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DPG WIND TUNNEL MODIFICATION AND EVALUATION

E.G. Peterson, E.E.Covert, D.L. Hansen
Deseret Test Center, Fort Douglas, Utah

ABSTRACT. The wind tunnel facility at Dugway Proving Ground, Utah, has been
used to calibrate chemical samplers. The samplers were challenged with an agent
generated by a particular munition. The wind tunnel has been modified to improve
the reliability of the calibration procedure. Thus, the tunnel could be used
primarily as a facility to calibrate sampling apparatus. The following steps
were taken to eliminate or reduce as many of the uncontrolled variables as possi-
ble from the calibration procedure.

a. Speed rings were installed to determine the wind speed in the test
section.

b. Nonuniformities in the wind stream were reduced by modifying the tunnel
inlet section. It was extended 3 feet to hold a set of plastic tubes that serve
as flow suraighteners. Immediately downstream to dampen out small-scale distur-
bances. This installation consisted of two screens about an inch apart. These
modifications reduced the fluctuations in the -wind speed at the test section
from 20 percent to less than 1 percent. The nonuniformities were reduced from
7 to about 1 percent.

c. A turbulence grid was placed 6 inches downstream of the last copper
screen to mix the agent with the air during its passage from the generator to
the test section. The intensity of the turbulence produced by this grid is
about 50 percent near the point where the agent is introduced and about 2-percent
turbulence at the sampling plane.

d. An isokinetic sampling probe was designed to operate at any wind speed
in the tunnel. By controlling the pressure difference between the inlet to the
isokinetic sampler and the free stream, the inlet velocity ratio of this probe
is held at unity, within experimental error. The test results indicate that
the isokinetic probe operates in the design mode. Consequently, this sampler
was used as a standard to determine the sampling efficiency of all glass impinger
(AGI), the British chemical impinger (CBI), the snoot sampler, and the chemical
impinger (CI) using CS as the agent.

FOREWORD. This study was conducted as authorized in letter AMSTE-TS-M, U.S.
Army Test and Evaluation Command, Aberdeen Proving Ground, Maryland, 18 September
1970, subject: Wind tunnel Modification and Evaluation.

Deseret Test Center was responsible for the conduct of the study and
preparation of the report.

The engineering and technical efforts of Mr. K.R. Lind, Mr. Charles Warnecke,
and Lt. C.E. Sperry were greatly appreciated during the modification and evalua-
tion period.

The remainder of this article was reproduced photographically from the

s,,ru-T9 ir-1uscript.
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SECTION 1. SUMMARY

1.1 BACKGROUND

Prior to condtuting field tests, cherrical samplers must be
calibrated and checked to determine their efficiency and their ability

,to collect the particular agent to be disseminated. The efficiency was
based on the concept of a mass balance. In the past, the existing wind
tunnel facility at Dugway Proving Ground (DPG), Utah, has been used to
perform this function. The calibration data obtained from these tests .-

have beeu analyzed. The results indicate that the tunnel facility had -

many uncontrolled factors that limited its usefulness. NonuniformiCies
in the wind stream and agent concentration were considered to be the
main contributors to Lhe uncertainty of the results. An attempt was
made to average out the uncontrolled factors by using R.A. Fisher's
latin square method. This method improved the calibration procedure,
but only relative efficiencies could be determined. The procedure be-
caur more complex with the introduction of pyrotechnic ,Anitions such
as the XM-100.

In April 1970, a meeting was held to determine the future
requirements of the DPG tunnel. It was decided that no testing would hq
done in the tunnel until it has been evaluated and modified to eliminate
uncertainties caused by the tunnel flow itself. The effectiveness of
the modification was assessed in two ways: (1) by the uniformity and
steadiness of the flow in the wind tunnel and (2) through the use of an
isokinetic sampler. The isokinetic sampler could also be used as a
standard in determining the eificiencies of field samplers. The con-
cepts involved in the isokinetic sampler are consistent with the work
done at Suffield and Porton.( 1 ,2)

1.2 OBJECTIVE

The objective of this project was to evaluate the existing
DPG wind tunnel and, if necessary, modify it for use as a primary sampler:--,

'icalibration facility. The base line or reference to compare the per-
formance of the modified tunnel was the existing tunnel. If necessary,
procedures would be developed to determine collection efficiencies of
chemical samplers in the tunnel.

1.3 CONCLUSIONS

1.3.1 The wind speed profile across the sampling plane in the
test section can be made uniform to about 1 percent.

1.3.2 Fluctuations in the wind speed were reduced to below I
percent. They were as high as 20 percent before the modifications.
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1.3.3' No further modifications to improve the uniformity of the
air stream are necessary until other uses of the facility require a
lower level of turbulence in the air flow or until it becomes necessary
to conduct tests in any kind of weather.

1.3.4 The isokinetic sampler can be used as a standard for
calibrating field samplers. Care must be taken to make sure the pad
used in the isokinetic sampler does not overload. Thi.s can be checked
by recording the unbalance in the pressure difference between the inlet
plane of the sampler and the static pressure in the test section during
the calibration.
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SECTION 2. DETAILS OF STUDY

2.1 SCOPE

The project was divided into two phases. The purpose of
Phase II was to provide a standard probe and calibration. Phase I
consisted of evaluating problem areas in the tunnel facility, making
corrective modifications, and running control studies after each modifi-
cation. Phase II included developing the isokinetic sampling probe,
validating the isokinetic probe, irstalling a turbulence grid for mixing
purposes, and comparing the standard probe to other samplers to determine
sampler efficiencies.

2.2 PROCEDURES

2.2.1 Preliminary Evaluation

The preliminary evaluation was that tLhe air flow in the tunnel
could be improved enough to calibrate chemical samplers. The concept of
a standard probe in a low-turbulence air flow was based on the use of
an isokinetic sampler. This would be used as a reference in determining
the efficiencies of field samplers. This concept is consistent with
work by H.H. Watso,, of Suffield,(1) K.R. May and H.A. Druett of Porton,(2)

and J.E. Mayhood.(i)

2.2.2 Modifications and Results

Each modification shown in Figure 1 will be discussed in
detail.

2.2.3 Tunnel Inlet Modification

The wind shield was moved back 9 feet to allow for the con-
struction of the flow-straightener section at the tunnel inlet. The
flow-straightener and dampening section was designed to remove the un-
controlled large velocity fluctuations at the test section of the tunnel.
As shown in Figure 2, this section was constructed as a separate unit
and could be rolled back from the existing tunnel entrance. The louvres
that were located on the old entrance were removed and relocated on the
new entrance of the straightener section to provide limited control over
test-section velocity profile. A set of plastic tubes with inside
diameters of 1 inch and lengths of 30 inches were installed 4 inches
downstream of the louvres. These Lubes serve as flow straighteners and
average out large gusts of wind. A layer of 18-mesh ordinary copper
window screening was installed irmmediately downwind of the tubes. A
second screen was located about an inch downstream from the first.
These two screens are used to further break up the surviving eddys and
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dampen the intensity of turbulence downstream from the plastic tubes
according to the relation(3)

U1'/U/' 1/(l + k)n/2 Eq. (1)

where 1 and 2 refer to stations ahead of and behind the dampening screens,
U' refers to the root mean square velocity fluctuation, n is the number
of screens, and k is the pressure-drop coefficient for one screer. For
18-mesh screen, k has a value of 1.0 at 10 miles per hour.

Equation (1) can be used to show that the two screens have
the effect of reducing the turbulence downstream from the tubes by a
factor of 2.

2.2.4 Test Section Instrumentation

Sixteen pitot tubes were installed in the center of the test
section. The test section is located at the standard sampler plane, as
shown in Figure 1. The pitot tube configuration (Fig. 3) was used to
measure dynamic pressure profiles across the test section before and
after the new inlet section was added to the tunnel.

60"t0

0 0~i0

18"&I

Figure 3. Pitot Tube Configuration at the Test Section (Downstream
View) '
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Figure 4. Dynamic Pressure Measurements Before and After Modification

2.2.5 Test Results Before and After Inlet Modification

Measurements taken before and after the straightener-dampening
section was added to the tunnel are shown in Figures 4, 5, and 6. The
results shown in Figure 4 are the dynamic pressures measured by the

r pitot tubes at a motor speed of 950 r.p.m. This corresponds to about
15 miles per hour. The number shown above each pitot tube reading in

Figure 4 corresponds to the number shown in Figure 3. The data shown
in Figure 4were reduced to velocity, and the results were used to
aconstruct the contours of constant 7V shown in Figure 5. Figure 600
shows the fluctuathons in velocity before and after the straightener
section was added to the tunnel. The data indicates that the added
section reduces the velocity fluctuations from 16 to 3 percent at about
4 riles per hour and 12 to 1 percent at 15 miles per hour. As shown in
Figure 5, the 7.AV variations were reduced from 7 percent to I percent at
about 15 miles per hour. The dynamic pressure data for 250 and 600
r.p.m, show the same trend as Figure 4.
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2.2.6 Turbulence Grid Modification

A 2-inch turbulence grid was installed about a foot downstream
from the last copper screen. The downstream turbulence decay from a
grid in low turbulence air flow is well known." 4 ) The turbulence grid
was installed to introduce uniform large turbulent eddies to promote

.. / rapid mixing immediately downstream of the grid. The lattice was
designed not only to accomplish the mixing by tl.c eddies formed from
the air stream passing through the lattice, but also to reduce the
magnitude of these eddies at a suitable decay rate. This insures that
the introduced turbulence has little effect on the air stream in the
test section. The dimensions of the grid were determined using the graph
in Figure 7.(") The grid was designed using 2-inch lath slats with
2-inch square openings between the slats. In Figure 7, x refers to
downstream distance from the grid, Vx' is the root mean square of the
velocity, V is the mean velocity, b is the bar width of the grid, and
the ratio Vx/V is defined as turbulence intensity. The distance (x)
from the grid to the test section is about 480 inches, and the bar
width of the grid is 2 inches. This gives an x/b ratio of 240, and
when applied to the graph shown in Figure 7, the turbulence intensity
is about 2 percent. The mixing effect can be estimated using the same

Svalue for b and a value of 8 inches for x. This gives a turbulence
intensity of 40 to 50 percent near the point of release of the agent.
To astimate the cloud spread from a point source near the grid, the
Smith-Hays modelý5 ) for isotropic turbulence was used in the form

3. ( ) dx Eq. (2)

Using Equation (2) and Figure 7, the cloud spread 480 inches downstream
was calculated to be 1 foot for 1 a if the munition were fired down-
stream. In the calibration trials, the munition was fired upstream to
increase the cloud spread.

2.2.7 Speed Ring Description, Installation, and Calibration

The first speed ring was installed downstream from the turbu- -
lence grid as shown in Figure 1. The locations of the first speed ring, j
second speed ring, and test section will be referred to as positions 1,
2, and 3, respectively. Bernoulli's equation is used to obtain the
relation between the static pressure at positions 1 and 2 and the dynamic
pressure at position 3. The ring at position 2 is placed far enough
upstream of the test section to avoid any effects on the static pressure
measured at that point when samplers are removed or installed in the
test section.

-401-
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2.2.8 Theory of Speed Ring

Because of a small pressure drop between the 2 speed rings,
the total pressure at position 2 will be slightly smaller than that at

7 position 1. Using k, as the loss coefficient of the section between
rings, Bernoulli's equation can be writtent3)

1/,

Pi + q P p " kiqa +q2 Eq. (3)

- whcre p and q are static and dynamic pressures, respectively. The mass
flow rate at any location in the wind tunnel is given by

*~ = pAY

where (p) is the density of the air, (A) is the section area, and (V)
is the mean wind speed. The mass flow rate at positions 1 and 2 are the
"same, and the relationship between the velocity and cross-sectional area
is given by

V, A2
Eq. (4)V2 Al

The dynamic pressure is defined by

rm..2.Yq PV2 Eq. (5)

2

,t Using Equation (4), Equation (5) becomes

;I I
, + q k a q 2 E q . ( 6

1*

where k2 42 IA/I

i!+Likewise, q* kaq2 Eq. (7)

-403-

"", ", 9 p k •L . . . . . +-++ '••" ".,:~,•<...:.k•++.+.+,, •o"'',.;+



where k., A.A/

Using Equations (6) and (7), Equation (3) becomes

q3 - k4(p1 - pa) Eq. (8)

where I4 ' "
(1 - k,- k2)k;

2.2.9 Calibration of the Speed Ring

The wind tunnel was operated at various speeds with p, - P2
and q3 recorded using the Baratron output. The dynamic pressure (q3) was
obtained using the average of 16 pitot tubes located at the test section.
The results of the calibration test are shown in Figure 8.

.16

0-%

08

.04

v'.08- °

0 J

0 .02 .04 .06 .08 .10

&P (inches of .0)

Figure 8. Calibration of Speed Rings
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2.2.10 Velocity Determination

The mass flow rate through the test section remains the same
with or without samplers. When samplers are placed in the test section,
tha cross-sectional flow area (A3 ) decreases, and the average flow
velocity at the sampler plane increases. This relation is given by

3 Eq. (9)

In Equation (9), V3 refers to the mean air velocity with samplers in
the test section, V3 is the mean air velocity without samplers in the
test section, and MA3 is the solid blocking area presented by the
samplers to the air at the plane of the inlet to the samplers. The
mean air velocity without samplers (VM) can be determined by (1) using
the speed rings and (2) using a standard pitot tube centered in the test
section about a foot upstream from the samplers. The velocity V3, using
the speed rings, is given by

k4

V2~l~U (40) Eq. (10)v3 ".521 x 1o- () z.(O
//'

where Vp = PI " P2 (static pressure differential measured in inches
of water)

P - barometric pressure in millibars

V3 - air velocity at the test section in miles per hour

T = temperature in OF

Ik4 - slope of the line shown in Figure 8 (k4 - 1.463).

If a pitot tube is used to set the velocity at the test section,
Equation 11 is used.

3 4.7097 x I0" ) q3  Eq. (11)

where q3 is the dynamic pressure measured by the pitot tube in mm Hg,
and P and T are as defined in Equation 10.
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2.2.11 Operation Procedure to Set Tunnel Speed

The most convenient way to set the wind speed in the tunnel is
as follows:

a. Use the pitot tube to set the speed.

b. Measure the barometric pressure in millibars.

c. Measure the outside temperature in OF.

d. Use Sq. 11 to find the dynamic pressure in mm of Hg for
the given air velocity.

e. Set the dynamic pressure using the dial setting in the
Baratron.

f. Adjust the speed of the tunnel fan so that the Baratron
output needle reads 0 (zero).

g. The tunnel can be operated with outside gusts of wind
that do not change the dynamic pressure more than ±10 percent. This
corresponds to about ±0.5 miles per hour in the test section.

2.2.12 Isokinetic Sampler

2.2.12.1 Description of Sampler. The isokinetic sampler was
based on a Massachusetts Institute of Technology design. The novel
feature. of this design is the static pressure tap at the inlet of the
sampler. The static pressure measured at the inlet is compared with
the ambient static pressure to insure isokinetic operation as closely
As possible. The sampler is located in the test sections (Fig. 1).
Figure 9 is a detailed sketch of the instrumentation required for the
isokinetic sampler and Figure 10 shows the actual design. The relation-
ship between the average stream velocity (Vo) and the inlet velocity
(V) of the sampler (Fig. 9) is given by

Pm PV o V + Eq. (12)

where pe - average static pressure in the air stream at the test
section as measured by the static pressure ring shown in
Figure 9

qo - dynamic pressure of the air stream

p - static pressure just inside the entry orifice of the sampler.
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The MKS Baratron was used to measure the static pressure difference
(Po - p). The static pressure ring shown in Figure 9 failed to operate
as constructed, so the static pressure (p ) was measured using the
static pressure tap of the no. 6 pitot Lue shown in Figure 3. The
sampler is isokinetic when the aspiration rate of the isokinetic sampler
is adjusted so that Po - p - 0. This is done by adjusting the valve
shown in Figure 9 and watching for the zero balance on the Baratron.

2.2.12.2 Results of Calibration of Isokinctic Sampler. The design
of the isokinetic sampler was validated by measuring the flow rate
through the sampler. The flow rat3 was measured using a Brooks rota-
meter. The wind tunnel was operated at a set wind velocity, and the
sampler was balanced for the isokinetic conditions, using the Baratron
as shown in Figure 9. The flow rate through the isokinetic sampler was
then calculated using the product of the velocity in the tunnel and the
inlet area of chb. sampler. The results are shown in Figure 11. At
velocities above 11 miles per hour, critical flow develops in the vacuum
lines and prevents isokinetic operation of the sampler. This can be
overcome without difficulty by using larger tubing and a larger pump.
The results indicate that the design of the isokinetic sampler is adequate
and that it operates isokinetically over the range of interest for cal-
ibrating field samplers.

In all tests, the isokinetic sampler was checked for slippage
through the sampler by placing an AGI sampler in the vacuum line during
the sampler trials. This check showed no significant slippage.

2.2.12.3 Method Used to Determine Sampling Efficiencies. The
physical model used to determine the comparative sampling efficiencies
of field samplers versus the isokinetic probe is shown in Figure 12.
The terms shown in the diagram of the physical model are defined below:

V3 - the wind speed at the test section of the wind tunnel

Co - the unperturbed concentration of agent immediately in
front of the sampler

V5 - the air speed immediately inside the orifice of the
field sampler

As - the orifice area of the field sampler

Ar - the orifice area of the isokinetic probe.

r•
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The masses collected by the two samplers are given by 4

m f VsAsCsdt Eq. (13)

R M. V3 Acod t Eq. (14)

Equation (13) can be rewritten

M f j'...S....Cdt Eq. (15)
CO

where f: is the flow rate of the field sampler (fs - V.A.). If the
ratio Cs/CO is constant, Equation (15) becomes

fk Codt Eq. (16)

and the efficiency of the field sampler is determined using Equations
(14) and (16) in the form

K Eq. (17)

(+) Rff

Equation (16) can be used to estimate the average concentration for a
given sampling time by E

•o" ma Eq. (18) !
fsKAT ,•

where AT is defined as the sampling time.
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2.2.13 Sampler Calibration Analysis

The analysis is divided into two parts. The first analysis
was conducted for the primary purpose of demonstrating the use of the
isokinetic sampler as a standard. Once the isokinetic sampler was es-
tablished as a standard, the second anaLysis was performed to determine
the sampling efficiencies of various samplers, differences between
samplers, and effect of wind speed and sampling times on sampler eff-
iciency. The second analysis was also used in support of the work
discussed in reference 8.

2.2.13.1 First Analysis. AGI and CI samplers were calibrated
using isokinetic samplers as a standard. The purpose of this analysis
was to demonstrate the technique of using the isokinetic sampler to
calibrate field samplers. The testing array shown in Figure 13 was
used in 21 trials. The munitions used for these trials were the pyro-
technic XH-100 cannister and the Mark-9 CS2 disseminator. The results
of these trials are presented in Table 1. The sampling time for each
trial was 30 seconds. The estimates of K are derived by the data re-
duction technique presented in paragraph 2.2.12.3. No statistical
analysis was performed on these data.

1211!

O Field sampler

* Isokinetic sampler

Figure 13. Sampling Array for First Analysis
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Table 1. Preliminary Calibration of the AGI and CI Sampler

Agent Wind K
Sampler Munition Released Velocity ms (effi-

Trial Type Type (gm) (mph) mR ciency)

I AGI XM-100 54.4 4.0
2 o t 54.4 3.6i 3 " i 13.6 7.9 .14 .95
4 27.2 8.2 .14 .99
5 40.8 8.2 .13 .97

* 6 " 54.4 8.2 .14 .93
7 MK-9-CS2 5.0 8.1 .14 1.01
8 10.0 8.3 .17 1.20
9 i" 15.0 8.1 .15 1.07

10 f XK-100 54.4 11.1 11
11 11.0 1.03
12 CI to 11.1 .11 1 0
13 CI o f 11.1 .1o 10
14 AGI " " 7.2 .201 1.09
15 AGI " 6.9 .20  1
16 CI " 7.1 .20)
17 CI " 7.1 .24j 1.07
18 AGI " 5.1 .271 .98
19 AGI i" 5.1 .30
20 CI " " 5.1 .321
21 CI "o 5.1 .25J

2.2.13.2 Second Analysis. The data for the second analysis were
obtained from a statistical design with four levels of sample time (5,
10, 15, and 30 seconds), three levels of wind speed (4, 8, and 11 miles
per hour) and three samplers (CBI, CI, and AGI). The sampling efficiencies
of the CBI, CI, and AGI samplers were determined by comparing the amount
of agent collected by these samplers with the amoua.t collected by isokinetic
samplers. The sampler array is shown in Figure 14. The physical model
used to determine the comparative sampling efficiencies of the CBI, CI,
and AGI versus the isokinetic particulate samplers and the mathematical
relationships involved are presented in paragraph 2.2.12.3. The average
concentration for these tests was of the order of 1 to 3 x 10"4 milligrams
per cubic centimeter. The concentrations were obtained by us. of pyro-
technic XM-8 CS cannisters. The data obtained from these trials, to-
gether with the values obtained by the data-reduction technique explained
in paragraph 2.2.12.3 are presented in Table 2. Statistical analysis
performed on the collection efficiency estimates (Table 3) provided
the following results:

a. Table 4 indicates the absence of significant differences
for wind speeds or sampling times for trials of the CBI sampler.
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8 - 0 Field sampler

_ Isokinetic sampler

Figure 14. Sampling Array for Second Analysis

b. Table 5 indicates no significant differences for either
wind speeds or sampling time for trials of the CI sampler.

c. Table 6 indicates highly significant differences in both
vind speed and sampling times for the AGI sampler.

d. Table 7 presents a combined analysiot of variance for the
entire test. When all data are combined, no significant differences
were attributable to any of the main effects or interactions.

e. Since CBI and CI samplers showed no significant differences
aong wind speeds or sampling times, all data over the range of trial
conditions were combined, and the data were fitted, for each sampler, by
means of regression analysis. Since the predicted lines should intersect
at coordinates (0,0), the data were fitted to the equation form 9

y = Kx Eq. (19)

where y = sampler reading, mg-min/A

K = slope (efficiency estimate)

/ x - isokinetic reading, mg-min/A.

/ -414-

\,

N



c - -,,,T-.4,

Table 2. Test Summary for Sampler Collection
SIwin C ,,k tic

Time a pPed tic() K Avg. V V(A/r) KM AAv.(eec .(€t)(,,r *(.!)) W ....

* 30 4 .175 .1•1 1.24 '136 .119 .98 .271 .258 1.05
. 30 4 .179 :11f 1.22 .134 .135 .99 .263 .233 1.13

30 4 ... .. , ., ,1912 .14 1.07 .265 .216 1.23
30 4 .161 .176 .22 1.13 .165 .138 1.12 Z.06 .269 .220 1.22 1.16
15 4 .120 .11, 1.06 .036 .041 .90 .150 .143 1.05
1U 4 .107 .096 1.12 .0286 .024 1.15 .159 .150 1.06
i5 4 .095 .02 1.17 .063 .065 .96 .167 .147 1.14
. 4 4 .06 .010 1.09 1.10 .041 .04 .69 .97 .179 .146 1.21 1.11
10 4 .066 .063 1.05 .034 .041 .91 .095 .065 1.11
10 4 .072 .051 1.27 .036 .035 1.04 .093 .079 1.18
10 4 ,79' .071 lo11 .04,$ ,07 .94 .107 .107 1.00

10 4 .079 .076 1.05 1.12 .036 .030 1.19 1.02 .112 .097 1.15 1.11
5 4 .054 .050 1.08 .020 .015 1.37 .050 .046 1.09
3 4 .045 .039 1.17 .015 .014 1.04 .040 .046 1.04
5 4 .045 .038 1.19 .029 .020 1.44 .050 .043 1.16
$ 4 .060 .037 1.06 1.13 .020 .026 .78 1.16 .047 .046 1.03 1.08

30 " .091 .117 N78 .194 .202 .96 .149 .140 1.06
30 S .076 .085 .90 .175 .165 1.06 .134 .115 1.16
30 6 .116 .164 1.01 .176 .206 .85 .173 .166 1.03
30 .07 .105 .93 .90 .137 .172 .00 .92 .135 .131 1.03 1.07
15 1 .042 .041 1.03 .090 .094 .96 .090 .100 . "
15 8 .02S .026 1.09 .067 .061 1.09 .061 .076 1.06
15 a .070 .064 1.09 .103 .100 1.04 .105 .109 .97
1 8 .0" .041 1.17 1.14 .072 .076 '95 1.01 .093 .065 1.10 1.01
10 1 .040 .041 1.00 .069 .074 .92 .049 .060 .82
10 t ... O... ,, .052 .048 1.08 .048 .045 1.08
10 6 .059 .056 1.06 .074 .061 1.21 .052 .009 1.06
10 6 .037 .031 1.18 1.09 .046 .036 1.28 1.13 .050 .048 1.04 1.00
. 1 .021 .024 ,88 .031 .036 .87 .013 .017 .A1
. 1 .016 .018 1.00 .030 .031 .97 .010 .009 1.15
5 S .029 .029 1.00 .033 .028 1.17 .021 .023 .93
$ U .020 .016 1.28 1.04 .. , ,.. 0.. 1.04 .013 .012 1.04 0.9"

30 11 .160 .14 .96 ... .. . .. . .139 .124 1.12
30 i1 .159 .141 1.13 .188 .195 .97 .142 .124 1.14
30 11 .178 .164 1.07 ... ... ... ,175 .156 1.12
30 11 .135 .116 1.16 1.09 .218 .221 .99 o9 1 .144 .139 1.01 1.11
15 11 .067 .066 1.01 .111 .106 1.05 .035 .031 1.13
is 11 .04 .052 1.06 .116 .094 1.26 .036 .038 .98
s15 1 ... ... ... .107 .107 1.00 .057 .056 .99
13 11 .. ... ... 1.06 .111 .109 1.02 1.06 .045 .041 1.09 1.05
10 11 .055 .053 1.05 .029 .026 1.06 .021 .019 1.09
10 11 .046 .041 1.16 .043 .036 1.24 .022 .024 .92t10~ 11 :0070 :02 11 • 036 : 3 .5.30 ,033 .91

S10 11 .5 ,042 1.21 1I .058 0071 ,1 ,9 027 .026 1.06 0.99

5 it .023 .026 .91 .036 .032 1.12 .021 .019 1.08
5 11 .021 .019 1.14 .035 .029 1.23 .017 .017 1.00
51 11 0032 ,02P. 1.13 .027 .024 1.12 .031 .033 .93
5 11 .023 .021 1.10 1.07 .027 .021 1.29 1.19 .021 .020 1.04 1.02

:e this table. a is defined as ness of CS in .tlligra'm. edm f is detined ams f1l rote In liters per minut. (Fot
ste Lsooinstic sampler, f equals 5.353 times ci vindspeed in mph.)

I '
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Table 3. Sampler Efficiency (Percent) for the Particulate Collectors
in Test C-136, Phase II, Wind Tunnel Trials

Percent Efficiency for Indicated Sampler and Wind Speed

Sampling Time CBI CI AGI
(sec) -...

_ _4mph 8mph l1mph 4mph 8mph l1mph 4mph 8mph llmph

5 113 104 107 116 104 119 108 98 102
10 112 109 113 102 113 97 111 100 99

15 110 114 104 97 101 108 111 101 105
30 113 90 109 106 92 98 116 107 IIll

Table 4. Analysis of Variance for the CBI Collector - Test C-136,
Phase II, Wind Tunnel Trials

Degrees

of mean

Source Freedom Sum of Squares Square F Ratio

Mean 1 140400.3333

Wind speed (A) 2 120.1667 60.0834 81.273

Sampling time (B) 3 86.3333 28.7778 80.610

A x B 6 282.6667 47.1111

Total 12 140890.0000

"Not significant.

Table 5. Analysis of Variance for the CI Collector -Test C-136,
Phase II, Wind Tunnel Trials

Degrees -

of Mean
Source Freedom Sum of Squares Square F Ratio

Mean 1 130834.0833

Wind speed (A) 2 22.1667 11.0834 C.1669

Sampling time (B) 3 338.2500 112.7500 1.6976

A x B 6 398.5000 66.4167

Total 12 131593.0000

"aNot significant.
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/ /Table 6. Analysis of Variance for the AGI Collector - Test C-136,
"/ Phase II, Wind Tunnel Trials

Degrees
of Mean

Source Freedom Sum of Squares Square F Ratio

Mean 1 134196.7500

Wind speed (A) 2 213.5000 106.7500 a37.312

Sampling time (B) 3 139.5833 46.5278 b 16.2621

A x B 6 17.1667

Total 12 134567.OGO

b Significant at a - 0.0005.
Significant at a - 0.005.

iI

Table 7. Combined Analysis of Variance for the CBI, CI, and AGI
Particulate Collectors - Test C-136, Phase II, Wind Tunnel

"-"_"Trials

Degrees
of Mean

Source Freedom Sum of Squares Square F Ratio

Mean 1 405344.4444

Sampler (A) 2 86.7222 43.3611 "2.299

Wind speed (B) 2 280.3889 140.1944 a2.816'

A x B 4 75.4444 18.8611 0.566

Sampling time (C) 3 49.1111 16.3704 '0.329

* A x C 6 515.0556 85.8426 2.575

_B x C 6 298.7222 49.7870 '1.493

A x B x C 12 400.1111 33 .3426

Total 36 407050.0000

"Not significant,
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The K values (estimated percent efficiency for the respective sampler)

with 95-percent confidence limits are presented in Figure 15.

The AGI data could not be analyzed in this manner because
of the significant differences in both wind speeds and sampling times.
Instead, these data were plotted in Figure 16 to indicate the signifi-
cant differences between the two main effects: wind speeds and sampling
time.

The first analysis showed a dependence of sensitivity of
samplers on sampling time. The second analysis was performed in more
detail and showed that the concentration of agent, rather than time,
was the parameter on which sensitivity depends. For these tests, the
dosage ranged from approximately 0.020 to 0.250 mg-min/l, sampling
times ranged from 5 to 30 seconds, and wind speeds ranged from 4 to 11
miles per hour. The samplers were considered to measure concentration
isokinetically with an average efficiency of 1.05.

2.3 REVIEW OF OTHER WORK

Previous experimentation has been conducted using idokinettc
samplers and particles of various sizes. In a paper by H.H. Watson,
several significant relationships are presented. Figure 17 shows the
relationship between C/C0 and U0 /U as a function of particle size, where
C m measured concentration, Co - true concentration, U - inlet air speed,
and Uo - stream velocity.

A similar graph (Fig. 18) depicts work done by Mayhood and
Langstroth. The results are essentially the same as those obtained by
Watson. The AGI and CI samplers were checked over a range of values
Uo/U from .5 to 2.5. The values for C/Co were approximately 1 for all
values of Uo/U. These data are consistent with Figures 17 and 18 for
particles 1 micron in diameter. Figure 19 depicts the relationship
between C/Co and the angle between the inlet tube and wind direction.
This graph shows the effect of turning the sampler at various angles
to the windstream. This has very little effect on the efficiency up to
angles of 30 degrees.

Figure 20 is taken from a report by K.R. May and H.A. Druett( 2)

which shows how the intake efficiency of the AGI with a preimpinger changes P
with wind speed. Figure 20 shows that for 1-micron diameter particles,
the efficiency is approximately 1 for all wind speeds, even though the
preimpinger intake orifice is on a 45-degree angle with airstream.
This is consistent with the results of Mayhood (Fig. 19).

2.3.1 Relationship of Present Results to Other Work

At Uo/U - 1.5 for 12-micron diameter particles, C/Co - 1.1 in

Figure 17 and 1.15 in Figure 18. It can be concluded that a scatter of

-418-
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Figure 15. Isokinetic Sampler vs. CBI and CI Sampler (Regression
Analysis)
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Figure 17. Work Performed by Watson"1 )

A t.o "'""l"#lr" r A /, rwr

//

, ao M w$ dc ,Ao,4jr

W/AO5#ftD / •/:•r? A/t4r-S.'EOi

Figure 18. Work Performd by Mayhood and Langstroth" x)
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Figure 20", Pre" I~nger Data Collection by
May "n Druett(2)
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5 percent, at most, is likely in experiments of this kind. The values
obtained for K in this analysis do not differ significantly from the
previously reported values. (See Tables 1 and 2 for K estimates for
this analysis.) Figure 19 indicates that the scatter in K is not
caused by the irregularity in the air flow. Before the tunnel was
modified, sampler efficiencies of 0.73 and 0.63 were determined for the
CI and the AGI samplers. 7) In interpretating these results, it must
be remembered that-the airstream was very irregular and only three
samplers were used; hence, it was difficult to get an accurate mass
balance. In both the present tests and in those reported in reference
7, the source of the agent was a pyrotechnic munition. This procedure
introduces added uncertainties in the experiment. Nevertheless, im-
proving the quality of the air flow seems to lead to reproducible agent
concentration profiles, as determined by repeated experiments.

2.3.2 Summary

The modifications that were made to improve the uniformity of
the air stream are shown to be adequate for sampler calibration until
the time that other uses of the facility require a lower level of turbu-
lence in the air flow.

The isokinetic sampler functioned as designed. The preliminary
calibration of the AGI, CI, and CBI samplers indicate all satplers have
an efficiency of about one over a velocity range from 4 to 12 miles per
hour. The results obtained for these samplers using the isokinetic
sampler as a standard are consistent with the results of previous in-
vestigators. 3'•) It is therefore recommended that the isokinetic
sampler developed in this study be used as a standard to calibrate field
samplers at DPG. However, the AGI sampler collected significantly
different amounts of agent as wind speeds changed and also as the sampling
times changed. No such difference was noted with the CBI and'CI samplers.
The ratio of the amount of agent collected by the field sampler and that
collected by the isokinetic sampler is used to determine the efficiency
of the field samplers. The calibration then becomes independent of the
amount of agent released, provided the samplers are not overloaded with
agent. Thus, the concept of using an isokinetic sampler eliminates many
of the uncontrolled variables that create difficulties in application
of the mass-balance technique of sampler calibration. F
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TECENIQUESaFOR TAIL LENGTH ANALYSIS

James J. Filliben
National Bureau of Standards

Washingtci, D.C.

This paper concerns itself with the problem of estimating from
a set of data the tail length of the underlying distribution. A
probability plot technique for such distributional analysis is
developed which makes use of order statistic medians. The probability
plct correlation coefficient rD for a distribution D is introduced
which gives a statistical measure of probability plot linearity. The
output from a computerized version (written in machine-independent
ANSI Fortran) of the proposed tail length analysis procedure is t
illustrated. Three examples are discussed.

* JKeywords: Statistics; Data Analysis; Distribution Analysis; Tail
Length Analysis; Probability Plots; Correlation Coefficient; Prob-
ability Plot Correlation Coefficient; Ordered Observations; Order

* Statistics; Medians; Order Statistic Medians; Normality; Lambda
Distribution; Tukey TLambda Distribution; Symmetric Distributions;

F 'Estimation; Fortran Subroutine.
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Introduction

The purpose of this paper is to present various techniques for

the problem of determining, for a given data set, what the appropriate

underlying distribution is. Although we shall ostensibly be con-

straining ourselves to the univarlate problem where

response - unknown constant + random error, (1)

the results obtained and the procedures advocated are applicable

through residual analysis to a wide variety of more general response

models.

Let us first of all review briefly the typical measurement

process situation. We start of course with data. The goodness of the

data in reflecting the phenomenon under study is a function of the

experimental design and of the expertise of the experimenter. The

a observations collected are our only real contact with the

phenomenon under study. In effect our data says to us: "I want to

tell you about such and such a phenomenon, and, incidentally, about

such and such an experimenter." Considered in this light, our data 4"

is seen as something to be analyzed and not just summarized. Anyhow,

let us assume at the beginning here that we have n independent (a

problem unto itself) observations YI, Y2 ' "' n this constitutes

our data set.
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At this point the statistical approach is imposed which assumes

that there exists a random variable Y with some unknown distribution

which corresponds to the population of all possible responses for the

phenomenon under study. This distribution has some location and scale,

defined by the arbitrary parameters v and a, say.

Frequently at this stage the experimenter is content to con-

centrate on inquiries about the two parameter values only. He says

in essence: "Look, uj and a are the only things I am interested in;

these are the cnly things I report; so who cares about other details."

The response to this twofold: 1) knowledge of uz and a does

not uniquely characterize a distriubtion -- we can have an infinity I

of different distributions, with a wide assortment of probability

function or density function shapes -but with the same values for

U and a. Knowing only two pieces of information (location and scale)

yields only partial knowledge of our measurement process, I so

interest in itself from both a physical and statistical point of view

to know as much about our measurement process as possible. This is

information which is presently obtainable'- all we have to do is

take the time to ask, and to ask the right questions, 2) In general,

of course, Uz and a will never be known exactly -- we would need an

infinity of observations under constant experimental conditions to

have this - thus we must estimate U~ and a. But not all estimators

are equally good and the goodness of a particular estimator is a

function of what the actual unknown underlying distribution is (see

-427-
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references 4 and 6). For example, as shown in exhibit 1, the

comonly used sample mean isa excellent for the mnoderate-tailed

normal distribution, but Is poor for the short-tailed uniform

distribution and is very poor for the long-tailed Cauchy distribution.

Similarly, the sample midrange is good for short-tailed distributions,

but poorer for longer-tailed distributions, and the sample median is,

good for long-tailed distributions, but poorer for shorter-tailed

distributions. Thus, if we do not know what the underlying

distribution is, or we do 4t' thoroughly inquire as to what it is,

then a given estimator of location, say, the sample mean for example,

*may or may not efficiently estimate U;based on no distributional

Information, it will simply be a pot luck situation. However, if

* we do know what the underlying distribution Is, or If we can fairly

accurately "estimate" what the underlying distribution is, then by

making use of standard mathematical statistical estimation results,

we can choose an estimator which we know will efficiently estimate

~j(and a).
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Probability Plots and Probability Plot Correlation Coefficients

Having concentrated on the necessity of a detailed distribution/

tail length analysis, we now address ourselves to the problem of how

Sto estimate the tail length of the underlying distribution. What we

have had success with and recommend as a procedure for "estimating"

* f the underlying distribution is based on probability plots (see references

2, 3, 5, 10, and 13), order statistic medians, and Tukey's lambda

distribution family (see references 6, 7, and 9). As used in this paper,

a probability plot for a given distribution D is defined as a plot of

the ith ordered observation X (that is, the ith order statistic) versus

thsome measure of location loc(Xi;D) of the i ordered observation from

that Siven distribution D. The ith ordered Xi is, of course, a function

of our data set; the location loc(X ;D) of the ith ordered observation

from a given distribution D is not a function of our data set -- it is

a number computed from mathematical statistical considerations and is

-dependent only on the value of i, the sample size n, and the hypothesized

distribution D. If, in fact, our data set was generated from the

hypothesized underlying distribution D, then aside from an unimportant

location and scale factor, Xi will be approximately equal to loc(X ;D) for all

i, and so the plot of Xi versus loc(Xi;D) will be approximately linear.,

If our data set was generated from another underlying distribution

D' 0 D, then X will not approximate loc(Xi;D) for all i and so the plot
i

will tend to be non-linear (but of course in this latter case, Xi will
I

approximate loc(Xi;D) and so the probability plot for D' will tend to be

linear). Probability plots are thus obtainable for any distribution DA

in which loc(Xi;D) is computable.
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One :eason why non-normal probability plots have not in the past
Sth

Sbeen commonly used is because E(XI;D) (the expected value of the I

ordered observation for a distribution D) has been used for loc(Xi;D)

-- but the use of the expected value has the distinct disadvantage of

requiring a special integration technique for each different distribution

D. Also, E(Xi;D) does not always exist for some of the longer-tailed

distributions. These problems may be circumvented by the use of the

th
median med(XI;D) of the i ordered observation from a distribution D for

loc(XI;D) rather than using the expected value. First of all, we have no

existence problems with med.:Xi;D) -- the median exists for all i, n, and D.

Secondly, to compute med(XI;D) -- for any given I, n, and D, we need only

transform (via the percent point function (see references 6 and 7)

GD(p) - Fv-l(p) of the given distribution D) the corresponding order

statisic medians of the uniform distribution on (0,11; that is,

med(XI;D) - GD(med(Xi;U))

where GD(p) is the percent point function (the inverse cumulative

distribution function) of the distribution D and where med(Xi;U) is the

thmedian of the i ordered observation from the uniform distrib,,,lon on the

interval of 0 to 1. Thus we have a theoretically unified, as well as a

computationally simple, approach to forming probability plots for any

distribution D.

These probability plot considerations have been Implemented into a

machine-independent ANSI FORTRAN subroutine. Probability plots for 4
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basic symmetric distributions of widely differing tail length are

generated: the uniform (short-tailed), the normal (moderate-tailed),

the Tukey A P -0.5 (moderate-long-tailed), and the Cauchy (long-tailed).

In addition, in order to get a more detailed and global picture of the

distribution space, we have made use of the probability plot correlation

coefficient, rD, which for a given distribution D is here defined as the

product moment correlation coefficient of the ordered observations and

the medians of the ordered observations from distribution D; more

precisely,

rD" Corr(X Im ) (3)

- E(Xi-x) (mi-i)

E(X t-) 2E (MSt-)2 (4)

where X is the observed ith ordered observation and where

m med(Xt;D) is the median of the ith ordered observation from the

distribution D. (Simpler expressions for rD' making use of symnetries,

do exist but are extraneous to the central theme and so will not here

be presented.) The rationale behind the probability plot correlation

coefficient Is of course that probability plots indicate affirmative

results when they are linear, and a simple measure of linearity is the

"correlation coefficient. In the above mentioned subroutine, the

probability plot correlation coefficient has been computed for 44-

symmetric distributions - ordered by tail length from very short-tailed

U-shaped distributions to extremely long-tailed distributions. "Standard"

distributions such as the uniform, normal, logistic, double exponential,

and Cauchy have been included; the remaining distributions are from the

Tukey A distribution family.
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Examples

Example 1. Josephson Junction cryothermometry voltage counts.

700 counts were observed; each count was proportional to voltage

output from a Josephson Junction in a cryothermometry experiment. To give

the reader a "feel" for the data, a plot of the data versus time is

included (exhibit 2). The principle feature exhibited in the data plot is

the discretness of the data set - there are only 8 distinct values which

the counts have taken on. The first page (exhibit 3) of the automatic

output from the computerized tail length analysis focuses on the specific

assumption of normality. Five commonly used test statistics are included.

In addition, the normal probability plot correlation coefficient is also

included. On the basis of the standardized test statistics (given in column

4), there are conflicting and inconclusive indications of normality and

non-normality. However, we really should not be attempting to conclude that

a data set wa- generated from some particular distribution in the first

place; rather, we should be attempting to determine an admissible set of

distributions (all of more or less the same tail length) from which it is

plausible that the observed data set could have been generated. Hence,

although the normal test statistic results are informative, they are not

to be weighted as heavily as the following probability plot considerations.

Uniform, normal, A - -0.5, and Cauchy probability plots are shown in

exhibit 4. The discretness of the data is also evident here. More important,

from the plots and from the associated probability plot correlation

coefficients (given at the bottom of each plot), it is clear that the under-

lying distribution is apparently near-normal. This conclusion is substantiated
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in exhibit 5 in which we see the probability plot correlation

coefficient remaining fairly stable in the short-tailed region,

maximizing itself in the moderate-tailed region, and then decreasing

in the moderate-long and long-tailed region. Although the maximum

correlation happens to be for the normal distribution, a more

reasonable conclusion than exact normality is that underlying

distribution is simply near-normal. This conclusion is important

in itself; further, applying this conclusion to the problem of

location and scale estimation, we may thus feel reasonably safe in

using the sample mean or sample trimmed mean (with only a small

amount of trimmning) to efficiently estimate u, and to use the sample

standard deviation to efficiently estimate a. Better yet, if we

consider the set of 11 distributions from). - +0.7 to X - -0.1

as an admissible set (where the criterion of admissibility was the

c probability plot correlation coefficient being in excess of 96

percent) then a valid alternative course of action which would!I
protect us even more is to use a robust estimator over the

.. admissible set (see reference 6).

I I
/ A
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Example 2. Wind Velocities.

1200 coded wind velocities taken at one tenth of a second intervals

were observed. The data plot (exhibit 6) indicates a possible drift

and/or a possible shift in location in the second half of the data.

Other analyses (not here described) detected the existence of non-

randomness and low frequency components; these findingswill be ignored

for the present for the sake of illustrating the point at hand; viz.,

the tail length analysis procedure. We first note the normal test

statistics in exhibit 7 -- they are inconclusive. From the 4 prob-

ability plots of exhibit 8, we see that the data set as a whole appears

moderate-tailed in spite of the fact that the randomness assumption j
is untenable. Also, since the uniform probability plot is "-" shaped,

whereas the A - -0.5 probability plot is "S" shaped, this Implies that

the linear crossover will occur in the set of distributions between

the uniform and the A - -0.5 distribution. Exhibit 9 show, that this

is in fact the case: the probability plot correlation coefficient

is maximized by the A - +0.3 distribution which is a moderate-tailed

distribution very close to the normal distribution. For this data

set, we therefore might conclude that the underlying distribution

Is moderate-tailed or possibly short-moderate-tailed. Thesample

mean and sample standard deviation will probably be fairly efficient

though not optimally efficient. For this particular data set, of

course, where there is obviously much inherent structure to be taken

into account, a more detailed analysis (on, say, the differences

Zi - Yi- 1 ) is recommended.
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Fxazple 3. Deflections of a Steel-Concrete Beam.

200 coded deflections of a steel-concrete beam when subjected to

a periodic force by an attached piston were observed. The data plot

is given in exhibit 10. Five of the 6 normal test statistics in

exhibit 11 are in excess of 4 standard deviations from their expected

value, thus suggesting non-normality. From exhibit 12 we see that the

uniform probability plot is more linear than any of the others; also,

we note that the prouability plots are "S" shaped for all 4 distributions

indicating that no intermediate crossover will take place and that the

"true" underlying distribution is even shorter-tailed than the uniform.

Exhibit 13 confirms this conclusion; it is seen that the maximum prob-

ability plot correlation coefficient is given for the A - +1.5

distribution which is a finite-domain, short-tailed, U-shaped distri-

bution. The use of the sample mean and sample standard deviation

in this case would have been extremely inefficient -- the sample midrange

and sample range are preferable. Other analyses (not here included)

indicated a strong non-random sinusoidal component; this corroborates

the tail-length analysis because when the generating model is cyclic,

as detected, then it is characteristic for the distribution of the 4
responses to be U-shaped.
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Concluding Remarks

Data analysis techniques based on probability plots, order

statistic medians, Tukey's lambda distibution, and probability

plot correlation coefficients have been proposed. By use of

such techniques, useful information may be obtained regarding

the distributional structure of a given data set. Such distribu-

tional information provides important guidance in the choice of

efficient estimators of location and scale. The implementation

of these techniques into an internally-documenzed, machine-inde-

pendent FORTRAN subroutine allows such an analysis to be easily

and routinely performed.

i
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CRITERIA FOR A BIOCELLULAR MODEL - BIOCELLULAR COMIUNICATION

George I. Lavin
Vulnerability Laboratory

Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland

We are interested in the design, construction and testing of a model
which could be used for the assessment of absorbed energy on biocellular
systems. Previous reports to this Conference have had to do essentially
with the methodology available for this purpose. However, from time to time
an attempt has been made to describe a model.

We do not have to go far afield for the model criteria. Obviously, it
is that particular animal or animal system under consideration. The diffi-
culty of course is that we really know very little about the biochemistry of
behavior. The analytical data available (on soft tissue) indicate the pre-
sence of proteins, nucleic acids, polysaccharides, lipoids, phosphorus con-
taining cerebrosides .... Also the general impression is that these materials
"act" as sources of energy for the various physiological processes or as
enzymes (catalysts).

It is obvious that no attempt is being made at the moment to apply the
above to models. The present paper is designed to call attention to an-
other aspect of performance which should be taken into consideration in
the design of models. That is, Biocommunication (nerve transmission).

In order to have a dimensional concept on which to speculate, let us
consider the example of a man sighting an object and then reaching for it.
The following are involved: Brain, Nerve, Muscle, The Visual Systems ......

We now have a dimensional ensemble which performs a definite task
-which we can use for the application of "Biocellular Numbers." That is to
say we are in a position where we can make an assessment of the mechanism
and utilization of absorbed energy .... By a corsideration of the effects On
the task specific compounds.

To come back to our original subject, that is Biocommunication, we can
make the assumption that the performance of a task is the result of the pre-
sence and intercommunication of a series of animal organs, the extent of per-
formance being regulated by feedback processes - subject to specific energy
interchanges. .

It is obvious that the above is not a complete "recipe" for a Biocellular
Model. It is intended, however, to be a step along in the hope that by such
thinking a working simulation can eventually be attained...Only God can make
a tree.
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EQUATION-OF-STATE AND SHOCK INITIATION EXPERIMENTS
ON EXPLOSIVES USING PULSED ELECTRON BEAMS

L. Avrami and P. Harris
Picatinny Arsenal, Dover, New Jersey

J. Shea
Physics International Co.

ABSTRACT. Pulsed electron beam energy deposition experiments were
carried out on porous granular primary and secondary explosive pellets.
Experimental techniques and shock theory were developed to obtain energy-
pressure coupling data and aound velocities. The deposition conditions
for shock initiation also were investigated and the initiation levels for
lead azide and KDNBF were detcrmined.

Experimentally an effective Gruneisen parameter was obtained by rear

surface response, and the measurements were correlated theoretically with
pulse time and the structure of the porous explosive4 The experiments re-
vealed a strong dependence on density ratios.

INTRODUCTION. During a recent program studying the effects of a radia-
tion pulse on explosive materials using pulsed-electron beams (Ref.1) experi-
mental techniques were initiated (1) to obtain energy-pressure coupling data
and sound velocities on porous granular explosives, and (2) to determine the
energy deposition conditions for shock initiation of explosives.

Although a fair amount of information is available on the static pressure
properties of materials the emphasis has shifted to determine the dynamic high
pressure properties of materials, not only solid or liquid, but also porous.
In the latter case, any material which has a mass density less than the maxi-
mum possible equilibrium mass density at a given pressure and temperature is
called a porous solid. The example used here is the less than crystal density
granular explosives pressed into pellets.

