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1o

Discase Sever:ity iIndex

Clifford J. Malonev
Mational Institutes of Health
Bethesda, Maryiand

I. Intro

ction: Numerous verms of everyday life--severely ill,
critical l1ist, mild indispositinn and the like--deronstrate that
gickness is nct a uniform condition bhut cocurs over a broad range of
severity. More recently workers studying several diseases, especizlly
ithe several forms cf cancer, nave davised severity classifications using
the term "dicease staging" to facilitete both research on the disease

and ihe.choice and evaluation of treatment for particular patients.

Sc far these scales are wholly based on ad hoc procedures, allocaticn
of particuier patients to scale level (steges and sub-stages) are ar-
bitrary and not always agread on and, as yet, only limited categorization
of patients and only a limited portion of the data available for a
particuiar patient are utilized.

Beginning abcut twenty years ago the present writer developed a
mathematical model. whose purpose was to make possible estimates of a
mortality dose response relation based on morbidity trials and public
health statistics. 1In (7) this mocel was extended to provide an illness
severity index. The actual experiment treated in that paper did not
require the probability model (there called Case IIT) so that a subseguent
cearch was made for data cultable for a test of that situation. Data were

Jocated on metastatic cancer patients which appeared suiteble and it is
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these data which are discussed here. However, this paper does not
pretend in any sense to make a contribution to the study of cancer

per se end the data are only used to reduce the theory to a convenient
computational routine and to serve as a vehicle for the explanation of
the rationale of the proceaure. The author is of course grateful to

the participating hospitals for permission to use the data and to

Dr. Sidney Cutler, National Cancer Institute, for making them available.
I am particularly indebted to the late Mr. George Kennedy for collaboration
and inspiration in the work since its inception. Witlout his prodding,
the current application would never have occurred. Mr. Sidney S. Spindel
developed tﬁe program DISSEV explained in the appendix and performed most
of the calculations arising in the study.

-1II. Theory of Measurement: The development of an abstract theory

of mensuration seems to have begun with Hermann von Helmholz (5) in 1887.
His work was in essence a formalization of the properties of a measurement
procedure taken for granted in philosophical discussion and in everyday
life since antiquity. Since antiquity also, two extreme attitudes towards
the role of measurement and number in nature, or at least in man's under—
standing of nature have contended for domination. Pythagoras held that
all is--or at least is comprehensible as--number; whereas Aristotle held
that quality and quantity belonged to absolutely different categories (4).
This alternative search for understanding, on the one hand by decompo-

sition of current elements into more fundamental constituents and/or
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properties and, on the cther, by substitution for currently rccognized or
to be discovered phencrmena of structured assemblages of yet other
curreiitly recognized components continues to this day. It appears that,
so far, neither approach has exclusively won the laurels.

This purely philosphical problem did not directly lead to any
prefound analysis of measuremsnt despite vigorous application of measure-
ment everywhere throughout the Middle Ages (a form of application which
included among other things forms of nunerology now experiencing a
vigorous revival) and despite the fact that the rise of modern science
is ail but universally agreed to owe much to progress in mensuration,
if not indeed, to consist largely of measurement, per se. As thevééveral
social Séiences developed, various special problems of measurement arose.
It is curious that a psychologist (12) may have been the first to have
extended an abstract approach to all forms of measurement though
Campbell (2) in 1920 treated scaling, as opposed to von Helmholz's
treatment of additive measurement. A comprehensive overview of the entire
field has recently appeared (6).Table I is a slight adaptation of Table T
of Stevens (11). The last line is taken from Suppes (13). It seems never
to have previocusly been noticed that applied probability constitutes the
construction of a fixed scale (in the sense of Table I) for categories
from a nominal scale for individuals. The scale is, of course, fixed only
as to its extremes, as probabilities can be expressed as per cents and

vice versa.
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Menger {9) has called attention to the possibility, desirability,
and rrobable benefits of an anaiysis of those "formal aszpects of
mensuration that are snared by the application of other mathematical
ideas (especially of functions and operators) to other phases of
reality." A formal mathematical treatment of mensuration is given by
Blakers (1).

ITIL. Probability: The theory of probability supplies a rationale

by which, given an assemblage of observations on a nominal scale, a
single value of a fixed scale can be derived. Tor Hahy purposes this
constitutes an advantage. In the example to be discussed below, a
cancer patient may or may not exhibit metastasis to a particular organ
system.  Knowledge of this fact aids the physician in determining how
sick his patient is, which sickness level in turn determines in part

his choice of treatment. It is customnary to allocate cancer patients

to one 5f four "stages" of an ordinal scale. The current technigue

was applied to a limited set of available data to derive a fixed (proba-

bility) scale in terms of presence or absence of metastasis to each of
seven organ systems: bone, B; nodes, Nj skin, S; lungs, L; pleural
cavity, P; liver, V; central nervous system, C. Since any patient showing
etastasis is allocated to Stage IV of the conventional scale all our

distinctions arc subdivisions of that stage.
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Table I35 is a four-fold table clascifying the four possible

situations in which binzmial probabilitics apply. In a situation in

which the population probabilitics are known, or derived Irom some
mathematical model, cne is in a positlon to deduce The mumber of
successes and failures which are to be expected in a given nuarber of
trials. This is true whether o not the probabilities are constant
from trial to trial or whether they vary so long as they arc known.

" In case the probabilities

These two situations are called "direct.
are Jnown to be constant from trial o trial but the nunerical velue
is unknown,  then an actual experiment will reveal the nunlor of
successes and failures and these numbers can be used to obtain an
estimate of 1he fixed but unknown population probability. These three
situations are classic. The fourth is the subject of this paper.
Before proceeding it will be necessary to introduce a further classic

statistical technique.

IV. Quantal Rerression: Figure (1) illustrates a statistical

estimation problem which arises so frequently in a biological context
that it is often called bicassay even when the application is to
another field such as strength of armour plate, breaking strength of
thread or any situation subject to a variable but known stress or
defense against stress and outcome can be viewed as success or failure.
While again multinomial outcomes are equally permissible this paper

treats directly only binomial outcomes.
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If a group of individuals are subject to no stress, then none
will respond and the response per cent will be zero. However, as the
stress level is raised, a greater and greater per cent of individuals
will be affected until all respond. Per cent response is thus a
monotene function of level of stress. Innumerable complications are
possible, such as individuals which yield a response even in the total
absence of stress. Placebo treatments are often used to adjust for
this influence. Some stresses are such that some individuals are immume ,
so-called non-responders. All such complications are neglected in this
paper though presumably to handle them would only complicate the analysis
and the arithmetic in well-known ways. With-or-without the complications,
any monotone relation between the variables plotted on the two axes
(whether stress and per cent response or any other) can be transformed
to a straight line.

To know that a relation between two variables is a straight line
does not however completely characterize the relation. To do so
requires that the slope and the intercebt of the line be known. A full
discussion of the many complications andrphysical interpretations arising
are beyond the scope of this paper. How the slope and intercepts are
determined for the application of this paper will be described in
Section VI and full computing details are given in the appendix.

' Since the relation between the physically defined treatment of the

nbscissa and the per cent responce, transformed or untransformed, on the
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ordinate is biunique, if a value cn either axis is known, then the
functicnal relation can be used to ascertain the corresponding value
on the other axis. Thus by observing the mumber of animals, incects,
cells, or tissue cultures which succurb to a certain treatment the
strength of a chemical or drug can be mcasured. Because of the
extrene sensitivity and high specificity of biological systems such
measurerents can be used at extremely high dilutions and for substances
not yet characterized chemically.

1f now, two such relations are plotted on the same axis, as is
indeed done in Figure (1) then one of two situations necessarily occurs.
Tither the two curves (or several if three or more treatment-response
curves are involved) have one or more points in common or they do not.
The physical as opposed to the mathematical significance of intersecting
dose respense curves is that whereas one of the two or more responses
is nore frequently elicited at low stresses, (one of) the other(s) is
more frequent at higher. This is simply in general implausible. Were it
desirable to allow for this possibility it could in principle be done
though data adequate for the simpler model (where none of the lines cross)
is not easily available. When, next, a set of non-intersecting monotone
relations are transformed into infinite straight lines the set of curves

becomes a set of an equal number of parallel straight lines, Figure (2).
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In theorv wa would have to know the functional form of the separate
monotone functions appropriate to the abscissa and to the ordinate. In
practice adequate data to wesmbigucusly diseriminate between the many
closely similar candidates is never available and of little practical
significance. Cholce between the popular candidate metameters is a
question of taste and is no different in the context of this paper than
in the context of standard bicassay. I will speak of probits but others
may substitute logits or whatever modification is desired.

Referring again to that cell in Table II where the probability
varies irom trial to trial and is in all cases unknown it is clear that
if these probabilities are entirely unrelated then no series of ohser-
vations however extensive can determine them since each observation
introduces a new and unknown value unrelated to all past and all future
observations. However, if it can be assumed that the (population)
probabilities for every observation are related to each other in such a
way that they fall on the system of straight lines of Pigure (2) then a
solution may in fact be available given sufficient data. A further basic
requirement is that trial outcomes fall into sets, all members of each
set being related in that all share a common value of the independent
variable. In Figure (2) this is illustrated by the vertical line at s.

A given paltient will fall at a single point on the sickness scale, though
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he may exhibit any conbination of presences and absences of the n
symptoms.  The slope of the set of lines, ecach representing a
particular site of metastasis, is chosen as 0.1 cince it is at our
disposal and doing so yields convenient two-digit values of the
illness index (sicknese scored.

V. Individual Sickness Score: In Section IV it was explained

that a plausible dose response model applicable to severity of illness
and possibly also in other contexts including certaln problems in
pollution research consists of a relation between degree of illness
measured by a sickness score, s, and the probability of occurrence of
one or more all-or-none symptloms, signg, or laboratory findings. From
now on T will speak entirely in terms of the one application so fér
made which was to the {inding of metastasis in certain of seven organ
systems in each of 908 breast cancer patients. I am grateful to the
participating hospitals for making their records available for this
study. This application is made purely to illustrate a statistical
technique and its usefulness in cancer research will require much
furthcr study.

To detormine how ill a given cancer patient is by this technigue
it ic necessary to have available the equation of each of the lires cf

Figure (2). Iow, on the basis of records of cascs of the diseass these
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equations can be derived will be the subject of the next Secticn.
In this Section knowledge of these equations will be assumed.

It must be admitted at once that the sickness scores are not
determined with high precision since the number of syirptoms (in our
case the number of organ systems exanined for mrtastasis) ds
essentially the samplé size. In turn, however, since the technique
effectively summarizes all the metastasis observations into a single
figure, there is no handicep in much more thorough examinations for
and much more detail in recording observations--and every incentive to
do so long as precision of diagnosis is sharpened thereby.

A detailed discussion of the considerations in the choice and
definition of an illness index or sickness score is presented in (1).
In essence it amounts to the fact that the relation between each

symptom separately and the index is a bioassay equation
Y. = a. + bs (1
i i

where the intercepts a, vary with the symptom under consideration and the
slope, b, is common to all.

The sickness score, s, characterizes a specific level of disease
severity. Tor a fixed s, the set of equations (1) determines the proba-
bility of a patient at that level of disease manifesting each of the n

relevant symptoms. Since we are devising a new scale, the slope b can
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be arbitrarily given any convenient value. The value 0.1 results in a
scorz of zerc for perfect health (Y = 0) and 100 for a maximal score
when Y = 10 for that one symptom whose intercept a; is zero. Again the
sidkness scores will be centered around 50 if the value a, = o is
arbitrarily assigned to a symptomn of average frequency, in our example
metastasis to the lungs.

If the characteristic function % is chosen as unity if a par-
ticular patient exhibits the symptom i (metastasis to site i in our
illustration) and zero if that organ system is free of metastasis, then
the likelihood function for that particular combination of symptoms

becomes
L=1P % (1-p.)™i (2)
i i

Fach Pi is a function of Yi which, in turn is a function of s by means

of equations (1). There is therefore just one maximum likelihood

R I= S A B R (3)
ds 7 7 P. 1-P./4dY.
a i i i

Because of the quantities dPi/dYi equation (3) is best solved by trial

equation:

and error. A detailed example is given in the appendix.
In practice however this solution would be done in advance by

computer for all possible symptom combinations and supplied in a table.
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Inowr exunple of soven motactalic sitos only 128 dificrent values of
are possible.  Use of the mothod in modicnl practice then would consist
of a single taple Jook up.

Gain to the physician would occur in two ways. Flrst the balancing

cil of netustasis to cortain sites and its absence in others woulc

be

objectively performed, relieving the attending pnysician of attempting to
do so intuitively, particularly for the roror conbinatlions, aid it would
be based cn all available data @xd not cnly on his cwn personal practice.
Seconi, ocowrrence of rarve conbinations would be shorn of any enignatic
character and reduccd to the value of a familiar paramstcr—-the sickness
index, s. This latter benefit to the phveician could wall outvieigh the

former in his atterpt to rationallv evaluate the condition of his patient.

VI. Construction of the Siclnese Score:  Seotion V describes how a

particular set of symptoms may be used to assign a sickness score to a
particular patient. Before this can be done it is necessary to krow the
alue cf the a; in eguations (1). This can only be done on the basis of
accunnlated experience.  In the cwrrent example, records of 908 patients
wore available. Because the model being fitted to the data assumes that
metastases 1o the several organ systens are ordered in a fixed order irre—
spective of the illness of the patient (a deduction from the parallelism
of equaticne (1)) that order is given Ly the combined frequency over all

records. 1t is: bone, 468; nodes, 4083 skin, 230; lungs, 2165 pleura, 179;

liver, §7; end centrel nervous system, 35. Furthermore the per cent of 908
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the true population por cont occurrence {or a patient of sickness index = 50.
Using those values @ fircl estinate of each ay in equations (1) is available.
From these 1he records of each of 1he 908 patients can be used to calculate
a preliminacy cstimate of illnesz for each patient. Next these 908 sickness
scores cen be usced together wilh the observed per cent responses for each
metastatic site--independently but with a common slope of 0.1--to calculate
inproved values of the intercepts ;. A1l steps are done by camuter and
convergs rapidly to stable values. Full details ere givén in the appendix.

VII. Check of thc llodel: An intuitive measwre of level of 1llness

is affordedl by the duration of life remaining. In the case of metastatic
breast cancer patientis this period is conveniently measured in months,
though in individual cases, patients may live for many years. Of course,
this index is useless as a guide to treatment, but if a forecast of months
of life remaining is made on the basis of a sickness score derived from
evtent of metastasis this forecast could indeed be useful. Post examination
survival was available for 829 of the 908 patients used in deriving the
index. Wnile of course it would be desirable to apply the derived index
to new metastatic cancer patients, a check based on survival of the same
patients used to derive the index should be of some value since no use
whatever was made of the survival information in forming the index.

There were 67 classes of patients within which all patients (ranging
from cne to 169) had metastasis to one or more sites but not to all, and

[ A - [ - L D S~ s . e LT, TR g ~ Lo R
here ths gitos wore id-ntical for =11 natieonts within the one class.  These
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patients differed widely in a number of other respects, such as grade
of tumor, age, post menstrual age, and so on. Again the duration of
post examiration survival also differed widely within some classes but
as the index depends on the pattern of metastasis, and the pattern of
metastasis only, the logarithm of the geometric mean of the survival
times in months for each class was fitted by weighted least squares with
the sickness score, s, as abscissa. The observed and fitted values are
given in detail in Table III and the results are plotted in Figure (3).

At first sight there appears to be a wide scatter about the line.
However, if ‘one notices the small numbers attached to each of the
observed points which are the numbers of patients with those particular
patterns of metastasis he will see that no point based on an appreciable
number of patients departs widely from the line. The points of Figure (3)
are given by the sickness score and logarithm of mean survival time. The
larger classes mask a considerable range of variation between patients
all showing metastasis to exactly the same organ systems. It is a postu-
late of the model that these variations are to be accounted for by other
factors and not by the pattern of metastasis. Further that the wide
departure from the line shown by many patterns of one, two, or three
patients cnly are to be explained by the fact that these other factors
had no chance to average out in such small samples.

For critical examination reference should be made to Table III.

The word "pattern" designates the combination of organ systems in which
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metastases ware found. The specific locations are indicated in the second

colum. It is most important to realize that the “sickness scores" of

colum three depend exclusively on these patterns and on the patient counts

in colum four, and not at all on the observed log survival times of

colum five. The last column (seven) is the squared difference between

the observed log survival time in colﬁmn five and the value determined

by the model in column six multiplied by the patient count in column four.
The internal mean square, 0.182, based on 762 degrees of freedom is

a measure of the scatter between survival times of all patients showing

the sams pattern of metastasis. A Bartlett's Test of the 67 patterns

which actually occurred showed that these variations are very homogeneous.
The residual mean square, 0.293, based on 65 degrees of freedom is

a measure of how well the sét of 67 logarithms of geometric mean survival

times is accounted for by a linear regression on sickness score. Since

the F of 1.61 is highly significant it appears that af least some variation

may be due to other factors, though a parabolic relation appears unlikely.

The disproportionate contributions to the residual mean squares arise from

patterns number 2, 6, 14, 49, and 63. It is easy to dismiss the latter two

as outliers since they are based on two and three patients respectively.

That metastasis to the lymph nodes is less life threatening and to liver

more so than most sites is perhaps in conformity with clinical experience.

The unexpected longevity of patients with metastasis to both skin and nodes

is at least favorable. My reascn for this last discussion is only to
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illustrate how a disease severity index, like any mathematical model,
can crganize a body of data and suggest problems requiring further study

by its failures quite as much as solve problems by its successes._
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TABLE T

Properties of Types of Scales

Type of Empirical Permissible | Central
Scale Operation Trensformation Tendency
Nominal permiting equivalence Mode
Ordinal ordering monotonic Maedian
Interval differencing affine Arith. Mean
Ratio dividing similarity Geom. Mean
Harmonie Mean
Fixed none identity Per Cent
i ——
+ S ~ * :
adapted from Blakers (1) adapted from Stevens (4)
taken from Suppes (5).

Types of Situations

TABLE TI1

in which Binomial Estimation Applies

1
Nature Estimation Situation
of
Probability Direct Indirect
Constant Np r/n
Variable ZPi ?
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TABLE IIT

Regression of lLog Survival on Sickness Score

PATTERN SYM. PAT.#*#* SICKNESS PATIENT  1OG SURVIVAL TIME SQUARED
NUMBER BNSLPVC SCORE COUNT OBS. CALC. RESIDUAL
1 1000000 38 169 1.19 1.18 0.0169
2 0100000 39 85 1.27 1.16 1.0285
3 0001000 39 43 1.18 1.16 0.0172
b 0010000 40 21 1.20 1.14 0.0756
5 0000100 40 30 1.20 1.14 0.1080
6 0000010 41 ' 12 0.71 1.12 2.0172
7 0000001 43 8 0.85 1.08 0.4232
8 1000100 b5 20 1.11 1.03 0.1280
9 11000600 45 59 1.04 1.03 0.0059
10 0110000 45 51 1.07 1.03 0.0816
11 1001000 45 13 1.09 1.03 0.0684
12 00011.00 45 22 1.06 1.03 0.0088
13 0101000 45 23 0.90 1.03 0.3887
1n 1010000 45 27 1.24 1.08 1.1907
15 0010100 45 9 0.82 1.03 0.3969
16 01.00100 45 13 0.84 1.03 0.4693
17 0011000 15 10 1.21 1.03 0.3240
18 ' 0000110 46 1 0.95 1.01 0.0036
19 0100010 46 17 0.77 1.01 0.9732
20 0001010 46 3 0.69 1.01 0.3072
21 1000010 46 16 0.95 1.01 0.0576
22 1000001 17 6 1.02 0.99 0.0054
23 0001001 L7 2 1.08 0.99 0.0200
24 0100001 n7 3 0.46 0.99 0.8427
25 1011006 49 L 0.98 0.95 0.0036
26 0101100 49 5 g0.70 0.95 0.3125
27 0110100 49 13 0.74 0.95 0.5733
28 0111000 49 11 1.15 0.95 0. 4400
29 1001100 49 9 0.74 0.95 0.3969
30 0011100 49 2 0.89 0.95 0.0072
31 1010100 49 3 0.82 0.95 0.0507
32 1010010 50 2 1.22 0.93 0.1682
33 0011010 50 1 0.85 0.93 0.0064
34 0001110 50 2 0.73 0.93 0.0800

For explanation see text.

o0 LA, T CyTL D T
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3
= central nervous systen.

P = pleura, V =
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TABLE IT1 (Continued)

PATTERN SYM. PAT,#* STCKNLSS PATITNT 1.0G SURVIVAL TIME SQUARED

NUMBER BNSLPVC SCORE COURT OBS. CALC. RESTIDUAL
35 1100100 50 11 0.92 0.93 0.0011
36 1101000 50 11 0.81 0.93 0.1584
37 0101010 50 2 0.80 0.93 0.0338
38 0110010 50 5 0.65 0.83 0.3920
39 1100010 50 4 0.64 0.93 0.3364
40 1000110 50 2 0.50 0.93 0.3698
b1 11100600 50 25 - 0.92 0.93 0.0025
42 0100110 50 1 0.30 0.93 0.3969
43 1100001 51 2 C.94 0.91 0.0018
Ly 0101001 51 2 0.63 0.91 0.1568
45 1000011 51 1 0.78 0.91 0.0169
46 1001001 51 1 0.30 0.91 0.3721
47 0111100 53 S 0.96 0.86 0.0500
48 1101100 54 2 1.24 0. 84 0.3200
49 1011100 54 2 1.66 0.84 1.3448
50 1110010 S 3 0. 74 0.84 0.0300
51 1101010 54 1 0.85 0.84 0.0001
52 1001101 54 1 1.04 0. 84 0.0400
53 0111010 54 1 0.70 0.84 0.0196
54 1110100 54 2 1.00 0. 84 0.0512
55 1111000 S4 9 0.90 0. 84 0.0324
56 1100110 54 1 0.00 0.84 0.7056
57 1100011 55 1 1.20 0.82 0.144y
58 . 1110001 55 1 0.60 0.82 0.0h8Y4
59 1111610 59 1 0.70 0. 74 0.0016
60 1101101 59 1 1.04 0.74 0.0900
61 1110011 59 1 1.11 Q.74 0.1369
62 1110110 59 2 0.57 0.74 0.0578
62 1111100 59 3 1.48 0.74 1.6428
64 1101110 59 1 0.00 0.74 0.5476
65 1110111 64 1 0.85 0.63 0.0u84
66 1111101 65 1 0.00 0.61 0.3721
67 1111110 66 1 1.26 0.59 0.4489
Res. M.S = 0.293 64 d.f. F=1.61 r = —92.63
Int. M.S. = 0.182 762 d.f. P < (.02

lymph nodes, S = skin, L = lungs,

*% B = bone, N

P = pleura, V = liver, C = central nervous system.
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LOGARITHM OF MEAN SURVIVAL IN MONTHS
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Appendix

This appendix gives full computing details for constructing and using
the multiple attribute index described in the main text. Tamiliarity with
that discussion will be assumzd below. To calculate the index for a given
patient requires that estimates of the parameters a; and b of equations (1)
be known. This can only be done if a fairly large body of data be
available from hospital records or otherwise. In estimating the valuzs of
the ay and b from this large body of data the calculations nceded to
determine the sickness index, s, must be performed repeatedly for every
patient involved. Accordingly, this calculation will not be separatcly
described but included in the full discussion of estimating the a; and b.

Table I of this Appendix lists the seven meilastatic sites in order
of frequency of cccurrence in 908 breast cancer patients, irrespective of
presence or absence of metastasis in any other site. It will be seon
that metastasis is most often found in bone and least often in the central
nervous system. The observed per cent incidence of metastasis by site in
these 908 patients is given in column five. It is interesting to note
that the most sensitive site, bone, is attacked only slightly more often
than missed in equally severely i1l breast cancer patients. In column six,
per cent responses are converted to probits. Column seven is obtained
from column six by subtracting the entry for lung from each entry of the
colum. The rationale for this step is as follows: In devising a scale
for a previously unquantified concept we are free to choose arbitrarily and

independently two features of the scale; the interval between successive

=537~



scale values and the origin of the scale. By setting the adjusted probit
for lung equal to zero we are choosing a scale origin such that one half
of patients with the mid-scale level of illness severity will show
metastasis to the lung. Of course, a far greater per cent will have bone,
lyimh node, and skin metastasis, and fewer will have metastasis to the
pleural cavity, the liver, or the central nervous system. Again, the
coefficient of the sickness is arbitrarily chosen equal to 0.1 so that

as the sickness index, s, ranges from 0 to 100, the probit of the per-
centage of breast cancer patients, all equally ill, which show metastasis
to the lungs will range from 0 to 10, and those whose lungs are equally
likely to and not to show metastasis is 50%.

If the probit equations in the last column of Table I were popu-
lation estimates, then the sickness severity index for any given pattern
of presences and absences of metastasis in the seven sites studied could
be ascertained by finding, by trial and error, that value of s that
maximizes the likelihood of the given symptom pattern. Since with seven
symptoms there are at most 128 patterns these values would be calculated
once and for all and tabled for clinical use. Of course, the physician
would perform no calculation--and at most a single look up. 1 believe
however his realization that rare and "bizarre'" patterns of breast cancer
metastasis are not enigmatic, but on the contrary to be expected with a
prescribable frequency coula well be a more useful service than the pro-

vision of a numerical illness index.
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Since the equations in the last line of Table I are not absolute
but on the contrary highly provisional, of course we can do no better
than to accept the data at face value and cstimate parameter values by
successive approximations. The procedure is illustrated in Table II,
which is limited to the final cycle of determining the value of s from
the provisional probit lines in Table I for the particular pattern in
which metastases occur in the skin, pleura and liver but are absent from
bone, lymph nodes, lungs, and the central nervous system (Table I1,
Colum 4). The calculations of Table II are those involved in caleldating
a patient's siclkness score on the basis of his symptoms. Once the final
symptom regressions are known (Table I, Coluwmn 7) these calculaticns are
done only once. In practice, a table would be prepared so that all calcu-
lation would be by-passed. The total for the log R colum for a guessea
s of 48 is less than either a slightly higher value (s = 50) or a slightly
lower value (s = 45). Hence it is taken as the sickness index for this
particular combination of metastatic sites for this first cycle of approxi-
mation. Accepting the probit lines of column cight of Table I we calculate
the maximun likelihood value of s for every symptom pattern. All patterns
which actually occur are all that is necessary but it is simpler by computer
to get all of them. All patients with the same pattern are equally ill, so
far as this one index is concerned. However, it is by no means necessary
that the only probit lines be metastasis to given organ systems. Any or all

all-or-none signs or symptoms or labcratory findings would do as well.
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Presunably quantitative measures would be included by multiple regression
techniques.

Having now a first estimated value for the illness index of each
pattern and the number of patients in our sample with that pattern,
straight-forward probit calculations yield new values for the intercepts
in column seven of Table I where the fitting is done with all slopes
restricted to being 0.1 and the several lines are fitted on the basis of
the fraction of patients with a given score showing that symptom and
disregarding metastasic to any other site. On the basis of the new
probit lines replacing those in colum eight of Table I new illness
indices are calculated for each symptom pattern and so on until a pre-
set degree of convergence is reached.

The successive computational steps are outlined conveniently for
ready reference in Table III. The DISSEV program in the General
Electric Mark II version of BASIC is given in Table IV and an explanation

of the computer calculations in Table V.
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b
TABLE I
FREQUENCY OF METASTASIS BY SITE

908 BREAST CANCER PATIENTS#*

Line System Sym Nbr % Probit Adj Prob! Initial Equation?
1  Bone B 468  51.5  5.04 0.75 Y = 0.75 + 0.1s
2 Lymph Nodes N 408 44,9  u.87 J.58 Y = 0.58 + 0.1s
3 Skin S 230 25.3  4.33 0.04 Y = 0.04 + 0.1s
4 Lung L 216 23.8  14.29 0.00 Y= 0.1s
5  Pleura P 179  19.7 4.15  -0.14 Y =-0.14 + 0.1s
6  Liver v 97  10.7  3.76  -0.53 Y =-0.53 + 0.1s
7 Cen Nerv Sys  C 35 3.8 3.23 -1.06 Y =-1.06 + 0.1s

E
See text for explanation

Lo

34 . . .
I am indebted to the cooperating hospitals for these data.

'The probit for lung incidence of metastasis is subtracted from each
value in the preceding column.

- ?The coefficient 0.1 is used so that the sickness severity score, s,
can be expressed conveniently in two digits.
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TADLE II

(A9

WORKSHEET FOR CALCULATION OF SICKNESS INLEX (S)%

L S 4s S 50 S 48
I

NOrgan S/ Patb Probit
System b1 tern Intercept Y 1000P 1000Q Iog R Y 1000P 1000Q Iog R Y 1.000P 1000Q Log R

[

1 Bone B N 0.75 5.25 600 400 2.6021 5.75 770 230 2.3617 5.55 710 290  2.4524%
2 Nodes i N 0.58 . 5.08 530 470  2.6721 5.58 720 280 2.4472 5.38 697 353 2.:tu73
3 Skin 5 P 0.05 4.55 327 2.5145 5.05 520 2.7180 k.85 440 2.6435
4 Lung L N 0.00 4.50 310 690 2.8388 5.G0 500 500 2.6%990 u4.80 420 580  2.7834
5 Pleura « P -0.14 4.36 260 2.4150 4.86 L4b 2.6484 4.66 367 2.5647
6 Liver v P -0.53 3.97 152 2.1818 y.47 300 2.4771 4.27 233 2.3574
7 C.N.S. C N -1.05 3.u45 060 940 2.9731 3.85 1u8 852 2.9304 3.95 146 854 2.9315

18.1974 18.2798 18.2307

aror explanction see Table ITI and text of appendix.
bogitern in vnich metastases occur in skin, pleura, and liver but not elsewhere.

cPreliminery 2stimate of sickness score for chosen pattern.



TABLE TIII

EXPLANATION OF CALCULATIONS

IN COLUMNS OF TABLE II

Line Col. Heading Explanation
1 2 Organ System Sites examined for metastasis.
2 3 Symbol Arbitrary symbol for site.
3 b Pattern Indicates whether the patient

record records that metastasis
did or did not occur in that
organ system.

4 5 Probit Intercept Copied from Column 7 of Table I,

5 6 Y Calculated from the equations
of Colum 8, Table I by
arbitrarily setting S = 45 as
shown at the head of this set
of four colums.

6 7 1000P Obtained from Probit Table.
7 8 1000Q Subtracting 1000P from 1000,
since symbol in Column 3 is N.
8 9 Log R Log of 1000Q if shown, otherwise
log of 1000P.
9 10-17 Equivalent to 6-9.
10 (8 is estimated as 48, since its Log R total exceeds that

of S = 45 and S = 50).

* These manual calculations are only to explain the concept. Actual
calculation is performed by computer program DISSEV.
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: JProgram from General Electric BASIC Mark
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L/ Ay
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II.
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=1 TO N4
=1 TO L
1 VIHLT)D

RINT
PRI NT
FOGR T=} TO L
S5C1)

TNT S(Y5;
T
=3 TO N4
LET 0C1s1):2y

FOR ¥7=1 TO L

JF SCI)=1 THEN 820
Jit Sy =0 840
LET B(Y)=

THEN

VIK»T)

GO TC 85T
LET BOIY=1~VU(K,T)

LET QC1sK) =G 1sK)sRB(T)
NEXT 7

NEXT K
PRYNT
LET 01=0

FOR K=1 TO N4

TF GC1sKI<=0] GO TO 940
LET 01=6C1,¥)

LET K1=K

NEAT K

PRINT™AAK e (L7261

PRIMT TABCED) 3 SCORE="3K 1~
PRINT “&g40s40440
PRI NT

GO TO 733

LET K2=("WI)1D) /586
LET C=A1=0

LET H=K2/2

FOR Z
LET
FOR
LET

i

1 To SO
S2EK 24 -H

J=1 To 3
X=KCIY 4T

LET Y=EXP(-({X12)/,2)
LET Al=Al440J)2Y
NEXT J

NEXT %

C = F*AL*H+P,5
RETURN
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TABLE V

Evplanation of Computer Program DISSEV

Program Lines Function Performed
100-130 Input data described below.
140-150 Qutput file for sickness scores.
160--170 Storage allocation in computer.
180 Number of symptoms and precision

of probability calculations.
190-220 Matrix size allocations.
230-290 Constants for probability
calculations.
300-650 Computes probabilities for all L

symptoms at 101 levels of the
sickness score.

660-690 Writes these scores to a file.

730-760 . Reads one symptom pattern from

: data lines 1130-2390 (7 values
of 0 or 1).

770~840 Chooses probability of symptom

presence or absence depending
On OCcurrence or non-occurrence
in pattern.

850 Forms product of probabilities
so chosen.
890-960 Chooses and prints the sickness

score yielding the largest
probability product at line 850.

930 Reads another pattern until
lines 1130-2330 are completed.
1000-1110 Computes probability integral.
1130-2390 All possible patterns of seven symptoms.
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DIGITAL SIMULATION OF EQUIPMENT ALLOCATION
FOR CORPS OF ENGINECR CONSTRUCTION PLANNING

D. W, Halpin and W. W. Happ
Construction Engineering Research Laboratory
U, S. Army Corps of Engineers
Champaign, Illinois

ABSTRACT., Procedures for simulating resource requirements and efficient work
organization for typical Corps of Engineers construction processes are
developed. A user-oriented computer simulation language was adapted by
providing guidelines and specifying procedures aimed at the construction
planner and facility engineer. Network elements from GERTS are combined

to build "modules" which frequently recur in the modeling of construction
operations and processes., Representative modules are developed and their
utilization is illustrated by modeling a typical earthmoving operation.

HISTORICAL PERSPECTIVE, Were it possible for the modern day structural
engineer to talk with the master builders of the great European cathedrals,
he might well be placed in Fhe same situation that the modern day construction
engineer finds himself vig-~a-vis the construction manager, The structural
designer's observations concerning the more '"optimal' design of a flying
butress might be listened to as interesting theory, but certainly not
considered convincing enough to replace the master's intuitive feeling

for the proportion of a given column or arch, Construction managers

who have been successful using methods based on "engineering experience"
react in the same way to new ''theoretical" planning methods proposed by
construction engineers. They will not relinquish proven intuitive
approaches in favor of proposed methods until (a) the nature of the new
methods are understandable to them, (b) the superiority of the methods

are demonstrated in terms of profit dollars, and (c) the limitations
involved are adequately explored, For these and other reasons the
application of analytic methods to the design of construction operations
has been extremely limited.

Operations Design in the Construction Industry

The design of operations has been an area of interest and research
to engineers since F, W, Taylor first conducted his historic time and
motion studies on the productivity of workers loading slag early in this
century. Industrial operations have been prime candidates for study
since in many cases they are of a repetitious nature and not normally
subject to greatly varying environmental conditions., The techniques
of operations research have proven excellent tools in designing
industrial assembly lines, analyzing inventory policies, scheduling
work patterns and the like.
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Within the past decade, studies have been conducted in an attempt
to apply the concepts of operations research to the area of construction
management and the design of construction operations. These studies
can be conveniently divided into two categories:

(1) Studies based on mathematical techniques such as
queueing theory and linear programming (17,25,26)

(2) Simulation studies.

Construction Modeling Techniques

The preponderance of work done in the area of mathematical modeling
has been concentrated on the application of queueing concepts to the
solution of construction problems which are easily formulated within the
context of single and multi-server models, The problem illustrated in
Figure 1 is typical of the class of problems which have been attacked
using queueing methods. The figure represents the so called "shovel-
truck" problem. Given the arrival and service distributions of the
trucks and shovel respectively, the problem is to determine the productivity
of the system and the implicaticns of varying the number of trucks

A .
as well as the T ratio, where:

A

it

the arrival rate (poisson distribution)

U the server ratio (exponential distribution)
This problem and extensions of it have been considered in studies con-
ducted at the University of Illinois (17,25,26). The models investigated,
however, are subject to assumptions (e.g. steady state) which seriously
limit their validity. Further, as the components and complexity of the
system increase the calculational difficulties involved in solving the
associated differential equations render the method intractable.

Simulation methods have been used notably by Teicholz in the
selection of a heavy equipment fleet in support of large earthmoving
operations (29) and by Arrington in the optimal dispatching of ready-mix
concrete trucks from a central conctrete batching facility. (1) However,
no general approach to the simulation of a large and complex construction
operation has been developed to the authors' knowledge,

Shortcomings of Present Techniques

The actual application of both the analytic and simulation concepts
studied has received very limited documentation in the literature. This
indicates that penetration of the industry by these methods has been
marginal. Several reasons for this lack of application are apparent,

(1) Construction projects, although they contain a certain
set of common processes, tend to be unique in character. Repetitious
work activities which lend themselves to analysis are common to the micro-
level processes of construction (e.g. brick-laying, concrete placement, etc.)
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However, as the processes are synthesized at the macro-activity level

(e.g. place concrete for 1lst floor slab) site and project peculiarities lend
a uniqueness to the situation. That is, the synthesis of micro-processes
into macro-activities requires a special treatment or method of arrangement
which is characteristic of the project at hand.

(2) Construction operations are subject to a constantly
changing environment., The transient nature of the operational environment
and the parameters associated with it tend to invalidate the results of
conventional analysis before they can be applied.

(3) Sophisticated methods requiring highly trained personnel
and expensive support (i.e. computer time, etc.) have not shown themselves
efficient and general enough in giving timely answers which can convince
profit-oriented construction managers that they are an improvement over
"rules of thumb" and the intuitive methods which are in use today.

A NETWORK SIMULATION APPROACH TO CONSTRUCTION OPERATION DESIGN. Queueing

type network simulations have been proposed as a means of attacking a

wide range of large scale systems problems (6,16,18,19). This method of
modeling allows the analysis of complex systems characterized by a high degree
of interaction between systems components. The speed of computer simulation
methods and increasingly accessible and usuable simulation languages provide
the basis for quick problem formulation and analysis. It appears feasible
using simulation to reduce problem processing time to the point that

timely solutions can be achieved.

The improvements in problem formulation and solution time using
network simulation accrue because:

(1) Simulation eliminates the requirement of formulating the
differential equation space and avoids the necessity of explicitly solving
the state equations. It allows direct access to the statistical infor-
mation of interest.

(2) Simulation formulation of a given productive system lends
itself to a modularization which greatly simplifies the modeling process.,
Certain components recur so often as to constitute modeling blocks which
can be arranged much in the same fashion one arranges the modules on an
analogue "patch" board. These modeling blocks provide the requisite
versatility required to structure a wide range of practical operating
systems,

(3) Simulation also allows investigation of transient perform-
ance and statistical fluctuation analysis as well as network structural
analysis such as vulnerability and sensitivity analysis. These types
of investigation are not possible using mathematical state models since
the solution of the differential equations involved imposes steady state
restrictions on system operation,
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Scope of GERTS Q Simulation

The GERTS III Q Simulation program exploits the speed and ease of
solution possible with digital simulation of a queueing network. It
further provides a new and improved approach to problem formulation,
responsive to operational engineering requirements,

GERTS is an acronym for Graphical Evaluation and Review Techniques
Simulation and was developed Under a f1ve—year old cooperatlve project of
about twenty operations research teams at universities, in government
agencies and industry under the leadership of Allan Prltsker of Purdue
University.

The development and utilization of GERTS is documented in several
hundred internal reports, which are condensed and brought into the public
domain mostly through tutorial papers:

Concepts and Theory: (11, 19, 21, 22, 32)
Program Development and Diagnostic: (18, 20)
Model Development and Use: (5, 30, 31)
Application to Industrial Systems: (27)
Application to Social Systems: (2, 7, 24)

Users of GERTS/Q exceed 200 including about 20 universities, usually
within the framework of courses on operations research. User-oriented
simulation programs, tested and diagnosed by these groups, are directed
towards (a) cost allocation: GERTS III C, (b) resource allocation: GERTS
IIT R, and (c) queueing networks: GERTS III Q.

Only the utilization of GERTS III Q is reported here based on the
day-to-day needs by a designer of construction operations. Operating
and coding instructions are well documented and are briefly surveyed
merely to make this presentation self-contained. The primary aim of
the procedures to be developed is to be useful to engineers, faced with
the task of modeling construction systems of terms of stochastic
processes. The GERTS III Q program models the system of interest in
terms of a network representation, The network is presented using arrow
notation. That is, arrows are used to represent activities and nodes
represent event markers.

A tabular presentation of the elements used in modeling queueing
networks with GERTS is given in Table 1 to Table 3.

GERTS III Q Modeling Blocks

GERTS TIII Q is particularly flexible in the development of modules
or building blocks which can be used in the modeling of construction
operations. Three modules constructed using GERTS are described in both
simplified and GERTS III Q network format in the following sections,
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These three sub-systems are designated based upon their function as:

(1) Pairing Module
(2) Distributor Module
(3) Selector Module

They demonstrate the procedure involved in developing models for prac-
tical requirements and constitute three representative entries typical
of a file or library of compatible modules, Drawing upon this resource
file, complex systems such as interactive construction processes can be
modeled by repetitively using the modules in various combinations, The
advantage of this concept is that sub-networks can be validated against
observed phenomena and then combined with other validated sub-networks to
build a process model, This model can, in turn, be re-validated and
adjusted to account for secondary and interactive effects resulting from
the combination. Use of such a complex model allows investigation of
varying resource assignment schemes and their effect on the overall
productivity of the construction process., By this means the manager is
in a position to locate '"bottlenecks'" and ascertain critical factors
before committing to a particular scheme of execution.

REPRESENTATIVE MODULAR STRUCTURE.

GERTS Structure for Pairing Module:

The pairing module is encountered in modeling many construction
operations. Table 4 indicates several typical operations for which the
pairing module is required. Table 5 gives a detailed description of the
P-Module (Pairing Module) and its characteristics,

The pairing module can be developed from the basic elements of GERTS
by synthesizing three interacting mechanisms.

a. Pairing Mechanisms:

Channel 21-24-4]1 represents the service demanded path (MN)
in the state network. Channel 42-41 maps to the server path AB. In the
truck-loader situation, the truck requiring service enters along 21-24-41,
At this point in the absence of a loader it waits. The loader enters
initially along path 40-41 and subsequently along 42-41. In the absence
of a truck it waits since 41 requires two entities to be realized. When
both a truck and a loader are present the pairing requirement is satisfied
and the service procedes (41-42-43),

b. Filtering Mechanisms:

To preclude the situation where 2 trucks arriving along
21-24-41 cause realization of 41 and initiation of the service without
the pairing requirements being satisfied, a filtering structure is used.
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This structure is based upon the branch modification feature available

in GERTS. To implement this operation 24-41 is designated activity 1

and 42-43 activity 2. Upon consummation of activity 1 entity flow is
rerouted from 23-24 to 23-25, The loop (23-25-26), constitutes a holding
pattern which captures and retains entities which must await pairing,

c., Switching Mechanisms:

To synchronize the pairing and the filtering operations a
switching mechanism is required. The switching mechanism provides for the
routing of entities to the holding pattern when appropriate. Further,
it re-establishes the upper pairing branch (e.g. 23-24-41), when a service
has been completed. The switching scheme is also shown in Table 5.

GERTS Structure for Distributor Module:

The purpose of this module is to provide the capability of routing
incoming entities to servers in an order of ranking. It is used in
modeling when a preference scheme among processors is to be used. The
distributor module is synthegized from two mechanisms: (a) switching
mechanism, and (b) a holding mechanism. Table 6 provides a detailed
description of the D-module (Distributor Module) and its properties,

a. Switching Mechanism:

Channel 21-23-24 (see Table 6) represents the initial entry
channel to the distributor module. Again using a truck as the entity
to be served, let us postulate the situation that the truck has three
entry points to a construction yard. The truck checks the gates in a
given order of preference, The order of preference is gate 1 first,
gate 2 and gate 3 (in that sequence). 1In Table 6, processor channel
24-25 representing gate 1 is first checked for availability, If busy,
(i.e. if another entity is in this service state) path 23-24 will be
closed and the incoming truck will be diverted via 23-33 to check the
second gate or service state, The closing of path 23-24 once an entity
has entered service state 24-25 is affected by the switching scheme also
given in Table 6. Once an entity has entered the service state (24-25)
by traversing 23-24, the network modification characteristic of GERTS III
Q allows switching of subsequent entities to node 33 wvia 23-33. When the
service is completed, the served entity (truck) exits the service state
(gate) via 25-26. The traverse of 25-26 causes subsequent entity flow
to be re-established through 23-24, since completion of 25-26 results
in a re-constitution of this path.

Similarly a check is made of service states 2 (34-35) and 3 (44-45)

to see if they are available, If so, the truck enters the service state
(gate). If not, flow is diverted as described above,
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b. Holding Mechanism:

1f all three gates are occupied (all servive states busy)
then the entity is diverted to Q node 50, The processing time required
in activity 50-22 will establish a holding loop 22-23-33-43-50, Upon
availability of one of the occupied service states, any entity in the
holding pattern will exit via 24, 34, or 44, Should more than one
entity be in the holding loop, one or more entities will be at Q node 50
and another will be in transit via 50-22. Should only one entity be in
the holding mechanism, it will be in service activity 50-22, Should this
occur it will not be available for re-entry to the system until it has
completed this "dummy" service. The service time T for 50-22 should be
selected to establish a meaningful holding time. It may cause a slight
deviation from "optimal" processing, but in most operational processes
a certain pause or delay is typical in moving from holding to service.
The service time for 50-22 should be selected to be representative of
this delay.

GERTS Structure for Selector Module:

The selector module is encountered when processing entities of
varying priorities. Its purpose is to give preferential service to
higher ranking entities. For instance, if two truck types are being
used and one type is to be given preference, this module is applicable,
Table 7 gives a detailed description of the S-Module (Selector Module).

This module is also based upon three interacting mechanisms.

a, Holding Mechanism:

Priority entities flow from 21 to 42 if the service state
is free. If the service state is occupied, it is implicit that activity
2 has been traversed and following priority entities are diverted to
holding loop 23-51-50. Similarly, 2 causes diversion of routine entities
to holding loop 33-60-61. When an entity exits the service state (40-41),
activity 3 (41-42) is traversed and releases entities from the holding
mechanism.

b. Biasing Mechanism:

The purpose of the biasing mechanism is to hold one entity
in order to give preference to a higher ranking entity. This operation
constitutes a biasing. This is accomplished in Table 7 by activity 2
triggering the path modification 34-60. Due to the time delay, tys

associated with activity 33-34, the higher ranking entity advances
through 24 to 40 triggering the above modification, while the low
ranking entity is delayed in 33-34, The modification causes the low
ranking entity to be diverted back to 60 and into the holding mechanism.
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¢. Switching Mechanism:

The switching scheme is shown in Table 10, The priority
entity upon passing through activity 1 (22-23) diverts incoming routine
entities into the routine holding loop (33-60-61) by modifying path 33-34
to 33-60. The consummation of activity 2 activates paths 23-~51 and 33-60
which divert entities to the holding mechanism, Additionally, 2 removes
path 34-40 and replaces it with 34-60. This is to implement the operation
of the biasing mechanism as explained above. Upon completion of the
service, the entity exits via 3 and causes resetting of paths 23-24 and 33-34,

APPLICATION TO EARTH MOVING SYSTEM

Model Formulation for Earth Moving Process

The earth moving problem is continually encountered in both hori-
zontal and vertical construction; it represents a fundamental and recurring
construction process, The problem examined in this section consists of
several activities typical of an earth moving process:

.+ a bulldozer pushes material into a stockpile,

. two loaders load materizl into four trucks,

. the trucks haul the material into a fill location,
. the truck finally returns to reload.

an o

Fig. 2 describes this process as a state diagram., Fig, 3 models
the same process in terms of the modular concept developed in the previous
section.

Tables 8 and 9 describe in detail a GERTS network for each module
used in Fig. 3. The entry and exit points for each module correspond to
the interconnection of different .odules in Fig. 3. These tables also
interpret the time sequence of entity flow through each module. Table 10
summarizes the relationships between the states of Fig. 2 and the modules
of Fig. 3. The switching schemes where appropriate are given in Table 11.

Construction of State Diagram for Truck Loader Problem

The complete earth moving process is characterized by seven states,
which correspond to "activities." One of these is the waiting status of
the processor,

State 1: The bulldozer pushes material into a stockpile position,

State 2: The bulldozer returns to a start position preparatory to
pushing up more material.

State 3: The material pushed up by the bulldozer resides in its
stockpile position.

State 4: These entities combine in this state to consummate the
loading operation, which requires the presence of a truck, a loader and
a truckload of material,
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State 5: The loader, lacking either a truck or a load of material,
returns to its waiting state,

State 6: The truck with its load of material travels to the fill
location, dumps and returns for reloading.

State 7: The truck awaits the arrival of a material load and the
availability of a loader.

This state presentation has the following important characteristics:

a., It constitutes the initial level of hierarchy of modeling
procedures and is based on observations.

b. To identify significant states, one must have facility in
formulating a problem in terms of activities (active and waiting).

c. The set of states provides the input to a modular repre-
sentation,

Moduiar Representation

Fig. 3 describes the earth moving problem in terms of six basic
module types. The functions of the modules and their relationships to
the states of Fig. 2 are as follows:

G-Module: Generates the cycle time of the bulldozer and handles
the functions performed in State 1 and State 2 of the state diagram,

D(1)-Module: Performs the function of distributing the truck loads
of material generated by the bulldozer to the loader positioms. It
represents essentially State 3 in the state diagram,

P-Modules: Two identical modules perform the function of combining
(pairing) the material the truck and the loader in the loading operation,
They also generate the time duration of the loading process. They repre-
sent the functions performed in State 4 and State 5,

D(2)~-Module: Provides an overflow (or holding) location for trucks
awaiting loading. It represents State 7,

I-Module: Performs the function of initially entering the four
trucks of the model into the system. This module has no counterpart in
the state diagram.

A-Modules: Generate the travel-dump-travel time associated with the
trucks, They perform the function required in State 6.

These modules map closely into the states of the state diagram, but
the two representations differ and are complementary in these aspects:

a. the nature of the state diagram is essentially activity
based.

b. the nature of the modular representation is based on
entity operation.

c. the mapping is not exact whenever activity and entity

operation differ since associated with each state are varying numbers of
entities
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d, going from the state diagram to the modular representation
a quantitative formulation has to be generated from a qualitative formula-
tion. For example, handling or processing functions are implicit in the
state diagram, but have to be considered explicitly in the modular
representation as it occurs for the distribution function. The relation-
ships between modules and states are summarized in Table 10,

Modular Networks for the Flow of Entities

The networks corresponding to the eight modules used in Fig. 3
are shown in Tables 8 and 9,

G-Module: The process of earth moving is initiated at node 2,
which generates random time intervals for the production of material
entities or pulses, This is achieved by the looping activity 2-2, which
has associated with it the cycle time of the bulldozer,

D(1)-Module: Material is distributed by this module from the
G-module into the P-module. It also provides a storage capability
(Q-node 15) should the P-modules be occupied, The operation is the same
as the distributor module described in section 3, except for the number
of exits,

D(2)-Module: The function of the D(2)-module is the same as the
D(1) except it distributes trucks to the P-modules, It also can store
trucks (Q-node 45) should the P-modules be occupied.

P-Modules: The pairing modules in the process model differ from
the pairing module in section 3 only in complexity, In this case both
P-modules combine three entities instead of two, resulting in two input
ports instead of one. Additionally, it will be noted that in this con~
figuration with the D-modules the filtering mechanisms (see above) are
not required. The filtering effect is achieved by the D-modules, The
entities combined are the loader, the truck and the truck loader material.

I-Module: To initialize the truck flow into the system, the I-module
provides input from four source nodes (51,52,52 and 54). The
four source nodes provide the initializing entity flow for the trucks
in the earth moving operation.

A-Module: The A-module simply generates the activity time which is
used to simulate the travel-dump-travel time of each truck on the haul.
This is achieved using activities 61-62 and 71-72.

The validation and testing of each network model allows clearer
insight into the operation of individual components of the earth moving
system. Additionally, just as the modular concept is of advantage in
structuring a problem in terms of recurring functions and components,
this procedure offers a systematic approach to testing and failure
diagnostics:
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a. Each module can be accessed separately and validated for
fidelity and accuracy.

b. The interconnection between modules can be diagnosed for
problems generated at the interface of two modules.

c. The propagation of error throughout a system can be
assessed in terms of contribution of each module,

d. Finally the vulnerability of a systems in terms of vul-
nerability and redunancy of specific modules can be analyzed,

Entity Time Sequence in Modules

Column III in Table 9 describes the entity flow through the complex
modules by plotting the flow at each node versus time.

A time line (illustrated using bars) is shown for each significant
node or activity in the network, The presence of an entity in the node
N at time increment T, is shown by a letter representing that entity
(e.g. "A""E""F") on time line N at the location representing time T,
where N is the node or activity of interest.

In this example, the letters E, F, G and H refer to (quanta of) earth
material, T to Trucks, L to Loaders, A to the presence of both E (or F, or
G, or H) and L, B to the presence of E and T and finally C to presence of E
(or F, or G, or H) together with L and T (e.g. E, L and T),

Rules for Time Sequence Diagrams

In the interpretation of the time sequence diagram, the following
rules are to observed:

1. Entities: The presence of an entity at a node or in an activity
is given by a letter representing that entity on the time line representing
the node.

2. Direction of Flow: Arrows between time lines indicate movement
between nodes or into activities.

3. 1Interval of Occupancy: The position of the letter along the
node timeline indicates the time interval of occupancy.

4, Duration of Activity: The movement between nodes and through
activities is governed by the type of node, the time delays associated
with activities, and the switching mechanisms used,

5. Barred Sequences: The bar formed by the sequence of letters
reflects the time an entity spends in a given node or activity.

-557-



6. Time Lines: The letter N at the beginning of a time line repre-
sents the node associated with the time line.

7. Super Nodes: The symbol NM denotes that nodes M and N are
considered together as a supernode and that the time line is associated
with both. That is, the presence of a letter on time line NM means the

entity is either in N, in M, or between,

CONCLUSION. The method presented provides a logical vehicle for describing and
examining large and complex construction operations. By developing

modules of small and recurring modeling functions and combining these in

an interconnecting system of arbitrary complexity, it is possible to

analyze construction operations in far greater detail than possible by

existing methods,

In order to fully implement the potential of this method, work is
in progress to achieve the following:

a, Systematic development of additional modules based on a wide
range of examples from Corps of Engineering practice.

b. Clearer insight into the hierarchy of mechanisms, modules and
fundamental operations to form ultimately a compact and efficient data
processing scheme,

¢. A user interface, facilitating user input by the practicing
engineer in terms of a problem oriented language,

d. Assessment of limitations of methods,
e. Validation of models against observed operation,

The network approach made possible by GERTS III Q permits us to
formulate our problem in a method most convenient and economical to the
computer. The value of network simulation is in establishing a link between
data processing by computer and the examination of earthmoving operations
in a conventional way, The more effectively these two points of view can
be reconciled the more effective will be the utility of this methodology
in modeling practical engineering situations.
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TABLE 1. PROCESS NODES

Source Node

Sink Node

Event Node

One
~0
——@-o

TABLE 2. OPERATIONS NODES

A - B
Operation Node Entities Needed Entities Needed
Event " For initial For subsequent
Q realization realization
Queue 6' Initially in For Q Limit
\8\ Q
|

TABLE 3.

GENERATOR OPERATIONS

Generator Symbols

Functions Generated

Description of Function

e

N/

Entity Generator

This activity generatss
activities based on time T
and probability distribution
P

)

G

Modification
Generator

The trigger K has been
activated by an entity
passing from 27 to 28
a result path 32-33 is
‘replaced by path 32-34.

as

PARAMETERS

>

4

Probabilistic
Generators

Several parameters such as
time delay, probability,
and others are associated
with this activity.
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TABLE 4:

Examples of Typical Operations

Service Service Waiting Service
Demanded State State Completed
Load Fill. Truck loaded No trucks Filled truck
into an by loader to be loaded ready to
empty truck by loader depart
Movement of Lifting of No steel Steel in
-a plece of steel by remaining desired
steel crane to load location
Movement of Lifting of No pallets Pallets in
a brick pallet pallet by a to be lifted desired
from grade to construction location
2nd floor 1ift

TABLE 5: PAIRING MODULE

STATE DIAGRAM

SERVICE SERVICE
DEMANDED COMPLETED
" Nl siavice [P Q

> STATE

SERVER

ioor

c

10LE

»

STATE

GERTS NETWORK

Description of Operation:

Entities arrive for service along the service
demanded channel (MN). Upon their arrival the
server moves from its idle state to the service

. state via path AB. Both the presence of the

server and of an entity demanding service are
pre-requisite to the initiation of a service.
Upon the completed service, the served entity
exits the service state via path PQ and the
server returns to its idle state via CD.

Switching Scheme:

Activity realized 1 3
Replace Node 24 25
With Node 25 24
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~ TABLE 6: DISTRIBUTOR MODULE

STATE DIAGRAM

Description of Operation:

3 »r Entities enter along NA. If processor 1 is
“:3$° available, it continues along route AD. If
h __’ —— ¢ processor 1 is busy, the entities travel AB

and check processor 2. 1If 2 is free, it

continues along BE. If 2 is busy, it travels
BC and checks processor 3. If all 3 are busy,
it waits until one becomes free.

z)

GERTS NETWORK

Switching Scheme:

Activity Realized 1 2 3 4 5 &6

Replace Node 24 34 44 33 43 50
With Node 33 43 50 24 34 44
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TABLE 7: SELECTOR MODULE

STATE DIAGRAM

Description of Operation:
Yonate Priority entities enter along path NA.
(PRIORITY) Routine (e.g., lower priority) entities

enter along MA. If the service state is
free, the entity proceeds through AD to

that state. If the service state is occu~-

pied, the entity is diverted to a waiting

state depending upon its type. When the
WAITING service state is available, priority entities
STATE are processed until the priority waiting

{rouTiNe) state is empty. When this situation obtains

the routine entities are processed from

their waiting states.

M
ROUTINE

GERTS NETWORK

Switching Scheme:

Activity Realized 1 2 2 3 3 3 4

Replace Node 34 24 40 51 60 60 34
With Node 60 51 60 24 40 34 60
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Table 8: Simple Modules

TABLE 10:

RELATIONSHIP BETWEEN

MODURE TYPE ’ TIME SEQUENCE

55

61
AQY)

62 N ﬂﬁ’u"ﬁﬁ ﬂﬁ'

n

0
MODULES AND STATES
& e
S
A ®\| o M
| ) | O
MODULE é S >] E
TYPE STATE m - § = FUNCTION PERFORMED
G 1,2 X X Generate Bulldozer Production
D(1) . 3 X Stockpile or Distribute Material
to Loaders
D(2) 7 X Hold or Distribute Trucks to
: Loaders
P(1) & P(2) 4,5 X1x|x Combine Loader. (L), Truck (T),
and Material (E,F,G,H) for Loading
)]
I , None X Initialize Four Trucks in
A None XX Generate Combined Travel & Dump
Time

TABLE 11: EARTHMOVING PROCESS -~ SWITCHING SCHEME

Activity Realized 1 2 3 4 5 5
Replace Node 31 21 32 22 43 13
With Node 13 14 43 44 32 31
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MACHINE GUN EFFECTIVENESS MODEL BASED ON STOCHASTIC VARIATIONS
OF THE BARREL DURING FIRINGS AS APPLIED TO HEMISPHERE TARGETS

Captain Richard H. Moushegian
Systems Research Division, R D & E Directorate
HQ., U, S, Army Weapons Command

INTRODUCTION:

1. Good Morning, Ladies and Gentlemen, I am Captain Richard Moushegian of
the Systems Research Division at the US Army Weapons Command.

* % k k %k % k% k %k %

MACHINE G UN EFFECTIVENESS MODETL

BASED ON STOCHASTIC VARIATIONS OF THE BARREL
DURING FIRINGS AS APPLIED TO
HEMISPHERE TARGETS
SLIDE #1

k k% k k k k k k k %

2. PURPOSE: The purpose of this MG model is to study the effectiveness
of MG fire on a point target of hemispherical configuration,

3. APPROACH: The approach used is to utilize Monte Carlo simulation
routines to vary certain initial conditions at the muzzle and to

observe the projectile's effect on a three-dimensional target regiom,

On the next slide are some measures of target effectiveness which are used,
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MEASURES O F EFFECTIVENESS

1, P(F) - THE PROBABILITY THAT THE FIRST ROUND IN A
BURST INTERSECTS WITH THE TARGET REGION,

2, P(S) - THE PROBABILITY THAT EACH SUBSEQUENT ROUND
IN A BURST INTERSECTS WITH THE TARGET REGION.
3. E(H) - THE EXPECTED NUMBER OF ROUNDS IN A BURST

WHICH SHOULD INTERSECT WITH THE TARGET REGION.

4, MEAN AND VARIANCES OF IMPACT POINTS ON THE TARGET
SURFACE FOR FIRST ROUNDS AND SUBSEQUENT ROUNDS,

SLIDE #2
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4, PREVIOUS DEVELOPMENTS:

a, Some previous analytical work in MG effectiveness area as shown on
the next slide was performed by Mr, Herbert Fallin of Army Materiel Systems
Analysis Agency (AMSAA) in the document TM-33.

