2} using the same projection rule as given in theorem XIII. 4. 1. Now $\left\{L_{1}, L_{2}\right\}$ is an $O(n, 2)$ set.

Example. Let $n=8, \operatorname{GF}(8)=\{0,1,2, \ldots, 7\}$ with the following addition $(+)$ and multiplication (X) tables:

$\left.$| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 1 | 1 | 0 | 6 | 1 | 3 | 7 | 2 | 5 |
| 2 | 2 | 6 | 0 | 7 | 5 | 4 | 1 | 3 |
| 3 | 3 | 4 | 7 | 0 | 1 | 6 | 5 | 2 |
| 4 | 4 | 3 | 5 | 1 | 0 | 2 | 7 | 6 |
| 5 | 5 | 7 | 4 | 6 | 2 | 0 | 3 | 1 |
| 6 | 6 | 2 | 1 | 5 | 7 | 3 | 0 | 4 |
| 7 | 7 | 5 | 3 | 2 | 6 | 1 | 4 | 0 |$\quad \right\rvert\,$| \times | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 2 | 0 | 2 | 3 | 4 | 5 | 6 | 7 | 1 |
| 3 | 0 | 3 | 4 | 6 | 6 | 7 | 1 | 2 |
| 4 | 0 | 4 | 5 | 6 | 7 | 1 | 2 | 3 |
| 5 | 0 | 5 | 6 | 7 | 1 | 2 | 3 | 4 |
| 6 | 0 | 6 | 7 | 1 | 2 | 3 | 4 | 5 |
| 7 | 0 | 7 | 1 | 2 | 3 | 4 | 5 | 6 |

Then for $x=2, y=x^{-1}=7$ we have
$\{B(1), B(2), B(7)\}=$

0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
1	0	6	4	3	7	2	5	2	6	0	7	5	4	1	3	7	5	3	2	6	1	4	0
2	6	0	7	5	4	1	3	3	4	7	0	1	6	5	2	1	0	6	4	3	7	2	5
3	4	7	0	1	6	5	2	4	3	5	1	0	2	7	6	2	6	0	7	5	4	1	3
4	3	5	1	0	2	7	6		3	7	4	6	2	0	3	1	3	4	7	0	1	6	5
5	7	4	6	2	0	3	1	6	2	1	5	7	3	0	4	4	3	5	1	0	2	7	6
6	2	1	5	7	3	0	4	7	5	3	2	6	1	4	0	5	7	4	6	2	0	3	1
7	5	3	2	6	1	4	0	1	0	6	4	3	7	2	5	6	2	1	5	7	3	0	4

For $n_{2}=n_{1} / 2=4$ let $s=\{A, B, C, D\}$ and

$$
\left\{A_{1}, A_{2}\right\}=\begin{array}{llllllll}
A & B & C & D & A & B & C & D \\
B & A & D & C & D & C & B & A \\
G & D & A & B & B & A & D & C \\
i & C & B & A & C & D & A & B
\end{array}
$$

i i: 1.

A	B	2	C	D	5	6	7	0	1	3	4
B	A	0	D	C	4	2	3	6	2	5	7
3	4	A	0	1	D	B	C	7	5	2	6
C	D	5	A	B	2	7	6	1	0	4	3
D	C	4	B	A	0	3	1	2	6	7	5
6	2	D	5	7	A	C	8	3	4	0	1
7	5	8	2	6	C	A	D	4	3	1	0
1	0	C	4	3	B	D	A	5	7	6	2
0	6	7	1	2	3	4	5	A	1	C	D
2	1	3	6	0	7	5	4	B	A	D	C
4	7	6	3	5	1	0	2	C	D	A	B
5	3	1	7	4	6	2	0	D	C	8	A

which is an U(12,2) set.
$\therefore .2$ we have $\left\{L_{1}, L_{2}\right\}=$

曻: \%
 $n=n_{1}+n_{2}, t<n_{2}$, by the method of sum composition are: The existence of an $O\left(n_{1}, t\right)$ set, $n_{1} \geq t n_{2}$, with at least $t n_{2}$ common parallel transversals, and an $O\left(n_{2}, t\right)$ set. These conditions are obviously satisfied whenever n_{1} and n_{2} are pitme powers:

Whale for some values of n there exists only a unique decomposition fulfilling the above requirements, for infinitely many other values of n there are abundant such decompositions.

It seems that if there exists an $O\left(n_{2}, 2\right)$ set and if $n=n_{1}+n_{2}, n_{1} \geq 2 n_{2}$ then one can construct an $O(n, 2)$ set by the method of sum composition if n_{1} is a prime power, To support this observation and shed some more light on the method of sum composition we present in subsequent pages some highlights of the results which we hope to complete and submit for publication shortly.

In the following for each given decomposition of n we exhibit an $O(n, 2)$ set which has been derived by the method of sum composition. We shall represent the pairs in a form that the curlous reader can edsily reconstruct the original sets, Hereafter the notation $L_{1} \perp L_{2}$ means that L_{L} is orthogonal to L_{2}.

1) $12=9+3$

(artic:
2) $14=11+3$, the only decomposition which fulfills the necessary requirements.

3) $15=12+3,15=11 \cdot 4$ are the only decontpisitions which fulfill the necessary requarements. However, wo consider here the latter decomposition since we can utalize the properties of Gulois field GF(Il).

-1

$$
\begin{aligned}
& \cdots \quad \underset{8}{0}+3! \\
& \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& -1
\end{aligned}
$$

in through this decomposition.

h) We do not know whether there exists either an $O(18,2)$ set with 8 common parallel transversals or an $O(15,2)$ set with 14 common parallel transversals. Therefore the only decomposition of 22 which fulfill the necessary realuirements are $22=19+3$ and $22=17+5$:

$$
\text { a: } \quad 22=19+3
$$

$$
b: \quad 22=17+5,
$$

A	B	C	D 8	5	6	7	8			111	121	131	14					2	3	4
8	C	D	E 6	7	8	9	10	11	12	131	141	151	16	0	A	1	2	3	4	5
C	D	E	78	9	101	11	12	13	14	151	16	0	2	A	B	2	3	4	5	6
D	E	8	910	12	121	13	14	15	16	0	1	2	A	8	C	C 3	4	5	6	7
E	9	10	1112	13	141	15	16	0	1	2	3	A	8	c	D	4	5		7	8
10	11	12	1314	15	16	0	1	2	3	4	A	8	c	D	8	5	6	7	8	9
12	13	14	1516	0	1	2	3	4	5	A	B	C	D		11	6	7	8	9	10
14	IS	16	01	2	3	4	3	6	A	鴀	C	D	+	12	23	1	8	9	10	11
16	0	1	23	4	,	6	7	1		c	D	B1	13	14-1	15	B			E	12
1	2	3	43	6	7	8	A	B	C	D	21	141	15	16	0		10	11	12	13
3	4	5	67	8	9	A	8	C	D	E 1	151	16	0	1	2	10	11	12	13	14
5	6	7	89	10	A	B	c	D	E	16	0	1	2	3	4	11	12	13	14	15
7	8	91	1011	A	8	c	D	E	0	1	2	3	4	5	6	12	13	14:	15	16
9	10	111	12 A	B	C	D	E	1	2	3	4	5	6	7	8	13	14	15	16	0
11	12	13	A B	c	D	E	2	3	4	5	6	7	8	9	10	14	15	16	0	1
13	14	A	B C	D	E	3	4	5	6	7	8	91	10	11	12	15	16	0	1	2
15	1	B	$C D$	$\underline{1}$	4	5	6	7	8		101	11.1	12	13	14	16	0	1	2	3
0	16	15	1413	12	111	10	9	8	7	6	5	4	3	2	1	A	B	C	D	E
2	1	0	1615	14	13	12	11	10	9	8	7	6	5	4	3	8	C	D	E	h
4	3	2	10	16	151	14	13	12		10	9	8	7	6	5	C	D	E	A	B
6	5	4	3	1	01	16	15	14	13	12		10	9	8	7	D	-	A	8	C
8	7	6	54	3	2	1	0	16	15	141	131	121	11	20	9	1 E	A	B	c	D
0	1	2	34	5	6	7	8	A	B	C	D	E 1	14	15	16	10	11	12	13	9
9	10	111	1213	14	15	16	A	B	c	D	E	5	6	7	8	,	2	3	4	0
1	2	3	45	6	7	A	B	C	D	E 1	13	141	15	16	0	9	10	11	12	8
10	11	12	1314	15	A	B	C	D	E	4	5	6	7	8	9	0	1	2	3	16
2	3	4	56	A	8	C	D	E	12	13	141	151	16	0	1	8	9	10	11	7
11	12.	13	14 A	B	c	D	E	3	4	5	6	7	8	9	10	16	0	1	2	15
3	4	5	A B	c	D	E	11	12	13	14	151	16	0	1	2	,	8	9	10	6
12	13	A	B C	D	E	2	3	4	5	6	7	8	9	10	11	15	16	0	1	14
4	A	B	C D	E	10	11	12	13	14	15	16	0	1	2	3	6	7	8	9	5
A	8	c	D E	1	2	3	4	5	6	7	8	91	10	11	12	14	15	16	0	13
B	C	D	E 9	10	11	12	13	14	15	16	0	1	2	3	A) 5	5	7	8	4
C	D	E	01	2	3	4	5	6	7	8	- 1	101	11	A	B	13	14	15	16	12
D	E	8	910	11	12	13	14	15	16	0	1	2	A	B	c	C 4	5	6	7	3
E	16	0	1. 2	3	4	5	6	7	8	9	10	A	B	c	D	12	13	14	15	11
7	8	9	1011	12	13	14	15	16	0	1	A	B	C	D	E	3	4	5	6	2
16	0	1	23	4	5	6	7	8	9	A	B	C	D	B	15	11	12	13	14	10
8		10	1112				16	0				1					3	4	3	1
	14	6	157	16	8	0	9	1	10	2	11	3	12	4	13	A	B	C	D	E
14	6	15	716	8	0	9	1	10	2	11	3	12	4	13	5	E	A	B	C	D
	15	7	16 8	0	9	1	10	2	11	3	12	41	13	5	14	D	-	A	8	C
15	7	16	80	9		10		11		12		13		14	6	C	C D	E	A	8
13	5	14	615	7	16	8	0	9		10	2	11	3	12	4	B	'c	0	E	A

In about fifteen years the effectiveness of computers in searching for orthogonal sets of latin squares of order ten has increased strikingly. Still the problem is so large that there seems to be little reason for optimism that the order ten problem can be completed by computers. More precisely, if (as most Conversant with the problem consider quite plausible) no orthogonal triple of orthogonal latin squares of order ton exists, then the number of cases to conside: seems too large for an exhaustive proof by computer to be achievable. The number of latin squares of order ten is astronomical.

Abcut 1953 Paige anc Tompkins [195\#] programmed SWAC to search for squares orthogonal to a fixed latin square of order ten. A few hours of running procucod no orthogunal square, and was regarded as a blt of experimental evidence for the truth of Euler's conjecture. Calculations based on the progress mas:- in the search led to the extrapolation that over fifty million years of computer tume would be required tu search for all squares orthogonal to a latin square of arier ten fut into SWAC intially. (At about the same time a similar program was. writ+n: ain simalar results obtainde with MANIAC at Los Alamos; this attempt is: 'st bern reported in print.)

In 1959, after Euler's conjecture had been disproved for all orders : : ? \quad. Parker programmed UNIVAC; 1206 to search for squàres orthogonal t. a latin square of order ten. The running time was sharply less than for SWAC \therefore : AASIAC, about thirty finutes for the majority of latin squares. This was wocmplashed by generating and storing all transversals of the input latin square,
then searching for all ways to form latin squares from the list of transversals. (A transversal, or directrix, is a set of cells of a latin square, one in each row, one in each column, and one contalning each digit.) The striking gain in spaed over the earlier efforts occurred largely because the number of transversals of Gtypled lhthi square of orderten is roughly 850 much less than 10 to and of course, the search was several levels deep. (SWAC and MANIAC were programmed to build up starts of latin squares toward orthogonal mates by filling in cells to form rows.)

There were two main outcomes from considerable running of Parker's 1206 program: 1) Orthogonal triples of order ten latin squares are not numerous; more precisely, only a small fraction, if any, order ten squares extend to triples. Some 400 datin squares were run. Some were random, some were computer output ied back as input and hence known to have an orthogonal mate, and some were considered Interesting candidates for intuitive reasons by Parker and others. Not cnce did an exhaustive search for orthogonal mates of an input latin square include a pair orthogonal to one another. Mild evidence may be clalmed supporting the opinion that no order-ten orthogonal triple exists. 2) Of a computergenerated sample of 100 random latin squares of order ten (program by R. T. Ostrowsk1), 62 have orthogonal mates. Thus, unlike triples, order ten ortho. gonal pairs are quite common. Euler's intuition for order ten was not only wrong, but in this sense wrong by a large margin. It was this finding which tempted Parker for a time to believe that repested runs of the program should have a good chance of producing at least a triple, but many fallures dimmed this optimism.

In 106 ? fohn w. Drensn pregrammed iBivi 7074 to decide wiseiher an inpui latin square of order ten can be extended to an orthogonal triple. The running time was one half minute, Almost needless to say, transversals again were generated. Searching for patterns of transversals toward extension to a triple produeed a speed galn over the previous program for orthogotid. pairt. Bown encieavored to get every drop of speed from the machine. As before, hundreds of input order-ten latin squares produced no orthogonal triple.

XV. On the Equivalence of $O(n, t)$ Sets With Other Combinatorial Systems

XV.U. Summary

In this section we have densely summarized some of the results obtained by author and at least fourteen others in order to demonstrate the importance of the theory of mutudy onthoqond latn squares We have shown that fouften well-known and important combinatorial systems with certain parameters are actually equivalent to a set of mutially orthogonal latin squares. A schematic representation of these equivalences has been demonstrated in four wheels which we have called "Fundamental Wheels of Combinatorial Mathematics".

XV.1. Introduction

The theory of mutually orthogonal latin squares owes its importance to the fact that many well-known combinatordal systems are actually equivalent to a set of mutually ortiogonal latin squares; viz, finite projective plane, finite Euclidean plane, net, BIB, PBIB, orthogonal arrays, a set of mutually orthogonal matrices, error correcting codes, strongly regular graphs, complete graphs, a balanced set of 1 -restrictional lattice designs, difference sets, Hadamard matrices, and an arrangement of non attacking rooks on hyperdimensional chess board. These combinatorial systems are unquestionably potent and effective in all branches of conbinatorial mathematics, and in particular, in the construction of experimental designs. Therefore, a statement that the theory of mutually orthogonal latin squares is perhaps the most important theory in the field of experiment desionie is not in the least exaggerated as far as this author is concerned.

