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FOREWORD

The Nineteenth Conference on the Design of Experiments in Army Research,
Development and Testing was held 24-26 October 1973 at Rock Island, Illinois.
Like the first conference in this series, it had two hosts. They were the Head-
quarters U.S. Army Armament Command and the U.S. Army Management Engineering
Training Agency. The last-named host furnished the excellent conference rooms
for the mwieting. In the planning phases of the meeting Hr. Raymond B. Loecke
was their representative. Dr. Norman Coleman, a scientist at the U.S. Army
Armment Comm nd, served as the Local Chairman. Those in attandan" at the
conference are indebled to him and his assistants for issuing the host invitational
letter, arranging for local acconmodations and handling the many details needed
for a successful cutiference. Dr. Coleman also helped in the initial plans for
this meeting by bringing to the first meeting of the Program Committee a list of
statistical areas that would be of interest to the scientific personnel of the
hosts.

There were six addresses by invited speakers. The first of these was by
Professor Jerome Cornfield who talked on "Bayesian Statistics." He first pointed
out that the Bayesian approach uses prior information as well as objective in-
formation to avoid incoherence. He then gave several examples illustrating
the inconsistent results that follow from attempting to judge statistical proce-
dures by using only average properties over repeated samples. The second invited
speaker was Professor Shanti S. Gupta. "Selection and Ranking Procedures for
Multivariate Mormal Populations" was the title of his address. After discussing
such procedures, he surveyed known results and mentioned some unsolved problems
in this ares. In his address on "Generalized Jackknife Techniques" Professor
H. L. Grey first carefully defined tha jackknife statistic and several of its
generalizations. He indicated how one can use these statistics as point and
Interval estimators for data from a random sample or a stochastic process with a
continuous index. In his talk on "Reliability Growth" Professor Frank Proschan
pointed out that In the development of a complex system it is useful to examine
the importance of each component and to determine the optimum effort to allocate
to each component to achieve a desired system reliability growth. One way of
attacking this problem is through use of the Birnbaum measure of component
importance. Proachan showed how this measure could be used to determine system
reliability growth from component reliability growth. "Some Critical Remarks on
Accelerated Life Testing" was the title of the address by Professor Sam C. Saunders.
He stated that one of the current needs in reliability theory is for methods
that permit the prediction of the life of a system from a few tests in which the
process of wear has been accelerated. This paper made a strong plea for the
statistician as well as the engineer to have a thorough understanding of each
appropriate cumulative damage process in terms of its chemical or physical
behavior before an aralysis is undertaken. The invited speaker who spoke last
was Professor Willi]• A. Thompson, Jr. In 1973 E. Brindley and he introduced
a multivariate concept of monotone failure rate. Here the system fails when
the first of its components fails so that not all component lifetimes are
observable. In his address Dr. Thompson discussed maL-amatical models for
problems arising in the biological and the engineering sciences. In the
biological context one refers Lo the theory of competing risks, while in the
engineering applications the model represents a non-repairable series system.
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it to Interesting to note that all the invited speaker*, except Frofueor
Cray. have appeared an the programs of earlier conferences In this series. We

are grateful to these gentlemen for their valuable help and for their willingnese
to give of their tim to bring now and useful developments In the fields of
statistics and the design of experiments to thri attention of Army Scientists.

There Is a large amount of scientific a'crk beit•g conducted 1.n the many Army
installations. These conferences offer an epportunity for individuals in these
laborabocies to present to an interested audience thu work thev/ are pursuing. At
this maeting twenty-six technical papers aid four clinical papere appeard on the
agenda. These presentations were well ro..oived and both the .onhers of the
audience, as wall as the speakers beaefi.ted from the contents of the papers as
uell as the suggestions and questions r'•ied in the discuesions after each talk.

Following the banquet, held In t0.0 evening of the first day of the conference
the ninth Samual S. Wilks Memorial Avard of the American Statistical Association
and the Department of the Army vas presented to Professor H. 0. Hartley for his
mny outstanding contributions to t%,e developments and teaching of statistice. Dr.
Hartley is Professor of Economics &and Distinguished Pvofoesor of Statistics at the
Texas A and H University, at College Station, Texas. He has served many times as
an invited speaker and also as a panelist at past Comferences on the Design of
Ixperiments, His deep insight lato statistical thory enabled him to offer
valuable suggestions to many spAakers at these meAtings. We are pleased to be
able to p•lna in these proceed.ngs the remarks Dr.. Hartley made following the
presentation of the Wilke Award.

The Army Mathematics Styeriag Comnittqe, on behalf of the Office of the Chief
of Research and Development and Acquieit -.,, sponsors these meetings in order to
expose Army scientists and engineers to various areas and new developments in
statistics, thus upgrading the competence of In-house personnel. Members of this
Committee have asked that these proceedings be published and issued Army-vide
as well as to other scieitific comunities.

Near the first of each year the Program Committee for these conferences Is
selected and maets in 'Iashington, D. C. to outline the program and ougelst
possible speakers for the next meeting. I would like to express my personal
thanks to the membera, of this year's comittee: A. Clifford Cohen, Norman P.
Coleman, Francis Dreesel, A. Rose Ickler, Walter Poster, Fred Frishmau, Bernard
Harris, Badrig Kurkjian, Clifford J. Maloney and Herb Solomon. Francis Dressel
served as socretar/ of this comittoo until 1 September. From then on the duties
of the secretary vere carried by Fred Frishman. Their help in guiding this
conference to a rucceseful conclusion is duly appreciated.

FRANK E. GRUBBS
Conference Chairman
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BAYESIAN STATISTICS

Jerome Cornfi il dDepartment of Statistics -The Deorge Washington University

Washington, D.C. 20006

ABSTRACT. In the standard frequency approach to statistics one is
concernedwth properties over the sample space In contrast to the Bayesian
approach which is concerned with properties over the parameter space. Thus,
given n Independent trials at constant probability p the frequentist is con-
cerned with the probability of such and such a number of successes. whereas
the Bayesian asks, given whatever number of successes have been observed,
for the probability that p falls within certain limits. The answer to the
latter, but not the former, question Involves the use of prior probabilities.
It therefore seams natural to conclude that the Bayesian is distinguished
from the rest of statistical mankind by some special wish to use some un-
identified entity called "prior information" in addition to the *objective"
information available to everyone else. This Is an incomplete and unproductive
introduction to Bayesian statistics and Is more likely to lead to polmics
than to understanding.

A more informative introduction can be achieved by criticizing some
of the ideas underlyitng the fmquentist viewpoint. I shall therefore start
by giving several examples illustrating the anomalous results that can
follow from attempting to judge statistical procedures by reference to
their average properties over repeated samples. These anomalies are seen
to have the common property of incoherence (defined below). We then go
on to sketch the argument that Bayesian procedures are necessary and
sufficient to avoid incoherence. From this point of view the Bayesian
augument is a natural extension and correction of that of the frequentist,
and the prior probabilities an inevitable consequence of the, search for
procedures which will, in full generality, avoid Incoherence.

Ex. 1

In this example we exhibit two different tests of the same hypothesis. Both
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have the sm Tye I error, but the one with the smeller type I error Beosm

clearly absurd. Something more than Type I and Type II errors must therefore

be i•nolved In selecting tests of hypotheses.

We consider the following simple null and alternative hypotheses.

"HO: x dN(O,0)
SHI" x N(0,#

t a is known, once an auxiliary rendom variable, y, is observed. When y m 0,

c is known be 1and wheny - 1,is kn tobe 100 Pr(yul)p.which

-6
in the numerical example that follows is taken to have value .05- (3 x 10")

We can think of the experiment as involving two steps:

(a) choosing an instrument for measuring x, with the Imprecise Isztrument

having a probability, p, of being chosen

and (b) using the instrument chosen to measure x.

These considerations are stunarixed in the table below:

Instrument y P(y)

Precise 1 0 1-p
Imprecise 100 1 p (-.05-3x10"')

We now consider two different tests to Ro 0 For

Test A

Reject H° when x >1.645, given y a 0

x>40)(1.64$, given y I I

Test B

Reject Ho when x> 4.5. given y - 0

X>-. , given y - l

Test A seems like a plausible test, since for the case whore p - 0 or 1 it is the

most powerful test, while test B seem unacceptable, since for y " 1, it rejects
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the hypothesis that 1A - 0, even for an observed x a 0. Nevertheless, as

summarized below, U• the choice between A & 3 is to be based on standard fre-

quency criteria, B is the Lest of cholce, sitce it has essentially zero type U

error.,

Operatina characteristics

TeaL Type I error Type II error
A .05 .037
5 .05 (l-p)*(-S.5)NO

(#(z) is the standard norinl integral frm -a to x.)

Why do we prefer A to B, even though on standard frequentist criteria It

is the inferior testl A concept with which Fisher familiarized statisticians,

although the idea is older and goes back at least to Keynes, is ihat our criteria

must take account not only of properties over the entire sample space but over

any recognizable subset of it. For the present example two such recognizable

subsets are defined by the cases y - 0 and y - 1. For test A the type I error is

.05 for both subsets, but for set B it is not. Thus,

Recognizable sub$et Conditional probability of rojectionlEio

Test A Test B

y - 0 .05 3U10"6

y 1 .05 1

Although the unconditional probability of rejection over the entire sample

space is the same for both tests, this is not true for the conditional prob-

abilities. Given that the sample point is in the subset defined by y - 1 we

know for sure that Test B will give the wrong answer and why should anyone

use a test that is certain to be wrong in identifiable circumstances?
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z~z. 2

The sme point La sade hare but for a very coimen rather than contrived

problem, confidence l~aits on the ratio of two indepedlntnormal variables.

An argument leading to the most restrictive confidence set ts as follows..

Given xt(i-l,2) which is N(k .1) and 0 c / confidence limlit on 0

can be obtained by noting

(1) zL-OBx La normal

(2) I(z1•-Bx) - 0

(3) Var(xz-Oxs) m + 0,.

so that if ),.M is the upper (-la) probability point of one degree of freedon

chi-square distribution, the confidence set of e with coefficient l-z is the set

of 0 satisfying

By multiplying out and collecting coefficients of the povers of 0 this s seen to

be equivalent to

When the discriMnaJnt of the quadratic on the left hand side is positive, the

inequality will hold for all 0 between the two roots of the quadratic obtained

by setting the left hand side equal to zero. 2hese two values of 0 supply

a standard confidence interval for points in the sample space, leading to a

positive dLscrlalnant. Consider nov the subset of points Lp the sample space

in which both the discrimlnant end the coefficient of 08 In (2) are negative.
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for Chi$ case it is euy to see that tde inequaIlty (2) holds for 8ll 8 so that

the confidence Interval is -a to +. - asoerted vith confidence 1-. Surely

this is being over-cautious.

the anomrous feature of the result - which, from the point of view of

standard frequentist criteria cannot be Improved upon - €"n again be highlighted

by ConuIderA 4he coacept oi recognisable subsets. Thus, for one such subset

the oonfideTniterval Is certain to include 0 and for the other it includes

It with probebiltv < 1-a

10o4n"Iable subset Conditional probability of
includint 0

4< X. , discriminant <0 unity

all other -41-0

Unconditionally, the probability of including 0 is indeed 1-a, but this does

not correspond to our confidence for either of the two identifiable subsets.

Ve now show chat a fully general effort to avoid such anomalies leads

to lays. theorem. We start, with example 2 In mind, by asking a frequentlst

statistieian who assigns a confLdence coefficient 1-a to an Interval whether

he would be willing to bet that the interval always zontains the true value

at odds of 1-% to a, plus say a suall premium for being obliging, He ntarally

agrees s@nce his expected loss on the bets is sero no matter what the true value

and he gains the premium. This is a consequence of the. frequency properties of.

the confidence set defined over the entire sample space.

We now modify our question. As before we ask him to offer odds of 1-a

on the set to L against it, but to 2erilt us to decide whether we bet for or

aainet cth interial. Thus, for sample point. leading to an infinite interval

on 0 we bet for the Interval and offer him odds of 1-a to a. For this subset

we always win, since the Interval includes all Be For the rmaining subset we

always bet against the Interval, again accepting his odds of I-a to Cis since



• for this subset: we shall have probability of vi•nnin greater t1.An cL, Our :

i ~ expect~ed ginal is thus posit~ive no umatter what the value of O. (The

premium to clearly a theoretical irrelevency, and can always be eliminated by

letting the smie of the bet overpower the size of the stake.)

7his experience of ,osing "or a11 values of 9, despite the use of confidence

limits with optimmm properties aneas the frequentist statitician to. consider

whether there is some alternative system of setting probabilities on paraeiter

sets that would safeguard him against this aertain loss. 2his sets him on

the Bayesian path, since his probability assigamants must be Bayesian

in the sense of the theorem stated belov. We here sketch out the ideas leading

to the theorem. For the detailed argument see [1E. We consider

a betting Sam. with a cast and a set of rules. the cast consists of

A - an antagonist

B - a probability setter

C - a referee

The rules ate that 1. We are given an m x n matrix In which each raw corresponds

to a possible sample point and each colum to a possible state of naturea of

which discrete paramter points are a special case. The entry in the ith

row and jth column, p1 j, gives the probability of the ith sample when the jith

M
state of nature obtains ( P P tJ" I for J a 1,2...n). Both A end B knov

the P1 1 .

2. A value of i is selected with probability PJ and both A and B are

informed as to the value of i, this is, which sample is drawn, but not the value

of J,i.e.not the true state of nature. C however, knows J.

3. B's task is to announce a probability P,(Z), where I is an interval containing

some subset of the states of nature, i.e. a subset of the integerstl to n.

(Clearly there are 2 n possible I's.) 4. A selects a stake, 8, which may be
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positive or negative, and Sives I moMt ?PM (3)$. S. C determines whether

I includes the true state of nature 3. If it does, the interval is correct

and A has won the bet, and B pays his amount St. If it does not, A has lost,

and B pays nothing. (When st is negative the direction of money flow. is

reversed.)

It will be recognised that these rules are equivalent to i offering odds

of

P, (1) to 1-P 1 (I) that I is correct when 8> O

and I-Pt(I) to Pt(l) that I is Incorrect when 8140,

thNow consider B's expected gain when the j state of nature obtains.

B would clearly like to select the Pt (I) in such a way that this is in somn sense

maximized. But clearly a milimum requirement would be that the gain not be

negative for all states of nature, as in example 2, no matter how A chooses

the St. We state this more precisely by denoting B's expected gain by GO(PS)

and then introducing the key notion of coherence [23.

Definition

If G,(P,8)$O for all j for g 8 and the equality can be deleted for at

least one J. B's assiuaent of the P is incoherent. Otherwise it is

coherent.

With these concepts It is then possible to prove:

Theore_

A necessary and sufficient condition for coherence is that

n
P1,(1) - E PISqj/ E pjqj.

jel Jol

where the qj are any positive quantitites.

PICZ) can then ba interpreted, by Bayes' theorem, as the conditional, or

posterior, probability that I includes j, given the reslixation of sample i.

Similarly p1 (or more stiratly any quantity proportional to p,, where the
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poportimalitY Constant does not depend on J) is the likelihood of

state of nature J, given sample i.. Finolly qS/ Eq, can be interpreted as the

prior probability of state of nature J,

Note that aside from the restriction to finite sample and parameter

spaces the formulation is general. Without the restriction to finite

parameter spaces the theorem need not be true, since the proof, vhich depends

en the interchange of order of summation, need not be true when the restriction

to finite spaces is removed. Although the restriction to finite parameter

spaces is very severe from a mathematical point of view, 1, and many statisticians

vho are far better mathematiciens than 1, do not regard it as any real

restriction at all,

Nothing in this formulation tells us how to select the qj. go long as they

are positive for all J, any qS vill lead to coherence. This has been regarded

by many trAtisticians as the fatal f atr in the Bayesian argminnt, but to

maintain this consistently one mast reject coherence as an overriding criterion.

gam statisticians have been willing to do this, rather than petuit the q; to

enter the domain of statistics. It is not "ey to discuss this point constructively.

and so I simply record my on view that such rejection is premature, and that the

introduction of the Bayezian outlook and of prior probabilities has already

paid handsome dividends in new insights and results over the entire range of

statistical theory.

2hus, unless one rejects coherence as a critirion, the theoretical

inevitability of prior probabilities seems beyond dispute. What seeme most

needed now is experience in applying these ideas to real problems, rather than

continued theoretical exegbais, In this spirit I summrize an application to

the computer interpretation of the DOG described in detail elsuehere [3).
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We start with a k-dimensional vector of BOG characteristics, ., from a

patient of unknown diagnostic status. (This statement glosses over what is in

some respects the hardest part of che problem of computerizing RCG'ap but one

that is not relevant here.) We let j index the possible diagnostic classes

(j * 12...n) and estimate the conditional density of X, given J, say f(ILIJ).

from data on patients of known diagnostic status. Denoting, s before, the

prior probability of being in the j h diagnostic class by q,, we compute the

posterior probability of being in category J, given x s

n

P0110) f(NLI)DS/ 1 Ef(LJi)S1 .

These probabilities are printed out for each patient.

The prior probabilities are interpreted as the relative frequency with

which patients in the different diagnostic classes present thoemslves.

These quantities are often not known precisely and for that reason many attempts

at medical diagnosis have dispensed with the concept entirely [4]. We, on the

other hand, have gone ahead and estimated them as best as we could, separately

for each institution using the program, as illustrated in Tables I and 2.

There are of course many problems involved in computer interpretation of

the XCC. These are slowly being identified and handled. The imprecision with

wh~ch the prior probabilities are estimated is one of the less pressing of these.

A more important one, which is a consequence of the BayesLan formulation, but

which exists for non-Bayesian approaches as wall, is that a patient. may not

belong to any of the diagnostic classes included in the program, in which case the

computed probabiltties are misleading. (A preliminary test of the hypothesis that

a patient comes from one of the n classes seems called for here even though

this falls outside the realm of Bayesian ideas.)
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There are of course many other applications of Bayesian ideas that

might be mentioned, but the basic point, that their usefulnass must be

appraised in the context of applications, remains. I hope that some readers

vill be stimulated to try them out.
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TABLE 1

MIsLAurjcATaoN MATRIX LUam Pitonis or "tHE AnMirriN Orrica or VA HOSPITAL, WASIING-
ToN, D.C. (2336 PATIENTS)'

Computer Prior
Clinical (3) (2) (3) (4) (5) (6) (7) probabilitiea

N (I) 9, 0 0 0.3 0.7 0.0 0.5 0.0 0.5 0.60

AMI (2) 14.5 60.2 3.5 2.6 12.5 0.6 6.1 0.07
PMI (3) 11.6 4.0 77.3 0.9 M.2 0.7 2.4 0.10
LMI (4) 8.2 14.1 2.4 69.4 2.4 0.0 3.5 0.02
LVH (5) 34,8 9,1 5.6 0.8 44.7 2.0 3.0 0.13
RVH (6) 48.5 4.1 2.5 0.0 4.1 28.9 11.6 0.02
PE (7) 27.7 8.4 9.2 0.9 3.4 2.6 47,8 0.06

'Total percentage correctly clasilfled - 98,0 x 0,60 + 60.2 x 0.07 + ... - 8.14.
'Note that only 2% of the normals are misclaslifled with a concomitant increase in misclasaa-

=kcafions of abnormal records.

N - normal

AZI - anterior myocardial infarct

P41 a posterior myocardial infarct

L2I4 - lateral myocardial infarct

LVH " left ventricular hypertrophy

RVH m right ventricular hypertrophy

PE w pulmonary embolism
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TABLE 2

MUtSSInCATION MATRIX UJUNU PRIORS OF THE CARDIOLOUY SERVICs or Ima VA HOPIrrAL
WilT Roxauav, MA (2336 PATIEN)6

Computer Prior
Clinical (2) (2) (3) (4) (5) (6) '7) probabilities

N (1) 76.36 1.8 3.2 0.0 15.4 1.0 2.2 0.12
AMI (2) 3.5 68.0 3.8 3.2 19.2 0.3 2.0 0.19
PMI (3) 1.3 4.7 84.2 0.9 6.5 1.1 1.3 #j.24
LMI (4) 1.2 17.6 1.2 71.8 7.1 0.0 1.2 0.06
LVH (5) 12.7 10.9 6.1 0.8 64.7 1.8 3.0 0.30
RVH (6) 21.3 9.1 8.3 0.0 14.9 35.5 10.7 0.03
PE (7) 9.8 15.0 12.1 0.9 I1.0 3.5 47.8 0.06

* Total percentage orretly clasfled - 76.3 x 0.12 + 68.0 x 0.19+- -- 69.9.
Note that 24% or the normals were misclassified with an increase in correct classlifcatlons'of

abnormal,. Thus scnlstivity and speciflcity of the method can be adjusted according to specilic
requiem1ent2.
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Selection and Ranking Procedures for
Mlultivariate Normal Populations*

Shanti S. Gupta
Department of Statistics
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ABSTRACT.

This paper deals with selection and ranking procedures for multivariate

normal populations. Let v, be N(jt, z1), I - l,...,k, be k(!.2) multivariate

normal problems. Procedures for selecting a subset containing the (unknown)
population with the ;mallest generalized variance, the largest Mahalanobis
distance function and the largest (smallest) multiple correlation coefficient

are described. The paper also surveys other known results in ranking problems

for these populations and mentions some unsolved problems.

1. INTRODUCTION. The classical tests of homogeneity are inadequate in many
practical situations in which the experimenter has to make a decision regarding
k populations. This inadequacy is not in the development of these tests but
rather In the basic formulation itself which is not designed to answer many

questions which are of real interest to the experimenter. The early attempts
to find more meaningful formulations led to partial answers in the form of
slippage tests and tests for outliers. Some important contributions have been
made in this areaamong othersoby Mosteller (1948). Grubbs (1950), Karlin and

Truax (1960), and Doornbos (1966). The initial contributions in the direction

of multiple decision problems were notably made by Paulson (1949) and Bahadur

(1950). The basic formulations of what is now commonly known as selection and
ranking problems are'due to Bechhofer (1954) and Gupta (1956).

Let l,...,$rk be k independent populatiors with underlying distributior
functions F0  I t I,...,k. The 91 are unknown values of a quality characteristic

0 which is used as the criterion for ranking the populations. To be specific,

This research was supported In part by the Office of Naval Research Contract
NOO014-67-A-0226-00014 at Purdue University. Reproduction in whole or in part
is permitted for any purposes of the United States Government.
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we define w, to be better than ij if 91  Qj. Let the ordered 0, be denoted
by 011 -- 0[21 .5.. 1 [k). The experimenter is assumed to have no prior f
know edge regarding the correct pairing of the ordered and the unordered 01.

The goal of the experimenter in Its simple version under Bechhofer's

formulation is to choose one of the populations and claim that it is the best

(i.e. the one associated with elk]). A correct selection (CS) in this formu-
lation is the selection of any one of the populations associated with k
Any selection rule R is required to have the associated probability of a

correct selection denoted by P(CSIR) at least as large as a pre-determined

P*(- < P* < 1) whenever the distance (suitably defined) between the best and

the second best populations, denoted'by 8(0k] 9rk-l])' Is at least as large
as a specified constant 8* > 0. Of course, the experimenter has to specify P*

and 6P satisfactory to him. The problem is to determine the smallest sample
size depending on 8* and P* and other parameters which will meet the basic

probability requirement. This formulation known as the indifference zone

formulation derives its name from the fact that the experimenter is 'indifferent'
to distinguish between the best and the second best unless they are sufficiently

apart.

The goal of the second formulation due to Gupta (1956) is to select a
non-empty subset from the given populations so as to include the best population.

In the case of more than one population associated with 9 tk]' one of them is
assumed to have been tagged as the best. A correct selection in this case will

be the selection of any subset containing the best. Under this subset selection
approach, it is required that for any rule R, P(CSIR) > P* whatever be the true

configuration of the unknown 91. Here the subset selected is of random size
and one wishes to select a rule which satisfies the probability required with

as small an expected subset size as possible.

Many authors have contributed to the area of subset selection procedures
and a general survey of the work in this area has been made by Gupta and

Penchapakesan (1973). Recently some work has been done by Santner (1973), 4nd

Gupta and Santner (1973) connecting the indifference zone and subset selection

approaches.

In the present paper, we are concerned with subset selection procedures

for multivariate norma. populations using different criteria for ranking such
as the generalized variance, Mahalanobis distance function and multiple
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correlation coefficient. As it can be seen from the subsequent sections, the

statistics employed in the selection rule are scalar-valued and have univariate
distributions. Let x41, j - 1,2,...,n, be a sample of size n of vector

observations from w which is N(Y4, Ei), I - 1,2,...,k. Lot

nI n-T . - j4) (14. - )* Sample Covariance Matrix.

Now we discuss the selection procedures for the three problem mentioned

above.

2. Selection in tems of generalized variance. IzJ.

For a multivariate normal distribution, the natural measure of dispersion

is the covartance matrix. However, it is necessary, for the purpose of selection,

to define a meaningful univariate measure of dispersion. Various differont
measures have been considered in statistical literature, but none of these is

uniformly best, in the sense of being a robust estitnator of the dispersion.SThe generalized variance Is quite frequently used as a measure of dispersion.
So we discuss selection in terms of this generalized variance Izt associated

with wt. E, are assumed to be unknown. Assume also that Y are unknown. For

selecting a subset containing the smallest ilt Gnanadesiken and Gupta (1970)

studied the following rule R, based on the sample covariance matrices St
I * 1,2,...,k.

R: Select 1f iff

Isll I l l
*~~ 'ii I.c1 imin

where ISImin - min(ISlI,....,ISkD) and c - c(k,pn,P*) is the largest value to
satisfy the basic probability requirement inf P(CSIR) > P*. Note 0 < c < 1.

It has been shown that

inf P(CSIR) Y J 2,....,k) where Y1,...,Y|nI t(SR •P YI I

are independent. identically distributed random variables, each being the

product of p independent factors, the rth factor being distributed as a x

variable with (n-r) d.f. The proof follows from the fact that IS.I is
distributed as Il/(n-l)p times the product of p Ind. x2 with (n-i),

(n-2),...,(n-p) d.f.
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The exact distribution of Y Is unknown except when p - 2. In this case,

inf P(CSIR) a P(Z 1  1- I - 2,...,k) where Zt'are i.1.d. chi square with

2(n-2) d.f. In this case T its the lower 100(1-P*) percentage point of

Frein 2mik x2 vj/x 2 ,l* v - 2n-4. Tables of /F are available from Gupta and

Sobel (1962) who studied the problem of selection of variances of normal

populations.
When p > 2, one can use Hoel's approximation for the distribution of Y

2or use the normal approximation for x . Some studies of these approximations were
made in Gnanadesikan and Gupta (1970). Heal (1937) suggested approximating

Yl/p by the distribution having the density function g(y) * xp(n-p)/2

ylp(n-p)/2)- e /r pnp)) when (pl -)l/p. For p - 1,2,

this approximation is exact.

Performance of the Procedure R was studied in terms of risk functions using
three different loss functions. If the ordered generalized variances are denoted
by I1I[1] !.. Izl[k], the loss functions considered for including in the subset

the population whose gereralized variance Is z1, were:

(1) Ll( t) -lI lt1:111] "1)

(ii) L2(E1 ) - (Rank of pop. wi)! , where the ranks increase with the

generalized variance, and,

(III) L3(E) , where S(O < S <k) is the random number of populations included
in the subset.

The computations of the risk functions associated with the above loss functions,

for p 2, k a 2(1)5, Izl[,]/IEjjl1 as2t2 where a * l.2(.2)2.0(.5)3.0,
n a 3(1)7 and P* - .75 indicate that E(L2 ) and E(L3 ) are sensitive to changes in
the values of the parameters and are decreasing functions of a and n. In the
case of Li it increases In the range of values of a considered when n - 3 and
for other values of n it increases upto a certain point and then decreases as a
increases. This lack of monotonicity of EýL 1) as the best population moves
further away from the other populations, and the difficulty of its interpretation
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render L1 less suitable than L2 and L3. Between L2 and L3, due to ease of
Interpretation, L3 seems more appropriate as the criterion of performance of R.

Finally, R was shown to be monotone i.e. for all I < J.

P[R selects the pop. with III ] -P[R selects the pop. with IEI [].

On approximatlno the constant g - AoDroxtmation to the dist. of IS

Let n a product of p factors each tnd. central x2 , the rth factor

having (n-r)d.f.
(I) Then using methods of probability plotting, it is found that Hoel's

approximation to the distribution of "1P decreases in accuracy as p increases.2

(it) The approximation of the distribution of log x by the normal distribution
improves with d.f., v, of the x2 variable. For v >. 25, the maximum differance
between the quantiles Is g .4 while for .05 _ .95, the difference is less
than .05. The maximum error in probability in using the percentage point of

the standard normal distribution as those of standardized log is less
that# .02 for n _ 25 and decreases with n.

(III) The normal approximation for log(generalized sample variance) improves with

both p and n. Approximating the dist. of 1 log n by the normal
.3 p

inf P(CSIR) - ,kl(y-co)d,(y) where c2 u (log c) 2 / , Y2 n-i) where

A2() - Var(logxn) T

3. Selection in terms of distance functions

Gupta (1966) considered the problem of selection of a sqbset of k multi-
variate normal populations which would include the population located farthest
away from the origin, where the distance from the origin of the population with
mean vector, J~t and covariance matrix, E.1 Is defined as .-l the ahalanobts

distance function. Let Yij a xIJI'lx, where we assume zt are all equal to I
and x t -,...,k; - ,a I,...,n is the vector with p-components of observations

'n 
2on the ith population. Then y- J11 yij has a non-central x distribution with

5.1 -1
np d.f. and non-centrality parameter A, w nXt where Aa Y I•. For selecting

a subset containing the largest AV Gupta proposed the rule R.

R: Select v, iff yt >c max(y 1 ,...,yk) where 0 , c a c(k,n,p,P*) I I is

determined to satisfy the P* probability condition. It was shown that

inf P(CSIR)- inf F Fl(x/c)dFlx) where F,(x)-cdf of a non-central X with np d.f.

-17-



For selecting the populated nearest to the origin, R' was defined

RI: Select wi 1ff y1 _b min(y,...,yk) where b - b(k.n,p,P*) > 1 is.

again determined to satisfy the P* condition. For this rule R',
U

tnf P(CSIR') - tnf •[1-F,,(x/b)]k' dFA,(x).
x1'>0

MonotOnicifty of the above two integrals wrt V' has been shown by Gupta

(1966) and Gupta and Studden (1970). Both integrals are monqtonically

Increasing in A' so that the inf takes place when V* 0.' Thus the problem

reduces to selecting the gamma population with the largest (smallest) scale

parameters, respectively, which is solved In Gupta (1963) and in Gupta and

Sobel (1962) where appropriate constants are available.

To be precise, Gupta and Studden (1970) considered the case where t

are not necessarily eaual but known. In this case the procedure is modified

by using y,, - *•J;jz- t. They also studied the case where zt are different

-1-but all unknown. In this case, let zt - i'S-1 ;, Then the procedures R1 and

P! are:

S11: Select 1t tff czi 2_ max(zl,....zk), c l 1.

Rj: Select 1t tff z, S b min(zl,...,Zk), b > 1.

Gupta and Studden (1970) obtained a sufficient condition for the monotone

behavior of I(A) - F (cx)dF (x) and Jlx) - [1-FA(.)lkl dFA where

where fA(x) W gj(x), x . 0 and FA(x) W cdf of f (x) and gj(x),

J at0,1,... is a sequence of density functions on [0,a). This condition Is
a special case of a mere general condition obtained by Gupta and Panchapakesan

(1972)' for a class of more general rules. The sufficient condition Is satisfied

for R,R' and also for Ra and Ri. For Ra and Ri the constants c and b are given

by

F k- X(cx)dFpP(x) - P* and [1-Fp (x/b)]k-l dFp nWp(X) , P* wherep Fpn p(CX-d p~n-p

Fpn.p(H) Is the cdf of a central F with p and n-p d.f.

It should be pointed out that the procedures R and R' for E1 known case

are not strictly analogous to the procedures R1 and Ri for the unequal and

unknown Et case. If we use I in R and R', the constants c and b do not
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depend on n, a feature which is undesirable. Alam and Rizvi (1966) use this

type of rule. Another procedure, say, for the case of r1 - E, for all 1,

zi _Z ax-d. zj - XE 1 X1

where d is given by Inf i Fk7l(x+d)f(x)dx " P* where F and f refer to non-
2f(d

central x2 with p d.f. and non-centrality parameter A' a nX.

Procedures of the above type when Ei w E, known, or E1 not equal but known,

have not been determined in the sense that one does not know the monotone
behavior of the integral involving d (above).

Another unsolved problem is the case where z1 -. Ek - C, unknown,

and we use a pooled estimate of 1.

4. Selection in terms of multiple correlation coefficient

The random vector has multivariate distribution N(IA4,zi) where and

are unknown. Letp be the multiple correlation, coefficient
between the first variable and the rest in the population it1 defined by

1 - ll il where i, is the leading element of z1 and ti(1l) is the

matrix obtained from El by deleting the first row and the first column. This

0, (taken to be the positive square root of p) is the maximum of the correlation
between Xii and a linear combination of x12 ,...,xip over all possible linear
combinations and as such is a measure of the dependence of X on X %*...X

Gupta and Panchapakesan (1969) investigated the problem of selectin a

subset contAining the population associated with P[k] (p,]). Let Ri a Rl.2...p
denote the multiple correlation coefficient obtained from the sample 1tj,
J - l,...,n. Two cases:

(M) x129....,xip are fixed; the conditional case.

(ii) x12 ,...,xi, are random; the unconditional case.

The following rule.Q has been investigated by Gupta and Panchapakesan (1969) for

the selection of
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g: Select i lft m c xR 1 .... ,' where A * R /(1-RI). In

the above rule, we write c(O • c < 1) formally both for the conditional case
and the unconditional.

Letting A -P, we can write the density of R*2 as

UA(x.) a ~ •)J (l~A)q 4I f2,q.2m ~(X), ncndtina csSunconditional case

a -M iOqm•m
ux(x) -I .1 1 f2(q+j),2m(x)t conditional case,

whereq • ., q M -Ur and fr s(x) - density function of central F with r,s d.f.

It is easy to show that ux(x) has MLR in x and hence the distribution of
R*2 is stochastically increasing in A. Hance

inf P(CS * inf ~U 1 (x/c)dU (x), when UW)w cdf corresponding to u,(x).

A sufficient condition for the monotonicity of the above integral is
obtained by Gupta and Panchapakesan and it is verified so that the inf takes
place when A - 0 for the unconditional case. For the conditional case the
result follows from the paper of Gupta and Studden. In either case we obtain

inf P(CS) - F ,m(x/c)dF s F and f refer to central F. Table 1

'of Gupta and Panchapakesan (1969) gives values of the constants c, which are
same for both cases.
For selecting the population with the smallest p, the rule ts.s'

e*2 *2
.0:mi Seec 1ff dR .0 < d - d(k,n,p.P* < 1.

In an analogous manner, it follows for both cases

inf P(CSI') • •[1-F 2q,2m(xd)]kl dF2q,2m(x) a P*,
Sinc 2qen(xd) = F 1,2q(x'), the constantc d can be obtained from

constants c by Interchanging q and m.
Sk-1 x

Consider F2q,2m(-E)dF 2 q, 2m(X) = P*.

- 20 -
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When q and m are integers i.e. p and n are odd, we can use series

expansion for F20 2,(X) and obtain formulae for computing c for specified

values of q,m anl PV. The final result is:
qk-l (k-1 c -1)

p, * r(q+m) - (.l•,(qk-1')a(k-l,j)( :c )k K(c,m,q~a,j)

r(q)r(m)(1-c) m 01O j0 0k-

where a(r,j) and K(c,m,q,sj) are given by certain recurrence relations.
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D RUPRITATIOU OF ANALYSIS OF VARIANCE 19IMCTS IN DESIGNS
YIELDINn A SUBJECTS X TREATHMNT INTERACTION

Ray T. Sterner, Richard S. Toplick, and Jmms T. Wheeler
Letterman Army Institute of Research

Fitzsimons Army Medical Center
Denver, Colorado 80240

AB.ST.ACT. This paper outlines a proposed alternative analysis for
data comonly obtained under a one-way, within-subjects analyqts of var-
iance design. Briefly, for situations In which multiple replicates are
obtained within treatment cells, it is argued that inclusion of Subjects
as an indigenous factor yields important information regarding the nature
of subjects' responsivity to experismental treatments, as well as the
reliability of population inferences. Results of an empirical application
of the analysis to a set of plasma Vitem•in A observations obtained from 8
male volunteers during a successive, 50-week period of dietary Vitamin A
restriction are used to Illustrate the approach. Comments from discussents
aimed at clarifying (a) legitimacy of the approach (b) potential limitations
imposed by the occurrence of a significant Subjects X Treatment term upon
Treatment inferences and (c) alternative analytical procedures or methods
for dealing with cases yielding such a Subjects X Treatment intereation
are sought.

1. ITRO.DUCTIO.. One-way, vithin-subjects (*.a., repeated measures)
analysis of variance designs are often used in experiments where: (1)
costs of tunning multiple, independent treatment groups are prohibitive
and/or (2) estimates of experimental effects relative to prior control
values offer sufficient test of proposed hypotheses. Typically, this
analysis partitions total experimental variation into a Between-Subjects
and Within-Subjects components, with a subsequent 7-Ratio of Between-
Treatment/Residual developed from the Within-Subjects component (see
Winer, 1971). Although this design controls Inter-subject differences
In variability (i.e., variability due to differences in the average
responsiveness of subjects is removed from the Residual), no direct test
of subjects' reeponsivity across treatments Is afforded by this analysis.
In cases where multiple replicates are obtained within treatment calls,
however, this sams analysis can be viewed as involving both a Treatment
and Subject variance component. That is, estimates of the Between-Subjects
and Between-Subjects X Treatment variance can be obtained. It is felt
these components provide useful information in the assessment of the (1)
nature of subject responsivity (i.e., the homogeneous or heterogeneous
nature in the way subjects respond to specific treatments) and (2) g*onr-
alizability of an observed treatment effect to a population.
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_2. PELF MM~. Consider the qL,4 4 ~fIS.Lt analysis Of variancemdel- (i.e., with Treatment a fixed and Subjects a random effect variable):

X mj - M + +b+abij + eij. (1)

where, Xij refers to an observation of subjeat under treatment.4 *
refers to the grand mean term, &I refer, to a honstt associatl'i with
subjecti, bj refers to a constant associated with treatment , ab
referm to a constant associated with the subject1 by treat;Int, fiter-
action, ad a(4 refers to experimental error. This Is the beeas additive
=mdel whlah oiractsrines a straightforward two-way analysis of variance
comprised of Subjects and Treatments (sae Winer, 1971).

IZxtndinX the above model to the repeated measures case In which
multiple replicates are obtained for each subject within treatment cells
yields:

Xijk M + aLI + bj + %k(a,) + b1,j + bcjk(ai) + aiJk, (2)

where, X•kji refers to a replicate of subjecti under treatmentg H refers
to the grand moan term, a1 refers to a constant associated vwih subjecti,
bi refers to a constant associated with treatment1, ck(a) refers to a
constant amsociated with feplicterk nested within sub eso abj refers
to a constant associated with the subjecti by treatment 4 interstion,
bcjk(a1) refers to a constant associated with the treattlent4 replicate
neted within subjecti, and ea4k refers to error. Thus, thl proposed
model makes It feasible to di us the potential testing of variances
attributable to Treatment, Subjects, and Treatment X Subjects sources.
Additionally, inclusion of S as an Indigenous variable would seen
to yield Important Information about the uniformity of subjects' respon-
slvity to selected experimental treatments, highly useful data In attempts
to 8eneral1ae observed findings (treatment effects) to a designated popu-

3. RiRg_% *PIATO OFTSMZYM n a recent dietary Vita-
min A restriction experiment,- 50 weakly Vitamin A plasm estimates (I.e.,
mg Vitamin A per 100 al Plasma) were obtained from 8 adult male voluntenrs

'In the Discussion Session which followed presentation of the current
paper, Prof. Cornfield referred to certain similarities between the
current Issue and one alluded to by himself and J. W. Tukey in an
earlier publication (see Cornfield & Tukey, 1956).
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for purposess of determining the "characteristic Vitanin-A-deplation, pattern
of umas."Due to considerable variability present In the observed plasma

estimates (particularly during the early part of the experiment) , it wae
decided to treat restrictio'n -an 4 ucceasive series of 25, 2-week treatment
values (2 roplicate/e/esson) for each subject. Moreover, a Log truae-
formation of the date was performed in order to (1) avoid the likelihood
of a treatment call effect yielding a negative Vitamin A value, and (2)
invoke a multiplicative model of Vitamin A depletion, an approach which
seemed more realistic for describing the expected deezeases In subjects'
plasma A, Thus, the design was set up am a 25 (Treatments) X 8 (Subjects)
X 2 (Replicates) factorial, with Treatments end Subjects viewed u repeated
measures and Replicates nested vithin Subjects, This final model is the
sam s that listed in Equation 2, with the exception that Log Xeijk is
substituted for X Ijk'

Results of the analysis of variance are presented In Table 1. As anown,
the Treatment X Subjects (F- 2.65; dfu 168/192, p4.05), Treatment (YO 6.58;
"df - 24/168, p4.05), and Subjects term (To 7.04; dfu 7/8, pt.0) were all
found to be significant. Whereas interpretations of the Treatment and
Subjects min effects are fairly straightforward (i.e., msen Plasma Vitamin
A estlmates differed significantly across the 25 treatment sessions as
well as between the 8 subjects), interpretation of the Treatment X Subjects
term is amre difficult. Basically, this term indicates that the Plasma A
values for subjects varied uniquely as a function of specific treatment
sessions.

TABLEI1
Analysia of variance for Log mg Vitamin A/lO0 ml Plasma values

of 8 volunteers obtained during 25, 2-week treatment
sessions of dietary A restriction

(i.e., 2 replicates/subject/treatment session)

Source df M9q F

Treatment 24 .988 6.58*
Treatment X Subjects 168 .150 2.65*
Treatment X Replicates
W. Subjects 192 .057

Subjects 7 .777 7.0*0
Replicates v. Subjects 8 .110

* p., 0 5



In an attempt to clarify the Treatment X Subjects interaction, plots
of both the raw Plasm& A values mad Log Plasma A values for each subject
by treattmet session sre shown in Figures la and lb, respectively. (Note
that the insert of Figure la also shohs the mean mg Vitamin A/100 a1 Plasma
by Sessions for the group of 8 subjects.) As can be seen in these graphs,
whereas all 8 of the subjects displayed similar decreases in their Plasma
A values during the first part of restriction, midway through the restrictive
period, 5 subjects showed stabilization and 3 subjects continued to display
large decreases in Plasm A. This indicates subjects vere heterogeneous
in their response to prolonged A restriction, a result which linits the
straightforvard inference that subjects displayed a characteristic treatment
(depletion) pattern throughout restriction.

While such i~nteraction La explainable In a number of ways (I.e., widely

differing dapletion rates among individual.s, invake of foods containing
Vitamin A in violation of dietary regitmen, etc.), the significancs of a
Subj cts X Treatment tern would seow to argue against the generelinability
of the Treatment main effect. That is, if it :s concluded on the basis
of the Treatment effect that 50 weeks exposure to dietary VItamLn A restrLi-
tion produces significant depletion, any inference regarding the "'harac-

taristic depletion rate of humans" still remains suspect due to the apparent
differences shown by certain of the subjects. Thus, whereas under the
classical one-way, within-subjects analysis, one would be led to conclude
that Vitamin A was significantly decreased during a 50-veek period of
restr:ictLon (i.e., a result also yielded by the current aproach), the
occurrence of Subject X Treatment interaction in the proposed analysis
would suggest such a conclusion be qualified, if not ignored altogether.
Regardless of the pragmatic conclusion, however, the current analysis
would seem to provide additional information regarding interpretation
and Inferences about the Treatment effect which has utility to a variety
of research situations.

4. DISCUSSANT QESTIOIS. In conclusion, olvarel questions concerning

application of the proposed analysis are noted. Specifically, these are:

1. Are there any problems with legitimacy of the analysis?

2. What are the inference Limitations imposed upon the Treatment
affect by occurrence of the Subjects X Treatment interaction?

3. What would be an appropriate mstlhod to quantify the divergence
of subjects?

4. tWhac crLtaera can be used for determining the appropriateness
of data transaforation(s) an the current analysis?

Discussants for the current paper were: Prof. J. Cornfield, Prof.
0. Lieberman, and Prof. W. A. Thompson, Jr.
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6. - LCUSV gZcu$ u mC~q~J.

Prf ibesa:

I comnd the authors for an Interelting paper with well stated mathe-
mutcal assumptions. I have no qualm sbout the mathematical nmodel and
their treastmnt of It. However, I hbe sound reservations about the appli-
cation of the physical problem to this math model. I explain as foUmwet

The term "treatment" Is used, and there are 25 "treatments."1 However,
the "treatments" are just bi-veekly observations, I.e., "trsatuant" are
4m. Thus, the term treatuent is Artificial. I believe that the authors
are Interested in long run tre•d•, as opposed to minor fluctuations. The
suggested analysis of variance approach doesn't answer this question. Further-
more, there is a question in my mind whether or not the hooeoedasticity
assumption, within a subject, Is valid. I believe that one subject may be
more variable than mother, and this variation Is Important. I believe that
theme comnts address the first concern mentioned In the paper.

The second concern am be ansvered by the usual answer for msin e fects
In the presence of interaction. The Interaction says that the vitanin A
concentration decreass In some subjects ad stays the sam or perhaps
Increases In other subjects. This Implies there are "treatment differences."

The third area of concern Is the heart of the problem in that It requires
sone suggestion about how to handle the overall analysis. In the absonoe
of more information, I would plot the vitamin A plasm a s a function of
time (per week) for each subject, and "e what conclusions can be dram
from each subject.

The final area of concern is the "transformation." I approve of the
log transformation because it handles the case where variability is pro-
portlonal to the concentration level, and I believe this to be valid In
this case.

27 - •7 -
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A alternative manlysi of these data Is sugested by Figure 1. It
oppears that a quadratic regression equation of Log concentration$ (Y) vs.
tim (1) my be fitted to the data for each volunteer. This leads to
eight regression equations o* the form

a + Ax + Yz2, (3)

me for each volunteer. egression equations of this fom would be
particularly infomatlo If 6,O, ryO, for the e would be an asMtote a
zit. t would also be interestin8 to test the hypothesis that all
eight regression equations an in fact the se, for then the individuals
of the population can be thought of am having the soe depletion pattern.
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PROBLEMS WITH A CO!flART.iE'1T MODEL FOR

ASSESSING •UMAN VITAMIN A KINETICS

Richard Teplick
Captain, M.C.