There are thrie ways to cause a shock wave to occur in a material. An
already existing shock in one medium can be propagated into a second material
simply by having the two materials be in contact. Solids can be caused to
impact each cther at high velocity resulting in shock waves propagating out
from the point of impact. Lastly, thermal energy can be stored in a material
in a spatially inhomogeneous manner; since thermal energy is equivalent to a
pressure, and since 3P/3x is equivalent to a force per unit volume the inhomo-
geneous energy deposition combined with a nonlinear equation of state will re-
sult in a propagating shock. This paper describes the results utilizing the
last method.

APPROACH. High intensity, high voltage, pulsed electron beams can be
used to produce a budden increase in energy (and pressure) throughout a sub-
stantial volume of a solid without shock compression. With this method the
problem associated with the local thermal non-equilibrium aspects of shock
loading of granular explosives need not be considered. Furthermore, the

Preceding page blank
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states attained by sudden volume heating are well removed from the Hugo-
niot, thus affording the opportunity to evaluate the adequacy of the
equation-of-state models under conditions not associated with shock
loading.

In order to characterize the state of a material following constant
volume heating, the pressure-energy coupling relationship must be known.
This relationship is determined through the Gruneisen coefficient, r, of
the material. This parameter appears in the Mie-Gruneisen equation of state
(Ref. 2) and can be written in the form

P . f(V) + (1)

where P is the pressure, V is the specific volume, and E is the specific
internal energy.

The Mie-Gruneisen equation of state is generally employed in the
finite difference computer codes that are currently used to calculate dyna-
mic response of homogeneous material (Ref. 3). However, when materials with
porosity are encountered, one cannot continue to consider them as homogeneous
media. On the other hand, the convenience of the finite difference computer
codes is such that it is desirable to define constitutive relationships in
such a way that they are treated as if they were homogeneous, and average
values for pressure, volume and energy are given correctly. Such formulations
have been developed by Hermann (Ref. 4) and Seaman and Linde (Ref. 5).

An effective Gruneisen coefficient can be defined for solid materials,
including porous substances such as granular explosives, by

r v ( )3 (2)

where the volume is considered in a macroscopic sense, i.e. bulk material
plus any voids. The coefficient thus defined is expected to be energy depen-
"dent for porous materials, since internal pressure relief (still at constant
volume) can occur due to the collapse of voids, especially as the shear
strength of the material generally decreases with increasing temperature.

If the pressure in a substance is determined as a function of energy
under constant volume conditions, value of the Gruneisen coefficient can be
obtained as a function of energy by differentiation (Equation 2).

High-intensity pulsed electron beams are well suited for producing sudden
volume heating, so that the Gruneisen coefficient can be evaluated. When the
irradiated sample (slab geometry) is thick enough to absorb all of the incident
electrons, a compressive stress wave propagates from the heated, high-pressure
region toward the rear (away from the source) of the sample.

A transducer, such as a piezoelectric material or manganin gauge, located
just beyond the deposition depth, can be used to record the stress pulse. Al-
ternatively, the displacement or velocity of the rear surface may be observed
using optical techniques. A relatively straightforward procedure involving
material response calculations can be used to infer the initial pressure dis-
tribution from the experimentally measured stress history, provided the con-
stitutive relation is reasonably well known. A knowledge of the energy deposi-
tion profile is then sufficient to determine the Gruneisen coefficient.
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By locating the transducer just beyond.. the deposition region, the effects
of uncertainties in tie Hugoniot, dispersion, or attenuation are minimized.
Moreover, since the eatire stress profile is obtained, serious errors in the
constitutive relation, if present, will be detected.

I!

EXPERIMENTAL RESULTS. Experiments to determine the pressure-energy
coupling were performed on PETN (pentaerythritol tetranitrate), KDNBF (Potassium
dinitrobenzcfuroxan), lead axide (PbN6 ), and RDX. The PETN wafers were pressed

from a very fine powder (grain diameter .003mm) to densities ranging from
1.48 to 1.57 grams/cm3 (Ref. 6). KDNBF pellets of 5/8 inch diameter pressed
with 4 tons (p-l.67gm/cc) and 5 tons (p-l.60gm/cc) and PbN6 pellets pressed
with 3 tons (p-2.92gm/cc) and 5 tons (p-3.27gm/cc) were tested. The nominal
thickness of the specimens was 0.070 inch. Electron beam irradiations of
the specimens were performed with Loth the Model 312 Pulserad and on the
Model 738 Pulserad. Stresses generated in the specimens were measured with
piezoelectric (X-cut) quartz stress gauges. The gauges have a nominal read
time of 0.5 usec before internal reflections perturb the output. The active
area of the gauges is 1/2 inch in diameter.

In the initial series of tests that were performed with the Physics Inter-
national Model 312 Pulserad, specimens were bonded directly onto the quartz
gauge. In order to deep the duration of the stress pulse to less than 0.5 usec.,
the electron range, R, in the specimen was limited to a value less than c x 0.5
usec, where c is the specimen sound speed. For preliminary calculations, c was
assumed to be 0.2 cm/usec; thus R < 0.1 cm. This criterion dictated a maximum
mean energy of 0.5 MeV for the least dense of the materials under test. The
elactron beam was controlled by a low pressure background gas. Fluences were
monitored between data shots by inserting a graphite calorimeter into the test
chamber at the specimen location. Normalized dose profiles were obtained at
intervals with an aluminum depth dosimeter. A typical normalized dose profile
"in aluminum is given in Figure 1.
SinaA quartz transducer record obtained for the pressed PETN is shown in FigureS 2.' For KDNBF and lead' azide the records are sho ,wn in Figures 3 and 4. The first

signal is a short pulse due to the electron bremsstrahlung radiation incident
upon the cables for the transducer. This provides a precise fiducial point for
the energy deposition. The compressive stress pulse arrives shortly thereafter
and is recorded well within the 0.5 usec reading time of the transducer. With
this record a measurement of the sound speed in the material can be obtained
when the sample thickness and energy deposition profile is known.

The record stress levels were comparatively low: further, a consequence of
the Seaman and Linde model for porous solids (Ref. 5) is that the propagated
stress pulse resulting from energy deposition in a porous solid will not exceed
half the crush strength, provided the voids are not filled and no vaporization
takes place. Therefore, linear equations were used to compute the material
response.

The results for all the PETN samples are summarized in Figure 5 where the
peak initial pressure deduced from the measured stress is shown as a function
of peak dose. Linear relationships are found for samples with densities of
1.59 ± 0.31 gram/cm3 and 1.54 ± 0.01 gram/cm3 . The Gruneisen coefficients for
these materials are computed to be 0.51 and 0.15, respectively. Greater un-
certainties are associated with the data of the low density samples, 1.47
gram/cm3 , and 1.54 gram/cm3 , as a result of the lower densitie• and sound velo-
cities producing stress pulses that slightly exceed the nominal read time of
the quartz gauges. Therefore an extrapolation of the records was necessary.
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The pressure that was observed from the 1.47 gram/cm dense sample ex-

posed to a dose of 16 cal/gram falls within an expected region. The other
1.47 gram/cm3 dense sample, however,- produced a pressure that is hijhqr than
anticipated. It falls slightly above the data for the 1.54 gram/cmJ dense
samples. This discreoancy was not reselved.

The datum point for material with a density of 1.67 gram/cm indicates a
value for the Gruneisen coefficient of 1.2 ± 0.2 which is considerably higher
than that of the lower density materials. Since the Gruneisen coefficient is
expected to be sensitive to density, this result was anticipated.

The sound speeds obtained from the oscilloscope traces for the 1.59
gram/cm3 and 1.54 gram/cm3 samples were found to be 2.4 ± 0.1 mm/usec and 1.8 ±
0.3 mm/L•sec, respectively. These agree with data reported by Roth and Blackburn
(Ref. 12) for PETN in the same density ranges. The measured sound speeds for
the 1.47 gram/cm3 and the 1.67 gram/cm3 samples were 1.7 ± 0.3 mm/usec and 2.8
mm/usec, respectively. The complete results of the measurements are summarized
in Table 1.

The measured stress profile is compared with a computed stress profile
based upon the energy deposition profile, a sound speed of 2.4 mm/hsec and an
assumed value for the Gruneisen coefficient of 0.51 (Figure 2) and shows satis-
factory agreement.

For the lead azide and KDNBF, similar work is now in progress. Besides
using the technique describes above a second series of tests are being performed
employing a somewhat different quartz gauge technique. In this te:hnique a buf-
fer of fused quartz is sandwiched between the sample and the quartz gauge. With
this configuration, the mean electron energy is chosen high enough so that deposi-
tion occurs through the entire specimen and into the buffer. Ideally, the speci-
men-buffer interface should lie at about half-ranS- kor less). Since fused quartz
has a very low Gruneisen coefficient (r < 0.035, Ref 7) compared to most materials,
it produces very little stress. The stress pulse that is obtained from the com-
bined package thus will usually exhibit a large step corresponding to arrival of
stress from the rear surface of the specimen. In any case, the eqxation of state
for fused silica is well known (References 3 and 4) and the arrival time for
the pressure signal from the test material can be uniquely determined.

This technique has several advantages. First, gauge read times are of
little importance since the step, which is the signal of interest, is generally
the first detectable signal to be read by the gauge. Second, one-dimensional
read times and stress reverberation time (i.e. multiple reflections between the
sample front surface and the buffer) do not affect the amplitude of the step.
And third, the normalized dose at about half-range is least affected by slight
variations in the electron energy spectrum.

Preliminary results obtained using both techniques are listed in Table 2.
For'KDNBF the results indicate so far that for the two types of samples the
sound speeds and effective Gruneisen parameters are the same at the two densities.
Additional tests are being conducted to determine if a density ratio actually
does exist. For lead axide the sound speed value of 0.35 ± 02 cin/psec and a pro-
bably Gruneisen constant of 0.25 ± 03 were obtained for the 5 ton pellets with
a density of 3.29 grams/cm3 .

DISCUSSION OF GRUNEISEN RESULTS. There are two possible definitions of
the Gruneisen parameter, one microscopic and Lhe other macroscopic. The micro-
scopic involves a model for in'teractions on an atomic level, while the macro-
scopic definition involves measurable parameters.
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In the macroscopic definition, the Gruneisen constant, r, is defined by:

(r) (2)
3E

where p is pressure, o is mass density, and E is internal energy. Equation 2
says that if one deposits thermal energy in a time small compared to the time
necessary (defined below) for significant mass motion, then the pressure in the
solid changes. The quantity r determines the change in pressure, and is a pro-
perty of the structure of the material.

The time criterion mentioned above is usually taken as the time necessary
for an acoustic wave to traverse an electron scattering mean free path in the
solid. Let such a time be t 1 . If the pulse duration is T, then the constant

volume definition of Eq. 2 requires:

T < t 1 . (3)

Physically, this means if Eq. 3 holds, then any energy inhomogenities intro-
duced by the electron beam are not relieved by acoustic signals before the
energy is deposited. In other words, the energy can be considered as deposited
instantaneously if Eq. 3 holds.

Considering that the average dimensions of the granular explosive parti-
cles are small compared to the appropriate radiation mean free path, it can be
readily seen that the time criteria of Eq. 3 is, in general, not valid for a
porous material. In the case of small particles, the energy deposition- induced
thermal stresses are relieved by thermal expansion prior to completion of the
energy deposition process. Table 3 below lists some electron energy absorp-
tion mean free paths for a variety of materials and energies (Ref. 8).

As contrast to the typical dimension of 103U, i.e., 0.1 cm, of Table I, an
acoustic wave propagating at 3 x 105 cm/sec can relieve the stress to the center
of a 180w particle in 30 nanoseconds. Consequently, an electron beam machine
having a pulse width of 30 nanoseconds (FWHM) would not be able to utilize the
criteria of Equation 3 for experiments with porous solids having particle sizes
of 180P or less. It is interesting to note that the 30 nanosecond figure is
typical of the faster machines In use today. The average grain size of the PETN
was observed to be 250w. The electron beam was at 0.4 Mev with a pulse width of
25 nanoseconds (FW4M). Thus, if the PETN in question was porous enough so that
a significant number of grains were not in intimate contact along a grain
boundary, then the time criteria of Equation 3 would be invalid.

Consequently, the F measured was not the true constant volume Gruneisen para-
meter as defined by Equation 2. Exactly what detailed microscopic physics corres-
ponds to the measured r is a very difficult question in porous solid mechanics
which remains unanswered. While the measured "effective r" is a worthwhile ex-
perimental variable in that it characterizes the gross behavior of the material,
unfortunately it does not allow for distinguishing between all possible porous
materials as a function of material parameters.

The same conclusions were evident in flyer plate experiments (Ref. 9) where
Harris analyzed the PETN results and the flyer plate experiments of Boade (Refs
8, 9). Wave propagation in porous materials was considered in detail and Harris
concluded that In such materials macroscopic measurements can not always be used
to determine microscopic parameters. In support of this, the porous material
is considered to act as a diffraction grating with respect to a shock wave, and
that unidirectional one-dimensional strain does not hold. Also the role of sur-
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face energy effects was considered since the measured pressures were in the
fraction of a kilobar range and the loading pressures for the pellets were
in the one to ten kilobar range.

Experiments are scheduled to conduct the same type of experiments with
large single crystals of RDX and PETN. Mazzella et al (Ref. 11) have proposed
a Gruneisen parameter for a porous material given by

2
-S- r (4)

28

where r is the parameter for the voidless undeformed solid, with c being the

propagation velocity corresponding to a pure bulk modulus wave in the voidless
undeformed material. c is the corresponding velocity for the porous solid.

Whether a correlation can be made is not known, but it seems that Equa-
tion 4 is valid for those experimental situations where the energy deposition
is so large in time that the porous medium is able to continuously adjust its
density on a microscopic scale without affecting the macroscopic density.
Other factors such as relaxation time will have to be considered.

Conparisons are also being made with the relationship

r _k (5)
PCp

where B is the volume expansion coefficient, k is the adiabatic bulk modulus
and c is the specific heat at constant pressure. Values are being determined

p
for single crystals and pressed pellets and the Gruneisen parameter compared
to those obtained with the energy deposition technique.

SHOCK INITIATION RESULTS. Shock initiation experiments Were performed on
lead azide and KDNBF. Also some preliminary results were obtained on lead
styphnate and LMNR (lead mononitroresorcinate).

The lead azide wafers were 1/4 inch diameter and 0.040 inch thick with a
" density of 4.0 grams/cm3 . These wafers were bonded with Silastic 732 RTV ad-
hesive to aluminum overlays that were 3/4 inch diameter and 1/8 inch thick. The
lead azide samples were irradiated with a pulsed 900 kev electron beam; the
energy deposition was entirely in the explosive.

The stress pulse in the aluminum could be computed from the energy deposi-
tion profile, the beam intensity, and the equation of state for aluminum. The

- stress transmitted to the explosive depends upon the relative acoustic impedances
ofoa'uminum and the explosive. In addition, the bond layer must be quite thin
to avoid significant attenuation.

A test was conducted to check the experimental configuration, and, in parti-
cular, the effect of the adhesive bond on the transmitted stress pulse. In this
test a quartz gauge was bonded to an aluminum sample using the Silastic 732 RTV
adhesive, the sample was irradiated, and a comparison was made between the pre-
dicted and measured stress hisotires. There appeared to be a 20 percent attenua-
tion of the stress pulse due to the bond. This factor was used in the subqe-
quent analysis to estimate the stress transmitted to the explosives.

The experimental results obtained for lead azide are summarized in Table 4
and in Figure 6. Seventeen samples were irradiated; six samples initiated and
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eleven samples did not. The temperatures indicated in column 4 of the table
are the final temperatures that the aluminum overlay achieved due to the
energy deposition. These values are upper bounis; any thermal losses were

neglected. The highest temperature achieved at the aluminum-lead azide inter-
face was approximately 120 C. This value is significantly below the lowest
value of 297 C for thermal initiation threshold of the lead azide. The data
indicate a stress initiation threshold of 3.6 kbar for the lead azide, assuming
a sound velocity of 0.25 cm/psec for the explosive. The stress pulse width was
approximately 0.2 usec. However in the equation-of-state work on lead azide
the sound speed for lead azide with a density of 3.29 grams/cm3 was .35 cm/usec.
If this value is used the initiation threshold is 4.4 kbar.

These results are in reasonable agreement with some small-scale gap tests
which obtained threshold initiation levels of 4 to 6 kbar for lead azide (Ref-
erence 13); they are also consistent with an experiment performed by Roth (Ref-
erence 14), who observed an initiation in 95 percent lead azide, 5 percent Teflon
(p-2.7 gram/cm!) subjected to an 8.5 to 10 kbar shock loading.

Only a limited amount of data was obtained on lead styphnate and LMNR. One
initiation was achieved in lead styphnate. Assuming a sound speed of 0.25 cm/Usec
and a density of 2.75 gram/cc the stress transmitted to the lead styphnate that
produced initiation is estimated at 4.3 kbar, while the highest stress that did
not produce initiation was 3.1 kbar. Pulse duration was in the order of 0.4
Usec. With LMNR with the same type of pulse no initiations were achieved with
the highest stress transmitted to the LMNR being in the order of 8 kbar.

The shock initiation experiments were performed on KDNBF pellets of 1/4
inch diameter and 0.044 ± 0.003 inch thickness. The density of the pellets was
1.75 ± 0.03 grams cm3 . Thermomechanical stress pulses were produced by rapid
electron energy deposition in aluminum disks, 3/8 inch in diameter and 1/8 inch
think. The stress pulses propagated into KDNBF pellets, which were bonded to
the rear surface of the aluminum disks with phenol salicylate (salol).

Due to the different acoustical impedances of aluminum and KDNBF, only part
of the shock wave was transmitted into the KDNBF and the remainder was reflected.
The transmission coefficient, ,T, can be calculated from the formula

, 2
T = (6)

1 + Z AZ1 2

where Z and Z2 are the acoustic impedances of aluminum and KDNBF, respectively,

For aluminum,

z Pu - 2.71 grams/cm x 0.57 cm/psec

"- 1.54 grams/cm2 psec

where u is an average value of the shock velocity in aluminum for the range

of pressures of interest (about 50 kbars). For KDNBF, using the experimentally
determined sound speed of 0.30 cm/usec,

3Z pc - 1.74 grams/cm x 0.30 cm/Usec
22

- 0.525 gram/cm usec

Thus T = 0.51.
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The electron beam environment for this experiment was provided by the
Model 738 Pulserad. Machine parameters were set to produce an electron beam
of approximately 1 MeV mean energy and approximately 50 nanosecond duration.
Such a beam produces a peak normalized dose of about 4.5 (cal/gram)/(cal/cm2 )
and a range in aluminum of about 0.085 inch. Since the aluminum overlays were
0.125 inch thick, no electrons were deposited into the KDNBF. The electron
beam was controlled by gas focussing in a low pressure background gas; a metal
beam guide consisting of a copper pipe was used for the fluences below 50 cal/cm2

and a copper cone for the hlgher fluences. Normalized deposition profiles in
aluminum were obtained with an aluminum depth-dosimeter. Fluences for each
data shot were monitored by a set of graphite calorimeters surrounding the speci-
men in the case of the copper pipe, and by a Rogowski coil net current monitor
in the case of the copper cone.

Peak stresses generated in aluminum for each data shot were calculated
using the formula

(1 CT

O -1/2 pre ( -) (kbars) (7)
p 2R

where p is the sample density, r is the Gruniesen coefficient for aluminum,
c is the peak dose (0.04186 E if E is in cal/gram), cT is the relief depth,
i.e. the product of the sound speed, c, and the energy deposition time, T,
and R is the range in aluminum. For this experiment,

0 - 2.71 grams/cm
3

r - 2.0
E - 4.5 *cal/gram
c - 0.57 cm/esec
T - 0.05 usec
R - 0.085 inch

hence,
a - 0.477 *(kbars)

where * is the fluence in cal/cm2 .
Table 5 contains a summary of the results obtained in the experiments. The

third column contains the peak stress in aluminum calculated for each shot using
Equation 7. In the fourth column, the peak stress in KDNBF has been calculated

i from the stress in aluminum utilizing the transmission coefficient [Equation 6].
The last column indicates the observed effect on the explosive. The results are

.,presented graphically in Figure 7. The data indicate that shock initiation may
occur at pressures of 20 to 30 kbars. This conclusion should be regarded as ten-
tative since one specimen clearly did not initiate in this pressure range and
another specimen apparently exhibited only a low-order initiation or burning at
a pressure of approximately 50 kbars. It is conceivable that at higher fluences,
initiation could have resulted from late-time heating of the specimen by thermal
conduction through the aluminum overlay. However, front surface spall probably
removed much of the deposited energy. Late-time heating effects in future experi-
ments could be detected by instrumenting the overlay with a thermocouple. If pre-
sent the heating could be eliminated by including, a second disk of aluminum in
the sample package with'a "strengthless" bond to the first disk of aluminum.

//

//
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SUMKARY AND RECOMMENDATIONS. In summary using pulsed electron beams we
have experimentally obtained an "effective" Gruneisen coefficient for PETN
which reveals a strong dependence on density ratios. Preliminary data has
been obtained also on KDNBF and lead azide.

The elastic sound velocities for each of these materials have been found
concurrently.

Further work has to be done to explain theoretically the results obtained
since the time dependence criteria is not being met; only the gross behavior
of the explosive is characterized.

In the shock initiation work a technique has been developed to determine
the shock initiation of explosives, especially in the 0-20 kilobar range.
Results for lead azide are consistent; in the range above 20 kilobars modi-
fications have to be considered for temperature effects and spallation.
The results for KDNBF seem to bear this out.
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Figure 3B
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TABLE 2

SUMMARY OF PRESSURE-ENERCY COUPLING EPEX MENTAL RESULTS

(Prelizinary)

Density 3  Sound Speed Probable

Explosive (gram/cm )(cmfsec) Gruneisen

5-ton KDNBF 1.67 0.30 1 0.02 0.4 1 0.15

4-ton KDr3P 1.60 0.30 t 0.02 0.4 ± 0.15

5-ton PbN 3.29 0.35 1 0.02 0.25 1 0.03

3-ton PbN6  2.92 Undetermined < 0.06 (?)

of
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TABLE 3

ELECTRON MEAN FREE PATH AS A FUNCTION OF ENERGY

Material Mean Free Path Electron Energy

Al 100 i 0.4 Mev
PETN 500 p 0.4 Mev
Be 1,000 v 0.6 Mev
Quartz Crystal 4,000 u 2 Mev
PETN 1,000 0 4 Mev
Lead Styphnate 1,000 v 4 Mev
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TABJZ 5

INITIATION OF KDNBF PELLETS
BY A 0.37 ,JSEC THERMLIOMECHANICAL
STRESS PULSE IN ALUMINUM OVERLAY

SHOT FLUENCE STRESS IN AL STRESS IN KDNBF
NUMBER (cal/cm2 ) (kbar) (kbar) GO/NO-GO

20410 25.5(10%)* 12.1(15%)* 6.2(15%)* NO GO

20411 33.2(10%) .15.8(15%) 8.1(15%) NO GO

20412 40.4(10%) 19.3(15%) 9.8(15%) NO GO

20414 36.2(10%) 17.3(15%) 8(15%) 1NO GO

20415 28.0(10%) 13.4(15%) 6.8(15%) PARTIAL?

20420 205(20%) 98(25%) 50(25%) PARTIAL

20421 198(20%) 94(25%) 48(25%) GO

423,6 107(30%)3 51(5%) 26(35%)- cGO

20424 119(25%) 57(25%) 29(25%) NO'GO

ESTIMATED UNCERTAINTY

/-
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AN ANALYSIS OF 5.56mm ALUMINUM CARTRIDGE CASE
"BURN-THROUGH" PHENOMENON

Walter H. Squire and Reed E. Donnard
Frankford Arsenal, Philadelphia, Pennsylvania

ABSTRACT. The use of aluminum alloys as small arms cartridge case
material is precluded by a catastrophic failure process previously iden-
tified as "burn-through". To determine engineering solutions which
would enable the use of aluminum alloys, instead of the conventional
cartridge brass, a combination experimental and theoretical program was
designed and conducted to identify this failure process.

Postmortem analyses of cartridge cases which evidenced "burn-
through" lead to the premise that this phenomenon occurs only when there
is a path for the high energy propellant gases to exit any unsealed
opening in the cartridge case. Since the natural occurrence of this
process is reduced significantly by advanced processing and super
strength alloys, it was necessary to provide gas paths to study the fail-
ure dynamics. The experimental program was designed to allow a parametric
investigation relating size and location of the induced orifice and pro-
pellant gas pressure and flow time to the amount of damage inflicted to
the cartridge case.

An analytical model was constructed from existing solutions of the
physical processes occurring during "burn-through". The gas dynam:Lcs of
flow in a small bore, boundary layer effects, transient heat conduction,
and change of phase processes were all considered. Utilization of the
analystical model allowed determination of the local temperature pro-
files in selected regions of an aluminum cartridge case and permitted
the generalization that the failure process is ablation. Given gas flow,
it was easily shown that portions of the aluminum cartridge case undergo
melting. However, further use of the model demonstrated that the total
amount of aluminum ablated from the cartridge case was not correctly pre-
dicted by a classical melting theory.

High speed motion pictures taken at the surface of the cartridge case
showed the existence of a localized exothermic chemical reaction. When
this additional energy source is considered together with the classically
derived heat flux,, the agreement between theory and experiment is excellent.

I.TRODUCTION. The United States Army - SASA, MUCO(M, and Frankford
Arsenal - is engaged in an exploratory development program to determine
the engineering parameters required to utilize aluminum cartridge cases
in high-pressure, small-caliber nm.unitiz. &;rstems. This work is based
on the need to create lightweight ammunition/veapon systems in near future
applications. Conservation of copper resources is an added benefit to
be gained from success in this effort.

To date, a significant fact which has precluded the acceptance of
aluminum cartridge cases in the logistic system is the nature of the fail-
urs prccess - heretofore identified as '"urn-through". When a mechanical
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case failure is encountered during the firing of aluminum-cased ammuni-
tion, particularly with high-pressure, high-performance weapon systems,
the failure of an aluminum cartridge case is characterized by a large
efflux of very luminous gases at the breech of the weapon, the serious
erosion of the cartridge case, and often, the inability of the weapon
to function properly thereafter. Thus, this failure may result in
serious harm to the rifleman and damage the weapon.

In order to investigate the failure dynamics, as a basis for finding
a solution or solutions to this problem, it was found that a small hole
drilled in the head region of an aluminum cartridge case, or a four
thousands deep longitudinal scratch would, upon firivg, result in "burn-
through". As a result of this simulation of the failure process, it
was concluded that a gas path must be available for the otherwise un-
restricted flow of propellant gases from the interior of the cartridge
case through the path in the case wall and to the atmosphere. Figure
1 is a photograph of the'results'"of firing brass and aluminum cartridge
dases with a 0.0135 inch '(diameter) hole in the head region of each case.
The two brass cases seem unaffected after firing. However, the two
aluminum cartridga cases show the typical erosion in the head region;
the unfired aluminum cartridge case can, be used to compare the damage
after firing with its initial, drilled conditior. This paper is add-
ressed to a discussion concerning the peculiar results when propellant
gases are allowed to pass through an induced fissure in an aluminum
cartridge case.

STATEMENT OF THE PROBLEM. Using a pre-placed gas path in an alum-
inum cartridge case as a vehicle to study this phenomenon, the mathematics"
which follow describe the heat flux resulting from the fast moving pro-
pellant gases through the induced orifice and allow determination of
the temperature profiles in selected regions of the cartridge case.
Emphasis is placed on the gas/solid interface - the'interior surface of
the induced orifice. To test the accuracy of the r xthematical model,
the appropriate physical constants of the case mat :ials under consi-
deration, along with values obtained from an experi ental program,
were substituted into the equations. Temperature profiles and total
erosion values were thus calculated. This analytical tool was used
to investigate the premise that portions of the aluminum cartridge
case undergo melting and that the total amount of aluminum ablated from
the cartridge case is correctly predicted by a classical melting theory.
The same mathematics, when applied to the flow through a brass cartridge
case, should indicate minimal metal removal.

In order to facilitate a closed-form solution of the mathematical
model, thereby enabling a parametric investigation of the critical factors
affecting "burn-through" and verification with experimental data, the
following assumptions were employed:

(1) The dimensions of the induced orifice remain constant until
melting,

(2) Propellant gas behaves as an ideal gas,
(3) Classical heat coanductiun equation describes the dissipation

of energy in the solid until melting,
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(4) The physical properties of the cartridge case material are
constant during the experiment,

ý(5) It is possible to identify an average operating pressure
(Po - 25,000 psi), and

(6) The gas temperature is the adiabatic flame temperature
(To - 5040°R).

EXPERIMENTAL. To obtain pressure vs time data, a thick-walled test
barrel was drilled and threated to accept a 607A Kistler Gauge. This
gauge was positioned midway along the longitudinal axis of the cartridge
case to measure the gas pressure. Figure 2 shows the pressure-time his-
tory of the propellant gases inside a 5.56mm cartridge case which con-
tained the charge of 27.0 grains of WC846 propellant.

In addition to the pressure-time curve, it was desired to monitor
the initiation and the duration of the gas flow from the orifice. Hence,

positioning a photoelectric cell in the same horizontal plane and at
right angles to the induced orifice provided the desired information.
That is, by recording the output of the photoelectric cell on the screen
on an oscilloscope, it is possible to determine when the gases first
exit the orifice and for how long the flow continues.

An experiment was designed which allowed a parametric investigation
of peak chamber pressure, initial hole size, and the effect of these para-
meters on the damage sustained by an aluminum cartridge case as a result
of "burn-through". In order to relate quantitatively the damage inflicted
to the cartridge case, the cases were weighed (to four decimal place
accuracy) before and after firing; the amount of metal lost is indicative
of the severity of the erosion. The initial hole sizes ranged from
0.0135 to 0.0625 inch in diameter. To obtain peak chamber pressures which
ranged from 22 to 58K psi, the charge of WC846 propellant was varied from
21.0 to 28.0 grains. Figure 3 shows the results of this work - each data
point is the average of five firings per condition of the experiment. As
is shown in the plot, for a given particular pressure level, the least
amount of damage - that is, cartridge case weight loss - occurs with the
smallest hole size (0.0135 inch). Examining the data, a trend is estab-
lished for increasing hole sizes of 0.0250, 0.0312 aid 0.0400 inch in
diameter. Namely, it is apparent that as the hole size is increased, the
damage is correspondingly increased. However, the curve for the 0.0625
inch hole falls within the envelope defined by the 0.040 and 0.0135 inch
holes. This is perplexing until one realizes that the peak pressures
experienced during Airing of these cases (0.0625 inch diameter hole) are
lower than those resulting from firing the same charge with a smaller
hole size. This brings up the second important consideration gained
from this study. Namely, for any particular hole size, the effect of
1-"reasing chamber pressure is to increase the damage sustained by the
cartridge case.

ANALYSIS. The mathematical analysis is directed to that portion of
the cartridge case shown in Figure 4. Since the hole is drilled in the
most massive region of the case, and since the length to diameter (L/D)
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ratio of the hole is approximately 5, a reasonable approximation to the
region of the case where the hole is drilled is that of a small hole in a
medium of infinite extent in the radial direction. Distance along the

axis of the bore is specified by the variable Z, and distance from the
center line of the bore in the radial direction is given by the variable r.

It is first necessary to describe the flow of propellant gases from
the interior of the cartridge case through the induced fissure. To do so,
it is important to select the most representative gas dynamic model, based
upon bore size. With a L/D ratio of approximately 5, the relatively small
opening of 0.0135 inch in diameter, and the rapid rate of pressurization,
the flow may be assumed to be choked. The additional assumption is made
that the flow is developed to the point where it consists of a well de-
fined boundary layer and a central, core region. Figure 5 is a drawing
depicting this flow process. The temperature, pressure, density, and
velocity as a function of position in the core region can be determined
with the appropriate flow model. Determination of the nature of the
boundary layer, laminar or turbulent, can be accomplished by an examina-
tion of the magnitude of the local Reynolds number.

Lee and Sears (1) suggest an adiabatic treatment of the flow be con-
sidered providing the bore is not too long (less than ten bore diameters).
Admittedly, the flow process should account for the substantial transfer
of energy to the bore's sidewalls since melting has been hypothesized to
occur. The adiabatic assumption of the flow does not contradict the hypo-
thesized fact that there is substantial energy transfer. The analysis of
the core region merely permits a determination of the gas conditions - i.e.
temperature, pressure, density and velocity - external to the boundary
layer. It must be remembered that it is across the boundary layer that
the energy is transferred to the bore's sidewalls. Thus, the gas dynamics
in the core will be treated as adiabatic flow with friction in a duct of
constant area.

Shapiro (2) has developed a series of working formulas to describe
such a flow process. Momentum, energy, and mass equations are written
for the flow of a perfect gas through an elemental control volume.
Since the reservoir (chamber) conditions are available and since choking
is assumed to occur at the exit, these formulas may be used to predict
the temperature, pressure, velocity, and density at any position along
the bore's axis.

The Mach number as a function of position along the bore's axis aust-
first be determined. Lee and Sears (1) give a relationship for the bore
length L, required for the flow to pass from a Mach number, MH, to a Mach
number, M2, as

4fL 4. (L4f x) 4f (Lmax) (1)
D D("M3X)I D ( Maw (2

where f is the friction factor, and D is the diameter of the bore.
The friction factor f, is defined by the Reynolds analogy as

2hf . (2)

Pvc P
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where hcz is the heat transfer coefficientp is the gas density. v is

the gas velocity, and c is the specified heat as constant pressure.
P

Since at this point in the analysis, values for hz, p and v are

all unknown, a value for the friction factor must be assumed. An itera-
tive technique can be used later to identify a correct friction factor,
once more information on the fluid properties within the central core
region is available. Shapiro (2) states that friction factors in the
range of 0.001 to 0.004 are realistic for the type of flow with which
this analysis is concerned. Keenan and Kaye's (3) gas tables for the
adiabatic flow of a perfect gas through a constant area duct with fric-
tion, in conjunction with equation (1), are used to determine the Mach
number as a function of position throughout the bore for friction fac-
tors of 0.001, 0.002, and 0.004. These data are presented in Figure 6.

Now that the local Mach number is available, it is possible to
evaluate both the free stream and stagnation values for the temperature,
pressure, and density at any point along the bore's axis. The chamber
conditions - those describing the combustion of the propellant grains
inside the cartridge case - to be used through-out this analysis are:

-T 0 5040°R' Po 2.5x104 psi, R 6 64.372 ft-lbf/lbm R

Po - 11.09 lbm/ft 3 , and y - 1.24

To obtain the gas properties at the beginning of the bore - the
inlet, an isentropic process is thought to be valid. Shapiro (2) pro-
vides the following governing equations for an isentropic process:

T 0
T (3)

,+1 + y- 2
2 . ".

P-
-o (4)

(1 + M2)Y/Yl-
2

PO 
(5)

(1 + =1 M2. H) I/Y-l

where the free stream conditions and the stagnation states are identified
by the subscripts - and o respectively. The local value for the gaa velo-
city may also be determined from formula:

Sva- MV- .R . (6)
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In order to determine the axial dependency of the free stream tem-
perature, pressure, density, and velocity, equations (3), (4), (5), and
(6) are again used. The appropriate value for the local Hach number is
obtained from Figure 6. These calculations are performed for a friction
factor of 0.002 at positions where the Mach numbers are 0.09 and 0.95,
and 1.00 and are shown in Figure 7. Although a detailed treatment of
the fluid mechanics has been addressed, Figure 7 shows that the free
stre qm conditions do not vary appreciably along the axis of the bore.

The problem which is being studied is that of flow and heat trans-
fer in a small bore. Kreith (4) states that for very short tubes or
rectangular ducts with initially uniform velocity and temperature distri-
bution, the flow conditions along the wall approximate those along a flat
plate. Hence, the original two dimensional cylindrical geometry ( r,Z)
can be replaced with a two dimensional cartesian system (x, y). Further
justification for the flat plate treatment of the problem may be obtained
by showing that the boundary layer displacement thickness is small com-
pared to the bore's radius. This fact implies that the boundary layer
is essentially localized near the surface of the bore.

To determine the nature of the boundary layer, turbulent or lan.inar,
the local Reynolds number is needed. The Reynolds number, based on length,
is given by Rez a vPZ/P where the values of the velocity, v, and the gas

density, p, for a particular value of Z are obtained from Figure 7 and
the absolute viscosity, u, is 4.72X10.0- 5 lb m/ft-sec. Kreith (4) re-

ports that the flow over a flat pl te is turbulent where the local Rey-
nolds number is approximately 3x101. Comparing 3x10 5 with the calculated

6 6
values of 1.26x10 (Rez - 0.030 inch) and 2.40x10 (ReZ W 0.062 inch),

it is concluded that the flow is indeed turbulent.

It is now possible to calculate the boundary layer thickness at any
point along the axis of the bore. Rohsenow and Choi (5) report that the
boundary layer thickness, 6, for turbulent flow is

0.37.
6 - (7)

(Rez )15 /

For the flat plate assumption to be valid it in necessary to show

-*<< 1 (8)a

where a is the bore's radius and 6* is the boundary layer displacement
thickness. Olson (6) states that the boundary layer displacement thick-
ness for turbulent flow is given by 6/8; hence, equations (7) and (8)
may be combined and evaluated. For example, at Z = 0.031 inch-the bore's
midpoint- 6*/a is 0.0128, which is very much less than one, thereby justi-
fying the flat plate treatment of the bore's surface.
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The energy transport to the bore's sidewall occurs principally by
forced c nvection. The effect of radiation can be shown to contribute
little to the net heat flux. It is therefore important to define theNusselt number in terms of the Prandtl and Reynolds numbers. With tur-

bulent flow over a flat plate, Olson (6) states that a reasonable value
for the Nusselt number may be obtained from

Nuz W 0.0288(Pr)I/ 3 (Rez)4/5 (9)

where Nuz implied that the Nusselt number is a function of position
along the bore's longitudinal axis. Combining equation (9) with the
classical definition of the Nusselt number, Nuz - hczZ/kg, where kg is
the thermal conductivity of propellant gas, it is possible to identify
the convective heat flux to the bore's sidewall as

-O.0288(Pr)i/ 3 (Re) 4 / 5 kg (Tm - Tg)q (10)

z

where Tg is a characteristic gas temperature and Ts is the surface tempera-
ture of the solid. The gas properties used in the evaluation of the Rey-
nolds and Prandtl numbers must be evaluated at a reference tEmperature,
T*, determined empirically be Eckert (7) to be

T* T + 0.50 (To %) + 0.22 (T -T ).

Consider ation of the recovery factor permits substitution of the adia-
batic wall temperature, T a~w, by the stagnation temperature so that the

above equation becomes

T*-T + 0,72 (To - TM).

The heat flux described by equation (10) is incident to the bore's
sidewalls. By showing that the thermal layer does not penetrate the
solid to any significant depth during the interior ballistic cycle, ft
is possible to treat the conduction problem as a one dimensional slab
instead of as a region exterior to a cylindrical hole of diameter, D,
and extending to infinity in the radial direction. The heat conduction
i- then reduced to a one dimensional, time-dependent problem subject to
a Newton's Law of Cooling boundary condition of the third kind. Rohsenow
and Choi (5) provide a solution to such a problem and further point out
that the heating of a thick body by a hot fluid at the surface approxi-
mates this case during the early stages of the/transient. Their solu-
tion is as follows /

/

i "[erfc _ x + (t I
T fT _k */h V )erf 3Ec+Z!I

gi1 2/X 82Vxt k 0k A k/h

A~l-
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where X and k, are the thermal diffusivities and conductivities of the

metal in question, Ti is the initial temperature of the solid, and t is
the time variable.

DISCUSSION. The analytical model, developed previously and culmina-
ting in equation (11), allows determination of the bore surface tempera-
ture given gas flow. To investigate the performance of brass and alumi-
num alloy cartridge case, it is a simple matter to substitute the appro-
priate physical parameters -X and k - and calculate the surface tempera-s

ture at several axial positions as was done to prepare Figures 8 and 9.
Figure 8 implies that the surface of an aluminum bore ( x - 0) reaches
the melting temperature after approximately 0.35 milliseconds; the brass
bore's melting temperature (Figure 9) is approached only late in the
interior ballistic cycle.

To predict the total amount of metal removed during a "burn-through,"
equation (11) is solved using a forward difference-in-time technique with
the additional condition that for any point to be removed, it must real-
ize a local temperature equal to the melting temperature plus an additional
amount of heat to cause an elementa: mass, Am, to liquify. Therefore, the
total heat flux required to cause melting, hence metal removal, will be

qremoved " AmC (T melt- Ti) + AmHf (12)

where Hf is the heat of fusion. Figure 10 shows the results of such an

exercise (labeled classical melting) and the results of an experimental
effort wherein the amount of metal lost during "burn-through" has been
correlated with p~:ak chamber pressure. A comparison shows that the experi-
mental results r•e not predicted entirely by a classical melting theory.

Since this analysis has been initiated upon the premise that the case
degradation is the result of thermal energy transport, it is necessary to
determine if any additional energy sources are present. This search is
based upon the knowledge that aluminum is a very chemically reactive
metal and that there is a large, bright gasecus discharge attending this
event. It violates our intuitive understanding of the phenomenon, how-
ever, to accept that there is sufficient energy feedback to the case
from the exterior cloud to account for the additional damage.

In order to determine if any additional energy sources were present
during an aluminum cartridge case "burn-through", high speed motion pic-
tures and still photographs were taken of this phenomenon. Figure 11(a)
shows the characteristic plume resulting from propellant gases, generated
in a combustor, passing through a 0.0135 inch (diameter) hole in an alumi-
num test specimen. This discharge has been channeled into a plexiglas
cylinder and produces a bright incandescence throughout the entire cylinder.
However, when the cylinder was flushed with nitrogen, the major portion
of gaseous discharge has been quenched as is shown in Figure 11(b). All
that remains as a result of the inert atmosphere is a small localized re-
gion in close proximity to the specimen. It is interesting to note that
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although a major portion of the discharge has been eliminated by 'the
nitrogen atmosphere, the damage (metal removal) inflicted to each test
specimen is the same. AlFI., it is apparent that the "burn-through"
plume occurs in two separate phases - a large secondary cloud existing
exterior to the aluminum specimen (identified as the oxidation of alu-
minum to aluminum oxide) and a localized primary reaction zone existing
in close proximity to the specimen.

Since the ignition a?.d combustion of aluminum has been well investi-,
gated, the literature provides some insight into the nature of the pri-
mary reaction zone. A doctoral thesis by Brzustowski (8) of Princeton
University enables the identification of this zone as a vapor phase re-
action between freshly exposed aluminum and the combustion gases. Also,
Brzustowski (8) has correl,,,ted the ignition of the protective oxide
coating on the wire. This fact will be used later in the discussion.
Hence, it is concluded thai the localized primary reaction zone is respon-
sible for additional metal removal and must be considered in the mathe-
matical model.

To assure that the understandings developed in a combustor are appli-
cable to a gun environment, a test weapon was placed in an air tight box.
The test weapon was modified so that a direct observation, with a high
speed motion picture camera, could be made of the exit plane of a drilled
hole in an aluminum cartridge case. It is possible to use the fact that
discharging the secondary plume into an inert atmosphere will quench and
reduce the intensity of the secondary cloud. The elimination of the ex-
ternal cloud would permit a close observation of the hole where the
localized primary reaction zone is occurring. Figure 12 is a photograph
of the test weapon in the box. After the lid is put in place and clamped
down, the interior of the box is filled with helium. This gas is allowed
to flow continually throughout the box assuring a one-hundred percent
atmosphere of the test gas.

Figure 13 shows a series of selected frames abstracted from a high
speed motion picture study of the firing of an aluminum cartridge case.
"In this photograph, the induced hole is observed at the left of the frame
and the discharge throughout a viewihig slot L, che test weapon. in the
flames identified t = 0.00r)+ t. t = 0.286 milliseconds, propellant gases-
as indicated by their orange glow - are observed exiting the orifice
This is the heat-up period. The flame identified t = 0.357 milliseconds
shows the first evidence of our localized primary reaction zone. This re-
gion of exothermic reaction continued for the remainder of the experiment '.
time shown. P-wever, the presence of Lhis zone in a gun environment has
been experimentally verified together with the correlation of Brzustowski-
(8). Namely, that in order to initiate the vapor phase reaction,, the
aluminum must undergo melting. The time of 0.357 milliseconds, from the

'high speed motion picture study, compares quite favorably with the model's
prediction of 0.35 milliseconds. It is therefore concluded that as the
propellant gas flows throughout the induced hole, the bulk aluminum
situated below the protective oxide coating, which lines the surface of
the hole, is melting. Due to the continuing efflux of propellant gases,
the protective oxide coating can no longer maintain its structural
integrity and gets washed away because the bulk aluminum immediately be-
low has melted. Once fresh aluminum is exposed to the propellant gases,
the protective oxide layer is unable to form and a vapor phase reaction
is initiated.
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To determine the magnicude of the heat flux resulting from the pri-
mary reaction zone, a double disk arrangement of aluminum and brass test
specimens was used in the combustor. There were two variations of this
experiment. First, the aluminum was placed closest to the combustor and
the brass faced the atmosphere. In the second experiment, the orienta-
tion of the two test specimens was reversed. The data obtained from this
experiment arc shown in Figure 14. It is possible to account for the
drastic differences in these data. If the aluminum disk first witnesses
flow of propellant gas, the.localized exothermic reaction will be exposed
to the brass specimen. The final result being that the brass specimen is
exposed to much more heat flux than would be expected if the aluminum
specimen were not present. If, on the other hand, the propellant gas
first passes through the brass specimen and then the aluminum, the exo-
thermic reaction associated with the aluminum will be carried (by the
fast moving propellant gas stream) to the atmosphere. There will be no
material on which the exothermic reaction can act. By measuring the
amount of metal removed from the brass specimen under both cases of the
experiment and by using equation (12), it is possible to calculate the
additional energy flux to the brass specimen as a result of the exother-
mic reaction. The brass specimen, in a sense, is being used as a calori-
meter for the primary reaction occurring with the aluminum specimen. Once
determined, this additional energy flux is used as a corrective factor to
the melting theory. Figure 15 shows a comparison between the experimental
results and the theoretical predictions when augmented by the heat flux
from the primary reaction zone. The agreement is favorable.

CONCLUSIONS. This work was aimed at understanding the "burn-through"
problem that has impended orderly engineering development and application
of aluminum alloy cartridge cases in high-performance ammunit~on since
the 1890's. It has been shown that a gas path through the wall of an
aluminum case, and through which propellant gas can flow during the inter-
nal ballistic cycle, is a precursor to the "burn-through" phenomenon.
Once this gas path has been established in an aluminum cartridge case,
melting of the path surface starts early in the flow cycle. On the other
hand, the melting point of a similar surface in a brass case is only
approached late in the cycle. Hence, the key factor in an aluminum
cartridge case, is the onset of melting early in the interior ballistic
cycle. This melting is almost instantaneously followed by primary, exo-
thermic chemical reactions of propellant gas molecules with available
aluminum alloy material. This exothermically aggravates the ablation of
the aluminum case surface and adjacent steel weapon surfaces over which
the conglomerate molten and reacting material flows. This primary re-
action is followed by a secondary reaction which consists of the oxidation
of unreacted case material that is blown into the atmosphere.

Armed with this knowledge, solutions to this problem have been found
that either prevent propellant gas flow through a path in the case that
develops unintentionally during firing of the ammunition, or alter the
effect of propellant gas flow through such a gas path. Since an engineering
understanding of the "burn-through" phenomenon is available, work is cur-
rently underway to demonstrate the feasibility of aluminum cartridge cases
thereby advancing the program from exploratory development to advanced
engineering development.
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STATISTICAL MODELING OF PROPACATION LOSS DATA

M. Acker, R. D'Accardi, D. Dence and C. Tsokos*

U. S. Army Electronics Command, Fcr-t Monmouth, New Jersey

ABSTRACT. Since 1962 under Project SEACORE the US Army Electronics Command
and the Advanced Research Projects Agency have supported investigations and
measurements in Southeast Asia and the United States to improve communication
electronics system performance in heavily forested environments. The present
report deals with one aspect of these irvestigations, namely, the statistical
characterization of path loss data which was collected by Jansky and Bailey.
The object of the present study is thrtefold: First, we briefly discuss
some of the findings which are czacained in previous presentations of South-
east Asia propagation data. Secondly, we compare some of the previous
findings which viewed the data a3 a deterministic phenomena with a more
realistic stochastic formulation. Thirdly, we set forth recommendations for
further defining the statistical character of propagation data.

The study shows that the propagation loss data exhibits strong random
fluctuations, especially above 100 MHz; and the deterministic equations do not
properly describe the statistical character of the path loss data. In our
investigation we rely solely on statistical modeling of the propagation loss
data to account for these random fluctuations. Non-parametric statistical
techniques are employed to analyze the data for specific configurations of
transmitter antenna hLight, receiver antenna height, distance, frequency,
and polarization.

The information obtained from the statistical modeling of the data has been
extremely useful in the feasibility and the design of communication-elec-
tronics equipment and systems.

1. INTRODUCTION. In recent years extensf e investigations and measurements
have been made in Southeast Asia and the United States to determine the
communication conditions that exist in forest environments. Studies were
initiated in 1962, sponsored by the Advanced Research Projects Agency and
performed under the direction of the U. S. Army Electronics Command as part
of the Southeast Asia Communications Research (SEACORE) Program. The overall
aim was to help over-come severe radio communications problems occurring in V
Southeast Asia. The present report deals with one aspect of these investi-
gations, namely, the measurement and analysis of path loss data. This path
loss information was obtained by Jansky and Bailey (a division of Atlantic
Research Corporation), one of the prime contractors engaged in the SEACORE
Program, and involved making extensive measurements at various locations in
Thailand. The path loss measurements covered the frequency range from 100 kHz
to 10 GHz encompassing a wide range of antenna heights, locations and
seasonal rainfall variations.

*Department of Mathematics and Statistics, University of South Florida,
Tampa, Florida
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The aim of our presentation is threefoldt First, we shall mention briefly
some of the findings which are contained in the presentation of the SEACORE
path loss data, contained in references (1,2). Secondly, we shall be con-
cerned with spot check statistical analysis ot the information in the
frequency range 2-400 MHz the results of which are then compared with
previous results. Thirdly, we shall set forth recommendations for futher
defining the statistical character of propagation loss data consistent with
the original objectives of the SEACORE Project.

In Section 2 we shall briefly discuss the presentation of some very important
and basic concepts given by Jansky and Bailey. Primarily, we shall be con-
cerned with the manner in which the data was normalized to a common distance.