* % kX k &k X% &k k % %

PREVIOUS  DEVELOPMENTS IN MG EFFECTIVENESS AREA:

1, AMSAA DOCUMENT TM-33 BY MR. HERBERT FALLIN

2. USAWECOM REPORT SY-R3-71 BY DRS, T, H., HUNG
AND J, T, WONG

SLIDE #3
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His work was based on a two-dimensional target, and some assumptions made
wrt displacement of first round from subsequent rounds at the target.

b. Another approach to the MG effectiveness problem was performed by
Drs, Hung and Wong of the Army Weapons Command in SY-R3-70, Their work
was based on three-dimensional targets of different configurations and some
assumptions were also made wrt displacement of the first round from

subsequent rounds at the target.

¢, SCOPE: However, the scope of the following MG effectiveness
study is based on a particular three-dimensional target with several
assumptions being made at the weapon system rather than at the target.
The three~dimensional target was a hemisphere only because at the time
our office was asked to develop a hemisphere model for an on-going
project at the Weapons Command.

d. For the remaining portion of this presentation, I will use the
outline noted in slide 4.

k k % k% % k% k k % %

OUTLINE

I, THREE (3) BASIC ASSUMPTIONS
11, BASIC FORMULAS
III, COMPUTER PROGRAM DISCUSSION
v, NUMERICAL EXAMPLE

V. CONCLUSIONS

SLIDE #4
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Prior to continuing, I would like to point out one important operational
characteristic of MG weapons systems, This characteristic is that it has
been observed that during automatic fire the first round of a burst hits

the target in one location while the remaining rounds of the same burst

seem to be nested in some other location significantly separate from the
first round. This separation is primarily due to a weapon-mount interaction
problem where the weapon is already in motion when the subsequent rounds

are fired.
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I. THREE (3) BASIC ASSUMPTIGONS:

A, INITIAL POSITION FOR FIRST ROUND OF A BURST
IS SIGNIFICANTLY DISPLACED FROM THE CENTROID

OF INITIAL POSITIONS FOR SUBSEQUENT ROUNDS,

SLIDE #5

* k k % kK % k k k %
(1) Three (3) Basic Assumptions:

(a) 1In regard to the assumptions of this study, the first two
are concerned with initial projectile flight conditions just as the projectile
is launched from a MG barrel which is experiencing stochastic excitations
during automatic fire,

(b) Specifically, the first assumption is that the initial
position of the first round of a burst is significantly displaced from the
CENTROID OF INITIAL POSITIONS for subsequent rounds. The next slide illustrates
this significant displacement (or offsat) as it applies to this modeling
effort, This offset was probably first documented by AMSAA in TM-33, In
that report, the displacement was noted at the target. However, in this
study, again the assumption is imposed at the muzzle during projectile
launching.
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CENTROID OF
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SUBSEQUENT ROUNDS

FIRST ~ROUND

SIGNIFICANT DISPLACEMENT OF FIRST ROUND FROM

CENTROID OF

INITIAL POSITIONS FOR SUBSEQUENT ROUNDS
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(¢) The second assumption (on the next slide) is that the
initial conditions of the projectiles at the muzzle were random such that
five trivariate normal distributions characterize the initial dispersion of
the rounds for flight time to to.

k% k % k k k k k% %

ASSUMPTTIONS:

B. THE INITIAL CONDITIONS OF THE ROUNDS AT MUZZLE ARE RANDOM
SUCH THAT FIVE (5) TRIVARIATE DISTRIBUTIONS ARE USED., A
DISTRIBUTION IS USED FOR
(1) INITIAL POSITION FOR kA FIRST ROUND
(2) INITIAL VELOCITY FOR FIRST ROUND
(3) INITIAL POSITION FOR SUBSEQUENT ROUNDS
(4) INITIAL VELOCITY FOR SUBSEQUENT ROUNDS
(5) OFFSET DISTANCE BETWEEN INITIAL POSITION FOR FIRST

ROUND OF A BURST AND THE CENTROID OF INITIAL
POSITIONS FOR SUBSEQUENT ROUNDS OF A BURST,

C, ANY GIVEN ROUND TFOLLOWS A DESCENDING PATH RELATIVE TO A
HORIZONTAL PLANE AS IT PASSES THROUGH OR BY THE TARGET.

SLIDE #7
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The three arguments per distribution are used to characterize performance in
Fuclidian three-space. Hence one trivariate normal distribution is used to
characterize each of the following for tO:

(1) 1Initial position for first round,

(2) Initial velocity for first round.

QQ) Initial position for subsequent rounds.,

(4) 1Initial velocity for subsequent rounds.

(5) Offset distance between initial position for first
round of a burst and the CENTROID OF INITIAL POSITIONS
for subsequent rounds of a burst,
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(d) The third and final assumption is that any given round
must follow a descending path relative to a horizontal plane as it passes
through or by the target, Note that this requirement does not necessarily
require that the weapon system be located on or above the plane of the
target, It only requires that the round be descending when it is in the
general vicinity of the target region. This assumption is made for
computational convenience and should not materially alter the results,

(2) Basic Formulas

(a) On the next slide the first Basic Formula is for offset
distance.

* k% % X kX k k k % %

IT. BASIC FORMULAS

A, OFFSET DISTANCE:

X, =\ - X, for 1 = 1,2,3

SLIDE #8
Xk k k kK kK k k k k %

(1) The equation shown here shows offset distance as
the difference between centroid of initial positions for subsequent rounds and
the first-round initial position. (The i index denotes three-space,)

(2) In practice, a first round initial position X'lO
is sampled from its trivariate normal distribution, (For notation
purposes, the "1" subscript in the equation refers to the fact that it is a
first round, and the "0" refers to the time parameter,) After the first
round, an offset distance Xi30 is chosen from its normal distribution,

(The "3" index indicates offset and the "0" is still the time parameter,)
Together with those two pieces of data, a CENTROID OF INITIAL POSITIONS

[See next slide #9] for subsequent rounds Hy is then determined.
i20
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(The "2" index indicates subsequent rounds.) Now with a centroid (or mean),
the subsequent round distribution has a location dependent upon the first
round, and with a given set of variances for three-space, the subsequent
rounds may be obtained without further delay,

(b) The basic FLIGHT EQUATIONS used in this effectiveness
study are shown on the next slide., The first three equations give the
projectile velocity for all three directions for any time t; and the
second three equations give the projectile position for any time t,

The first term after the equality mark for each equation is either initial
velocity or position component. The g is gravitational acceleration
constant, and the y is related to projectile drag. This drag is a
function of projectile mass and caliber, atmospheric density and

velocity of sound.

(c) The WEAPON EFFECTIVENESS equations are very simply
determined since the Monte Carlo approach was used.

_ No. of target hits per simulation
(L) The P(F) = No., of rounds per simulation

(2) The P(8S) is basically the same,

(3) The E(H) is the equation shown on screen.

~  Since our definition of P(S) was the prob, of each
subsequent round hitting the tgt, we are allowed
to multiply by the proper number of subsequent
rounds per burst,
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B. FLIGHT EQUATIONS:

it = Vo e’
Y2it T Vejo e
3t T V3j0 e’t 4 ;0 ")
X156 = X140 " ;ljt(e-Yt 1)
Yait, -yt
X5t = %50 © 3 (e7Y 1)
X35 = X350 " ORI 7
C. WEAPON EFFECTIVENESS:
1. P(F) and P(S)
2. E(H) = P(F) + (N - 1) P(S)

SLIDE #10



(3) Computer Program Discussion

(a) On the next slide we begin to cover some of the program
discussion,

(b) The entire program is written in FORTRAN IV and consists
of one MAIN routine, two SUBROUTINES, and one FCTN routine. There is a
major SUBROUTINE called FLITE which basically furnishes hit/no-hit data
when inputted with some flight data., The other subroutine and FCTN routine
just generate normal random numbers.

(c¢) This entire program is set up to perform and analyze
a given number of bursts, It reads the data cards for a case at a time
for the five sets of normal-distribution parameters, and other parameters
as well. Then it simulates the initial conditions of first round of a
burst and subsequently analyzes the flight equations, The FLITE sub-
routine iterates the time parameter using the Newton-Raphson method in
order to converge on a hit/no-hit decision. The program compiles some
first-round data and then simulates the subsequent rounds in the same
manner, At the conclusion of the simulated bursts (e.g., 1000), then
it computes and prints P(F), P(S), E(H), means and variances of impact
points for first rounds and subsequent rounds.
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III. COMPUTER PROGRAM DISCUSSION

DO THRU «
A = 1,NBURST

READ DATA '
FOR CASE AT A TIME

¥
CHOOSE APPROPRIATE VALUES
FROM DISTRIBUTIONS FOR FIRST ROUND
'
CALL FLITE FOR

HIT/NO~HIT INFORMATION - FIRST- ROUND
i
Y

COMPILE FIRST ROUND

DATA

P

D0 THRU a
AA = 1,N -1

CHOOSE APPROPRIATE VALUES
FROM_DISTRIBUTIONS FOR SUBSEQUENT ROUNDS
Y

CALL FLITE FOR
HIT/NO-HIT INFORMATION - SUBSEQUENT ROUNDS
o

i

COMPILE SUBSEQUENT ROUND
DATA

()
PRINT P(F), P(S), E(H), MEANS AND VARIANCES OF IMPACT
POINTS’ FOR FIRST ROUNDS AND SUBSEQUENT ROUNDS

IT# 4dI7S



(4) Numerical Examples
(a) As an illustration of the model, [See the next slide #12]
consider a MG firing on a hemisphere of six feet radius with burst-length of

six rounds for a total of 200 bursts (i.e., 200 first rounds, and 1000 subsequent
rounds),

% kx k k k% %k k% % %

Iv. NUMERTICATL EXAMPLE

A, SITUATION
TARGET: HEMISPHERE WITH 6 FEET RADIUS
BURST LENGTH: 6 ROUNDS

NUMBER OF BURSTS: 200
B. ENVIRONMENTAL CONDITIONS
C. FIVE (5) CASES AND THEIR RESULTS

SLIDE #12

% % % kK kX kK %k % k %

(b) Suffice it to say that some representative set of environmental
conditions were used,

gravit., const, accel, (G) = 32.175 ft/sec2
atmos, density (P) = 2.377}1:10_3 slug/ft3
caliber of proj (D) = 1.9685x1072 ft

proj mass (XM) = 3.774x10—4 slug

vel of sound (AQ) = 1120.27 ft/sec

(c) I have five example cases to illustrate use of the
model., [See the last slide #13], The distance to target in the first four
cases is about 800 meters (2400 ft), whereas in the fifth case, the target was
about 1600 meters (4800 ft),
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SOME RESULTS FOR EXAMPLE CASES

SLIDE #13

CASE 1

0.8650
0.8280
5.0050

0.913

CASE 2

0.9550
0.8700
5.3050

0.976

CASE 3

0.9650
0.8990
5.4600

0.917

CASE 4

1.0000
1.0000
6.0000

0.918

CASE 5

0.4700
0.4540
2.7400

1.823



(d) The first case was the standard case.

(e) The second and third cases experienced a progressively
lesser yelocity dispersion in the downrange direction for all rounds of
a burst. This had the effect of increasing the P(F), P(S) and E(H) from
the "tight" velocity dispersion in the second case to the tighter
velocity dispersion in the third case.

(f) 1In case four, the position and velocity dispersion for
all rounds and the offset distance was tightened by two orders of magnitude,
Obviously this had to have tightened the shot group per burst, and it
reflects so in the results - case four,

(g) 1In case five, the standard case was used except the
distance to target was doubled (from 2400 ft to 4800 ft). Note the
average flight time is doubled. As you can see, the projectiles at
least made it to the target and had some limited degree of success,

(5) Conclusions

(a) This study is specifically designed for analyzing the
effectiveness of small-caliber MG's, In order to easily study all types
of MG's with this model, a few minimum changes would have to be incorporated,
and a provision for fire control would have to be made.

(b) However, this MG effectiveness study should have
illustrated that a complex weapon-mount problem can be addressed in
three-dimensions, and the projectiles from that weapon system can be
related downrange to a three-dimensional target,
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AN ANALYTICAL APPROACH FOR SOME AIR SCATTERABLE
MINEFIELD EFFECTIVENESS MODELS

Barry H. Rodin
Ballistic Research Laboratories
Aberdeen Research and Development Center
Aberdeen Proving Ground, Maryland

I. INTRODUCTION, The development of within minefield models for
assessing the effectiveness of antivehicular and antipersonnel air
scatterable minefields is of current interest to the U. S. Army

Materiel Systems Analysis Agency (AMSAA). One such set of models, using
a Monte Carlo approach, is presented in Reference [1],

The purpose of this current report is to present analytical
closed~-form models for this problem. The advantages of the closed-form
methodology as compared to a Monte Carlo approach are the reduced
computer running time and increased accuracy.

ASSUMPTIONS, In developing the computational procedures we shall make
use of the following assumptions:

* Mines are randomly distributed about their droppoints
according to any given probability distribution (typically
uniform or bivariate normal).

* The actual droppoint for each cluster of mines is distributed
about its theoretical aimpoint according to any given
probability distribution (typically bivariate normal). This
is used to account for error in delivery of the mines.

* Targets breach the minefield in straight-line paths in one or
more columns,

* The breach attempt is continued without regard to the
number of casualties taken; the targets can not change
tactics,

* There are no sympathetic detonations of mines.

* A target can not be incapacitated by a mine which is detonated
by another target.

* All mines are of the same type.
* When a target encounters a mine it is either incapacitated so
that it can not proceed, or it continues on its path

as if the encounter had not occurred; i.e., there is no
partial incapacitation.
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* Different targets in the column may have different
probabilities of detecting a mine and may have different
probabilities of being incapacitated by a mine,

* Terrain is not considered.

Ingut

Input data required by the procedure include the number of droppoints,
the number of mines at each droppoint, locations of the theoretical aim~
points, probability distributions of the actual droppoint about each
aimpoint, and probability distributions of the mines about each droppoint.
In addition, the probability that a mine is a dud must be specified, and,
for each target, the probability of detecting a mine previous to
encountering it, and the probability that the target is incapacitated
when it detonates a mine, The width of the path covered by the target
must be specified, and, for the personnel case, the ratio of the area
covered by the footsteps to the area of the path.

OutEut

The computations give, for either a specified breach point or the
average over several possible breachpoints, the probability that the

iEE target in the column is incapacitated, as well as the expected number
of mines encountered, detected and removed harmlessly, found to be duds,
and exploded without incapacitating the target.

Outline of the Computational Procedure

The computation is performed in two parts. The first part finds
the probabilities of having exactly j =0, 1, 2, . . ., N live mines in
the path of the targets before any breach is attempted, The computations
allow for the possibility that the actual droppoints differ from the
theoretical aimpoints due to aiming error, and the combined effect of
mines from all of the droppoints is computed.

The second part of the computation uses the data obtained in the
first part to compute the probability that the first target successfully
breaches the minefield, as well as the probabilities that exactly
v=20,1, 2, .. ., Nmines remain in the path after the breach attempt.
Then, these new probabilities are used to compute the values for the
second target in the column, and so on for the remaining targets in the
column,
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II. SCATTERING THE MINES

Although this problem concerns a two-dimensional minefield the
computations need only involve one dimension. This is possible since
the targets cross the field in a straight path.

For the vehicular case, since the tracks go straight through the
minefield, in order to determine if a mine is in the vehicle's path we
need only consider the x coordinate (see Figure 1). The y coordinate of
the location of a mine is irrelevant in determining if it is in the

path of the vehicle.
Path of the tracks

NY Path of the belly
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Figure 1. Path of a Vehicle Through the Minefield
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For the personnel case we assume that the area covered by a cluster
of mines is large in comparison with a man's stride. The average
number of mines he would encounter by stepping completely through the
minefield is thus approximated by the number of mines in his path times
the ratio of the area of his footsteps to the area of the path (see
Figure 2).
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One Aimpoint and No Delivery Error

Let f(x,y) be the probability density that any given mine in the
cluster lands at the point (x,y). Since the targets go straight across
the minefield parallel to the y axis we need only consider the marginal
distribution,

f(x) = f f (x,y)dy.
The probability F(x) of a mine landing in the path of the target
centered at x is given by expressions of the form:

Vehicular Case:

b d
F(x) = I f(x)dx + J f (x)dx (Tracks only)
a c
d
F(x) = I f(x)dx (Tracks and Belly)
a
c
F(x) = J f(x)dx (Belly only)
b

where a,b.c and 4 are as ahown in Figure 1.

Personnel Case:
b d
f(x)dx + J f(x)dx)

[

F(x) = A ( J

a

where a,b, c and d are as shown in Figure 2 and where A is the ratio of
the area of the footsteps to the area of the path. For example, in
Figure 2, b-a = d-c = 4 inches and A = 12/60 = .2,

If there are N mines in the cluster, the probability of exactly j
mines in the path at x is

OB [g‘} ) ) a-rFrx )Y, 5=0,1,2,..., N (1)

To speed up the computations on a computer and to avoid overflow in
evaluating the number of combinations we may use the relations

c.() = @-Fe )"
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. (x) = C oy il F ()

3 j-1 3 Feor 1T B N

which are easily derived from (1), As a check on the computations note
that we must have

N
r C, (x) =1,
j=0 7

Throughout this paper it will not actually be necessary to carry out
the summations up to the number of mines N, In the numerical implementation
of these procedures the summations may be terminated as soon as the sum
becomes close to 1 and the summands become sufficiently small,

Simplifications for Specific Distributions

Instead of evaluating the integral

d
F (x) = ) f (x) dx (2)
a

by general numerical integration procedures we may use simpler methods
for the normal and uniform distributions.

If the marginal distribution of the '.ines along the x axis is
normal with mean p and standard deviation o we may use a rational
approximation to the normal distribution described in [2] p. 932,
26.2,19 and available as a Fortran function FND. Equation (2) thus becomes

F (x) = FND (d - “) - FXD <3—;-—‘i>

For mines distributed uniformly between X = % and x = r we may use the
expression

F (x) = max f min {d, r} - max {a, lz 0; )
r - 2 -

Suppose that the mines are distributed in the following way: The x
coordinate is chosen according to a normal distribution with standard
deviation 0y, and the y coordinate is chosen according to a normal

distribution with standard deviation o,. For simplicity of the exposition
we shall assume that the means of the distributions in both x and ¥y

are 0, Finally, the point (x,y) 1s rotated about the origin by 6 radians
in the counterclockwise direction to determine the point (x', y') where
the mine lands. The values x', y' are still expressed in the original
coordinate system,
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We now wish to determine the marginal distribution of (', y') along
the x axis, which is simply the distribution of x'. The :quations
describing a counterclockwise rotation about the origin are

X'

x cos 6-y sin 6 (3)
x' = x sin B4y cos 6 (4)

Since cos & and sin O are constants, equation (3) shows that the random
variable X' is simply a linear combination of the independently distributed
normal random variables X and Y. Hence, (see [3] p. 9 or [4] p, 46),

X' is normally distributed with mean 0 and standard deviation

J/(g 1 cos 8)2 + (02 sin 6)2.

Thus a rotation performed on a bivariate normal distribution simply
yields another normal distribution,

Treatment of Delivery Error

Let E (s) be the marginal probability distribution of the delivery
error along the X axis, Typically we shall assume E (s) to be normally
distributed with some standard deviation ¢ so that

f - e [(§]

2mo
where s = 0 represents zero delivery error.

The probability of having exactly j mines in the path centered at
x, taking into account the delivery error, is given by

0

Dj (x) = j_m E(s) Pj (x-s) ds

where the functions Pj are as defined in (1). When evaluating the above

integral numerically it is not necessary to consider those regions where
E (s) is zero or close to it. For E (s) normal we would only integrate
from, say, s = =50 to s = +50. As a check on the computations note that
we must have

I D, (x) =1,
j=0
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Treatment of Several Aimpoints

Let
n = the number of aimpoints
Ni = the number of mines to be scattered about aimpoint 1
N = the total number of mines
= N1 + N2 + ...+ Nn
Dj 1 = the probability that exactly j mines from the iEE-aimpoint
’ land in the path centered at x.
P, = the probability that a total of exactly j mines out of all
] the aimpoints land in the path centered at x,
Then
n
P, = I Il

D,
J RERET RIS

where the sum is taken over allV{ji} such that R P I = 3.

This computation can be simplified as follows:

Let Tj 1= the probability that from the first i clusters there are
’ exactly j mines in the path centered at x.

Then T, =D,
Jsl Jsl
h|
T, =1 T, . D, = 2,3, . ..
Js1 €=0 £,i-1 j-g, 1’ : > o0
P,=T, .,
J J,n

Note that we need not carry out this summation for any aimpoint i with
very small or zero probability of having one or more mines in the path
centered at x,

Average Effect Over Several Possible Breachpaths

We shall now consider the case where the target is allowed to choose
his path at random from among several possibilities,

-592-



Let

P (xi) = the probability that exactly j mines out of all the
aimpoints land in the path centered at X

P = the probability that exactly j mines out of all the
aimpoints land in the path of the target, where the
path of the target is chosen at random so that it is
equally likely to be centered at any of the points, Xy,
Koy o o ey X o

Then Pj is simply the average of the Pj (xi), namely

p, =1
n

IIT, BREACHING THE MINEFIELD

The previous section showed how to compute the probabilities of
having exactly j =0, 1, . . ., N mines in the path of the target before
any breach attempt., This section will show the effect upon the minefield
caused by the breach attempt, That is, we shall compute the probabilities
of having exactly v =0, 1, . . ., N mines in the path of the target
after its breach attempt is finished, In addition, we compute the
probability that this target successfully breaches the minefield, as
well as the expected number of encounters, detections, duds encountered,
and non-lethal detonations.,

Computation for subsequent targets is performed in a similar manner

using the probabilities for the number of mines in the path after the
previous target has finished its breach attempt.

We dcfine:

PD = the probability that a mine in the target's path will be
detected and removed harmlessly,

PDUD = the probability that a mine is a dud incapable of exploding,

PK = the probability that when a mine explodes it will
incapacitate the target.

The values of PD and PK may vary from target to target; the value of
PDUD remains the same for all tarsets,

The computational methods will be presented in two parts - first for
the vehicular case and then for the personnel case,
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VEHICULAR CASE

In this section we shall use the following nomenclature:

P, = the probability that there are exactly j mines in the

J target's path before it attempts to breach the minefield.
Pl

v = the probability that exactly v mines remain after this

breach attempt.

r = the probability that a mine in the target's path will not
incapacitate 1it.

= the probability that the mine will be detected and
removed harmlessly, or is a not detected but is a dud, or
will explode but not incapacitate the target,

= PD + (1-PD) [PDUD + (1-PDUD) (1-PK) ]

1-r = the probability that a mine in the target's path will
incapacitate it.

= (1-PD) (1-PDUD) PK

Y = the probability that this target successfully breaches the
minefield,

The equations required for the computation are as follows:
N
\}
Pv = (1-r) ? PJ
j=vtl

,rJ—v_l for v>o

since if there are j mines to begin with, and v mines after this target
passes, then the first j-v-1 mines in the path must not incapacitate
the target while the next mine does incapacitate it.

N .
Pt =P 4+ Pt ()
o

since if there were previously no mines in the path there will still be
no mines in the path, and if there were j mines to begin with and no
mines afterward then the first j-1 mines must not incapacitate the
target and the last mine may either incapacitate it or not, which occurs
with probability 1.

The probability that this target gets through the mirefield is

y =P + ; P.rj. (7)
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Note that this expression has rJ rather than rj-1 since the final mine
must also be removed harmlessly in order for this target to successfully
breach the minefield,

As a check on the computations, note that we must have

In order to lessen the amount of computation required we note that

N
P! = (1-r) I 2y eIVl
J=v+l
and
N Jmv
P! = (1-r) I P, r
v=1
J=v
N
= (1-r) P +r (1-r) = P rj-\)-l
v J=v+1

Hence, in place of equation (5) we may use the relations

Pl = (-r) P+ rPl  for v= N-1, N-2, ..., 3, 2.

We shall begin the computation with the equation
! = —
PN—l (1-1) PN

and then work backward using equation (8) for v= N-1, N=2, ..., 3, 2
in that order. Finally, we note that

N 1
P! =P +3 P r?
j=1 7
N -
=P +P +r: P e
j=2 9
Hence, v
P' =P + P, + wae= p’
o 1 L=y “1°
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Similarly, we see that

Y= Po +x P rj
3=1 7
‘ N

= Po + rP1 + r2 L P rj 2

=2 3
Hence,
= _r_ L
y=P +r (; + T PD.

For computer implementation use equations (9), (8), (10), and (11) rather
than equations (5), (6), and (7) in order to save the computer time which
would be required to perform summations for each value of v,

We shall now show how to compute the expected number of encounters,
detections, non-detected mines which are duds, incapacitations, and non-
incapacitating detonations.

The number of incapacitations resulting from the breach attempt of
any single target is either O or 1; i.e., either the target is incapaci-
tated or it is not. As defined in equation (7), the probability of 0
incapacitations is ¥, Thus, the expected number of incapacitations,

EK, 1s given by

EK = 1~-¢,
We now wish to compute
ED = the expected number of detections

EDUD = the expected number of mines which are not detected but
are encountered by the target and are duds,

ENK = the expected number of non-incapacitating detonations.
In order to obtain the above quantities we shall first compute

ER = the expected number of mines removed without incapacitating
the target.

= ED + EDUD + ENK

Exactly j mines are removed harmlessly (i.e., without causing an
incapacitation) if there are more than j mines in the path at the
beginning of the breach attempt, the first j of them are removed
harmlessly, and the next one causes an incapacitation, or by starting with
exactly j mines and removing all of them, This occurs with probability

. N .
p.rd +32 P (1-n).
g=j+1 °
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Thus, the expected number of mines removed harmlessly ER is given by

N N
ER=I 41 [P, + (1-r) I Pz ] (12)
i=o 3 =i+l

The above equation requires a double summation, and hence is computationally
inefficient., We shall use the following proposition to simplify this
computation.

Proposition: Let x =1 + 2r2 + 3r3 + «.. + nr" vhere r = 1. Then,
x = r[1-(n+l1) o+ nrn+l]
(l—r)2
- 2 n-1 n
Proof: A-v)x=1r (A+r 4r~ + ... + 1 -nr )

Using the well known identity

1+r+rl+ ...+ 0oL
1-r

and simplifying, we obtain the required result,
By reversing the order of summation in equation (12) we obtain
N j-1 .
ER =1 P | % er® (1-r) + 307 | ¢
j= =

OJ (o]

Using the Proposition we can simplify the expression in brackets as
follows:

j=-1 .
b) crg (1-r) + er
z=o
.31 . B~ .
= (1-1) r[1-ir + (%-l) - ] + 33
(1-r)
e

1-r

Hence, we obtain the simple relationship

N )
ER = ——— 3 (1-r3) P.. (13)
l-r =1 j

Since the occurence of detections, duds, and non-incapacitating
detonations are independent, we have:
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PD

ED = ER —
r

EDUD = ER (1—PD]): PDUD

ENK = gr SAZPD) (1-PDUD) (1-PK)

r
The expected number of encounters, EE, is given by

EE = EK + ED + EDUD + ENK.

PERSONNEL CASE

We assume that the targets follow a straight line path across the
minefield and that the footsteps of the current target are random with
respect to those of the previous targets. For the personnel case we
use the following nomenclature:

P, = the probability that there are exactly j mines in the
J target's path before it attempts to breach the minefield

PL = the probability that exactly v mines remain after this
breach attempt

r = the probability that a mine is removed from the path without
incapacitating the target

b. = the probability that a mine incapacitates the target

l-r-b = the probability that a mine is stepped over by the target
and hence remains in the path of subsequent targets

¥ = the probability that this target suécessfully breaches the
minefield,

The footsteps of all the targets in the same column are constrained
to lie within a straight-line path across the minefield., Foe example
(see Figure 2), we might consider a footstep to be 4 inches wide and
12 inches long with an average stride length of 30 inches. The path
is then the two 4 inch strips corresponding to all the positions in which
the target might possibly step. For this example, the ratio of the area
of the footsteps to the area of the path 1s

12 inches

RATIO = 60 inches -2

In general we define:

RATIO = the ratio of the area of the target's footsteps to
the area of his path
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For the personnel case we may proceed under two different
assumptions, We may assume either that the target will detect and
remove mines only if they are in his footsteps or that the target will
detect and remove mines anywhere in the path.

If the target detects and removes mines anywhere in his path, then

PD + (1-PD) (RATIO) [PDUD + (1-PDUD) (1-PK) ]

Tr =
b = (1-PD) (RATIO) (1-PDUD) PK
l-r~b = (1~-PD) (1~RATIO)

If the target detects and removes mines only within his footsteps,

then
r = (RATIO) {PD + (1~-PD) [PDUD + (1~PDUD) (1-PK). ] }
b = (RATIO) (1-PD) (1~-PDUD) PK
l1-r-b = 1-RATIO

The values of PD, PK and RATIO may vary from target to target in
the same column. The value of PDUD remains the same for all targets,

The probability P',of having exactly vmines in the path after the
breach attempt is given by the equation

v _ YV
Pv Pv (1-r-b)

N .
+1 P, J
j=vi J 3-v rj_v (1-r-b)"

s J - _
+ b3Vl 3 g;‘ L) @er-m)® j+"}
. -v-1
n=sj-

If 0 mines are removed, all of the mines in the path must be stepped over,
If j mines were present before the breach attempt and v mines afterwards,
then j-v of the mines must be removed by the breach attempt., If the
target is not incapacitated, then j-v of the mines are removed harmlessly
while the remaining vmines are stepped over and remain on the minefield.
On the other hand, if the target is incapacitated by the breach attempt
the incapacitation may occur anytime after the target has successfully
passed v mines. Thus, the target may encounter or step over anywhere
from j-v up to j mines. If the target encounters or steps over exactly

n mines then the last of those mines incapacitates the target, j-v-1 of
them are removed harmlessly, and the remining n~Jj+v are stepped over.

The probability that this target successfully breaches the minefield
is

P. (1-b)J (15)
=0 J

<
[
Qb
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i.e., the target successfully breaches the minefield if he is.-not
incapacitated by any of the mines in his path,

The computation of equation (14) as it stands would be rather time
consuming on a computer because of the double summation involved., We
now show how to reduce the required computation by computing the inner
sum recursively, We define for v = 0, 1, «ee, Nand j = v+1,v + 2,
sesy N

j )
z(vej) = 2 (’?"1 l)(1-1»-b)”‘3+".

n=i-v V" V"

Hence, by a change of variables,

j-1 :
. -1 -j+
z(v-1, j-=1) = 1 ;‘_v_l (1-r-p) "IV
n=j-v

for v=1, 2, ..., M1 and Jo=v 1, w2, .., , N+1, Thus,

; . j-1 v
z(v,3) = z(v-1, j-1) + ;—v-l (1-r-b)

for v=1, 2, ..., N and j= vtl, v+2, ..., N. To begin the computation,
note that Z(o,j) =1 for j=1, ..., N,

Hence,

N . r /.
+ I P, rJ—v—1 r (J_> (l—r-b)\) + bz (v,3)
jevt1 J I7v

for =0, 1, ..., N. Thus, we have reduced a formula involving a
double summation to one involving just a single summation. Additional
methods for improving the efficiency of the computation are included in
the computer program,

We shall now show how to compute the expected number of encounters,
detections, non-detected mines which are duds, incapacitations, and
non~incapacitating detonations,

The number of incapacitations resulting from the breach attempt of
any single target is either O or 1. As defined in equation (15), the
probability of 0 incapacitations is Y. Thus, the expected number of
incapacitations, EK, is given by
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EK = 1-¢

We now wish to compute

ED = the expected number of detections
EDUD = the expected number of mines which are not detected
but are encountered by the target and are duds
ENK = the expected number of non-incapacitating detonations.

In order to obtain the above quantities we shall first compute

ER

the expected number of mines removed without
incapacitating the target ‘

ED + EDUD + ENK

Using equation (16) we see that the expected number of mines, ER,
which are removed without incapacitating the target is

N N v [ v
ER = I 5 [(j—\)) P, (J_\> (1-r-b)
v=1  j=v+l 3 3

+ (j=v-1) P A7V, (v,j)t] a7

]

Since the occurence of detections, duds, and non-incapacitating
detonations are independent, we have: If detections may occur anywhere
in the path

ED = ER 2
r
EDUD = ER L=FD) (RA?O) (PDUD)
ENK = gRr JL1=PD) (RATIO) (1-PDUD) (1-PK)

r

If the target only detects mines which lie within his footsteps:

Ep = gr {RATIO) PD
r
EDUD = ER RATIO) (i.—PD) PDUD
ENK = Er SRATIO) (1-PD) (1-PDUD) (1-PK)

r
The expected number of encounters, EE, is given by
EE = EK + ED + EDUD + ENK,
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A MATHEMATICAL THEORY OF MEASURES
OF EFFECTIVENESS

CPT David L. Bitters

US Army Combat Developments Command
Systems Analysils Group
Fort Belvoir, Virginia

The existence of more than one choice or course of action to
satisfy a given set of requirements necessitates a decision. In making
a decision one first attempts to learn as much as possible about the
implications of each alternative. One then analyzes this information
in order to compare choices in an effective fashion and select an optimal
or "best" choice relative to the requirements,

In some cases the implications or effects of various choices
are relatively easy to determine. 1In others, information is incomplete,
so that the alternatives can be examined only partially. As a result,
decisions made under such circumstances involve an element of uncertainty.
Clearly the selection of an alternative which is in fact optimal relative
to the requirements is directly related to the quality and availability of
input information.

When knowledge of the implications of one or more of the choices
is incomplete or nonexistent, the usual procedure for obtaining information
is to perform a series of experiments, In this case the input information
is a function of experimental design and the validity of the associated raw
data,

The raw data obtained from an experiment is generally of little
value by itself., It must be processed, i.e., converted to information.

Having obtained information from raw data, one then tries to formulate a

The remainder of this article was reproduced photographically from the
manuscript submitted by the author.
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mathematical theory or algorithm by which one can rank-crder the alter-
natives. Normally, the rank-ordering is quantitiatiwve in nature; but

it need not be. The fact of t

ig the esgential 1

An algoritim for rank-ordering is usually called, in military
parlance, a measure of effectiveness. Although the term "measure of
effectiveness' seems to be a common one in military opevations research
papers, it appears that it has never been precisely defined from a math-
ematical point of view. Hence, the purposes of this paper are: 1) To
abstract the fundamental properties of some comuonly used measures of
effectiveness and develop a viable definition, 2) to investigate some of
the consequences of the definition, and 3) to suggest some new types of
measures of effectiveness.

Sufficient mathematical machinery now exists to define the concept
of measure of effectiveness and explore it in some detail. The techniques
to be used come from statistics and certain disciplineslof modern algebra;
particularly, group theory and linear algebra. The use ¢f the abstract
(axiomatic) approach is not merely a pedegogical ploy. A theory will be
developed which at once subsumes the common types ot measures of effectivenesa
Hence, the abstract formulation is appealing fiom an eccnemy of space point
of view.

In developing measures of effectiveness (MOE), it is important
that each contribute new information to the solution of the prcblem. If
measure B is a consequence of measure A, it is clear that the employment

of measure B will contribute no new information. In a practical application,
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however, it may not be immediately clear that one MOE is a consequence’
of another. Some new techniques will be needed for indicating the
relationships between two measures of effectiveness, especially, in the
case where a composite measure is derived from several others.

‘The first step in the development of the theory of MOE compar-
ison is to define and discuss the notion of disfance between two measures.
The definition is based on the usual Euclidean distance concept, and, hence,
gives the subject of measures of effectiveness a geometric flavor. Given
the distance function, it is then possible to talk about the variance of
two MOE, and to define three types of correlation. The concept of variance
is borrowed directly from statistics. The correlations will be called
weak, strong, and statistical. Weak aud strong correlation will give com-
putational techniques for determining whether one MOE is a consequence of
another (in the sense that the rank-ordering induced by the one is con-
sistent with that induced by the other). Statistical cocrrelation is anal-
ogous to the usual statistical definition of the term. A geometric inter-
pretation can be given to the various types of correlation.

The abstract formulation of the theory of measures of effectiveness
would be a rather tedious and pointless exercise without several classes of
examples. Hence, this article will show that measures of effectiveness are
quite easy to develop from experiments. Experiment-formulated measures of
effectiveness will be seen to exhibit a special property called transitivity.
The class of transitive measures is of considerable importance because two
transitive measures can be combined linearly to form a new measure of effec-
tiveness. Correspondingly, an important result will be the construction of

a strongly correlated transitive measure from an arbitrary measure.
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An interesting result from the theory of statistics is that .
the likelihood ratio test is a measure of effectiveness.l Several
other examples of measures will be defined and discussed, including
the canonical or discrete nicasure of effectiveness.

A simple example of a measure of effectiveness is appropriate
at this point in order to motivate the discussion to follow. In a high-

diving contest the ability and form of each participant is judgedon a

~numerical scale (say from 1 to 10). A perfect performance rates a score

of 10,0, with lesser pérformances being rated accordingly in incremenfs

of tenths. Having compared each contestant against the standard, the
judge is then able to compare them against each other. Thus contestant

A is ranked above contestant B if the difference of their respective
scores is positive. If it is negative, B is better than A. The result

is a rank ordering of the contestants, with the winner being the individ-
ual who is renked above all of his competitors.

The precise numerical value awarded to each performance is of
only relative significance; it provides the means for creating the rank
ordering. (in fact, vary olten there is more than one judge. A score of
8.5 from one might be a score of 7.3 from another — the figures are sub-
jective but hopefully the relative values are reasonably consistent.)

The measure of effectiveness employed in the above example ic
simply the differences of the pairs of numerical scores; it provides a way

of ordering the relative abilities of the contestants. It will be seen

1 See, for example, Chernoff and Moses, Elementary Decision Theory,
Wiley 1959, Page 256 ff.
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that the notion of rank-ordering, as discussed above, provides the moti-
vation for the definition of measure of effectiveness. Before the def-

inition is given, some preliminary concepts are necessary.

LOGICAL PRELIMINARIES

1.1 Definition: Let S be an arbitrary non-empty set. An

equivalence relation on S is a relation ~ such that for x, y, z ¢ S:

a) x ~ x for all x (reflexive)

b) X ~y implies y ~ x (symmetric)

¢) X~y and y ~ z implies x ~ z (transitive)
It is a well known fact of elementary set theory that a relation on § is
an equivalence relation if and cnly if it partitions § into mutually
exclusive and exhaustive subsets; that is if and only if there exists a
collection {S : x ¢ I} induced by ~ such that USXI = S and 5 N Sy =0 if
x#y (7, p. 30). The {Sx} are obtained by taiiig Sx = {y: y ~x}. Each
. x € S produces such an Sx, and for anv x, y € S, either Sx(j Sy = @ or
Sy = Sy' The index cet I is formed by taking a representative of each
distinct Sx.

1.2 Definition: Let S be an arbitrary nonempty set. A relation

<on S is a partial order if:

a) x < x for all x ¢ S (reflexive)

b) x <y and y < z implies x < z (transitive)

c) x <y and y £ x implies x = y (antisymmetric).
In addition, < is a linear order if:

d) for eachx, ¥ ¢S, x Sy or y <x.
Notice that x <y may or may not imply that x = y. In the case where x <y
and it is necessary to indicate that x # y, the notation x < y will be used;

that is x <y means x <y and x # y.
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HEASURE OF TFFECTIVENISS

In this secition the definiiion of meagsure of effectiveness will
be presented. A preliminary study of a matbematical structure called a
linear 0-Group is required. The notion of a linear O-Group is sufficiently
general to permit simultaneously the study of the two most common types
of mcasures of efffectiveuessz to be prasented below,

2.1 Defirition: L2: G be a group (see 6 p. 6 ). An operator

group or O-group is an ordered pair (G,0) where O is a set called the

operator set, together with a function *: 0 x G -—= G, satisfying the fol-
lowing:
Vx, vy eGand s ¢0, s * (xy) = (s * x) (s *y) (See 6 p. 40).
2.2 Definitiocn: Let G be an O-group. Then G is said to be a

iinear O-group if:

a) A linear order < is defined on G, as in 1.2.
b) Vx,v,z ¢ G, x <y implics xz<yz and zx < zy.

Comment on Notation: An interesting mathematical problem

is whether or not every linear O-group is Abelian (commutative)., However,
the examples to be discussed in this paper will all involve Abelian groups,
so that a further condition will be imposed: Kamely for ¥x, y ¢ G, xy = yx.
Since it is more intuitively appealing to use the additive notation
(x+y=y+ x) in the case of Abelian groups, this notation will be employed
throughout the remainder of the paper.

Examples: The first example of a linear O-group is ((R,+), R)
the group of additive real -numbers with the real numbers R being the operator

set. (Alternatively the ring of integers or field of rational numbers could
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be used as an operator set.) The linear ordering will be the usual ordering
of R. Since for x, y, z ¢ R the identity x(y + z) = xy +xz holds, the
condition of definition 2.1 is satisfied. Hence (@R, +),R) is an R - group,
where the operation * is real - number muliplication. The second important
example of an O-group is ((B%, + ), R); namely, the group of positive multi-
plicative real numbers. Again, the operator set O will be R (or integers

or rational numbers). The operation * will be exponentiation, Hence for

X, ¥V € 54', z eR, z ¥ (xy) = (xy)z = x% y%2 = (z * x) (z * y). This proves
that ((Bf, - ), R) together with exponentiation i1s a linear O-group.

For the purpose of the discussion to follow it is necessary to
make an observation about linear O-groups.

2.3 Proposition: Let G be a linear O-group. Then G has no non-
zero elements of finite order. This is, there is no x ¢ G with x # O and
nx = 0 for some positive integer n.

Proof: The first step is to show that there is no nonzero
element of order two. Assume that x + x = 0, It will Be shown that x = 0.
Without loss of generality, suppose 0 <%, Then 0+ x £ x + x, or x <0,
By definition 1.2, 0 <x and x < O imply that x = 0. To show that there is
no n such that nx = 0, proceed by mathematical induction. Suppose for all
positive r <n that 0 <rx. Then 0+ x < {n - 1) = + x in particular, i.e.
x <nx., Since 0 <x it follows that 0 < nx by transitivity.

2.4 Definition: Let G be a linear O-group and S a non-empty set.
A measure of effectiveness (MOE) is a function M: § x S —) G such that:

a} Vx,y €8, M(x,y) = -M (y,%)
b) Vx,y,z €8, M(x,y) <0, M(y,z) <0 implies

ka,z)s min { M(x,y), M(y,z) ).
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A measure of effectiveness will be transitive if:
b-1) Vx,y,z € 3, M(x,y) + M(y,z) = M(x,z).

A few commenis on the definition are useful. The significance
of a measure of effectiveness is that it provides a method of rank-ordering
the elements of §. Here, of course, the set S is intended to be the set
of objects or alternatives for comparison.

The condition M(x,y) = -M(y,x) says that if y is preferred to
X then x is not preferred to y, and the magnitude is the same in each case.
The condition M(x,y) <0, M(y,2z) S0, M(x,z) s<min { M(x,y), M(y,z)} says
two things. First, it says that if y is preferred to x and z is preferred
to y, then z is preferred to x. Sécond, it indicates a cardinal relation-
ship between x, y, and z. That is, the value by which z is preferred to x
is at least as great as the value by which y is preferred to x and the value
by which z is preferred to y. It is clear that condition b-1 implies condi-
tion b.

As indicated in the introduction, transitive measures of effective-
ness are extremely important, because they are closed under addition (i.e.
the sum of two transitive MOE's is a transitive MOE). A method will be
developed, given an arbitrary measure of effectiveness, for deriving a
strongly correlated transitive MOE.

The construction of the rank-ordering will be discussed in depth
presently. For logical consistency, two preliminary results are needed.

2.5 Proposition: Vx,y,z2 ¢5, 0 < M(x,y), 0 < M(y,z)implies

max { M(x,y), M(y,z)} < M(x,z).

-610-



Proof: Assume 0 < M{x,y) and 0 < M(y,z). Then -M(x,y) =
M(y,x) <0 and -M(y,z) = M(z,y) < 0. Hence M(z,x) <min {M(z,y), M(y,)-t:)}#
M(g,x) < M(z,y), M(z,x) € M{y,x)=-M{z,y) =-N
M(y,z) < M(x,2), M(x,y) <M(x,z)=) max {M(x,y), M(y,2)} < M(x,z).

2.6 Proposition: Let x,vy,z ¢ S be such that M(x,y) = 0 and

M(y,z) = 0. Then M(x,z) = O,

Proof: Since M(x,y) = M(y,z) = 0 it follows by definition
2.4 and proposition 2.5 that:

M(x,z) < min {M(X,Y), M(Y,Z)} = max {M(Xay)a M(y>z)} =0 SM(X,Z).

Hence M(x,z) = 0.
Given a MOE, the technique for extracting the associated
ranking on S is straightforward. It is et this point that the definitions
of section 1 on linear orderirgs become useful. An equivalence relation:=
is induced on S as follows:

2.7 Theorem: Let M: § x S—3G be a MOE, Say that x = y for
%,y €8 if M(x,y) = 0. Then the relation = is an equivalence relation on 5.

Proof: Let x,y,z ¢ 8. Since M(x,y) = -M(y,x) for =211

X,y €8S, it follows that M(x,x) + M(x,x) = 2M(x,x) = 0, so that by theorem
2.3, M(x,x) = 0. This proves the reflexivity of = . If M(x,y) = O then

-M(x,y) = 0, so = is symmetric. To show transitivity, assume that

M(y, x)

M(y,z) = 0., Then by proposition 2.6, M(x,z) = 0. It follows that

[}

M(x,y)
Xx=y and y= z implies x = z,

Let {SX: x ¢ 1] =}jbe the partition on S induced by = (see
definition 1.1), where I is an index set obtained by taking one represent-
ative of each equivalence class. The next step in constructing the ordering

on S is to linearly order the set /j. For this purpose, a definition is needed.
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» 2.8 Definition; Let Sy» Sy be two elements of Ad? Then say
Sx < Sy if M(x,y) s 0. The relation S is wcll defined: Suppose M(x,y) <0.
Pick X, € S, and v, e Sy' Tnen M(xl, x) = 0 so that M(xl, y) <0, Similarly
M(y, yl) = 0 so that M(xl, yl) < 0. Thus the definition of X does not depend
upon the particular representatives of 54 and S_ chosen.
2.9 Proposition: The relation S is a linear ordering on,éff
Proof: a) Clearly Sy s S, since M(x,x) = 0=>M(x,x) < 0,
b) Suppose for x, vy ¢ S; Sx < Sy and Sy s Sx', Then
M(x,y) <0 and M(y,x) <0 == M(x,y) = 0 == Sy = Sy'
¢) Assume that for some x, y, z ¢ S the relations
Sx < Sy’ Sy S Sz told. Then M(x,y) < 0 and M(y,z) <0 =—M(x,z) < 0:'-‘>Sxf, S,
d) The final step is to verify that for each x,y e S,
'S, S Sy or Sy S S+ But by definition, M(x,y) = -M(y,x). Since M(x,y) and
M(y,x) are both elements of the linear group G it follows that either M(x,y) < 0
or 0 < M(x,y). In the latter case, M(y,x) <0, Thus Sx < Sy or Sy S Sy
depending on whether M(x,y) < 0 or M(y,x) < O,
2.10 Definition: Let M: S x S——>G be a MOE, and S be the induced

linear ordering on the set,éfof equivalence classes (as defined in 2.8). Then

for x, y €S, one says that y is preferred to x (denoted x <vy) if Sx s Sy and

leﬁ Sy = . Similarly one says that x and y are tied if Sy = Sy' The combined
symbol x <y will denote the fact that x is not preferred to y.

It is now possible to prove two propositions of the same nature

as 2.5 and 2.6.

-612~



2.11 Proposition: Suppose for x,y,z € S that M(x,y) <0,

M(y,z)} <0, and M(x,z) = O. Then M(x,y) 0.

M(y,z)

Proof: By definition, 0 = M(x,z) <min Mx,y), Mly,z)}=
0 <M(x,y) and 0 <M{y,z). But M(x,y) <0, and M(y,z) < O so that M(x,y) =
M(y,z) = O,

Proposition 2.11 provides an important fact from a logical
point of view: the knowledge that y is preferred to x, z is preferred to
y, and x is tied with z are sufficient to conclude that x, y, and z are
all tied.

2.12 Proposition: Let x,y,z ¢ S and suppose that M(x,y) = O.
Then M(x,z) = M(y,z).

Proof: Without loss of generality, assume that 0 < M(y,z).
Then max {M(x,y), M(y,z) } = M(y,z) < M(x,z).r In particular, 0 < M(x%,z).
Since M(x,y) = -M(y,x) = 0 it follows that max {M(y,x), M(x,z)} =
M(x,z) < M(y,z). Hence M(x,z) = M{y,=z).

This proposition gives a consistency relation for a measure
of effectiveness. 1If two objects are rarked equally the relation of either
of them to any third object is identical.

The scheme just discussed gives a method of inducing a
preference ranking on the objects of a nonempty set S, by the uce of a
measure of effectiveness.

Basically an object y is preferred to another object x if
M(x,y) < 0 and x is tied with y if M(x,y) = O, Observe that the inducea
ranking has the following'properties:

a) Fyarv object of $ may be compared with every other

object,
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b) If y is preferred to x and z is preferred to y, then

'z is preferred to x.

c)

If v is preferred to x and tied with z, then z is

preferred to x.

d) If x and y are tied and y and z are tied, then x and

z are tied.

The chief purpose of a measure of effectiveness is to

generate the associated rank-ordering. However, the values assumed by

the MOE may possess intrinsic significance. That is, the quantificatien

may answer the question: 'To what extent is y preferred to x?" In any

case the MOE gives a mathematical basis for making decisions: if y is

preferred to x, select y; among several candidates choose a maximal one.

The decision problem .becomes one of careful selection of the measure(s)

of effectiveness. Having established the MOE, the decision is a logical

consequence.

The values assumed by a measure of effectiveness become important

when the validity of the measure is questioned. For example if a MOE is

derived from a statistical analysis of data, the values obtained may be

correct only to within a certain confidence interval. Hence one may require

an "aspiration level' condition to be met before one accepts the validity

of a rank-ordering.

The derivation of a technique for factoring the confidence interval

out of a measure of effectiveness which contains an uncertainty constitutes

an important unsolved problem.
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A weasure of effectiveness is of no value in differentiating
between two alternatives if it declares them to be tied. In such a situation

A an~AeAd
@ SsuCuiia

one looks for further evidence — wsually another MOE, One he

es that
MOE will rank the two tied objects., However, a potential problem arises with
the introduction of a second MOE. For illustration, suppose that two measures
M and N are given. Suppose further that for two objects x, y ¢ S, measure M
prefers x to y and measure N prefers y to x. Clearly a contradiction arises;
additional information is required in order to choose between x and y. As
illustrated in the example, comparigson of twc MOE may create new difficulties

at the same time ihat it vesolves old ones. A technique for resolving con-

tradictions, given additional information, will now be discussed.

MEASURLE PRESERVING CCPOSITIONS

The problem discussed above requires, for its solution, the forma-
tion of new measures of effectiveness out ¢f old ones. This section will
present some theorems describing situations under which the MOE property is
preserved or (in mathematical language) invariant.

3.1 Definition: Let G, H be linear O-groups. A function ff: G—— H

will be called measure preserving if:

a) P(-x) = -P(x), ¥x ¢C
b) Vx,y €G, x <y—= P(x) < @B(y).
3.2 Proposition: Let 0: G Il be measure preserving. Then
a) x<0ﬁﬁ(¥<)< o
b) 0 <x==0 < §(x)

c) P(0) =0
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Proof: Parts a) and b) are immediate consequences of 3.1 b).

Part c) follows from § (-0) = -p (0)==52p(0) = 0. By proposition 2.3,

p(o) = 0,
The following theorem is an immediate consequence of 3.1.
3.3 Theorem: Let S be a nonempty set and let G, H be linear
O-groups. Let M: S x S —>G be a MOE and §: G —>H a measure preserving

function. Then the composition PoM: S x S——H defined by PoM(x,y) =
# (M(x,y)) is a MOE.

Proof: The following diagram is a useful mnemonic:

M
Sx8§ —m> G
~ \l
~ )
PoM ~
ﬁH

It is necessary to verify the following conditions:

a) PoM(x,y)

~PoM(y, )

b) PoM(x,y) <0, PoM(y,z) <0 ==

A

PoM(x,z) <min {PoM(x,y), PoM(y,z)}.
Since M(x,y) = -M(y,x), it is clear that PoM(x,v) = O(M(x,y)) =
P(-M(y,x)) = -PM(y,x)) = ~PoM(y,x).
Now assume that PoM(x,y) < 0 and PoM(y,z) = 0. In the case wihere
PoM(x,y) < 0, M(x,y) < O by definition. If PoM(x,y) = 0, one uses propusition
3.2 ¢) to conclude that M(x,y) = 0. In other words,
PoM(x,v) < 0 == M(x,y) < 0. Similarly, M(y,z) < 0 so that:
M{x,z) <min {M(x,y), M(y,2)}
By defirition 3.1, QoM(x,z{ < min {PoM(x,y), PoM(y,z)].
A few words of explanation wculd be appropriate at this point.

A measure preserving functiowr is a gcaeralization of the notion of
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multiplication by a positive constant. That is, if the linear group G
ig in fact the real numbers, or a subfield of R, then given a MOE
M: S xS~ R, and a ¢ E+ the function M = a M is also a MOE, obtained
by scaling M by a. The rationale for scaling a measure of effectiveness
is to be able to adjust units, if need be, in order to linearly combine
two measures of effectiveness. When linearly combining two MOE's it is
important that the units of each be identical. The linear combination of
two MOE's will be discussed fully in the next sectiom.
3.4 Theorem. Let f: G —> H be measure preserving. Then. for

any measure of effectiveness M, PoM and M induce the same rank-ordering.

Proof: It is sufficient to prove that the set of equivalence
classes induced by PoM is the same as that induced by M, and that the linear
ordering of the classes is stable under f. But PoM(x,y) = 0 if and ornly if
M(x,y) = 0. Hence for each x €S, (S4,M) = {y: M(x,y) = 0} = (Sy,Pol) =
{y: PoM(x,y) = 0} . Moreover, PoM(x,y) <O if and only if M(x,y) < 0, so
that (Sx, M) < (Sy’ M) if and only if (SX, Polf) < (Syi PoM) .

3.5 Theorem: Suppose that G is an ordered field (see 7 p.* 3 )

and suppose that §: G —= G is measure preserving. Then there exists a
function £: § x S——> G such that:

a) Vx,y e85, PoM{x,y) = £(x,y) - M(x,¥)

b) £(x,y) = £(y,x), Y=,y ¢S

c) f(x,y)>=0, Vx,y e S.

Proof: Case 1. Suppose M(x,y) # 0. Then define f(x,y) =

[’M(x,y)]-1 PoM(x,y). Since PoM(x,y) <O if and only if M(x,y) < 0 it follows
) - -1
that £(x,y) = 0. Also, £(x,y) = MG,y T T BoMGe,y) = [-M(y,) T " [-Pom(y, )]

My, 11 PoM(y,x) = £(y,%).

~617~



Case 2. M(x,y) = 0. Define f(x,y) arbitrarily,
subject to the restrictions that £(x,y) >0 and f(x,y) = £(y,x). Clearly
£(x,y) satisiies the requirements of the theorem.

A partial converse is also true.
3.6 Theorem: Let f: S x S —>G be a function which satisfies
b) and ¢) of theorem 3.5. In addition, suppose that:
max {f(x,y), f(y,z)]} < f(x,z), Vx,v,2 ¢ S.
Thea for any MOE M: S x S -~—> G, the function N(x,y) = f(x,y) - M(x,y) is
a MOE.
Proof: First observe that N(x,y) = flx,y) M(x,y) =
£y, x).- [-M(y,x)] = -£(y,x) M(y,z) = -N(y,x). Next, suppose that N(x,y) =0
and N(y.z) < 0. Since f(x,y).and f(y,z) are positive, it follows that
M(x,y) <0 and M(y,z) <0. By definition, M(x,z) < M(x,y) and M(x,z) < M(y,z).
Using an eiementary argument, nne verifies that N(x,z) < min N(x,y), N(y,z) }.
Theoreme 3.5 and 2.6 adequately characterize measure preserving
functions with values in an ordered field (subfield cf the real numbers) .
A somevwhat weaker notion than measure preserving is measure
respecting, as defined bezlow.
3.7 Definition: Let G, H be linear O-groups. Let M: S x S—3

be a MOE. A function @: C — H is said to respect the measure M if:

a) B(-x) = -p(x), Vx ¢3.
b) x <y=> P(x) <08(y), x,y eG.
¢) PoM(x,y) <0, PoM(y,z) < O _
PoM(x,2z) < min {PoM(x,y), PoM(y,z)} Vx,v,z ¢ S.

The function @ is measure respecting if it respects the measure M, for each

M: S x S—>0G.
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3.8 Proposition: Let M: S x S -~>»G be a MOE, and f: G —> H

a function which respects M. Then the ranking induced by foM is consist-
ent with the ranking induced by M.

Proof: The fact that x <y under M implies x £y under
PoM for x, y ¢S, is a trivial consequence of definition 3.7. Moreover,
M(x,y) = O implies QpM(x,y) = 0 by proposition 3.2.

It is immediate from proposition 3.8 that the‘équivalence
classes (SX, PoM) induced by foM are unions of equivalence classes (S, M)
induced by M. That is, (Sy, M) < (54, PoM) for all x, and (S¢>M) < (Sy,M)=?
(Sxs PoM) S (Sy, Por).

Condition 3.5 c¢) is logically necessary to guarantee that
foM is a MOE. That is, counterexamples exist to the statement that if
f: G —> H satisfies 3.5 a) and b), and M is a MOE, then fPoM is a MOE.

Proposition 3.8 can be summarized pictorially as follows:
Let,/./= {Sy: % €I} be the set of cquivalence classes formed by a measure M.
Leté7/bé {TX: x € J}, where for x ¢S, Ty = {y: PoM(x,y) = 0}, and where J
is an index set consisting of one element from each T,. Then the following
diagram is consistent:

(PoM) *

where M*(x) = Sy» (PoM) *(x) = Tx and 0*(SX) = T_., Moreover, Sy = Sy=ﬁ?

X
* ,S *
pr(s) S pr(sy).

The characterization of all functions @ which respect a given

measure M is an unsolved problem, A partial answer is provided by the fol-

lowing.
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3.9 Propositioa: Let M be a measure. Then every measure

preserving function respects M.

Procf: Trivial.

LINEAR COMBINATIONS OF MEASURES

Let Ml’ M2 be measure of effectiveness. It would be useful to

be able to say that the sum M. + MZ’ defined by (M1 + MZ) (x,y) =

1
My (x,y) + Mp(x,y) is a measure of effectiveness also. Unfortunately this
is not always the case. The difficulty occurs in trying to satisfy the
transitivity axiom. The following counter example serves to illustrate

the point: Let S = {4, B, C}. Suppose two measures M1 and M2 are repre-

sented in matrix form as1

A B C A B
A(O 1 5 A [0 -2
Mp = B! -1 0 1 M, = B 2 0
2 \
c\-s -1 0 c 2
/ \

Thus, for example, M;(A,B) = 1, M;(B,C) = 1, My(A,C) = -2, But

/

0 1 5\ 0 -2 -2 0 -1
M+My=[-1 0 1} +({2 o0 =-2]={[1 o
-5 -1 o/ 2 2 0 \3 1

Note that (M; + M,)(4,B) = -1, (M) + M) (B,C) = -1, but (M, + M) (4,C) = 3.

c
-2
-2

2 0,
3
-1
0

I

Hence, definition 2.4 b) is not satisfied for Mp + My,
The above example shows that the problem of linearly combining

two measures of effectiveness is non-trivial,

1It is useful to observe at this point that a measure of effectiveness
may be represented as a square matrix, doubly indexed on the set of objects.
This is due to the fact tifat a measure is a function on pairs. Thus M(x,y)
gives thc entry in the xth row and vth column. Notice that every MOE can be
represented as a skew symwmetric matrix, since M(x,y) = -M(y,x). If the matrix
is arranged in canonical form with the objects arranged from the top and left
in order of descending rank (with a choice of ordering in the case of ties),
the skew symmetry becomes immediately apparent.
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It is clear from the above example that the combination
of MOE's to produce a2 MOE constitutes a non-trivial problem, even in
reasonably restricted cases. As mentioned in the introduction, MOE's
which are transitive can be combined linearly. This notion will be
developed presently. However, a few preliminary ideas will be presented

first.
4.1 Definition: Let M;: Sx8—> G be MOE's, where i = 1,2,...n

and {Gi} are linear O-groups. Let G be a linear O-group and suppose Ja
n n
function §: X G§—>G such that the composition yo( X M;):8x8—>GC,
i=1 i=1
n n
defined by yo( X M Y(x,y) = y( X Mj(x,y)) is a MOE. Then § is called a
i=1 i=1
' n

composition function and yo( X M ) is a composite MOE, The following
i=1

triangle illustrates definition 4.1:

n
X M.
. i=1 * n
$X8 ——> .X Gi
~. i=1
n > .
'LTO(XMi) ~ 'lll
i=1 ~N Vv

G

Note in particular, if § = Pk, the kth co-ordinate projection, the fol-

lowing situation results:

w
)
9]
N
L =]
(2]
e

la-}

-

#
/
%
1k

n
i P . = M.
since Py o(i_z_(lM1 ) i
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Definition 4.1 is sufficiently general that an attempt to
characterize composition functions appears to be futile. Some information
is available, however, in the special case where the measures {Mi} are
transitive (see definition 2.4 b-1), and the composed measure is also
transitive. In that case one can prove the following.