Assistant Chief Department of Information Sciences
Letterman Army Institute of Research

Fitzsimons Army Medical Center
Denver, Colorado

ABSTRACT. To utilize tracer data to assess relativP rates of
Vitar in A utilization under dietary restriction a four-compartment
model was developed. Ideally, the matrix of transition probabilities
for this model could ..e obtained by finding its four eigenvalues and
eigenvectors by fitting an equation with four exponential terms to the
tracer data from each compartment. However, since data was obtained
from only two compartments, two less direct techniques were utilized.

In one attempt to solve the model, the data from each of these
two compartments was fit with such a multiexponential equation. The
resulting two eigenvectors and four eigenvalues were used to try to
solve twelve nonlinear simultaneous equations. This proved to be very
complex and dependencies were eventually uncovered. A second attempt
utilized the eigenvalues from the first fit to derive en equation
describing the second set of data explicitly in terms of transition
probabilities, volumes and two eigenvectors. The parameters of this
equation were then adjusted to fit the data. This technique yielded
a physically unrealizable solution. However the attempts to obtain
solutions using these methods illustrate a number of problems common
to this class of models.

1. INTRODUCTION. In the late 1960s eisht adult males were
studied for a two and one half year period to acquire information
about human requirements for Vitamin A. This study included a 360
to 771 day depletion phase during which exogenous Vitamin A intake
was to be eliminated. At the beginning of the depletion phase, seven
of the subjects were given an intravenous tracer dose of C1 4 labeled
retinol. At varying intervals the label present in plasma, plasma
retinol, feces, urine and breath was determined. The original intent
was to use specific activity of the tracer to calriulate the body
stores of Vitamin A. However, since this involves an open system the
label will never equilibrate with the body stores. rhus specific
activity should vary with time and cannot be used directly to calculate
body stores of retinol. Therefore, an alternative method to estimate
total retinol stores as a function of Line was sought. The approach
selected was to model the system.
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2. THE MODEL. The simplest model which is in any way realistic
is shown in Figure 1. The assumptions made for this model are as follows:

a. The loss or gain of retinol in any compartment follows first
order kinetics. Therefore, there is no active transport.

b. Retinol exists in blood both bound to serum proteins and in a
free form.

c. All conpartments cornunicate directly with the free serum retinol

compartment but not directly with each other.

d. The volumes of all compartments are fixed.

e. The bolus of labeled retinol was introduced directly into he
free blood compartment.

The general form of the set of first order differential equations
generated by this model is shown at the bottom of Figure 1.

These equations, written explicitly for this model in terms of
concentrations rather than quantities, are seen in Figure 2A. The
initial conditions are given in Figure 2B. Since the bolus of label
is introduced only into the free-blood compartment (C 2 ); if rapid in-
jection and mixing are assumed, tie label in this cempartment at zero
time equals the initial dose. Additionally, at zero time, there can
be no label in any of the other three compartments.

The known or measured paraneters used in seeking solutions of the
model are given in Figure 2C. The concentration of labeled retinol
in blood was determined at varying intervals. Thus these values reflect
both blood compartments. Fecal samples were collected and pooled
for one week periods. Aliquots were counted and total weights measured
giving a figure for label lost per week. This was converted to a
one-day figure and assumed to reflect the loss at mid-week. The blood
volume was deternined by dilution techniques. The problem, then,
is to derive the parameters of tie model from the data.

3. SOLVING THiE "MDEL. The general forn of the solution to the
set of differential equations is shown in Figure 3A. This solution
is derived by taking the Laplace Transform of the equations and solving
them for the transform of the concentration in any compartment. This
solution, shown on the right of the equal sign in Figure 3A, always
has a fourth degree polynonial in S for a denominator. A second degree
polynomial in S forms the numerator for all compartments except the
free-blood compartment which is third decree in S. The inverse Laplace
transform of this function, shown on the left in Figure 3A, is a weighted
sum of four exponential terms where the aj's are the same for all
compartments and the Aiu's differ.
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Any attempt to solve for the defining parameters of the model
will involve nonlinear curve fitting. The major differences among
these approaches depend upon the available information. If aata are
available for the concentration or amount of label as a function of
time in each of the four compartments the simplest technique is to
fit the four exponential equation to the data for each compartment.
Since the a are the same in each compartment, once they are determined
for any co4 artment using nonlinear fitting techniques, the data for
the remaining three compartments may be fit linearly. As illustrated
in Figure 3B, the Aij are components of the eigenvector corresponding
to the eigenvalue a 'for the matrix of transition probabilities. There-
fore, as illustratel, the transition probabilities can easily be calcu-
lated if (Ai 4 ) is non-singular. This method could not be used for
this model sInce a direct measure of labeled retinol was available
only for the combined concentration of the two blood compartments.

It is readily shown that each AiJ may be written as an explicit
nonlinear function of transition probabilities and volumes. The exact
form can be derived from the equation ir Figure 3C.

The a, 0 and 6 may be determined by placing solutions for
concentrations in Laplace space into the form given on the right in
Figure 3A. The total blood concentration can be expressed as a weighted
sum of four exponential terms since it is a linear combination of the
two blood compartm•ents. A similar form can be derived for fecal excretion.
Therefore, the four elgenvalues, and the eigenvectors for the total
blood concentration for the fecal excretion may be found by nonlinearly
fitting one set of data and using the eigenvalues determined from this
fit to linearly fit other set of data. The two eigenvectors and four
eigenvalues thus determined can be used to derive twelve equations
which are nonlinear functions of the eight transition probabilities
and the four volwues. Eight of these equations are derived from the
equation in Figure 3C. The other four are formed by writing the denomi-
nator of the solutions in Laplace space in the form of the denominator
given on the right in Figure 3A. It appeared that there were twelve
equations and twelve unknowns. However, after considerable algebraic
manipulation, dependencies could be demonstrated between several of
the equations. Thus it was apparent that a solution could not be derived
in this fashion and this method was abandoned. Retrospectively, this
is obvious as half of the eigenvectors and all of the eigenvalues are
insufficient for reconstructing the original matrix.

A second approach was devised which uses nonlinear mininization
techniques to fin'.d the unknown parameters using as few variables in
the minimization as possible. Figure 4 illustrates this approach
for the blood compartments. By using the equation relatinR C3 to
C2 , (Figure 4A) the general form of the solution (Figure 4B) and the
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unknown constraints (Figure 4C) the total blood concentration can
be written as a function of the four eigenv.aues, and the bound blood
eigenvectors, volume and associated transition probabiliites.

Figure 4E illustrates this equation. The eigenvalues were deter-

mined by fitting the fecal data using a nonlinear least squares approach.

This data was chosen rather than labeled blood retinol data because

more data points were available and because there was no blood data

available for the first ten hours of thie study. Initial values for

tile fit were estimated by peeling two exponentials from the tail of

the fecal data and guessing tile remaining values. It was also evident

that all eigenvalues and at least one of the Aij had to be negative.

The fitting routine incorporates provisions for random searches
and several gradient and nongradient minimization techniques. Parameters
may also be fixed while others are permitted to vary. A procedure
is also available to attempt to subtract out a local minima and continue
the search. All runs were on a CDC 7600. A positive definite Hessian
matrix was eventually found although several parameters had to be altered
manually to escape local minima. A positive definite Hessian was also
obtained for the equations of Figure 4E usinr the eigenvalues derived

from the fecal data. The deriv2d parameters appeared reasonable. Sub-
sequently a linear fit was performed on the total blood compartment.
Using this fit and the calculated bound-blood equation, the equation
for the concentration of retinol in the free blood compartment was
calculated. This produced one negative component in the eigenvector
which drove the calculated labeled retinol negative for the first five
hours of the study and caused a maxitw.i to be reached at about 26 hours.
Because these results are physically impossible, further efforts were
abandoned. HIowever, had this not occurred, a similar technique would
have been used to determine the parameters associated with the liver
compartment in conjunction with the measured fecal excretion and calculated
free-blood pool. The parameters for the last compartment (other tissues)
would have been determined using the same technique along wv th the
calculated label remaininq in the body (assuming the percent metabolites
to be insignificant) minus the quantity calculated to be in the three
determined pools. The resultant eigenvectors and eigenvalues were
to be used to recalculate the volumes and transition probabilities
as in Figure 3B. These new values would be used as staitinrg points
for new solutions to be calculated in the same manner as the original
solutions. It was hoped that eventually the fitted parameters would
correspond to those calculated from the eigenvalues and eigenvectors.
The reason this technique was to be employed was in the hope of circum-
venting the difficulties inherent in the use and interpretation of
nonlinear .Jnimization techniques.
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4. PROBLEMS WITH THE TECHNIQUE. Regardless of the approach taken,
some nonlinear curve fitting must be performed. If measurements are
available for all compartments, onTy one nonlinear fit adjusting seven
parameters is needed. This method was utilized to fit the fecal data.
In the second approacfi used to solve the model this fit was used as
the basis for a second nonlinear fit adjusting six additional parameters.
An alternative would have been one fit for 10 parameters which would
have also determined the eigenvalues. It is evident that when fewer
parameters are fit more nonlinear fits are needed. This is counterbalanced
by the mounting difficulties in fitting more parameters simultaneously.
All fits, regardless of technique, are dependent upon the initial values
chosen. in this study, only crude guesses could be made for initial
values. If an inmroper set of initial values is used, the nonlinear fit
becomes trapped in a local minimum. This was amply clear from futile
attempts to better the fit using random searches; successively fixing
parameters; and subtracting out local minima. Yet when a different
set of starting values was selected a better fit resulted.

It is obvious from the form of the fecal data, which is initially
zero; reaches a peak in about 24 hours and then monotonically decreases;
that at least one of the A.i had to be negative and that all of the
eigenvalues must be negative. If a physical interpretation could be
affixed to the eigenvectors, reasonable starting points and constraints
might be derived. However, I am unable to find any such interpretion.
Is it valid to assume that a fit with a positive definite Hessian matrix
is the best fit? If so, should starting values be altered until a
positive definite Hessian can be found. If, as in this case, the model
fails to yield a reasonable solution, how can one decide if it is the
model, the techniques, the data, or a combination of these factors
causing the difficulty. Additionally, if a reasonable solution is
obtained without finding a positive definite Hessian is it valid to
use this solution and to compare the solution for one subject to another.
Finally, can any form of confidence intervals be placed around the
calculated parameters?

5. COMMENTS BY ONE OF THE PANELISTS. The author is grateful to
Professor Jerome Cornfield for the following remarks on a possible
methods for treating the troublesome problems:
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I have boon stimulated by this very Interesting paper to to-exezine

(13 the application of N90. Hartley's method of internal least squares

[23 to the analysis of multi-campartment models. Th~e major reason for

investigating this method is that certain parameters of the model can be

made to appear linearly, so th~at the computations become greatly simplified.

A major consequence of this uimplicity is that the issue of whether the

existence of four compartments can be inferred from measuremets oj only

two, can be investigated in a very direct way. My own working hypothesis

is that only direct meaunrements of concentratione in the compartments

in question, such as those reported by Dancan at al E330 %!ill provide

satisfactor'y answers, Such direct measurement is not possible when the

subjects are humans, so that it seems essential to have a statistical basis

for detetitning whether a given. body of data will permit reliable indirect

estimation of the parameters of unobserved compartments from direct meaturement

on observed ones.

On-CompargMet Model

Starting with a one-compartment model, the differential equation, using

quantities of label throughout is

(1)

integrating both sides from time 0 to t, we have

t
(2) QmZ)J' Qdt,

where I is the bolus injected*'

If observations q, are made at time t1 (iul,2asor)& estimate
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tt +

f Qdt as

(3) ___________-,_q__
t "lose qt-." loe8 q,

whee too 0 and q 0 , 1,

((3) is obtained by pUssing an exponential through the points at t 1 .and t,

and .interatinge.) Set

(4) KI 01

wA estimate X as the constant in the linear model.

(5) qj a I- Xx1 + c

r
ise. by-inimizing E (qj-I + Xx1)8/Vj (where Var(q 1)-V 5 ) or some other

convenient procedure. A standard error, confidence interval or other heaaure

of uncertainty can be similarly obtained. This formulation, which is

essentially due to Hartley, linearties the problem. The question of the

efficiency of the estimate seefs of secondary Importance in this context

and we shall not pursue it.

SWm-somoartment model

The model is defined by the equations

dt " IS "•+ )o4)Q, +)*IQ$

(6)
ds--t X" 8 -041'(,, + •)GQs.

Compartment 1 corresponds to the blood-free compartment, compartnent 2 to a

homogeneous all-other compartment, while X1o and )qo are the constants governing
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the wo foms of emeretion, Integrating as before

z "I - .+ o) tQjdt+ ÷)al.Q.dct

(7)
Q2" M Xo Qadt:-(Xg1z + )*a)• tQdt •

Observations q11 of mounts in comparpment 1, are made at time to and of

ui, Ithe amount excreted from compartment j between ti(I.1) and tjj (J-I2).

No observations ore made on compartment 2. We define xsl a in the one
Ito

compartment modelA- and estimate I Q1dt in equations (7) as xzs. To

estimate Jto: Q8dt we let

(8) 42t 1 - - q 1 ,-c.umulative amt. ixerstids

where the last terms i estimated from the uls. We pass over the details of

this estimation as straightforward and of no iatrinsLo Interest. We now

treat the qgi in the same fashion as the q1 of the one-compartment model

to obtain xes as estimates of Q'g'Qsdt. We then estimate (Xie +) Xo) and As,

from the linear model

(9) q1 t I - +%jO)xjj +)Olxot+C

by least squares or some other convenient procedure. X10 and )00 can be

estimated from the linear models

(10) UJI " XjoYJ7 +Its J - 1,2,

for the 2 compartment model Qt is a linear combination of 2 exponentials

and alternatively one might consider passing such a curve through the

4 points q4-., q 1.o, q, and q1+ I and Integrating between q1. 1 and q. 1 .
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tselmates of the uncertainty of the estimated constants can be obtained, as for

the one oompartment case, from standard linear regression theory.

Three compartment model

The foregoing is all preliminary to a consideration of whether the

observations q1 1 and uj will support the separation of the assu•xed homo-

&eneous all-other compartment into two or more. The differential equations

are

dQI
"d"t "•1+,I •o)Q + )41QB+ X802 Q

dt X1 .Q 1  " 06 1 + teO)Qs,

dt
dt X20 - AI )00)Q3'

which on integration become

t t t

, - %.+ X,+ ••a )SoQ,dt + •, 1 'oQsdt + XaIOQadt

t t

(12) XI" O.Qdt -(Xg* + 4o)SoQgdt

t t +Q2 % X*eOom dt - (%S I + XSe),Soqadt .

Letting Qg - Q@ +Q3 we have from the sum of the last two equations

t~ t

where 41 +40o JOQdt+ Jdqsdtd t m '•d+ So'" Q dt

Equation (13) is of the same form as tho second of equations (7), except

that the quantity Ae&+ 40, which is constant over time in that equation
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time if J'oQ. dt/ftQdt is not constant for all t. The ability to

break the lumped all-other compartment 'into two or more separate

compartmsnt* in the absence of direct measurements is thus entirely

dependent on the non-constancy of x + 40 and the Inferences that can be

drawn from this non-constancy.

Behavior of + '4a

The behavior of the function ea+ •4. can now be directly investigated

by first fitting a two compartment model from equations (9) and (10. We

then substitute observed quantities for the second of equations (7) to obtain

(14) q@1 - Xjgx 1..- ('( + o)0 x,•

Using the value of )% estimated from the two compartment assumption one can

compute for each tj the quantity

(15) _,_,- _____

1zs

and observe its behaviot over time. If it Is constant, within observational

error, then there is no basis in the data for breaking down the lumped all-

other compartment. This step of the investigation would benefit, however,

by knoving the behavior of :I+ X:o when the three compartment model holds.

one way of proceeding would be to substitute for 9odt and '!o3Qdt in

)t1 + '4o the linear combination of three exponentials obtained by the

solution of equations (12). All linear properties are now lost, but

there may be no simpler procedure. Under some circumstances A:&+ '4o
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amy be monotone in t, although I have been unable to prove that this is
generally true when the three compartment model holds. Although more can

and should be done to investigate the behavior of )11+ ):a, the point of

this note Is that direct investigation of the behavior over time of

expression (15), which depinds only on simply computed observables, may

provide a more perspicuous analysis than is achievable by more standard

methods.

Comm~ent

The foregoing is best interpreted as an informal memo to a colleague

an a possible new line of investigation that may bypass some difficulties.

but overlooking many details which must eventually be filled in. Until

this investigation is undertaken, I would claim no more than that the

general ap.proach seems promising.
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FIGURE: 3

SOLUTIONS TO COMPARTMENT MODEL

A GENERAL FORM OF SOLUTIONS'

G All SoltKS 3+OFs S* 2 S 81
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(kill [All]-u [A,ý. [ol Bill;
[X51 - [All] [ (alb] llAl]l

o IF EXPLICIT SOLUTIONS ARE DESIRED

All Ka? *a 1 O+A 0 al8

Kal IF I=2

K sO IF i02
Z INVERSE LAPLACE TRANSFORM
S a COORDINATES IN LAPLACE SPACE
AiI,jO ARE CONSTANTS FROM FITTING DATA

11 IS KRORECKER DELTA
[1 ARE SQUARE MATRICES
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Gideon A. Qalpopper

Reliability, Availability, and ibntainsbility Division
Army Missile. Test and Bvaluation Directorate
15 Army White Sands Missile Rungs. New Maxico 88002

ADBSR/•. An equation is developed containing the simple size required
in order to met a Circular Probable Error requirement expressed In
term of a desired and essential value and the correspondlng producer
and user risks. From this equation a table is pyduce giving the
required staple size for the risk factors involved and the value of the
Circular Probable Error ratio. Also, the necessary condition is given
that the 0'! estimate not fulfill in order to met the criteria.

An Operating Characteristic Curve is also constructed for an
.x Ies. TeM OC Curve is based upon the chi-square distribution with

2N-2 degrees of freedom and the ratio of the essential CPE to the true
cPE.
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The Circular Probable Error (CPE) is often used as a measure of

accuracy in evaluating the performance of surface-to-surface missiles

and rockets. Various formulas are used in estimating the CPE

depending upon the characteristics of the miss distance data collected

from the firing tests. The estimator for the CPE used in this paper is

CPE u 1. 1774op, where a P a [ + s j. The sample variance

a 4is the pooled or average variance of the component miss distance

data.

The problem considered here is to determine first, the sample

size needed in order to meet the CPE criteria given in requirements

documents and second, to find what the condition is that the estimated

CPE must fulfill to satisfy these requirements. The CPE criteria are

assumed to be given in the following form:

CPEE = the essential or minimum

acceptable CPE

CPED . the desired or specified CPE

CPE > CPEE ED

The following risk factors are either given or assumed for the

purpose of test planning:I = the user's probability of the missile passing the accuracy test

if the true CPE of the missile is greater than CPEE'

a = the producer's probability of the missile failing this test if the

true CPE of the missile is equal to CPED. I00(I-0)% is interpreted

as the confidence that the true CPE _5 CPEE if CPE satisfies a certain

condition (see paragraph on next page). The parameters
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SCPEE CPE, determine the sample size (N) of missiles to

be fired in an accuracy demonstration test.

After the miss distance data have been collected, the CPE is

estimated by the formula n = 1. 1774sP, If CPE I K(CPE E).

where K 2X (ZN-•2)/2N-2] then the missile has met the accuracy

criteria, that is, there is a demonstrated 100(1-P)% confidence that

the true CPE 5 CPEE and if the true CPE m CPED , there is a

probability of 100(l-a)O% that the missile will be accepted.

The partial table on the next page lists the a and P risks, the ratio

CPEE/CPIED. N, and the value of K. In forming this table N, a,

and • were selected first and the ratio CPE I/CPED was computed

last. The equation

Xa(N-2)N CPE E 2

2-E
X - (2N-2) QCPED

connects the quantities. The upper percentage points of chi-square are

used with 2N-2 degrees of freedom.

Numerical Example.

CPEE = 300 meters, CPED = 250 meters

M 0. 20 a = 0.50

CPE E 300

CPED 250 1.?.O. N 7 and CP" f 0. 8 0 6 ?(CPEE)
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K such that
CPEE if CPE S K (CPEI

CPED th, accuracy criteria
4 N have been met.

sa .50 1.451 5 .6605
1.385 6 .6975

a .10 1.342 7 .7248
1.309 8 .7459
1.284 9 .7629
1.262 10 .7769
1.247 11 .7888
1.225 12 .7987

a * .50 1.264 5 .7575
1.229 6 .7861

• .20 1.205. 7 .8067
1. 187i 8 .8224
1.173 9 .8367
1.162 10 .8466

Sa .25 1.365 6 .8208
1.326 7 .8386

13 .25 1.298 8 .8521
1.275 9 .8628
1.257 10 .8716
1.242 11 .8790
1.229 12 .8853
1.218 13 .8906
1.208 14 .8953
1.200 15 .8995
1.192 16 .9033
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If an OC Curve is desired for this design, then the probability

that the missile will pass this accuracy test (be accepted by the test)

is given by

P a Prob[X 2 (2N-7.) X 2~ ( - )2

where CPET a the true CPE. If N u 7, 0 - 0. 20, the coordinates
2of the OC Curve are given in the table below. X .20(12) a 7.81.

The graphed OC Curve follows.

(7. 81) X

-PE \CPET

180 21.79 .96

200 17.57 .87

220 14.52 .74

240 12.20 .57

260 10.40 .42

280 8.96 .29

300 7.81 .20

320 6.86 .14

340 .6.08 .09

350 5.73 .07
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DESIGN AND ANALYSIS Of A HIT PROBABILITY EXPERIMENT BASED ON
A BIVARIATE NORMAL DISTRIBUTION

Robert W. Mal Data Reduction Section, Technical Test
Support Division, Materiel Test Directorate, Yuma
Proving Ground, Yuma. Arizona

ABSTRACT

The paper describes a method for analyzing the results
of a hit probability experiment in such a way that the
producer's riek (a risk) of rejecting a popul ation of items
that does in fact meet a speci fied criterion is controlled.
The procedure described Is an adaptation of the methods
ordinarily used within AMC when a binomial distribution or
exponential distribution is the model.

The method starts with a population known to have a
hit probability equal to the specification. A procedure is
defined for getting a point estimate of hit probability from
a sample. A rejection point for the point estimate from a
given sample Is then established at a level that will force
the a risk to be within a given Interval.

This method will provide Information useful in evaluating
the acceptability of a test item's hit probability when a
bivariate normal distribution is indicated. It w 11 also
help to determine a sample size which will afford desired
protection against making a Type I error. Investilation is
underway to determine interval estimates for the rlsk of a
Type 11 error (i.e. to provide quantitative control of the
5 risk using simIlar techniques.)
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INTRODUCTION

This paper is concerned with the estimation of producer's
risk a for tests of hit probability where a bivariate nornmal
distribution is indicated and Where the miss distances in the
horizontal (x) and vertical (y) directions are independent.
The a risk had to be quantified so that the project engineer
could design the test and choose an analytical plan that
would follow latest Army guidance for this phase of testing.
Guidance has been: As a result of reliability growth during
the test cycle, it is Imperative that agencies insure aqaInst
rejecting the test item early in the test cycle. This can
be accomplished by insuring a high progabil ty of accepting
a population of test items If the true hit probability, PH,
is greater than or equal to the specified hit probability,
PSPEC.

APPROACH TO THE PROBLEM

The approach taken in this investigation was:

(1) Find a hit probability estimator, Ag, that .ould be
easily measured and/or computed during t a test.
(2) A rejection point, PRP, must be computed and PH
compared to this rRP.

(3) If we set up the hypothesis that

PH 1 PRP implies PH < PSPEC

PH > PRP Implies PH 1 FSPEC

then we must be able to choose PRP such that the risk
of a Type I error is less than or equal to a.

INVESTIGATION PROCEDURES AND RESULTS

The physical set up of the test hints strongly at the
choice for PH (the hit probability eastimator). The target
was to be rectangular (or square) with height H and length L.
Previous test results had shown miss distances in x and y
directions to be independent and normally distributed.
Also the system could be boresighted to assure

WX 0 Vy
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be. For this set up we know that the hit probability could
be computed as the product of the probability of hitting in
x and the probability of hitting In y. Also we know that
the probability of hittisg In the x or y direction can be
computed based on the normal distribution.
A An obvious choice for the hit probability estimator
PH is the one described by the following equations:

PH " PxPy
;x a A(Zx.,) +, A(Zx,,)

S- aA(Zy,,) + A(Zy,,)
i - xl1

K -R
Zx91 M Ox

X."

o'x

yy

where x,: x coordinate of left edge of target

x.: x coordinate of right edge ef tdrget

yl: y coordinate of lower edge of target

y,: y coordinate of upper edge of target

Saverage x coordinate of sample Impacts

:average y coordinate of sample impacts

ax: sample standard deviation in x direction

ay: sample standard deviation in y direction

Z : standard normal variable with mean 0 and
variance 1

A(Z): Probability that the absolute value of a
standard normal variable will not exceed Z
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,i

px: Sample estimate of the probability that the
x coordinate of an Impact will be within
the bounds of the target

Py: Sample estimate of the probability that the
y coordinate of an impact will be within
the bounds of the target

The next step In the investigation is to find rejection
points PRP for )N in such a way that if

PH a PSPEC

then in a sample of size N

(*) P(H 1 RP)RO

We see from the definition of PH~that it is computed from
* the sample parameters x, 9. ax, and a r Thus to solve equation
* •*) for PRP. we would need to study thi distributions ofi, 9,

Ox, and ay..
The sample parameters I and Y are normally distributed

with means ux and respectively, and standard deviati2ns
Ox / \rN. and oy I N respectively [1]. The parameters ax and

- -•are each related to chi-squared with N-1 degrees of freedom

x'(N-1) • (N-l) &x'

X'(N-1) (N-1) 8, A

To investigate PRP, we need to know how R, 9. ax and

behave, which in turn depends on pxI, vy, x, 0;y and the normal
and chi-square distributions. We know how to approximate thedistributions and we know that

"X a 0 a Uy

The remaining unknowns are ox and a . Recall that we are
tryinq to solve equation (*) under he assumption that

PH a PSPEC

We also know that

PH PX Py

- 56 -



-A(ZXI&) + * 2

Py U Alysa A(Zy~a)

ZX91 -L/2 * lx

Qx

Z -H/2. 'i

N/2-i1

*But U 0 Implies

* 1A(ZX, 1) A( $)

and
Pa 2A(Z$,1)

Simi'larly,
P y a 2 A(ZY91) 2

In this test the size of target was such that

*a a where

* I With this simplification we have

and
H Px2  ~y SPEC

Thus If PSE a .90 we have

aX .94868 P*

-57-



A(Zx) , .47434 a A(Z )

Ox - 1.92426 ai.

If the assumption that ax m a a when L - a H is not valid
then iterative numerical technitues are required to solve for
Ox and ay given a value for PSPEC " PH-

We how have all the Information required to solve
equation (*). We let

S * { (a,bcd) /

P(X-a, so >t b, III c. 19 1 d) a u )

We then compute
PH(&9b~c~d)O,:

for every (a,bc,d) e S by
A

substituting a 0 OX

b aOY

cm

d-y

into the equations for

Then we let

PRP * Min( FH(a,b,c,d) / (a,b,c,d) S}.

If we do the above, then

*H •SPEC

Implies
P(OH PRPO ct

To find the set S, we observe first due to independence
of x and y that

P(Ox ;a, 9 y )_ b, x c. ~ d)

"P OX a) P(ay ; b) P(Ii c) P(II > d).
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We now compute values for (a,b,cd) associated with the

probabilities

4*x "P(O•x a)

aly P(O1 _ b)

&six P(IiI • c)

*a.y P(CP l_ d)

For ease of notation, we let

& I O'• x e t oy

as " 4s.x a2,y ,

so that we are looking for (a,b,c,d) such that

8a,.

An example of the computation required Is given In table 1
for PSPEC " .90 a PH, .10, N - 38.

The observations made during computation were:

(1) For a given a&, the minimum PH(ab,c,d) occurs where
8,X " a 1 ,y a •i".

(2) For a given value of a,, the minimum value for
PH(a,b,cd) occurs when as3x a, or ay * a,
depending on whether &,,y $ as,x or ai,y x ,
respectively.

(3) For a given value of a, the minimum PH(a ,b ,c ,d)occurs where a * 1.00 and a& I o and (from (1))where a; x -&Ir - a y .

Thus P cnbe computed for a.given No a. P~pge~by
making one ut. of computations for fPr(a bc,d) Pf
(a,b,cd) associated with the probabvliltes

a l 'x 0 & t oyl l

aly • 1.0 a1,x'
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Examples of various rejection points and associated arisks are shown in figures 1 - 4. In figure 1. for example,where the specification hit probability was .90 and thesample size was 38, one can choose any desired a risk for atest by simply finding.the rejection point PRp associated
with a. Then compute PH for the sample and reject it If
PH • PAp and accepting it if PH PRP

ACKNOWLEDOEMENTS:

I wish to express my gratitude to Don Nelson for his* very conscientious efforts in the seemingly endless calcu-lations required to discover and substantiate the methods
described herein.

It has been brought to my attention that ProfessorLieberman (Stanford University) has done extensive work inthis area and arrived at results more comprehensive than
those in this investigation.

REFERENCES

(1] Ostle, Bernard, Statistics in Research, The Iowa State
University Press, AmeS Iowa, 163."

(2] Huntsberger, David V., Elements of Statistical Inference,
Allyn and Bacon, Boston, Massachusetts, 1 97.

- 6O.-



TABLE I

• .10 PSPEC ..90 * PH SAMPLE SUZE * 38

a|,X Ix ,y a2,x a2 y PH

i a1 ,l £ity a .10 a a asI 1 1.00

.1000 1.0000 1.0000 1.0000 .9118

.2000 .5000 .8806

.3000 .3333 .8786

.3162 .3162 N .8785

.3500 .2857 .8787

.4000 .2600 " .8791

.5000 .2000 .8806

.6000 .1667 a " .8828

1.0000 .1000 1.0000 1.0000 .9118
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41 .20 a, l 'y .50

I a1 9tx Ia3, * Yl 1

.2000 1.0000 .5000 1.0000 .9245
"" .6000 .8333 .9253

"" .7071 .7071 .9257
.8333 .6000 .9258

.2000 1.0000 1.0000 .5000 .9262

3000 .6667 .5000 1.0000 .8987
.6000 .8333 .8992.0.7071 .7071 .8992
.8333 .6000 .0991

.3000 .6;7 1.0000 .5000 .8988

'4162 .4162 .5000 1.0000 .8917
N N .6000 .8333 .8922

.7071 .7071 .8923
a .8333 .6000 .8922

.4162 .4162 1.0000 .5000 .8917

.5000 .4000 .5000 1.0000 .8960" " .6000 .8333 .8965
a .7071 .7071 .8966
a a .8333 .6000 .8965

.6000 .4000 1.0000 .6000 .8960

'6667 .3000 .5000 1.0000 .8988
.6000 .8333 .8991
.7071 .7071 .8992.8333 .6000 .8992

.6667 .3000 1.0000 .5000 .8987
1.0000 .2000 .5000 1.0000 .9262

H .6000 .8333 .9258
.7071 .7071 .9257
.8333 .6000 .9253

1.0000 .2000 1.0000 .5000 .9245
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a1 ,x .Iy a, 1  ay Po

alk a1 ,x a1,y m .3162 as - asex a2 ,y m .3162

.3162 1.0000 .3162 1.0000 .9342

.4000 .7906 .3162 1.0000 .9124

,5000 .6324 .3162 1.0000 .9092

i5623 .5623 .3162 1.0000 .9088

.6324 .5000 1.0000 .3162 .9092

.7905 .4000 1.0000 .3162 .9124

10000 .3162 1.0000 .3162 .9342

as * a .4000 at 4a,x A3 ,y .2500

.6325 .6325 .2500 1.0000 .9167

a t o a1 ,x a1 ,y a .5000 as • a,,x al,y m .2000

.70711 .7071 .2000 1.0000 .9251

a1 M aix aiy a .7000 a2 a 2,9X aly m.1429

.8367 .8367 .1429 1.0000 .9419

a * a ,x a ,y - 1.0000 a a a ,x a ,y • .1000

Vr10000 1.0000 .1000 1.0000 1.0000
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MODEL FOR PROBAILITY HIT ANALYSIS

OF 20MM PROJECTILES

Diana L. Frederick
Frankford Arsena1

Philadelphia, Pennsylvania

ADSTRAL. An analytical determination of probability of hit (PH)
for amnunition fired from a helicopter or fixed win$ aircraft was
calculated by a model utillsing Hastinges Error Function. The model
can incorporate errors for various slant ranges and target simes.
Primarily, the model provided trajectory comparisons and probabilLty
of hit data for a proposed 20mm 1950 grain HE projectile with an M505
fume nose contour and the recently developed 20e PGU 31B Semi-Armor
Piercing Incendiavy (SAPI) projectile for mixed firings at 10 x 10 and
100 x 100 feet targets.

-. INTRODUCTION. This analytical model provides a means of
comparing mismatched ammunition when fired Ln the same burst and it
particularly useful; for example, in comparing kinetic projectiles
with high explosive projectiles. However, specific data on these
projectiles for a fixed set of conditions were not inmediately avail-
able; therefore, the model used existing data for ammunition under
development. The model represents an input to the Systems Analysis
task for ACTS.

The purpose of this model was to ptovide a tool for determining
and comparing probability of hit data for a proposed 20mm 1950 grain
HE projectile, Figure 1, and the newly developed Armor Piercing
Incendiary (AP) ammunition, Figure 2, when used in combination in
the M61 gun. Since the firing system allows only one ammunition type
to be entered in the computer system of the weapon and since the
weapon could fire mismatched ammunitinn in the same burst, the question
arose: Now does the limitation on the weapon system and the variation
in projectile design effect the probability of hit?

A cummary of projectile characteristics follows in Table I.

TABLE I

Ammunition Characteristics
Muzzle Nose

Length Weight Velocity Length
froiectile (in) (arm) (foc) (in),

HE 3.600 1950 2950 1.440
AP 3.125 2100 2850 1.462

Preceding page blank - 69 -
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a. Projectile Assembly

- - _

b. body and Rotating Band Assembly

igure-2. .0mm-kP Projectile
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The probability of hit calculations require timates for the. following error values:

1. Trajectory dispersion caused by variation in &unitionS~~parameters such asidi'ag weight "n mussle velocity,

• 2. Projectile precision,

3. System errorscaused by the weapon mount type and movement,
functional mechanism, and &munition interaction.

2 P. The computer program was set up for use throujh
card data input or data input on a teletype. The output from DIANA PH(name of program) Is the probability of hit for a specified slant range,
and target size for single and multiple rounds. Data inputs to the
program are target size, slant range and the error estimates. All
distributions considered were normal.

where

Ph probability of hit
Px = target length probability
Py " target vidth probability .

Px Prob i'/

Py a rreb -C.X'Ya -C RV

where

X a continuous random variable of dispersion in x direction

= mean dispersion in x direction

Hx a 1/2 target vidth

Y a continuous random variable of dispersion in ydirection

m- mean dispetsion in y direction

Hy a 1/2 target height

SR = slant range

-72



Al - all errors mle

@-Ia

P rr(sR/1O00 )

Px and Py were evaluated from application of Hastings Error Approximation,
that is if

Ps -2 x tx2
•0 J dtxJo

where tX -

S• dr

where ty myH

V2r-A
then the approximations are:

Px U 1

l* a1 - + &2 _+ 413 ÷ 4

"5 ; 6 ] 16

and

[:1 + "II + &•2 + ,&3. ÷ , 4 +-3 -4

,a ?' + a6 Y 16

with:hI = .0705,2307,84

&2 - .0422,8201,23
a3 • X00*2,7052,72
64 = .0001,5201,43

"a5 M .0002,7656,72
*6 = .0000,4306,38
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Also for multiple rounds

Pn = I - (I - P)"

Symbols used in'the computer program are as follows:

SR - Slant range
3S4L - Ballistic error in mils
AHL Ammunition mismatch error in mils
REML - Range estimate error in wile
SHAPE - Projectile design name
HK - One-half target length
NY - One-half target width
IND - Index
Px - Target length probability
Py - Target width probability
P - Probability of hit
Pn - Probability of hit of n rounds

The program is described in the flow chart in Figwae 3. Tt is set up
to do multiple runs when IND is equal to zero. The program will perform
probability of hit calculations for various errors using the same target
size and projectile shape. If IND is not equal to zero the program can be
terminated,v the target site can be changed, or the projectile can be changed.

TABL- II

Data Inputs

Card

TyeColumns Format Epaai

1 2 - 24 4A6 Projectile shap4
2 1 - 10 F1O.2 One-half target width

11 - 20 110.2 One-half target length
3 1 - 10 710.2 BD4L

3 11 - 20 710.2 AML
21 - 30 110.2 RDlU
31 - 40 110.2 83
41 - 45 15 IND

The fortran program, sample data input and sample data output
follow in the Appendices.

DISCUSSION

An example of an application of DIANA PH it the probability of hit
analysis performed on two 20mm projectile@ using trajectory data generated

- 74 -
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at 7rankford Arsenal. Figure 4 contains the drag curves for these two
projectiles: the HE and AP. The lower drag of the AP projectile results
from its longer and more slender nose shape. Thus, the A? projectile
travels further with.a shorter time of flight, see Figure 5.

Mismatch is a function of range, muzzle velocity, altitude upon
firing, and aircraft dive angle and speed. Mismatch was calculated from
the difference between the trajectories of the two projectiles. This
study concerned variation of only two errors: system dispersion, BMLI
and trajectory dispersion, AML. Range estimate dispersion, REML, remained
sero. The study covered the following four cases:

TABLE UII

Variation of AML and BML Errors (Probability of Hit)

-Case I -':N.L w I for both projectiles,
A4L m 0 for AP
A4L a X(i) for HE
XWi)= mil dispersion between trajectories of the

two projectiles at the specified slant range.
In this case the value is taken to be 3.47
at a range of 2309 feet.

Case I1 - Same as Case I except range was 6928 feet and X(i)
was 13.7.

Case III- Base as Case II except BML a 4 for both projectiles.

Case IV - IML m I for HE
BML w 2 for AP
X(i)- 18.3 at a range of 10,381 feet

Table IV contains tabulations of the probability of hit comparisons
between the HE and AP projectiles for single and multiple round bursts.
The values cam from exercise of the computer program with the input
data as shown in the table plus that shown in Table III. The program
has incorporated the drag curve for the AP and HE projectiles. From the
resultant trajectory mismatch between the two projectiles, the program
computes the probability of hit for both types of projectiles but with
the AP being the reference. The trajectory mismatch is shown in Figure 6.

The firing system is programmed for one ammunition system only.
This report assumes the projectile drag curve programmed is the AP.
Thus the AM!L error is zero for this round and some value Xi for HE.

- 76 -
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Pigure 7 shows the probability of hit versus number of rounds. The
data graphed in taken from Table IV.

Table V comparen probability of hit between a small and large target
at short and long ranges with data obtained from exercise of the program
as a second example.

The data sets for these exercises are contained in the Appendices.
These data are graphically presented iCh Figures 8 and 9 for two different
target sxes: a small target 10 by 10 feet and a large target 100 by 100
feet.
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of IS VALLISTIIC (kO4 IN NILS Aft IS AIMING (EV00 IN OILS 815. IS RlANGC ESTIMATE (ER0R IN 14ILS

So 9% 81.69?NT 41*9

*OoJECTILC D(ESGN I 958%

lw A.5T MIDI" 1% .1fl0000E.02

* ??ET LkMNT% |q .10000000(.02

% PRML &ML R(4. P P3* P16 ps PIG pis

P364.40 1.00 3.47 -0.0000 .2036 .9990 1.0000 .6797 .6974 .9671
7369.40 2.00 3.47 -0.0000 *1691 .9991 1.0000 .6040 .6432 .9379
23"4.40 3.00 0.47 -0.0000 .1319 .9V54 1.0000 .5069 .7I68 .88001
2304.40 4.00 3.4? -0.0000 .1007 .9023 .990? .*119 .6542 .7967
2304.40 1.00 4.4% -0.0000 .0300 .6854 .9010 .1411 .2624 .366S
2309.40 2.00 V.dS -0.0000 .0291 .6744 ,6940 .1373 .25S7 *3rab
7304.40 3.00 VdS -0.0000 .027 b6567 .8d22 .1312 .24%? .3443
2349.40 4.00 4.4s -0.0008 .0260 .6332 *4655 .1;36 .2320 .3269
2309.40 1.00 13.96 -0.0000 *01%1 .&39S .6dsf .0133 .1413 .204-3
2308.40 2.00 1J.96 -0.0080 .0149 .4346 .68U3 .0723 .1393 .20kS
2184.40 3.00 13.96 -0.0000 .014S .4266 .6712 .9706 .1362 .1Q71
P309.40 4.00 13.96 -0.0000 .0141 .4159 .6566 .*643 .1319 .1912
230f.40 1.00 15.60 -0.0000 .021 .3713 .6047 -O592 .IS0 .167'
2306.&0 2.04 I5.60 -0.0000 .0120 .3677 .6002 .05f5 .1136 .1655
Z304.40 3.00 15.60 -0.0000 .0113 .3620 .5929 .4574 .Ills .1625
2304.40 4.00 1S.60 -0.0000 .0114 .3542 .5s29 .0559 .log?7 ,IskS
4419.00 1.00 21.30 -0.0000 .0016 .0605 .1173 .0042 .0163 .02%J
4AI9.00 2.00 21.30 -0.0000 .0016 .0601 .11645 .9011 .0162 .02 2
4619.00 3.00 i1.30 -0.0000 .0016 ,0b,4 .IIS3 .9080 .0160 .0239
4619.00 4.00 21.30 -0.0000 .0016 .0566 .1137 .4179 .01%6 .0235
8774.00 1.00 24.80 -0.0000 .0000 ,0i95 .0581 .0039 .0078 *0117
S774.00 2.00 24.60 -0.0000 .0006 .0293 .057I .0039 .0078 .0117
5774.q0 3.00 24.60 -0.0000 .0006 .0291 .0574 .4039 .0077 .0116
5774.00 4.00 24.60 -0.0000 .0008 .0280 .0568 .4039 .0077 .0115
6920.20 1.00 13.70 -0.0000 M00A8 .0646 .1250 .4067 .0174 .0260
6920.20 2.00 13.70 -0.0000 .0017 .0636 .1232 .*486 .0172 .02S6
8928.20 3.00 13.00 -0.0000 .0017 .0621 .1203 .904d4 .0167 .02S0
06920.20 4.00 13.70 -0.0000 .0016 .0600 .1164 .A041 .0102 .0241
6920.20 1.00 23.60 -0.0000 .0006 ,0U20 .0434 .*0?9 .00S .000
647a.20 2.00 23.0 -0.0000 .0006 .0Q19 .0432 .1029 .0058 .0087
6491.20 3.00 23.40 -0.0000 .00,6 .0217 .0429 .0029 .0057 .0046
6970.20 4.00 23.40 -0.0000 .0006 .0214 .0424 .*026 .0057 .008s
6070.20 1.00 26.80 -0.U000 .0005 .0178 .0352 .J824 .0047 .0070
6428.20 2.00 26.S0 -0.0000 .0005 .0177 .0351 .0623 .0047 .0010
692P.20 3.00 26.50 -0.0000 .0005 .0176 .0348 .•023 .0047 .0070
6978.2' 4.00 26.50 -0.0000 .0005 .0174 .0345 .1123 .0046 .0069
7190.00 1.00 30.00 -0.0000 .0003 .0113 .022S ."015 .0030 .0045
7690.00 2.00 30.00 -0.0000 .0003 .0113 .0224 ."015 .0030 .0045
7690.00 3.00 30.00 -0.0000 .0003 .0112 .0223 .40915 .0030 .0044
7690.00 4.00 30.00 -0.000o .0003 .0111 .0221 .40415 :0029 .0044
6083.00 1.00 22.10 -0.0000 .0005 ,0107 .0371 , s025 .0050 .0074
0083.00 2.00 22.10 -0.0000 .0005 .0146 .0369 .0,025 .0049 .0074
8083.00 3.00 22.1* -0.0000 .0005 .0184 .0365 .002' .0049 .0073
8003.00 4.00 22:10 -0.0000 .005S .0142 .0360 .0024 ,0048 .0072
9237.60 1.00 6.56 -0.0000 .00.2 ,1487 .2753 .0210 .0415 ,0816
9237.60 2.00 6.56 -0.0000 .r040 .13 9 .2602 .0196 .0319 .05786
9237.60 3.00 6.;6 -0.0000 .0036 .1274 .2365 .0176 .0352 .0524
9237.60 4.00 6.56 -0.0000 .0032 .1132 .2135 .0157 .0311 .0463
963.30 1.00 30.40 -0.0 00 .0002 .0066 .0131 .0009 .0017 .0026
9083.30 2.00 30.40 -0.0000 .0002 .0065 .0130 .0009 .0017 .0026
0993.30 3.00 30.40 -0.0000 .0002 .0065 .0130 .0009 .0017 .1026
9961.30 4.00 30.40 -0.0000 .000? .0064 .0129 .0004 .0017 J026

10381.00 1.00 18.30 0.0000 .0004 .0166 .0329 .0022 .0044 .0066
10381.00 2.00 18.30 0.0000 .0004 .0164 o0326 .0022 .0043 .0065
103A1.00 3.00 18.30 0.0000 .0004 ,0162 .0321 .0021 .0043 .0064
10381.00 4.00 14.30 0.0000 .0004 .0159 .031S .U021 .0042 .0063
10197.00 1.00 24.60 -0.0000 .0002 OUtiS .0170 .0011 .0023 .0034
10797.00 2.00 24.60 -0.0000 .0002 .005 .0169 .0011 .0022 .0034
10797.00 3.00 24.60 -0.0000 .0002 .0084 .0168 .4411 .0022 .0033
107V7.00 '.00 24.60 -0.0000 .0002 .0083 .0166 .0011 .0022 .0033
11365.00 1.00 33.33 -0.0000 .0001 .0042 .0U84 .0006 .0011 .0017
1136S.00 2.00 33.33 -0.0000 .0001 .0042 .0084 .0806 .0011 .0017
1134S.00 3.00 33.33 -0.0000 .0001 .0042 .0083 .0006 .0011 .0016
1136S.00 4.00 33.33 -0.0000 .0001 .0041 .0063 .O005 .0011 .0016
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POJICTILI KSi0,,. [1 1140