Our purpose in this section is to demonstrate the relation of a set of mutually rorthogonal latin squares with the above mentioned onmhinatorinl systems. We shall present the essence of the known results available only in scattered literature in one theorem which we consider to be a "fundamental theorem of combinatorial mathematics". For the definitions of these combinatorial systems and the poof of the forthoming theorem see the list of references given at the end of this paper.

XV. L. Notation

fer th: sakn of concisencss we introduce the following notations:
01 O(n,t) donotes a set of $:$ mutually orthogonal latin squares of order n.
() MOM(n,t) denotes a set of t mutually orthogonal $n \times n$ matrices.
-) (A) n, t) denotes a sit of cirthogonal arrays of size n^{2}, depth t, n levels, and strength \mathcal{L}.
3) Net(n,t) denctes a nut of wrder n and degree t.
4) (iulen(r,tim) denites a : if n code words each of length r such that any two code worus are at least at Hamming distance \geq t on an moset - with in instanct oloments. Wo remind the reader that such a cude is alse collid $(t-1 /$-orror detecting code or (t-1)/2-error correctang oure bucuusu :ach a vode is capable of detecting up to $t-1$ arirs ma cotretupin $16-1 / 2$ errors in each transmitted code word. ; $\mathrm{PBIBLD}, \mathrm{V}, \mathrm{r}, \mathrm{k}, \lambda_{1}, \lambda_{2}$, denotes a partially balanced incomplete block dresign with $:$ blucks wach if size k, v treatmonts with r replication \therefore wath, and assocation dadices λ_{1} and λ_{2}.
6) SR-Graph (A) denotes the strongly regular graph with incidence matrix A.
7) Non \#(n,t) denotes an arrangement of n mutually non attacking rooks on the t-dimensional $n \times n$ chess board.
8) PG(2, s) denotes s finita prolectue plane of order s. (not necessarily

Desarguessian).

9) $\quad(2,8)$ denotes a finite Euclidean plane of order s.
10) BIB(b, $v, r, k, \lambda)$ denotes a balanced incomplete block design with b blocks each of size k, v treatments with r replications of each, and association index λ.
11) K-Graph (A) denotes the complete graph with incidence matrix A.
12) $\operatorname{DIF}(v, k, \lambda)$ denotes a difference set with parameters v, k, and λ.
13) BLRL(s) denotes a balanced set of (-restrictional lattice design for s treatments. Note that a l-restrictional balanced lattice designs for simply a BIB design.
14) HAD(n) denotes a symmotric nurmalized Hadamard matrix of order n. Hereafter we also adopt the following two notations:
15) $A \Leftrightarrow B$ means A implies B and B implies A,
ii) $A \Longrightarrow B$ means A implies B. Whether or not B implies A is undecided.

2. The Result:

Theorem

(a) Ior any pair of positive integers n and t we have:

1) $O(n, t) \Longrightarrow \operatorname{MOM}(n, t+2)$
$21 O(n, t) \Longrightarrow O A(n, t+2)$
$3) O(n, t) \Longrightarrow \operatorname{Net}(n, t+2)$
2) $O(n, t) \Longrightarrow \operatorname{Code}\left(n^{2}, t+2, t+1 ; n\right)$
$j) O(n, t) \Longrightarrow \operatorname{PEIB}\left(n^{2}, n(t+2), n, t+2,0,1\right)$
$6) O(n, t) \Longrightarrow S R$-Graph (A) where A is the incidence matrix asisociated with PBIB in 5).
3) O(n,t) NOn $n\left(n^{2}, n^{t+2}\right)$.
(b) 15 i $=r-1$ then also:
$H)$ O(n,n-1) $\Leftrightarrow P G(2, n)$
al O(n, n-1) c($2, n)$
$(i) O(n, n-1) \Leftrightarrow B I B\left(n^{2}+n+1, n^{2}+n+1, n+1, n+1,1\right)$
$11)\left(:(n, n-1) \Longrightarrow \operatorname{Code}\left(n^{2}+n+1, n^{2}+n+1,2 n ; 2\right)\right.$
(L) $\quad(n, n-1) \quad K$-Graph (A) wnare A is the incidence
matrix associated with BIB In 10)
$1 \therefore \quad \operatorname{O} n, n-1) \Longrightarrow \operatorname{DIF}\left(n^{2}+n+1, n+1,1\right)$.
$\therefore=p^{m}$ whore p is a prime and m is a positive integer then also the
:14 wis:
$141 \quad$, $\left.p^{m}, p^{m}-1\right) \longleftrightarrow \operatorname{BLRL}\left(p^{m}\right)$.
(d) If $n=2 r$ and $t=r-2, r \geq 3$ then the following are also true:
4) $O(2 r, r-2) \Longrightarrow \operatorname{HAD}\left(4 r^{2}\right)$
$16 \jmath^{\prime} O(2 r, r-2) \Longrightarrow \operatorname{BIB}\left(4 r^{2}-1,4 r^{2}-1,2 r^{2}-1,2 r^{2}-1, r^{2}-1\right)$
5) $O(2 r, r-2) \Longrightarrow \operatorname{Code}\left(4 r^{2}-1,4 r^{2}-1,2 r^{2} ; 2\right)$
6) $O(2 r, r-2) \Longrightarrow C O d e\left(8 r^{2}, 4 r^{2}, 2 r^{2} ; 2\right)$
$\left.19)^{0(2 r}, r-2\right) \Longrightarrow \operatorname{DIF}\left(4 r^{2}-1 ; r^{2} 1, r^{2}-11\right.$.

A complete schematic representation of this theorem can be demonstrated i:: fuur wheels which will be called "fundamental wheels of combinatorial mathematics". For the sake of compactness we shall omit the associated parameters . with each system in these wheels except for $O(n, t)$. By knowing the values of n and t in the given $O(n, t)$ sets, then the reader can easily find the associated parameters with other systems in the wheals from the proper part of above theorem.

Whendl. ror ary positive integer n and t.
\cdots

Wheed 2. For any positive integer n.
zan 'V:リ!

Wheel i. Tor an; prime p and positive integer m.

XVI. Acknowledgements

Thas work was partially supported under the following research grants or contracts:

US Publio Health Research Grant GM-05900, Cornell University
(1i) United States Army Contract Numbri DA-31-124-ARO~D-462, University of Wisconsin
(iii) National Science Foundation Grant GP-12881, Michigan State University
(liv) Office of Naval Research Contract N0014-AA7-0305-0008, University of

Illmuls.
XVII. Literature Cited
i. beckenbach, L. f. (ea.) if 04), Appised combinatoriai Matizematics, John Willey and Sons, Inc., New York, London, Sycney.
2. Bose, R. C. [1939], On the application of the properties of Gatnis Fields to the problem of construction of Hyper-Graeco-Latin squares; Sankhya 3: 323-338.
3. Bose, R. C. [1939], On the construction of balanced incomplete block designs, Annals of Eugenics 9:343-399.
4. Bose, R. C. [1950], A note on orthogonal arrays (abstract), Annals of Mathematical Statistics 21: 304-305.
5. Bose, R. C. [1963], Strongly regular graphs, partial geometrics and partially balanced designs, Pocffic Journal of Mathematics 13: 389-419.
6. Bose, R. C. Chakravarti, 1. M., and Knuth, D. E. \{i960), On methods of constructing sets of mutually orthogonal Latin squares using a computer, 1. Technometrics 2: 507-5i6.
7. Bose, R. C. and Clatworthy, W. H. [19551, Some classes of partially balanced designs, Annals of Mathematical Statistics 26: 212-232.
8. Bose, R. C. and Shrikhande, S. S. [1959], On the falsity of Euler's conjecture about the non-existence of two orthogonal Latin squares of order $4 t+2$, Proceedings ot the National Academy of Sciences, U.S.A. 45: 734-737.
F9士~ッ, ";
9. Bose, R. C. and Shrikhande, S. S. [1960], On the construction of pairwise orthogonal Latin squares and the falsity of a conjecture of Euler, Transactions of the American Mathematical Society 95: 191-209.
10. Bose, R. C., Shrikhande, S. S. and Parker, E. T. [1960], Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's confecture Conodme fournal of Mathennatics I2. 189 - 203
II. Bruck, R. H. [1951], Finlte nets, I. Numerical invariants, Canadian Journal of Mathemavics 3:94-107.
12. Bruck, R. H. \{1963\}, Finite nets, 11. Uniqueness and embedaing, Pacific fouthal of Mathematics 13: 421-457.
13. Bruck, R. H. [1963], What is a loop? in "Studies in Modern Algebra"' (editor, A, A. Albert), Math. Assoc. Amer, and Prentice Haill, Englewond Cliffs, New Jersey, pp. 59-99.
14. Dembowski, P. [1968], Finite Geometrics, Springer-Verlag, Berlin, Heldelberg, New York.
15. Euler, t. $|1 ; 82|$, Recherches sur une nouvalle espèce des quarrés magiques, Verh. Zeeuwach Genoot. Wetenschappen, Vlissigen 9:85-239.
16. Fisher, R. A. and Yates, F. [195i], Stetistical Tables for Hioleaical, Agracultural and Medical Research, 5th edition (first edition in 1938), Oliver and Boya, Edinburah and London.
i. Golomb, S. W. and Posner. E. C. \{1964\}, Rook domains, Latin squarec, affine planes, and error-distributing codes, IEEE Transactions on Informa. tion Theory 1T-10: 196-208.
18. Hali, M. [1943], Projective planes, Transactions of the American Mathematical Society 54: 229-277.
19. Hall, M. Jr. [1967], Combinatorial Theory, Blaisdell Publishing Co., Waltham, Massachusetts, Toronto and London.
 Pactic Journal of Mathematics 5: 541.549.
21. Hedayat, A. [1968], On Singer 1-permutation, Unpublished paper, Biometrics Unit, Cornell University, Ithaca, New York.
22. Hedryat, A. (1969), On the theory of the existence, non-existence, and the construction of mutually orthogonal l'squares and latin squares, Ph.D. Thesis, Cornell University, Ithaca, New York.
23. Hedayat, A. [1969], On the equivalence of a set of mutually orthogonal datin squares with other combinatorial systems, Paper RM-237, Dept, of Statistiçs and' Probability, Michigan Stare University, East Lansing, Michlgan.
24. Hedayat, A. and Federer, W. T. [1969], An application of grcup theory to the existence and non-existence of orthogonal latin squares, Biometrika 5b(3):
25. Hedayat, A. and Federer, W. T. |1969|, On the equivalence of Mann's group automorphism method of constructing an $O(n, n-1)$ set and Raktoe's collineation method of constructing a balanced set of ℓ-restrictional prime powered lattice designs, (unpublished paper), Biometrics Unit, Cornell University, Ithaca, New York.
26. Hedayat. A. and Saiden, E. $\{10, \%!$, On a meihuci of sum composition of orthogonal latin squares. Paper No. RM-238, Dept, of Statistics and Probability, Michigan State University, East Lansing, Michigan.
27. Hedayat. A. And Seiden, E. [1969], Some contributions to the theory of Fsquares, Unpublished paper, CornellUnuersity and Michigan State Iniversity.
24. Johnson, D. M., Dulmadge, A. L., and Mendelsohn, N. S. [1961], Orthomorphisms of groups and orthogonal Latin Squares l., Canadian Journal of Mathematics 13: 356-372.
29. Kempthorne, $0 .[1952]$, The Design and Analysis of Experiments, John Wiley and Sons, Inc. . New , ork.
30. Levi, F. W. [1942], Finite Geometrical Systems, University of Calcutta, Calcutta, india.
31. MacNeish, H. Y. [1922], Euler's squeres, Annals of Mathematics 23: ?21-227.
32. Mann, H. 3. [1942], The construction of orthogonal Letin squares, Annals of Mathematical Statistics 13: 418-423.
33. Mann. H. B. [1943]. On the construction of sets of orthogonal Latin squares. The Annals of Mathematical Statistics 14: 401-414,
34. Mann. H. B. (1944]. On orthogonal Latin squares, Bulletin of the

Amerscan Mathematical Society 50: 249-257.
35. Mann, H. B. led. / [1968], Error Correcting Codes, John Wiley and Sons, Inc. , New York, London. Sydney, Toronto, pp, xil +231 .
36. Paige, L. J. [1951], Complete mappings of finite groups, Pacific fournal of Mathematics 1: 111-116.
37. Palge, L. J. and Tompkins, C. B. [1960], The slze of the 10×10 orthogonal latin square problem, Proceedings of the Tenth Symposium in Appled Mathemetes of the Amerfean Mathematios Sociey $101 \quad 71-83$
38. Parker. E. T. [1959], Construction of some sets of mutually orthogonal latin squares, Proceedings of the American Mathematics Society 10: 946-949.
30. Parker, E. T. [1962]. On orthogonal latin squares, Proceedings of Symposia in Pure Mathematics, American Mathematics Society 6: 43-46.
40. Peterson, W. W. [1961] . Error-Correcting Codes, John Wiley and Sons, inc. . New iork.
41. Raktoe. B. L. [1967], Application of cyclic collineations to the construction of balanced f-restrictional prime powered lattice designs, Annals of Mathematical Statistics 38: 1127-1141.
42. Raktoe, B. L. [1969]. Combining clements from finite ilelds in mixed factorials, The Annals of Mathematical Statistics 40: 498-504.
43. Raktoe. B. L. 'and 「ederer. W. T. [1969]. On irregular fractions of an \mathbf{a}^{m} factorlal, Unpublished paper. Biometrics Unit, Cornell University, Ithaca. New ork.

44, Ryser. H. J. [1963], Combinatorial Mathematics, The Carus Mathematical Monographs No. 14, Mathematical Association of America and John Wiley and Sons; Inc., New York.
45. Sade, A. [1958], Groupides orthogonaux, Publicationes Mathematicae. j: 229-240.
46. Silverman, R. [1960], A metrization for power sets with applications to combinatorial analysis, Canadian Journal of Mathematics 12: 158-176.
47. Singer Ju 19601 , A class of groups assocleted with Latin squeres, The American Mathematical Monthly 67: 235-240.

4K. stevens, W, L. $\{1939]$. The completely orthogonalized latin squares, Marals of Eugencs 9: 83-73.
4. Farry. G. [1899]. Sur le probleme d'Euler des n^{2} officiers, L'Intermédiaire des Mathématiciens 6: 851-252.