A more realistic presentatiod of the analysis of the propagation loss data
from a statistical point of view will be given in Section 3. In addition,
we shall compare our spot check statistical analysis of the path loss
information with that obtained by J & B.

In Section 4, we shall present a summary of our preliminary findings,
including recommendations for further analysis.

2. COMMENTS ON PREVIOUS STATISTICAL ANALYSIS OF P4TH LOSS DATA. There are
many points which one should take into consideration with respect to the
manner in which the data was presented in the reports by J & B. There was
limited resources available to J & B to delineate statistical techniques
for processing and analyzing the data. Therefore only very limited statis-
tical analysis was performed from a rigorous point of view. To increase
the data base from which statistical observations could be drawn, J & B
normalized all the data to a distance oZ one mile.

To accomplish this normalization they utilized the analytical expression,

cY, " X 1 -4 log d i()

where: Y normalized path loss,

Xi - measured path lcss over distance di,

d.i - path length in miles, i - 1;2, ...... n,

which supposedly describes the path loss as a function of distance. This
analytical approach is applicable when one views the jungle as a deterministic
environment. Previous analytical studies (3,4) by various researchers have
shown that in the frequency range 2-100 lMHz the main mechanism which guides
the energy from the transmitter to Lhe receiver is a lateral wave which
exhibits a distance power loss of 40 log d. This particular theoretical
behavior occurs when one characterizes the electrical characteristics of the
jungle from a deterministic viewpoint. The fact that the data exhibit
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large random fluctuations Indicates that a statistical norm.'lization procedure
is more desirable than the deterministic approach. This statistical procedure
will be discussed in the subsequent sections. It should be noted, however,
that differences of 10 dB and larger occurred quite frequeuttly when using
the deterministic characterization of the path loss data.

In an attempt to determine whether or not the propagation loss varied from
a wet season to a dry season, J & B categorized the data into t-'o effects,
namely, wet and dry. This classification was based on less than scientific
guidance obtained in Thailand as to what months constitute the different
seasons. Certain minor discrepancies were noted in that the data was not
correctly categorized using this procedure. It was noted that the wet
season contained many periods with little rainfall and vice versa, and it
was almost impossible to resolve the question without further study.

It should be mentioned that it was not a specific objective of the measurement
program to determine whether or not the propagation loss in wet vegetation
Is the same as that in dry vegetation, though attempts were made to impact
available data on as many questions as possible. In this case all the

* variables were not controlled sufficiently to answer this question. For
example, if a slightly different path were used to measure the path loss
under wet conditions than under dry conditions, the effect of rainfa]l could
be easily masked by the difference in losses caused by the different paths
themselves. Further analysis, utilizing a more realistic classification,
will be presented in subsequent sections.

3. STOCHASTIC CHARACTERIZATION OF THE PATH LOSS DATA. One of the major and
most important points in the analysis of the SEACORE data is the manner in
which one attempts to normalize the propagation loss to a common distance.
As mentioned previously, J & B used x - 40 log d as the normalizing procedure.
This is the theoretical distance behavior of the propagation loss when one
considers the electromagnetic environment to be deterministic in nature.
In our analysis, we have found a strong indication that the information dic-
tates otherwise, especially above 100 MHz.

The information collected by J & B was logarithmically transformed prior
to their normalizing the data to a common distance. This transformed data
was obtained by ECOM and analyzed (with the results set forth in this paper).
It should be recognized, however, that a fundamental question which must be
considered is the extent to which this transformation altered the statistics
of the data. Time did not ?ermit this question to be fully considered.
Some preliminary estimates yielded results which indicated that the logarithmic
transformation did not significantly alter the statistics. Nevertheless,
this question should be considered in the future by performing a more complete
analysis.

Therefore, in our preliminary analysis, for specific configurations of
frequency, transmitter antenna height, receiver antenna height, polarization,
distance and wet and dry classifications, i.e. (f, T, R, P, d, c) we
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obtained an estimate of the path loss distance dependency, aci in such a
way that the variance associated with the estimate will be mInimum. The
expression that we obtained for the estimate of "ac" is given by:

N
E xt log (d)

(d(2)

2 log2(d2)

where: & - estimate of the distance dependency coefficient,1

X - measured path loss data in dB,

di distance corresponding to the path loss data.

We made spot checks of the 8 's for radial A data to determine the best
estimates for the following requencies: 2, 6, 12, 25.5, 50, 100, 250*,
and 400* MHz, and for various combinations of transmitter and receiver
antenna heights at distances of .2-2.0 miles. The data were classified as
wet or dry by two criteria: (i) rainfall greater or less than 3 inches

per month
(ii) rainfall greater or less than 6 inches

per month.
The calculated best estimates, a for the selected configurations are
given in Tables Ia, and lb.

C

*The samples containing the measurements for 250 MHz and 400 Mz may be
somewhat biased, (1).
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V' We have found that for specific configurations of the parameters involved,

there is a fluctuation from 13.3 to 52.5 dB. It is clear from Tables Ia and

Ib that the estimates, • , behave as a random variable. These preliminary

findings indicate that the media should definitely not be considered as a

deterministic phenomena and that a deterministic presentation of the data

would give misleading results with respect to further characterization of

the propagation loss as a function of the various independent parameters.

When one utilizes the deterministic formula one can not help but force the

data to accept the theoretical behavior of a deterministic phenomena. Thus,

the resulting conclusions would be consistent with previous theoretical

efforts. That is, the resulting conclusions are forced to be consistent to

thoie which the deterministic theory dictates.

Results shown in Table II reveal a mean 4 of 35.7 dB for the dry

classification with a standard error of 6 dB, and for the wet classification

a sample mean of 34.8 df3 with a standard error of 9.0 dB. These values of

standard error indicate that the respective averages for dry and wet classi-

fications are not adequate. Furthermore, if we combine the wet and dry data,

(we will discuss the feasibility of combining the data in subsequent remarks)

we obtain a sample mean • , of 35.3 dB, and a standard deviation of approx-

imately 7.6 dB. This simply indicates that if we are allowed to combine the

wet and dry propagation losses, that is, if there is no significant difference

between the two data sets, we should be utilizing, as a rough estimate of aL,

approximately 35 dB to normalize the data with respect to distance. Since

previous investigations employing a deterministic formulation (3,4) have

shown that the distance dependency of the path loss varies as 40 log d in

the frequency range 2-200 MHz, the data was separated into two sets, namely,
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2-100 MHz and 250-400 MHz, and examined. Table II shows • = 37.9 dB with

a standard error - 4.6 dB for the 2-100 MHz range and • - 27.2 dB with a

standard error - 9.2 dB for the 250-400 MHz range. This indicates that the

deterministic 40 log d more closely fits the 2-100 MHz range. In view of

the above remarks one should consider the following equation for normalizing

the propagation losses referenced to a common distance:

Zi - Xi -a& log di, i l12, ..... n, (3)

where Zi is the normalized path loss data.

The second most important phase of obtaining a complete statistical

analysis of the data, having now obtaLied an acceptable normalizing proce-

dure, is to investigate the type of probability distribution function which

characterizes the normalized experimental information. Since we are con-

fining our analysis from .2-2.0 miles, we are restricting ourselves to the

amount of data available for analysis. In most cases, this is around 10

measurements for each configuration. Presently, we have no evidence that the

normalized information of the wet and dry classification can be combined

to increase our sample size, thus facilitating the realization of a specific

probability distribution function, pdf, to characterize our path loss data,

"Zi. With respect to obtaining a specific pdf, we have conducted a goodness-

of-fit test to selected normalized data transformed by 40 log d, that is,

according to the J&B approach, and also to the data which we transformed

using our statistical approach. The results are shown in Table III. In

the J&B case, the hypothesis that the path loss information can be char-

acterized by the log-normal distribution was rejected at the 5% level,

whereas for our % approach HO was accepted. It is noted that a random
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variable is said to be log-normally distributed if the pdf of the logarithm

of the variable is normal.

The rejection of the hypothesis that the 40 log d transformed information

did not follow the log-normal distribution is not really surprising, since

this undesirable normalizing factor was used. We should mentinn that in the

selected configurations we investigated using our distance normalizing

approach, we accepted the hypothesis that the information can be characterized

by the log-normal distribution. However, this decision may also be somewhat

shaky due to a sample size of less than 20 observatior'-.

In view of the above comments, we have no alternative but to increase the

sample size so as to be more elegant in our presentaiion of the analysis. It

is extremely important to establish whether or not there is a significant

difference between the wet and dry propagation loss, keeping in mind that the

original experiment was not intended for this purpose. If there is no sig-

nificant difference in the propagation loss between the two classifications,

then one can combine the information, thereby increasing the sample size,

enabling stronger conclusions to be obtained regarding the behavior of

propagation loss under different configurations. If the propagation loss

during wet seasons is not the same as that during dry seasons, we may not

want to combinp our wet and dry information to analyze the path loss data

from a non-parametric approach, (i.e. a distribution free analysis). At

this point, we utilized non-parametric statistical analysis to answer the

question: "Is there any significant difference between the mean propagation

loss for the wet classification and the mean propagation loss for the dry

classification?", which is important primarily for the systematic p.'esenta-

tion of our proposed statistical modeling.

-505-

N. . ." "• " " • ' : '. i , , ;



Fr W

Therefore, in order to analyze data and gain maximum information, hypo-

theses were formulated under the following assumptions:

(1) The population distributions were "normal" (gaussian) and that

the individual observations are independent.

(2) The observations are identically distributed, the nature of

which is not assumed normal.

Under the first assumption, the parametric small sample "t" test and associ-

ated confidence intervals were used, Brownlee (5).

Since there was an extensive amount of data under various classifications,

simpler non-parametric (distribution free) methods were employed under the

second assumption, namely the Mann-Whitney-Wilcoxon rank test, along with

the associated confidence intervals on the medians (6). It is to be noted

that if the underlying distribution is indeed normal, the non-parametric

tests may be somewhat poorer, in that the probability of error of the

second kind, • , is somewhat larger for a Civen level of significance, ,

and population size, n.

To test the classifications of wet vs dry, that is, whether or not the

difference between wet and dry data was significant, the following hypo-

theses were formulated for ten selected parameter configurations (see

Table IVa, IVb):

: wet dry vs. HI:wet ' dry

where the respective, estimates of the true parameters V wet and IL dry

were:

E Xi and E Yi for each configuration,
n n Jul
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where: Xi - propagation loss for wet conditions,

Y* - propagation loss for dry conditions.

Our decisions were based upon the three classifications of rainfall listed

below:

(i) 3" rainfall criterion,

(ii) 6" rainfall criterion,.

(iii) seasonal rainfall criterion.

The "t" statistic used at the a = .05 level of significance is given by:

t - Y - Y , where n1 n2 n, (4)t • •p . = Sp•2/n

and: S I(nl-l)Sx2 + (n 2 -1)S2

nS + n2S

/Sx2 + S y
2

2 1 2
where: Sx = (Xi -X , the estimate of true variance for

the wet classification,

ana: S y )2, estimate of the true variance for

the dry classification.

The relationship which describes the probability of accepting Ho is given by:

Pr ft(n- 1 ); (Z/2 Ct g t(n 1); l- 1 2J = 1 - L . (5)
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The associated confidence interval which affords guidance as to how closely

the sample values Y, Y estimate the true parameters A wet and M dry$

given Ho is true, is: •

{t-Y c6t1) /2 ',1} (6)

Now, we shall give a brief description of the non-parametric analysis

(6,7) which was performed on the propagation loss data for selected parameter

configurations. Since the data consists of independent random samples, let

Zl, Z2 , ... Zn denote the random sample of size n from the wet classification

data:

Z1  X1 - a log d, (7)

and let ZI , Z2. . . . . . Zm denote the random sample of size m from the

dry classification data:

Z-1. X;1 - j log d1 , (8)

the variables of which were previously defined.

If there is a differ6nce between the population distribution functions

of the Zj * and Zi, that difference will be in the location of the distribu-

tion. Therefore, we again test for the significant difference in the true

states of nature. The following hypothesis was formulated for the selected

parameter configurations of the path loss data:

H•: ljwet -"drY VS H'1 : wet d •ary.

First we assign ranks 1, 2, 3.., n + m to the combined samples. That is,

assign rank 1 to the samllest, rank 2 to the next larger and so on. Let

R(Zi) and R(Zj*) denote the rank assigned to the Zi and Zj* for all i and J.

-510-



Next, the Mann-Whitney test statistic, T, is computed using the following

equation:

T- s - n(n+l) (9)
2

!3

where: S- , R(Zi),

{ * "3 (Z*
"(if SZ is used, the same result can be expected with respect

to accepting Ho).

The decision rule for the two tailed test is to accept Ho at the level of

significance a - .05 if:

wa/2 <T •c•Wl.o/2

where W,/2 and Wl.•/ 2 are the upper and lower quantiles of the table of the

Mann-Whitney test statistic.

The distribution free confidence interval estimate procedure was for an

unknown population median, M. This is related to the binomial probability

N
M () 0.5 ON a/2 for the upper bound, (10)

kla/2

and:

E M 0. 5N ! a/2 for the lower bound, (ii)

where:

a12 c

N a population size,

k /2 C from the binomial table which corresponds

to P(c, n, p) - a/2
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The interval is:

from~/ (12)

which is based upon: P }}(3Ir zZ). X A a( ) (13)

That is, we need K positive numbers among N differences: Zi - M, i 1 1, 2,

........ ,N where the Zi's are ordered. r and s are the positions of Zr and

Zs of the ordered Zi's, or r - k I 2 , and s = k@1 2 +1. Thus, in an ordered

array of observations Zi, the confidence interval end-points are those

numbers which are in the (kI + 1 )st positions from either end.

The non-parametric decisions on the significant differences between the

propagation losses Zi for wet and dry classifications at the C& - .05 level

of significance are shown in Tables IVa and IVb for selected parameter

configurations. The null hypothesis, Ho, was accepted without doubt for

all tests where the antennas were horizontally polarized. Both the 3"/6"

and seasonal criteria were ecqially accepted. However, ,for the vertical

polarization, the 3"/6" criteria show that for the chosen operating fre-

quencies greater than 100 MHz, the differences between wet and dry were

significant, that is, Ho was rejected. However, since the path loss co-

efficients cr for wet and dry classification were different above 100 MHz

(as compared to 2 < f < 100 MHz) for horizontal polarization, and also for

selected spot checks of the vertical polarization data, it dcesn't necessari-

ly imply that H. should be rejected. In general, one can conclude that for

frequencies less than 100 MHz, the wet and dry criteria do not greatly effect

the path loss, Zi. For vertical polarization (Table IVa), the seasonal

rainfall criteria is questionable with respect to the actually measured 3"/6"

criterion.
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A point estimate of a parameter, i.e., its mean value, is a random vari-

able distributed in some way around the true state of nature. In the

analysis, no indication is provided as to how closely the sample means

estimate the true state of nature. Therefore, to afford some guidance we

computed intervals which we are confident will actually include the true

value of the parameters. Tables Va, Vb, VIa, VMb, show the selected 95%

confidence bounds in which we may conclude that the true parameters is con-

tained, providing H is true. Tables Va, b, show the non-parametric 95%

confidence intervals for wet and dry classifications separately, (and some

parametric spot checks) for each respective rainfall criterion. It can be

seen that generally they are narrow for all parameter configurations, the

smallest being 2.8 dB at (50, 40, H, 79) for the wet seasonal rainfall

classification. The largest is 18.8 dB at (400, 40, V, 42) for 3"/6" Idry

classification. Generally, they were less than 8 dB overall. Tables VIa

and VIb show the 95% confidence intervals for the combined wet and dry

classification of data. As expected, they are generally narrower than wet

and dry taken separately because of the small number of samples involved,

the largest being 19.0 dB at (100, 40, V, 42) for the 3"/6" rainfall Iri-

terion. The smallest is 2.1 dB at (50, 40, H, 20) for the seasonal cri-

terion. Parametric spot checks of the confidence intervals for the sample

means, Zj, are also included for comparison. From the overall groupings,

the majority of intervals were less than 5 dB. The intervals clearly show

that the sample estimates, Zi, are reliable, and that because of their

dependence on g%, the estimates d as shown (see Tables Ia and Ib) are

reliable propagation loss coefficients.
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This, of course, indicates the ne d for providing a model, a , to define
Z , over the 6 MHz through 400 MB range rather than accept 1o - 40 as
pfoposed by Jansky and Bailey.

4. SUMMARY. In Section 2, we gave a brief discussion of the manner in
which the SEACORE Aata was presented in the Final Report by Jansky and Bailey.
We have obtained enough information from the above statistical analysis of
the SEACORE data to make the following conclusions:

(1) It is evident that the data should be given a more sophisticated
statistical analysis for firm decisions on the various questions raised with
respect to behavior of the propagation loss as a function of the various
independent variables (i.e., antenna heights, polarization, frequency, distance.)

. (2) We have obtained enough evidence to show that the deterministic
approach used to normalize the data to a common distance utilizing equation
(1) is not acceptable to relate the propagation loss to a common distance.

(3) A statistical approach to estimating an a so as to minimize the
variance of the estimate, using the logarithmic data, has been presented
(see equation 2) and evaluated forI specific parameter configurations of the
SEACORE Project. It is clear that in normalizing the path loss data, using
this technique, significantly different results are obtained which effect
the statistical decisions one needs to make with respect to the behavior
of propagation loss in a jungle environment.

(4) It was shown that due to the small amount of information available
we cannot accept a specific distribution, such as the gaussian or lognormal,
to completely characterize the physical situation. Thus, any statistical

-analysis which one may perform in the subject area shotLld be done through
* non-parametric statistical analysiS, that is, using distribution free statistics.

(5) It was also concluded that in some cases there is a significant
difference in the mean propagation loss between the wet and dry classifi-
cations. This may be due to path differences rather than rainfall influence,
and should be examined.

. (6) To adequately answer the original objectivesof the SEACORE program,
the importance of the path loss data presented in the reports by J & B
cannot be overlooked. Our preliminary investigations employing statistical
analysis have answered a number of questions and indicate the importance
of a thorough statistical analysis of the propagation loss data. It should
also be mentioned that there is very little work, if any, which has been
done in the subject area from a sophisticated statistical analysis approach.
We feel that such an approach is much more realistic to the problem at hand,
than a deterministic investigation, and the preliminary findings certainly
justify this point of view. /

/
(7) Based on our findings, the following guidance should be considered

with respect to the complete statistical modeling of the SEACORE path loss
data:
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(a) In the statistical analysis of the SEAODRE data a very
basic question must be answered. That is, should one perform the statistical
analysis on the data in dB, (i.e. having it logarithmically transformed)
or should the anti-log data be used?

(b) A through classification of the data with respect to wet-dry
conditions should be made. The problem of propagation loss should be
investigated under three classification categories:

(i) daily basis (if present data permits),
(ii) monthly basis,

(iil) seasonal basis.

Furthermore, the effect of path differences should be determined if possible.

(c) Having chosen the proper method for normalizing propagation
loss to a common distance we need to develop a super alpha, i.e., a*, for
specific sets of parameter configurations that will provide a realistic
approach which can be used to predict path loss as a function of distance.
Since there is a significant difference among the a I s measured for each
parameter configuration, one should not treat the estimate of the a's as
a deterministic parameter but rather as a random variable. To this effect
we need to formulate statistical techniques through the empirical Bayes
approach, i.e., to group these a's into a common one. For a certain group
of frequencies, transmitter and receiver antenna height, and polarization,
we should have a statistical estimate of an a* which is made up of a group
of a's which can be easily applied to a physical situation for communication
which we believe will be of significant importance in obtaining this a*
which will give a realistic characterization of the sequence of the a's as
random variables.

(d) Having path loss as the main variable, we need to classify
the contributing variables, that is, independent variables such as trans-
mitter antenna height, receiver antenna height, distance, polarization and
frequency, according to their importance as contributing factors. This
investigation can be done through multiple correlation analysis. It's im-
portance lies in the fact that if a certain independent variable,such as
changing the antenna height, does not contribute significantly to a change
in propagation loss, then we should not consider it as one of the important
variables in the statistical modeling. In other words, we should be concen-
trating on the independent variables which contribute most to the dependent
variables. Such a classification of the independent random variables will
be extremely helpful in accomplishing the succeeding recommendations.

(e) Having classified the importance of the random variables as
contributing factors to the propagation loss, it is recommended that a
non-linear regression model be developed. Once a non-linear regression
model has been formulated, with path loss as the main objective, which is a
function of transmitter antenna height, receiver antenwa height, distance,
polarizpcion, and frequency, one can specify an acceptable propagation loss
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and obtain the proper combinations of the independent variables required
to attain this loss. An important factor in this recommendation is that
if you are not willing to accept more than, say, 150 dB for path loss at
a specific frequency and distance , what combination of antenna heights
will not violate the proposed specification. One can proceed in formula-
ting such a non-linear regression model through an elimination procedure,
that is, consider a model which will consist, first, of the dependent
variable being a function of the antenna heights. Thus, with a specific
frequency and distance, the possible combinations of antenna height will
be determined so that we can maintain a specified propagation loss. Secondly,
with this approach one can increase the size of the model by having the
de jendent variable as a function of the antenna heights and distance.

(f) In our preliminary investigation of the SEACORE data, our
statistical analysis was restricted primarily to distances between .2-2.0
miles. It is also recommended that the above recommendations be considered
for longer distances, that is, 2.0 - 15.0 miles.

(g) For selected sets of the control variables, taking into
consideration the above decisions, confidence intervals should be obtained
for the mean path loss (true state of nature) on the basis of the experimental
evidence. Specifically, confidence intervals should be obtained for the
following cases:

(i) on the path loss parameter of radial A-wet
(ii) on the loss of radial A-dry

(iii) on the loss of radial A-wet + radial A-dry
(iv) on the loss of radial B wet

(v) on the loss of radial B dry
(vi) on the loss of radial B wet + radial B dry

(vii) on the loss of radial A wet + radial'Bwet
(viii) on the loss of radial A dry + radial B dry

It may not be necessary to calculate all of the above confidence intervals
if we accept certain hypotheses with respect to the behavior of wet, dry,
radial A, and radial B data.

In summary, the preliminary findings of our statistical analysis are
quite evident, and as a result, the above recommendations constitute some
of the essential elements for the final aspects of the SEACORE Project.
The value of this data, which has been :ollected and descriptively presented
at a great cost to the U.S. Government, should be fully utilized to attain
the answers to the questions posed above. The results of sophisticated
analysis will make significant contributions in aiding communications
engineers to determine transmission reliability and, ultimately, better
communication systems.
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GRUBBS' ESTIMATORS TO DATE

Cifford J. Maloney
Bureau of Biologics

Food and Drug Adnistration
Rockville, Maryland

I. Introduction: Two at least partially compensating trends affect

the Army research investigator's effectivenress in the prosecution of his

endeavors. On the one hand a steady stream of new and improved procedures,

techniques, principles, laws, and devices are made available and explained

in an ever burgeoning technical literature-with a consequent diversion

of "productive" effort into that devoted to locating and assimilating

the innovations. This latter, in turn, is greatly ameliorated by

simplifications of proceduzes, theories, and laws making them easier to

acquire, to appreciate, and to retain in memory and, often, of wider,

more accurate scope. One further device, in use since the earliest times

and widely appreciated in mathematical circles, though, it seems, less so

by statisticians, is the device of devising a classificatiomi of the corpus

of findings on one class of topics. The periodic table in chemistry, and

the Linrean classificaLion in systematics are scarcely unkrawn to any

literate person. Possibly the best known system in mathematics is Klein's

'classification of geometries, but marry others are krnr~, incJ.uding

Wedderburn's classification of associative algebras and Post's classification

of logics.

The subject of this paper is the evaluation of the precision of two

instruments, techniqaes, oar procedures subject to two conditions. First,

both can be simultaneously applied, so that the "Itre" quantity, though

Preceding page blank -523-



unknon, is the same for both. Second, that only one reading for each

instrument or procedure is available for one fixed value of the underlying

true quamtity. When another pair of readings is made, the true value has

shifted--and by an unknown amount. Of course, in practice it will often

be desired to simul.aneously conpare three or more instruments or techniques

and a numzber of the papers in the bibliography treat these cases. The

present paper is less interested in extending the theory or widening the

field of its applicability than in providing an insight into the exact

nature of the phenomenon by means of a geometric interpretation.

II. Earlier Work: Throughout our discussion it will be assumed that

we are dealing exclusively with two (possibly) correlated normaJ ly

distributed random variables with unspecified, hence possibly different

means. All the points we wish to make are in•vlved in this nodel. The

pioneer paper in the field is that of Grubbs [16), though an earlier study

by Pearson had been forgotten [49). The same problem was encountered by

Thompson, who has dealt with it in a series of papers [21], (46-48]. A

further paper is in preparation by him for presentation at the Nineteeznth

Army Design Conference. The problem arose more recently in a biological

context at the Bureau of Biologics of the Food and Drug Administration.

While Grubbs' paper gives estimates and moments of the distribution, he

does not directly present tests of significance. This latter problem was

the subject of a clinical paper at the Twelfth Amy Design Conference. The

possibility of employing the test of Morgan [35] and Pitman [36) was
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suggested by members of the panel of experts. This suggestion proved

fruitful and a formal proof of the applicability of the method was later

published [Malcney and Rastogi, 1970]. The appearance of this paper was

followed by a series of elaborations and extensions [Jaech, 23;

Makowski, 28; Shukla, 41 and 42].

While the work of Morgan and Pitman was available at the time Grubbs

did his work, the relevance of their results to his problem only became

apparent with the publication of [29]. That line of development stems

originally frcm Bose [4]. A simpler approach to Bose's result was

derived approximately by Finney £14] and exactly by Morgan and Pitman.

Another line of research close to the principal interest of this

paper arose somewhat diffusely prior to 1940, but had becom explicit by

1950 [13]. This is the development of a test for equal variances in the

several categories of an analysis of variance. Contacts of that topic

wi that of this paper seem, however, to have reached print only in

Shukla [42]. Finally in Tukey [49] the problem of nbbs is related to

that of regression with errors in both variates.

Over the years, then, disparate statistical problenm whose- simi-

larities escaped ntice for as much as one year to decades., were

eventually seen to have such relations as would throw light on possible

approaches to the others. These are: Grubbs' problem, the Morgan-Pitman

The panelists were: Bernard Greenberg, Frank Grubbs, William Kruskal,
Henry Lucas, Henry Mann, and Albert Parks.
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Stest (Bose's problem), regression with error in both variates (structural

relations), heterogeneous erro variances in analysis of variance,

and factor analysis. It wuld seem appropriate to add the Behrens-

Fisher problem to tv:s list.

The several recent papers treating extensions and special cases

[23, 28, 33, 41, 42] suggest the desirability of attempting some sort of

classification of the possibilities; so that new cases are revealed and/or

it can be determined when all cases have been treated. The next section

introduces a geometric model intended to serve this purpose.

III. Gecomtric Model: It is well known that isopleths of constant

probability in the case of the normal distribution are coaxial ellipses

of constant eccentricity. Hence, the characteristic of a particular

rmminal frequency distribution can be exhibited graphically by choosing

just one of these ellipses. The obvious candidate is the ellipse with

semi-najor axis cra and semi-minor axis a.. Such an ellipse is illustrated

in figure 1. The location of the center of the distribution is at the

mean X, px , and mean of Y, py . The orientation of the ellipse depends on

the product term in its equation. The ellipse becomies a circle if a = ab

and a true ellipse otherwise. The dotted line through the origin in figure 1

does not pass through the center of the ellipse so that in a large sample

the Behrens-Fisher test should be significant.

/While attention is focused on /figure 1, we imay call attention to a

trivial relation, but one which nevertheless will be helpful in later

-
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discussions. In figure i a bivariate distribution is assumed. But

suppose only one measure were available and it is just repeated as X

and Y. Then, whatever its value, it would fall exactly on the dotted

line in the figure through the origin. Such a line bisecting a

quadrant of the coordinate axes can be thought of as a degenerate

(singular) bivariate distribution. In case the absolute values of the

variates are equal but they differ in sign, the singular distribution

would be the line bisecting quadrants II and IV. This, of course, holds

whatever the numerical value of the joint mean. Again, this linearity

follows if X (or Y) is any linear function of Y (or X). In these cases

the correlation coefficient is equal to unity.

The calgebraic equation of the general ellip:e is a quadratic with

* all terms present and with a positive discriminant. To reduce the.

equation to normal form, (1) the center of the ellipse, C in the figure,

is trenslated to the origin of axes, 0, and (2) the ellipse is rotated

through the angle e so that the major and minor axes of the ellipse

"coincide with the coordinate axes. It is not normally appropriate to

db so, but we shall wish to apply one more transformation, a rescalng of

one axis of the cooidinate axes, thus reducing the ellipse to a circle,
2 2

in which case ca = ab

All analytic geometry ttbooks demonstrate that these successive

transformations are achieved by simple formulas provided the coefficients

in the equation of the ellipse are known. The statistical problem arises
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precisely because these are not known. For our model to be fully

serviceable it should now be possible to forget all about the statistical

origin of the problem and think wholly in terms of devising a transfornation

or series of transformations which will take an ellipse in general position

and reduce it to a circle centered at the origin of coordinates. All of

the constants in the equation of the general ellipse are nuisance parame-

ters unless we can effect an appropriate transformation irrespective of

their actual value. By fixing the nuisance parameters we get the various

special statistical tests of significance in the literature.

IV. Digression: At the outset it is appropriate to deal with a

persistent confusion concerning the correlation coefficient in a bivariate

normal distribution. Curiously the invention of the coefficient of

oorrelation initiated the burgeoning application of statistics outside of

the narrow field of the reducticn of observations which began just before

1890; yet a misunderstanding of its signification still persists; against

which protests are felt necessary from time to time.

Quoting from the excellent textbook of Professor Allen Edwtards

(page 144) " . . . the numerical value of the correlation coefficient

is related to the scatter of the plotted points about the line repre-senting

their trend." As is abundantly clear from the subsequent discussion, this

statement is not wrong; it is misleading. The student visualizes that, as

the correlation coefficient increases from a value of zero to unity, the

"scatter of the plotted points" shrinks from equality in all directions to
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a concentration a2or,& a mathematical line; though again, a sufficiently

close reading of Edwards' actual text establishes that he makes no such

assertions. Indeed, Edwards (and all other writers) is only saying that

"sepnts cut by ellipse are shorter than orthogonal projections of the

whole onto either axis, segiant Y Y in figure 1. Again, in every
1 2

bivariate normal distribution as in every ellipse, there is a transfor-
mation, a rotation, which will free the equation of the product term;

there is a set of orthogonal coordinate axes, those parallel to the

principal axes of the ellipse, such that the correlation in the new axes

is zero. The actual situation is clearer from a sentence in Yule and

Kendall (14th edition, page 241, §10.7) " . . . a normal surface for two

correlated variables may be regarded merely as a certain surface for which

r is zero turned around through sate angle . .. h." Teir equation 10.10,

j . o page 242, gives this angle as c

, 2 2tan 2e 2 rO'x oY/o x-O a)

This rotation changes the coordinate axes to a pair of or nal axes

parlle toth prncialaxes ofthe ellipse.
the In other words, t the relation coefficient has nothing to do with

the scatter of the points per se, but only with the orientation of the

principal axes of the normal distribution with respect to the coordinate

axes. A rotation of axes that eliminates the product term from the equation

of a contour ellipse of the distribution removes the correlation coefficient

and vice versa.
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What does describe the relative scatter of the points, the "fatness"

of the bivariate normal distribution, is the eccentricity of the ellipse;

just as in analytic geometry.

This situation invites an aside on an aspect of the goal of achieving

a rational model of a body of knowledge. The mthematician's milieu impels

him to vie the oordinate system as arbitrary and without essential

significance since he is interested in the internal and/or mutual relations

of his figures and not in their external relations with outside elements,

which latter, in effect, dictate the coordinate axes. But those who apply

rather than develop mathematics are faced continually with exactly this

problem. Failure to appreciate adequately this distinction underlies much

discussion concerning the application of theoretical results in nature.

V. Classification of Bivariate Tests: Exposition will be easier if

we start with the simplest cases and progress to the more generel rather

than the other way around.

A. Quadrart bisector. This is the dotted 450 quadrant bisector

in figure 1. Of course, the case is degenerate and would apply

only if the olumn of x's reproduced the column of y's. Ikwever,

when xmjxuied with the later cases, we get geometric models

having considerable interest. Since the situation is essentially

univaxiate, all estimation, tests of significance, and confidence

limit problems of univariate theory apply without essential change.
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B. A Circle Centered at the Origin: (Figure 2). This case, too,

is degenerate in that the t•z vardates are in effect pairs drawn

independently from the same nral distribution with zero mean.

It is also the null hypothesis for case E below.

C. A Circle Centered on the Quadrant Bisector: (nrot shown). A

circle centered on a line of known slope through the origin is

equivalent. Again, this situation is highly artificial, but our

model if it is to be cymplete must cover all cases. It is the

rull hypothesis for case F below.

D. A Circle in General Position: (not shown). This is Student's

problem. The question to be tested is: is the center of the circle

on the quadrant bisector (or on a ray of specified slope)? This

case is also the null hypothesis for case G below.

E. An Axial Ellipse Centered at the Origin: (Figure 3). By axial

ellipse is meant one whose principal axes are parallel to the

coordinate axes. While now commonplace, it3 solution by means of

the F (actually 9) test was one of Fisher's earliest successes.

F. An Axial Ellipse Centered on the Quadrant Bisector: (not shown).

This case is included only for cmpleteness.

G. An Axial Ellipse in General Position: (not shown). This shift

brings us into the realm of unsolved problems, for this is the
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Behrens-Fisher problem. We wish to test: is pX equal to Ji y? To do

so, we test t x - y. Now, if we arbitnarily put u = x+ y, we

have performed a rotation of axes, and the condition t o asks:

is the ellipse center on the new axis? But in rotating the ellipse

we have lost the aligrment of the axes of the ellipse with the

cooriinate axes. Presumably this is the dilemma of the Behrens-

Fisher problem. We must rotate to test 1j, = y but can't and retain

the axial position of the ellipse. That a rotation has no such

effect on a circle seems to be the geometric explanation of why

Student's problem presents no such difficulty.

H. A Symmtric Ellipse Centered at the Origin: (Figure 4). By

symmetric ellipse is meant that the major axis of the ellipse Lies

along the quadrant bisector, hence makes a 450 angle with the

coordinate axes. By symmetry on the figure we see that the ellipse
2 2

defines equal projections on the two axes, i.e., ax = ay. While again

a highly specialized case, the problem has in fact been dealt with by

DeLury [11]. But what is much more interesting, the model is the

basic model of analysis of variance.

If it is known that the two variances are equal, then there is no

need to test for it. What remains uncertain, however, is whether the

model is a circle or a symmetri1c ellipse, i.e., whether the correlation

coefficient is different from zero (and, of course, to estimate it if

it is). This was DeLury's problem. It is the converse of Grubbs'
2 2

whenever bias is absent, since here we assume that x= ay i.e.,
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that the projections of the ellipse onto the two axes yield segrents

equal in length. Hence, the model is also the null hypothesis for

Grubbs' problem where it is known that neither instrument is biased.

I. General Ellipse Centered at the Origin: (Figure 5). "Gencral" nmnts

at an unspecified angle to the coordinate axes. Same as H except,

that here the angle is unspecified. This is Grubbs' problem when

bias is absent. In terms of our mkdl then, his problem is: given

that we have an ellipse (known not to be, or at least possibly not

a circle) with center at the origin, is the angle of the major axis

of the ellipse at an angle of 450 to the coordinate axes? This shows

that the device used originally by Pitman (though, of course, with no

claim to originality) is not just a trick and shows ±X we test for

equality of variances by testing a correlation coefficient. It is

because, if a 450 rotation angle transfrms the ellipse into an axial

ellipse, it w. is a symmetric ellipse before rotation.

J. Fairfield Smith's Problem: (no figure). Reference [29). This

problem is the same as Grubbs' (item I) except that here the scales

on the two axes differ and by an unknown factor. Smith's solution

was to solve the scaling problem first, by a non-parametric procedure,

thus reducing his problem to that of Grubbs. The geometric model of

this paper could possibly thrcw some light on other approaches to the

problem. Also, it makes plausible why he went to a non-parametric

method to adjust the scale since in analytic geometry it should come

last.
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K. Syzmetric Ellipse in General Position: (no figure). This is

the general Model I analysis of variance situation. The mean of

the ellipse expresses the treatment effects. The orientation of

the major axis at a 450 angle to the coordinate axes expresses the

equality of variances within classes.

L. Unspecified Orientation and Position of Ellipse. (no figure).

This is Grubbs' general problem when biases are present: It also

involves analysis of variance where erTrs are allowed to vary

within arrays; to which a number of the papers in the bibliography

are devoted.

M. General Ellipse with Unspecific Ratio Between Scales of the

Two Coordinate Axes. (no figure). This is the problem of regression

with errors in both variables. There are, hence, 12 special cases

accordTing as (a) the ellipse is a (1) circle, (2) an axial,

- (3) symmetric, or (4) arbitrarily oriented true ellipse, and

(b) is centered (1) at the origin of axes, (2) on a quadrant bisector,

or (3) arbitrarily.

VI. An Aside on Scales: Sruith's problem is reduced (by him) to Grubbs'

by specifying the slope of the line relating the two variables. It can be

viewed as a change of the scale of one coordinate axis. In the sane way,

viewing as is often done, the variances as representing the scaling of

the two orthogonal projections of the ellipse parallel to the coordinate
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axms, we can sort the several special cases on the basis of assumptions

"regarding the relations between the four scales. If a variance is known,

this is equivalent to knowing the scale factor between that axis of

coortdinates and that of the ellipse parallel to it. If the slope of the

regression line is known, that is equivalent to k the scale factor

between the two axes of coordinates. If the ratio of the variances is

known, that is equivalent to knowing that the ellipse is a circle. It

seems that the difficult cases relate to an unknown relation within one

of the two sets, coordinate and elliptic axes and not between them. Car,

we sumarize by saying: scale coupling uncertainty within coordinate sets

(coordinate axes versus principal axes of the ellipse) prevents solutions;

scale coupling uncertainty between sets presents (solvable) tasks. The

result is possibly due to the fact that, despite appearances to the

contrary, tests of means, like tests Of corTelation coefficients, are

rotations of axes. This is a (the?) major difference between tests of

independence in statistics and simplification of the general equation of an

ellipse in analytic geometry. Tests of variances are likewise, except in

the special case of independence, accomplished by rotations.

VII. Final Remarks: The preceding catalogue of cases illustrates one

point. The proposed geometric model of the bivariate normal special cases--

a reduction of the general ellipse in orthogonal coordinates to a circle

with center at the origin-passes one test; it provides a niche for a rich

assortment of special cases which one or another author has found to be
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related. The addition of the Behrens-Fisher problem to this list has not

been previously located in the literature. Whether the model can subsume

additional cases has not been seriously investigated, though none are

immediately obvious.

As remarked earlier, no acquaintance with statistical theory is

appropriate for any consideration internal to the model itself. The

function of the model is to make the nature and the relationship of the

several special cases intuitive. Supposedly, the geometric transformations

are to be expressed in a set of transformation equations by which, in the

spirit (f analytic geometry the actual transformations are to be carried

out. A proposed such set of equations is given in Figure 6. Each variate

is expressed in terms of one constant, &i and two chance variables, t and e,

each with zero expected value. If

a =a b =b
1 2 1 2

- and t t

we get the simplest form of Grubbs' problem, treated in [20]. Other cases

are obtained by specifying certain of the quantities in various ways.
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A SYSTEM FOR POSITION-LOCATION BASED ON RANGES

Richard H. F. Jackson, James A. Lechner, and David J. Sookne

Applied Mathematics Division
National Bureau of Standards
U. S. Department of Commerce

ABSTRAC. The system in question is intended to employ range-only infor-
nation, or range-plus-altitude information, to track the positions of up
to hundreds of users (only some of which measure ranges to other users)
in three dimensions or on the earth's surface. This paper describes the
structure, use and results of a simulation study which focused, within a

-/.larger analysis, on the absolute and relative adequacies of various
mathematical position-estimation algorithms. The discussion will include
comparisons among the six different algorithms investigated, considering
both accuracy and computer time required.

1. INTRODUCTION

The position location system under consideration utilizes one frequency
channel which is shared on a time division basis by a number, n, of users
of the system. Those users (hereafter called "-=its') are all synchronized
by a suitable electromagnetic signal at least once during each time inter-
val AT (the cycle time ), and within every cycle each unit is assigned
one or more time slots during which it emits an electromagnetic signal.
This latter signal is received by some or all of the other units, who then
measure the time of arrival of that signal. From knowledge of the times
of arrival and the assignment of slots (emission times) to the sending
unit, the distance between that unit and the receiving units can be
estimated. These ranges, alone or in concert with altitude estimates,

. can be used to estimate the location of the sending unit.

The system is intended to employ this approach to track the positions of
up to hundreds of units in three dimensions or on the earth's surface.
This paper describes the structure, use and results of a simulation study
which focused, within a larger Zeasibility analysis, on the absolute and
relative adequacies of various mathematical algorithms used in performing
that position estimation and tracking. The discussion will include
comparisons among the six different algorithms proposed as well as between
the final algorithm proposed and a Kalman filter approach developed
elsewhere.

The problem, specifically, was to determine the feasibility of such a
system in the presence of measurement errors. If all measurements were
exact, three units in the plane or four units in three-space would suffice
to locate another (or all other) units in the system. However, in the
presence of error, more measurements are needed and the "best" position

*This paper results from work done under contraco with the U.S. Army Materiel
Command, Advanced Materiel Concepts Agency, Alexaidria, VirginiaPreceding page blank -549-
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(the one that minimizes total error in some mathematical sense) must be

found. The fundamental question was whether (with a suitable algorithm)
the overall error could be kept within tolerable bounds as the system
operates through time.

The various algorithms proposed were tested, compared, and evaluated in
a number of different ways. One was to evaluate the algorithms analyti-
cally wherever possible, and in this vein several of mathematical studies
of their properties were conducted. For example, a "simplest case"
analysis was performed on a series of one dimensional location operations
involving only two units, with Gaussian range errors assumed and with
maximum likelihood estimation used as the method of position location.
This situation was "solved" in closed form and it was shown that the
distribution of the two units' position location errors (distances
between true and estimated positions) stabilized in time.

Another method of evaluation can be described as "one-shot" accuracy tests.
These were controlled tests in which the effects of random variation were
minimized, by using identical sets of range &ad position errors for each
algorithm being compared. They were designed to determine, first, how
accurately each algorithm could locate a unit (the locatee given range
measurements from units (the locators in known positions, and, second,
how accurately they could locate a unit when the assumed locator-positions
are also in error.

These one-shot tests involved a set of stationary locators that was used
to locate each of several stationary locatees. Corresponding to the real
situation in which errors exist in both ranges and positions, the "true"
inter-unit distances and/or locator positions were perturbed with random
errors to represent the information available to the system. The position
of each locatee was then estimated ty each of the algorithms being tested,
and the position location errors were compared and tabulated.

'While the on-shot tests described above do indicate which algorithms are
"better" than others, they provide no information about error propagation
in the system (i.e., the cumulative effect of thousands of location
operations in which the positions of the locators are in error, since they
themselves served as locatees a fraction of a second before). Simulation
model of the position location system was designed and programmed. This
simulation program (WHERSM) provides a "real-life" framework for the system
through its capability for moving all units along prescribed or randomly
generated (by WHERSM) paths that conform to the local terrain, which is
available to the progran either as a continuous function or as a digitized
"terrain map". WHERSM checks intervisibilities among units to determine
which ranges are available, computes the inter-unit distances required,
perturbs these distances according to specified error distribution lws to
produce "range measurements", and transmits these ranges to the position
location algorithm being tested. The simulation program also provides a
facility for monitoring the operation of the system under a variety of
movement scenarios. It further provides outputs, useful for checking out
the feasibility of the system, which iuclude: the successiv3 locations of
all units, the errors between true and estimated positions, and measures
of confidence derived from the available measurements.

-550-



2. DESCRIPTION OF ALGORITHMS AND RESULTS OF ONE-SHOT TESTS

Six position-location ulgorithms were programmed and analyzed, using

one-shot accuracy tests and the simulation model described above. The

results of the simulation tests are described in section 3.

The first algorithm investigated was the. Linear Hethod (LH), vhoae

two-dimensional version uses three ranges selected on the basis of geometrical

considerations. Let r,, i - 1,2,3 be the measured ranges, and let

(x iy±), i - 1,2,3 be the estimated positions of the locators. For

I - 1,2,3, define Ct by

Ci-a C I(X, - ¶+ (7-rTi2 r:,

Note that the equation C1 - Q is that of a circla wit&, center (x,yi)

and radius ri; we call this a locator circle. Now for i j j, the

equation C C- - 0 reduces to

2 2 2 2 2 2

2X(xj x) + 2y(yj yi) + x2 x + y y j+rj - r - 0, (1)

i.e., the eqtation is linear in x and y, so C - C j 0 represents

a line in the plane, the "radical axis" of the two locator circles. (We

exclude the degenerate case when locators coincide, in which case

X - xi, Y, - yj.) If the three locators are not collinear, the three

lines represented by C1 -C 2 - 0, C1 - C3 -O, and C2 - C3 = 0 (also

called radical axes) must intersect in a point, since if C1 - C2 - 0 and
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C1 -C 3  0, then C2  C3 - (C1 - C3) -(C 1  C2 ) 0. .(Tf the locators

are collinear, the three lines are parallel, and no solution exists.) The

linear method chooses the point of intersection as the estimated position

of the locatee. Note that if the x,, y£, and ri are all error-free,

then the locatee lies on each circle Ci - 0, and hence on each line

CI - C - 0, so the locatee is at the intersection point, and the solution

is exact. However, the one-shot tests shoved the linear method to be very

sensitive to errors in the x,, yi, .and ri, It was rejected, and the

three-dimensional version was not programmed for testing.

The second algorithm, that of the Smallest Tangent Circle (STC), also

uses three ranges in two dimensions. Conceived by K. Goldberg, it

calculates the centers and radii of the (up to e.ight) circles each. of

which is tangent to all three locator circles C- 0, 1 - 1,2,3, and

chooses the center of the smallest of the circles as the estimated position

of the locatee. The algorithm sets

A1i (Xi Xk)2 + ( -yk)2 and Vi - A + Ak - A,, i - 1,2,3,

where i,j,k go over all cyclic permutations of {1,2,3}. The program

then proceeds to calculate 9

- 2 2 2
B 2(A- 1A2 + A2 A3 + A1 A3 3 A 1 A2 - A3

and
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2 222 2 222 + 222 2
F 1 2A3 + W (.5-r Arr I + W2 G•(5J-r 3 ) A . 2 r 2 ) + -rC.5(2 r1 ) -_ 3 r 3 ).

Next, we let (e 1 1 V2 ,P3 ) vary over all 8 combinations that result

from ci - *l. For each combination, we substitute 1i - rL ; 1 - 1,2,3,

and set

4: - Wm(Rc-Rk)" ij,k aa above;

P 2 U +c -'B
1 2 3

Q - W1A + W2 A2 R2 + W3 A3 R3 - c1 (R2 +R3 ) - C2 (RlJR 3 ) - C3 (R2 +R•1 )

and the equation

2Pr + Qr + F -0

ia solved for r, the radius of the tangent circle. The. eight combinations

of C, wrill each yield two values of r,. but there is duplication; if

(ele 2 ,C3 ) yields r-values sI and s2, then (-C1 ,-c2,-c 3 ) will yield

a and -s2- Thus only four c-combinations need be tried. Let the

smallest in magnitude of the eight r-values be denoted by s. The center

of this circle is found by setting C

,:. r• + ":' t- 1,,2,3, •'

and applying the linear method, with. r• replaced by, t,

/

/ ,..
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One-shot accuracy tests showed that while this method was less aesia-

tive than the linear method to errors in xI,7i, and ri, it was more

sensitive than the LSL method described below, so that the three-dimensional

version, involving the smallest tangent sphere, was not programed for testing.

The linear method and smallest tangent circle methods both suffer

from other defects as well. Since they use only three locators, bad data

cannot easily be eliminated, and there is no way to give higher weight to

locators whose positions are better known than others. Thus, for example,

if ten locators report ranges, the best elimination technique available

would involve choosing some subset of the 120 triples of locators, calcu-

lating the solution for each triple, averaging all solutions, eliminating

those that are far from the average, and re-averaging. This procedure is

quite cumbersome and time-consuming.

The next method, called the Least Squares Linear (LSL) method, finds

a global minimum of the sum of the squares of the distances from the locates

to all the radical axes C - C - 0, defined above. Expressing one such.

line explicitly,

C Cj akx + bky - c." (2)

where the coefficients have been normalized so that

the distance from a point (x,y) to the lipe. is simply ja.x + hky - cLj
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With k running over all radical axes, the function to be minimized is

as follows:

F F(x,y) (a kx + bky -c.) 2 2

k

2 2 2 2 2
KX+ 2aVbxy + b k7y 2aKkz - bkcy + '7k)(4

Setting 3F and !F- to zero yields

ax ay2x+2%k
aF 2
ax . (2akV + 2ab ky - 2akCk) 0

k

a x + (2akbx + 2b2  2kck

Cak)x + (Iakb Oy=akck
k k k

(5)

(£ akbk)x + (I b2)y = £ bkck
k k kk

These linear equations are solved for x and y. In three dimensions, i

the equations are

akx + bky + cZ-d =0 (2')
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2 2 2 3m

Fu I (akx + bky + ckz -dk) 2

k

ak)x + (I akbk)y + (akck)z -makdk
k k k k

bakY)x + (I bc)y + (I bkck)z - I bkAdkk k k k

(kakck)x + (Ik bk~) + (•k ckZ2 k d k "

Two- and three-dimensional versions of this algorithm were programed.

The remaining three algorithms utilize penalty functions which

measure lack of fit of a position estimate to the data. Each algorithm

searches for an estimate that minimizes a particular penalty function.

The-MINKAXralgorithm as suggested by W.A. Horn, was programmed in 2

dimensions. It finds

'•n max Id -ri./!(xc,y) i

where the index i runs over all locators, and

di- vfx-xi ' + •-Yi)7

is the calculated distance between the estimated positions of locator and

locatee. It can be proved that the solution lies at the center of a
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circle tangent to 2 or 3 of the locator circles C,, and that circle

intersects or contains all the C1 . The algorithm, then, examines all

pairs or triples of circles C,. calculates the center and radius of

each tangent circle, and checks whether that circle intersects or con-

tains all the C1  This procedure is quite time-conbuming because it

* must consider so many tangent circles. For example, with 12 locators,

it finds eight tangent circles for each of the 220 triples of CI plus

one tangent circle for each of the 66 pairs of Ci, or 1826 tangent

circles in all. Further, it was not as accurate as the remaining two

methods so it was rejected.