T1OWT v0Tcy Is .1060000*00.2

T1I0[T LIENTH IS .10000000§E02

So kNML. A4. tM0 p P $34 PIG PS P|0 pis

P360.40 1.00 0.00 -0.0000 .940Z 3.0000 1.0000 1.0000 1.0000 .*0000
1200.40 21.0 -0.00 -0.0000 .5199 3.0000 1.0000 .9745 .9993 1.0000
2304.40 3.00 *0.S0 -0.0000 *2805 1.0000 1.0000 *.071 .9624 *9928
V364.40 4.00 -0.00 -0.0000 .169S .9991 1.6000 .6050 .8439 .9386
2200.40 5.00 -0.00 -0.0000 .1123 .9*92 .4999 .4466 .696;a .8324

1349.40 6.00 -".00 -0.0000 .0794 .9s69 .9903 .3369 .S629 .7110
13)6.40 7.00 -0.00 -0.0000 .0590 .9009 .9V02 .Z623 .4557 *59SS

2130.40 0.60 -0.00 -0.0000 .04S5 .8297 *9110 .2074 .3724 .5026
23.0:*40 9.0 -0.00 :0.00 .036, .TS32 .931 .1642 J30S0 .8244

260.4O 10.00 -0.00 -0.0000 .0294 ,6701 .1964 .1306 .2579 *3607
2204.40 !1.90 -0.00 -0.0000 .0244 .6062 .046S .1160 .2185 ,;092

2204.40 12.0 -0.00 -0.0000 .0205 .5449 .7929 .0994 .1071 .2671
44k19.0 1.00 -0.00 "0.0000 . g199 1.0000 1.#000 .974S .9993 1.0000
4619.00 2.02 -0.00 -0.0000 .169 .9991 1.0000 .6049 .0439 .9383
4419.00 3.00 -0.00 -0.0000 .0794 .O69 .9981 .3388 .S629 .7110
441.00 4.00 -0.00 -0.0000 .045S .6297 .9710 .2078 .3724 ,S024
4419.00 S.00 -0.00 -0.0000 .0294 .6701 .1064 .138S .2S79 .3&07
4619.00 6.00 -0.00 -0.0000 .020S 5449 *7429 .0904 .1871 .2671
46190.00 7.00 0.00 -0.0000 .015O .4392 .6456 .0733 .1412 .2042
"4419.00 0.00 -0.00 -0.0000 .0116 .3578 .5d7G .0566 .1100 .1604
4619.00 9.00 -0.00 -0.0000 .0092 .29S3 .5034 .0450 .0000 .1290
4419.00 30.00 -0.00 -0.0000 .0074 .2469 .4328 .0366 .0719 .I059
"419.00 11.00 -0.00 -0.0000 .0061 .2069 .3741 .0304 .0590 .0482
4419.00 12.00 -0.00 -0.0000 .00S2 .1707 .325S .02S6 .0SOS .0740
ST7%.O 1.00 -0.00 -0.0000 .3764 1.0000 1.0000 .90S7 .9911 .9991
S774.00 2.00 -0.00 -0.0000 .1122 .9092 .9999 .4486 .6959 .8323
5774.00 3.00 -0.00 -0.0000 .0516 .86%S .9022 .2324 .4114 .S411
5774.00 4.00 -0.00 -0.0000 .029% .6780 .8963 .1385 .2S79 .3607
5T74.00 5.00 -0.00 -0.0000 .0199 .5159 .76S7 .0910 .1738 .2490
S77l.00 6.00 -0.00 -0.0000 .01332 395 .6350 .0642 .12•2 .1004
5774.00 7.00 -0.00 -0.0000 .009? .3094 .S231 .0475 .09•4 .1360
S774.00 0.00 -0.00 -0.0000 .0074 .2460 .4320 .0366 .0719 .1059
S774.00 9.00 -0.00 -0.0000 .OOS9 .2007 .3611 .0290 .0572 .0846
5774.00 10.00 -0.00 -0.0000 .0040 .36S9 .3043 .0236 .0466 .0691
S774.00 11.00 -0.00 -0.0000 .0039 .1393 .2S91 .0195 .0Z07 .0S75
5774.0 312.00 -0.00 -0.0000 .0033 .1184 .. 2228 .0164 .0326 .0485
6920.20 1.00 -0.cO -0.0000 .2805 1.0000 L.0000 .8071 .9620 .9920
6920.20 2.00 -0.00 -0.0000 .0794 .9S69 .9901 .3389 .56p9 .7110
A92l.20 3.00 -0.00 -0.0000 .0362 .7532 .9391 .i6;z .3080 .4264
6920.20 4.00 -0.00 -0.0000 .020S .5449 .792V .0984 .1471 .2671
6920.20 5.00 -0.00 -0.0000 .0132 .3959 .63S0 .0642 .1242 . ImO4
6921.20 6.00 -0.00 -0.0000 .0092 .Z9S3 .5034 .0:50 .0620 .3290
6924.20 ?.0s -0.00 -0.0000 .0067 .2266 .4021 0333 .0454 .0965
6928.20 0.00 -".tq -0.0000 .0052 .1797 .3255 .0296 -. *505 .0740
6920.20 9.00 -0.0k -0.0000 .0041 .1441 .2674 *0203 .0401 .o096
4924.20 10.00 -0.00 -0.0000 .0033 .1184 .2228 .6164 .0326 .04b5
494.20 31.00 -0.00 -0.0000 .0027 .094b .1400 .0136 .0270 .0403
492t.20 12.00 -O.0O -0.0000 .023 .0438 .bO6 .0114 .0228 .0340
7640.00 3.00 -0.00 -0.0000 .2462 1.0000 1.0000 .7567 .9400 .9856.
71A0.O0 2.00 -0.00 -0.0000 .0686 .9327 .99S .2969 .50, 4 .65S4
74A0.00 3.00 -0.00 -.0.0000 .0311 .6990 .9094 .1461 .27oq .3774
7440.00 4.00 -0.00 -0.0000 .0176 .4-11 .7410 .0650 .1629 .2341
7600.00 1.00 -0.00 -0.0000 .2347 1.0000 1.0000 .7375 .9311 .9019
7490.00 2.00 -0.00 -0.0000 .0650 .9222 .9939 .2854 .4M93 .635o
7600.00 3.00 -0.00 -0.0000 .0294 .6780 .M969 .1388 .2S84 .3613
7490.00 4.00 -4.00 -0.0000 .0107 .4722 .741S .007 .1i54 .2230
7940.00 1.00 -0.00 -0.0000 .2220 .9g99 1.0OD0 .?ISO .910| .9760
?940.04 2.00 -0.00 -0.0000 .0611 .9049 .9917 .?704 .4476 .611S
7940.00 3.00 -0.00 -0.0000 .0277 .6SSS .6413 .1308 .2445 .3433
7940.00 4.00 -0.00 -0.0000 .01S7 .4509 .698S .07S9 .1'460 .2107
4043.00 1.00 -0.00 -0.0000 .2152 .9999 1.0000 .TOZZ .9113 .9736
0043.00 2.00 -U.00 -0.0000 a.0;o .9009 .992• .2623 .45S7 .S9bS
4043.00 3.00 -0.00 -0.0000 .0267 .6423 .8721 .1245 .2371 .3336
N03.00 4.00 -9.00 -0.0000 .0353 .4393 .6056 .0733 .1412 .2042
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PSCJCTILZ *=QN 1S SAPI (cont'd)
TARGET WUYU 1 .10000000E*0Z
TARGMT LZIRWT 18 .10000000E+01

sk BLL AML RXML P P30 P76 PS Pt0 PIS

426A.00 1.60 -0.00 -0.0000 .2060 .9990 1.0000 ,bssq .9014 .9690
10.06 2.20 -0.00 -0.0000 .0565 .8902 .9000 .2523 .4409 *S@19
0240.00 3.14 -0.00 -0.0000 *0255 .6257 .0&99 .1213 .22i9 .3215
62".00 4." -0.00 -0.0000 .0164 .4247 .6691 .0702 .1354 .1961
043Z.00 1.10 -0.00 -0.0000 .1997 .9990 1.0000 .717 .0922 .9646
P42.00 P.60 -0.00 -0.0000 0S.4 .0000 .9S? .2439 .4283 .5677
443R600 3.M -O0.b -0.0000 .0246 .6113 .0409 .11|9 .2201 .3113
443a.00 4.40 -0.00 -0.0000 .0139 .4124 .6547 .0676 .1306 .1893
923T.60 1."0 -0.00 -0.0000 .1695 .9991 1.0000 .6050 .9439 .9384
?3T1.60 2.60 -0.00 -0.0000 .045S .0297. .9710 .2070 .3724 .5028

9•3T.60 3.00 -0.00 -0.0000 .0205 .5449 .7929 .0904 .1471 .2671
41.t0 A.60" -0.00 -0.0000 .0116 .357?9 .577 .0566 .11, 0 .1604
?736.40* 1." -0.00 -0.0000 '.1540 .99083 1.0000 .5667 .A23 .9187,

1736.40 2.04 -0.00 -0.0000 .0411 *?969 .9507 .2012 .3426 .4670
0736.40 3.40 -0.00 -0.0000 .,.05 5017 .7577 .0090 .1702 .2440
9736.40 .4.0 -0.00 -0.0000 .0104 .308 .5496 ,0511 .0996 .1456
%736.00 i .60 -0.00 -0.0000 .0067 ,?3 .3998 .0330 .0650 .0958
?736.00 .0.0 -0.00 -0.0000 .0047 ,1t24 .2qS0 .0231 .04S6 .0076

9736.00 7.00 -0.00 -0.0000 .003' .1221 .2293 .0170 .0337 0501
9736.00 a."0 -0.00 -0.000C .0026 .0949 .1506 .0130 .0259 .0386
9?36.00 9.60 -0.00 -0.00 001 A 9750 .1450 .0103 .020S .0306
9136.00 10.00 -0.00 -0.00") .0017 .0612 .1198 .0004 .0167 .0249
9736.00 11.00 -0.00 -0.0000 .0014 0514 .1001 .0069 .0130 .0206
9736.00 12.00 -0.00 -0.0000 .0012 .0434 .0846 .00D0 .0116 .0173
9963.30 1.00 -0i.00 -0.0000 .1477 .9977 1.0000 .5502 .7977 .9090
"93.30 2.00 -0.00 -0.0000 .0393 .7010 .""?4 .14ls .331l .4sl?
990.330 3.00 -0.00 -0.0000 .0177 .4918 .7417 G0052 .1632 .234S5
V443.30 4.60 -0.00 -0.0000 .0100 .3167 S5331 .0489 .0454 .1396

10341.00 1.00 -0.00 -0.0006 .1369 .9963 1.0000 .5210 *1?06 .4901
10381.00 2.01 -0.00 -0.0000 .0362 .75f0 .9395 .1605 .306 .4251

103AI00 3.40 -0.00 -0.0000 .0163 .4639 .7126 .0700 .IS13 .2102
103A1.10 4.00 -0.00 -0.0000 .0092 .2954 .S0f2 .04S1 .0682 .1293
10381.00 5.60 -0.00 -0.0000 .0059 .2011 .3610 .0291 .0574 .0040
20301.00 6.00 -0.00 -0.0000 .0041 .1444 .2679 .0203 .0402 .0597
103h02.1 T1.6 -0.00 -0.0000 .0030 .1002 .2046 e0ls0 .0297 .0442
1032.h00 0.60 -0.00 -0.0000 .0023 .0040 .1609 .0115 .0220 .0340
10301.00 9.040 -0.00 -0.0000 .0011 .0670 .1294 .0041 .0101 .0270
10381.00 10.06 -0.00 -0.0000 .00IS .0S46 .1062 .0074 .0147 .0229
10341.00 11.041 -0.00 -0.0000 .0022 .0453 .0486 .0061 .0121 .0101
10301.00 12.00 -0.00 -0.0000 .0010 .0382 .0750 .005C .0102 .0153
1071.00 1,00 -0.00 -0.0000 .1273 .9943 1.0000 .4937 .7437 .6702
10191.00 2.06 -0.00 "0.0000 .0335 07265 .920 2 .60 .2890 .4005
1079.00 3.00 -0.00 -0.0000 .0151 ,4301 .6043 .0730 .1407 .2035
10701.00 4.44 -0.00 -0.0000 000o5 .2?70 ,4772 .0428 .0610 .1202
11345.90 2.00 -0.00 -0.0000 11S6 .9906 .9999 .4591 .7074 .,i17
1134".60 2.00 -0.00 -0.0000 .0303 .6697 .9037 .1427 .2650 .36099
11365.00 3.06 -0.00 -0.(800 .0136 ,4056 .6467 .0662 .1279 .1056
11104.00 4.00 -0.00 -0.t .'7? Z2S37 .4431 .0370 .0741 .1091
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§t. IS BALLISTIC E1404 IN 1ILS. 81 IS AIMING ERR0O It. MIL! AIML IS QAN'E ESTIMATE E0RRO IN NILS

So is SL.ANT O&NGE
POOJ[CTILe 010814 Is "S0O

TAibET v83T0 I% .100u0004E.03

74.G6T LEPOG714 IS *1000000E*03

SO VOL AML REM0L P P38 P76 ps Pin PIS

2301.40 1.00 3.47 -0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1309.40 2.00 3.47 -0.0000 1.0000 1.0000 1.0000 1.0000 1.0U00 1.0000
Z304.60 3.00 3.47 -0.0000 1.0000 1.0000 1.0000 1.0000 1.000n 1.0000
2309.40 4.00 3.47 -0.0000 .9909 1.0000 1.0000 1.0000 1.0000 1.0000
2309.40 1.00 9.85 -0.0000 .9434 1.0000 1.0000 1.000U 1.0000 1.0000
2309.40 ?.00 9.dS -0.0000 .9386 1.0000 1.0000 1.0000 1.C000 1.0000
2309.40 3.00 9.85 -0.0000 .9303 1.0000 1.0000 1.0000 1.0000 1.0000
?399.40 4.00 9.dS -0.0000 .9186 1.0000 1.0000 1.0000 1.0000 1.0000
2309.40 1.00 13.96 -0.0000 .7712 1.0000 1.0000 .9qq4 1.0000 1.0000
1309.4ý 2.00 13.96 -0.0000 .0662 .00CO 1.0000 .y93 1.0000 1.0000
1309.40 3.00 13.9b -0.0000 .75aO 1.0000 1.0000 .9992 1.0000 1.0000
2309.40 4.00 13.96 -0.00o0 .7'66 1.0000 1.0000 .9990 1.0000 1.0000
7304.60 1.00 15.60 -0.0000 .6956 1.0000 1.0000 .9974 1.0000 1.0000
236A.%0 2.00 1S.60 -0.0000 .6913 1.0000 1.0000 .97Z 1.0000 1.0000
2309.40 3.00 15.60 -0.0000 .6842 1.0000 1.0000 .9969 1.0000 1.0000
2309.40 4.00 1S.60 -0.0000 .674.4 .0000 1.0000 .yq,3 1.0000 1.0000
4439.00 1.00 21.30 -0.0000 I50M .9980 1.0000 .5584 .800 .9139
6619.00 2.00 21.30 -0.0000 .1149 .9979 1.0000 .5561 .8004 .9125"149.00 3.00 21.30 -0.0000 .1484 .q978 1.0000 .552 .7994 .9102
W9.00 4.00 21.30 -0.0000 .1464 .9976 1.0000 .5468 .794b .9069
STT.00 1.00 24.60 -0.0000 .07S6 .9496 .97?5 .3252 .5445 .6926
S776.0y 2.00 24.60 -0.0000 .0753 .9489 .9074 .3238 .5427 .6908
ST74.0# 3.00 24.b0 -0.0000 .0747 .9476 .9973 .3216 .5308 .6878
S774.00 4.00 24.60 -0.0000 .0739 .940S .9971 .3187 .53S8 .6837
69?8.20 1.00 13.70 -0.0000 .1606 .9987 1.0000 .533 .8263 .9276
6920.20 2.00 13.70 -0.0000 .1583 .9986 1.0000 .S775 .8215 .q246
A926.20, 3.00 13.70 -0.0000 .1546 .9993 1.0000 .S682 .816 .9195
#925.20 4.00 13.70 -0.0000 .0407 .9979 1.0000 .b6s6 .8025 .9122
6926.20 1.00 23.60 -0.0000 .0567 .8912 .9082 .2531 .4472 .5834
6928.20 2.00 23.80 -0.0000 D0564 .0899 .9d19 es25n .4405 .5815
69ZA.2u 3.00 23.60 -0.0000 .0559 .8878 .9874 .2501 .4376 .5783
6'28.z0 4.00 23.60 -0.0000 .05S3 .9848 .9d67 .247S .4337 5739
6902.20 1.00 26.S0 -0.0000 .0460 .6331 .9721 .2099 .3757 .5067
69ZO.20 2.00 26.50 -0.0000 .0456 .8318 .0717 .2091 .3744 o50S2
69PO.20 3.00 26.50 -0.0000 .045S .8297 .0710 .Z079 .37?4 .5029
6907.20 4.00 

2
.'JO -0.0000 .04s1 .8Z67 .9700 .2060 .369S .4994

7690.00 1.00 30.00 -0.0000 .0294 .6785 .8966 .1387 .25P1 .361|
7690.80 2.00 30.00 -0.0000 .0293 .6772 .8058 .1383 .2574 .3601
7600.00 3.00 30.00 -0.0010 .0292 .675? .8945 .1376 .256? .3585
?690.00 4.00 30.00 -0.0000 .02@9 .6724 .8027 .1366 .254S .3S63
8083.00 1.00 22.10 -0.0000 .048S .8489 .97?2 .2202 .3918 .S2S2
8883.00 ?.00 22.10 -0.0000 .0482 .8471 .9766 .2190 .3900 .5236
P081.00 3.00 22.10 -0.0000 .0479 .844Z .9757 .01l7t .3670 .5200
80P.3.00 '.00 22.10 -0.0000 .01-71 .8402 .9745 Z1l44 .3828 .5151
9237.611 1.00 6.65 -0.0000 .3427 1.0000 1.0000 .8773 .9849 .99e2
123?.60 2.00 6.56 -0.0000 .325n 1.0000 1.0000 .d599 .9484 .9972
9237.60 3.00 b.S6 -0.0000 .2992 1.0000 1.0000 .8310 .9734 .0952
9237.60 4.00 6.56 -0.0000 .2603 1.00010 1.0000 .7917 .9566 .9910
9963.30 1.00 30.40 -0.0000 .0172 .4824 .7320 .0830 .1S91 .2209
99%3.30 2.00 30.40 -0.0000 .0171 .4813 .7309 .0827 15*S .Z2d2
9063.30 3.00 30.40 -0.0000 .0170 .4794 .7290 .0823 .1578 .2272
90A3.30 4.00 30.40 -0.0010 .0369 .4769 .7264 .0817 .1568 .2257

10301.00 1.00 10.30 0.0000 .0430 .8117 .9a45 .1972 .3550 .4827
10301.00 2.00 3".30 0.0000 .0426 .0Jo9 .0935 .3Q57 *353n .0796
10381.00 3.00 18.30 0.0000 .0420 .04042 .9"17 .1931 .3489 .4747
103A1.00 4.00 18.30 0.0000 .0412 .7?78 .9591 .1*97 .3433 .4679
10797.00 1.00 26.00 -0.0000 .0??3 .5710 .8144 .106l .2016 .2866
179?7.00 2.00 14.80 -0.0000 .022 5732 .8179 .1060 .2007 .2855
10790.00 3.00 24.60 -0.0000 U0120 .5702 .83S3 .(152 .1qq3 .2835
10797.00 4.00 2%.6o -o0.00O .02317 .5661 .8•31 .1n41 .1;73 .2808
1134S.00 1.00 33.33 -0.0000 .0110 .3437 .5693 .0539 .1014 .3532
1134%.00 2.00 33.33 -0.G800 .0110 .3430 .5683 .0538 .104b .152,
11365.00 3.00 33.33 -0.0000 .O0Oq .3417 .566? .0535 .1042 .5S21
1136S.00 4.00 33.33 -0.0000 .0100 .3400 .5b44 .0532 .1036 .IS13
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P41IICTILC DESIGN IS SAPI

TI660( VIOTI Is .1466600O1.03

T1166(T UIAII, IS .lOSOOoSt.03

SO Iof t iw. W Kil. P P34 P76 PS PlO PI5

1309.40 3.00 -0.00 -0.0000. 1.0000 1.0000 1.000o 1.60060 .0040 1.0000
1309.66 1.00 -0.60 -0.0000 1.0000 1.0000 1.0001 1.0000 1.0e)0 1.0000

1309.46 3.00 -0.00 -0.0000 1.0000 1.0000 1.00O0 1.0000 1tO000 1.0000
1309.40 4.00 -0.00 -0.0000 1.0000 1.0000 1.0090 1.0000 '.0000 1.0000
1300.40 S.00 -4.00 -0.0000 1.0000 1.0000 1.0006 1.0000 3.0000 1.0000
2309.40 .60o o0.00 -0.0000 .9994 1.0000 3.0006 1.0000 1.0000 1.0000
2300.40 1.00 -0.00 -0.0000 .9960 1.0000 1.0001 1.0000 1.0000 1.0000
2360.40 6.00 -0.00 -0.0000 .986S 1.0000 1.0006 1.00ta 1.0000 1.0000
2309.40 4.00 -0.00 -0.0000 .9680 1.0000 1.0006 1.0rO0 1.0000 1.1000
2309.46 10.00 -0.00 -0.0000 .9402 1.0000 1.000. I..000 1.0000 1.0000
2360.40 11.00 -0.00 -0.0000 .9044 1.0000 1.0000 1.0000 1.0000 1.0000
1309.40 l3.00 -0.00 -0.0000 .0626 1.0000 1.0006 1.0000 1.0000 1.0000
6L1.6C 1.00 -0.00 -0.0000 1.0000 1.0000 1.0060 1.0000 1.0000 1.0000
"4319.00 2.00 -0.00 -0.0000 1.0000 1.0000 1.0002 k.0000 1.0000 1.0000
4619.00 3.00 -0.00 -0.0000 .9994 1.0000 1.000 1.4000 1.0000 1.0000
6419.°0 0.06 -0.00 -0.0000 .946S 1.0000 1.0000 1.0000 1.0000 1.0000
"4419.00 5.00 -0.00 -0.0000 .9402 1.0000 1.0000 1.0000 1.0000 k.0000
6619.06 6.00 -0.00 -0.0000 .6027 1.0000 1.0016 1.OOOU 1.0000 1.0000
6139.00 7.00 -0.00 -0.0000 .7710 1.0000 1.0000 .9994 1.0000 1.0000

4619.O0 0.00 -0.00 -0.0000 .6790 1.0000 1.0000 .9966 1.0000 1.0000
4419.00 9.00 -0.00 -0.0000 .5944 1.0000 1.0006 .9190 .9999 1.0000
6619.00 10.00 -0.00 -0.0000 .5199 1.0000 1.0000 .9745 .9993 1.0000
4619.00 11.00 -0.00 -0.0000 .*5S& 1.0000 1.000 .9S22 .9977 .9999
4619.00 32.00 -0.00 -0.0000 .4008 1.0000 1.0000 .9227 .9940 .999S
5774.00 3.00 -0.00 -0.0000 3.0000 1.0000 3.00O0 1.0000 1.0000 1.0000
S774.00 2.00 -0.00 -0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ST74.00 3.00 -0.00 -0.0000 .9922 1.0000 1.0006 1.0000 1.0000 1.0000
S?7*.OO 4.00 -0.00 -0.0000 .9402 1.0000 1.0006 1.uOOO 1.0000 1.0000
ST74.00 5.00 -0.00 -0.0000 .6404 1.0000 1.0006 .9999 1.0000 1.0000
S??4.00 6.00 -0.00 -0.0000 .?724 1.0000 1.0006 .996b 1.0000 1.0000
St7T.00 7.00 -0.00 -0.0000 .6147 1.0000 1.0006 .9915 .9999 1.0000
S774.00 0.00 -0.00 -0.0000 .5199 1.0000 1.0001 .9745 .9993 1.0000
S174.00 9.00 -0.00 -0.0000 .4410 1.0000 1.0006 .945S .9970 .9996
ST74.00 19.00 -0.00 -0.0000 .3764 1.0000 1.0001 .90%7 .9911 .9992
5774.00 11.00 -0.00 -0.0000 .3237 1.0000 1.0000 .850S .9800 .9972
9"64.00 12.00 -0.00 -0.0000 .2604 1.0000 1.0000 .8071 .9628 .9928
6920.20 1.00 -0.00 -0.0000 1.0000 1.0000 1.0009 1.0000 1.0000 1.0000
6920.20 2.00 -0.00 -0.0000 .9994 1.0000 1.0006 1.0000 1.0000 1.0000
M911.20 3.00 -0.00 -0.0000 .9680 1.0000 1.000 1.0000 1.0000 1.0000

692l.20 4.00 -0.00 -0.00' .0628 1.0000 1.0006 1.0000 1.0000 1.0000
6928.20 5.00 -0.00 -0.0000 .7245 1.0000 1.0049 .9964 1.0000 1.0000
6926.20 6.00 -0.00 -0.0ut .S94S 1.0000 1.000l .9890 .9999 1.0000
6926.20 7.00 -0.00 -0.0000 .4665 1.0000 1.0000 .9643 .9987 1.0000
69"1.20 0.00 -0.00 -0.0000 .4000 3.0000 1.0006 .9227 .9940 .9995
6916.20 9.00 -0.00 -0.0000 .3334 1.0000 1.0040 .8064 .9627 .9977
69210.20 10.00 -0.00 -0.0000 .2805 1.0000 1.0016 .6071 .9628 .9928
6920.20 11.00 -0.00 -0.0000 .2304 1.0000 1.000 .7.36 .9364 .9832
6928.20 12.00 -0.00 -0.0000 .2047 .9998 1.0006 .6819 .9908 .9678
7400.00 1.00 -0.00 -0.0000 1.0000 1.0000 1.0006 1.0000 1.000 1.0000
1,45O.00 2.00 -0.00 -0.0000 .9903 1.0000 1.0060 1.0000 1.0000 1.0000
7180.00 3.00 -0.00 -0.0000 .9690 1.0000 1.0006 1.0000 1.0000 1.0000
7400.00 4.00 -0.00 -0.0000 .6197 1.0000 1.0006 .9998 1.0000 1.0000
7690.00 1.00 -0.00 -0.0000 1.0000 1.0000 1.006O 1.0000 1.0000 1.0000
7690.00 2.00 -0.00 -0.0000 .9977 1.0000 1.0006 1.0000 1.0000 1.0000
7690.00 3.00 -0.00 -0.0000 .9h05 1.00o0 1.0066 1.0000 1.0000 1.0000
7690.00 4.00 -0.00 -0.0000 .8020 1.0000 1.0000 .9997 1.0000 1.0000
7940.00 1.00 -0.00 -0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
7940.00 Z.00 -0.00 -0.0000 .9967 1.0000 1.0006 1.0000 1.0000 1.0000
7940.00 3.00 -0.00 -0.0000 .9297 1.0000 1.0Cr. 1.0000 1.0000 1.0000
7940.00 4.00 -0.00 -0.0000 .7026 1.0000 1.00 in .999s 1.0000. 1.0000
4003.00 1.00 -0.00 -0.0000 1.0000 1.0000 1.00jv 1.0000 3.0000 1.0000
0003.00 2.00 -0.00 -0.0000 .9960 1.0000 1.0000 1.0000 1.0000 1.0000
6003.00 3.00 -0.00 -0.0000 .9232 1.0000 1.0006 1.0000 1.0000 1.0000
6003.00 4.00 -0.00 -0.0000 .7710 1.0000 1.0006 .9994 1.0000 1.0000
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PmorCTUz DSWON IS SAPI (cont'd)

TAM= UIVTHt 1 .10000000E+03
2*aCUC LCHOTH 1S IOOOOOOOX+03

SM BLE- AIIL RZML P P38 P76 PS PlO P15

1670.06 1.00 -0.00 -0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ORiAODS 2.00 -0.00 -0.0000 .99s0 1.0000 1.0000 1.0000 1.0000 1.0000
4264.00 3.00 -0.00 -0.0000 .9143 1.0000 1.0000 1.0000 1.0000 1.0000
l26l.60 4.00 -0.00 -0.0000 .7560 1.0000 1.0000 .9991 1.0000 1.0000"643Z.00 0.00 -0.00 -0.0000 1.0000 1.0000 1.0000 1.0000 I.A1o0 1.0000
4432.• 6 2.00 -0.00 -0.0000 .9940 1.0000 1.0000 1.0000 i.0000 1.0000
04•3.*o 3.00 -0.00 -0.0006 .9062 1.0000 1.0000 1.0000 1.0000 1.3000"32.09 4.00 -0.00 -0.0000 .7468 1.0000 1.0000 .99.09 1.0000 1.0000
9437.40 1.00 -0.00 -0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
9237.00 Z.00 -0.00 -0.0000 .986S 1.0000 1.0000 1.0000 1.0000 1.0000
S237.60 3.00 -0.00 -0.0000 .0629 1.0000 1.0000 1.0000 1.0000 1.0000
9237.60 4.00 -0.00 -0.0000 .67Y0 1.0000 1.0000 .9966 1.0000 1.0000
9T36.40 1.00 -0.00 -0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 110000
9730.40 2.00 -0.00 -0.0000 .9797 1.0000 1.0000 1.0000 1.0000 1.0000
9?36.40 3.00 -0.00 -0.0000 .8338 I.00V3 1.0000 .9999 1.0000 1.0000
ITN6.40 4.00 -0.00 -0.0000 .6414 1.00,10 1.0000 .9941 1.0000 1.0000
013i.00 5.00 -0.00 -0.0000 .6400 1.00'.0 1.0900 .9634 .996? 1.0000
9734.*0 6.0 -0.00 -0.0000 .3697 1.00100 1.0000 .900S .9901 .9990
9730.00 7.00 -0.00 -0.0000 .2883 1.0000 1.0000 .8174 .9666 .9939
9736.00 8.00 -0.00 -0.0000 .2296 1.00)0 1.0000 .7286 .9263 .9800
9736.00 9.00 -0.00 -0.0000 .1865 .99)6 1.0000 .6436 .8730 .9547
9736.00 00.00 -0.00 -0.0000 .iS41 .9903 1.0000 .5668 .8123 .9187
9736.09 11.00 -0.00 -0.0000 .1292 .99"8 1.0000 .4993 .7493 .8745
9736.60 12.00 -0.00 -0.0000 .1098 .98'|0 .9999 .4410 .6875 .82S3"9463.30 0.00 -0.00 -0.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000"• 4330 2.00 -0.00 -0.0000 .9760 1.0000 1.0000 1.0000 1.0000 1.00co
"6943.30 3.00 -0.00 -0.0000 .8203 1.0000 1.0000 .9990 1.0000 1.0000"9963.30 4.00 -0.00 -0.0000 .6248 1.0000 1.0000 .9926 .9999 1.0000

10301.00 1.00 -0.00 -0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 1.0000
11380.06 2.00 -0.00 -0.0000 .9602 1.0000 1.0000 1.0000 1.0000 1.0000
1e301.0e 3.00 -0.00 -0.0000 .7951 1.0000 1.0000 .9996 1.0000 1.0000
10301.00 4.00 -0.00 -0.0000 .5953 1.0000 1.0000 .9891 .9999 1.0000
l033l.00 S.00 -0.00 -0.0000 .4418 1.0000 1.0000 .V45a .9971 .9998
10381.00 6.00 -0.00 -0.0000 .3340 1.0000 1.0000 .8690 .9828 .9978
10381.00 7.00 -0.00 -0.0000 .2387 1.0000 1.0000 .7762 .9499 .988g
0039l.00 6.00 -0.00 -0.0000 .20S1 .9998 1.0000 .6827 .8993 .9681
163R9.90 9.00 -0.00 -0.0000 .1661 .9990 1.0000 .5967 .8373 .9344
10361.00 10.00 -0.00 -0.0000 .1369 .9963 1.0000 .SZ00 .7706 .8901
16391.00 11.00 -0.00 -0.0000 .1146 .9902 .9999 .4560 .7040 .8390
10301.00 12.00 -0.00 -0.0000 .0973 .9795 .9996 .40k$ .6406 .7846
10797.96 1.00 -0.00 -0.0000 1.00o0 1.0000 1.0000 1.0000 1.0000 1.0000
1t797.00 2.00 -0.00 -0.0000 .9593 1.0000 1.0000 1.0000 1.0000 1.0000
10797.OO 3.00 -0.00 -0.0000 .7690 0.0000 1.0000 .9994 1.0000 1.0000
10797.00 4.00 -0.00 -0.0000 .5672 1.0000 1.0000 .9848 .9998 1.0000
113"5.00 1.o 0 -0.OO -0.0000 1.0000 1.0000 1.0000 1.0000 1,0000 1,0000
1136S.60 2.00 -0.00 -0.0000 .9452 1.0000 1.0000 1.0000 1.0000 1.0000
1136S.00 3.00 -0.00 -0.0000 .73S4 1.0000 1.0000 .9987 1.0000 1.0000
11365.00 6.00 -0.00 -0.0000 .S310 1.0000 1.0000 .9773 .9995 1.0000
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"CONDITIO/EFFECTIVERESS MODEL FOR FACILITY COMPONENTSO

.R.J. Colver, J.G. Kirby, P.V. Kauffold, R.E. DeVor and N.J. Kraitsik

U.S. Army Construction Engineering Research Laboratory
Champaign, Illinois

INTRODUCTION
The iuantification of facility deterioration is a problem currently

facing the U.5S. Army Corps of Engineers. Quantification is immediately
necessary for determination of maintenace costs over the life of the
facility and for projection of facility maintenance requirements for use
in programing and budgeting maintenance resources.

The analysis of maintenance cost over the life of the facility Is
inherent in tne process of life cycle costing alternate facility construc-
tion systems, e.g., brick and tile vs. frame and shingle. Life cycle
costing is required, by regulation, on all new construction. The projec-
tion of maintenance requirements is made necessary by the scarcity of
maintenance resources and the need to start programming process some two
to three years prior to the budget year. A major problem with both efforts
Is the quantification of the condition of the facility over time in terms
that are common to all facilities and are easily convertible to dollar
costs or some other unit of measure necessary for policy Formulation.

The Office of the Chief of Engineers (OCE) and the Office of the
Deputy Chief of Staff for Logistics (DCSLOG) are currently developing an
Army facilities information system, the Integrated Facilities System (IFS),
which provides a scheme for breaking facilities into common components (See
Figure 1) and evaluating each component in terms of its condition, i.e.,good, marginal, poor. Condition is also reported in terms of dollars re-
quired to return component to good condition. Condition data is collected
through direct Inspection of all components. The IFS is primarily designed
as a reporting system for actual maintenance requirements. When implemented,
however, it may provide data useful for analyzing and projecting mainte-
nance costs over time. It was this conjecture which led to the develop-
ment of the proposed model.

In the course of developing this model, it became apparent that facil-
itieb could not be easily fit into traditional models of failure such as
the exponential chance failure model or wearout failure model. A deteri-
oration phenomenon, however, seemed to be common to most facility component
wearout. In particular, there is seldom a point where one can identify a
complete component, or facility, failure. Instead, the component charac-
teristics describlrg its performance change gradually over time, making
failure difficult to define in meaningful Lerms. The deterioration pheno-
menon, or parameter drift, is more difficult to deal with when applied to
complex systems; the traditional model is not easily applied to situatiens
where data gathering is automated and large amounts of data are encountered.
In light of the present configuration of the IFS, from which input data will
be taken, a discrete-state Markov model his been formulated, making use of
existing data formats and compatible with the general scheme of IFS report-
ing.
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NOMENCLA'TURE

p1j(k) one-step transition proaability, the conditional probability

that component k will go from state I to state j

P(k) one-step transition matrix for component k

if(k) steady-state probability that component k will be in

state j in the long run

([IF(k)] steady-state probability vector for component k

P (k) average recurrence time for component k to return to

state j

hij (k) the occurrence of a transition of component k from state i

to state J, for the hth facility observed

(o(k))i matrix of observations of transitions at data point i for

componognt k

Ti transition data matrix at data point i

P j(k) theoretical transition probabilities calculated from a

polynomial model

F(k) theoretical transition matrix

8 . l:parameter of polynomial equation

bi least squares estimate of parameter of polynomial equation

V i ith variable describing a component

d i(k) the extent that the kth component in the ith state degradesij
the jth mission of a facility, expressed as a decimal fraction

D(k) mission effects matrix for component k

D1(k) ;olumn vector of mission effects for mission j, component kc

F(k) ineffectiveness vector for component k
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f (k) ineffectiveness of component k on facility mission J

expressed as a decimal fraction

e (k) effectiveness of cc lent k on facility mission J,

explessed as a decim., fraction

Q matrix portion for absorbing Harkov chain which does

not contain asorption probabilities

I identity matrix

N (I- Q)-I or fundamental matrix of absorbing chain

R absorption state vector portien of absorbing state transition

matrix

I_ column vector of all log

MR vector of mean absorption probabilities from any state

4 mean number of steps for absorption from any state
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APPLICATION OF THE MRKOV OOEL

The typical facility as a system exhibits a continuous process of do-

terioration over time, a complex process in which a large number of inter-

related performance characteristics change to produce overall reduced system

effectiveness. The relatively complex nature of the facility system does not

lend itself to the discrete failure model in which there are only two possible

states, "failed" and "not failed," it being difficult even -to define the term

"failure." O

Chance failure and wearout failure are treated primarily as discrete,

attribute events; the process is one of counting rather than measuring.

Failure rates, the parameter of the chance failure models, are defined as

failures per unit time, or percent failures per unit time; wearout failure

parameters are the mean wearout time and variance of the wearout time.

Deterioration, or degradation, is a different phenomenon in that the

performance parameter of a component is measured over time, with the change

in the parameter representing the deterioration of the component. Pre-

sumably, the parameter being measured contributes to the ability of the com-

ponent to perform its function. If the parameter value falls outside some

design limit, a deterioration failure occurs. In a deterioration failure

model, the rate at which the parameter changes over time is a measure of the

component reliability.

A stochastic deteriox.ation model would define the performance character-

istics of the system as random variables, where the parameters of the distri-

butions of the performance characteristics are functions of time; for example,

let q equal the component performance measure and let q have a normal distri-

bution at any given time with mean and variance Let theseparame- parameters
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be a fuantion of tins,

Uq(t) f.(t). )

qO~(t) - s(t)(.0

Let qo= the design limit of the compnent.

The hazard Amotion for the omponent would take the form

-IQ - f(t)]2

g(q) 2 2V;@'(t11)

By integzration, the failure time distribution function would be:

-Ea - +3

F troi 2 Vs '#) (12)

The deteriorat ion model is more descriptive of the deterioration in

a facility system, but it does not make easier the definition of the failed

conditicn of the component. The deterioration model still permits only two

distinct states and makes it difficult to adequately.Lnolude the interwmdiL.

ate steps in the deterioration process, which are also of interest in arriv-

Lng at poliqy decisions.

The 1arkov model falls somewhere between the chance failure model and

the continuous deterioration model by providinl for any number of discrete

states into which the system may fall during the process of deterioration.

The Narkov model, unlike either of the others, looks at the ahawge in state

of the system and is in this sonce a more dynamic model. This approach is

particularly suited to the facility situation in providing very relevant

management information in a form that is directly useful.
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Use of the discrete state Podel for the deterioration phenomenon re-

quires that the component performance continuum be divided into a number

of mutually exclusive, but all-inclusive, states, and for practical puw-

poses it is detired that these states be minimum in number while adequately

representing the range of deterioration and in sufficient detail to avoid.

ambiguity in the definition of the states. It is asumad that this apP1oxi-

mation to the continuous natu=o of the deterioration model wiln not seriously

effect the results obtained with the model.

No attempt is made here to definF, all components and the corresponding

states. General guidelines for component definitions axe suggested as fol-

lows:

a. Component breakdown should be on a functional basis as each corn-

ponent relates to the facility as a whole, rather than according

to shop responsibilities, size, capacity, etc. The general func-

tion for the component defined should be the same for all facili-

ties regardless of type.

b. Al components should be defined as the same level of detail; in

this respect, a hierarchical or tree structure may be helpful.

c. Components should be priuarily divided as building components and

non-building components. The number of components which nmy be

applied to both broad categories will. probably be small.

d. Components should be mutually exclusive.

The definition of the component states is similar to the condition

rating scheme used in the early versions of IFS [2]. This scheme defined

four states into which the condition of'all components would fall. Sench-

marks for evaluation of component condition related the component condition

claisification with the effectiveness of the facility as a whole and did not
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differentiate the component condition prom the relative effect of any par-

ticular component on a particular facility mission.

The defini•ion of component states suggested for the Markov model Is

performed independently of the consideration of the effect that a component

condition may have on a facility as a whole and represents a significant

m ment on the present condition rating schema with the geatest improve-

ment being that each component condition is given in termas of that component

only. General guidelines for definition of the component states are sug-

gested as follows:

a. Component states should be clearly defined in terms of measurable

quantities such as capacity, or in clearly defined attribute terms.

b. Each state should be defined in terms of the particular component

without regard to other components or facility funotions.

a. States should be defined in sufficient detail to avoid ambiguity;

unnecessary detail should be avoided to minimize complexity of the

resulting state model.

It may be reasonably assumed that the state transition probabilities

at any given time will depend upon a set of variables which determine the

way the system wvii behave. Added dynamic dimension is achieved in the

model by formulatint the transition probabilities as functions of this set

of variables, as

f((V-)W , (0)) (13)

where {V) w the jet of variables and

(0) u a set of parameters of a polynomial model.

The polynomial model allows the inclusion of all relevant and significant

factors which, logically, will have an impact on the deterioration of a

facility.
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It shoild be noted that the variable*s e defiaed for the f•aclity

as a vh*eX, and the set of values of the variables vwll be oughly the

sams to, all components; I. practice, the values of the variables my

differ fo' different components within the sam facLlity, or my only

differ from facility to facility, or may vary only from Installation to

Installation. Zn all cases the set of variables arrived at will be the

sam for all Installations, all facilities, and all componeuts. It Ls,

therefore, through the deftniti•s of the components, the component states,

Wi the sislificant variables, that the model achieve@ its genewelity, and

through the' application of the particular values of the variables and ais-

sio analysis (covered later) that the model is applied to specific circus-

$tamces.

btLaties of the parameters of the polynomial model awe obtained by

the nothod of least squares from the observation of samples of facilities

ove a "traeniitL step," noemally a change of state from one year to the

seat.

APPLICATION OF ABSORBING STATE MODEL TO FACILITIES

The absorbing state model has a somewhat different development.

All though the basic states are the same as those listed saove, there

is one more state that mist be added. This state, the absorbing state,

will represent the point in time where the component of the facility

has dezraded to such a point whore it is disposed of.

It should bo noted that a particular component's disposal may or may

ne man that the facility itself is disaposed of For example. t ags•

batLng system may be replaoed by an electrical beating system with no

effect to the facility. However, if a roof is disposed of, the build-

Iag itself vLll also be disposed of mliess the roof Is only being re-

placedt in this case, the component goes back to the best gondition.

lb ppobabLiLties for the abhorbing chain are computed the seme

may the probabilities for the regular chain, with the exe=ption that

for the kth absorbing state, Pkk a 1 and Pk' for al s.O.
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EXPERIHFENTAL DESIGN

Experience with facility data has suggested that the variables

which may determine the change in state of components may be divided

into three broad categories with corresponding important variables

in each category as follows:

1. DesAij Variables--the varLables whose values are determineu

at the time the component is debigned and constructed and

remain unchanged throughout the life of the component, such

as:

(a) Type of construction--permanent or teuporary, masonry

or wood, etc.,

(b) Si-o or capacity--square feet, Btu/hour, persons, etc.,

and

(c) Yeer constructed--the age of the -omponent.

2. Environmental Variables--describe the actual conditions under

which the component is operated, such as:

(a) Component loading--actual load being placed on the com-

ponent as compared with designed capa•i•ty, and

(b) Climactic conditions--heating degree-days, annual rain-

fall, etc.

3. Policy Variables--variables describing the operational and

maintenance policies of the'organization responsible for the

operation and/or maintenance of the component, such as:

(a) Dollars spent on preventive maintenance of the component and

(b) Dollars spent on corrective maintenance of the component.

This list of variables, although reasonably complete without the

benefit of extensive data analysis, should not be considered as
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exhaustive by any means. All reasonably possible variables of cause

should be included in the data gathering process so that all possible

sour0es of variation may be accounted for. The larger the list, how-

ever, the more data points will be required in order to get independent

estimates of the least squares parameters, and for this reason the

variables included in the analysis should be chosen with care.

The data for the analysis should be collected according to a two-

level factorial design schew ; in the case of the seven variables listed,

a'°2?' fractional factorial design could be used, and by confound-

ing the main effects of three of the variables with third-order and

fourth-order interactions, it is possible to gain independent estimates

of min effects and all second-orde*r interactions. An assump-

tion required for the model Is that all third- and highe*r-order inter-

actions will be statistically insignificant, a reasonable assumption

under the circumstances. The design matrix is shown on the following

pape. High and low levels of the variables should be chosen so that

they lie at or near the extreme values to be reasonably encountered in

practice.

The fractional factorial design will permit independent estimates

of the least squares parameters of first- and second-order termis; use

of the factorial also permits the inclusion of attribute-valued variables

which have two levels in the model [33.

The response of the component to be observed is whether or not the

component changed state from one condition evaluation to the next. Ob-

viously, this requires that the same set of facilities and components

be observed under the sawe or nearly same conditions for two years con-

secutively. The observed data would be recorded as a matrix as:
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SsI 2 .. Sm.

n n n

h z1 hal h 1

hil h11 hal
n n

a h Xh ( (k)th . Xh. 2 (k) h l XhM (k)
m

where n is the size of the total sample taken at data point ±
1 if component goes from state L to state

XhLJ " otherwise

It should be noted that in effect there will be three samples

taken at each data point, inasmuch as the transition matrix which

will result from the observation matrix is a series of conditional.

probabilities, and thus, each row of the transition matrix must add to

1.0.