ON CONFIDENCE LIIMITS FOR THE PERFORMANCE
 OF A SYSTEM WHEN FEW FAILURES ARE ENCOUNTERED

Sam C. Saunders
Boeing Scientific Research Laboratories
Seattle, Washington

SLMMARY In rome titurcion encountered today couponent , ot time available for testing. This can pose a problem in both interpretation and analyais, We consider here the oroblem of determining lower confidence bounds on the rellability of a complex system, such as the Saturn l-C, when each component is assumed to have an exponential life and different components have different multiplicities within the system. We discuas the asaumptions necessary to obtain confidence limits using the likelihood of the data when only a few fallures are encountered. The bounde rasulting from two models are compared. The firat model is Bayadan with uniform prior diatribution of the failure ratas. The second model ragarda the failure rates virtually as unknown constanta. Here the argument is made that models of the tiret type are deficient in sevaral regarde in comparison with the eseond.
O. INTRODUCTION. The problam of determining the probability of auccestul oparation of a large complex ayetem when one has data only on the reliability of the componentia has, over the past decade, been the aubject of many investigations. Howevar, much of the literature wal of a propriatary nature and way never published, for example, see [1], [2] and the raferences there.

Some of the studies, wee [7] and [9], were based on an asymptotic theory for which the preciaion of the approximation is unknown. Currently, much of the analysis is baeed on Bayesian methods utilizing aubjective prior assumptione, eee [12] and (13).

Because eatinating the probability of failure under mome models requires that at least one fallure be observed, the statistician may be placed in the uncomfortable position of having lesa conildance in his estimates of reliability when fewer fallures obtain. Ultimately, when the system becomes near perfect and no failures are observed the statistician has no confidence if his procedures are necessarily based on failure analysis. In this unaatisfactory situation it is an underatandable reaction of persons with good engineering judgment and statiatical intultion, to form a distrust of statistical inference and its "numerologists," wee [3]. Some recent survey: have been made to determine the most useful and applicable proceduras for current needs. One of the most comprehensive is [8].

In this note we examine some statistical techniques which do not depend upon the gampling method yet are applicable when there is a paucity of observed failures among the components which have been tested. The archtypical situation for this study will be the gaturn 1-C and the data which wan available priot lo the firat launch, as given in Table I.

The remalnder of this article has been reproduced photographically from the author's manuscript.

1. THE BASIC MODEL

Consider a complex system designed to perform in a secified manner when all of its components, grouped in assemblies, are operating. At quevtion Is the conkldence we can heve the it will perform adequately for a mpecified time.

We shall consider the reliability of the system for a apecified time t as being given by

$$
\begin{equation*}
h(\lambda, t)=\exp _{1}\left\{-\sum_{i=1}^{\operatorname{m}} \lambda_{1} w_{i} t\right\} \tag{1,1}
\end{equation*}
$$

Where the ω_{1} are known waighting factors for the unknown parametera $A=\left(U_{1}, \ldots, \lambda_{m}\right)$. The problem is obtaining lower confidence bound on (1.1) Erom the Iimited amount of data about the λ_{1} for $1=1, \ldots, m$.

The particular form (1.1) can arise in goveral ways. The first we mention is that it is itaelf a lower bound on eystem reliability,

If the time until fallure of the $i^{\text {th }}$ component is exponential with unknown harard rate λ_{1} and these m components are in a coherent aystem, then there exists a set of integers q_{1}, \ldots, q_{m}, where q_{1} is the mitiplicity of the $i^{\text {th }}$ component within the aystem of order $\sum_{1}^{m} q_{1}$, which can be used to obtain a lower bound on the reliability of the system at any time $t>0$. This lower bound is $h(\lambda, t)$ as given in (1.1) with ω_{i} replaced by q_{i}.

For proof of this result, see [4].

An assembly containing several components can malfunction by having different components fuil, e.g., a pressure system can eithar rupture or jeak. These eeparate ways of failure are called "failure modes" in the current terminology, however, they correspond to malfunctious within the subsyatem and need not necesearlly cause

Custamalute

We assume.

1. The time until malfunction in each mode of a given assembly has constant hazard rate and all are independent.

Suppose we separate the posaible modes of malfunction for each assembly into mutually excluaive, functionally independent; clasaes labeling the time until malfunction $T_{1 j}$ for the $i^{\text {th }}$ mode of the $j^{\text {th }}$ assembly. The time until malfunction of the assembly by any mode is. $T_{j}=\min \left(T_{1 j}\right)$ and the hazard rate of T_{j} is $\lambda_{j}=\sum_{j} \lambda_{i j}$, with the obvious interpretation of, $\lambda_{i j}$ as the hazard rate of $T_{i j}$. Unfortunately, the syatem may have different vulnerability to auch malfunctions depending upon the period within the mission phase.

Thus the recond situation in which the form (1.1) can arise is a series system with such malfunctioning asaemblies. Asame 2^{*} Given a ualfunction in the $j^{\text {th }}$ mode of the $1^{\text {th }}$ asambly during the $k^{\text {th }}$ time interval $\left(t^{(k-1)}, t^{(k)}\right)$ of mission, aystem failure will result with known conditional probability $B_{i j k}$.

For a mission of fixed length t we define the beta factor Eor the $i^{\text {th }}$ assembly, which is a known constant, by the equation

$$
\beta_{1}=\sum_{j, k} s_{i j k}\left[t^{(k)_{-t}}(k-1)\right]
$$

where $t^{(0)}=0,11 m t^{(k)}=t$. Thus from $1^{\circ}, 2^{\circ}$ the probability
 In (1.1) with $\omega_{i} t$ replaced by β_{i}. Without loss of generality we shall henceforth assume that all time intervals are expressed in fractions of this fixed mission length t, to wit, assume $t=1$.

Neadess to eay, in the practical example given, all of these complications occur simultaneoualy. Moreover, the determination of the q_{i} through minimal atate raliability analyais is itaclf a non-trivial tank, not to speak of the analyaia of the malfunction modes and thair effect upon miseion success (or vehicle safety). All of this is a necessary prelude for the determination of the beta factors. But we ghall asiume this work has been completed so that $\omega_{1}=q_{1} \beta_{i}$ is known, consequently equation (1.1) holds with $t-1$.

The problem that we wish to discuas is of another gente, namaly the methods for utilization of the data so as to determine a lower confidence bound for the rellablility after the ω_{i} have been obtained. Since it is this aspect which is important we shall assume that $\beta_{1} \equiv 1$ for our data so as to further amphasize the differences between the two models under diacussion. Of course this fictitiously makes the reliability estimate low.
2. THE DATA

In man; casca the Eiisi (and sumetimes the only) data one has concerning the reliability of the components comes from environmental cests. This test data must be reduced by engineering evaluation into the equivalent operational time during the given mission phase.
 practice, ee [1], to accelerate the testing andor reduce its expense. Specifically, during the first phase of a miasion a component may experience several types of vibration as well as several temperature apd humidity changes. Consequently, testing the components in these separate environments must yield results requiring a transformation into the appropriate mission phase equivalent time. (The dangers of auch a procedure are apparent but are taken in view of the exhorbitant cost of the aiternative.)

We do not discuse this further but we merely point out that in such Instances the data on the operational behavior of the components are not Cod-given, but rather are the construct of engineering knowledge and fudgment.

Thus, the statistician is ultimately provided with data on all components in the form

$$
\begin{equation*}
x_{1}=\left(t_{1}, n_{1}\right) \quad 1=1, \ldots, m^{n} \tag{2,1}
\end{equation*}
$$

where t_{1} is the total time, expressed in equivelent fractions of the mission length that the $i^{\text {th }}$ component has been operated, and n_{1} is the total number of malfunctions of the $1^{\text {th }}$ component during time. t_{i}.

In the life qualification of components, it is usually the case that tecting proceeds as long as there are funds available and this is usually neither until a fixed number of hours nor a fixed number of failures occur. Moreover, there are always extranwous circumstances which might teminate the testing program
 the treatment of the data that we adopt should not depend heavily upon a particular sampling acheme which might not obtain.

Assume that a number of identical components, say m, are put on test. What is observed at each trial is the random length of life, call it Y, when the component fails or the random time, say Z, at which the test is terminated for any reason other than failure of the component.

which we note is not the minimum of Y and Z since we know whether Y or Z is observed. It is well known that.the likelihood is independent of the Eampling method for type I or type II censoring, i.e. stopping at either a fixed number of failures or after a fixed time".

We make the

Remark: If $\left(Z_{1}, \ldots, Z_{m}\right)$ is a vector of non-negative random variables, Independent of all Y_{i} such that $\left[Y_{1}>Z_{i}\right]$, where $\left(Y_{1}, \ldots, Y_{m}\right)$ are themselves independentiy and identically distributed with common density function f and distribution F, then the likelihood of the event

$$
\bigcap_{i-1}^{n}\left[Y_{i} \leq z_{i}\right]\left[Y_{i}=y_{1}\right] \bigcap_{i=n+1}^{n}\left[Y_{1}>z_{i}\right]\left[z_{i}=z_{i}\right],
$$

Where $n(\underline{m})$ ib the random number of failures observed, is of the form
(2.2)
and the constant C depends upon the outcomes $\left(y_{1}, \ldots, y_{n}\right)$ but not upon their distribution.

The proof is immediate. Let g be conditional density of $\left(Z_{1}, \ldots, Z_{n}\right)$ given $\left(Y_{1}, \ldots, Y_{n}\right)$ assaying Z_{1}, \ldots, Z_{m} independent of Y_{n+1}, \ldots, Y_{m} on $\prod_{i=n+1}^{m}\left[Y_{i}>Z_{i}\right]$. Then the probability of the event specified above is

which upon simplification shows that

$$
c=\iint_{\left\{z_{1}>y_{1}, \dot{1}=1, \ldots, n\right\}} \ldots g\left(z_{1}, \ldots, z_{m} \mid y_{1}, \ldots, y_{n}\right) d z_{1}, \ldots, d z_{n}
$$

as claimed.||
Taking the data $x_{1}=\left(t_{i}, n_{1}\right)$ for the $i^{\text {th }}$ of assemblies, the $i^{\text {th }}$ assembly having exponential life with hazard rate λ_{1}, and substituting into (2:2) we obtain the likelihood

$$
\begin{equation*}
p\left(x_{1} \mid \lambda_{1}\right)=c\left(x_{1}\right) \lambda_{i} e^{-\lambda_{1} t_{1}} \tag{2.3}
\end{equation*}
$$

where $C\left(x_{1}\right)$ is independent of λ_{1} 。
Because the likelihood is the same for this very general sampling situation and we feel that the data by it is nature requires asch independence
we favor methedg of atatimiteal analysis which depend upon the Iikelihood.

From Bayesian Principles, Lindley [B], pp. 1,2, the joint popteriort density of $\lambda\left(\lambda_{1}, \ldots, \lambda_{m}\right)$, based on the evidence

$$
\begin{equation*}
f(\lambda \mid x) \propto \prod_{1=1}^{m} p\left(x_{1} \mid \lambda_{1}\right) \pi(\lambda) \tag{2,4}
\end{equation*}
$$

where π is the joint prior density of λ.
Two difficulties remain, One is to formulate a reasonable joint prior π and the second is then to calculate, other than aymbolically, the posterior diatribution of

$$
\begin{equation*}
V=\left[\beta_{1} \lambda_{i}, \text { say } G(v \mid X) \text { for } v>0 .\right. \tag{2.5}
\end{equation*}
$$

Following the usual method, p. 15, Lindley, loc. cit., the value v_{0}, depending upon x and $c, 0<c<1$ such that $G\left(v_{0} \mid x\right)=c$, providea a lower 100 c (Bayesian confidence bound for the system reliability e^{-V} given x_{i} of the form $e^{-V_{0}}$ and

$$
\begin{equation*}
P\left[\exp \left\{-\Sigma \beta_{1} \lambda_{1}\right\}>e^{-v_{0}}\right]=\varepsilon \tag{2.6}
\end{equation*}
$$

Essentially this method has been utilized to obtain confidence bounds on the reliability of certain systems and is presently the subject of much discussion, see [8]. In what follows we shall discuss two such methods and their reasonableness in dealing with the aituation at hand.
©os

3. A UNIFORM PRIOR

The first approach is to assume the special prior density

$$
\begin{equation*}
\pi(\lambda) \equiv 1 \quad \text { for all } \quad \lambda_{1}>0 \tag{3.1}
\end{equation*}
$$

This asumption fouttica by the io called principle of insufficlent reason: since we know nothing apecific about π we have insufficient reason to take π anything but uniform. Strictly speaking π as defined in (3.1) is a non-probabilistic prior. But, of course, one could consider it proportional to an sproximation to prior denality.

Substituting (3.1) into (2.4) we find

The mathematical problem becomes that of finding the distribution of $V=\left[\beta_{i} \lambda_{i}\right.$ where β_{i} are known constants and λ_{1} are gamin variatas with known scale and shape parameters. To wit, each λ_{j} - is $r\left(t_{j}, n_{j}+1\right)$ where $\Gamma(t, v)$ denotes the law with density, given $v>0$

$$
\begin{equation*}
\frac{1}{\Gamma(v)} t^{\nu} x^{v-1} e^{-t x} . \quad \text { for } \quad x>0 \tag{3.3}
\end{equation*}
$$

We also quote two related results, see $p .46 f f$, Feller [7].

If λ_{f} is $\Gamma\left(t_{j}, v_{1}\right)$, then $t_{j} \lambda_{j}$ is $\Gamma\left(1, v_{j}\right)$.
If $v_{j}>1_{\text {, then }} \lambda_{j}=\lambda_{j}^{\prime}+\lambda_{j}^{\prime \prime}$ in distribution where λ_{j}^{\prime} 1s $\Gamma\left(t_{j}, 1\right)$ independent of $\lambda_{j}^{\prime \prime}$ which is $\Gamma\left(t_{j}, v_{j}-1\right)$. Thus by the first remark we see that in distribution $V=\sum_{j=1}^{m} b_{j} \lambda_{j}$ - ong 8
where $b_{j}=\beta_{j} / t_{j}=1 / \tau_{j}, j=1, \ldots, m$ and each A_{j} is aw $r\left(1, n_{j}+1\right)$. By the second remark, for the data given in Table I where we have at most two failures, we see that in distribution
(1. 4$)$

where is the number of components with two failures during testing
res is the number of components with one failure during testing
meres. Ls the number of components with no failures during testing
and X_{k}, V_{j}, z_{i} are 11 independent $r(1,1)$, i.e.. exponential with unit mean, variates.
1
We now quote a result proved, for example, in [11] as a
Leman 1: If $\mathbf{z}_{1}, \ldots, z_{k}$ are independent exponential random variables with unit mean, then for $b_{1}>0$, all distinct, we have

$$
\begin{equation*}
P\left[\sum_{1}^{k} b_{1} z_{i}>u\right]=\sum_{j=1}^{k} \cdot B_{j}^{(k)} e^{-u / b_{j}} \tag{3.5}
\end{equation*}
$$

where $B_{1}^{(1)}=1$ and for $k \geq 2$
(3.6)

$$
B_{j}^{(k)}=\prod_{\substack{i=1 \\ i \not f j}}^{k} \frac{b_{1}}{b_{j}-b_{1}} \text { for } j=1, \ldots, k \text {. }
$$

Also these recursion relations hold

Also we have

Lamps 2: The distribution of

where $i_{f}=1 / b$, for $j=1, \ldots, \max (m, r)$

$$
\psi(4,1, t)-\int_{0}^{t} \exp \mid r_{1}(t-y)-r_{y} y d y
$$

$$
=\left\{\begin{array}{lll}
t e^{-\tau_{f} t} & \text { if } & 1=1 \\
\frac{e^{-\tau_{1} t}-e^{-\tau_{j} t}}{\tau_{j} \tau_{1}} & \text { if } & 1 \neq j
\end{array}\right.
$$

The proof is accomplished by the convolution of two distributions each of the form given in Leman 1.