The Least Squares (LS) algorithm minimizes locally

N 2
E I w(d r

where N is the number cf locators, and the wf are weights (see

section 3). Given a starting point, the algorithm attempts to set

3_E E (and 2_EE in the 3-dimensional case) to zero, using the
ax' ay az

ýNewton-Raphson iteration technique. In three dimensions, let A

p = (xo' Yo' z) be the starting point. The algorithm finds a new

point p' + Ax, + Ay, + Az) by solving for Ax, Ay, Azpoit " =(X + •xYo+ y , z°•

in the first order equations
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2
. r (x -x ) d -ri 1 r _. )

a1 3 d- ;V, 3

"r N 
r-(x-xx)(zx-z.) N., 

3d 3 v Pd

N r i(Xo-X i)(yo-yi) • r N (YIo-Y:L) 2+ d- i -

d- 3I Ax + i i -

1 -1 d1

N r (xo-x )(zo-z) N r(Y-Yi)(z°-z)
Ax0io + 01 0 A

i-1 d3  il d i

±2

N r i(z0--z )2  d i-r1  __I _+ 1 14 .3 + d Az + 3 .
i-l d ZP

Note that solving this system necessitates the calculation of

- Md -• o-x?1 + (yo-y,)Z+ (zo-ziY for each locator i. Since the taking

of 'a square root on our computer consumes the same amount of CPU time as

about 12 multiplications, this algorithm was replaced by the Least Squares

Squared (LSS) algcrithm, which minimizes
.2 2,2

vi (d-r±)
E 1 2

i-l Ar 1
S/-558
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Factoring, we see that

22 2 2.2wid 1 rir w( d2r) r 2di+r ) 2 w 2

Ar -v,4r,)2 -1 + -i 1
42 42 2r1

Now, when the starting point for the Newton-Raphson method is "close to"

the true location (i.e., units have been successfully tracked), then

di r1  and the factor above, 1 + (d -r )/2r,, is approximately 1.

Hence

N2N wi(di-ri )2

i-l

so one would expect that the least squares squared and the least squares

algorithms should produce almost identical answers. This was borne ouc

by two one-shot accuracy tests of 72 trials each; the errors produced

by the two algorithms agreed to several figures. In the test with smaller

range errors (Gaussian, with standard deviation of 1 m),.jhe position-

location errors ranged up to 3.32 m, but the LS and LSS estimates (for

the same xiYi and r i) never differed by more than .9004 m.. In the

other test, using a standard deviation of 10 m, position errors reached

31.9 m, but the LS and LSS estimates never differed by more than .045 m.

The equations for LSS are

5i
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V i~i

1 (2(x 0 -xi) 2 + d2-r2) N 2wyi(y0-yj)

+N 2wi(xo-xi)(zo-zi)+ Az +- 0-
22

S2 v 1(xo-xi)(yo-yi) Ax + N vi( 2 (yo-yi)2 + d2-ri)
2 2 -Ay
2r i-2. L A)?16')

N 2v i(yO-yi)(Zo-Zt) 3E
+ 2 Az + 0
i-l

N 2v i(xo-xi)(Zo-Zi) N 22 (TO-y•)(zO-zi Ay
2 2)+ AT2

i-i r i-i r

22 2
Vl ~ d2(0z) 2_ 2 E

+N + d1-r1) Az + - 0.
2 8z

i-i ri

Tests showed that LSS converged after 2 to 4 iterations in nearly

all cases. The solution was in the neighborhood of the correct local

minimum even when the starting point was 200 meters away from the true

position.
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One-shot tests showed that LSS and LS were more accurate than LSL, which
in turn was more accurate than MINMAX, STC, and LM. LSS was chosen over
LS because of slightly lower computer-time (and nearly exactly the same
accuracy; see above), and LSL was also kept because it was the best of
the algorithms not needing a starting point. It serves to provide a
starting estimate for LSS when a unit first joins (or rejoins) the system.
Otherwise, such a starting point is found by extrapolating on two recent
position estimates of the locatee.

3. RESULTS OF SIMULATION TESTS

Since there were well over 150 computer runs made (in addition to
debugging runs), only summaries of the results will be given. Several
classes of runs can be distinguished:

* (A) The early runs designed to settle on the best general algorithm;
(B) The large group of runs designed to aid in selection of values for

the many parameters and options;
(C) Controlled tests on scenarios involving aircraft, to decide when to

use a 3-dimensional method;
(D) "Proof" runs on actual (digitized) terrain, with realistic movements

and calculated intervisibilities;
(E) "Tracking" runs, designed to evaluate the potential for improvement

offered by tracking and also to furnish the data for a controlled
comparison between the algorithms reported here and a Kalman filter
implementation due to David Plutchak at General Dynamics in San Diego.

These different groups of runs were intermixed during the study, of course,
but they will be described in turn below.

A. Preliminary tests. Most of the early simulation runs involved two-
dimensional situations, with some or all units moving, with random changes
in direction at random times, but with velocity vectors always restricted
to the first quadrant. These runs had two aims: to verify the indications

4' of the one-shot tests already described, and to shed some light on whether
satisfactory system behavior required some units to be stationary. The
one-shot test results were verified. With respect to simultaneous movement,

:- interesting results were obtained. It quickly became obvious that when all
units were moving, no algorithm could avoid a fatal accumulation of errors
corresponding to a shift in the coordinate system, and a concomitant growth
"in the relative errors as well. In many runs, when the errors had grown
sufficiently, convergence became a problem: the algorithm could not find
a solution within the allotted number of iterations. For example, with 10
stopped and 10 moving units reporting ranges (and with perfect intervisibil-
ity), velocities up to 10 km/hr, a cycle time of 30 s, and a simulated V
operating time of 2 hrs, three runs were done,with the following results.

* In the first two runs, range errors were uniformly distributed between -3m
and +3m (giving a standard deviation of 1.73 m). The first run had none
of the units known to be fixed; position errors reached 10 km before the
2 hrs. were up. The second run had 4 of the units known fixed; the average

* error at 2 hrs was 14 m, and the maximum error throughout the 2 hr was
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56m. For comparison, the third run used Gaussian range errors, with a

standard deviation of 6 m, and again had 4 known fixed units. The average
error at 2 hr was 9.6 m, considerably less than the 14 m on the second
run, in spite of the more than threefold increase in range-error standard
deviation. The improvement is due, of course, to the fact that LS (or
LSS is the optimal algorithm for a Gaussian error distribution.

B. Parameter and Option Studies. The choice of parameters and options is
endless. Thus, the selections reached in this study are in no general
sense optimum. The broad decisions to be made include:

(1) Choice of weights for the LSS procedure;
(2) Choice between a 2-dimensional and a 3-dimensional algorithm;
(3) Whether to track (or filter), and how;
(4) Algor 4.thm refinement to enhance convergence and/or decrease

running time; and
(5) Whether to use only locators known to be fixed (briefly,known-

fixed).

Choice of weights. The ranges considered in this study are generally
several orders of magnitude larger than their measurement errors. Consider
the locator circles Ci - 0 representing points whose distance form the
estimated position of locator i is exactly the measured range r .
"Within the area of uncertainty of the position being estimated,each locator
circle is represented by a short arc that is almost a straight line. For
the LS estimate, we wish to find that point which minimizes the sum of
squared errors, i.e., the sum of squared distances to the nearly-straight
lines. But the positions of the lines are not equally well determined,
so we should use weights. These weights should be inversely proportional
to the uncertainties in the positions of the lines. There are two sources
of uncertainty: the range measurement error, which we take to be Gaussian
with mean zero and variance a2 , and the error in the estimated position
of the locator (measured in the direction of the point being located),
which one can assume to be Gaussian with mean zero and variance a2 . (Only
the component of error in the direction of the point being located matters,
because with the small errors involved, the error in the ortho onal direction
does not appreciably affect the position of the line.) Now a has been
taken as an input parameter, but, in practice, it could be estimated while
the system is in operation. On the other hand, a must be estimated.
For a fixed locator, whose position has been surveyed (either independently
or by a modification of the system under discussion), an estimate of the
"variance should be in hand - and it may well be different for different
directions. But a moving locator's position will be known to varying
degrees of accuracy, depending on how many range measurements have been
available, which users made the measurements, the geometry in effect,and
the smoothness of the locator's path (which determines how useful tracking
or smoothing will be). Again the uncertainty may be different in different
directions. Ways can be devised to keep track of the uncertainty in three
(orthogoual directions, but that was not done for this study. Instead, an
estimate of the position uncertainty is obtained each time a new estimate
"of the locator's position is found. The method used is analogous to
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estimating the residual (observational) variance from a linear regression.
The newly estimated position plays the role of the regression line, and the
discrepancies between the measured ranges and the distances to this estimated
position play the role of deviations of the observations from the
regression line. Proceeding as if the range measurements all had the same
variance, one obtaina an estimate of that variance by summing the squared
deviations and dividing by (N-2) in two dimensions or (N-3) in three
"dimensions, where N is the numberzgL.observations (ranges) available. Now
one uses the fact that for N ranges, from directions properly spread
around the compass, the resulting position estimate (using LS or LSS) will
have a circular distribution with variance 2s 2 /N , where s2 is the
variance of each measurement (which has just been estimated). The phrase
"properly spread" means that for each direction from which a range
measurement is taken, another measurement is taken in the perpendicular
direction; in three dimensions, the measurements must be taken in sets of
three mutually perpendicular directions to preserve circularity (i.e.,
sphericity) of the distribution.

The weights used for each range measurement are then taken to be the
reciprocals of the quantities ( a2 + a2 ) for the fixed locators, and ( a 2 + 2s 2 /N)
for the moving location where each value of B2 was calculated the last
that locator was a locatee.

There are two considerations which should be mentioned here. First, locators
are not in general split so nicely along perpendicular lines. Does this
matter? Of course it does, in the sense that the uncertainty will no longer
be the same in all directions. On the average, however, things will even
out: if azimuths (from locatee to locators) are uniformly distributed from
0* to 180* , the average (or expected) variance in a given direction turns
out to be the value derived above. The second consideration is; What if the
estimated variances for the locators are wrong? Two consequences follow:
(a) to the extent that the true variances are different multiples of the

¶ I assumed values, the estimate of position is less than optimum (because the
true relative variances should be used to get the estimate); and (b) to the
extent that the variances are (as a group) larger (or smaller) than assumed,
the estimated variance of the locatee's position will be too small (or large,
respectively). Point (a) is not likely to be important, since it would take
very large discrepancies to affect the estimate noticeably. Point (b), on
the other hand, should at least be investigated. One technique is to act as
though the true variances are proportional to the estimated values, with an
unknown constant of proportionality (say c). Then c can be estimated, and
used to produce a fair variance estimate. Specifically, if each range
observation has variance ca2 ( a2 _ location variance + range measurement
variance), then the best estimate for the locatee can be found without
considering c. If ei represents the discrepancy between the calculated range
and the corresponding measured range from this position to the assumed position

of the i-th locator, the 1 ZC 2 /a 2 is the (multiplicative) correction to

N-2 i i
be applied to the variance estimate already given. (If c-l , this value should
also be -1 .) This modification has not yet been made to the algorithms.
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Random stopping and starting was implemented, to investigate the error
behavior when the composition of the set of locators changes. For this
purpose, it was decided that when a user stops, ten estimate of his position
would be averaged to get a good estimate before using his as a locator.
The accuracy of this estimate can of course be estimated from the consistency
of the individual estimates.

A series of 2-dimensional runs was done, with 30 units. Initially, the
fixed units were locators. During the runs units became locators as
soon as they had been fixed for ten location-operations, and ceased to
be locators as soon as they began to move. Average times moving and
fixed were set at 15 min., so that about 15 (half the units) were sto?ped
at any one time. The range errors were Gaussian with mean zero and variance
36 i 2 . With a 30-second cycle time, 2 and 1/2 hrs. of operating time was
simulated. The overall average error was 3.2m, and the maximum error was
3.5 m; in the last set of 5 cycles, the average was 3.5m, and the maximum
was 11 m. Next, a run using longer cy-les (90 s instead of 30 s) produced
errors of 3.8 m and 50 m overall, 5.7 m and 33.8 m for the last 5 cycles.
With 15 minute average "fixed r moving" times and 1 and 1/2 min. cycles,
many units didn't stay stopped long enough to be much use as locators; this
run was therefore repeated with the average times fixed and moving set at
45 min. The error figures then came back down toward those of the first
run: 3.4 m and 33.3 m overall, 5.9 m and 22.5 m for the last 5 cycles.
These values represent some improvement over corresponding values obtained
using equal weights, but the differences were not striking.

Choice between 2- and 3- dimensional algorithms. Clearly, one would not
use a three-dimensional algorithm if all units were known to be on a given
plane. Just as clearly, one needs to use a three dimensional algorithm when
the geometry is far from planar, at least when the measured ranges are the
only data available. A test had to be devised, to determine which algorithm
to use for each location operation. The problem was complicated further by
the availability of independent estimates of altitude differences between
units, which could be dombined with the measured ranges to estimate.

(as [r 2 -(A&]1) the planar ranges - i.e., the distances between the
p Projections of the units' positions onto a horizontal plane - which could
then be used with a two-dimensional algorithm to fin4 (x,y) coordinates of
the locatee; the altitude differences can also be used separately, of course,
to estimate the locatee's altitude (with respect to a reference plane.)

Thus there were three choices, which will be referred to as 3D, 2D and
2 DSH (for 2D after slant-height reduction). The choice does matter: if
all the locators are in a plane (more or less), and the locatee is off the
plane, then the least squares problem in 3D will have two local minima -
one near the true position, and one located symmetrically on the other
side of the plane. There will also be a saddle point in some cases, located
roughly between the to minima, at which the derivatives are also zero.
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It is not likely that the algorithm will converge to the saddle point if
enough iterations are done. Also, if the starting point for the algorithm
is chosen close to the proper solution, it should converge to that solution.
However, the problem can become rather illbehaved: all along the line
connecting the two minima, the penalty-function can be nearly constant, and
rthen the accuracy of the solution suffers. Furthermore, for low-flying
aircraft (up to several hundred meters), the algorithms did occasionally
converge to the saddle point or to the below-ground solution, because only
4 to 8 iterations were allowed.

Certain intuitive expectations were verified by runs using all three
algorithms (2D, 3D, 2DSH). It was found that when differences in terrain
altitudes were less than the typical errors in the independent height
measurements (and no aircraft were involved), it was best to treat the rangeq
as 2D ranges directly - i.e., assume all the users were coplanar. It was
also found that fer 2DSH, height errors of 15 m (standard deviation) did
not significantli affect the accuracy of the (x,y) position determination -

i.e., the position errors were comparable to those obtained with all true
heights set to zero, the same range errors applied, and a 2D algorithm used.

A systematic study was done specifically to decide when to use 3D; this study
is described in Sec. C below.

Suoothing and filtering. There are three levels at which filtering or
smoothing might be used: (1) fitting a smooth path through the last
two or more estimated positions, to obtain a first estimate of current

* position, which will serve as the starting point for an iterative method
of position estimation; (2) fitting a smooth path as in (1), in order to
provide an estimate of current position when there are not enough ranges
to use the algorithms; and (3) using some sort of "filtering"rule which
combines current range information with previous position values internally
to produce its position estimate. The first level is used in these algorithms,
but since the final estimate is insensitive to the quality
of the starting point, only the last two position estimates of the locatee
are used; they are extrapolated linearly to.obtain the starting point for
estimating the current position. The second level is also used, with
refinements; when there are no range measurements, one has only the
extrapolated position, but when there are one or two range measurements,
one can modify the extrapolatic= accordingly. Many rules can be devised.
The ones used in these algorithms are rather simple: with 2 ranges, reduce
to planar ranges and use 2D; with one range, modify the extrapolation to
reduce the discrepancy between the measured range and the calcultaed distance
(from locatee's extrapolated position to locator), the amount of modification
to be based on the relative sizes of the extrapolation estimate variance
and the range-plus-position-error variance. This modification is in the
spirit of the relocation described in the next paragraph. The third level
of filtering has not yet been implemented, except for tha z-coordinate when
using 2DSH; there, an exponential filter is used, with constant 0.6.
(I. e., the current smoothed value of z is taken to be (o. 6 )zold + (0.4)zest

where zest is the new reading, and zold is the last smoothed value.) This
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reduced the variance of the z-estimate by about 30 percent. Various
polynomial smoothing techniques were tried on the x and y estimates,
but the best of these (which involved a quadratic curve fit through the
last five points, in x and y separately) made only slight improvement
in accuracy, and then only when the extrapolation was weighted one-tenth
and the position estimate from current range values was weighted nine-
teenths in obtaining the final estimate. No other filters were tried,
but through the cooperation of David Plutchak of General Dynamics, a set
of range data was run through these algorithms and through his filter pro-
gram, and the results compared. The results were predictable: when the
path is smooth enough and the data are obtained frequently enough, the
Kalman approach does better, while for sufficiently erratic paths or sufficiently
infrequent data, the algorithm presented here is more accurate. Details
on these runs will be found in Sec. E.

REFINEMENTS OF THE ALGORITHMS. Refinements consisted of two basic types:
miscellaneous aids to convergence, allowing more accurate estimates for a
given number of iterations; and a scheme called "relocation". The miscellaneous
aids included halving the step size when an iteration would result in an
increase rather than a decrease in the objective function, decreasing the
step size when a step would tend to return to the previous point (as when
the iteration is bouncing from one side of a valley to the other, working
down the slope); and increasing the step size substantially when several
steps are basically in the same direction and are not decreasing in size
fast enough. Since there are many ways to do these things, it does not
seem appropriate to go into detail.

Relocation refers to an attempt to adjust the estimated position of the
locators slight±,+ to decrease the discrepancies between measured and
calculated ranges. The impetus comes from the realization that such
discrepancies come not just from errors in the locatee's estimated position,
but also from errors in the 2stimated positions of the locators. The
amount of adjustment was calculated from the relative uncertainties of the
locatee and locator, in such a way that if a locator's position is much
better known than that of the locatee, little adjustment is done to that
locator. Specifically, the amount of adjustment is a fraction of the ratio.
(locator's variance)/(locator's variance plus locatee's variance). Several
values of the fraction were tried. The optimum value was zero unless the

o algorithm was run for many cycles, in which case very small amounts of
relocation (fraction - 0.1, the smallest value tried) seemed to help slightly.
(But by this time, the errors had already grown to unacceptable levels.) A
better alternative, not evaluated in this study, would seem to be to adjust
the positions of all (or all but two or three) of the fixed lrcators simul-
taneously, using several successive measurements on each range, using a
criterion like minimum (weighted) mean square range-discrepancy, possibly
combined with a criterion of minimum total displacement of positions; this
latter device would tend to prevent translations or rotations of the set
of all unit positions without changes in relative position.

CHOICE OF LOCATORS. As mentioned in section A above, not all locators could
be allowed to move. The difficulty can be easily seen in the following
examples: suppose the velocity of every unit was suddenly changed by adding
a certain vector, say 5 meters per second in a given direction. Since the
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relative positions (i.e., the ranges between units) are unchanged, the
algorithm would never noticc the change in velociti s. Similarly, if a
rotation were applied to the entire cluster of units, this also would go
unnoticed. These are special cases, of course, but the same principle
applies to the average velocity change these errors may (and do) accumulate
into a large translation velocity which is entirely spurious. It does not
help to have units fixed, unless the algorithm is allowed to use the fact
that they are fixed: i.e., they must be known fixed. Thus it is necessary
to have some locators whose positions are not routinely updated. Furthermore,
if the fraction of locators so fixed is too small, the algorithm will tend
to let the corresponding ranges deviate in order to fit the other ranges,
with the result that the moving cluster will acquire a spurious velocity
anyway, with the ranges to the fixcd units eventually being rejected as
"outliers". Thus a reasonable fraction of the locators should be fixed.

C. AIRCRAFT TESTS. A systematic study was done to determine when to use
3D , and when to use 2DSH . For this study, an aircraft was to be located,
using ground stations as locators. Four, eight and twelve locators were
used, and many location operations were performed on aircraft at various
elevations above various ground positions. The range-error signa was set
at 4 m and 8 m; the height error sigma was set at 15 m and 25 m. (The
true value of the range-error sigma was thought to be about 6 m; that of
the height difference was 20 m , corresponding to a height error sigma of
14 m .) Finally, runs were duplicated with the locator's position perturbed
by random errors. Twelve positions were randomly chosen on a 15km x 15km
square; eight of these were randomly chosen for the ýeight-locator trials;
and four of these for the four-locator trials. The !set of eight covered
the 15km by 15km region; the set of four were contained within an 1lkm by
llkm square. Eleven aircraft positions were choseno eight within the 15 km
square, to which unit numlers 1 to 8 were assigned; 'one about 5 km outside,
one 20 km outside, and one 50 km outside, numbered 9, 10, and 11 respectively.
Eight altitudes were used in each position: from 300m to 2400m in steps
of 300 m. Fifty trials were done for each position,' each altitude, and each
algorithm variation, with trials matched across algorithms for range and
height errors. Errors were averaged across each set of 50 trials, and
these averages compared for consistency and analyzed for meaning.

Now the height above which it pays to use 3D depends on several factors:
number of locators, error magnitudes (both range errors and height errors),
and geometry. But geometry, unlike the other factors mentioned, is a complex
factor not amenable to summary by a single number: it involves the locations
of a whole set of locators relative to the aircraft location, the error
magnitudes and the elevations of the lines of sight above horizontal, which
are hereafter called the look angles. Thus it was not surprising that the
results do not clearly specify exact rules for which algorithm to use. The
expected general trends were clearly in evidence: an aircraft having only low
look angles, a small number of locators, a large range error sigma, a small
height error sigma, all tended to favor the use of 2D methods. But the
crossover altitude was not sharply defined - i.e., in a neighborhood around
the crossover point, both methods did almost equally well. (This allows
simplification of the rules of thumb with which one must eventually work.)
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A reasonable set of rules seems to be the following: with as many as 12
locators, use 3D only when the aircraft is inside (or near) the area
covered by the locators, and above 1000 m . With as few as 4 locators,
use the same altitude cutoff, but be more stringent on geometry: the
locators ought to span more than 90* of azimuth at the (ground projection
of the) locatee. Examples of the results upon which this set of rules is
based will be presented in the next paragraph, in lieu of the nearly
undigestible mass of data which was obtained.

SPECIFIC RESULTS (SELECTED). The best conditions tested are of course

a - 4 and 12 locators. For this situation (with perturbed locator
coordinates) the results were essentially the same for 1h " 10 as for -h 25.
Thev are su•tarized oelow

" " Unit Numhers

1-8 9 10 11
xP 4 3 Wv < 4

x. y error, 2D < 4-5 5 7 13
rr(4-10 fo r o- 25)S• z orror, I D

Altit:-.,7e 300m. 15-56 360 852 633

60OU. 7-21 55 308 1400

1200m. 4-10 24 459 625

1800M. 4-6 17 550 638
2400m. 2-6 13 117 600

Table 1. Average errors in meters, for 12 locators,
•R"4m.

At the other extreme is the case with 4 locators and a R - 8. Again,
the height a makes a little difference. The errors are given in the
following table.
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Unit Numbers

4-8 1-3 9 10 11
______________(Inside) _(rnnrliy) - -

xy error, 3D 8-13 13-20 17 40 75

sy error, 2D 7-11 7-11 12 27 50

z error, 3D:

Altitude 300m 43-117 224-612 654 618 393

600m 17-51 90-258 214 1229 1045

1200m 11-25 44-99 117 468 1833

18011A 8-19 25-62 61 617 1173
24 00u 6-15 21-48 53 312 988

Table 2. Average errors in meters, for 4
locators, a - 8m.

Note: The x, y error figures for 2D, for units 1 - 8 only. grow slowlywith altitude, and (at the higher altitudes) grow with a ; at 2400 m
altitude, with ah - 25, they are 10 - 19 instead of 7 -

The results for 8 locators fell approximately between these results,except for units 10 and 11. For these, they provided further evidence that
the great variability in average z-error across the different altitudes isindeed simply a reflection of the uncertainty of z-estimates under poor
geome try.

D. TRIPLS ON DIGITIZED ACTUAL TERRALN A portion of the area nearBoston, consisting of rolling terrain, was chosen for testing the algorithms
and was entered into the computer in digitized form. Eighty-three units
were placed on the terrain: 44 moving, more or less in the same general
direction, and 39 fixed (scattered among 13 different locations). Many
trials were made, with various sets of units reporting. In each case, thetrial consisted of 240 cycles (two hours); ground units were located every30 sec. except that ground locators were located every 5 seconds. Aircraftwere located every 5 sec., except that aircraft locators were located
every second.

Several ground-units-only results will be presented first, then several
runs with aircraft. (Seven aircraft were used: however, it w..s necessary
to put them all at one altitude, which was chosen to be 300 m.) Errors
are reported as x, y-errors - i.e., errors in the horizontal plane - and
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z-errors. The range errors again followed a normal (Gaussian) distribution
with mean zero and standard deviation 6 m; in addition, a random 1% of
the range values were inflated by 7 m to reflect a positive bias due to
occasional masking of the direct signal and acceptance of a reflected signal.

With all 39 fixed units reporting, the average x,y-error was 4.3 m, the
maximum was 33.4 m; but quite a few units were lost (i.e., position estimates
were not obtained by the algorithms) fairly often.

With all 83 units reporting, the average and maximum errors were 4.8 and
101 m; both values were due to large reported errors for units that were
not even located when only fixed units reported.

When the number of locators was reduced to 21, care had to be exercised in
choosing them. With one representative of each of the 13 sets of colocated
fixed units reporting, and 8 moving units (chosen to be those which could
"see" many of the other units), the average and maximum were 5.9 and 212;
when one of these fixed units was replaced by a different moving cne, the
average was about the same but the maximum decreased to 140.

The 3 best aircraft runs were done incorporating a set of rules for deciding
which algorithm to use, and with exponential smoothing of the z-coordinate.
The rules were:
(a) For ground units, use LSS3D if there are at least 6 ranges of which

S/- at most 4 are at look angles below 30*; otherwise use LSS2D, using
only the ranges below 300.

(b) For aircraft, use LSS3D if there are at least 6 ranges, and either
"there are at least 3 ranges above 20, or the aircraft is high enough
(height greater t'an 16 km/(4 + number of ranges)); otherwise use
LSS2D on all ranges. I I

(c) Before either of these rules is implemented, check whether there are
at least 4 ranges from fixed locators. If so, use only the ranges
from fixed locators.

Under these rules, incidentally, LSS3D was never used.

The table below presents the average and maximum errors for both ground
units and aircraft, fo- x, y plane and for z, for each of the three runs.
Each run represents 7080 location operations on ground units, and 22,320
location operations on aircraft.
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Ground units Aircraft

Averages Itaxima Averages IMaxima

,,xy Z xS Y Z xI y Z xjy Z

6 air, 7 fixed ground, 3
moving ground locators; 7.3 11.0 64 51 7.6 8.0 93 42
smooth z for aircraft only

Same locators; smooth z foralmvnunt 7.1 7.7 58 38 7.5 8.1 88 42
a ll mov!n• units

11 fixed ground, 5 aircraft 5.2 11.1 73 57 6.2 8.0 84 41
locators; smooth 7 for
aircraft.

Table 3. Average and maximum errors in meters for several

runs involving aircraft%

E. TF.LCK!'NG .'-,) FLL-ERING. As mentioned above, exponential smoothing was
applied to the z-coordinate; also, polynomial smoothing was implemented for
each of the other two coordinates. These techniques were compared with a
9-state (position, velocity, acceleration) Kalman filter technique
developed by General Dynamics. The comparisons are described below.

4 Two scenarics were used. Each had six fixed locators on the ground,
tracking an aircraft at 400 m altitude. One had good geometry; the other
had relatively bad geometry. True paths were calculated, and true ranges
to each locator; these ranges were then perturbed with independent
Gaussian errors having mean zero and standard deviation 6 m. Finally,
these perturbed values were treated as data, the estimated positions were
calculated by the various methods, these estimated positions were compared
with the true positions to get the true errors, and the errors compared among
the different methods to see which was most accurate. (Another step, taken
for the Kalman estimates, is described below.)

The first path, hereafter known as the circle path, consisted of eight turns
around a circular path of 1 km diameter, with a "drift" of 100 m per revolution,
at a speed of 225 km/hr . The geometry was good: 80 percent of the time
was spent within the convex hull of the set of six locators, which were
arranged in a more or less elliptical configuration (see Fig. 1); there was
always at least one locator close enough that the look angle was greater
than 30* , and occasionally there were four such, with an average of 2.14;
the aircraft was never more than 1.8 km from any locator. The other path,
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hereafter c lied the back-and-forth path, consisted of starting from
stationary, traveling 12.7 km in a straight line at 212 km/hr , hovering
for 72 a., returning, and again hovering for 72 a.; then repeating. Almost
2 cycles of ýthis path were done. The starts and stops were kept gradual,
so as to not exceed the value of acceleration for which the Kalman filter
was designed. The locators were scattered along the path, but not near the
extremes: at the ends, the look angles were all less than 6 , and the
ranges varied from 2.7 to 10.2 km. (See Fig 2.) Only 7 percent of the
time was there one look angle above 30% there was never more than one.
(It should be remembered that 3D is not recommended for situations like this.
However, for this test, no auxiliary source of height information was assumed.)
The results will be presented first for smoothing versus unsmoothed LSS,
then for Kalmun filter vs. LSS.

For many of the runs, the smooth paths were "roughed up" a bit, by perturbing
each coordinate of each point with independent Gaussian errors; the standard
deviation of the errors was 3 m. This was then treated as the true path.

Runs were made with the smoothing parameter set at 0.5, 0.8, and 0.9, at
one-Liecond data interval. The beat value was 0.9. For this run, the
smoothed track was clearly better than the LSS solution: the numbers of
times the smoothed LSS had smaller errors than the simple LSS were 269 out
of 400 and 669 out of 1000, which are significant at 7 and 11 sigmas, for
the circle and the back-and-forth run respectively. When in addition no
elimination of apparently bad ranges was allowed, the levels were 281 out
"of 400 (8 als) and 672 out of 100 (11 a's). (These are with reference to
the xty error. For x, y, z error, the figures were 286/400 and 614/1000,
both at the 8o level, with elimination allowed; the rum without elimination
was not done for x, y, z errors. In addition, for these runs, the path
perturbations were not made, so the conclusions-are tentative at best.)
Other trials were done, with different random errors, with essentially the
sa results: the most different showed differences significant at 6a's
and 4a 's respectively. One comparison was made for the perturbed path, with
no elimination of ranges, and smoothing parameter set at 0.9. The smoothed
track had smaller errors in 261 of 400 tries (6a's) for the circle, and in
651 of 1000 tries (7ou's) for the back-and-forth path.

The more interesting runs were those comparing Kalman filtering with LSS.
(Due to lack of time, it was not possible to make as many runs as desired,
so that the filter was not compared with smoothed LSS.) These were run
with data intervals of one s. and five s. The differences were marked, as
one might expect. At the five s. interval, the Kalman x,y errors were larger
"in 33 of 40 trials for the circle, and in 32 of 58 trials for the back-and-
forth path. (These figures are significant at 4a and 0.8a respectively.)
At one s. interval, results were reversed: LSS errors were larger in 25 of
40 trials for the circle, and in 44 of 58 for back-and-forth. (Significant
at 1.8a and 3.8a od
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The maximum errors, both (x,y) and z, are given in the accompanying Tables.

Circle path (40 trials). Back-aud-forth (58 trials)

LSS 12.6 25.0

Kalman, 1 s. 11.9 24.4

JKalman, 5 s. 80.5 40.1

Table. 4. Maximumoz, y)errors in meters.

Circle path Back-and-forth

rISS 15.6 339

Kal•ann, 1 a. 13.7 100

Kalman, 5 s. 154.1 142
/

Table 5. Maximum z-errors in meters.

I

On the basis of this admittedly thin evidence, one might suggest that

-• Kalman filtering does not help unless the time interval between data

points is 1 s. or less; and even at 1 s., the difference is not over-

whelming. (Remember too that with independent height information, the

reduction to a 2D method will give considerably better figures for aircraft

below 500 - 1000 m altitude.)

The Kalman filtering program carries along an internal estimate of error,

in the form of an estimate of the covariance matrix of the state variables

(which include the position coordinates). It is to be hoped that the vari-

ances of the coordinates, as carried in this matrix, would accurately

reflect the uncertainty of the corresponding positions, since these variances
are used to weight the measurements. If so, the -ctual errors ought to

correspond to those variances. Since the x- and y-variances are printed out,
and since for these tests the true errors are known, one can check whether
the internal estimates are accurate. This has been done. For both paths,

the actual errors were compared with the printed variances. The numbers of

errors within k times the corresponding sigma were tabulated for k = 1,2,...
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It is not proper simply to compare these frequencies with the expected
frequencies for a Gaussian distribution with known sigma, since all we
have is an estimate of sigma. One must use the t-distribution. And even
so, there is a difficulty: one does not know which t-distributions to
use, since the "degrees of freedom" (a parameter of the t-distribution)
"varies from trial to trial in an unknown way. An approximate treatment was
done, by comparing the frequencies with various t-distributions at various
scale factors, to find that distribution which best fit the tabulations.
(There will be at least 3 degrees of freedom, since the six basic range
measurements are used to fit three parameters, the coordinates, leaving
"three deg-ees of freedom. How many more there will bc depends on the
accuracy of the extrapolation from past positions, which in turn varies with
the geometry and the data frequency; there might be as many as 6 to 9
degrees of freedom with good geometry and frequent data.) Since the Kalman
filter was less accurate than LSS for 5-second data intervals, no tabulations
were done for those tracks. The results were as follows:
There were 28 errors greater than lo, of which 6 were greater than 2o, and

none greater than 3o , for 80 points on the circle path; the expected
numbers for a t-distribution with 8 degrees of freedom are 28, 6, and 1.
There are 39 above la , 9 above 2a , and 2 above 3a , out of 116 points on
the back-and-forth path; the expected numbers are also 39,9, and 2. This
is indeed a surprisingly good fit.

One more point should be brought out regarding the comparison of objective
error from simulation trials with estimated errors based on real trials.
The errors quoted in the simulation studies done for this project are
errors in the x,y-plane. If, as seems reasonable, x- and y-error are
independent, approximately Gaussian, and equally variable, then the mean
absolute (x,y) -error will be 1.25 times the standard deviation of the
x-error. Therefore, the estimated standard deviation as given by the
Kalman program should be inflated by a factor of (1.25) before comparison
with the average (x,y) -error as given by the simulation trials.

SUMMARY OF RESULTS. This section can be reasonably summed up as follows:

(1) The algorithm of choice is Least Squares Squared; it is'at least as
accurate at Least Squares, and takes less computation. (This assumes that
errors are approximately Gaussian-distributed, and that outlier rejection
techniques are used to eliminate bad measurements.)

(2) The distribution of errors, not just its standard deviation, affects
the accuracy of the algorithms (and the proper choice of algorithm).

(3) At least a reasonable fraction of the locators must be known to be fixed.
A reasonable fraction may be four out of twenty, but it helps to have a
larger fraction.

(4) Using weights which reflect the accuracy of the locators' position
estimates does increase the accuracy of the algorithm, but not very much
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/ - at least for the runs made, for which the variance of the locators'
positions varied over a two to one range. This is because the variance
of the range measurement is added to the position variance before calculating
weights. If the range variance were much smaller (than 36 m2 ), weights
would make a larger improvement.

(5) An example of the accuracy attainable: With 30 units spread over an
area 20 km by 20 kin, in 2 dimensions, with units starting and stopping,
and only stopped units being used as locators (an average of 15 stopped
at any time), the average position error throughout a run simulating 2 and
1/2 hrs. of real time, consisting of 300 cycles, was about half the range
error standard deviation.

"(6) For situations which are not far from planar (e.g., where many of the
"locators are at look angles less than 30*), an independent height measurement
of reasonable accuracy can increase considerably the accuracy of the (x,y)-
position estimate, by allowing the calculation of projected ranges in the
(x,y)-plane and the use of a 2-dimensional algorithm.

(7) The starting point for the Least Squares Squared algorithm is noncritical.

(8) There are indications, which could be verified by further analysis,
/ that the technique of reducing slant ranges to horizontal (projected) ranges

/ -and applying a two-dimensional algorithm is very useful when locating low-
flying aircraft with locators on the ground. (It requires a separate estimate

* of the aircraft height, of course.) Two factors are important: when the
height is small compared to the ranges, then (1) the projected ranges are
relatively insensitive to height measurement errors, and (2) any 3-dimensional

* method will have relatively low accuracy for the (x,y)-coordinates, and,
even lower accuracy for the s-coordinate. Very roughly, the 3D version is
about as accurate as the 2D version when several of the look angles (angles
between the horizontal plane and lines connecting the aircrRft with the

Slocators) are about 20* or more, when there are 12 locators and the range
errors have a standard deviation of 4 m ; on the other hand, with only 4

.. locators and a standard deviation of 8 m, the aircraft had to be surrounded by
* the locators, and the angles had to be on the order of 30* before the 3D

"method approached the accuracy of the 2D method.

(9) Smoothing (using past positions as well as current range data to estimate
current position) seems to help significantly, only on the z-coordinate of
aircraft; even this conclusion depends, of course, on how stable the altitude
of the aircraft really is.

(10) Use of a 9-state (position, velocity, acceleration) Kalman filter seems
to give more accurate position estimates, when data are available at least
every second (that is, several range measurements every second) ard the path
of the unit being located is quite smooth - i.e., variations from a smooth
curve which are on the order of half the magnitude of the range errors.
Otherwise the LSS3D algorithm will be more accurate. (The LSS2D algorithm
on projected ranges was not compared with the Kalman filter approach - but it

' ,. is felt that it might well produce more accurate results, even if the height
information were also fed to the Kalman filter.)
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APPROXIMATE LOWER CONFIDENCE LIMIT ON THE CIRCULAR ERROR
PROBABILITY (CEP) IN THE CASE OF •NEQUAL VARIANCES

EDMUND H. INSELMANN

HEADQUARTERS, U. S. ARMY MATERIEL COMMAND
ALEXANDRIA, VIRGINIA

N

INTRODUCTION AND SUMMARY

This paper is concerned with the interval estimation of the Circular

Error Probability (CEP) which is used as a measure of dispersion of rounds

fired at a target. Most of the literature on this subject deals with

circular normal distribution. In this case, the CEP problem works out

"easily and the lower confidence limit has been considered in other papers,
* /
. /e.g., Inselmann and Granville [E]. The attention here will be restricted

to the case where target errors (in azimuth and range) are independent

Gaussian variates with zero means and unequal variances. The main result

herein is limited to the case where the ratio of the standard deviations

is between .5 and 2. Probabilistic questions concerning the CEP have been

discussed by Grubbs [2]; this work war, based on a paper by Patnaik [3]. Other

related work was done by Moore [4]. Both Grubbs and Moore's papers involve

* CEP's which are linear combinations of the variances. These results can be

* used to obtain pcint estimates but have not been used in the construction

"of the confidence limits. The statistic suggested for estimation, testing

hypothesis, and calculating the confidence interval will be the geometric

mean of the sample standard deviations.

r

Preceding page blank
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PROBLEM STATEMENT

The object is to determine the lower confidence limit of the CEP, where

, CEP is defined as the radius of the circle about the origin that includes

hal:" of the probability in the plane. This of course depends on the

distribution of the probability mass, which in this case is bivariate normal

with zero means and no correlation. There are now two cases to be considered,
! /

equal and unequal variances. The solution for the equal variance case is well

known [2]. This paper forwards an approximate solution for the lower

confidence limit for the case of unequal variances. To make things more

mathematical, consider the bivariate random variable (X, Y) with EX - EY -

EXY 0, EX2  o and EY2  oa. The Joint density of (X, Y) is taken as

1 2

() f(x, Y) e-p 2S'2iwla L. 2a2  2a2

21t1a2 2a 2

The x and y are taken to be the azimuth and range components of the projectile

impact on the target. Recall that the object is to find t.-- radius of the

circle that has a probability .5. So the interest is in the distribution

of R A /X2 + y 2 . The density of this is well known and is given by

o2
(2) g(r) r exp+1

12~-r or 1.4 ] x E ( )
1" 2 1 22 a
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where 10 (x) is the Bessel function of the first kind with an imaginary

argument. Then the first step in our analysis is to find ROsuch -.hat

(3) .5 - f0 g(r) dr.

The integrand here is such that R can't be explicitly determined. Moore (4]

has made some numerical calculations for R0 which give an indication over

what range the integrand must be approximated. It can be readily verified

that I 0 (x) = 1, for 0 < x < 1. Moore's work (4] demonstrates that argument

of the Bessel function in the integrand is less than one provided that the

ratio of standard deviations is between .5 and 2. With this restriction

one can readily solve the ,oilowing equation for R'

r2  /o2 ~
5 fr exp :2 - I+ dr01 02 40

al12 0 4o2 +

1 0exp -R4242
2 2 4" 12:.
1 2 .. \ 1 2 .

The solution for R0 2 then is
0

(,2 -4o2 02 o2 + 02

(4) R _.I2 I 1- 1 20. o + 02 ', 4aI a2 :

1 2 1 2

A
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Expanding the log term in Rower series and reducing, Eq. (4) can be

written

(5) ( =s) a 1 02 [ n (l-t(a)I a 1 02 O(a)

whei.e

t(a) -- I a/ 1/2 < a < 2 and .5 < t(a) < .625.4a2 , 012' ._. .

Now taking the derivative of $ with respect to a one has

0'(a) Xn l -) 1 t +- ILI + 3 "0"

Note that the second factor is positive, while the first factor t'(a) =

* 1/4 (1 - 1 is negative in [1/?•, 1), zero at a - I and positive in (1, 2).

Hence,

0 0) < 0, a E [1/2, 1)

-0, a-l

> 0, ot c (1, 2].

Simple calculation shows that

1.177 2 < R' < 1.2527 /l102.
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The graph of /l is

l1/2 (a)

1.2527 .0

1.1774

1/2 1 2 n

The R6 that are computed at a = .2, 1 and 2 agree with the results computed by

Moore [4]. This suggests R0 - for practical purposes in (1/2, 2). Since

the range of P is small it can be replaced by a constant which is taken at

the midpoint of the range, namely 1.214. This now gives the final approximation
S1.214 02.

THE STATISTICAL PROBLEM
n

The natural estimate for CEP is then 1.214 "si 0 where S2  E X2

n

and S 2 _ E y/ n. The last step needed before constructing the lower
2 i-1l

confidence limit is to find the distribution of V = S• S2. The density of

1 2

V is

-

I ~~-583- "
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(6) i(v) = (-n2 vn/-1 n /2 -xn _v dx

K0 s heBe se f n tion oF0 th se2 n ki d O e 2sn w al y n m r cl y

2)n2) X 2a 1 2o 2X

1/2

r(n/2) 2 (4O0:-2 0 n2- K0

Thc integral in (6) is found in the Bateman Tables [5] p1 4 6 formula (29), and

K 0is the Bcssal function of the second kind. One is now able by numerically'

integrating this density to find the confidence interval. This is done as

follows. Define V0 such that

S- 1v h(x) dx
0

Then to find the lower confidence limit on R6 the following calculations are

made.

-Pr 2S1  2 < 0

4 1 /1 2

, /,Pr( 1.24 < 1. aI a 2

1.214 (n S1 S2- Pr{ - < R21

This determines the lower confidence limit for the approximation, RO, of

the CEP.
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uN THE VARLITION IN MECHANICAL PROPERTIES
CF LARC1i CALIB2R GUN TUBE FORGINGS

Peter A. Thornton
Watervliet Arsenal

Watervliet, New York

ABSTRACT. The variations in tensile and Charpy impact properties of
nine (9) large caliber gun tube f.:gings were evaluated by an analysis of
variance technique. Utilizing the variance within individual disks as an
estimate of error vaziance, the variation between disks was determined
for each forging. In addition, a two factor analysis (cross-classification)
was conducted on tubes of similar configuration to define significant
variations in mechanical properties between like tubes. At the 5%
significance level, real disk to disk variations were determined in yield
strength and ultimate tensile strength for all foigings evaluated.
However, no significant variation between disks was exhibited by percent
elongation or reduction of area for the same forgI.ngs. Charpy impact data
displayed real variation in five of the nine forgings analyzed. The cross
classification revealed that variation in yield strength, %RA and Charpy
impact strength was highly significant when the forgings resulted from
different positions in the ingot. Conversely, %RA showed insignificant
variation, while yield strength and Charpy impact (R.T.) exhibited slightly
significant variation when the forgings resulted from similar ingot posi-
tions. The latter variation occurred in identicaý. forgings produced from
identical size ingots but different heats of steel.

GLOSSARY.I

ANOVA Analysis of Variance

o2 Variance (universe)

S 2  
Estimate of variance

F Ratio of mean square in question to
error mean square

S.S. Sum of Squares

D.F. Degree3 of Freedom

M.S. Mean Square

SN Serial Number

"Precading page
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YS Yield Strength (ksi)

UTS Ultimate Tensile Strength (ksl)

El Elongation (%)

RA Reduction of Area (%)

Cv Charpy Impact (ft-lb)

INTRODUCTION. During the late 1940's the problem of mechanical
property variation was recognized in large gun tube forgings 151.
Since that time better metallurgical controls and advances in thermal-
mechanical processing have been utilized in an attempt to correct this
condition. However, simultaneous advances in weaponry, such as complex
shapes and larger component size have tended to offset these improvements.
Consequently, the problem of property variation still exists in large
forgings. This fact was recently brought to light during the mechanical
property investigation of a 175mm M113 gun tube in 1966 [2]. As a result
of the investigation of this particular tube (SN 733), a study of the
mechanical property variation in additional 175mm tubes was conducted 14].
The significant findings (conducted on 38 gun tubes) can be briefly
summarized js follows: tensile ductility, Charpy impact and fracture
toughness (pre-crack Charpy) varied considerably wi.thin a tube, within a
disc, within a vendor's practice and from vendor to vendor.

A following study then attempted to determine the level and repro-
ducibility of mechanical properties in present gun tube material, quenched
to a uniform microstructure of 100% martensite and tempered to yield
strength ranges to 140-160 ksi and 160-180 ksi [1]. Two iaiportant facts
resulted from this work: (1) the optimum microstructure obtainable in
this material was established by reheat treating small specimen blanks
and (2) the variation in mechanical properties (excluding yield strength),
found in the reheat treated test specimens was controlled by some factor
in the manufacturing process other than heat treatment.

Accordingly, the object of this present examination is to define
the variations that exist in mechanical properties of larger size specimens,
viz., full size gun tubes. Although similar studies have been conducted,
it is felt that the present evaluation is necessary be-ause vendors
periodically change their practice. Also, dealing with full size components
will permit the appraisal of certain statistical analyses on the data and
determine their applicability in future planned studies of this problem.
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THEORY. When two or more independent scurces of variation operate,
the resulting variance is the sum of tne separate variances [3]. The two
types of errors which arise, when estimating the property of a bulk
material are: o

1. Errors of sampling (variance denoted by a 1
2 )

2. Errors of analysis (variance denoted by a02)

These sources of error operate independently and the total variation may
be obtained by the addition of the two.

In order to separate and estimate the variances due to testing and
sampling an Analysis of Variance (ANOVA) can be conducted with the
experimental data. The ANOVA is essentially a metbod of analyzing the
variance to which a response (test measurement) is subject, into its
various components corresponding to the sources ot va idtlon which can be
identified. The details of this method can be briefly summarized as
follows:

Suppose there are k samples (disks) and n repeat analyses on each,
giving a total number of analyses N = kn. The analytical error is

* responsible for the variation in the repeat analyses on each sample, and
its variance is denoted by ao'. This variance is estimated by:

TOTAL of the sums of squares abo-ut the sample means k n
TOTAL of the degrees of freedom i1 jI k(n-•)

'where xxj - individual responses (within disks)

Ri - disk mean

Similarly, the sampling error variance denoted by a1i2 is estimated by:

kn E• (-)2l/(k- 1)

where xi - disk mean

x - grand mean

The sums of squares and degrees of freedom "betweeu disks", "lithin
disks" and "total" may be set out in tabular form called the ANOVA table
as below:
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Quantity
Source of Degrees of Mean Estimated by
Variation Sum of Squares Freedom Square Mean Square

k
Between disks niEI(Ki-2) 2 = S1 k-i Sl/(k-1) ao2 + nol 2

kn n1 = ~ -) S / ~ -)C

Within disks il J11(xii- 2k(n-l 0 /k(n-)

k n
Total J. 1 (Xij_•) 2  nk-i

The results of the Analysis of Variance can then be tested for significance.
This is accomplished by setting up the Null Hypothesis that there is no
disk to disk variation (Sli - 0). Consequently, two indepondent estimates
of S.2 are realized; one from the mean square within disks, and the other
from the mean square between disks. To test whether these two estimates
differ significantly, i.e., whether they differ by more than can be reason-
ably explained on the grounds of errors in the estimates, the retio of the
mean square between disks to the mean square within disks is calculated.
This ratio (F) is the measure of the variation caused by the effect divided
by the variation due to repeat tests. The resultant F value is then com-
pared with a table of variance ratio for the respective degrees of freedom,
and a particular significance level. A significant value of F cac
(F >_ " Ftale) discredits the Null hypothesis and it can be concluded

that real variations exist in the property under consideration, from disk
to disk.