From the observation matrix, taken at each data point of the factorial

desLgnt a transition matrix is calculated:

n

hulXhij (k)

Spij(k) . (2.14)

1.1 h=l (c

The resulting transition matrix is referred to as the transition data
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matrix, and there will be a transition data matrix for each data point;

in the case of the 2 design, there will bi 16 such data matrices:

Ti a transition data matrix at data point i

[pij(k)]i a Ti ((15)

Because the data being collected till be of an attribute nature,

a rather large sample will be requilred in order to maintain the desired

precision of the estimated transition-probabilities. The estimate

Pih(k) will have a variance

Puj(k) - P("n- P) (16)

where n = the total number of components which were initially in state i.

The variance of the estimate p will be a maximum when pij(k) • 0.50;

therefore, in order to have a precision of ±1 percent,

n .502
n -0.1 n> 25 (17)

This is not to suggest that a sample of at least 25 components in

state 1, 25 in state 2, etc., be taken for purposes of precision- the

total sample of components taken at a data point should be as random as

possible in order to have some idea of the distribution of the initial

states. The-samples should be sufficiently large that there are about

25 components in each of the initial states; barring this, the resulting

precision of the estimate should be kept in mind.
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LEAST SQUARES MODEL

The data derived from the observations is used to estimate the

parameters of a second-order least squares model as follows:

pij(k) b + b V +b 2 2  + n Vn b 2 VV 2

i...,bn V1 Vn + bn-l,n %-I V+ ÷ di. (1)

Estimateu of parameters are obtained by the method Of least squares

in matrix notation:
bk a (vIv)"1 Yi (k) (19)

where b(k) h vector of parameter estimates

V u the design matrix

Y i(k) = the vector of the p11 (k) estimates from all data points,

where Yh(k) a pij(k) at data point h

Analysis of the data by least squares will result in a set 'of

polynomial models, one for each possile state tansition:
N2 a the numbir of state transitions, and leiast-equares poly-

nomial models required, where N x the number of states.

This provides an additional reason for keeping the number of states at

the minimum necessary.

With the parameter estimates, it is possible to calculate a transition

matrix from a set of values for the independent variables. Because of the

lack of fit and residual epror inherent in the least-squares process, it

may be necessary to adjust the derived transition probabilities so that

X. piJ(k) a 1.0 (20)

To do this, a dummy term is introduced so that
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m

Z Pjj(k)- C .0 (21)

m

Spij(l-) =1.0 + C (2 2 *

-ID

. PIJ (k)

1 +± 1.0 (23)

Thus, dividing each element in a row of the derived transition matrix

by the sun of the probabilities in that row will result in a corrected

row of transition probabilities whose sum will be equal to 1.0.
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MISSION ANALYSIS

Each component of a facility can be expected to effect the mis-

sion of the fazility depending on the state that the com1ponent is in;

the states of the component can be expected to have different impacts

on the different missions for which a facility may be used. As an in-

dependent part of the analysis, and as a part of the generalized aspect

of the model, it is necessary to assess in quantitative terms the im-

pacts that the component states will have on the different missions.

Thiq multiple mission concept will apply most to the components which

will apply to the buildings rather than to the non-building facilities.

Non-building facilities will more likely have a sinige mission or fixic-

tion.

The process for estimating these effects is, for the most part,

subjective; the accuracy and reliability of the iffectiveness measure

obtained will largely be a function of the skill and experience of the

person or persons making the estimates. The procedure and resulting

mission effects matrix is easily understood and lends itself to easy

correction and arrival at a consensus where there may be differences of

opinion. In many cases, the degradation of the facility mission will be

very closely correlated with the effectiveness of the facility as a

whole, e.g., the electrical power distribution component in a missile

launen facility, while in other cases there may not be a clear-cut re-

lationship (e.g., with the roof component of a warehouse facility). It

is hoped, however, that by making the mission analysis an independent

undertaking from the condition of the component, that a maximum of ob-

Jective and reliable mission effectiveness estimates will result.
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At the onset# all facility Missions should be listed to include all

types of facilities which may contain the component in question. Next,

theme facility missions should be grouped according to any commonality

of the specific function that the component is to perform (see numerical

9xample). This will bettor relate the component to t'je mission of the

facility and cut down the complexity of the estimating process.

When all missions of the facility have been listed$ a fraction is

assigned to each state of the component for each facility mission that

may be encountered, the fraction -ndicating the degree to which the fa-

cilitj mission is de.graded when the component is in a particular state,

the resulting mission effects matrix D(k) will oppear:

mission j t

2i1 2 .. , a

s d (k) d1 2 (12) ... dle (k)

s 2 dd2 1 (k) d2 2 (k) ... d2a (k)

i ..

sm dm (k) dm2 Wk ... dma (k)
mi Lml m

Hission Effects Matrix

The estimates duck) are required to be in the range:

0 < dij(k) < 1.0 (24)
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TOTAL COMPONENT EFFECTIVENESS

The effectivneness of a component may be computed from two determin-

ing inputs: the set of design, environmental, and policy variables which

describe the component, and the mission of the facility or facilities

which contain the component by way of the mission effects matrix.

The variable values arq applied to the polynomial equations to ar-

rive at a theoretical one-step transition matrix. After any necessary

adjustments, the matrix P(k) is taken to a power, usually 5 or 6, suf-

ficient to arrive at steady-state probabilities [w(k)]. These represent

the long-rtm probabilities that the component, under the conditions as

set by the values of the input variables, will be in a given state.

Multiplying the steady-state probability vector by the mission ef-

fects matrix results in an ineffectiveness vector, showing the long-run

degradation of the component on the missions of facilities containing

the component, as:

(w(k)) • D(k) a F(k) (25)

The component ineffectiveness is expressed as a decimal fraction.

Multiplying the steady-state probability vector by a single column

vector from D(k) will result in tho element from the ibeffectiveness

vbctor for a particular mission in question:

i()(k)3 - Dj(k fk) lWfor the ith mission (26)

The effectiveness of the component, as applied to a facility with mission

j, is:

e j(k) r- 1.0 - f j(k) (27)

0 < ej (k) < 1.-0 (28)
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USING THE BETA DISTRIBUTION TO SUGGEST THE DISTRIBUTION
OF COMPUTER ACCESS TIMES TO STOMG

Walter D. Foster
Office of The Surgeon General

Information Systems Office

MTRACT

In comparing Wo or more candidate storage devices for all or parts of
a computer configuration, problem arise in which it would be helpful
if a distribution of access times to storage were available. For the
case at hand, three values were listed by the manufacturer: maximum,
minimm, and mean. The problem consisted of contriving estimtes of
several percentiles of a distribution purporting to represwt the unknown
distribution of access times.

Because the Beta distribution is bounded, is defined by man and
standard deviation as parameters (thru m and n), can take may degrees
of skewness either positive or negative, and is extensively tabulated,
it was selected as a basis for suggesting the requested percentiles.
Its characteristics are presented along with helpful ideas for plotting.

What is lacking is any idea of how good the percentile estimates might
be. Because actual data on which to base statistical estimates generally
do not exist, the question of accuracy cannot be answered. An approach
is offered by postulating that the true distribution is Beta in form with
known man but with poorly estimated standard deviation. The effect of
error in estimating the standard deviation on the percentiles is given in
tabular form. A second approach to the effect of error constitutes the
question for the panel.

1
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1. B ACKGROUND AND OBJECTIVES:

In preparing to simulate the use of 1) Digital Equipment Corp's
RPO-3 disk and .) 134's 3330 disk with the IDP-11 computer in Ong
on the 131 360-30, a specific problem arose concerning the distribution
of access times to disk memory for various storage locations on the disk
and for a variety of information items to be retrLeved.

PDP-l literature Save the minimum access time as 7.3 mecs, the
maxntu as 55, and the average as 42 soec. With only this amount of
information, the problem was to select or contrive a probability dis-
tribution which would serve as a first approximation to the (unknown)
true distribution of access times and to obtain the 5th, 10th, 24th,
50th, 75th, 90th, and 95th percentiles of this distribution.

II. ANALYSIS

lecause of the obvious skewness of the true distribution as indicated
by the three given values of access time, any symmitrical distribution
such as the normal or rectangular would not be appropriate. Nowever, the
leta distribution,

l(m, n) k k0- 1 (1 - K)A-lI dX----- -- -- -- -- -- -----

which is a bounded, unimodal, continuous distribution with domain aerao
to unity and parameters a and n, is capable of exhibiting skewness to
the right (at n). left (a. n), or symmetry (a - n). It has mean,

Su/(a + n) ......- ...- -.--------------- (2)

mode,

mode - -) -). . . . .----------------- (3)

and variance,

a2 m/(m + n) 2 (a+ n+ ------ ----- -- -- ---- ------ -(4)
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This distribution was deemed able to provide a first approximation to
the actual distribution of the access times under the assumptions that
the true distribution is unimodal, continuous, bounded, and reasonably
regular In its characteristics. The following mathematical development
shows the basis for the computation of the desired percentiles.

The first step was to transform the scale of the original variable, t
(for access time in milliseconds), to that of X with upper and lower
bounds of sero and unity as required by the Dets diet ibution. Such a
transformation is liven by

X (t- a)/ (b- a) - -- - - ---- - ---- ---------- ------- )

where

a - lower bound in t-scale, and
b w upper bound in t-scale, such that when

t a a, X - O, and vhen
t - b, X - 1. as required.

The opportunity to estimate the Beta distribution parametea,u and a,
lay in solving equations (2) and (4 simultaneously under the assisptions
that the mean, u, and variance, al, were known and the distribution was
known to be the Beta in form. The mean was one of the liven values, 42
in the t-scale and .7263 in the X-scale according tm (5). Knowledge
of the variance was contrived according to the following development. it
was assumeo that the essential domain of both the actual and the fitted
Beta distributions was equivalent to six standard deviations. A precedent
for this assumption in using the Beta distribution exists in the statitiLeal
theory underlying the development of the PERT charting. Similarly, the
domain of any normal distribution is often taken to be essentially
equivalent to six standard deviations. Therefore, we set the range of the
equivalent Beta distribution equal to six standard deviations,

6o a I - 0 from which

a.1/6.

Simultaneous solution of equations (2) and (4) yielded explicit estimates
of the two parameters as follows:

S (l)2(t- )- - ----------- - -.-.- --- --- (6)

n = n( - -) - -- ----- ----- ----- ----- ----- ----- --- (7)

with numerical estimates

m 4.713 and

n 1 1.6847.

With the fitting of the equivalent beta distribution, it remained to
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find the desired percentiles. These were avet~ltbles in T~ible 111. 10,
Percentage Points of the Beat Distribution j/As, vequired, we set

v2 2a - 6.94

and employed double interpolation to create the following table of X for
the requested percentiles:

Percentile 5 10 25 so 73 90 93I,1 .4145 .491 .621 .753 .359 .922 .931
t27.2 30.8 37.0 43.3 46.3 51.3 52.7

Conversion of the X values to the t-scele was accomplished by the inverse
solution of (5) giving

t a (b - a)I + a . . . . . .- . . . . . . . . . . . . . . . (5)

For purposes of illustration, the ordinates of the fitted Data
distribution were computed from the first derivative of (1) .for arbitrary
increments of X, ligure I shows this distribution with both the X and t-
scale$.
211. NOW ACCURATE AIX3 TH PERCENTILES?

What ts lacking is any idea of h*V-good the percentile estimates
might be. Because aptual data on which to base statistical estimates
did iat exist, the question of accuracy cannot be answered. An approach
is otferedeby postulating that the true distribution is laet in form
i~th known mean but with poorly estimated standard deviation.

Two approaches have been followed in assessing the effect on the
percentiles of a poorly estimated standard deviation.

The first consists of a simple sensitivity analysis in which the
25-th percentile has been computed for a two-way table of mean and
standard deviation. This is given in the following; table where it Is
easy to perceive the change in the 25-th percentile for changes In
either the mean or the standard deviation or both.

TABLE 1. VALUES 0F P25 701. VARIOUS Y and a

.0 Mean
.70 .75 .80 .85 .90

.05 .666 .710 .754 .804 .868
a .10 .634 .686 .739 .795 .858

.15 .601 .657 .716 .784

.20 .571 .630 .700

.25 .543 .597

Suppose, for example, that the true distribution is Beta in form with
mean .73 and standard deviation .25. However, It Is assumed that the
mean is .75 but the standard deviation is .15. Then from the table, it
can be seen that P25 is thought to be .657 when it really is .597.
Similar effects can be obtained for a change in the mean or a change in
both mean and standard deviation. -120-
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The second approach has the same objective, what is the effect of
a change in standard deviation on the percentile. It consists of
applying the delta process to the Beta distribution. The question to
the panel consists of both the need for this approach and its appropriateness.

Let us denote the change In X by i X as effected by a chanoe in the
standard deviation thru the Beta parameters m and n. By requiring the
original Beta integral to have value equal to the desired percentile, e.g.
.25, as well as the augmented Beta integral, we have

k4 tm' 1(1"t)n'd tm+Ln" l( t)n+An'dt U

0 0

where k * and

i K •r~m+n+4M+in)
Km. '~ fl4~1  andrkm+&M)rtn+-n) n

P - specified percentile

Differentiation with respect to X gives

k(X)m'l(1.X)n'l - K(X+AX)m+•m-l(I-X-AX)n+an-l

and

k . ( m+ax)r-1 Am I ) n-l AX n

and

k-- (1+ -AX )m-1 (+IX• ) mxm(m . 1x nn-l i -AX )An • -x n

and

k (1÷A)m+Am- ,Am( 1 )n÷tn-l( 1 )an
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Then Ln In +

which becomes by taking the first tern in the series expansion for Ln w:

"i n (nm+.,m-l) 1X + in X~m +(n+.nn-l("X- + tnl1.X)4n

whence

"X. ... .a . * . (9)

Evaluation of Lnm and &n in (9) was accomplished by au.menting a in

equition (6):

u2nt+,M * 2 (a-0)-9 whence

Am a -. 2 A 2

Similarly from equaticn (7), we have

An AM~,(.. 1)~(1

The evaluation of equation (9) caused 'considerable consternation
to iny little desk-top Olivetti 101 and despite its valiant efforts, I
think I managed to gum it up by errors.of my ow'n. At least I haven't
been able to duplicate any effect in Table I as yet.

I had hoped that a formulation like that in equation (9) would
provide some insight on the effect of 6o on AX and possibly a not-too-
nasty computation of it. Perhaps your answer to my question is the seine
as mine... Ugggghhhh!

•/Cher.cal r-Volubbr Cor,,, arrn.id.oob o! 'aLeus for Froba'bilit7
and Statistics.
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OF IMODALITY 0] PA•MUKTnIZ AUOSIC I0DU.8
AMD OWN SCLUTIODS TO AVOID IT

Oskar azsenvanger
Physical Sciences Directorate

US Amy Missile Research, Development and Engineering Laboratory
US Army Missile Command

Redstone Arsenal, Alabama 35809

flW. The bimodality in the frequency distributions of atmos-
pheuic data samples is examined. If the bimodality is generated by a
mixture of populations based on differences in physical behavior, it
my only sometimes be possible to separate the individual collectives
o* priori.

A second class of data exists where bimodality In the frequency
distributions is also caused by physical behavior, but is produced by
either paramterization or design requirements. This bimodality can
usually be avoided, but the methods of solution may not always be
trivial.

Some bimodalities of frequency distributions for atmospheric
elements fall into this second category. It is illustrated how to
eliminate the bimodality in case of an angular variate profile such
as in the parameterization of the wind direction profile as a function
of altitude, Another example is taken from engineering requirements
where the principle of statiortrity of time series or homogeneity of
climate is violated.

1- TITRODUCTION. Ordinarily it is expected that sampling from
one population should lead to unimodal frequency density distributions.
Bi- or multimodality in the sample frequency is therefore attributed
to random effects of data sampling and can generally be neglected by
the statistician.

The problem becomes more serious when the physical background
for data sampling is heterogeneous, and consideration must be given
to the fact that the sample may comprise more than one individual
population. This mixture of populations could lead to multimodality
in the frequency distribution. In this case, the individual peaks
in the frequency density are statistically significant, and the dis-
tribution can no longer be treated by standard statistical methods.

Preceding page blank - 12

I



Although advanced techniques have been developed for treating
mixed distributions (e.g. Pearson, 189~4; Doetsch, 192e, 1936;
Essenwanger, 1955a and others) *very bimodal or multimodal distri-
bution should not automatically be cons4dered as in the group of
mixtures. The history of the data sample should be analyzed. and
the question investigated whether the physical background or be-
havior of the observed property justifies the classification as a
mixture of populations. Even though multimodality may be produced
by differences of physical behavior unimodality can sometimes be
restored by appropriate procedures. These procedures for the
elimination of mixtures in populations may sometimes be very intri-
cats..

The following discussions illustrate the came of a bimodality
generated for an angular variate and some techniques of circumventing
th is bimodality.

A second example is presented which frequently occurs in the
establishment of design criteria for systems aiaalysis, Input re-
quirements for atmospheric data may have been requested which ignore
the stationarity or homogeneity such as in atmospheric time series
or in the uniformity of the climatic regime. Multimodality in the
frequency density will be the result of this neglect. In this case,
efforts should be made by the climatologist to achieve modification
of the requirements.

The outcome may be beneficial to both the engineer and climiato-
logist. Usually the result only needs a simple treatment by standard
statistical procedures with a meaningful interpretation of the
statistical parameters with respect to physical properties.

*2. UWWLES OF BI- A6D MALT*OALITY. In the following examples
the wind as an atmospheric element has been selected. Although cases
of bi- or multimodality are not restricted to this atmospheric par&-
moter, quantities of multidimensional proportion are more likely to
develop a heterogeneous background. A complex treatment may enhance
the chances that physical conditions for one of the parameters in-
volved become dissimilar as is the came for the mathematical description
of the wind direction profile presented below.
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Complexity of description alone, however, does not necessarily
lead to the generation of bimodality. B.S. simple models of surface
temperature disclose multiple peaks as can be found in numerous
references, among them this writer's articles in 1955b.

Even in thc case where bimodality is being introduced by the
mathematical or statistical tool under consideration, it should be
pointed out that the effect on the frequency distribution of the
data sample cannot always be predicted a' priori. In final analysis,
it is the physical behavior which causes these multiple peako. The
bimodality by the left or right turn of the wind direction profile
as a function of altitude or the non-stationarity of meteorological
time series is a physical phenomena.

2.a. The Wind Direction Profile. Before the actual bimodalitý
of the frequency distribution of the characteristic parameter for
the wind direction profile is illustrated, a few commnts on para-
meterization may be appropriate.

While wind speed, temperature and density can be treated with
straight-forward methods, the anatysis of the wind direction re-
quires some definitions. It is self-evident that the wind velocity
could be separated into zonal and meridional components whose pro-
file analysis needs little further explanation. These profiles
would be, however, a function of the coordinate system as they differ
when new references are established. Nonetheless, zonal and meridional
components are coordinates of special interest to the meteorologist.
The rare separation into wind speed and direction can also be attributed,
however, to the difficulties arising in statistical treatment of
angular variates.

The first problem is the assignment of a direction for calms.
Otherwise they would appear as an angle of zero degrees according
to the reported code. Without transformation the calms may create
excessive outliers in profile analysis. It was decided to perform
a linear vertical inter- or extrapolation (and points) of the profile.
Although a higher order curve fitting was studied the outcome dis-
played no significant difference from the linear system and could
be neglected for practical purposes.
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The second problem is the elimination of the discontinuity at
0 or 360 degrees. This 8pal to achieved by restricting the maximum
stptude of •th angjular differences betweean two altitude levels to

and adjusting the subsequent directional values by adding or
subtracting 3Z0 degrees. (E.g. the sequence 350, 10 would be con-
verted to 350, 370 but 10, 350 would be changed to 10, -10, etc.)

These two conditions eliminate most of the difficulties in
directional profile analysis. One remaining problem is illustrated
in ligure 1. Two directional profiles are depicted at Chateauroux
in July, where the wind velocity changes from a westerly regim in
the troposphere and lover stratosphere to easterlies above 20 km.
No complication would arise below 20 km. The important set of
surface to 25 km profiles exceeds this altitude threshold, however.
This bimodality is also absent in the winter mouths.

While the profile of 21 July veers with height to east, the
19 July profile turns counterclockwise into eastarlies. This
difference in the directional shifts creates a bimodality in the
distribution of the slope of a polynomial representation (Fig. 2).
The mean slope resulting from the bimodality in the distribution
of the linear coefficient would provide an analytical profile with
no turn to the east in the layers above 20 km. Although this
"mathematical compromise" is correct from a formalistic viewpoint
of putting a mathematical formula Into practice; .'the physical
behavior would be completely suppressed.

A study of the average wind direction by individual altitude
levels (see Essenwanger 1961, l9&) reveals that "backing" of
the profile is supported by the turn of the mean direction (Fig. 1).
A procedure was designed to relax the second condition (limitationof IteI to 1800) for one point of the profile. This is accomplished
by the estabLasiment of a consistent profile, first with the surface
direction and then with the angle of the top altitude (i.e. 25 km)
as the initial reference. The two profiles coincide or are n • 360
degrees apart. Then the two directional profiles are compared with
the mean profile. Using a point by point selectiom at every altitude
level each point with the minisma. departure from the mean directional
profile is selected. In the case of conformity of the two constructed
profiles (from the surface or from the top altitude) no change or
switch will be necessary. If the profiles are noz congruent a switch
from one profile to the other will take place at one point. This

oit will represent the minimuim deviation from condition two
CIB 280P) in other words the least relaxation (see Fig. 3).
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After this step yes introduced the bimodality disappeared
(see Fig. 2), and the now mean slope reflects the shift of the
wind direction from west to east. Nov the profile analysis can
proceed in a manner similar to procedures outlined for the wind
speed or other atmospheric elements (see Essenwanger, 19V2).

First a mathematical description is obtained by

e(h) - 1)D 01(h) + DsO,(h) +...+ D O (h) (1)

The 0 denotes the wind direction as a function of the altitude as
described above, and the 0 term are Tchebychef orthogonal poly-
nomials. The D as the main direction may exceed 360 degrees
from the converhion of the directional profile into a8 consistent
form, but can be converted without any effect into the boundaries
of 0 through 360 degrees.

The final model assums the form

O(h) - (--Dj)[do+0l(h) + d*02(h) +...+da0n(h)i + (h) (2)

which again displays only one variate whose frequency distribution
can be found. After the bimodality was eliminated, these distri-
butions exhibited one central peak, and could be well fitted by a
Weibull model.

In ow instances

j(h) - [do+ 01 (h) + d402(h) +...+ dn~n(h).1 (3)

and the mean term cancels out in equation (2). Then

0(h) - N[do+ k(h) + d*00(h) +...+ dn0n(h) I (2a)

As it has been demonstrated, the bimodality introduced by
backing or veering of the wind with altitude can be streamlined to
provide a untmodal frequency density. The reconstructed analytical
direction profile now reflects the proper change from the westerlies
in the lower troposphere to the easterlies in the 20-25 km altitude
layer during July at Chateauroux. Thus the introduced change in the
profile analyuis procedures has not only eliminated the bimodality,
it has also led to a more appropriate and simpler representation of
the physical background in general.
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It should be a~hsixed that the adopted additional condition
baa not eliminated veering or baoking of the wind with altitude.
lint, examination of the adjusted frequency in View*e 2 reveal@
that deviations from the mn are poeitive and negative. This
fact indicates deviations from the mma conditiani ~ibich still
rmal. fbe .510! change took place, howsver, in the alignment
with the mean conditions (Table 1). The seasonal shift from
westerlies In winter to easterlies in sumer at 20-25 km altitude
at Giateaurou., which is of Interest heve, is nowý reflected In the
seasonal variation of the mean coefficients. This result can be
skach more easily interpreted aid is meaningful because the man
conditions are mt frequently encountered.

Table 1. MIean Coeffic'.ents for Wind Direction Profile at
Chateaurow.

Jan lob Mar Apr IMayj Jun IJul Aug gap Oct Now Do@

io M 303 31- 305 316 210 28 "1 23 20 26 318 degrees

7 .3 41~ I-60-55-26 1.1 6.0 7.2 1-8.0 dogree

pitof carateiticn vaitheae-sta r feavor of teorological elements (e sevne, 17

In th19atlb cao. th oaIty was causedalby thepeclicarietyof ane deiatinua
ofvariate, ucis .the wainde dir etiooon, icad thephysical eehavor inwter, Ms
Teplof the en ral ucicltion.i h salsmn fa ait hs rqec

dithei reuti nc dsiste ributio ofasth charatrsicvraesmyns

disclose bimodality caused by the non-stationary behavior of atms xic
parameters. Let us assum that we were to combine the observationaL
data of the entire year to derive an "annual" average, as it is
favorably looked upon mos tly by engineers.
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Formulistically the techniques described by the author (1972) can
be applied to the observational data, and schematically a variate with
annual constants ki (see eqn. 4 beltm) can be obtained. Unless this
coabinjtion is justified by the climatic homogeneity or stationarity
within the selected time frame for the meteorological elements under
consideration the resulting frequency distribution of the characteristic
variate may not be unimodal or may consist of a mixture of frequency
distributions whose statistical treatment is as difficult as the tool of
multivariate analysis. We would have gained very little in comparison
with a sultivariate system.

An example is now illustrated in Figure 4. The surface to 25 In
ind profile has been represented by

Vn A[I + k in(+ ) + Irv) +...] ()

where the kI denotes constants derivc,, 4ver a "stationary" time period
such as a ;&nth or season.

The frequency distribution of the Ao coefficient for Montgomery,
Alabama, is $Iven in Figure 4, where the middle and lower diagram dis-
play the winter and summr season, respectively. Combination of the
frequencies for an annual representation inevitably leads to a bi-modal frequency density as ezhibited In the top diagram of Figure t4.

It is *evident that this bimodality muat be attributed to the
violation of the principle of stationarity. In fact, a closer
examination of the middle diagram (Fig. 3) from the winter season
reveals that even the winter season my comprise an inhomogeneous
time period. The question of whether this is the case cannot be
answered from this diagram alone. It would be necessary to break
the frequency down into the individual months. Another check is
the fitting of the frequency density by a statistical model (such
as the Weibull frequency) and the examining of the statistical
significance of the departure from the modal by using established
statistical test procedures. The latter procedure was chosen. In
this particular case it was possible to conclude that the deviation&
were within the margins of non-significance. Since statistical tests
are a function of the number of observations, however, re-examination
with a longer period of record may not confirm this result.
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The displayed bimodality in the frequency density of the mnual
siemty for the characteristic coefficient of the surface to 25 ka
profile mse easy to recognise by the two peaks. A further example
is added from the analysis of the characteristic coefficient for the
surface co 16 km profile. In this particular case the muitimodality
is not striking at the first glance (see Fig. 5). Although the
expanded peak region as illustrated by the histogram of the frequency
density for the summer season at Chateaurouz may create suspicion,
only the detailed analysis with the individual months and the statistical
test can reveal the heterogeneity. As discerned by the three diagrms
June, July amd August, only the two suimmr months July and August
Indicate some kind of a uniform stationary reglie. During June
apparently a different pattern of the general circulation exists which
generates a different set of wind profiles (surface to 16 to) than in
the subsequent months. Again, final Judgment must be reserved until
the study is repeated with a longer period of record.

The statistical modelling by eqn. (4#) demonstrates the advantage
of a representation by a simple meaningful mathematical characteristic
for a multivariate system. Ion-stationary behavior can be readily dis-
covered by the elementary analysis of the frequency distribution of this
characteristic parameter while complex matrix tabulations of correlations
or vector notations usually would not permit insight into stationarityl.

Preservation of stationarity and homogegeity of the meteoro-
logical time series may at first might appear to the engineer to
be an inconvfnience rather than a necessity because it leads to
more than one frequency model. It should be realized that the trade-
-ff is the pin of a meaningful statistical representation by a uni-
modal frequency. Even though more than one monthly or seasonal
frequency needs to be studied in systeim analysis or design, the
benffit of an interpretation of the statistical characteristics in
terms of a unimodal distribution may by far exceed the lower com-
puter costs for a meaningless statistical characteristic from one
multipeakud model. Erroneous conclusions drawn from non-representative
statistics may lead to extra costs which more than offset the savings
Intended by utilization of an annual average, not to msntion the
possibility of Improper functioning of a system. The exact penalty
being paid for the malfunction or the inability to achieve the stated
requirements under true atmospheric conditions can sometimes not be
determined.
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e. bi- oe multimodality was investigted for
sor frequency duity distributions from data eamples of aospheric
parameters for syste analysits and design. Since multlaodality my
lead to misiuterpretation of statistical characteristics the reason
for this multiple peakedness is very Important.

The author (ea.. 19") has discussed in som- articles that the
heterogeneous physical background may lead P, a mixture of populations.
and consequently to multiple peaks in the frequency density. In this
case the only procedure for better statistical reptesentatLon than a
meaningless approxmlation by a unimodal frequency is usually the dem
composing into partial components.

A second cause for bimodality may be the paramsterisation or
the stationarity. As illustrated in the preceding sectilo, this
type of bimodality can be avoided although the method of solution
may not always be trivial.

In the first example the bimodality is introduced by the method
of establishing a characteristic coefficient for mathematical repre-
sentation of an angular variste profile (surface to 9 Mo. The
technique to avoid the bimodality was successful In stradlining
the wind profile spiral to turn most frequently In the direction of
a man profile defined from individual altitude level statistics.

Zn the second example it is shown that violation of the
principle of stationarity by engineering requirements leads In-
evitably to bimodality which can only be avoided by modification
of the requirement to account for the reality of atmospheric be-
hvior. Then unimodal frequency densities will be restored. This
correction my soentimes be accepted very reluctantly because It

lay load to more computer work in system analysis or expanded
studies for design. The benefits should be obvious, however.
The calculations of statistical characteristics peculiar to a wad-
medal frequency my lead in the case of nultiple frequency peaks to
a meaningless interpretation and consequently to improper function-
in$ of the designed system. Thus atmospheric conditions should always
be examined for their agreement with reality, and some pitfalls can
be avoided by proper consideration of the physical behavior of
atmospheric variables.
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L" TOWAR TU PDICTION 01 RVINCTS OF ULTZA-SNORT LA8ER PULSES

1. W. Stuabinh, 1. A. Lucia, and F. D. Verderemo
Pitman-Dunn Laboratory,. lrankford Arsenal

US Army Armament Command
Philadelphia, PA 19137

ABSTRACT. The recently developed mode-locking technology for
producZij ultrashort (picosecond) laser pulses it being qplored for
military applications. Understmading the behavior of absorbing media
toward laser pulses of picosecond duration requires detailed modeling
of intramolecular energy transfer processes because the time scale of
such processes may be considerably longer than the entire duration of
the pulses Systems of coupled differential equations In two dimen-
sions are formulated for candidate energy transfer schemes and their
solutions compared to original eMperimental evidence in tour time
regimes. The equations are solved numerically by finite difference
methods and alternatively by Monte Carlo techniques. A comparison of
the two approaches is given.

L.I ITDUCON. The trls (p-dialkylaninophenyl) aninium hexa-
fluoroantimonates are a series of dyes developed by the American
Cyanamid Corporation, Bound Brook, NJ under contracts with lrankford
Arsenal. One compound of this class, trio (p-diethylaninophanyl)
amiblum hezafluoroantimonate (THAAP) has been the key Ingredient in
formulations for laser countermeasures, goggles and visors effective
against ruby and neodymium laserS. When dissolved In vinyl, cellulostic,
or acrylic plastics, TEAA strongly absorbs ruby, Nd, 2 x Ruby, GaAs,
leon and argon ion laser radiation, yet transmits a large portion of
the visible spectrum (See Figure 1). With suitable additives, this dye
is very stable toward het and light and seems not to be irreversibly
affected by very high powered Q-switched ruby and neodysluu/glass laser
pulses. Plastic formulations of TEMP. are now coumonplace for providing
adequate and reliable protection especially against pulsed 1.0611m
laser radiation by absorbing the preponderance of the intense Q-switohed
light to which they are exposed while maintaining their chemical and
physical properties even after repeated exposure. In the near future,
it is anticipated that new liquid formulations utilizing this compoundfor protective and masking tactics will be developed and used. The

U.S. Patent 3,440,257 4/22/69
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objective of this study was to discover the effects of ultrashort
pulses of neodyamlum laser radiation on several TUMF plastic foruala-
tions now in use and to understand the intramolecular and intermolecular
energy transfer processes which affect absorption of radiation as a
function of peak power and pulse widths In the plcosecond/Sigavatt
regime.

Data for this study was gathered at A - 1.06um in four tion
regimes using the Cary 14 spectrophotometer (01), a Norad Model K-2
Nanosecond Laser System (20 neec), and a Korad Model R-1500 1ode-locked
Laser System (18 pses). all in our laboratory, and laser oquipment avail-
able to us at Naval Research Laboratory-with 250 picosecond (71UlO dura-
tion pulses. The last two lasers wil be referred to as picosecond
systems. Reference to Figure I (lover curve) shows that 1.06ta is not
exactly at the absorption mazi:mni but rather on the low frequency side
of the broad, infrared absorption mexi/am of TIMPA centered at about
990 nm. With the picosecond systems at 1.06Ua new mnd unexpected effects
have been observed with TUAA dissolved at several concentrations in
methyl msthacrylate monomer, clear plastic polymethylmethacrylate and in
polycellulose propionate matrix. Newly, we have observed a markedly
enhanced optical density at 1.06Um at irradiance levels .(power per unit
area) comparable to those of Q-switchad pulses; a reversible bleaching
at higher peak powers in the several gigawatt regimes, and a strong
fluorescence in many samples especially during exposure at higher powers.
The results are correlated with theory based upon rates of energy trans-
for anong the available TLMF energy levels. In these energy level
schemes the rate of vibrational-vibrational relaxation% cannot be
neglected and therefore would give rise to complicated rate expressions.

In view of conjectures before these experiments were conducted
about the kinds of effects to be expected, it is equally important to
stress what was not observed. No cracking, crazing, spallation, burn
spots, or permanent damage of any kind could be observed under micro-
scopic examination. This kind of damage is more likely energy dependent
rather than power dependent, and only a small total energy (- 1 joule)
was deposited even at the highest peak powers.

2. EXPERIIETAL RESULTS. Typical results 'or samples of TEMP in
polycellulose propionate (PC?, Lexan) and in polymethylmethacrylate
(PH)l, Plexiglass) are shown in Figures 2-4. Sample thicknesses were
adjusted so that the optical density toward light of ordinary intensities
(as measured on the Cary 14),vould be approximately one. The Cary 14
OD of each sample le shown by a dotted line on each figure, where OD Is
measured by

OD - log1 0 (I/1O) (1)
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for I being the incident beam Intensity, and I being the Intensity
transiitted by the sample. Figure 2 shows that the dye bleaches
under exposure to 20 usec pulses over irredlance levels of 5 to 70
megavatts/cu2 ; however, the bleaching Is not catastrophic (virtually
complete loss of OD) but levels off after a reduction to about 2/3
of the original OD and then appears to be fairly Impervious to further
increases in power. Furthermore, the bleaching is reversible; a sample
exposed to 70 161/cm2 shows complete recovery of Its absorption proper-
ties when subsequently exposed to S 1W/cu' or Cary 14 measurements at
the same site.-

V The results with 250 pose pulses, Figure 3, show a new uY nexp€c-
ted effect. For irradiance levels in the range 100-400 W/cm ,the
ample showed a marked enhanced absorption rather than bleaching. At
higher powers the sample bleaches in about the sase way (noncatastroph-
ically) "a with 20 usec pulses, with the crossover from enhancement to
bleaching occuring at roughly 400 61/cm2 .

Tor 18 p se pulses, Figure 4, enhancement again occurs in the range
100-250 1W/cm , converting to bleaching at higher powers. The abeissa
on Figure 4 is plotted on a log scale due to the wide power range of the
Instrument. When this data is plotted on a linear scale comparable to
Figures 2 and 3, then the data of Figure 4 falls on a curve .whose shape
resembles the two previous figures: peaked sharply to the left with the
bleaching flattening out to a long, horizontal line at about OD -0.6.

3. THEORETICAL ANALYSIS. The lowest lying energy states of a
typical aromatic molecule are schematically Illustrated in Figure 5, where
solid arrows indicate radiative transitions undergone by absorbing or
emitting photons, and dotted arrows indicate radiationless transitions.
The ordinary optical density of awt absorbing molecule is due to transi-
tions from the ground stats to the first excited singlet state from which
it my relax to the ground state by radiative (fluorescence) or radia-
tionless (quenching) paths. In light beams of ordinary intensity, these
relaxation processes are sufficiently fast to keep the ground state
essentially fully populated. In laser beams of high irradiance., however,
this relaxation rate may be overwhelmed by the arrival rats of photons
so that many, and perhaps virtually all, of the absorption sites are
occupied by molecules in the first excited singlet state (or the lowest
triplet state on the right side of the diagram, if the pulse length is
sufficiently long compared to the rate of intersyatem crossing). If
there is no available absorption from this excited state (e.g., K2 in
the t' ure) at the proper wavelength, then the material bleaches catas-
trophically. If such an absorption exists but is weaker than the ground
state absorption (L01 ) then the OD of the ample decreases from its

- 147 -



148



initial velue toward that corresponding to Ký2 Because redationleso
relamtions among exited states (internal c ton) are generallyexceedingly fast copred to relaxations from the l•owet excited
states the NK. absorption will not depopulate I at power levels which
do depopulatSS., so that the bleaching levels iff over at least some
range of powers at the OD corresponding to KW This appears to be
the behavior of TELP toward 20 nose pus es toward picosooond pulses
at their higher powers. It does not explain the enhancement.

Previous discussions of emhancimint have focused on the existence
of an euited absorption (IKl ) stronger than . owgeer, this would
lead to an enhancemeat that iutohed on at higlr pawers and leveled
off as they increased, an effect we have observed weakly in our labora-
tory at the ruby wavelength (0.6943ps). It cannot explain the low-
power enhancement which steadily bleaches awma which Is observed here.
We therefore offer the conjecture that this effect to due to a concer-
ted two-photon absorption directly from the ground state to the second
singlet (represented by K0; in 71gure 5). Such absorptions are very
improbable compared to •, however, they depend on the square of the
photon intensity; therefoibs switching on at higher powers. When the
power reaches a level such that this absorption appears, It occurs in
addition to !. which continues as usual so that the net offedt Is an
addition of %t OD's due to the two absorptions and an enhancement of
the sample 0D above that due to I% alone. Increasing the pmer beyond
this point should increase the ratE of the two-photon absorption;
however, this additional absorption arises only by additionally
depleting the round state and results in even sore rapid population
of the first excited singlet (following the rapid internal comwersion).
BEnco, the overall effect may he somewhat additionally enhanced absorp-
tion during the leading edge of the pulse accompanied by equally sore
rapid bleaching of the ground state and lower OD toward the bulk of
the pulse, resulting In net bleaching from the initial enhanced value
for pulses with additional power beyond the onset of two-photon
absorption. As detectors are not yet capable of following the detailed
pulse shape of picosecond pulses, this cannot now be tested experimentally.

To examine the fesibility of such an explanation in terms of the
intramolecular energy transfer rates (K's) required to produce such an
overall result, the differential equations governing the above processes
have been forualated for numerical solution. This was originally done
by Nonte-Carlo methods which proved too time consuming. Subsequent finite
difference solutions have proved uuch sore economical and provide detailed
profiles of the incident and transmitted pulses from which peak powers
and integrated energy content can be determined. These two parameters
give sow measure of the degree of distortion of the pulse shape by the

- 149 -



ample Md M. be, coampaed with results of power-semisigwe .4" inrgysomaltive 4aeatetrs whic awe evailable. In addition, molecular orbital
calculat ions are being catred out on the TUAA moloedul using the semi-empirical COD method followed by configuration Interaction to generate
tke excited states, Thee. results will be examined to determine whether
excited states of the MWA molecule exist with the proper energy dif-ferences and relative transition Intensities to fit the requirements
predicted by the rate equations.

4. A URM rl RZ33IthL MDZS. A diagram of the leaserapparatus to shown An igure 6. a mple optical donsitie are determined
by usamaring the relative signals at the sample detector and at the
reference detector with reliable results. lowever, determining irradi-
ance levels Is dependent on absolute calibration of the reference detec-
tor Which is quite difficult MAn a major source of experimental error,
mest especially with the 18 posec system. for examples woen though It
would be valuable to determine whether the enhancement we observe is
dependent on Irradiance power level alone or to also modified by pulse
width, due to the uncertainty In the ordinate values we cannot saywhether or not the 250 poee data crosses the ordinary OD lint at thesame irradiance level as with 18 poee pulses. In the same way It Is -* difficult to sort out any dependence of the-enhsncomnt on the square
of the Intensity* Present practice calls for reference detector caIt-
bration runs at the beginning of euch day which are both Inadequate andtoo time consuming. These lead to a linear fit of reference detectorresponse versus calibrated laser power delivered. Unfortunately the
time required for enough shots to establish tight confidence limits is
so great *a to consume virtually the entire working day. This is con-
founded by a lack of control by the operator over the power to be deli-
vesred by the laser on a given shot. For a particular setting of instru-
ment controls, a series of shots will result in roughly a normal distri-* bution of powers about some mean with a range of -perhaps SOX of the
mean value. It io hoped that with experience the detector calibration* will be found to be sufficiently stable that a very highly characterized
calibration curve can be established and the daily calibrations replaced
with periodic samplings of sma1l size but adequate to establish with the
high cpnfidence required that we are still sampling the same calibra-* f tion curve.
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ODLING 293-TIWOWU AUOSOLS POR ImnA=
COWUSUY3LLA=C AmD LAuh camTEAU

1. Doherty, J. J. Plato, 3. W. Stusbing, and F. D. Verderame
Pitsman-Duan Laboratory, lrankford Arsenal

US Army Armment Comaand
Philadelphia, PA 19137

ABSTRACT. All targets emit and reflect radiation which can be
sensed by infrared detectors and seekers. To seduce the infrared
rediation from the target, particulate clouds containing infrared
absorbers can be employed. NHi cheory analysis of a cloud of liquid
"ucroesalsion with known composition and known complex refractive
index generates the luminous transaittance and optical density (at
I a 1.06m) of the cloud as functions of umber density, particle
size, and path length. These calculations are used to define the
particle sioe and umber density requirements to produce a cloud with
optical density of one and a luminous transmittance of 253. A pneu-
mati4 spray nousle is used to produce a cloud of the micromaulsion
for which the number density, particle site, and optical density at
A - 1.06Um are determined and correlated with calculated Min theory
results.

1. ZUTEODUCTION. At the Applied Science Laboratory of PrWnkford
Arsenal, we are interested in the development of particulate clouds
as effective countermeasures against infrared guidance and tracking
systems. To establish the physical characteristics of a particulate
cloud necessary to achieve an effective countermeasure, a Nie scatter-
Ing program was acquired from the Atmospheric Sciences Laboratory,
White Sands Missile Range, New Mexico. The program was modified to
use the scattering cross section and absorption cross section of repre-
sentative cloud particles to predict the luminous transmittance and
optical density at 1.06pm over various path lengths within the cloud.

In this nmer the effect of particle sue, amber density and
the complex refractive index of various materials were studied. This
report presents the results of these calculations for a particular
microimulsion containing the molecular absorber 1R-99 (absorption
maximum at 980 am) where a luminous transmittance of 252 and an optical
density of one at 1.06pm have been arbitrarily established as desired
cloud properties. In addition, an experimental procedure worked out
in cooperation with Idgewood Arsenal and used to verify the computational
figures is also presented.
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2. TEOTICAL INMZSTIGATZWS. The program PGAUS was acquired
from teUS Army Atmosphotic Balances Laboratory, White Sansid M••isile
Range, New Mexico. The program performs single scattering calcula-

tions from first principles according to the Mis theory* resulting in
the scattering cross section and absorption cross section for an
average scatterer in a cloud. tn addition to calculating these values
at 1.06pm, the program was modified to calculate them at various wave-
lengths throughout the visible region. Tables of 1.06pn extinction
and luminous transmittance through a dispersed microemulsion were then
generated for number densities in the range of 10 -1016 at particle
diameters ranging from O.Olpm to 2.OM. Additional phase function
interpolation and Integration routines were included to calculate the
amount of radiation scattered in sall angles about the forward and
backward directions. The modified program has been renamed 'PhAiS-LT"
and is described in detail along wvih operating instructions in a
report presently under preparation.

Mi. calculations in "PGAUS" are limited to single scattering
calculations, hence the possibility of light having once been scattered
being rescattered one or more times before leaving the cloud is not
considered. Single scattering calculations are less costly to perform
and are likely to provide valid results for those aerosols in which
extinction is due almost entirely to absorption. They also identify
those cases for which the number density and particle six* require
multiple scattering calculations and are useful as a survey tool to
eliminate cases where the cloud is too transparent to the 1.06u. wave-
length.

An oil/alcohol/soap/dye microemulsion in water' has been formula-
ted to extinguish the 1.0611m wavelength. The oil drops in the micro-
emulsion as determined by low angle x-ray diffraction are at least as
small as 0.01pm. However in our computer calculations we consider
larger drops as well because dispersion of the microemulsion leads to
large drops containing many dye bearing oil drops which aggregate on
evaporation of the water. The exact structure of the microewulsion
droplet is not known but is suspected to be similar to two concentric
spheres with oil in the center and an oil/aleohol/soap/dye layer around
the outside. In order to perform Nis calculations using "PGAUS", the
oLl droplet was treated as a homogeneous sphere with the real portion
of its complex refractive Index, M = n(l - ik), due to the oil and
alcohol. Neither material absorbs in the region 0.4pm - 1.06M. Hence,
large anomalies are not expected and the real index is taken to be
constant at n - 1.44 over this region. The imaginary component, k, is
taken entirely from the dye as no other component of the microemulsion
absorbs in the 0.4pm - 1.06pm regions and is given by
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km *(1)

where c Is the molar extinction coefficient of the dye at wavelength,
A, and C is the smolar concentration of the dye in the drop. The con-
centration of dye in bulk microemulslon ia 2.6 x 102 molar. Values
for k based on this concentration and on r's taken in methylaethacry-
late (HKA) solution using a Cary 16 Spectrophotometer are given in
Table 1.

Optical density [OD - -o81n(1/10)] is a linear function of
path length and number density, M8 for example, at fixed number den-
sity, doubling the path length will double the 0D. On the other hand,
luminous transmittance Is a complicated function of the product of
number density times path length* (through an exponent under an integral)
and therefore must be tabulated as a function of one or the other.
For our purposes we chose a ten mater path length and tabulated results
as a function of number density given in orders of magnitude. eaipu-
lation of the results to other path lengths is straightforward.