Consider the more general definition

$$
\begin{equation*}
v_{k}=\sum_{j=1}^{k} \sum_{i=1}^{m_{1}} b_{i} x_{i j} \tag{3.7}
\end{equation*}
$$

where the $X_{i f}$ are all independent exponential variate with unit mean. Let V_{k} have distribution F_{k}, then

$$
v_{k}=v_{k-1}+\sum_{i=1}^{m_{k}} b_{i} x_{i k} .
$$

Defining $\bar{F}=1-F$ with any affixes, and taking τ_{1} asiven in Lemma 2 ,

$$
\left.\begin{array}{rl}
\bar{F}_{k}(u) & =\int_{0}^{\infty} P\left[\sum_{i=1}^{m_{k}} b_{i} x_{i k}>u-v\right] d F_{k-1}(v) \\
& =\bar{F}_{k-1}(u)+\sum_{i=1}^{k} B_{i}\left(w_{k}\right)
\end{array} \int_{0}^{u} e^{\left.-(u-v) \tau_{i} d F_{k-1}(v)\right\}}\right\}
$$

But the quantity in braces in the equation above becomes

$$
\{\cdots\}=\bar{F}_{k-1}(u)-e^{-u \tau_{1}} \tau_{1} \int_{0}^{u} \bar{F}_{k-1}(v) e^{-(u-v) \tau_{1}} d v .
$$

Hence we have shown the following:

Lema. 3: The survival probabllity of V_{k} a defined ln equelon (3.7) is given in terms of the survival probability of $\mathrm{V}_{\mathrm{k}-1}$ as
(3.8)

Note that (3.8) can be used to prove Lemma 2 and used recuraively to find the distribution of V_{k} for mall k. Thus we now have a computationally feasible method for the calculation of the distribution of V, called G, Uaing the lemmas above a machine program was written for the IBM 360 , using double precision for the computation of the $B_{j}^{(k)}$, which tabulates the distribution of ' V in the region of interest. Using the data presented in table I, chis dietribution is graphed in Figure 1.

For example, we find that if $v_{0}=12.8, G\left(v_{0}\right)=.95$. Thus a
1ower 95\% Bayesian confidence limit for the syatem reliability is $e^{-12.8}=10^{-5}$.

4. A CRITICAL DISCUSSION

A word about the computation necessitated by this method. It is clear from Table I that the differences of the ${ }^{\tau} f$ are neither small nor unform. A glance at the formula for the $B_{j}^{(k)}$ in equation (3.6) thows that in brolute value they can become very large for auch cases. (In fact, for such data as we have for 67 components, values as high as 10^{20} are not impossible.) Since all $B_{j}^{(k)}$ summed over \mathcal{f} must add to unity, some must be positive and some negative. However, because of the nature of machine decimal arithmetic, the summands will be rounded off and the machine cumulate the error. We should, by definition, have' $G(0)=0$ but computationally we do not. For example, referring to Figure 1 , the machine value at $v=3.2$ was $G(3.2)=.699 \times 10^{-3}$ but at $v=2.4, G(2.4)=-.123 \times 10^{-1}$ with wider fluctuations for maller values of v. Fortunately, we are interested in those values of the argument for which, $G(v)$ is near one and the values of v necessarily become large enough to eliminate the errors due to this circumstance.

However, this is merely a initation due to the accuracy of the method of computation which was adopted. We féei there is a much more primary objection.

Without any real loss of clarity to the fundamental ideas, let us Eix our attention on an asembly with two separate modes of malfunction with hazard rates λ_{1} and λ_{2}, say. Suppose this assembly was operated for a time t and no falure of either type was observed. By using the uniform prior of (3.1) the posterior distribution of the component hazard rate $\lambda\left(=\lambda_{1}+\lambda_{2}\right)$ considering the component as a unit, 14
entire
 $s 0$ chat e^{-a} is a lower bound on the reliability for mission of unit length and the confidence level is $P[A<a]$.

But on the other hand, by considering the poaterior distribution
 insufficient reason to apply the uniform prior for each mode, we have

$$
\begin{equation*}
P[\lambda<a]=1-e^{-a t}-a t e^{-a t} \quad \text { for } \quad a>0 \tag{4.2}
\end{equation*}
$$

a
as the posterior distribution of the hasard rate λ of the assembly.. But notice that (4.2) is less than (4,1) which was the distribution from the same data for the same assembly.

The point we are making is simply this: For a series syitem, with no component falling during test time $t>0$, the confidence in the reliability of the aystem should be the same as that for each component, since the asstem and the components both experience the same oprational time t without fallure.

Our criticism of the former method is that the confidence in the reliability does not depend only upon the data, it also depends upon the arbitrary designation of component or assembly. If wa arrive at different answers when using the same data, then something must be wrong. .

To continut this point further, let us suppose thint we have a series system with separate malfunction modes with hazard rates $\lambda_{1}, \ldots, l_{m}$ each of which has acquired the ame operationgl axperience,

namely $x_{i}=(t, 0)$ for $f=1, \ldots, m$, fie., no failures during operation for a length of time t. Again by using the uniform prior density we have the distribution of $\lambda=\lambda_{1}+\cdots+\lambda_{m}$ as
(4.3)

$$
1=\sum_{j=1}^{\mathrm{m}} \frac{\mathrm{e}^{\mathrm{at}}(\mathrm{n})}{\mathrm{j}!}
$$

which approaches zero as m approaches infinity regardless of the value of, ta> 0 .

Of course, (4.2) results from different apecification of the Bayesian model. The point is that each specification of another Independent component will always result in a different posterior distribution. (Needless to say", different prior will lead to a different posterior density for λ as well.)

Moreover, it it clear that almost any choice of prior density off. λ which is the product of independent prior densities for each λ_{1} will result in confidence level which is essentially the same as that given in (4.3), to wit so low as to be nonsensical for u large.

One modification suggested is to assume functional dependence with statistical independence, among the prior densities of λ_{1}. One much is to take the (conjugate) prior density of λ_{1} as $\Gamma\left(u_{1}, v_{1}\right)$ for $1=1, \ldots, m$, using here the notation of (3.5), subject to the constraint

$$
\begin{equation*}
v_{1}>0, \quad \frac{\text { 㤩 }}{1} v_{1}=1 . \tag{4.4}
\end{equation*}
$$

Cochining this with the likelinood of the form (2.3) shows

$$
f(\lambda \mid x) \propto \prod_{i=1}^{m}\left[\lambda_{i}^{n_{i}+v_{i}-1-\lambda_{i}\left(u_{i}+t_{i}\right)} e^{1}\right.
$$

subject to (4.4) above. Thus the posterior density of λ_{1} is

finding the diseribution of $U=\varepsilon c_{i} \Lambda_{i}$ where $c_{j}=\beta_{j} /\left(\mu_{j}+\varepsilon_{j}\right)$
and each λ_{j} is $\left[\left(1, n_{j}+v_{j}\right)\right.$ for $1=1, \ldots, m$ subject to (4.4).
Because $n_{j}+v_{j}$ is not an integer we are faced with an analytic and computational problem beyond that of the preceding section. However, it is clear that this artiface does introduce enough degrees of freedom that proper choice of u_{j}, maintaining the restriction (4.4), can yield reliabilities of not unreasonable size. We do not pursue it further. The difficulty, making such an assumption untenable, is that ones prior knowledge about the rellability of a component should neither depend upon the prior densities of the other componente in any way nor upon how many of them there are. These prior densities should be independent In every sense. あ
5. the deghefrate phlor

random variables having a distribution which is to be constructed from prior knowledge. The more commonly accepted point of view is that the λ_{i} are unknown constants about which inference must

If the x_{i}^{\prime} were unknown positive real numbers, then there would exist a constant of proportionality between any two $\lambda_{i}^{\prime} s$ which would be fixed, even though it was unknown.

Thus we make the assumption
3° There exists a constant of proportinnality, say $\alpha_{1 j}$, between any two λ_{i} and λ_{j}.

If we have different modes of malfunction, we define α_{1} for $1=1, \ldots$, , m as the probability of maifunction in the $1^{\text {th }}$ mode given that a malfunction in the system has occurred. One sees that

$$
\alpha_{i}=P\left[T_{1}<t \mid \sum_{j=1}^{m}\left[T_{j}<t\right]\right]
$$

where we made the convention that the sumation of events denotes the disjoint union. It follows that $a_{i!}=u_{i} / a_{j}$ where (5.0.1)

$$
a_{i}=\frac{\lambda_{1}}{\sum_{j=1}^{m} \lambda_{1}} \quad d=1, \ldots, m
$$

Thus 3° is equivalant to taking the prior distribution, say $\Pi(\lambda)$, to be singular with all measure concentrated along a ray out from the origin with the direction of the ray determined by the constants of proportionality. Specifically, we assume

In the case me 2, $\Pi\left(\lambda_{1}, \lambda_{2}\right)$ is zero everywhere but along the
 to find the posterior density of $\sum_{1} \beta_{i} \lambda_{1}$. We make the change of variables $\rho_{1}=\beta_{1} \lambda_{1}$ and by (2.3) and $\tau_{1}=t_{1} / \beta_{1}$ we have

$$
\left.f(L \mid x) \nsim \sum_{i=1}^{m}\left(\tau_{i} \rho_{1}\right)^{n_{i}} e^{-\tau_{i} \rho_{i}} d \pi \pi^{\left(\rho_{1}\right.}, \ldots, \rho_{m}\right)
$$

where

$$
\pi^{*}\left(\sigma_{1}, \ldots, F_{m}\right)=\pi\left(\frac{\rho_{1}}{\beta_{1}}, \ldots, \frac{\rho_{m}}{\rho_{m}}\right)
$$

Thus
$(5.2) d \pi *\left(\rho_{1}, \ldots, \rho_{m}\right) \begin{cases}>0 & \text { if some } \quad \rho_{i}=\frac{a_{1} \beta_{1} \rho_{1}}{\alpha_{j} \beta_{j}} \\ =0 & \text { for } \\ \text { otherwise. }\end{cases}$

The density we seek is proportional to
(5.3) $\int_{\left\{\rho: \tilde{\Sigma}_{1}=a\right\}} \int \prod_{i=1}^{m}\left(\tau_{i} \rho_{1}\right)^{n} e^{-\tau_{1} \rho_{1}}{d \eta *\left(\rho_{1}, \ldots, \rho_{m}\right) .}$

Consider the line in m-spacei

$$
\ell\left(\rho_{1}\right)=\left(\rho_{1}, \frac{a_{2}^{\beta} 2}{a_{1}^{\beta} 1} \rho_{1}, \ldots, \frac{a_{m}^{\beta}}{\alpha_{1}^{\beta} \rho_{1}} \rho_{1}\right)
$$

$\therefore \overbrace{1}$! far ${\underset{\sim}{2}}$, 0 . In effect the only quancity that has a distribution
is ρ_{1} and we shall later see it makes no difference what this
distribution is as long as it has support on ($0, \infty$). This ine intersects the plane $\sum_{1}^{m} \rho_{i}=a$ at a single point, namely o_{i} such that

$$
\hat{\rho}_{1}+\sum_{i=2}^{\frac{a_{1}}{\alpha_{1}}}{ }_{1} \alpha_{1}=a
$$

and solving for ρ_{1} we find $\rho_{1}=\gamma_{1}$ where we define

$$
\begin{equation*}
r_{1}=\frac{a_{j} \beta_{1}}{\sum_{j=1}^{m} a_{j} \beta_{j}} \quad i=1, \ldots, m . \tag{5,3.1}
\end{equation*}
$$

Then the value of ρ_{i} at the point of intersection of the line Q with the plane $\varepsilon_{o_{1}}$ a is $\rho_{i}=a \gamma_{1}$ for $i=1, \ldots, m$. Since all the measure of n^{*} is concentrated along the line ℓ, the integration over the plane In (5.3) yields a single value at the gingularity of the measure π^{*}. It follows that the density we seek is proportional to the value of the integrand at that point, namely

$$
\prod_{i=1}^{m}\left(\tau_{i} a \gamma_{i}\right)^{n}{ }^{n} \exp \left\{-\sum_{i=1}^{m} \tau_{i} a{Y_{i}}_{i}\right\} .
$$

If we define
(5.4)

$$
\theta=\sum_{i=1}^{m} t_{1} r_{i}=\frac{\sum t_{1} a_{i}}{\sum \varepsilon_{i} a_{1}} \quad \text { and } \quad k=\sum_{1}^{m} n_{i},
$$

whi.h are, tospetively, a welghted mean of the t_{1}, and the total number of fillures, wie can write the posterlor density of $V=\sum_{1}^{\infty} p_{1}$星
$\frac{\theta(\theta a)^{k} e^{-a \theta}}{k!}$ for $a>0$.

The distribution then is

$$
\begin{equation*}
P[V<u]=\int_{0}^{\theta u} \frac{s^{k} e^{-s}}{k!} d s=1-\sum_{j=0}^{k} \frac{e^{-\theta u}(\theta u)^{j}}{j!} \tag{5.6}
\end{equation*}
$$

which we recognize as a Chi-square distribution. If we set

$$
\begin{equation*}
u=\frac{1}{2 \theta} x_{E}^{2}(2 k+2) \tag{5.7}
\end{equation*}
$$

where $X_{c}^{2}(m)$ is the $100 \varepsilon^{\text {th }}$ percentile of the Chi-square distribution With m degrees of freedon, we have e^{-u} providing a lower confidence bound of level E.