4.2 Theorem: Let {Mi: i= l;...n} be transitive measures and

n
suppose that {o( X Mi ) is transitive. Then V&,y,z eSS,
i=1
n n n
yO X (M (x,y) o+ M (y,2))) = yo( X Mi)(x,y) + ol X M)(y,z).
i=1 i=1 i=1

n n n

Proof: ¢o(‘ X Mi)(x,y) + ¢o(. X Mi)(y,z) = wo(' X Mi)(x,z) =
i=1 i=1 i=1

n n
v( X Mi(x,z)) = ¢( X (Mi(x,y) + Mi(y,z))), by two applications of the
i=1 i=1

«definition of transitivity.

n
The intent of theorem 4.2 is to show that I X G;—>6G
=1
n n
behaves like a grecup homomorphism on the subset ( X Mi)(s x §) «= X G s
i=1 i=1"

whenever the summation operation makes sense (i.e. on transitive pairs).
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4,3 Observation: One might be interested in studying the

following situation: Suppose My, Moy, ... M, are transitive MOE's.

n
Suppose further that Yo ( X M;) ina transitive MOE, If the function ¥ is
i=1
n
in fact a group homomorphism then the MOE Vo ( X M; ) is essentially a

i=1

linear combination El P (My) of the component MOE's, Thatis, if ¥ isa
group homomorphism, the MOE composition problem can be solved in essentially
only one way. This fact will be explored in theorem 4.5. One might wonder,
in view of theorem 4.2, if it is sufficient to assume that 3 is a group homo-
morphism, That is, givena function ¥ as defined above, can one always construct
a group homomorphism &: El(l Gi - G such that 9o ( :):(1 Mi) X,V =

n -
o ( i}=(1 M) X, Y, \(/ X, Y € S, One can show by counterexample that such
is not always the case. Thus, the emunciation of sufficient conditions for ¥ to

be "essentially" a group homomorphism currently constitutes an interesting

unsolved problem.
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The follewing theorem gives a2 conversc toobservation 4,3, in
the sense that it shows a method of developing a composite homomorphism
which is a composition function, given the components. A lemma is needed.

4.4 Lemma: Let G, H be linear O-groups, and let M: § x S — G
be a transitive MOE.. Let §y: G——=>H be a homomorphism. Then the composition
ycM: S x S—>H is a transitive MOL,

Proof: The fact that {oM(x,y) = -{oM(y,x) follows from
elementary group theory. Since {oM(x,y) + {(oM(y,z) = yM(x,y) + M(y,z))
and since M(x,y) + M(y,z) = M(x,z) by transitivity, it is clear that
{oM(x,y) + {oM(y,z) = {oM(x,z).

The main result of this section is:

4.5 Theorem: Let Mi: S x S—BGi for i = 1,...n, be transitive
MOE's. Let |78 G;— G be homomorphisms. Then there exists a homomorphisr
e ;1( G; —= G such that -4,0(; M;): 8§ x S—>G is a transitive MOE and such

i=1 i=1
that for any k with 1 <k <n the following diagram is consistent:

n
Gk > X

L v

¢

n
where Ik: G———-—:.~i)=(l Gi is defined by I (gk) = (0, O, ...gk,...O).
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n

Proof: Define § = iz& ¢ioPi, that is W(gl, gz,...gn) =
n n n
L y;0P;(g;, 8,,.-.8) = T {.(g ), where P : X GC.—3G, is the kth
i=1 * AL T e ko yap f

Y . 3 . P -
projection defined by k(gl, gz,...gn) B+ |
The consistency of the above diagram, and the fact that § is a homomorphism,

are elementary results of group theory. Hence it is only necessary to
n n

verify that {o( X My ): S x S—>G is a transitive MOE. But {o( X Mi)(x,y) =
i=1 i=1

n n n
JOX M () = 3 4 QL (x,y)) = (by lemma 4.4) X [- y, (M, (y,%))] =
i=1 1 =1 -7 =1+ 7

n
-[ = ¢i(Mi(y,x)] = ~go( Mi)(y,x). Transitivity results from the fol-
i=1

[t =]

i=1

lowing equalities:

n . n n
P X MGy + ol X M@, = 40 X M Guy) + (X M (y,2) =
i=1 i i=1 i=1 i=1 1
n n
$O X (M 06y) + M (3,20 = §( X M) (x,2).
i=1 i=1

4.6 Corollary: The sum of transitive MOE's is a transitive MOE.

Proof: Merely take Gi = G and ¢i = Id (the identity function)
in theorem 4.5.

The preceeding theory must be applied with some caution. It
might be inferred from corollary 4.6 that any two transitive MOE's could be
added to produce a new transitive MOE. From a computational point of view,
this is the case, However, the danger is that an attempt to add dissimilar
quantities may produce meaningleés results. Transitive MOE's which possess
the same physical units may be added ox ptherwise combined, according to
corollary 4.6. Transitive MOE's possessing dissimilar units may likewise
be linearly combined, using theovem 4.5, but careful attention should be
given to the units of the resulting MOE, so that the significance of the

information is clearly understood.
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Transitive MOE's are of central importance in the general
theory of measures of effectiveness, due to the simplicity with which they
may be combined to yield new transitive MOE's, Hence, it is desirable to
have a method of deriving transitive MOE, given an arbitrary MOE.

Two methods will be discussed. The first one is somewhat
unsatisfactory in thg following sense: Suppose that y immediately succeeds
x (y immediately succeeds x if S, S Sy and if S_ b S, for some z ¢S, then
Sy s S,). Then the derived MOE M* does not necessarily preserve the values
of successive pairs; i.e. there is no more than one successive pair
(x,¥) €S x S such that M(x,y) = M*(x,y).

4.7 Theorem: Let M: S x S—=> G be 2 MOE., Suppose, for each

X €5, the sum ¢ M(x,u) is defined. Then the function M*: S x § —=> G
us<x

defined by M*(x,y) = Z M(x,u) - z M(y,v) ig a transitive MOE. Moreover,
us x vVsy

M* generates the same rank-ordering as M,
Proof: The first step is to show that M*(x,y) = -M*(y,x). But

M*(x,y) = I M(x,u) - T M(y,v) =-[ T M@y,v) - T M(x,u)]= -Mi(y,x).
uszx vy vsy u<:z

"

Next it is necessary to verify that M*(x,y) + M*(y,z) = M*(x,z) for all

X,¥,2 ¢ S. But M*(x,y) + M*(y,2) = [ T M(x,u) - I My,v) ]
usy Vs 'y
+[ £ M@y,w - T M(z,t) 1= T M(x,u) - z (z,t) = M*¥(x,z). Finally,
w sy tsz u<sx t<z

it is necessary to check that'(SX, M) = (S, M¥), and that (S,,M) < (Sy, M)
it

if and onlxﬂ(sx, M*) < (Sy’ M*). Suppose M(x,y) = 0. In order to show that
\

T M(x.u) - T My,v) =0
us<x vy
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it is sufficient establish that {u: u < x} = {vi v <y}, since u and v are
dummy variables. But this equality is an easy consequence of proposition

2.12. Hence, % M{x,u) =
u £ X v

M(y,v), and the result follows:
y

A ™

Conversely, suppose that M(x,y) # 0. The objective is to
show that M*(x,y) # C. Without loss of generality, assume that M(x,y) <0.
Then for u < x <y it follows by definition that M(u,y) < min {M(u,x), M(x,y)} <0,

so that 0 < M(x,u) < M(y,u) and M(x,u) - M(y,u) < 0. Hence,

¥ M(x,u) - . M(y,v) = T M(x,u) - T M(y,v) - z M{y,v).
u X vy u <X vV <X X SVv sy
Note that v M(x,u) - T M(y,v) = T M(x,u) - T  M(y,u) =

u <x v <x u <x u <x

T (M(x,u) - M(y,u)) £ 0 by the above argument. Moreover,
u <X

-% M(y,v) = -M(y,x) since, for x sv <y, 0 <M(y,v). As a result,
X SV sy
M*(x,y) = ¥ M(x,u) - T M(y,v) - PN M(y,v) = -M(y,x) =

u <x v <y X sV <y
M(x,y) < 0. The argument is similar if 0 < M(x,y). In summary, M(x,y) = 0
if and only if M¥*(x,y) = O.

The preceeding argument proves even more: namely, M(x,y) < O
if and only if M*(x,y) < 0, so that (S4, M) = (8, M*) and (S, M) < (Sy, M¥),
as was to be proved.

A second method of constructing a transitive MOE from an
arbitrary MOE will now be discussed. This method has the advantage that it
preserves some of the quantitati&e information of the original MOE, but the
disadvantage that the set_< of rank ordered equivalence classes of S must be

well-ordered,
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4.8 Definition: Let (S, <) be a nonempty set with a partial
order (see definition 1.2). Let Te= S be a nonempty subset. Then T is
said to have a least element if Jdx ¢ T such that \fy eT, x <y.

(See 7 p. 53 ). 1It is easy to prove that if T has a least element, it
is unique.

4.9 Definition: Let (S, <) be a partially ordered set. § is
said to be well-ordered if every nonempty subset possesses a least element.
(See 7 p. 53 ).

4,10 Definition: Let (S, =) be a well-ordered set. Let x ¢ S
and consider the set {y: x <y and x ¥ y} = U,. If U, is nonempty the

least element x' of Ux will be called the successor of x.

4.11 Proposition: 1In any well-ordered set there is at most one
element which does not have a successor.

Proof: Let S be well-ordered and suppose there are two elements
x,y €S which do not have successors. Then {z: x <z and x # z} =0 and {w: y <w
and y # w} = f, by definition. Consider the set {x,y}. Since S is well-
ordered, {x,y} has a least element, say x. Then x <y, so that y ¢ {z: x sz
and x # z}, which is impossible. Hence x = y.

4,12 Proposition: Every well-ordered set is linearly ordered.

Proof: Let S be well-ordered by a relation <. Pick x,y ¢ S.
Consider {x,y}. By well-ordering, {x,y} has a least element, say x. Then by
definition x <y.

Proposition 4.12 establishes that the concept of well-ordering
is stronger than the concept of linear ordering. The relationship of well-
ordering to linear ordering is a proper one (i.e. the notions are not equiv-
alent), For exdmple, the rational numbers under the usual definition of <

are linearly ordered but not well-ordered.

-628-



4.13 Definition: Let S be a well-ordered set. A finite chain

in § is a set {x., X ,...x_} <= S such that x is the successor of x, for
1" "2 n i+l 1

is= 1,_...n - 1,

4.14 Theorem: Let M be a MOE on a set S, with associated induced
partition‘d/. Suppose that /-/is well-ordered, and that any x, y ¢ S can be
spanned by a finite chain, in the sense that 3 X = X, XyseeeX =Y with
X € (Sx)k = ((Sx)k—1)+. Then 3 a transitive MOE MF with the following
properties: |

a) M# generates the same rank order as M

b) For x ¢S, X7 ¢ (Sx)+, M(x,x+) = M#(x,x"')

c) M# is unique

Proof: The proof is comstructive in nature. Define a
function m: //——?G as follows:

Case 1: Sy 3,8 has a successor, denoted (Sx)+' Then m(Sx) =
M(x,x+), where x K (Sx)+.

Case 2: Sx € ,&loes not have a successor (see proposition
4.11). Then m(Sx) =.0. That m is well defined is a consequence of proposition
2.12, Note that m(Sx) < 0, since for x ¢ Sx’ <" e (Sx)+, M(x,xt) < 0. Define
M#: S X S—>G via:

M#(x,y) = z m(S,) if x <y, M#

(x,y) = 0 if S_ = Sy, M#(x,y) =
s $s,. <S x
x4 y

—<2 m(Su) ify <x
Sy ~ Su < Sx

Step 1: Note that of M(x,y) and M(y,x) one quantity is positive or zero and
the other is negative or zero. If M(x,y) = O then x = y so that Sx = Sy and
M#(x,y) = -M#(y,x)=0. If M(x,y) # 0, suppose without loss of generality

that M(x,y) <0. Then M#(x,y)'=
S

&1

m(S,). On the other hand, for
<S

<
~ y

X
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y < x M#(y,X) = Z m(S,) so that M#(x,y) = -t (y,%).
S

u < Sy

S, s
Step 2: The proof of transitivity will be in three parts.
p

Case 1: M#(y,z) = 0, Then Sy = Sz so that M#(x,y) + M#(y,z) =

2 m(Su) = X n(s,) = M (x, 2)

<
s, S8, <S8y Sx S5, <S5,
Case 2: M#(x,y) and M#(y,z) are both positive or both

negative. Say M#(x,y.) < 0 and M#(y,z) < 0. Then M#(x,y‘) + M#(y,z) =

Z m(Su) + Z m(Su) 2 m(Su) = M#(x,z). The

s <
Sx S8, <8y Sy S8y <S; S, S5y <8,

proof is similar if M (x,y) and M#(y,z) are positive.
Case 3: M#(x,y) and M#(y,z) have different signs. Say

M#(x,y) < 0 and O <M#(y,z). Then M#(x,y) + M#(y,z) =

Z m(Su) - Z m(Su) = Z m(Su) if x <z
Sy S8 <8 s, S8, <S8 $. S <S8
X ~*u y z ~*"u y x . z
ﬁ 0 if x=12
-Z m(S)lfz<x
szss <S
u X
Thus if x < z, z m(Su) = M#(x,z). Likewise if z < x, - 2 M(S)
S, S8, <S§ S, &S, <Sx
b4 Z 4

- #(z x) = M#(x z),

Step 3. It is necessary to show that (Sx, M) = (Sx, M#) for x ¢ S, and that

(Sg» M) < (S M) if and only if (S,, M#) < (S ). Both results are con-

y?
sequences of the definition of v M#(x y) = 0 if and only if M(x,y) = 0;
likewise MF(x,y) <0 if M(x,y) < O and 0 <MF(x,y) if O <M(x,y).

Step 4: The next step is to verify part b) of the theorem; namely, M(x,x") =

)

M#(x,x+) for x ¢ Sx’ ¢ (SX)+. But M (x xt) = m(su) =
S¢ S 5, <S4
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v .
L N m(s,) = m(s,) = M(x,x"), since (Sx)+ = S+ is the successor
S 3

Step 5: Uniqueness follows from the definition of M and the fact that M
can be decomposed as a sum of values obtained by pairing elements of successive
equivalence classes.

4,15 Conjecture: Let M and S satisfy the hypotheses of theorem

4.14. Then the set S is at most countable.

MEASURES OF CORRELATION

This section will have a distinctly geometric character. Several
methods of measuring the correlatioh and/or proximity of two measures of
effectiveness will be discussed. As indicated in footnote 1, page 18, a
measure of effectiveness can be visualized in matrix form; and hence as a
vector. Thus under suitable hypotheses a substantial portion of the theory
of elementary geometry and algebra can be applied to provide insight into
the relationship between two measures of effectiveness. A few preliminary
definitions and lemmas are needed. Throughout this section it will be assumed
that the linear O-groups are all fields, and hence isomorphic to subfields of
the real numbers.

5.1 Observation: Let M: S X S —x»F be a MOE. Since F is a field,
M can be viewed as an element of the vector space VS xS = {f: s x S —=>F}
where the addition and scaling of vectors is according to the usual rules:

(f + 8)(x,¥) = £(x,¥) + 8(x,y), and A(£(x,¥)) = AM(x,¥).
Observation 5.1 provides the proper setting for the discussion
to follow. The related notions of inner product and distance will be inves-

tigated abstractly, and an application will be made to MOE.,

-631~



5.2 Definition: Let V be a vector space. An inner product on

V is a function f: V x V—>F, F an ordered field in which every positive

8]

element has a square voot, such thai:

a) § is bilinear

b) P is symmetric

c) § is positive definite, P(x,x) = 0

d) #(x,x) = 0 if and only if x = 0

Generally speaking, the inner product of two vectors x,y is
denoted x . y rather than f(x,y). Some simple properties of inner products
will be reviewed,

5.3 Definition: Let V be a vector space with an inner product.

The length of a vector x ¢ V is defined to be: “x” = »\/x- X . The distance

d(x,y) between two vectors is: d(x,y) = l.y-'x“ = Ny-x). (y-x%) .
5.4 Lemma: Let x, y ¢ V. Then the following inequality holds:
min {x.x, y.y} < lixll Hyll < max {x-%, y.y}
Proof: This is a trivial drill in elementary field theory.
Note that x-x = l x /2 and Y.y = “y'lz. Suppose for example that
lixIl < liyll . Then Hx 12 < lxll Uyl and similarly Hxil Nyl < {iy I 2,
5.5 Lemma: Let x,y ¢V, x,y # 0, V an inner product space. Then

lx . v < Ix - v ) < Ix . v
max {Xx . x, y -y} Hxtl tyl min {x*x, y.y}

Proof: Using lemma 5.4, one deduces that

1 < 1 < 1
max {X - %, y-y} {=i nyh min{x-x, y-+y}

Since 0 < |x~-y|, the result follows by multiplying each element of the

inequality by lx - yl.
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5.6 Lemma: If V is an inner product space and x, y ¢ V are

X .
nonzero, then -1 < _)—l_——ll—grv-l_l— < 1
nx ¥

Proof: Lemma 5.6 is a direct consequence of the well-known

Schwarz inequality Ix - yl < HxIl Hyl (see 2 p. 3 ). Thus —JIx - ¥ <
Hxif iyl
. X « ¥y
or equivalently —~1 £ ———— < 1,
d Y ll 11yl

An observation is in order at this point. The quantity

2 is called the cosine of the angle between the vectors x
HWxth 1 yH

X -y

and y. Under a suitable inner product, reduces to the notion
hxl iyl

of the cosine as defined in elementary trigonometry.

5.7 Lemma: Let x, y be nonzero vectors of an inner product space V.

Then LS = 1 if and only if x = y.
max {x+x, y°y}

Proof: If x =y, then clearly x » x =y + y=x . y, so that

- ¥ 4
°y

- -y = 1.
max {x+x, y-y}

= 1, Conversely, suppose that %
max { X+ X, y+y}

X
X
Clearly x . y = 0, since x - x and y + y are positive. Thus by lemmas 5.5 and

5.6, 1 = Xy = < 2
max {X+X, vy} Hxt Myl

7

s 1 so that lixl Hyll =

m =max {x+x, y- y}. Assume without loss of generality that
y *y<x+ x. Then (x-x)(y-y)=(x-x)2, or x + Xx =19 ¢« y, so that
xcy=zll Hyll = x+ x=y . y One obtains x+- (x - y) =0 and ¥+ (x-y) = 0;
thus (x - y) * (x-y) =x+(x-y) -y (x-y)=0. Since (x~-y) « (x-y) =0

if and only if x - y = 0, it follows that x = y.

[}
-

Ix « vyl

5.8 Lemma: Let x, y € V be as in lemma 5.7. Then ‘%X
[ Hxlii Hyil

if and only if there exists a scalar )\ # O such that x = \y.
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Proof: This is a well known consequence of the Schwarz
inequality (see 2 p. 4 ).
The discussion now returns to measures of effectiveness.
A preliminary definition is needed.
5.9 Definition: Let M: S x S—>F be a MOE., The associated

uniform MOE M is defined as follows:

B(x,y) = —8Y)  if M(x,y) # 0
IM(x, y)!
0 if M(x,y) = 0
It is straightforward to prove that M is a MOE and that it
induces the same rank ordering on S as does M.

Since the set V S of observation 5.1 can be viewed as

S x
a vector space in a natural way, it is useful to define an inner product

on it. For f, g e Vg 4 g, define f*g by: f*g = ¥ £(x,y) g(x,y), provided
. S xS

the sum exists, It is easy to verify, assuming that f*g exists for all

£, 8 ¢ Vg , g» that the operation * is an inner product. Note that HEY =
JE*Ef  and that d(f,g) =|lg- f;’. In particular, the above definition appliés
if £ and g are MOE's. Four more definitions can now be made.

5.10 Definition: Let M, N: S x S —= F be MOE's. The distance

between M and N is d(M,N) = {IN - Ml = /T (N(x,y) - M(x,y))° .
SxS

Viewing M and N as vectors, d(M,N) gives a measure of the proximity

of the two MOE.

. . MSN .
5.11 Definition: The antit 11 be called the
R 4 Y max {M*M, N*N} v

strong correlatijon (denoted S - corr(M,N).
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5.12 Definition: -ﬁif%f%%iﬁ- is the correlation between M and N,

denoted corr (M,N). Observe that corr (M,N) recemblec the statistical con-
cept of the correlation ccefficient, as will be explained below.
5.13 Definition: The concept of weak correlation uses definition

W N
min{H*H, N*¥)

is defined to be the weak

5.9. Tﬁe quantity W-corr (M,N) =

correlation between M and N. Notice that W-corr is in a sense a normalized
quantity.

5.14 Observation: The preceeding definitions (especially definition
5.12) have a distinct statistical flavor. Recall that for random variables

X and Y with means b= E(X) and Hhy = E(Y), and variances 012 = E((X - ”1)2)

and 022 = E((X - uz)z), the correlation coefficient p12 is defined by:

= E(X- ul)(Y - “2))
0'1 0'2

P12

Suppose that By = Mo = 0. Then p , = E(XY) . Notice the similarity

2 JE (x2) JE(X?)

between p _ with = p = 0 and the correlation — M*N__ of definition 5.12.
12 i Y Miant

In fact, the similarity between the two expressions is more than formal if
the cardinality of the object set S of the MOE's M and N is finite (say K).

Note that ¥ M(x,y) = & N(x,y) =0 =£>' My = p, =0 in this case.1
SxS SxS 2

Defining K2 E(MN) = M*N, K2 E(M2) = M*M, and K2 E(N2) = N*N, one sees that

EQMN) - M*N . (see3 p, 69 ).

JEQ&);GREE N MILAN

1pue to skew symmetry.,
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5.15 Theorem: Given two MOE's M, N: S x S «—> F, S-corr(M,N) = 1
if and only if M = N.

Proof: A direct consequence of lemma 5.7.

5.16 Theorem: With the hypothesis of theorem 5.15, it follows
that corr (M,N) = 1 if and only if there is a nonzero scalar k ¢f such that
M = kN. The’proof is contained in any good book on vector snalysis. See
for example ( 2, p. 4). Theorem 5.15 gives necessary and sufficient conditions
for two MOE's to be equal, and theorem 5.16 gives similar conditions for two
MOE's to be proportional. These theorems suggest that the amount by which
S-corr and corr deviate from 1 are measures of the deviation from proportion~-
ality and equality of two MOE's, by a continuity argument.

5.17 Theorem: Under the hypotheses of theorem 5.15, W-corr(M,N) =
if and only if the ranking induced by N is consistent with the ranking induced
by M, or vice versa (see proposition 3.8).

Proof: Unfortunately theorem 5.17 does not admit a neat
geometrical proof such as those of theorems5,15 and 5.16. Rather, a com~
putational technique will be employed,

Suppose first that N is consistent with M. Consider M and N.
By construction, the values of M and N are either 1, 0, or ~-1. Since M(x,y) <

=5N(x,y) < 0 and M(x,y) = 0 =2 N(x,y) = 0 it follows that W(x,y) = 0
or -1 if ﬁ(x,y) = -1, and ﬁ(x,y) =0 if -ﬁ(x,y) = 0, Similarly -l‘_’I(x,y) =1
—‘;j -ﬁ(x,y) =0 or 1. As a result, 'I-\I-z(x,y) = ﬁ(x,y) --\E(x,y) =1 %
ﬁz(x,y) = 1 (note that 'I_/Iz(x,y) = 0or 1 and ﬁz(x,y) = 0 or 1), so that

z -ﬁz(X,}’) < I ﬁz(x,y). On the other hand, ¥ M(x,y) N(x,y) =
SxS§ SxS SxS
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= Z-ﬁ(x,y) ﬁ(x,y), where U = {(x,y) ¢ Sx8: N(x,y) # 03. But for (x,y) eU,
U

M(x,y) # 0. If M(x,y) = -1, N(x,y) = -1 while M(x,y) = 1= N(x,y) = 1.

In short, M(x,y) = N(x,y), for (x,y) e U. Then Z'I\—I(x,y) ﬁ(x,y) = 2ﬁz(x,y)
. U

= I 'ﬁz(x,y). The conclusion is that:

SxS
T Mx,y) N(x,¥) T M(x,y) N(x,Y) -
M*N
S xS - S xS B = 1.
min{ £ M(x,y), £ N°(x,y)} T M(x,y) min{M* ¥, ¥*N}
SxS SxS SxS
To prove the converse, suppose that N*N<M* -ﬁ, and that E*E =1
N *N

[}

0

Then M*N = N*N, or N* M - N) 0. The objective is to show that M(x,y)

,_"—%J.ﬁ(x,y) = 0 and that M(x,y) = -1 %.ﬁ(x,y) = 0 or -1, The discussion will
proceed by cases.

Case 1: Suppose -ﬁ(x,y) = 1, Then by computation,

M(x,y) = 1 . 0
Mx,y) = 0 { =2 Wix,y) (ilx,y) - Hix,y)) =f-1
M(x,y) = -1 -2

Case 2: -I:I-(x,y) = 0. No information can be obtained about 'I-"[-(x,y),

because N(x,y) (M(x,y) - N(x,y)) = O in any case.

Case 3: -ﬁ(x,y) -1l. ©Note that:

ﬁ(x,y) =1 -2
M(x,y) = 0 === Wx,y) ((x,y) - N(x,y)) =)-1
E(X’Y) =-1 0

.The above calculations show that N(x,y) (M(x,y) - N(x,y)) < O
regardless of the values of M(x,y) and N(x,y). However, by hypotheses
N *(M-N) = Y N(x,y) M(x,y) - N(x,y)) = 0. The only way this situation
S xS :
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can occur is if every individual component ﬁ(x,y) (ﬁ(x,y) - ﬁ(X,y)) = 0,
It then follows that ﬁ(x,y) =1 ::::%} M(x,y) = 1 and N(x,y) = -1 =::$>
M(x,y) = -1. These statements imply, in turn, that ﬁ(x,y) # 02#>ﬁ(x,y) £ 0.
By contraposition, ﬁ(x,y) =0 ::?ﬁ(x,y) = 0. Suppose that M(x,y) = -1. Using
cases 1, 2, and 3 one sees that ﬁ(x,y) must be 0 or -1 in order for
E(x,y) (ﬁ(x,y) - ﬁ(x,y)) to be zero,
The preceeding results give routine computational methods of
calculating the consistency (or lack thereof) of two measures of effectiveness.
For example, it can now be verified computationally that the
transitive measures of effectiveness derived in theorems 4.6 and 4.14 are

strongly correlated with their respective generating MOE's,

EXAMPLES OF MEASURES OF EFFECTIVENESS

This section will be scmewhat more sketchy than the preceeding
ones. Some of the examples to be discussed have been intrcduced earlier.
Others will follows easily from previous definitions and theorems.

6.1 Example: The Canonical MOE. A measure of effectiveness

satisfying definition 2.4, with the additional properties that the linear
O-group is an ordered field, and that M(x,y) ¢ {-1, O, 1} will be called a
canonical MOE. An illustrative example would be helpful. Say that

S = {A, B, C}; thus three objects are to be compared. Suppose that A is
preferred to B, and B is preferred to C. Thus C S B < A. This information

can be translated into a measure of effectiveness as follows: M(C,C) =

M(B,B) = M(A,A) =0, M(C,B) = -1 M(B,A) = -1, M(B,C) = 1, M(A,B) = 1, M(C,A) = -1,

M(A,C) = 1, 1In matrix form, M looks like:
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A 0 1 1 \

M =

]
t
[y
o
et

The matrix of M is in canonical form if the rows are arranged according to

the descending order of the induced ranking and the colums are arranged left
to right according to the same scheme. Note that the measure M of this
example consists of + 1's, O's, and -1's. Actually the canonical MOE was
first introduced ig definition 5.9 as the uniform MOE derived from a given
MOE.

The next topic to be treated is that of experimentally derived
measures of effectiveness. Assume that S is a set of objects or alternatives
to be compared. Assume that an experiment is devised which tests each alter-
native and assigns a number to the result. It will be seen that the experiment
can be used to obtain a measure of effectiveness, In order to derive measures
of effectiveness from experiments, it is necessary to have a formal definition
of the notion of an experiment. The definition presented below is quite
general in form, and thus has numerous applications.

6.2 Definition: Let S be an arbitrary nonempty set. Let G be a

linear O-group. A function f: S —> G is an experiment on S. Generally G

will be the real numbers under addition or the positive reals under multi-
plication.

A word of caution is appropriate at this point. Definition
1.3 may not be totally general in the sense that the result of an actual

experiment may be a sequence of numbers, a vector, a complex number, etc.
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However, for purposes of the discussion to follow it is important that the
outcome of an experiment be expressed in terms of elements of a linear
O-group. To cover the case in which the outcome of a physical experiment
is a sequence, a vector, or a function, another definition is necessary.
6.3 Definition: Let G! represent the set of all functions from
a nonempty set I to g linear O-group G. That is, ¢l = {€: I —— G]}. Let
S be a nonempty set and §: Su——>GI be a function. Then f will be called a

sequence of experiments indexed on I.

6.4 Example: Experimentally Derived Measures of Effectiveness.

Let f: § —>G be an experiment on S. Define a function M: S x S -—y G
by M(x,y) = £(x) - £(y). 1t is easy to check that M is a transitive measure
of effectiveness.

Conversely, suppose that M: S x S —> G is a transitive MOE.
Then an experiment f: S~—>G can be obtained from M with the property that
M(x,y) = £(x) - £(y). That is, one can recover the initial MOE by taking
differences of experiment values. The experiment f is obtained by selecting
z ¢S and defining £(x) = M(x,z). Note that £(x) - £(y) = M(x,z) - M(y,z) =
M(x,y) by transitivity. Note also that f is unique to within a constant.
That is, for x, w ¢S if £(x) = M(x,2z) and g(x) = M(x,w) then £(x) + M(z,s) =

g(x).

Two specific applications of example 6.4 are readily available;
namely take G = (R, +), the aﬁditive real numbers and G = (g+, »), the postive
multiplicative reals. In the first case a MOE is a difference of experimental
values. In the second case it is a quotient of experimental values. Most of

the comncn measures of effectiveness, including the so called '"ratio MOE's"

are of the first type.
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In the spirit of example 6.4 one can define'a sequence of
measures of effectivenecs; given a sequence 0: S-—f>GI of experiments define
X My 8x S——ma(ﬂ:coordinatewise as folilows: Ma(x,y) =P, 0 Px) — P od(y),
el o
where Pa'= GI——7 G is the projection on the oth co-ordinate, define by

Pa([g) = gy + Then form the direct product X'Ma’ Addition is taken coordinate-~

o
wise. Although X Ma is not a measure of effectiveness, it can be used to
o« F
form a mesure of effectiveness. Merely take M(x,y) = ¥ Ma (x,y), provide the

o
sum exists for all (x,y) €S x S. M(x,y) is a transitive measure of effec-
tiveness by corollary 4.6.

6.5 Examnle: The Tikelihood Ratio Test. Let f(x| 8 be the

probability density function of a distribution with parameter 6 ¢ {1 . Let

xl, K seeeXy be a random sample of size n. Assuming that the variables of

2

the joint p.d.f. are independent, define L(xl,...xn| 8) = f£(x | @).
i

I =]

i 1
Let ags a¢ represent the parametric outcomes associated with the choice of

the values 0§ and P respectively. Define a function ) as follows:

L(xl,...xnl 0)

Me, 9) = ACHANE )

Suppose there exists a number k such that )(8,8) <k leads to the choice of
ags A (8,0) = 0 yields no information, and k < 7(96,0) leads to the choice of
ag as the desired outcome. (Observe that necessarily 0 < k.) The function

2(0,0) is called the likelihood ratio. Using example 6.4 one radily verifies

that % Ar(0,?) is a measure of effectiveness. Thus the likelihood ratio is

essentially a measure of effectiveness. (See 3, p. 254 and 1, p. 248).
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A GENERALIZATION OF MINIMUM BIAS ESTIMATION
FOR WEIGHTED LEAST SQUARES

John A. Cornell
University of Florida

1. Introduction.

For response surface analysis, Karson, Manson and Hader (5]

introduced an estimation procedure called minimum bias estimation,

for estimating the parameters in the model equation. (Karson (4]
later introduced a design criterion to provide protection against
certain higher order models.) The minimum bias estimation
procedure achieves minimum average squared bias of the fitted
model without depending on the values of the unknown parameters
of the true model. Also, provided only that the design satisfies
a simple estimability condition and subject to providing minimum
average squared bias, the minimum bias estimator also provides
minimum average variance of §(§) where §(§) is the estimate of
the response at some point Xx.

We shall extend the method of minimum bias estimation to
include weighted least squares. An illustration is given comparing
the method of minimum bias estimation to the approach of
Box and Draper [1,2] for minimizing the mean square error of

§(§) averaged over some region R.
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2. Development

Let y(x) be the observed response at a point
X = (xl,x2,...,xk) in a restricted region of interest, say R,
which forms part of the k-dimensional space. The true polynomial

model (that is, the model which exactly fits the response) over

the region R is,

E(y(x)) = n(x) = %8, v %8, (2.1)
where n(§) is of degree d2. The experimenter however wishes to
use a polynomial of degree d1 (where dl is of lesser degree than
d2) of the form,
(2.2)

v(x) = %18
to estimate or predict the response over the region of interest R.
The elements of the vector 3 make up the terms required for the
polynomial of degree dl whereas the elements of the vector X5
consist of the additional higher - degree terms required for the
polynomial of degree d2. The elements of the vectors El and §2
are unknown parameters associated with the elements in X and §2
respectively. Over N observed responses yi = n(xi) + ei’
i=1,2,...,N, at different points X in R, we shall make the

following assumptions about the N errors,

2
E(e =0, €,€.) =0 . i,3=1,2,..., 2.3
(e;) =0, E(e; 5) /wlJ i,3 N (2.3)
where either the w,. are known or ratios of the w,./w, .,
ij iy’ i3
(j # j') are assumed known.

Karson [4], and Karson, Manson and Hader [5] discuss the
minimization of the mean square error of ?(5), integrated over
the'region of interest R. The integrated mean square error of
§(§) is expressed as,

NQ {% 2 -1
=5 J El¥ - n(x) }° dx, where Q ~ = dx. (2.4)
g R R
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The - integrated mean square error of §(§Q can be separated into

two components,

—ZS {E(F(x)) - a1 dx + %S E{7(x) - E(F(x))]}° dax = B+v, (2.5)
o R oc“ R ~

where B is the average squared bias of the model and V is the
average variance of ?(5). In assuming wij =1 i=j, wij =0 i#j
in (2.3), the authors [4,5] found that B is minimized over R if one

fits the full model (2.1) to the N observations and takes

y(x) = §lglwhere gl= é% = é(Ergz) and A is a moment matrix
defined by,
: =1
A= l1ig)ie,) (2.6)

In other words in using the lesser degree model to estimate the
response, one uses a model in which the parameter estimates Elare
linear functions of the estimates of the parameters in the true

model of higher degree. The matrices p,, defined by,

~]

L. = Q'S X X, i<j=1, 2.7
Elj R ~i§] d§ y 17J 2 ( )
are called region moment matrices and I is an identity matrix.

Now, when the assumptions are as stated in (2.3), the
minimum value of B is,

N

. = 9
Min B §2 {Ez

o } g, (2.8)

S
2~ Bio¥iiko

and Min B is attained when

B(R) = A% (2.9)

-645-



If we write E as a linear combination of the observations,

1

b Ly,
~] ~¥,
and note that E(y) = g% where X = (§1§2) and §i is the matrix of
values taken by the terms in §i
combinations, then the matrix L must satisfy LX = A from (2.9).

in (2.1) over the N experimental

For the class of designs satisfying the condition,

xw Txo) 7L §i§’lx = ut

22 7 k1l (2.11)

1 \ . .
where W = [; ] is the N x N covariance matrix of the errors, the

ij
standard weighted least squares estimator using,

S TS R |
S A AR (2.12)

does satisfy 5§ = é. [Note, in using the expression (2.12) for L
to obtain the estimates El in (2.10), this is exactly the weighted
least squares formula; see for example [3], p. 77-8l]. As pointed
out in [5] where W =1I, (2.12) is the Box and Draper result.

~

The average variance V expressed as,

NG
v = 29 var §(x) ax, (2.13)

is minimized when §(§) is the weighted least squares estimate of
its expectation at all points in R. Since Ely(x) 1= x; AE, then

, e e -1 - -1 . .
V is minimized when x'b. = x!'A(X'W X) lX'W ¥ that is, when L is,
~]~] ~w]l A~ ~ ~ o~ ~

L = A(x'w—lx)'lx'w'l . (2.14)
-y ~ N N o~ o~ ot

~646-



Since the variance of the estimate §(§) is,

Var y(x) = x'A(X'W—lX)_lA'x o2 , (2.15)
~ ol o~ ~ ]l
then the expression for V is,
-1 -1
V = N trace {A(X'W "x) "Aa'M_.} . (2.16)
~N oA ~ ~ Nll

Before we discuss an example, let us consider briefly the
effect of the error structure E(ege') = gcz on the contributions
B and V. From (2.8) and (2.16), one observes that only the average
variance V is affected by considering W#E. The minimum value of

average squared bias depends only on the region moment matrices

M.
NlJ
the true model but are ignored in the fitted model. That is,

and the size of the elements of the vector 92 which appear in

although the estimates of the parameters in the fitted model may
be biased, the amount of bias is not affected by wij#l.

We now discuss example (a) in [5] using assumptions (2.3).

3. An Example

Let the true polynomial and prediction equation respectively be
2 N . _
n(x) = BO + le + Bzx and ¥(x) = 5121 = b0 + blx. (3.1)

Consider n, experiments performed at each of the settings x = T
and n0 2l experiments at x = 0. Further assume that at x = t&,

2 2
Var(yi) = Gi = 02/w£ and at x = 0, Var(yi) =0y,=0 /WO' w, could

be different from Wy, and that the observations are uncorrelated.
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) 1 1 1 1 . .
Then W = diagonal(= ,~— ,...,— ,= ), depending on the order in
~ W, W w_'w
L 7L 00
which the response values are observed. The region R is the

interval [-1,11].

-1 -1 ,
The X'W X and X'W vy matrices are,
~ ~ ~N N o

N a 0 b a = ZanL Z nowO
XW 'X=10 b 0 , where b = 2n£wL& , (3.2)
~ 4
b 0 c c = Zn&w&£
-1 2 ,
x'w "yl]' = [w,(Ty + Zy) + w. Ty, 4w, (Sy - Zy), 47w, (Ty +Ty)]'. (3.3)
vro= s @ % e, @ e @
x=-4 x=+L_ x=0 x=+4 x=-4 =_f =4

The notation Iy in (3.3) denotes the sum of the observations

@
x=-4
Ye1Yare-.,y_ at x = -4, From (2.4), (2.6) and (2.7),
172 n,
-1 1 0] 1/3 1 0 1/3
Q = 2, W = s M = and A = . (3.4)
~1Lo 4o 173] *12 0 o1 o
From (2.8),
(2n, + n )
. _ L 0 4 2
Min B = = { ) By (3.5)

which is independent not only of 4 but also of W and wO. The

expression (2.15) for V is,

2 2 2
2 L5~
v = (ZnL + no){6n&wL (3 2) + n0w0(3L +1) + ZanL} (3.6)

4
18n0w0n£w{4
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The minimum value of Vv, using the method of minimum bias estimation, .

denoted by V(E) is,

viE - (2n&+no) {16n{wL - nowo} 5.7
Snle(2anL + nowo)
and is attained when,
L2 B E (Zn&wL + nowo)
(B) =3 Zdnw, - nw - (3.8)
1471 00

Now, if we fit a first degree model ?(5) = §191' the weighted

least squares estimator b is obtained by,

1
_ o=l -1, -1
Bl - (§lﬂ 51) 51@ y (3.9)
where,
N ZanL 0
X!W "X, = . (3.10)
~1~ ~1 5
0 Zn%wL&

. < ; . . +
To achieve minimum B, we have to set the design settings x = -1

so that condition (2.11) holds. The equality in (2.11) holds when,

ZanL + nowO

6n£w&

t2(p) = . (3.11)

2 .
where &2(D) means the value of 4~ met through the design. If we
substitute the expression (3.11) into the following expression for
V which is the average variance of §(§) for a first degree model,

1

. -1
V = N trace {(glw %;) 511} , (3.12)
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the resulting value of V, denoted by V(D), is,

2(2n, + n_)
V(D) = S (3.13)

2n&w£ + now0

We can now compare the method of minimum bias estimation to
the method of Box and Draper using V(E) and V(D) which are minimum
at the respective optimum values of x = t&. The comparison can
be made by substituting the expressions (3.7) and (3.13) for
V(E) and V(D) respectively in the ratio,

lén,w, - nw
174
V(E) _ 09 (3.14)
V(D) l6n&wL

which is obviously less than or equal to one. To evaluate the
ratio (3.14) for different values of Ny, Wy, N and w_, we let

0 0
W, = kwo, w0= 1 and vary the constants k, n, and n,-.

on the following page, some results of this study are presented.

In Table T,

(It might be worth moting that certain values of Z(E) for

small k <1 lie outside the region R.)
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Table TI.

@ £(D)
n, k V(E) L(E) V(D) 1 (D) V(E) /v (D) V(E) /V(D)
1 .3 3.000 2.31 3.75 0.94 0.80 1.000
.5 2.615 1.15 3.00 0.82 0.875 0.996
1 1.875 0.82 2.00 0.71 0.937 0.996
2 1.163 0.69 1.20 0.65 0.969 0.993
2 .3 4,072 1.02 4.55 0.78 0.89 1.000
.5 3.125 0.82 3.33 0.71 0.937 0.996
1 1.937 0.69 2.00 0.65 0.969
2 1.094 0.63 1.11 0.6l 0.984
3 .3 4.653 0.85 5.00 0.72 0.931
.5 3.354 0.73 3.3¢ 0.67 0.958
1 1.958 0.65 2.00 0.62 0.979
2 1.066 0.61 1.077 0.60 0.989
1 .6 2.000 2.31 2.50 0.94 0.80
1 1.750 1.15 2.00 0.82 0.875
2 1.250 0.82 1.331 0.71 0.937
2 .3 3.00 2.31 3.75 0.9 0.80
.6 2.443 1.02 2.73 0.78 0.896
1 1.875 0.82 2.00 0.71 0.937
2 1.163 0.69 1.20 0.65 0.969
Summary

We have shown how minimum bias estimation can be used in a

weighted least squares analysis.
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have illustrated how this criterion can be superior to the method
of design construction suggested by Box and Draper for minimizing
the sum of the average squared bias and the average variance of
9(§) over a region of interest R.

In defense of Box and Draper's methodology however,
Box and Draper fit a model of degree dl and concentrate on the
possibility of underestimating the true surface which might be
represented more adequately by a polynomial of degree d2(d2>dl).
In using minimum bias estimation, on the other hand, one considers
fitting a model of degree d2 initially (in terms of deciding on
the design coordinates) and then one uses an equation of dl to
"predict the response. To use minimum bias estimation, it is
assumed one has knowledge (in terms of the degree of the true
polynomial) about the shape of the true surface, an assumption

not necessarily made by Box and Draper.
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A SURVEY OF PROCEDURES FOR TESTS
OF SEPARATE FAMILIES OF HYPOTHESES

Alan R. Dyer
Department of Statistics
University of Chicago

Origin of Problem

The problem presented herein was undertaken while the author was on
active duty with the U. S. Army at the U. S. Army Aberdeen Research and
Development Center, Aberdeen Proving Ground, Maryland. The author's interest
in the problem arose when one of his colleagues asked him how to determine
which of two parametric families provides the best fit for a given set of
data. The author, unable to answer this question and finding little help
in the literature, set about to characterize possible procedures for handling
the problem and then to compare them for several pairs of families using
Monte Carlo samples as data. The principal intent of this paper is to
provide a more or less practical guide for dealing with this type of problem.

The following example demonstrates more clearly the type of problem

with which we are dealing.

When patients suffering from cancer are treated by surgery or
radiotherapy, some of them respond favorably to treatment and may subse-
quently enjoy a period of months or years completely free from any signs or
symptoms of the disease. 1In other cases, the tumor persists in spite of
treatment, and in due course causes the death of the patient. 1In some cases
although immediate response to treatment is good, the disease still recurrs
at some later time. In assessing the value of methods of treatment, it is
of primary importance to be able to estimate the proportion of patients
permanently cured. A common method of presenting results has been to simply
quote the five-year survival rate. But because recurrences of the disease
can and do occur subsequent to this five year period, this estimate is
somewhat crude.
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It is important to be able to estimate the survival rate beyond the
five year period, and in addition, it is important to be able to estimate
the rate on the basis of data observed less than five years. Five years 1is
too long teo wait to be able to estimate the effectiveness of a new treatment.
For this type of analysis one needs to know the distribution of the survival
times for those patients not permanently cured.

Boag in 1949 proposed a method of maximum likelihood for estimating
the proportion of patients cured by therapy. His method requires the choice
of a particular distribution for the survival times. For his data Boag
compared the lognormal and exponential distributions, and made his choice
by comparineg the p-values for two chi-square tests, i.e., he compared the
test statistic for the chi-square test for lognormality with the test statistic
for the chi-square test for exponentiality. His method of choosing between
these two distributions, although having some natural appeal, is far from
efficient,

Problem Description

Let Xl' X2, ceay Xn be a random sample from some unknown distribution

F, and let it be desired to test the hypothesis

(1.1) le Fec;]r'l

where i}l is a family of probability distributions (such as the normal)

with density fi’ against the hypothesis

(1.2) Hye Fed,
where ifz is another family of probability distributions having density f2.
For example, we might wish to choose between the normal and uniform
distritutions for our sample.

There are essentially two approaches that one can take to such a
problem. One can treat it as a classification problem in which the two
hypotheses are treated symmetrically and no null hypothesis is chosen, or
one can choose a null hypothesis, fix a type I error, and treat it as a

standard hypothesis testing problem. Ve will discuss the classification
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aspect only here.
Qur primary interest is in location-scale families where the

densities have the form

(1.3) 6 1 fi((x -u)f6) , 1i=1, 2, _MeR, 6>0.

The reason that we consider location-scale families is that for such
families, the decision provlem is invariant under transformations in
location and scale. And in addition, there exists an optimal procedure

among the class of invariant procedures for such problems.

Decision Theory

The action space Cl consists of the two actions

(1.4) a,--Choose H,

a2--Choose H2.

For the loss function, we take simple loss, i.e., if L(ai’Hj) is
defined to be the loss incurred from taking action a, when hypothesis Hj

is true, then we have

1 143
(1.5) L(ai!H-) = i=1,2, j= 1v‘2'
J 0 i=3j

We assume that each hypothesis is equally likely a priori to be

true, so that for the prior distribution we take
(1.6) 'z(Hl) =’C(H2) =1/2,

Let o and B denote the type I and type II error probabilities,

respectively, where for any procedure
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(1.7) « = T { Choose Hy ]F‘eiﬁ_}

and

(1.8) B = P{Choose H1| Fe?2:§ .

For an invariant procedure and 4 are independent of the values

of any unknown parameters. And the Bayes risk, r(2), under the foregoing

theory, is

(1.9) r(7) = (x+8)/2.

Thus, the Bayes risk is Just the probability of misclassification,

and the best procedure is that procedure which minimizes this probability.

Thus, to compare procedures, one need only compare the respective Bayes

risks.

Let 9(x) be a decision rule, where 9(x) is defined to be the

probability of taking action a, after observing x = (xi, Xoy weey xn),

i.e., if

(1.10) o(x) =1 take action ay
and if

(1.11) 9(x) = 0 take action a..

2

Let Z be any test statistic for a classification procedure, then

the principal decision rules considered in this study are

(142) ox) -4 27

-656=



and

(1.13) o(x) =

It is important to note that these decision rules do not depend
on the sampling distributions of the test statistic. Thus, these rules

can be used in the absence of any knowledge of sampling distributions.

Procedures

Best Invariant Procedure

The test statistic for the best invariant procedure when the

densities are of the form {1.3) is

JAigmé_n TT§=1 £ ((x=w)/s) duds/s
(1.1}4) 8(5) = °m~oo .
| f‘s-n Ty £((=p)/s) Gade/s

-0

The decision rule for this procedure is given by(1.12) with 2 = §(x).
For the derivation of the test statistic for this procedure, see Zidek
(1969)., The best invariant procedure is the optimal procedure among the

class of invariant procedures for the decision problem we have defined.

I.ikelihood Ratio

The test statistic for the likelihood ratio procedure is

naix [Ty £ (=n/e) |

(1.15) w(x) = — .
-n n
e {5 T £(G=s0/6) |

The decision rule is of course that given by (1.12).
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The next five procedures are all adaptations of goodness of fit
tests. And they are to some extent procedures that one might naturally

be led to consider.

Let
1 if t=20
(1.16) c(t) =
0 if t<0
and let
(1.17) F (x) = n! :in €(x~-x.)
‘ n E ;

be the sample empirical distribution funetion.

Let

(1.18) R0 = F (=) -1, 2

be estimates of the distribution functions under the two hypotheses,
where’/l and ¢ are estimates of the parameters. g/iand 5 might be the
maximum likelihood estimates, or the minimum variance unbiased estimates,

etc. )

Kolmogorov-smirnov

Let

(1.19) K, = Su IFn(x) - ﬁi(x)f i=1, 2,

nli -0 ¢ X < 00

then Kni is a Kolmogorov-Smirnov goodness of fit statistic for testing

HO = Hl’ and an is a Kolmogorov-Smirnov goodness of fit statistic for

= H,.

testing HO >
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A natural test statistic for the classification problem of
testing H1 against H2 is just the ratio of Knl and an, since under H1
we would expect Kni to be less than an, and under h2 we would expect an
to be less than Kni' Thus, as the test statistic for this procedure, we

take
(1.20) K, = K4 /an.
with the decision rule given by (1.13).

Cramer-Smirnov

Let
ul - n - . .
(1.21) We,o= 1/12n + Zj=1 (Fi(x(j)) - (23=1)/2n) i=1, 2.
In a manner analagous to the Kolmogorov-Smirnov procedure, we

define

2 2,2
(1.22) W= wnl/wn2

as the test statistic for the Cramer-Smirnov classification procedure. The
decision rule is of course that given by (1.13). (See Darling (1957) for a

discussion of the usual Cramer-Smirnov goodness of fit statistic.)

Anderson-Darling

For this procedure we have
a2 -1 n . - A e
(1.23) A2 mn-n S (25 1)ftos (Fy (x5 ios (1-F (i sy

for 1 =1, 2, As the classification test statistic we have
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2 2,2
(1.24) AL = Anl/An2 .

This is an adaptation of the weighted Cramer-Von lMises test. See Anderson

and Darling (1953), (1954).

Pearson~Durbin

This procedure is derived from Durbin's (Durbin (1961)) modification

of Pearson's probability product test. Let
A . A A
(1.25) cqy = Fi(x(i))’ Cy = Fi(x(j)) - Fi(x(j-i))' J=2,040,n,
Cn+li T 1- Fi(x(n))

for i =1, 2. The c¢'s are the sample spacings under the two hypotheses.

Define
j=1 . . .
(1.26) wji = 2§£=1 c(r)i + (n+3-2) C(j)i sy JFlyeee,n, i=1,2,
and
P = - n y =

(1027) Ami 2 10g Tl-r:l Wri ’ 1 1, 2.

The test statistic for this procedure is then just
(1.28) Bo= P /P o

where the decision rule is asgain given by (1.13).
If we were dealing with completely specified hypotheses, then the
w's for each distribution would have the same distribution as order

statistics from a uniform distribution.
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Modified Pearson-Durbin

This is a modification of the previous procedure for which we now

choose
(1.29) SRR i=1, 2,
instead of the values given in+{1.25).
YWe then have

! -t RO . i=1
(1-30) Wji— Zr=2 C(r)i + (n+2—3) c(j)i J—Z,.-o,n, 1= ,2,
and
1.31 WP . = -2 R 1
(1.31) WPy = =2 Yoz JTpp Wy =1, 2

(The index j runs from 2 here, since now w,, = 0, for 1 =1, 2.)
1i

The test statistic is just

WP = WP fras .
(1-32) Jl}‘m I_Iml/..rmz

Binomial Interval

ret
(1.33) £ = & o ((x=)/5), -1, 2

be estimates of the density functions under each hypothesis.

let
(1.34) L(x) = £, (0)/F,(x)

(1.35) T={x: L(x)21],
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(1.36) D, = SI fi(x) dx i=1, 2,

1 if tel
(1.37) w(t) =

0 if t¢I
and
(1.38) m = 2’5=1 w(x;) -

As the test statistic for this procedure, we then take
= My yO=m M, \n-m
(1.39) BIR; = py(1-py )" /p(1-p,)" " .

The decision rule for this procedure is (1.12).

What this procedure does is essentially reduce H1 and H2 to the

two simple hypotheses

(1.40) W: p=p
and
(11’4’1) H2= P= P2

where p is the true probability associated with the interval I.

All of these procedures are invariant under transformations in

Jocation and scale.

Monte Carlo Comparisons

To compare the relative performance of these procedures we generated
Monte Carlo samples from several pairs of families for several sample sizes.

. We then used these lMonte Carlo samples to estimate the Bayes risks for
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each procedure. In general we generated 500 samples from each hypothesized
family for each of four or five sample sizes.

Four or five sample sizes were considered for each family, because
in addition to the results for each sample size for comparing procedures,
we desired a measure of overall effectiveness. To obtain this measure, we

used weighted regression techniques to fit the equation
(1.42) -log («+,8) = Cn
to the points

(1.43) (- log (&i +)81), ni) i=1, s, k

for each procedure, where k is the number of sample sizes and &i and /éi
are the the estimates of « and B respectively, for the ith sample size.
This fitted equation is then used to give the approximate sample size
necessary for any Bayes risk for each procedure. If 61 and 62 are the
estimates of C for any two procedures, then the estimated relative efficiency
of the second procedure with respect to the first is just

A A A
(1.44) E= C2/01 .

It should be noted that this measure of efficiency does not depend
on the particular value of the Bayes risk.

We do not claim that equation (1.42) represents the true relation
between sample size and Bayes risk for these procedures. However, it does
seem to fit the data reasonably well, and thus does provide a proper means
for making an overall comparison of these procedures. In all cases we did

examine the residual sum of squares from the fit. In most cases this
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number indicated a reasonable fit. However, as expected, in some cases the

fit was not very good.

Results
Four pairs of families considered in this study are
Normal~Uniform--invariant
Normal-Exponential-~invariant
(1.45)

Normal-Double Exponential--invariant

Lognormal-Exponential--not invariant .

Of these four pairs of families, only the lognormal-exponential pair does
not yield an invariant decision problem. We consider this last pair,
because both of these distributions are common in reliability theory, and
because one will not always hypothesize families which are location and
scale invariant.

Table 1 presents the relative efficiencies of these procedures
for the four pairs of families listed above. 1In three of the cases the
relative efficiencies are with respect to the best invariant procedure,
and in the fourth case, the efficiencies are with respect to the likelihood
ratio procedure.

If we examine the results of Table 1, a result to note is the poor
performance of the likelihood ratio procedure for the case of the normal
and uniform hypotheses. This procedure does very poorly for this case,
because the estimates of the parameters for the uniform distribution are
systematically biased. This same type of problem also makes the results

for the normal-exponential case for the likelihood ratio procedure somewhat

inefficient.
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TABLE 1

RELATIVE EFFICIENCIES

Procedure N-U N-B N-D L~k
1) Best Invariant 1.000 1.000 1.000 -
2) Likelihood Ratio 348 834 .987 1.000
3) Fearson-Durbin .971 .ou1 .785 791
4) Hodified Pearson-Durbin .976 .935 .932 .868
5) Binomial Interval .760 724 .898 .693
6) Anderson-Darling .384 .783 .906 . 604
7) Cramer-Smirnov 319 .69k .838 .707
8) Kolmogorov-Smirnov . 266 L6U42 —— .628

Computational Complexity of Procedures

the computational ease in the determination of the test statistic.

We are also interested in comparing the procedures on the basis of

If we

have two procedures with the same efficiency, then we would prefer the

procedure which is the simpler to compute.

The following list gives the

hierarchy of difficulty of the computations involved in these procedures,

with the list being in order of increasing difficulty.

I) Best Invariant

(1.46) 1I)

I11)

Likelihood Ratio
Binomial Interval

Kolmogorov-Smirnov

Cramer~Smirnov

Pearson-Durbin
Modified Pearson-Durbin

Anderson-Darling

The easiest test statistic to calculate is that for the best
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invariant procedure. One should, however, work with the logarithm of this
test statistic. Both the likelihood ratio and binomial interval test
statistics are quite easy to obtain. The characteristic that differentiates
groups II and III from group I is the necessity of obtaining the probability
integrals at each of the order statistics, The characteristic which
separates group II from group III is the need for the calculation of a

large number of logs for the procedures in group III,

Procedures Recommended for Use

1) Best Invariant--This is the best procedure for invariant decision
problems and should be used whenever the decision problem is invariant.

2) Likelihood Ratio--This procedure should be used for non-invarient
decision problems if F. and F2 are absolutely continuous with respect

to one another, (Avoi& this © procedure in cases like the normal-uniform.)
3) Modified Pearson-Durbin--This procedure should be used for non-invariant
decision problems when the families hypothesized are not absolutely
continuous with respect to each other,

4) Binomial Interval--This procedure should be used in place of the
Modified Pearson-Durbin procedure when the values of the probability
integrals at each of the order statistics are difficult to obtain,
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MAXIMUM LIKELIHOOD ESTIMATION FROM RENEWAL TESTING
Larry H. Crow

U. S. Army Materiel Systems Analysis Agency
Aberdeen Proving Ground, Maryland

ABSTRACT

This paper considers the maximum likelihood estimates of life-time
distributions over an interval [0,T) from the following time truncated
experiment, At time zero, the beginning of the testing n (1 < n < =) items
are put on test, When an item fails it is replaced and at time T all testing

is stopped.

Assumptions about the form of the life-time distribution on [0,T) are

required. Distributions considered are:

(1) A single parsmeter class which includes the Weibull family;

(2) A multiple parameter class with increasing failure rate on [0,T);

(3) A nonparemetric class vhich includes the increasing failure rate family.

Useful and desirable properties of the maximum likelihood estimates are

shown.

1. INTRODUCTION AND SUMMARY

Based on a number of practical reasons it is often necessary and even
desirable in life testing (reliability) studies to fix the total testing time,
say, at T (T < »), before testing begins. For example, an experimenter would
rarely use a testing plan that did not limit the total testing time when the
items being tested can be assumed very reliable, since the testing time would
usually be very long. The total testing must, also, be limited if project
deadlines must be met, or if equipment or personnel used in the testing can

only be spered for some specified length of time.

Limiting the total testing time need not, however, be contrary to the goals
of the experimenter. For example, if the experimenter can assume that the
general form of the life~time distribution belongs to some parametric class

defined on the nonnegative real axis, then limiting the testing time to T,
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he can still estimate the unknown parameters of the distributioan on [O, oo).

If the experimenter cannot assume that the lifé-time distribution has a
particular form on [0, @ ) but only on [0, T), then he must limit his
inferences to the latter interval. However, if [0, T) includes the mission
time of the items tested then, for all practical purposes, he need not infer

anything about the distribution outside this interval.

One of the most popular time truncated testing plans is the subject of
the present paper. This plan stimulates that n items are initially put on
test at time zero. When an item fails it is replaced by a new item and at
time T all testing is stopped. (For convenience this plan is called "Testing
Plan A".) Renewing a failed item is a method to further save experimental

time and generally results in a better utilization of equipment and personnel,

Practically all of the statistical procedures developed in the literature
for Testing Plan A are based on the assumption that the underlying life-time

distribution of the items tested is the exponcntial law
G(x) =1 - exp (-Ax), (1.1)

XA >0, x> 0. (See Epstein [1959] for a review of these proceduves.) TIn
practice, however, the exponential ussumption is often not valid since it
implies a no wear-out {or no aging) property of the items. Moreover, if the
times to failure of the items do not follow the law (1.1) these exponential
procedures could possibly be sensitive to this departure. (See, for example,

Zelen and Danmiller [1961]).

For Testing Plan A the present paper investigates the maximum likelihood
estimates of life-time distributions from three general classes. Life-time
distributions describing wear-out are contained in each of these classes and,

also, each class contains the exponential distribution.

Specifically, in Section 3 the maximum likelihood estimate (MLE) of the

parameter X will be considered when the life-time distribution has the form

F(x) =1 - exp (-2ag(x)),
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A>0, 0< xx T, g(-) is a known, strictly increasing, differentiable
function on [0, T) with g(0) = 0. Observe that nothing is assumed about

Fon [T, ). This parametric class is obviously relevant to life testing
since, for example, it includes the exponential (when g(x) = x; x > 0), the
Weibull (when g(x) = xB, B> 0, x > 0) and the extreme-value distributions
(when g(x) = e -1, x > 0). Asymptotic distribution theory, which

will allow one to test hypothesis on the true value of A, shall be given along
with a number of pleasant properties of the MLE. These results do not depend
on the fact that F is not restricted on [T, * ). Also, a major drawback to

another method of estimating A shall be discussed.