Table 1I plots the results of luminous transmittance and optical
density calculations based on our modei where the albedo at X - 1.061u
for each drop sie gives the ratio of scattered ZM energy to total ZR
extinction.

We see from Table 1I that for oil drops of M.u•m In diameter and
larger, almost all of the 1.06pu light lost is due to scattering. It
turns out that particle diameters larger than O.5jm act as Mis scat-
terers with phase functions strongly peaked in the forward direction
so that a certain amount of energy will be scattered forward out of
the cloud and may be useful as a surveillance or homing signature. Thus,
although a number density of 10' - 10' for the O.Sps diameter particles
appears to be close to satisfying our hypothetical case (OD n 1 6 1.061nm
with LT - 25Z), it is uncertain whether these particles would acceptably
screen a target. However, at a number density of 10' - 10, multiple
scattering effects would be important and would tend to distribute energy

* away from the forward direction. The problem of forward scattered (or
backward scattered) light is eliminated by choosing particle diameters
less than or equal to O.lum. Such particles strongly absorb the 1.06Um

* light and, provided adequate number densities (or longer path lengths)
can be achieved, they would provide an effective screen for a target.

Figure 1 shows the percent luminous transmittance through these
aerosols when they present an OD of 1.0 to 1.06on light. These results

Sao Appendix A.
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are independent of path length, i.e., whenever the product of path
length iimes number density is such that an OD of 1.0 is achieved at
1.06?u, then the cloud will have the 9 iven luminous transmittance.
The value of this product in (M x cm ) is gLiven at each point. The
minimum In this'curve at 0.Spm is due to the strong scattering of
light at the wavelength of maximum contribution to the luminous trans-
mittance integral (- 0.55pm) by particles of the same size. For
larger particles, the luminous transmittance increases because, &!though
the majority of the energy lost is due to scattering, the scattering
no longer strongly prefers 0.5pm to 1.Opm as the particle size moves
closer to, and beyond, 1.0nm. The increased luminous transmittance for
particles of 0.1um and smaller is due to the increasing predominance
of absorption over scattering as sizes diminish. Then the relative
extinction of 1.06.m to the visible more and more closely resembles the

* absorption spectrum of the dye which is strongly selective for the 1R.
Consequently, the most advantageous way to achieve and OD a 1 and a
LT of 252 will be with particle sizes below M.1um. Furthermore, such
particles tend not to settle out of air and hence provide a very per-

* sistent aerosol. Since monodisperse aerosols of these liquid materials
are unlikely, estimates of the upper limits of larger drops that can
be tolerated in the mixture without degrading luminous transmittance
can be made from Table II (i.e. we can tolerate densities 6f 10scm73
of 0. 51im drops and l0'cm-' of 1.0 to 2.Oim drops). Moreover, the
presence of water drops in the dispersed aerosol may cause scattering
of so much visible light that 25% luminous transmittance cannot be
achieved. Table III shows calculated luminous transmittance through
ten meter clouds of water drops as functions of drop diameter and uum-
bar density. Thus, tolerable limits on water drops can be added to
the dye bearing oil drops to complete the characterization of an adequate
aerosol.

Thus far the results reported are for a near saturation concentra-
tion of the dye, i.e., 18 mg/ml or 2.6 x 10-1 M. Should a better solvent
for the dye be discovered, it is of interest to examine the effect of the
resulting change in dye concentration. For this purpose we consider the
O.lWm oil drops with 0.03 X concentration (corresponding to the bulk
microemulsion saturation concentration of 21 mg/mt) and with 10-fold and
100-fold increases in concentration. The results are presented in
Table IV. The extinction increase with concentration almost follows
Beer's Law so that each order of magnitude increase in concentration buys
very nearly an order of magnitude decrease in the number density (or
number density x path length) required. For smaller particles with less
scattering, this increase even more closely follows Beer's Law. For the
larger particles with large albedos (scattering rather than absorption
dominates), increases in concentration buy little relaxation in density
times path length requirements.
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in sumery, only particles of O.lpm diameter or smaller take
advantage of the selective absorbing properties of the dye. Seer's
Law improvements in the absorption of the 1.06ya light of up to two
orders of magnitude can be achieved with the 0.111 diameter particles
by increasing the dye concentration by up to two orders of magnitude.
Furthermore, since the attenuation of the 1.06ps radiation is accom-
plished through the mechanlsm of absorption rather than scattering,
the problem of target signature enhancement through forward (or beck-
ward) scattered light Is eliminated. As shown in Table 11, a number
density of 1010 - 1011 with particle diameters of 0.05s. Is needed
to achieve a luminous transmittance of 252 and an optical density of
one at 1.061a in a 10 mater cloud where the OD is due to absorption.
Such small particles and high nmber densities will at best be extreme-
ly difficalt to form in a laboratory experiment. However, the rele-
vance of our theoretical calculations using a homogeneous drop model
can be determined by the characterization of experimentally produced
clouds of larger particles and lower number densities.

3. ZXPUXMZNTAL IMSTIGATIONS. The micromeulsion to be dissemi-
nated is siphoned into a pneumatic spray nozzle operating at 150 psig
of N . The resulting spray is directed against the wall of a jar
whici contains the nozzle and microemulsion. In this manner the largerspray particles impact on the inside surface of the jar and only the

smaller particles agress through a cut-out in the top of the top of the
jar into a seven-foot diameter holding chamber. The holding chamber
as shown in Figure 2 is equipped with window ports, sampling valves,
and interfaced with a 1.06v= Neodymium laser. Pulse energy of the beam
is 0.05 joules with a pulse width of 50 nanoseconds.

Particle size distribution for the cloud is obtained by drawing
samples through a six-stage cascade type Impactor which has a particle
diameter range in graduated steps from 0.25ps to 8+tjm. Coincident with
the impactor samples, a separate filter sample of the cloud is drawn at
a known rate. Colorimetric analysis of this filter yields the amount
of dye in a unit volume of the cloud. Multiplying this value by the
tank volume, the total mass of dye contained in the cloud can be deter-
mined. A sample plot of this data is shown in Figure 3 as a function
of time after dispersal. Knowing the dye content in a unit volume of
cloud, the original concentration of the dye in the microemalsion and
the mean particle size, the number density of the cloud is established.
Typical values for the pneumatically sprayed microemulsion after several
minutes are allowed for the cloud to reach equilibrium are a number
density of 106 and a particle size of 0.9um.
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Uvaluation of the optical deneity at 1. 061 for the cloud 4s
accomplished by msens of two photodiode detectors in combination with
the l.06Im Rd laser. A beam splitter inserted In the path of the
light source causes a portion of the beam to enter one of the detec-
tors (the reference detector). The remining portion of the beam. s
allowed to pass through the chamber after ebich it encounters the
second detector (the sample detector). Recording of the pulse
heights for the two detectors is done on a dual beam oscilloscope
equipped with a camera. Variations in source output, efficiency
factors for the detectors, and reflective losses are eliminated by
comparing the pulse heights for sprayed aerosols with those obtained
when only air wae Inside the chamber by umens of the following
equationt

O - l$ 1/10 a log (Vs/VR)air + 1o0 (V•/Vs)aerosol (2)

where V Is the oscilloscope voltage corresponding to the sample
detectol and V Is the voltage corresponding to the reference detec-
tor. In Figure 4 the results of the measurements reported as ONI
meter of path length versus time is shown.

4. .L0 USIONS. The optical density for the dye-bearing micro-
emulsion clouds as a function of particle sle and number density
agrees fairly well with the results of the lie calculations of the
PGADU program. For example, it can be seen that at 40 minutes after
dissemination the 0D/meter for the cloud is 0.45, the measured number
density recorded at that time Is 1.25 z 104 with an average particle
esie of 0.9um. Theoretical calculations from the lie program predict
an OD/meter of 0.66. The difference between observed (0.45) and
calculated (0.66) may be partially accounted for by scattered light
in the forvard 4irection which is gathered by the detector and recorded,
resulting in a lower OD then was predicted on the basis of trans-
mitted light. (Scattered light in the forward direction is counted
as light not transmitted in the PGAUS program.)

Future experiments on the generation of finer particle sizes will
include the use of explosive disseminators and propellant actuated
devices. In addition, methods to Increase the concentration of the
dye In the present microemulsion as well as the use of such materials
as dye-impregnmted plastics will be Investigated. Modifications to the
computer program will include the use of multiple scattering routines
and .the separate treatment of forward and backward scattered light.
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1. 1. . Stuebing and J. Pinto,"PGAUS-LT--A Program for Computing
Optical Properties of Single Scattering Aerosol Clouds of Homogeneous
Particles" Frankford Arsenal report in preparation.

2 R. Mackay, "A Study of Microemulsions for Laser Absorbers,"
Drexel University, report in preparation, classified.

APPUIX -A: LUMINOU8 TRANSIMTTANCZ. The output from a PGAUS-LT
calculation provides the phase function as a function of J (cosiie of
the scattering mn8le) along with scattering and absorption cross
sections (C's) and akficiencies (Q's) for each of the wsvelengths,
0.40, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70, and 1.06pm. These cross
sections are combined to give the cross section for total extinction
at each wavelength, which is used to calculate and tabulate the
optical density (OD) per meter as a function of number density at
each wavelength. Finally, these OD's for the wavelength 0.40-0.70oti
are used to calculate the luminous transmittance (LT) through the
aerosol over various path lengths as a function of number density from
the formula,

E S•) 10 OD(NX)L P(M)

XLT (Al)
LT:...E S(M PM),

where S(X) is the relative energy at wavelength X of the CIB Standard
Illuminant (Artificial Daylight), OD (N,A) is the optical density per
meter at wavelength X of the aerosol with number density N (cm'),
L is the path length in meters, and P(X) is the relative luminosity
coefficient at wavelength X for the CIS Standard Photopic Observer.
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TRANSFORMATIONS THROUGH A NON-EUCLIDEAN SPACE
IN A-LINEAR TRANSFORMTION CONTEXT

Application of Ftrst-Degree-Affine transformation
To Probability Density Functions In the a-Log Space

OREN N. DALTON
Mathematical Services Branch

Analysis & Computation DivisionWhite Sands Missile Range, White Sands, New Mexico 88002

ABSTRACT

This paper discusses the technique of transforming curves through non-
Euclidean spaces, which in vector/matrix notation appear virtually
identical to linear (or affine) transformations. The methgd is called
first-degreeoaffine. Any continuous function of n class C' variables
can be considered as a definition of the variables in non-Euclidean
n-space with a non-constant metric. An additional space Is defined
orthogonal to this n-space characterized by the parameter t, and the
transformation is defined relative to this non-Euclidean n+l space In
a certain manner. The Dirac Delta function, 8(t-l), is introduced and
it is shown that the symbolic integral is nothing more than evaluating
the transformed function on a crous section ip the t-dimension& on the
hyperplane, t-1. In this paper the technique tis applied, Iinparticular,
to a space called the "a-log space and it is shown that such functions
as the *-log, Chi-squared, Maxwell (and Rayleigh), Gamma and Normal
probability density functions are members of an equivalence class to the
limit of a defining parameter, under the aegis of the first-degree-affine
transform. It is pointed out that there are only about three non-
commensurate spaces which encompass almost all standard continuous pro-
bability density functions.

The research for this study was supported in part by the Army In-House
Laboratory Independent Research Program (ILIR), Agency Accession Number
DA OK 1512, Work Unit Number IT 06110-A91A 00 05S.
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STRAWPOUMATIONS TM QH A NOAoRUWLIDUA SPACE
i. •IN A LINEAR TRANSFOR.MATION CONTEXT

Application of Firut-Degzee-Afftne Tz'ansformations
to Probability Density Functions in a Pazticula Space

I. IqTRODUCTION. The tarm "ffrst-dogroe-affine" [1) was coined by the

author, and the transformation to which the technique efofer, as far as

an be detrmined, was invented by the author. The reason for this choice

of a name should become celar later.

Essentially, [23 the technique allows one to transform curves through
non-Euclidean spaces in the same manner a linear transformations are

used to transform curves through Euclidean spaces. (In fact, the appear-

ance of a first-degree-affine transformation is identical t•o that of a

linear transformation.) Ignoring the additive constant implied by t•e

integration, an affine transformation has the following property#

Lot x 2 , ,.., x% be variables of class C1 E33 (that is, they have

oontinuous first partial derivatives over their domain) and 'let y be a

continuous function of the xi, imsl 2, ... , n

so that
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if y is affine, oe can write

'17 14 -

Then, [33 y is affine if and only if the partials are constants (or, at

met, functions of a parameter We note, using the symbol. "1"<1 and ".

the Dimac "bra" and "ket", for raw and column vectors, respectively, that

y can be written as

where

As the Jacobean matrix, and

As was shown [i, 2] there exists certain classes of functions in which

the partials are functions of the xi's but, nevertheless, under the

stated restrictions, can be transformed in the same manner as above. For

example, let

z
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then"

anm
(AX(J~x) =( - =f J-+ =-

Functionr (which can be) written in this manner are called first-doePee-

affine transformations on the variables.

The bulk of El] explores methods for converting any continuous

function of C1 variables to first-degree-affine form and then recovering

the correct final-function. This with the theoremsin [23 show that

any continuous vector function or functional can be respresented in first-

degree-affine form, and a first-degree-affine transformation can always

be found which transforms any continuous function into another function

in a manner whose appearance is identical to that of a linear transform.

In addition, it is readily apparent that the first-dep'ee-affine trans-

formation is to non-Euclidean spaces as the linear transformation is to

Euclidean spaces.

To illustrate these ideas, observe the following simple function

y 2y=x2

This equation is interpreted as .. graph in two dimensional Euclidean

space, and in such a space dos'cribes a parabola. But this is one of two
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Intea,•tations. It is equally corect to view this equation Cor,

perhaps, just the team "x 2 ") as the definition of..a variable, called "x",

with a metric 2x. That is, x is defined in a one-dimensional non-Euclidean

space having the metric 2x.

Obviously

In order to convert this equationto a form which can be written as a

matrix transformation of a vector [1l we introduce the parameter 'It" which,

by definition, defines a space orthogonal to the non-Euclidean space of x.

Define the Euclidean graph

.XL

Then. if

we know from above that

S= ¢x

where is the Jacobean matrix. We now introduce the concept of a

symbolic integral. Let -I)be the Dirac delta functiob. Then [43)
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if 0C, ) is any function of x an t we have that

In discussions of the symbolic integral and, in particular, the symbolic

function J(*-f), it seems to have been overlooked C1, 2J that the
symbolic integral using the Dirac delta function is no more than a state-

ment that f (X; 1) is an evaluation of f(X, *) on the cross-sectLon4

cut in the hyperplane: .,e ' scaled by the value of 1.

That is, in the problem above
00.Iylqis 3f OrU -) d

To underline this point of view, y* is graphed in •igure (1) in three-

dimensional Euclidean space. Note that as t-+O, the (cutaway) surface

narrows and steepens like a box canyon and pinches together toward the

y-axis, and as t-*-o the curve flattens toward a line parallel to the

x-axis in the x-t plane. The surface has very much the appearance of an

alluvial fan. Any cross-sectional cut by a plane tatl, contains a para-

bola scaled by l/tl, but in a cross section of the plane, t=l, the

embedded curve is the parabola x2 .

Briefly, the method for converting a function to first-deogee-Affine

form [1, 2) is as follows:
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1. Assume that n distinct vaiables are defined in a Euclidean n-space,
l. XIncrease this space to n+l by defining a space orthogonal to En with

the pearmeete t.

2. The terms in the function are multiplied by appropriate values of

t so that the algebraic sums of the powers of the variables equal unity.

"&-%a wST meatiuis of tm-me oaewtal'fuactionus and 'vuiableo of variable

power are "zeroed out" and the term multiplied by t. As examples, the

following functions are first-degree-affinei

(1.) .•

(2)

ZVI
(3)

+c 5
(4)

t (S)

(5)

t( • = • 'i* y1/7
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(S)

and may be represented in the form

where

where ":includes all the variables in the function, including tt".

In a mense, the first-degree-affine transformation is a formalization

of the process of substitution which has long been used. The same state-

ment can be made about the linear transformation. However, either type

of transformation provides insights not always apparent from the basic

equation; the power of either technique as a computational tool can only

be appreciated after using it.

The rest of this paper is devoted to a discussion of only one space

which is generated by certain probability density functions and named,

herein, the e(-,.og space. The first-degree-affine transform illustrates

groups of spaces in which the functions, under certain restrictions (in

this case transformations using constant parameters), belong to an equiva-

lence class. In [2) it is shown that three or four spaces or equivalence

clascaes encompass virtually all continuous probability density functions

(PDF's) normally in use. The following table is a listing of some of

them. (The "Parimensic" space refers to functions of two independent

O.-log variables, a Quotient space which includes the Beta, F, Student-t

and Cauchy PDF'a and a Product space whi'.h includes a modified Bessel

function of the second kind [53):
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-SPACE

NFORN .1,.-WoG PARINENSIC

Uniforn B-eog Rita

(Cauchy) Chi-squared F

Tangent Gamma Student-t

L :Lette Nsaxwo., kssel,PDF mq ena yelh(No of 2ud kind,)
POT hpnentlal Rayleigh kn)

Normal (Cauchy)
(lxponeatial)

Ratio

Power

We .,ote that the LntersactLons of the spaces are not empty (Exponential,
Cauchy) but, in general, functions which define the spaces cannot be

transformed from one space to another. Such PDF's as 'he Cauchy,

Exponential and Normal are defined by explicit values for the defining

parameters. The Cauchy PDF, for example, arises in the Vnifcrm space as one

member of the Tangent sequence, and in the Parimen@ic space Ls one member

of the F-sequence. (The word "sequence" in this context Implies a succession

of functions based on rational or integral values of the defining parameters;i

for certain functions it is synonymous with the definition "degirees-of-

freedom".) Generalized functions define each spacs, the Tangent, Gamma,

Betafor example. These functions can be transformed into others in the

same space of which a member may be given a particular name , but, in

general, a specific member cannot generate the space. The meaning of

this paragraph will, hopefully, become clearer in the text#.
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NOTATION. Certain terms will be used in a standard manner:

I in a unit matrix,

I is a unit nxn Matrix,n
f4

<1 or T> is the wumwing vector, a vector of ones,

or I> is a suning vector having n components,

< or i> is the ith og'thonormals vector. I.e., a vector with zero's
in every position except the ith position which has a one,

S(t- 1) is the Dirac Delta function which has meaning r[4 only in an

integral of the form

f 4)I( 1) di'

and is tantamount to the evaluation of 4(9?,) on the crows-section

of the hyperplane, toiT.

t is the parameter used to describe a space orthogonal to the space of any

other variables involved in a particular problem, and --- <4Z <-lo

Sx I' Jx a matrix, will always imply the absolute value of the deter-

minant.

or are vectors of zeros.

- 178 -



THE * =-LOG SPACE. This name was chosen because the at-loS density,

described in this space, generates some of the more important standa.d

PDF'S. If f4v) , the PDF for the variable 1.', is the o(-Iog density,

then

or letting

KA v>-',

where

The requirement that cK be greater than zero is necessary because of the

term P~c•) , and if '.*(. , I (v) , 0 o d j , the Uniform PDF. Since

a direct transformation, between the Uniform mpece and the ac- og space

is probably impossible, c.r I is excluded.

The function
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desacibes a variable in a one diumsLonal non-uolLdeasn spaee with metric

This function does not• ppear to describe a spherical surface but there

e=Lsts a trafrem whioh waps this spaoe into a ha=tLon (the Chi-squared

PDF) which is proportional to a spherical surface. The apace defined by

pVw) has a cur•ature of singe) , snqe

J

The aC-J.og space in defined (using a single variable) by transfo•r•aton.

involving functions with real parameters. The intent of this statment
is to exclude such transformations as 9,P aIA y, e06.1 Sioe the eC-log
space fores an equival.ence class, i.e. i if JK we firs-dogee-affLae

transformations, then

where JAZ , the unit matrix

if m

'An a mater:e of f'act such trnsf touns•• resu~lt' in functions which ar~e

logo of logs or loge of trigonemetuc functions. Although these functions

wre legitimate members of the ad-log space, they lack the interest of the

other functions and would lead the discussion too far afield.
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and the propweties of a vector space hold,' the zesultant functions from
any (general) fLzst-depe.-afflne'transfomu'atLon on f can be used to
deszribe the properties of any other, form of the variable. The term "g'onerAa

transfozrmat:ion" implies a transform. using pazremezte (excluding the types

of functions mentioned above) which sae allowed to assue any real value

wlthin a given domain. For this papers the parameter's employed wLU be
oalled a -P wd Wher ef,4p " andC O I ZnIw. I cn w.tdw, we wllU ex-
amine the. exponential for' of the functions asnie most functions o@

lnteest are in that fto..

As above, we represent the oC-log PDP a.

• =; : <' .-,e.vY' " o,,,.,,--,+ ..

Zn this section some of the details of the tzransformation will be pwe-

sente4d theme will be, in themain, dispensed with thereafter,

Lot

where

This relatLonship is fizst-depee-affine so we can wuit,£o
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We have

and

1A

FsgJ~. +

x)= v =~ J)=0V

__ WM

IOtl Kex' e ;X

arA

MENNEN===



item whic• h

Substitut•ng

Then

0 -- e

which is the Gamma PDF for a variable yu2x.

if x- 2x and u a Aa Az dx dZ
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'then

Avg r(k/z)

the Chi-squared PDF.

There w e two levels OT agened..ty Vhldh iftig be %ntrad=" fwt

tx'asfolaiaon of one variable and constant parameters. The most

general form can be wr£itten as

0=J=
s.I=* -this tamnafamution 1s firzst..degreeffineq and

except that the power of the log could vary as, say-•n.* d.

the argument of the log could be 1/1. However, any functions Involving

a transformation using the two pazameter@, p and q, Is equivalent to any

other Irrespective of the values of p and q. The effect of this genseal-

ity will be seen when Pearson's Incomplete Gama Function tables sae used

to find the distribution of the sun of the squares of n independent

normal variables to thel power -- defined, heroin, as the Maxwell diitri-

butLon.
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In th. above problem, since the trzansformation in frsut-degoe,-affine

and since

we have that i

K~d ((J,-f 1)0

and

from which p
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jfX
(We note t.hat f In the special case when

,we have

and we see that the parameter i" acts as no more than a scaling constant.

If ? iJ,d- 'Wand %-TX, then

the normal PDF over the right half-plane. We might also note that if

then

the Gamma PD1".

It turns out that the left halfflane,, -o4•-e , is defined by a

transformation involving 2Y/b rather than ill . For a similar trans-

formation as above, let
-I

K,& <"e,, .- . .ov
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&ad define

.. ~~i V ,•'~

from which we know that

•> KIJ:') s,,'(e,J'x )"

We have that

&-7

0 ,

Cl e 1 ) . (.F

JJ
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and we have

f~) = Jjy > [÷() ;' <,,
7'~x di/t

at r -e)1ý.txE e(Ty- ""
We note that this transformation is the sam;. as the previous transforma-

tion had we used- % instand of of (all except the f scale factor which
is positive since I'I is always positive.) Thus, this can be written

as

lxi e )kO•((

kk

As before, when

Putting the two half-planes together and averaging (since the probability

that %:o is 0) we have

Also when Ce
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If we wished to extend the Gamma function to Ijpth half-planes we would

have

= / ".,'~
4F

although this extended range does not appear to have much practical

value.

11. INTEGRATION IN THE OC-LOG SPACE USING PEARSONIS INCOMPLETE GAMMA

FUNCTION TABLES. It war proved [23 for transformations involving a

single variable, thati

where IsJ4 is a f irt-der ee-af fine transform and

ISO

1 NOTE: Since the differentials are treated as components in a Euclidean

space, then 16AZ1 'is tantamount to x, " and for any trans-

form a 7 J =0 = f 1 For firat-degree-
affine (or linear) transforms, the differentials can be replaced by the

vector itself.
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if there are no discontinuities in the range of Ij aver. the domain 6,Cy ...

This is based on the following observations. Assume that I is con-

tinuous over the interval: Y. YAY#, Then we can write: 10 )A2Ir.

If there are no discontinuties due to the transformation, the two in-

equalities can be combined so that Y4, C J, 4Y,. We can solve this
.4 -* .

system to produce the inequalities: )(••* A r, if the variables are at

all separable. (We note that Xo and X may be vector functions of the

components of X•)

Without computing details, observe the following. Let

as above, and define two first-degree-affine transformations

y)= [L;'dr j: JV •° 1" - •

.- I, <,"" X' d

where
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j.•

x' = <e, j~v')
Since

y =JV , V X J' V ¥ = j-JR

and computing we would have

I x ti

Thus, after integrating over t we have that

and that

o1

0 CPO 0 X -
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Zn particular, if a. t /j. we can use the I'-tah.len ro] to compute the

normal distribution and cross compare, i.e.

dy_''---- e d" x

aucl.sleuy of tiho compar•ion, p|r.'uro, dupurnau on rlonouu or Lho mr,*Th

of tho t.•Lb•latod valuos,

The tables [ 6 ] are published in termns of I(u,p) (Pearson's notation)

where

r(1j4 ,) = 0 4 -0"

r(-p + jdeI/

Thus, for -Pa @c -/ 4 *for at: v and since OP'T? E-

•d'&w44/' U('W?1( ) XJ. The tables in [7) are published as

If we call this latter integral J(x') . we have that
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The following table compares the two integrals for a few values of 4L

which were chosen from Pearson's tables (with seven-place accuracy) to

the limit of a linear interpolation from the tables of C7) (with four-

place acuracy).

u(U -) XJ ) 2J(x')

.5 .5995940 .841 .29927 .59904

2 .9073910 1.682 .4537 .9074

4 .9826127 2.378 .4913 .9826

6 .9964197 2.912 .4982 .9964

10 .9998305 3.760 .4999 .9098

12 .9999620 4.120 .5000 1.0000

It was shown in [23, that if 4: , , 27 .. ,nJ is a set of ?t

independent standard normal variables, then if

that the PDF for kr (called, there, the PDF for the Maxwell distribution)

f(W) is

If we replace oC by 'A/A , then
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rNIAI

Proceeding by transformations similar to that done above it can be shown

that in terms of the Gamua PDF, we have

/'v/a) j /'.4'g

t Pe W/Ao o I0 4. •'Ow 0 4. We 40

where 1e_ u-.0. Converting to Pearson's notation as was done above,

"T a V".J, and since y'w V771z , we have that

7 J 4

or

and "M is a free index.

The following table gives the integral for three values each of

)' (the Wtth root of -- .. ), )" (the number of variables), and L4

(the value of the r-variable) :
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_-n p r.8880 ww (app) F (w)I

2 3 ½ 1.225 .5 .612350 .7825 .2529242
4 4.898800 2.2130 .9796360

12 14.696400 3.8330 .9999981

5 2 1.732 .5 .866000 .9310 .0573798
.4 6.929200 2.6820 .9687180

12 20.785000 4.5570 .9999998

2.000 .5 1.000000 1.0000 .0189882

4 8.000000 2.8280 .9687180

12 24.000000 4.8990 .9999999

½ 3 ½ 1.225 .5 .612350 .3750 .2529242

4 4.898800 24.0100 .9796360

12 14.696400 216.0800 .9999981

6 2 1.732 .5 .866000 .7500 .0573798

4 6.928200 48.0250 .9687180

12 20.785000 431.3900 .9999998

8 3 2.000 .b 1.000000 1.0000 .0189882

4 8.000000 64.0000 .9687180

12 24.000000 576.0000 .9999999

3 3 ; 1.225 .5 .612350 .8492 .2529242
4 4.898800 1.6984 .9796360

12 14.696400 2.4495 .9999981

6 2 1.732 .5 .866000 .9532 .0573798

4 6.928200 1.9064 .9687180

12 20.785000 2.7495 .9999998

8 3 2.000 .5 1.000000 1.0000 .0189882

4 8.000000 2.0000 .9687180

12 24.000000 2.8845 .9999999
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In the above table, values for ii. were chosen from entries in

Pearson's tables of incomplete r-functions to avoid interpolation.

The values for W were derived from them. Since the integral of the

r-function is independent of 'O , every value of M produces the same

distribution function; like its logarithmic ancestory, the only require-

ment is that w"" be a fixed value for a given ' and "4. Although

these statements are obvious in the above context, it is not so obvious

Uta the distarbution for azW .rjt W'tw .power) of the aums of squared

nornal variables is independent of the root.

I would like to conclude with a remark concerning transformations

between the 44-log space and the so-called Uniform space epitomized by

0 otherwise. Any first-degree-affine transformation in this space has an

anti-derivative, i.e.

where '- is a first-degree-affine transformation of V. If a trans-

formation existed to the O4-log space, and, in particular, to the normal

PDF, say, we could write

a.r
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a closed form solution.

There is another argument against this possibility. The Uniform PDF

is related to the oC-log PDF only when " I. Thus, we could expect that

any transformation in the oC -log space in which the resultant function is

determined for -X= I would be derivable from the Unifoi. )F. This,

indeed, proves to be the case. This is theprincipal reason that the

value €(a I was forbidden. Although it has been stated that the Uni-

form PDF could be warped into any other continuous PDr, this siatement,

on the basis the material in (2) and this paper', should be qualified,

that such is true only if it is modified in the process by an "external"

source. The Uniform PDF and an ce-log variable are incommensurable for

essentially the same reason a plane and a sphere are incommensurable.

III. F!RST-DEGREE-AFFINE TRANSFORMATIONS WHICH TRANSFORMS THE SPACE OF

N VARIABLES INTO A SPACE OF M VARIABLES, M<N. It was shown in [23 that

if n variables defined in a function appear as a quadratic form, and a

transformation is desired to an m-dimensional subspace,1• n , then the

affine (or linear) and the first-degree-affine transformation can be

used (in part) as an *mxx matrix. This is true, for example, for the

Maxwell distribution defined in the last section, and in particular when

the root, 'i , is equal to one. In this case the sums of squares of

independent standard normal variables results in the Chi-squared PDr, a

particular member of the Maxwell PDF.

On the other hand, the Jacobean must be square; the resultant

function involves -A variables and )i-m vailables must be integrated out.

Thus the Maxwell or Chi-squared PDF's are marginal PDF's. (In this sense,

.all PDF's which result using the first-degree-affine transformation are
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marginal since t must be integrated out.) Usually the extra "4o vari-

abics can be transformed unchanged.

These ideas will be illustrated for the sums of the squares of

standard normal variables.

Define

x, = ,i ' )=

in which

then
•(z) (• Ef , K e-<•

where

is the PDF for

Now, let
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-- ... p
the first-degree-affine fo;m which projects the n standard normal vari-

ables from the n-dimens3nnal curved space spanned b1 to the two-dimension

curved space spannod by tU and *. Since

for any d, the resultant function must be multiplied by two.

If we define

U

'i"
x1. J

and

J1 = I 0, 0 0

I

then JiW is nonsingular, and 4(VI) can be written as
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* 4
1/a u •T .. 7

in which the reduced 2 matrix Jw appears in the quadratic form

in the exponent and the Jacobean maintains the relationship of the now

variables.

We have

(jW J)0_

- 2•0+



so that

and

where

Integrating the terms 'Xu A Xk, successively, and noting that for ?lei

f has the following form

we have, for all values for M . I

f1(n/ll.) -

VtIc$ (the natural numbers),04&4ceo, which is the Chi-squared P)DF for

parameters-"1 and %wziA.9
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PRESENTATION OF THE SAMUEL S. WILKS MEMORIAL MEDAL

After, the banquet on the evening of 24 October 1973, Chairman Grubbs
made a few remarks about the Wilks Medalist. Professor J. S. Hunter of
Princeton University headed up the 1973 committec of the American Statistical
Association to make the selection. As a result, we are very pleased to
announce that Professor H. 0. Hartley was selected to receive the 1973
Samuel S. Wilks Memorial Medal. Professor Hartley's remarks follow.

ACCEPTANCE REMARKS OF H. 0 HARTLEY ON PRiEIVINGTHE

SAMUEL S. WILKS MEMORIAL MEDAL FOR 1972

It is of course a great honor for me to receive this award. In spite
of your generous comments, Frank, I have a certain feeling of trepidation
to join the august body of those who have receivad the award befcre me.
My sincere appreciation of receiving this honor is two-fold.

First and foremost, I realize that this award is in memory of the
late Samuel S. Wilks, and it is a tremendous inspiration to me to be
associated with this great man. Sam Wilks is undoubtedly a pioneer, if
not the pioneer of statistics in the US.A.. As a brilliant young scholar,
he waTsent to England to 'sample' both the Pearsonian School at London
and R. A. Fisher's activities at Rothampstead Experiment Station. Then he
was appointed to an important chair at Princeton University to develop a
statistics program there. Practically ail initial efforts in the science
of statistics in the U.S.A. can be traced back to an input by Sam Wilks.

But Sam Wilks did more than that. He created the cooperative -pirit
in the statistical community in the U.S.A.. Right from the outset, he
represented the blending of sound statistical theory with a strong relevance
to applications of statistics in the various subject matter areas to which
it is applied. This blending of theory and applications is of the ut.nost
importance. We can appreciate this if we observe the unnecessary contro-
versies between theoretician and practitioner that nowadays often arise:-
The pure tneoretician often regards applied statistics as 'substituting
numbers into his equations'. He apparently does not realize that the
effective application of statistics requires a sound knowledge of the subject
matter area in which the data have arisen. On the other side of the fence,
the hard boiled practitioner often regards much of the statistical theory
as 'useless'. His definition of 'useless' often covers anything he is
incapable of understanding and, unfortunately on this definition, much
of the theury is labeled as 'useless'.

Preceding Page Blank
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Sam Wilks has done a tremendous job In bridging this conflict. He
has stressed again and again that we statisticians can not be expert in
all subject areas to which statistics must be applied, and so we must
cooperate with the subject matter area specialist. The first prerequisite
for this is proper communication with the expert. The right attitude to
take is to tell him "look, not a chemist (if you are talking to a
chemist), or I am not an engineer, or I am not a clinician..., so you
must allow me to ask stupid questions about your subject, and I all ow you
to ask stupid questions about statistics". This attitude sets the back-
ground for the team work needed in applying statistics. It was this spirit
of cooperative UWE wcrk that .made Sam Wilks popular with practitioners
and theoreticians alike, and If we can learn this lesson from him, if

* we can live up to this principle, then I am sure we shall do justice to
his memory.

And now I would like to reminisce on sty personal memories of Sam
Wilks. I' first contact with him was in 1949, when I had an assignment to
spend the suffer at Princeton. I got to know him as a most congenial
Director of the Statistical Unit at Fine Hall. There was a relaxed
atmosphere and yet an efficiently administered unit. He a'.ays had time
for you. He was a perfect host and I was invited to his house to meet
his charming wife and his son, Stanley.

John Tukey, the first recipient of this award, was then Sam's right
hand man at Princeton and it was quite an experience to met him for the
first time. There are lots of stories about John that I could tell you,
but let me tell you Just one. We used to have lunch together at a diner
on U.S.A. #l to which he Used to drive me, ahd immediately we arrived there,
he would pull out his famous yellow pad and we got down to talking shop.
We were notorious at the diner for this and hardly left time for lunch.
One day Sam Wilks joined us for lunch. There were the three of us, Sam,
the tall slender Texan, John, who was then very heavy and over-powering,
and me. As we were entering the diner, the manager could not help blurting
out *They come in all shapes and sizes in the Statistics Department!"

I did not know at the time that Sam was a Texan, and I certainly did
not know that I would and up in Texas. Yes, it is true, you are 'lookting
now at what is clearly a rather Imperfect simulation of a tall Texan!

An appreciation of Sam Wilks would not be complete without mentioning
this 'Conference on the Design of Experiments In Army Research, Development
and Testing', and this brings me to my second point of appreciation. The
creation of this important series of conferences resulted from Sam Wilks'
successful cooperation with the Army Research Office. This Office, indeed,
the Amy in geral, has carried the burden of organizing this splendid
annual eventJ.-1conferences have been conducted in the spirit of Sam
Wilks, in the spirit of the blending of advanced methodology with practical
applications, This is clearly reflected in the program of these conferences
and indeed in today's proceedings.
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In these days of pressure for 'mission orianted research', the Army
Research Office must be congratulated for taking a responsible view of the
problem. We cannot today afford unrestricted basic research no matter
whether it will ever be of relevance to applications. On the other hand,
it would be narrow minded, indeed reckless, to support only such research
which has immediate applications to problems in DOD. Such a short sighted
attitude may prevent the basic research for Important new developments
from being implemented (remember good old Sputnik!). The right attitude
is to evaluate the relevance of basic research with regard to its appli-
cation potentials. The assessment of such research potentials is sometimes
extrememy"difficu t, but the Army Research Office is to be congratulate
for at least facing up to this responsible task.

Now let me finally come to my pleasant assignment of accepting this
award, and this Is clearly a very personal matter, and so I will end
on a very psonal note. At our Institutiue of Statistics at Texas AIM
Untverstty_,W~ e runs a "Statistics Wives' Group" to which the wives
of both faculty and students belong. When a student gets his degree, this
troup awards a degree, also, to his wife. She is awarded the P.H.T.
this stands for put hubby through). This degree to her is awarded for

her unselfish sacrifice of letting her husband get on with his job and
take the responsibility for all (and I mean all) family affairs. And so
in accepting this certificate, I would like to also accept it as a P.H.T.
award for my wife.

It remains, then, for me to thank the A.S.A., the original donors,
and the Army Research Office for this magnificent award.
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RELIABILITY GROWTH OF THE TF-30 ENGINE

Bertram W. Haines
Statistics and Mathematics Department

Naval Safety Center
Norfolk, Virginia

Frederick L. Carter
Chemical System Division

Dugvay Proving Ground, Utah

Martha R. Cummings
Statistics and Mathematics Department

Naval Safety Center
Norfolk, Virginia

ABSTRACT. The introduction of any new complex system into its
operational environment can be expected to be followed by a period
during which improvements, designed to increase the system's
reliability, will be incorporated. An aircraft engine is such a
system. Changes and improvements continue to be made on aircraft
engines after they are put Into production and introduced operation-
ally to the fleet. As a result of these changes and improvements,
the system's reliability is expected to increase. Several methods
of measuring the resulting reliability growth have been proposed.
At least one of these, the system proposed by Barlow and Scheuer,*
provides for both the grouping of the system development program
into stages and the discrimination between two distinct causes of
failure. It, therefore, seemed to be an appropriate model to
describe the reliability growth of the TF-30 engine as it is used
in some of the Navy's A-7 Corsair II single jet engine attack
aircraft.

The Barlow-Scheuer Trinomial Model (BSTM) requires the system
development period to be divided into stages that are initially
defined in terms of either time periods or a given number of trials.
In this study, the first of these definitions was used. The model
further requires the defini ion of three possible outcomes for each
trial. These are: 1. inherent failure, 2. assignable cause failure,

*Barlow, R.E., and Scheuer, E.M., "Reliability Growth During a
Development Testing Program", Technometrics 8-1, February 1966.
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and 3. success. Inherent failures are defined as any failures
caused by factors not attributable to the system. Assignable cause
failures can be assigned to one or more components of the system.
Any trial that does not result in an inherent failure or an assign-
able cause failure is called a success.

Once the reliability growth is observed and measured using the
BSTM, the relation between stages of relatively rapid reliability
growth and the incorporation of power plant changes (PPC) was
examined. It was found that some PPC's could not be associated with
relatively rapid reliability growth, whereas, others could. This
comparison was made on a small sample of PPC's that had been incor-
porated during the entire system development period covered by the
study. The failure history of some specific components associated
with two of the samplea PPC's was examined to evaluate the hypothesis
that some PPC's were the cause of observed relatively rapid reliability
growth.

It was concluded that it was feasible to use the BSTh as an
index of the efficacy of some power plant changes toward increasing
the reliability of aircraft engines.

1. INTRODUCTION.

1.1. Background. The introduction of any new complex
system into its operational environment can be expected to be
followed by A period during which improvements, designed to increase
the system's reliability, will be incorporated. An aircraft engine
is such a system, for improvements continue to be made after the
system has been put into production and introduced operationally to
the fleet. The expanded use of the system often reveals weaknesses
that were previously not apparent. As weaknesses are discovered,
corrective changes are made in existing systems and incorporated into
new systems. Hence, during some period following development and
initial production, the system is improved and its reliability is
increased.

1.2. Objectives. There are many techniques availabl]. to
evaluate improvements in the reliability of a system. The Barlow-
Scheuer Trinomial Model (BSTM) should be applicable to the particular
case of aircraft engine development. The objective of this paper is
to report the results of applying Navy operational data to the BSTh
in order to evaluate the feasibility of using this technique on
available data concerning ocher Navy operated systems. The specific
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data used in this study were derived from operation of the TF-30
turbo-fan jet engine built by Pratt and Whitney. The engine is used
in the A-7 Corsair II single engine attack aircraft operated by the
Navy. If application of available data on Navy aircraft/engine
operations to the BSTM proves technically feasible, the model can
become a powerful tool in providing an objective measure of the effects
of engineering efforts designed to improve the safety or reliability
of the system. It is manifest that an improvement in the reliability
of an aircraft engine will result in an increase in the safety of
thr"- aircraft. If, therefore, improvements in reliability as measured
by the BSTh can be associated with specific events such as power
plant changes (PPC), then it can be inferred that those PPC's were
responsible for an increase in safety. Thus, this method promises
to provide an objective measure of the efficacy of one of the Navy's
accident prevention programs.

1.3. Overview of the BSTM. The BSTM requires the system
development program to be divided into stages. The stages can be
initially defined in terms of either time periods or a given number
of trials performed otn the system under development. Within each
stage, however defined, the number of trials of the system is noted.
Each trial must result in exactly one of three possible outcomes:
1. inherent failure, 2. assignable cause failure, or 3. success.
An inherent failure is defined as any failure caused by factors that
are not attributable to the system. Assignable cause failures are
those for which the cause can be directly assigned to one or more
components of the system. A success is any trial during which the
system did not fail so that the system is as ready to operate at
the end of the trial as it was at the beginning of the trial. The
assumption is made that all trials within a single stage are per-
formed on essentially similar systems.

2. ANALYSIS.

2.1. Definition of Parameters. The BSTM provides for
both the grouping of the system development program into stages of
development and the discrimination between two distinct causes of
failure. Stages of development in this study were initially defined
to include all trials performed during a given time period. The
assumption also was made that during any calendar t-nth there exists
a sufficient degree of homogeneity among the aircraft engines in use
in the fleet so that all the trials occurring within that month
could constitute a single stage of development. A trial of an
aircraft engine system is made each time the system is used. Hence,
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the number of flights made or attempted with the TF-30 engine during
a calendar mouth constitutes the total number of trials of that
system in one stage. Each trial, in each stage, results in exactly
one of three outcomes: inherent failure, assignable cause failure,
or success. A flight Is considered a success when the aircraft
returns without incident, i.e., no maintenance action is required as
a result of malfunction. An inherent failure is one that can be
eliminated only as the state of the art of flying is advanced and
human error or acts of God are. eliminated. Bird strikes, weather,
and pilot errors are typical examples of inherent failure. Assign-
able cause failures are those that can be-corrected by some operation-
al or equipment modification. The malfunction of number six bear-
ing or a crack in the combustion chamber are examples of assignable
cause failures. By the BSTK, the number of stages of development
and the number of trials in the ith stage may be treated as random
variables. They were so treated in this study.

2.2. Data Sources. The Standard Naval Maintenance and
Material Managieent File (3M) was used to ascertain the occurrence
and nature of TF-30 engine malfunctions. All maintenance action
reports on the TF-30 engine between 1 October 1968 and 30 June 1971
were included. The resulting data are known to exclude some mal-
functions because some engines were striken from the inventory
following severe damage even though no maintenance action report was
filed. The number of such instances is small and will not signif-
icantly affect the conclusions of this study.

The total number of trials was obtained from three different
sources. Flights of the A-7A's and A-7B's, both of which are powered
by the TF-30 engine, were obtained from OPNAV 50-104, "Flight Activity
of Navy Aircraft" which is published monthly by CNO. A count of all
A-7A/B flights that were aborted before take off was obtained from
the 3H data system. Flights of the TF-30 equipped A-7E (now A-7C)
were obtained by aircraft bureau number from the Individual Flight
Activity Reporting System maintained by the Naval Safety Center.

2.3. Variable of Analysis. The reliability, r, or an
engine is an expression of the probability of a successful operation
on any given trial. (Figure 1) Let qo represent the probability of
an inherent failure. It is assumed that the state of the art will
not fluctuate significantly from month to month; therefore, q is
held constant through all stages. Let q represent the probagility
of an assignable cause failure in the itA stage of development.
This probability is essumed to be a stagewise non-increasing variable.
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From this, it is seen that the reliability of the system at the ith
stage of development is as shown in equation (1) in Figure 1. When
the qI have decreasing values with respect to time, the r are seen
to be stagewise increasing. This has been termed "reliability growth".

2.4. Analytic Technique. Assume there are ni trails
(flights) in the ith stage (i = 1,2...,k). It has been noted previously
that each trial must result in one of three outcomes; inherent failure,
assignable cause failure, or success. Thus at the end of the ith
stage, the ni trails in that stage will have resulted in ai inherent
failures, b assignable cause failures, aiid ci successes. It is
necessary tiat each trial results in exactly one of the three possible
outcomes, as indicated by equation (2) in Figure 1. The probability,
in any stage, of observing exactly ai inherent failures, bi assign-
able cause failures, &nd ci successes is written as equation (3) in
Figure 1 where q is the probability of observing an inherent failure
in any trial, ang q, is the probability of observing an assignable
cause failure in the ith stage. The assumption that each of these
probabilities remains constant throughout each stage is necessary
for the validity of this equation.

Estimators of the probabilities of inherent failure in all
stages and assignabie cause failure in the ith stage were required
for the computation of engine reliability. The estimating pricedisre
is maximum likelihood. Upon differentiating the logrithm of the
likelihood function with respect to q and q setting the derivatives
equal to zero, we find the maximum li~elihooA estimates as shown £i
Figure 2.

It is easily seen that q is the total number of inherent
failures occurring in all k stages divided by the total number of
trials. The q are the maximum likelihood estimates of the qi's in
general. Finally, the maximum likelihood estimate for system
reliability at the ith stage is as shown.