We note that the computation for this method is trivial. We compute only the two quantities k and θ and then from a table of the Chi-square distribution calculate u and e^{-u}.

Unfortunately, equation (5.7) gives the confidence bound e^{-u} In terms of the alpha factors which are still unknown. Nonetheless, based upon the objective model that the fallure rates are virtually unknown constants, we do arrive at (5.7) and knowledge concerning the n_{i} is what is needed to determine the confidence init. However, this does not necessarily mean that the values of λ_{1}
need be known, fot example, it is sufficient that their ratios be known. Yerhaps in some 1 ngtances enginecting Expeiduci wínt be sble to classify all the failure rates as multiples of fixed one, say the lowest, at least in a conservative menner.

Disregarding for the present the computation of θ, this method does obviate some of the concepeusl dfefluuletes wheh the preceding method possessed.

Firstly, the confidence bound is the same regardless of how the components are apportioned to subsystems within the system. In particular, if $\tau_{1} m \ldots . \tau_{m}$, we obtain the same density of $\sum \beta_{i} \lambda_{i}$ as we would by considering the system as a single unit.

The addition of components to the system none of which have failed, i.e., data of the type $\left(t_{i}, 0\right)$, do not necessarily cause the confidence to go rapidly to zero. (Of course, the confidence does depend upon t_{1} through 0.). It is clear from (5.5) that it is not the number of components but the number of failures which rapidly decrease the confidence,

In the apecial case when $E_{1 j k}=B_{i}$ for all j, k we can , make an intuitive interpretation of y_{1} as the conditional probability of failure of the $i^{\text {th }}$ assembly given that an assembly has failed. To see this, label the events "the $i^{\text {th }}$ assembly fails" by F_{1} and "the $i^{\text {th }}$ assembly malfunctions" by M_{i}. By definition

$$
\beta_{i}=P\left[F_{i} \mid M_{i}\right], \quad a_{i}=P\left[M_{i} \mid \Sigma M_{j}\right]
$$

$$
a_{i} B_{i}=\frac{P\left(F_{i}\right)}{P\left[M_{j}\right]}
$$

and hence from (5.3.1) follows $\gamma_{1}=P\left[F_{1} \mid E F_{1}\right]$.
We now make two calcuiations Ee tndtate the rellablitiy values obtained by this method.

Example 1:

Let us suppose that $r_{1}=\frac{1}{m}$ for $1=1, \ldots, m$. We recall that under certain conditions this would mean the evant any one particular component had failed, knowing that exactly one component was in a falled state, was equally likely with the event any other component had failed.

From Table I we find $k=8$ and compute from (9.4), $0=\varepsilon_{\tau_{1}} / m=$ 25.35 and hence for c-.95, using'the chi-square value for 16 degrees of freedom, we have $u=(28.87) / 50.7=.569$. Thus e^{-u}. .566 is a lower 95% confidence limit for the syatem reliability.

Example 2:

Let us suppose $a_{i}=\frac{1}{m}$ for $1=1, \ldots, m$ and from Table $I_{\text {, we }}$ again use (9.4) to compute $\mathcal{C}=\left(\sum t_{i}\right) /\left(\sum \beta_{1}\right)=16.27$. For $k=8$, $\varepsilon=.95$ we find $u=(28.87) /(32.54)=.887$ and $e^{-u}=.412$ is the lower 95% confidence Imit for the reliability of the system.
6. SOUNDS ON θ

In this section ve make the argument that what prior information one has about λ_{1} for $i=1, \ldots, m$ should be applied $s o$ as to determine bounds on θ rather than in the production of prior distributions of the comppent failure races.

It is clear that if $\&=\left(a_{1}, \ldots, a_{m}\right)$ is constranined and a lower bound $\theta_{1} \leq \theta(\mathbb{X})$ can be determined, then correapondingly from (5.7) $u_{1} \geq u$, from which it follows that $e^{u_{1}}$ provides a lower confidence bound of level not less than ε. For example, the trivial inequality

$$
\min _{i=1} \tau_{i} \leq \theta(a)
$$

will provide such a bound. Bowever, unless the τ_{i} are nearly all equal, atate deyoutly to be wished and planned for, it is not certain this bound would be aseful result. However, if testing were continued until $\tau_{1}=\tau_{0}$ for $1=1, \ldots, \ldots$, we would then be in the favorable position that a_{1} need not be known.

If τ_{j} ware the minimum of τ_{d} for $i=1, \ldots, m$, then $\tau_{j}=\theta(g)$ implies $Y_{j}=1, \gamma_{1}=0$ for $1 \neq j$ which in turn by (5.3.1) implies that $a_{j}=1, a_{i}=0$ for $i \nmid j$ which requires by (5.0.1) that λ_{j} be infinitely large with respect to allother λ_{i}. This would seem to be an unlikely state of nature, one which might be reasonably excluded from consideration.

We now give some examples of information which in various degrees exclude the state mentioned above and are of a type which may provide a non-trivial bound.

Let us suppose it is known that

$$
\begin{equation*}
\sum_{i=1}^{m} a_{i} \beta_{i}=p \tag{6.1}
\end{equation*}
$$

(This would mean in certain situations that the probability of a failure given a malfunction was known to be p.)

Thus the problew becomes that of Hinimizang Ehe function θ ((A)
as defined in (5.4) where $\left(t_{i}, \beta_{i}\right)$ are known positive numbers subject to the restriction (6.1) and

$$
\begin{equation*}
\sum_{1}^{\mathbf{m}} a_{1}=1, \quad a_{1} \geq 0 \quad \text { for } \quad i=1, \ldots, m \tag{6.2}
\end{equation*}
$$

Call the set of $\left\{\right.$ satisfying (6.1) and (6.2) the set o_{p}.
Clearly with the denominator fixed in (5.4) we have a inear programing problem with two constraints, for wich the theory is well known.

Of course the restriction (6.1) is a mathematical convenience. What we desire are bounds on min $\psi(p)$ for p taken over some subset of the range

$$
\min \beta_{i}<p<\max \beta_{1},
$$

where

$$
\begin{equation*}
\psi(p)=\min \left\{\theta(\underline{\alpha}): z \varepsilon a_{p}\right\} . \tag{6.3}
\end{equation*}
$$

This can be obtained from a graph of $\psi(p)$, which is here accomplished with a linear program using p as a parameter. A plot using the data of Table I is given in Figure 2 as on illustration.

π

Figure 2
Graph of $\psi(p)$ for $1 \leq p \leq 30$.
-

- Hes . .

$$
\cdot
$$

F

Consider \therefore as a function of $y\left(\gamma_{1}, \ldots, \gamma_{m}\right)$ as defined in (5.4). It is linear (hence convex) and we wish to minimize it subject to some restrictions on its domain which are measures of the variability of the \dot{x}_{1} for $i=1, \ldots, \ldots$. First we shall consider the region 3_{1} defined for $0 \leq x \leq \sqrt{m-1}$ by
(6.4)

$$
1 \leq x i_{i}^{2} \leq x^{2}+1, \quad \Sigma_{Y_{1}}=1, \quad \gamma_{1} \geq 0
$$

for $\quad 1=1, \ldots, m$.

The region \mathcal{H}_{x} is convex and thus there exists a unique minimum for e over the region. The method we shall use is Lagrange multipliers. Let

$$
\phi(y)=g(\underline{y})-\frac{m \lambda_{1}}{2} \Sigma \gamma_{i}^{2}-\lambda_{2} \Sigma \gamma_{i} .
$$

We wish to minimize $\$$ subject to the conditions
(6.5) mE Y ${ }_{i}^{2}=x^{2}+1, \quad \sum \gamma_{1}=1, \quad \gamma_{1} \geq 0 \quad$ for $\quad 1=1, \ldots, m$.

Thus

$$
\frac{\hat{g} \phi}{\partial \gamma_{j}}=\tau_{j}-m \lambda_{1} \gamma_{j}-\lambda_{2} \quad j-1, \ldots, m
$$

We now consider the three equations

$$
\begin{equation*}
\Sigma_{\gamma_{1}} \frac{\partial \hat{L}_{1}}{\partial \gamma_{1}}=0, \quad \frac{1}{m} \Sigma_{\tau_{1}} \frac{\partial \phi}{\partial \gamma_{1}}=0, \quad \frac{1}{m} \Sigma \frac{\partial \phi}{\partial \gamma_{1}}=0 \tag{6.6}
\end{equation*}
$$

which upon simplication, and imposing the restrictions of (6.5), yield three equations which are tr, be solved for θ by eliminating i_{1} and i_{2}

First eliminating λ_{2} we obtain

$$
\begin{equation*}
\lambda_{1}=\frac{\sigma^{2}}{\theta-\bar{\tau}}, \quad(\theta-\bar{\tau})^{2}=x^{2} \sigma^{2} \tag{6.7}
\end{equation*}
$$

where $\bar{\tau}$ and σ are the mean and standard deviation of $\tau_{1}{ }^{\prime}$,
reopectively.

of θ from (6.7) as the amaller root

$$
\begin{equation*}
\theta=\bar{\tau}-x \sigma \tag{6.8}
\end{equation*}
$$

Also from $\frac{\partial \phi_{1}}{\partial \gamma_{j}}=0$ we must have
(6.9)

$$
\gamma_{j}=\lambda_{1}^{-1} m\left(\tau_{1}-\lambda_{2}\right) \geq 0 \quad \text { for } \quad j=1, \ldots, m
$$

in order to satiafy the restrictiona, Since by (6.7) and (6.8)
$\lambda_{1}-\sigma / x$ we see that a sufficient condition to satisfy (6.9) is

$$
\begin{equation*}
\max \left(\tau_{j}\right) \leq \lambda_{2}=\bar{\tau}+\sigma x^{-1} \tag{6.10}
\end{equation*}
$$

Thid is eatisfied for all τ_{f} which are reasonably close together.
It is claar from (6.8) that the minimum value of θ is a decreasing function of x.

Remark: If $\tau_{1}, \ldots, \tau_{m}$ satisfy $(6,10)$ for a given x between $0 \leq x \leq \sqrt{m-1}$, then

$$
\min \left\{\theta(\mathcal{X}): \mathcal{L} \in B_{x}\right\}=\bar{\tau}-x 0
$$

where $\bar{\tau}, \sigma$ are defined in (6.7).

From this remark we see the restriction (6.4) yields a lower 100ع\% confidence bound for the reliability, namely
.0.1) $\exp \left\{-x_{\varepsilon}^{2}(2 k+2) / 2\left(\bar{i}-x_{j}\right)\right\} \quad$ for $\quad 0 \leq x \leq \sigma /\left(\max \tau_{j}-\bar{\tau}\right)$.
Using the data in Table I we find $\bar{i}=25.35, \quad \sigma=21.25$ and $\max \mathrm{f}_{\mathrm{j}}=98.1$ and thus the range of x is $0 \leq x \leq .31$. A graph of (6.10.1) for this case with $k=7, \varepsilon=.95$ is given in Figure 3.

Next we consider the problem of minimizing $\theta(\underset{\sim}{ })$ subject to (6.11) $i_{i}^{2}=, \quad \sum_{i}=1, \quad a_{i} \geq 0 \quad$ for $\quad i=1, \ldots, m$.

Since we can write

$$
a_{j}=\gamma_{j} 3_{j}^{-1} /\left(\Sigma_{i} 3_{i}^{-1}\right) \quad \text { fo: } \quad j=1, \ldots, m
$$

the first restriction can be put in the alternate form $\sum \gamma_{j}^{2} B_{j}^{-2}=\kappa\left(\Sigma \gamma_{j} \beta_{j}^{-1}\right)^{2}$. Again we use Lagrange multipliers to take advantage of the symmetry of the problem. Finite

$$
\begin{aligned}
& \theta=\sigma-\frac{m \lambda}{2}\left[\Sigma \gamma_{i}^{2} \beta_{i}^{-2}-\kappa\left(\Sigma \gamma_{i} B_{i}^{-1}\right)^{2}\right]-\lambda_{2}\left(\Sigma \gamma_{i}-1\right) \\
& \frac{\partial \mathcal{i}}{\partial \gamma_{j}}=i_{j}-m \lambda_{i}\left[\gamma_{j} Q_{j}^{-2}-\kappa\left(\sum_{\gamma_{i}} B_{i}^{-1}\right) B_{j}^{-1}\right]-\lambda_{2} .
\end{aligned}
$$

We now consider the four equations
$\frac{1}{m} \sum_{1}^{m} \sum_{j} \frac{1}{\ddots_{j}}=0, \frac{1}{m} \frac{\sum_{j}}{1} e_{j}^{2} \frac{\partial:}{\partial \gamma_{j}}=0, \quad \sum_{1}^{m} \gamma_{j} \frac{\partial \phi}{\partial \gamma_{j}}=0, \quad \sum_{1}^{m} \tau_{j} B_{j}^{2} \frac{\partial \phi}{\partial \gamma_{j}}=0$.
By setting $:=\because \gamma_{j}{ }_{j}^{-1}=\left(\sum_{i} e_{i}\right)^{-1}$ for notational convenience and frosting the restraints as encountered we obtain four equations \because aid contain the four variables $\lambda_{1}, \lambda_{2}, \theta, 5$. Eliminating λ_{1}, λ_{2} and δ $\therefore \because \cdots$ quadratic equation in \because, namely

Figura 3

> Values of exp\{-28.87/2(25.35-21.25x)\} for $0 \leq x \leq .31: ~ a$ lower 95% confidence bound on the reliability giyen $1 / m \leq \Sigma r_{1}^{2} \leq \frac{x^{2}+1}{m}$.

$$
\dot{5}^{2} \dot{A}-2 \hat{5} \bar{B}+\dot{c}=0
$$

where, recalling $t_{i}=b_{i} \dot{\tau}_{i}$ for $i=1, \ldots, m$,

$$
A=(\bar{\theta})^{2}=x \beta^{2}, \quad B=\overline{t B}-x \overline{E \beta}, \quad C=(\bar{t})^{2}-x t^{2}
$$

Thus the minimum value is the smaller root, call it

$$
\begin{equation*}
\theta_{x}=\left(B_{x}-S_{x}\right) / A_{x} \tag{6.14}
\end{equation*}
$$

where $s^{2}=B^{2}-A C$ or equivalently $S_{x}^{2}=x a^{2}-x^{2} b^{2}$
and

$$
a^{2}=\frac{1}{m} \sum\left(t_{i} \bar{B}-\beta_{i} \bar{t}\right)^{2}, \quad b^{2}=\bar{t}^{2} \bar{\beta}^{2}-(\overline{t \bar{B}})^{2}
$$