As such, the class of distributions introduced in Section L has not been
considered in the literature. Practical applications of this class shall be
discussed and the MLE's of parameters determining the life-time distributions

~over [0, T) are shown to be asymptocially normal and consistent.

Often an experimenter does nolt know & priori that the law governing the
times to failure of the items tested belongs to a certain parametric class.
He may, however, know that the underlying distribution is a member of a non-
parametric class of distribution, e.g., the increasing (decreasing) failure

rate (IFR (DFR)) family.

Marshall and Proschan (1965) considered the MLE of a life-time distribution,
assuming only that it was a member of the IFR (DFR) family and that data
arise from a testing plan which does not allow censoring, time-truncation or
replacement, Bray, Crawford and Proschan (1967), also, considered the MLE of
a life-time distribution from a nonparametric class which includes both the
IFR and DFR families. The testing plan they introduced allowed for the

consideration of various types of incomplete data.

Since nonparametric estimation has not been considered in the literature
for Testing Plan A, we will study this type of estimation in Section 5. The
class of distributions considered includes the IFR family and the main result

of that section is the consistency of the MLE over [0,T).
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2. PRELIMINARIES

In this section praliminary definitions and notations needed in later

sections shall be collected. For completeness we give

Definition 2.1 (Testing Plan A)

At time zero, the beginning of the testing, n new items from a population
are put on test, When an item fails it is instantaneously replaced with

a new item from the original population and at time T the testing is stopped.

Estimation from Testing Plan A has been considered by several authors,
including Epstein (1959, page 3.17) and Gnedenko, Belyayev and Solovyev (1969,
page 169), when the life<time distribution of the items is exponential. These
authors derived the likelihood function by standard methods which could, also,
be used for other classes of distributions with densities, In the present
approach, however, the derivation of the likelihood function utilizes the
theory of stopping variables. The benefits of this approach are two-fold.
Firstly, a straightforward method of obtaining the likelihood function is
developed for the parametric classes of distributions considered in Sections
3 and 4. Finelly, this approach motivates a generalized likelihood function

needed in Section 5 for the nonparametric class,

To develop this preliminary theory observe that Testing Plan A may be
considered as n independent experiments, each beginning at time zero and
ending at time T. Throughout this paper Kr will denote the randonm number of
items put on test in the r-th experiment and Xir will denote the time to
failure of the i-th item put on test in this experiment, 1 = 1, 2, ..., .
r=1, ..., n. From this notation we have that Kr is the first integer

such that

{1 o B=

r=l, ..., n.
For the moment consider only the l-st experiment and let

Xi = Xil’ i=1, 2, ..., K=Kl. Also, let F be the cumulative distribution
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r=1, ..., n. Since the testing is truncated at time T, experiment 1 is
characterized by the time on test statistics (Yl, cees Yk). By (2.2) and
(2.3) one sees that the experiment is equivalently characterized by the times

1o eees X g )

Now, in almost all cases where the c¢.d.f. has a probability density

to failure (X

function (p.d.f) one can show that the likelihood function is derived from
the integrand of an expression equated to 1 and where the integration is
over the sample space of the random variables of interest , For (Xl’ ooy XK)

the sample space is

and for (Xl’ ooy XK-l) the sample space is

o

Q, = U A,
2 k=1 k

We, therefore, integrate out x,_ in (2.1) obtaining

k

" k-1 k-1
1= % f . f LF ({T- & %371 1 arlx.), (2.1)
k=1 Y A i=1 ~ 3=1 1

where

F(x") = 1lim F(x-e), € > 0,
e—>0

and it is observed that

Hence, if F is absolutely continuous on [0, T) with p.d.f., £, then

~-672-



<2 k—l k—l
1= 3 J.. . ._f (1-F ({T - ¢ x.}7)] n f£(x,) dx,.. (2.5)
k=1 A i=1 1 j=1 J J

This motivates the following:

Definition 2.2.

If the times to failure of the items are independent and identically
distributed (iid) with c.d.f. F, F(0) = 0, and F is absolutely continuous on
[0, T) with p.d.f. f, then the likelihood function I for Testing Plan A is

n
L= Il L, (2.6)
r
r=1
where
L =L (X, , ..., X ),
r - ir K-l',l"
r
is the random variable,
K -1 K -1
r r
L. = [lub({T.— z XA T f(XJr). (2.7)
i=1 J=1

Equation (2.6) is a resul£ of the independence of the n cxperiments and
equation {2.7) is obtained from the integrand of equation (2.5) when the
random variables replace their cdrresponding sample points., Definition 2.2
will be used in Section 3 and 4 to derive the MLE's for the parametric classes
of distributions. A generalized definition of MLE, based on equation (2.4),

will te defined in Section 5 for the nonparametric class.
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3. SINGLE PARAMETER ESTIMATION
Igﬁrcductigg

Trhroughout this section it will be assumed that the underlying c.d.f.

of the times to failure is

F(x) =1 - exp (- Ag(x)) (3.1)

for 0 < x < T, A > 0, g(+) is known and strictly increasing with g(0) = 0

and deriva&ive g'(x) 0 < x <T. We shall derive theAMLE in of X and show
that: (a) A, is strongly consistent,nas n — =3 (b) A, is asymptotically
normally distributed as n -> =3 (c) An is asymptotically efficient, as n — =,
Also, a major drawback to some previously published work dealing with the

estimation of X shall be discussed.

Previous Work

Gnedenko, Belyayev and Solovyev (1969), devoted an entire section of
their book, beginning on page 168, to the MLE of the parameter )\ when the

underlying distribution is the exponential law

G(x) = 1 - exp (-Ax) (3.2)

x > 0, A > 0, for six life testing plans, one of which was Testing Plan A,
Observe, now, that if X is a random variable with ec.d.f. given by (3.1)

for X > O then g(X) is a random variable with c.d.f. given by (3.2). WNoting
this, Gnedenko, et al mentioned that if the life-time distribution is given by
(3.1) for x > 0 then one nay maké the transformation ¥ = g(X) on the data and
use their exponential procedures to estimate A. However, it was not pointed
ocut that if the exponential procedures are used for Testing Plan A then the
total testing time will not necessarily be T, which violates the purpose of

this testing plan.

To see this difficulty, observe that the suggested test plan implies that

one make the transformation

Wir = g(Xir)
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i>1, r=l, ..., n, choose a constant ¢ >0, and coatinue testing in the r-th
experiment (r=l, ..., n) until time C on the g(*) time axis. If one does this
then the random number of items, Kr’ put on test in the r-th experiment is the

first integer such that

r=l, ..., n. Therefore, the actual (untransformed) total testing time in

the r-th experiment is

K -1 K -1
r A T
Xir ¥ 8 (C_.Zg(lr)>’
i=0 i=0

r=l, ..., n. Jf C is to be chosen such that the total testing time is:T,
then for X = 1, the total testing time is g—l(C) = T. Thus, g(T) is ‘the

only candidate for C. Now, if

K -1 K -1

r -1 r

E, X t+8 ( g(7) - E g(X,.) ) =T
i=0 i=0

for Kr > 1, this would imply that

K, -1 K -1
g(T) - go, g(x; ) = g(T - iZ=:o X)) s

which is, in general, not true for non-linear g. Thus, when one makeg such

a transformation the total testing times for the n experiments will generally
be random variables. This violates the purpose of Testing Plan A which is to
fix the total testing time at T. The work presented in this section allows
one to estimate A without using such a transformation and, hence, avoiding

thig difficulty.
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The MLE of X

The MLE An, say, of A shall now be derived. In what follows let

g(™) = 1im g(T-e), € > O.

e~=>0
Lerma 3.1
The MLE An of A is
K
~ n n T
o= 2 Ko=)/ 2 3 el ). (3.3)
r=1 r=1 r=1

proof

By Definition 2.2 the likelihood function is

where

Xg’(Yir)exp(-lg(Yir)exp(—xg(YK r)),

1 r

[l
]
L=

r=l, ..., n. Maximizing L with respect to X yields A  given by (3.3).

The reader should note that if F is continuous at T, then

™M=

l(Kr~1)

r

is the number of failures in the n experiments. Also,.if the times to failure

are exponentially distributed (i.e., g(x) = x, x > 0), then
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o]

glY, ) = nT.

K
e ir

)

r=1 1

[

~

Hence, An is the usual estimator in the exponential case.

Observe, now, that identity (2.4) implies that the probability of any
event associated with the outcome of an experiment based on Testing Plan A
only depends on F(x) for 0 < x < T. Since these probabilities do not depend
on F(x) for T < x < », it follows that the statistical properties of any
rendom variable obtained from Testing Plan A are independent of F(x) for

T < x < », We, therefore, have

Theorem 3.2

The statistical properties of Xn and all other random variables obtained

from Testing Plan A do not depend on the values of F on [T, «).

Strong Consistency of')\n

We will now show that An converges to A almost surely*(a.s.) as n —> %,

To show this we will need the following results.

Lemma 3,3

If F, is any c.d.f. such that Flx) = Fl(x), 0 < x < T, then

P[Kl = x|F] = P[Kl = k|Fl], for all k = 1, 2, ...

Proof:

The proof follows from Theorem 3.2.

*The term "almost surely" means that a certain event holds with probability
one.
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The following result is needed to show consistency and is, also,

useful throughout the remainder of this section.

Theorem 3.k.

- R ST A PR

K

1 1
TEmfi)zE&Z g(tq ). (3.4)

1
Proof:

Let X; = X;3, 1 =1,2,..., K= K. By Lemwa 3.3 E(K)
does not depend on F(x) for x > T. Hence, if g(T) < = then we.
wmay extend g (x) for x > T in any manner we wish to keep F a

c.d.f. and E(X) will remain unchanged. We therefore assume that

g(x) = g(T) + (x-T) for x > T, when g(T) < », Hence,.

whatlier or not F(T) <1 or F(T) = 1, g(Xi) has an exponential

distribution with mean 1/A. By VWald's Lemma (194k)
1 X '
TEK) = E( ] elx)). (3.5)
i=}1

-1
E(E(g(xK)[_z xi))
i=1

Yov, E(g(XK))

K-1
= B(E(g(X) |x 21 ] %))
i=1
K-1
= B(E(g(X)|g(x) > g(T- | x,)))
i=1

vhere g(X) is a random variable with c.d.f. l-exp(-Xy),

¥ > 0. Thus,
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. 1 K-1
B(g(x)) = B(} + a(T- ) X))

4

A 1=1,

L K-1
-3+ mete- § . (3.6)

i=

Tquations (3.5) and (3.6) imoly (3.L4).

We may now prove

Theorem 3.5
The MLE, A , given by equation (3.3), is a strongly

consistent estimator of X as n =+ o,

Proof:
By the strong law of large numbers, as n =+ o

n

rgl (Kr’l)/n —> E(Ki«l) a.s.,
and K
n T
er i—zl g(Yil‘)/n - E(i-zl g(Yil)) a.s. .

Hence, @as n > =

n KI‘

. rzl i__z_l {Kk=2)/n B(K,-1)

An = N Kr —_> "-“‘Kl‘—————'—‘ " BeS.
r__Z_l izl g(¥, )/n E(izl g(Yj;l))

The result follows from equation (3.4).
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Asymptotic Normality of kn

We will now show the asymptotically normality of the MLE

Ah for two different, but asymptotically eouivalent,

normalizing sequences. We begin with

Theorem 3.6
The asymptotic distribution of(in-k) /¥D/n is Normal (0,1), as n—>o
vhere

ver (K, -1) —AJZI g(ty,))

D= L | (3:7)

o (¥..))
le a

Proof:
K

r
Let M, = le g(YJr), v, = (K.-1), M(n) =

M
r
n

o

1

v :

V(n) = 7? , and let Z_ Dbe the two-dimensional raandom vector,

H ~i3

r=1
zZ. = (Mr"vr)’ r=1,...,n. Also, let.H(a,b) be the function of
the two variables a, b, H(a,b) = a/b. Now, (M{n), V(n)) is
the first moment vector corresponding to the sample Zl,gz,...,gn.
By_Craméf (1946, pages 353, 367), H{V(n), M(n)) = Xn is
asymptotically normel with asymptotic mean %%%%2%%—= A by

equation (3.l4), and asymptotic variance

2
Yar(V(n)) 5" cov(v(n), mn)) BB 4 var () B0
E04(n)) E° (M(x)) E*(t(n))
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Using equation (3.4) egain the asymptotic variance equals

5

nEZ( )

b g(le))

5

+ 2% var( ] gy, )3

J=1
This completes the proof.
The next theorem will be useful in what follows.
Egeormq;iil

E(K,-1) = Var (K;-1-2 Z g(le))

J=1
Proof:

Let K = Kl’ Xi = Xil’_i = 1,..., K-1, and Y1 = Yil’

i=1,..., K. Also, let

£(z) = Ag”(x) exp(-2g(x)),

and
. k-1 k:} -
p(xl.f..,xk“llx) = le £ L-PU-3, 5g)0)]

It is easy to verify that

a 2
E(dy 1og p(Xp,mee X (M)

d2
= —E(_—;z— log p(xl,'..,XK"llk)) .
d
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The left-hand side of (3.9) is equal to

K
K-
B - ] alr))®,
, 321
‘But using equation (3.4) we have

K K
Var(5h - ) a(ry)) = 5O - ) wr,)?, (3.10)
1

J=1 J=

The right-hand side of (3.9) is equal to E(K-l)/kz. Hence,
(3.8) follows.

Using equations (3.4) and (3.8) it follows, also, that

D= Kz/E(K1 - 1), (3.11)
From this we have

Corollery 3.8

The asymptotic distribution of (Xn*l)/ A /(HE(Kl-;))
is Normald (0,1) as n—oe,

By the strong law of large numbers Corollary 3.8 gives

Corollery 3.9

e
s 2 .
The ‘esymptotic distribution of (Aan)//<r[( ) (K.-1) s
’ . =l
Normal (0,1) as n—w.

Asynptotic Efficiency of An

Let h(X ""’XK—l) be an estimate of A, where X = X1

ii==1,,.., K-1, K = K. Then
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Theoren 3,10
p(2 + & B(1))? < Var(n(x X, )
ax = 12 0K-1"

where B(A) = E(h(xl,...,xK_ﬁlx) -, and D is given by equation

(3.7).

Proof':

It is straightforward to show that

a_

1+ 5

B(x)]z g_Var(h(xl,...,xK_l)[A) E(%X-log p(xl,...,xK_llx))z.

[Note that in the sequential form of the Cramér-Rao bound tla.
k
.glf(xi) corresponds to p{x ,...,xk_llk)].
Using equations (3.8), (3.10), and (3.11) yields the result.
This implies that if hl is an unbiased estimator of A based

on the outcomes of n experiments, then
D < ver(n,) (3.12)
n — i

Fron this we have the following

Theorem 3,11 -

~

Aﬁ is an asymptotically efficient estimator of A,

| Our concept of efficiency is the same as the concept given
by BAN estimators for fixed sample size. (See Rao (1968);
p. 284). The result then follows from Theorem 3.6 and inequality

(3.12).
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Comments
Note that if the times to failure of the items put on
test actually have the c.d.f. F(x) = 1 -exp(-Ag(x)) for

0<x<T+Db, 0<b< =, then, of course, the assumptions

~

required for F(+) are satisfied. 1In this case the estimate An
allows one to estimate F(x) for 0 < x < T + b from data restricted
to [0,T]. Suppose, hoﬁever, that the c.d.f. has the form

F(x) = 1 -exp(-Ag(x)), 0 < a<x < T+ a., Then items of age

a have the c.d.f. G(x) = 1 -exp(-Ah(x)) a < x < T + a, where

h(x)

g(x) - g(a). Thus one mey put items of age a on test at
time O and use the theory presented in this section to estimate
F(x) for a < x < T + a.

It is to Ee remarked, also, that numerous computer simulation
runs substantiate the conjecture that the MLE of A is generally not
unbiased; i.e., in general E(in) # A. However, the bias approaches

zero as n or T gets large.
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L, MULTIPLE PARAMETFER ESTIMATION

Introduction
Jn this section it is assumed that the c.d.f. F governing
the times to failure of the items put on test is absolutely
continuous on [0,T) with p.d.f. £ and F(0) = 0.. Also, it is

assumed that the failure rate f£(x)}/[1-F(x)] = A , for

Q
x:-:[Sq, Sq+l)’ q=0,1,..., t-1, vhere 0 =8, <8, < ... <5, = T,
and O i_ko 5_Al < ees f-xt—l < », Thus, assuming that the

Sq’ q = 0,1,...,t are known, and data are collected from Testing
Plan A, the MLE's of knq’ q=20,1, vee, t-1l, are determined
and shown to be strongly counsistent estimators of XQ as n ~> o,
The asymptotic normality of these estimators, as n —> = is, also,
estavlished.

Consider now & situation when Testing Plan A and this
class of distributions may be applicable, The guidance system
or sowe other system or component in a rocket may have a failure
rate which is constant when the booster of the first stage of
the rocket is in operation. However, when the first sizge falls
away and the second stage booster is fired the failure rate of
the system may change and in fact increase instantly to a
constant value during this stage. If this is true for all

stages of the rocket, then, {since the exact length of each

stage and thg exact time of the staging is known ), laboratory
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testing way be used tc estimate the failure rate of Lhe systen for

the duration of its mission.

Another possible application may arise when one is interested

in estimating the failure rate of an electronic apparatus as a
funetion of the amount of voltage. It is not uwnusual for elecctronic
tubes and the like to have a constant failure rate when the voltage
is constant, If the failure rate is a ncendecrzasing function of the
voltage then one may estimabe the failure rate for specific values
of the voltage in the following way. Let the testing time T be
fixed and let VO < Vl < L.l < vt—l be voltages which are of interest
to the cxpe'imentef. Let A,, 1 =20, ..., t-1 be the failure rate

of the itens when they are receiving voltage Vi. Alza, let

5., s

i 141), i=0, ..., t-1 be a partition of [O,T). When an item

is put on test it receives voltage Ve If it operates without
failure for time Sl then the voltage is increased instantly to

MR Similarly, if the item operates for time Si’ i < t, then the
voltage is increased to vy When an item fails it is replaced
instantly by another new item and the voltage is reduced to v,. If

0

this item operates for time S, without faillure then the voltage

1

is increased to v and so on. This process is coatinued until

l,
time T, The theory presented in this section will allow one to
estimate the Xi, i=0, ..., t-1.

Apvlications of this model may 2lso be possible in the

fields of drug testing and toxicology. For example, suppose one
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is interested in the effect of & toxic agent such as DDT or
the effect of radiation, which deconpose gt a very slov rate.
The failure rate depands on the dosage level and may

be taken as constant for reasonably short periods of time and
nondecresasing as the dosage level increases. The dosage is
sequentially increased at the end of these successive periods
and the model presented in this section may be used to sstimate
the failure rates corresponding to the different dosage levels

for the time period of interest.

The Naive MLE of the Aq

We begin this section by finding the values of

Aq’ qa =0, ees, t=1, which will maximize T, given by

Definition 2.2, without the restriction that AO i-kl < e :-At 1

From Definition 2.2 the likelihood Lr for the r-th

experirvent is

K, -1 K -1
L. = (1-w({T -}:‘Jlxir} )].}:l 2K, ), r =1, ey,
i= 1=

end,

the likelihood T for the n independeut experiments is

Let I('IR) be the indicator function of R. Furthermore,

define the functiom Gq by
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6 (2002 ) = § T ll5. 5
q l p i'.:l 1 q

q*l))

nnd O otherwise, and define the function Aq(zl,...,zp) by

Aflagsnsz) = Zl{(s amSy) Tzl s,y .1])
4,8 s 8 .
+ (2, q) I(zll{ . q+l))}
K_~1
Ir
Let Y, =X, ,r=" ..., 1=1,...,K-1, and Y, o T-.Z X .
r i=l
r=1,...,n. Denote by G__ g=0, t-1 et
s rq> 3= , , the function G (er""’YKr-l,r)’

which is the number of failures in the r-th experiment which lie

in [5 , 8
(s>

q+l). Also denote by Arq’ q = 0,..., t-1, the function

Aq(Yir,...,YK r), which is the total time on test for the r-th
3

ime ; S b .
experiment over [Lq, Sq+l)
Observe, too, that if r(x) = #(x)/(1-F{x)], x=[0,7), then

)
x

F(x) = leexp{ 3 rl{y)dy} and £(x) = r(x) exp{~§ r(y)dy} for xe[0,T).
0

The next lemma will allow us to easily find the values

of the Aq, a=0,..,, t-1, say Anq’ q=0,..., t=1, which

n
moximize L = 1 Lr’ without the restriction that
r=1
A<k« <3 We call A__ the "naive" MLE of Ay
AnO ~-Anl - -An(t~l)' nq

(The term "unrestricted” MLE is also used in the literature.)
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Lemma 4.1
The likelihood Lr for the r-th experiment way bve

written as

-1 Grj
L,= T 2 exp(~A
J:O ‘1;

Y, r=1,...,n.

A
Jr
Proof:

First note that

t-1

r{x) = }

320 N 2k

I(X][SJ,SJ+1

for xe(0,T). Thus, L, may be written as

X -1
bl .
L. = izl (jZO Aj I(VirILbJ,SJ+l)))
K -
- f e . .
_Zl ehy('jzo J«C)j+1~od) I(Yir![°j+1’T])

s,.8, 00,

+ (Y, -8y) T 18840844

How observe that

t-1 G, Kl s
T oA 9= 1 () AIly

=0 3 =1 gm0 d i1 8500)))-

Equation (4.31) follows,

The following corollary gives the naive MLE Anq of Aq,

q=0,..., t-1.
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Corollary h, o

n

The maximun of L = I L is obtained if A = A 5
r=1 ¢ nd

qg=0, ..., t=1, where

s r=1 2
Anq = = if Z; Arq #0,
“ r=]1
Ar
r=1 e
and
n
A =0 if D0 A =0,
ng & ora
Proof:
n
If 2: Arq # 0, the result follows directly from {l.1),
r=1

n n
Also, »° A = 0 implies that 2. G, =0. Since A\ > 0 we
q =ore q

it
(o]

. n
derine 0° to equal L and thus take A 0 if > A =
na r=1 4

This will maximize L.

A

Strong Consistency of Anq

The next theorem will be used to show strong consistency of

ng? ¢ ° 0, «v., t~1, given in Corcllary 4.2.
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Theore@_&#i

Tet H be a c.d.f. such that H{0) = 0, and for u and v where
0<uc<v, Hv") - H(u") > 0. Let X, s X55 +.., be random variables
with c.d.f. H, and let K be the stopping variable defined aé the
first integer such that

K
2, X, > T
i=1 *

Tn sddition suppose that H is absolutely continuous on [u, v) with

p.d.f. h and

n{x)/[1-H(x)] = A,

xe[u, v). Then

K-1
E (S I(Xi|[u, v)))
=1

= = A (4.2)
E Y, {{v-u) I(Yi|[v, @»)) + (Yi—u) I(Yil[u’ v)})})
i=1

Proof

See (row and Shimi (1971)

Theorem E;E

The naive MLE Anq is a strongly consistent estimator of

Aq, q =0, +.., t=1, a5 n => «,

Proof:

If Aq = 0, then F(Sq+l

n
) = 0 and, hence, Egi Grq = 0 a.8,

Thus Ao = 0
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If A > 0, then
q

(Iz1 /(54 ) #(6,,)
G )/ A —> e =)
r=1 T3 =y ¥4 E(Alq) 1

by the strong law ol large numbers ead (4,2).

The MLE of the Xq

a,3. an n —> w,

In the next theorem we will find the values of the Aq,

g =0,..., t-1, say inq’ which will maxinmize I, under the

striction t T <~ < e .
restriction thot kno __Anl - f-An(t--l)

siowathat An is a strongly consistent estiratoer of kq.

Theorem 4,5

The MLE Anq of Aq, q=0,..., t-1

n

1, which mazimizes

It will, elso, be

w2 f - 2 Y iriction tha A < X < Lee <7
L Il Iz,undcrthP restriction that AnO —-Anl < —-\n(twl)

r=1

is given by

E ). ('1(1
. r=1 d=u
Au = min max e
1 vqusg noy

From Lemma {4.1)

n
t-1. rZJGrJ E
L= I X exp (A AL).
3.’:0 J J r=1 rJ

(4.3)



Applying the results of Srunk {1958) yields (4.3).

Rormark ’&._.__6___

Brunk (1958), page W7, explains a method for deterrmining

A . Let A be the naive MLE of A given in Corollary h,2. TIf
nq nq qQ

no —-Anl < 2 M e-1)? then Anq Anq If for some i,

AL > A, hen repl X . and A,

\nl xn(1+l)’ then repluce Anl nd An(1+l) by

n n
) (Gri'+ Gr(i+l)]/[rzl(Ari * A r(i*i))}'

r=1

if a reversal still exists, rcplece by appropriate averages.

Taat is, it

n ‘ n -
[rgl(Gri ! Gr(i+l))]/[rzj_(Ari A ) M)

-~

1 o 3 ), . {‘..1’\ .
then replace >ni, Xn(l+l)’ nd An(1+2)’ by

n X

[rzl(cri * Gr(i+l) + Gr(i+l))]/[r;l(Ari + Ar(i+1)

ERed

+ Ar(i+2)]'

Continue aversging whenever there is a reversal. This will

yield s monobtone increesing sequence, AnO i-knl < ... f-An(t~l)’
which are the MLE's of the Aq's subject to AO f_kl $een i-xt~1’

e now have
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Theorem U.T

The estimateskPq of Aq, qQ=0,..., t-1, given in Theoren

3.5 are strongly consistent as n - e,

Proof:
This is immediate from Remark 4.6 and the fact that

the an's are strongly consistent estimztors.

Asymptotic Normality of the Estimators

Without any loss of gene;ality denote by Ai, i=11,2,...,m,
the set of all Ai, i =0,1,..., t-1 such that Ai # 0. In the fol-
lowing the asymptotic normality of the vector (inl""’inm)’
suitably normalized, is established. 'The normalizing'sequence
is determined from the experimental outcomes and Ai’ i=1,...,nm.

Furthermore, it is shown that the dispersion matrix of the

limdting distribution is the mxm identity matrix I.

Let n
and
~ n R
Uy = iZl(AiJ ~ B ) /ns g = 12,00, (4.5)
Define
TnJ J=1,2,...,m
YnJ = (4.6)

Un(j~m) J=m+1,...,2m
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and I = (oij) is a 2n X 2m meirix, where

o., = Cov(Yli, Y, i, 3 =1,25...,2m.

i 13

By the multivariate central limit theorem, it follows that

e 1 ]
/n (Ynl,°¢n2,...,Yn,2m)1s.AN (0,2).

We shall use the following theorem given in Rao (1968,
pege 322), and we state it here for easy veference. "Let zn
be a X-dimensional statistic (Tln,...,Tkn) with the asymptotic

distribution of /;.((Tln-e

Yyeuns (T n-ek)) being k-variate

1 Xk

normal with mean zero and dispersion matrix I = (u,,). Let

i

f fq be q functions of k variables and each fi be totally

IERERE
differentiable, Then the asymptotic distribution of

/n (fi(t

ln""’Tkn) - ri(el,...,o )), i+ 1,2,...,q, i8

g-variate normal with mean zero and dispersion matrix T I T7,
L n
vhere T (afi/aej).
- PR An Y o 2l
Let fi(yl’y2""’y2m) be the real-valued funciion of 2m

variables defined by

fi(yl""’y2m) =¥ = AYiame iz 1,2,...,0, (v.7)
Then
1 ifg=i
o, /oy, = # Ay if j=1i+m | (4.8)
L_? othervise.
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Therafore, one can show that T' g (7 = (TiJ), where

4]

Ty Var(Gli-xiAli), ir i =3,

end

= C - "y 3 - r
ov(G ) A COI(Ali,b ) - COV(Cli,A )

1:°% 13’ "y 14
+ Aixj Cov(Ali,Ald), ifi#J3.

Hence, by the theorem nmentioned avove,

nGL-MAn S Yem T J\fﬂArm
sy it Cm T b
r= n r=1 n

Let Ai = E(Ali), i=121,2,...,m. DNote that Ai # 0 implies

Ai # 0. One can see then that the asymptotic distribution of

v n G - A A n G - AA
X =v/a(§ F-ixo oy mm_ mra,
n =) nA r=1  nA
r 1 ) n
< NN . -
is n\gﬁzl), where I, (tiJ/AiAJ).
1 B
Since o Z Ari -> Ai a.s5., one can, also, show that
r=1
n G - XA n -2
'] oxY v
7 = /IT( Z rl o J.l_ seres z rm m Im)
in L
r=1 g r=1 %
A A
=1 rl r= rm
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is AN (g)Zl). But since

(R anetel

n
A= T /1A, i=12,..m,
i rlll =1 1

it follows that v (A _=A.,...,A__=A ) is AN (0,%.).
nl nm -

1’

. 2 .
Let D, = TiJ/Ai, i=1,2,...,m. Then

Y
I, = (854) = (Tij/AiAJ(DiDJ) ). (4.9)
Yot that §,, =1 if 1=, and
D, = ~%— Var(o -} A, 1= 1,2, (4.10)
A
1

Observe, also, that E(Gli) = A, B(A. ), i=1,2,...,m, by equation (4.2),

i 1i
Now, assuming that Ai # 0 and As # 0, this implies

—

T 1
0=-— 1 [...f J——-G.(x et )
9\ k=1 1 1L M-l
s 1
kgl t-1 Gj k-1
- A (x,,ee,x L, T = x ) 0 x.® exp(-A,A,) T dax,.
. 1 k-1 =1 L 3=0 J 3 1=1  *
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2. ) 2
E(G,.) - n(Gli-Ali) + E(Ali) .

Using (4.2) again gives

)

—— . 2
B(G) ;)= var(G, ;) + Ay Var(A ;) - 23 Cov(Gy, A 4

= Var(G,,-A;A,, ). (k.11)

If 1 # s, then

E [...] {——-G -A;} {——-G -A}

=1 A A
t-1 G k-1

I AJJ exp(-a,a,) T ax,
J=0 i=l

and this gives

0 = E(G;6,) - A E(G;4) ) - 3E(A) 4G, )

+-AiASE(A1iAls).
Hence,

ASE(Gli)E(Als) * AiE(Ali)E(Gls) _-E(Gli)E(Gls)

- » = -
Aixsu(Ali)E(Als) Cov(Gli,Gls)_ A Cov(Gli,Als)

- A Cov(Al ) + A Cov(A. . ). (4.12)

1i oA 1s
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Since E(G, ) = AlE(Alz), it follows that the left-hand

12
side of (4.,12) is equal to zero and,hence,I, = I. Thus,

e (Anl-xl Anm.')‘m)
n R

/D. YD_
1 Tl

is AN (0,I). Note that if A; < ... < A then A . =\ a.s.
- m nl

for n > n,,say. Thus,

- -~

>‘1'11"'\1 )‘nmﬂm \
vn |- oy eeay T
/Dl YD
m

is A¥ (0,I). By (k4.11)

E(G, )
1 1i
1 = e » - 22 eI Y
D, 5~ Var (Gli xiAli) 5 .
A A
i i
Using (4.2), this gives
x?
) Di B ———
E(Gyy)
1 ¢ "?
Note that since = ) G_. - E(G,.) a.s., then ———~> D, a.s.
n =~ ri 11 n i
r=1 L 2 G
n &, ri

The next result is imnediate,

Theorem 4.8

The asymptotic distribution of

is N(0, I) as n > =,




As before, if Al < e. < Am’ then the same result holds

if the X, are replaced by A ..
ni ni
Remark 4.9

If one assumes that AO i_Al > een z-At 1 then the likelihood

n
L= 1 Lr is the same and hence the naive MLE of Aq is the

same and is consistent. The MLE an may be easily found by
applying again the results of Brunk (1958). Of course inq is
also consistent in this case.

The reader is probably aware, at this point, that if t=1 then
this class of distribution reduces to the class considered in the

last section when g(x) = x. The MLE is equivalent in both situations.
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5. NONPARAMETRIC ESTIMATION
Introduction
The concept of "failure rate" is a very important practical concept
in reliability and has motivated several very useful classes of distri-
butions, e.g., increasing failure rate (IFR) class, decreasing failure
rate (DFR) class, u-shaped failure rate class. The failure rate r{-)

of a distribution function F having derivative f is defined by

f(x)/[1 - F(x)] for Flx) <1

r{x)

and

i}
8

r(x) for F(x) = 1.

The estimation problem that we shall be concerned with in this
section can be summarized in the following way., The life-time
distribution of the items to be tested is assumed to have an increasing
failure rate over the interval [0,T), i.e., IFR on [0,T). No other
assumptions about the distribution or its failure rate is given outside
that interval. The assumption of increasing failure rate can be
changed to decreasing failure rate and the same results will follow
with the obvious modifications. Data, of course, arise from Testing
Plan A.

Let [aF,BF] be the support of the c.d.f. F. The notion of IFR

on [O,T) is made more precise by the following definition.
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Definition 5.1

Let T be a fixed positive real number. A c.d.f, F, F(0) = 0, is

said to be IFR (Increasing Failure Rate) on [0,T) iff it satisfies one

of the following conditions: (i) -log[1-F(x)] is convex on
MF,%J,oiaFisFiTaMIW%)=1ifeF<T;or(ﬁ)Uwput
of the support of F in [0,T] is empty.
Let F = {F: F is IFR on [0,T)}.

The following theorem is similar to a theorem concerning IFR distri-
bution given by Marshall and Proschan (1965), and we shall omit its

proof because of this similarity.

Theorem 5.2

Suppese F e F, 0 < % < Bp. Then F is absolutely continuous on [0,2).
Note that F may take a jump at BF if BF < T,

Using the definition of failure rate and the above theorem one can

very easily prove the following.

Theorem 5.3

(i) P e F iff r(+) is nondecreasing on [O,BF), 0<a,<B, <T,

F F

and F(By) =1 if B, < T.
(ii) The part of the support of F in [0,T) is empty iff r(x) = O
on [0,T].

(iii) If F e F, then for xe[0, BF)

F(x) = 1 - exp(-R(x)), and
f(x) = r(x) exp(~R(x)), where
x
R(x) = [ r(y)dy.
0
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The class F includes the usual class of IFR distributions. It is
easy to show that there exists no sigma-finite measure relative to
which all the distributions in F are absolutely continuous.

Since we are dealing with a nonparametric family of distributions
for which there exists no sigma-finite measure relative to which all
the measures induced by F are absolutely continuous, the usual concept
of maximum likelihood estimation cannot be applied. The general
definition of MLE due to Kiefer and Wolfowitz (1956) is used in this
section to determine the MLE of the life-time distribution F over
[0,T), where F ¢ F and data arise from Testing Plan A. It is also
shown that this MLE is strongly consistent as n, the number of
original items, tends to infinity.

In this section let d(n) denote the total number of distinct
failures in [0,T) in the combined n experiments. Recalling the

notation given in Section 2, observe that

n
0 < dln) < 3, (Kr-l).
r=1

Also, let O = ZO < Zl < 4ew < Zd(n) be the ordered, distinct, failure

times X =1, ..., K1, r=1, ..., n. Finally, let p{n) be the

jr’ j

[} - .
number of YKTr s, r=1, ..., n, strictly greater than Zd(n)'

Maximum Likelihood Estimate

In the following we shall find the MLE of that part of a life-time

distribution F € F over the interval [0,T) when data arise from
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Testing Plan A. The following general definition of a maximum likeli-
hood estimate is due to Kiefer and Wolfowitz (1956) and is needed to

determine the MLE of F ¢ F for the two reessons mentioned earlier.

Definition 5.4

Let © be a sample space, B a o-field on @, P a family of probability
measures on B and 0 & set indexing the elements of P by P(-le),
6 € 6. Let X be a random vector defined on © with distribution function
determined by P(°I60), 8, € O. If X;5 ¥55e.0> X denotes a random

sample from P(°|eo) then the MLE of 0, is 6 if § ¢ 0 and

0

n apr(x |o)

I
r=1 a(P(x_|e) + P(x_]6))

sup = 1

0c0 [[_ ®le) 1

1 | a(p(x_o) + P(x_[5)) |

=

where

dP(-]Bl)

a(P(-|e,) + P(-]s,))

denotesthe Radon-Nikodym derivative of P(°|01) with respect to
P(-o,) + B(]0,).
The Kiefer and Wolfowitz concept of MLE will now be considered within
the framework of Testing Plen A ond for life-~time distributions ¥ e F.
Let @ = {¢, and all Tinite sequences of non-rnegative numbers wiose sum
is less than T}, where ¢ is the empty set. Also, let Xi = {3 £ N

vhich have exactly i elements}, i = 0, 1,... . 'Then Q = . Xi' We
i=0
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[+-]
define a set A to be measurable in Q if and only if A = D, Ai and Ai
i=0
is Borel measurable in Xi. Let B the o-field of measurable sets in Q.
For each F ¢ F we will define a probability measure P(-]F) on B and

will denote the collection of all such measures by P. These probability

measures will be defined first on the Borel measurable sets of each Xi.

Some preliminary notation is needed. Denote by A(+|i, F) the product
measure on R~ (Fucidean i~th space) induced by F, where A(+]o, F) is
defined to be one. Also, recall that F(x~) = 1lim F(x-e), € > 0, and
0] -0 e—0

products of the form I and sums of the form }: are 1 and O,

3=1 3=1
respectively., For each Borel measurable set Aé;Xi and F ¢ F define
the measure P(-IF) to be

i
PAIF) = f {1 - FU[T-D_x,17)} ax(x]i,F).
i A —7d -
i j=1

For any A ¢ B we define P(A|F) to be

P(AIF) = 20 P(A.|F)
i=0

where A, = ANX, .
i i

This definition is motivated by the integrand of equation (2.7).

Note that for each F ¢ F

¥ P(x,]®)
1=0

P(a|F) =P( 3~ X, |F)
i=0
= 2: Prob{K = i + llF) =1,
i=0

Thus, for each F ¢ F, P(+|F) is & probability measure on B

The Kiefer and Wolfowitz concept of meximum likelihood estimate

together with our definition of the measures P(+|I') ¢ P, ¥ ¢ F, vields

-~

the MLE Fn of F on [0,7) described in the next theoren.
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Let I(|S) be the indicator function of §. Also, let nr(y)

denote

k
r

iZl I(Yirl[yv“))-

Theorem 5.5
The MLE ﬁn of F has failure rate ;n where fn is constant over

(z , 2

a q+l)’ q=0,...,4{n), and

n K}—l )
I(x z2 , 7
rgl ng ( JrI[ 0 2y
§n(Z ) = min max 7 . (5.3)
T a(n)+wgn O<uzg n ‘v
! [ n.(y)ay
r=1 Zu

Proof :
The proof of this theorem follows in a straightforward manner
from the Kiefer-Wolfowitz definition of MLE using the probability measures

we introduced above and Brunk's (1958) results.

Remark 5.6
Ve will now give a useful method for determining ;n‘ Let an be

n 2
the time on test over [Zq, Zq+l) (i.e. an = ¥ ]q+l nr(y)dy). Q= 0,004,
r=1 7
q
- -1
)~ )

a-1
da(n). 1r (To,) < A7y, a0

<< (Tyrnya) ™ then F(z) = (¢

q = 0,...,d(n). If for some i, ('I’in)"l > (T )L then replace

(i+1l)n

w vl -1 -1
(iin) and (T(i+l)n) by 2(Tin+T(i+l)n) .

If » reversal still exists, replace by appropriate averages. That is,

o -1 -l -1
if 2(1in + T(i+l)n) > (T(i+2)n)’ then replace (lin) s (T(i+l)n) and
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(T )L )yt

by 3@111 + T

(1+2)n (i+1)n * T(i+2)n

Continue averaging whenever there is a reversal. This will yield the

monotone increasing sequence r(ZO) i-rn(zl) < eee f_rn(Zd(n)) given by (5.3).

Strong Consistency of Fn

The mein result of this section is that the MLE of F on [0,T)
converges uniformly a.s. to F as the number of items put on test at
time zero increases., To accomplish this we will prove a convergence
theoren for T (x), xe[0,1), T (x) defined in Theorem 5.5. This
result will allow us to eésily prove the main result plus several
corollaries. Furthermore, since the failure rate of a life-time distribution
is an important practical concept, the convergence theorem for En(x)
is also a significant practical result.

We will need several theorems before we can prove the convergence
theorem for fn(x).' The next theorem involves rewriting fn(x), given

Theorem 5.5, in a form we need to show consistency.

K -1
Let R(u,v) denote § E I(Xjr'[u,v)) and S(u,v) denote
r=1 j=1

n v
r-z-l {1 n (y)dy.
Theoren 5.7

Let xec{0,T) and

z (x) = 01?231((11) {z,]2,<x}.

Then
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flu.v) (5.4)

rn(x) = inf sup Stav)

x<v<T u<Zn(x)

Proof:

Follows directly from Theorem 5.5.

To show consistency of ;n we need the next two theorems. Let
K -1

]

j:

v

[N o]

(x, |lu,v))
L Jrl u,v

)
r=1 u
and let Ip be the intersection of the support of F with [0,T].

Theorem 5.8

1

Mn(u,v) = , O<u<ve<®,

nr(y)dy

Let 0 <u, <v_ < T be fixed vwherc, 0 <y <Tif I, = ¢,

0 0 F

0 S Uy < Vg < Bp if IF = [aF, BF]. Then, as n > «

i) M (uy,v) converges uniformly, a.s., in v, < v < T;

0

ii) M, (u,v ) converges uniformly, a.s. in 0 < u < e

Proof:

Let Xl’ Xg,..., ke & sequence of independent, identically

distributed random variables with c.d.f. F, F(0) = 0. Let Nl

N

be the first integer such that zl Xi > T, N, the first integer

2
i=1
N
NZ \3
such that Z X, > T, N3 the first integer such that X XiZT,
i=Nl+l i=Nl+N2+l

and so on. Then Nl,N s++0y 15 & sequence of i.i.d. random variables.

Using the Glivenko~Cantclli theorem cone may show that as n » «

Bn(u,v) —> F(v ) ~F(u ), a.8., ~® < u <v < o, (5.5)
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where

N(n)
Y1, [{u,v))

i=1 o

N{(n) = N..
er r

Bn(u,V) = N(n) s

Also, using the strong law of large numbers and the Glivenko-

Cantelli theorem it is easy to show that as n+ e

Cn(u,v) — ——l——-[Fl(v_) - Fl(ﬁ')] uniformly a.s. (5.6)

E(K))

for -0 < u < v < o, where

’z’

r=1 n

» A(n) = K,
A(n) rzl r

150 ,rl[u,V))
r

Cn(u,v) =

and Fl is the c.d.f. of X We may conclude from (5.5) and (5.6)

K, ,1~

that as n » «

Dn(u,v) = Bn(u,v) - Cn(u,v) (5.7)

converges uniformly, a.s. for -« < u < v < o,

Similarly one may show that as n » =

Sn(u,v) converges uniformly a.s. on 0 <u< v <T (5.8)

where
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Also, observe that for no sufficiently large,
(Sn(uo,v))'-l is uniformly bounded, a.s., (5.9)

onvoiv<T,nln

O,
Dn(uo,v)) is uniformly bounded, a.s. (5.10)

onvoiv<T,nz_n

0
(Sn(u,vo))“l is uniformly bounded, a.s. (5.11)
on0<_u_<_uo,n_>_no,and
Dn(u,vo) is uniformly bounded, a.s. (5.12)
onOiuf_uo,nino.

The proof is completed since (5.7) - (5.,10) imply (i) and (5.7),

(5.8), (5.11) and (5.12) imply (ii).

Theorem 5.9
Let F be IFR on [0,T) with failure rate r on [0,T). Then, for

Oiu<v<Tfixed,whereOiu<BifIF,:[a,B],

K-1
B( ] I(xJlu,v)))
i=1
v
E(f n(y)ay)
u

r(u) < < r(v) (5.13)

where K = 1 n(°)=nl(-)and X; = X9, 1 =1,2,...

il’
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Proof':

If I, = ¢ then F has failure rate 0 on [0,T) and, thus, (5.13)
follows. If I = (g} then F(B) = 1. Consequently, r{x) = «, x > 8, and
r(x) = 0, x < B. Also,

K-1
B( § I(x;|{u,v))) = 0
i=1

Hy

or u < v < B

and

K-1
B( } I(X,|[w,v))) > 1 for u < g <v.
i=1

Further,
v

E(f n(y)dy) > O for u < B.
u

o

Thus, (5.13) easily follows when I {8}.

F

Now, assume IF = [a,B], 0 < a < B < T. Also, recall that by Theorem
4.3, we know that if H is & c.d.f. with failure rate constant, say, A, on

fa,b), then

K-1
E (1 1(x;1la,5)))
i=1l

b
EH(f n(ylay)
a

= 2. (5.1k)

Case 1.
0 <uc<v<§g,
If F has a nondccreasing step-function failure rate on [u,v)

then (%.13) holds by a simple application of (5.14). To prove that
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(5.13) nolds in general for this case, let rn(x), n=1,2,...,

x€[0,B) be a sequence of real valued functions such that rn(x) = r(x),
xefo,u), rn(x) is a nondecreasing step-function on {u,v) and

rn(x) + r(x) on {u,v). DNote that rn(x) < r(x) < r({v) < ®. Thus,

by the Lebesgue Dominated Convergence theorem, as n + «

Y y
J r (x)ax » [ r(x)ax, y ¢ [0,v).
0 0

Therefore,

y y
1 ~ exp{- rn(x)dx} + 1 - exp{~[ r(x)dx}

F (y) ! !

Fly), y ¢ [0,v), as n » =,

Let Fn(y) = F(y), y > v. Then Fn’ n=1,2,..., is absolutely
continuous on [0,v), continuous from the right on [v,»)}, since
F is, and Fn(O) = 0, Fn(w) = 1. Thus, Fis a sequence of distribution

functions, Fn(y) > Fly), y € (~=,®), as n + ». Let

k-1 k
S = { x, <T, Jx.>T}, k =1,2,.
kooym 2 i=)

By the Helly-Bray theorem {Loeve (1963))

k X
Plk=k|F 1= [ 1 aF (x,) > [ 1 ar(x,)
Sk i=1 Sk i=
= P[K=k|F), n » =, k = 1,2,... . (5.15)
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Let pn(k) = P[K=k[Fn], n=1,2,..., k=1,2,..., and

p(x) = P[k=k|F], k = 1,2,... . By Rao ((1968), page 106) and

(5.15)

(-4

) Ip,(k) - p(k)| » 0, n > e

Now, note that

K-1 T
izl I(Xil[u,v)) i_[ﬁl, a.s., u>0

and

T
n(y) 5_[;4, a.s.,y >0

where [x] denotes the largest integer less than or equal to X.

Thus, since u > 0 and (5.16) holds

K-1 K-1
B, (I 1 1lw,v))) - B( ) I(x [[u,vIN)]
n i=1 i=l

15T regltewn 1
= I(x, |{u,v)) ©m 4aF (x.)
k=l A i=1 i j=1  ° !
® k-1 k
= 1T 1k lluv)) moan(x))|
k=1 Ak i=} J=1

I A

[gﬂ Z Ipn(k) - p(k)] »~ 0, as n » =,

Also,

v T
f n(y)ay < (v=u) nlu) < (v-u)(7]
u
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by (5.16). Hence,

K~-1 K-1
EF ( Z I(Xil[u,v)) > EF( 2 I(Xil[u,v))) (5.19)
n i=1 i=1
and
v v
E, ([ n(ylay) » E(J n(y)ay). (5.20)
nu u

However, from (5.1L) it follows that

K-1
Ep .(‘Zl T(x, {{u,v)))

n 1

r (y) < ” <r (v).

E ([ nly)ay)
nau

Taking limits, and using (5,19) and (5.20) gives (5.13).

0=u<vc<8§.

Inequalities (5.13) follows eesily using the results of Case 1.
Also it is straightforward to use the results of Case 1 to

srove (5,13) for
Case 3.
B<T, B<v<T,

We now give the convergencc theorem for the estimate ;n(x) of

r(x), 0 < x < T.
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Theorem 5.10
Let F be IFR on [0,T) with failure rate r on {0,T).

Then,

- . - ~ +
r{x,) < lim inf r (x,) < 1lim sup rn(xo) g_r(xo) a.s.
for each x, € (0,T).

Proof':

Case 1.

I, = ¢

In this case fn(x) =0 a.s. for 0 < x < T. Bince r({x) = 0,

0 < x < T, the result follows.

Case 2.
IF = [a,8].
Let 2_(x.) = max {z,|2, < x,}. We will show the right-hand
n 0 . it"i =70
0<i<d(n)

inequality first.

+
If B < T and B < x, < T, then r(xy) = =, since F(R) = 1.

0
Hence, assume 0 < X < B < T. Choose Vo X < VO < B. Then
rn(xo) =x12§ u(;u%x ) Mn(u,v)
0— n 0

< sup M (u,v,).
wer () 0
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Let

K -1
B ] 10X, ][a,0))
M(a,b) = —I=L

E([ n (y)ay)
a

Since 0 < x, < v, we may apply Theorea 5.8 (ii) and conclude
that as n » » Mn(u,vo) converges uniformly a.s, for 0 < u < Xgo

Thus, for erbitrary ¢ > 0 and n > N(e), sey,
r (x )< sup (M(u,vo) + g).

Since u < B we may apply Theorem 5.9 and conclude that
~ ~ +
. + e, . . . .
lim sup rn(xo) i'r(vo) ¢. This gives lim sup rn(ya i_r(xo)

a.s. since Xy < ¥, and the right-hand limits exist.

We will nov shov the left~hand inequality.

Case 2(a).

0 <a and x, ¢ (0,a].
Since r(xa) = 0 the left-hand inequality holds.

Case 2(v).

B < Tand B i_xo < T,

If F takes a Jump at B then with probability one Zn(xo) =g
for n > N, N sufficiently large. But this implies that .
rn(x) = rn(B) = o forn >N, §<x<T. Thus, lin inf rn(xo) =

and, hence, lim inf rn(xo) 3~r(x6),
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ir F does not take a jurp at B then r(g7) = » ané therefore as
n-+w Zh(XO) > 8 a.s.. Choose ug, 0 < uy < = Then for N sufficiently

large, u, < Zn(xo) < 8, for n > N, and, thus,

rn(xo) = xlzg u(;u?x ) Mn(u,v)
0— n 0

> inf Mn(uo,v)

X <V
0—

> inf Mn(uo,v) for uy < Vg < B.

V<V
O—

Apply Theorem 5.8 (i) and conclude that for arbitrary

€ > 0, N(e) sufficiently large,

;n(xo) > inf (M(uo,v)—s) a.s., n > N{(e).

v <V
o

By Theorem 5.9, ;n(xo) z_r(uo) - e, n > We). This gives

lim inf rn(xo) 3_r(uo) a.s. for all uy < B. Letting u,~ B

gives lim inf rn(xo) = » a.s.,. BSince rn(xo) = = for x, > 8,

we have the desired result for Case 2(b).
Case 2(c).

o < xo < g <T.

Choose u,, o < u_ < Xqe Then for N large enough so that

0’ 0]

u, < Zn(xo) < x

0 0’
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rn(xo) = inf sup Mn(u,v)

X<V u<Zn(x0)

> inf M (x,,v).

X <V
0—

Applying Theorems 5,8 2nd 5.9 in the usual manner gives

< x., The result

3 f. ind . z‘
lim inf r (x,) > r(uj) a.s. vor 1l o < uy < Xy

follows.
This completes the proof.

The main result of this section is

Theorem 5,11

Let F be IFR on [0,T) with failure rate r on [0,T). Then

§n(t) + F(t) uniformly a.s. in te[0,T), where

- t
Fn(t) =1 - exp(—é in(y)dy).

Proof:

Let I, be the support of F on (o,7}. 1If Ip = ¢ the conclusion

is clearly truve. Note, also, that Fn(o) = 0 a.s.. Supposc then that

I

¢ = [@,8]. By Theorem 5.10 ;n(t) +r(t), t ¢ [0,8) except possibly

-~ on a set of Lebesque measure zero. Let t ¢ [0,B) and let t < t ]

o<
be & continuity point of r. For arbitrary e > 0 and N = N(to,e)
sufficiently large, fn(x) i~}n(t0) i_r(to) + e for x € [0,t], n > N.

Thus, by the Lebesgue Dominated Convergence theoren

t
fn(z)dz > [ r(z)dz a.s. (5.22)
0

Ot
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Since
. t -
F(t) =1 - exp(-f r(z)az), t ¢ [0,8),
0

(5.22) implies that
ﬁn(t) > F(t) a.s. t ¢ [0,8). (5.23)

Case 1.
F is continuous on [0,T).

Since Testing Plen A and all related random variables are
uneffected by the behavior of F on [T,«), we may assume without

any loss of generality that F is continvous on (o,7].
Case la.
F(T) =1, B =T.
Extend F_ to (-»,») by defining Fn(x) =0, x<O0, Fn(x) =1,
x > T. Then, by (5.23) as n » «

%n(t) > F(t) a.5. t € (~=,=). (5.24)

Note that Fn is a distribution function. Since F is continuous on
(==,), Fn(t) -+ F(t) wiformly a.s. t € {-=,»), as n + o by Polya's

theorem (Eisen, 1969).
Case lb.
F(T) <1, 8=T.

Since 1-F{T”) > 0, there exists a.s. some m = 1,2,..., such that

K, =1. This implies that either d(n) = 0, or p(n) > 1 and d(n) > 1,
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for n > m. In any case, ;n(x) <®a,s. x ¢ {0,T), for n > m,
Therefore, fn(x) <1, x e {0,T), and hence, F may be extended teo
[0,T] in & continucus menner, for n > m, Since F is continuous,

in(T) + F(T). Let

x ¢ [0,7]
. (7.) (5.25)
x e (T,
x g (-»,0)
F(x)  x e [0,7]
YF(T)
6(x) = 4 (5.26)
‘l x e (T,»)
!o x e (-=,0) .
.

Then Gn’ n=m, n+ l,..., Gnare distribution functions, G is
continuous and Gn(x) + G(x) a.s. x ¢ (-=,»). By Polya's theorem
fhe convergence is uniform. Since En(T) is bounded for
n=m,m+1,..., this implies that ﬁn(t) -+ F(t) uniformly a.s.

t e [0,T), as n + o,

Case lc.

g < T.
Let B < x < T and ¢ > 0 be given. By the continuity of F there

exists & 0 < z < B such that 1-F(z) < g, and by (5.24) Yhere

i

exists a ¥ = N(z,e) such that F{z) - ¢ E_Fn(z), n > N. Hence,

mrniN,l—QciFh)—eiF(ﬂ<1¥&)il.TMwam



lim o, Fn(x) + F(x) f 1 a.s. for x > B. Using (5.2L4) we have

?n(x) + F{x) a.s. for xe[0,T). Usihg Polya's theorem again we may

conclude thet Fn(x) + F(x) vaiformly a.s, for xe[0,T), as n + =,

Case 2.

F takes a jvmp on [0,T).

Since F tekes a jump on [0,T) at B, it follows that with probability
one km =1, for some m = 1,2,.,... Thus, ;n(t) =w, <t <T, n>mn,
which imples that Fn(t) =1, <t <T,n>m Since F(t) =1,1t > 8B,

we have

Fn(t) + F(t) wniformly a.s. t ¢ [B8,T), as n + o, (5.27)

We will now show that the convergence is uniform on [0,T). For n > m,

En i8 & sequence of nondecre=sing, bounded, continuous functions. Hence,
they may be extended to [0,8] in a fashion which will preserve continuity.
Similarly, we may extend F to [0,8] in a continuous menner. By (5.23),
En(t) —F(t), te[0,8), as n > =, Let F¥(B), F*(8), be the extended

values of F and F for n > m. It is straightforward to show that

F:(B) + F*(B) a.s. as n =+ =, Now, let

¥ (x)
'I-:,‘_)?—(ﬂ 0 <x <8,
() ={
H (x) =
n i 1 x> B,
0 x <0
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H(x) =/

for n > m; Note,then, for n > m, Hn’ H are continuous distribution
functions, and Hn(x) ~ H(x) a.s. Applying Polya's theorem again we

may conclude that Hn(x) + H(x) uniformly a,s., xe(-»,®), as n + », Then

En(x) + F(x) uniformly 2.s. xe[0,B), a5 n + «. (5.28)

Thus, (5.27) end (5.28) give the desired result. This completes the

proof,

Ve now give two useful corollaries of Theorems 5.10 and S.ll.

Corollery 5.12
Let S = [u,v] be a closed interval of continuity of r,

0 Lu<v<T, Then, rn(x) + r{x) uniformly a.s., on S &s n + o,

Proof,
By Theorem 5.10

§n(x) + r{x) a.s. on S as p » o, (5.29)

Case 1.

r{u) = r(v) > 0

For N sufficiently lerge
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r(u) - e <r (u) <rlu) +¢

and

r(v) - ¢ f_fn(v) <r(v) + .
But
fn(u) 5-;n(x) E_in(v).

The result follows.

Case 2.

r(v) > r(u).

Let

—

in(x) - fn(u)

§n(v) - in(u)

D _(x) =<
n 0 X < u
1 X > v

n=1,2,..., and let

r(x) - r{u)

}T?Fffffgrﬁj' u<x<v
D(x) =

0 X <u

1 X >v

Note that Dn’ D are distribution functions and D is continuous.

Applying Polya's theorem (Eisen (1969)) and (5.29) gives
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D (x) + D(x) uniformly a,s. on (-=,=) as n 7w, For x e S, the
sequence {rn(x)], n > 1 is ultimately uniformly bounded. This implies

that §n(x) + r(x) uniformly a.s. on S as n -+ =, The proof is completed.

Corollary 5,13

Let 8 = [u,v] be a closed interval of continuity of r, O <u<v<rT,

Then,

gn(x) + f(x) uniformly a.s. on Sas n + ®

~ -~ x~
where fn(x) = rn(x) exp(ué rn(y)dy).

Proof.

The proof follows directly from Theorem 5.11 and Corollary (5.,12).

-724-



10.

11.

12.

REFERENCES

Bray, T. A., Crawford, G. R., and Proschan, F. (1967). Maximum
Likelihood Estimation of a U-Shaped Failure Rate Function.
Boeing Document D1-82-0660.

Brunk, H. D. (1968). On the estimation of parameters restricted by
inequalities, Ann. Math. Statist. 29, 437-L5k.

Cramér, Harald (1946). Mathematical Methods of Statistics, Princeton
University Press, Princeton.

Eisen, Martin (1969). Introduction to Mathematical Probability
Theory, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Epstein, Benjamin (1959). Statistical Techniques in Life Testing,
Wayne State University.

Gnedenko, B. V., Belyayev, Yu K., and Solovyev, A. D. (1969).
Mathematical Methods of Reliability Theory, Academic Press,
New York.

Kiefer, J. and Wolfowitz, J. (1956). Consistency of the maximum
likelihood estimator in the presence of infinitely many
incidental parameters, Ann. Math. Statist. 27, 887-906.

Loeve, Michel (1963). Probability Theory, D. Van Nostrand Co., Inc.,
New York.

Marshall A. and Proschan, F. (1965). Maximum likelihood estimation
for distributions with monotone failure rate, Ann. Math. Statist.

36, 69-TT.

Rao, Radhakrishna C. (1968). Linear Statistical Inference and
1ts Applications, John Wiley & Sons, Inc., New York.

Wald, A. (19L4L). On cumulative sume of random variables, Ann.
Math. Statist. 15, 283-296.

Zelen, M., and Dannemiller, M. C. (1961). The robustness of life
testing procedures derived from the exponential distribution,
Technometrics 3, 29-49.

=725~






AN AGE REPLACEMENT FORMULA

Royce W, Soanes, Jr,
Watervliet Arsenal, Watervliet, New York

The basic idea behind this paper is that it may be only academic
(if not pointless) to ponder the probability of an event unless one can
weigh the consequences of whether or not the event occurs.

One might typically be asked, "What is the probability that a new
part will survive its "assigned” mission life?" One might be given some
data with which to estimate parameters and one might then obtain a lower
confidence limit on this probability, How high should this probability
be? If it is high, is that good? If it is low, is that bad? The answer
is that regardless of its value, it is neither good nor bad - it is simply
arbitrary,

The problem should be one of selecting a figure of merit for the
part, or more precisely, a figure of merit for the replacement policy which
might be followed with respect to the part.

Now, one could only want to replace a part before failure if extra
costs™ were incurred as a result of a failure of the part in service; i.e.
if it were no more inconvenient to sustain a failure than to replace the
part before failure, then the greatest use would be obtained from a series
of parts by leaving each one in service until it failed,

Consider a part (of a system) having a failure density f£(X); also
consider the stochastic process in which n of these parts are used up one
after the other such that a part is replaced either (1) when it fails (per-
haps causing damage to associated parts) or (2) when it survives for a time
r (the scheduled replacement time), A visualization of the process is given
in figure (1).