2.5. Calculations. Data were collected to cover the period
from 1 October 1968 through 30 June 1971. Each of the 33 months in
this period was considered as a stage of development. Thus, in this
study, k - 33. The number of inherent failures (ai), assignable
cause failures (b ), successes (c), and trials (n) for each stage
were recorded. Re value of.q0 was then calculate& as shown in
Figure 3.
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Once 4 had been obtained, stagewise estimates of the probabilities
of assignab2 e cause failures followed easily. The calculated vallies ,
of the 41 in the first four stages of development are shorn in Figure 3.

On inspection of these four estimates, it is seen that the 4
are not sequentially non-increasing. It is, thus, apparent that, the
arbitrarily designated stages of development do not reflect the
reliability growth of the system. It was, therefore, required by the
BSTM to alter the time periods designating stages of development until
the desired non-increasing values for qi fere observed.

Beginning with the first stage of development, the next sequential
stage observed with an increasing qi must be included with its
immediate predecessor. In this instance, q is greater than q1, so
stage 2 must be included with stage 1. To iacilitate the discussion
and for notational ease, as the analysis proceeds, the qi will be
renamed. In the second iteration in this example, the new ql will
be a combination of the above , and q . Hence, we have these new
values as shown in Figure 4. Again, there is an increasing sequence,
and the adjustment of stages must be made. The result is as shown
in Figure 5. The requirement of non-increasing values of j. has now
been met and two true stages of development have been defined. This
process was followed for the complete 33 months of data.

Having defined 4 and 4 for each of nine true stages of
development, and reca ling tSe estimate of system reliability at the
end of the ith stage, we see that the reliability growth of the TF-30
engine is quantified as ahown in Figure 6. For each of the nine end
stage reliabilities ( ), a 95% lower nonfidence bound has been
calculated. Barlow ani Scheuer describe a conservative lower con-
fidence bound for ik considered as the binomial parameter. In this
study, since nk is very large, normal theory was used. The calculated
95% lower confidence bound for each of the ri is shown in Figure 6.

2.6.. Interpretation. Now that the reliability growth has
been quantified and the lower bounds calculated, it is desirable to
relate the stages of that growth to events that were designed to
cause it. Ideally one would expect every Power Plant Change to
result in an associated and relatively rapid increase in the
reliability of the system. In fact, this does not happen. This is
not to say that those PPC's for which no associated reliability
increase cars be observed are not worthwhile. It is only a recognition
of tht fact that sc~e PPC's produce more dramatic results than others.
Between December 1968, the first month of data used in this study,
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and June 1971, the last month of data used in this study, slightly
more than 100 PPC's were developed for the TF-30 engine and incorporated
into these engines. From these 100, six were chosen as illustrations
and examples for this paper. A list and brief description" of these
six PPC's is shown in Figure 7.

Three dates were provided for each PPC by the Planning Division
of the Naval Air Rework Facility (NARF), Norfolk. These dates are:
1) the month th, PPC was first installed, labeled "Introduction",
2) the month when about 40-60 percent of the engines in the inventory
had the PPC installed, labeled "Midway", "nd 3) the month when from
80-90 percent of the engines in the inventory had the PPC installed,
labeled "Completion".

The installation bf the PPC was considered essentially complete
after being installed into only 80-90 percent of the engines because
at that time the remaining 10-20 percent of the engines were either
in transit to the NARF or out of service for some other reason. The
midway point of incorporation was considered to approximate the
earliest time whe'2 the effect of the PPC could be readily observed.
Thus, if any PPC caused a dramatic increase in the reliability of
the engine, one would expect to be able to detect this effect by the
midway month of incorporation.

The reliability growth of the TF-30 engine from the end of
October 1968 through June 1971 is shown graphically in Figure 8.
In this graph, the horizontal axis is time in monthly increments.
The vertical axis is system reliabi~ity. Note that the vertical
scale does not start at zero so that the character of the reliability
growth will be emphasiz.-d. In addition to the end stage reliabilities
and their 95% lower confidence bounds, the six chosen PPC's are
depicted on the graph. Each PPC is shown as a heavy horizontal bar.
The left end of the bar concides with the month of introduction.
The right end of the bar concides with the month of completion. The
midway month is shown as an arrow underneath each bar, It should be
noted that the end stage reliabilities are measured and graphed as
of the end of the month, whereas, the three dates associated with
each PPC are shown as the middle of the month. The number identify-
ing each PPC is written on top of its bar.

Power Plant Changes 167 and 180 were both introduced in
August 1968. The midway month for each was Januar' 1969. From the
graph, it is seen that there was a dramatic increase in the rate of
reliability growth during the month of January 1969. It, thus,
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appears that these two ppC's were at least partially responsible
for this Segment of reliability growth.

PPC 199 was introduced in December 1968. Its midway month was

March 1969. Installation of this PPC was essentially complete by

July 1969. During the period, over which the installation of this

PPC could logically have been expected to have an observable effect

on system reliability, there was no unusually rapid increase observed.
From the graph, it is seen that the reliability of the TF-30 did
improve significantly over this period, but relatively the improve-
ment was small compared to January 1969 or the period from September
through December 1969. Thus, it cannot be said that PPC 199 was the
principal cause of any relatively rapid improvement in reliability.
This does not in itself mean that PPC 199 was of no value. It
merely means that any'improvements realized as a result of installing
PPC 199 were not large enough, in relation to the effects of other
changes that were occurring during the same period, to result in
relatively rapid reliability growth.

PPC 212 was introduced in March 1969. Its midway month was
September 1969. October through December 1969 was a period over
which relatively rapid reliability growth occurred. It is reason-
able to assume that PPC 212 made some substantial contribution to
this growth.

Of the four PPC's just discussed, it was assumed that the
coincidencedc the midway months with a period of relatively rapid
reliability growth represented a causative relation. In order to
verify this assumption, it would be necessary to examine failure
records before, during, and after the installation period of the
PPC. Specifically, the number of failures of all components
associated with the PPC would have to be determined and compared
among the three time periods. It would also have to be verified
that any differences were not the result of different levels of
utilization (trials).

Fortunately, most of the data needed for such a comparison were
available from the computerized data banks at the Naval Safety Cetter.
In order to retrieve them, however, it was first necessary to
identify all components that are associated with the PPC under investi-
gation. This in itself is an arduous task requiring the effort of
engineers experienced with the TF-30 engine. Unfortunately, the
time required to identify all components associated with each of the
six PPC's was not available. However, it was possible to identify
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one component associated with PPC's 220 and 267. That component is
the tower shaft bearing.

From Figure 8, it appears that PPC 220 had an observable effect
on reliability growth early in its history but that effect ended
shortly after the midway month. The graph also indicates that PPC
267 had a very marked effect on reliability growth.

Figure 9 shows the number of failures of the tower shaft bear-
ing for each month from October 1968 through June 1971. Also shown
are the introduction, midway, and completion months of PPC 220 and
the Introduction and midway months of PPC 267. The data on this
figure tend to verify the conclusions drawn from the previous figure.
From these data, it is seen that the tower shaft bearing as3ociated
with PPC 220 showed no failures prior to the introduction of the
change. By the midway month, only one failure was observed. By the
completion of the change, 17 failures had occurred. If PPC 267 had
not been introduced, there undoubtedly would have been many more
failures of the new tower shaft roller bearing. However, by the
midway month of PPC 267, the tower shaft bearing failures had been
effectively stopped resulting in a period of rapid and significant
reliability growth.

Thus when it is realized that components other than the tower
shaft bearing were affected by PPC 220, it is seen that this PPC
contributed substantially to the reliability growth of the TF-30
during the months of November and December 1969. Following that,
the problems created by PPC 220 overcame the problems solved by
the change and the reliability growth was substantially slowed.
The introduction of PPC 267 to correct the problem created by PPC
220 allowed the benefits of PPC 220 to again be seen.

3. CONCLUSION.

This report clearly indicates the feasibility of using the
Barlow-Scheuer Trinomial Model for evaluating the reliability of
the TF-30 engine. The growth of reliability was observed and the
degree of reliability was stated. Further, three specific stages
of development during which reliability increased dramatically were
discovered. Each of those three periods was associated with a
specific PPC and a rati~naie supporting a causal relationship was
developed.

It is reasoncble to assume that if this method is applicable
to the TF-30 system, it could be similarly applied to 64her systems
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such as airframes, engines, tanks, or individual components. The
only limitation would be the availability of duta concerning a given
system. The feasibility of using the BSTH as an index of the efficacy
of some engineering efforts in accident prevention has been demonstrated.
In effect, this has made available another tool to demonstrate object-
ively and unequivocally th* effects of some of these efforts on Naval
aviation.
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FIGURE 3
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1 Oct-Dec 19"8 2.120535 x 10"2 .970165 .9008

2 Jan 1969 2.578506 x 10-2 .972385 .970855

3 rob-Sep 19,6 2.431031 a 10-2 .974060 .973128

4 Oct 1969 2.329376 10 -2 .975077 .974190

o5 VO-Dec 1969 2.155256 x 10-2 .976618 .976028

6 Jan-Aug 1970 2.043030 z 10-2 .977940 .977308

7 Sep 1970 1.576172 x W2" .92609 .9820573

a Oct-Dec 1970 1.272612 z 1O"2 .65642 .985163

9 Jam-Jum 1971 1.221275 2 09" , 58 .985730
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FICURE 7

SELECTED POWER PLANT CHANGES

PFC

167 Introduction August 1968
Midway January! 1969
Completion August 1969

Purpose: Reduce war in the vane slots of the shrouds by increasing
the bearing area of the vanes.

180 Introduction August 1968
Midway January 1969
Completion June 1969

Purpose: Improve durability of the bleed air duct assembly by
incorporating a baffle configuration to funnel cooling
air over the duct diaphragm.

199 Introduction Decembar 1968
Midvay March 1969
Completion July 1969

Purpose: Provide more durable #6 beariug support.

212 Introduction March 1969
Midway September 1969
Completion April 1970

Purpose: Provide a new fuel nozzle nut assembly and a new, more
durable combustion chamber assembly featuring a revised
hole pattern and a deflector baffle. This now configuration
Is designed to reduce exhaust smoke density.

220 Introduction June 1969
Midway December 1969
Completion July 1970

Purpose: Provide a more durable bearing configuration in the tower
shaft assembly by replacing the ball bearing assembly
with a roller bearing assebly.

267 Introduction March 1970
Midway October 1970
Completion March 1971

Purpose: To prvent the roller bearing outer race rotation thereby
eliminating bearing hosing wear and possible sisalignient
of the bearing inner race on the shaft.
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RELIABILITY GROWTH ESTIMATION FROM FAILURE AND TIME
TRUNCATED TESTING

Larry H. Crow
Reliability, Availability and Maintainability Division

U. S. Army Materiel Systems Analysis Agency
Aberdeen Proving Ground, Maryland

1. INTRODUCTION. In 1962, J. T. Duane of General Electric Company's
Motor and Generator Department [see Duane (5)] published a report in which
he presents his observations on failure data for five divergent types of
systems during their development programs at G. E. These systems included
complex hydromechanical devices, complex types of aircraft generators and
an aircraft jet engine. The study of the failure data was conducted in an
effort to determine if any systematic changes in reliability occurred during
the development programs for these systems. His analysis revealed that for
these systems, the observed cumulative failure rate versus cumulative
operating hours fell close to a straight line when plotted on log-log
paper. Similar plots have been noted in industry for other types of systems,
and by the U. S. Army for various military weapon systems during development
[see Crow (3)].

From a mathematical interpretation of these straight line plots on
log-log papers, we will show that the reliability growth of these systems
during development was governed by a certain Weibull process. From this
result a Weibull reliability growth model is formulated which can be used
with test data for monitoring and projecting system reliability during a
development testing pzyogram. This paper gives appropriate e.timation
procedure for this tracking of system reliability fir various combinations
of time and failure truncated data.

2. THE WEIBULL RELIABILITY GROWTH MODEL. Let N(t) denote the number
of system failures by time t, t > 0. The observed cumulative failure rate
C(t) at time t is, therefore, equal to C(t) = N(t)/t. The plots on log-log
paper imply that log C(t) is approximately a straight line. That is,
log C(t) i 5+ ÷ ylog t. Equating C(t) to i:s expected value and assuming
an exact linear relationship, we have log (E[C(t)]) = 6 + ylog t. Taking

exponentials gives E[C(t)] = Xt , X = e . Hence, E[N(t)] = Xt , for
6 = y + 1, since E[C(t)] = E[N(t)]/t. Thus, the expected number of system

failures by time t is At

The instantaneous failure rate, r(t), of the system is the change per_ _d
unit time of E[N(t)]. Thus, r(t) d E[N(t)] = A8tB-, which is

dt
recognized as being the Weibull failure rate function. It is important
to note that since the system configuration is changin!, the data are
not homogeneous and, therefore, the usual theory for a Weibull distribution
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will not apply. In fact, it has been shown by the author see Crow k'2)
that when the configuraiton of the system is changing during a develop-
ment prosram and failures are governed by the failure rate
2(t) a Xot ", then the system failure times follow a nonhomogeneous
Poisson process with Weibull intensity function r(t).

At time to the Weibull failure rate is r(to) 0 Xoto . If no

further system improvements are made after time to, then it is reasonable

to assume that the failure rate would remain constant at the value r(t 0 )

if testing were continued. In particular, if the system were put into
production with the configuration fixed as it was at time to, then the

life distribution of the systems produced would be exponential with moan

time between failure (MTBP) M(t0) - [r(t 0 )]. 1 
u t 10/X. Hence, for

0 4 8 4 1, the MTBF M(t) increases as the development testing time t

increases, and is proportional to t 1 ", Thus, 0 is a growth parameter
reflecting the rate at which reliability, or MTBF, increases with develop-
ment testing time.

If the successive times of failures are being recorded for a system
undergoing development testing, then a statistical goodness of fit test
developed by the author in (2) can be performed to determine if the Weibull
reliability growth model may be used to track system reliability during
development testing. To track this reliability improvement would, of course,
require estimating from test data the two unknown parameters A and 0 by
say A, B. One would then estimate the failure rate function by

r(t) • •At' and the 4TBF function by i(t) - (rCt)J"1- tl'o/A. If the
system were tested to time T, say, then M(T) would estimate the current MTBF
and M(t),, t > T would project estimates of system MTBF into the future.

S. ESTIMATION PROCEDURES. Suppose that a system has experienced N
failures during development testing. Let Xi be the age (time on test) of

the system at the i-th failure, iml,...,N. If testing were stopped at
the N-th failure, the data are said to be failure truncated.

0 X1  X 2  X3  . . . XN

The maxim.u likelihood (ML) estimate of 0, the Irth parameter, is

I logY-

i 2l 26
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and the ML estimate of A is

A * N (2)

N

Thus, calculating X, Bone may estimate the failure rate function

r(t) • A 't by r(t) X ot . The MTDF function M(t) * [r(t)]" is
Asimilarily estimated by 4(t) * [r(t)]"-. In particular the current estimate

A

of the MTDF is M(XN) - XN/NO, and M(t), t > XN, projects expected future

growth of system MTBF.

Example

Suppose that a system undergoing development testing recorded

the following 40 successive failure times; .7, 3.7, 13.2, 17.6, 54.5,
99.2, 112.2, 120.9, 151.0, 163.0, 174.5, 191.6, 282.8, 355.2, 486.3,
490.5, 513.3, 558.4, 678.1, 688.0, 785.9, 887.0, 1010.7, 1029.1, 1034.4.
1136.1, 1178.9, 1259.7, 1297.9, 1419.7, 1571.7, 1629.6, 1702.3, 1928.9,
2072.3, 2525.2, 2928.5, 3016.4, 3181.0, 3256.3. That is, the system was
of age .7 when the first failure occurred, of age 3.7 when the second
failure occurred, etc. At age 3256.3 the system had the 40-th failure.

Prom these data, and equations (1) and (2) we find that A m 0.761,

B 0.490.

Using A, B, the failure rate function is estimated by r(t) - t -1
and the MTBP function is estimated by M(t) * [r(t)]"1 , The current failure
rate r(3256.3) is estimated to be r(3256.3) * 0.006, and the estimate of

current 4TDBF is [.006]"* 166.7. Further, r(4000) m 0.005 and M(4000) *

[.005]"1 a 200.0 are projections of failure rate and MTBF if development
testing were continued to T a 4000.

Suppose that K > I systems have been simultaneously tested to time T,
where T is not a failure time. In this case, the data are said to be
time truncated. If design and engineering modifications are made on all K
systems at the same time, then at any time during the testing the systems
will have basically the same configuration. In this situation we may combine
the failure data on these K systems to obtain estimates of A and B.
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X11 X21 X3 1  X41 . XNIl T

X12  X2 2  X32 X 42 X52 ' N 2 2 T

O . L.
X1K X2K X3K "XNKK T

Let Nr be the random number of failures observed for the r-th system,

r-l,...,K. Let Xir be the age of the r-th system at the i-th failure.

The ML estimate of B is

~a K N TN3S" z r ,,(T
r! -Zlog WT

ril ill ir

K
where N . • N is the total number of failures experienced by the K

r =l

4ystems. The ML estimate of X is

~ *N (4)

KT8

Using these estimates of A and 0, the ML estimates of the failure

rate function and MTBF function are r(t) - %Ot 0  and M(t) " [r(t)]"1

t > 0, respectively. The ML estimate of current system MTBF is M(T),

and i(t), t > T, projects expected future growth of system MTBF with
increased testing time. Note that the total test time for these K
systems is KT. However, the calendar time or system configuration age
is T.
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Suppose K = 3 systems were each tested for time T a 200 with the

successive failure times given in Table 1. Prom these data, and using

equations (3) and (4), the ML estimate of B is B * 0.615 and the ML

estimates of A J's A * 0.461. From A, we estimate M(200), the current

MTBF, by i(200) - 27.12.

If development testing were stopped at say T a 300, the model states
that future times between failures will follow the exponential distribution
with mean M(300). Based on test data to T m 200 the projection of the

1rBP at T - 300 is M(300) - 31.70. That is, with 100 more units of test
time we estimate an increased in MTEF from 27.12 to 31.70.

Again, suppose that K > 1 systems begin development testing at the
sam time (time 0), but the test times for each of the systems are not
necessarily the same. If Tr, the test time for the r-th system, is

also a failure time, then the data on this system are said to be failure
truncated. Otherwise the data are said to be time truncated.

0 X N T0 1l X21 X1 ' 1 I

X1 2  X2 2  %2

0 X X X . T• X
IK X2K (NN K K l

In the above illustratfon, the data on systems 1 and 2 are time truncated
while the data on system K are failure truncated. For this general testing
situation the ML estimates of A and B are not in closed mathematical form
as they were for the two special cases previously discussed. In this

situation the ML estimates of A and 0 are values A and 3 satisfying the
equations

KN (S)

T~ rr 1
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N

K.. N . Nr (6)

T Tlog Tr~ Ilogr'ir

In general, these equations cannot be solved explicity for A and
8, but must be solved by iterative procedures. As before, the ML estimates

of the failure rate and MTBF function are r(t) - ABt6" and M(t) M

S [r~t)", t > 0. respectively.

A computer program has been written at AMSAA for calculating A and
B from the general expressions (S) and (6). This computer program is
reported in Belbot (1).

Example

Consider again the data in Table 1. Suppose that it is assumed
a priori that systems 1, 2 and 3 are tested only to the 10th, 15th and
llth failure respectively. In this case the data are failure truncated
on the three systems. Thus, the ML estimates of A and 0 are calculated
from expression (S) and (6) using iterative procedures. From these data
1T -197.2, T2  190.8, T a 19S.8, and the ML estimates of A and B are

A• 0.443, B - 0.626.

Even though the ML estimates of X and B are not in closed
mathematical form for this general testing situation, it can be shown
that an unbiased estimate of B can be written in closed form. To calculate
this estimate let

Hr if data on the r-th system
are time truncatedMr Nr-1 if data on the r-th system
are failure truncated

rwl,...,K. Then an unbiased estimate of B is

K M-1

"r Tr
! log r.

r l irl ir

K
where N M.

Mrl
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Other statistical results and actual Amy applications of theVeibull riiability growth model may be found in Crow (2), (3), (4).
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TABLE 1
Skmuled Dasta for K,3 System Operated for Tim

Ts200 when &a•.6 cwd a10l.
System I System 2 System 3

Xi I X12 Xi3
4.3 0.1 8.4
4.4 5.6 32.5

10.2 16.6 44.7
23.5 19.5 4S.4
23.8 24.2 50.6
26.4 26.7 73.6
74.0 45.1 98.7
77.1 45.8 112.2
92.1 75. 7 129.8

197.2 79.7 136.0
98.6 195.8

120.1
161.8
180.6
190.8

N1810 N2 15N3 11

10 T 15 ' T Ti3
la~g log J o

"*19.661 a26.434 m12.398

NINI+N 2 .N 3 s 36
3 Tr_
Zlosg -) 493

| I IIr I I I rII iii i

N 0o.615 - a.- .19
3 ,r T

ral isl ir
l, N

Tx•" 23461
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A33T3ACTS

The usual methods of describing the functional
properties of a continuous somplng plaO (such as a
display of Average V '-•€on Inspected (AhI) and
Average Outgoing Qwalty (AOQ) curves) are founded
on the smsqption that the probability that a unit
is defective is constant over all units in a con-
tinuing flow of manufactured product. While the use
of this assuption greatly simplifies such of the
mathematics involved in describing the properties of
the plam, it Is, at the se time, not a realistic
assumption. In designing a continuous smpling plan,
the statistician is concerned with, mong other things,
the plan's responsiveness, that is, how the plan reacts
vhen the probability that a unit in defective suddenly
Licresses. This paper describes sowe Karkov chain
methods that have been developed to describe responsive-
noes properties of plans couplicated in structure.

Various terms will be used in this paper, and will be defined at appropriate
times.

VUGRAPH 1
Cases occur In practice where it is not practical to group units of material

Into lots prior to sapling for inspection purposes; for example, product may be
manufactured and moved in a continuous flow for efficiency or safety reasons. As
an alternative, we have continuous sompling, introduced by Harold Dodge in a
paper in the Anns of Mathematical Statistics in 1943.

VUGRAPH
This is Dodge's first continuous enpling plea, called CSP-1. At the start

of inspection, a screening crew Inspects 1002 of the units. When a pre-specified
number, I, of consecutive units are found to be free of the defects concerned,
that is, the kinds of defects being Inspected for, the screening crew is released
from 1002 Inspection, and the sampling inspector Inspects a pre-specified fraction,
f, of the units, where the units sampled are selected in a random manner. if,
during sampling, the inspector finds one of the defects concerned, the screening
crew returns to 1002 inspection, and from that point on, as you can see, the plan
consists of alternating periods of 1002 inspection and sampling inspection. The
clearance number, J, might be some value like 100, and the sampling frequency, f,
might be 1/100.
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F . VUGAPN 3
lowe of the functional propertias of a continuous samling plan that are of

interest are the 4g Ela or An, which is the expected value
of the fraction al that will beInspected over an indefinitely long
period of time when each unit has probability p of being defectives The Averasbe
Outaoinat OWIILt or AOQ, which in the expected fraction of material that is
defective in accepted matertal over an indefinitely long period of time when
each unit has probability p of being defective, and the Anna O t g oing: QW foL
kfor, or AOQL, which is the saximn value of the AOQ that am be obtained for
particular sampling plan. VULWPH 4

mere is an AOQ curve. The abecise. represents the percent defective of
product submitted to the point of inmpection. The ordinate represents the average
outgoing quality. Starting at the origin, you can "se that as the quality of
submitted product becomes poorer, so does the quality of outgoing material, until
it reaches some asuxmam, the AQL, after which the quality of outgoing material
becomes better as the quality of Incoming material becoues poorer. There is
really no paradox here, since poorer quality product will cause the 1002 Inpectiot
phase of the plan to be in effect sore and more, and at eom point this will be
reflected by the AOQ curve beanding dounward.

Remember that the AOQ function is defined for an infinitely long sequence of
units for which the probability, p, that a unit is defective, remains unchanged
for all units ------ forever.

By using a direct at8ebrale modeling approach, Dodge derived formula@ for •
API and AOQ for C8R,1. VJGRAPH 5

tn 1951, a paper by Dodge and Torrey appeared In Industri Qualitv 2t.•ml_
and introduced two more continuous eampling plane, designated CSP-2 and C8P-3,
portrayed here is CSP-3. As you can see, the plan is a little more complicated
that COSP-L. Instead of returning Immediately to 1002 inspection upon finding a
defect during sampling Inspection, the sampling inspector inspects the next four
units. If a unit is defective, 1OOZ inspection Is resumed. Otherwise the
sampling inspector resunas sampling, but keeps count of the namber of simple
units inspected.

If a defect is found during saplings, 1002 inspection is resamed. If k
consecutive sample units are free of the defects concerned, sampling is continued
without counting.

The only reason I am showing this vugraph is to touch on some points regarding
the construction of the plan. Remember that CSP-l was describable as a unique
continuing cycle of events, that is, the plan alternated between 1007. inspection
and sampling inspection. CSP-3, on the other hand, does not at first look like
it could be described by a unique cycle, since som boxes have two outputs, which
as the arrows indicate, go to different places. On the other hand, if-we
inclose all boxes except 1002 inspection in one big black box, we seu that once
again we have & .unique cycle of events, that is, we alternate between 1002 inspec-
tion and something else. Mathematically, then, our only problem is to define what
goes on inside the big black box, if we can. This, in effect, was the approach
taken by Dodge and Torrey to derive the mathematical properties of CSP-3.

-234-



VUGRAPH 6 i

In short, then, Dodge's method is an algebraic method describing the properties
of plans, and can be used only when the propertios of each black box can be
determined by algebraic means.

The limitations of this first method for complicated black boxes were over-
come with the application of Markov chain theory to continuous sampling theory.
This was begun by Lieberman and Solomon, and described in their paper appearing
In 1955 in the & A matheatical B

After using the Markov chain approach for some time, a simplifying algorithm
suggested itself to us, and we developed a proof of Its validity. The saw
algorithm was apparently developed about the ams time by Sackrovits, who mentioned
it and used it in a paper In Technometrics in 1972. Since the Sackrioits paper
does not show the derivation of the algorithm, our technical paper on the subject
is provided as a handout. VUGRAPH 7

The effect of the simplified Markov chain approach Is shown An this illustra-
tion. Under former Markov chain methods, each unit of product, or, In som cases,
each inspected unit of product, would be indexed, with the index corresponding to
one of a finite number of states of a Harkov chain. We would then be interested
in such things as what proportion of units reach the inspector during a 1002 inspec-
tion phase, or what proportion of units reach the inspector during a sampling phase.

In the simplified approach, we temporarily forget the units themselves, and
pretend that those units are contained in boxes as they reach the Inspector. Each
box is labeled with the name of a phase of inspection, such as 1002 or sampling.
The labels on the box become indices that we relate to the states of a Markov chain.
Isediately, we see that the number of indices, and hence, the complexity of the
Markov chain, is greatly reduced. We now find what proportion of boxes reach the
inspector labeled 1002, what proportion are labeled sampling, and so on. After
determining these proportions, we can easily determine proportions of units rather
than boxes involved in the various phases of Inspection by finding the expected
number of units in each kind of box and carrying out appropriate algebraic
operations. By introducing the units only at the end of the mathematical gyrations,
however, all of the mathematics along the way willl'e- simpler. We will illustrate
this with an example. VUGRAPH 8

Recall the CSP-3 plan which we Just discussed. Here is the transitional
p,'obability matrix for the )4arkov chain describing the plan. The label for the
rows indicate the states we are leaving, the labels for the columns In, ate the
states to which we are going. The label 100 denotes the 1001 inspection phase,
next unlimited sampling, checking, and limited sampling. The simplicity of the
matrix yields extremely simple equations to work with, as you can see. The symbol
P10 0 denotes the probability of a box labeled 1002 inspection reaching the inspector
at some specified time indefinitely long after the start of inspection, or
equivalently, the proportion of an indefinitely long stream of boxes that are
labeled 100%. The other P's are similarly defined. We have further abbreviated
the words unlimited sampling, checking, and limited sampling, as you can see.

In the lower right of the chart, we have solved each of the unknowns in terms
of some arbitrary one of them, in this case, Pus. Our interest now focuses on the
coefficients of Pus.
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VU$1RAH 9
We have carried thes coeffio•tta over into oDImU one of this chabut which

Is our working table for finding phase occupancy probabiliteas. Colmn two is
for eliminating any factors that may be comon to all expressions in Colunm ones
or for clearing denominators if there are my. Any simplifying operation carried
out for one expression must simultaneously be carried out for each of the other
expressions. In this case, there is nothing in colien one that can be simplifiod,
so col-m two is the sase a column one. Colum three provides the expresaion
for the expected number of units for each of the phases. Colum four is for
simplifying colum three. In this case, we have cleared all doasmistors 6v
multiplying each epression by fpqi. Columa fve serves as our device for getting
the units out of the boxes, so to spts, and Is the product of colams two and four.

VUGRAPH 1•
We can nov use the expressions iL colum five to determine several properties

of the plan. For example, by lettrug the @us of the terms In colum five be
denoted by D, we obtain the valt-a -or P (U), where the U signifies that we nov
have probabilitics expressed in proportians of units.

VUGMPH 11
Let us nov return to the subject of our japer - responsiveness, by which we

mean the speed, following a deterioration in product quality, with which a 100I
inspection phase will be Initiated, thereby permitting the discovery of a need
for corrective action.

or e"anple, let's consider the situation shown on the chart. Units of product
are manufactured and placed on a conveyor. The sip on the wall indicates past
quality history was great, so we are very likely in a sampling phase of the plan
we are using.

Suddenly we have trouble with our manufacturing process. Defective units are
being manufactured at a higher rate than usual and are being fed into our stresm
of product. While ve are sampling at some frequency we will probably not catch
all of the defective product. We feel that if 1002 Inspection were resumed, we
would discover the problem and take corrective action. Now long will it take
before 100Z inspection is resamed?

VUGRAPH 12
We became interested in this problem partly because of suspicions raised by

Dodge about the plans contained In H106, which are the same as the plans called
CSP-K In NIL-STD-1235.

This is an example of a three level plan. WIL-gTD-1235 and 3-106 permit the
use of CSP-M plans, subject to certain conditions, ranging from one to five levels,
A one level plan would be the sam as a CSP-3 plan.

In a review presahetVd in T In 1960, Dodge expressed an intuitive
concern about the behavior of a CSP-K plan if quality should suddenly deteriorate
when the plan is, say, in the fifth sampling level of a five level plan. Dodge
feared that 1002 inspection might be resumed only after my units had been
accepted.

Work in the area of CSP responsiveness had p revLouely been done by Guthrie
and Johns and described in a Stanford University Technical Report on the subject
In 1958, and by Millar in a Technoomtrica paper in 1964.
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Their methods are readily adaptable to plans whicoh are relatively simple in
ocontructiong but do not yield practical computational 8alorithme for plans as

complicated as CSP-H. Let's examine briefly the work of Guthrie and Johns, sln•ce
conceptually, our work bear@ som resemblance.

VUGRAPH 13
This is the type of plan to which Guthrie and Johns applied their method. It

is known as ILP-T, which means, ")llti-Level Plan - Tightened", and was formulated
by Derman, Littauer end Solomon and described in a 1957 paper In the Aals o1.
Mik jj Stf• 'I' There are variations of this plan; this io one example.

If$ anytime during the operation of the plan, a defective unit is found, IOOZ
Imnpection to Initiated and continued until i consecutive good units are found.
The sapling froquency it reduoed after I consecutive units are defect free. In
this example, the frequency io reduced from f to f/2 to f/4.

The Outhrie mad Johns msthod involved finding the expected number of units
produced folloving deterioration until IOOZ Inspection could be initiated.

VUGRAPH 14
"This involved, for each step in the plan, for example, the fifth sampled unit

of the second sampling phase, finding the probability of being at that step at
some specific time Indefinitely long after the start of production, and multiplying
this by the expected number of units passed from this point until a defective unit
Is found. Suming over all steps in the plan yields the expected number of units
produced following deterioration until 1002 inspection is resumed. Here P0 denotes
the probability before deterioration that a given unit ti defective, while P1 denotes
the probability after deterioration that a given unit in defective. Note that for
amy value of Pl, I(N) would be maximum over p. when p0 - 0. This io because the
probability becomes one that we are on a step in the most liberal sampling level.
This was the assumption that we made In our method.

VUGRAPH 12 (REPEAT)
The real problem nov presented itself. Nov do we find the expected number

of units to return to 100! inspection from the most liberal sampling level? For
a one level plans simple algebraic methods could be used. For a two level plan,
somewhat more complicated, but still algebraic methods could be used. For three
levels and higher, algebraic methods could no longer be used, since the infinite
number of ways to return to 1001 inspection could not be nicely ordered so that
somethi- like converging sum could be obtained. This was the problem. The
solution eventually suggested itself.

VUGRAPH 15
Thi•i chart shown Lhe restructuring of our CSP-M flow diagram to permit solution

of the probles. We usid that we wanted to know the expected number of units produced
from lims of deterioration, while we are at the most liberal sampling phase of the
plan, until time of return to 10OZ Inspection. An expected numbar would correspond
to an average over an Infinite number of trials, so we thought of using a Markov
chain approach, which in effect would consider an infinite number of trials. We
would be interested in the expected number of units from entrance to the most
liberal sampling ph"e until entrance to the 100, Inspection phase. It Is sufficient
to co:16ldr only entragne to the most liberal sampling phase, since, given that we
are 1" tl#.. phase, at some point, regardless of how long we have been in the phase,
the expected number of units from that point to return to 1002 inspection is the
same as from entrance to the phase.
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MIS

Soluti.o of the Amhov chaSi will yilad Propnio t of ti• r." t i o he
dif fornmt phases, but it won't yet give us our expeoted umsber of units to return
to 1002 Inspection, so we still need something soes. By Including the 1002insmpaction plume, which will occur once ront only once per cycet, we am lot what

else we need.
It is for this reason that we have shown the arrow going from the 100 inspec-

tion phase to the most liberal sampling phase. The first sampling level has
disappeared, because for all plans except a one level plan, it is not a part of
the path from the meost lieral sampling level to a resumption of 1OOX Inspection.

VUGRAPH 16
The mathematical model of out flow diagram, iam nov be described.
Upon solving the Narkov chain, let P100 denote the expression for the propor-

tion of the time the plan I@ In the 1002 Inspection phase. Then, by reason of
the way our fov diagram as constructed, the rest of the time we we on our
return path. We have an expression for finding the expected length of the 1002
inspection phase.

The only unknown Is R(N), where N donotes the expected number of units to
return to 10O2 inspection after first entrance (per cycle) in the sost liberal
sampling phase. We can therefore find an expression for 1(y) as shown on the
bottom of the chart. VUGRAPH 17 :

We now had to derive expressions for the known quantities for plans of each
of the levels one through five.

As mentioned previously, we also could obtain solutions for levels one and
two $y using direct algebraic methods, and this served as a partial check on our
work. Nothing would be served now by gol" through each of the derivations step
by step, so instead I merely am showing you the resulting equationsa you can see
how the complexity Increases as the umber of levels goes up.

This is the result for a one level plan.
VUGRAPH 18

This is the result for a tw level plan.
VUGRAPH 19

This is the result for a three lovel plan.
VUGRAPH 213

This is the result for a four level plan.
VUGRAPH 21

This is the result for a five level plan.
VUGRAPH 22

Now that we had our equations derived, we were ready to carry out computations.
We computed not only the expected number of units produced between time of deterior-
ation and resumption of 1002 inspection, but ve broke this down into expected number
of inspected units and expected number of uninspected units. We also computed the
expected number of defective units passing during this period. These computations
were carried out for several values of p for each plan.

With numerical results, we were ready to evaluate their significance. This
became somewhat subjective, since we had no pre-specified criteria. Comparison
of CUP-K with other plans was carried out. Even this approach had limitations,
.since a certain amount of subjectivity is introduced in trying to determine the
appropriate plan parameters that should be watched when a comparison of roapont-
oLvneas is made.
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Suffice it to say that, in comparison with other plans, CSP-K performed
about as Dodge had auggestedl that Is, plane of three levels or less performed
adequatl, while plans of more than three levels were somwhat unresponsive.
Again, this conclusion Is reached through a certain amount of subjectivity.

VUGRAPH 23
It might be well to point out here that the method we used could be extended

to the case of en assumed value of p other than nero, prior to deterioration, in
other words, we could use the more general Guthrie and Johns assumptions.* This
could be done by considering entrance to each step of the plan directly from the
100Z inspection phase. It to apparent, though, that the resulting summations
would be so complicated that the comnputational nightmare that would result night
not be worth the effort, considering the amount of additional Information it
would provide.

VIJGRAP OFF
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EMC T3 VAMU INM A IIAKO MAIN
WOOL 01 CI?-7 AND M1

z-TRANIVWI

David L. Arp
Weapons Planning Group

Naval Weapons Center
China Lake, California

93555

AjAST5 . The amin topic of this paper deals with the development
of a computationally feasible epension of the A.1 function for the
short-run cae of a continuous sampling plan (CSP-7) which, in turn,
so treated as a finite orgodic Markov chain.

A time-lapsed difference equation for the probability of beii4 in
the sampling stage at a given step is derivedl for a finite run of
length o, the expected value of the random variable "fraction of total
(operational) time in inspection states" (AVI(M)) is then expressed as
a linear combination of the above probabilities. Unfortunately, em-
ploying the above difference equation as a basis for recursion results
In an algorithm which rapidly becomS too complex and time-consuming
for any computer nov in use-including, a fvtioro, the smller pro-
grammable calculators. Mr. Richard brugger attempted to solve this
"problem by deriving an exact, computable expression for AIC(N) based
on probabilistic reasoning (7.1, pp. 929-948]. Unfortunately, it
turned out that, although his approach did yield a workable expression
which converged to the long-run AFI function, it did not provide an
exact formula, nor, for that matter, any concisely expressed error
terms.

My approach to this problem is to derive a true asymptotic expan-
sion of AFI(N) by employing the Z-transform method to solve the above
mentioned difference equation (yielding a function of a complex vari-
able, regular outside of the unit circle); contour integration, series
expansions, and the residue calculus to "project out" the desired
terms; and finally, the binomial and LaGrange expansions to yield
practical approximations with implicit error terms. It is further
shown how to apply this technique to obtain a similar =pension for
the variance of the aforementioned random variable. Utilising this
latter expansion along with Kartingale Theory, bounds are obtained on
certain probability statements. Finally, the method is applied to
other quantities of interest arising not only from CSP(I) but also
from more complex continuous sampling plans.
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Whie epe diahe *"aut of work done by the
author on finite run W-1 while working for the am defunct ArW *Ani-
tiona Commend (HuCom). The. main topic, that of deriving compact
formulas for the expected value and variance of the random variable
"fraction Inspected In a finite run of length X."1 was done at the
request of Mr. Richard N. 3vugger, mathematician and former chief of
a Concepts Branch located In a command subordinate to HuCom. I wish
to thank his for his encouragement and his efforts to provide a stiau-
lating york-research environment.

A more than passing acquaintance with the theory of functions of
one complex variable Is nasmed throughout this paper. In addition
to the principal topic briefly moentioned above, another one, appearing
In chapter 6, has been added.

Before tackling the body of the paper, some background discussion
and preliminary theoretical work are necessary.

2.1 CSPCN) and CSP(4*). In this paper CSP-l (CSP-.F) is denoted by
C8P (a) (ClIP () $..I a total number of units In the finite run). The
"box" scheme fbr both plans is given in Figure 1.*

Fin3. 1
CSP(-) AND CSP(N)

(NO DEFECT POUND)

JIFDEECT POUND)

FOR CSP(N), STOP AFTER UNIT N

The plan paraneters, with practical rangos, are

()I - CLhRANMCS NO., 10 4L I ý.2 x 10.

(b) f alIQIJICY NO.,S5xlO03 ~f L5x 10.1

(c) p w PROBABILITY OF A DRFECTIVI UNIT, p 10

(d) N - RUN NO. FOR CSP(N), 10~ N 106
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in order to analyse the effectiveness of such a plan, and, In
particular, the values of the parameters to achieve a desired level of
quality control,t it is necessary to formulate a reasonable and mathe-
matically tractable model which In turn can be studied. One such
possible model, in general use, is to treat CSP as a finite, ergodic,
and homogeneous MIarkov chain. Homogeneity necessarily Implies that
the probability of a defective unit is constant over the entire pro-
duction run. To learn more of the history and Justifications of this
particular model, one can consult reference 7.1 where a lucid discus-
sion of and further references to these topics are given. lor the
purposes of this presentation, it suffices to note that such a model
is known to live npper bounds for the quantities of Interest. A lay-
out of this mdel appears In ligure 2.

Flrow.• 2

STANDARD NA3dOV-CHMAN APPOA•H TO CS?

P fP

(0 PHASE Z INSPECTION PHASE
PHASE I , •SAMPLING PHASE

(2) .14(J)• - Jit STATE IN PHASE I

EN, a NON.INSPECTION STATE

. INSPECTION STATE

(3) q -1-p,

Zn iNgure 2 we have (1+2) possible states with the non-zero tran-

sitional probabilities between then given by the quantities below the
connecting arrows. A tedious but routine analysis of this model shows
it to be in fact erlodic with an easily constructed finite (1+2) x (1+2)
constant transiticial matrix C7.1, p. 9381.
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- .meeforet, wse of on.$ without ay furthe" qualifteIta, will
&Iw mean both types of plogo. Turthemore, the ue of "plaw"
relative to one or both of these types will mean "for various selec-
tions of the parmeters"I thum, for ample, CSP?(,If) and C0P3(',I',
f') are considered to be two different kinds of one type of plan.

Practically speaking, there are only two types of starting condl-
tione (initial probability vectors) that need to be considered for
CSPi JOB-SHOP and ARBITLARY-IT Y.

In the JOB-MOP case, the sampling begins in state H(O) (or the
"start" box in Figure 1). The corresponding initial probability vec-
tor, denoted by j (iota), and its conditional expected-value operator
are given, respectively, by

£ - (1, 0, ... 0) of dimeonson 1+2, and

In contrast to this case, where realistically sampling begins at the
start of production, ye have the ARBZTRARY-INTRY case. In this latter
type, sampling has been going on long enough for statistical equili-
brium to have been achieved. Therefore, at any arbitrary timel sam-
pling can be "s*sed to be at a given state with Its Iong-run (ergodic)
probability. In this situation, the Initial probability vector and
conditional eapected-value operator are given, respectively, by

vhers n = 18 "20 ,.., K1+2) and 1[.]

Ahare I•3 Is the long run probability of being in (or starting in)
state J, 1+1 (1+2) means SN (SI), and 1 (1) refers to H(0) (HCI-l)).
For future use, we define

We can now define the AFI(N) function. Let w be an ordered in-
finite sequence of states whose order Is compatible with the Markov
chain structure (if we agree to concentrate the probability measure
induced by the Narkov chain on such sequences, we can consider any
ordered sequence-compatible or not). Then we have the following
definitions:

Definition 1. Given w as above,

.ROJk(u) * The (Karkov) state in the kth slot of W.

Furthermore, the outcome #pac of all such wes with the probability
1measure, F, Induced by the Xarkov chain, is denoted by (A, P) [see 7.9,

for a clear, concise description of a-algebras and measures induced
on product spaces).
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.. . e uaeterletie random variables are defined on.t then a ran-
dee variable it defined in terms of either one of them. This dual
situation Will occur throughout the rest of this paper and arises
because of alternate ways of looking at A*1(N).

Definitioa 2. (Characteristic random variables)

Zk(W) " 1o, oif PlOJk(w) C FRABS 11

10 otherwise.

1 (k)(w).. 1,1, if ?lOJk(w)

Of otherwise.

Definition . 10?vaI- f,

I(M (w) -1- 1 E z .1(W)
i-i-

N
. N. E: X8(j) (W).

jul1

In torms of the random variable FI(N), we can finally define
Al1(N) for the two "initial-condition" cases

Definition 4. For the JOB-SHOP came (case 1),

AV3.AS ZRACTION fflSPZCTZD a St 171(N)].

For the ABITRARY-ITRY case (case II)t

AI(N) - ISn [1(N)].

Concerning these two functions and their relationships with All(*e), we
have

kooositsign .. For case 1,

Lim *11(1) - API(-) - 1 - nlI " 1 - v1(-).
N.-N

For case 11,

A1(N) - . - nSN * 1(-).
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Z ~ (cass* 1)

Lin AF,(I) I tL [Lis 1()], by the

Lebeque Dominated Cony. Thu.,

- I [VI(-)., by the

Individual Irgodic Thu.,

A 7A(m), by definition.

Came 11 follows trivially from the definitions.

To round out the relationship between AFI(N) and Alr(l), we state,
without proof [see the proposition, chp. 41, a final equation:

Lin VAR(M(N)) a 0 (both cases),

22 The difference ecuation. We nov turn our attention to the
principal difference equation, which will eventually be used to derive
an expansion for AlI(N) (JOB-SHOP case).

Letting a(k) a uI [Zk_ 1 1 (K a 1), we clearly have, by definition,

A. (Nip,f,Z) * -I E ,(.).

Whether reasoning directly from the definition of o(j) or using the
Chapman-Kolfogorov equation [7.5, p. 194] and the relation between
Zj and XON(J) we can derive the following difference equation for

0, 1 1 k 1, 1

CA ak). jqtk I+l I r -

1 -1(k -) + y - e,(k - l1-1)i, 1k a I+2.
Here, j - 1 fp, y - pq 0 - vy, ead q - 1 - p. Tvo courses of action
are nov open to us. Zither solve the given difference equation theoreti-
cally or use the equation itself as a basis for a recursive method for
computing API(N) on a (digital) computer. The trouble with this latter
route Is the stop or (operational) tie lag, 1, which is blocked out

* and amphsilsed by an arrow In (A).
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t 2.1 com~mutatlonal difficu&ties. We will demonstrate in thist see-
tion that a recursion algouithm based an the lag in (A) Is Impractical
for wany realistic applications of the AJI(N function.

With minicomputers a stop lag of asio I for the practical values
given $n section 1 would require the continual dynamic storage of up to
2 x 101 quantities, which ts too large (and at least ungainly for the
larger machines) for them. Moreover, for the larger machines this lag
would lead to a large computation time for many of the standard calcu-
latiobs which are done In continuous sampling work. * hort explanations
of three of the more coemmon types of thuse calculations will give a
clearer Idea of the difficulties Involved for both types of computers.
In the discussion below, variables appear to the left of the semicolon,
perarmtearm to the right.