It is clear that if x is constrained by

$$
\text { (6.14.1) } \quad 0 \leq x \leq \min \left\{\frac{(\bar{\beta})^{2}}{\beta^{2}}, \frac{\bar{t} \bar{z}}{t \beta}, \frac{(\bar{t})^{2}}{t^{2}}, \frac{a^{2}}{2 b^{2}}, 1-\frac{1}{m}\right\}
$$

then the values of ${ }^{\theta} x$ are meaningful.
We now argue that there is an interval of positive values of x. for which ${ }^{\theta_{x}}$ is decreasing as a function $C E x$. Note $\theta_{x}^{\prime} \leq 0$ iff

$$
\begin{equation*}
\zeta(x)=-S_{x}^{\prime} A_{x}-\overline{B^{2}} S_{x} \leq \overline{t B}(\bar{B})^{2}-\bar{E} \overline{\beta \beta} \bar{B}^{2} \tag{6.15}
\end{equation*}
$$

To see that ζ is an increasing function, note that $\zeta^{\prime}(x)=-A_{x} S_{x}^{\prime \prime}$. Now $S^{\prime}(x)=\left(a^{2}-2 x b^{2}\right) / 2 S(x)$ so that by $(6.14 .1), S^{\prime}(x)>0$ and likewise we check $S^{\prime \prime}(x)<0$ and hence $\zeta^{\prime}(x) \geq 0$, Notice that $\zeta(0)=-\infty$ so there is an interval of values in x, for which (6.15) Is true, and ${ }^{9}$ is decreasing; This region can be detemined from
$(6-5)$ 1n Cef cate 0 anterect
However, we must also satisfy the condition $\gamma_{j} \geq 0$ for $j=1, \ldots, \ldots$. From $\frac{\partial \phi}{\partial \gamma_{j}}=0$ follows, by using (6.13)

$$
\begin{equation*}
\gamma_{j} \geq 0 \quad \text { iff } \quad 1 \geq \frac{\beta_{1} \theta-t_{1}}{k m \lambda_{1} \delta}=\frac{x\left(t_{1}-\beta_{1}(\theta)\right)}{\bar{t}_{-\beta_{\theta}}} . \tag{6.16}
\end{equation*}
$$

But by the argument above $\theta_{x} \leqslant \theta_{0} \leqslant \bar{t} / \bar{B}$ for $x>0$. Hence the denominator of the right-hand side of (6.16) is positive. Thus $r_{i} \geq 0$ for $j=1, \ldots, m$ iff

$$
\begin{equation*}
\bar{t}-\theta_{x} \bar{\beta} \geq x \max _{j=1}^{\mathrm{m}}\left\{t_{j}-\theta_{x} \beta_{j}\right\} \tag{6.17}
\end{equation*}
$$

To be presuaded that there is indeed a neighborhood of zero in which (6.17) is trua we introduce the power series expansion of ${ }^{9} x^{\text {: }}$

$$
\theta_{x}=\frac{\bar{E}}{\bar{\beta}}-\sqrt{x} \frac{a}{(\bar{\beta})^{2}}+O(x) .
$$

Thus (6.17) is equivalent with

$$
\frac{A}{\bar{B}}-\sqrt{x} \frac{t \beta^{2}-\beta+\beta}{(\bar{B})^{2}}+O(x) \geq \sqrt{x} \max _{j}\left[t_{j}{ }^{-\theta} x^{\beta} j\right]
$$

which is clearly true for x sufficiently small. Thus we can make tine

Remark: If (t_{i}, \hat{p}_{i}) $i=1, \ldots, m$ are given and x satisfies (6.14.1), then θ_{x} defined by (6.14) satisfles
henever (6.17) is true.

Using the data from Table I we find that the upper bound for (6.14.1) is $a^{2} / 2 b^{2}=.26056$ while the largest value of x satisfying (6.17) in .145. A graph of exp $\left\{-x_{c}^{2}(2 k+2) / 2 \theta_{x}\right\}$ for $k=7$, E. . 95 with θ_{x} as defined in (6.14) is given in Figure 4.

Figure 4
Graph of exp $\left\{-\frac{28.87}{2 \theta}\right\}$ for $0<x<.15:$ a lower 95\% confidence bound on the reliability given $\frac{1}{n_{i}} \leq \Sigma a_{1}^{2} \leq \frac{1}{m(1-x)}$.

> 家

CONCLUDING REMARKS. By considering a series system with a given number of components, each component having been tested for the same time and each experiencing no failures, one intuitively feels since the entire system could have been operated, conceptually at least, without failure for that same period of time that the confidence one has in the system's reliability should be exactly the same as the confidence in each component's reliability. Moreover, this confidence should be the same irrespective of the number of components in the system.

By thinking how the confidence should behave for such a series system, as components are added with different test times and different numbers of failures, we see that the Bayesian approach with independent prior distributions of the failure rate fails to fulfill our expectation as to this incremental behavior. At the same time the second model chosen, with failure rates as virtual constants, does seem to behave in conformity with our intuition and moreover it has the added appeal of computational simplicity.

Lastly, for the practical case chosen namely early data for the Saturn 1-C which at this juncture we know is a highly reliable system, the second model gave reasonable interval estimates of the reliability while the first did not.

ACKNOWLEDGMENTS. The author would like to express his appreciation to the reliability group at the Launch Systems Branch of The Boeing Company for providing the data for this discussion and assistance in its organization. In particular, I want to thank Francis Bari who first called this question to my attention by mentioning some deficiencies of the extant methods for determining confidence bounds.

TABLE I
Sumary of test data for Saturn I-C $t_{1}=$ test time in mission lengths, $\quad n_{i}$ * number of failures observed $\omega_{1}=q_{i}=$ component multiplicity,$\quad \tau_{i}=t_{i} / \beta_{i}$

BIBLIOGRAPHY

1. Allen, D. C., Carlson, C. H., Hubach, C. E. Procedure for Reliability Assessment with Confidence. Federal Electric Corporation Document No. AS-A-86-67, June 1967.
2. Dalton, R. E. An Evaluation of Methods for Construction of Confidence Limits for System Reliability. TRW Systems, Florida Operations, Contract AF 04 (694)-806, June 1966.
3. Donnelly, Patrick P. Is Reliability Necessary? Ninth Annual West Coast Reliability Symposium, Western Periodicals Company, North Hollywood, California, pp. 61-65, February 1968.
4. Esary, J.D., Proschan, Frank, and Marshall, A. W. Some Reliability Applications of the Hazard Transform. BSRL Mathematical Note No. 605, May 1969; to appear in SLAM J. Appl. Math.
5. Feller, William. An Introduction to Probability Theory and Its Applications, Volume II, John Wiley and Sons, 1966.
6. Lindley, D. V. Probability and Statistics, Volume II, Inference Cambridge University Press, 1965.
7. Madansky, Albert. Approximate Confidence Limits for the Reliability of Series and Parallel Systems, Technometrics \&, 495-503, 1965.
8. Mann, Nancy R. Confidence Bounds for System Reliability from Subsystem Data: A Survey of the State of the Art, presented at the Fifteenth Conference on the Design of Experiments in Army Research, Development and Testing. (To be published.)
9. Myhre, J. M., Saunders, S. C. On Confidence Limits for the Reliability of Systems, Ann. Math. Statist. 39, 1463-1472, 1968.
10. Myhre, J. M., and Saunders, S. C. Comparison of Two Methods of Obtaining Approximate Confidence Intervals for System Reliability, Technometrics 10, 37-50, 1968.
11. Saunders, S.C. On the Determination of a Safe Life for Distributions Classified by Failure Rate, Technometrics 10, 361-377, 1968.
12. Springer, M. D. and Thompson, W. E. Bayesian Confidence Limits for Reliability of Redundant Systems When Tests are Terminated at First Failure, Technometrics $10,29-36,1968$.
13. Zimmer, W. J., Breipoh1, A. M., and Prairie, R. R. A Consideration of the Bayesian Approach to Reiiability Evaluation, IEEE Transactions on Reliability, R-14, No. 2.

A PROBABILITY MODEL FOR THE ASSESSSENT OF HUMAN INCAPACITATION FROM PENETRATING MISSILE WOUNDS

William P. Johnson
William J. Bruchey, Jr.
Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

ABSTRACT. A mathematical model is proposed for tine evaluation of the altered performance of one of the most complex systers known to man, himself. Probabilities are associated with a random fragment penetrating varying distances within the human body, striking a critical anatomical component and inflicting damage to the extent that the wound recipient would be unable to perform his assigned duties.

These probabilities are combined to determine the conditional probability of all events occurring, simultaneously, to a tactical soldier under battlefield conditions.

The remainder of this article has been zeroduced photographically from the authors' manuscrint.

Cieceding page blank

I. intromiction

To evaluate the effectiveness of antipersonnel werpens it haz become necessary to employ a quantitative casualty criterion. A suitable criterion for many purjoses is the probability that the weapon wilt wound, fatally or severely, its intended target.

An old criterion of wounding power is the 58 oot pound ruic. In its crudest form it statey that inissiles with less than 58 foot mounds of kjetcenergy do not $k+11$, that those 6 th mo re than 58 foot pounds of kinetic energy do lill. This criterion was never intended to be more than a rough rule of thumb. Burns and Zuekerman ${ }^{1 *}$.made a more refined analysis in 1941 of the quantitative requircments for wounding, while Guerney ${ }^{2}$ suggested that MV^{3} was a more suitable criterion than the kinetic energy standard for wounding human targets.

Wound ballistics work carried out in this country during and since World war If has included studies of the relationship between the volumes of cavitids formed in tissucs and tissue simelants by missiles and the physical parameters describing the projectile on impact with the target. Such work has not yet provided mumerical relations between the physical parameters of fragments and the probability that the wounded man will suffer iny specified degree of impairment of his ability to functioñ. For the evaluation of the antipersonnel weapons, there is needed a knowledge of the nuncrical probability that a man, struck a projectile of specified characteristics, wlll thereafter be unable to perform the functions of his tactical role. For cvaluation or desyn, the size of a we and ie not directly employable as a uscful criterion. So far, cavity studies have unfortunately ied to little or no information suitable for the evaluation or design of fragmenting wapons.

The Burns and Zuckerman studies led to numerical probabilities of the type needed for evaluation. A later numerical stady of a similar type wis repurted by Melillen and Gregg of the Princeton Department of 8 iology, in Missile Casualties Report No. 12, 6 Nov 1545, National Research Council, Division of Nedical Sciences. MeMillen and Gregg were concerned with wounds that they considered to be either fatal or squere:

[^6]

These could be caused, they assumed, by projectiles reaching certain vuinerable regions inside the body after traversing protertiye layers of skin; soft tissue, and bone provided that the projectiles reach the vuinerable regions with velocitics in excess of $750 \mathrm{~m} / \mathrm{sec}$. The thicknessos of the anatomical structures that had first to be traversed were determined from anatomical charts depicting cross sections of the body it gpproximately one ingh intorvals from head to feet. The velocities necessury to penetrate the vantous thecknestes-of \$kno the uud and bone were determined through in vivo experimentation. The selection of vulnerable regions was somewhat arbitrary, since no experiments were conducted to determine which regions were in fact of primary importance. The final results, which were therefore semi-theoretical in nature, were in the form of probabilities that random hits"with steel balls on a human target would cause fatal or serious wounds.: These probabilities wore plotted against the striking energies of the balls, and werc on the whole consistent with the earlicr conclusions of Burns and Zuckerman.

A generalization of quite a different type, was published by T. E. Sterne ${ }^{3}$ in May 1951. In that study the experimental dnta employed by MCMillen and Gregg were re-examíned and re-interpretbd. In addition, the calculations of NcMillen aind Gregg werc repeated for randomly shaped fragments similar to bomb fragmonts instead of spheres. The temporary cavities caused by the fragments penetrating the target were taken into account by requiring that a fragment, in order co cause important injury to a vital region, must not only penetrate the intervening skin, tissie, and bone, but must also reach the vulnerable regions with sufficient remaining energy to produce a temporary cavity of 2 cubic centimeters.

In October of 1956, "A New Casualty Criterion for Wounding by Fragments" was published by Allen and Sperrazza. ${ }^{4}$ This study revised the combination of mass and velocity combinations which appeared to be related to incapacitation. Instead of employing the NV/A parameter used by Sterne, $M V^{B}$, where $1<\beta<2$, was introduced for the first time. This criterion has been used extensively to determine the relationship between trauma and fragment characteristics. Howevex, close examination of the techniques used within the current model reveals(that the resultant
quantitative data is based upon numerous subjective assumptions which vary from one evaluation to the next and that the resultant data are not prohabilistic numbers in the mathematical sense.

With the advantage of the knowledge available in the area from carlier investigations, it is the purpose of the current study to establish a model that will supersede the currently used fragment criteria. The specific objectives of the proposed study are:
(1) To establish a truly probabilistic model for the assessment of human incapacitation from penetrating mis:ile wounds.
(2) To eliminate the necessity for tissue retardation firings and in vivo experimentation as a prerequisite for the evaluation of the wounding potential of future fragments.
(3) To eliminate the need for trajestory tracings through anatomical cross sections of the human body in order to establish quantitative values for the probability of incapacitation.
; (4) To establish a common basis for the comparison of all fragmenting mumitivas.

The approach and procedure for establishing the proposed model while accomplishing, the above objectives, are presented in the following sections of this paper.