APPROACH. The mechanical properties of nine (9) full size gun tube
forgings from a single vendor, were evaluated transverse to the forging
direction. These tubes are identified in Appendix A, along with their
respective chemical analysesaind heat treatments. Sampling of the tubes

Swas accomplished by cutting 1-1/4" thick disks at approximately 12" intervals
along the tube length. This procedure is illustrated on a finished gun
tube in Figure 1. Tensile (o.357" dia) and standard Charpy impact speci-
mens were machined from the midwall region of these disks as shown in
Figure 2. The tensile specimens were tested in a commercial tensile testing
machine and the strain measured during the tests with an extensometer.
After testing, % reduction of area and % elongation were determined from
the deformed specimens. Impact testing was conducted on standard Charpy
V-notch specimens at -40'F and in some instances, at room temperature
also. Then, in order to determine if real variations exist in the material
along the tube length (disk to disk), an analysis of variance (one-way
classification) was conducted on the data from each tube. Also, a two
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Figure 1. Schematic Showing Test Specimen Sampling
Plan Along Tube Length
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Figure 2. Schematic of Test Specimen Layout Within
A Disk
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TABLE I ANOVA 1SSMM M126 - TUBE 8890

SOURCE OF,
IkL5PONSE VARIATION S.S. D.F. M.S. Fcalc. F(S%) VARIATION

YS B 543.5 11 49.4 9.0 2.7 Significant
N 66.1 12 5.5

1IT7S B 250.0 11 22.7 37.7 2.7 Significant
W 7.2 12 0.6

,EI 11.4 11 1.0 1.4 2.7 insignificant
9.0 12 0.8

',PA B 290.9 1! 26.4 i.5 2.7 Iisignificant
W 207.1 12 17.2

Cv(r.T.) B 24.7 10 2.5 5.1 2.9 Signifi ant
5.3 II 0.5

Cv(-40*F) B 10.2 10 1.0 2.3 2.9 Insignificant
W 4.8 11 0.4

TABLE II ANOVA I55MM M126 - TUBE 8913

SOURCE OF
RLSPONSE VARIATION S.S. D.F. M.S. Fcalc. F(5. VARIATION

YS B 295.9 11 26.9 14.9 2.7 Signif cant
W 21.8 12 1.8

' lTs B 184.5 11 16.8 49.9 2.7 Signi'f cant
W 4.0 12 0.3

!,E1 B 15.4 11 1.4 2.6 2.7 Insignificant
N 6.3 12 0.5

% RA B 267.8 11 24.3 1.7 2.7 Insignificant
172.6 12 14.4

CvtR.T.) B 24.2 10 2.4 2.2 2.9 Insignificant
W 11.8 11 1.1

UT,(-40*F) b 9.4 10 0.9 0.5 2.9 Insignificant
S19.4 11 1.8

/

/

B - Between disks

W- Within disks
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TABLE III ANOVA 1SSMN M46 - TUBE 16

SOURCE OF
RESPONSE VARiATION S.S. D.F. M.S. Fcalc F(S%) VARIATION

YS S 708.9 27 26.2 25.4 1.9 Significant
28.9 28 1.0

UTS a 688.5 27 25.5 42.9 1.9 Significant
16.6 28 0.6

?El B 23.1 27 0.8 1.S 1.9 Insignificant
N 15.S 28 0,6

'RAB 257.1 27 9.5 1.6 1.9 Insignificant
W 170.0 28 6.1

C (.T. ) 367.0 22 16.7 9.1 2.0 Significant
W 41.7 23 1.8

cv(-s(jOr) 8 434.7 25 17.4 6.4 2.0 Significant
W 70.7 26 2.7

TABLE IV ANOVA 152MM 181 - TUBE 1151

"K SOURCF OF
kLSPONSr VARIATION S.S. D.F. M.S. Fcalc. F (5% VARIATION

YS B 220.5 16 13.8 12.0, 2.4 Significrnt
W 19.4 17 1.1

UTS B 129.2 16 8.1 9.2 2.4 Significant
W 14.9 17 0.9

SEI B 17.9 16 1.1 2.2 2.4 Insigni 1cant
W . 17 0.5 -

8RA 9 145.8 16 9.1 • 2.4 Marginal

W 59,4 17 3.5

Cv(-400F) B 71.2 16 4.4 1.4 1.8 Insignificant
W 162.4 51 3.2

B - Between disks

K - Within disks
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TABLE V ANOVA 1S2MM INGOT 8178-S GUN XP3

SOURCE OF
RLSPONSE VARIATION S.S. D.F. M.S. Fcalc. F VARIATION

YS B 97.3 27 3.6 7.6 1.9 Significant
N 13.3 28 0.5

tITS b 181.0 27 6.7 19.7 1.9 Significant
W 9.5 28 0.3

, 29.8 27 1.1 1.1 1.9 Insignificant
W 27.4 28 1.0

kAB 559.6 27 20.7 0.9 1.9 Insignificant
w 673.6 28 24.1

B 71.3 27 2.6 2.2 1.9 Marginal
S33.5 28 1.2

fABLE VI ANOVA IS2MM INGOT 8178-S GUN XP-4

SOURCE OF
RESPONSE VARIATION S.S. D.F. M.S. Fcalc. F(5%) VARIATION

YS B 67.4 27 2.5 5.7 1.9 Significant
v 12.2, 28 0.4

UTS B 413.3 27 IS.3 36.5 1.9 Significant
11.7 28 0.4

"..E1 B 36.3 27 1.3 1.9 1.9 Insignificant
N 19.9 28 0.7

RA .B 557.0 27 20.6 1.5 1. 9 Insignificantw 381.8 28 13.6

Cv(-40F) B, 212.0 27 7.8ý 6.4 1.9 Significant
W 34.5 28 1.2

h - Betwecn disks

W - hithin ,isks
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TABLE VII ANOVA 90MM M41

SOURCE OF
RESPONSE VARIATION S.S. D.F. MI.S. Fcalc. F(5%) VARIATION

YS a 184.4 13 14.2 9.6 2.5 Significant
v 20.6 14 1.5

UTS 8 72.3 13 S.6 11.9 2.5 Significant
6.S 14 0.5

.RA B 21S.4 13 16.6 1.1 2.5 Insignificant
W 202.6 14 14.5

CB.-40ot) 15.2 13 1.2 1.4 2.5 Insigniticant
1I.S 14 0.8

TABLE VIII ANOVA 105MM M137 HOWITZER GUN XPI

SOURCE OF
RESPONSE VARIATION S.S. D.F. M.S. Fcalc. F(Si) VARIATION

YS B 209.7 13 16.1 13.1 2.0 Significant
N S1.6 42 1.2

UTS B 93.6 13 7.2 28.2 2.0 Significant
x 10.7 42 0.3

%El B 5.8 13 0.4. 1.9 2.0 Insignificant
K 9.9 42. 0.z .

B, RA B 107.9 13 8.3 2.2 2.0 Marginal
S 159.7 42 3.8

Cv(-40OF) B 46.0 13 3.S 3.3 2.0 Significant
W 44.4 42 1.1

B - Between disks

K - Within disks
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factor analysis of variance (cross-classification) was conducted on
forgings with identical configurations (155mm, 8890-8913 and 152mm,
XP3-XP4) to determine if significant variations existed in mechanical
properties between similar forgings.

RESULTS AND DISCUSSION. The tensile and Charpy impact data from the
nine gun tube forgings are compiled in Appendix B. The results of the one-
way classification program (Appendix C) are presented for each tube in
Tables 1-IX. The experimental F ratio is compared with the F ratio at the
5% signigicance level (Prooability - 0.05) and significant differences
noted. The column F (5%) indicates how large the F ratio must be so
that there is only a one in twenty chance that an effect is just a random
"occurrence. Therefore, calculated values of F, larger than F(5%) have
less than a one in twenty chance of being caused by random fluctuations.
These variation determinations are summarized by response and forging in
Table X.

Examination of the individual responses in this summary discloses
that yie3d strength and ultimate tensile strength exhibited real disk to
disk variations for all tubes analyzed. This finding can be interpreted
by examining the yield strength plots in Figures 3-11. These graphs
indicate the average value and spread within a disk. If the maximum and
minimum values tend to approach the average, no spread is denoted. It
is evident that in general little difference in yield strength was measured
within disks and, therefore, the estimate of analytical error variance (So2)
is small. Consequently, deviations from disk to disk may show up as
significant variations even though their magnitude is small relative to the
grand mean. This point is exemplified in Figure 8 where the yield strength
range deviates only 4.5 ksi, for the entire tube, yet statistically this
amount of deviation constitutes a significant variation between disks.
However, it is not highly unusual to obtain yield strength ranges on the
order of 20 ksi in cannon tube forgings. Therefore, from a practical
standpoint, "real" variations must also be considered in regard to "he
particular components, properties and previously established ranges. The
same interpretation applies to ultimate tensile strength in these nine (9)
forgings investigated.

On the other hand, percent elongation and percent reduction of area
exhibited no significant variation from disk to disk for the forgings
analyzed. Examination of the % RA plot in Figures 3-11 reveals that, in
general, considerable deviations in this parameter were measured within
disks. Referring to Figure 7, consit!Brable spread in % RA between disks
is apparent (20%). However, the scatter within disks generally appears
considerable. Accordingly no significant variation in this parameter was
realized between disks, although two forgings were marginal. As in the
case of yield strength (statistically significant variation) this
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margination results from the relatively uniform spread in % RA for these
two forgings (Figures 6 & 10). Also the type of test involved should be
considered. It is likely that these determinations were affected by the
precision of the individual measurements, yield and ultimate tensile
strengths being more precisely measurable than elongation and reduction
of area. Another important factor influencing the outcome of this type
analysis is the number of tests taken within a disk (replicates). -As
the number of replicates increases, errors of estimation can be reduced
considerably, resulting in more exact variance estimates and consequently
accurate variation determinations. Thiq point is expressed by the plots
of Figure 10, where the average of four replicates are shown along with
the high and low valuies. These "curves" graphically express the relative
uniformity of spreae, in the data within disks. This consistency could be
attributable to the number of observations recorded for this particular
tube.

Lastly, Charpy impact data, both room temperature and -40*F, showed
real variations in five of the tube forgings analyzed. Examination of

, iTable X reveals that in one particular tube (No. 16), this parameter varied
significantly between disks, at both test temperatures, while just the

. 'opposite was recorded in Tube #8913. Also, instances were noted where the
Charpy impact values of a specific tube varied significantly for one
temperature but not the other. Yet the limited data concerning room
temperature tests restricts the analysis of these contrasting variation
determinations.

Furthermore, it is noteworthy that the two forgings with largest
ingot size and wall thickness (155mm M46 and 8" M2Al) exhibited significant
variation in -40*F Charpy impact strength. Likewise, the forging with the
smallest ingot size and wall thickness (105mm M137) showed real variation
in the same parameter. Although the latter observation is most likely due
to the small spread in impact strength within disks, these conflicting
effects preclude any meaningful conclusions concerning the effect of ingot
"size and percent reduction on the variation of charpy impact strength for
these particular forgings.

"j .The results of the two factor analyses of variance conducted on the
155mm M126 forgings and the 152mm XP forgings are presented in Tables

'XI and XII. The mechanical responses analyzed were: yield strength,
reduction of area and Charpy impact energy absorption. Since no inter-
action between the factors A and B (A - similar caliber forgings, B -
similar test disk location) was anticipated, the sum of squares AB was
added to the sum of squares error and this value used to estimate the
experimental error variance. Examination of these tabulations shows that
for the 155mm forgings no significant variation exists in Z RA between the
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SPECIMIEN CODE
AS Of 0 ! J K L111N P R S T U VW X

S. ..... .....

1 VM2AI HOWITZER
.~** ~1! TUBE S*7091

135- *
130-

4'S

j-5

40 0 2 4 6 11 to 12 14 16 Is
OIhNCE FROM BREECH END (FT)

Figure 11. Mechanical Property Variations in 8"I M2A

Howitzer Tube SN7091
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TABLE IX ANOVA 8" P42A1 HOWITZER - TUBE 7091

SOURCE OF
RESPONSE VARIATION S.S. D.F. MS. Fcalc. F(5%) VARIATION

YS B 387.9 18 21.5 7.7 2.2 Significant

W 53.4 19 2.8

UTS B 545.4 18 30.3 20.5 2.2 Significant

w 28.1 19 1.b

vE1 B 42.2 18 2.3 1.9 2.2 Insignificant

N 23.8 19 1.2

.RA B 699.1 18 38.8 1.3 2.2 Insignificant

W 581.2 19 30.6

Cv(R.T.) B 206.9 18 11.S 2.6 2.2 Marginal

W 83.6 19 4.4

t:v(-40-F) B 4110.8 18 228.4 24.0 2.2 Significant
N 180.8 19 9.5

B - setween disks

K - Within disks

TABLE X STATISTICAL VARIATION SUMMARY BETEEN DISKS
(S SIGNIFICANCE LEVEL)

FORGING Nu. YS UTS %Ei %RA ..v.... Cy 40

ISSmm M126 8990 S S I I S I

ISSmm M126 8913 S S I I I t

15Smm M46 16 S S I I S S

IS2mm M81 11S1 S S I M - I

I52mm XP3 S S I I - M

IS2mm XP4 S S I S

" •90mmM41 S S I -

SIO5mm M137 XPl S S I M S

8"M2AI 1091 S S I I M S

S - Significant variation between disks

I - Insignificant

M- Marginal
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TABLE XI ANALYSIS OF VARIANCE BETWEEN TUBES
1551M M126 FORGINGS - 8890, 8913

SOURCE OF

RESPONSE VARIATION S.S. D.F. M.S. Fcalc. F(S%) VARIATION
YS A 11,532.0 I 11,532.0 5.5 4.1 SignificantB 61,210.0 11 $,S64.5 2.7 Z.1 SignificantSSE 72,742.0 35 2,078.3 -
*RA A 130.1 1 130.1 u.07 4.1 Insignificant

B 30,621.2 11 2,783.7 1.5 2.1 "SSE 63,219.2 35 1,806.3 -
CvIR.a.) A 769.5 I 769.5 8.6 4.2 Significant

B 3,793.7 10 379.4 4.2 2.2SSE 2,876.0 32 89.9

TABLE XII ANALYSIS OF VARIANCE BETWEEN TUBES
1521N INGOT 8178-5 FORGINGS XP3, XP4

SOURCE OF
RESPONSE VARIATION S.S. D.F. M.S. Fcalc. F.t5j VARIATION
TS A 18,204.6 1 18,204.6 142.4 4.0 Significant

B 7,644.0 25 305.8 2.4 1.7cSSE 9,839.4 77 127.8 -
6RA A 195,231.3 1 195,231.3 101.8 4.0 SignificantB 36,904.2 25 1,476.2 0.8 1.7 InsignificantSSE 147,708.7 77 1,918.3 -

Cv(-40-F) A 15,753.8 I 15,7S3.8 63.2 4.0 Significant
3 10,588.4 2S 423.5 1.7 1.7 InsignificantSSE 19,206.2 77 249.4 -

A - Between similar calhber forgings

B - Between similar test disk locations

SSE - Experiuentai error (fncludes AS)

/6
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tubes, but does exist in the yield strength and Charpy impact data (R.T.)
at the 5Z significance level. Conversely, the 152mm forgings exhibited
real variation between tubes for all three responses. Unfortunately,
the Charpy test temperature for the latter forgings was -40*F, therefore
qualitative comparison between different forgings is not feasible. It
should be noted however, that the 152mm forgings were produced from the
same ingot as a double forging. Consequently, the two tubes represent
different positions in the original ingot with XP3 coming from the top

*• portion and, XP4 from the bottom portion. It has been reported in connec-
tion with transverse reduction of area, that comparable tubes from a
similar position in ingots cast from a single heat usually have about the
same properties [5]. However, the quality of tubes coming from the bottom
thirds of ingots is generally slightly lower and occasionally much lower
than that of tubes produced from the middle or top thirds of ingots. The
results of the 152mm cross classification appear to agree with this infor-
mation. Conversely, the 155mm M126 forgings were produced from different
ingots. Although these ingots came from different heats, they were identical
"in size. Subsequently, no significant variation was found in reduction of
area, between tubes. In addition, the variation observed for yield
strength and Charpy impact strength is just barely significant compared
to that of the 152mm analysis. For example, the yield strength F ratio
of 142 for 152mm XP tubes shows that there is 142 times as much variance
arising from different tubes as compared to the repeat tests within the
tubes. Similarly, an F ratio of about 6 exists for the yield strength
variance between different 155mm M126 tubes.

Since the forgings studied herein were of equivalent chemistry and

had heat treatments intended to produce identical microstructures, the
observed variations in mechanicrl properties within forgings and between
like forgings indicates that other factors contribute to the variance in

final properties of the material. Elements such as melting, solidification
and forging procedures can vary widely even within one vendor's practice.
For instance, the~effect of solidification was implied by the real vari-
ations noted between the two 152mm XP forgings produced from different
positions of the same ingot. Likewise, the effect of melting and forging
procedure was implied by variations between the two 155mm M126 tubes pro-
duced from identical size ingots poured from different heats. Thus, it is

* clearly obvious that in addition to determining the principal causes of
4 mechanical property variation in forged materials, the problem of defining

significant variations themselves, exists. Once a method is established
(such as ANOVA) it should be combined with subsequent mechanical and
metallurgical investigations thereby allowing accrual of statistical infor-
mation in conjunction with specific material conditions. An accumulation
of these data will then provide a basis for effective evaluation of mechan-
ical property variation in large forgings. Therefore, investigation of the
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and deoxidation practice, chemical segregation,

fibering or alignment of second phases, forging reduction, ingot size, etc.S~will be continued. These efforts will be combined with statistical analysis

of the mechanical property data in an attempt to optimize the properties
Sand reduce variation in large forgings.

SODNCLUSIONS. The mechanical property data and attendant statistical
analyses permit the following conclusions:

1. Real disk to disk variations exist in yield strength and ultimate
tensile strength for all nine (9) forgings evaluated.

2. No significant variation between disks existed in Z elongation and
Z reduction of area for the forgings, although two (2) tubes were marginal
in this respect.

3. Charpy impact data exhibited real disk to disk variation in five
of the nine (9) forgings analyzed.

4. Percent reduction of area in forgings of equivalent configuration
showed significant variation when the forgings resulted from different
ingot positions. Conversely, the same response between similar forgings
exhibited insignificant variation when the forgings came from similar
ingot positions. This demonstrates Lhe effect of solidification parameters
on variation of mechanical properties in large forgings.

5. Significant variation was found in yield strength and room
temperature Charpy impact strength for similar forgings produced from
identical size ingots but different heats of steel. This variance indicates
the effect of melting variables upon mechanical properties.

6. The Analysis of Variance Technique is useful in establishing
variation validity but must be interpreted from a practical as well as
statistical stand point.

ccc
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APPENDIX A

GUN TUBE MATERIAL HISTORY

Chemical Analysis

TUBE C _n P S Si Ni Cr 14o V

1SS. M126 8890 .32 .59 .010 .010 .19 2.30 1.01 .52 .11

155m. M126 8913 .32 .S8 .010 .009 .20 2.31 .98 .SS .11

iSS1 M46 16 .32 .6S .010 .010 .23 2.11 .97 .47 .09

1S2.. M481 1151 .31 .60 .011 .008 .20 2.08 .99 .46 .10

152.m XP3 .33 .61 .011 .009 .20 2.09 1.00 .48 .12

1521m XP4 .33 .61 .011 .009 .20 2.09 1.00 .48 .12

903m M41 .33 .58 .009 .009 .24 2.05 .95 .51 .14

10S=. M137 XP1 .33 .60 .010 .008 .20 2.09 .97 .48 .11

8"1 ?2Al 7091 .32 .62 .010 .009 .21 2.24 .99 .51 .12

Thermal Treatment

1S= M126 - 8890, 8913

Heatad to 17S0"F in 10 hrs., held 12 hrs., air cooled 8 hrs.
Reheated to lSSO0F in 10 hrs., held 12 hrs, water bore quenched 15
minutes. Charged in draw furnace holding at S00"F. Raised temperature
to 1030"F on muzzle and 104SOF cn breech in 10 hrs., held 16 hrs., water
cooled to 200"F.

-608-



15mm 1446-16

Heated to 1750OF in 10 hrs., held 12 hrs., air cooled 8 hrs.
Reheated to 1550I F in 10 hrs., held 12 hrs. Water bore quenched
20 minutes. Charged in draw furnace holding at 500SF. Raised
temperature to 1110F on muzzle and 1110 F an breech in 10 hrs. ,
held 16 hrs., water cooled to 200"F.

152mm MS1 - 1151

Heated to 17SOF in 10 hrs., held 12 hrs., air cooled 8 hrs.
Reheated 1525"F in 10 hrs., held 12 hrs., water bore quenched 10
minutes. Charged in the draw furnace holding at 500 F. Raised
temperature to 1040"F an muzzle and 1040"F an breech in 10 hrs.,
held 14 hrs., water cooled to 200"F.

152am - XP3, XP4

Heat treated as a double tube to 1750F in 10 hrs., held 12
hrs., air cooled 8 hrs. Reheated to 1525"F in 10 hrs., held 12
hrs., water bore quenched I minutes. Charged in draw furnace
holding at SO0"F. Raised temperature to 104SF an muzzle and
1045*F on breech in 10 hrs., held 16 hrs., water cooled to 200F.

90mm1 M41

Same heat treatment as MSom XP3, XP4, with the exception of

1030*F an muzzle, 1040"F an breech in draw furnace.

1OSm M137 XPl

Same heat treatment as lSZrm XP3, XP4, with the exception of
1025F on muzzle and 1045"F an breech, held 14 hrs,. in draw furnace.

8"M2Al 7091 .

Heated tn 175nlF in 6 hours, held 9 hours, air cooled 6 hodrs. Re-
heated to 1SOOF in 6 hours, held 8 hours. Water bore quenched 17
minutes. Charged in draw furnace holding at SOO0F. Raised temper-
ature to 1070 0 F on muzzle and 1070OF on breech in 6 hours, held 10
hours, water cooled to 2000F.
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Starting Ingot Data

Type of Ingot: 12 Side Round Fluted

Ingot Size:

Tube Forging No. Maximum Diameter(in) Minimum Diameter~in) Length(in)

155mm M126-8890 27-7/8 19-9/16 87-3/8

155mm M126-8913 27-7/8 19-9/16 87-3/8

155mm M46 - 16 35 29-5/8 101

152mm M81 -1151 22-3/4 16-5/8 75

152mm XP3
27-7/8 19-9/16 87-3/8

152Mm XP4

90mm M41 24-1/2 16 78

105rmm 137 XP1 22-3/4 16-5/8 67-3/4

8" M2A1-7091 34-3/4 29-1/2 104

Rough Forging Data

Tube Forging No. Breech O.D.(in) Muzzle O.D.(in) Tube I.D.(in)

155mmH M126 12-1/2 8-3/4 5-7/16

155.mm M46 15-1/8 9-5/8 5-7/16

152mm M81 10-11/16. 8-1/4 5-3/8

Si90nmim41 10-1/4 7-1/4 2-15/16

1OSm M137 8-1/4 6-3/4 3-3/16

8" M2A1 17-7/8 13-1/4 7-1/8
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APPENDIX B

Mechanical Property Data

, 15514 M126 Tube 8890

CODE YS(ksi) .JTS(ksi) %EI %RA Cv(R.T.) Cv(-40)
ft-lb ft-lb

CFB 175.8 192.2 13.2 35.0 20.2 15.8
174.9 191.2 11.1 26.6 20.2 16.5

CFD 174.0 192.2 11.9 31.8 21.2 18.2

173.7 193.0 12.8 36.3 21.2 18.2

CFE 176.3 193.1 14.0 41.2 21.5 17.0
176.3 192.8 11.9 33.2 21.2 16.5

CFF 174.9 192.1 12.8 35.0 20.5 17.5
176.7 192.7 13.6 37.7 20.5 17.5

CFH 176.9 193.4 13.2 39.d 21.7 16.5
176.6 192.5 14.0 39.4 21.2 16.2

CFJ 175.5 192.7 14.3 42.8 24.8 17.5
174.6 191.7 13.2 39.8 22.2 17.5

CFK 175.7 192.6 13.6 40.7 23.0 17.0
174.3 191.5 14.0 39.0 23.0 17.5

CFL 171.9 190.0 14.7 38.S 21.2 17.0
170.1 189.0 13.6 38.5 21.0 19.5

CFR 156.6 185.2 14.7 39.8 23.2. 16.2
167.4 185.7 14.5 42.0 23.2 16.5

CFN 168.4 186.6 13.6 39.4 21.2 18.0
168.0 185.6 13.2 37.7 23.2' 16.S

CFP 167.1 184.9 11.9 27.1 - -
165.0 182.7 14.0 41.6 - -

CFO 178.8 193.0 12.8 33.2 -
177.9 192.5 12.8 28.5 -

V/ I-611-

N.i



k;-4-.• -- / " - - /-! -'4" "

.. .. ... .. .. .. ... .. .. ............. I".

l" 5S5 M126 Tube 8913

Code YS(ksi) UTS(ksi) %El %RA Cv (R.T.) Cv (-40)
ft-lb ft-lb

CFB-1 172.5 190.2 12.8 37.0 20.2 16.2
173.0 189.9 11.9 29.0 21.8 16.2

CFD-1 171.9 189.5 13.2 34.5 21.0 16.2
168.0 190.6 13.5 38.1 19.2 18.2

CFE-1 173.3 191.0 14.0 40.6 18.8 15.0
170.0 190.1 13.2 39.4 20.2 17.0

CFF-1 174.2 190.8 12.5 36.3 21.0 15.8
174.0 189.5 13.2 37.2 19.0 18.2

CRH-i1 173.0 190.4 14.1 39.4 21.5 17.5
173.6 190.6 14.3 39.2 20.2 17.2

CFJ-1 174.0 190.4 14.3 41.8 22.5 18.0

173.1 189.8 12.8 33.4 21.2 15.8

CFK-1 174.6 190.3 14.3 38.1 22.8 18.5
174.8 190.3 14.7 42.8 22.5 16.2

CFL-1 169.2 186.8 14.7 40.3 22.5 16.8
168.9 187.0 14.3 40.7 21.0 18.0

CF•-I 164.2 184.5 14.3 39.0 21.0 16.0
165.4 184.3 13.2 30.8 23.2 18.2

CFN-1 165.0 183.7 11.1 28.5 19.5 14.0
164.8 183.3 12.' 29.5 19.2 16.5 S

CFP-1 165.7 183.5 14.7 42.8 -, -

4 164.8 183.4 13.6 36.8 -

CFO-1 169.0 188.7 12.8 34.5 -

172.7 190.9 14.7 42.8 -
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155MM M46 Tube 16

Cv(R.T.) Cv(-40)
, Code YS(Ksi) UTS(ksi) %El ,RA ft-lb ft-lb

Vendor 155.0 168.8 13.5 46.1 - 45.0
(Breech) 155.0 168.4 14.2 46.5 - 44.0

155.0 167.8 14.2 49.0 - 41.0
i153.5 167.6 14.2 49.4 - 41.0

CE-1 156.3 169.7 15.7 43.3 -
156.0 168.9 15.5 43.3 -

CEA 154.2 167.5 17.0 49.8 40.7 39.S
155.7 167.8 15.4 44.6 42.5 38.5

CEB 156.9 169.2 15.4 44.1 43.2 37.0
156.6 169.0 15.0 44.6 - 38.2

CEC 156.6 170.1 15.0 41.0 40.2 39.0
155.4 169.5 16.2 42.0 43.7- 36.2

CED 157.2 170.7 14.3 40.3 39.0 38.7
156.3 170.0 14.0 40.1 40.7 38.7

CEO 354.2 168.0 15.0 41.2 38.0 38.0
155.7 168.0 15.4 4.1 40.2 34.0

CEE 156.3 169.7 15.7 43.3 41.7 39.0
156.0 168.9 15.5 43.3 41.2 37.0

CEF 156.9 169.8 14.7 44.1 41.5 41.0
157.2 170.0 14.3 42.6 41.0 39.5

CFG 156.0 169.9 16.4 46.0 38.7 38'.0
154.5 168,9 15.0. c 43.5 40.7 39.0,

S* CEfH 153 167.3 16.1 48.3 44.5 37
153.3 168.7 15 39.6 40.3 39.5

CEI 152.1 165.5 14.7 42.8 - 42.7
154.2 167.7 16.4 47.8 - 43.2

CEJ 152.1 165.7 17.1 47 44 39
153.3 167.7 14.7 39.4 42.5 39
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155N94 146 Tube 16 (cont'd) IAf-btl.

CE IO 16.7 1.1 449 46.5 39.5
IS.8 16. 1.3 394 44.5 39.5

CL 152.1 166.1 15.7 45.4 44 40.2
151.8 165.6 16.1 45.8 43 42

CEll 152.1 165.7 16.1 44.9 41.7 41.2
.151.5 165.4 16.1 45.4 41.2 37

CEll 152.1 166.1 15 44.9 39.7 38

IS1512 166.2 16.1 47.4 41.5 41

151.2 165.6 15.7 43.5 43.5 37.5

CEQ 151.5 165.4 16.1 47 42.S 39
151.5 166.4 15.4 42.4 42.5 36.5

CER 154.2 168 15 41.6 38.2 39
151.5 165.7 14.3 41.6 4034.5

ICES 152.4. 165.5 16.4 43.6 42.5 '38.2
152.1 166.7 15.5 318.5 41.2 38

CET 153 167.5, 1 40.3 42 37.7

153.6 168.6 15.7 42.4 42.5 39

7ICiii ISI.8 166.3 14.7 42.8 43.2 40.5
151.2 166.1 15.4 44.9 40 39.2

CET 150.3 164.7 14.7 42.4 44.5 39. 2
151.8 165.5 15.4 41.2 44.2 39.5

CEW 149.4 164.4 16 .1 45.8 46.7 37.5
144.3 161.8 15 44.5 48.5 41.2

CEX 146.7 161.2 17 48.6 43.2 44.5
147 160.9 15.7 43.6 43.S 43.2

CEY 147.3 160.2 16.4 49 46 48
146.1 159.3 17.1 47.4 - 46.5

cEIX
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1551.14 446 Tube 16 (cont'd)
Cv(R.T.) Cv(-40)

Code YS(ksi) UTS(ksi) %E1 IRA ft-lb ft-lb

CEZ 144 157.7 16.1 48.3 53.5 50
144 156.8 17.5 49 51 47.5

CE3 144.6 156.7 17.S 46.6 SI.7 49.5
144.9 156.8 16.4 46.6 - -

Vendors 12 147.2 159 15 51 47
Muzzle 3 145.5 158.6 15 51 51
Results

6 144.2 157.4 14.29 49.8 54
9 145.2 158 15 51 52

-
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152.. 481 Tube 1151

CODE YS(ksi) UT7S(ksi) %El %RA Cv(-40)

Ft-lb
Vendors 170 187.4 14.2 50.6 27.
Breech 170 187.2 14.2 50.6 28.

170.8 187.8 14.2 S0.6 26.170.5 187.6 14.2 50.6 25.
CD-1 171 186.7 15.7 45.8 26.5 25169.8 186.2 15.7 45.8 26 26
CI-A 171.6 186.2 16.1 46.2 25.7 26.5

172.2 187.2 16.1 48.2 26.5 25
CDAX

aB 168.6 185.2 14 44.1 26.5 27.7
170.1 186.7 15.4 44.6 25.5 31

CD2 171.3 186.7 15 45.4 27 25.2
167.7 184 15.7 49.8 26 25

CDO 169.2 185.2 16.1 49.2 28.2 26171 186.5 15.7 51 28 -

CDOX

CDD 171.3 187.1 15. 47.6 26.7 28I171r 187 -17.1, ý51.7 27 2.
S• CDE 168.9 187 14.7• 45.8 ý27 ' 28.5S

c168.6 1 16.4 50.2 26.7 25

5F 166.5 183.4 16.4 50.6 27.7 25.5
168.6 186.1 16,4 50.6 25.2 24.5

CDH 168.6 585.7 17,1 S1.7 26.2 25169.8 186.5 15.7 48.2 28.2 26.5
CDJ 169.5 183.2 16.1 51.7 26 22.7166.5 183.7 16.8 51. 25 28.7
CDK 165.9 182.7 15. 47.8 26 21

165. 181.7 16.4 50 26 23.5
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152.., M81 Tube 1151 (Continued)

Cv(-40)
CODE YS(ksi) UTS(ksi) %E1 %RA Ft-lb

"DL 164.1 181.4 16.1 49.8 25.5 22.2
165.3 183.3 14.7 46.8 27.7 -

CDM 162 180.5 15.7 49.4 24.5 21.5
162 180.1 15.7 47.4 28.7 27

CUNX

CDN 165.7 183.5 16.4 48.9 26 23.5
166.5 182.8 16.8 53.6 28 27

CD3 166.5 183.8 16.1 S3.6 24 22.5
166 182.5 16.8 51.9 26 27

Vendors 12 166.2 185 14.2 50.6 29

muzzle 3 165.5 184.6 14.2 50.2 27
6 166.5 185.2 14.2 50.6 27
9 165.8 183.2 14.2 49.0 30

S/17

k -617-



152M4 Gun XP3

C)fCv(-40)

165,500 181,600 41.9 12.14 22.0

163,500 181,200 30.3 9.29 23.0

XP3-1 166,000 183,600 30.3 10.71 22.0

165,800 182,200 40.7 12.14 23.0

XP3-2 164,500 181,800 34.9 11.43 25.0
165,500 183,000 43.6 12.86 24.0

XP3-3 165,800 183,600 41.1 12.14 23.0

165,000 183,000 41.1 12.14 23.0

XP3-4 164,500 182,000 40.2 12.14 24.0
165,000 182,600 28.9 10.00 23.0

iP3-5 164,500 182,600 34.5 11.43 25.0
165,500 181,600 35.8 11.43 22.0

0P3-6 165,000 182,400 33.5 10.71 23.0
164,500 181,600 41.9 12.86 22.0

XP3.- 164,000 181,800 33.1 10.71 22.0

S63,S00 181,200 25.1 10.00 23.0

SP3-. 163,800 181,600 36.7 11.43 23.0

162,500 180,600 41.1 12.86 20.0

P3-9 163,500 181,400 34.9 11.43 23.0
163,500 181,200 39.4 12.14 22.0

XP3-10 162,500 180,800 33.5 10.71 22.0

162,500 180,800 36.3 11.43 23.0

XP3-11 163,500 181,400 40.2 12.86 22.0
163,500 180,600 36.7 11.43 23.0

XP3-12 163,500 180,800 41.9 12.86 23.0
163,000 180,200 35.8 11.43 22.0

XP3-13 163,800 180,600 31.7- 10.71 21.0

163,500 180,800 32.6 10.71 23.0

XP3-14 163,000 180,400 37.6 11.43 23.0

163,000 180,600 /38.5 11.43 22.0
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S152M Gun XP3 (cont'd)

Code YS(ksi) UTS(ksi) %RA E.1 ft-lb

XP3-15 161,500 180,200 34.0 10.71 22.0161,500 180,400 32.6 10.00 21.0
XP3-16 163,000 180,000 42.4 12.86 23.0162,SOO 179,600 38.9 12.14 22.0
XP3-17 162,500 179,600 31.2 10.71 21.0163,500 180,200 38.9 12.14 22.0
XP3-18 162,500 179,200 40.2 12.14 19.0163,000 180,000 24.6 10.00 18.0
XP3-19 162,500 179,600 29.4 10.71 23.0

160.500 176,800 41.9 12.86 24.0
XP3-20 161,800 178,600 35.8 11.43 22.0161,000 177,800 31.7 10.71 22.0
XP3-21 162,500 182,000 41.5 12.86 24.0163,500 182,600 41.1 12.86 21.0XP3-22 162,000 181,600 34.5 10.00 23.0164,200 181,600 41.9 11.43 22.0

XP3-23 164,200 182,200 38.9 11.43 22.0163,000 182,000 37.6 10.00 20.0

XP3-24 164,000 185,200 42.4 12.86 21.0164,500 184,800 43.2 12.86 22.0
XP3-25 165,500 184,400 44.5 12.86 25.0167,000 184,600 39.4 12.14 z27.0
XP3-26 165,So0 184,000 36.3 11.43 23.0166,000 184,600 38.5 11.43 22.0

165,000 185,800 31.7 9.29 19.0166,000 185,600 41.1 12.14 21.0

( 
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152I 4 Gun XP4

Cv(-40)Code YS(ksi) UTS (ksi) %RA % El ft-lb

165,000 185,800 31.7 9.29 19.0P 166,000 185,600 41.1 12.14 21.0

c XP4-26 168,000 186,600 44.5 12.86 22.0
167,000 186,400 46.1 12.86 22.0

XP4-25 165,5oo] 187,400 47.8 14.29 25.0
166,500 187,200 38.9 12.86 22.0

XP4-24 168,000 186,800 39.8 12.86 23.0
168,000 186,800 43.6 12.86 23.0

XP4-23 168,800 190,200 43.2 12.86 22.0
168,500 189,600 42.4 12.86 22.0

XP4-22 169,500 189,000 40.2 11.43 21.0
168,800 188,000 48.6 13.57 23.0

XP4-21 168,500 189,000 38.9 31.14 22.0
167,800 188,600 45.3 13.57 20.0

XP4-20 167,500 186,400 44.9 12.86 23.0
166,000 185,000 38.0 11.43 23.0

XP4-19 166,000 184,200 48.6 14.29 26.0

166,500 186,200 44.5 13.57 26.0
XP4-18 164,800 182,400 44.1 12.86 26.0

166,000 183,000 47.0 13.57 27.0

XP4-17 166,000 182,800 44.5 12.86 26.0
165,500 184,000 45.7 13.57 26.0

XP4-16 166,200 182,800 46.5 12.86 23.0
166,500 183,000 47.4 13.S7 25.0

XP4-15 166,000 182,800 45.7 13.57 25.0166,000 182,400 49.0 14.29 25.0

XP4-14 164,000 180,600 47.4 13.57 25.0
166,000 182,400 51.0 14.29 26.0

XP4-13 165,500 182,600 48.6 14.29 28.0
165,000 181,600 50.2 14.29 28.0
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152mm Gun XP4 (cont'd)

Cv(-40)

Code YS(ksi) UTS(ksi) %RA % El ft-lb

XP4-12 165,800 183,000 47.4 13.57 27.0

166,000 183,400 51.0 14.29 26.0

XP4-11 166,000 181,800 44.1 13.57 25.0
166,500 182,000 48.6 14.29 26.0

XP4-I0 166,000 182,800 43.6 12.86 25.0
165,500 181,800 34.0 11.43 25.0

XP4-9 165,000 180,800 46.5 12.86 24.0
166,500 180,600 41.5 11.43 26.0

XP4-8 164,500 181,800 44.5 13.57 27.0
165,800 182,000 46.5 13.57 26.0

XP4-7 165,500 181,000 49.0 13.57 26.0
166,000 182,400 43.6 12.14 27.0

XP4-6 166,000 182,200 50.2 14.29 28.0
166,200 182,600 41.1 12.14 27.0

XP4-5 165,000 181,000 47.4 13.57 25.0
166,200 182,400 51.7 14.29 26.0

XP4-4 164,800 181,000 50.2 14.29 23.0

164,800 181,600 50.2 14.29 27.0

XP4-3 166,000 180,400 44.5 3.57 24.0
167,500 180,800 48.6 13.57 26.0

XP4-2 167,500 180,400 44.1 12.86 23.0
166,500 181,000 50.2 13.57 26.0

XP4-1 165,500 182,200 44.1 12.86 25.0
165,000 181,600 48.6 14.29 26.0

165,500 180,400 43.6 12.86 26.0
164,500 180,800 46.1 12.86 25.0
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Code YS (ks i US(ksi) %RA Cv(-40) ft-lb

1-12 170,000 !87,000 40.7 16.0

/

2-12 170,000 187,200 43.6 18.0
2-3 169,500 186,600 39.4 17.0

3-12 170,000 187,600 27.5 17.0
3-3 170,000 187,800 41.9 16.0

4-12 170,SCO 187,200 42.8 17.0
4-3 167,500 186,000 39.4 17.0

5-12 170,500 187,800 41.9 17.0
5-3 168,000 186,000 34.9 17.0

6-12 169,500 187,400 35.0 17.0
6-3 170,500 188,200 37.1 16.0

7-12 170,500 188,000 37.6 16.0
7-3 170,000 188,000 37.6 17.0

8-12 169,S00 187,400 35.8 17.0
8-3 170,000 187,800 30.8 17.0

9-12 174,000 188,800 40.7 18.0
9-3 170,000 188,400 44.1 20.0

10-12 176,000 191,200 40.7 19.0
10-3 175,800 191,400 37.6 17.0

11-12 176,500 192,200 37 18.0

9c1-3 176,500 191,400 34.9 17.0 o

12-12 175,000 191,200 38.9 19.0
12-3 176,500 190,600 42.4 17.0

13-12 174,500 189,800 3S.4 18.0
13-3 173,500 188,800 34.0 16.0

14-12 171,000 187,200 38.0 17.0
14-3 173,000 189,400 38.5 18.0

15-12 172,500 188,000 31.2 19.0
15-3 173,500 188,400 38.5 18.0

16-12 173,000 188,200 41.1 19.0
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105mM M137 Howitzer Gun XPI

CODE YS (i) UTS(ksi) El RA C v(-40) ft-lb
1 172.0 190.6 13.6 46.1 21.5(muzzle) 171.8 190.4 13.6 47.4 22.0171.5 190.0 12.9 43.2 21.0171.8 190.6 12.9 44.5 22.0

3 172.5 190.2 13.6 48.2 23.0172.0 189.8 12.1 41.5 22.0172.5 189.8 12.9 4S.7 23.5170.5 188.6 12.1 39.8 20 0
5 173.8 190.8 13.6 46.5 22.5173.8 191.6 12.9 42.8 21.5173.0 190.8 12.1 41.9 20.0173.0 191.0 12.1 42.4 20.0
7 169.0 191.8 12.1 42.4 20.0175.5 191.8 12.9 43.6 20.5170.2 193.0 12.9 44.9 19.5174.5 192.4 12.9 42.4 21.0

9 176.8 193.4 12.9 44.9 22.0176.5 193.2 12.1 41.5 21.5175.0 191.6 12.1 40.2 21.0
175.5 191.6 12.1 40.2 20.011 176.0 192.8 12.1 41.9 20.0176.0 192.2 12.9 43*2 21.0174.5 192.6 12.1 40.7 20.0175.5 193.0 12.1 41.9 22,S

13 175.5 192.0 12.9 44.9 19.0175.5 192.4 12.9 43.6 20.5,173.0 191.4 12.9 44.5 21.0173.8 192.4 12.1 40.2 20.0
15 175.0 192.8 13.6 44.9 22.0175.0 192.6 12.9 44.1 23.S173.8 192.0 12.9 44.9 22.0175.5 193.2 12.1 40.2 21.5

17 176.0 192.4 12.9 44.1 21.5176.0 192.6 12.1 41.9 22.0175.0 192.2 12.9 43.2 21.0175.5 193.0 12.9 43.6 22.0
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105m M137 Howitzer Mm XPM (continued)

CODE YS(ksi) UTS (ksi) %El % RA Cv(-40) ft-lb

19 177.0 193.2 12.1 41.5 22.0
176.2 193.6 12.1 40.2 19.5
175.5 192.8 12.1 41.1 22.5
177.8 194.0 12.1 40.2 20.0

21 177.5 193.6 12.1 39.4 21.0
177.0 194.4 12.9 42.4 18.5
176.2 194.0 12.1 41.1 21.0
178.0 194.0 12.1 40.2 19.0

23 178.2 194.0 12.1 41.5 21.0
177.8 193.4 12.9 42.8 22.0
177.0 194.0 11.4 36.7 19.5
178.0 193.0 12.1 41.5 20.0

25 177.8 194.6 12.9 44.5 20.5
177.5 194.4 12.9 44.1 21.0
176.5 194.4 12.9 42.8 20.S
176.5 194.6 12.9 43.2 19.5

27 174.0 192.2 12.9 45.3 24.0
173.S 192.2 12.9 44.5 23.0
173.5 191.6 13.6 46.1 24.0
174.0 192.8 12.1 41.9 22.0

-

C , - C
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8" N2A1 Howitzer Tube 7091

CODE YS(ksi) UrS(ksi) __E1 %RA Cv(R.T.) Cv(-40)
ft-lb ft-lb

CGA 136.2 152.6 18.3 52.7 50.0 27.2
135.0 151.0 17.0 40.3 47.2 24.5

CrB 138.0 154.2 17.0 44.1 47.5 21.5
136.8 151.8 17.0 51.0 44.2 18.2

CGD 138.9 154.S 15.7 42.8 44.8 24,0
138.6 154.1 17.5 52.9 47.0 22.0

CGS 139.8 156.1 18.3 50,2 49.5 25.0
138.8 155.5 15.4 35,0 48.5 17.0

CGF 140.6 156.4 17.0 41.0 42.2 1910
139.8 155.1 16.1 47,0 44.0 22.0

CGH 142.0 157.4 17.5 50.3 51.0 18.5
140.1 155.8 17.5 44.9 47.8 17.0

CGJ 143.1 157.2 15.4 45.4 47.0 37.2
142.5 156.5 14,7 39.4 44.0 35.0

CGK 142.9 157.3 16.4 48.5 44.S 30.8

141.3 156.0 17.9 54.4 4S.0 30.0

CCL 140.1 154.6 17.9 53.8 45.2 40.5

139.8 156.8 17.9 54.8 46.8 44.5

Cm 143.4 155.0 19.7 55.3 S2.0 44.0
141.6 154.2 16.4 44.1 51.0 48.0

CGM 140,4 155.1 17.0 49.0 43.2 37.0
138.3 153.3 14.3 42.0 49.0 37.5

CGP' 141.0 i52.5 17.0 48.3 45.2 C 36.5
"145.2 152.2 17.9 51.7 50.0 39.0r

CGR 138.6 149.5 18.3 54.4 47.0 45.0
131.4 149.8 15.4 41.2 46.5 46.5

CGS 135.6 148.2 17.0 45.4 46,0 48.2
134.7 148.0 17.0 51.0 47.0 47.5
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8" M'AI Howitzer Tube 7091 (continued)

CODE YS(ksi) UTS(ksi) %El %RA Cv(R.T.) Cv(-40)
-

ft- lb ft-lb
CGT 135.0 143.0 18.6 54.0 49.0 .46.5135.3 144.6 19.. 56.3 52.0 45.0
CGU 138.0 149.5 18.6 53.0 43.2 39.5135.3 148.7 17.9 49.8 49.0 44.2
CGV 135.9 147.8 19.7 54.8 48.0 46.0133.5 147.2 18.3 52.7 51.2 35.2

CGl 132.9 147.4 18.3 52.5 45.0 41.5132.9 146.2 17.9 49.8 46.8 49.0

CGX 135.0 152.7 19.8 63.7
132.9 147.5 19.3 55.2
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APPENDIX C

COMPUTER PROGRAM FOR ANALYSIS OF VARIANCE

(ONE WAY CLASSIFICATION)

BPS FORTRAN D COMPILER
C
C GUN TUBE ANALYSIS OF VARIANCE

tC

A S.0001 DIMENSION TITLE(20),X(S0,SO),XBAR(SO)
S.0002 READ (5,10) NSET
S.0003 DD 1000 L=1,NSET
S.0004 READ (5,5) TITLE

4 S.0005 5 FORMAT (20A4)
S.0006 READ (5,10) N,K
S. 0007 10 FORMAT (212)
S.0008 WRITE (6,15) TITLE
S.0009 1s FORMAT (1H1,1X,20A4,/)
S.0010 DD 100 I=I,N
S.0011 READ (5,20) (X(I,J),J=1,K)
S.0012 20 FORMAT (7F10.0)
S.0013 WRITE (6,25) (X(I,J),J=I,X)
S.0014 25 FORMAT (10F10.2)
S.0015 100 CONTINUE
S.0016 SUM XM a 0
S.0017 DD 300 J=l,J
S.0018 SUM X = 0
S.0019 DD 200 I=I,N
S.0020 SUM X = SUM X + X(I,J)
S.0021 200 CONTINUE
X.0022 XBAR(J) u SUM X/N
S.0023 SLIM XM = SUM XM + XBAR(J)
S.0024 WRITE (6,30) XBAR(J),N
S.0025 30 FORMAT (F8.3, 15)
S.0026 WRITE (6,32) SUM XM o
S.0027 32 FORMAT (F1O.3)
S.0028 300 CONTINUE

C
C GM EQUALS GRAND MEAN (XBAR)
C

S.0029 GM a SUM XM/K
S.0030 WRITE (6,35) GM,K
S.0031 35 FORMAT (I GM=',F8.2,' Kzl,15)
S.0032 SUM XSB a 0

S.0033 DD 400 Jm1,K
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S. 0034 XDEV . XBAR(J) G• G
S.0035 SUM XB a SUM XB + XDEV**2
S.0036 400 CONTINUE

"C
C XSB EQUALS SUM OF SQUARES BETWEEN DISKS
C.

S.0037 XSB a N*SUM XB
S.0038 WRITE (6,40) XSB
S.0039 40 FORMAT (I XSB-=,FIO.3)
S.0040 SLI XT = 0
S.0041 DD 600 JuI,K
S.0042 DD 500 Iu1,N
S.0043 XT DEV a X(IJ) - Gd

C
C SUM XT EQUALS SUM OF SQUARES TOTAL
C

S.0044 SUM XT - SUM XT + XTDEV**2
S.0045 500 CONTINUE
S.0046 600 CONTINUE
S.0047 WRITE (6,45) SUM XT
S.0048 45 FORMAT (' SUM XT=',FIO.3)

C
C XSW EQUALS SUM OF SQUARES WITHIN DISKS
C

S.0049 XSW a SUM XT- XSB
S.0050 WRITE (6,50) XSW
5.0051 s50 FORMAT (' XSW-',F1O.3)
S.0052 SUM XW a 0
S.0053 DD 800 Jw1,K
S.0054 DD 700 I•I,N
S.0055 XW DEV - X(I,J) - XBAR(J)

C
C SIM XW IS A CHECK ON XSW FOR SUM OF SQUARES WITHIN DISKS
C

S.0056 SUM XW = SUM XW + XWDEV**2
S. 0057 700 CONTINUE
S.0058 800 CONTINUE
S.0059 WRITE (6,55) SUM XW
5.0060 SS FORMAT (' SUM XW=',F1O.3)

C
C YSB EQUALS MEAN SQUARE BETWEEN DISKS
C
C YSW EQUALS MEAN SQUARE WITHIN DISKS
C
C YST EQUALS TOTAL MEAN SQUARE
C

S.0061 YSB = XSB/(K-1)
S.0062 YSW z XSW/(K* (N-i))
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7. .- ... .7 " - . .. .

r

S.0063 YST S UM XT/((N*K)-i)
S.0064 WRITE (6,60) YSB,YSW,YST
S.006S 60 FORMAT (I YSB-',FIO.3,' YSW-',FIO.3,' YST=',F1O.3)

C
C DFI EQUALS DEGREES OF FREED04 BETWEEN DISKS
C
C DF2 EQUALS DEGREES OF FREEDOM WITHIN DISKS

-. C
S.0066 DFi - K-1
S.0067 DF2 - K*(N-I)
S.0068 WRITE (6,65) DF1,DF2
S.0069 65 FORMAT (I DFi.',FS.O,' DF2u',F5.O)

7- C

C Si EQUALS STANDARD DEVIATION WITHIN DISKS
C
C S2 EQUALS STANDARD DEVIATION BETWEEN DISKS
C

S.0070 Si - SQRT(YSW)
S.0071 V2 - (YSB - YSW) / N
S.0072 S2 = SQRT (V2 )
S.0073 WRITE (6,70) S1,$2
S.0074 70 FORMAT (' SI=',FS.2,' S2=',FS.2)

C
C
C F RATIO FOR SIGNIFICANT DIFFERENCE

c c

S.0075 RI- YSB/YSW
S.0076 WRITE (6,75) R
S.0077 75 FORMAT ('R=',F8.3)
S.0078 1000 CONTINUE
S.0079 END
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SEQUENTIAL AND PRIOR ANALYSIS FOR 2k FACTORIALS

J.S. Hunter
Princeton University

Princeton, New Jersey

INTRODUCTION. The analysis of the observations obtained from a 2k fac-
torial design program usually awaits the completion of the entire design,
in one or more replicates. However, the individual trials comprising the
design are often run in sequence (hopefully random) and experimenters are
moved to infer from observations already in hand without waiting for the
completion of a replicate of the full design. Such inferences are often
performed before the first replicate of the design is completed, the prior
knowledge of the experimenter replacing informally, the yet-to-be-run
observations. This paper reviews, with examples, a method whereby every
factorial effect may be re-estimated at the conclusion of each completed
run, both without and with the use of prior estimates for the observations.