Fig. 1
¢, r_

A e

'y N — X. 2 3 }

W\\
V
SCHEDULED REPLACEMENTS —==FAILURES

(the tacit assumption here is that the rest of the system is perfect)

1 ;
extra damage, downtime, etc,
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The density of the conditioned random variables ti is

f(x)
F(r)

T
(tifr) where F(r) = [0 f(x)dx

Let & be the number of failures which take place during this binomial
process, The expected value of £ is:
E(2) = np = nF(r)

Let the effectiveness of the series of parts be defined as the total time
in service of the n parts:

T=
i

H e

t, + (n~2)r = S + (n-r
1 1

The expected value of the total service time is:

E(T) = E(Q)E(t) + (n-E(2))r
= nF(r)E(t) + (n-nF(r))r
= n{F(r)E(t) + (1-F(r))r}
but
T
E(t) = u %%%% du
o
r
1
= W udF (u)
o
T
- Wi—_)—(rF(r) - | Feuw)dw)
o
r
1
= L = F(u)du.
F(r) o
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r

Therefore: 1
F(u)du) + r(1-F(r))}
o

E(T) = n{F(x)(r - o)

r

n{r- | F(u)du}
)
r r

n{ | du~| F(u)du}
o o

r

n| [1-F(u)]du.
o

Let C and C. be the costs of replacement prior to failure
and replacement at falfure respectively, The cost of failure C_ would,
in general, be greater than C . The total cost and expected vafue
thereof is:

CT = ECf + (n—,Q,)Cr
= Z(Cf—Cr) + nCr
E(CT) = nF(r)(Cf—Cr) + nCr

alF(r) (C;=C) + C .

The figure of merit for the part and its associated replacement
schedule may be defined as the expected ratio of total service time to
total cost:

T
M, () = EC 5
for large n,
M (r) » By ()
T “
r
nI [1-F(u)]du
o
M () = n{F(n)(C,C) +C T °
Therefore:

T
f [1 - F(u)]ldu

M (r) = 77 Y(C—C) +C_ )
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Since M_ 1s a function of r, the question naturally arises as to
what value of r will maximize M _; this value of r would be called the opti-
mal, long run replacement policy associated with the part.

An asymptotic formula for M_(r) will now be derived using the Taylor
series method, n

Since we are interested in the expected value of a quotient, we
expand x/y in a Taylor series of ten terms and take the expected value thereof,
obtaining:

x Xo u (x,y) Xo ulz(x,Y) xo
EE) ==~ + = 1 (x,y) + -—u (x,y)
y YO 2 3 02 3 4 03
Yo yo yo Yo

where

X s, = E(x),E(y) respectively
and

uij (x,y) = E[(x—xo)i(y—yo)j].

Now in our context,

X = total service time
%
=T=73%t, + (n~2)r
. .1
i=1
=S + (n-2)r.
Therefore:
X = E(S) + r(n~E(R))

and x—xo = S=-E(S) - r(2-E(2))

and y= total cost
= CT = E(Cf—Cr) + nCr
=CL + nC_,
T
Therefore:
yo = CE(2) + nCr

y-y = C(2~E(R)),
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Now we obtain

uoz(X,y),u03 (x,y), ull(X,y) and ulz(X,y)
uok(X,y)z
xx )y ) = [CG=E@NI |

Therefore:

b 6y) = CELE-EN®) = ¢y _(2,9)

ulk(X,y)

[S-E(S) - r(2=E(2))] [C(2-E(2)]¥

x-x ) (y-y )"

c*(s-E(8)) G-E® ~ rcK(a-E(2))¥TE,

hence
. Gey) = € (2,8) - rCu . (2,8)
1k %Y K1 k+1,0°"?
therefore,
2
v (x,y) =¢C 2,8
02( %4 1120( s )
b (K,y) = Cu_ (2,9
03 30
x = C £,5) - rC 2,5
ull(,,y) ull( »S) uzo( sS)
o (x,y) = Czu (2,8) - rCzu (£,8)
12 21 30

Now u, (2,S) and u
of Ragg S is needeg%
2

(2,8) must be obtained, but first, the joint density

S = ti

z
i=1
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P(Se(s,st+ds), &=k) = h(s,k)ds

P(S e(s,s+ds) | 2=k )P (2=k)

P(Sk &(s,s+ds) )];)k

gk(S)ds .« P e

Therefore:
h(s,k) = P8 ()

where

i=1

(k not a random variable) and g and g, are the densities of ti and S

respectively, k

Now, E(S) = E(t)E(L)

has been used earlier, but now it can be derived:

E(S)

EJspkgk(s)ds
ks

Zpkjsgk(s)ds
k s

Ip, E(S, ) = Ip, kE(t)
i S S

E(t)E(L)

Now, pzo(g,s) andp30 (%,S) are just the second and third central moments

of a binomially distributed random variable:

uzo(z,S) = np(1-p)
= nF(r) (1-F(r)) = na;
and pSO(Q,S) = np(1l-p) (1-2p)

nF(r) (1-F(r)) (1-2F(r)) = na,
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Obtaining uml(l,S):
u o (2,8) = E[(4-E(®))"(S-E(5))]

- Z[(k-E(Q))m(s-E(S))pkgk(s)ds
ks

but _
s-E(g) = s—E(Sk) + E(Sk) - E(S)
= s—E(Sk) + kE(t) - E(RQ)E(t)
= s—E(Sk)+E(t)(k—E(2)).
Therefore:
W= zj (-E()"[s-E(S,) + E(t) (k=E(£))Ip, g, (s)ds
ks
- zf {(s=E(8,)) (B (1)™ + E(6) (-E(2))™ 1Ip g, (s)ds
ks
m J m+1j
= Epk(k—E(Z)) (s—E(Sk))gk(s)ds + E(t)Zpk(k—E(l)) gk(s)ds
k s k s
_ m+l,
= E(O)E[(2-E(2))" 7] = E(t)umﬂ’o(l,s)
since f
(s-E(s,))g, (s)ds = o
and

s
Jgk(s)ds =1
s
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therefore,

[}

H (Q"S) E(t)u (’LsS>
11 20
= nalE(t)

o (2,8) = E(t)u_ (2,8)
21 30

= na2E(t) .

Therefore:

Czu (2,S) na C2 = nb
20

]
[}

uoz(xs}')

v (x,y) = C3u (2,8) = naZC3 = nb
03 30

2

u (x,y) = Cu_ (2,S) = rCu (2,S)
1Y 11 20

= CnalE(t) - rCna1

= Cnal(E(t) - 1) = nb3

2 2
u (x,y) =Cu (2,8) ~rCn (r,8)
12 21 30

2 2
=C nazE(t) - rC na,

= Cznaz(E(t) -r) = nb4'

Recalling that

E(S) + r(n-E(2))

X
o

and

~
[

CE(®) +nC_
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one has:

x = EQQ)E(t) + r(n-nF(r))
= nF(r)E(t) + nr(1-F(r))
= n[r+F(r) (E(t)-1)]

= nb5

y = CnF(r) + nCr = n[CF(r) + Cr]

= nb6,

Now,
E(x/y) may be evaluated:
x ull(X.y) . v (x,y) %
EQ) « 2 - o 4+ 24 ) F e =2 (x,y)
vy, 2 g3 02 ’ v y4 03
(o] (o] [o] o]
nb nb nb nb nb_. . nb
B = _ it TN s 2
v ° b 22 "33 3.3 Gk
6 " % n g n Pg
_bs by bgbs Lo bybs
b 2 3 2.3 2.4 ¢
6 nb6 nb6 n b6 n b6
Therefore:
b b,b b.,b
L5 _ 1. _ 1 1 _ %275
M= -3 7'y - )+ =5 by - )
b nb6 6 n b6 6

It is instructive to calculate Mn(r) when the failure density is &6(x-u)
. . . . . 2,
where § is the Dirac delta function., In this instance, the variance ¢ is

zZero,
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Doing this, one has:

r

o s T <M,

T
M =
n(r) M > U,

C. » F

f

Figure 2

- C‘—-Q() ~—o— (7 zero

F\\\ fig. 2.
\ & larger

4

211 i

. t

7 P r
Jsmall

tine of optimal replaccment
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A TECHNIQUE FOR OBTAINING A MEASURE OF INDUSTRIAL LEARNING
AND LEVEL-OFF USING ECONOMIC PARAMETERS

Eugene Dutoit
US Army Munitions Command
Dover, New Jersey

For years the aerospace industry has made use of what have been
called "learning", "progress'", "‘mprovement', or "experience" curves
to predict reductions in cost as the number of items produced increases.
The learning process is a phenomenon that prevails in many industries
and its existence has been verified by empirical data and controlled
tests. Although there are several hypotheses on the exact manner in
which the learning or cost reduction can occur, the basis of learning-
curve theory is that each time the total quantity of items produced
doubles, the cost per item is reduced to a constant percentage of its
previous cost, The factors that account for the decline in unit cost
as cumulative output increases are numerous and not completely under-
stood. Those most commonly referenced are:

1. Job familiarization by workmen, which results from the repeti-
tion of manufacturing operations,

2. General improvement in tool coordination, shop organizationm,
and engineering liaison.

3. Development of more efficiently produced subassemblies.,
4, Development of more efficient parts—supply systems.,
5., Development of more efficient tools.

6. Substitution of cast or forged components for machined com-
ponents.

7. Improvement in overall management.

Psychological and Historical Perspective, The basis of the "learning or
improvement' curve can be found in modern experimental psychology. The
term used by the learning psycologists is "the continuity hypothesis",
According to this hypothesis, learning is continuous and cumulative.

Every reinforcement adds strength to the learning., One implication of the
continuity hypothesis is that there is a regular progressive increase in
the learning process. 7t would be logical to expect some decline in the
rate of increase even though the learning continues, This hypothesis

can be graphically represented by the Osgood Transfer Surface which is, in
part, represented on the following page:
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Degree of
Learning Ry
identical

Similer Rg

Responses (R)

fn ". Ss
Neutral 1 $mi
Identical Similar
STIMULUS LEVEL
Figure (1)

Note that when the stimulus level is identical (the same manipula-
tion needs to be performed: and the response is the same (the sare
manipulation is performed), then the "degree of iearning” is a positive
waximum. However, in the real world, the stimulus will vary (although
be similar) and some appropriate and similar response will occur to
meet these similar stimuli. What theoretically happens is that the
"Jearner" (be it a person or a complex system) will move down the
transfer surface given as Figure (1). The locus of the path is shown

below:

+ A \\\\\\\\
Degrec of
Learning

~——

—

18 i

(81, By) (S5, Rg)

v

Similar Stimuli (S) and Responses (R)

The curve represented asbove is commonly called "the learning curve”.
Bugelski (reference 1) points out that these curves drawn from inaivia-
ual learning data rarely look like these so-called textbook learning
curves. Individual patterns tend to be erratic, with many ups-and-downs.
It might be pointed out that in recent years psychologists have become
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disenchanted with the notion of a learning curve. They find that there
are too many variables influencing the process of learning. K, J, Hayes
(in reference 1) says that if there is a typical curve, it is not like
those published in earlier textbooks, The learning process depends upon
what is being learned, the readiness of the learner, various individual
difference factors, and such parameters as the drive state, incentive
values, complexity of the stimulus situation and the features of the per-
formance being measured.

In spite of these warnings of many psychologists, the learning curve
has been used extensively by management as an emperical cost estimating
relationship. The industrial application of the improvement curve can be
traced to an article by Mr., T. P. Wright called "Factors Affecting the
Cost of Airplanes." This article appeared in the February 1936 issue of
The Journal of the Qgronautical Sciences.

General Equation. The emperical "improvement curve'" equation is given by:
que 1% P q

b
YC = ax (1)

where Yc = cumulative average expenditure per unit (the average direct

labor hours, or direct labor cost of all units including the given unit).

a = Initial expenditure, It is usually thought of as representing
the first unit expenditure in production.

#

X Cumulative number of units produced.

b

Characteristic exponent of the emperical curve.

Equation (1) represents the function as it would "usually" appear plotted

on rectagular coordinates. Equation (1') is obtained by taking the loga-
rithm of both sides of this equation:

log Yc = log a + b log x a"

Where YC and "a'" maintain their identity, but "b" is now called the char-

acteristic slope of a linear equation. This equation can be conveniently
fitted to data by the method of least squares.

Learning Plateau or Level-0ff Considerations

The problem considered in this paper is to develop an objective means
of determining a level-off quantity that depends on the characteristics of
the improvement curve. That is, a procedure which would give the same
value for level-off quantity regardless of who the andalyst is. The
development of the operational level-off is given below:
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This concept of operational level-off depends on relative change.
It is defined as follows:

Definition: x, is a level-off cumulative quantity if the next buy

1
quantity Q results in a relative decrease of expenditure equal to some
small fraction p.

The derivation of the level-off quantity x, follows from elementary

calculus., The equation for the improvement curve is:

y = ax” )
then

~(&

dy (dx dx 2)
where

QX. = abxb—l

dx .

It can be seen that:

d . . ‘s .
X - relative change in y. Rewriting equation (2) to
account for relative change . . .

dy _ (X')dx 3
" : 3
Substituting for y' and y in the right hand side of equation (3) . . .
oy [a ) gy
y a2 x°

and simplifying

dy _ .E)d
y( x @)

X

Let us now apply the results of equation (4) to an improvement curve
situation.

Let 1, dx = Ax, This is some average procurement buy quantity. For
sake of notational brevity, call this Q.

2, d . . . .
o= some appropriate relative change fraction representing a

y
pre—-defined "operational level-off". Again for sake of brevity, call
this -p.
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3. b = characteristic slope of the improvement curve (i.e.; -b).

4, X, = the cumulative quantity which satisfies the condition of

(dy/y) under the constraints of b and dx. Since this is the operation
level~off quantity, call this LOQ(p b)*
4

Equation (4) can now be rewritten as:

o = -b
’ LOQ(p’ b)

or finally:

QX))
LOQ(p, b) (-p) )

Where LOQ(p b) is the cumulative quantity such that when the item is pur-
’

“ased in average buy quantities J, the relative change in expenditure in
crement (LOQ(p b) + Q) is p. This is shown on the following diagram:
]

y \\\\
dy=(yo—y){o S ay oy, -y
y

y T ——
Q

L0Q (LoQ + Q)

Discussion: Note that equation (5) is defined by b, Q and some pre-selected
fraction of decrease p, The value p should be chosen with care and will
depend on the order of magnitude of the expenditure data. Equation (5) will
be most valid when the production rate per time period is fairly constant.

An Example of an Application. This example concerns the production of a high

s

volume item which is automated and involves a comparatively small direct
labor effort. The data utilizes the production- experiences at an Army
Ammunition Plant producing a chemical propellant. This is a highly automated
system which can produce several million pounds of propellant each month.
Data have been obtained on these propellants over the last five years of
production.

General Methodology. 1In order to determine if learning takes place during
the manufacturing of this propellant, it was necessary to break down the
available data into its elements and to evaluate each element separately,
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Because this process is a highly automated process and the production volume
is relatively high, the data obtained describing the behavior of the system
is based on accounting information. The manufacturing costs were broken
down into the following categories:

1. Direct labor costs
2. Manufacturing overhead costs
3. General and Administrative (G&A) overhead costs

Direct labor costs were used as indicators to determine if learning
existed. This step is logical because the direct labor costs reflect the
amount of direct labor charged to some item of production., If learning
exists (as defined in this paper) then the amount of direct labor dollars
charged to some unit of production should decrease as the quantity of
itmes produced increases. The learning curve function will be fitted to
the data and the "goodness of fit" assessed. If the product moment cor-
relation coefficient is significant at the 5 percent level then the least
squares estimate of the slope of equation (1') will be used to determine
the operational level-off via equation (5).

Because the unit costs were available as dollars per 1,000 pounds of
propellant, the monthly production quantities and cumulative quantities
were adjusted to thousands of pounds of propellant. This was done to main-
tain consistency in units of measure.

The direct labor dollars were adjusted for increasing labor wages by
using the actual plant average direct labor rates for calendar years 1965
to 1970 as a base, The purpose of the methodology was to relate these
costs to 1970 labor rates,

These adjusted direct labor costs should now reflect the actual number
of hours expended in order to produce some quantity of output (in this
case propellant). The direct labor costs per unit were plotted against
the cumulative quantity on a rectangular coordinate system using a CDC-6500
computer, This plot is shown in figure 2., Note that the trend of these
data suggest the learning curve function described in the early portion of
this paper. In order to fit this function by least squares the logarithmic
form of equation (1) was used. The computer output of this statistical fit
is presented in figure 3. The correlation coefficient (r = -.89) is signi-
ficant at the 1 percent level for a sample. size of 36. From a heuristic
point of view, these data appear to follow, and therefore support, the
existence of some learning process., The equation used to describe this
process is based on experiment and the functional form is valid only in
the sense of a "significant regression", What is important is the isola-
tion of some variable (direct labor costs per unit) that can serve as
some measure of learning. This variable is available through most in-
dividual accounting practices and can be utilized to assess some industrial
learning phenomenon without resorting to some artificial laboratory situa-
tion.
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Now that the learning curve has been determined to exist for these
data, level-off considerations can be appraised, The data and regression
analysis gave the following values:

(a) b = .1537 (slope of fitted equation)
(b) Q = 1980.0 thousand lbs per month (average monthly production
quantity)
(c) SDQ = 698 thousand lbs per month (standard deviation of monthly
production quantities)

SDQ

(d) Coefficient of variation = —— = 35%., The desirability of the
Q

uniformity of "average production quantity" was discussed in the paragraphs
following the derivation of equation (5).

Q" = Q+ 2 (D)) (6)
Equation (6) is a rough 95% upper limit for the monthly production quan-
tity to be used in equation (5). This correction should be applied at
the discretion of the analyst when considering the homogeneity of the pro-
duction rate data.

(e) P is selected at 1%

Substituting these values into equations (6) and (5)

Q' 1980 + (2)(698) = 3376 thousand 1lbs

LoQ = (_’15331(3376) = 52,000 cumulative thousand lbs of propellant

The results of this analvsis are shown in figure (4). The learning func-
tion exists between the points (1) and (2) and the operational level-off
expenditure is between points (2) and (3).

Additional Comments: Currently, an investigation is underway to determine

the outcome of fitting the function y = axb + k to these data by least squares
techniques. This equation is composed of two logical components:

b .
ax = the standard learning curve

k = some hypothetical level-off time (in direct labor expenditure)
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The normal equations for the least squares fit are given below:

Zyi =nk + a inb

2b

Zy.x.b = kIx b + ain

ii i

Zyixiblnxi = kaiblnxi + ainzblnxi

These are three simultaneous non-linear equations in three unknowns (a,
b and k). This "modified" improvement curve was selected as a logical
starting point in trying to establish a completely objective method for
defining and measuring a level-off cost (by correlation analysis)., If
it happens that this function is not adequate to describe the real world
(i.e., k<o), then other functional férms will be attempted,

Summary. The standard industrial learning curve function is developed from
the Osgood Transfer Surface. A quantitative technique for determining

a learning plateau is developed. An example is presented where real-

world data are subjected to the methodology outlined in the paper,
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CLASSIFICATION ANALYSIS

Geoffrey H, Ball
Stanford Research Institute, Menlo Park, California

ABSTRACT

Sorting things into groups is a basic intellectual task that allows
people to simplify with minimal reduction in information, Classifica-
tion techniques, which include both clustering and discrimination,
provide step-by-step computer-based procedures for sorting things based
on notions of generalized similarity and on the "class description”
desired. This paper surveys and classifies all classification techniques
known to the author. A conceptual framework for considering these
techniques is developed. Useful techniques for interpreting and evaluating
the results are given. An extensive bibliography is included.

ACKNOWLEDGMENTS

I am grateful to Mr. David Hall, Dr, Richard Singleton, and
Dr. Charles Dawson of Stanford Research Institute, Professors Ingram
0lkin and Herb Solomon of Stanford University, Mr, Herman Friedman and
Mr. Jerrold Rubin of IBM, and Professor Michael Haas of the University
of Hawaii for many helpful discussions and comments during the work
leading up to this paper. The clustering work was supported by the
Information Systems Branch of the Office of Naval Research under Contract
Nonr 4918(00), The work on PROMENADE was supported by Rome Air
Development Center under Contracts AF 306(02)-4196 and F30602-67-C-0351,
The actual writing of the paper was done using the NLS Text Manipulation
system at the Augmentation Research Center of Stanford Research Institute,
which was developed under the leadership of Dr. Douglas C. Engelbart.
Having NLS available for my use substantially reduced my agonies in
writing. Susan Peterson's help in keeping track of references, illus-
trations, and misplaced words is much appreciated.

The remainder of the article has been reproduced photographically from
the authors manuscript.

~749-



GLOSSARY OF COMMON TERMS

Algorithm: The detailed procedure or set of actions that direct a com-
puter (or person) how to do something. The instructions you give a
person that allow him to get from your house to the train station con-
stitute an algorithm., Just as there may be several different ways to
get to the train station, so there may be several different algorithms
that implement the same classification technique. The power of a tech-
nique may well depend on the quality of the algorithm used in imple-~

menting it.

Category: Those objects assigned into the same group on the basis of
-
criteria external to the classification process., All objects in the

same category have the same label.

Class: Throughout this paper 'class” is used to be the most general
entity in classilication analysis. Class will mean either cluster or
category and is the entity associated with classification using either
clustering or discrimination, Classification will be the general term
used for processes that sort things into groups, and includes discrimi-

nation and clustering.

Class Description: The information saved by the computer program that

is used to characterize the class--either cluster or category. The
c¢lass description can consist of a list of the objects in the category
or cluster; or some computed function of values associated with those

objects--such as the average object (centroid); or a function-—such as
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the multivariate normal distribution--whose parameters are computed
from the variable values associated with the objects in that class or

cluster.

Classification: The general term used for processes that sort things

into groups. Includes discrimination and clustering.

Cluster: A set of "'similar” objects. Intuitively, it is a collection
of objects that are similar to each other and not too similar to other
objects in the data set. No external label is used to define member-

ship in a cluster,

Clustering: (Synonyms: cluster analysis, learning without a teacher,
unsupervised learning.) The finding of data-derived groups on the basis
of the groups being internally similar. Does not use an externally
supplied label. Terms used to describe types of clustering techniques
include clumping, partitioning, and decomposition of mixtures. Numeri-
cal taxonomy applies computer-based clustering techniques primarily to

biological clustering.

Criterion: An expression, usually mathematical, that expresses the
user's notion of what a classification should accomplish, For example,
you could use, as a criterion of the quality of a clustering, some
measure of the average compactness of the clusters that are found.

Number of errors is used as a criterion for categorization,

Discrimination: (Synonyms: categorization, pattern recognition,

learning with a teacher, supervised learning, classification,) The

finding of rules derived from the data that allow the user to assign
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an unknown object to a category. Discrimination uses an externally

supplied label in developing the class description.
Label: The information that associates an individual object with a
specific category. Used in discrimination or to aid in interpretation

in clustering.

Mcasure of Similarity: The expression indicating closeness (Similarity

or distance) between any two of the following entities (including two

of the same type)--object, category description, and cluster description.

Measurcment Space: The geometric space in which the relationships be-

tween the objects can be cbserved. A scatter plot is a representation

of a two-variable measurement space.

Object: (Synonyms: pattern, vector, profile, sample, waveform, case,
elements, item.) The basic entity for clustering and discrimination,

An object consistis of a number of measurements that characterize some-
thing, The word ”pattern,” which gained currency within pattern recog-
nition, is not usced here because of its multiple meanings, which include:
(1) discovery of pieces of information, or (2) a vector-valued gquantity
on which classification procedures work, or (3) the recognition of a

pattern of patterns,

Structure: The allowable relationships between entities, including

specification of what is considered an entity. For example, if an ob-
ject must fit into a hierarchical tree, this restricts the kind of re-
lationships that objects can have with each other. Thus, hierarchical

form is one example of structure.
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Variable: (Synonyms: measurement, dimension, item, characteristic.)
They characterize the object. Variables should contain the information

about the object that is most relevant for classification.
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*
1. INTRODUCTION

Sorting things into classes--classification analysis--is an age-

old problem, for which there are two major approaches: discrimination

and clustering,

Discrimination techniques begin with either a priori

conceptual distinctions or data divided into a priori groups and proceed

to develop rules by which to separate data into those a priori categories,

whereas clustering techniques use a priori selection of a measure of

similarity, a criterion, and a class description to find an inherent

empirical structure in data--to find clusters. Thus, discrimination is

the development
which are often

or sort objects

supplied labels

in ¢stablishing

and application of analytical rules, the parameters of
derived from the data, that allow a researcher to assign
into specific categories. Discrimination uses externally
associated with each member of a set of objects to aid

rules for sorting things into groups, In clustering,

which may be either of objects or of variables, we seek to find so-

called data~derived groups based on internal similarity between the

objects; the definition of similarity is left to the user, as are pro-

cedures by which sorting into similar groups is accomplished,

Workers in

a variety of disciplines have taken advantage of the

increased availability of the computer and more recently of man/machine

interactive computer terminals to develop classification procedures and

to translate them into algorithms and then into computer programs,

Classification procedures have varied widely because of differing needs

*
Definitions for underlined terms appear in the Glossary.

\
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in the various disciplines. Because the variety is great and the
literature scattered--journals that range from the Journal of Marketing
to engineering journals and to texts in psychology--it is difficult for

an individual to know what techniques do exist.

This paper seeks to provide the reader with a structured window
into a widely scattered literature and to offer a framework within which
the techniques can be organized., This framework should allow the reader
to envision far more options in data analysis than are presently avail-
able in computer programs and thereby to customize his procedures to
suit the idiosyncracies of his theoretical problem, on the one hand,

and the nature of his data, on the other.

1.1 The ISODATA Game

Before proceeding, it should be useful to the reader to get some
feeling for clustering by playing the following game. As the reader
plays the game, he should try to see what things change with each step
of the procedure and what information is saved from iteration to itera-
tion, This game is essentially the ISODATA clustering algorithm (Ball
and Hall, 1967b). The algorithm's simplicity allows easy exposition of
a typical clustering algorithm, that is, of the detailed procedure or
set of actions that the computer follows in order to sort the data into

groups. The steps in the algorithm are:

Some references to articles describing applications of clustering to
diverse disciplines are: Archaeology--Hodson (1970); Geography--Berry
(1960); Economics~-W. D. Fisher (1969); Electrical Engineering--Alens
(1967); Information Retrieval--Dale and Dale (1965); Market Analysis--
Green et al, (1968); Medicine--Stark et al. (1962); Numerical Taxonomy--
Basford et al. (1968); Psychology and Sociology--Katz et al. (1968);
Statistics—-Dalenius and Gurney (1951); and Weather Prediction--Endlich
(1970). The last describes an unusual application of a clustering
algorithm.
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(1) Seat a group of persons in a room so that people are

divided into subgroups.

(2) Arbitrarily select two people to be initial cluster

reference points.

(3) Everyone in the room is to point to the person who is
the closest cluster reference point. All of those
pointing to the same cluster reference point are con—

sidered to be in the same cluster.

(4) Find the average location point of those associated

with each location,

(5) Have everyone now point to the newly found closest
average location point. This defines new cluster
membership. From the new cluster memberships, new
cluster averages can be found. These imply new

assignments to clusters,
(6) Repeat this process until no person is reassigned.

(7) At any time the number of clusters can be increased
either by breaking an existing cluster into two clus-—
ters or by selecting additional persons to serve as

cluster reference points.

(8) The number of clusters can be reduced by combining
two adjacent clusters and then determining a new

cluster average point for the combined cluster.

1.2 The Rosen-Hall Mode-Seeking Discrimination Game

A similar game can be created using a discrimination algorithm

(Rosen and Hall, 1966). Briefly, the game goes as follows:
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(2)

(3

(4)

(5)

6)

Assign all persons sitting in the room to one of three
categories. (In the case of discrimination, each per-
son--persons are the objects to be sorted--must have

been assigned a category label.) Each of these three
categories should have several modes--several distinct
groups of persons. The persons in each mode should be

from predominantly one category.

Arbitrarily select one person within each class as the
mode~seeking reference point for that class for the

first partitioning.

Everyone points toward the closest mode-seeking refer-
ence point, regardless of the category associated with

that modal point,

Everyone not pointing to a person in his own category

should stand up.

Select additional persons to represent each category
from among those who are now standing up. At the same
time, improve the category descriptions for those
sitting down by finding the average person within each
class., (If two or more averages are being used within
any one class, then each person affects the modifica-

tion of only his closest within-class average.)

Evaluate the quality of sorting on the basis of the
existing modes. If the error rate, that is, the mis-
assignment of people based on closest mode, is still
unacceptably high, then return to Step Two. If the

error rate is acceptable, considering the number of
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cluster centers that have been generated and the pre-

sumed quality of the data, then terminate the process.

These games emphasize that iterative methods that seek to improve
a sorting can find sortings that are intuitively satisfying. 1In what
follows, we discuss the motivation and the context for classification
techniques, examine in detail the elements of classification techniques,
construct a framework for organizing classification techniques, and con-

sider ways to interpret the output from classification techniques.

1.3 Similar Statistics from Dissimilar Data

Part of the motivation for multivariate classification techniques
arises from the desire to reduce the summarization that can mask dis-
similarities in multivariate data, Consider, for example, Figure 1, in
which three dissimilar data sets yield identical mean values and identi-

cal covariance matrices,

From this example, it should be clear that the mean and the covari-
ance matrix do not tell the whole story unless the data are normally
distributed. Techniques that use only values of a mean vector and a
covariance matrix, and do not use original values of data again after
the mean and covariance have been calculated, cannot distinguish between
these three data sets, Techniques that use additional information do

exist and do indicate the difference, as we shall see below,

A second consideration, more specific to clustering, concerns what
a user means by a natural cluster, If we examine Figure 2, we see that
something as arbitrary as the scaling of individual variables can affect

how objects are placed into a cluster.

In Figure 2(a), we might be inclined on the basis of physical in-

spection to consider Clusters 1, 2, 3, and 4 as distinct. By rescaling
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THE WHOLE STORY
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IS NORMALLY
DISTRIBUTED

- e
(b) {c}

Three dissimilar sets of data all with the same mean and the same covariance matrix

{a) Data concentrated at four points

(b) Data spread uniformily in two rectangular regions

(¢} Data distributed in accordance with a bivariate normal distribution TA-5533-20

FIGURE 1 DISSIMILAR DATA WITH {DENTICAL MEANS AND
COVARIANCE MATRICIES

=759~



ALL INDIVIDUAL
CLUSTERS
O D
[}
\
10 =4= /
— \~'
,—
©)
/
\s,
1 l -
1 1
(a) 100
o=~ CLUSTER OF 1 AND 2
o1 OO
N
CLUSTER OF 3 AND 4
/, S*
0.0)
\5-—‘/
i 1
! T -
100 1000
(b}
100 -4+
CLUSTER OF
1 AND 3

} CLUSTER OF
2 AND 4

P ,-/

o JO!

| | | |

lolll'c' I

\ A

N g

(c)

TA-5633-21

FIGURE 2 THE EFFECT OF SCALING ON WHICH CLUSTERS
LOOK SIMILAR

-760-



the X axis in Figure 2(b), it is possible to believe that Clusters 1
and 2 are, in fact, a single supercluster, as are Clusters 3 and 4, It
may be somewhat disconcerting to note, however, that a scaling of the

Y axis [Figure 2(c)] could reduce the four clusters to two superclus-
ters—--but this time with Clusters 1 and 3 placed together, and Clusters

2 and 4 together.

Thus we see that the context for classification techniques must be
used in interpreting the results. Certain key questions must be answered

in order to establish that context,.
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2. KEY QUESTIONS

A user will find it necessary to answer certain questions in
sorting objects or variables into groups. How these questions are
answered by a user should provide him with a guide for selecting (or
developing) appropriate classification techniques, Some basic theo-

retical questions are as follows:
(1) What are the goals of the user?

(2) What assumptions are made about the underlying struc-

ture of the data?

(3) 1Is the user willing to assume that his knowledge of
class membership is sufficient to guide the grouping
procedure? In short, does he have examples of well-
defined groups on the basis of which he wishes to
develop a discrimination scheme, or does he have a
relatively undifferentiated set of objects whose
underlying structure he wishes to explore by clus-

tering on the basis of interobject similarity?

(4) Does the user primarily wish to group variables or

to group objects?

(5) How do the user's particular research question and
specific paradigm affect answers to all of these

questions?

A second set of questions concerns the nature of the variables and

objects:
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(6) How are the variables and objects determined to be

worthy of study in the first place?
(7) How are the variables scaled and counted?

(8) 1s redundancy, such as high intercorrelation between

variables, to be removed?

(9) How are individual variables (or objects) combined
into a single number that can be used to measure simi-
larity between objects (or variables), or to measure

the similarity of an object (or variable) to a class?

A third set of questions to consider relates to the availability

of computer capabilities:

(10) What techniques and existing programs contain the de-
sired ingredients? How well does an implemented pro-

gram accomplish its theoretical objectives?

(11) Can classes of techniques be identified? What are the
characteristics of each class, and what is focused on
in the definition of that class? What is the charac~

teristic algorithm in each class?

(12) What quantity of monetary and time resources is a user
willing to devote to the analysis? How many repetitions
of the analysis cycle are acceptable? How cut-and-dried

need the results of the analysis be?

(13) What other techniques does the user plan to use in con-
junction with techniques for sorting into groups? How
should results from various techniques be integrated

to provide a coherent overall view of the data?
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(14) With what language--for example, statistics, proba-
bility, or graph theory--does the user feel most

comfortable?

(15) What aids exist for interpretation and evaluation of

results?

(16) How would a user prefer results of sorting be pre-

sented to him?
(17) What criteria should be used in evaluating results?

We will spend the remainder of this report dealing with the issues

raised by the seventeen questions presented above.
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3. GOALS

It is important to realize that goals of various users of clus-
tering and discrimination techniques are frequently dissimilar. Once
this is realized, it is easier to see why such a variety of clustering
and discrimination techniques exist and also to avoid somewhat fruitless
arguments as to which technique is the most ideal in some global sense,.

Some salient goals are the following:
(1) finding a true typology
(2) model fitting
(3) prediction based on groups
(4) hypothesis testing
(5) data exploration
(6) fishing in data to find useful hypotheses
(7) data reduction.

Some of these goals may work at cross purposes. For example, pro-
cedures for conducting a fishing expedition will clearly be more relaxed

than those used to fit data to well-articulated models.
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4, AN IMPORTANT DIGRESSION

It is important for the user of classification techniques to con-
sider quite consciously the interaction between technique and discipline
context. In Figure 3 we see some suggestion of the interaction between

the theories and methods.

On the one hand, we have a particular question that we want to
learn more about plus information regarding the probable structure of
relevant data. This question implies a selection and preprocessing of
variables and objects. Underlying the question is a paradigm, which
aids us both in interpreting the data and in predicting probable struc-
tures of the data, On the other hand, we have techniques, probably
based on mathematical assumptions. Characteristics of the techniques
also influence the selection and preprocessing of variables; the user
must define explicitly what he means intuitively by similarity between
objects. His explicit definition must then become embodied in a com-
puter algorithm, which has implications for the structure of the data.
This algorithm, in combination with auxiliary techniques, leads to an
interpretation of the structure of the data, which may in turn entail
either a modification of the theoretical paradigm or a reconsideration

of our empirical analysis,

In sum, implicit and explicit judgments regarding scaling, criteria
chosen, selection of objects, and selection of variables for inclusion
in a body of data affect the outcome of a classification analysis. A
slogan that captures some aspects of the situation is that "explicitness
is not objectivity"; simply because a researcher chooses one method of

classification does not mean that he has somehow found Truth. He has
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made it easier for others to see why he has grouped things together,

and therein lies the value of explicitness, but metaphysical questions
about the nature of reality cannot be settled by making a priori methodo-
logical choices before analyzing data. The question of selecting an
appropriate technique for a particular set of data will remain proble-
matic even when results afe obtained through classificatory analysis,

but they can never be resolved through methodological decisions made out
of context. The resolution of the questions still requires capable
people with experience and overall understanding in the relevant fields

of inquiry.
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5. PROCESSES FOR SORTING THINGS INTO GROUPS

Let us now return to processes for sorting things into groups.
Consider Figure 4, in which information is shown as flowing from the

environment, a set of measurements is taken, and a classification is

produced,

ENVIRONMENT 1 MEASUREMENTS p—— CLASSIFICATION

TA-5533-23

FIGURE 4 THE CONTEXT OF CLASSIFICATION

This diagram--with its emphasis on the choice of environment and
on data preprocessing--is much used in pattern recognition with its pri-
mary focus on discrimination, where success usually has depended on
skillful choice of the measurements used to discriminate between classes,

[See Nagy (1968) for an excellent discussion on pattern recognition.]

Expansion of the flow chart of Figure 4 into that shown in Figure

5 suggests that a researcher's decisions on many factors are important

to the classification process.

A researcher chooses a portion of the environment and a set of

instruments to handle his data. 1In the social sciences the instruments
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might be, for example, census statistics or nominal scale responses to
questionnaires. Data from such instruments must then be preprocessed,
normalized, preformatted, and somehow turned into numbers associated
*

with particular variables such that one can perform either a deductive
discrimination or an inductive clustering of the data. In both dis-
crimination and clustering, evaluation and interpretation can result in
modifications in any aspect of the earlier stages. We may choose a
slightly different portion of the environment to examine, for instance;
we may improve our instruments based on our initial experiments; we may
modify our preprocessing in such a way as to remove variations irrelevant
to our classificatory interests; or we may redefine our variables so that

our classification procedures are simpler,

Multidimensional scaling, which uses proximities (Shepard, 1962) and

some classification procedures--notably the clumping procedures described

in Section 12,2--can use an implicit definition of similarity. Under-—
lying variables need not be defined.

-770~



6. DATA STRUCTURE AS IT AFFECTS CHOICE OF TECHNIQUE

Assumptions about the structure of data should affect our choice of
a technique. The assumptions can be usefully characterized in terms of
two dimensions. The first dimension considers the amount of overlap we
assume to exist between groups that we are to sort, The second considers
the variety of the form and shape of data in the group. Both of these

dimensions are indicated schematically in Figure 6,

In Figure 6(a) we have two groups of nearly identical shapes that
are widely separated from each other. In Figure 6(f) there are two

groups that differ considerably in shape but whose means are identical,.

The importance of the structure of the data relates to assumptions
we are willing or are forced to make in order to elicit information from
the data. For example, in Figure 6(c) we can assume that the number of
groups is two and that they have equal covariance matrices. With these
two assumptions, we may be able to obtain satisfactory estimates of
characteristics for both groups. If, however, our assumptions are in-
correct, we may be imposing a structure on the data more than finding
one in it. The sensitivity of our results to our assumptions obviously
needs to be checked. Due to the existing state of the art of classifica-

tion analysis, it is not always clear how these assumptions can be tested.

We have suggested that externally supplied labels for objects vary
in their level of validity. 1t may be helpful to use both clustering
and discrimination procedures on a set of labeled data and thus, in some
sense, to cross check the validity of one's labels, Consider these ex-
amples: The sorting of characters from a particular typewriter into

letters of an alphabet is an instance in which we could supply almost
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FIGURE 6 THE STRUCTURE OF DATA

completely valid labels. The sorting of dysfunctional persons into
categories as in the field of psychiatry may be an example where existing
labeling should be questioned. Using labels provides us with a way of
determining the power of certain variables for sorting objects into
assigned groups. On the other hand, clustering without labels can give
an indication of the extent to which categories or classes overlap within

a particular set of variables. 1In both cases the information gained may
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suggest a modification and reevaluation of classes, of variables, of

procedures, and of objects.

Assumptions about the structure of the data influence our choice
of algorithm and our definition of similarity. Thus our confidence in
the quality of available external labels that could be used to divide
objects into groups affects whether we choose to engage in discrimina-

tion or clustering.

In short, there is considerable similarity between clustering pro-

cedures and discrimination procedures,
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7. THE SELECTION OF VARIABLES AND OBJECTS

A researcher must choose variables and objects before using a
particular classification technique, If he is performing discrimina-
tion, he will wish to find variables that enhance differences between
classes while retaining some amount of within-class similarity. If he
is clustering, he will seek measurements that highlight intraclass
similarity while at the same time taking into account differences found

hetween groups.

Once variables have been selected, they can be scaled, coded, and
transtormed in a variety of ways. We have already discussed how scaling
affects particular techniques, It is less clear how each variable should
be weighted and whether natural or transformed variables are more appro-
priate.* At this point it may be important to note again that a para-
digm may answer some of these questions in an a priori manner, and often
there is no alternative to complete dependence on a paradigm., One can,
however, examine the sensitivity of groupings to alternative transfor-
mations of the data, variations in coding, and different scalings. If
groupings tend to be relatively invariant under these changes, then one
might conclude that one's empirically defined groupings are not merely

artifacts of analytical assumptions and a priori choices.

Consider the process by which one gets numbers out of an environ-

ment, In Figure 7 we show a leaf and indicate ways to measure its width

*Thcro has raged a controversy in numerical taxonomy as to the weighting
of variables for some years, Probably this weighting has occurred sub-
jectively in all classifications, but the use of the computer forces the
researcher to make an explicit decision as to the weighting.,
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and length. There are many ways of defining the width and length of a
leaf, and experience within the discipline of botany should suggest

measurements that are less apt to introduce irrelevant variation,

Measurements obtained can be organized into a matrix such as the
one shown in Figure 7(b), which also includes a column contatning the
label for each leaf. The label has, in all probability, been supplied
by a botanist, who says, "These are the same kind of leaves, and they
differ from another group over here.' We can plot the measurements in

a measurement space, as shown in Figure 7(c). When this is done, it

appears that we have two distinct groups. From plots of numbers we
form concepts, such as dimension and closeness, [A recent paper (Zahn,

1969) relates differing Gestalt perceptions to clustering procedures. ]
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8. MEASURES OF SIMILARITY

In order to use either clustering or discrimination, it is neces-
sary to select a criterion of similarity (or dissimilarity). The measurc
of similarity indicates closeness (similarity or distance) between any
two of the following entities (including two of the same type): object,
category description, and cluster description. If we wish to comparc
Ltwo entities described by numerical values for a number of variables,
we must combine differences for each variable in this set of variables
into a single number. Although variables can be extremely dissimilar
analytically, at the empirical level the use of a similarity measure
assumes numerical comparability between variables since it combines
effects of individual variables into a single number--the number giving

the similarity between two objects.

This assumption of numerical comparability allows simple clustering
processes that group objects by overall similarity. A single measure
of similarity can be used to determine the clustering, After clustering,
the contribution of individual variables can be determined by decomposing,
say the sum of squared error curve, into the contributions from each of
the individual variables (cf. Section 13.2), Thus, we can first use the
simplicity of a single number to measure similarity and then decompose
cach cluster into distributions of values for each variable, retaining

distinctions betwecen variables while still being able to group objects

on the basis of overall similarity.

It is not necessary to combine all variables using a similarity
measurc. The automatic interaction detector (Sonquist and Morgan, 1964)

orders variables and uses them one at a time in partitioning a data sct,
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eliminating the need for a measure of similarity to group contributions

of the many
identity of
through the

on a single

variables. Hartigan (1969) considers ways in which the

an individual variable can be retained, at least part way

clustering, This procedure looks only at distinctions based

variable at each phase of the clustering process. (Single-

variable partitioning has very old antecedents and underlies the sequence

of one-variable classifications used in taxonomic keys.)

To give the reader some feeling for a measure of similarity, we

show in Figure 8 the measure of similarity known as correlation as an

a a1'b1+32'b2

§ = cos,, =
2 2 1/2
[(31 +a3) o] + bg)]

ab

(a) TWO DIMENSIONS

a, " by ta; * by, +ag* by

1/2
2 2 2 2 2 2
[(31 +a; + 33) (b,I + b+ ba)]

Uapy

(b) THE GENERALIZATION TO 3 DIMENSIONS
TA-6533-27

FIGURE 8 CORRELATION AS A MEASURE OF SIMILARITY

angular measure between two vectors with respect to a specific origin

position. Note that the two-dimensional definition of correlation can

be generalized directly to a measure of similarity using more than two
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variables, as shown in the figure, Similar figures can be drawn for

other measures of similarity.

We can identify a number of different kinds of measures of simi-

larities.

(1)

(2)

Examples of these are given in Table I.

Association--Used primarily for information retrieval
and biological taxonomy (cf. Kuhns, 1964, and Goodman
and Kruskal, 1954), Some forms of measures of asso-
ciation are also measures of correlation for binary

variables,

ggzﬁglation——Primarily a function of the angle between
a pair of object vectors, it can be normalized or left
unnormalized.* In either case, a correclation is sen-
sitive to the position of the origin, and values of
correlation change if the position of the origin changes.
Correlation is most useful as a measure of similarity
when shape--the pattern of ratios of the various vari-
ables—--is to be the prime determinant of similarity.
For example, a person interested in the shape of human
bodies might wish only to consider relative proportions
of a group of people on whom he had collected measure-—
ments., (See Cattell, 1949 for a related measure of

similarity.)

Normalized correlation depends only on the angle betwecen the object

vectors,

Normalized correlation is most useful as a measure of simi-

larity when the magnitude of the object does not affect the clustering

or the discrimination., Unnormalized correlation weights the angle be-

tween two objects by the magnitude of the objects with respect to the

present origin. Unnormalized correlation seems an unhappy compromise

between normalized correlation and distance as a measure of similarity,
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Table I

MEASURES OF SIMILARITY

n
Xy
Association S =
_— Xy n + n -n
XX yy Xy
. where nij is the number of 1's that occur
in x and y in the same variable.
X + .. X
c lati g 1y1 vyv
orrelation Xy = 5 5 > >
X + ... X y. + ... +y
1 v 1 v
where v is the number of variables.
Distances:
]
Absolute D = lx -y l + ... + ix -y 1
Xy 1 1 v v
2 2
Euclidean D = (x -y ) + ...+ (x -y )
Xy 1 1 v v

Weighted Euclidean

Manalanobis

Probabilistic

(use +1 if x; = y.
J J

use -1 if x5 # yj)

Functional

w)
i

2 N B 2
Xy - \/:vl(xl yl) et WV(XV yV)

where w_ are variable weights,
1
v \4
D DI DR AN AR CHE
Xy : ‘ 1JV 1 1 J J
i=1 j=1

where the wij

(See Appendix A.)

depend on the scatter
matrix.

;i; (il)log[l/probj(xj,yj)]

~ 1
Sij - (1 + ny)
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(3) Distances-~This mecasure, whose values run the reverse

similarity, may be determined in at least five ways:

Absolute "City Block” Distance. Less sensitive

to a single variable's having a large dif-
ference than are the following, higher order

measures of distance.

Euclidecan Distance., Sensitive to the scaling

of the variables that make up the object vector
but insensitive to the location of the origin.
Geometric distances are used widely but can
yield misleading results unless normalizations

are performed properly.

Mahalanobis Distance. Weightings are data-

derived in Mahalanobis distance by using a
within~group covariance or correlation matrix
(Mahalanobis, 1936). In Friedman and Rubin
(1967), the within-group covariance matrix
changes as the assignment of objects to classes
changes, The choice of the within-group co-
variance matrix affects the value of Mahalanobis
distance substantially., This matrix can be
formed by considering the entire data set around
the overall average, or by averaging together
matrices around each class center (i.e., after
subtracting the mean of the class), or by having

each class have a different matrix.

General Weighted Distance. Weightings can be

derived either from an a priori evaluation of
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the importance of variables or from some other

procedure, such as discriminant analysis,

Minkowski Distance., This measure of similarity

includes the absolute and Euclidean forms of
distance by setting the power of the expression
(x-y) appropriately. For example, if the power
is 2, then Minkowski distance specializes to

Euclidean distance.

(4) Probabilistic Measures—--Useful when it is appropriate to

use the population statistics to modify weightings of
variables. When the weighting is determined by the
population statistics, however, these measures beccome
quite sensitive to the choice of the population. The
weighting depends on the value of the variable, as well
as the particular variable used as in weighted distance;
i.e,, the weighting of the significance of the simi-
larity will, in general, be different if the two ob-
Jjects being compared have values 1 and 1, as opposed to
having values O and 0. While past authors have used
weightings that were functions of population statistics,
the user could develop his own process for assigning

welightings,

(5) Functional Measures of Similarity--The value of the

measure 1is a function of d, the distance from the other

object or class,.

By way of comparing these measures of similarity and to give the
reader some indication of the effects his choice of similarity measure

has, we indicate in Figure 9, by using contours of isosimilarity, the
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FIGURE 9 ISO-SIMILARITY CONTOURS FOR VARIOUS MEASURES
OF SIMILARITY WITH RESPECT TO VECTOR a
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two-dimensional objects that would be considercd similar using each of
these measures. 1In other words, any two objects lying on the same iso-
similarity contour would be equally similar to the basic object shown

as vector a.

Note that if a functional measure of similarity is a monotonic
function of distance, then the form of isosimilarity contours is the
same as that of the distance of which the measuré is a function. The
spacing of the contours will, in general, be different, The difference
in spacing will have an additional effect if the number calculated for
similarity is used for calculating intragroup similarity or for weighting
objeccts in calculation of the class average. For example, decomposition
techniques (Section 12.4) tend to use p(x), the probability of member-
ship in that class, as the weighting factor rather than weighting all

objects equally.
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9. CLASS DESCRIPTIONS AND THE SORTING PROCESS

As we examine clustering and discrimination techniques, it will
become increasingly apparent that measures of similarity can be con-
structed not only between pairs of objects, but also from an individual
object to an entire class--to a cluster or to a category. It becomes

important then to consider class descriptions.

The information saved by the computer program and used to charac-
terize the class can be called the class description--describing either
cluster or category. The class description can consist of a list of
the objects in the category or cluster; or some computed function of
values associated with those objects—-such as the average object (cen-
troid); or a function--such as the multivariate normal distribution--
whose parameters are computed from the variable values associated with

the objects in that class or cluster,
Three primary forms of class description exist:

(1) We can describe a class by listing the identification
numbers of the individual object's in that class. This
class description is largely used in single-linkage

clumping or graph theoretic techniques.

(2) We can extract from a class some descriptive states
such as an average, and we can ascertain similarity
to that average, The class average can be computed by
weighting the objects in at least two ways—-by 1/N,
the most common weighting, or by p(x), the probability

of that object belonging to that class.
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(3) A third alternative is to describe a class by a func-
tional form; for example, we can use a normal distri-
bution with a standardized mean and covariance matrix.
(When the class is described by a functional form, we
can use the value of the function at the location of
an object as a measure of the similarity of that object

to the class.)

Classification may be conceived of as an iterative process in which
information gained from a prior sorting aids development of a class
description, perhaps also to modify the measure of similarity. Consider,

for example, the process shown in Figure 10,

Let us start, assuming that we have preprocessed our data, decided
on a measure of similarity and on a procedure for sorting--either clus-
tering or discrimination., If we choose to do clustering, then we must
select a criterion., The criterion may be implicit in the technique.

For example, ISODATA tends to minimize sum of squared distances, but
the criterion is not optimized explicitly. If we choose to do discrimi-
nation, then labels are supplied for the data on a theoretical or a
pragmatic basis, In both cases the data are used to develop a class or
clustered description. This class description governs the next sorting

of the data.

The process repeats iteratively: Each time the sorting uses the
most recent class description, which in turn tends to reassign objects,
which then leads to a new category or cluster description. These new
descriptions govern the subsequent sorting. In addition to changes in
the class description, the parameters of the measure of similarity may
change, as-in Friedman and Rubin (1967), where the intracluster co-

variance matrix is recomputed as objects are reassigned to new clusters,
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FIGURE 10 THE PROCESS OF CLASSIFICATION

At some stage, which may be during the computational process itself,
the clustering or discrimination is evaluated. Clustering tends to be
evaluated on the basis of criteria related to within-class similarity
relative to between-class dissimilarity; discrimination usually is
appraised by looking at the number of errors resulting from the appli-

cation of an assignment rule,
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10, BOUNDARIES

Boundaries between classes can be specified implicitly by using
the positions of the classes or explicitly by parametrizing the boun-
daries themselves. Boundaries can be lines, planes, or higher-order

curves and surfaces. (Cooper, 1964, )

The amount of data available affects the generalizability of csti-
mates of both boundary and class location parameters. (See Allais,
1966.) When the number of objects is small relative to the number of
parameters to be estimated, estimated parameters of the boundaries are
greatly affected by each object in the specific data set. As a result,
the boundaries may not be generally applicable, since they tend to be
primarily a function of the specific data set used. in estimating the

parameters that determine the class boundaries (Figure 11).
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11, OPTIMALITY
There is almost always a criterion expression, usually mathematical,
associated with classification that expresses the user's notion of what

a classiciation should accomplish.

11,1 Criteria of Optimality

Some typical criteria that have been used in classification arec

listed in Table 1I.

Table 11

TWO CRITERIA OF OPTIMALITY

Sum of Squared Distance

N v o
Clustering C = Z Z (x_, - _K.)
4 1) 1]

where ﬂ? is the cluster center associated with the ith

object and N is the number of objects.

. . . Percentage objects incorrectly classified
Discrimination =100 |1 -

of error N

’

Perhaps the most common criterion in clustering is the sum of
squared distances within a cluster or its complement, the sum of dis-
tances of the cluster centers from the overall average, where each
cluster center is weighted by the number of objects in the cluster. 1In

discrimination the criterion of errors of classification generally is

=790~



used; sometimes this criterion is generalized to indicate overlap be-

tween various pairs of classes.

Other criteria include functions of the within and between scatter
matrices (see Friedman and Rubin, 1967 and Appendix A); entropy
(Sebestyen, 1966); similarity within to similarity between (Bonner,
1964); coefficient of belongingness (Fortier and Solomon, 1966); and

"total entropy’ (Rogers and Tanimoto, 1960).

11.2 Procedures for Seeking Optimal Partitions

Having indicated that it is necessary to provide a clustering tech-
nique, either implicitly or explicitly, with some criterion for deter-
mining group membership, let us discuss the kinds of techniques by which
people have tried to find optimal partitions. There are four general

approaches to finding optimal partitions:

(1) Total enumeration of all possible partitions and an
evaluation of a criterion for each possible partition,
In sorting data into classes we need to consider the
following factors: (a) the number of partitions into
which the data are to be sorted, (b) the basis on which
to do the sorting, and {(c) the numbers of objects there
are in a data base. In clustering we cannot consider,
even for moderate-sized data sets, all possible par-
titions of the data set into clusters. For example,
if we divide a group of 100 objects into 10 clusters
of 10 objects each, we can find that there are approxi-
mately 1082 different partitions to be considered.

Most techniques are designed to find good partitions

of the data without examining all possible partitions.
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(2) Limitations on the number of possible partitions, as
for cxample in hiecrarchical clustering or stepwise

procedurcs.

(3) Heuristic procedures that do not examine all possible
partitions but rather select out partitions for evalu-
ation that are presumed to be the more significant

partitions.

(4) Theoretical procedures thal test only undominated par-

titions; the key to this approach is the ability to

*
specify which partitions dominate.

For example, any partition that minimizes the sum of the squared dis-
tances of objects to their respective cluster centers must be contiguous.,
W. D. Fisher (1958) discusses this. 1In general, not much is known about
this approach,
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12, SEVEN CLASSES OF TECHNIQUES

We have indicated a number of characteristics that can be used to
scparate various discrimination and clustering techniques into classes,
In fact, we can classify techniques so that for each type of discrimina-
tion technique we are able to find a similar clustering technique. (The
reverse does not scem to be true, in that several clustering techniques

scem to have no counterpart discrimination technique.)

We can now move toward specification of algorithms. We shall
attempt to characterize techniques in terms of the category or cluster
description used, and with a rough description of the sorting procedure,
For somc classes of techniques we shall indicate for which types of prob-
lems that class seems most appropriate. We also consider the amount of
divergence a technique can handle, the amount of variety for which it is
suitable, the amount of computation involved, and underlying assumptions

about the structure of the data.

We divide the techniques in two sets in Table III. The first column
of the table gives the name for a clustering technique; the second column
gives the name for the discrimination procedures corresponding to that

class of clustering techniques,

12,1 Factor Analysis and Discriminant Analysis

There is an extensive literature on factor analysis. For an ex-
cellent introductory article see Rummel (1967). Briefly we note that
principal components—~-one method of obtaining new composite variables by

rotation of the axes of the measurement space--secks to find directions
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Table IIIX

CLASSIFICATION PROCEDURES

Clustering*

Discrimination

factor analysis
(Rummel, 1967)

clumping
(Sokal and Sneath, 1963)

partitioning
(Friedman and Rubin, 1967)

decomposition of mixtures
(Spragins, 1966)

corridor methods
(Bledsoe, 1963)

discriminant analysis
(R. A. Fisher, 1936)

nearest neighbor
(Cover and Hart, 1967)

mode seeking
(Rosen and Hall, 1966)

decision theory
(Chernoff and Moses, 1959)

linear adaptive machines
(Nilsson, 1965)

*Miscellaneous clustering techniques include: total
enumeration (Fortier and Solomon, 1966); graph-
theoretic (Zahn, 1969); potential functions (Meisel,
1968); function-oriented techniques (Gitman, 1970);
accumulation (gravity-analog) approaches (Butler, 1969);
clustering about lines (Eusebio and Ball, 1968); and
interactive clustering (Hall, Ball, and Wolf, 1969).

of maximum variation in a set of data. Principal components analyzes

variation in objects without regard to category.

Discriminant analysis seeks to find directions that maximize varia-
tion between categories while at the same time taking into account intra-
class covariance structure. Discriminant analysis seeks to separate as
much as possible the average vectors of the various different categories
by producing composite dimensions in which these means have maximum
variation, The discriminant directions are the principal components of
the between-category covariance matrix as modified by the (pooled) within=-
category covariance matrix (cf. Figure 12) [cf. (Fisher, 1936), (Rao,

1948), (Anderson, 1951)].
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FIGURE 12 FACTOR ANALYSIS AND DISCRIMINANT ANALYSES

Both methods are most appropriate where the data set (in clustering)
or individual categories {(in discrimination) are adequately characterized
by the mean and covariance matrix. Principal components is particularly
useful in obtaining a smaller number of composite variables from a large

number of original variables.

12,2 Clumping and Nearest Neighbor Techniques

In both clumping and nearest neighbor techniques a class is de-
scribed by a list of its members. Objects are sorted on the basis of
closeness (o individual patterns, Conceptually, these are the simplest
of the clustering and discrimination techniques. Clumping techniques
have been used widely in numerical taxonomy and, as commonly used, assume

hierarchical data organization (cf. Figure 13).

In clumping, distance can be measured to a cluster in terms of
cither the closest member in the cluster, the average member in the
cluster, or thc farthest member in the cluster. Clumping techniques
become quite similar to partitioning techniques as the class description

shifts from using the closest or farthest member in the set to using the
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FIGURE 13 HIERARCHICAL DENDROGRAM PLOT DISPLAYING THE RESULTS OF A
CLUMPING PROCESS

average of the objects in the cluster. However, clumping procedures do
not allow nonhierarchical groupings. Sokal and Sneath (1963) discuss
clumping in the context of numerical taxonomy in biology. Ward (1963),

Johnson (1967), and Hartigan (1967) give additional insights.

Clumping procedures generally consist of a procedure of the following

form:
(1) Gather the data and establish a data matrix.

(2) Calculate a similarity or distance matrix between all

pairs of objects.
(3) Join the best or closest pair of patterns into a cluster,

(4) Join the next closest pair of objects. This can in-
clude the joining of a single object to the cluster

created in a previous merger.
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(5) Continue this process until all objects are together
in a single cluster, To accomplish this reduires a pro-—

cedure for joining two clusters of patterns,

In clumping, objects are never reshuffled--the hierarchical form
is always maintained. For example, in procedures that agglomerate ob-
jects, once two objects have been placed in the same cluster they must
remain in that cluster together. This drastically reduces the number of
alternative ways in which objects can be combined. (The binary decompo-
sition of the entire set requires consideration of partitions equal
in number to the sum of binomial coefficients of K things taken two at

a time, rather than products of such coefficients.)

The procedure for nearest neighbor techniques consists of the fol-

lowing (Figure 14):

X Class 1

O Class 2

<

PATTERN OF UNKNOWN CLASS

JE —
L

TA-5533-34

FIGURE 14 NEAREST NEIGHBOR TECHNIQUE
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(1) Determine the closest K objects to the object that is

to be classified.

(2) The unknown object is assigned to that category having
a plurality of members in the set of K nearest neigh-
bors. The nearest neighbor class description uses

only category assignments for each object.

Detailed analysis of the power of nearest neighbor techniques is
possible (Cover and ?art, 1967). Modifications of the simple procedure
include removing "interior objects' from the class description, since
interior objects do not affect discrimination between various categories.
The nearest neighbor procedure in essence provides an empirical proba-
bility distribution, with the probability mass being concentrated at

each of the objects.

12,3 Partitioning and Mode Seeking

Partitioning and mode seeking techniques describe a cluster or
category in terms of an average position for each cluster or mode

(Figure 15).

One category can have several modes., Variation around that average
can also be retained in the class description., The point of view for
these techniques comes primarily from statistics, as opposed to proba-

bility theory. Partitioning can be divided into:

(a) Sequential Threshold Partitioning--Here a cluster center is

selected and all of the data objects within some threshold

distance of that center are placed in that cluster.

b3

Nearest neighbor techniques have been tried with rather mixed results,
which suggests that they may be more sensitive to the particular data
structures than some other discrimination techniques, Note that in-

terior objects do affect discrimination when k-nearest neighbors are used.
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(Sometimes the threshold used depends on the compactness
of the data.) These objects are removed from the data
set and a second cluster center is chosen, etc. (Rogers

and Tanimoto, 1960.) Figure 15(a).