11. APPROACHIS AND ASSURPTIONS

For the purposes of establishing a mathematical model to predict the probability of incapacitation to a human upon impact from a random projectice the following assumptions are made:
(1) The fragmenting pattern of grenades and other exploding humitions have been studicd in sufficient detail to provide the probaWility of a specific fra,ment striking a human target, $P(H)$.
(2) Each fragment impacting the human target has a distinct frobatility of penctrating specific distances within the wound recipient's わoly, P(I).
(3) Each fragment striking the casualty has a distinct probability of encountering a critical organ along its path, $P(E)$. This probability is conditioned by the penctrating ability of the fragment and the location of the critical components of the human anatomy.
(4) Each anatomicai component has a distinct probability of being damaged, $P(D)$, to che extent of preventing specific biomechanical motions required by a tactical soldier for the full performance of his mission.
(5) Each specific biomechanical motion has a distinct probability, $P(M)$, of bcing required during the performance of the soldiers total mission.
(6) The probability of incapacitation from the N^{\prime} th, $P(N)$, component may be described by the expression:

$$
P(N)=P(H) \cdot P(P / H) \cdot P(E / H P) \cdot P(D / H P E) \cdot P(M / H P E D)
$$

(7) Each of the component probabilities are independent and can be combined mathematically to provide the conditional probability of incapacitation, $P(I / H P E D U)$, to a tactical roldicr from a random projectile by the following:

$$
P(I / H P E D M)=\frac{\sum_{1}^{N} P(N)}{N}
$$

For the purpose of brevity, henceforth the conditional probability of incapacitation of a tactical soldier, $P(I / U P E D M)$, will be shortened to $\mathbf{P}(\mathrm{I} / \mathrm{H})$. It is to be understood that the second expression includes all of the conditions provided within the first expression.
(8) No synergistic effects occur from multiple wounds. Thus, the probability of incapacitation to a tactical soldier from two or more wounds can be determined by mathematically combining the independent conditional probabilities associated with each wound using the following expression:

$$
\begin{aligned}
P(I / H)= & 1-\left(1-P\left(I / H_{1}\right)\right)\left(1-P\left(I / H_{2}\right)\right)\left(1-P\left(I / H_{3}\right)\right) \ldots . . \\
& \left(1-P\left(1 / H_{N}\right)\right)
\end{aligned}
$$

As mentioned earlier, the probability of a fragment striking a stationary human target is assumed to have been established by Exterior Ballistics experts. Therefore, the remainder of this paper will concentrate on the procedures to be used to establish the probabilities required for the other portions of the model.

III. PROBABILITY, $P(P)$, THAT PROJECTILE WILL PENETRATE A SPECIFIC DISTANCE, (D), WITHIN THE HUNAN BODY

As assumed by McMillan and Gregg, it seems reasonable to suppose that the probability that a random hit will cause fatal or severe wounding depends upon the fraction of the body's superficial area through which the fragment can wound a vital organ. The identification of the vital regions, and the conditions of striking them necessary to cause fatal or severe wounding may not have been correctly chosen by MeMillen and Gregg, nevertheless, it still scems reasonable to suppose that the probability $P(I / I)$ will be a function of the penetrating ability of a fragment. If fragments possess such great penctrating power that they traverse a body completely wherever they hit, then the probability $P(I / H)$ that a random hit will incapacitate is the ratio of a rather large vulnerable area to the total presented area of the body. On the other hand, if the penetrating power of a fragment is so low that it can never reach the critical components of the body, then the probability $\mathrm{P}(\mathrm{I} / \mathrm{H})$ must approach zero. ${ }^{5}$

It is proposed that an indication of the penctrating potential of fragments be obtained thru the use of facilities currently or soon to be available to wound ballisticians. These include (1) the Ballistic Research Laboratories Computer ilan ${ }^{6}$ and (2) striking versus residual velocity comparisons for each of the anatomical components of the human body.

A bricf diversion is required at this point to acquaint the reader with the BRL. Computer Han, in order that he may fully appreciate its potential for aiding in the solution of the current problem.

In brief, the BRL Computer blan is a computer program currently used wifin the womd ballistics program to determine the extent of incapacitation experienced by wounded tactical soldiers. It consists of coded
versions of human anatomical cross sections extracted from Eycleshymer and Schocmaker, "A Cross Section Anatomy." The combination of the cross sections represents a human male in a specified tactical position. Every major anatomical component illustrated in the original cross section anatomy has been coded within the computer version in approximately the same proportion as found in the published version.

The associated instructions accompanying the coded cross sections within the computer model permit simulated fragment paths to be traced through the individual cross sections at various impact angles. Retardation data is provided for each of the anatomical structures and is used to determine the velocity loss within each coded compoient as a function of the distance traversed by the fragment through the individual components. Thus the penetrating ability of each fragment becomes a function of (1) striking conditions at impact upon the cross section and (2) the retarding ability of the anatomical components encountered along its path.

Retardation data for several anatomical components has been used within the Wound Ballistics program for several years. However, the data in existence is of inadequate quality for the ultimate solution to our current problem. Fortunately, a program is currently being conducted by Sturdivan and Thompson ${ }^{6}$ which should provide the necessary retardation data input to the BRL Computer Man.

Upon completion of the retardation studies, the data will be fed into the Computer Man model. Maximum distances traveled within the anatomical model will be determined as a function of several physical parameters of the impinging projectile (mass, velocity, presented area). Success or failure for each trajectory will be determined by its ability to penetrate at least each of several pre-specified distances within the human anatomy. The probability, $P(G)$, of a particular fragment-velocity combination penetrating at least each of the pre-specified distances within an anatomical subdivision will be the ratio of the total number of successes at that distance to the total number of initiated trajectories not perforating the subdivision. It should be noted that the denominator becomes the number of non-perforating trajectories rather than the total
number of trajectories originated within a subdivision. This becomes necessary because of the varying distances within the human anatomy at which perforations will be achieved by most projectiles because of the variations in tissue structures encountered along each path. In addi= tion, the geometry of the human anatomy is such that the distance avallTble for perretraton by any projectiobecomes shatier an onemoves
farther from the center of the body.
If we let P^{\prime} represent the probability of a projectile perforating the human anatomy, then ($1-\rho^{\prime}$) represents the probability that the projectile will stop within the human body. llowever, it is desired that probability figures be determined as a function of soveral distances within the non-perforating group. The probability, $P(P)$, associated with each non-perforating projectile penotrating at least each of the prespocifind dista,ces will be siven by the product of the probability of retention of the fragment within the human anatomy, ($1-P^{\prime}$), and the probability of the fragment reaching the required distance, $P(G)$.

$$
\text { Symbolically, this becomes: } P(P)=\left(1-P^{\prime}\right) \cdot P(G)
$$

There appoars to be two alternatives for considering the perforating projoctiles:
(1) It can be assumed that the penetration pattern of the nonperforating projectiles are representative of that which would have been displayed by the perforating projectiles, if the human anatomy was such that it allowed all projectiles to penetrate as decply as possible. Based on this assinption, the penetration pattern as a function of distance would he represented by $P(P)$ and the perforating projertitre paths would orly be used to condition the probability of the body retaining an impinging projectile.
(2) It can be assumed that the perforating fragmeni paths ropre. sent the upper linds of penctration and that because they do perforate, the fragments would be able to reach any desired depth within the human anatomy. Based on this assumption, the penctration pattern as a function of distance would be represented by the sum of $P(P)$ and P^{\prime}.

As of this writing it has not been decided which of the two alternatives will ide used within the proposed mendel. However, since we are aware of the writable options, it is felt hat :subsequent discussions with knoviesigeable personnel will provide insight as bo the proper approach.

Probability data of the above type will be obtained for several mindie-VGouty combimtionsw le is proposed that -regression equations be used to rojufc the moliblilty af phetrition of syectacmisstas to a physical prancer oi tho projectile. Thus, generalized equations can be developed which will provide the user with the probability of a particular projectile penetrating, a specified distance within a human as a function of its impact point on the anatomy and other relevant physical characteristics of the impinging projectile.
 COMONLEN' DURING I'I'S PATH ITIROMGII 'HM: HUMAN BODY', PeE)

If it is assumed that a projectile will impact the human target randoms, then it most be assumed that the path of the projectile through tho body will be random. Although the proposed model is designed to gold primarily, the probability of incapacitation from a single pencetracing projectile, it should be reallind that an almost infinite conbination of organs or tissues can be encountered along the path of a single wound. for this reason one mas: deal with the probability of encountering each independent anatomical. component within is given wound tract, rather than combinations of traumatized organs. The shielding effects afforded some orgills by their surroundings, combined with the orientation of the organs to specific impact angles makes the ratio of their size to tho total body aten an lanceurate measure of the probebility of encountering the orgalif.

In addition, because the geometry of most anatomical components vary as a function of their depth within the anatomy, probibjlitics of encountaring each structure must be developed as a funcijon of the obliquity angle of the impinging projectile and the targe depth within the haman body. llowover, for the purposes of this model, final probabilities will be documented as a function of penetration distance only, Several
obliquity angles will be used to determine the probability of encountering each structure as a function of its depth within the human anatomy. The final probability figures will reflect the weighted averages obtained from each of the independent analyscs. Not only will this appronch reduce the amount of bookesping involved within the project, it should also yield probabilities of encountering specific organs more representative of those expected from a truly random penetration.

The BRE Compurepachembdel wil 1 erve as the basis for the data obtained within this phase of the model. Imaginary trajectories will be traced through the coded cross sections and alloved to penetrate specific distances within the human anatomy. For each organ or tissue under consideration, a strike upon the structure within a specified distance will be recorded as a success. The probability of encountering each structure as a function of the specified distance will be the ratio of the total number of recorded successes to the total number of trajectories traced through the anatomy. The above will be documented at unit intervals for each anatomical component. The final probabilistic numbers will reflect the chances of habing encountured cach component with penetrations up to the indicated depth.

Subsequent additions to tho proposed model will provide insight on the effects of missile "bitc" on the probability of encountering components within the human anatomy. This physical phenomena considers the fact that a projectile need not actually strike a component in order to damage it. Investigations in these areas are currently underway within tho Wound Ballistics program and once these data are avallable in quantitative form, the proposed model can be modified to include this phenomena.

Subsequent acquisition of mudern anatomical cross sections reflecting the internal structure sizes of soldiers from specific military anthropometric percentiles should allow the probabilistic data generated during this subportion of the model to be generalized as a function of a physical measure of the human anatomy. No data exists of this type at the present time, therefore it is imposibible to make such generalizations or even speculate as to how the probabilities of organ encounter are expected to vary between population percentiles.

V. PROBABILITY, $P(D)$, THAT DAMAGE TO AN ANATOMICAL COMPONENT WILL PREVENT THE PERFORMANCE OF SPECIFIC BIONECHANICAL MOTIONS

Before a missile wound can be evaluated in terms of the biomechanics required to perform a given task or role, it is necessary to describe the wound in terms which can be casily related to the physiological function of the body or subsystems within the body. That is, criteria must be developed which relates the probability of producing a given damage level to performance. This must be carried out in three steps. They are:
(1) Determine criteria to be used for damage description of the anatomical components.
(2) Determine the probability that missiles from a given munition will produce a specific damage level to a particular anatomical component.
(3) Determine the probability that this damage level will result in some biomechanical decrement.

At present work is being conducted under area (1). This task is oriented towards wound description in terms which can be related to biomechanical decrement. The criteria used to describe the wound will depend on the particular tissue or tissue type encountered. For instance, injury to muscles may be described in terms of hole size, percent muscle severed, etc; injury to blood vessels may be described in terms of the rate of blood flow from the injured location. Once these criteria have been determined, step (2) can be undertaken.

Presently, there exists a data bank of wound descriptions through animal tissuc in terms of various parameters for several penetrating missiles. If, for instance, the criteria chosen is hole size, the wound data will be used to determine the distribution of,hole size as a function of the missile parameters (mass, presented area, velocity). The information combined with the distribution of missile parameters for a given munition will provide the distribution of hole size for that munition. Using the probability distribution for hole size for a given munition an expected hole size will be computed, i.e. the
expected damage level, $E(D)$. Likewise, if the criteria for damage was blood loss, a similar $E(D)$ would be computed.

This value of $E(D)$ would then be presented to a medical assessor who would subjectively determine the probability that the indicated damage level would prevent an individual from accomplishing a specific biomechanical motion.

It is recognized that this subjective input into the model pre-
 in order to quantify the effects of damage levels to various anatomical components; years and years of experimental laboratory work would be required. As of this writing litile experimental work has begun. In view of the fact that the decision made by the medical assessors will be a function of the expected damage to an anatomical component, totally independont of the physical parameters of the dmpinging projectile and made only once within the lifetime of the model. (except perhaps to improve a previous decision), it is felt that the subjectivity will be minimized as much as possible.
VI. PROBABILITY, $P(M) ;$ THAT A SPECIFIC BIOMECILANICAL MOTION WILL BE REQUIRED DURING THE PIERFORALANCE OF A SOLDİLR'S MISSION

Due to the wide variety of specialties among sorvicemen, it is almost imposisible to generallze upon the duties of active combatants. However, basic to the performance of duties associated with every specialty is tho ability of the individual to perform controlled movements or biomechanical motions. Regardiess of the traumatized anatomical components or region, a soldiers ability to function under battlefield conditions is directly related to his ability to carry out controlled movements. If an individual's wound, site is such that it does not hamper or impair his ability to make the necessary biomechanical motions, then for all practical purposes, the individual cannot be regarded as incapacitated. These controlled movements of the body may be resolved into the functioning of the following subsections:

1. Shoulder Girdle
II. Shoulder Joint
III. Elbow and Radio-Ulnar Joint
IV. Wrist and Hand
V. Pelvic Girdle and Hip Joint
2. Knee Joint
VII. Ankla and F ot
VIII. Spinal Column
IX. Thorax
I. Movement of the Shoulder Girdle:
3. Adduction - movement of the scapula medially toward the spinal column.
4. Abduction - sliding of the scapula laterally and forward along the surface of the ribs.
5. Elevation/dopression - the upward and downward motions of the whole scapula without any rotation.
6. Upward rotation - involves an upward turning of the glonoid cavity and the latoral angle in relation to the superior angle and medial border, which turn downward.
7. Downward rotation - reverse of upward rotation.
8. Foreward tilt- occurs when the inferior angle moves backward away from the rib cage.
9. Backward tilt - the inferior angle and the costal surfaco return to the surface of the rib cage.
II. Movement of the Shoulder Joint:
10. Flexion - foreward elevation of the arm.

2 Extension - return movement.
3. Abduction - sideward elevation of the arm.
4. Adduction - return movement.
5. Inward rotation - turning the humerous around its long axis so that its anterior aspect moves medially.
両
6. Outward rotation - the opposite with the anterior aspect moving laterally.

A. Elbow Joint:

1. Flexion.
2. Extension.
B. Radio-Ulnar:
i. Pronation.
3. Supination.
IV. Novements of the lirist and Hand:
A. Wrist Joint:
4. Abduction.
5. Adduction.

6. Circumduction.
7. Flexion.
8. Extension.
B. Hand:
9. Prohensile movement.
a. power grip - an object is clamped by the partly flexed fingers and palm with counter pressure applied to the thumb lying more or less in the plane of the palm.
b. precision grip - object is pinched between the fingers and the opposing thumb.
10. Nonprehensile movement - objects are manipulated by pushing or lifting.
V. Movement of the Pelvis Girdle and Hip-Joint:
A. Pelvis:
11. Forward rotation - increased inclination resulting from lumbo-sacral hyperextention.
12. Backward rotation - opposite movement.
13. lateral tilt - the lowering or raising of one iliac crest.
14. Rotation - turning about a vertical axis either to the right or left.