REVIEW. Factorial de3igns are frequently used to explore a response n

as a function of k variables under the control of an experimenter. A 2k

factorial design consists of the N - 2 k experiments formed by taking all
possible combinations of two levels (or versions) of k controlled variables
x1, x 2 ... ,xk. For k-3, the N-2 3 - 8 runs are displayed as the design matrix

given in Table 1:

TABLE 1

Design Matrix Obs. Yates Algorithm Coefficients
x1 x 2 x 3 Y

.59 116 248 560 b -70.0

+ 57 132 312 -8 - 1.0

- + - 71 144 -12 40C b52 5.0

+ + - 61 168 4 -16 b12 -- 2.0

- + 69 -2 16 64 b3 8.0
3

+ - + 75 -10 24 16 b13 -2,0

- + + 85 6 -8 8 b 2 3  1.0

+ + 83 -2 -8 0 b - zero

Preceding page blank -631-
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The + and - signs are used to define the high and low versions of each
of the controlled variables. Also recorded in Table 1 is an example set
of observations recorded fcr each run. When a 2k factorial design is per-

formed it is usual to fit the "factorial" model to the observations. The
factorial model contains, in addition to the constant term 0, k first

order terms $i. (i-l,2,...,k): k(k-l)/2 two-factor interaction terms

ij (i•J); k(k-l)(k-2)/6 three factor interaction terms 0ijM (ij Om); etc.

nding with a single k factor interaction term Bij ... There are N-2 k

experimental environments established by the 2 design, and there are N

constants or parameters in the factorial model. For example, when k-3 we
have
n a B0 + B0 11 + 82x2 + 83x3 + 12x1X2 + 8131lX3 + 023x2x3 + 01 2 3xlx2x 3 •

Of course, the experimenter does not see the true response n but rather an
observation y where y - n+c. We assume the "errors" c to be NID(O,a 2 ),
that is, normally and independently distributed with a zero mean and fixed

variance a2 . Given these assumption and design we find the least squares
estimates of all the coefficients 80 in the model to be mutually orthogonal

with minimum variance, i.e. V(b ) =a 2mN where m - number of times the 2

design has been performed. When one or more of the controlled variables
are qualitative the + and - signs in the design matrix are taken to indicate
the presence (+) and absence (-), or the two versions, of the qualitative
variable. When the variables are qualitative the main "effects", and
various interaction "effects" are equal to twice the corresponding esti-
mated coefficients, i.e.

Estimated factorial effects - 2 (Estimated Factorial coefficients)
The variance of any effect is simply 40 2 /mN.

The least squares estimates of the coefficients in the factorial model
may be quickly obtained using Yates' algorithm. The algorithm, and the
derived estimated coefficients, are displayed in Table 1. (Almost all
standard texts on the design of experiments describe Yates' algorithm).
Given the data in Table 1, the fitted factorial model is

c

y 70.O-I.nx +5.O * +8.*Ox -2O * 0xx+2.0x x +1.0x x +(zero)x x x.

Given we define a "valid" estimate of a as one determined from repeated

experimental trials only, no estimate of a2 is possible with the present

* data and factorial model. To obtaL an estimate a 2one or more experi-

mental trials must be repeated.
Suppose now, adding replicate runs nequentially. the experimenter re-

peats run (-,-,-). The recorded data are displayed in Table 2. With this

additional information, an estimate of a2 is now possible. However, each
of the coefficients in the factorial model must also be re-estimated to

r reflect the information provided by the additional observation. Re-estima-
tion of the b's is easily accomplished using the "predicter-corrector"
equation.
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Where N = number of observations in a single completed replicate. Her

N 2 3-8.
m - number of replicates on N runs completed.
Here m - lyi = newest observation for run i.

y Y predicted response for run i made at the conclu-

sion of the last completed replicate of N runs

Note, that at the conclusion of the first replicate Yi equals the previous

observation at run i, and that yi equals the previous average of the obser-

vations made at run i, should there be more than a single completed replicate.

TABLE 2

x1 x2 x3  Obs Old b's Correction New b' s

- - - 59,60 70 +0.0625 70.0625
+ - - 57 -1.0 -0.0625 -1.0625
- + - 71 5.0 -0.0625 4.9375
+ + - 61 -2.0 -0.0625 7.9375
- - + 69 8.0 +0.0625 -1.9375
+ + 75 2.0 +0.0625 2.0625

+ + 85 1.0 +0.0625 1.0625+ + + 83 zero -0.0625 -0.062 5

Thus, Aor our example
S 1

d 8-" (60-59) - 0.0625.

Each of the estimated coefficients must now be corrected by either adding
or subtsacting d. The correction d is always added to the constant term
boo The correction is added or subtracted to the remaining coefficien's

in the fitted model as determined by the signs of the associated factorial
run. Since the run here is (x1- -1,x 2 - -1,x3 - -1), the correction is sub-
tracted from bl, b2 and b3 , added to b1 2 , b1 3 , b2 3 (e.g. Xlx2 - (-l)(1)=l).
and subtracted from b1 2 3 (e.g. xlx 2 x3 -- 1). The new b cofficients are

given in Table 2.
As each additional run is performed, the associated correction d

can be determined and the estimates up-dated. Thus, at the end of the
four additional runs (-,-,-); f-,+,-); (+,+,-) and (-,+,+) we have the
results given in Table 3.
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TABLE 3

Original (- - -)(- + -)(++-)(- ++) Newest
x 1 x2 x3 Obs b's .0625 .1875 -. 3125 0.2500 b's

p
- - - 59, 60 b - 70.0 + + + + 70.1875

+ -- 57 b --1.0 - - + - -1.8125
1. - + " 71, 74 b - 5.0 - + + + 5.0625
2

+ + " 61, 66 b3 - - 2 .0 - . - + -1.6875

- " + 69 b12" 8.0 + - + - 7.3125

+ - + 75 b13' 2.0 + + - - 2.3125

- + + 85, 89 b 23- 1.0 + " - + 1.4375

123
+ + + 83 b1 2 3 "zr - + - -- 0.1875

The experimenter determines which experiments to repeat. Any sequence
within a replicate is permissable up to and including the last run performed
to complete a full replicate of the original design. Estimates from partially
replicated factorial and fractional factorial designs are thus readily ob-
tained using the predictor-corrector equation. The derivation of the equa-
tion may be found in (1) along with examples illustrating its application

to the 2 k-p fractional factorial designs, and to factorial designs run in
blocks. Another exposition, with an example illustrating the application
of the predictor-corrector equation in Evolutionary Operation, appears in (2).

PRIOR ANMLYSIS. An important consideration in planning a 2k factorial
design, or any experimental design, should be an a analysis. To per-
form a prior analysis, the experimenter should predict, prior to taking any
data, the outcome of each experiment in the proposed desing. These "obser-
vations" jY (the - is employed to distinguish such data from real observa-
tions y) should then be analyzed as though they were actual data. Many
valuable consequences derive from such an analysis:

i) one or more of the estimated main effects, or equivalently the
first order coefficients bi, may be found to be small. In such
circumstances a larger change in the associated controlled variable
xi would be in order. In a good design, the "step" to take for each

xi should produce, a priori, equal changes (ignoring sign) in the res-
ponse. Said another way, the magnitude of the first derivative of the
response n with respect to each of the controlled variables xi should
be equal. The design is then appropriately scaled. (such scaling of
the xi is usually not possible when the xi are qualitative).

ii) the metric for either, or both, the response and controlled variables
may be found to be inappropriate. On seeing a data analysis it is com-
mon for the experimenter to wish that the response had been measured
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another way (in terms of original units or logs rather than as a
ratio); or that one or more of the controlled variables had been
investigated over a different metric (instead of settings of 20,60,
100, to have used the logarithmic spacing of 20,44.7,100 instead).
On other occasions the experimenter may find that a change in the
response metric may lead to the elimination of interaction effects
in the factorial model.

iii) the statistical description of the experimenter's prior knowledge
might lead to a complete re-expression of the original problem. For
example, the experimenter may discover he does not want a factorial
model, but rather a response surface model to describe his reuponse
function. Such a decision can materially alter the experimental design.

iv) the computations can, in themselves, be important. The time to
discover the inappropriateness of some computer program, or the inade-
quacies or unavailability of some desired statistical test, is before
the real data become available.

It is not difficult to imagine many other signals arising from a prior
analysis. Faced clearly with the statistical aspects of his prior informa-
tion, the experimenter is forced to review the entire gamut of design consi-
derations; replication, blocking, co-variables, size of experimental region,
etc. It seems iafe to say that only rarely would an experimental design
remain unchanged after a prior analysis. George E. P. Box once commented
that the only time one could properly design an experimental program was
after the experiments were completed. A careful prior analysis comes as
close to this desire as is possible.

COMBINING PRIOR AND REAL OBSERVATIONS. We are now moved to consider
what happens as the actual observations y are compared with the prior ob-
servations y. Whenever a difference y-y is small, the experimenter confirms
his prior knowledge. Whenever y-' is large the experimenter questions his
prior knowledge (or on some occasions, the observation). In either instance
the experimenter's learning experience is heightened and made far more
explicit than is possible without the use of theprior observations y.

As an example of combining both prior and real data, let the prior dis-
tribution of belief for the response n at any point p in the experimentalI-

region be Normally distributed with mean y and variance a 2 . (The variance
2 1 P

a P may be roughly determined by sketching thec Normal prior for the response

and then determining a from the sketched distribution.) Let the distribu-

tion of belief of the response n, determined from a recorded observation y
at any point in the experimental region, also be Normally distributed with
mean y and variance 02. (The variance 02 should be estimated from repeated
observations.) The best estimate of n at any point in the design is then
simply

_2 y.i - p. + --. ]/ +12

•a a a
p P

r The quantity 5 may then be used to estimate the coefficients in the fac-
torial model. Alternatively, the predicter-corrector equation can be em-
ployed, modified for the present situation in which the observations have
different weight. Let w a2/a2, then it can be shown that

p
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where 2 2
p p2P w M apla

y - actual response
y - prior response

a- = variance of the prior distribution of belief for n

02 - experimental error variance

For example, suppose the data given in Table 1 consisted of the prior judg-
ments of the experimenter. Suppose now that the single, new, real observa-
tion y - 60 was obtained from run (-,-,-). Further, let a2/cI-"--. Then

all the prior coefficients in the factorial model would be changed as illus-
trated in Table 4.

TABLE 4

4 1d -~I 1 #%4- (60-59) -0.1

Prior obs New Prior --- ) New
y Obs y Coefficients d-0.1 Coefficients

59 60 b -70 + 70.1
0

57 bI -1.0 - -1.1

71 b 2  5.0 " 4.9

61 b 3  -2.0 - -2.1

69' b1 2  8.0 + 8.1

75 b1 3  2.0 + 2.1

85 b2 3  1.0 + 1.1

83 b1 2 3  0 - 0.1

As more observations become available, the prior coefficients would
be' successively modified by the actual data.' At the end of all N runs the
new coefficients are the weighted average of the prior coefficients, and
those coefficient6 separately determined from the real data, the weights
being determined by the inverse of the variances of the prior, and the
"real" observations.
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Some Recent Advances in
Forecasting and Controlt
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G. E. P. Box
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and
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1. LMODUCMON

1.1. Nature of Forecasting and Control Problems
Uirn. fairly recently the word "control" has been principally associated in the statis-
tician's mind with quality control, and especially with the quality control chart
techniques developed originally by Shewhart in the United States and by Dudding
and Jennett in Great Britain.

During the war the development of sequential inspection methods by Wald and
Barnard gave new impetus to techniques in which sequential aspects were emphasised
and led eventually to the introduction of cumulative sum charts by Page (1954, 1957)
and by Barnard (1959).

The need for control implies the existence of an inherent disturbance in the process
of one kind or another such as might be described by a time series. Thus, in recent
years we ind contributions to control problems from workers in stochastic processes
such as Whittle (1963) and Bather (1963). Because one approach to control would bet to forecast the deviation from target which would occur if no action were taken and
then to act so as to cancel out that deviation, forecasting and control problems are
closely linked together. However, we can forecast a time series in an optimal manner
only if we have an adequate stochastic model for that series.

In the past a great deal of attention has been given to stationary time'series models
which have the property of remaining in equilibrium about a constant mean. How-
ever, forecasting has been of particular importance in business and economics where
many series (for example, the monthly sales of an industrial product) are non-stationary
and have no natural mean. It is not surprising, therefore, that the economic fore-
casting methods which have been proposed by such workers as Holt (1957, 1960),
Winters (1960) and Brown (1962) and the control chart techniques proposed by
Roberts (1959), all using the exponentially weighted moving averages, are appropriate
for a particular type of non-stationary process. The fact that such methods have been
successful supplies a clue to the kind of non-stationary model which might be useful
in these problems.

t Origialy presented at the Eurpean Meeting of Statisticians, held at Imperial College, London,
in September 1966.

"This article appeared in Applied'Statistics, vol. 17, pp. 91-319.
We would like to thank th editors of this journal for permission
to republish it in these proglings."
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To a control engineer the word "control" has had a different connotation. He
usually thinks in terms of feedback and feed forward control loops, the dynamics and
stability of the system, and often of particular types of hardware to carry out the
control action. In this paper we outline a statistical approach to optimal forecasting
and to the optimal design of feedback and feedforward control schemes that we have
developed in previous papers (Box and Jenkins, 1962, 1963, 1965; Box et al. 1967)
and which will be described in a forthcoming book (Box and Jenkins, 1968).

The control techniques we discuss are different from those of standard quality
control procedures, but this is because they have a different purpose. We certainly
do not believe that the traditional quality control chart is unimportant or outmoded.
Appropriate display of data on such a chart (rather than the burying of it in a process
record book) ensures that changes that occur arc regularly brought to the attention of
those in charge of the process. They are thus nudged into seeking "assignable causes"
for the changes and a continuous incentive for process improvement is achieved. This
device is of enormous importance because it can stimulate new thinking about the
process. However, in many situations a control scheme is required which adjusts
some variable, whose precise effect on the quality characteristic is known, io as to
minimize the variation of this quality characteristic about a target value. It ig with
such control problems that we are concerned here.

1.2. An Outline of the Approach

We suppose throughout that observations are available at discrete equispaced
intervals of time. For example, in a sales forecasting problem, figures might be avail-
able every month and we might wish to forecast sales for 1,23,..., 12 months ahead.
Again, in a chemical process, observations and the opportunity to make control
changes might occur every 5 minutes, every hour, or every shift depending on the rate
at which the state of the system could change. In the case of a chemical process dis-
crete observations might arise from a discrete or batch process, or a continuous
record of the process characteristic might be "sampkl" at equally spaced intervals.
In practice, if the sampling interval is suitably chosen almost nothing will be lost by
employing the discrete rather than the continuous record and there may be consider-
able gain in the simplicity of the analysis.

The optimal forecasts of future values of a time series are determined by the sto-
chastic model that describes that series. Therefore the main object in statistical
analysis directed to forecasting must be in obtaining a suitable stochastic model for
the series in question. Therefore, we fiitt develop a class of stochastic models which
are capable of representing not only stationary behaviour but also non-stationary
behaviour of the kind that we have encountered in practice. We show how models
which satisfactorily describe a particular series may be derived and how they can be
used to forecast seasonal as well as non-seasonal series. The same kind of stochastic
model used in the forecasting problem may also be used to represent the disturbances
which infect a system and which make control action necessary.

Now any control action which is taken will not be felt immediately but usually its
effect will build up gradually because of the inertia of the system. Therefore we next
describe dynamic models capable of representing the dynamic relationship between a
controlling variable. X and a controlled variable Y and we show how these dynamic
models may be fitted to data obtained from the system.

An important principle in the choice of our models is that they should, whilst
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adequately representing the data, contain as few parameters as possible. Following
Tukey we call this the principle of parsimony.

In Part II of this paper we shall describe how the stochastic and dynamic models
may be brought together to design optimal feed-forward and feedback control schemes
and also how the parameters in the stochastic and dynamic models may be simultan-
-'ously estimated from measurements made on the operating system.

2. TwE SEiRIs MODELS
A criterion of great importance in discussing time series is stationarity. A series

is strictly stationary if its properties are completely unaffected by a shift in the time
origin. In particular, a stationary series varies about somefixed mea.n p. It exhibits
no change in mean and no drift.

2.1. Autoregressive and Moving Average Models for Stationary Time Series

Suppose we denote the values of a stationary series at equally spaced times
t,t-l,t--2,.. by ,W,=.,W,.... Let a,,a,..,a,=.,.., be a "white noise" series
"consisting of uncorrelated random Normal deviates all having mean zero and vari-
ance a2.. It is helpful to think of these a's as a series of random "shocks".

The time series model we employ, originaliy developed by Yule, is essentially a
device for transforming the original series we, the observation: of which are often
highly correlated, into a series of uncorrelated component shocks a, which can be
thought of as generating the series. There are basically two different ways in wh*ch
this is done.

The deviation v', = w, -# from the mean y can be made linearly dependent on
previous deviations ,= = w,-I -pu, s',-2 = w,_ 2 -,u, etc., and on a,. We then have
what is called an autoregressive model. Thus

S= I,,-,+ # 2 •- 2 +a,, (2)

are autoregressive models of orders I and 2, respectively.
Alternatively, we can make s', linearly dependent on a, and on one or more

previous a's. We then have what is called a finite moving average model, Thus

a, - 0 ' (3)

*1 =d,-01a,_,- 02a,- 2, (4)

are moving average models of orders I and 2, respectively. One might ask: can an
autoregressive model be used to represent moving average behaviour? The answei is
that this can be &.ae but an infinite number of autoregressive terms are needed to
represent a finite moving average model and vice versa.

To ensure parsimony we may need terms of both kinds and we are thus led to the
generalmixcdautoregressive.movlng average modeloforder(p, q), which may be written

"�"--. ,= a,- a,_-...-a,_, (5)

where p and q would by 0, 1 or 2 in most applications. To manipulate models of this
kind it is convenient to define a backward shift operator B such that

Bw, - w,. 1. (6)
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Using the operator B, (5), can be written

,( = 6(B)a,, (7)
where

,,(B) = I - B- OB2 ...- #,V,
O,(B) =I-OIB-02B 2...-_O9 ,

are polynomials in B of degree p and q respectively and #,(B) is called the auto-
regressive operator and 0 (B) the moving average operator.

For example, the models of equations (1), (2), (3), and (4) could be written

A.R. : (1 - 61B),, = a.
A.R. 2: (1 - #,B-02 B2),, _ a.,
M.A 1: *, - (I -OrB)a,
M.A. 2: kt - (1 - 1B- OB 2)a,.

Now consider the first order autoregressive model (1). The values of the series may
be built up recursively as follows:

-

*2 - #11*1+42 -= *+#a~~

*3 - #lk 2+a3 - ao+ O•aj+#1 az+a3,

-#,*,-'+a, - #o*+•F'a 1 + #,- 2 a2 +...+a,. (8)

We can ensure stationarity for this series by requiring that 01 lies between the values
I- and + 1. If #1 lay outside these limits (if for example, j were equal to 2) then

we can readily see from equation (8) that the deviation *, would be dominated by
remote events led by k(, and a, which would become more and more important as t
became larger. On the other hand, if 0 1 lay between -I and + 1, as we require, the
behaviour of *, would be dominated by the most recent shock a,, as is sensible.

A similar argument applied to the first order moving average model (3) leads to
the conclusion that 0, must lie between - I and + 1 if a, is not to be dominated by
remote events. If this condition is satisfied the moving average model is said to be
invertible. .

Now one way of expressing the condition that 0, in the autoregressive operator
I .- #Blies between -l and +1 is to say that the roots ofthe equation I - OB = 0
(where B is regarded as a variable) lie outside the interval - I to + 1.

The corresponding condition for stationarity .And invertibility of the general mixed
autoregressive moving average model (5) is that the roots (which may be complex) of
#(B) = 0 and 0(B) = 0 must lie outside the unit circle and we shall suppose in all that
follows that this condition is imposed.

With these conditions satisfied the model (5) turns out to be a valuable device foy,
representing stationary time series. If the model is expressed in terms of the w,'s
themselves, instead of deviations from the mean, the general form of the model may
be written /

#.(B)w, = 0o + 0,(B)a,, I (9)
where

/

• -640-



" F- .... r\

SOME RECENT ADVANCES IN FORECASTING AND CONTROL

2.2. A General Model which can represent Stationary and Homogeneous
SNon-stationary Thme Series

Tune series representing economic phenomena and disturbances in processes to be
controlled are often best represented by non-stationary models. There is an unlimited
number of ways in which a time series may be non-stationary. We now adapt our
models to take account of the kinds of non-stationarity which we have frequently met
in practice. Figure 1 (a) shows one type of non-stationary series of common occurrence.
This series is homogeneous except in its level. By this is meant that apart from a
vertical translation, one part of the series looks much like another. A series z, which
is stationary in its first difference

Vz, = ,-zr,- 1 =(1 -B)z,
exhibits precisely this kind of behaviour. Again Figure 1(b) shows a second kind of
non-stationarity which is frequently met. This series has neither a fixed level nor a
fixed slope but is homogeneous if one allows for differences in these characteristics.
We can reproduce such behaviour in a series z, by a representation in which the second
difference: ~ ~~~V2= (I _, =-t+,,-- B)2Zt
follows a stationary model.

Finally then, if z, is the variable whose behaviour we wish to represent, it is as-
sumed that its dth difference V'z, = w, can be represented by the stationary and
invertible model of equation (9). Since V' = (I-B)y, the model for z, becomes

*,(B)l- B)';, = 00 + ,(B)a, (10)
which will be non-stationary unless d = 0. The model is said to be of order (p,d~q)
where p, d, and q are usually 0, 1, or 2.

(b)

FPo. ](a). A series showing non-stationarity in level such u can be represented by the

model ,#B)Vzs - 8(B)at.
Fjo. 1(b). A series showing non-stationarity in level and in &lope such as can be represented

by the model #B)V 2r. - O(B)a1 .
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The operator 0,+1 (B) = #,(BXI -B)' is called the general autoregressive oper-
ator. Since d of the roots of V,+/(B) = 0 are unity, this non-stationary operator
"will, of course, not satisfy the stationarity condition that all roots Ue outside the unit
circle. In many practical cases where differencing is needed to obtain stationarity
(that is where d • I), V'z, = w, can be assumed to have a zero mean so that 0o in
(10) can be set equal to zero.

Suppose we wish to determine a suitable model for a series for which observations
z,,z 2,z 3•... are available (where if possible there should be at least 50 and preferably
more than 100 observations). In practice such model determination has to be done
iteratively using a process of identification, estimation, diagnostic checking, refitting and
rechecking until a satisfactory representation is found.

2.3. Identification

Equation (10) supplies too rich a class of models to permit immediate estimation.
Therefore, using experience and the data we first identify a sub-class of models worthy
to be entertained.

The primary data-analysis tool at this stage is the sample autocorrelation function
of the original series and its differences. Suppose that n differences w1, w2,..., w, are
available. The sample autocorrelation coefficient at lag k for w, = Vz; is

r,(w) = cAwlco(w),
where

1,1-h I
n (w--)(, ÷( -•) and wffi- w,.

We shall use p&(w) for the corresponding theoretical autocorrelation.
A suitable value for d may be inferred by finding the degree of differencing neces-

sary to induce the sample autocorrelation function to damp out fairly quickly. For
example, Table I shows the sample autocorrelation function of z, Vz, and V~z for a
series of IBM Common Stock Daily Closing Prices given by Blrown (1962). While the
sample autocorrelations for the original scries are very slow to die out, indicating non-
stationarity, its first and higher differences behave like those of a stationary series
suggesting that we set d = 1.

Values to be entertained for p and q may usually be deduced by inspecting the
sample autocorrelations using knowledge of the behaviour of the theoretical auto-
correlation function p, for various types of models. The characteristics of pk(w) for

TABLE I

Sample autocorrelations for various differences of the IBM Common Stock
Daily Closing Prices

Source: New York Stock Exchange, May 1961-November 1962 (369 observations)

1 2 3 4 5 6 7 8 9 10
Lap 1-10 .99 .99 .98 .97 -96 -96 .95 .94 .93 .92

2 11-20 .91 .91 .90 .89 .88 .87 -96 "85 .84 *83

Vz Lags 1-10 -09 .00 -. 05 -. 04 -'02 "12 "07 -04 -- 07 "02
11-20 "08 "05 -05 "07 -07 "12 "12 -05 -05 07

21  Lags I0 -45 -'02 -04 .30 -. 07 "!1 -01 -04-'.O .02
11-20 "04 "04 -. 12 "13 -"17 T30 05 -"04 -. 01 )09
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models of order (1,d,0), (2,d,0), (0,d. 1), (O,d,2) and (l,d, 1) are shown in Table 2. The
boundaries of the admissible parameter space are indicated by the inequalities. We
see from Table I that the autocorrelations of V: are all small and appear consistent
with a model of order (0,1,0) or perhaps (0,1, 1).

Of considerable help in judging the reality of sample autocorrelations is the follow-
ing approximate formula due to Bartlett for the standard error (S.E.) of rk, namely

S~ s.E. [P] (I + 2p2;+2p2+...(1

Since we do not know the theoretical autocorrelations P., they have to be replaced by
their sample estimates rk.

Thus, under the assumption that the first difference of the IBM series is a moving
average of order I (that is, the series is of order (0,1,1))

S.E. [r,] -i_. (1 2(0.09)211 = 0.05.
Referring to Table 1, we see that only 3, that is 6 per cent of the sample auto-
correlations of Vz from the second onwards are greater than two standard deviations,
confirming that a model of order (0, 1. 1) is worthy to be entertained.

TABLE 2

Behaviour of theoretical autocorrelation function of dth difference of series
for various simple (p.dq) models

Order (I, d, 0) (0,d, 1)

Behaviour of pt pk - k decays exponentially only P, non-zero

Preliminary estimates from 01 P1 =+&12

Admissible region -< < 41 -< < 01 < 1

Order (2, d, O) (0, d, 2)

Behaviour of pt mixture of exponentials or only p, and op, non-zero
damped sine v..ca

cPreliminary estimates from - I "_pP l l+322 P2 1012.1-$-22I -pt
2  

I -. pl
2  

i"-1+"3r"9022 l92I " 0 9--22

Admissible region - 1 < 42 < 1 - 1 < 02 < I
42+41 < I 92+01 < I
#2-43< i 92-93< I

Order (1, d, I)

Behaviour of pk decays exponentially after first lag, pA - #-t k - k 2)

Preliminary estimates from Pj - 0+9l2 - 24,t" P- $

Admissible region -I< 41 <-1<9 <I

-643-



APPLIED STATISTICS

By substituting sample estimates for pi in Table 2, preliminary values for the model
'parameters (which, however, are in general not efficient estimates) may be obtained.
For instance, in the case of the IBM Stock Price series suppose that we tentatively
entertain the model Vz, = (1 -OB)a, of order (0, 1, 1). Then, because r, ofVz, is 0-09,
a first guess for the parameter 0, is -0-09 since this is the root of the equation
0 -09 - /l +02 which lies within the admissible region - I < 01 < 1.

A complementary tool for identification called the sample partial autocorrelatlon
function may also be used (see for example Box and Jenkins (1968)).

2.4. Filting

Using efficient statistical methods we may now fit the tentatively identified model,
or to be on the safe side, a slightly over-parameterized version of it.

On the assumption that the a's are Normally distributed, a close approximation
to the maximum likelihood estimates of = # and 0 = (01,02,.A.) will
be obtained by minimizing the sum of squares

The values a, (#,0) for any # and 9 may readily be calculated recursively using
a, = O 1,_t+. •,,+w :wt-. pt-

with w, = V'z; and when d 0 0, 0o would often be set equal to zero. The process can
be started off by commencing with a,+, and setting a,.a,- _...av-÷t. I equal to their
expected values of zero. This procedure is adequate for most purposes but a more
exact calculation of the likelihood function will be dascribed in Box and Jenkins
(1968).

24000

23000

22000

20000

19000 -04 -0.2 00 N2 0.1 a

Fo. 2. Sum of squares function for I.B.M. data with approximate 95% confidence
region for s.
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An approximate 1 -a confidence region for # and 0 is enclosed by the contour

S, s-X,O) - S(*,d)(l+ +(x2.4p+q)ly] (12)
where X2-.(m) is the upper I -c significance point of the chi-square distribution
having m degrees of freedom and v is equal to the number of a's in the sum S(#,0)
less the number of parameters fitted.

We illustratz again with the IBM data, using the tentatively entertained modelV -a,-Oat-r. figure 2 shows a plot of S(0) against 0 with a minimum at
0 = -0-09 and S(O) = 19,216. The approximate 95 per cent confidence limits for 0
of -0.19 and 0-03 are those values for which

5(0) = 19,216 (1+3"84/367) = 19,417.

Complicating the model by adding an extra trm on either side produced no appreci-
able reduction in the residual sum of squares. Hence the form of the model which
was finally accepted is Vz, = a, +0-la,r,. Least squares estimates and approximate
confidence limits may be obtained without the use of graphical methods using iterative
non-linear least squares procedures described in Box et al. (1967). However, in general
graphs and contour plots of the sum of squares function S(#,0), or of sections of it,
are of great value in illuminating the estimation situation.

2.5. Diagnostic Checks
If the form of the model is correct and if j and # are close to their "true" values,

then the estimated residuals d, = a,(J,O) will be (very nearly) uncorrelated random
deviates. Inadequacies of the model may be shown up for example by examining the
autocorrelation function of the residuals. A fuller discussion is given in Box and
Jenkins (1968).

2.6. Seasonal Models
One often has to analyse time series in which recurrent patterns with known period

j occur, for example, yearly patterns in monthly sales data (s = 12). Here parsimony
can often be achieved using multiplicative models of the type

#,(B)0p(B1XI - B)'(l - P)"; = 0,(B)OE (R)a,. (13)

To see how this model is arrived at, suppose we are analysing a series of monthly
sales data so that s = 12. Suppose we consider all the data at a fixed point in the
period s. For example, suppose we consider the sequence of January sales figures.
This series would be free of seasonality and might be described by a suitably chosen
model of the genera! form given in equation (10). Bearing in mind that successive
Januarys are s = 12 months apart and assuming that 0o = 0, we would havewh • *,@(B')V, 1z, --- e•(E')e,, (14)
where

V#Z1 = Z-zt--. and E'z, =-2-

It could reasonably be assumed that February sales, March sales, etc. would
follow precisely similar models with the same parameters. However, it could not be
expected that the residuals e,+I from February sales would be independent of the
residuals e, from January sales. To allow for this dependence a second model may be
fitted to the "seasonal free" residuals'e, in the form

=,(B)We, O,(B)a,. (15)

/
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On efimit:ating e, between (14) and (15), we obtain (13). When s 12 the model

embodies parameters which describe month-to-month variation (little letters) and
parameters which describe year-to-year variation (capital letters).

Procedures for identifying, fitting and checking such models closely follow those
described above. For instance, it was shown in Box et al. (1967) that the airline
passenger data of Fig. 4 was closely fitted by the model I

(1-BXI-B 1 )z, =(1- 04BX1-0-6B012 )a, (16)

corresponding top = 0, P = 0, s = 12, d = 1, D =, q = 1, Q 1,01 = 04, and
el = 0-6. The sum of squares plot for this example is shown in Fig. 3.

2.7. Forecasting

Suppose now that we have determined an adequate model for a given series and
we have new data -:, - I,.. from the same series extending up to the present time t
from which we wish to make a forecast I steps ahead. We call this an origin I forecast
for lead time I.

It may be shown that the minimum mean square error forecast for any lead time
is given by

2 ,(l = E(z,.,],

"293 . 272 M25 .240 .. 30 .2,5 -22, 231 2no -44

-2s2 .224 1,219 2___ 00 .16? M 212 -229, 316

41. X 21 -V 203 163It 16- 14M7 6 1 3

- 223 206 " IS6 "I.60 .17. "0 -2 3 4

"21 -206 LA4 465 176 47 7A .101 49S 306

.6 ,10 1"S ,•1 :0

22 106 IN 17 60 17 .6 11 11 *0d

• 229 .214 22 1.162 .6 . -187 '497 30lot

22 24 *21 U 194 466 4*6 473 20 319

•10 20 3 40 .0 40 m 75 " 'O 19

Fao. 3. Sum of squares grid and contours of S (0, 0) for i data with approxiate
95% confidene region shaded

where E is the conditional expectation given the z's up to time t. It follows, in parti.

r cular, that
a, =-- z,- ,_(). (17)
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Thus the "shocks" a, in the models (10) and (13) are in fact the forecast errors for unit
lead time. That for an optimal forecast these "one step ahead" forecast errors ought
to form an uncorrelated series is otherwise obvious. For suppose these forecast errors
were autocorrelated; then it would be possible to forecast the next forecast error in
which case the forecast could not be optimal.

The required expectations are easily found because

S= ,o),, 1,2,3 ....
E[z,_j] = z,.j, E[a,_J] = t7,_j = ,_jf.,_j_,(l), =0o,1,2,... (18)a I

For instance, to determinc the 3-month ahead forecast for the airline series, we
first use (16) to write down

Z9+3 = z,+2 +zt_.--zlo+a,+3 -0'4at+2 -O'6a,-9 +0O24a1 -1 o.

Taking conditional expectations at time t,
2,(3) = 2,(2)+z,-•-z,-10-0"6a,-9+0"24a,- o,

and using (17),
•,() •,2)+ :_,- ,_ o 0-{z_,-•, 1(1)} +0"24{z,_ lo - ,-11(1)},

that is
2,(3) = 2,(2)+0'4z1 _ -0"76:,. 10 +0"6•,- 1o(1) - 0242I_ x ,(1).

The forecast 2,(2) can be obtained in a similar way in terms of 2,(l) from E[z,+ 2].

H _

.Logarithm ofmorfomy totals

6--

5-20

5.0- Actual
Fe•reasts maode
in July 1957

194W 1950 1951 1952 1953 195W 1955 1956 1957 1958 1959 1960

Fla. 4. Logarithns of monthly totals of international airline pameecgen with forecast made
origin July 1957 for 1, 2, 3,..., 36 months ahed.
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Similarly 2,(1) can be obtained from E[z, 1] which employs only values of the per-

viously occurring z's and a's. In pracice then it is a very simple matter to compute
the forecasts 2,(l), •A2), f,(3), ctc. recursively, using the forecast function

' ~E[z,÷.] = EEz,÷•_•+z,.,_-1-z,+,_.3-0.4a,÷,_,-0.6a,÷,_,,+0.24a,+,_,3]
I I

and (18). Note that this form of computation is ideally suited for use on an automatic
computer. Using these methods, forecasts made at origin July 1957 for lead times
1,2,3 ... 36 months ahead are shown in Fig. 4 where they may be compared with the
values actually realised.

The procedure provides a very convenient and efficient method for industrial fore-
casting. In particular, it is ideally suited for forecasting sales or inventory on a large
variety of products. Since only a very small amount of previous information need be
stored for each product a computer with only modest storage capacity may be em-
ployed. In those cases where a past history of 50 or so observations is not available
one can proceed by using experience and whatever past information is available to
yield a preliminary model which may then be updated from time to time as more
information becomes available.

3. DINAmic Moous
In this section we consider the estimation of dynamic models which describe the

relationship between a manipulated variable X and a controlled variable Y. Since
the dynamic model describes how changes in X are transmitted into Y, it may be said
"to describe the transfer function between X and Y. Knowledge of the appropriate
transfer function is essential for the design of control schemes. However, dynamic
models of the type we now describe are also useful in forecasting a time series Y from
post values of another time series X as well as from past values of Y.

3.1. Linear Dynamic Models
Suppose that in the study of the dynamic characteristics of some system, such as

a chemical reactor, pairs of observations (XI, Y1), (X2, Y2),... are available of an
input X, such as gas feed rate and an output Y, such as product viscosity. Suppose

, . , -further that over the operating ranges of variation of Y and X there exists an approxi-
mately linear steady-state relationship

w,'ere Y, denote deviations from some average levels, and g is called the steady
state gain of the system (or the linear regression coefficient between Y and X).

The dynaink characteristics of such systems can usually be represented parsi-
moniously by linear difference equations of the form

ffv) It'.÷I = 94v)9,_ (19)
with

where b represents the number of whole intervals of pure dead time (delay) in the
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system. Most systems occurring in practice can be represented parsimoniously with
u and v at most 2. For instance, the simple model

(I +v)M f.= g(l +v)I (20)

or

,÷ -- 9 ) gn+±,-z- - (21)

can represent a system whose response to a step change ofXo in the input is to produce
an eventual change gXo in the output which is approached exponentially at a rateI depending on ý and delayed by an amount depending on ol. Fig. 5 illustrates the

model (20) with 4 = 1, g = 4 and I =-0-05.
By solving the difference equation (19) the dynamic model can be written in the

alternative form
?I+ I = Vo2, + VX",_, +..

- V(B)aIj (22)

where the weights vj applied to past inputs are called the impulse response fwrction of

the discrete system. The form (22) is not a parsimonious way of representing the
dynamic model, but is useful in identifying the model (19) as will be shown in section
3.2.

0 1 2 3 4 5 6 7 8

3

0 0t 12 23 4 567 8

Fio. 3. Delayed exponential response to a step change produced by
(I +VXY4.,- 15) - 40 -0-5VXXi -2) or (I +V)Yt 4, - -6-5+4(l -O-5v)X,

r ~~~~~~~~~Dynamki models with added noise teiptadotu iluulyb bcrdb
nle elaionhip(19) between teiptadotu iluulyb bcrdb
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noise due to measurement error and variation in other variables not under one's
S-control. In this case, we can write (19) as

!(V)? 1 =g V E,+, (23)
and (22) as

?I,, + -t V(B)9 + Ft+1, (24)
where E,+1 and F,+I are supposed not correlated with the input process 2,.

3.2. Identification of Dynamic Models

In the same way that the sample autocorrelation function zan be used to identify
univariate time series models, the basic tool in the identification of dynamic models is
the sample cross correlation function. To describe a pair of time series by their cross
correlation function it is necessary to assume that both series are stationary. Hence
it is first necessary to difference both input and output dtimes until the resul ing input
and output series are stationary.

If this differencing operation is applied to both sides of (23) and (24) the differ-
enced dynamic models become

and -(25)
and

,,j V(B)x, +f,, (26)

where y, = V'k,, x, = VdX,, e, =VE;, f,=VdF,.

Suppose that after differencing, n pairs of differences (xi,y1), (xr2,y2 ) ... (x.,) are
available. Then the sample cross correlation function at lag +k is defined by

r.,(k) k = 0. +1, +2,... (27)!, r,,(k) •ic'..,o) c,,(o)} ..

where

Xc,(k) = )(Y+ (28)

nI,~

and at lag -k by
c,,(- k) = ,()

where 9, Y are the means of the x and yseries.

Prewhitening of the input series °

Suppose that it is assumed that the input x, is uncorrelated with the noise in (26).
Then, on multiplying throughout in (26) by x,-&. I and taking expectations,

7 ,,(k) = V(B)7y,(k - 1). (29)

where , ',(k). y..(k) are the theoretical cross covariance function and input autocovari-
ance function respectively, and B now operates on k.

Suppose now that we carry out the usual identification and estimation methods
as described in section 2 to obtain a model

O(B)O-'I (B)Y, =x; (30)

r"
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Henwhich transforms the correlated input series x f to a white noise series x. Suppose
also that this transformation is now applied to both sides of (26), yielding,

T c ital' v ,o V(B)x,+f4c (31)

where a is white noise uncorrelated witho ;. On multiplying throughout in (31) by
-u+l and taking expectations, we obtain

t •()-, vt4. (32)

In terms of the c orrelation function, (32) mayobe rewritten
i t- p1,r(k) !_.* (33)

t Hence after "prewhitening", the cross correlation function is directly proportional
l to the impulse function.
i The presence of small initial values of vA is indicative of pure delay or dead time.
i Thereafter the presence of values of Vj not following a pattern indicates that terms
i should be introduced on the right hand side of the model (19) and the presence of
I exponential decay or damped sine wave behaviour in V& indicates that terms should

be introduced on the left hand side of the model (19).

3.3. An Example of identifying a Dynamic Model
Fig. 6 shows continuous records of the input airfeed (X) and the output carbon

dioxide concentration (Y) from a gas furnace. The input airfeed was deliberately
varied so as to follow an autoregressive process and the input and output records read
at 9-sec intervals resulting in 226 pairs of observations.

kpit GOs Rat
( c ftfl in lor

0**4GI.

Output
t%COz)00

0 5 to 1 20 25 mn

Fjo. 6. Input and output records to a gas furnace.

The sample auto- and cross-correlation functions damped out fairly quickly in-
dicating that no differencing was necessary. Hence x, = I,, yo = fl. The usual
identification and fitting procedure applied to the input indicates that it is a third
order autoregressive process
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(1-~~ ~1 -~ -~ )x,, =x

with 1 - 1-97, 2 = -1,37, $3 = 0-34 and 0-0353.

Hence the transformations

x= (1-97B+ 1-37B 2 -0.34B3)x,

- (1--97B+ 1-37B 2-0-34B•)y

were applied to the input and output series to yield the series x' and y, with
= 0-188, J,, = 0.358. The sample cross-correlation function between x' and y'

is shown in Table 3 together with the estimate of the impulse response function
obtained from (33), that is

0-358

'I-0-188'e
Fig. 7 shows the plot of vs versus k and indicates that there are two whole periods of
delay, then one or two preliminary values V3 and v, which do not correspond to a
pattern, followed by a decay pattern which could be first or second order.

A 1 2 3 5 6 7 8

2SE.

-0-2-

-0-3"

-0-4.

-0 "5 .

Fin. 7. Gas furmace data sample cross correlations aftr prewhitenlng.

TABLa 3

Cross correlation function and approximate impulse response function for
gas furnace data

k 1 2 3 4 5 6 7 8

re,4k) -0-0 -0.03 -0'28 -0-33 -0.46 -0-27 -0-17 -0-03
S.E. [I] 0.07 0M 007 0 0- 008 007 007 0-07

VN -0-09 -0-04 -0.53 -0.63 -0.88 -0-52 -032 -0.04
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To help in the identification procedure, approximate standard errors for the
4 sample cross correlations were computed using Bartlett's approximate formula

coy (r,.,,(k), r,(l)} {p,.,.)ps,,J+l-k)+p .,.J+lOp,.jJ-k)) (34)

for the covariance between two values of the sample cross correlation at different lags
k and 1. On writing k = I in (34) and making use of the fact that the x' series is white
noise, the variance of a single cross correlation coefficient is given approximately by

var {r..(k)} • 1+ s.,+ k) k). (35)

The standard errors given in Table 3 are based on the assumption that the cross
correlations up to lag+2 and from lag+8 onwards are effectively zero. The one
standard error and two standard error limits are plotted on Fig. 7 and confirm the
identification of a dynamic model

(1 +C1V+' ?2V') I = (I +jnV++ 2V2))t,_1I (36)

(probably with b = 2) or some simplification of it.

3.4. Estimation of the Transfer Function
In the first instance 1, was set equal to zero in (36) and the model with added

noise written as

,= P1 9f, ?1+p, 1 + P3 .2,+P42,1-.- 1 +E,4+. (37)
If the errors E, were uncorrelated, then the parameters in (37) could be estimated by

linear least squares. Under the added assumption that the E, are Normal, these would
also be maximum likelihood estimates. In practice the E,'s would rarely be uncorre-
lated, and hence it would be necessary to arrive at a model by iteration as is now
illustrated for the gas furnace example.

Initially the model (37) was fitted by linear least squares for different values of the
4 delay parameter b assuming that the errors E, were uncorrelated. The minimum sum

of squares was attained when b = 1, yielding the preliminary fitted model
S• •° ,- • 1•t =1.39 k-0.55 ?,-j-0"14.,9~t-0"-3.,•-',+E,,

where the dot notation is used to denote deviations of Y and X from their ave,7age
values. The first ten autocorrelations of the residuals E, from this model are givenI in Table 4.

TABLE 4
Autocorrelations of residuals from fitted dynamic model

k 1 2 3 4 5 6 7 8 9 10
rk .24 -l1 '00 -"02 '01 "16 a0 06 -.07 00

These residuals might be explained by a first order autoregressive noise model

E+ = OE,+a,+,.
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If so, then for an appropriate choice of 4' we can rewrite the model (37) as

p1 ?+p~?,~ P32 .b+PX11.t~t,+1(38)

where 7, = 1•- 1,, P ', = S.,- 01A'- ., and a, is now white noise.
The model (38) was fitted to the transformed data F,+, = k,+I-4 k, and

9,+ 1 = ,+,-4I-0, for a grid of values of 4, and b. The minimum sum of squares
occurred at b = 2, 4 = 0-7 yielding the model

+ = 0-90 Ft- 0 ."19 ?, I- 0"48 91-2- 0'44 1-3,

(+o05) (±+04) (:±'07) (±..0)
the figures in parentheses under the estimated parameters being their standard errors
obtained from the usual least squares formula. The autocorrelations of the residuals
a,+, from this model were all small, confirming that the model is adequate.

Hence the final model is

(I -07BXI -0-90B+0-19B 2 ) t+, = -(I -07BX0.48B 2+0-44B3)S.,+a,+,. (39)

Rewriting (39) as

-(0"48B 2 +044BI)t,+ a,+ 0

" " -0908+019B (I -0O7BXI -0.90B+0,19B2)" (40)

we see that the fitted dynamic model is

((1-0.90B+0-l9B2) t+, = -(0"48B 2 +0"44B3)S,. (41)
This model implies transfer function characteristics which agree very closely with
those estimated in Jenkins and Watts (1968) using cross spectral analysis. In the
control engineer's language it corresponds to a second order system with time con-
stants T1 = 15.8 seconds and T 2 = 8.2 seconds, and a pure delay or dead time of
22.8 seconds.

The model (40) also implies that the noise n, at the output of the system is a
third ordei autoregressive process

(l-0-70BXl-0.90B+0.19B2 )n,+, =a,+,. (42)

A more direct fitting procedure which employs iterative non-linear least squares, *

and which is readily adapted to the analysis of multiple input data, is described in
Box and Jenkins (1968),
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CSP-V: A CONTINOUS SAMPLING PLAN WITH A PROVISION
FOR A REDUCED CLEARANCE NUMBER

Gary L. Aasheim

U. S. Army Ammunition Procurement and Supply Agency
Joliet, Illinois

1. INTRODUCTION

The purpose of this paper is to introduce CSP-V, a continous
sampling plan which provides a means for reduced screening inspection.
The discussion will begin with introductory remarks about continuous
sampling plans in general and about some recent developments that have
simplified the formulation of mathematical expressions for continuous
sampling plans.

2. CONTINUOUS SAMPLING PLANS

A continuous sampling plan is a sampling plan in which inspection
is carried out as the product flows along the production or assembly line
without any grouping of the units of product into lots for inspection
purposes. The procedure alternates between sequences of screening (100%
inspection) and sampling inspection, where the severity of inspection is
dependent upon the discovery and spacing of defective units of product.
Units of product that have passed an inspection station, whether inspected
or not, are considered acceptable.

A continuous sampling plan offers certain advantages to a user. The
plan can be used as a process control device, providing a signal of possible
process difficulty immediately upon the finding of a defective unit. When
dealing with the manufacture of dangerous materials such as ammunition,
the use of a continuous sampling plan makes possible the avoidance of the
hazards of grouping large quantities of product in a storage area until a
lot is formed.

- A continuous jampling plan levies certain requirements upon the
manufacturing process to which it is to be applied. The process must
present a moving product to the inspector. There must be ample physical
facilities at the manufacturing site to permit 100% inspection when neces-
sary. The inspection procedure must be relatively easy to carry out and
the manufacturing process must be one which is capable of producing a
homogeneous product.

3. TERMINOLOGY

Certain of the terminology peculiar to sampling plans is reviewed
here:

a. The Average Fraction Inspected (AFI) is the fraction of units
inspected over an indefinitely long period of time when the process
average is some constant value p.

Preceding page blank
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b. The Average Outgoing Quality (AOQ) is the percent of units in
the passed product which are defective when the process average is some constant

P value p.

c. The Average Outgoing Quality Limit (AOQL) is the maximum value
that the AOQ assumes over the range of p.

d. Responsiveness is the reaction of a continuous sampling plan to
a sudden breakdown in product quality. The particular measure that is chosen
for this property is somewhat arbitrary. One of these measures will be de-
scribed later in the paper.

4. A BRIEF HISTORY OF CONTINUOUS SAMPLING PLANS

Harold F. Dodge developed the first continuous sampling plan in 1943.
The plan, which has since been designated CSP-1, simply provides for screening
inspection until a predesignated number, i, consecutive items passing the in-
spection station are found defect-free. Clearing I in the screening phase
signals initiation of a sampling phase in which only a fraction, f, randomly
selected items passing the inspection station are examined. A procedural
diagram for CSP-I is shown in Figure 1.