The first kind of calculation arises In the graphical approach to
the study of CUP (N), which can Involve plotting some function derived
from AMRC),* Thus Phe problem confronted by the mathematician (or
lesser beings) could be of the form "plot IN(API(plN,fZ)) as p varies
over the unit Interval and do a sensitivity analysis on the parameters."
fin (econstraimntyedof caclto nchutee coKx~(PIZuld) ie equa toe some
Ain secondtcaonetyp of scalculatio e[ncouINtered cul bequof toe forme
fixed ==a.ifrisactefnto eeteAOQ, the problem
would then readt for a given run number N and sampling frequency f,
find the clearance number I to Insure that the fraction of defective
Items passed will not exceed, on the average, a given number. The last
frequently met type of problem Is to plot IN(AII(N);pof,I) in order
to study convergence properties as N becomes large. Recalling the
practical ranges of the parameters from the first section and the step
lag from the second, we see that the kind of computational routine for
any of the above examples would require a great deal of processing time.

In concluding this section, It is hoped that the need for the for-
mer course of action suggested in section 2 ha. now been demonstrated.
The remainder of this paper Is devoted to the development of such an
=expnsion an well as certain ancillary results.

3. 0 DERIVATION OF T AFICN) EXPANSION

Sol The. 1-transform method. The basic idea of this method is to
(1) consider a sequenc 1(ol) j - 0 to a, an a function from the natural
numbers, NR, to the realI lno (i.e., a: NN+R); (2) to employ the
Z-transform to map such a function to one of a complex variable, a(s),
regular In a neighborhood of al and (3) to project back to the original

A function by contour Integration. As expected with a transform method,
it Is found that this particular method transfer@ the analytical prob-
lam of solving a linear difference equation to the much simpler algebraic
one of solving for an unknown (complex function) which is implicitly
given by an algebraic equation.
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To carry out this prosras we must mske precise definitions.

b11a.ts 1. Given a sequence, o(j), considered as a function
of N34 1. its Z-tranaform is

1(m) E 9=) (Laurent expansion).

f(s) is a function which is cle rly either regular in a neighborhood of
* (i.e., for all a such that 175 ) R(a)) or only at a itself; in the
latter situations the 1-tranafom method still works. It should also
be clear that the sue of 1(o) depends on the growth properties of
o(j) as J-w. We next define two standard sequences and an operation
between any two arbitrary ones.

•iL~a1&LnJ. The 2su&M SeauM at k, 6k1 uN{(0,), is de-
fined via

1, for k j

O otherwise.

From definition 1, its Z-transform is clearly given by

Dfinition d S. The Heavisid e at k k,H N ) utis de-
fined as

h-k

Again, fram definition 1, we have its 2-transform given by

V .) .( r .ii,

hhiula l ..il Given two sequences, oi(i - 1, 2), their •on-
new sequence given by

(a I ftl2l)k) - E• a I(k-h) o 2(h).

h-O

Letting RN a , 1(02)) ad recalling the Cauehy product for

the multiplication of two power series, we have the following relation
between aind •
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w#(5 t(s), for 18 >lX

3.2 Difference guation revisited. Given the definitions in the
last section, vs can now express the difference equation given in
chapter 2 more concisely--including the initial conditions as veil.

kPro• .ition 1. The difference equation for a: NL+[O, 1] isgiven by

(A) {a*(810 - 08 + ea 1+1))(k) - q', 6+i(k) + YHI+2(k).
Its Z-transform in given by

(B) 'a(z) - + I" p(s) p()sl¥ • ~)-s~"-B .O

Proof. (A) follows from the relevant definitions; (B) also

follows from these definitions and collecting terms. Q.E.D.

The next proposition will be useful both as a check and a tool for
formula derivations.

Proposition 2. (End-point property of 1(z))

Lim I 8() - Lim c(N) if the R.H.S.

exists; moreover, 1(c) is then regular (at least) outside of the unit
disk.

Proof. [see 7.4, pp. 257-258.] Q.E.D.

Corollary. a(z) satisfies the above proposition 2 and is there-

fore regular outside of the unit disk.

Proof. From proposition 1,

L:Lir~ I•(z) -l--(8--e) -t nI

Since the Markov chain is ergodic,

Lim c(N) n IT, Q.E.D.
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3.3 AM, f19Z V noW M hoW that contour Integration Is
logically equivalet to the Inveree Z-transform for the comple func-
tions considered here. In the rest of this paper', we use the following
abbreviation:

211:1. f'
r(z)

where r(•t) - {u/IaI 3) with I changing depending on the conetmit.

Theorem ,.I' ( ) s d operates on lt() as a projection
operator for R ) 1.f

Proof. Recall the simple fact,

(SF') f ds

which is easily proved upon letting a - Ie* and integrating.

By definition 1,

Ea~k

which converges uniforml-, for I > 1 by the corollary to proposition 2.
Since a uniformly convergent series can be Integrated term by term and
since (SY) holds, we finally have

J 'a(.) 2 di- E c(k) f d
f k-l f (k-J)+1

k-1

- G(O) Q.3.D.
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flumJ 2. For any I > 1,

Proof. From chapter 2, we have

AZI(N) -I EZ a(j).
J-1

From theorem 1 and summing a geometric series, we got (for R 1)

Nl J-1AFI(N) I E 44 mida

since 1.1• 1 In theorem 2, the geometric mum ( - 1)/(u - 1)
divergm am N• * We malt therefore first evaluate the compact exprem- i
sion in theorem 2 (using aeries expansions, the residue calculus, the
Cauchy-Gousat theorem, and the Cauchy iteg•ral theooem) and then take
the limit of the result to get Afl(u), In other words, :

Z( ) ) .I ( .

Conmequently, our first task im to evaluate the expression in theorem 2.

Theo.tsa3. (The Main Theorem)

( -1

N_

Part I * the principal part, is a compact expression that approaohes vfIll
as inc. Part >I, the residue, is a finite alteriating series rhems
terms are "filtered" binomial expressione and that moheover, approaches

zearo as N-•.
Proof. Decomposing sr() according to proposition 1, breking up

the Geomatric sem, and ling theorem 2, we have
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(1) (j) qf ((-l) d + y 2 d

Jl p (s)) (2-i)
[ I ds + Y ,d

"- [q'f' p(s)(z-) +/ '1J

Rowever, for a * 1 and 2,

f/ p (a-)-O (-1) a"N

r the t tr r r

' "* Oi 81 As '.

5:Therefore, the last two terms to D are aere since Rt can be taken

arbitrarily large. Hance, we now have left in (1):

SUM - q (q . term) + y (y - term).

Our task is thus reduced to evaluating this sum.

POr sufficiently large K,

"- 1 (see Al,. Appendix)

and vs can therefore expand li/p(s) by expanding 1 - ((n -0/1

a geometric series yielding

.iS W -O a~+' (am.Z M-O

tUming the above expansion in the remaining terms of SUM and letting
Ji. (qI term) and J (Y " tam) we have for k -1,
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i I ..

ftNOW) da

I R(+1) (0N+1) (R-1)

e~n (+7 (large i)

+ 0, an R- for

N > - (I + k), Since a uniformily convergent series can be integrated
term by team, we conclude that

in s I nonzero only for I a -(I + k)

Since sero and one are the only poles In the new integrands appearing .

after the mpenison of lip(s) was made, ve can use the Cauchy-GousAt
theorem to reduce the contour In the integrals above from i1i R 1 z
to =i1 - c and In -l c-, thereby Setting

q1  termmf (I) + f i ln+e 1

y- -- - f (2) + J (2) mL + a.

L + L will yield Part II while G1 + G2 will give Part 1. We turn
oar atiention first to evaluating the eisler Part I.

Letting a - (5 - e) and integrating the finite series In Part I
for both G, we get

X-X

N- (N+2)1

(N - I - 1)(1' + C, vhere

C- [I11-(1 + ,l " X(N--1)- (N I -21 X)X (N.-12)]
L(1 X)7 2
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Theme final results, for Part Ip follow directly from summing geometric
series (after the in ration hea been done) vith the appearance of the
first derivative, Ds JJ(.), folioilng from Cauchy's Integral thenrom.

Turning now to Part II, we get, after expanding (On1 - e)m and
1/(4 -1) in a binomial series and upon setteng Lk a '(k) th contour

N-(!+k) m

Lk u (-1)14 (82(k)s + 1) E•
where moO zO

Q~~~)U(a) (-9)"r 8(mt-r) z = do,

where

ex a (m - r)l + N - (m + l(I + 1) + a.

(-1) and (s+l) appear from the geometric series expansion of l/(x - 1)k

for k - 1 and 2, respectively; the binomial terms appear as a result of

the binomial expansion of (Oxl - B)a. Once again we have used the
theorem on the term-by-term integration of a uniformly convergent
series.

* (ex)To evaluate I' X dz (contourt 1.1 - c), we recall (SF) In the
first equation of the proof of theorem 1. Thus, we must now consider
triples of Integers, (mr,s), such that ex w -1. Simplifying this equa-
tion, we get the following indicial equation to solve; the terms in
Part 1T. are nonsero iff

N - (m + I)@ - rZ, for all triples (m,rjs)

subject to inherent natural constraints elucidated below. Because r
appears in the binomial coefficient dominated by m, we use the indicial
equation to get for fixed but arbitrary as

r(s) m a h-a-8 Max (r(s))

L M+ 1) '

Again using the indicial equation and the bounds already found for a,
we further get for the Lk to (k - 1,2)s

r m.n (N- (I+k)) W .r .(e - 1)1 -k(I+l)

N- (r(a,k) + 1) 6 + a 4_ N- (I + k) - (r(s k))
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IemuJ~udelan iprtildar, that the "filtered"
bluomdal coffialeat 10 Of the fort

(I- (rCO) + 1) 1 + a

Noting the form for the Lk and the results on the bounds for the integral
variables r. a, and I, we can vrite the final results for Part It.

ak I 4 qt E T(S]
a + TO.

r1r2(s)

Wdhere sh " (N - - k (I + r, () - )n(r•(,k)), r2(s) - N(r(a)),and

(N - Cr(s) + 1)! + 8)r(e)( -(r(,)+.)14,

Zn summary, we have the folloving synopsis of theorem 3 Cx -( - 8)1

AVI(N) -1- 1 (0 + L1 ) + y(G2 +L

ml R + Part It.

4 .1 1 t + "r [(N 1 ) \(16 -), 1P + C

Cm~~ ~~ [(-N +~J - (I - I : - 1)(I x~ (N-1-2)]
L - X)2
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In conclusion to this, the -- in section, e Maunation of the eun-
mry to theorem 3 shows that the Z-transform method applied to AII(N)
is logically equivalent to an extensive rearrangement of the finite
sun Za{J). Hence this paper could have been entitled in part: A
Rearrangement Theorem for AFl(N) .... "

3.4 Convereence .ronertius and upproximations. We have seen that
the AFI(N) expansion is made up of essentially tvo different partas
a compact (easily programmable) Part I and a messier Part 11 consisting
of a fairly large finite double sum of binomial terns each of which
being "filtered" or selected from Its own binomial expancion by the solu-
tion triples to the indicial equation. However, the difficulty of
handling such an iterated &um for computational use is only apparent for
the practical magnitudes of the parameters involved. Stated briefly, for
N large relative to I in the sense that N - (10)(1) or larger, and, in
particular, for N 1 I, only the first few termn in Part 11 need to be
retained. The essential reason for this is that Part II is, in reality,
an asymptotic "factorial" series when considered as a function of N.
Turning nov to a computational routine on a digital computer, it suffices
to calculate the toms (T(2s) + T(2s + 1)) Vs(5) sequentially at the
maximum value of e(q;f, 1), which In easily found, by the derivative
test, to be

q(Critical) - 1/(Z + 1).

For this value of q, a cut-off routine can then be inserte4 to truncate
the double sun as soon as V(O) is less than some predetersulued small=mbar.

Keeping the above discussion concerning the computational feasibil-
ity of Part 1I in mind, we now prove some theoretical results on the
asymptotic behavior of Part 11, as well as the whole API(N) formula,
as 10.

Ploposition 2. for k 1, 2, ve have

(ok + 1) E T (k) 10 [2 (k) N + 1)1 + 0().

(I+ 1) + 0() )N(1+1)-r er ~N(I+l) +

as W: through a sequence of values much that N(I + 1) is even (with a
similar expression for ZT(O)).

Proof. Factor out the leading terms appearing above from the
expressions occurring in the sumary to Main Theorem. The proof is
finished by recalling the definition of 0( 1 ) [7.8, chp. 1]. Q.1.D.
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Directly from Chia prwposittonu. ws Obsein (k 1, !2)

(D) W ( a2 (kle + 1) E T(s)

ILI'
S(6 (k)NI + 1)(I + 0 (1_)) ON(1+1)•()(•-e)°0

which approaches zeoas Woo . The analysis that vaxulted In (D) can

be refined in a number of ways (e.&., use of the LaGrange expemion1
see A.2, Appendix) to obtain approximation* to Part 11 for N ),* 1.

Combining (D) with Part I from Main1 Theorem, we can prove the .
theorem beloyw.

Theo:, 4. As *o.., AFZ(N).* A1(-). ,,

Proof. In the sunmary to theorem 3, the expresuion blocked
out and enphauised with an arrow in Part I is the only portion of the
whole formula which does not vanish as Nta. indeed, examination will
reveal that it approaches 1 - v.) = I - H I(-), The proof is
finished by (D). Q.3.D.

A more direct proof of convergence to A7r(-) can be obtained for
the (unfortunately infrequent) case thati.6 + 0 - 1. First ve prove

L Ita, + 0 1+ , then there exists an R < I such that
o( - 0) for all RO > R. Furthermore, 0 < 1 a 01/R'0 fore ome

positive inutelr i mplicitly defined by

Proof. Since / - el/n(Lnt) and 0 6 e < 1, we have

1/n(1) L•me/- 1, (2) LnO < --L Lno, and (3) LimSs/('+$, 0.

W - n +l @-" 3) L~ s/ I 3
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S•-i -i .... ." ~ . .. ........... . ... . . . . . . ... . ... . . . .. • ,

A seam now that IR 0 1/0 ) for sc a. Then,

•:*zs( - ) •e e1/(14.) .eIcft) e).

S(e ' -0) > '''')

Takin gu of both sldee of the laes Inequality yields the defining In-
equality for m. 7indly "1sua that such an a do"e not eist. Again,
from the last Imequalityg, we get

(4) a does not exLit *(el(I4) -) i *a/(1') for all m,

?jaing (1), (2), &aud (3) in the &IM. of (4) and taking the Units giveus 1 - ;L 0. which to contrary to asm~ptioa. QB

Y lmm.a. It e + o 1c t1ethan there vealte anm R c I uch that

I•(=) - A(N) l s ,constant

1u1ot. That much an I exists folowsm from the larma Taking
the aum part of .AFI(N) and an Initial contour of radiua I ), It we can
i-nediately reduce the intaerands 8s In (1) of theorem 3. lurthermore,
because the exionatme of I 1"lie, that the roots o7f (s lie within
a aR, we can also reduce 1ml2 a% to I| I Oand 11 - t• (I I * a)
since the poles of the inteuraudas are one and the roots of p(s). Thus
we have

N
- •(j) [J 1 + J 33 + y[ + ÷ J 4 ] where the contour of

SJ(J 2) Is II - I and that of J 3(J) V It In - 11 a C. Now,

I1 -=, 0l - 61(2 - =)k (I(k 1,2),k I i ii

j Pm T.t' and J-I

The remainder of the proof follow from trivial manlpulation. Q.3.D.

In concluslon, It is hoped that the need for an expansion of
AI1(N), demonstrated in chapter 2, hue nov been mt.
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4._IIU . -The varianc, of A.Z(N) to not sero (@so below).
In O o ut CS0(3) Co affect savings over that of CIP(O), it
Is necessary now to investigate this subject.

k
4.1 Calculation of P From the Chapman-Kalmooorov equation

[7.5, p. 19W] or directly in term of a(k) [7.1, p. 950]. ve obtain
the following equations for this transitional probability:

kHUpSN k va(k + 1)- w(k + 1) = w (k)

(A) Q. •. •
3

4,2 C~alulation of PSj. Sinces there Is not sany direct, simple

relationship th a( )forthis came [7.1, pp. 951-952],a mother
application of the Chopman-tono80rov equation y~eldel for this epres-
sion, the following two simultaneous equatioes!

P*SNSN P IISPMBNSN sN PSN,SN + SNIS1 |SZ9SN

k .k-1 pk-1 kpl,.
PS1,SN $ 1,8N r1N,SN $%,n •SZ IZSN SZO•HO ,N

Lo) P mand O) the corresponding difference
Lettin8 $•)direct, •PimpSe

equations, wi~th the Ini.•tial onditiow written eplicitly, would be

6( -)(M) + f (0 * 81)(+) +qV((m)
and

0(k) •vq(O * 41)(k) + fq (0 * 41)(k) + pvw(k) + Yq 81(k).

Applying the Z-transform to the above two equations yields

v + f

q ( +q[ + f ) + pVC(a) +S.

Since G (s) is known from 4.1, we therefore have two simultaneous equa-
tions in two unknowns of the form

(a,- 1) z + (b)y " -a

(qa) z+ (qb -1) y -- (qe + d)
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whose determ iant t (-1). Thus, for the unique solution,* '(), wefit:nally ob t~ain

As a staple cheak on this derivation, we calculate the limLt below (re-
umbering that 01(m) a *~ )

Lin I~h) -'aLs) a n s)).

which is corecet @In@@ the Markov chain is ereodIc,

As a corollary to celculeting the variance, we can now oalculate

k tfor any k (and, for that satter, P , from wo which to

done by the sequence of equations below.

P - 1(u) . -. 1 do J

+ • )do

k-(1+2)
*(l - 0) f Il(k -(j + 1)) + 0 k-l

k-(1+2)

(C) = (1 - s) E2 p8 k-(J+2) + &k,

The above calculation Illustrate& the generality of the Z-traasform
method as well as being useful for the variance calculations to be
liven in the next section.
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4.3 CalculatIon of VarUaLU . Fron the simple identity VAR (1 - oX)
2 VAI(X), we easily derive the following oquations:

end

() 2

(1 " .? 1lN0,I am0 bk nd ha ,e:

VAR(1() apracn iowa forzia n

Un~n (A)and B), e € andnvO1u~: the ain onued parobability mea~ur-

eo(necessprop~ly b have1D1 lle J~z•jw ua ae
- ~ E[I1 T(N), -

and •ad o :thr•L r•

w~hererld•thoe mle

T(N 2s 0,ener1 Nl o 1)0av

vher verecall the definititon of ]Z[ , ] in terns of g an, P as boein

•tX]-mc•AX•)P n) * out~come space. Q.I,D,
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The practical problem of ~astinmgn the variances given in (D)and (3) has nov been reduced to the calculation of the aipression

Tbj/N--a calculation similiar to that already done in (C). lovever, a
straight-forward approximation can also be obtained by the folloving-
consideratlons. Prom (C), noting that a(j) - 0 for j 9 I, we have

a* l I E)2 E1

Where s(k) 0 and k= O, ( - 1)9. For - (z 1 , x.,.u) c Op, defineg
the L() no= of by 11-1" *EIULI (L- 0 1,,) Usin t'h9s definition,
the equation preaedlng iLt, and mult.fplying through by R, we conclude

1 a llina the z1(N) inequality for the eonvolution, Ila....zlI I lull
ly/I, we therefore have

Dividing the above inequality through by NI and. defining cC * ) in terms

of a( w ), we finally obtain

•, wleriLting (I') i~n terms of Afl(N), we get :bk k":-ll

N /

Using (0), the approximaetion to T(NJ * (AL), (5), and rewriting all other
expresiions in terms of API(N), we obtain the final expression for

upper bounds to (A) and (3),
v(0()(N)) k * (I +- ) (1. - 0( + 1))

NIN

- (1 + 1)2 (1 - APIC( + 1))2

+ (1- (A(IN)) -FA(N)(l- On+') +
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VA%(1I(K)) i -"H. + (1 ATI(N))2 (1 - B")

+ (1 AFI (N))

In concluding this section, it should be noticed that both the
upper bounds above approach zsro as N4-.

5.0 VBAIMILITY BOUNDS. In this section, use will be made of someelmentary Nartiigals theory [7.6, pp. 209-215; 7.7, 7.9] to prove thefollowing two statesmants:

(A) a[(FI(H) L (11(3)), a] VAR, (n(N))

0B) P 1f(M) I1 n () I > ] VAP,(71(N))
a

5.1 Martingales . We start by giving the following definition for
a sequence of random variables.

Definiti.on. A sequence of random variables, {VN). is a (suver
a.. -artinital1 If f

Iv£NIvl,..., V1_k] (±. -, Z) V..kla.e], for 1 < k :N - 1.

RM let Vk -XI,(k) and UN a E Vk/N. k- •,N. Thenve have

Proposition. For I * ] - NJ • ], (UN) is a Xartingsale

Proof. By the Markov property, we have

"Ulk1lu1.... IUI1 - E[, kl,•].

Splitting Uk up, we obtain

(C) N[UkL 1u - v + AE U

U pi + 3[olU1I.
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Lettyng a 21 1V, for any j (since we are dealing with the arbitrary-
entry case) andjusing the definition of conditional expectation, we
have

On the other hand, we also have

z(k fu)~~ji) Z[U1 L k I & ai.

Comparing the 1.H1S.'1 of the last two equations, we conclude that the
L.I.S.'s are equal:

Since both of the integrands in the last equation are non-negative almost
everywhere ([a...]), we can conclude that

I[uIUL] U k )U [a.e.].

Comparing this equation with (C), we finally get

- U + [.e.].

From this proposition, we can dL.ive two corollaries.

Coolla_ 1. (l1 - a"l} Is a Sub-artingale.

Proof. Prom the proposition above, we clearly have that {(Uk - a))
is a Martingale. Using Jensen's Inequality, we have

[ItUk - mI gJ.d Zl(k U11

U I% " oi.

The equality follows from the first otatomeut. Q.E.D.

.ojollgry 2 [ ilI(N) - 3(7I(N))j) is a Submartingile, where
again, 1 • %I 28I.
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Proof. Let a -[(FI(N))], then

1 () - a a (1 - UN) - (1- Ul - a).

Ve knou that {JUN - all is a Subuartingale from corollary 1. Q.E.D.

In a similar manner, using the fact that K[E[UkiU,]] I E[U1] for
I L, we can sow that {(lI(N) - ELM(N)])) is a Submertingale; here,

howver, there are Ml absolute value signal

3.2 Molmosorov's inu ,litv. The next result needed Is Kolasgorovy'
Inequality for Submartingales [see 7.6, pp. 241-246, for an excellent
proof 1, which is given here as a theorem.

TooMM. (Kolmogorov's Inequality) given that {kW) Is a Submartin-
gale and #(z) a convex, fonotonically increasing function, we have

Mplax (wk' > a> <- h[(3)] Q.E.D.

The demonstrations of the inequalities (A) and (1) nov follow from
corollary 2 the coement following its proof, Kolmogorov's inequality
on setting *(z) - x2 , and the set inclusion

WNWIW3() • a) c W Max {Wk(w) > a),

where we can abbreviate such sets as

[WN C a] ¢ (Wk) > ]

6.0 1FURTHER APPLICATIONS 0F THE Z-TRANSVORM. Two eaxmples, In-
directly related to AF1(N), and a discussion of the transform method
applied to more complex ebnpling plans make up this concluding chapter.

6.1 Rzagles. The first example, part of which Is to be used
later, deals with the derivation of the mean time of sojourn In the
inspection phase from entrance to exit (to phase 11). It suffices to
consider a modified Markov chain with all of phase II as a new a sorp-
tion state--called A. Then, the problem becomes: calculate NO
where the ',4' symbol makes note of the modified chain. From the C-K
equation, we can derive the following equation for calculating

pk - a2(k).

1-1

2()- ( pq-J(02 6 j+)(k) + qIH (k).

27o
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Vsins the Z-trans form yields

t 2 (k) 2( ) q I" -, 1 . 0 in p. ).

Performing the simple end-point test,

L's ( Xj ) Ig2(s) U

a8 eXpected. Roployinl the method of first entrance 17.5, pp. 214-2151produces the folloving equations;

Opk -~HI A (k) 'or
HO, " (HO,A * PAA)(k o

ak W (y (k), where

yl(k) ti the probability of first entrance to A on step k. Using theZ-transform on the lest equation yields

/() --

By definition of first entrance probabilities,

3I,111 - k yl(k).

k-l

Using the formula for y (x), we finally have

SL nIj] - Lim 91 (S) D - d2

which can be evaluated as in chapter 3.

The second exmple, similar to the one above, concerns the calcu-lation of EsN[Tf] where again a (new) modified Karkov chain is used
with phase I nov serving the role of the absorption state--called 3.
For this example, the C-K equation gives
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1 k1
F. U s Px,= P *. SNs i' and

k 1k-"1 + ' k- d
. 5-1 5 1+ 5p1- + fp HlW

Letting 03 (k) - PN.3' us1in the Z-transfoim on the above sLmultansous

equation., solving for ^a3s(), and tranwfomlpg back yields

(a) ~ f~ '. and
S'•~~3(' 84- 1)(8 .. 0) ,od•

(1 -i-*: 01)a (k) 2 (k).
I fq 3

11d-point analysis 484An gIv. *3(-) - 1. One could then proceed ae
in the previous Umploe.

We na use partt of the eamples In the last topic to be treated
In this chapter.

6.2 sihter level smurling RION. We will present below a poset-
ble methodology for analysing hUsher level plane through a systnimatLc
us• of "operator-box" analysis. First, It is convenient to give a
short outline of opewator-box notations (a1so called block diagrmsii
in control theory) which appears In Figure 3.

FlGUU 3.

OPERATOR NOTATION "OPERATOR-BOX" SYMBOLS

(1)1 SUM

L, y

(2) COMPOSITION - 1

L,O0 L4

(3) INPUT-OUTPUT
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With reference to diagrm 3 in Figure 3, we can apply the Z.

tranaf ors to the operator and both sequences to get

AL(s) GR~s) a ?h(a) or 'a\s)

This is precisely the foMUlized version of what was previously done
in this paper. Going one step further, remembering the relationship
between A and *, we can write

,(a) 9(a) C,)+oi(k) - (f * 0) (k) (- .

We can thus write the diagram in the move convenient way:

* - - - -- .- *

With these prelwuiaries out of the wayo we can sam put forth our
tentative procedure for handling an type of sampling plan. A starting
point for research would be CSP(N). Concerning phases I and I1, we
have the following information.

(1) From chapter 3, we have for CSP(N)

V (q1 6+y YIl

(2)" Iron e. ample 1, we have for phase I alone

L 2 a2 in02 - q RI.

(3) From example 2, we have for phase It alone

L3 a3 " B3 " ( ! )

I-'

In the above, L1i 61 + 081+1, L2  E Pqi 8j+1  andL 3  1- C61

0
c - V/(1 - fq). Given 01 as known, we n- try to find new inputs and/or

nw operators that can be combined with portions (2) and (3) above to
yield a diagram equivalent to that of (1). With this procedure in uind,
the following three types of arrangements strongly suggest thmeSlve
for investigation (using the more manageable f * notation); refer to
Figure 4 for the symbols used.
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rig=l 4.

S'HALZ I AND PhASE it CSP(N)

*I i(D
(B)o

(1) y -0,
(a) f 3 * (f 2 * (f 4 * a + ) + f * ) l

(b) f4 -(' t~ 3 2 /1f 2) 3

(c) **0 4 (,) -/1 4 (,).

(2) y - 83, leaving out (B),

(A) f + f + 3

3 2A 4 1 3 1~

(C) Sie a (1).

(3) y - unknown input, leaving out (D).

(a) f 3 * (f 2 * +2 + 7) - al

(b) -ffB) 3

(c) y(k) f y(z) zk dz.
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The results gleaned from the foregoing investigations, concerning the
forms that f 4 and y take, could then be used in the more complex plans
to solve for the final unknovn output.

Thus for a sampling plan vith one clearance stage, (r - 1) limited
sampling stages, one unlimited sampling stage, and (r) checking phases,
the procedure envisaged would be (1) analyze each phase (or stage) by
itself and, taking account of its place in the plan, derive a formula
for either ,k P k . or P (A a all possible entry phases from

HO,SN13 SVJ,A orCKZ,A
the phase under consideration); (2) the outcome of this analysis should
result in an f for each phase; and (3) put the "operator-box" symbols
together with the appropriate additions and solve for the unknown output.

In conclusion, use of operator diagrams further suggests two addi-
tional areas of inquiry. The first Is the possible mechanization by
electronic circuits of a given plan since all operators Involved can
eventually be represented in terms of the fundamental 6'tI. The second

area is the possible development of a relationship between the respon-
miveness of a plan and the stability of a discrete linear control
syst9m.
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APPMIfh

A.- Ixpansion of 1/9(s). In the proof of theorem 3, we expanded

Ia g M6:1 1+1l/p(s) by using the binomial series for 1/(1 - v), w - (0s - 8)/s
owever, two other expansions are also possible but result in Integrals

that are hard to evaluate. The results appear in (1) and (2) below.

1(z+1 + 1 )21J I1(, - )(a - 1)t
.,0 8)k

k

for t - 1, 2; k varying from 1 to I + I; and * (I + l)st root of 0.
U[

m3

(2) ' ')) J( - B.,l,,( "1)
.-0 (s z t

foa t - 1 2 . Both evaluations require higher order derivatives by
Cauchy's integral theorem. Nlevertheless, a connection does exist between
the above expansions and the one used In theorm 3.3. This connection
Is provided by Newton's formula for the derivatives of the product of
two functions:

k
D~k (u(s)v(s)) *~(i kj

J00

A.2 The LaGranme Snansion. [7.10, p. 61 In this section, we give
an alternative to the upper bound for ET(s) in chapter 3 by using the
LaGrange Expansion Theorem. First of all, it clearly follows that

r2

(A) • T(s) 1 • T(s).

r-r 1  r-O

By regrouping the factors on the L.H.S. of (A) and using the elementary
fact that
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we can rewrite the R.H.S. of (A) an

k-i

In order to use the LaGrange Expansion to obtain a close&A tmpreusion
for (B), ve must first consider

(C) Dy (f(y) + g(y)), where

f(y)) - - ON-"+*h(y),

g(Y) - 0 -~ h(y) + Z j D7 (k-1) N.-1+sDhy)( -) j
k-i

yI-I+l+e) y

and h(y) - (j-:+1+)

layever, (C) - (B3) where the prime denotes "no evaluation of 1." We
noa rewrite (C) as Dy(&(y)) + Dy (f(y)) ; from LaGrange's Theorem,

(f(y)) n D LN +' ' - + ÷I

where r(y) is the unique solution to

(D) r(y) - y e •

(Br(y)) 1

provided that, by Rouche's Theorem,

) B)1 1  < IWO)- 1

for any w on some contour Iu " Y I b, b > 0. Once more applying the
htpanion Theorem, this time to (D), we get

()r(y) - (y )()
(e001 k-O

(8 y ) -( 1 ,. for e/y < 1.
(By,) (2 . (E- )
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7ro. (E), we consequently have

(F) Dy (r(y)) -l+~ §r [+ 2i
(0y) 1(1 - (e/y))L y2(1 -y (e/y))J "

Thus we have,

(C') DyS(y) + Dyf(y) - 1 - (By)N + r(y)N-X + D (r(y)).

Evaluating (C') at 1, ve finally have from (A)

t2
N-I~e N-I+s ST(e) l- B + (r(l)) r'(1)

ror1

where r(l) and r'(1) are given by (E) and (F), respectively.

To conclude this section, we notice the trivial fact that r(l) 1
from (M). Thus ye have another proof that Part 1I, in Theorem 3.!,
converges to zero provided condition (DI) holds for the case y - 3.

However, letting w - 1 + ce, the validity of (D') follows from

(1 - 0)B > (W/o):

from sufficiently small c < 6.
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ABSTRACT. Applications of discrete event, digital simulation techniques
to production line modeling are herein discussed. Six network models are
diagrammed for GEUTS IIIQ, a language specially designed to resolve sto-
chastic networks such as those exhibited in production line problems. The
applications are then generalized to a wider class of stochastic networks
characterized by nonnegative, unidirectional branches in which renewal
processes (cycles) may occtr. GERTS IIIQ symbolic diagrams accompany each
application, followed by an explanation of the network and its functional

utility. Where necessary, analytical expressions for certain statistical
results are derived fraz conditional probability theory and presented for
verification purposes.

INTRODUCTION. During recent systematic analysis of a high speed, auto-
mated production facility, several modeling techniques were developed to
realistically portray common manufacturing operations (1). Each tech-
nique was designed to simplify the task of simulating a production line,
component failure, buffer storage, and component transfer activities
within a continuous type production/inventory environment. Although it
was not readily apparent, these methods can be extended to resolve anal-
ogous problems in network applications far removed from the production
line. The purpose of this paper is to describe basic procedures which can
provide ins'ght into a class of networks containing repetitive or renewal
(cyclic) production operations, positive flow capacities, and unidireco
tionality of flow along each arc.

All of the procedures to be described are modeled using GERTS IIIQ,
a discrete event, digital simulation language. GERTS IIIQ, an acronym
meaning Graphical Evaluation and Review Technique Queueing Simulation
language, is particularly well suited to resolve the discrete scheduling
activities that typically arise in production and inventory systems. Sto-
chastic process rvents, soxch as the occurrence of a tool failure, for
example, can he conveniently controlled by adjusting hhe parameter settings
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on BTS decision nodes. Activity times for various network events
may be elected from any Ot Sine different probability distributions
and appropriately scaled to mset simulation requirements. (33T5 is
also suitable for modeling production system which include buffer
storage. luffer@ (queues) are come l7 installed between succeeding
productive processes to smooth component transfer irregularities
arising from machine failure. Statistics can then be computed on
average, minimm, mazimum, and starward deviation of such buffer
characteristics as utilisation level, busy tim, end number of compon-
ants balked from full buffaers. This feature allows relatively cam-
plex queueing problems to be evaluated and tested for parameter sen-
sitivity within a reaesonabl period of timo

A brief description of Rt8 UZJQ is contained in the appendix.
For more detailed Information, the interested reader is di•teted to the
references on GMTS and its antecedent, OAP (2-6).

NETWORK H ODfe Six basic network configurations are described in
operational detail.

Network 1. - Individual noufat9urina Process

An Individual manufacturing process is modeled In figure 1. by
mans of a decision node and two deterministic nodes on which statistice

. of production and failure events are maintained. A single starting
event emanating from source node 2 initiates the manufacturing process
and from that time, the source exerts no further influence on simulat-
ion statistics. Several theoretical results my be verified on network
1. First of all, availability is a quantity related to operative and
repair times that characterize a given process. Let

W n3 - Hsan time between failures

Kir - Ykan time to repair

Using thes definitions,

Availability - ICDF
Ki31+ KIM

Productive and failure cycle times are symbolically represented by T and
KM while probabilities of production and failure are P and 1-P, each
respectively. From these values, the expected operative and repair times
are FT and (l-P)XITh so that process availability can be expressed as
follows:

P!
Availability - PT + (1-P)311Th

One partica.-tr choice of P equates these two availability expressions and
forces the simulation model to demonstrate desired operative, failure, add
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cyclic time relationships, that being

1 + TiNTBF

For example, assum XNBF - 100, MM 10, and T 1 I. Then availability
.9091, and the required probability setting would be P a .9901.

All of the parameters necessary to test network one using GERTS II1Q
have now been defined. Output statistics should display an availability
of 90.91%, production cycle tim of unity, repair tim of 10 units, and
branch realisation probabilities of 99% and 11, for production and repair
events, respectively.

A second theoretical result of this network arises from considera-
tion of completion time statistics. The expected completion time, g(T),
and its variance, V(T), for a single unit of production are derived from
condition probability arguments, as illustrated by Pritsker and Uhitehouse
(7).

I(T) m T, + (l-P)T2 /P

V(T) - Tl + T2 (T 2 -1) (1-P)/P + (T2(l-P)/P)2.

Since figure I calls for completion of 100 anits of production, observed
values for E(T) and V(T) will be 100 times greater than predicted here.
Statistical convergence of simulation data to these theoretical predictions
is easily demonstrated with GURTS IIUQ by plotting both quantities against
the total number of units produced.

Network 2. - Serially Coupled Processes

Figure 2 illustrates serially coupled processes configured such that
the second stage (node 5) does not function until it receives output from
the first stage (node 3). In addition, each item manufactured by the first
stage must be accepted downline before further production on the first
stage can resume. Both criteria are satisfied by demanding receipt of two
completed activities at node 4; one arriving from node 3 and a sanrnd
from node 5. These branches signal the operability status of both stages
and serve to regulate further production. Due to the interactive nature
of this network, its output cycle time, i.e., the time between finished
items observed at node 6, is constrained by that stage containing the
longest cycle time. Thus,

Network Cycle Time - Max(T 1 +Nr2 , T3+I14)

where N - number of failure loops occurring between nodes 3 and 8,

M a number of failure loops occurring between nodes 5 and 9.
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The probability that exactly N and 1 failure loops will proceed a pro-
duction event is just

Expected netvork cycle time, 3(T), can be obtained by suwming the product
of network cycle time with the failure loop probability for all values of
N and M between zero and intinity.

R(T) - PlP,)Il-F 2l)u( 6l')sA(T 1 +3* 2,T ' 4 ).

Since figure 2 calls for completion of 100 production units, the observed
value of 1(T) will be 100 time greater than predicted here.

Network 3. - Buffered Serial Proceses-

Figure 3 demonstrates two processes connected in series but physieally
separated by a buffer activity, queue nod* 5& The buffer absorbs produce
tive output from node 4 and directs It to the second process vwr node 8,
given that the second process is currently operable and awaiting such
input. Violation of either condition causes the buffer to augment Its
inventory level until the second process resume operability statue.
Augnmtation ceaseo, however, when the inventory level attempts to exceed

* maxiýmm buffer capacity since the GTS program automatically balks fur-
ther input away from a full buffer. The balking unit then triggers network
6odification three whereby production on the first process terminates
pending return of the second process to operability status. Zn essence,
modification feature three severe the feddback loop from node 4 through
12 to 3. Since no feedback pulse can propagate between nodes 3 and 13,
further production on the first process immediately halts until the second
process resume* its operative status and signals that fact by sending an
impulse between nodes 10 and g. At this point, a seomnd impulse passes
from node 8 to 16, 17, and finally to node 3 so that the first process my
resume production. Sall time phasing factors of magnitude .0001 have beon
inserted between certain critical nodes to guarantee proper functiouing of
this network,

Individual process availabilities are determined by proper selection
of the various Ti and Pi; and explained for network one. Network avail-
ability in this type of serial configuration displays a strong dependence
upon the buffer cbaracteristics of muximam capacity and initial inventory
level. For a zero capacity buffer,

Network Availability a * Availabilityt

This condition reflects the interdependency attributable to lack of stor-
age capacity between processes. Essentially, the entire network is opera-
tive only during those periods when both processes are simultaneously
operative. In contrast, specification of an infinite buffer capacity
facilitates meaxiuim independence between processes so that

Network Availability M Kin (Availabilityi)
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Network availability under the if1 tite buffer situation to effectively
throttled by that process containing the lovest availability.

For values of buffer capacity between sere and infinity, network
availability varies monotonically within the limits just discussed. The
exact form of this dependence is strongly influenced by the totality
of system parameters and cycle time distributions employed end it cannot
in general be conveniently predicted. Eowever, statistical data relating
to the dependeoe awe easily generated from the 51T3 =del by graphing
observed network availability as a function of ýInum buffer capacity.
Zt should be emphasised that observed availabilities may differ from
theoretical values assigned to the model. Nonte Carlo solutions generally
consume copious quantities of computer time before numerical predictions
assume sufficient levels of accuracy to become useful. Divergence between
observed and theoretical availabilities can be significant for short coo-
puting runs or even moderate length runs utilising probability parameter ,

settinge near sere and unity since these settings are particularly son-
sitive to discretination error associated with the decision process. A
more detailed discussion of decision node discretisetion error is pro-
sented in referenee 7.

Network 4. - Distributor with Inout te Denedence

Figure 4 utilizes the GMfTS network modification feature to sequen-
tially distribute incoming production between nodes 4 and 5 on a first-
in-first-out (PF10) policy. Sequential distribution exists as long as
the interarrival time, 1, at node 4 exceeds the sun of the distributor
cycle times, T2+T3 . Violsation of this requirement results in a production
flow bias favoring the loop containing the longest cycle time. Network
4 distribution characteristics are sensitive to input rate, a condition
whose significance varies according to the context in which the distributor
must fuction. Observes howver, that the distributor can accomodate
additional nodes by extending the principle of network modification as
often as is necessary. Figure 5 illustrates such an extension to a three
node distributor.

Network 5. - Distributor with Inout Rate lndenendence

For those situations demanding strict FIFO distribution, the dis-
tributor should be reconfigured as in figure 6. The basic diffbrenca
between networks 4 and 5 resides in the additional feedback branches con-
necting nodes 6 to 3 and 7 to 3. Their presence limits the netourk input
rate to values which guarantee sequential properties in the distribution
by effectively providing a lowe bound on network cycle tim:

Cycle Tim Limit a Max (T 1 , T2 , T3 )

Network 6. - )ibltinlexer Unit

Figure 7 illustrates a multiplexer network designed to accept and

fransfer input from several channels to a single output channel. Basic
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characteristices of this mulipleziug operation include a physucal separa-
tic. of input from output, periodic input channel saeptlug to determine
whether units are actually awaiting transfer, and rate control on 6nput
cycle time. As units enter the various input channels, they first engage
network modification activities and then enquous in storage areas for
further processing. Given a clear output channel, transfer is conveniently
accomplished during the next sampling interval by means of a detection
signal that circulates in the output section and initiates appropriate
switching mechanisms. Simultaneous transference of more than one unit in
precluded by network logic since only one set of switching relays activates
transfer are held in abeyance in the input section. Input unit sampling

is periodically performed every T 3 time intervals. The output channel
cycling t"m, 24, Is composed of component transfer plus switching time
lumped together as asingle quantity.

Input rate control is a logical function that has been implemented
as follows. Once a unit enters a particular channel for processing, the
entrance to that channel close* until the unit successfully transfers.
Completion of unit transference initiates an unblocking operation that
opens the input channel. This on-off logic can also be extended further
back through the input channel to control the rate of unit production be-
fore such production enters the multiplexer.

U1MARY. Six network designs were documented to foster greater interest
in the use of GRIT$ UIIQ, illustrate problems arising in verification of
model behavior, and avoid duplication of developmental effort in discrete
event production line modeling. The operation of each network was dis-

cussed with theoretical predictions being presented for comparison against
observed statistical results. Although the techniques were primarily
conceived to model production line activities, their applicability can
easily be generalized to any network flow situation involving renewal
operations, positive flow capacities, and unidirectionality of flop along
each are.
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OuTS MZIQ networks consist of nodes and directed branches in which
each node represents completion of an event. The basie GCITS program
perfot.s a simulation of the network by advancing time from event to
event. The start nodes are realized at time zero and all activities are
scheduled from them. Rvents are sequentially realized thereafter until
a specified number of sink nodes is realized, this number representing the
completion of a simulation run. The procedure repeats itself until all
the desired runs are performed, at which time, the output statistics are
printed.

A node is deterministic if the output branches (activities) are all
simultaneously scheduled, i.e., the probability is unity that all branches
emanatiag from the node are taken. A node is probabilistic if only one
emanating branch it taken, where the selection probability is proportional
to a predetermined parametee setting. For event end sink nodes, table
A.l demonstrates that the A parmter specifies the number of time ac-
tivities incident to a node oust be completed before the node is realized.
The A parameter specifies the number of times the activities incident to
the node must be completed after the node is realized the first time to
realize the node again and to reschedule activities. The N parameter is
a number assigned to each node; all nodes must be assigned number and all
numbers must be unique. The C parameter of a queue node specifies the
Intial number of item in the queue; the D paramster the maximum number of
item allowed in the queue. Coding format identifies deterministic nodes
by semicircles on the output side and probabilistic nodes by triangles.

Branches of GCUTS IU1Q networks represent actLvities and/or information
transfer* Associated with each branch are the following characteristics.

(1) The probability that the activity will be initiated, given that
the node from which it emanates is reallsed;

(2) The tim to perform the activity once it is started. The time
function can be distributed according to one of the available
types: Constant, Normal, Uniform, Irlang, Lognormal, Poisson,

SDBeta, Gaoms, and Beta fitted to three parameters as in PUT;

(3) A counter that records the number of time a group of activities

Is esercised before a node is realized;

(4) An activity number which permits network modifications.

The activity emanating from a queue node represents a sertice activity.
With the present version of the program, only one service activity can be

*zassociated with a queue node.

Counters can be assigned to a branch or a group of branches. The
number of counts recorded is always referenced to a particular node.

Network modifications are possible by assigning an activity number
to a branch, and when the branch is activated, replacement of a node by
another node occurs. The input to the replacement node is the same.
Only the output branches are changed by whatever branches emanate from
the replaced node.
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John Varsher
Production Planning and Control

Ordnance Department
Naval Ammunition Depot

Rawthorne, Nevada 89415

MJSU This paper presents the methods eployed by the Bmell Caliber
Asmunition Nodernization Program (SCAMP) to automate the reporting of
maintenance actions on Nodule Al of their naw generation production equip-
meat (NOSF) for manufacturing 5.56m anmuition. The reporting procedure
utilises the process controller (minicomputer) to store failure times and
causes of failure. Item control is obtained by use of serial numbers on
assemblies. Sub-assemblies are not serial imberod but are included in
the failure cause code to the controller.

Checks on nem items, reliability degradation, and on out-of-control
upstream operations can be obtained because of the configuration of tooling
(24 separate, identified lines). Statistical tests being implemented to
test for reliability include the use of non-parametrie statistics before
sufficient historical data has been gathered to generate a probability
density function. After probability density function can be assumed,
continuous control charts are illustrated by use of computer graphics for
a management information system.

Any production plant, from a Job shop through a dedicated facility
requires a certain sequence of operations. These can be described in a
broad sense as:

1. Quality inspection of raw materials and materials used
inproces. (parts, capital equipment, oils, gretaes,
utilities, etc.).

2. Processing the raw materials into a finished product.
3. In-process inspection for quality and process control.
4. Final verification inspection of quality prior to shipment

or stowage.