B. Hip-Joint:
15. Flexion - forward movement of the femur.
16. Extensinn - reverse movement.
17. Abduction - movement of one limb away from the other toward the side.
18. Adduction movement of one limb from the side towards the other.
19. Circumduction - movement of the limb in a circular manner.

- Combinc movements 1 - 4.

6. . Rotation may be outward or inward depending on which way the toes are turned.
VI. Movements of the Knce Joint:
7. Flexion.
8. Extension.
9. Inward rotation.
10. Outward rotation.
VII. Movements of the Ankle and Foot:
A. Ankle and Foot:
11. Dorsiflexion - consists of raising the foot toward the anterior surface of the leg.
12. Plantar flexion - lowering the foot so as to bring its long axis in line with that of the leg.
13. Eversion - the sole is turned laterally or outward.
14. Inversion - sole is turned medially.
B. Toes
15. F1cxion.
16. Extension.
VIII. Movements of the Spinal Columin:
A. Cervical Spine:
17. Flexion.
18. Extension.
19. Lateral flexion.
20. Rotation.
21. Thoracic and Lumbar Spines:

22. Flexion.
23. Extension.
24. Lateral flexion.
25. Rotation.
IX. Movements of the Thorax:
26. Elcvation.
27. Depression.

As can be scen from the above the possibility of a wide variety of body movements exists for every individual. However, we are concerned only with the essential or necessary movements involved in the tasks of combatants.

It is assumed that every task, regardless of its complexity, can be resolved into a serics of controlled movements of the type presented above. It is further assumed that a probabilistic figure which reflects the chances of an individual being required to perform a specific biomechanical motion during the course of lis dutics can be determined. If an individual is required to assume multiple duties, then the probabillty of his performing a specific biomechanical motion will be conditioned by the probability of his performing the duty which raquires the motion. Thus, the evaluation of a soldier's incapacitation can be related to several duties required within an overall mission.

In order to obtain the desired probabilitics, one must be knowledgeable of the specific dutios required of today's soldier. In addition, these duties must be analyzed from the kinesiologist point of view in order to reduce them to the series of independent biomechanical motions required for probabilistic analysis.

Once the duties have been reduced to a series of colltrolled movements, two altermatives for determining the probability, $P(M)$, that a specific biomechanical motion will be required during the performance of a soldicr's dutics or mission appear to exist. The first assumes that each motion is independent of time and that every motion involved within a specific task requires the same percentage of the soldier's time. This docs not eliminate the possibility of repetitions of the same
movement within a given task. Repetitions are accounted for by including each repetition as a separate component of the total sum of movements involved. The probability. $P(M)$, of a particular motion being required within the task will be the ratio of the total repetitions of the movement within the task to the total number of independent movements involved.

The second approach considers the total time required by the combatant to perform his duties as the unit and the probability, $P(M)$, is determined by the functional part of the total aliocated to each independent motion.

Each of the two approaches has advantages and disadvantages obvious to the authors at this point. However, suffice it to say that the merits of either approach will be discussed in detail with the experts on the subject prior to deciding which approach is most feasible. It appears that either of the alternatives will yield probabilistic data of the type required for input into the model. Therefore, no serious problems appear to exist.

VII, SUNMARY

A mathematical model for assessing the probability of human incapacitation from a penetrating missile wound has been proposed. The model assumes that several probabilistic events must occur, sequentially, in order to cause incapacitation to a tactical soldier. Amons these events are (1) the soldier must be hit, (2) the impacting projectile must penetrate deep enough into the human anatomy to strike a critical anatomical component, (3) the anatomical component must be damaged to the extent that its physiological function is impaired, and (4) the dysfunction of the component must be directly related to the soldier's ability to perform specific biomechanical motions required for the performance of the soldier's task.

An approach has been given for obtaining the necessary experimental data needed to relate each of the above events in a probabilistic manner. In addition, the assumptions and anatomical equations used within the model have been detailed.

Best Available Copy

RIFIERBCES

3. T. F. Sterne, "A Provisional Casualty Critorion," latlistic Roscarch Laboratories Technicill Kote No. 370, ilarblab7.
4. F. Allen and J. Sperrazza, "New Casualty Critcria for Wounding. By Fragments," Ballistie Rescarch labodatories Rejort io. 99G, Octolior 1956.
5. T. E. Sterne, "Provisional (ritoria for latal or sucre lioumlina By Frapments," Ballistic Koscarch Lahoratorjes :iomrandun Report -No. 5!l, Fobruary 1952.
 Computer," Ballistic Research. laboratoric: keport Au. 1623 , January lew5.
7. L. Sturdivan, J. 'Thompson, J. Termer, "A Parametrie spudy of
 Lonference, April 1969.

LIST OF ATTENDEES

Walter T. Federer, University of Wisconsin MRC, Madison, Wisconsin Lewis S. Fichter, Picatinny Arsena1, Dover, Mew Jczecy
Thomas O, Fihley, Forc Ord, California
Walter D. Foster, Fort Detrick, Maryland
Fred Prishman, Office, Chief of Rasearch and Development, Washington, D.C.
A. S. Galbraith, Army Research Office-Durham, North Carolina

Sidney Gerard, Aberdeen Proving Ground, Maryland
Jolin P. Gibbons, Redstone Arsenal, Alabame
Tom Gill, University of Alabama, Tuscalioosa, Alabama
Dieter Grau, NASA, Huntiville, Alabama
Bruce C: Gray, Fort Detrilk, Maryland
Frank E, Grübbs, Aberdeen Proviag Ground, Maryland
William V. Gudaitis, Redstone Arsenal, Alabama
John Gurland, MRC, Univarsity of. Wirconsin, Madison, Wisconsin
Bernard S. Gurman, Fort Monmouth, New Jeraey
William B. Harrell, NASA, Hunteville, Alabama
John S. Hagan, Aberdeen Proving Ground, Maryland
Bernard Harris, MRC, University of Wisconsin, Madison, Wisconsin
Boyd Harshbarger, Virginia Polytechnic Institute, Blackaburg, Virginia
Gary Hitchcock, Radetone Arsenal, Alabama
Earl G. Hoard, MASA, Huntaville, Alabama
Chester L. Kopkine, Redstone Arsenal, Alabama
John W. Howerton, Radetone Areanal, Alabama
David R. Howas, STAG; Bachesda, Maryland
E'dmund Hi Intelmanin, U. S. Army Material Comand, Warhington, D. C. Jack Irwin; Redetone, Atsenal, Alabama
Gerhard J. Isaac, Fitzsimons General Hompital, Denver, Colorado
Robert F. Jamer), Redatone Arsenal, Alabmana
William R. James, Coastal Engineering Research Contar, Washington, D. C. .
Toke Jayachandran, Fort Ord, Callfornia
Emil H. Jaba, Willow Run Laboratory, Willow Run, Michigun
Andrew H. Jenkins, Redetone Arserial, Alabama
Jerome R. Johnson, Aberdean Proving Ground, Maryland
Larry H. Johnson, Redatone Arsanal, Alabame
Wallace E. Jordan, NASA, Hunteville, Alabama
George L. Kinnect, Army Aviation Material Labs, Fort Eustis, Virginia
Baymond V. Knox, Redstone Armenal, Alabama
Richard Krinsky, Univarsity of Alabama, University, Alabama
Kichard G. Krutchkoif, Virginia Polytachnic Institute, Blackaburg, Virgiaia
Harry H. Ku, National Burmau of standards, Waahington, D. C.
William A. Lampe, Redetone Arsenel, Alabama
Raymond E. Lacy, Fort Monmouth, Now Jersey
George I. Lavin, Aberdeen Proving Ground, Maryland
Patrick B. Lawler, Jr., Redetone Arsonal, Maryland
Slegiried H. Lehnigk, Radstone Arsenal, Alabama
George A. Lineberry, Redatone Arsenal, Alabama
Joseph Lovinger, Rohm and Haas Company, Huntevilla, Alabama
H. L. Lucas, North Carolina Stata Univarsity, Ralaigh, North Carolina

Bob B. Lukens, University of Alabame, Hunteville, Alabama

Clifford J. Maloney, National Lnatitute of Health, Bethesda, Maryland *
Nancy R. Mann, North American Rockwell Corporation, Canoga Park, Calfifornia
Nathan Mantel, National Cancer Inwtitute, Bethenda, Maryland
Stanley M. Martin, National Comunicable Disaasa Center, Arlanta, Georgia
John L. McDaniel, Redstone Arsenal, Alabama
Caludia K. McDonald, Redstone Arsenal, Alabema
Willian B, McIntoah, Aberdeen Proving Ground, Meryland
Ray Li, Miller, Jri, Shm Atr Yorce Batio, South Carolina
Jamen No MEACli, Safeguatd Logietice Commad, Hunteville, Alubama
James R. Moore, Abordean Proving Ground, Maryiand
Oskar Morgenstern, MATHBMATICA, Princeton; New Jersey
Jacquas Naar, Stanford Research Instituta, Manlo Park, California
William Nichols, Redstone Arsenal, Alabama
Henry Nocke, SPACO, Inc., Huntevilia; Alabame
William H. Nuckols, III, Redstone Arsenal, Alabama
Richard L. Nutt, Radotone Arsenal, Alabama
Robart R, Ory, Radatone Arsenal, Alabama
Barnard Ostle, Florida Technologícil University, Orlando, Florida
Tasty Paugarovan Radetone Arsenal, Alabama
Albert Parent, Thipkol Chemical Corp., Huntoville, Alabame
Gane B. Parriah, Army Rasearch Office-Durham, North Carolina
R. H. Reterson, Aberden Eroving Oround, Maryland

Charles A. Pollerd, Jr,, Radetore Arsomal, Alabama
Nayon Powell, Redstone Arsenal, Alabama
Aurey' Presson, 'Redeton Arsenal, Alabama
Robert C. Raybold, National Bureau of Standards, Wahington, D. C.
Varnon H. Rechmayer, Thiokol Chamicel Corp., Hunteville, Alabuma
Nancy R. Rich; Radetone Areenal, Alabama
B. A: Richardion, Canndian Forcen Headquartars; Otema, Ontario, Cadada

Carol D. Rose, Army Tank Automotive Command, Warran, Michigan
Don Royaton, Thiokol Chemicel Curp., Huntevijile, Alabama
Doyce satterfield, Redstone Areenal, Alabama
Sam C. Saundara, Boaing Scientific Res, Lab., Spattie; Warhington
Raymond B, Schnell, Army Materiel Cormand, Wahington, D, C.
George Schroater, Aberduan Proving Ground, Mary land
Gordon Sattarland, Boeing Company, Huntaville, Alabama
Harold C. Sabring, STANO Syitame Office, Warhington, D. C.
Saymour M. Selis, Dapartmant of the Navy, Washington, D. C.
R. E. Shannon, Univaraity of Alabama, Huntaville, Alabama

Chester E. Sharp, Fort Monmouth, New Jersey
Ralph 8imanson, Redstone Areenal, Alabara
Lesile E. Simon, USA Ret, Wintar Park, Florida
nrval E. Smith, NASA, Huntaville, Alabam:
Royce Wi Soanes, Watervliat Armenal, Now York
Earl B. Stevart, Redetone Aranal, Alabama
R. G. Stimen, Dapartmant of the Army, Washington, D. C.

Glenn A. Stoops, Fort Ord, California
Jaman F. Strwakiand, Jr., Abardean Provint Ground, Maryland

Donald H. Striatzel, Safeguard 8yatea Comand, Hunteville, Alabama William C., Tayler, Aherdecz Proviaie Gxumad, hiaryland Jerry Thomas, Aberdeon Proving Ground, Maryland
R. M. Thrall, dice Univeraity, Howston, Texae

Myrna Toivanen, Honeywe11, Ince. Mineiapolis, Mina:
Josaph Weinstein, Fort Homeouth, Kew Jersey .
Burchard, E. Whantley, The Boeing Company, Hunteville, Alubana
Robert D, Hilliane, Stanfosd Reseerch Inetitute, Monio Park, California Ronslie C. Woodall; Elarty Diamoud Laboratarlee, Wahingeon, D. C. W. J. Youdm, Wational gurean of Standards, Weblisteon, D. C. .

Unclanstfied

DCCMENT CCWTROL DATA R RID	
U. S. Atwy Rasarch office-Durham	mongront secuni fr etabiticatiom
Boz cie puke seation	Henelapetitiod
	5. dnour
Duthe, Morth Carolina 27706	N/A

Interls Tadnaied deport

IH. Whypint
 of Epprimante If Army Research, Developmant and Tasting, It containe 35 papere promented nt that meoting. These treat various Army atatistical and design problat.
14. KH2 NORD:
roliability
performace cap/ability
eatimetion of variance
quality control
etatistical models Multiple triangulation Intarlaboratory atudies Bageaian confldence bounds recl-time aimulation continyous semplins weapone effectivenens alr defanse ayatad
manpower planning disconnected blork dasigns
dasign of fiald tasts
intrasonic wavea
least equaras
aneay proceduras
linear programing catastrophic threat empirical Bayes mathods man-machine performance orthogoral latin squares confidence limits

[^0]: A fifth foundation for the concept of probability underlies, if somewhat subconsciously, most work on curve fitting and indeed comes close to formal enunciation especially in the older lease squares literature. Here every value of every quantitative property is assumed to be precisely determined, but as a function of a literally infinite number of independent or predictor variables, say

[^1]: befure the observation period.
 after the observation period.

[^2]: $\because:$ aill Clati decided that the enemy build-up dictated a :.. i...inatve tactics (267)
 :-: Yobruary "keeping the enemy off balance" was aforlorn hope (267) Wי disappointed but there is no milltary reason why they

[^3]: $\therefore i^{-i}$ tte apprival at President A. Ross Eckler ot the Amer lean

[^4]: The remainder of this article has been reproduced photographically from the authors' manuscript.

[^5]:
 sabbatical leav. 1909-70).
 t
 Assistant Professor, Cornell Universit;
 3
 Professor Mathematics, Universit: : Hllmui; , thi: Visithaj :rofassor, armell University ljuly. 19691 .
 4 Associate Professor, University of Unalem ani Visiting sissciate Protossur, Cornell Universit; IJanuary to August. 1'ri41. 5

 Professor, Michigan State Universit: . a: 1 Visithiq iruit sis: , ijurnell Untversity (June, July, August, 1909).
 6) Mạthematician, Raytheon Corpunatio: drid Visitia; frute.sc: . Qirnell Untversity (July, 191,9).

[^6]: Gwemoript num raz: rofer to reforence.