Dodge and others later developed more complex continuous sampling plans,
the main object of which was to reduce the amount of inspection without re-
ducing product quality. Another development, this one by Lieberman and Solomon,
was the use of Markov chains in conzL~uctlng the formulae to describe character-
Istics of continuous sampling plans. Brugger and others subsequently developed
asimplified Markov chain approach for use in the problem of developing continuous
sampling plan formulae.

5. THE SIMPLIFIED MARKOV CHAIN APPROACH

As continuous sampling plans grew in complexity beyond CSP-l, the.
difficulty in applying the Lieberman and Solomon Markov chain analysis also
grew. This method dealt with each unit of product individually as a state of

-the Markov chain. The simplified method groups together all units of product
inspected under a particular phase of the sampling plan and then treats each
phase of the sampling plan as a state of the Markov chain.

The simplified Markov chain method can be used for continuous sampling
plans which:

a. can be described by finite, ergodic Markov chains. For purposes
of the simplified Markov chain method, the condition of ergodicity will be
satisfied as long as there is a probabalistic path leading from each jth phase
of the sampling plan to every other phase of the plan and back again to phase
J.
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defects concerned,

I , lI

The screening crew is released from 100% inspec-
tion and the sampling inspector inspects a frac-
tion, f, of the units, where the sample units
are selected in a random manner.

When the sampling inspector finds one of the
defects concerned,

0I

FIGURE 1. PROCEDURE F OR CSP-l PLANS'

6

Thrcenn rwi elae rm10 npc
' in n tesapin nseto nsetsafrc

tinfofth uit, hee -659-l uit

ar eetdi arno anr



iL

b.- have no inspection phases other than those of the following types:

- Screening Phases: Units of product are inspected until a pre-
designated number, i, of them are found defect-free. Inspection
is subsequently begun in a new inspection phase.,

Checking Phases: A predesignated number of units of product are
inspected. When this inspection is completed, one of two inspection
phases, which shall be designated J1 and J2, will be entered. Phase
Jl will be entered if nc defects were found during the checking phase;
phase J2 will be entered if a defect is found during the checking
phase.

Limited Sampling Phases: Sampling inspection is conducted at some
predesignated rate f until (i) a defective unit is found or (ii) some
predesignated number k of units are found nondefective. The next
inspection phase entered depends upon the occurrence of (i) or (ii).
A phase of this type is limited in length, of course, to k inspected
units.

Unlimited Sampling Phases: Sampling is conducted at rate f until a
defect is found, at which time a new phase is entered. This type
of phase is unlimited in length since it terminates only when a
defective unit is found.

It can be shown by a relatively simple derivation that continuous sampling plans
employing at most a finite number of inspection phases selected only from the
above list can be described by a finite Markov chain.

* The simplified Markov chain method then allows us tO express the steady
phase probability Pj, of each of the j inspection phases of the inspection plan
in terms of each of the steady state probabilities P" of the Markov chain de-
scribing the sampling plan and the expected lengths i(j) of the inspection phases
of the plan:

1(5.1) Pj - P" E(J)/- P" E(i) -

We define the steady phase probability, Pj, as the long run proportion of time,
expressed in terms of all units reaching the inspection station, inspection is
conducted in the jth inspection phase. The steady state probability, PY, is
the long run relative frequency with which the jth inspection phase occurs.
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We then express each of the steady state probabilities as a function

of a single one of the steady state probabilities, call it P*, so that

(5.2) Pj = hjP0
Here: • his imply the coefficient of P" that arises when expeessing P" in

terms P". (5*I) can then be rewritten:

(5.3) Pj - P" hj EU)/Z P" hi E(i)

=hj E(j)/E hi E(i)

"We are also generally interested in finding an expression for the

average fraction inspected (AFI). By definition AFI = E fi Pi . Substituting

from the final result of (5.3) we get

(5.4) AEI- Z fl hi E(i)/E h E(i)

Swhere fi is the sampling frequency of the ith inspection phase. The AOQ may

also be written in terms of the AFI and the population percent defective, p:

(5.5) AOQ - p1l - AFI] when defective items are removed, and then replaced

(5.6) AOQ - p[l - AFI]/[l - p AFI] when no replacement of defective units of
produce is made.

6. CSP-V

CSP-V is a continuous sampling plan for use with a product with a
good quality history where reduction in inspection has economic merit, but
reduction in sampling inspection does not. As was mentioned earlier, most

continuous sampling plans developed since CSP-l had the objective of reducing
the AFI without sacrificing product quality. This reduction has been accomplished

F ' primarily by including in the later plans sampling phases with reduced sampling
frequencies.

- But consider the case of the isolated sampling inspector who has no
tasks to perform other than his inspection duties, whose idle time only
increases with reduced sampling. Introducing into this situation a sampling
plan which reduces the amount of sampling inspection does nothing to improve

the efficiency with which manpower is utilized. If we instead reduce screening

inspection, we free screening inspectors, who are normally also production line
workers, for reguldr production line duties for a larger proportion of the time.
To provide a continuous sampling plan which would reduce the proportionate
amount of screening inspection in a situation such as the one just described was
the objective in designing CSP-V.
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ST'ART
SM1

The screening crew inspects 100%7of the units.p{
When i consecutive units are found free of the
defects concerned,

SAl

The screening crew is released from 100% inspec-
tion and the sampling inspector inspects a frac-
tion, f, of the units, where the units are select-
ed in a random manner.

if a defect is found If i consecutive sample
units are free of the
defects concerned,

The sampling inspector continues to inspect a frac-
tion, f, of the randomly selected units.

When the sampling inspector finds one of the de-
fects concerned,

SC2

- The screening crew begins inspection, 100% of the

units.

If a defect is found If x consecutive units
in the next x con- are free of the defects
secutive units, concerned,

FIGURE 2. PROCEDURE FOR CSP-V PLAN
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Figure 2 shows the procedural diagram for CSP-V. Inspection begins

with a screening phase, SC1, and then moves into a limited sampling phase, SA1.
The inspection procedure, in a good quality situation, can lead from SAl into
SA2 and SC2. The reduced screening for which the plan aims is made possible
through the introduction of phase SC2 in which is employed a clearance number
x that is less than i of SM. The formulae (AFI, AOQ, etc.) that are developed
for CSP-V in the.following paragraphs will reduce to those for CSP-l for x-i.

6.1 Derivation of the Formulae

The transitional matrix'for the Markov chain describing CSP-V is
shown in Figure 3 and gives the probabilities of moving from one phase of the
inspection plan to another. On these pages p is the fraction defective of the
units reaching the inspection station and q - 1-p.

TO

SC1 SAM SA2 SC2

SO1 0 1 0 0

SAl l-qi 0 qi 0
SA2 0 0 0 1

SC2 l-qx q1  0 0

FIGUR, 3

If, from the transitional probability matrix, we express each of
the steady state probabilities as linear combinations of the other steady state
probabilities, we get:

(6.1.1) PYCl - (1-qi) P". + (1-qX) P#C2

(6.1.2) 'P" - PSCl + qX P"C2

(6.1.3) P"- qiSSA1

(6.1.4) P"c2 P "SA2

If we now express these steady state probabilities in terms of PSA2' we get:

(6.2.1), P.-cl = (1-q iqX/il Pit 2

r
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(6 1 2 pt = q-1 PC#
(6.1.2)' ~SA1 q SA2

(6.1.3)' p•t . pi

(6.1.4)' piC2 W P9A2

Equations (6.1.1)'-(6.1.4)' will be recognized as having the form of (5.2)

where Pi - PgA2 In this case.

The next task will be to determine the steady phase probabilities (5.3),
the AFI (5.4) and the AOQ for CSP-V. In order to expedite the necessary
computations, a working table is constructed:

TABLE 1

WORKING TABLE FOR FINDING
PHASE OCCUPANCY PROBABILITIES

(1) (2) (3) (4) (5)
Expected
Number of Multiplication of Product of

Multiplication of Units in Column 3 by Columns
Phase Coefficient Column 1 by qi Phase fpqi 2 & 4

SC1 (llqIqX)/qi q lqlqX (l.qi)/pqi f(l-qi)' f(1-q i (l.q qX)

SA1 1-<1 I (1-q 1)/fp qi(l-qi) qi(1-q)

SA2 1 ql /fp qi q 2 i

§SC2 I qt (l.qX)/p fq;I(l.qX) fq21(l1-qX)

Column (1) lists the coefficientse of the indicated inspection phases'as theirsteady state probabilities Pit were given in terms Of PS"A2" Column (2) is obtained

from'(1) by multiplying each term in (1) by the least common denominator of all
terms in (1).

Column (3) is the expected number, E(J), of units that reach the
inspection station during an occurrence of the indicated phase. Column (4) iV

obtained from (3) as (2) is from (1). Column (5) is the product of (2) & (4).

PSAlj' for example, may now be taken from column (5) according to (5.3):

r
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PSA. - hsAIE(SA1)/ h E(J)

- ql (l-qi)/ [f (l-qi) (l-qiqx)+qi (lq1)+q2 i+fq 2 i (lqX)]

and

AFI E f1 hi E(i)/Z hi E(i)

If (1-ql) (-qlqX)+fqI (l-q')ý+fq 2i+fq2i (l-qx) ]

If (1-qI) (l-qiqX)+qI (l-q')+q2:l, fq21 (l-qx) ]

- f[l-qi(qX-qi)]/ff(I-qi{l+qX-qi-)+qi]

The AOQ formula may now be easily gotten from (5.5) or (5.6).

6.2 Responsivenes,

In an earlier paragraph, the term responsiveness was mentioned, a
measure of the, plan's .bility to detect a drop in product quality tc an un--
desirable level. The particular measure used by the Army Ammunition Procurement
and Supply Agency is the expected time for the plan to return from its most
liberal sampling phase to its most restrictive screening phase when the percent
defective of the product reaching the inspection station has some fixed value p.
In CSP-V we have somewhat arbitrarily called SA2 a more liberal sampling phas'q
than SAl and have determined the expected length of time to return from SA2
to SCl as the desired measure" of responsiveness.

W We once again employ the simplified Markov chain approach to determine
the plan's responsiveness. A procedural diagram for CSP-V -s shown in Figure 4
to illustrate the Markov chain. Notice that the diagram is changed somewhat from
that shown in Figure 2:

in Figure 4, P(SCl - SAI) = 0 and P(SCl - SA2) - 1;

In Figure 2, P(SCl - SAI) - 1 and P(SCi - SA2) - 0.

The change excludes all paths of the original model that do not lead from SA2,
as a starting point, directly or indirectly to SCI as a terminal point. The
change introduces one path, a recycling path in effect, which simply leads from
the terminal phase, SCI, to the initial phase, SA2.

r
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/ -

o ~sci W

The screening crew inspects 100% of the units.

When i consecutive units ars found free of thy
defects "concerned,

SA1

The screening crew is released from 100% inspec-
tion and the sampling inspector inspects a fric-
tion, f, of the units, where the units are select-
ed in a random manner.

If a defect is found If i consecutive sample
units are free of the
defects concerned,

The sampling inspector continues to inspect a frac-
tion, f, of the randomly selected units.

When the sampling inspector finds one of the de-
fects concerned,

S C 2 ,,__..... _ __.... ... ....

The screening crew begins inspection,100% of the
units.

If a defect is found If x consecutive units
in the ntxt x con- are free of the defects
secutivo units. concerned,

FIGURE 4. PROCEDURAL DIAGRAM OF CSP-V PL',NS ALTERED TO
ALLOW CONSTRUCTION OF RESPONSIVENESS MODEL
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The expression for responsiveness is taken from the identity

(6.2.1) PscI - E(SC1)/[t(SCl) + E(REST)]

which is just the proportion of time inspection is in SCi over the long run in
terms of the responsiveness procedural diagram. In this expression for PSCI'
E(REST) is the expected length of time to get from SA2 to SCI and is the
responsiveness term we want to evaluate. (6.2.1) can then be rewritten:

(6.2.2) E(REST) = E(SCl) [-Pscl 1 /Psc1

The transitional probability matrix for the Markov chain associated with

the responsiveness problem follows:

TO

SCI SAl SA2 SC2

SCl 0 0 1 0

SAl l-qi 0 qi 0
FROM OSA2 0 0 0 1

SC2 1 -Ix qX 0 0

Each steady state probability is expressed, as before, in terms of transitional
probabilities and other steady state probabilities. The following working table
is constructed in the same manner as was the table of 6.1, this time taking

0 'SC2-

TABLE II

.WORKING TABLE FOR FINDING PHASE OCCUPANCY
PROBABILITIES FOR THE RESPONSIVENESS MODEL

(1) (2) (3) (4)
Expected Number of Multiplication of Product of

Phase Coefficient Units in Phase Column (2) by fpqi Columns (1) & (3)

Scl 1-q q x (1-ql)/pqi f (1.qi) f (f.qi)(l-qiqX)

SAI qx (1lql)/fp qi(l-qi) Iqi(l1.qi)

SA2 1 1/fp qi qi

SC2 1 (l-q X)/p fpi(l-qX) f q
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E(REST) can now be determined. First, from the working table

i P(SCI) - [f(l-q )(l-qlqX)]/[f(I-q')(l-q qX)+q qx(l-q )+qi+fqi(l-qX)]

Then, substituting into (6.2.2) and simplifying

E(REST) - [f(l-q4)+qX(l-qi)+l]/fp(l-qiqx)

Figure 5 is a display of responsiveness curves. Since CSP-l generally
requires a greater amount of sampling than other continuous sampling plans and
is generally the most responsive of all continuous sampling plans, it is usually
the standard against which other sampling plans are compared. Hence, for compari-
son purposes, we have included in Figure 5 the responsiveness curve for CSP-l
along with the responsiveness curves for CSP-V at i=2x and i=3x. Spacing between
the curves will vary with AOQL and sampling frequency; however, the position of
the three curves relative to each other remains unchanged.

4 6.3 Summary

A complete set of i values has been computed for CSP-V to be included
in a future revision of MIL-STD-1235. This "complete set" includes computations
for x-1/2 and x=i/3. It was decided not to go below x-i/3, in choosing values
for x, since some of the x values for the small i-value plans would get, we
somewhat arbitrarily decided, too small. We restricted our attention to integer
multiples 2 and 3 for ease in remembering by the user.

CSP-V is currently undergoing plant tests at Pine Bluff Arsenal,
Arkansas, where early responses to the plan have been favorable. Specifically,
Arsenal representatives state that the amount of time production line workers
are needed to serve on screening inspection teams has been reduced.
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THE SELECTION OF THE MOST MEANINGFUL SUBSET OF RESPONSES

IN A MULTIPLE RESPONSE EXPERIMENT

Walter D. Foster

Fort Detrick, Frederick, Maryland

ABSTRACT

A sensitive plant extensively used in experimental agriculture is the

black valentine bean seedling which has been used with a wide variety

of growth regulators in controlled environment experiments. Some of

the responses to treatment that have been used are fresh and dry

weights of plant tops, roots, total plant, plus a variety of height

observations. The problem has been to select that subgroup of re-

sponses most informative in terms of statistical analysis.

Univariate approaches have included the magnitude of the F ratio as a

measure of relative sensitivity to treatment and the magnitude of the

coefficient of variation as a measure of efficiency. In factorial

experiments, the F ratio was examined separately for each main effect.

A multivariate approach consisted of following Smith, Gnanadesikan

and HughesL/ multivariate analysis of variance-and isolating the

characteristic vector corresponding to the maximum root in the characteris-

tic equation where the size of the elements of the vector indicate re-

lative contribution to analys's after removal of the ccrrelations.

I/Multivariate Analysis of Variance. Biametric4, Vol 18 #1, p 22ff.

March 1962.
-671-
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INTRODUCTION: At the beginning of an extensive series of greenm.ouse experiments

with growth regulators, the question was raised concerning the most appropriate

response measurements to make. Using the black valentine bean plant, the fol-

lowing responses to environment and treatment factors were considered: fresh

and dry weights of tops, roots, plant, second and fifth trifoliate leaves, and

height of plant measured at 3, 7, 12, and 14 days after emergence. It was t-e

objective of this study to identify that subset of these resronses showing both

the greatest sensitivity to the treatment factors and the most efficiency in the

sense of needing least rerlication for a Riven effect.

Environment factors consisted of two temrer-'tures, 250 and 30P C. in the

growth chambbers; treatment factors were four levels of a growth inhibitor arrlied

as a liquid to the nutrient solution. Five separqte pits per treatment provided

the replication in a completely randomized desirn.

METHODS OF ANALMSIS:

A. Univariate Approach.

Analysis of each response separately was proposed as th- first approach.

The F-ratio in the analysis of variance was used as a measure of relative sensi-

tivity of response to treatment on the basis of the followinp reasoning. Each re-

sponse, beinr part of the same bean plant, had, been subjected to the same treat-

ments as every other resronse. k response not affected b-r treatment was considered

to be insensitive and would be ex-ected under the null hypothesis to h-ve an F

ratio of unity. Conversely, the ere-ter the effect of treatment on a particular

resronse, the higher would be the F-ratio. This is illustrated in the following

table of expected meani squAras for the design used in this experiment.
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I Source d.f. Expected Mean Square

Temperature t-1 2 + dw 2OTI 2 2
Dose d-1 , + tw%

2 2
Tx D (t-1)(d-l) T" + v DT

2P W~~ithin td (w-1) ••..

2 2 2
F-test for Te-merature: (T + dw O )/1m under the null hypothesis

2 2
/ that 0 0. Thus the magnitude of F depends upon the size of

and similarly for the effect of Dose.

The next step was to select that subset of resronses with the highest

F-ratios. The following statistical analysis was proposed for this selection.

A transformation of F to Fisher's original Z-statistic,

Z - (1/2) ln F

results in a quantity approximately normally distributed?/ with mean

E(Z) 4 .( 1/n1 - l/n2)

and variance

V(Z) - 1(1/nl * 1/n2)

provided n and n2 , the degrees of friedom for numbrator and denominator of F,

are not small. Thus a test of t'io F-ratios as a device to pick the larger could

be accomrlisted by a t-test of the correspondine Z's:

t ( A ZQ R/ [V(ZA) + V(Z9 ) -2Cov (ZAZB] 1/2

TNo problems arise with this use of t. Granted that the F-values are not

likely to be inder'endent because the different resronses were measured on the

same rlAnts, the t-test allows for a covAriance term as indicated above. The

rroblem arriges in estimqtihg the covariance. On the assumption that any

S/

r
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meaningful correlation is likely to be positive, it is noticed that its

evaluation would serve to diminish the denominator of t. Therefore, ignoring

the covariance term would be a conservative step.

The second problem is ths degrees of freedom to be used with the t-test.

If the F-ratios t-re considered as a samnle statistic, tIen it mipht be intuitively

arrropriate to take df - n2A + n 2. &ternntivelv, it might be assumed that

the experimental design, once desinated, fixed the first and second moments of

F so tl'at the v ari.nce of tVe Z transform can be considered to be known. Thus

df - no would be anrrorriate. '4v own observ-tion is Re follows: if the df

for F• arp not smqll ai required by the Z-transform :-, normalitv, thin "'t should

make little 1".r'•uac•, *.nl the user could take d-" - co and rei.tin happily

arathetic to th-2 rotential troubles of exactness of theory.

SThe ratinnale for a t-test between two Z-values can be extended to a

-iultiple range test for the crlerin4 of all of the observed F-ration. Thus,

a l'ultiple range ordering of the Z's and hence the F'l should serve to order

the relative sensttiritics of the various resronses to thetreatments.

'The second objective of the univariAte arproach was to identi fy theJ most efficient responses in the sense of distinguishing a treatment effect with

Sminimum rerlication. This npl'roach is identified with that of Neyman-Pearson

and the concept of power of the test. The, rower of the familiar t-test is

written as 1 - B where B, the probability of accepting a false hypothesis

when a sre-ified alternative hypothesis is true, is estimated by

St - ( pA" D)/ s n-1/2, where

- altPr"tti-q hypothesis, and

D - value in X-scale corresrtondina to the decision
value of t under the null hypothesis and a gi,,en
level of alpha.
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To relate the concert of tt e rower of the t-test to the coefficient of

varisation, the latter is rewritten as

a Y(CV) and

a is substituted in the exrression above for t:

t - k/ CV where

k Nl/2 ( pA - D)/I

Thus, the efficiency of detectin-, a difference of a given size is inversely

related to the coefficient of variation when the exrerimental design has been

stqted and the parameters experimentally estimated: namely, N, the alternative

hypothesis, level of alpha, and the experimental mean resronse.

B. Multivariate Approach.

Smith,Gnanadesikan and Hughes I multivariate analysis of variance (N4W)

is a technique desipnel to test for treatment effects where multiple responses

hove been observed. It also gives a -rocedure by ,,hich the most effective subset

of the responses may be identified--which is the objective of this raper. This

procedure consists of comrutinr the characteristic vector associated with the

maximum characteristic root. The largest absolute va ,tes in the characteristic

vector are associated with the responses suggested to e the most effective

subset for detecting treatment differences, analogous to the way that the

magnitude of the standard partial regression ceofficients are indicative of-

the most effectie predictors in muliple regression.
I

While the flow char* for their 14AV is very effective, it did not

include the computation of the characteristic vectors. Adding this as a

printout to the 'AV rroqram makes this portion of their alporithm applicable

r
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to the analysis here. %ecause multivariate techniques in general and this one

specifically allows for linearly correlated responses, they are especially

applicable to problems like these.

APPLICATION OF METHODOLOGY:

These methods were comruted for the growth chamber experiment on black

valentine beans with two temrerature levels and four dose levels in factorial

arrangement. The seven responses observed in the experiment reported here

were coded as follows:

Fresh Veiht Dry Weight

Tops FWT NT
Roots M•R LVR
Plant AlP IMP
Growth &Ht-14

The results of the univari-te analyses of variance have been condensed as

F-ratJos for Temrerature and Dose in the following table which also gives the CV

for each response, their rankings, and the rank of the absolute magnitude of the

values of the characteristic vector in the MAV.

NWT FVR FNP DWT DWR DIP &HT
Temp 25.4 .019 Ul. 8  6.7 1.0 6.0 4.2
Dose '4.0 36.7 17.0 2.7 L7.E 5.4 2.2

CV 13.2 I-.6 124  154 154 14.4 15.3

Rank of F:

Temp 1 7 2 3 6 4
Dose 5 1 3 6 2 h 7

Rank of CV:
2 7 1 5.5 5.5 3 4

Rank of MkV:

r 2 1 - - 3
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The ranks of F ratios for Temperature were highly consistent with

those of other similar exr3riments, corfirmina these results. The use of

Fisher's Z as suggested In the methodology was not folloved because of the sinile

degree of freedom in the numerator of F. Results very similar to these for

the ranks of F for Dose were also foumd in other experiments. Again the Z

transform was not computed. What was of primary interest was the almost

diametric failure of the te-inerature and dose effects to agree for FWT and

PFVR. When I pointed this cut to the plant physiologist, he set out to con-

struct a functional model based on the tops being more responsive to t he

temperature effects an-i the roots more responsive to doses which had been applied

directly ta the roots In the nutrient solution. Moreover, these results confirmed

a lon&, estnblished practice of analyzing top and root tissues separately.

Vohether or not to choose Fresh or Dry was left to the experimenter's, Judgment

eepending upon the importance il water content in the rlint tissues. Little

Is sail of thp results for the coefficients of 7ariation; they seemed to

foll.'w closely tbh'ý results for temperature. 4o

The MV rankir~s ccnfirmed that i.he primary information lay in

fresh weight or tops ne roots, t..t for the dry wei'ht 'pparently being

rather hi-fi;, corrolnted '-.th a.hat for the fresh weoi*ts--in exrected

risult. The aditi~n of growth ?s q third response •ic sufnesfd by the ;'ýV

r'nk•s v- not strongly bqcked r! the'univari-te analyses. Whether or not to

include it an a respon~a may w~ batter answerid by its importance axperlmentally,

e.j. does tallness matter, or by the cost of measuring it.

REFERENCES

1. Smith, Gaanadeskian, and Hughes. Multivariate Analysis of Variance.
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RESPONSE SURFACE ANALYSIS FOR DUAL RESPONSE SYSTEMS

Raymond H. Myers

Department of Statistics
Virginia Polytechnic Institute

and State University

ABSTRACT

The purpose of this work is to develop the theory associated with a

dual response surface model. A dual response surface system is assumed

and the theoretical framework is developed for arriving at "optimum"

conditions on a set of independent variables.

The approach is to find conditions which maximize a "primary

response" subject to the constraint that a "secondary response" takes

on some specified or desirable value. An algorithm is outlined whereby

a user can generate simple two dimensional plots to determine the conditions

of constrained maximum primary response subject to the secondary response

taking on any value he wishes. He, thus, is able to reduce to simple

plotting the complex task of exploring the dual response system.

In certain situations it becomes necessary to apply a double constraint,

the second being that the located operating conditions be a certain "distance"

from the origin of the independent variables, (or the center of the

experimental design).

The procedure applies to optimizing in cases where it is desirable to

employ two measures of effectiveness, cost often being the prime candidate

for the secondary response and a single measure of performance as the

primary response.

Preceding page blnk 679
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RESPONSE SURFACE EXPLORATION IN PROBLEMS
INVOLVING TWO RESPONSES

1. Introduction

Much has been written concerning the exploration of an e.xperimental region

using response surface methods. Basically, a polynomial typa response function

is used to graduate a mechanism given by

g(xl X2 ' ""* Xk)

in some experimental region. The most frequently fitted response function and

the one to be used here is the quadratic model which gives rise to a fitted re-

sponse function of the form

ub 0 + x'b + x'Bx, (1.1)

where x is a vector of independent or design variables and j is the estimated

response. The elements in b and B represent least squares estimators, the lat-

ter being a k x k matrix

C I
bkk

where the bij are second order coefficients. The total exploration following

the estimation of (1.1) involves finding the stationary point

-O

and conducting a canonical anaiysis to determine the nature of the stationary

point. Discussions of these procedures are given in [ 1 J, 1 2 1, and [ 5 1.

Quite often the researcher is confronted with the problem of simultaneous

optimization of two or more response variates. It is not unusual in this
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situation to obtain a solution, x, which is optimal for one response and far

from optimal or even physically impractical for the other(s). The task is

then to arrive at some compromise conditions involving the two responses. The

problem is a natural one but only a few papers dedicated to it have appeared

in the statistical literature. See for example f 4 ] and [ 6 1.

2. The Dual Response Problem

Let us suppose that the experimenter has a primary response, with fitted

response function given by

b '.+ XB Xl) (2.1)

and what we shall refer to as a secondary response (although indeed the two re-

sponses may be equally important) with response function given by

0 b(2) + ()x'b (2)+ x'E(2) x (2.2)

The expression In (2.2) may have been obtained from the same experiment through

the use of multivariate multiple regression or perhaps externally. The latter

may be the case when the secondary response is the cost variable in say a yield-

cost study. Indeed, the coefficients in (2.2) may possibly not be random variables

The solution proposed and discussed in the sequel is to find the conditions

on x which optimize yp subject to ya a k, where k is some desirable or acceptable
C 1

value of the secondary response. (Actually, there are situations in which it is

necessary to consider a double constraint. This will be discussed in a later

section). To arrive at the solution mentioned above, Lagrangian multipliers are
I

needed. Thus, we consider

L,-/ b(M) +b() x -+ " (b2) + b(2) x +x'B (2)x "k)
L b0  0bL~B~Jxk

and require solutions for x to the set of equationsr
a x

"which results in the following:
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(BM B _(2)) ( b)2V _ (1) (2.3)

It is important at this point to study the nature of the "stationary point"

generated by equation (2.3). We begin by considering the matrix of second par-

tial derivatives, the (i, J) element of which is

32L

(i, j 1A x 1 xj

It follows immediately that

M(W) - 28(1) - (2 B(2 ) (2.4)

Much of the development that follows is somewhat similar to the approach takelu

by Draper [ 3 1 in Ridge Analysis. In fact, one can consider Ridge Analysis in

which it is desired to maximize an estimated respu,.3e, y, subject to the con-

2
straint x x R , as a special case of the dual response problem. However, in

the dual response problem, the solution must depend on the nature of the matrices

B(1) (2)
B() and B

It is well known that if the matrix of second partial derivatives given by

equation, (2.4) is negative definite, the value of x generated by equation (2.3)

will give rise to a local maximum on y (local minimum if the matrix of second

partials is positive definite). Therefore, rather than fixing Ys = k, an appro-

priate procedure would be to select directlv values of the Lagrange multiplier,

li, in the region which gives rise to operating conditions on x from (2.3) that

result in absolute maxima on yp, conditional on being on a surface of the secon-

dary response given by (2.2). In ihat follows, we make use of the following

theorem.

Theorem 2.1: Let il and 22 be solutions to equation (2.3), using vIl and

P2 respectively and let ys, 1 - ys,2' If the matrix (BI - I B is negative

definite then yp 1 > yp,2* It also follows that if (B(l) - 1B(2)) is positive
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definite, then Yp,l < ;p,2"

Proof

If x and x2 give rise to the same value of the secondary response, then

b-(2) (2)x2 + 12 " B (2) (2 + b(2) (2.5)

Consider now Yp,1. yp,2" We can write

- , ( ' ' (1)

p, "p,2 xl B x -2 1' B 1 ( E2' R 2

By adding and subtracting P, 22 1(x2' we obtain

Yp, "Yp2 "-x 11)!1"x (B(1) B W (2)Ix lx B (2)x2

Yp1%-yr9 t B .1-ý2 Pl 1X2 -u 1  2  B 2I I

+ (El - _2 ') b(). (2.6)

From equation (2.3) with u = uI and x a x, we have

Ell B(1) x a U ' -- + , I b (2) _(1)

vhieh from (1.5) becomes

Ic
B()x- l s" (lb2) _ l! (2) _ x 15(2.7) -

From (2.5) we also have

2 (2) 2" - -(2) _ b(2)1.)

x ' B x2  ay b ba 
(2.8)

Hence,from (2.7) and (2.8) it follows that

B - B xB(2) 2 Xb(2) + (2)

-1 1l -2 -2 1 E1 1 + 12 - i

Thus, (2.6) becomes

Yp,l Yp,2 - (x2 - • !i') (uI b
2  b(-)) - x2 (B( l B(2)y' - P. ,1 ,2 1 - x2.

From equation (2.3), we have
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X E) b(2) _b U 2x (B (1) B2(2)(2- ½1 (3 ) "1~ -- b') - 2x B2 - B'1 x1 -1(B - B152)•

and, as a result y - yp,2 "(2 - E1)P (B 1  p, B( % ( E -2)

I" (x - x )' (BM1  - U B(2)) (x" - E2) (2.9)

which is positive if B( 1 ) - 10 B(2) is a negative definite matrix and negative if

B(M - Ua B(2) is a positive definite matrix.

Theorem (2.1) indicates that in the quest for values of x which yield con-

strained maxima (minima) we can limit ourselves to values of V which make B (1 P - (2)

negative definite (positive definite) assuming that such values exist. It shall be

demonstrated that this "working region" in u does often exist and that its location

depends on the nature of the matrices B( 1 ) and B Equation (2.9) also indicates

Yp,l - Yp,2 (!1 - )(B - P2 B (11 - E2)

which implies that while BMI - 1 B(2) is negative definite, B(M) - 2 B(2) cannot

be negative definite unless both give rise to the same solution for x. It will

become apparent later that the latter cannot occur.

2.1 B(2) Positive Definite

Suppose that the stationary point of the secondary response results in a mini-

mum, implying that B(2) is positive definite. Consider the quadratic form with

matrix given by M(x), i.e.,

q a u'(( 1  - U B (2) u

Since B(2) is symmetric positive definite, there exists a nonsingular matrix R

(Rao [ 7 1) such that

R' BM1 )R w diag(lX, 12 k)
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and

R' B(2) R I k o

Performing the transformation

U mv R

we have

q v diag (At 1 1 A2 A k ).

The A's are merely the eigenvalues of the real. symmetric matrix

D2  Q B QD 2  S.

Here 0 is the orthogonal matrix for which

S(2) 2 (2.12)

and D2 is the diagonal matrix containing the eigenvalues of B We use the nota-

tion D1" to denote a diagonal matrix containing the reciprocals of the square

roots of the eigenvalues of B From equation (2.10), it is clear that we can

insure a negative definite M(x) if u > Ak (positive defirite if u < A ) where

A1  2  k are the eigenvalues of the matrix S arranged in ascending order.

In what follows, it becomes apparent that this indeed defines the working region

for u and, in fact, any i > Xk yields x which gives rise to an absolute maximum

p,i (absolute minimum for v < A) conditional on being on a surface of secondary

response given by

*si -b0  + (2) + B(2)

It turns out that by choosing v values in this region one generates x's which give

all possible values of ys.

The following theorem will be useful in obtaining an understanding of the

relationship between the Lagrangian multiplier, v, and the resulting estimated
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value of the secondary response function.

Theorem 2.2 , Let x be a solution to (2.3) where B(2) is positive definite.

Then a s with the equality holding only in the limit as v approaches ± .

3 P2

Proof.:

Differentiating both sides of equations (2.2) and (2.3) with respect to uz

yield s

3 79. b + 2 ,x B (2) d x ( .3

d u -= (.3

and

(B() - U B( 2 ) d x. (2.14)

Upon taking the second partial in (2.13) and (2.14) with respect to U, one can

write

y2  e , 2 x b 2+ 2 B (2) X 3 x B (2)32 x (2.15)
@ 2 z 2 a U 2 'P-2 S2

•2x

(B()- U B(2) . 2 B( 2 ) ax (2.16)

2'

Upon premultiplying (2.14) by and (2.16) by - and subtracting the result-

ing equations we find that

a2x 2 3 X x(2) ax2) ' 2  (2.17)
tk ~2 -- xi --

SPU 3 U PU 2

2a X
Substituting the expression for b - from (2.17) into (2.15) results in

z U2
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•2 =6x

V2V

Sx

which, of course, is positive except when -i 0. From (2.3) and (2.14)

d x
6 0 only in the limit as u approaches either plus or minus infinity.

It is important to note that the relationship between y and u is of the form

111"bLtaLed in Figure (2.1). In t1•e ygu:c, y is the value .f the estinaLed
s,0

secondary response function at its stationary point, the latter being a point of

minimum response. The existence of the asymptotes is easily seen since from (2.3)

lim x B (2)-I b (2)

U 2 2"-s,O0

which is the center or stationary point for the secondary system. As v approaches

(i = 1,2,...,k), y8 approaches infinity since

18(1 - A i B (2) 0 . (i-1,2..k

Hence, the asymptotes at the Xi"

Theorems (2.1) and (2.2) indicate that the "working region" for u resulting in

a maximization of y;p, subject to specific values of Ys is V > Ak and v < A1 for

minimization. In a practical situation, interest would only be centered upon that

part of the working region that generates values of Ys and thus x in the region of

the experiment which generated either or both response functions. The procedure

of determining operating conditions- can be reduced to one of con3tructing a few

simple graphs. Numerical examples of this piocedure are given in a later section

following the discussion of the problem for the case where B (2) is negative definite.
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2.2 B(2) Negative Definite

When B is negative definite, the stationary point for the secondary re-

sponse function is a point of maximum response. Much of the development given in

the previous section carries over, with a few modifications that deserve some at-

tention. Consider again the matrix M(x) given in equation (2.4) and the associated

quadratic form q - u (3(l' -( B'()). Again, there exists an orthogonal matrix

Q for which

Q B(2) Q - D2  (2.18)

where D2 is a diagonal matrix containing negative values. Let the matrix

D2- - D2 and make the transformprion

u"QD2 Q,

where D2 (-•) is diagonal containing reciprocals of square roots of the diagonal
e n

elements of D2. Therefore, the quadratic form q can be written as

q a y V B'' P + 11 (2.19)

where P = Q D2 ( The matrix P b P is real symmetric and thus there exists

an orthogonal 0 for which

S B' jO A (2.20)

where A* is a diagonal matrix of eigenvalues of p'B(1) P. We cern then make the

orthogonal transformation

-0 z (2.21)

and as a result

q z#[A* + p I] z (2.22)

If we call A the diagonal matrix containing the eigenvalues of the sy~mmetric matrix
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S D 2~1  Q B(1 QD2

which is real in spice of the fact that D(A) contains purely imaginary values,
2

A* -- A, (2.23)

thus

q [• I - zJ z. (2.24)

So in order to render q negative definite, and thus find x from (2.3) which maxi-

mize yp subject to a constraint on y3, we are led to choosing values of V which are

smaller than the smallest eigenvalue of S. On the other hand, if our desire is to

minimize Y., we find conditions by choosing y larger than the largest eigenvalue

of S.

A theorem analogous to Theorem 2.2 is again helpful in showing that constrained

absolute maxima (minima) are obtained by choosing v < A1 (U >

Theorem 2.3: Let x be a solution to (2.3) with B(2) negative definite. Then
a2,

YBy {0, with the equality holding in the limit as u approaches ±

Proof: The proof is similar to that of Theorem 2.2

As a result, the nature of the plot of YB against U is an inverted version of

that given in Figure 2.1. That is, Y. will approach - mas u approaches an eigen-

value of S. For values of p smaller than X1 , Ys will increase with decreasing V

and asymptote to Ys,0 which is its maximum value. Hence, the "working region" is

1 < AI for constrained maximization of y and 0 > Xk for constrained minimization

of yp.
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C C

3. Summary and Example for Case where B(2) is Definite

C Perhaps the best way to summarize the results obtained when B(2) is definite

is to o'itline thn procedure which would be followed when it is of interest to ob-

tain operating conditions resulting in a constrained optimum primary response

variable.. Following this outline will be a numerical ample.

Once the parameters of the two response functions have been obtained, the

eigenvalues of the matrix S should be determined. If one is interested in the con-

strained maximization of yp and B(2) is positive definite, then value. of v > Ak

should be substituted into equation (2.3) and stationary values of x generated.

These values of x represent points of absolute maximaresponse conditional on the

estimated secondary response being given by equation (2.2). If minimization is

desired, then values of U 4 AI should be chonen. If B(2) is negative definite,

values of u < A, provide constrained maxima and values of 'L > Ak provide constrained

minis.

Exploration of the dual response system can be carried out simply and concisely

by constructing plots of x vs. y and vs. yhenXl~ Ys x2 vs s.. w.Y" Y s p.We

these simple two dimensional graphs are available to the experimenter, it will be

possible for him to make a decision regarding what operating conditions should be

used. In particular, for any value of the secondary response chosen, values of

the x's are found which give rise to the maximum (or minimum) primary response.

One must be careful, of course, to consider as reliable only those results

corresponding to values within or on the periphery of the experimental region.

In addition, caution must be exercised in placing heavy reliance on results where

either or both response functions are derived from empirical data that may have

large random errors associated with them. (This too is a hazard with Ridge Analysis

as pointed out by Draper.)
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3.1 A Numerical Examile

Consider a dual response surface problem where y and Ya depend on three

independent variables xi, x2 , and x3 . The following two response functions were

fit to a set of experimental data

Syp - 65.29 + 9.24x + 6.36x + 5.22x - 7.23x - 76x

p1 2 3 1 2

- 13.11x 2 
- 13.68x 1 x2 - 18.92x 1 x3 - j',.6 8x 2 x3 .

YB -56.42 + 4.65x + 8.39x + 2.56x + 5.25x + 5.62x 2

1 2 3 1 2

+ 4.22x2 + 8.74x1 x2 + 2.32x1 x3 + 3.78x2 x3

giving

5.25 4.37 1.16]

B 5.62 1.89

km 4.221

with eigenvalues of B(2) being (10.553, 3.557, 0.979). Thus, the secondary response

function yields a stationary point whi.h is a point of minimum response, with the

stationary point and the estimated response at the stationary point being

0519 4

- B -1.178 Ys,O 52.79

For the primary response function

[ 7 . 2 3  -6.84 -9.46
B(M) = -7.76 -7.3 (eigenvalues are 0.1765, -2.6304.

l -25.6460)

F •M -13.11
SB()-' b( 1 ) -8.077

wih2 / 3.8862 -'O50.4849

3.85161
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From these results, it follows that the primary response system is a "saddle system"

with center at x which is outside the experimental region. The goal of the in-

vestigation was to determine operating conditions which maximize yp but do not allow

to become too large. It was felt that values of the secondary response larger

than about 65 would probably ba excessive. Recall that the matrix S is given by

S -D("A) Q' BM1)Q D(-h)

For this example, we have

.3078 00 0.64276 0.69381 0.32478

[j.078l.O~~068l9 1(1) (A½)
S 0 0.5302 0 -0.34969 -0.11148 0.93021 B QD2

0 -0.71147 o.17097j

- 2.0338 -1.4100 -0.7715j

1.4100 -1.4566 -1.3899

0.7715 -1.3899 -1.4861

The eigenvalues of S are

X - -4.0617 X2 -0.9945 A3 -0.08017

Equation (2.3) was used with u > 0.08017 to generate values of x representing points

of constrained maximum primary response. Corresponding values of yp and y. were

computed and the plots given in Figures 3.1 and 3.2 were constructed. Figure 3.1

indicates the locus of operating conditions giving absolute maxima on the primary

response for various fixed values of the estimated secondary response.. Figure 3.2

gives the value of the maximum estimated primary response for values of the estima-

ted secondary response. In this example, the operating conditions which maximize

yp, conditional on Ys W 65.0 are found in Figure 3.1 to be

xI a 2.07; x 2  -1.15; x - 0.6

with an estimated primary response found in Figure 3.2 to be approximately 74.
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These two dimensional plots can be very revealing in exploring dual response sys-

tems and the method of course can be used for any number of independent variables.

A computer algorithm can be easily altered to handle the case where B (2) is nega-

tive definite. One merely needs to change al'! the signs from negative to positive

of the eigenvalues of B in forming D to avoid imaginary values. Then all of the

signs of the elements in the resulting S matrix shou!d be changed and the A's ob-

tained as the elgenvalues of this matrix are appropriate. Points of maximum yp are

then obtained by choosing p < X1 and points of minimum yp are obtained by choosing

4.0 (2) Indefinite

When B(2) is indefinite, situations exist for which it is impossible to obtain

a solution to the dual response optimization problem as it is currently stated.

This will become obvious to the reader who attempts to maximize a two dimensional.

primary response system that is ellipsoidal in nature with a minimum at the center,

given some specific value of a secondary variable with the latter having a saddle

point system, i.e., B(2 ) is indefinite. No solution is found without further con-

straints.

In the case of a B(2) which is indefinite and the desire is a constrained max-

imization of yp (constrained minimization is discussed in section 5.0), a solution

exists if the primary response system yields a maximum at the center, ie., B) is

negative definite. Likewise, a constrained minimization is possible if the primary

system yields a minimum at the center (constrained maximizatLion is discussed in

section 5.0). For the former case, consider the matrix of second partial derivativt

1(x) - 2(B( 1 ) - j B(2)). To make M(x) negative definite, we require that the

quadratic form

q a B(2) + (- B A]

be positive definite. Again, we make use of the fact that there exists a non-
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singular matrix R for which

R' B(2) R - diag (XA1' "' Ak)
ht

R (- B() R- I V

the roles of BM and B (2) having been reversed. The X's are the elgenvalues of

the matrix

(-A) , (2) (-4)
S D1 P B PD 1 D

where P is the orthogonal matrix for which

P - (l) P - D1

and D1 -h) contains reciprocals of the square roots of eigenvalues of - (1)

Letting u - Rv, we have

q - v' (p diag (XA, ... , A k) + Ik) "

F The values of U required to Insure a local maximum on yp are those for which

A Xt > -l (t - 1,2,...,k) and, as a result, are the values of U to employ in (2.3).

From the definition of S* and since B(2) is indefinite, the signs of the A's will

be mixed. Thus, the appropriate values of u to use are given by the inequality

cI
> > (4.2)

1 k

Again, a plot of y. against u in the working region of v, is very revealing.

Figure 4.1 indicates the appearance of this plot. In this case, the asymptotes will

not be at P - XA but rather at V -- (i - 1,2,...,k), where a solution to equa-

tion (2.3) does not exist. To show this, we first consider

r
(1) p B(2), (_ )k j3(2) +i (_

Thus, we have
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Thus, if P IS* + 11 0 and thus IB(l) - B ( O.

The first derivative Y a is negative in the working region of p, i.e., in the

region given by equation (4.2), for we can write, by combining equations (2.13)

and (2.14)

(2)' s(2)((1) +(2) (2) (2)
" ( + 2xs2 )(B )B + 2B -X)

The derivative cannot be other than negative in this region since B(1) - B (2)

is negative definite andS(2) + 2B (2))x can only be zero when o is infinite.

Again, the methodology involves choosing values of p, this time in the region

given by equation (4.2), generating x values from (2.3), computing ya and y and

plotting graphs similar to those in Figures (3.1) and (3.2) to describe the dual

response system in the experimental region and using these plots to arrive at ap-

propriate operating Conditions.

If B(1) is positive definite, operating conditions can be found which minimize

for specific values of ys. The procedure involves using values of P in equation

(2.3) for which u A, ' 1 (i-l,2,...,k) where again the A's are eigenvalues of the

matrix S as given in (4.1). In this case, P is the orthogonal matrix for which

!~ B'(l)P .D.

So the range of p to use in this case is given by

1 _(4.3)

11 Ik
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5.0 Double Constraint Exploration

ti the previous sections, we have considered the exploration of the dual

respoose system with the goal of finding conditions that optimise the primary

responpe with £ aimple constraint, namely, that the secondary response takes

so a specific value. However, the experimenter will encounter many situations

where mathemAtically the solution to valid but the recomended operating con-

dittos@ . fall outside the region of the experiment that generated the estimated

response functions and thus, w.old not be considered reliable, In the example

given in section 3.1, the method would not have been successful If the operating

eonditions given In Figure 3.1 for va " 65 had fallen outside the experimental

region.

It "wems that an appropriate procedure to follow would be to apply the

additional e.nntraint R 2 (using x o 0 as the origin in the design vari--adtoa nSritL-tI x --

sbles) and eploy the procedure where K is mall enough to insure a solution inside

the region of the designed experiment.

In fact, if a1(2) is Lndefinite, there are cases when such a procedure is

necessary. The solution to the problem as it has now been stated is obtained by

employing, again, the methoJ of La~rangian multipliers. Hence, we consider the

function

L. o y p - a(ya - k) - x'X - R2 .

The equation implies that

1 -I 312) - v• ) _x (p b 1 - (b_11. (5.2)

Perhaps the most effective method for solving (5.2) is to choose values of U

and y directly, making appropriate choices to insure that the values of x repre-

sent operating conditions vhere the maximum (ur minimum) on yp is achieved. For
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a given value of U, the matrix of second partials

M() - 2(S( 1 ) - u B(2) - y I)

is made negative definite (and thus, a local maximum achieved) by selecting

Y > X where A. is the largest elgenvalue of the matrix - u jSee

Draper [ 3 ]]. Values of y < AI should be taken for local minima. In fact.

for u = 0, the problem reduces to Ridge Analysis where the locus of coordinates

generated by (5,2) represents points of absolute maxima on v without the con-
p

straint on yo

The choice of u essentially defines the direction taken as one moves away

from x O. Again, various two dimensional plots describe the dual response

system. This will become apparent in the following section.

5.1 EIm•le_

Two responses were fit to a set of experimental data involvinp k = 2 inde-

pendent variables. The two response functions we.:e found to he the following:

yp 53.69 + 7.26x- 10.33x + 7.22x + 6.43x + 1I.36x1 X1..
TP12 1 2

a ~~~2 - .62-720
y 81.17 - .Olx -8.61xsa 1 2 1 2 7.202 1 2o

The method can be used for any value of k, the number of independent variables.

The above example was used so that the response contours can be drawn for illu-

strative purposes. The center of the primary and secondary systems are given by

-3.7197 -4391X M 4 .08 1 Is o W - 0 3
B1 has etgenvalues given by 12.5187 and 1.1313 and thus, x represents a

point off minimum response. The eigenvalues of B(2) are -9.9063 and 2.5463 and so

the secondary response system is hyperbolic in nature. Figure 5.1 shows the dual

response system. Of course, in this example, it is ipossible to find conditions
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which maximize yp subject to specific values of Ys" However, by applying the

additional restriction that x'x R R2 equation (5.2) can be used with different

values of m and various values of y exceeding the largest sigenvalue of

a(1) - ,(2) to generate values of x satisfying the constraints and giving

rise to optimal operating conditions. The two dimensional plots In Figures

(5.2), (5.3) and (5.4) are helpful In providing an exploration of the syste

and providing a recommendation for future operating conditions.

Suppose for example that we wish to find conditions In the experimental
A A

region which maximize yp but we also require 84 • v8 88. Figures (5.2) and

(5.3) indicate 'candidates' for operating conditions. The u a 0 line represents

maximization of y subject only to x'x a R2. The line u - -2 at R -. 1.f appears

to be the proper choice. Figure 5.4 given the values of the coordinates, x, - 0.85

and x2 - -0.6, with the estimated responses at these conditions given from Figures

(5.2) and (5.3) as

A
7p 67, Yo -87.8
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OPTIMIZATION OF INPROCESS STORAGE DEVICES
USING A GERT III-Q SIMULATION

Ray L. Peterson
US Army Munitions Command,

Frankford Arsenal,
Philadelphia, Pennsylvania

ABSTRACT. The purpose of this paper is to define storage devices, buffers,
to insure continuous operation of the subsystem and optimize output
efficiency for the entire system.

The optimization was achieved by using the simulation program GERT
III-Q. A Delphi type method of gathering data was used to obtain imputs
for this event type simulation.

The study shows that buffers contribute greatly to the total effi-
* ciency of the entire system by smoothing out the discontinuities in

production due to failures. The optimum buffer size was approximately
twenty minutes and the initial level should be full at the beginntng
of each day to maximize efficiency.

INTRODUCTION. During the Korean conflict there.was little change in
ammunition or manufacturing methods from those used in World War II and
no real process changes of significance were made during the post-
Korean period. New weapon systems gradually began to come into exis-
tance: the M-60 machine gun, the M7l4 rifle, the M-16 rifle, and the
minigun. These weapons required two.new cartridges, the 7.62mm NATO
and the 5.56mm rounds. Thus, when the Vietnam conflict began to involve
more United States' forces, the World War II-Small Caliber Ammunition
Production Sase was once agaln called upon 'to-mass produce am=.unition.
The reactivating of existing production lines was'complicated by the
need to convert the equipment to manufacture anew family of small
caliber ammuoition. The conversion program was both costly and time-
consumirg. The age and condition of the Acuipment, coupled with the
required modifications, dictated'a major rebuild prograi. This required
extensive retro-engineering and in-house manUfacture of.conversion and
repair parts.