(b) Parallel Threshold Partitioning--In this method a number

of cluster centers are chosen and a threshold value is
set to determine the partitioning. Objects are intro-
duced one at a time and associated with a cluster center.
The location of that cluster center with which the data
object is associated is then modified, usually by up-
dating a running average, as each object is added and
the process is repeated, usually with a change in the

threshold. (Sebestyen, 1966.) Figure 15(b).

(¢) Parallel Partitioning--As in parallel threshold parti-

tioning, several cluster centers are chosen. The entire
data set is then partitioned into disjoint subsets.
Using the subsets new cluster centers are determined,

etc. (Forgy, 1963; Ball and Hall, 1967a.) Figure 15(c).

(d) Optimizing Partitioning--The sequence of steps in a

typical optimizing partitioning approach is described

below. (Friedman and Rubin, 1967.) Figure 15(d).

The ISODATA algorithm for parallel partitioning was discussed in
Section 1.1. An algorithm for optimizing partitioning might consist

of the following steps:

(1) Collect data and set up a data matrix, perhaps using

principal components to produce dimensional parsimony.
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(2) Either consider all data as one cluster and then select
any object as a nucleus for a second cluster or arbi-

trarily partition the data into several groups.

(3) Take each object, one at a time--and usually in a
fixed sequence-—and tentatively transfer that object
to each of the other clusters while evaluating the

change in a criterion.

(4) Transfer an object to the cluster for which the cri-

terion most improves.

(5) Continue transferring objects until the criterion can
no longer be improved. A stopping point is guaranteed

to exist.
(6) Increase or decrease the number of clusters.
(7) Repeat the procedure for a new number of clusters.

It may be useful to select new starting partitions on the basis of
either a random partitioning of data or a reassignment of some selected
objects to a new cluster, which can include forcing objects into a

cluster.

Mode seeking operates in a manner similar to partitioning, but it
uses labelling information to influence the creation of new modes.
Simply stated, a new mode for a category is created only when objects
within that category are closer to a mode of a different category than
they are to modes in their own category. Mode seeking techniques are
most useful when a class has several modes, with objects from other
classes lying in between the modes, The Rosen and Hall technique dis-

cussed above in Section 1.2 is an example of such a technique.
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12.4 Decomposition of Mixtures and Decision Theory

In both decomposition of mixtures and decision theory, the category
or cluster is described by a probability distribution. In the case of
decomposition [Figure 16(a)], the family of a distribution is assumed
and distributions of this form are fitted to data {[cf. (Alens, 1967),
(Spragins, 1966), (Stanat, 1968), (Patrick and Hancock, 1967), (Sammon,

1968a), and (Blischke, 1965)].

In decision theory the distributional form also is assumed, but the
labelling allows a user to estimate the parameters of the distribution
*
directly [Figure 16(b)]. [See, for example (Abramson and Braverman,

1962) in which the category description is updated sequentially. ]

Decomposition techniques seem most appropriate where the degree of
overlap among underlying clusters is assumed to be high, and where a
paradigm provides sufficient guidance to support assumptions regarding
the presumed form of the probability distribution of the data. Divisions
found by decomposition are often similar to those found by partitioning
when overlap between groups is small, Decomposition techniques are by

far the most elegant mathematically, and yet often it is not clear whether

One interesting aspect of decision theory concerns the construction of
empirical distribution functions. Specht (1967) suggests that a Parzen
window (Parzen, 1962) can be centered at each data sample, which, in
effect, spreads the probability at each object more broadly and thereby
permits a smoother characterization of the distribution of a given cate-
gory of objects, On small data sets that smoothing unfortunately per-
forms badly in the tails beyond the extremal sample objects, where the
smoothed distribution takes on the characteristics of the window func-
tion. Sebestyen made an interesting combination of mode-seeking and
decision theory by breaking his data set up into modes within each
category and then characterizing each mode by a normal distribution
with a diagonal covariance matrix.
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the number of objects available to a user provides estimates of the dis-
tributional parameters sufficiently accurate to support the rigor of the

techniques,

12.5 Corridor Methods and Linear Adaptive Machines

In both of these techniques a class is described by characterizing

the boundaries between the clusters or categories (Figure 17).

BOUNDARY PLANE
BETWEEN CLASS 1
y AND CLASS 2

a—— FIRST PLANAR
CORRIDOR

X
X

CLASS 11
— X o X

TA-5533-38

FIGURE 17 CORRIDOR METHODS AND LINEAR ADAPTIVE MACHINES

Corridor methods (Bledsoe, 1963) attempt to pass a plane through
the data such that data are maximally distant from the plane while still

having the plane cut somewhere through the middle of the data.

In the case of linear adaptive machines (Nilsson, 1965), the goal
is to pass the plane between classes so that all objects in one class

are separated from all objects in other classes. This approach attracted
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much attention in pattern recognition, where it is referred to as a

learning machine,

12,6 Miscellaneous Techniques

There are several techniques that do not fall neatly into any of
the previous categories. In some cases they represent significant de-

partures from the procedures mentioned above.

12.,6.1 Total Enumeration

Conceptually, one could evaluate all possible partitions
of a set of objects into clusters, This approach is considered in
Fortier and Solomon (1966). However, the direct calculation is not
practical for data sets exceeding 20-30 objects. Fortier and Solomon
tried sampling partitions but discovered that the distribution of the
criterion they used is skewed so that one has a much higher probability
of finding a poor partition than one might expect. On identical data
it was found that even a simple clumping procedure, such as that of
King (1967), produces partitions as good as those produced by any reason-

able amount of computation using total enumeration,

12.6.2 Graph Theoretic Approaches

Innovations include some clustering approaches based on
graph thecory [ (Bonner, 1964), (Abraham, 1964)1. Independently, sociolo-
gists developed techniques for organizing matrices obtained [rom socio-

metric data (Spilerman, 1966).

Two recent papers (Zahn, 1969) and (Gower and Ross, 1969)
point out that the structure of data can be brought out by connecting

objects that are close in a minimal way, that is, by using what in graph
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theory is called a minimal spanning tree. They point out that one can
examine a minimal spanning tree and detect good links at which to cut a
tree into various branches without having to assume a particular dis-

tributional form for the structure of the data.

12.6.3 Function-Oriented Techniques

Gitman (1970) describes a technique in which the density
of objects in a region around each object is used to indicate the rela-
tive importance of that bbject. Each object receives a value for its
"characteristic function' that depends on the number of objects lying
within a distance T of that object. Objects then are ordered by the
value of their characteristic function, and clusters are built one ob-

ject at a time in an ordered sequence around those objects having the

highest values [cf. also (Rogers and Tanimoto, 1960), (Sawrey, Keller,
and Conger, 1960)]. While it is not apparent from the examples given

by Gitman how his technique handles various shapes of data, it is clear
that his approach can handle skewed distributions, since assignment to
clusters is not primarily a symmetrical function of distance, but rather

focuses on local object density and ordering of distances,

12,6.4 Clusterings around Lines and Line Segments

Most clustering techniques use the notion of a point as
the center of a cluster. Two techniques exist that fit line segments

or curves to a set of objects (Figure 18) {Sneath, 1966) and (Eusebio

*
It was not clear, however, from Zahn's report (Zahn, 1969) how expen-

sive computationally these procedures are for even moderately large
data sets with more than two significant principal components,
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FIGURE 18 CLUSTERING ABOUT LINE SEGMENTS

and Ball, 1968)]. These go beyond standard regression techniques in

%
that data can be fitted with branched curves.

12.6.5 Gravity Procedures

Clustering can occur if a set of objects is allowed to
collapse, as if under the force of "gravitational" attraction between
objects, where the force is a function of distance from the other ob-

jects (Figure 19) [(Ihm, 1965) and (Butler, 1969)].

At each step the force on each object is computed and
direction of movement is determined. Each object is allowed to move a

user-determined incremental distance along this direction and then a

It is not clear how the minimal spanning tree technique (Zahn, 1969)

compares to these two approaches. It appears that the minimal spanning

tree approach will be more sensitive to individual objects since the

other approaches position the lines by averaging together the effect of

several objects,
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FIGURE 19 GRAVITY TECHNIQUES

new force of attraction is determined, Eventually, object points tend
to coalesce at centers of accumulation, which are considered to be clus-—

ter centers.

12.6.6 Interactive Clustering

A reader by now might feel that he could learn the struc-
ture of his data more effectively by interactively controlling the clus-
tering and discrimination algorithms. This is the goal of the PROMENADE
computer system., The PROMENADE system (Ball and Hall, 1967a) was de-
veloped around the ISODATA clustering program and the Rosen-Hall mode-

seeking discrimination program. It uses an interactive computer system
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with a graphic display in order to provide the rescarcher with a variety
of graphic plots and considerable data manipulation capability, as wecll

as control over clustering and discrimination routines.

At present, available commands for interactive clustering
allow modification of ISODATA process parameters and lumping or splitting
clusters specificd by the user at the end of each iteration. Commands
planned include freezing or unfreezing clusters (and the objects asso-
ciated with that cluster), freezing or unfreezing individual objects,
and seclecting specific variables to be used in a particular iteration
of the clustering without constructing a new data set.* It would be
useful to be able to change the weighting given particular variables and
to change from hard boundaries, such as one gets from partitioning tech-
niques, 1o soft boundaries, such as those found in decompésition tech-

niques (ctf. Wolfe, 1967).

12,7 Multidimensional Scaling Techniques

Users of classification techniques should be aware of multidimen-
sional scaling procedurecs, These scaling techniques can interrelate

objects and variables, provide an estimate of the "number' of dimensions

*We have found that the waveform and link-node plots provide most of the
information a user neceds in order to control clustering. For example,
link-node plots allow us 1o examine intracluster and intercluster dis-
tance structures., It is important to provide a user with zoom capa-
bilities that allow him to look at a macroscopic overview immediately
before and after inspecting a microscopic distance structure, Waveform
plots allow him case in seecing which particular variables most dircctly
determine clustering. With a pointer a user could then pick variables
he wishes to use in a clustering procedure in a particular iteration.

Sce Scction 14 for a discussion of hard versus soft boundaries,
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needed, produce a two- or three-dimensional space in which to view the
relationships between cluster centers, or provide an alternative to
principal components in producing a new set of variables of lower dimen-—
sion. As importantly, multidimensional scaling provides the reader with
a method of using ordinal indications of similarity to determine metric

distances between objects,

Shepard (1962) provides one of the earliest approaches, with
Kruskal (1964a, b) providing an important modification to Shepard's
approach. Guttman (1968) summarizes a long series of investigations on

"smallest space analysis.,' Torgerson (1968) looks at implications of

multidimensional scaling for examining similarity structures, while

Green et al. (1968) discuss applications to market analysis.
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13, INTERPRETATION AND EVALUATION OF THE OUTPUT

FROM CLASSIFICATORY TECHNIQUES

Clustering and discrimination can be viewed as part of a sequential
decision process in which each run of a clustering or discrimination
program provides additional information. Although users of computer
programs are accustomed to mathematical and tabular output, additional
forms and modes of expressing results can greatly facilitate the inter-
pretation of output from classification programs. Our experience with
PROMENADE leads us to believe strongly that powerful data manipulation
capabilities should be well integrated into the researcher’s computer
system. The system should allow a user convenience in using the output
of one routine as part of the input into another routine. [Tukey and

Wilk (1966) have a number of wise words on this subject.]

13.1 Clustering and Discrimination Computer Systems

*
Several clustering and discrimination computer-based systems have

been developed to date., Interactive graphic computer systems, such as

*Details regarding the PROMENADE system can be obtained from David Hall
of Stanford Research Institute, Menlo Park, California. In addition to
the PROMENADE system mentioned in Section 13.1, there is the BCTRY
system, developed by Professors Tryon and Bailey, which combines factor
analysis and clustering techniques with plotting procedures. The BCTRY
system is available from Professor Bailey, Department of Psychology at
the University of Colorado, and it is described in Tryon and Bailey
(1966), Other such systems include: OLPARS, developed at Rome Air
Development Center (Sammon, 1968b); a system at Purdue University
(Patrick, 1969); and a system developed at General Motors by Stanley,
Lendaris, and Nienow (1967), These systems are discussed in Ball and
Hall (1970), Sources of other classification programs are listed in
Appendix B,
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PROMENADE, open interesting avenues toward team efforts, whereby data

analysts and subject specialists work on the data alongside each other

in order to exchange the specialized knowledge each has. The data

analyst conveys how a technique operates. The subject specialist indi-

cates what is theoretically or empirically significant in the data (cf.

Ball and Hall, 1970).

A graphic computer facility for classification could operate either

in a time-shared environment or in a multiprogramming environment.

Such a facility should eventually include most of the following:

(A) Software

(1) Extensive data-manipulation facilities (perhaps

similar to those in the WILBER system at Stanford

University and in ADMINS at MIT)

provide:

that would

Y The capability to sort and select data
for detailed analysis--potentially from

a large data base,.

) The ability to tag data and to add in-
formation such as the size of the
residuals to a vector of data values.

® Convenience from the user's

viewpoint

to encourage multiple looks
of the information from one
technique to understand the
obtained from using another

and use
type of
results
technique.

This includes the ability to visually

inspect the raw data,

(2) A wide variety of mathematical/graphical tech-

niques including at least the following analysis

techniques:
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L] Regression

[ ) Multiple table creation and manipula-
tion capabilities

® Clustering techniques for grouping
objects

[ Factor analysis, including principal
components

® Discriminant analysis, including new
techniques developed within ''pattern
recognition”

L Analysis of variance

L4 Other, more standard techniques in

the BIOMED package (Dixon, 1967)

d Many plotting procedures carefully
linked to the analysis programs,

All of the techniques included should allow varying

degrees of user control over the technique.

(3) Line-by-line compilation and special languages for
analysis program writing, perhaps interactively,
by analysts. The programs so written should be
insertable in the system and accessible to that
user within the system (i.,e,, he can pass his own
data to and from his own program). This provides
ways for the individual user to create programs
that meet his special needs while still using the

power of the larger system.

-813-



(B) Hardware

(1) Mass graphic capability, such as microfilm re-
corders, that allows the user to indicate con-
veniently what he wishes done, For example:

) All possible scatter plots (or

selected scatter plots) on the set
of data that he is considering.

* The construction of movies from
multiple plots.
(2) Refreshed CRT displays for dynamic viewing of

the data.

(3) Slave storage tubes for multiple views of his
data. These tubes are increasingly available
and less expensive, Some contain the capability
of providing a xerox copy of what is seen on the
display.

* .
(4) Use of the mouse rather than the light pen for

pointing.

(C) System Configuration

(1) Multiprogramming or time-~sharing capability with
a large machine so that a relatively powerful

analysis process can be used.

(2) Use of a small machine to do some local analyses,
to regenerate a display, and serve as message

processor for the large machine,

*
A simple device with two right-angle potentiometers that allows the user

of a computer system to indicate locations on a CRT to a computer.
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13.2 Graphic Modes of Presentation

Graphic presentation of data can aid in interpreting results., Link-
node plots, waveform plots, scatter plots, and residual plots have all
been helpful in evaluating classification. Accessibility and ease of

use of the plots are important considerations.

The link-node plot provides a convenient way of displaying the dis-
tances between the cluster centers (Figure 20), The link-node plot re-
lates directly to the graph theoretic approach using minimal spanning

trees (Zahn, 1969).

4
5 CLUSTER
NUMBER
0.87
‘ DISTANCE
BETWEEN
CLUSTERS 2
1.01
6
12
0.59
11
TH = 1.26
TA-5533-40

FIGURE 20 LINK-NODE PLOT
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A waveform plot allows a user to see relationships across all of
his variables (Figure 21). Over many objects it can indicate subsets
of variables and of objects that cluster together. For example, some
objects may cluster on one subset of variables, while other objects
cluster on a different subset. Plots showing the distribution of values
over variables for each of the clusters or categories are also useful

diagnostic aids.

MAX

MIDDLE

MIN

4

N = 30/150

TA-5533-41

FIGURE 21 PROFILE OR WAVEFORM PLOT

Confusion tables show the number of correct discriminations and
indicate the number of objects incorrectly placed in a category for each
category. They can indicate to a user those subsets in his data causing
his program most difficulty in arriving at a good discrimination sorting

rule, (Clustering within category is also useful here.)

The rearrangement of matrices, such as the similarity matrix, the

distance matrix, or a matrix giving numbers of variables differing
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significantly between pairs of clusters (see Table IV), can bring simi-
lar rows and columns together and so make the structure of the matrix

*
more obvious, The rearrangement of the matrix in Table IV is shown in

Table V.

Table IV

NUMBER OF VARIABLES DIFFERING SIGNIFICANTLY

BETWEEN COMBINATIONS OF CLUSTERS

Clusters 1 2 3 4 5 6 7
1 X 1 0 2 2 4 4
2 1 X 1 5 1 2 5
3 0 1 X 2 1 2 4
4 2 5 2 X 4 5 1
5 2 1 1 4 X 1 5
6 4 2 2 5 1 X 5
7 4 5 4 1 5 5 X

S Variables:

Percent unemployed

. Percent unskilled
Percent poor
. Percent nonwhite

T W N
.

Percent with two or more cars.

In larger matrices a simple program that systematically rearranges rows
and corresponding columns in order to optimize |i - lez(i,j), where i
and j give the row and column and A(i,j) the value, will accomplish

such a rearrangement.
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Table V

TABLE IV REARRANGED TO SHOW HOW

REARRANGEMENT INCREASES CIARITY

Clusters 6 2 5 3 1 4 7
6 X 2 1 2 4 5 5
2 2 X 1 1 1 5 5
5 1 1 X 1 2 4 5
3 2 1 1 X 4] 2 4
1 4 1 2 ¢} X 2 4
4 5 ) 4 2 2 X 1
7 5 5 5 4 4 1 X

5 Variables:

Percent unemployed

. Percent unskilled
Percent poor
Percent nonwhite

G b W N e
.

. Percent with two or more cars.

Squared-error curves plot the sum of squared distances of objects
from their respective cluster centers against the number of cluster
centers (Figure 22). A sharp drop in this curve usually indicates that
there exists strong clusteredness in the data. Singleton (1968) was
able to show the curve to be star-shaped, which is a weak form of con-
vexity. (A star-shaped curve is convex with respect to its end points
and any single interior point,) Sum~of-squared-error curves have been
calculated for uniform random data and for simplex data as a function

of the number of dimensions and the number of clusters (Hall, Tepping,
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FIGURE 22 SUM OF SQUARED ERROR CURVE
and Ball, 1970). These curves allow an investigator to judge how much

his data depart from uniform random data and simplex data.

Decomposition of summary curves and other descriptive statistics

is a powerful procedure in interpreting the output of classification

techniques,

For example, given a sum-of-squared-error curve, we can
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decompose the total sum into the contribution of each variable to the
total. This decomposition is plotted in the case of some economic data
about Indian cities in Figure 23, Unlike the smoothly decreasing curve
that represents a sum of squared errors for all of the variables combined,
a curve for an individual variable seldom decreases smoothly but instead
exhibits sudden large decreases, usually in concert with several other
variables. This grouping of variables is useful in indicated interac-

tions between subsets of variables,

13.3 Summary Statistics

Criteria of optimality mentioned in Section 11.1 can be used as
descriptive statistics of -the clustering. Within-cluster compactness
as it relates to the between-cluster difference is indicated by some of
these criteria., Distance tables giving the pairwise distances between
all modal centers can also be quite useful, as can the size of residuals
in indicating how well we are fitting our data. The level of significance
tables for conventional tests of significance do not apply in the case of
clustering, since the assumptions of such tests are not satisfied. These
tests, however, can be used to give useful information about cluster
separation or about the amount any given variable has affected the

clustering.

13.4 Tests for the Structure of the Data

Several tests for the structure of data have been suggested.
MacQueen (1967) compares values of various descriptive statistics for
original data with the same statistics calculated on data randomized in
the following way. Values of the objects for each variable are re-

arranged randomly within each variable, providing data having the same
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FIGURE 23 DECOMPOSITION OF SUM OF SQUARED ERROR
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marginal (individual variable) distributions but having different multi-
variate relationships between variables., If data are randomized scveral
times, it may be possible to develop regions of confidence for clus-
tering into each number of clusters and thus infer that the original
data do or do not have "'significant’ clustering with respect to random-

ized data (Figure 24).

Another alternative is to look for sensitivity of clusters to the
presence or absence of both variables and objects. If we find that the
deletion of one variable dramatically affects the clustering, we have a
good indication that the variable deleted is a variable that is important

in determining the clustering.

13.5 Useful Test Data

In addition to statistical tests of data, it is useful to compare
algorithms on a variety of data sets, Data sets of known structure are

presented in Figure 25,

Data in Figure 25(a), which has two large-spread subsets and two
small-spread subsets, are useful in detecting sensitivity to cluster
variability as opposed to data contiguity. The second data set [Figure
25(b)], in which a compact set of data is embedded within a set of much
lower density, can test sensitivity to variations in data density such

as might be extracted by a decomposition technique.

Anderson~Fisher iris data, which is essentially a two-dimensional
data set, can be separated quite nicely into its threc categories even

without the explicit use of category information, i.e,, by clustering
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FIGURE 25 USEFUL TEST DATA

[Figure 25(c)].

It is included here because of its wide usage as a test
*

set.

The fourth data set [Figure 25(d)] tests whether a technique is
able to detect separation between data sets that is small relative to

the length of each of the clusters.

The value of the iris data may well be limited to exposition of a

technique. Because the set is two-dimensional, it does allow cluster

centers or discrimination boundaries to be plotted. Effective sorting

relative to the taxonomic categories implies that the technique used
finds something close to a partition that optimizes the determinant of

the within- and between-cluster covariance matrix, as in Friedman and
Rubin (1967).
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The luminosity and temperature star data [Figure 25(e)] provide a
scientifically significant data set in which two markedly different

cluster shapes are found,

13.6 Other Comments

In some data sets the number of variables is nearly the same as
the number of objects. Using clustering or discrimination procedures
to sort objects from such data sets can be misleading, since the de-
grees of freedom also increase as the number of variables increases and
the classification rules become too sensitive to the specific objects
being sorted. For example, in discrimination one may find that errors
in testing a discrimination rule increase as the number of measurements
increases (Allais, 1966). One procedure that has been used successfully
to reduce the number of variables is principal components analysis,
which usually uses correlations between variables as a basis for linearly
combining variables into composite variables (cf. Section 12,1). Other
alternatives include increasing the number of objects by further obser-
vation or arbitrarily excluding some variables. Examination of the sum
of the residuals from a partial fit of a set of cluster centers to a
set of data can indicate the number of composite measurements needed to
describe variations in the data as discussed in the text related to
Figure 23, Principal components retains as much of the squared variation

*
as possible for a given number of composite variables.

*

See Friedman and Rubin (1968) for an excellent and extensive analysis
of a set of psychiatric data using clustering, discrimination, and
principal components,
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14, CLASSIFICATION AND COMPUTER MODELS

Classification provides a suggestive vantage point from which to
view some social science phenomena, for it suggests some alternatives
to models that have been used to date. With the advent of interactive
computing machinery, it seems possible to entertain the use of rather
complex models, In what follows we discuss some speculations and indi-

cate a form that an interactive model might take,

Consider, for example, Figure 26(a), in which we show objects
centered around one mode. The average variation, even when the data
are felt to be of one class, may not be particularly instructive, Using
two or more centers [Figure 26(b)] allows the variation of the various
dimensions in each cluster to differ, By increasing the number of
classes a user can sometimes escape making bland statements about varia-
tion in relationship to an overall class average and can instead make
more penetrating comments about each of several subclasses and the rele-

vance of the variables associated with each subclass,

Consider the rejection or acceptance of information by a person,
In Figure 26(c) we conceive of the rejection of information by an in-
dividual as depending on his degree of uptightness around his ”conceptual
cluster centers.” We characterize the degree of uptightness by a
threshold around concepts held by that individual. As the person grows

more uptight, much of the information he is receiving falls outside the
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regions he associates with each concept-~into a region of rejection or

*
regions perceived as dissimilar, as suggested in Figure 26(d).

In yet another description, a person is seen as having soft boun-
daries or hard boundaries around his "conceptual centers’” [Figures 26 (c)
and 26(f)]., If a person has hard boundaries, something either is or is
not similar to a given concept. A person having soft boundaries secs a
piece of information as varying in the degree of relevance to various

concepts that are already internalized.

The concepts and descriptive structure provided by clustering that
we have mentioned above, combined with our experience on interactive
graphic computers, causes us to think that it would be possible to pro-
vide social scientists with an interactive computer-based system for
storing and examining dynamic processes. This system would complement
classification systems like PROMENADE and would provide a means of cap~
turing details obtained through detailed data analysis. Figure 27 por~
trays features of such a system having three levels with which the user

interacts,

The first level provides a process view, in which a user views a
dynamic representation of the process in which he is interested with the
rate at which the process proceeds under his control, As he learns to
interpret the symbols, he will be able to detect when the process thus
simulated is not proceeding as he might expect, which would then cause

him to examine the second level of the model,

Boredom, for example, would result from having tight boundaries around

what is considered relevant information. When a person is bored, much

ol the information he perceives will appear to be irrelevant; it will,

then, fall into a rejection region., In a different social context such
information might produce fear rather than boredom.
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FIGURE 27 DYNAMIC PROCESS GRAPHIC COMPUTER MODELING SYSTEM

Programs controlling the process view are accessible at the second
level. At this level the user has access to the model that governs the
process scen at the first level. The system would do the bookkgeping
necessary to link the user to that portion of his model that is most in-
fluencing the simulation process at any given time, In this way, the
researcher can correct portions of the computer-held model that depart
from his expectations. A user would be able to modify processes and the
parameters of the model rapidly, whereupon he could view the process
again at the first level to see whether the process depicted more nearly

matches his intuition,

There is a third level in the system, which might be called the
concept view, in which concepts, experimental evidence, and other re-
lated information are accessible. A user would be able to pull out in-
formation relevant for the particular part of the process that he is

interested in modifying.
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The above three facets of the system, once linked together, con-
stitute an ambitious prototype of future interactive modeling systems.
One major aim would be to allow the.user to move from one level to another
easily, retrieving and modifying pertinent information, while allowing
the observer operator to use his intuition., Criticism could be directed
to details in the model, rather than to some general overview. The con-
sequences of changes in the model could be quickly seen. It is clear
that there are many complexities in attempting to bring such a model
into existence., It probably would press the state of the art, both in
social scientific disciplines and in computer technology; however, we
believe it is definitely in the realm of the possible--and even in the

realm of the not too distantly possible,
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15. CONCLUDING REMARKS

There exist a number of similarities and parallels between clus—
tering and discrimination. The kind of data and the particular research
problems determine which technique is appropriate, Clustering and dis-
crimination should be viewed not as isolated techniques, but in relation
to the entire spectrum of data analysis techniques., The solution to a
complex sorting task frequently requires a complex sorting rule. Simple

solutions may prove more misleading than helpful.

From our present perspective, it appears that there is a need for
more effective computer languages that allow for construction of clus—
tering or discrimination procedures appropriate to a specific research
task., The potential of clustering and discrimination procedures in
combination with other techniques, such as regression, needs further
exploration. Moreover, succinct algorithmic languages are needed in
order to provide a common language for communicating the nature of

various classification algorithms among researchers in many fields,

The reader should keep in mind that an explicit choice of one tech-
nique does not lead to objective Truth, Explicitness does make it
easier to see the assumptions and the weightings that a researcher em-

ploys in reaching his conclusions,
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Appendix A

SUMS OF SQUARES AND T, W, AND B

We discuss in various places the sums of squares as a criterion by
which to judge clusters or as a means to weight distance. In what
follows we describe in more detail how sums of squares are usefully de-
fined and calculated, and how the notion can be extended to ''scatter

. T . . . .
matrices having similar properties.

Consider a set of objects divided into three classes: X, Y, and
Z. There is to be only one variable observed. If the object belongs
to X, the object will be denoted as x; if in Y, y; if in Z, z. Suppose
there are N(x) objects in X; N(y) in Y, N(z) in Z. The means of the

variables in the groups are:

N(x)

X = N(x) &= (Xl)
N(y)

— 1

S 2 ()
i=1
N(z)

z = N(z) 4 (21)

th
where i labels the i object in that class.

The grand mcan of the values for the single variable over all

classes is:

_NGOX + N(Y + N2z
T ON(x) + N(y) + N(2)
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The total sum of squares of all values about the grand mean is, by

definition:
N(x) N(y) N(z)
T = Z)f (x(i) - c)z + < (yi - c)z + i (zi‘— c)2 .
i=1 i=1 i=1

Within each class the sum of squares about the group means is, by

definition:

2
~
]

~

wi(x)

-
Il
-

w(y)

Il
—
«
b
!
<
—_—
[\~]

—\2
w(z) = Z (z_ - z) .
4 1
The sum of squares between groups is, by definition:
. 2 . 2 _ 2
B=N&)X -¢) +N@)F -c) +N&)EZ -~ c) .

It follows that T = W + B. (This is true for any partitioning of

the data.) An example of this calculation is given in Figure A-1,

Among alternative partitionings of the objects, it is reasonable to
rank partitions in ascending order of the value of T/W, i.,e,, the total

variance divided by the within-group variance.

To generalize to more than one variable, suppose there are V
th
variables and N objects and let X/(i,j) denote the value of the j

th
variable on the i object. Let P(i) (a normalized vector)
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TWO CLASSES:

C=5 “X'" o= x, Ni{x) = 2
X = 1/2 T v=8 “0” =y, Nly) =23
,;_f_g,‘ N c‘,_éJ L1yl 1 1.,
0 5 10

3
= 2 Y ]
T i§1 x, - + i§1 ty c)

=0 -52 4+ (1-852 + [(6-52+(7-52+ (11 - 53] = 82.

2
Wi = Z b - x1=w0-1un%2+ 01 - 122 =12

3

W) = Z oty -v)7 = 6-82+ (7 -8+ (11 -82 =14
i<

W = W(x) + Wly) = 14 1/2.

[

NG X - a2 + Niy) (7 - o2

@
)

=2 x(1/2-52+3x8-52=401/2+27 = 671/2.

T=W+ Bor 82=141/2+ 67 1/2.

This equation extends nicely to more dimensions
courtesy of the Pythagorean Theorem since dimensions
are independent with respect to addition of sums of squares.

TWO DIMENSIONS: @ =Class average
‘ . =Overall average
O
X‘ ~ o x X x3
O - -o$0 a 090 052_.-00 o
xX X X
Calculations for T Caiculations for W Calculations for B
TA-5533-48

FIGURE A-1 AN EXAMPLE OF THE CALCULATION OF SUMS OF SQUARES
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PGi) = [X(i,1), ..., X(i,V)]

' th
denote the row vector of observations on the V variables of the i ob-

ject. Suppose each X'(i,j) is normalized in terms of a deviation of

.th . . th . ) ’ . ..th
the i object's j variable about the grand mean X (+,j) of the j

variable divided by the standard deviation of that variable over all of
the objects in all classes; i.e., if X(i,j) is the normalized row ob- .
servation, then
’ . oy AP
o X (i,3) - X"(j)
X(1,3) = < .

N
1 < - 2
- E (x’'(i,3) - x" 1N
i=1

Let there be G groups with N(k) objects in each: X =1, ..., G so
that:
G
}E: N(k) = N
k=1

th
Let P[k(i)] be the (row) vector of variables of the k(i) object
th
of the k group. Let C(k) be the (row) vector of variable means within

th
the k group; i.e.,

L N (k) N N(k)
cw =50 12; PI(,1], oo 0 Z; PLk(i),V]
= 1=

Then corresponding to the within—group sum of squares for one
variable (V = 1), there is the V X V within group covariance matrix for
th
the K group:
N (k) ’
wao = 3 (PIT - c0 ) (pre)T - cao)

i=1
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and for the total within-group sum of squares

G
W:;_lW(k) .

The T is the V X V scatter matrix (normalized around the grand mean)

N
T:Z P’ p
1 1

i=1

An example of the calculation of a scatter matrix, the corresponding
covariance matrix, and the correlation matrix is shown in Figures A-2
and A-3. ©Note that if the data consist of two widely separated clusters
and if the data are partitioned into two clusters in the obvious way,

then most of the variation in T is due to B.

th th
The Euclidean distance between the i and k objects with respect

to all V variables is
2 v 2
D(i,k):(P,-P)(P,-P)’:E (P‘,—P,> .
i k i k ~t ij kj
J:

Noté that a V-element row vector times a V-element column vector

is a scalar, that is, an ordinary number,

The so-called Mahalanobis distance is
2 -1
Do (L,3) = (P =P W (P -} .
mah i J i J

This is also a scalar, Note that the choice of the groups may

] 2
affect W and hence change D .
mah
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10
5 —
— @ AVERAGE
-
ey ¥ )
0 5 10
FIGURE A-2a THE SCATTER PLOT OF THE DATA
vy Vv, WHEN COLUMN
AVERAGES ARE
111 3 SUBTRACTED 1
21 a 7 2
3|7 9| —= Dy, v, =3 ——= 3
4 |1 1 4
5 2 0 v, = 4 5
T, THE
TOTAL SCATTER = D, D,, = 2142 2 -
MATRIX -1 3 5 -3 -4 1 3
4 5| =
-2 -3
1 -4
; _________________________
Row 1®Col 2 = (-2 x-1) 4+ {1 «3) + (45 + (2 -3) + (1

[

[{2+3+20+6+ 4)]

®

-
2 A
1 3
4 5 =D
-2 -3
1 4
—
26 35
60
-
|
o
- -4)]
TA-5533-49

FIGURE A-2b THE CALCULATION OF THE SCATTER MATRIX
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K
! 26/4 35/4 50 875
COVARIANCE = [N - 1) - [ ] - [55 ]

MATRIX 35/4 60/4 8.75 15.00

FIGURE A-3a CALCULATION OF COVARIANCE MATRIX
FROM T OF FIGURE A-2b

k..
]
NORMALIZE TERMS BY ( = >

THEN GET THE CORRELATION MATRIX
6.5/6.5 8.75/ V6.5 x 15

8.75/Vv6.5 x 15 15/15

-

~ [100 ose
089  1.00

TA-5533-50

FIGURE A-3b CALCULATION OF CORRELATION MATRIX
FROM COVARIANCE MATRIX OF A-3a
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To get good groupings, one might maximize the ratio of the determi-

nants of T and W,
ll/wl

This  index is invariant under nonsingular linear transformations of

the variables.

We can write

- -1

W T=1+W B

If A, are the roots of the determinantal equation
i

B - AW 0

where A is the V X V diagonal matrix whose diagonal elements are A ,
i

then maximizing

|1 /]w]

is equivalent to maximizing

<

(1 + )\i) .
i=1

This is related to the problem of maximizing

1 \4
Trace W B = E AL .
i
i=1
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Appendix B

SOME AVAILABLE CLUSTERING AND DISCRIMINATION PROGRAMS

Systems
BCTRY. Sece Tryon and Bailey (1966) for details,

Contact:

Prof., Daniel Bailey
Department of Psychology
University of Colorado
Boulder, Colorado

(Programmed for a CDC 6400 computer among others, )
PROMENADE (Ball and Hall, 1970)

Interactive clustering with independent control over
the subsets in the data and easy selection of subsets
of variables and patterns.

Contact:

Mr, David J. Hall

Stanford Research Institute
Menlo Park, California 94025

OLPARS

For discrimination and clustering with a focus toward
designing machine systems for pattern recognition,

Contact:

Dr. John W, Sammon, Jr,
NCS Computing Corp.
Computer Symbolic Div,
310 E. Chestnut Street
Rome, New York 13440
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Programs

A variety of clustering programs exist. If you wish to obtain a

program, here are some of the places where they can be obtained:
CLUMPING TECHNIQUES
NUMERICAL TAXONOMY System

A complete numerical taxonomy system, including
a number of useful related programs

Contact:

Prof, James Rohlf

State University of New York

Stoney Brook, Long Island, New York

HYCLUS (Sce Johnson, 1967 for details.)
Contact:
Steven C, Johnson
Bell Telephone Laboratories
Murray Hill, New Jersey
PARTITIONING TECHNIQUES
Optimizing Partitioning for Minimum Squared Error
Contact:
Dr. Richard Singleton
Stanford Research Institute
Menlo Park, California 94025
Friedman and Rubin Algorithm (Friedman and Rubin, 1967)
Available through the IBM Share system for an IBM 360-67
DECOMPOSITION TECHNIQUES

NORMIX and NORMAP., See Wolfe (1969) for details,

Contact:

Dr., John Wolfe

U.S. Naval Personnel Research Laboratory
San Diego, California
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MISCELIANEOUS
Density Cluster Analysis
A program for compressing a multivariate histogram

Contact:

G, T. Nygreen

Office of Survey Research and Statistical Studies
0-5-11, Green Hall

Princeton University

Princeton, New Jersey
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INTRODUCTORY BIBLIOGRAPHY FOR CLUSTERING AND DISCRIMINATION

Clustering
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Fall Joint Computer Conference, Vol. 27, Part 1, pp. 533-560 (Washington,
D.C.: Spartan Books; London: Macmillan). Also printed, without typo—
graphical errors, as "A Comparison of Some Cluster- -Seeking Techniques,’
Technical Report No. RADC-TR-66- 514, Rome Air Development Center, Griffiss
Air Force Base, New York (November 1966) [Clusterlng, Survey]

Cole, A.J. (1969), Numerical Taxonomy (New York: Academic Press).
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Nilsson, Nils J., (1965), Learning Machines (New York: McGraw-Hill Book
Co.). [Discrimination, Book ).

Rosen, Charles A. (1967), "Pattern Classification by Adaptive Machines,"”
Science, Vol, 156, No. 3771, pp. 38-44. [Discrimination, Survey ).

Sebestyen, George S. (1962), Decision-Making Processes in Pattern
Recognition (New York: The Macmillan Co.). |Discrimination, Book .
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GENERAL BIBLIOGRAPHY FOR CLUSTERING AND DISCRIMINATION
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Ball, Geoffrey H. and Hall, David J, (1965), "ISODATA--A Novel Method of
Data Analysis and Pattern Classification," Technical Report, SRI Project
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Ball, Geoffrey H. (1967), "A Collection of Graphical Plots for Examining

Multivariate Data,” Technical Note 2, IRD Project 186531-175, Stanford
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Ball, Geoffrey H. and Hall, David J. (1967a), '"PROMENADE, An On-Line
Pattern Recognition System,'" Technical Report No. RADC-TR-67-30, Stanford
Research Institute, Menlo Park, Calif, [Clustering and Discrimination,
Computer System].

Ball, Geoffrey H. and Hall, David J. (1967b), "A Clustering Technique for
Summarizing Multivariate Data," Behavioral Science, Vol, 12, No. 2, pp. 153-
155. [Clustering, Partitioning].

Ball, Geoffrey H. and Hall, David J. (1970), "Some Implications of Inter-
active Graphic Computer Systems for Data Analysis and Statistics,"” Tech-
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HOTELLING'S WEIGHING DESIGNS

K. S. Banerjee
Department of Statistics & Computer Science
University of Delaware

I. FORMULATION OF THE WEIGHING PROBLEM

0. Introduction

Hotelling's weighing problem [29] took its origin in a
casual illustration furnished by Yates [45]. The weighing problem
has sinced attained a distinctive growth with its roots and branches
in different directions. Over the years, the foundation of the
problem has been paved by the contributions made by Kishen [31],
Mood [33], Kempthorne [30], Rao [39], Plackett and Burman [35],
Banerijee [1-16], Raghavarao [36-38], Zacks [46], Beckman [18],
Sihota and Banerjee [40], Dey [21], Kulshreshtha and Dey [32], and
possibly others.

This is a review article on the weighing problem, and in
this article the problem has been traced from its origin and dis-
cussed briefly with an indication of the main developments.

As far as known to the author, all papers which have a
direct bearing on the problem have been cited in the list of
references. If any paper has not been mentioned, it is because

the author is not aware of the contribution.
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1. Origin of the Problem

The Original Example of Yates

In furnishing an illustration of "independent factors" in
complex experiments, that is of factors which do not interact,
Yates [45] considered the following problem: A chemist has seven
light objects to weigh, and the scale would require a zero correc-
tion. The obvious technique would have been to weigh each of the
seven objects separately, and to make an eighth weighing with no
object on the scale so that the zero correction could be determined.
Thus, to determine the weight of each object, one would take the
difference between the readings of the scale when carrying that
cbject and when empty. Assuming that systematic errors are non-
existent and that the errors are random, the standard error of each
weighing may be denoted by o, and the variance by ¢2. On these
assumptions, the variance of the estimated weight is 202, and its
standard error is ov2.

As an improvement over the customary technique, Yates [45]
suggested that the objects be weighed in (eight) combinations

according to the following scheme:

Weighing No. Objects Weighed
1. atb+c+d+et+f+g = Yy
2. atb +d =Y,
3. a +c +te = Y3
4, a +f+g = Yq
5. b+c +f =Yg (1)
6 b +e +g = Ye
7. c+d tg =y,
3. d+e+f =Yg
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In the above scheme, each object is weighed four times in
the different combinations. 1In the four weighings of a given object,
every other object is included twice. The remaining four weighings,
that is, weighings without the object, also include every other
object twice. Calling the readings from the scale Yqr¥pre--1¥gy the
weight of any object a can be determined as

yl + Y2 + Y3 + Y4 - y5 - y6 - Y7 - Y8
a = .
4

A like expression is obtained for the other objects. As will
be evident from the above expression, the weight of any particular
object is found by adding together the four equations containing it,
subtracting the cther four, and dividing the algebraic sum by 4. It
will further be noticed that the bias cancels out in the algebraic
sum.

As the variance of a sum of independent observations is the
sum of the variances, the variance of a by this improvéd technique

is ¢2/2, which is 1/4 that of the customary method.

2. Improvement Suggested by Hotelling

With reference to the above example of Yates, Hotelling [29]
suggested that even a further improvement would be possible, if
Yates' procedure was modified by placing in the other pan of the
scale those objects not included in the weighing. Calling the
readings Zl'ZZ”"'Z8' we may write the scheme of weighing operations

as given below (interchanging c and 4).
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a+b+c+d+e+f +qg= Zl
a+b+c-4d-e~-f -gqg= Z2
a-b-c+d+e-~-f-g= Z3
a-b-c-d-e+f +g= Z4

~a+b-c+d-e+f-g=2 (2)

- a+b-c-4d+e-f +g= Z6

- a-b+c+d-~-e-£f+qg= Z7

~-a—-b+c-d+e+ f -gqg-= Z8

From these equations,
.- Zl + Z2 + Z3 + Z4 ; Z5 - Z6 - Z7 - Z8 .

A similar expression is obtained for each of the other
unknowns. The variance of each unknown by this method is ¢2/8.
The standard error is half that by Yates' method, or a quarter of
its value by the direct method of weighing each object separately.
Here also, the bias gets cancelled out.

It may be pointed out here that in the example furnished by
Yates, only one pan of the scale was used for placing the objects.
One pan is used when the balance is of the spring balance type. But,
in the improvement suggested by Hotelling, both pans of the scale

were used. This, however, is possible only in a chemical balance.

3. Statistical Model Characterizing the Problem

In the light of the above illustrations, Hotelling [29]

gave a precise formulation of the problem of Weighing Desians.
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The formulation as given by him may be transcribed as follows:
Results of N weighing operations to determine the weights of
p light objects fit in to the general linear hypothesis model,

Y = X8 + ¢, where Y is an Nxl1l random observed vector of the recorded

li
=
-
N
~
.
.

weights; X = (x..), i .N; j=1,2,...,p, is an Nxp matrix

ij
of known quantities, with xij = 41, -1 or 0, if, in the ith weighing
operation the jth object is placed respectively in the left pan,
right pan or in none; B8 is a pxl vector (p<N) representing the
weights of the objects; ¢ is an Nx1 unobserved random vector such
that E(c) = 0 and E(ee') = o?I.

Consistent with the signs that the elements xij can take,
the record of the ith weighing is taken as positive or negative,
according as thebalancing weight is placed in the right pan or left.

X will be called the "design matrix." When X is of full
rank, that is, when [X'X] is non-singular, the least squares estimates
of the weights are given by é = [X'X]"! X'Y, where X' is the trans-
pose of X. The covariance matrix of the estimated weights is given
by COV (8) = o2[X'X]~! = o2C. c.;r which is the ith diagonal

element of C, represents the variance factor for the ith object.

4. Original Example of Yates and Hotelling Cast in the Frame of

the Above Model

The original example of Yates [45] has eight equations
involving seven variables, a, b, ¢, d, e, £, and g. 1In fact, there
is one more variable. The eighth variable is due to the bias,

taken as an additional object whose weight may be determined, and
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this variable is common to all the eight equations. Similarly, in
the example suggested by Hotelling, the eighth variable, the variable
due to the bias, which is common to all the eight equations, is not
explicitly mentioned. Thus, in both the examples, we have eight
equations involving eight variables. The solutions indicated

earlier are the solutions obtained by solving the two systems of
linear equations, where the number of variables is the same as the
number of equations.

When X is a square matrix of full rank, the least squares
estimates are given by 8 = [X'X]-!X'Y = x~!Y. On the other hand,
if we solve for B in Y = X8, B would be obtained also as X~ lv.

This means that the least squares estimates are the same linear
functions of the observed Y's, as the true parameters would have
been of the true y's. If X is an orthogonal matrix in the sense

that [X'X] = N I then B = X~ly = [X'Y]/N, the same as the solutions

NI
as given in Hotelling's example [29].

5. Two Types of Problems

Two distinct types of problems would arise in practice.

One type would refer to the "spring balance" and the other to the

"chemical balance”". In the spring balance problem, the elements,
Xij’ are restricted to assume values +1 or 0, while in the chemical
balance, these elements will either be +1, -1 or 0.

6. Efficiency of a Weighing Design

A Weighing Design has been called, in general, the best, if

(i) each variance factor Ciy is the least, or
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P
(ii) izl c;;/p is the least, or
(iii) det.|X'X| is maximum (equivalently, det. |C| is minimum).

X'X[ has, in this note, been referred to as det.]A

Sometimes, det.

Wald [41] suggested criterion (iii) for experimental designs
in general, while Mood [33] suggested criterion (iii) for Weighing
Designs. Mood [33] pointed out further that other definitions of
"best designs" might also conceivably be preferred. Problems might
arise in which one ﬁight prefer to

(iv) minimize the variance factors subject to restriction that
they be equal,
(v) minimize some function of the variance factors, or
(vi) minimize only a certain subset of the cy; on a minor of the
matrix (cij),
as might be the case when one wanted only rough estimates of the
weights of some of the objects, but accurate estimates of the
others.

Ehrenfeld [22] also suggested a definition of efficiency
for experimental designs in general, which might as well be applied
"to Weighing Designs. The criterion suggested by him is based upon
the maximization of Amin {(minimum eigen value of [X'X]).

In some situations, the above criteria would lead to an
equivalent measure of efficiency.

It has been indicated in [14] that in defining the efficiency
of a chemical balance design, the maximization of |A| would be
equivalent to the maximization of  in® However, in case of a

spring balance design, the criterion of maximization of det. |A]
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would be preferable in that this criterion would include the con-

sideration of maximization of 2 Thus, in defining the efficiency

min”®
of Weighing Designs, in general, a unified approach will be provided
by Mood's "efficiency definition,"” that is, criterion (iii).

II. CHEMICAL BALANCE PROBLEM

1. Hotelling's Fundamental Lemma

Denoting by A = [X'X] = (a..), 1,3 = 1,2,...,p, Hotelling
[29] has proven the following Lemma.

If alZ'a13""’alp (= azl,a3l,...,aplrespectzvely) are free
to vary while the other elements of A remain fixed, the maximum
value of A/All 18 ajqs and s attained when and only when
a1, = 833 = .. = alp = 0, where All is the minor of A obtained by
deleting the first row and column.

The above Lemma says that the variance of él’ namely

oZAll/A, cannot be less than ¢?/a and that the variance would

11’
reach this value, only if the experiment is so arranged that the
elements after the first row and column of A are all zero. This
minimum value, oz/all, will be attained, when the first column of

X is orthogonal to all the others. It will also be clear that the
minimum minimorum [29] of the variance will be reached, if the first
column of X is not only orthogonal to all the others, but also if

it consists entirely of +1's and -1's as its elements, so that

a;; = N. N is themaximum possible value that a;; can take. The

value of this minimum minimorum will thus be equal to o2/N.
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The design matrix X in the scheme of weighings in (2) is
an 8x7 matrix of +1 and -1. These seven columns are orthogonal.
If a column of +1's is added to it, we get an 8x8 orthogonal matrix
as shown below: (1 following the plus or the minus sign is not

indicated.)

+ o+ o+ o+ o+ 4+ o+ o+
+ + o+ o+ - - - -
+ o+ - -+ o+ = -
+ o+ - - = -+ 3
X = (3) .
+ -+ -+ -+ -
R T
+ - -+ o+ - -
R T e S I

The scheme (2) was designed to find the weights of seven
light objects on a chemical balance, which was known to have a bias.
If the bias is taken as an additional object whose weight is to be
determined, and if the first column is made to correspond to the
bias, the design matrix (3) (as shown above) would be suitable for
estimating the weights of the seven objects and the bias, and would,
in fact, be the best design for the purpose by virtue of Hotelling's
Lemma [29].

Thus, the above scheme may be used as a design for finding

the weights of eight different objects, if the balance is free
of bias, or the weights of seven objects, if the balance has a bias.

The rows of matrix (3) would indicate how to combine objects

in the weighing operations. The columns would refer to the objects
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to be weighed. The matrix [X'X] will be a diagonal one, having 8 on
its diagonal. The diagonal form of the matrix reduces the solution
of the normal equations (pertaining to the least-squares estimates)
to the trivial task of dividing by 8 each of the numericals occurring
on the right hand side of the normal equations. That is to say, the
estimates will be obtained as é = [X'Y]/8, as pointed out before.

In the above illustration, the inverse of the matrix [X'X]

.is also of the diagonal form, the elements in the diagonal being 1/8.
The variance of each of the estimates will, therefore, be ¢2/8.
With eight weighing operations it has been possible to obtain the
least possible variance of ¢2/8 for each of the eight objects. If
each object were weighed separately, 64 weighing operations would
have been needed in all to arrive at this precision.

From the above, it will be evident that such a saving of
weighing operations is possible not only in case of eight objects,
but is possible of any number N of objects, provided an orthogonal
matrix of order N of the above type with +1 as its elements exists.
Such matrices will serve as the chemical balance designs of maximum
possible efficiency, as the minimum minimorum of the variance will

be attained by each object.

2. Estimation of Error Variance

When scheme (3) is used for finding out the weights of
eight objects from eight weighing operations, no degrees of freedom
are left for estimating the error variance. If we have eight objects

whose weights are to be determined, and if it is required that the
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error variance be also estimated from the experiment, scheme (3) may
be repeated twice so that the resultant design matrix be of dimen-
sions 16x8. In such a case, 16-8 = 8 degrees of freedom will be
left for estimating the error variance.

The same scheme may, however, be used for finding out the
weights of objects less than eight in number. If, for instance,
there are five objects whose weights are to be determined, any five
columns of scheme (3) may ge used as the Weighing Design. In that
case, the matrix [X'X] will be of dimensions 5x5 and be diagonal
with 8 on its diagonal. The variance of each of the five estimated
weights will be ¢2/8, and 8-5 = 3 degrees of freedom will be left

for estimating the error variance.

3. Chemical Balance Designs and Hadamard Matrices

From the details given above, it will have been evident
that if N weighing operations are made to determine the weights of
N objects, the minimum variance that each estimated weight might
have had would be ¢2/N, and that this minimum variance would be
reached when the design matrix X is orthogonal (orthogonal in the
sense that [X'X] is diagonal) consisting entirely of +1's and -1's
as its elements. Thus, the problem of finding the best chemical
balance design is related, as pointed out by Mood [33], to Hadamard
matrices and the Hadamard determinent problem [26].

We would denote such a matrix by HN. If HN exists for a

given N, H_, would be the best chemical balance design for N=p. If

N
the number of objects to be weighed is less than N, we may choose

from H a number of columns equal to the number of objects to be

NI
weilghed.
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Mood [33] referred to the work of Paley {34] and Williamson

[42], and pointed out that H4k existed for the range of
0 < 4k < 100,

with the possible exception of 4k = 92.

At about the time Mood's paper [33] appeared, Plackett and
Burman [35] also provided solutions of Hadamard matrices for all
possible N < 100 except for N = 4k = 92. The Hadamard matrix for
4k = 92 remained undecided till about 1962. The solution was first
given by Baumert, Golomb, and Hall, Jr. [17]. (A comprehensive
account of Hadamard matrices is now available in Marshall Hall, Jr.

(27].)

4. Chemical Balance Weighing Designs when N#p

Kishen [31] pointed out that with N = 2M41 weighing opera-
tions, the most efficient chemical balance Weighing Design would

probably be obtained by augmenting an H_ with a row, 1,.1,...,1.

N

He also suggested that with N = 2M4r (r<2m) weighing operations, a

highly efficient design would be available, if H_ is augmented with

N
r rows of +1's. With reference to this latter observation of Kishen
[31], Mood [33] pointed out that even with r=2, one would rather add
two different rows of HN to HN than adding two rows of +1's.

The above observations clearly indicated the necessity for
a detailed examination of the efficiencies of design matrices

obtained by augmenting H_ with its rows which are not necessarily

N
the same. A comprehensive account of such design matrices obtained

with such augmentations is available in {[4].
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5. Chemical Balance Designs for Values of N=p When HN Does Not

Exist: Design Matrices When Det.|A| is Maximum

The following are some of the most efficient chemical balance

designs furnished by Mood [33] for small values of N=p, when Hy does

not exist. Here, a design has been called the most efficient (Mood's

A| = det.

"efficient definition"), if the value of det. X'X| is
maximized, or - equivalently, if det.|C| is minimized. Mood [33]
constructed these square matrices following a method due to
Williamson [43]. (The interested reader may also refer to the work
of Gordon [25] in this connection.)

There may be several designs with the same maximum value

for det.

A|. When p=3, the best designs (omitting 1 following the

sign) are

+ + 0 + o+ 4+ + o+ -
X = |+ - +i, + - +! and |+ - +
-+ fJ -+ 4+ -+ 4],
All of these matrices have det.|A| = 16 (which is considerably

smaller than the value 27 that det.|A| would have, if an optimum

design with an orthogonal matrix existed). The first of the above

designs, for p=3, gives
{cii} = {3/8, 3/8, 1/21},
while the second and third give

{cii} = {1/2, 1/2, 1/2}.
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For N=p=5, the two best designs are

[+ + + + -] + - - -
+ + o+ - + + o+ o+ - -
X = |+ + - + + and + - + - +
+ -+ o+ o+ + -+ o+ -
- + + o+ o+ o+ o+ -+ o+,

both of which have det.|A| = 3228, and {c,.} = {2/9, 2/9, 2/9, 2/9, 2/9}.

ii
For N=p=6, the best design is
- _ _ _ _ _
+ - - - + +
+ - - + + -
+ -+ o+ - ¢
+ + o+ - o+ -
+ + -+ -+,
which has det.|A| = 52210, and {c..} = {1/5,...,1/5}.

11

It is not known to the author, if any systematic attempt
has been made to construct such square matrices with maximized

determinant for larger values of N=p.

6. Other Designs of Comparable Efficiency

A method of construction of Hadamard matrices due to Plackett
and Burman [35] was used in [5] to illustrate the construction of a

6x6 and a 10x10 orthogonal matrix consisting of +1, -1 and 0 as the
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elements. These are reproduced below:

For N=p=6,
0 o+ o+ o+ o+ #]
+ 0 + - + -
+ + 0 + - -
X = (4)
+ - + 0 - +
+ + - - 0 +
L+ - - + + 0]-.
For N=p=10,

0 + + 4+ o+ o+ o+ o+ o+ o+

+ 0 + - + - + - + -

+ + 0 + - + + - - -

+ - + 0 - + - - + +

+ + - - 0 + - + + -

X = (5)

+ - + + + 0 - + - -

+ + + - - - 0 + - +

+ - - - + + + 0 - +

+ + - + + - - - 0 +

L+ - - + - - + + + 0.

For (4), the variance factors are Ci; = 1/5. These are
the same in magnitude as those under the 6x6 design matrix of
maximized determinant given by Mood [33]. For (5), the variance
factors are Ciz = 1/9. (It may be mentioned here that such ortho-

gonal matrices may be constructed [35] for any N, where N=pn+1,

pl=4t+1.)
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Raghavarao [36-37] constructed two series of
Weighing Design matrices of maximized efficiency for the
cases when (i) N is odd, and when (ii) N = 2 (mod 4). In the con-
struction of these matrices, a design was considered to be the best,
when l/'g c;; was the maximum , subject, however, to the restraints
that =
(1) the variances of the estimated weights be equal, and that

(2) the estimated weights be equally correlated.

7. Complexities Arising Out of Different Definitions of Efficiency:

Comparison of Efficiencies

Different authors have chosen different criteria to define
the efficiency of a Weighing Design. A Weighing Design which is
considered to be the best on one criterion may not be considered
so on the other. One might thus wish to compare these designs with

reference to some of the desirable criteria, such as the magnitudes

of the variance factors, the value of det. A|, etc. Such a compar-
ison is possible and has been presented in [15]. The discussion
includes consideration of efficiencies also of rectangular matrices

used as Weighing Designs.
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III. SPRING BALANCE PROBLEM

1. Two Theorems of Mood Giving the Best Spring Balance Designs

As mentioned before, the spring balance problem is different
from the chemical balance problem in that the elements xij of the
design matrix X are restricted to assume values 0 and 1, whereas
in the chemical balance problem, the elements of the design matrix
can assume the values +1, -1 or O.

For number of weighings N>p, Mood [33] has made the follow-
ing approach to get the best design (best according to Mood's
"efficiency definition”) for a spring balance.

"Let Pr be a matrix whose rows are all the arrangements of
r ones and (p-r) zeros, (0<r<p). (The symbol should also have a
subscript p, but that is omitted because any specific value for p
will always be clear from the context.) The matrix will have p
columns and [EJ rows. Let X be a matrix made up of matrices Pr
arranged in vertical order. Let n. be the number of times Pr is
used in constructing X. X is a weighing design for p objects and
N = Z nr[g} weighing operations?’ Adopting these notations, Mood
[33]rhas proven the following two theorems giving the best spring

balance design.

Theorem (1): If p=2k-1, where k is a positive integer, and if N

contains the factor [i] then laij[(det.[A]) will be maximized when

- P —
n = S/Tk] and all other n_ = 0.
Theorem (2): If p=2k, where k is a positive integer, and if N

p+1l
k+1

contains the factors [ J, then |aij|(det. Al|) will be maximized
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- - p+l -
when no=mn,; = N/[k+l]’ and all other n.= 0.

When p is odd, Mood [33] observed that P is a design which

not only minimizes the confidence region (i.e., value of det.|C|)
for estimating the weights, but also minimizes the individual
variance factors. When, however, p is even, Mood [33] observed
that the varaince factors may not be the minimum for the design
suggested in Theorem (2). He, however, makes a surmise that the

best design from the point of view of minimum variance factors

would be made up largely from Pp and a small proportion from Prige

2. Spring Balance Weighing Designs and Balanced Incomplete Blocks:

Theorems of Mood [33] imply that if, for instance, the
number of objects is 15, then the total number of weighing operations
has to be as large as [és} in order that the maximum possible
precision be reached. This would obviously require a very large
number of weighing operations. Even for a smaller number of objects,
say 7, we would need to make [Z] = 35 weighing operations in order
to secure the maximum possible efficiency.

However, it was pointed out in [1] that spring balance
designs of equivalent efficiency but based on a smaller number of
weighing operations would be available from the arrangements given
by Balanced Incomplete Block Designs (BIBD) discussed in Fisher and
Yates [24] and in Bose [19].

In weighing designs, v of a BIBD will take the plaee of p,
the number of objects to be weighed, and b that of N, the number of

weighings that can be made. The matrix [X'X] in this case will take
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the form of a matrix with r on the diagonal and X elsewhere. The
variance factor for each estimated weight {[1], as mentioned before,
is

r + \(p-2)
(r=-2) {r+x (p-1) }'

where p is the number of objects to be weighed, and r and X have the
same meanings as understood in the theory of BIBD's, that is, r is
the number of times each object is weighed, and A the number of times
each pair of objects is weighed together.

Though the minimum minimorum of o?/N can never be attained
in a spring balance design, ¢?/N may still be held as the standard
with reference to which the efficiency of a given design may be com-
pared. The efficiency of the above design will then be obtained [1]

as

(r=2) {r+x{p-1)} (5)
N{r+x (p-2)} N

Replacing N by b, and p by v to accord with the notation of
weighing designs, the two identities (as known in the theory of

BIBD's) may be rewritten as
r = Nk/p, A = r{k~1)/(p-1).

Substituting these values in (5), we obtain the efficiency

factor in the form,

k2 (p=k)

5 (pk-2k+1) (6)

where k is the number of plots per block, or the number of objects

that can be weighed at a time.
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If, instead of adopting repetitions of Pk’ only [ﬁ] weighings

were made in all, the efficiency factor for such designs (that is,
designs with all possible combinations of k objects at a time) would
be obtained as

(r=\){r+r(v-1)}
b{r+x(v-2)} '

_ f{v-1 _ |v-2 _ v
where r = {k—l]' A= [k_z],and b = [k]'

The above expression on simplification reduces to (6). Thus, the
efficiency of a BIBD as a Weighing Design is the same as that of

the designs, Pk’ of Mood [33].

3. Series of Designs Denoted Ly by Mood

Mood [33] has also constructed spring balance designs of
maximum efficiency, when N=p and N:z3 (mod 4). He has shown that
in such a case the spring balance design of maximum possible

efficiency is given by H if it exists. For ready reference;

N+1'

the method of construction as given by Mood [33] is reproduced

below:

Let K denote the matrix formed from H by adding or

N+1 N+1

subtracting the elements of the first row of H from the correspond-

N+1

ing elements of the other rows in such a way as to make the first

element of each of the remaining rows 0. Obviously,

lKN+1‘ - i}HN+1"

Excepting the first row, the elements of K are 0 and *2,

N+1

with signs of the non-zero elements being the same for elements in
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the same row. Let LN be the matrix obtained by omitting the first

row and column of K , by changing all non-zero elements to +1, and

N+1

by permuting two rows, if necessary, to make the determinant of Ly

positive. Then,
= 2N’L

| Eyen | ME

It will be clear from the above that, given L one could

NI

reverse the procedure and determine an H Similarly, there is a

N+1°
correspondence, in general, between square matrices with elements
+1, and square matrices of one order less with elements, 0 and 1.
The ratio of the values of the corresponding determinants is always

2N, if their determinants do not vanish. Hence,the (0,1l)-determinant

will have its maximum possible value when its corresponding (*1)-

has the

determinant has the maximum possible value. Thus, det. |L

-

maximum value.

4. Connection of LN with Symmetrical BIBD of a Special Kind

An 8x8 orthogonal matrix (matrix (3) for instance) would

afford an L., as given by

7
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The above L, is the same as L, of Mood [33] with a rearrange-
ment of its rows. L7 is easily recognized, as pointed out in [1],
to be a symmetrical BIBD for v=b=7, r=k=4, and A=2. Such a design
is characterized by an orthogonal series as discussed in [24].

The distribution of 1's in the above scheme would show in

what combination the objects have to be weighed.

In an Ly, not only det.|A| is maximized, but the variance
factors are also minimized, as pointed out by Mood [33]. It has,
however, been shown in [3] that there are no combinations of the

values of the parameters in a BIBD other than those in an L for

NI

which the variance factors reach the minimum value of 4N/ (N+1) 2.

5. Use of BIBD's as Weighing Designs

When a BIBD is used as a Weighing Design, the solutions of
the normal equations giving the estimated weights (least squares)
can be reduced to a simple routine [9].

The estimated weights are obtained as

A | z - AT
i~ (r-x) i r+i{v-1)
1
= =37 [Zi - at/rl,

where Zi (i =1,2,...,p) are the elements of the vector X'Y,
T =

b
_ Z,, t = 2 y;s v=p, and b=N.
1 i=1

o~

1
In particular, when L7 is used as the design, the estimates

are obtained as

~

=1 _
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6. Efficient Spring Balance Weighing Designs for Small Values of N=p

Mood [33] quoted from Williamson [42] some square matrices

with maximum value for det.|A| to furnish weighing designs of

maximum possible efficiency for small values of N=p. These square
matrices are denoted as Dp, p showing the dimensions. For example,

we have for N=p=4,

1 1 1 0] 1 o o 1
1 1 o 1 1 1 1 o0
D4 = and
1 0 1 1 0 0 1 1
0o 1 1 1] o 1 o 1j.

The value of the det.|A| = 9. The variance factors are all 7/9 for
the first, and for the second, ci; = {7/9, 7/9, 4/9}. For N=p=5,

we have

The value of the det.

A| = 25, and the variance factors are

Ci; < {19/25, 19/25, 16/25, 11/25, 16/25}. For N=p=6, we have

1 1 1 0 0 0]

1 0 0 0 1 1
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The value of det.

A| = 81, and the variance factors are
Ci; = {17/27, 171/27, 17/27, 17/27, 17/27, 17/27}.
It is not known to the author, if such square matrices

have been constructed for higher dimensions in general.

7. Spring Balance Designs when Different Rows of LN are Added to it

We have seen that HN is the best chemical balance design

for N=p when it exists, and that LN is the best spring balance

design for N=p when HN+l exists.

It has been indicated in [4] that efficient chemical balance
designs could be constructed between the dimensions of HN and HN+4

by the addition of different rows of H. to H and that some of

N N’

these rectangular design matrices are comparable to chemical balance
designs which were otherwise known to be the most efficient. A
detailed discussion in this regard has been furnished in [15].

In case of a spring balance also, similar rectangular

design matrices may be constructed between the dimensions of LN and

L by the addition of different rows of an LN to the L A

N°

detailed discussion of such augmentations has been presented in [3].

N+4

8. Construction of Weighing Designs by the Inclusion of Additional

Row to a Design Matrix

It has already been pointed out that it is possible to get
the estimates of N weights with N weighings in a chemicay balance
with maximum efficiency, if the Hadamard matrix Hy (N=4k) exi?ts.
If the Hadamard matrix of the next higher order (that is HN+4) is
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available, it would be possible to estimate the weights of N+4
objects with N+4 weighings. No general solution, as far as known
to the author, is yet available by which it is possible to get
chemical balance design of maximum efficiency to estimate the weights
of (N+m) (m = 1,2,3) objects with (N+m) weighings, when N=4K.

It has been indicated earlier that a spring balance design
of maximum efficiency to weigh (N-1) objects with (N-1) weighings
is available, if Hadamard matrix HN exists. Here also, no general
solution appears to have been attempted for the construction of a
square matrix between the two most efficient spring balance designs
of successive orders.

Williamson [42-44], however, has outlined for small values
of N, a method of constructing determinants of order N+m (m = 1,2,3)
with maximum possible values. The corresponding matrices may be
utilized as the most efficient weighing designs. (Most efficient as
per Mood's "efficiency definition.")

In the absence of the above matrices for higher dimensions,
there is some interest in knowing the most efficient rectangular

1,2,3), so that it might be

design matrices of order (N+m)xN (m
possible to estimate the weights of N objects with N+m (m = 1,2,3)
weighings with the maximum possible efficiency. A procedure of con-
structing such rectangular matrices has been outlined in [7]. This
was done by way of indicating a result which may be called some

sort of an extension of a result by Williamson [42-44].
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9. Use of Partially Balanced Incomplete Block Designs as Weighing

Designs

We have seen that arrangements given by BIBD's may be used
as efficient spring balance designs. The most efficient spring
balance weighing designs, Lyr of Mood [33] are, as indicated
earlier, afforded by a special class of symmetrical BIBD's.

It has been shown in [10] that a general class of combinatorial
arrangements, developed by Bose and Nair [20], known as Partially
Balanced Incomplete Block Designs (PBIBL), may also be used as
Weighing Designs in some cases. But, all such PBIBD's cannot be
used as Weighing Designs for estimating the weight of each object
uniquely in the least squares sense, as the design matrix X might
be singular in some cases. An indication has been given in [10]
under what conditions a design matrix coming from a PBIBD may
become deficient in rank.

Incidentally, the D6 quoted by Mood [33] for a spring balance
Weighing Design for N=p=6, maximizing det.|A| may easily be reco-
nized [10] to be a PBIBD with the following parameters, v=b=6,
r=k=3, A =4, A =1,

l=l, n =2, n,

1 2
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IV. MISCELLANEOUS ISSUES CONCERNING THE WEIGHING PROBLEM

1. On the Determination of Total Weight:

An Optimum Chemical Balance Design is Not the Best Design
for the Estimation of Total Weight

An orthogonal design which has the maximum efficiency in
determining individually the weights of p objects in a chemical
balance is not the best design for the estimation of a linear
function of the objects. To illustrate this, let there be three
objects, Bl’ 82, 83, the weights of which have to be determined
on a balance corrected for bias, and let us, for this purpose,

adopt the following design,

101 1

o |1 1 -1 (7)
1 -1 1
1 -1 -1j.

In the above design, the variance of each of the estimated
weights is ¢?/4, which is the minimum minimorum, and, as such, the
design has the maximum efficiency in the estimation of the weights
of the individual objects. But, in estimating a linear function of
the objects, for instance, the total weight, designs more efficient
than this are available.

The variance of Qlél + 2252 + 13é3 is known to be equal to

2

3
) bikicyio?,
j=1 J 1]

i,
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where SH denotes the elements of [X'X]~!. As the above desgign
furnishes the estimates orthogonally, variance of the estimated
total weight will be given by 3 o2/4.

If, instead, the design given by the matrix,

B 1 1]
101 0
X = (8)
1 0 1
0 1 1

is adopted, the variance of the estimated total weight may be easily
seen to be 302/7. 302/7 is less than 3c¢2/4. Therefore, with four
weighing operations, the design given by [8] is more efficient in
estimating the total weight than the design given by [7]. A still
more efficient design for estimating the total weight is simply to
weigh all the objects together four times. The necessity for an
efficient design to estimate any linear function of the objects (or
the total weight) will perhaps arise only when the objects cannot
all be weighed at a time collectively on a single pan.

In the estimation of total weight, efficient design is also
afforded by the arrangements of a BIBD, as the covariances are all
negative. It has been shown in [l], that the variance of the

estimated total weight, using a BIBD, reduces to

po?

r + A(p-1)°

In actual practice, an object may break into pieces, and

we may need to know their total weight (see Rao [39]).
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Questions concerning the construction of weighing designs
which will be good both for "individual" estimation and "total"

estimation were considered in [7].

2. Factorial Approach to the Weighing Problem:

Fractional Replicates as Weighing Designs:

Kempthorne [30] discussed the weighing problem from the
point of view of "factorial experimentation.” He suggested that
the problem of weighing a number of objects be rather regarded as
the problem of estimating the effects of a number of factors which
do not interact. The motivation in this suggestion appears to be
in keeping with the tenor of the original example of Yates [45]
which was, in fact, meant to show that one could think of a
factorial experiment where factors do not interact.

In this paper [30], Kemptorne gave a brief description of
the method of constructing fractional replicates of a 2"-fractorial
experiment, originally discussed by Finney {23], and gave an
illustration showing how a fractional replicate could be used as a
weighing design to find the weights of ten different objects, a, b,
c, d, e, £, g, h, k, 1.

Kempthorne [30] mentions further that the precision can be
increased four fold by interpreting the absence of each letter as
the placing of the object in the other pan, in case a chemical
balance could be used. This improvement is, again, of the same
nature as indicated by Hotelling [29] with reference to the original

illustration furnished by Yates [45].
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Kempthorne [30] mentions that the fractional replicate
designs have following useful properties:
(i) the design automatically takes care of any bias in the
balance;
(ii) the effects or the weights may be computed easily as
indicated above;
(iii) the effects are uncorrelated;
(iv) all the effects are measured with the same precision, and
(v) an estimate of the experimental error which is independent

of the effects may be computed from the results.

3. Kempthorne's Observations About the Non-orthogonality of the

Estimates Furnished by LN of Mood

Of the above properties, property (iii) is of special
significance. While referring to the spring balance designs, LN’
of Mood [33], Kempthorne [30] mentioned that although these optimum
designs of Mood furnish "somewhat" smaller variance than what is
given by the fractional replicates, these designs (the optimum
designs of Mood) have the disadvantage that the estimates are cor-
related, whereas estimates furnished by fractional replicates are
orthogonal.

It has, however, been shown in [2] that the designs given
by fractional replicates suggested by Kempthorne [30] are virtually

the same as the designs, L of Mood. The designs furnished by

NI
fractional replicates take account of the bias, and if the weighing

operation corresponding to the determination of the bias is omitted
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(in case the spring balance is free from bias), the resultant

design matrix will be the same as L,, of Mood, and will, therefore,

N
fail to give orthogonal estimates. Again, these optimum designs

(LN of Mood) may also be made to furnish orthogonal estimates when
these designs are adjusted to suit estimation in a biased balance.

For example, it is true that the design matrix, L3, given by

does not give orthogonal estimates as such. But, let us assume
that the spring balance has a bias, and that it is required to

find the estimates of weights free of bias. It would then be
necessary to modify the design matrix to suit the required estima-
tion. The modification would require that one more column be added
to the design matrix X to correspond to the estimation of the bias.
Taking the first column to correspond to the bias, and making an
additional weighing operation on empty pan to determine the bias,

we shall have the design matrix modified as

1 0 0 0]
1 1 1 0

1 1 0 1

1 0 1 1f.

In terms of factorial experiments, the above design could be
regarded as a 1/2 replicate of a 23-factorial experiment being
given by the identity relationship I = ABC. The combinations are

(1, ab, ac, and bc).
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The first row of the above design represents a weighing
operation on "empty pan,"” and would thus go to the determination of
the bias. The remaining three weighing operations would represent
weighings of the three objects, taken two at a time along with the
bias. This does not mean, however, that we need to make any fresh
weighing operations. We would, in fact, use the same records of
weights which were available on the supposition that the balance
had no bias. Only one additional weighing is needed, and this is
a weighing on empty pan. In substance, therefore, this modification
really means that we need to make only one additional weighing
operation, and that, on empty pan.

When the modification is made as above, we would be able to
determine the weights of the objects free of bias, and in mutually
orthogonal linear combinations of the observations.

For the modified design matrix, as given above, [X'X]™!

will take the following form [2]:

1 -1/2 -1/2  -1/2]
g1t -1/2 1 0 0
-1/2 0 1 0
-1/2 0 0 1.

It will be noticed from the above that the variance of an
estimated weight is 02, whereas the same for an L3 is 3c02/4.

All the rows of [X'xX]~lx‘', except the first, are orthogonal
to one another meaning thereby that the estimates given by
é = [X'X]~!X'Y (except that for the bias) are linear functions of

the y's which are mutually orthogonal. 1In fact, for this design,

[X'X] 1X' reduces to
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1 0 0 0 j
-1/2 1/2 1/2 -1/2

-1/2 172  -1/2 1/2

-1/2  -1/2 1/2 1/2].

The last three rows of the matrix show that the three estimates are
obtained as orthogonal linear functions of the observations.

The above property will hold good for any N of LN' As LN
furnishes a special kind o% a symmetrical BIBD, it would be natural
to ask if this property of orthogonality of the estimates may be
made to extend also to BIBD's in general. In fact, it would, and
this topic has been discussed in [8].

The distribution of 0's in L, gives the complementary BIBD

N
for which r0 = r-1, ko = k-1, and xo = x~-1l. If, to such a comple-
mentary design, a row of ones and a column of ones (in that order)
be added to suit estimation in a biased spring balance, exactly a
similar situation will be obtained [2], in that the estimates will
be mutually orthogonal. The variance factors of the estimated
augmentation of the
weights will remain the same [8] as in the case of,original design

L It can be readily verified that the original design of Yates

N°
[45] to determine the weights of seven light objects and a bias is
an illustration of this kind. If a column of ones be added to the
design of Yates [45], the resultant scheme will be an 8x8 design

matrix, and this design matrix will be what may be obtained by the

addition of an additional row of ones and a column of ones in that

order to the design complementary to L7.

~889~



4. Use of Fractional Replicates of Other Types

While referring to the construction of optimum designs for
chemical balance through fractional replicates, Kempthorne [30]
mentioned about the possibility of using a 3/4 replicate as a
Weighing Design. It has been shown in [2] that, when a 3/4
replicate of a 2-factorial experiment is used as a chemical

balance weighing design, the variance factors come out as l/2n—l.

Again, the same, l/2n_l, is the variance factor, if the fractional
replicate is of the type (26—1)/28, (1<B<n). A detailed discussion

in this regard has been presented in [2,3].

5. Weighing Designs Under Auto-Correlation of Errors

We have seen in the preceding pages that there are some
weighing designs which have the maximum possible efficiency. These
designs were efficient within the frame of the model where the error
structure was assumed to be of the form, E(ee') = OZIN. It may
perhaps be desirable to examine how the efficiencies of those designs
would alter, if at all, if the errors are assumed to be autocor-
related, that is, if the error structure is assumed to take the form
E(ee') = 02V. Some results in this direction have been indicated

in [11].

6. Singular Weighing Designs: Nature of the Problem

The design matrix X has so far been assumed to be of full
rank (rank p). When X is of full rank, the matrix [X'X] is non-

singular. But, it is possible that, as a result of "bad designing,"
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or despite the best of intentions, the chosen design matrix X has
rank less than the full. Consequently, the matrix [X'X] will be
singular. Thus, one may have to deal with the problem of what may
be called a Singular Weighing Design.

It is known that when X is not of full rank, it is not
possible to have a unique (Unbiased) estimate of each of the objects
under non-randomized procedures (see Zacks [46]). It would be
possible, however, to have a unique unbiased estimate of an
estimable linear function of the objects. Thus, in a Singular
Weighing Design, it may be required to ascertain if it would be
possible to furnish an estimate of a given linear function of the
objects (say, "total weight").

If, after taking observations in accordance with a design,
it is detected that the design matrix is singular, we may be
required to take additional weighings to make up for the deficiency
in rank. In that case, the problem would be to determine how best
we could take up this augmentation procedure. Results in this

direction have been discussed by Raghavarao [38] and in [12].

7. Fractional Weighing Designs:

Nature of Fractional Weighing Designs

It has been mentioned earlier that for the estimates of
weights of individual objects, the best design for a chemical
balance is given by a Hadamard matrix X of dimensions pxp, when it
exists. If, for lack of resources, time or for other reasons, only

r rows of X are to be used for the weighing operations, the resultant
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design matrix will be of dimensions rxp and will be a fraction of
the full design matrix X. The resultant matrix will necessarily

be singular. While it is not possible with such a (non-randomized)
singular, fractional weighing design to provide unigue and unbiased
weights of the individual objects, it may be possible to find, as

it is well known, unigque unbiased estimates of some linear functions
(estimable) of the objects. But, fractional weighing designs under
"randomized procedures" would provide unbiased estimates for any
linear function A'8 (which, of course, would include any component
of B).

Zacks [46] visualized the possible use of such randomized,
fractional weighing designs. The fractional weighing design is
obtained by choosing at random n(n<p) rows, independently and with
replacement, from a given Hadamard matrix according to a probability
vecter § of order p. Each of these n rows would specify a weighing
operation to be performed.

A randomization procedure has also been developed by Zacks
[(46] which would afford unbiased estimation for any A'8 with minimum
variance. The probability vector for the randomization procedure
would, of course, depend upon the linear functional x. It has, in
fact, been indicated by Zacks [46] that every functional ) specifies
a subset of, say r(l<r<p), admissible weighing operations (rows of
the Hadamard matrix) in the sense that if other weighing operations
are chosen, the estimation procedure would either be biased, or
would have a variance larger than the one obtainable under admissible

welghing operations. If each of the r admissible weighing operations
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(1<r<p) is chosen with probability equal to 1l/r, the corresponding
unbiased estimator will have a uniformly (in B and ¢2) minimum
variance.

Finally, the formulae of the unbiased estimator of A'B
and its variance have been extended to the case of random choice,

without replacement, of n rows out of the r admissible ones.

8. Some Analogous Results Obtained Under Non-randomized Procedure

Some results of connected interest have been indicated in
[13] with respect to fractional weighing designs which, of course,
are obtained without resorting to any randomization procedure. It
has been shown [13] what connection the linear functional X has
with the fractional weighing design and, in that context, it has
been pointed out to what extent we ‘could be arbitrary in the selec-
tion of the components of x. The structure of the estimable linear
function along with the variance of its estimate has been spelled
out in full, bringing out the connection of this variance with the
variance as obtainable under the full design matrix. It has been
shown that with a fraction, which, of course, would depend on 2,
we could obtain the same precision for the estimate as would be
obtainable in a full design matrix without, of course, having to
perform all the weighing operations. This fraction is, in fact,
the same as given by the set of "admissible rows," referred to by

Zacks [46] under randomization procedure.
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9. Extension of the Procedure to the Spring Balance Problem

Beckman [18] has extended the results obtained by Zacks [46]
to the spring balance problem. In the development of the procedure,
he characterized a design to be the best, if the trace of the
covariance matrix of the estimator was the minimum. In [18], both
randomized procedures and non-randomized analogs have been studied.
The results are similar to those obtained in [46] by Zacks and in

[13] in case of the chemical balance problem.

10. Biased Estimation in Weighing Designs:

Problem of Biased Estimation in Regression

The model for Weighing Designs is also the model for multiple
regression in general. In regression problems, it sometimes happens
that the matrix of normal equations is "ill-conditioned" with the
consequence that it becomes difficult to solve the system of normal
equations. Such a difficulty is, in some situations, circumvented
by the addition of a small positive quantity k to the diagonal
elements of the matrix [X'X]. When such a small guantity is added,
the normal equations take the form [X'X+kI] é* = X'Y. The estimator
é* obtained from solving these equations will obviously be biased.

Hoerl and Kennard [28] have studied a procedure of such
biased estimation in the regression problem in general,band have
indicated how the value of k could be chosen so that the total mean
square error of é* be less than the total variance of the least

squares unbiased estimator B8.
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Sihota and Banerjee [40] have studied the effect of such
biased estimation procedure in Weighing Designs, where the design
matrices are of a special nature, the elements xij of X being either
(x1,0) in the chemical balance, or (1,0) in the spring balance.

Biased estimates have been compared in [40] with the
unbiased estimates along with a corresponding comparison of the

mean square error and the variance.

11. Repeated Spring Balance Weighing Designs

When a symmetrical BIBD is used as a spring balance weighivg
design, no degrees of freedom are left for the estimation of the
error variance, as for this design we have N=p. In such a situation,
the symmetrical BIBD could perhaps be repeated in order to secure
"degrees of freedom" for the estimation of the error variance. But,
Dey [20] has pointed out that if in a symmetrical BIBD, b>2r, then
one should combine the symmetrical BIBD with its complementary BIBD
rather than repeating it. Again, to meet the same requireﬁent,
Kulshreshtha and Dey [32] have suggested yet one more alternative
design which would be preferred to "repeated designs" and to those
suggested by Dey [21], provided one is interested in estimating the
weights of some of the objects with increased precision at the cost
of precision for others. However, it has been demonstrated in [16]
that with a given problem on hand, one may repeat the complementary
BIBD, and that\this repetition would be preferred to the designs
suggested by Dey [21] and Kulshreshtha and Dey [32]. This conclusior
has been supported in [16] by a critical analysis of efficiencies

of various alternative designs in this category.
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12. Concluding Remarks

Finally, it might perhaps be appropriate to make one or two
concluding remarks on the future of the weighing problem, which,
though discussed in the language of weighing operations, would be
applicable, as pointed out by Mood [33], to any problem of
measurements, where the measure of a combination is a known linear
function of the separate measures with numerically equal coefficients.

It will have been evident from a perusal of the preceding
pages that there is a need for chemical and spring balénce designs
of square and rectangular matrices of higher dimensions such that
det. |X'X| is maximized, or trace of [X'X]~! is minimized without any
restriction on the equality or otherwise of the variances and
covariances. It is hoped, some progress will be made in this
direction in the near future.

Again, the scope of the problem may perhaps be broadened
further as and when other side issues are resolved to meet ad-hoec
needs. For example, one might like to know the form the error
structure wouldvtake in the situation when the "objects" are not
necessartly light, and knowing the error structure, one might like
to know how one should proceed in the selection of the best design.

On the other hand, however, one might pertinently ask how
far these Weighing Designs have been found, or may be found, useful
in practice. Professor Hotelling once told the author of this
article that he knows of some chemists who had been utilizing these
designs in their day-to-day routine. Possibly, many others are

also utilizing Weighing Designs as such. Perhaps, some are making
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use of the principles involved. As regards making use of the
"principles," it may be mentioned that this author himself once
used them in an estimation problem in a socio-economic survey.
He hopes, however, that these designs will eventually attract a
wider attention of statisticians, and that these designs will in
future find their rightful place in "laboratory work" where

weighing operations are needed as a matter of routine.
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Addendum

As pointed out in section 6 of chapter II, Raghavarao [36-37]

constructed two series of efficient Chemical Balance Weighing
Designs, when N is odd and when Nz2(mod 4), subject to restraints
that the variances and covariances of the estimated weights be the

same.

In a construction procedure, Raghavarao adopted a method

due to Williamson [42]. Bhaskararao also constructed some
similar weighing design matrices when N is odd, while matrices

for Nz2(mod 4) have been constructed by Ehlich, Ehlich and Zeller,
and Yang. These references are listed below.

(1]

2]

[3]

(4]

(5]
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EXPERIMENTAL TESTING OF INTRUSION

DETECTION DEVICES

Eric C., Mendelson
US Army Mobility Equipment Research & Development Center
Fort Belvoir, Virginia

ABSTRACT

This paper describes the planning factors and conduction of a
test program designed to evaluate a relatively large number of line in-
trusion detection devices in an economic manner, The program intailed
determination of probability of detection for a range of threat situations
and the false alarm rates for a number of sensor systems.

Some typical results are presented to reflect the relevancy
of the plans to the end results.

INTRODUCTION

Currently, a series of experiments are being conducted to test
and evaluate various types of intrusion detection devices with respect to
their probability of detection and false alarm rates. The sensors tested
fall into the following detection categories.

1. Magnetic

2, Seismic

3, Electrostatics

4, Balance Pressure System
This paper will discuss the overall structure of the testing program and
present generalized results from the experimentation. Due to security

requirements, the exact name of the individual sensor cannot be mentioned
only its class is mentioned,
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INTRUSION & FALSE ALARM STIMULI

Intrusion Stimuli

Sensor evaluation has historically been based on measurement of the ability
to detect against a suspected or known threat and the capability to suppress
false alarms from stimuli or from nuisance alarms, Different detection tests
were required for each type of intrusion device tested in this experiment,
The detection tests selected were expected to provide data for a sufficiently
broad range of threats, so that sensor performance could be realistically
evaluated and sensor selection might be made by a user for a given threat
condition, Figure 1 is a matrix of all possible intrusion modes and intruder
configurations for the various detection systems tested. Selection of the
intruder characteristics were chosen from this test matrix for the various
sensors tested, Test matrix entries of intruder/intrusion characteristics
are chosen to explore the full range of the sensor's performance under an
actual/simulated intrusion.

False Alarm Stimuli

False alarms generally are all alarms not associated with actual intrusioms,
Since these alarms would necessitate the same response by protective forces
as an actual intrusion, their occurrence is indesirable and their suppression
mandatory, One of the objectives of the testing was to assess the false
alarm frequency of each system being evaluated, determine sources and rela-
tive effects, and recommend possible means of discriminating against the
false alarms, False alarms were categorized by source/type:

1. TFalse alarms ~ caused within the sensing systemj defective
electronics, unbalance (i.e., in pressure lines).

2, Nuisance alarms - caused by animals, aircraft, vehicle or
storm activating a properly operating sensor in a manner similar to that
of an intruder,

3. Unknown alarms ~ An alarm caused by unknown physical stimuli
(shifts in earth crust, distant lightening),
Since the intent of the false alarm testing was to classify the false alarm
sources, the test range, as shown in figure 2, was placed under tight
control and surveillance to minimize local alarm sources and observe all,
if possible, sources of alarms, Tests were run both day and night; flood
lights in areas A & B provided adequate visibility for the tower observer
and hand held spotlights were used for the other areas.,

The local sources of the nuisance alarms generally were:

-~ Aircraft (jets, propeller aircraft and helicopters),

These were normally random, there sources being from local Army
fields and civilian airports in the area,

- Trains

An active line passed a mile from the edge of the test range.,

- Vehicles

Normally all roads entering and exiting the test area were
blocked to eliminate the vehicle source, However, in some instances it
was necessary to allow security vehicles and others into the area during
testing,

- Animals

Animals frequently entered the test range area. The most pre-
valent and easiest to identify were elements of a herd of deer. Ground
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hogs, possum, rabbits, squirrels and birds were also identified as alarm
sources,

~ Unidentified sources

Although every effort was made to identify alarms, the large area
to be covered and the number of sensors precluded 100% visual coverage.,
These alarms were placed in the unclassified categories,
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TEST PLANS AND PROCEDURES

Field Sensors

The test range layout, as shown in Figure 3 was planned to place the sensors
as close together as possible in the designated ranges by length categories
to conserve pass time., The sensor layout and intrusion paths were designated
to provide stimulus for as many sensors as possible in each pass, This was
also a consideration in planning the perimeter fence tests. But here, the
engagement of both line and point type sensors in a comprehensive and economic
fashion, was a factor, Planning requirements were, to define an adequate
number of passes for each type of sensor, intruder configuration and intru-
sion mode to provide a result with the highest statistical confidence ob-
tainable within the program time constraints.

For the line type sensor, up and back passes, at each interval
point along the sensor were planned for each configuration and mode, which
in the case of the magnetic sensors with three intruder configurations necessi~
tated additional intrusion pass sets.

It was planned that each sensor be engaged every 10 meters regard-
less of length, however, this interval was modified to every 30 meters for
the longer sensors because of the time involved. Where data analysis found
anomalies at these 30 meter points, additional runs were scheduled every 10
meters along the entire length of the sensor.

Figure 4 shows a typical test path of an intruder subject along
the stake paths over the several sensors in range A,

=906~



TYPICAL LINE SENSOR INTRUSION TEST PATTERN

START TEST TV AN AT

AnSTART—=+ + + + + + + + + + 4 Figure &
0 END ”0 P' Ay Ay Ay R A Ay Ay Ay Ayp _ Fig
no /
FIELD CBSERVER H— . .SENSOR LINES

REPORTS START H
ANDENDOF EACH
PASS (DOWN AND 1|
BACK|) FOR I
Ag. A, ... H
BY VOICE PHONE I

]

|

1

|

l

|

|

& TO RECORDING VAN Il |
] 1! '
|

|

|

|

|

|

|

|

|

END

TEST
A

- ST YOS

NAn Aig Aig Ay Ais Agg App Agg Agg 11 Ay
i 1
i I

I o
| 1 Il
| 1 ’ Il

n : ‘ Il T
|

I! Il
I I
+ 4

+ + + + 4+ 4+ 4+ + + +
JWLAWLY. (Am AiAn Ay Aa A5 Aig Ay Agg APAZO
GGGGG Calata A



False Alarm Testing

The Program Test Plan provided for rigid ramge, vehicular and personnel
traffic control, careful sensor output momitoring and recording, and mag-
netic tape recording of seismic, magnetic and acoustic background levels
and for special false alarm source observation capability. The test plans
and procedures required simple checkouts of each active sensor at the be~-
ginning and end of each test, and periodically (every 4 hours) during a
false alarm test.

The test procedures principally specified the data recording
requirements to assure inserting of possible alarm source coding and start-
stop coding and reason coding for projected occurrences. It also speci-
fied the sensor walk around checkout procedure by a man carrying a shovel
to activate the magnetic systems as well as the recording of synoptic and
environmental conditions. Tests were conducted in planned segments, the
longest of which was 24 hours, At least two periods of thundershowers were
recorded, with durations of 15 minutes and 4 hours respectively.

A special close range helicopter test was planned to determine
quantitatively the influence of helicopters on the sensors at large, Since
false alarm coincidence had been associated with aircraft and helicopters
flying in the vicinity it was felt that the quantitative data would be
significant in clarifying the false alarm results,  Straight flight passes
were planned from minimum altitudes, 100 feet, to 2,000 feet, over and be-
yond the field at both minimum and high speeds. Sensor coverage was ob-
tained by flying three paths, over the center and over each edge in both
north/south and east/west patterns. The sensor and recording instrumentation
were to be operated as in false alarm testing with run number, path, speed,
altitudes, parameters as basic inputs. Helicopter position on entering and
leaving the range boundry was to be called out on each pass for relating
alarm response to position.

Data Reduction and Analysis

The flow of sensor data from the tests is shown in Figure 4. Upon receipt
of test run data from the range the test logs were reviewed with the test
engineer and any pertinent comments added to the log. The logs were filed
. in a summary log book, the chart records were catalogued by test date and
the digital tape records transmitted to the computer building with a copy

of the test log.

The test data reduction was performed primarily by the computer.

Hand reduction of the parallel recorded chart data was performed regularly
on a sample basis to verify the basic alarm counts for both false alarm

and detection.

The computer detection program whose configuration is shown

in Figure 5 data format provided a printout of individual stake pass data
for each sensor including the run configuration and conditions the pass and
detection counts for the stake and the computed results, The computations
performed were: the probability of detection for the number of passes at
the stake, the total alarm count, maximum, minimum and average, and the cumu-
lative probability distribution of alarms (alarms per alarm), the minimum,
maximum and average pass time and the minimum, maximum and average detection
time duration. At the completion of the stake by stake data-printout, a
summary for the test was formulated which totalled the individual stake data
and provided the performance of the sensor.
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A second summary program provided for collecting the individual
accumulated stake data from the several tests performed at different times,

The false alarm printout included: a chronological listing of the
sensor alarms and the recognized potential alarm sources as inserted by code;
a matrix of alarms by sensor in 15 minute intervals for four hour test periods
with accompanying false alarm subtotals by sensor; and summary matrix of
alarms by sensor in one hour intervals, with accumulated totals for each
sensor,

In assembling the data for expressing the cumulative probability
of detection for a sensor, the intent was to provide an average probability
of detection. This could reflect the sensor performance assuming equal
possibilities for any of the intruder modes being employed. Normally, the
number of passes for each intruder configuration and speed were equal, so
that this intent was realized, This was particularly important for the mag-
netically clean man are largely different, and a large number of passes in
one condition, or the other, can shift the average probability number signi-
ficantly,
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TEST RESULTS

Typical test results for magnetic and balanced pressure line
sensors are shown, to indicate the degree of reduction and analysis per-
formed, Figure 6 and 7, are representative of the magnetic sensor test
result, Figure 6 shows the matrix of 5 intruder modes and configura-
tions evaluated., Figure 7 demonstrates the comprehensive method of pre-
senting this data,

In contrast the reduced number of modes and configurations re-
quired for evaluating BPS sensors is indicated in Figure 8. This is
reflected in the more simple Pd display in Figure 9,

-912-



—eT6~

LLSCETIC 870 TEST OLORT

TR TR A
’..;;‘.
\.;Esz n%

"3’\"’ m‘?‘:“ '\'"’“5"
&g busnu

R ETE

EALIEE |-

SLOV WALK (2 FT/8EL

RORIIAL WALK {f:z

LR TP

RUHINING (8 FT/SEG

SPRINTING {19 FT/SEC

1 KAN RAKING

5‘5/856

CRAVILING ['4-1 FT/SEE)

T ~Vﬁﬁge-'m\aﬂ b7

i ponTy

B "'ﬂﬂl

E‘u:ﬂ-ﬁi i

e A E.E
E 1 Tﬁ P
W oA W oad U Aes

1T AT
H

TR WAETEY 3f
SIS v ke . oat 5 h
Ry At %Ugahé Vi Laﬁ’ni €544

SRR ”"‘“'HF""{J
UJE.-L\\E -i



EXAMIPLE 1
MAGNETIC SENSOR TEST RESULTS

~%T16-

MAGNETIC SPEED OF P'0. OF PIJ
CONFIGURATION IHNTRUDER PASSES

CLEAN  CRAWLIG 28 i

T 0

NORIIAL 0

RUIING 0

| SPRINTIG 0

NORMAL | CRAWLING - 28 1.0

A SLOW : 1.0

NORMAL | | 1.0

RUNNING 1.0

SPRINTING | 1.0

WEAPON ~ CRAWLING ' 34

OVERHEAD SLOW 04

NORMAL 0.0

RUMNING | 48

- SPRINTING " 833 Figure 7
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LABORATORY CONTROL OF DYNAMIC VEHICLE TESTING

James W, Grant
Test & Evaluation Sub-Function Frame
Suspension & Track Functions
U. S. Army Tank—-Automotive Command
Warren, Michigan

ABSTRACT. In order to study vehicle suspension and frame dynamics
under controlled and reproducible laboratory conditionmns,

TACOM's road simulator or "shaker test" was developed. A

road simulator is a laboratory test device which imparts

dynamic forces simulating road inputs, on a complete vehicle.

It is the purpose of this study to develop vertical position
control signals for the road simulator so that good correla-

tion between laboerory test and field results is obtained.

As a result of this study, the design engineer has a
more exact vehicle model than he has had and the test engineer
has a laboratory simulation which has been verified for verti-
cal dynamic inputs. The combined effect of these two
engineering tools will serve to produce a better prototype
vehicle which, in turn, will eliminate many of the initial
field test failures which plague new vehicles.

INTRODUCTION., The road simulator concept of laboratory vehicle testing
came into existence to facilitate studies of frame and suspension
dynamics. Prior to the road simulator, frame and suspension components
were divorced from the vehicle for laboratory evaluation. In most

cases, the control or excitation signal for the test was some well de-
fined mathematical function whose correspondence validity to actual field
excitation is questionable. Testing then progressed to a point where
recorded field signals and shaped random noise were used to control
component tests,

Since there is interaction between the component being tested
and the vehicle to which it is mounted, it became apparent that a
road simulator which would test the total vehicle system in the
laboratory would yield useful results. The early road simulators
provided vertical inputs of low amplitude to each wheel of a passenger
car., The inputs were accomplished using four electro-hydraulic linear
actuators with pedestals on which the tires rested,

Laboratory testing of off-road vehicles offered a new challenge.
Due to the large wheel deflections, the vehicle had to be restrained
from falling off the road simulator, In order to facilitate
restraining the vehicle and also to allow the addition of longitudinal
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excitation forces, the wheels were removed and the spindles attached to

the actuator through a multiple degree of freedom assembly. The restraints
were attached from vehicle to ground so that their effect on the dynamic
motion of the sprung mass was minimal,

The present state of the art includes vehicles in the 5-ton payload
class with up to six vertical and four horizontal linear actuators.
Currently being constructed at the U,S. Army Tank-Automotive Command
(TACOM) is a road simulator for 1/4-ton class vehicles which has four
vertical actuators with position control, four horizontal actuators with
load control and four rotary hydrauiic pumps to be used as absorp-
tion dynamometers with torque control. This simulator, fully operational,
will test the total vehicle system under controlled laboratory conditions.

The analog position of force signals which control the electro-
hydraulic actuators must produce motions or forces in the vehicle
which can be correlated with those which were recorded during field
tests, This paper will present in detail three different techniques
by which valid position control signals may be obtained from recorded
field data or from surveyed terrain elevatioms,

CONTROL SIGNAL GENERATION TECHNIQUES. The analog signal which controls

the electro~hydraulic actuators of the road simulator may be proportional

to either position or force. The vertical road input actuators are position
controlled and the fore and aft horizontal road input actuators are load
controlled, The most readily obtained field data which can be trans-

formed into vertical wheel spindle displacements are vertical accel-
erations of the wheel spindles, Terrain profile data can also be
transformed into vertical wheel spindle displacement if accurate vehicle

and tire models are on hand.

The field recorded fore and aft loads require no transformation
if the actuators are load controlled. Force is proportional to
acceleration, so the following analyses are applicable.

Double Integration

The acceleration signal which is to be double integrated is the
vertical acceleration of the wheel spindle, The vertical accelerations
of each wheel are recorded simultaneously so that the control signals
generated from these accelerations will have the proper phase relation-
ship, The acceleration signals thus recorded are a function of the
suspension geometry, the suspension parameters, the tire characteristics
and the terrain profile, Changes in any of the above vehicle characteristics
would require that a new test course traverse be made., For the following
analysis, assume that an accurate recorded acceleration signal is available.

The integral of well defined mathematical functions can be found
in any calculus text, Mathematically, the integral of a continuous random
variable such as vertical wheel acceleration is also well defined, 1In
fact, the double integral of acceleration which results in displacement is
also well defined. The physical implementation of double integratiom,
however, is not well defined.
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It is a well known fact that a stable perfect double
integrator which has the transfer function G1(S) = 1/s2 is
not physically realizable. The task, then, is to develop a
stable transfer function, the frequency response of which
approaches a double integrator in the desired frequency band
of .5 to 50 Hz. This band is within the response limits of
most road simulators and also includes the frequencies of
interest for suspension dynamics studies. The transfer
function chosen to double integrate the recorded acceleration
signal to produce the position control signal for the road

r 2
simulator is G.(s) = _KS
2(8) (s+4)
0 ~

40 -

3
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FIGURE 1. BODE PLOT
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As can be seen in Figure 1, the frequency response
curve for G2(S) when K = 1 asymptotically approaches perfect

double integration beyond .636 Hz. The important character-
istic of GZ(S) is that the low frequency components of the

input signal are suppressed., These low frequency components,
especially zero frequency of D.C., offset, are the prime
contributors to unstable double integration. This fact is
quite clear in Figure 1., As frequency approaches zero,

Gl(S) approaches infinity and GZ(S) approaches zero. The low

frequency accuracy of GZ(S) can be theoretically improved by

shifting the intersection of its asymptotes to the left.
This can be accomplished by decreasing the constant 4 in the
denominator to 3, for example. However, as this constant
approaches zero, G2(S) approaches Gl(S). Another way to

increase low frequency accuracy is to increase K. Increasing
K, however, raises the whole response curve and the higher
frequency accuracy decreases, Stability is also reduced as

K is increased. Either method requires trial and error to
determine which K or which denominator gives acceptable res-
ponse in the desired frequency range.

Figure 2 shows the result of playing a field-recorded
acceleration signal into GZ(S) with K = 1, The acceleration

signal was recorded at the front wheel spindle of an M656
5-ton 8x8 cargo truck as it traversed the Aberdeen Proving
Ground Belgian Block Course at an average speed of 15 miles
per hour, The displacement signal peak to peak magnitude of
12 feet (Figure 2) was observed during the recording of the
acceleration tape,

The accuracy of the approximate double integration
depends, of course, upon the transfer function used to per-
form this operation., The correlation between the field
recorded vertical acceleration of the wheel and the labora-
tory recorded vertical acceleration of the wheel can be
computed to numerically determine the accuracy of the double
integration.
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Filtered Noise

The idea of playing random noise, which has a flat
power spectrum, through a shaping filter to control a labora-—
tory road simulator has been suggested previously (references
1 and 2).

In order to apply this control technique, the vertical
wheel spindle acceleration must be recorded on magnetic tape
during field runs. From this data, a shaping filter for ran-
dom noise is desired such that the filter output is a
displacement signal statistically equivalent to the recorded
acceleration signal.
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Let the filter to be defined be a linear time invariant
function so that conventional methods of analysis may be
used. The total system is:

y(t) = h(t) x n(t) 1
Where--

n{t) is the random noise input
h(t) is the filter
y(t) is the output displacement

Using the convolution integral and fourier transform, as
described in reference 3, page 182, the following relationship
is obtained from equation (1):

S44¢E lH(Jan)l S o (E) (2)

Where—-—

(f) is the power spectral density (PSD) of the
desired displacement control signal

(f) is the PSD of random noise. This is a constant
and will be defined to be unity

H(j2rf) is the frequency response function for the
shaping filter

The relationship between displacement and acceleration
PSD's is defined to be:

1
de(f) Y o L . Saa(f) (3

Substituting de(f) in equation (3) gives:
_ 4 . 2
S,,(E) = (21f) |H(j2nE) | s_ () 4)
Since Snn(f) = 1 by previous definition:
H(j2nf) = -—-1——7 . /saa(f) (5)
2rf)

Equation (5) will now be use? to obtain from field data
the frequency response for the desired filter.
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Figure 3 is a PSD curve of the vertical front wheel
acceleration of an M656 5-ton 8x8 cargo truck. The accelera-
tion signal was recorded during field tests as Aberdeen
Proving Ground at an average vehicle speed of 14.2 miles
per hour. The test courses were the Belgian Block Course,
Three-Inch Spaced Bump Course, Two-to-Four-Inch Radial Wash-
board Course, Imbedded Rock Course and Two-Inch Washboard
Course. Substituting the values for Sza(f) from Figure 3
into Equation (5) results in the desired frequency response
curve shown in Figure 4. The desired curve was approximated
using an ESIAC algebraic computer by the following transfer
function where j2 # £ is replaced by the Laplace Operator S:

15.123 (s2 + 86.4 s + 2028)
H(S) = > 5 (6)
(8¢ + 10.55 + 1228) (S + 58 + 25)

1.0 O 4
0./ 4 /0
N
& .0/ 4 ‘§ 20
™)
Q
Q (72}
‘&7 001 L.30.
.0001d -#40 :
o./ /l0 /0. 200.

FREQUENCY Hz

FIGURE 8. FPSD OF FIELD RECORDED VERT/CAL
WHEEL ACCELERAT/ON
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The actual frequency response curve for Equation (6) is

the dashed curve in Figure 4. Figure 5 is the output of the
filter with a random noise input.

Since PSD is an approximate measurement and the actual
filte

r response function is an approximation of the desired
filter response function, the accuracy of this technique

depends upon the accuracy of the approximations. This tech-

nique is validated using statistical measurement techniques
such as histograms, cross correlation and probability density
functions.
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Terrain Profile

The two previous methods of control signal generation
required that vehicle dependent acceleration signal at the
wheel spindle be recorded during test course traverse. In
other words, new instrumented test runs must be made for
each different vehicle configuration. Consider now the
possibility of using surveyed terrain profiles to control
the road simulator system where the excitation is through
the wheel spindle as previously stated.

Surveyed terrain elevation data are readily available,
in reference 4 for example. The major problem to be solved
then is the transfer function from terrain to the wheel
spindle. This transfer function represents not only the tire
assembly dynamics but is also a function of the suspension
dynamics and the sprung mass. It is concluded then that a
mathematical model of the total vehicle system is required.
This model would be programmed on an analog or hybrid computer
and run in parallel with the road simulator to provide the
wheel spindle position control signal. The block diagram
of this systemis shown in Figure 6.
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Terrain _ | Computer Wheel Road
Profile o Model Position ~ lsimulator

FIGURE 6

System Block Diagram

The system in Figure 6 assumes an accurate model of
both the tire and the vehicle. ' The tire is a complex non-
linear system which is discussed thoroughly in reference 5.
A tire model can be made so complex that it is unwieldy or
it can be simplified to a second order mass-spring-damper
system. The latter case with a realistic non-linear spring
and point follower, Figure 7, may give satisfactory results
for the vertical control of a road simulator.

yo (t)

. L .
' 7 (t)

FIGURE 7

Simple Tire Model
Where—-

M is the unsprung mass

K is the spring rate

D is the damping coefficient
y(t) is the terrain profile
yT(t) is the wheel displacement
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NOTE that the velocity profile, y(t), of the terrain is also required,
The digitized terrain profile is digitally differentiated to obtain ¥(t).

Obtaining an accurate mathematical model of the vehicle dynamics
is facilitated by the availability of the road simulator, The
differential equations of motion for the vehicle are obtained using any
of the conventional techniques such as Lagrangian or Newtonian mechanics.
The equations are then programmed on an analog or hybrid computer. The
computer model and the road simulator are excited at the wheel spindles
with identical signals and the responses are compared. The response
is a combination of sprung mass output signals, which could include,
for example, pitch, bounce and roll displacements. The parameters of
the computer model are adjusted either manually or automatically such
that the error between comparison signals is minimized. Reference 6
presents a continuous parameter tracking technique which could be
extended to attain the automatic parameter adjustment,

Once the accurate model is obtained, its parameters may be easily
adjusted to maximize some index of performance such as driver comfort.
The sensitivity of any performance parameter to changes in each of
the physical vehicle parameters can be measured. This type of study
tells the design engineer a range of acceptable values for each physical
parameter. The physical parameters include spring rates, damping
coefficients, center of gravity location, wheel base, etc.

The above described technique is an ambitious undertaking
currently being implemented at TACOM, Extensive computer analysis is
required, but the resulting vehicle model will give the design
engineer a new tool with which to improve vehicle performance.

SUMMARY, Three methods for obtaining the road simulator control signal
(the input at the wheel spindle of the test vehicle) have been presented.

The double integration of field recorded vertical wheel spindle
acceleration and the filtered random noise both require field data
acquired by a vehicle similar to the test vehicle., These two methods are
well suited to long term durability studies.

The third method requires and facilitates the development of
an accurate mathematical model of the vehicle. The selected terrain
profile is played into the computerized vehicle model and the wheel dis-
placement signals from the model are then used to control the road
simulator,

The first two techniques have been used at TACOM to control

simulators. The third technique is currently being implemented; we
expect to be using it by December 1971,
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FUNCTTONAL PROPERTIES OF CsP-1 APPLIED
TO A FINITE LENGTH PRODUCTTON RI'N

RICHARD M. BRUGGER

Ammunition Precurement and Supplv Agence

Joliet, Illinois
b INTRODECT 0X
Io 1945 fiarcid Dodge {5.1] presented the first continuous sampling
Iy, walch nws conwr Lo be known as CSP-1. One of the unde:rlyving assumptions
in tae mathenatical formulation orf this plan is that it will be applied to
an unending flow of units. Using this assumption, among others, such
tunctional properties as Average Fraction Insgpected (AFT), Average Outgoing

Quality (A0Q), and Average Outgoing Quality Limit (AOQL) can be computed.

Casecs occur ia practice however, where the number of units for which
an acceptance decizion is to be made is neither unbounded nor even large
enough that Dodge's formulae for the functicoal properties mentioned would
apply. If coutinuous sampling is otherwisce desirable in these cases, it
is necessary to be able te properly determine plan parameters ii sufficient,

but not excessive, inspection is to be required.

Motivated then by both quality and cost considerations, formulae
were developed to describe the functional properties of CSP-1 applied tu a
finite number of units. This paper provides the derivation of these formulae

and some background discussion.
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2.0 SUMMARY
When a CSP-1 plan is applied to a specified finite number N of

units, AFly can be expressed as follows:

[ i 1-yJ
AFL = & (1 +Jf + (1-)((1-q* + Jfp) S
g Lo D) YJ6+ gyt )
(1-Y)~
where
i = the clearance number,
f = the sampling frequency,
J = N-i,
p = the probability that a unit is defective,
g = 1-p, and
Y = [(-fp) (1-qM)-pai]/(1-qP).

Under the assumption that defective units found are removed and replaced with

good units, AOQy can be expressed as follows:

AOQy = p(1-AFI)
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The variance of ‘outgoing quality for a plan applied to a finite number of
units can be determined exactly by using the expression for AFIy to derive
solutions to the unknown portions of Lasater's [5.2] variance model. The
complexity of the resulting formula for variance suggests that a digital

computer wculd have to be employed to obtain numerical solutions.

3.0 DISCUSSION

3.1 Background.

3.1.1 Continuous sampling. When product in a plant is moving in a continuous

flow, as for example on a conveyor, there are to be certain advantages to carry-

ing out inspection also on a continuous basis as the product is flowing past the

inspection station rather than forming lots and subsequently drawing a random
sample from the lot. One of the most obvious advantages is that the discovery
of a defective unit in the flow of product can provide a signal that a flaw
may be present in the process. Necessary corrective action then can be
initiated immediately. The sampling plan used to determine conformance of

product thereby serves as a process control tool also.

Continuous sampling was the innovation of Harold Dodge, who in 1943
provided the mathematical rationale and the rules of operation for the first
continuous sampling plan, which has come to be known as CSP-1. The initials

stand for "Continuous Sampling Plan"'.
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3.1.2 CSP-1. The rules of operation for CSP-1 are shown on Figure 1. At
the start ot inspection, the screening crew inspects 100% of the units.

This 1007 inspection is continued until some predetermined number, i, of

consecutive units, are defect free.

At this time, the screening crew is released from 100% inspection
and the sampling inspector inspects a fraction, f, of the units, where the
sample units are selected in a random manner. When the sampling inspector
finds a defect we go back to the beginning of the cvcle, and again the
screening crew inspects 1007 of the units. It can be seen then that CSP-1
consists simply of alternate sequences of screening, or 100% inspection,

and sampling inspection.

For CSP-1, then, two parameters define the plan. The first of
these is the clearance number, to be identified hereafter as i, the
other is the sampling frequency, to be identified hereafter as f,
For example, our sampling plan might have the parameter i equal to 200 and

f equal to one-tenth.

3.1.3 Functional properties of a CSP-1 plan. Knowledge of certain properties
of continuous sampling plans is necessary for intelligent use of the plans.

The first of these properties is Average Fraction Inspected, or AF1, which

can be defined as the expected value of the fraction of material that will be

inspected over an indefinitely long pericd of time when each unit has
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FIGURE 1

PROCEDURAL DIAGRAM FOR CSP-1

START

Inspect each unit until i consecutive
units have been found defect free.

free units

Inspect each unit with probability f
until a defective unit is found.
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probability p of being defective.

The next property is Average Outgoing Quality, or A0OQ, which can
be defined as the expected fraction of material that is defective in accepted
material over an indefinitely long period of time when each unit submitted

for inspection has probability p of being defective.

The maximum value of the AOQ that can exist for a plan if we consider

all values of p, is called the Average Outgoing Quality Limit or AOQL.

Notice that we have implied in the above definitions that p is
constant over all units. Other properties can be described when p is con-
sidered a variable. However, we shall not discuss these other properties

in this paper.

3.1.4 Dodge's expressions for functional properties. Dodge, under an
3% prop 8

assumption of an unending flow of units of product, and using mathematical
methods based on geometric distributions and expected values, determined

the expression for AFI for CSP-1 to be

where q = 1l-p.
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The AQQ for each value of p can then be found simply as

A0Q = p(1-AFID)
when defective units found are removed and replaced with good units. This
replacement assumption will be the only one considered in this paper,
primarily so we will later be able to use the work of lLasater for checking

purposes.

3.1.5 Evolution in methodology. Before proceeding, it will be appropriate

here to digress for a moment to discuss the evolution in mathematical
methodology associated with continuous sampling theory. We will mention only

those works which have some connection with what will follow; we do not

pretend that we are providing a thorough history of continuous sampling.

As mentioned, the original work in continuous sampling was carried
out by Dodge. The next event of interest to us is the application of Markov
chain theory to continuous sampling plan development, described in 1955 by
Lieberman and Solomon [5.3]. The beauty and power of Markov chain methods led
to many new developments; in fact, statisticians working in continuous
sampling were inevitably drawn to learn the fundamentals of Markov Chain
theory. A paper by S. W. Roberts [5.4] provided some Markov chain approaches
to CSP-1 formula derivation. Lasater, using a Markov chain approach from
Roberts, carried out some studies on CSP-1 applied over a finite number of

units.
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Qur discussion will now run somewhat parallel to material presented
by Lasater in his dissertation. The notation, to the extent possible,

conforms to Lasater's although there are some differences.
Similarly, our Markov chain state construction resembles closely
that of Lasater, although his chain was constructed to describe A0OQ, whereas

ours is constructed to describe AFI.

3.2 The Markov chain approach.

3.2.1 The states of the chain. Let us define a Markov chain with each

state s of the chain corresponding to a unit of product that can be

associated in a certain way with the operation of a CSP~1 plan.

Let
= H(k-1

for k=1, . . . 1 which denotes the case where 100%
inspection is in effect and the unit corresponding
to this state is the ktD unit in an attempt to clear
i consecutive nondefective units.

Si4p TSI
which denotes the case where sampling inspection is
in effect and the unit corresponding to this state
is selected for inspection.

Sitp = SN

which denotes the case where sampling inspection is in
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effect and the unit corresponding to this state is not

selected for inspection.

It is seen that every possible situation (unit-wise) has been covered in

a set of it+2 states.

3.2.2 The transitional vrobability matrix. Figure 2 provides the trans-

itional probability matrix for the Markov chain corresponding to CSP-1
with states just described. An element of the matrix locafed in the jth
row and kth column is the probability of going from the state identifying

the jth row to the state identifying the kth column.

3.2.3 Some properties. Lasater has shown that the Markov chain he used

to describe CSP-1 is discrete, finite, recurrent, irreducible and aperiodic.
By definition, the Markov chain used in this paper has these same properties,
and we will therefore make use of certain properties described by Lasater.
First, let 1'% denote the vector of state probabilities after k transitions.
The elements of this row vector are then the probabilities of being in,

respectively, HO, Hl, . . . , H(i-1), SI and SN after k transitions, and
H'n = n'n"l P = an—2 P2 =, ., . = Hlo Pn

where gj is the jth

power of the transitional probability matrix P. This
property was used by Lasater, who provided numerical solutions to several

CSP~1 examples by performing series of transformations on a digital computer.
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Lasater's numerical solutions therefore provided a good checking device

for our derivations, as will be explained later.

Further, let 1lim H'" = I
nw)-ou

, that is, let N' be defined as the row vector

of limiting probabilities. Then NI'P = NI' for the type of Markov chain
described here. That is, the row vector of limiting probabilities is

transformed into itself by the transitional probability matrix.

The derivation that we shall now provide for the AFI of a CSP-1
plan applied only to some specified finite number of units will make use
of the algebraic equality expressed in this last property, disregarding,
however, what gave rise to the equality. In other words, given the vector
of limiting probabilities (regardless of how we got it!), we know that
the transitional probability matrix transformation will have no effect on

the elements of this vector, because of the equality described above.

3.3 Derivation of AFIy and AOQy

3.3.1 The elements of the row vector of limiting probabilities. In order

to proceed on to our derivation, we must first solve for the elements of the
row vector of limiting probabilities. Using the usual algorithms for solving
this vector, such as those given by Roberts, for example, one easily finds

that
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it!

(1 (HO) T(HL), . . . , I(H(i-1)), 1(SI) M(SN))

T PL s - - o _pgiTt £qb (1-Hqg’
= D D D D D

where D = f(l‘qi) + qi

We next have need to determine the ratio of the probability of
occupying a state associated with 1007 inspection to the probability of

occupying a state associated with sampling, either inspected or skipped.

Because of disjointness, the probability of the union of H's can

be found by addition to be

i-1 i
Prob U Hj = fl-g97)
3=0 f(1-q1) + qt
In a similar fashion,
i
Prob (SI U SN) = . S

f(1-ql) + gt
Finally, the desired ratio is found to be

i-1
(Prob U Hj)/Prob (S1 U SN) = f(1-q')/q?
j=0
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3.3.2 Definition of AFly. For a CSP-1 plan applied to a finite number

n of units, define AFIy as the Average Fraction Inspected of those N.
For N<i, AFIN is 1.

For N>i, let us define J=N-i, so N=i+J. By definition, AFIy is
% (Expected Number Inspected) or %-(i + Expected Number Inspected of last

J).

3.3.3 The derivation. Let us now consider the operation of a CSP-1 plan.

The first i units will be frée of defects with probability qi, in which case
sampling can be initiated. The first 1 units will contain at least one defect-
ive unit with probability l—qi, in which case screening must be continued. What
we want to attempt to do now is segment these probabilities and treat at least
part of the problem here. We will attempt to do any segmenting in such a
fashion that for at least part of the problem we can work with the vector of

limiting probabilities.

We can proceed as shown in Table I, by segmenting l—qi into two
portions, £(1-q1) and (l—f)(l—qi). Following segmentation, all of the states
associated with screening have the same relationship with each other as they
do in the vector of limiting probabilities. The segmenting by the factor f
would act on each of these probabilities in the same manner. The result is

that now relative to both the state probabilities associated with sampling
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TABLE 1

SEGMENTATION AT (i+l)st UNIT

Screening Continues f(l—qi) + (1-£) (l—qi)
Sampling Initiated ql
£(1-qly+qt (1-f)  (1-¢%)
Enter Path A Stay on Main Path
(See Fig. 3) (See Fig. 3)

AERAKRAAKRAKRKAA AR A AR IR AAAAARRAARARKR A A R A ARR A AR AR RAAAAAARARAR AR AR AR A A kA hhkhkhhhkhkhhhhhhkhkhkikhkhkhkk:

FIGURE 3

EXAMPLE OF PARTIAL SOLUTION OF PROBLEM

{ \ Figures in circles are probabilities of
/ being inspected.

, /
. .
1 3 Probability of moving from one circle to
7 another is written by line joining the
N circles.
{ 1
\

jas)

B

< |

=

o SN
—

3
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and that portion ,associated with screening segmented by the factor f, the
relationship between state probabilities is the same as in the vector of
limiting probabilities. Now, if we talk about probabilities given that

we have entered Path A, say, (see Figure 3), we find that we are talking
about the vector of limiting probabilities. The ratio f(l—qi)/qi obtained
previously has thus served as a guide for telling us how we must segemnt

if we want to reach a point where part of the problem can be handled.

Now, since we have established that given Path A, the state probabili-
ty vector will equal the limiting probability vector, and since the trans-
itional probability matrix will transform this vector into itself, we see that
the probability that a unit is inspected is constant over all units in the

path and can easily be shown to be AFI (as defined for the infinite case).
For Path A only, then, the expected number of units becomes

J (f(1-q}) + ¢b) aF1

J (F(1-gh) + by —E—— = g,

£(1-q1)+qt

a result surprising for its simplicity.

Considering now also the portion treated in the main path, for
J=1 we can now say

AFIy = %<(i+f+(l~f)(l—qi))
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which is what we obtain also if we treat the problem through more direct
probabilistic considerations by considering all possible outcomes if we

have one more unit to be inspected than the clearance number, 1i.

As the work thus far may have suggested our strategy will be to go
step-by-step down the main path, breaking cff on side paths such as Path A
as circumstances allow, until we are finished. However, one might well dread
having to go through additional mathematics on a step-by-step basis, considering
how long the problem might become. This is not necessary, because after the
first i units have been inspected, the probability of initiating sampling is
qi. From the main path, from the (i+l)st unit on, the probability of
initiating sampling from each point is pqi/(l—qi), which is the probability
of clearing i at that point given that screening was in effect for the i

units preceding the unit in question.