As a result of th'e increased requirement for Vietnam, it became
apparent that improvement in production aquipment was'necessary. The
slow production of cartridges was not .ompa ible.wltn.t he'rapid-fire
weapon concept currently gaining favory Several studies were initiared
to determine methods and ma, of impidvipg and modernizing cartridge
production. Results Verk prmifng. "The.sarch'foriAodern technolcly
of the small caliber a--unition. piroducti6n waý lidtlated in mid 1968'
at Frankford Arsenal: when the .United States *Army Maierial Command imple-
mented a program whichestablished the' gal' Caliber Ammunition Modern-

1 See Footnotes at 'the end of.this article'.:
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Ization Program (SCAMP). The present manufacturing techniques employed
to produce small caliber ammunition were outdated due to the slow pro-
duction, high costs, and the large storage areas required between
operations. By providing a continuous process flow of raw materials
and finished products, SCAMP intends to show its wuperiority over the
batch process presently in use.

Due to the continuous flow nature of the SCAMP process, it readily
lends itself toward an event type simulation. The following is a block
diagram of the SCAMP process as applied to the 5.56mm production line.
(Mod A)

The SCAMP process for the Mod A line is actually broken down into
five discrete processes (submodules). Therefore, it can be easily
seen that a breakdown in any one of the five submodules causes a disrup-
tion in the flow of the others. However, if an inprocess storage area
was set aside for each of the submodules, a source to achieve continuous
operation of the entire process could be provided. From this point on,
the storage area will be referred. to as the buffer level. Modifying
the first flow chart, Figure 1, to include these buffer levels, it now
takes on the following appearance (Figure 2).

The question that now presents itself is: What should be the
optimal size and initial level of the buffer to insure continuous
operation of the subsystem and optimize output efficiency?

The purpose of this paper is to develop a decision risk-analysis
for the Mod A line to be utilized by the SCAMP management, and to show
the effectiveness of GERT III-Q as applied to operations research type
problems.

METHODOLOGY. In order to find the optimal buffer level in the Mod A
line, an estimate efficiencies of the subsystems, a GERT III-Q simula-
tion was chosen. (See Appendix A for a description of GERT III-Q).

Like any simulation, GERT III-Q needs input data from each submodule.
The types of data needed are: the estimated availabilities for each sub-
module, the estimated repair times for each submodule, and the operating
speed of the Mod A line. Since Mod A is a new process, there is noýex-
isting data available on the reliability of the submodule, so the data
was gathered subjectively using a Delphi type 3 method.

This judgemental data, subjective ratings, were obtained from a
series of Delphi type questionnaires administered to a group of ten ex-
perts from Frankford Arsenal and Government contractors. Three rounds of
questionnaires requiring the same ratings were administered. In the
second and third rounds, the experts were asked to reconsider their own
ratings in the previous round in the light of the feedback informaLion
summarizing the groups ratings in the previous round. This mean was used
to represent the concensus among the experts. (AppendixB isa' sample
questionnaire).
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Figure 3 11 the data in reduced form that was obtained from the
questionnaires.

Using the data from Figure 3, a series of 16 simulations were made
using the mean values of the estimated availabilities with several differ-
ent buffer sizes and levels. The size of the buffer is measured in minutes
of production that it is capable of holding. The series was repeated
for the three sigma limits of the availabilities. The upper bound on the
availabilities became 100% for each submodule, which is a trivial case so
the upper limit was changed to 95% available for a realistic performance.

Figure 4 shows the combinations of the simulations and their results
which were carried out using the GERT III-Q program and exercised on the
CDC-6400. Each simulation represents ten days production and the average
efficiency for this period is calculated. Where average efficiency is
defined as: the number of good pieces out divided by the number of goodpieces possible. (Appendix C is a sample of the type output of this model).

Figures 4, 5, and 6 are graphs plotting average efficiency in percent
versus the buffer sizes in minutes.

The differences between Figures 4, 5, and 6 are: Figure 4 represents
the simulation with the mean values of the availabilities for the submodule,
Figure 5 represents the simulation with the low values of the availabilities
for the submodules, and Figure 6 represents the simulation for the 95%
availabilities for the submodules.

The differences between the graphs appears to be that the curves tend
not to bend as sharply the higher the availability. Therefore, that tends
to show that the size of the buffer is not as critical to efficiency at
the higher availabilities. For example, the change in efficiency from a ten-
minute to a twenty-minute buffer, the low availability value is approxi-
mately 7%, while the change in the 95% availabilities is approximately 2%.

Another important observation made from the graphs is the full buffer,
independent of the sizes or the availabilities of the submodules is more
efficient. This can be observed in Figures 4, 5, and 6.

The third and most important observation made is the optimal buffer
size. From the graphs it can be seen that the'curves level off after

approaching the twenty minute size. So the optimum buffer size As approxi-
mately twenty minutes, since at this point the percentage increase in
efficiency decreases to almost zero, while the costs (time, space, and
money) of making a larger buffer is going up.

Some of the assumptions of this study are: when the submodule is
available it can be run at 1200 pieces per minute, no unacceptable pieces
are formed by the submodules (which would decrease efficiency), the number
of pieces that balk (overflow from a buffer) is not relevant to the optimum
size, and that the repair times fit a Beta distribution around the mean
for each submodule.
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TABLE OF ESTIMATED AVAILABILITIES

TYPE OF X or AVERAGE Y or STANDARD DEVIATION
SUBMODULE ESTIMATED of ESTIMATED AVAIL-

AVAILABILITIES ABILITIES
in PER-CENT

CASE 78.0 8.1

BULLET 85.0 8.1

PRIMER INSERT 93.5 2.4

LOAD & ASSEMBLE 90.5 5.5

PACKAGING 94.0 2.1

TABLE OF ESTIMATED REPAIR TIMES

TYPE OF H or AVERAGE N or STANDARD DEVIATION
SUBMODULE ESTIMATED of ESTIMATED REPAIR

REPAIR TIMES TIRES
in PER-CENT

CASE 15.0 5.3

BULLET 11.5 4.1

PRIMER INSERT 8.0 3.5

LOAD & ASSEMBLE 15.0 4.7

PACKAGING 10.0 4.7

FIGURE 3
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TABLE LISTING SIMULATIONS AND RESULTS

BUFFER SIZE in MINUTES, USING USING USING
and LEVEL at BEGINNING X X-3Y 957%
of EACH DAY EFFICIENCIES IN PER-CENT

10/full 70.7 46.2 88;7

10/half-full 69.5 45.4 87.6

10/empty 66.5 42.0 86.5

15/full 76.4 49.9 92.7

15/half-full 74.3 48.9 91.7

15/empty 70.3 45.1 88.2

20/full 78.7 51.7 94.3

20/half-full 76.2 50.4 93.A

20/empty 71.9 46.3 88.8

30/full 79.8 52.7 95.2

30/half-full 77.4 51.1 94.5

30/empty 72.9 46.7 89.2

40/full 80.0 53.0 95.3

40/half-full 77.6 51.5 94.7

40/empty 73.1 47.0 89.5

Infinite/empty 73.5 48.1 89.7

FIGURE 4.
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CONCLUSIONS. In summary, the conclusions of this paper are:

1. The optimal buffer level is approximately twenty minutes, indep-
endent of availabilities.

2. The optimal buffer level at the beginning of each day is full,
independent of availabilities and the size of the buffer.

3. The higher the availabilities of the submodules, the less critical
buffer size is to efficiency.
Other possible follow-up studies are: what effect does defective component
parts have on the buffer; what effect would it have on efficiency to change
the modular array of the submodules; the results should be updated when
better repair times, availabilities and their distributions become available.

APPENDIX A
GERT III-Q

The GERT III-Q program performs a simulation of a network by
advancing time from event to event (event simulation). The events and

Ssymbols associated with GERT III-Q network are:

* 1) Start of the simulation

2) End of an activity--

3) Completion of a simulation of the network - -.. . ..

4) Storage capability or queue node e---

The start event causes all source nodes to be realized and schedules
the activities that emanate from the source nodes according to the output
type of the source node. The output type for all nodes is either Deter-
ministic or Probabilistic. In the former case, all activities starting
from the node are scheduled. If an activity is completed that preceeds a

* Q-node, there are two things that can occur: the activity following the
Q-node can be initiated; or the number in the queue can be increased by
one. The Q-node can serve only one item at a time. If the node is in the
process of serving an item, then the number in the queue increases by one.

Scheduling an activity means that an "end of activity" is caused to
occur at some time in the future. The simulation proceeds from event to
event until the simulation of the network is completed.

The above process is then repeated until the number of simulations of
the network is completed. 5

The following, Figure 7, is the nodal network of the Mod A production
line used in the simulation. This figure also shows how it correlates to
the block diagrams of the 5.56mm production line shown in the introduction.
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APPENDIX B
MOD A DECISION PROBLEM

NAME

ORGANIZATION AND/OR DEPARTMENT

NOTE: The supplementary material titled "Definition of Terms" has been
distributed for your easy reference in completing this questionnaire.

1. Frankford Arsenal has these objectives in modernizing its submodule
system:

1) minimize system component scrap rate
2) maximize system production rate

Rate the importance of these objectives relative to each other. Each rating
must lie bet-jeen 0 and 100, and must be a multiple of 5. The sum of the
ratings must be 100. Note that a higher rating represents a more important
objective.

Objective Priority Rating

Minimize Component Scrap

M&ximize Production Rate

TOTAL 100

2. The effectiveness of Mod-A will be traceable to the quality of certain
submodules. Consider the five submodules.

1) CASE

2) BULLET _

3) PRIMER INSERT

4) LOAD & ASSEMBLE

"5) PACKAGING _

Rate the submodules relative to how they meet Frankford's objectives.
The ratings must lie between 1 and 5. There is no other constraint.

3. Which one of the following would you rate the most important in
maximizing the production rate.

1) in-process storage devices (buffers)
2) batch system
3) through process

Rate the above relative to Frankford's objectives. The ratings
must lie between 0 and 7. The sum must add to 7.
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4. If there is to be a buffer between each of the subLdules, what
size do you feel it should be to meet Frankford's objective?

Give your answer in minutes of producing 1200 pieces per minute.
J The answer should be in intervals of 5 minutes. Infinite is a valid

answer.

minutes

5. Give estimates to the following questions oased on the "2.5 million
run" phase of Mod A.

1) Based on two shifts a day five days a week. How many minutes do
you feel the submodule will be available in an eight hour day? There are
480 minutes possible.

CASE minutes

BULLET

PRIMER INSERT

LOAD & ASSEMBLE

PACKAGING

2) In the 480, how many failures do you expect?

_... ..... ....._(number)

3) What type failures do you expect to occur most often? How
many of each do you expect in two (2) eight hour shifts? (number)

_ _ _ (a) -Rotary failure (degrading type)

(b) Serial failure (catastrophic type)

6. If the failure is rotary (degrading), how long do you think it will
take to repair one such failure, to include purge and start up time.
Convert time estimates to minutes.

minutes

7. What would you consider to be an estimate of the efficiency of Mod A
during the "2.5 million" run?

Rating should be given in percent and be in multiples of 5.
Note efficiency is defined as good pieces out divided by good pieces

in, or ?/1200 ppm.
where (?) represents good pieces out per minute.
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8. How many pieces of component scrap do you expect in an eight hour
shift given the submodule is producing 1200 per minute, when it is
producing. ,

CASE . .(scrap rounds)

BULLET

"PRIMER INSERT

LOAD & ASSEMBLE
PACKAGING

9. How many minutes of an eight hour shift do you expect the submodule
to be down. There are 480 minutes in an eight hour shift.

CASE minutes

BULLET

PRIMER INSERT

LOAD & ASSEMBLE

PACKAGING

10. If the failure is serial (catastrophic), how long do you think it
will take to repair one such failure, to include puzge and start up
time. Convert time estimates to minutes.

minutes

-121
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BIASED SAMPLES FOR TESTING

C John Fargher, Jr.

U. S. Army Munitions Command
Frankford Arsenal

Philadelphia, Pennsylvania

INTRODUCTION. The basic tools of the reliability and quality con-
trol engineer are attribute and variables sampling inspection plans.
These tools, as useful as they may be, have presented a major obstacle
in the automation of many complex processes. These obstacles are:

1. Parts are pulled for samples and cannot be returned to the
process flow.

2. The sample size required to maintain consumer and producer
risk is too large to be handled economically on off-line
gaging.

Because of these obstacles, costs for inspection is not decreasing com-mensurate to the drop in production costs realized through automation.

AUTOMATED INSPECTION. The area of automatic quality assurance en-
compasses and is interfaced with all phases of the production process. 4
With the advent of more sophisticated and complex production systems, on
line collection of data is becoming commonplace. Inspections are per-
iormed 100% on a go-no go basis (attributes). Because of the high pro-
duction rates, variables data is unobtainable. Current methods of on-line*
automated inspection are limited to simple feedback arrangements in
which limited switches are activated when a production item enters the
inspection station. The limit switch arrangement is usually a one sided
test, either a dimension is too large or within tolerance, or too small
or within tolerance. Two sided tests are accomplished on two separate
Automated Inspection Stations. The general scheme for inspection by
attributes (accept or reject) is shown in Figure 1 for one inspection
station on line.

S' . I ~Computer I.'

(attributtes)(gono go)'

' Inn t ,,__A __Ie°
t -... . nS peation Pie " es

LCCalibration ARejects

Figure 1. Diagram of Automated Inspection

Preceding page blank -727-
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As can be seen from Figure 1., there are really two basic elements.
1. An on-line computer system
2. An inspection station with calibration
The operating aspects of the calibration test set and calibration

error are discussed in detail in Rusinoff's book1 and the Proceedings of
the Instrument Society of America (ISA): 19692. There are two outputs
from the automated inspection, accepted and rejected pieces. The accepted
pieces continue through the production flow. Rejected pieces are normally
not reworked but are discarded. Pieces from the process flow are pulledfor samples somewhere after the inspection station for variables control
charting and to check on the operation of the inspection station. Figure
2 illustrates the general scheme for 100% on-line inspection and feed-
back from off-line gaging.

On line

Computer Vnriables.

r AutumaLed
InputI Inspeetion Production Flos

.n StaLion -n--SamrlerSPiecesSale.....
I I

LA Rejects

Figure 2. Diagram of Automated Inspection with off-line gaging of Pro-
duction Flow.

The automated inspection station is considered to have several to
many sensors for quality assurance measurement. Each inspection has a
probability of accepting "out of tolerance" pieces, 8, & rejecting
"in tolerance" pieces, a. An operating characteristic curve for each
inspection is illustrated in Figure 3.

Probability (accepting/out of tolerance) - B
Probability (rejecting/out of tolerance) - 1-8

1Rusinoff, S. E., Automation in Practice, Chicago, Ill., American
Technical Society, 1957.

2 Williams, T.J., & Ryan, RoM., Progress in Direct Digital Control,
Pittsburgh, Pa., Instrument Society of America, 1969.
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1a 1

%1-V)

fS -r -

"4. ,., ,.

Percent Defect Percent Defect

Figure 3. Operating Characteristic Curves for Individual Inspections

Probability (rejecting/in tolerance) - a.
Probability (accepting/in tolerance) - 1-*

If several classes of defects are inspected for writhin an inspec-
tion station, each defect (or defect class) in judged independently of
all other defects (or defect classes). This means that screening may
be in affect for certain defects (classes) while at the same time sampl-ing Py be in effect for other defects (classes) r t the fae station.

Inspection may be set up so that the results are cumulative over
all stations for a siven defect class or so that results at each cta-
tion are consider e cti(oredefect cas) is jodned indout that then-

opection results and judgments therefore must be individual defects for
which the AQL or AOQL in dpecified. If inspection is stopped where the
results are cumulative over the stations, all units which have not
rtoched the last inspection station must be repoved and/or screened and

presented as resubmitted material.
From this, considering all inspections are independent, the pro-

babilities for the automated inspection station become

n
111- w (I- 8 i) = 8*

where 0* is the probability of accepting an "out of tolerance" piece, and

n

i-lz
1- w (1- a1 ) = u*

-729-
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whtue , is the probability of rejecting an "in tolerance" piece. The
j operating characteristic curves would be similar to Figure 3 but with

less of a gradiant (slope).
Now, a new sampling technique is introduced, sampling from the pro-

ductiLon flow and usi1n all of the rejects as samples. Figure 4 illus-
trates this technique.

S~On line
S... • J Computer

(variables)
A. Automated
r' lnspection I accepted Production Flow

Station 'pieces Sampler

rejects

Off-Line[Gagin .... ..

Figure 4. Diagram of Automated Inspection with off-line Gaging of accepted
and rejected production flow.

The advantages offered by this sampling technique are:
1. Calibration of the Automated Inspection Station is checked

without the use of masters.
2. Fewer "in tolerance" pieces needed for the sample.

Because of the smaller sample of "good" pieces, fewer pieces are lost
from the production flow, fewer voids are introduced, and a greater
produccion efficiency results. Also, a periodic check on calibration
of the Automated Inspection Station is obtained without losing produc-
0tion time for the master gage. As this topic is further researched,
more advantages should be found. This makes sense as "rejects" should
tell more about the process than "good" pieces.

CONTROL OF PROCESS AND ON-LINE INSPECTION. An example of a typi-
cal characteristic (dimension) probability density function is given
in the left hand side of Figure 5. The right hand side of Figure 5
illustrates a typical reject population. The normalized probability
density function of the accepted population, Figure 5, has the area
under the acceptance region of

acc l-x-p+8
ace l-a+270-p
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S4Jz 0

WU

Figure 5. Probability Densit Fu on of Prod t Characteristic,
Showing Accept a•nd ...Reject-,Population•

-731-

, , , ~ i i II/



where p is the percent defective divided by 100, and the area under
the rejection region of

rej B
acc l-u.+28-p

The total area under the accepted population sums to 1.
The rejected normalized probability density function, Figure 5, has

an area in the acceptance region of

ac cc r a --S:• • aCrej=

where a is the percentage of good pieces rejected, 8 is the percentage
of bad pieces that are accepted and p is the percent defective (area
to the right of production limit).
The area in the reject region is

rej -L
rej a+p-0

The total a6a of the reject population also sums to 1.
Looking at the reject population, given a - 1/1,000 = rejected "good"

pieces, B - 1/10,000 - accepted "bad" pieces, p-=2.

Percentage of rejected pieces = p-a-O= 1Z + .1Z-0.01Z

l*.09Z

The percentage of good pieces in the reject population is

- 1re, 0  1 .S•rej acc - - =9.17Z

I + .1 .01 1.09

rej - 1 - .01 .99 90.83%
1 + .1 - .01 1.09 100.00%

The signal from the on-line inspection station to the reject station
can be characterized by a binary code, Z,

W 1, y> X

t0 otherwise,

where X is the production limit. The value for y is given by
P

y - X+C.
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where X is the actual measurement and c is the srror term associated
with gage ,.oise. This error term is assumed to be an ensemble of error

/' terus that is described by a Gaussian probability density function. A
priori probability of the parameter y is given by

f(v)- exp (- )_
2

where X is the mean value of the ensemble and a is its variance.

The probability density function for the reject population is found,
using Bayes formula,

fxz (X,Z-l)f xz (x, i) f z (Z-1)

IL f Ip jX(ylX) f 1(X)dy

ffXx (Y(x) f (x)dydx

-- , y L2l (X 2)d

(xpS "--- exp 2a

px

S~-733-
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c C C

2_ xp-x
012-7 aX 2oX 2

A~~ ,,>C1 J .X)1ir dx
OX 1z

But the denominator of this final expression is one minus a func-

tion of the chosen values of aY2, az2, U, X but not on X. In the

analysis of the probability density function, 1 - K(aX2 , az 2 , X is

only a scale factor and will be signified by K,

fexp forX x
2

"v-,, w Kx a 20X2 .frx-.-

f(XIZ-l) exp ( - ) for X
2 2• K aX 2aX2 , P

0, for X .

Therefore

2 x 2
fI (XI Z-1)- exp -- ex~p (-L- ) dto

(Xp-X)/ly

The mode of the distribution can be found by setting the partial of
f (XIZ - 1) with respect to X equal to zero and solving

2 p3fXy> -X . ... etp 2 --
al P k OX 2 2ap 2 p -X)/ ' dt

+ exp (X 2 P)X- 2

kay 2xy2 2ry2

Now that we have the probability density function, the mean can
be found from
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m a{ ~ R X~ -M e() aX

S-X)I -) dt dx.

It can be shown that the function exists in closed form whenever 7X,

ay ,•.and X are chosen. Likewise, the tolerance can be found such

that

1LCL 2 2
LX-- U) f exp t)td

2cr (Xp-X)ICy

2aX2 
2

-xp f0 (Ip -X)/o ( - dt dX 1-- k2a2 (Xp-X)lay

P[rLCLX<RUCL]- 1-

This can be used for calculating the range on K (See Duncan,,Table E2,
Page 874) and the R value for the range chart, where P( <R< cL)= .50.

To obtain a cell height for the X and Kolmogorov-Smirnov goodness
of fit test, the function is integrated from X to X+4X for each cell
"interval, AX

2
r exp( f ) - dtdX, 1-1,2 1

2aX

X O (Xp-X)/la

xi p y
for n cells. AX should be chosen to assure that the interval is suffl-
ciently large to allow at least 5 counts per cell whenever the statisti-
cal tests are run on actual data.

i -735-
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Once the "reject inspection plan" is in effect, ie. p, X and range
charts are being kept, tests of trends on the recorded values should
be implemented to test for trends in the measurement,

CONCLUSIONS. Application of this technique should be simulated
before actually applying it to a process to check for sensitivity to

.. the process and inspection parameters as opposed to the sampling plans
nov in effect.

-
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METHODS TO EXTEND THE UTILITY OF LINEAR
DISCRIMINANT ANALYSIS*

° CPT Lawrence E. Larsen

Walter Reed Army !nstlcute of Research
Div~sion cf NEu-tpsychiatry
Dept. of Microwave Research

Walter Reed Army Medical Center
Washington, D. C. -

ABSTRACT

When attempting to apply multiple group discriminant analysis in the
setting of unequal population variance/covariance matrices, we propose a
method which may improve classification success. The method is based on
pre-clustering the groups according to similarity of their sample disper-
sion matrices. When such clustering is possible, a sequential discrimina-
tion of the groups in each cluster may allow substantially lower error
rates than a straightforward discrimination of the groups in one shot, due
to more appropriate pooling. This proposition is illustrated with data
taken from an EEG (multiple group) pattern recognition problem where error
rate estimates (unbiased) were impressively improved with the strategy of
a layered decision process according to the above principles. Discussion
emphasizes the role of components analysis of the separate, sample disper-
sions to direct the clustering between groups, and the effect of segmenta-
tion on the "common" variance/covariance matrix at each layer.

In previous studies (Larsen & Walter, 1969; Larsen & Walter, 1970) a
method described as "the two stage machine" was employed to improve classi-'
fication success in a testing data set (Larsen et al., 1971). It was based
on the idea of a layered decision process aimed at first discrimziating two
aggregates of 87oups followed by a later discrimination for the groups with-
in each aggregate taken separately. The aggregates of groups were determined
on the basis of cross-group clustering in a reduced discriminant space of two
dimensions, This communication reports furthet studies on a. possible theore-
tical basis for the efficacy of the two-stage machine as well as a means to
determine aggregate structure and when the technique may be profitably employed.

*This paper was presented at the Seventeenth Conference on the Design
of Experiments in Army Research, Development and Testing.
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ME•HODS TO EXTEND THE UTILITY OF LINEAR
DISCRIMINANT ANALYSIS*

CPT Lawrence E. Larsen
Walter Reed Army Institute of Research

Division of Neuropsychiatry
Dept. of Microwave Research

Walter Reed Army Medical Center
Washington, D. C.

ABSTRACT

When attempting to apply multiple group discriminant analysis in the
setting of unequal population variance/covariance matrices, we propose a
method which may.improve classification success. The method is based on
pre-clustering the groups according to similarity of their sample disper-
sion matrices. When such clustering is possible, a sequential discrimina-
tion of the groups in each cluster may allow substantially lower error
rates than a straightforward discrimination of the groups in one shot, due
to more appropriate pooling. This proposition is illustrated with data
taken from an EEG (multiple group) pattern recognition problem where error
rate estimates (unbiased) were impressively improved with the strategy of
a layered decision process according to the above principles. Discussion
emphasizes the role of components analysis of the separate, sample disper-
sions to direct the clustering between groups, and the effect of segmenta-
tion on the "common" variance/covariance matrix at each layer.

In previous istudies (Larsen & Walter, 1969; Larsen & Walter, 1970) a
method described as "the two stage machine" was employed to impzove classi-
fication success in a testing data set (Larsen et al., 1971). It was based
on the idea of a layered decision process aimed a-t first discriminating two
aggregates of groups followed by a later discrimination for the groups with-
in~each aggregate taken separately. The aggregates of groups were determinedon the basis of cross-group clustering in a reduced discriminant space of twodimensions. This communication reports further studies on a. possible theore-
tical basis for the efficacy of the two-stage machine as well as a means to

determine aggregate structure and when the technique may be profitably employed.

*This paper was presented at the Seventeenth Conference on the Design
of Experiments in Army Research, Development and Testin.
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It should be noted' that when all the assumptions utderlying linear
discriminant analysis are met, there cannot be any advatage to segmenting a
multiple group discrimination problem. The relevant assumption underlying
classical linear discriminant analysis is that the m gr6upa being discrimi-
nated are samples from m Gaussian propulations with eq1l variance/covariance
(dispersion) matrices. Any differences are limited tounequal mean Vectors.
(The mean vector is an cidered one dimensional array composed of within-
group means for each variate on which the measurement space constructed. The
dispersion matrix is a symmetrical two dimensional array of numbers contain-
Ing the variances for each variate in the main diagonal and all possible
pair-wise covariances in the off diagonal elements.) The dispersion matrix
and mean vector occupy importance because these two parameters completely
define a multivariate normal distribution. This statement is analogous to
the fact that the distribution of a single Gaussian variate is determined by
the population mean and variance. The assumption of equal within-groups
covariance matrices allows for optimal discrimination (i.e., minimal losses
when costs of misclassification are qqual) with linear boundaries. When
this assumption is violated, the optimal boundary is no longer linear; rather,
the optimal boundary (in general) is quadratic. The linear boundary obtained
by EID 07H (Dixon, 1968) in such a setting is, therefore, not the optimal
boundary nor is it, in general, even the beat possible linear boundary.
This results from the fact that the program pools across the individual groups
to estimate the so-called commou covariance matrix (ccm). To the extent that
the assumption of equal dispersion matrices is true in the population sense,
such a pooling (or "averaging" of within-group dispersions) makes for a
better estimate of the population dispersion matrix than any one of the in-
dividual within-groups dispersion matrices taken alone. When this assumption
is violated, the resulting ccm does a variable amount of violence to the
separate population values. The extent of misrepresentation depends upon
how much the separate population dispersions differ.

One way to find the best linear boundary, or at least a better boundary
than the one determined by simple pooling, is to weigh the estimated within-
groups dispersion matrices prior to pooling (Anderson & Bahadur, 1962).
While this approach has generality, the determination of weights necessary
to find the best linear boundary ýin a multiple group discrimination with
unequal within-group dispersions) is . at always a simple; exercise.

In certain settings, another approach proposed by Rao (1966) is possible.
The required conditions are that the differences in dispersion are arranged
in the test space such that dispersions are homogeneous within either of two
subsets, but heterogeneous between subsets. In this case, the optimal bound-
ary betems subsets is quadratic, but the optimal boundary within subsets is
linear; thus, two "common" covariance matrices result, each one common only
to the groups within the subset. This framework is the one which we believe
underlies the efficacy of the two stage machine.1

'Note that while a quadratic boundary is, in general, optimal for the
separation of such subsets, it may not perform appreciably better than a
linear one if the subsets do not extensively overlap in measurement space.
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Rao's formulation is a tractable specialization of the more likely
situation that the subsets have greater similarity of dispersion vtthin
subsets than across subsets. This presents additional measurement pro-
blems since testing equality of dispersion is simpler than indexing simil-
arity due to the variety of ways different vithin-group dispersions may
still be (colloquially) similar. At this point, it may be useful to note
that one cannot reasonably use the failure of tests for homogeneity of
dispersion to judge similarity of non-equality dispersions. Such a proce-
dure would only indicate the violence with which we reject the hypothesis
of equality. It is not reasonably extendable to the assertion that strength
of rejection may be used to group similar dispersions by strength of rejec-
tion of equality to one or a set of "standard" dispersion matrices. Such
a statement is analogous to the fact that the significance of Wilks' lambda
cannot be used to quantitatively judge group separation. Rather, a statis-
tic such as Mahalonbots' distance is required.

When covariance matrices are examined for equality, all parameters of
description (the elements in the main diagonal and upper, or lower, triangle)
resolve to a single, dichotomous, dimension-equality or nonequality. When
dispersions differ, it seems reasonable to seek some summary indices rather
than an exhaustive examination of elements in the main diagonal and upper
triangle. Therefore, we propose to parameterize the dispersions in a way
which capitalizes on geometric colcepts (as an interpretive aid) and not
to consolidate these measures, but rather to consider them separately
with some empirical guides for determining their relative importance.
Other than size (the volume contained in a given hyper-ellipse of equal
likelihood), which may be measured by generalized variance (determinant of
the dispersion matrix) for dispersions which are equal otherwise, we pro-
pose two indexes of dispersion: shape and orientation. We further propose
that principal components analysis of the estimated within-group dispersion
matrices may provide such a summarization.

Thus, we propose to cluster groups into aggregates on the basis of
greater similarity of dispersion within clusters than between clusters. The

technique may, therefore, be described as cluster seeking subset generation.
The objective is to provide more appropriate pooling at the level of discrim-
ination within the aggregates and to employ either linear or quadratic bound-
aries for discrimination between aggregates depending on earlier considerations.

In the setting of multivariate normal dispersions (with different cen-
troids) which are equal except for rotations of their hyper-ellipses in mea-
surement space, the most extreme dissimilarity would occur when the two major
axes are orthogonal. The effect of pooling in this extreme situation would be
to circularize the ccm. To the extent that the separate dispersions approached
isotrophy, i.e. as the separate dispersions approximate circularity as evi-
denced by equal or near equal eigenvalues, the pooling would be of little harm.SHowever, when the separate dispersions are strongly anisotropic, the poten-

tial error from pooling and consequent ccm circularization becomes more serious.
In this way, anisotropy (i.e., shape) becomes an antecedent for characterizing

* similarity. That is, to the extent that the major axis of the hyper-ellipse
is long relative to the minor axes, then the dispersions may be described, ex-
cept for size, by the orientation (i.e., direction cosines) of the major axis.
Consequently, similarity of dispersion may become similarity of orientation
of major axes when the dispersions are strongly anisotropic.
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If dispersions have been successfully clustered in this fashion, the
effects of unequal size are easily dealt with by translation of the deci-
sion boundary for discrimination either within or between clusters. The
optimal decision rule for discrimination when dispersions differ only in
size is obtainable from the likelihood ratio.

Principal components analysis serves two roles: a determination of
anisotropy by the inequality of the eigenvalues of the within group dispersion
matrices; and description of the orientation of the major axis of the hyper-
ellipse by its direction numbers, which are the elementw of the eigenvector
corresponding to the first eigenvalue.

Principal components analysis consists of a rotational transformation
of co-ordinate axes with the object in mind that variance is maximized along
the new axes. The set of new axes constitute a set of normalized linear
combinations (sum of squares of coefficients equal to unity) of the old co-
ordinates. That is, in the population sense we have a p-dimensional random
vector' in the original co-ordi'ate system

X~(xl, .2X*p)'

whr - x *soxxa
1= x2 ..

where z 11'2 O.Xp are random variates.

The random p-vector has a mean of zero,

E(X) - 0

and a dispersion matrix

E(XX') - [E].

The linear combination is implemented by a p-dimensional column vector
of coefficients o

B - [b 1 ,b 2 , ... b }"

The linear combination is made by the following

U = b1x1 + b2x2+ ... + b x

U B'X

.The transformation B carries the random vector X into a random scalar
variate U. The variance of U is

E(U)2 - E(BX) 2

"- E(B'XX'B)

A random vector is the multivariate analog of the random variate in

univariate statistics.
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Thus, the variance of U depends on the coefficients of the wilbination
and the dispersion matrix in the original coordinate system.

It is these variances, one for each set of coefficients, which are
maximized subject to the condition that

p 2
E bk , 1.0
k-l

and that the sets are mutually orthogonal. That is, the inner products
are zero.

B(i) • *(i) - 0 for i,j -,2,...p

and ifj
or equivalently,

P Mk ( j)bkJ
E b kib - 0 where k indexes variates and i, j index sets of

k-1 coefficients

The column vectors of coefficients which maximize the above variances
are found as the Vectors which are invariant under the linear transformation
[E]. That is, invariant vectors are those which are changed only by a
scalar multiple with the given linear transformation:

[E) B - XB

where A is a scalar constant. The invariant vector(s) are foudd by solving
the following set of homogeneous equations

[EJB - XB

[E]! - AB - 0I - ([Z] - A[I])B - 0

A non-trivial solution exists when the coefficient matrix is singular.
That is, when

It I- Ail -
The values of A which make the determinant zero are found by expanding the
above determinant to produce a polynominal in X,O(X), of degree p. The roots
of *(A)are substituted separately into the coefficient matrix in order to
find the corresponding B. Thus, there are p sets of BMi) i - 1,2,...p
corresponding to the p roots of O(A). Furthermore, under the above conditions,
the variance of composite, scalar variates U(W) - B(i)X can be shown to be
equal to the value of the corresponding root. That is

E(U(i))2 A i
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If the roots of #(A) are ranked in decreasing magnitude, A15 X2> ***>Ap.

The first principal component, B-- , makes the one linear combination with
maximum possible variance. Theayriate values on this coordinate are
covered by the random variate Ul'' with variance of Ale Further, if X is

from a multivariate normal population, the first principal component corre-
sponds to the major axis at the hyperelipse of equal likelihood for the
multivariate "scatter diagram".

Severs: additional features are of interest: 1) the roots of the charac-
teristic poljiominal #(X), are real and non-negative; 2) the p sets of co-
efficients B(i) i - 1,2,...p produce p random variates U(i), i =12,...p
which may constitute a random vector

U " (11(i), U (2),9 ... U(p)}

Similarly, the ordered set of column vectors B(i) may constitute a trans-
formation matrix.

U- [IX

r (. ) 1(2). 1
where [1] B . P

The transformation matrix is non-singular and orthogonal

Iii 0 0, [1115'] - (I] - [B,][B]

It caries the random vector X into the random vector U. This matrix of
normalized eigenvectors is known as a factor pattern matrix when the eigen-
vectors are multiplied by the square root of their corresponding eigenvalues.

112
S[A]- (B][A ]

where

(Al/ 2 ] -

- p
P

Later presentation of the components analysis will be in terms of the factor
pattern matrix since the squared length of the vector will then equal the
corresponding eigenvalue and thus be an analog of variance on the component.

The random vector U in the new p-space has a dispersion matrix given by

E(_UU) - [A]
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where is Ii

,. °•p

That is, the dispersion matrix in the transformed space is diagonal with
the sigenvalues of the characteristic equation down the main diagonal. The
generalized variance is invariant. That is, the determinant of the two dis-
persion matrices are equal:

IA1 -"I
Lastly, the number of non-zero roots to o(N) depends on the rank of [E]. If
(E] is of full rank (rank equal to order) there are p non-zero roots to 0(k).
If the rank, r is less than the order, p, then there are r<p non-zero roots
to #M•); thus, there will be r co-ordinate axes to the new space. This is
one possible route to dismensionality reduction. Another route is to select
the m largest roots of #(X) according to some criterion which most often
operates on the notion that the p-rn smallest roots are either Indistinct (i.e.,
equal or nearly equal) or constitute an empirically unimportant proportion
of the trace.

Other approaches to development of the principal coa.ponents solution in-
clude the following: 1) Pearson approached the problem from the point of view
of fitting an orthogonal subspace of q-dimension to a swarm of n points in
"p-space where q<p. The criterion used was the subspace should minimize the
sums of squares perpendicular distances from the points to the subspace. The
solution is the first q eigenvectors of [E]. 2) Hottelling approached it from
the random vector treatment where the object was to find a dimensionality re-ducing transformation matrix such that the transformed random q-vector is theubet linear predictor of the original random p-vector where q~p. Again, the

solution is the first q eigenvectors of [E]. (See Rao, 1963 for further
development).
SAt this point, let us consider some 2 and 3 dimensional examples 1 with

standardized variates:
Consider the following variance/covariance matrix fS 1 ]

[1.0 :19
[S1]-[R] I1' °'S~0.9 1.0

1In these examples, the variates are standardized (to have mean zero and vari-
ance unity) to simplify the ft&ures and exposition. This has the consequence
of making the covariance and correlation matrices equal. Furthermore, in the
two dimensional examples, the principal component is constrained to make a 450
angle with abscissa, either in quadrant I or II. The fact that unities are in
the main diagonal means that the total variance to be modelled is p where p is
the order of the matrix. In general, the components analysis solution is not
invariant with normalization of variates. Also, distributional properties of
eigenvalues and eigenvectors of correlation matrices are not as well treated
as for the dispersion matrix (see Anderson, 1965).
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the eigenvalues are

A 1.9

A 2 " 0.1

Note that the sum of the eigenvalues equals the sum of the elements of the
main diagonal, i.e., the trace of the matri.x

p p
E A- E where p is the order of -IS].

i-1 J-i jj.

The eigenvectors are

v- [+0.70711,+ 0.70711]';-I IV] v vfv] "[-r -,
v- [-0.70711;+ 0.70711]' L-4

Note that these are normalized

P 2p v - 1.0

i-1

The factor pattern is

(A] - IV] [AA/2]

[A] 0.7071 -0.7071 I•3748 0[A] =0.7071 0.7071] 0 0.3162]

0.9745 -0.223

If we take the columns of [A] as locating two vectors in a two dimensional
test space, we have the following plot: (see Figure 1)

X2

1 0

Major and minor axes of a biait - usa wr with dispersion matrix IS 1 ].
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Note that the sign of a12 determines the quadrant in which the principal

component will be. When 2 is positive, the first component will be in

quadrant 1. When it is negative, the first component will be in quadrant
II. Furthermore, the squared lengths of vectors are equal to the eigen-
values. These, in turn, are proportional to the fraction of total variance
explained on each axis. Given a bivariate normal scatter diagram, the
ellipse encloses la of variance on each axis as generated by the corresponding
(new) composite variate. If the samples were from a bivariate gaussian
population, the first and second components would be the major and minor
axes of any two-dimensional ellipse of equal likelihood. The high positive
correlation (and equal variances) puts the major axis in quadrant I, and
implies a long major axis relative to the minor axis.

We may check the effect of sign on location of the first principal
component by analyzing the following matrix:

[S 1.0 -09 E R2s2" -0.9 1:0o 2

with ES ] for comparison

IsrI 1 1.0 0.91 [R1
1 0.9 1.o0 " li

The corresponding factor patterns are

A 0.975 -0.2231' • 0.975• 0.2231

A2 - 1-0.975 0.2231
S0.975 0.223

The change in sign of covariance (correlation) moves the first principal
component from quadrant I to quadrant II.
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X2

X"

"1.0 .5L'1×!

FIGURE 2
Major and minor axes of a bivariate gaussian swarm with dispersion matrix ,S 2 ].

The effect of change from a high positive covariance (correlation) to an
equally high negative correlation was to rotate the principal components co-
ordinate system 90. The "shape" (ratio of lengths of major and minor axes)
of the bivariate swarm is unchanged. Thus, the sign and values in the first
column of [A] determine the direction of the first principal component In
the test space.

Components analysis also provides information concerning shape of the
test space hyper-ellipse by way of the relative sizes of the eigenvalues. We
noted before that a high correlation, regardless of sign, implies that the
test space has a long major axis relative to its minor axis. However, once
out of the bivariate case, it Is more informative to consider the proportion
of total variance generated or explained by each component as an index of
relative dispersion along that axis. Thus, we can determine something about
shape of the multivariate swarm in measurement space. Consider a third two-
dimensional example:

[S 1 .10 0.'1 [,
[s3] 0 I 1:. 0.Of [R3]
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The direction of its principal component is identical to the one for [Sil.
However, the shape of the ellipse is much rounder than before.

xI

Io

-I x
o| .

-10

FIGURE 3
Major and minor axes of a bivariate gaussian swarm with dispersion matrix [S31.

This is in contrast to S2 where shape was identical to SI. We can summarize

this information in a table or plot of eigenvalues as proportionate contribu-
tion to total dispersion as in fig. 4 and table 1.

% Tr

75

f ~50

0 1 2

FIGURE 4
A plot of the eigenvalues of [S [S2], and [S3] as percentage of the traces.
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° ]e

TASLg I

Elsenvalues for 3 Two-by-Two Dispersion Matrices

•'1 " 1.9 (95Z) )'I" 1.9 (95Z)
Sl: $2:

X2- 0.I (5X) •2" 0.I (5g)

•l•- 1.5 175Z)
s3:

•2 " 0.5 (zss)

' Imt us consider tu• addltlonal examples in three dimensions. 01yen the
r'/' variance/covariance matrix [$6] written in upper triangular form,

/

// 
J 1.0 0.7 0.5i

, IS6] - 1.0 0.9 .- [R6]
: 1.0

we have the following etgenvalues

, )'1 = 2.41 (801),)'2 = 0.526 (I8Z),)'3 = 0.06 (2Z)

° I c ,c

t

1 The factor pattern in

i 1o.8o 4.59 o.o61
[,,41- 1o.97 o.12 -o.19I

,• 10.90 0.40 0.151

!
c , ! • Direction o£ princtpai component and shape of distribution are seen in

S'" I the •est space• as In Figure 5.

-748-

T•

/ /

l'llU•'m I•I• I Pl '!-'•llq 'IP, • •" 'I 5 •,i•, •••i
i



x3 C-

X2

X,

FIGURE 5
Axes of a trivariate normal swarm with dispersion matrix [S4 ].

The relative shape is further illustrated in Figure 6 by plotting the

cum~ulative proportion of total dispersion against the index i.

I~% Tr

75

0 I 2 3

FIGURE 6
A plot of percentual eigenvalues for [S4]
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We form a second variance/covariance matrix by interchanging the third ele-
ment of the second row and the second element of the first row. Thus,

4 1.0 0.9 0.5
Is 5 - 1.0 0.7 - R5 1J

1.0

The eigenvalues are unchanged from before, but the orientation of the
factor ellipse is slightly changed by rotation toward the X axis (See
Figure. 7). In the factor pattern, the first and third rows have been
interchanged.

X3

\ XX

FIGURE 7
Axes of a trivariate normal swarm with dispersion
Matrix [, S] which is related to [S4J by interchanging

elements a23 and 812*
/
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10.90 0.40 0.151

[A 5  - 0.97 0.12 -0.19
0.80 -0.59 0.06

Thus, [S4 ] and [S ] do not differ at all in shape and differ only slightly

in orientation. As a further index of similarity of orientation, we pro-
pose that the "coincidence" between the two principal components (as mea-
sured by the cosine of the angle between them) may be a useful guide when
similarities of orientation are not obvious by inspection of the factor
pattern.
Given the coordinates of each first principal component [I1, £29 "".p]
or specifically

S4 : [0.80, 0.97, 0.90]'

S5 : [0.90, 0.97, 0.80]'

we convert these direction numbers, LI to direction cosines an and B0 by

dividing each with the constant C defined below:

i-l

thus, C - 0-(0.80)z + (0.97)z + (0.90)7

C - / .64 + .94 + .61

A- r-239- 1.546

The direction cosines are

S : [n1 nrt

4 11-S . -O 09 - [0.5174, 0.6274, 0.5821]'

•'.' Ss [ B1, B2, 831. ..

S.: 1 023 C-1

:[0.96 0.97 ,0.80",
51".90 ' 1.537 0.3j [0.5821, 0.6274, 0.51741'.

The cosine of the angle between these two vectors is given by the sum of
the products of the direction cosines

p
cos08 - Z a Bi

i-l

- (0.5174)(0.5821) + (0.6274) + (0.5821)(0.5174)

= 0.2677 + 0.3936 + 0.3011

cos e - 0.9624
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which confirms the Impression that Interchanging the two elements leaves the
* test space orientation of the first principal compohent essentially unchanged.

We sea that principal components analysis provides information con-
earning direction of the major axis of the hyper-elipse and shape of the

multivariate swarm. We propose that this information, in conjunction with the
presence of clustering among centroids in the test space, may provide a rea-
sonable basis for deciding the use of cluster seeking subset generation.

Moving now to the 5 variate sleep-stage data (Larsen & Walter, 1970) and
a consideration of shape, we find the following plot of eigenvalues as cumu-
lative proportion of total dispersion.

9 0

85-

i

75

I 2 3 4 5

FIGURE 8
Plot of eigenvalues as percent of their trace for 6 sleep stages.

Clearly, groups 2, 3, and 4 are strongly anisotropic with the first
principal component containing over 95% of the trace for any of the disper-
sions. Groups W, 1 and REM while less anisotropic than the others are still
dominated by the first principal component to extents ranging from 70% to
80% of the trace. In this setting, inappropriate pooling could introduce
substantial error if the dispersions are substantially different in orienta-
tion. Thus, the stage is set for characterizing similarity of dispersion by
.similarity of orientation of the separate first principal components. The
object in mind being to aggretate groups in such a way that the dispersions
are similar within a subject and dissimilar between subsets.
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The elements of the £irst principai componenc zor eacn group are

given below after applying the constant multiplier, k 100lILI/Eilti. to

the loadings. (This has the effect of removing absolute size.) 1 ,2

TABLE 2

First Principal Component
Direction Numbers for 5 Sleep Stages on 5 Variates

W 1 R 2 3 ~ 4

1 6.25 40.65 41.30 74.50 95.30 95.95
2 26.25 46.60 34.00 8.85 3.11 1.985
3 61.70 6.55 18.65 4.27 0.99 0.10
4 0.29 4.50 0.389 0.70 -0.24 0.06
5 0.25 0.16 0.231 0.66 0.29 0.04

Since these are also direction numbers, we may proceed to calculate the
cosines between selected pairs of principal components. Simple inspection
reveals that Stages 2, 3 and 4 are similarly oriented in terms of their
first principal component. Among members of the DESYNC set, Stages 1 and
RED are more similarly oriented than either is to Stage Wake. We will cal-
culate the "coefficient of co-linearity" for selected pairs of principal
components. The direction cosines are:

TABLE 3

First Principal Component
Direction Cosines for 5 Sleep Stages

W 1 R 2 3 4

A 1 .093 .652 .728 .992 .999 .999
8 2 .390 .747 .601 .118 .033 .021
a 3 .916 .105 .329 .057 .010 .001
814 .004 .072 .007 .009 -. 002 .001
025 .004 .003 .004 .009 .002 .001

INote that we are not using the raw first eigenvector. Rather we are using

the first component which is a normalized and weighted version of the first
iegenvector.

2Removing absolute values obscures distributional properties of the loadings.
However, we do not make use of these properties in present or later calcula-
tions. We do lose sight of the fact that eigenvectors associated with large
eigenvalues will have more sampling variation in their loadings than vectors
associated with smaller eigenvalues (Lawley, 1963).
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The cosine of the angle between two p dimensioaal vectors is given by:

p

cos 0 - Z a ,0
i-i

which leads to the following table of selected comparisons

TABLE 4

Cosines Between Selected Pairs of First Principal Components

cos 0e/1 - 0.448 cos eW2 - 0.191

Cos ew/R - 0.603 cos 81/2 - 0.741

cos e/R - 0.959 cos 02/4 - 0.994

Note that the orientation of the first principal component for stage Wake
is rather unlike all other stages, but is most similar to stage REM.,

On the basis of similarity of dispersion, it would appear that the
groups 2, 3, and 4 should be aggregated into one cluster, named SYNC for the
synchronous (slow, high voltage) appearance of the EEC; whereas groups W, 1
and REM should be aggregated in another cluster, named DESYNC for the
desynchronous (fast, low voltage) appearance of the EEG. The groups in the
SYNC subset have dispersions with principal components which are quite similar
within (the lowest being 2/4 - 0.994) and dissimilar between subsets ( the
highest being 1/2 - 0.741). The picture in the DESYNC cluster is not as
clear; nevertheless, for each group the highest "coefficient" is still within
the DESYNC set. The highest within subset similarity being 1/R - 0.959, the
lowest similarities are for those comparisons involving stage W. Yet the
highest coefficient is for W/1 - 0.448, whereas the best comparison across

* subsets is still worse at 0.191 for W/2. Certainly, the average relation-
ship is higher within a set rather than across sets.

* It is interesting to compare the principal components for each group
against the first component of the various pooled covariance matrices. We
begin with calculation of direction cosines for the following poolings: 1)
combining all 6 groups into one common covariance matrix; 2) combining W,
1 and R into a DESYNC "common" covari:nce matrix; and 3) combining 2, 3, and
4 into a SYNC "common" covariance matrix. The direction cosines of the
principal components for these 3 ccm are as follows:

TABLE 5

Direction Cosines of the First Principal Component
for Various Poolings of Covariance Matrices

D+S D S
1 .999 .706 .999
2 .024 .684 .036
3 .006 .165 .001
4 T.004 .069 .008
5 .002 .028 .002
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Selected "correlations" are

TABLE 6

Cosines Between Selected First Principal Components of
Groups and Pooled Covariance Matrices

21(D + S) - 0.994 2/S - 0.996
W/D - 0.484 1/D - 0.994 R/D - 0.980

W/(D + S) - 0.099 1/(D + S) - 0.665

It is plainly apparent that the groups which benefit most from seg-
mentation by cluster seeking subset generation are W, 1 and R. Their repre-
sentation by the DESYTC ccm is much more realistic than representation by
the [D+S] ccm. It is also these groups in which error rates improve the
most after segmentation.

When we consider both orientation and shape, it becomes clear that
clusters containing 2, 3, and 4 in SYNC; and W, 1, and R in DESYNC do pro-
vide a more reasonable basis for pooling than lumping both sets together.
The dispersions of SYNC and DESYNC subset members are more similar within
clusters than across clusters. We would expect pooling in the DESYNC
cluster to do somewhat more damage than pooling In the SYNC cluster because
R is less anisotropic and W is different in orientation.
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