Therefore, what we cover now is applicable from this point on.
Since we will initiate sampling from the main path with probability pq%(l-qi),
we will remain on screening with probability l—pqi/(l—qi) = (1—qi—pqi)/(l-qi),
and this latter expression is the one we will want to segment in such a
fashion that the relationship of the portion segmented to the quantity
pqi/(leqi) is the same as the ratio f(l—qi)/qi. The portion to be segmented

is then easily found to be fp(l—qi)/(l—qi)-
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Table II shows how the segmenting is carried out. Figure 4 is a
continuation of the illustrative example begun in Figure 3. To our previous

answer, we can now add

. : iy, i
(1-f) (1-qt) RUEU=q7)*q7) (J-1) AFI

1-q1
. 11 i
= (1-f) (1~q1) Eﬁéﬁi;%_liﬂ_) (J-1) -——-jéf—_if
1-q f(1-q7)+q

= (1-f)(1-ql) REUZD) oy path B.
(1-q¢h)

To handle going to the (i+2)nd unit on the main path, we can add

(1-1) (1-q1) (1=fp)U=a))-pah)
(1-q*)

= (l—f)(l—qi)Y, say, for ease of notation,

Note that in Figure 4 we have also taken care of the (i+3)rd unit on
the main path and Path C, since, as we have mentioned, the segmentation will

occur as shown in Table II.

We are now able to generalize, using the concept illustrated in Figure
4 as a guide. We can describe the expression for AFIy as
J-1 J-1

AFIy = £ GHIEH(I-D) (1= (2 v+ 2 5 -5-DY))
j=0 1-g* j=0
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TABLE 11

SEGMENTATION AT (i+2)nd UNTT

SCREENING CONTINUES £p(1-ql)y/(1-qh) + ((1-fp) (1-gt)-pql)/(1-¢1)

SAMPLING INITIATED pal/(1-qh)

. . i . .
(Fp(1-q)+pal)/(1=a")  ((1-fp) (A~q})-pqh)/(1-¢1)
Enter Path B Stay on Main Path
(See Fig. 4) (See Fig. 4)
Kk A A KA I IIRKRAK KKK AR IAEKAKRAIARKKARRARKARRRARKARKRAKR I AR AR AR KKA KRR AR AR A AR R AR AR R AR IR KRR KRR Kk

FIGURE 4

COMPLETE EXAMPLE

START
pe
//
| ) : N =6
L J =3
1 -
///’ N Figures in circles are probabilities of
/ \ being inspected.
! 1
\ )
. i Probability of moving from one circle to
1 \\ji// another is written by line joining the

~ circles.

(1-£) (1-q* \(1 qhy+qt

PATH A
\ 7 PR
\ 1 / g(f(1—91)+g / AF1 /__)/ afL bV 7 AP \)
i AN 1 qt . /! A _>(
A-tp) (=g -pty” n S .
d \ PATH 7//
l\ i/ (f(1-q1)+q®) AFT >  AF] !
N ) 1- q i \ /l \\ //I
(1-£p) (1-qi)-pgi — S

PATH C

) ()
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Simplifying, by using geometric progression relationships, we obtain

J-1 J
r Y= %E%—
j=0
J-1 , J-1 J-1 .
EU-3-DYd =02 oyl - o G+DYd
j=0 j=0 j=0
J-1 7
Jz oyd=1 %5%—
j=0
J-1 J-1 3 +
N ETRT PSR W L R N & kil
j20 2o dY dy ~1-Y
_ 1 - (J+D)yd + gyJtl
(1-v)?
So AF[N

) J
= l»(1+Jf+(1—f)(1—ql)((1+ Jip oy 1Y
N 1-qb 1Y

fp  1-(J+1)yJ+gydte
1-qt (1-Y)?

))

1 ) . l—YJ
= N (1+Jf+(l—f)((l-q1+pr) i
1= (J+1) yd+3yI+1 )

(1-¥)?

- fp

We can describe AOQy as simply AOQy = p(l—AFIN).
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3.3.4 Checks. Because of the many steps taken to arrive at the result
shown above, a method of verification seemed prudent. Three different kinds

of checks were carried out.

First, for J from zero through two, the problem was attacked using
direct probabilistic pethods Dy considering possible results along with
their probabilities of occurrence, etc. and constructing an expression for
AFly. This check was successful. The rapid increase in complexity of this

checking method as J increases limits its value. Of course, this check

proves nothing for higher values of J.

The next check was to find the limit of our derived expression for
AFIy as N (and thus J also) approaches infinity; the limit was found to be

Dodge's expression for AFI, as it should be.

Finally, the numerical values of AQQy provided by Lasater in his
dissertation via curves were compared with AOQN=p(1—AFIN) for several different

plans and several values of p, and found to be equal.

3.4 Variance of outgoing quality.

3.4.1 Background. Under the assumption of an unending flow of units, no
concern need be expressed over the variance of outgoing quality, since the
variance will be zero when considered over an infinite number of units.
However, if a plan is to be applied over a specified finite number of units,

variability of outgoing quality may be of concern; it is conceivable that
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outgoing quality might be '"considerably" poorer than the computed AOQy,

or it might be "considerably' better. Lasater derived an expression for
variance of outgoing quality; however, as he pointed out, two unknowns

still remained in his expression. With the expression for AFTy Just obtained,
we are able to complete his expression. The result is somewhat complicated;

digital computer solutions will be required.

3.4.2 The model. Lasater's model for the variance of outgoing quality can

be expressed as follows:

N
) - - m - Pl
Vdr(OQN) (%2 p PHO oN (1-p pHO,SN)
m=1 ’
+2p% ¥ pm_ o (pr-m . pIL - })/N?
mer=p HO,SN " SN,sN HO,SN

where Pi y is defined as follows: if at some time we are in state X, we
1]

will be in state Y after Z transitions with probability P§ y
’

o Kk Kk . .
The unknown quantities are PHO,SN and PSN,SN . We will now derive expressions

for these quantities.

k

4.3
3 HO,SN. We are concerned with the probability that if we are in

state HO we will be in state SN after k transitions.
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without~less of generality, we can consider the short production run
situation described hieretofore.

)

Then P;O N can be considered to be the probability that the (k+1)st
, S1

unit is skipped, which is

1 - Prob ((k+l)st unit is inspected)

= 1 - [(k+DAFL ., - k AF1;]

k
b PSN oN

We will now derive an expression for the probability that

if we are in state SN we Qill be in state SN after k transitions. Unfortunate-
ly this is a more complicated problem than was the case for PEO SN
s

It is given that the starting point is a skipped unit. After the
first transition, we know that we are in one of the states associated with
sampling: inspecting, or in state SI, with probability f, and skipping, or in
state SN, with probability (1-f). Consider the following mutually exclusive
events: a defect is first found on unit j, j=1 . . ., k, or no defects are
found at all. (Notice that here we are talking about k rather than k+l units

since it is given that the first unit is skipped.)
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Let us now define a new function, denoted AFIj(S), which shall
be Lhe average fraction inspected over j units given that the first unit
falls in a sampling sequence and is inspected or skipped w:th appropriate

probabilities.

Then clearlv, using the same kind of reasoning as was used previous-

ly,

Pk = 1 - [k AFIL,(S) - (k-1)AFI (S)]

SN,SN ke I8 k-1 :

It will therefore only be necessary to derive an expression for
AFlj(b).

Let By be the expected number of units inspected through the hth,
given that a defect was found on the hth and no defects were found on the

first h-1. This is found to be

h=-1 /7 A © < \h-1-g
rg "hifEe (—-f } 1
g=0: 8 /\1-fp/Al-fp,

\

Now, if we should find a defect on the hth

unit in a sequence of
k units, we may consider that the (h+l)st unit will correspond to state

HO. Therefore, the average fraction inspected among the last k-h units

is simply AFIy_, .
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We can then formulate AFIj(S) as follows:

f—
[y

AFI3(S) = 3 [C T (By + (J-h)AFLy_p) A-£p) " Lep)a(Byy 1 -1) (1-£p) ]

—

h=1

It can be seen that the last term on the right hand side merely
takes care of the case where no defects are found at all in the j+1 units.
Having thus obtained expressions for the P% y » the variance of
bl

OQN can be obtained.

4.0 FURTHER REMARKS

The results contained in this paper will permit sets of parameters
to be developed for continuous éampling plans for a specified number of
units. These sets of parameters can be constructed to yield a desired set
of AOQL's; this has not been possible with previously developed finite

length plans, such as CSP-A contained in MIL-STD-1235(ORD).

Perhaps some extension of the segmentation technique described in the
paper will permit description of the finite properties of continuous

sampling plans more complicated in structure than CSP-1.

It is also likely that there exists Markov chain application areas
other than sampling plans wherein the segmentation technique could be used

to describe finite properties of a process.
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THE USE OF A DESIGN OF EXPERIMENT FOR DETERMINING
OPTIMUM BRIGHTNESS OF PHOSPHORS EXPOSED TO HIGH-
ENERGY ELECTRON-BEAM BOMBARDMENT

Joseph M, Velasquez and Isidore H, Stein
Electronics Technology and Devices Laboratory
US Army Electronics Command, Fort Monmouth, New Jersey

ABSTRACT

A design of experiment was prepared to plan and analyze
experiments for a research and development program investigating the
high-energy bombardment of phosphors. A 33 factorial design was used
to identify the optimum conditions for obtaining the maximum brightness
from specific phosphors that were exposed to a high-energy electron
beam, The factors varied in the experiments were beam voltage, beam
current density, and phosphor thickness, Quadratic expressions derived
from the experimental measurements were obtained from a computer pro-
gram using a Yates procedure of data analysis. Contour surfaces in a
three~dimensional factor space indicating the optimum conditioms for a

number of particular phosphor compositions are presented.

The remainder of this paper was reproduced photographically from the
manuscript submitted by the author,
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THE USE OF A DESIGN OF EXPERIMENT FOR DETERMINING
OPTIMUM BRIGHTNESS OF PHOSPHORS EXPOSED TO HIGH-
ENERGY ELECTRON~BEAM BOMBARDMENT

INTRODUCTION

The purpose of this investigation of high-energy electron bombardment
of phosphors was to identify the optimum conditions for obtaining the maxi-
mum brightness from phosphors. This information will be used to develop
high=brightness cathode-ray tubes (CRT's) for viewing at ambient conditions
of high brightness for projection cathode-ray tubes, and for a potential optical
pumping source for laser excitation.

Electron-beam excitation of phosphors with the generation of light
(i.e., cathodoluminescence) is a complex process that isn't fully under-
stood. There exist experimental studies, however, that provide plausible
explanations of what happens when an electron beam strikes a phosphor.

An experimental design was used to generate a functional relationship
for brightness and thus obtain a better understanding of catholuminescence.
Exploratory experiments were made to screen out unimportant factors so that
following experiments would involve fewer variables. This was done with
three-level Graeco-Latin square designs where electron-beam voltage, beam
current density, and phosphor screen thickness were selected as the final
factors. A 3" factorial design was used and a computer program was
written to obtain quadratic expressions for brightness with the Yates
procedure of data analysis. The empirically derived quadratic expression
and the actual data were compared. Computer derived contour surfaces of
brightness were derived for two different phosphors - P2(ZnS: Cu) and P24
(Zn0) .

BACKGROUND

There are several theories in the literature that explain the complex
processes in catholuminescence when a beam of high-energy electrons bom-
bards a phosphor. Garlick! identifies the first process as the creation
of back~scattered electrons because of primary-electron reflections and
low=-energy secondary electrons. Since the substrate of the phosphor samples
in this study were 400 volts positive with respect to the anode of the
electron gun, all back-scattered electrons were collected in the phosphor
material. Lehmann® describes the process of producing excitation transition,
which consists of penetrating electrons creating a cascade production of
secondary electrons and localized excited states in phosphor crystals.

Popov® states that freed electrons in the conduction band and holes in the
valence band initially distribute themselves in a ''nonequilibrium manner.'
This changes to an equilibrium distribution near the bottom of the con-
duction band and near the top of the valence band by thermal equalization
transferring part of the initial excitation energy to the crystal lattice,
The time for thermal equalization is about 1072 second. The charge carriers
will diffuse through the crystal; nonradiative centers, trapping centers,

and luminescence centers compete for the carriers®, Light output will be
produced when electrons recombine with holes that were previously captured

by the luminescence centers, as described by Dekker?,
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in spite of the above work, no theoretical model has yet been developed
for brightness as functions of excitation conditions and phosphor thickness,
since most of the materials studied have been microcrystalline phosphors
that make the interpretation of data difficult because of the complex
geometry®. In 1903, Lenard® found that brightness and voltage can be
related by the following expression:

L oo (V-vg)?

where vy, is the dead voltage with q assumed to be unity (it may be greater
than two).

Einstein’ states that there exists a linear relationship between
luminous output and current density for current density levels up to 10-2
A/cm® for Zn0 and ZnS=-CdS phosphors with a beam voltage of 50 kv. Tarlick®
shows that luminescence intensity per unit area of a phosphor screen is
proportional to current density for small values of current density (e.g.,
200 A/cm® for Zn$S=-Ag phosphor).

As one can see from the above, the theory of cathodoluminescence
hasn't yet produced the mathematics that would describe the optimum condi-
tions for light output.

APPARATUS

A demountable vacuum system is shown in Fig. | with an electron gun
to the right and a high-capacity vacuum pump providing a vacuum of 10°% Torr
to the left. The system is all metal except for the light-output observation
window, the isolation phosphor sample holder, and the electron-gun glass
envelope extension (see Fig. 2). The phosphor sample is kept at Loo volts
above the surrounding grounded anode in order to collect secondary electrons.
The entire vacuum system is encased in 1/8 inch of lead for X~-ray protection
of nearby personnel. A mirror system transmits the phosphor light~output
for the displaced aperture to prevent direct X-ray irradiation.

The angle of incidence for the electron beam with respect to the
plane of the phosphor sample surface is L5 degrees. The excited or luminous
phosphor surface is viewed at 45 degrees with respect to the plane of the
phosphor sample surface. The dimensions of the projected area of the
excited phosphor surface are measured with a cathetometer (a short-range
telescope supported on a micrometer movement). The average brightness in
foot-lamberts (fL) of the projected area of the excited phosphor surface
is measured with a Spectra Brightness Spotmeter, which is calibrated with
a 100 foot=-lambert ''standard brightness source. The average brightness
is computed from the readings of the spotmeter by applying a correction
for the optical transmission attenuation factor (i.e., 70%) and the area
ratio of the reticule in the brightness meter to the projected excited
area (i.e., 31.8).

~957-



DEMOUNTABLE VACUUM SYSTEM

Fig 1



PHOSPHOR SAMPLE

]

1

ISOLATION SUPPORT

LASS ENVELOPE
l—ELECTRON GUN

VACUUM

PUMP

+

TE

.

‘ l BEAM
POSITION

g° SUPPLY

FOCUS
coiL
SUPPLY

HK H

G

CONTROL

CONSOLE

D.C.
100 kV
SUPPLY

t—'OILIMMERSED
CATHODE HEATER
8 GRID SUPPLY
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2

GRAECO -LATIN SQUARE DESIGN WITH AREA DENSITY OF 6.8 mg/cm

TABLE I
WATER - FLOW VOLTAGE (kV)
RATE (cc/ MIN) 0 20 30
0 5/5 (1) 10/10(38) | 15/1(55)
500 15710 (12) 5/1(18) 10/5 (31)
1000 10/ 1 (18) 15/5(38) | 5/10(29)
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The above preliminary data analysis indicates that water-flow
rate and time duration don't need to be considered in the following
experiments.

There exists evidence in the literature of phenomena (such as,
ionization, self-absorption of light, and thermal effects) that wouldn't
make the remaining factors independent of each other. That is, there is
a possibility of joint effects or interaction between factors. One isn't
able to estimate interaction effects if one uses traditional methods of
experimentation by variating one of the factors and keeping others constant.
In order to define optimum or maximum light-output response, three-levels
would be needed to obtain a quadratic function for brightness, Therefore,
a 3% factorial design for each phosphor composition was selected with
voltage, beam current density, and area density as factors.

P2 and P24 phosphors were selected because they represent two
different types of phosphor -a sulfide phosphor and an oxide phosphor.
Each copper substrate contains six areas that are available fur beam
bombardment. All six areas have a phosphor layer assumed to be of uniform
thickness. The units of phosphor thickness or area density are expressed
in milligrams per square centimeter. Each area is randomly selected for
beam bombardment and it is used twice, since the assumption is made that
each brightness measurement is independent of the previous measurement in
the same location. The 12 measurements of each copper sample consist of
9 measurements needed for factorial design and the 3 replicate measurements
are used to provide error estimates caused by any possible nonuniformity
of phosphor thickness or deleterious effects of previous measurements.
Three sets of 12 measurements supply the experimental design for each phosphor
with 27 data values of the required 3® factorial design and with replicated
tests of measurement error and measures of phosphor uniformity for each
copper sample,

The data with replication for P2 phosphor, are given in Table {ll. The
factors are represented by capital letters and the three levels by correspond-
ing small letters with the numbers -1, 0, 1 as suffixes. The factors have
the same notation and units as in the previous Graeco-Latin square design
except that brightness is now expressed in foot~lamberts and area density
is represented by T. The levels for voltage are 20, L0 and 60 kv; the
levels for beam current density are 100, 175, and 250 uA/cm®; and the
levels for phosphor and density are 2.4, 7.7, and 12.6 mg/cm?.

The above information was processed by a computer using the Yates
procedure for a 3% factorial design. The results are given in Table V and
Table VI. The coefficient column provides the coefficients in the quadratic
function for brightness. Since there is no complete direct estimate of the
experimental error variance, the combination of the three-factor inter-
actions was used to form an estimate of error, since the higher order effects
are assumed to be negligible.
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TABLE Il LIGHT YIELD IN FOOTLAMBERTS FOR P2 PHOSPHOR

LEVELS OF FACTOR T

t, to t

LEVELS OF FACTOR V LEVELS OF FACTOR V | LEVELS OF FACTOR V

V.| Vo Vi Voo Vo Vil V4 Vo Vi
N | 16218 35298 33398 | 40068 55332 76320| 38160 95400 85860
§ ) 30528 77274 85860
(&
&| . |28620 42930 43884 | 47700 90630 85960 54378 104940  104940)|
wl Jo 45792 89676 100170
n
§ j | 3914 47700  49608| 49608 85860 100I70| 76320 95400  114480|

i

w 41022 50562 74412
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TABLE I¥ LIGHT YIELD IN FOOFLAMBERTS FOR P24 PHOSPHOR

LEVELS OF FACTOR T

t-1 to i

LEVELS OF FACTOR V LEVELS OF FACTOR V | LEVELS OF FACTOR V

Vi Vo v | V_ i VO Vi V| Vo V|
- j 858 9540 8586 | 143! 8586 8586 | 763 9540 5724
gl 8586 7632 6678
-
(&)
& j 143| 11448 8586 | 1908 9063 6678 | 143 9540 5247
=1 I 1448 7632 9540
(/2]
o j, | 2099 13356 8586 | 267 7155 5724 | 1908 7632 4293
> [}
w 1908 2862 717
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TABLE ¥ ANALYSIS OF THE 3 FACTORIAL EXPERIMENT FOR P2 PHOSPHOR

SOURCE OF VARIATION | COEFFICIENT | SUM OF  DEGREES OF | MEAN | VARIANCE
SQUARES FREEDOM SQUARE RATIO
MAIN EFFECTS
5 LINEAR 10200 1.87x 10° | 27.41*
QUADRATIC -1320 9.35x107 i 1.38
v LINEAR 16 800 5.10x10° [ 74.78%
QUADRATIC -4070 8.95x109 [ 13.)2¢
T LINEAR 23800 1.02x10'° I 149,561
QUADRATIC -2960 4.73x108 | 6.53%
TWO - FACTOR
INTERACTIONS
o Vi -9 I.71 x 105 [ 0.00
Jo VL -252 2.28x|06 i 0.03
JU Vo 1520 8.36x107 [ .22
Jo Vo 1000 1.O7x108 I 1.57
Joo T 994 119x107 | 0.17
Jo TL -172 1.07x 108 ! 0.02
Ju To -225 1.83x 106 I 0.03
Jo To 428 1.98x 107 I 0.29
Vi L 8070 7.8/ x108 ! 11.43*%
Vo TL -1920 1.33x 108 | 1.95
w To -2000 .44 x 108 | 2.11
Vo Ta -314 1.06 x 107 | 0.15
THREE - FACTOR 8 7
INTERACTIONS 5.45x 10 8 6.82x10

+ HIGHLY SIGNIFICANT : P £ 1%
% SIGNIFICANT : 1% <P<5%
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TABLE ¥I ANALYSIS OF THE 3> FACTORIAL EXPERIMENT FOR P24 PHOSPHOR

SOURCE OF VARIATION | COEFFICIENT | SUM OF  DEGREES OF | MEAN  VARIANCE
SQUARES FREEDOM | SQUARE | RATIO
MAIN EFFECTS |
LINEAR -15.9 4.55x 103 | 0.00
J | QUADRATIC -42.4 9.71 x 10% | 014
v LINEAR 2640 |.26 x 108 { 183 40+
QUADRATIC -1740 | .63 x 108 | 237 20+
T LINEAR -996 | 79x107 | 26.05+
QUADRATIC 175 | .65 x 108 | 2.40
TWO - FACTOR
INTERACTIONS
b VL -652 5.10 xI0® | 7.42%
Jo WL 10.6 404 x10® I 0.00
I Vo a7.7 8.19 xi0* | 0.12
Jo Va 59.4 3.74 x10° I 0.54
BT -644 4.98x10°8 I 7.23%
Jo TL -60.9 1.34x 105 ! 0.02
J To 199 | 42 x10° [ 2.10
Jo To -18.5 3.72x10% | 0.0l
Vi L -8li 7.89 x10° [ 1.48*
Vo TL 138 6.84 x10° | 0.99
L Tq |22 5.35x10% [ 0.78
Vo To -270 7.89 x 108 [ .48+
THREE - FACTOR 6 5
+ HIGHLY SIGNIFICANT @ P £ %

%* SIGNIFICANT

1% <P<5%




The variance ratio or F~test shows that both phosphors have significant
two-factor interactions indicating the factors aren't independent of each
other. 1|f one selects the coefficients whose variance ratios are significant
and highly significant, one has the following functional relationship
between brightness and the factors for P2 and P24 phosphors, respectively:

B =

+

and

64300 + 10200 x (J=156)/39
16800 x (v-40)/20-4070 x (v-L40)2/202
23800 x (7-6.2)/3.9 + 8070 x (v-L0) x (T-6.2)/(3.9 x 20)

2960 x (T-6.2)2/3.9°

5980 + 2640 x (v-32.5)/25.5

652 x (J-175) x (v=32.5)/(27.5 x 75)

1740 x (v-32.5)7/27.5% = 996 x (T-7.7)/5.1
6l x (J=175) x (T-7.7)/(75 x 5.1)

811 x (v=32.5) x (T-7.7)/(27.5 x 5.1)

270 x (v-32.5)% x (T-7.7)%/(27.57 x 5.12)

where B is brightness,

J is beam current density

V is voltage, and

T is area density.

The empirical curve for brightness can be compared with the actual
data in Fig. 5, 6, and 7 for P2 phosphor, and in Fig. 8, 9, and 10 for P24
phosphor. The points for the empirical curve were determined by a computer.
Since the methematical expression for P24 phosphor has more interaction terms
than for P2 phosphor, one gets a better agreement between the empirical curve
and the data points with P2 phosphor.
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Figures 11 and 12 show the response or contour surfaces of brightness
for P2 and P24 phosphors where the surfaces are drawn in the immediate
neighborhood of the actual data points. Again, the points for the contour
surfaces were obtained from the general functional relationship for bright~
ness with the assistance of a computer. Since the contour surface for P2
faces outwardly, larger brightness responses may be achieved with higher
levels of all the factors. The contour surface for P24 faces inwardly
indicating that maximum brightness yield can be obtained with certain com-
binations of levels.

The existence of surface ridges is of great practical importance.
The contour surfaces of P2 phosphor indicate the existence of a stationary
ridge in a region outside of where the experimental data were collected.
The contour surfaces of P24 phosphor indicate the possibility of having
a rising ridge normal to the vertex of each surface cutting through the
contour surfaces in a clockwise direction. The significance of a stationary
ridge is that one will be able to choose from several combinations of levels
that will provide the same optimum light yields from a phosphor. The
presence of a rising ridge for P24 phosphor suggests that larger brightness
response may be found if one follows the rising ridge.

CONCLUSIONS

Mathematical expressions for cathodoluminescence of P2 and P24 phosphors
in regions near optimum light yields,were prepared from empirical techniques.
Empirical curves and actual data points were visibly compared to determine
the degree of goodness of fit for the derived expressions, Contour surfaces
of brightness were generated from the functional expressions. All this was
done with the aid of a computer.

The Yates method of analyzing the 32 factorial design showed that
factors of voltage, beam current density, and phosphor area density are
not independent. This would give credence to certain theories of cathodolumin-
escence (such as the presence of a charge region in phosphors) which would
explain certain interaction effects. Any explanation of the mechanism of
cathodoluminescence requires some consideration of interaction effects when
phosphors are bombarded with a beam of high-energy electrons.

The existence of a stationary ridge suggests that one may operate at
several conditions with the same optimum light output. The location of a
possible stationary ridge for P2 phosphor is in a region outside of where
measurements were made. For P24 phosphor, a rising ridge cuts through the
contour surface in a clockwise direction indicating that larger light output
may be obtained if one follows the rising ridge.

The 3° factorial experimental design provided the required information

on the effects of each factor and effects between the factors with a good
degree of precision and with a minimum of effort. Since joint effects are
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significant in the high-energy bombardment of phosphors, there may be
phosphors where three levels may not suffice when there are a large
number of interactions, Additional experimentation with different phos-
phors is needed to obtain a better understanding of cathodoluminescence
for utilization in developing electronic devices,
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EXPERIMENTAL COMPARISON OF OPERATIONAL TECHNIQUES FOR A
SEMIAUTOMATIC FLIGHT OPERATIONS CENTER

W. Paterson
American Electronic Laboratories, Inc.

E. Biser and H. Mencher
Avionics Laboratory, USAECOM, Ft. Monmouth, N. J.

ABSTRACT

During the experimental evaluation of a semi-automatic flight operations
center two methods of operation were compared. In one method, active
mode, the controller was provided with a display of the complete air
traffic situation and was allowed to anticipate and handle problems before
being alerted to the problem, 1In the other method, passive mode, only
problem situations were displayed in answer to an alert which the controller
received. The statistical comparisons performed and the results obtained
are presented. In particular, the analysis of the individual workload
items made to gain insight into the unexpected relationship discovered
between flight density and total controller workload is discussed,

INTRODUCTION

SAFOC was tested and evaluated at the Federal Aviation Agency
(FAA), National Aviation Facilities Experimental Center (NAFEC),
Atlantic City, N. J., by the U. S, Army Electronics Command (ECOM),
Avionics Laboratory (AMSEL-VL-G), Fort Monmouth, N, J. The evaluation
testing of the SAFOC was performed in two phases designated Phase I and
Phase TII.

The remainder of the article has been reproduced photographically from the
authors manuscript.
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General System Description

Included within the SAFOC system are the following subsys tems:

Data processing subsystem
Radar processing subsystem
Display subsystem

Manual backup subsystem

WA —
e o o @

The SAFOC provides an air traffic regulation service by collecting,
analyzing, and disseminating the information necessary to requlate the move-
ment of Army aircraft under instrument flight rules (IFR) and monitor the
movement of cooperating aircraft under visual flight rules (VFR). The air
controller(s) perform the air traffic regulation function using data proces-
sing and display equipment to provide the following capabilities:

a. Flight Data Processing

Flight data entry-air filed, ground filed
. Flight plan clearance

Flight plan activation

Aircraft position determination

Conflict prediction

Collision avoidance

Accomoodating flight plan changes

Flight plan deactivation

ONOOT WA —
s s e s e o .

. Flight Following

Flight Handoff
Identification Assistance
. Emergency Assistance

. Air/Ground Coordination

g. Ground/Ground Coordination

- Qoo

SAFOC provides five methods of flight tracking which, in order of
their assigned priority, are:

Data Link (auto-tracking cnly)

. Radar Beacon (auto-tracking)

Radar Beacon (rate-aided manual tracking)

Radar Skin Return (rate-aided manual tracking only)
. Plan Follow

oDonoTw
P .

Test Configuration

Figure 1 shows the SAFOC test operations and information flow
diagram. As illustrated, the scenario generator program, prior to actual
testing, generates scenarios and scripts based on random processes. At the
time of testing, the scripts are given to the flight simulator piiots, who
keep comprehensive logs of all actions.
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The pilots simulate actual flights using target generators which
are part of NAFEC's data Tink simulation.

Using a pre-determined operational mode, SAFOC controls the
simulated flights and produces exhaustive time histories on magnetic tape.
These histories include all actions performed by the equipment or by the
controller.

The raw output data tape and the target generator history tape are
processed using a series of formatting and editing programs.

The processed tapes are then operated upon using statistical program
in accordance with the design of experiments, providing the desired data
outputs to be described later.

Input Test Parameters

Two methods of operating the SAFOC System are defined as follows:

a. An active mode where all flights are displayed to the operators.
b. A passive mode with displays only as a result of alerts to
which the operator reacts. :

Three levels of traffic were generated to test the two methods.
Six controllers operate the SAFOC for each method at each traffic level.
Figure 6 shows the interactions of the test inputs.

The order of performance of the test runs was randomized to eliminate
the effects of the learning process of the operators in the course of perform-
ing the test runs,

Qutput Test Parameters

This output data consisted of the system performance measures and
system effectiveness measures which were obtained by reducing the data
generated from test runs on SAFOC.

The following system performance measures were evaluated:

1. Time to perform a service for each service
2. Service rate
3. Waiting time for service

Service time is time between initiation of service and completion of service.
The services to be considered were:

Typewriter

Handoff

Activate (Roll Call or Data Link Initialization)
Clear flight plan

Coordinate

. .

DB ON) —~
.
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6. Conflict resolution
7. Alert servicing

(a) Clearance alert

(b) Conflict 1 alert

(c) Conflict 2 alert

(d) Coordinate alert

(e) Emergency alert

(f) Flight overdue alert

(g) Flight plan complete alert
(h) Flight not active alert
(i) Poor tracking alert

(j) Handoff alert

For each service mentioned above, the service rate is determined
by dividing the number of times service is performed in a given time span by
the time span duration.

Waiting time for service is the time between initiation of a request
for service and the initiation of that service.

The system effectiveness measures were used to provide relative
rankings of the operational modes and to evaluate relative controller per-
formance. The following measures were chosen because it is believed they
represent the characteristics most important to the user:

a. Safety

b. Controller Workload

c. Communications Workload
d. Delays

e. Throughput

f. Capacity

g. Uncontrolled Time

Safety is defined as the number of near misses per aircraft mile
flown. This is measured by computing the number of flights separated by less
than the minimum distance during a run divided by the total number of flight
miles flown during that run. For the purpose of this measure, the run begins
when a steady state density is reached.

Controller workload is defined as total time for all flight hooks
in a given time span divided by the time span. Controller workload can be
used to estimate controller replacement rates, controller scheduiing, etc.
Since some tasks the controller must perform may be more taxing than others,
workload will be measured by task (handoff, conflict resolution, etc.) as
well as by total time that work of any kind is done.

Communications workload is defined as the time spent in communica-
tions during a run divided by the duration of the run.
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Delays are defined as the actual departure time delay from the
planned departure time. Delays are believed to be important in a tactical
situation. It does little good to get aircraft safely to a particular loca-
tion if they arrive too late to be of use in some situations. This measure
is easily computed by subtracting actual departure times from the planned
departure time.

Throughput is defined as the actual number of flights entered
during stydy state divided by the number of planned entries in that time
period. The number of flights entered in a given time divided by the number
of planned entrances measures the ability of the system to obtain a desired
throughput rate.

Capacity is defined as the peak flight density safely handled by
the system. This is obtained by performing a regression analysis on near
misses vs. peak density. System capacity is that peak density where the
resultant regression curve first exhibits significant non-zero slope.

Uncontrolled time is defined as the total time of flights within
the SAFOC control area without being controlled by SAFOC.

Differences Between Modes

Part of the experimental evaluation of the test bed involved a
comparison of two modes of operation, an active mode and a passive mode. In
the active mode, all flights were displayed at all times and the controller
was allowed to control the traffic as he saw fit. The computer still provided
services to alert him of conditions requiring action, but he need not follow
the computer recommendations and could anticipate and avoid problems before
the computer notified him of the problem. In the passive mode the display
was blank until the controller answered a request for service (an alert) or
requested display of a particular flight. Upon answering a request for service
the flight for which service is required is displayed along with pertinent
information about the flight. At most, two flights were displayed at once.

If two flights were in conflict both flights appeared on the display. In

the passive mode the controller was forced to accept the computer recommenda-
tions and could not anticipate probiems. In the passive mode the controller
only performed services which were requested. Figures 2 and 3 are examples
of active and passive mode displays. From Figure 2 it is seen that at high
densities the active mode display becomes very confusing because of the over-
lap of information.

Method of Evaluating Modes

Figure 4 shows the experimental design for the tests. Each
controller was tested at each density level operating in each mode for a
total of 36 tests from which the performance and effectiveness measures were
obtained for evaluation of the modes of operation.
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Example of Passive Mode Display

‘igure 2.
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The statistical tests for comparison of modes is shown in Figure 5.
The first step in the evaluation was to assure that all controliers were
operating at equal proficiency levels with retraining where required.

After this assumption is validated, the first test on the 36 runs
~is a test for interactions between traffic levels and the procedural modes.

If significant interactions are absent, the modes are compared over
all traffic levels.

If significant interactions are detected, the modes must be compared
at each traffic level.

The total experiment is a mixed model of fixed treatments consisting
of three traffic levels and two modes together with random blocks consisting
of the six controllers. Another view of the model is that we make six random
observations (controllers) on a 6-component vector consisting of the two methods
and the three traffic levels. Ranking was performed using the system effective-
ness criteria discussed earlier.

The mathematical tests for evaluation of the modes are outlined
below.

First the controller performance is tested using Analysis of Variance
for a two-way classification as shown in Tables 1 and 2.

If F =S, (R-1) < Fa; (c-1), (R-1) (C-1)

E3

accept the null hypothesis of no controller difference.

Then mode interactions are tested as shown on the following page.
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Table 1. Effects of Replications

CONTROLLERS
Replications 1 2 ol e C Row Sum
¢ —
! 1 X12 R RET § Xi; = Oy
c _
2 Xa1 X22 *| 1 X § Xp5 = Xy
[ ] * * [ ] ® ®
[ ] [ ] * [ ] ® [ ]
¢ —
R X1 Xp2 *1° | *re ?XRj = CXp
R R — R |RC -
Cotumn Sun | #X = Dty | 2y, = RX RX . = DXy, §§xij = RCX.

Number of controllers
Number of replications

Table 2. Analysis of Variance for a Two-Way Classification

DEGREES OF
SOURCE SUMS OF SQUARES FREEDOM MEAN SQUARE
Replications | S = ¢ (7} -X )2 R-1 S]/(R-l)
i . .. :
¢ v 12
Teams 52 = ? (X.j - X .) c-1 SZ/(C-])
R v v 2
Error S3=rZ (Xi. -X., -X.+X ) (R-1) (c-1) S3/(R-1) (c-1)
i3 i i. 3 ..
RC o
Totals 54 =r: (Xi' -X ) RC-1 —
i3 J ..
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Mode Interactions with Traffic Level

Assume:

Test null

Xijh = M5h + Eijh; i=1,2,.., Nj; J=1,2,.., ki h=1,2,...p

or X = Ay, + ¢ in matrix form
H

xijh = ith observation of effectiveness measure for jth mode at

traffic level h

"jh = mean value of effectiveness measure for jth mode at traffic

level h

th th

€::, = €rror in i mode at traffic level h

ijh
hypothesis

observation for j

P11 T M2 T My T M2
or HO: Cuk = 0 in matrix form
12 = M3 T My " Mp3
Compute:
H= XA T e (aTa) ey ~eqata)-TaTxe
E = LIxT [1-a(aTA)"1AT] 1o

1

Maximum characteristic root of HE ' is distributed as Heck

Maximum Characteristic Root Distribution with parameter

IN. -k-p
S:M‘in(k_],p_])’m::—u_-]_ n:—-\]—z——

2 ?
For test Nj =6 (allj), k=2, and p=3
For test situation a simple procedure is available

1

The single non-zero root of HE* ' is C = t -1

r HE
where tr = trace of matrix

F=[ %}% C ] is distributed as F distribution with 2m+2 and 2n+2
degrees of freedom

If F < Fa, 2m2, 2n+2 accept hypothesis of no interaction at

some significance level a .
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Finally the modes are compared as described below.

A.

B.

No Traffic Level Interactions

Hypothesis: HO: L U
Compute: Y'] an
where X . =
€ e
and uj. =

Compute mean difference D = X 1

My = 0

d X 2.

3N

nk1 if1 Xigh o
W

103

Popy

and standard error

b

M2, =

D+ (t, : n-1) S_
7 D

contains zero accept the hypothesis

Significant Traffic Level Interactions

Same as in A except

h 1h
where X.jh
and dih =

- Xy s h
n
=L 5 ox..

n o ijh
Xi1h

1, 2,

=

3 replaces

- Xi2h replaces di
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Results

The confidence intervals computed for the effectiveness measures
used for comparing the modes of operation are given in Table 3.

No significant interactions between mode and density were found
for the Safety measure. A1l other effectiveness measures exhibited significant
interactions.

Significant differences between modes were found only for the Safety
measure and the Workload measure. Active mode is safer than passive mode at
all densities while requiring more workload than passive mode at low and medium
densities. At high densities the active mode workload was less than the passive
mode, however this difference was not statistically significant at the .2 level.

Table 4 summarizes the average active and passive mode effectiveness
measures obtained at each density. From this table it is seen that the active
mode workload decreased by 4.3 minutes per hour when the density increased
from medium to high. That is, even though there were more flights to be
handled, the controller spent less time servicing the flights. Similar relation-
ships are also indicated for communication workload. This unexpected workload
decrease is even more evident in Figure 6 which shows the results of a poly-
nomial regression analysis of workload vs. density. Polynomial regression
analyses with analysis of variance to determine if the regression fit is signi-
ficant were performed for all the effectiveness measures. However, only the
workload measures as shown in Figure 6 indicated an unexpected trend. One
would expect workload to reach some saturation level and remain at that level
rather than to decrease with density.

No significant fit could be found for Safety vs. density indicating
that Safety is independent of density. It is known that as density increases
the probability of a near miss increases, so that the Safety should deteriorate
as density increases.

In order to determine reasons for the observed density effects and
mode differences, more detailed investigations of the test data was made.

Investigation of Safety Differences

Before attributing the observed Safety differences to differences
between the modes of operation it is necessary to assure that no uncontrolled
parameters effected the comparisons between modes.

Since the same flight paths were flown for both active and passive
mode tests the differences could not be attributed to the test scenarios used.

Since the same controllers were used for both modes the difference
cannot be attributed to controllers.

Since the order of testing was completely randomized according to
both mode and density, learning effects upon the comparison were minimized.
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TABLE 3

CONFIDENCE INTERVALS OF DIFFERENCES BETWEEN

MEANS OF EFFECTIVENESS MEASURES (ACTIVE-PASSIVE)

(Phase I Tests)

Lower Upper
Effectiveness Traffic Limit of Limit of Confidence Significant
Measure Density Interval Interval Level Difference
Safety Combined* -.00095 -.00005 90% Yes
» Low 1.35 11.35 80% Yes
Workload Med 0.17 8.83 80% Yes
High -4.02 0.34 80% No
Low -.89 6.35 80% No
Delay Med -9.33 0.67 80% No
High -6.10 8.10 80% No
Uncontrolled Low -.51 2.67 80% No
Time Med No uncontrolled time accumulated
High -8.663 7.137 80% No
Low -.0815 .0449 80% No
Throughput Med -.1187 .103 80% No
High -.0147 .0273 80% No
Communications Low -.483 1.317 80% No
Workload Med -.96 1.146 80% No
High -.346 .816 80% No

* Combined over three traffic densities
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TABLE 4

SUMMARY OF ACTIVE AND PASSIVE

MODE EFFECTIVENESS COMPARISONS

Average Average Average Active

Measure Density Level Active Mode Passive Mode Passive Mode
Safety” Low .0002 .000617 -.000417
Safety* Med .000483 .000867 -.000383
safety” High .000283 .000983 -.000700
Workload Low 37.1 min. 30.7 min. 6.35 min.
Workload Med 42.9 min. 38.4 min. 4.50 min.
Workload High 38.6 min. 40.4 min. -1.80 min.
Delay Low 6.17 min. 3.33 min. 2.83 min.
Delay Med 6.67 min. 11.00 min. -4,33 min.
Delay High 12.50 min. 11.50 min. 1.00 min.
Uncontrolled

Time Low 1.84 min. 0.760 min. 1.08 min,
Uncontrolled

Time Med 0.00 min. 0.00 min. 0.00 min.
Uncontrolled

Time ~High 7.04 min. 7.80 min, -0.76 min.
Throughput Low 1.02 1.04 -.02
Throughput Med 1.00 1.01 -.01
Throughput High .967 .960 .007
Communications Low 5.29 min. 4.88 min. 0.41 min.
Communications Med 6.69 min, 6.21 min. 0.48 min.
Communications High 5.98 min. 5.75 min. 0.23 min.

* . . . .
Safety is measured in near misses per mile flown

Low
Med
High

14 - 16 flights peak
17 - 19 flights peak
20 - 23 flights peak
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The only uncontrolled factor which may have influenced the com-
parison was poor tracking quality. Because of test equipment problems,
excessive poor tracking alerts occurred on several tests. It was hypothesized
that these unpredictable poor tracking problems may have caused the observed
difference in the Safety measure. If a flight is not being properly tracked,
one would expect that Safety to deteriorate. Perhaps the poor tracking problem
occurred more frequently on passive mode tests. A t-test for significant
differences in the number of poor tracking alerts between active and passive
mode tests, however, indicated no significant differences. Also a correlation
between safety and the number of poor tracking alerts indicated very low cor-
relation (.098). Thus, it is concluded that the non-controlled tracking
problems did not affect the mode comparisons for the Safety measure.

The observed difference must be caused by inherent differences
between modes. The only difference between modes, however, is in the informa-
tion displayed. In active mode the entire air traffic is displayed, while in
passive mode only problems to which the controller has been alerted are dis-
played. It was, therefore, hypothesized that active mode is safer than passive
mode because anticipation of conflicts is possible in active mode. If this
hypothesis were correct one would expect less conflict alerts in active mode.

Table 5 indicates the differences in the numbers of conflict alerts
at the various densities. Although these differences are not statistically
significant at the .2 level, there is consistently fewer conflict alerts for
active mode operation at all densities supporting the hypothesis that antici-
pation of conflicts is occurring in active mode.

Detailed analyses of the differences in times to perform the various
services also indicated that significantly longer times were required in active
mode to perform those services during which anticipation of conflicts might
take place.

A detailed analysis of each near miss that occurred in the 36 tests
indicated that over 70% were caused by insufficient warning time or insuffi-
cient conflict alert durations. This points out the deficiencies in the con-
flict prediction algorithms used and also explains why no density and Safety
relationship was found. Evidently the deficiencies in the algorithms used
obscured any density effects.

Investigation of Workload Differences

In order to investigate the reasons for the observed differences in
workload, detailed studies were made of the differences in services and service
times between the two modes.

Table 6 indicates that there were less services performed in active
mode than in passive mode but Table 7 indicates that the average service time
was higher, resulting in more workload in active mode.

Table 8 shows a comparison of the incomplete events for the two modes
of operation. An incomplete event is a request for service which goes unanswered.
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TABLE 5
AVERAGE NUMBERS OF NEAR MISSES AND CONFLICT ALERTS PER RUN

BY WHICH PASSIVE MODE EXCEEDS ACTIVE MODE

(Phase I Tests)

Safety Traffic Density
Measures
Low ] Medium High

T=0 .33 1.0 1.5
Conflict 1 6.33 8.83 45.83
Conflict 2 9.83 8.83 13.33
Conflict 1/2 .50 0 4.5
T=0 Time to go until crash is zero seconds

Conflict 1: Time to go until crash is between 0 minutes and 1 minute
Conflict 2: Time to go until crash is between 1 minute and 3 minutes
Conflict 1/2: Data is insufficient to determine whether alert is

Conflict 1 or Conflict 2.
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Density

Low
Med
High

Density

Low
Med
High

Density

Low
Med
High

Low
Med
High

TABLE 6
SERVICES PER\BUN COMPARISON

Average Average Average Diff. Significant Diff.
Active Passive Active-Passive at .2 Level
173.9 173.9 0.0 No
191.7 206.0 -14.3 No
202.3 220.1 -17.8 No
TABLE 7

AVERAGE SERVICE TIME COMPARISONS

Average Difference
Active Minus Passive
(Sec/Hook)

+ 1.38

+ 2.52 + 2.52

+ 0.96

TABLE 8
INCOMPLETE EVENTS PER RUN COMPARISON

95% Confidence
Interval
(Sec/Hook)

+1.38 + 1.38
+2.52 +1.32
+0.96 + 1.26

Average Average Average Diff. Significant Diff.
Active Passive Active-Passive at .2 Level
7.2 17.7 -10.5 Yes
12.0 9.5 2.5 No
27.0 12.5 14.5 No

If significance level relaxed to 0.3 the difference at

high density becomes significant

14-16 flights peak
17-19 flights peak
20-23 flights peak
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From this table it is seen that in active mode of operation the number of
incomplete events increased considerably when the density increased from
medium to high. This explains at least part of the decrease in workload
observed in active mode.

Evidently requesting more than the controllers are able to handle
results in frustration and performance below their maximum capabilities. When
the number of requests for service became too great the controller did not
continue to work at peak levels answering all requests that they could, but
actually ignored requests that could have been answered if the peak level of
workload had been maintained.

The differences in the numbers of incomplete events between active
and passive modes only explains 60% of the workload difference. Evidently
there is another factor present. To investigate this the individual service
times for each service were analysed. Tables 9 and 10 indicate those service
times which exhibited statistically significant differences between modes and
between density levels.

Clear and Clear/Coordination combination service and Handoff/Roll
Call and Data Link Initialization services are those services during which
anticipation of conflicts would occur. The differences in these service times
between active and passive modes is attributed to the extra anticipation of
conflicts that is performed in active mode. However, a speed-up in these
services was noticed at high density in active mode as indicated in Table 7.
This speed-up indicates that the anticipation of conflicts is being dropped
at the high density. There is a general speed-up in service times as density
increases indicating that the controllers are working faster and dropping extra
services that could be performed in active mode. The exceptions to this speed-
up were console alert, monitor and Aux data services. The console alert service
occurs when a conflict alert is automatically reset while the controller has
the flight hooked. Evidently the controller spends more time to determine if
there really is a conflict situation on the confusing display at higher densities.
This cannot be done in passive mode, however, because the entire air traffic
is not displayed. Monitor service is a combination of all services which did
not fit into a pre-defined category. These services generally took longer in
active mode as the density increased because of the increased confusion in the
active mode display. The Aux data service exhibited longer service times in
passive mode than in active mode at the iow and medium densities, but active
mode exhibited longer times at high density. Aux data service consists of
displaying the flight plan and flight plan information to determine where a
flight is going. Evidently at lower densities in passive mode the controller
spends extra time trying to remember the relationships of other flights not
displayed to the flight plan. At high density this is dropped. Because of
the more confusing display in active mode at high density the retrieval of
flight plan information from the display takes considerably longer.

Conclusions
From the analyses performed the following conclusions were reached:

1. Active mode is safer than passive mode because it allows
the controller to anticipate conflicts and avoid them.
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ACTIVE MODE

TABLE 9
SIGNIFICANT DIFFERENCES IN

SERVICE TIMES WITH DENSITY

PASSIVE MODE

Service

Handoff

Poor Track
Console Alert
Clearance
Auxiliary Data
Handoff/Roll Call
Moni tor

Conflict 2

sos._k
Densities

L-M
L-M, L-H
L-M
M-H, L-H
M-H, L-H
M-H
M-H, L-H
L-H

Difference (Sec) Service Densities”™
7.3 Coordinate L-M, M-H
5.4, 5 Conflict 2 L-M
-4 Clearance L-M

1.3, 1.3 Conflict 1/2 L-M

-8, -6 Handoff/Ro11 Call L-M, M-H
2 Auxiliary Data M-H, L-H

-6, -4 Data Link Initialize L-H
4.3

* L-M = low minus medium
L-H = Tow minus high
M-H = medium minus high

Difference (Sec)

2.5, -2
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Low Density

TABLE 10
SIGNIFICANT DIFFERENCES IN

SERVICE TIMES WITH MODE

(Active Minus Passive in Sec.)

Medium Density

High Density

Clearance

Poor Track

2
3

Data Link Initialize 5.5

Auxiliary Data

Monitor

-5.5
5

Conflict 1
Coord.
F/P Complete

Poor Track

w N W W N

Clear/Coord.
Auxiliary Data -8
Console Alert 4
Handoff/Rol11 Call 5
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Conflict 2
Clear/Coord.
Auxiliary Data
Handoff Out
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2. Because of additional time spent anticipating problems
and retrieving information from a cluttered display,
active mode requires more controller workload.

3. Requesting more work than the controllers are able to
handle results in frustration and performance far below
maximum capabilities.

4. The best system will be obtained by using passive mode
with improved conflict prediction to eliminate the
necessity for controller intervention to maintain safety.

The above conclusions were incorporated into recommendations for
an optimal system.

REFERENCES

1. "Phase I Test Plan for a Semiautomatic Flight Operations Center (SAFOC)
(Design of Experiments Program)," 1 July 1970, Contract No. DAABO7-69-C-
0040, American Electronic Laboratories.

2. "System Description and Operators Manual for Semiautomatic Flight
Operations Center (SAFOC) (U)," 14 March 1969, Contract DAABO7-68-C-0354,
Hughes Aircraft Co.

3. R. Steele and J. Torrie (1960), "Principles and Procedures of Statistics,'
McGraw-Hi11 Co., N. Y., P. 109-110.

4, Feller, W. (1957), "An Introduction to Probability Theory and its
Applications,” John Wiley & Sons, Inc., New York,

5. Miller, R. G., Jr. (1966), "Simultaneous Statistical Inference," McGraw-
Hi11 Book Company, New York.

6. Morrison, D. F. (1967), "Multivariate Statistical Methods," McGraw-Hill
Book Company, MNew York.

7. Scheffe, H. (1959), "The Analysis of Variance," John Wiley and Sons, Inc.,
New York.

-1005-



A Review of the Theory and Application of
Methods for Comparison of Proportions

John J. Gart
National Cancer Institute
Bethesda, Maryland 20014

1. Introduction and Summary

Probably the most common quantitative problem in biological
research involves the question of the presence or absence of a particular
attribute. In its simplest form it reduces to a 2 x 2 table analysis or a
test for the difference between two proportions: in a more complex form
it may involve the comparison of an array of proportions adjusted for an
auxiliary variable.

Many of the proposed methods for treating these problems may be
subsumed under the general framework of logistic models {see e.g. Cox
11958, 1970]). The analysis uses the notion of conditioning the distribution
of the test statistic on the ancillary statistics, which implies, in most
cases the so-called "fixed marginals" analysis of contingency tables.
Using this theory, Gart [ 1971] collated the extensive literature on this
subject. This review relied to a large extent on the excellent papers in
this area by Birch [ 1964, 1965] and Armitage [ 1966} . More recently Gart
[1972] has extended the test of interaction for 2 x 2 x t tables by Zelen

[ 1971] to cover the general case of 2 x b x t tables.
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In this paper we discuss the various significance tests. The reader
is referred to Gart [ 1970, 1971] for the related questions of point and

interval estimation.

2, The General Problem of Testing Treatment Effects
Consider an array of mutually independent binomial variates Xij ,
based on samples of size, nij’ with parameter, Pij’ where i=1,2,... b:
ji=1,2,... t. The logistic model is assumed:'

exp (M + Bi + TJ.)

4 1+ exp (u+si+'rj)

for all i and j, where Z Bi= z Tj= 0 and Qij= 1- Pij' The B' s relate to the
rows and may be considered the block effects while the T's relate to the
columns and may be considered the treatment effects. The model assumes no

interaction in the usual sense for a higher order contingency table, that is,

P - .
T - o 'k ¢ i=,2,...b

9 1 j#=1,2,...t
ij ik

which implies the respective cross product ratios are constant across the
rows or blocks,

Consider first the problem of testing no treatment effects, i.e. Ho:‘ T=0,
i=1,2,... tagainst HI:' Tj # T+ some j# k=1,2,... t. The likelihood under

H1 is
exp {x M+ Zx BHZx 1]
L(M,B.,t:x,.) = .. .1 3Tl
i3
. ({+e
1,]

+B8 + .
M Bi 'fj)n1J
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We see we have a jointly sufficient set of statistics, x , xi , and xij

and inferences about the 7' s should be based on the joint conditional

distribution of the X j with the xi fixed, which of course implies that

x  is fixed (Lehmann [ 1959]). Under Ho the exact conditional distribution

of the Xij is a product of b independent multivariate hypergeometric

distributions.
b t n,,
g .1 (x‘.’.)
hX,,| x :7=0= AZL =L\ §jJ . (2.1)
i i, ] b n.,
i,
. igl (xi )
From which we have
X.
EX, |x :7=0=e =n_ _i, (2.2)
' . ] ij i my
n . x (n, -x_ )(n, -n,
VX, |x :7.=0)= 1] 1t( i, 1, ( i, 11) , (2.3)
ijt iyt g 2 (n -1
B,
and
-n,.n_x, (n, -x,
CX.., X, | x. : 1=0) = ij ik 1.( i, 1.) ’ (2. 4)
ij’ ik i. j 2
n, (ni -1)

for all possible i, j # k.

For a composite null hypothesis neither the Fisherian nor the Neyman-
Pearson theory leads to a unique optimal test statistic for Ho' Two test

statistics have been proposed.

Armitage [1966] suggested a chi-square statistic based on the x .'s

'
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20 1 + 1
1(X.j-e.j) ( — = .>, (2.5)

which, he pointed out, does not necessarily follow a chi-square distribution

Under the null hypothesis,

2 : 1 1
:Z -+
E(Xa) '—lv(x.j| Xiz ( e . n -e ,)'

In general this expectation will

where the variances are given by (2. 3).
Armitage defines a corrected form of this

depart from its nominal value of t-1.
statistic which has the proper expectation,

2 _ 2 2
corr. (t-1) Xa/ E(Xa)‘

(2.6)
A second test statistic suggested by Birch [ 1965] is based on the quadratic

form,
x2=q alq, (2.7)
q 3
.. t-1, and

where the vectorg is formed by the deviations, X J—e ., 1=1,2,.

the matrix A = [ajk] is their variance-covariance matrix,

b
v | x 0, =L 2, t0L
ij i,

o= ) #k=12,...,

=2
.y i=1

b
=3
pciEL Oy Xy

The statistic X may be taken to have an asymptotic chi-square distribution

a

with t-] degrees of freedom.
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A third test statistic might also be derived from the general likelihood
ratio test criterion for composite hypotheses. This has been derived and
discussed by Goodman [ 1970] .

It is of interest to consider the various special cases of Xcz:orr. and XCZI.

(i) If b=1, these two statistics reduce to the usual chi-square test

table
fora 2 x tzapart from n-1 for n. If'in addition)t=2, they reduce to the usual
uncorrected chi-square.

(ii) If t=2, these two statistics reduce to Cochran's [ 1954] for
combining 2 X 2 tables apart from n-1 for n. If a continuity correction
is introduced these statistics are equivalent to that suggested by Mantel
and Haenszel [ 1959] and Cox [ 1966] .

(iii) If +=2 and all nij=1. These statistics each reduce to McNemar' s
test {Mosteller [ 1952]) for matched proportions apart from the 1/2 correction.

(iv) If nij=l‘ These statistics each reduce to Cochran' s [ 1950]

Q statistic for testing several matched proportions,

3. Tests of the Model

The tests of the previous section are based on the assumption of "no
interaction"” in the 2 x b x t table., We consider now tests of that assumption.

The more general model assumes

+ 8 + T, + i=
exp (M + 8, T Yy i
Y 1+ exp(U+8 +71, +v,) :
P i j ij

where Z, v,. =Z_ Y, = 0.
] 1) ] 1
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The null hypothesis for the model is H Yij=0, for all i and j against

l:

HZ: Yij # 0 for some iand j. Note that H1 here is the same H1 as in

Section 2. The likelihood for this model can easily be shown to be

a function of the minimal set of sufficient statistics: x. K Xi. ’ x-]_, and Xij’
which are related to the parameters M, ’ri, Bj and Yij’ respectively for

all i and j. Thus inferences about the Y's should be based on the

conditional distribution of the Xijl s given the other components of the

sufficient set of statistics., Under Hl’ this is

(2)
n,\x"
fX..|x ,x, ,x.:Y,=0)= d.0 1 . (3.1)
1} . i. ij° ij (ni])
Z:iI}j X5
Q

where Q={ X :X =x , X, =x, , X =x ,} foralliand j. An
ij” .. .. i. i, I

exact test of H1 may be constructed by defining the appropriate rejection
region, However this is a very onerous computing chore for large numbers.

Using a device of Zelen [ 19 71] , we divide the numerator and denominator
of (3.1) by iIEj ( r;lll }. Then the resulting t-variate hypergeometric distributions
may be approximate.d, for large n' s, by multivariate normal densities.

Then we have (see Gart [ 1972] and Zelen [1971] for the details), that

(3.1) may be approximated by exp (-Q/2) where,

b n, -1
_v i, ) 2 2

2
where Xi' is the usual homoganeity chi-square for the 2 x t contingency

table of the ith row. Q is suggested as a test statistic of Hl' Since
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2 2
X is well approximated by X we may also use
q corr

b n, -1
) (—L—— ) 2 .2
Q" =g . X; =X orr. (3.3)

as a test statistic., It has been shown that Q has an asymptotic chi-square
distribution with (b-1) x (t-1) degrees of freedom, Equation (3.2) is
the analogue in the untransformed space of Goodman's [ 1964] logit
analysis statistic (his equation 2.2 . 8),

The statistics Q and Q' are very easy to compute in that they depend
on the individual homogeneity chi~squares for the separate 2 x t tables
and the adjusted, combined test for treatments. However, they suffer
in comparison with other interaction tests in that they are not invariant with
respect to the interchange of row and column labelling. However, the
labelling difference does not appear to have an important effect on the
size of the test statistic in any of the several tables I have analyzed so

far by this method.

4, Applications of the Methods
In order to illustrate these methods we consider the data of Innes
et al [1969] on pulmonary tumors among mice fed pesticides over an eighteen
month experimental period. Each of the five control groups consisted of
the two sexes of each of two strains of mice., The data and analysis are

given in Table 1.
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Table 1

Comparison of Five Control Groups (Innes gf al [1969]) Adjusted for Four

Subgroups ,Frequency of Pulmonary Tumors by Xza, X

corr,

.+ @,2nd Q'

Subgroup Control Groups X, 2x5 Tables ( n; -l ) 2
(Blocks) I oI I IV VvV  on %2 d.f n. /X
1, i i, 1
X Males xlj 2 2 0 1 0 5 4,12 4 4,069
nlj 17 15 14 17 16 79
X Females X2j 1 1 1 0 0 3 1.90 4 1.877
n2j 18 18 18 17 16 87
Y Males x3j 2 3 0 3 2 10 3.38 4 3.337
n3j 18 18 18 18 18 90
Y Females X4j 0 0 0 2 1 3 6.12 4 6.046
n,, 17 15 18 15 17 82
4j
Marginal X j 5 6 1 6 3 21 Total 16 |15.329
: 2
Totals n 70 66 68 67 67 338 X2 X )| 4 4.796(4.792)
. g’ corr.
Q(Q') 12 110.533(10.537)

These results indicate no interaction in the 2 x 4 x 5 table and so significant

"main effect" among the control groups.

On this basis, the fine control groups were combined to vield the basic

control group given in Table 2 for comparison to a set of experimental mice fed

Avadex,
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Table 2

Analysis of Four Subgroups of Mice for Enhanced Frequency of Pulmonary
Tumors Fed the Fungicide Avadex (Innes et al [1969])

|—ap—
Subgroups Treated Control Totals X2i d.f. ( nj, -1 ) 2
n, i
i,
X Males With Tumor 4 5 9 5.41 1 5.35
Without Tumor 12 74 86
Totals 16 79 95
X Females With Tumor 2 3 5 2.40 1 2.37
Without Tumor 14 84 98
Totals 16 87 103
Y Males With Tumor 4 10 14 1. 64 1 1.63
Without Tumor 14 80 94
Totals 18 90 108
Y Females With Tumor 1 3 4 0. 29 1 0.29
Without Tumor 14 79 93
Totals 15 82 97
2Totals 4 9.64
2
X X )J 1 8.29(8.29)
g\ceorr,
Q (Q") 3 1.35(1.35)

Here the small value of Q (identical with Q' in 2 x 2 x b tables) indicates no significant

2
interaction, while the significantly large value of Xq( =X

corr

) indicates a great

increase in pulmonary tumor incidence in the treated group compared to the control.

Point and interval estimation for these examples are given in Gart [1971]. Other

examples are analyzed by these methods in Gart [1970, 1972].
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