Quality inspection of raw material, is vital to eliminate quality and
production (reliability of production equipment) problems. Final verification
inspection is required to assure that all processes are in control. In-
process inspection is utilised to segregate "out-of-tolerance" items from
subsequent operations. In-process inspections, if properly placed and
planned, can be essential in reducing downstream downtime and discovering
upstream quality and reliability problems so that corrective maintenance
can be instituted. Control can be maintained by manual or automatwd
methods, but this paper viii deal in only automated, in-process reporting
of inspection and reliability deficiencies. Figure I illustrates the process
and information flow.
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optimal control of say process can be attained by monitoring the
process parameters. Conditions creating "out-of-teleranse"1 conditions
can be detected before "out-of-tolerance"l items are produced. but,
because of the difficulty of measuring these parameters (and even determining
what parameters to measure) end reliability problems within the equipment
measuring these parameters, In-process inspections are utilised as 01thot'
control parameterd or as a back-up system for verification and control.

Digital process control computers are emerging an an Important part
of process and quality control. The process crintrol computer is a reliable
and accurate tool for solving complex maniafacturing problems as mell "s
simple logical control of machine@. An Important new development is that
of the minicomputer, with their low cost and ease of programing changes.
inspection paramters can be readily changed and Input parameters added or
changed with only minor programing.

Inspection reporting can be accomplished through digital signalic such
asg-no go, visual defects enterred on a keyboard, and phetodiode circuits

and analog signals such as contracting automatic gaging and non-contacting
air, light or laser gaming_(See PLijure ~

Analog Digital

Signals UAMLP. keyboard &
Transducers 1. Dimensions 1. Go-no to

S2. Weight 2. Visiual defects
,3. Balis1tic S. Dimensions

Performance

Modes

Figure 2a in-Process inspection Reporting

Reliability, the probability that an Item will perform properly for
a certain specified time, is an especially important parameter in the
operation of a system. Maintenance downtime is the other essential
parameter determining production system availability. Inventory control
of spare parts, production planning and scheduling, maintenance action
scheduling (both preventive and corrective) and maintenance manpower
requirements are all functions of reliability, availability and maintainability
(IM). The purpose of this paper ts to tie the reporting of maintenance
actions with (1) computerized data processing and (2) proven statistical
analysis techniques to
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1. Record tool and equipment life data,
2. Generate process control notices when out-

of-control condition is noted,
3. Relate failures to possible causes,

4. Prepare standard maintenance reports and
5. Prepare special reports upon request.

INPUT FAILURES, FAILURE CAUSES,

TIME C7OCKX P ODED BY PQC I

DATA POSTED FOR ACTIOK1
BY MAINTENANCE DEPARflM

STATISTICAL TESTS RUN FOR
OUT-eF-CONTROL CONDITION
1. SHEWART CHARTS
2. REGRESSION ANALYSIS FOP. CAUSES

SPREPARE STAMNDAR MAINTENANCE
REPORTS, SPECIAL REPORTS (UPM

STORE DATA FOR DETERMINATION
OF PROBABILITY DENSITY FUNCTION,

RE.EGRESSIO( ANALYSIS. ETC,

Figure 3. Flow of Equipment Failure Data

An example of a reporting system being implemented is Module Al
of their new generation production equipment (NGPE) by the Small Caliber
Amanition Modernization Management Office (SCAMHO) at Frankford Arsenal.
Module Al manufactures 5.56um amunition. The reporting procedure
utilizes a process controller (minicomputer network) to store failure
times and causes of failures. The process controller, called a Process

Quality Control System (PQCS), is responsible for monitoring quality and
production rates. From these, the PCQS controls production r--is and
issues minagement reports on the operation of Module Al. The i'puts to
the PQCr are (1) Inspection data (quality assurance), (2) Tools lost
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from preduetioe (IM provides tim cloak), sod (3) Coded information
from the operating •ad maintenance persoomel for equiment identification
end failure caeus. The coded information it enterred through teletype-
writers. Figure 4 illustrate* the system monfiguration with Inpute to

Confiturstiou Mauasmmnt. In order to identify tooling as to
submodule and turret, the following convention will be utilized for
providing each tool module with a serial number (S diait number).

Type of 3quipmsnt Nachioo Consecutively

01 0 184

figure 5. Serial Nimber for Tooling.

This ON will allio data to b generated for each tool and by tooling
bype (by turret).

Additiomally, whenever a tool is brought into servine (i.e., a serial
number is assignad it) a file ti reserved in the iq for data and as a
check for actually hbving that tool in service. Whemever data is fed into
the WA about tooling, a search to performed to make sure that that file
io in existance, i.e., the tool O/N exists. As tooling to replaced em the
machinery, a data input is prepared showing the now tooling 8/9, the old
tooling O/N, and the time and date (time and date will be supplied by 1Q0
itself), and tool station number (1 to 24). Aa eample of the data
input Is:

NIne T /M Old Tol 8* Tool ftteos No.

01 020184 01 020207 005

SFigure 6. Report of a Tool Chanp.

ly replacing a tool module 3/N, the 18 will not llow the old tooling
to return to the production system until the tool room perform repairs. A
remarks card relating maintenance action would be

8/11 emairn Reanured

01 020207 0 07

Figure 7. Tool Room Report.

The "action" eolum would signify tool module dispoeition, 0 for return
to queue and 1 for retirement of that tool module. Am the type of repairs
required are documented, separate codes will be generated for the 'Repairs
Required" eoluim.
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of rUtsiVtmt# iar f onf 8RuIM on VsaetoMitenanc
nation mbe broken too, modules turret station and lime, aad

tooliWN "ype (also by module Wosn felm-eatore r*usalled). xy considerimg
only tool rodul88 "bee" tool .&lIes ea be identified as "Out-of-eoutrl"
a not all0Med to re-eater the prOduotion system. Tool staeiotA and
upetrsem Operatieos CAM be checbed for out-of-tolermce performance by
checking by turret station and line. partieular tooling design problems
eam be abahed es8g data by teoolim type.

Moere. /5 identification is "t required
the folloiang eonvetios viii be used

to reaspr repairet

AW kI Jm Tool stto kMLEL

01 07 00 O9 109

14pure S. Report of a Repair to a Yon-Serial Numbered Stan

This data input will be supplied to the 18 as the item to replaced
showing ubmodule amber, turret .aer in that submodule, tool stations,
iteo miber, a coede to indicate what repairs wre required and probably
cause of failure. honever a tool station is not involved, such as a
chain, a 00 code will be used. Whoenver verificatioi of failure node is
required, the it8m should be tesged (physically by a red tag requesting
aaalysis and in the !Q by a flag). The flg is to be removed only by
imputing an updated failure mods.

statistical Teats to be Perform•d on the DINt. As a check for
Process control, analysis of the data will be required for tool and item
life 1esults of the statitical tests will provide a mans of verifying
the process control check itself vith a time lag.

Before sufficient historical data is available for generating a
probability density function, p.d.f., a non-paresatric reliability estimation
procedure vill be used. Whenever sufficient data becones available to
escimate the parameters of the p.d.f., the proper density function mya be
found for reliability estimation.
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BAYESIAN INFERENCES FOR INTERVAL
RELIABILITY OF WEIBULL COMPONENTS

Ronald L. Racicot
Bengt Weapons Laboratory

Watervliet Arsenal
Watervliet, New York 12189

ABSTRACT. Bayesian intervals have been generated for the interval
reliability of a component within a system given component failure data.
The reliability index considered is the average interval or mission
reliability of a component over system life under the assumption of ideal
repair. Under this assumption a component Is replaced or renewed with a
new component whenever failure occurs during system cperation yielding a
renewal process.

The distribution assumed for component interarrival failure times is
the two-parameter Weibull with both parameters unknown. Since classical
confidence limits cannot generally be found for this problem, a Bayesian
approach Is used to render the problem at least numerically tractable.
Uniform priors were assumed for the Weihull paremeters to simplify deriva-
tions and computations and to approximately "npresent complete prior
ignorance. Since this is not necessarily true, a number of Mont# Carlo
trials were conducted to study the exactness of the Bayesi.!n intervals
from the classical frequency viewpoint. Results indicate that the
Bayesian intervals generated yield close to exact frequency intervals
depending on sample size, Weibull shape parameter and the true
reliability.

1. INTRODUCTION. The general problem considered is the determination
of inference infor aion for the interval reliability of a component within
a system from failure data. The reliability index considered is the average
interval or mission reliability of a component over system life under the
assumption of ideal repair (l]. Under this assumption a component is
replaced or renewed with a new component whenever failure of the ccmponent
occurs during system operation. In this instance coponent failures and
subsequent replacements form a renewal process. The distribution assumed
for component interarrival failure times in thls study is the two-parameter
Weibull with both parameters unknown.

The problem is basically one of determining inferencing information on
a relatively complicated function of more than one population distribution
parameter. Since classical confidence limits cannot renerally be found for
this problem, a Bayesian approach is used to render tne problem at least
numerically tractable. Numerical techniques were develooed for generating
Bayesian limits for the average interval reliability of a Weibul1 component
over system life. An approximation to the interval reliability valid for
high reliability components was also made in the num.erical work to improve
computational efficiency.
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In the Bayesian formulation, uniform priors were assumed for the
Weibull parameters to simplify derivations and computations and to
approximately represent completx prior ignorance. Since this is not
necessarily true, a number of Monte Carlo trials were conducted to
study the exactness of the Bayesian intervals from a classical fre-
quency viewpoint. Results indicate that the Bayesian intervals
generated yield close to exact frequency intervals depending on
sample size, Weibull shape parameter and the true reliability.

2. STATEMENT OF TFE PROBLEM. The problem of specific interest is
the determination of the reliabllity of a component within a system for
a mission time interval (t,t+c) where t is the system age and T is the
mission length. Prior to time t the component could have failed and
been replaced one or more times. For the non-constant failure rate
component, the interval reliability is a transient function of system
time. The general formulation of this problem is well covered in the
literature with only the final results being summarized here [1-5].
The reliability In this case is given as

t
R(t,T) - 1-F(t+T) + f [1-F(t+T-x)]h(x)dx (1)

0

in which R(t,T) - Interval reliability at system time t for a
mis:ion length T.

?(t) - Distribution of the interarrival times or
first failure times of the component as a
function of component age.

h(x)dx - Renewal rate or density which describes tibe
unconditional probability of failure and
subsequent renewal at time x.

Another form of equation (1) wLich is more suitable for numerical
computation is given by the relation [6]

t+T
R(t,T) - 1 - f [l-F(t+r-x)]h(x)dx. (2)

t

In equation (2), integration is required only over the interval (t,t+f)
whereas In equation (1) integration over the entire interval (o,t) is
required for each different value of t. In addition, a simplifying
azsumption can generally be made in equation (2) for high reliability,
components (i.e. r<< Mean time between failure). In this case F(T) a 0
and equation (2) reduces to

t+T

R(t,T) -1 - f h(x)dx. (3)
t
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The renewal rate h(x) In the above equations Is a function of the
underlying failure distribution of a component given by the following
equation:

t
h(t) - f(t) + I h(x)f(t-x)dx (4)

0
in which f(t) - dF(t)/dt.

Solution of equation (4) for given f(t) can be accomplished using numerical
methods [6-83 or, for the Weibull distribution, through the use of the
power series solution given in reference E9].

In practical applications, the transient reliability In itself is not
entirely useful, for example, In making general comparisons of component

1liabi ities or in specification of required reliability levels for
components. This difficulty Is often overcome by considering either the
worst reliability or the average reliability over sone specified systom
life. In this particular study, the average reliability Is considered
and is defined by the relation

Ra(T) n 1  IL RI(

In which Ra(T) w Aerage interval reliability
R1 (T) a Reliability for the ith mission.

n : Expected number of missions over system life.
T Mission length.

Using equation (2) for the reliability of the ith mission with system
time t being set equal to (i-l)r, equation (5) for average Interval
reliability reduces to

Ral T) 1- I Gx)hlx)dx

in which T * The specified system life
U Tn

G(x) -Function [1-F(T-y(X))] where y(x) Is equal to x on
the initial interval (oT) and is then periodic with
period T for O)T.

For the approximate reliability given by equation (3) average
reliability becomes

0
Ra(T • i-.n1 j h(x)dx.()

The failure distribution F(t) assumed in this work is the two-parameter
Weibull given by the expression

" 1 - exp (-t)

f(t;QO) alot exp(-323) (8)
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in which 0 a Shape parameter

a 1I/nB where n is the scale parameter or Weibull
characteristic life.

The parameter a is used here instead of the usual characteristic life
to facilitate derivations of the Bayesian intervals to be presented leter.

Finally, it is assumed that c aponent failure and suspension data
has been generated where x.4 for l-1,...gnf represents n failures and
xsj for Jul,...,ns represefts ns suspension or censored times. Inference
inYormation in the form of confidence limits Is then required for the
average system reliability given by equation (6) or (7).

3. DCUtEINi2MNAT .QFe A MESIA INTERVALS. In this study Bayesian
intervals are dertved through the use of the likelihood function and
Bayes' theorem. Details of this approach are well known and can be
found in the literature E10].

The likelihood function *or the Welbull distribution is given as
[11] T.S. - nf nf Lx(x)01

• a(0)anfexp(-ab(O)). (9)

in which X - Sample outcome Xfj for i-l,...,nf and xsj forj-1l,... Sn5 .

T.S. - Summation over total sample including b.th
failure and suspension times.

a(0) - nf (xft) .1

T.S.b(O)- I xjB

A simple assumption for prior distribution of the parameters a and 8
is the uniform where * and 0 are assumed independent. This simplifies
numerical computation and derivation of posteriori information about the
parameters and, more important, functions of the parameters. Assuming
uniform priors does not necessarily mean assuming maximum ignorance of
the parameters but, as will be shown shortly, the Bayesian intervals
prove to be nearly exact in a classical frequency sense. Using Bayes'
theorem [10] the posteriori distribution for a and 0 can now be written
directly as
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f1(at;x) - C a(B)a f exp(-ob(0)) (10)

in which C a Normalizing constant such that area under f(a,0;X)
Is unity.

The function f(a,B;X) is defined as the conditional density distribution
of the parameters a and 0 given the sample outcome X. The constant C in
equation (10) can be determined from the relation

urn flf

C - 1.0/1 f J(O)a exp(-ab(O))dcadO. (11)
0 0

Letting y = ab(B) in equation (11) yields
0 .n f.a1 -o nf -y

C - 1.0/1 a(B)(b(0)) I' y * dydo
0 0

-nf-l
I.0/nD f I a(O)(b(O)) d0]. (12)

0

Consideration is given next to determination of the posteriori distri-
bution of average interval reliability Ra(a,¶j ) which is essentially a
function of the parameters a and 0. From probability theory 12] the
cumulative distribution for Ra can be determined from f(m.O;X) using therelation

FRa(z) - fRI f(a,lO;X)dadl (13)
DRa

In which DR. - Domain of R. and represents all values of a and 0
such that R;(T;Ci,)(Z.

Assume next that for given 1 and Ra, equation (6) or (7) can be solved
for o. That is

Letting a-*c whenever Ra-z gives for this expression

e*•Ra'l Iz,B). (14)
*

Numerical solution of equation (14) for t is considered in the next
section. Also, it is shown in the Appendix that for reliability given by
equation (7)

Ra(a,( ) I R(i ,) (15)

whenever a > a .*
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The domain of R , DRb can now be inferred directly from equetion (1).
The posteriori distribution for Re given by equation (13) can now be
written as

F..z" fc.O;X)dadO (16)
0a

in which * -*lz.0l.

Substituting equation (10) into (16) yields the following expression:
m•f

Fb(z) " J f, C a ()nt exp (-ab(l))dadp. (17)
0a

Letting y-ab(O) and using equation (12) for the constant C finally yields
after some manipulation

F *lz) 1.0 - K71 fa()(b(l)) P(nf+liwCB))dP (18)
0

n-nfn

in whch K * Ja(B)(b( ))"n'

01

a(0) *0ft~
elel • • if i'•f

T. S.
b(l) "

w(l) a lz.$lb(ol

P(nx) * Incomplete Gamma function

1 - (l+x+x2/21+...+xn"l/(n.1)I)e'x for interer n.

Solution of equation (18) for given z and sample outcome X is accomplishedusing numerical quadrature.

Bayesian intervals on Ra can now be constructed directl from FR Forexample, a lower Bayesian limit z. for confidence or probability leve (1-#) isgiven As

z FR"11' (16)
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4. CWPUTATION OF RRa"I (z.0).

In the solution for the Bayesian intervals, the inverse of the
reliability function given by equation (6) or (7) Is required in deter-
mining Dh in equation (13). For the approximate Ipterval reliability
equatlon 7), this was accomplished numerically where a particular
property of h(t;ao1), the renewal rate for the Welbull process, was
emp.oyed to improve numerical efficiency. Namely, it is shown In theAppendix that

h(t;njO)dt - h(t/n;O)d(t/i) (20)

In which q " as" 1 /.

The average interval reliability therefore has the propertyT
R(T;n,1) - 1-n0l1! h(tinS)dt

0

R(T/n;S). (21)

Given a solution for equation (21) it is clear that for a different
value of n, say n,. that a value T1 can be found such that

R(T;1n,9) -1-n"1 1nh (t/n, ;O)d (t/n1)

0
, -R(T 1 ; 1, 1) (22)

in which T1  -(l T.

Computational speed can consequently be greatly improved if the
function h(t;n,BO) is generated separately for a finite number of 0
values within a predetermined range of significance or applicability
and for some fixed n and T. That Is, generate h(t/n;B) as a function
of t/h for various values of 0. Wbat in essence is actually generated
upon integration of h is n(l-z) as a function of T/n and 0. Numerical
methods were used to compute h(t/h;*) [6] for the Weibull distribution
as a function of 0 with the results being generated in tabular form.
It is a simple matter then for given z, 0 and T to determine the cor-
responding in by t4ble lookup with interpolation. Given n one can
determine an 1/nP and hence solve equation (14):

aM Ra' (z.0).

A similar procedure could be used to polve for the inverse of
equation (6) where the approximation F(T) W 0 Is not used although
more complicated numerical procedures would be required.
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5. FREQUENCY INTERPRETATION OF THE BAYESIAN INTERVALS. In the
application of Bayesian Inferencing, difficulty arises in the inter-
pretation of the derived intervals. This stems primarily from dif-
ficulties in objectively establishing the prior distribution to be
used or its interpretation, particularly when little or no prior
information exists. Although a number of papers have been written
dealing with priors representing complete ignorance for singleparameter problems (for example references [13-15]), little has
been repo,-ted on choosing priors for multiparameter situations
in which a function of the parameter is of interest.

A number of Monte Carl6 computer trials were consequently con-
ducted to determine frequency interpretation of the derived Bayesian
Intervals, if any. In these trials various sample sizes of failure
times were generated from the Weibull distribution using different
values of the true Ra, designated as Rat, and shape parameter S.
The approximate Ra, equation (7), was used in this study. Suspen-
sion times were not generated in these particular trials. System
life was fixed at unity with the number of missions over syitem
life being fixed at 150. This number of missions was chosen to
yield mission times T much less than the mean time between fail-
ure required for the approximation used and to represent an actual
system testing problem of current interest to this writer. The
parameter values used in t;iis study are summarized in Table I.

TABLE I: PARAMETER VALUES USED IN MONTE CARLO STUDY OF BAYESIAN
INTERVALS.

R t Mean Time
(True Reliability) (Shape Parameter) Between Failures

0.99 1.0 0.661
3.0 0.512
6.0 0.494

0.95 1.0 0.113
3.0 0.126
6.0 0.125

0.90 1.0 0.067
3.0 0.065
6.0 0.065

Number of Montd Carln Trials Per Case = 1000
System Life = 1.0

Numbr- if Missions = 150
lission Time = 0.007

Number of Failures = 5, 10, 20, 30
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In checking for exactness, 1000 samples each of size nf were generated
and, for each sample, the value of F(z) given by equation (18) was evaluated
at z equal to Rat, the true value of R If the posteriori distribution is
exact in a frequency sense, then the distribution of F(Rat) for the 1000
generated samples should be uniform on the Interval (0,1) [16].

Two statistical tes s were used to check exactness. The first was the
K-S test [17] in which the distribution of F(Rat) was hypothesized tc be
uniform. The second was a binomial test [17) for the lower &;.d upper 90%
probability limits. In the binomial test, for example, if the lower 90%
limit Is exact then an average of 10% of the MontA Carlo samples should
yield values of F(Rat) less than 0.1. Significance levels of 1 to 2V•
were used In both of these hypothesis tests to draw the conclusions -

Results of the various trials conducted indicate that the gei;••L.:,
Bayesian intervals generally are not exact. To investigate degree ;'.
exactness (or inexactness) the function F(Rat-c) was investigated fcr
exactness. In this instance if c is small relative to Rat then tK
intervals can be Judged to be nearly exact for practical purposes.

Table II summarizes the results of the Mont6 Carlo trials performed.
As can be seen from the results given in this table, the Bayesian inter-
vals are nearly exact at all confidence levels for sample sizes of 20 or
greater. The lower and upper confidence limits are nearly exact for all
of the cases considered except for the case of sample size equal to 5.
In this instance, the lower 90% limits are nearly exact.

6. CONCLUSIONS. The results indicate the feasibility of computing
Bayesian intervals for average interval reliability which are nearly
exact In a frequency sense. It should be noted, however, that a limited
number nf cases were studied and this general conclusion cannot be made
for all conditions not considered. Intuitively, the approach used is a
sound one in that frequency interpretation is considered. It seems
reasonable that Bayesian intervals can be found for many similar prob-
lems which can at least be made conservative through frequency studies
similar to the one used for interval reliability.

Other methods for studying Bayesian inferenc i ng include study of
priors which yield frequency intervals and questions of optimizing
derived intervals. Some difficulty is encountered in these approaches
if classical confidence intervals are not available. Mont6 Carlo
simulation can be used for such a study which is a subject for future
efforts.

- 329 -



TAILE II: Results of NontE Carlo Trials to Study Frequency Exactness of
kyeslan Intervals for Interval Roelability.

SAMPLE SHAPE TRUE
SIZE, rif PARAMETER, 0 RELIABILITY, K-S* p(0,.1)** p(.9,1.0)**

Rat

6 3.0 0.99 0.0 0.103 0.138 0.196
-0.0005 0.154 0.104 0.236
0.001 0.136 0.225 0.116

0.95 0.0 0.105 0.123 0.1"9
-0.001 0.114 0.101 0.226
0.003 0.120 0.204 0.124

0.90 0.0 0.170 0.123 0.195
-0.002 0.149 0.100 0.228
0.005 0.107 0.190 0.137

10 3.0 0.99 0.0 0.069 0.109 0.137
-0.0002 0.096 0.096 0.164
0.0005 0.093 0.168 0.081

0.95 0.0 0.081 0.100 0.145
0.001 0.061 0.134 0.112

0.90 0.0 0.084 0.101 0.144
0.002 0.060 0.138 0.110

20 1.0 0.99 0.0 0.072 0.062 0.140
0.0005 0.023 0.112 0.102

0.96 0.0 0.109 0.075 0.164
0.002 0.044 0.110 0.125
0.004 0.065 0.142 0.097

0.90 0.0 0.110 0.073 0.167
0.002 0.077 0.088 0.149
0.006 0.032 0.118 0.119

3.0 0."9 0.0 0.056 0.088 0.129
0.0001 0.029 0.094 0.112

0.96 0.0 0.070 0.084 0.137
0.0005 0.031 0.103 0.109

0.90 0.0 0.070 0.082 0.138
0.001 0.029 0.104 0.110

6.0 0.g" 0.0 0.075 0.064 0.140
0.0001 0.024 O.099 0.106

0.96 0.0 0.063 0.087 0.130
0.0002 0.031 0.095 0.113

0.90 0.0 0.069 0.087 0.134
0.0005 0.027 0.098 0.108

30 3.0 0.9 0.0 0.040 0.098 0.109
0.0001 0.029 0.116 0.100

0.95 0.0 0.054 0.090 0.121
0.0003 0.026 0.111 0.106

0.90 0.0 0.066 0.090 0.122
0.0005 0.030 0.109 0.108
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TABLE It: Results of Monti Carlo Trials to Study requency Exactness cf
lBtyesian Intervals for Interval Rleliability.

(Continued)

*K-S * Kolomgorov-Sirnov statistic

Reject hypothesis that distribution of F(Rat-0) Is uniform if
K-S > theoretical value where

THEORETICAL SIGNIFICANCE
VALUELEL

0.034 0.20
0.039 0.10
0.052 0.01

"**p(0,.1) and p(.90160) * Proportion of Nontf Carlo trials for which
F(Rat-0) < 0.1 and > 0.9 respectively

Reect hypothesis that lower or upper 90%
probbil|t levels for F(R t-e) are exact
if p(O,.1) or p(.9,1.0) lies outside
theoretical Interval where

THEORETICAL SIGNIFICANCE
IMUA LEVEL

0.092-0.108 0.20
0.088-0.112 .10
0.078-0.122 J.01
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7. APPENDIX.

In this appendix, the following two properties required for development
of the Blayesian probability limits on interval reliability are derived for
the Weibull distribution:

(1) h(toT,O)dt - h(t/it;0)d(t/n)

whenever aQo whereaa1h

The renewal rate h(tmn.o) satisfies the relation
t

h~tnOdt f(t;viB)dt + I h(x;nA)f(t-x~v,,B)dxdt (A-1)
0

in which fNtvi.) is the Wuibull distribution given by

f*~,Od (0/vi)(t/n) 1 oxp (-(t/n) )dt. (A-2)

Since n is a scale parameter

f(ta'n.P)dt *f(t/nu0)d(tlvi) (A-3)
and

F(t;rj,B) - F(t/ri;B). (A-4)

It follows directly then from the relation
0t/r

h(t/n;$)d(t/n) *f(t/ii;O)d(t/vi) + I h(x/vi;B)Iqt-x)/n;O)

d~x/) d~/in)(A-5)

that (1) holds by virtue of equation (A-3) since solution of the renewal
equation in this instance Is unique.

The relation (11) can be shown for the approximate reliability given
by equation (7) using the property (1). The average reliability can be
written as

RaT~.0 l-n-l h(t/rn;B)d~t/
0

l-n1l T/ hiyOO (A-6)
0

Since h Is a positive function, the integral in ~gtion (A-6) is
monotonically increasing with decreasing n~ where T and B are hell fixed.
Hence R.(*a.B Is monotonically decreasing with Increasing ci r thus
establilhing property (11).34



RELIABILITY OF A SERIAL SYSTEM

A. E. Johnsrud
U.S. Army Concepts Analysis Agnecy

Bethesda, Maryland

A serial system Is an assembly of subsystems of such
toen that the failure of any subsystem vwil constitute a
failure of the entire system (e.g. artillery round and tusne)
The reliabilityp as used in this paperp is one minus the
probability of failure in one trial. The question to be an-
swered concerns the confidence level that is to be associated
with a given reliability for the system when the reliability-
eonfidenoe relationship has been established for each of the
subsystems through testing. A rigorous derivation is presented-
shoving hey the confidence level can be calculated exactly
for awy number of subsystems vhen the subsystem test results
(trials and failures) are completely general; i.e., any num-
ber of trials and failures may be specified for any subsystem.

Confidence Level for a SInfle SYstemo

A single system (vhich may later be a subsystem of a
serial system) is tested to determine its reliability. The
test is a set of Bernoulli trials (pass or fail on each
trial) and the result is m failures out of n trials. The
confidence level for a particular reliabilitf (a) is called
C. It Is defined to be the probability that the reliability
exceeds e. Hoa its value depends upon R, m, and n is shown
by the folloving arguments

Buppose that the reliability is precisely r. Then the
probability of obtaining m failures in n trials is

1m~ -r n-m Cl-r)a .(,) 1n-m,_)
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This can be oonverted to a probability distribution function

by multiplying by the probability that the reliability is

between r and r+dr. Since no prior knowledge about the reli-

ability exists, all probabilities between 0 and I are equally

likely and the probability that the reliability ia betveen r

and r+dr is simply dr. Thus the pý.u,.bility diatributlun

function for the system is

WP n/dr a (a) ra- (I r)M (n+1).

The factor (n+l) is for normalising, to make the integral

over 04 r A 1 equal to unity.

The confidence level for a given reliability, B, is the

integral of the probability distribution function from 4 to 1.

Although the general expression can be integratodp the treat-

sent is simpler if one proceeds stepveise letting the values

of a increase from zero.

Swm - 0 (no failures),

(noI)(•4 rn dr - (n+l)- (I-Rn+1 )/(n+1)
4

P a -a ,

C - (nl1)(n)f rn-'(1-r) dr (n+l)(n)/ (rn'l- rn) dra "a
1  nI ÷ •+n+t (n+÷)Rn M"n+'

1 - an+' - (n+l)Rn(1-2)
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lFo mam 2,

C-(S+I)(n)(n-1)(*) rn!2(1mr)2 dr,
11

-(n+1in)(nll-1lli)J :• ll- nildJ
U -1 U _n

mn 1)(n)(W-1)( + (0--- 00 - (--(n)(n-

m I--]0+I - (•Iln+O I.R) + no-' (A÷I) -R1-)'

- (0)(n)(n+1) + (U2 -1)u - (0)(n)(A-l)R2]

1 I -'0+1 - (a00)Rn(141) - (n+l)(n/2)ll 1 (1.1a.

(Manw algebraic steps have been left out.)

A general expression for C is

CS -'

This says that, given m failures in n triala, the. confidence

that the reliability excoods R is one minus the probability
that there are 91 aW as failures in ±J. trials vben the
reliability is precisely H. A check on the validity of the
expression can be made by oa.cAulating the coefidoence level
for an R ot 0.5 vhen half the trials result in mimses. Sym-

metry requires that the confidence be 0.5 also. It n - 2m

vo have

"imn2 - (W-O ())j 2 - 1 - (j)2 ()($)+
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vhich is the desired.result. It is pointed out bere that the
literature on this subjeel. uses a different equation for the
confidence levelt onA• in vhich n in used instead of (n+l).
Tables calculated from that equation show the 50" confidence

level for R - 0.5 occurring at n = 2m+1, so that the absence

of symmetry is evident.

The expression for 0 is.valid for any n, including
Mtn

sero, and for m going from 0 to n. It is symmetric for m.

values on either side of n/2.

For applications ili which it may be desirable to make
use of a single reliability-related figure, instead of the
reliability-confidence pair, the concept of the &gtgj reli-

a is introduced. By average reliability is meant the
average of tha reliability over all confidence intervals. It
is very simply qxpressed in terms of m and n, being

The derivation follows from

RJ dC (/d(1C) 0 dR30 '- iso
1.0

n 0C 4B a 0 + 0n dB
00 1

The function Cmn is known from above 4nd one can choose some

small values of m and n to demonstrate the resultant 11. The
average reliability can probably be used everywhere that the

"point" estimatep (n-m)/u, Is now used; it agrees with the
latter for reliabi]iies'near a and for n large. It gets
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away from the difficulties tkat arise when there are sera or

a failures.* I calculated for a serial system is the product

of the 110 for the subsystems &as will be demonstrated later.

The TWo-Subsvytem system

The confidence for reliability exceeding R in a system

which is composed of subsystem A and subsystem B is determined

through calculations in three dimensioual space. Consider an

xp yp a coordinate system In which x ant y are the reliabili-

ties of subsystems A and B (BA and R%) and the s coordinate#

the dependent variable, in the product of the probability

distribution functions for RA and RB. (These distribution

functions arise from the testing of A and B; they are given

in the previous section.) The z coordinate now represents

the joint probability distribution function for the two sub-
systems.

The reliability for t he composite system is defined as

BARB. A change in variables can now be made In such a way

that this product "4A"B becomes one of the neo coordinates.

Curves designating constant values of RARB compose & family

of hyperbolas in the space of RASRB. Orthogonal'.o that set

is another set of hyperbolas and these two sets make up the

new coordinate system. The new coordinates Ire

U =RA22

v. %2)

The confidence level associated with a given composite system

reliability ItC is found by integrating over the plane from

u - R. to u 1 1. A diagram of the RAP RB plane over which the
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integration is to be done to shown on Figure i.

Associated with the transformation Is a Jacobia& (J)

vhose.purpose is to adjust for the stretchingor shrinking

of the size of the area eleaent (dR•dkM). This Jacobian has
the value

Hu.*(2 + 2)-
4

The product (f) of the distribution functions is a tune-

tI on of an& ad %# which can be changed over to a function of

u "d v through the relations

"MA mT '+ (u + v)

a uI v+ (u2 +;•2)tJ•

I so that fkA%) . t(uv).

This leads to the following expression for the confidenoe

that the reliability of the composite system exceoedmRC8

. . tlfu,•llqllu2 ÷ 21-* yd

ji /(iU)f~f( ,) dv du
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It Is bsomed here that the distribution functlob Is always

normalised. Verifying that C.approaches unity as Rq approaches
sere Is a good cheek for mistakes in the calculation.

The extension to any number of subsystems proceeds step-.

by-.tepp with a pair of subsystems being done first to yiold

o as a funtiaon of so for the pair. Differentiating this

function viii produce a probability distribution funotion

vhich Is to be paired with the next subsystem. The process
continues until all subsystems are used.

lllustrative Jumnle

Three subsystems produce respective test results of I

failure out of 5 trialas 2 failures out of 6 trialsp and 0
failures out of 10 trials. Labelling the first two of these
subsystems A and S, for the monent, we have a joint proba-
bility distribution function

t . (6)(7)(02 &4l0l-aAj l6) (5l)q l% 4lj -% ).2

- (42)(75) u4 (t-aA)(1-2%% 2 )

At this point it would be helpful to list some evalu-

ated forms for the inner integral, forms whisk occur fre-

quently. These are the followings

*(1-u2)
f*(u2+v2)"4dv m -In u

4j(1 .u2)
-t(1-u 2)

/*(u24'2),' IAn dv . L1/3)(1-.un) for ngo
-*(I-u 2 ) (and similarly for
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,( -u2) .i

f fu~+~)~BA"in.R~ v -(-1/1% (i-a"+nu~n ua) f or
-(1-u 2) nO (and similarly for 13)

*(1-u2)
f j(u2+v2)-4 In It A -. n u)2  (mad similarly fo*r "-4(1-w 2)

Returning nov to t, ye can write it as

f . (42)(T5) U4 (I_2, 2 m22+H2a.+U%. )

which we can rewrite for integration purposes (after nating

that RA and RB behave the same under the Integration) as
follova

f - (42)(75) u4 (1.3.-uR~lt 2÷2u)

The integral over v9 after f Is multiplied by the Jactobianp.

then becomes

(42)(75)[u4 (t12u)(-ln u) - (5/2) u4 + 2uS + - u

Integrating this over up from bc to 1t gives

C - (42)(75) -In [(u 0/5 + (u6/3)]- (23/50)u5

+ (7i *u (1/14)uT

a1 I+ (42)(15)RC51n RC + (42)(25)BC6 In RC + (21)(69)RC5

(49)(25)C6 3(75)RcT
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.[The rest of this paper wil1l finsh thu exemplo. The

tinel exprerslen for trhe confidence level of the throo-sub-
qstem eomposite bpeomes

0 .1 + (15)(77)(5 + 2R6) In A + (7/4)11 - (77)(�3)*

(1/147R - (77")'29)1 6 + (17)(3r7)19-

The I caloulated by integrating this expression is

the same as one obtains by multiplying togothor the threo
subsystem fge.]
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lIE ROLE OF DEIMMI' PUUDT>W4CE SENAJIRDB IN 7 CON1'KL OF
THE HITE SAND$ MISSILE RANiE TEST SUPP PWROCES

J. B. GOSE
W. R. JENKNS

QUALITY ASSURANCE OFFICE
US AMt I SANDW MISSILE RANG

NEW MEXICO

1. INTRODUCTION. The f Plarrt ae has contol Iinputs of data
rsqu�f ns, islwont assiug nta, inspection resultst, L'ftum*
oerro,, and final data erzors• Prior to feedback of the performance
quality data to mrnagemnt, the data ae compaed with appropriate

Sstandards and cotrol 1lmits. The peromnt out of control dre calculated
Sand the out of conitol processes ame tqed for =nsguint action. This

proms has as plant control variables:

as Number of stations in solution - n
b. Geometry - (HtH) ', from the Error Equation acz a (HH')e0 x

C. Smple Rate - s

d. Points in Filter - N

2. SEAN . The instrumnt perforumnos standards are the cJumlative
frequency curves of observed performane for each Systen. Examples are
shcam in Figures 1 through 8. The conitzIlim4zits (indicated by arrows
on these figure) are established throug consideration of such factors
as: t s available for foll-up actiLos, the effect of ertr
values and the eoiraphical location of instrumn.ts in the solution
=xoce", and the frmquency of use of th inrtrumnts. The upper oontol
lit for masuremmnt error is used for support planning puposes, and
the lower control limit for data loss is used for support planning.
The WSHR omventicr for error type are included an the figures, teise
re defined as follows:

"a" is used to denote a•rr estimtors coaputed by hybrid (Ue or
nor different Instrumntation System) solutions.

,•(xjp)' E(AW + L ' + ci)'
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"8r is used ,to t on= estlmtozs octted by an K-Station
Single-Ineftrinit Systmm solution.

X, a,

"E" is Ued to dmte am esdmators coinpd by variate
differam or movin am cue fitting teotkuu.

3. • l•ONS OF THE PLANT PWM. The performnce of the plant Iooms
In umeasred by the nuaber of quireom t not for each teat of each la'oJeot.
In term of the iZ•b.1ities: Tvo~ved, thAs perfomno may be difined am

POWa P(T > T ) P(a <_ O) < P(t > ts) P(O _ OS) Eq I

Wtheom P(OW is the l•jrvability that a zrquiordnt is met

TIs daft covergestim

a Is data exroam (a, 8, or V)

t is oover"a frcm Jmtrment records

0 Is instrimet msaurfommt eno (as S. or E)

Subscript R Is the requiremat value

Subscript S is the standard or control limit value.

To m Eq 1 an equality, it is proper to intrduce a factor "g". Thus
E4 1 becoms

P(RM) z P(T > TR) r(m < aR) a P(t > t S) PQe 1 0S)g Eq 2

whn fi "g" is the probability that the planning is done coruotly and is
oomprised of the plant variables previously cited i.e.,

g P(f(n, (HtH)"', a, N, ... )}
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Consideration of tto realities of operation at WSM allows us to maira the
further si•plification that

P(€ _ O) a P(0 :_ OS)g* Eq•3

which is to say that the error is independent of the time froz when
meas~uremnts are made.

4. FO]DCABSG (SUPPORr PLANNG). The standards are used with Eq 2
to predict process performance. An appradmte value of g is obtained
by evaluating n, (HtH)", N, a for the n orweane standards
and procms configuration planned. This aion (go) is used in
Eq2.

P(t >_t ) P(IS < Os)g x P(T > TR/2) Ka > NR) >1 0.68

Cmparison of go to & (evaluated as in Paragraph 4) indicates the deree
of operational conformance to the process support plan.

5. A CASE OF PLANT PROCSS PERFORMANCE. In order to evaluate equations
for an actual case, the entire output from WSMR'a plant process was
analyzed for three mnnths of tests, The probabilities found were:

F(Q OR ) 2 0.89

P(IO < I) 2 0.95

The values of P(INO were found for P(T > k TR) for an a•ry of k fro 0

"dirugh 100 percent. Those values wre shown on Figure 9. WSMR has a
performance standard for P(RM) at 0.68, the standard is seen to occur at
k z 50%. The proper expression for P(T > TR) is P(T > TR/ 2) which is in
fact the expression in use.

*The coverages may be considered independently from Eq 2 using

P(T >TR) z P(t>ts)h

wherein h is the pr'cability that a data record is not lost.

- 347 -



m Jthe above data, we vy evaluate the i'mrd.ing probabilities in
Equation 2. From Eq 3, find

g m 0.88.

Fr•m Eq 2, we find

P(T > TR/ 2) a 0.76

and

P( > ts) 340.81.
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MWLTIVARIPA MSALYaI8 ==IIQ=US APPUIE TO BQUIPtMNT tSWINW,

John Sart Wilburn, Jr.
U Army Eloctronic Provin G rOmdPort Iuschuca, Arizona 85613

This repo•t discusses the general theory of mltivariate eigenvector

amalysis and describes an application to equipment testing for develop-

Ing a model specifying equipment performance and for constructing a

climate mdel fram the ventage point of equipment performance.

The pupose of this repor is to outline a method of analyzing

cmplex phenomena In en "opeuting oevirwmmiet. The report discusses

the general theory of the method of multivariate analysis and

describes -n application to equipment testing for developing a model

specifying equipment performance and for constructing a climate model

oMe the vantage point of equipment performance.

Nsthode: The Mithod of analysis has been known by several names

since its earliest forms of about 40 years ago described by H. Hotelling
(1) as principal . elysis and the more modern treatment of

T. W. Anderson (2) as principal component analysis. Current terminology

has been Principal G mnt Hienv.ector Analysis, Empirical orhog2onal

P mactions or simply _iltivariate Analysis.

It is of paramount importance that one point be made clear from

the outset - that is, that this method of analysis does not imply any

causal relationships. The relationships are purely coincidental with
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an estimable deteridnancy and confidence. Causal relationships are to

be explained In subsequent investigations of tho coincidental relation-

ships revealed by this analysis.

We can start with an array of observations of variables Dnm

where I indexes the class of variables, e.g., location or type and the

nxm array of n variables observed m times, i.e., m is the measure of

time. For convenience, the I superscript will be dropped; further-

more, it is desirable that the n variables are of the same dimensions

dad similar variance. This latter constraint is assured if the array

Dam is a normalized array such that when the co-variance matrix is

computed, it is the correlation matrix

Bgn 1
Cnn "(') Dnm Dmn

with the correlation matrix, a routine eigenvector analysis is performed

resultinp in:

Cnn E nn a Enn Vn H

where tih Enn are the orthogonal eigenvectors and the Vn are

the eogonvalues.

The oiganvoctor set constitutes an orthogonal basis set of the

correlation matrix.

To analyze the data, some workers have referred to these eigen-

vectors as the principal component eigenvectors as they are used to

compute the principal components or amplitudas as some workers have

called them.
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The comptatioh is:

Xnma En1 Dnm %L3

The maning of this equation ad subsequently the significance of the

eigenvector am best be illustrated if the first elumnt of the

principal oomponents is Wittft 1i long hu:

X11  el lea, 6 131 e41., 'O n, di
X12 a 912 022 632 e4z.., an& d2,

Xni L Sin Gan 3n e4f.. dn ,

m.s: K11 .(e~d,,11d 'e2 dIt+ e1d3• .1 e31dn3 l

As one can Me, the X nm is a mapping of the normalized data onto the

otthogonal coordinate system defined by the set Enn . The set

Xnm is a set of row vectors (X ) ofa noew variables. Each row

vector fs orthogonal to every other row vector. Each row vector 1nmm
in Xnm can be thought of as a vector of a state variable of a system

defined by the original set of n variables in Dnm with each jth

element of X ; j I lm denoting the variance with time of the nth

system state variable.

Considered in this way, the components of the elsgenvectors are the

coefficients of the n original variables constituting the jth

coMonent of X As with the cprrolation coefficient, the amount

of variance in X, produced by the I variable in the th column of
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D n m is denoted by the square of its appropriate eigenvector

component. Thus:

2 e 2 1.+gnc 6Z(ekfl *atO+e
k~l

whore 9 is the computational round off error.

To illustrate the otthogonality of the Xnm M note that:

X nm Xmn Enn Dnm Dmn Enn

and LEISaI -I -i ...

" nDmn nn Cnn Enn IVn

Thus they are orthogonal. The singularity plans is defined by the

eigenvectors whose eigenvalue is zero, within system noise and round-off

error. These zero value eigenvectors reveal the linear dependence of

the data. 11, eigenvalues not close to zero provide a measure of the

deviation from that plane in orthogonal hyperspace of their associated

sigenvectors. It ti'n be shown (2) that the relative magnitude of an

elgenvalue denotes the awunt of variance in the ,original data set

explained by the combinations of the original data variables dictated by

the eigenvector associated with that eigenvalue.

Consequently, the amount of variance of the uth variable in Dnm

explained by the pth eigenvector is denoted by

explained variance - I - (eup )2
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Combining equati0A 6 and 9, and smiming over n , the mumt of variance

in D. acconted for by the pth o1pnvector is computed by:

Bun 10
n n

exptlainedvari m Z 2ariane e Xly
UZL ialVi FlV

Using this infozrtion, we am select hm E nn set E np which

accotunt for a desired maunt of the variance. With E np we c compute

Xlpm I n 0 nm l 1

woere the set of row vectors Xpm as. orthogonal, uncorrelated, are

tin varying and explained an amuOt of variance in Dnm given by:

Hen 12

explained variance * q
Il qSaVi

Note that the Vqiq * , p an not in general sequential as the first

p of V n With these properties, the Xpm are ideally suited for

regression analysis onto other measured quantities in the form

Egn 13
Y zA Xim " Ap Xpm

where A, 9  is a row vector of regression coefficients. In this way,

the data Dnm can be transformed to YIm by the transfer function

T1 . Ap Spn, The precision of the estimate of Yim by equation 13

is given by;

EHun 14
n p

explained variance q
361 qu V1
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where is the coefficient of detormtnation of A . Confidence

limits l-ea) for eah element of the transfer function Ti can be

obtained from the respective standard errors of A1  . The computation

is performed by (see Draper 4 Caith, 97, and Fritt et al #4).

there Up. is a diagonal matrix of standard errors of the elemnts of

APPLICATION:.

The application of these multivaTiate techniques to equipment

modeling can proceed as follow. Fint, we must realize that the scope

of analysis can be varied fm a detailed analysis of an individual

equipment plece fumctioning in a micro-climate to a general analysis

of a group of identical equipment pieces fumctioning in a regional

climate. The distinction will become clearer later.

Por the micro-climate snalysis, we start with a set of measured

parmentrs such as frequencies of Internal oscillators, various

murtents, pulse widths, accuracy of output signals compared to a

standard or whatever else is considered to be important to the function-

ing of the oquipment. These variables are incorporated into the

nozualined set DI, I location or equipment type for n variables

and m measurements. Then follow the method outlined in the previcoas

section so as to select the p mest important eigenvoctors. EnP,

mad compute the equipment principal components set X I
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Now, pertorm a similar operation with the ioteorological date

Fof r meteorological variables analogous to D.and derive

the climate principal coaponents Yqm from the q most important

eiganvectors comprisiln the set G rq • With these two sets of

principal components. calculate a matrix of row vectors of regression

coefficients AM such that

XPM* Apq Yqm

Additional Information can be gotten from the analysis. For examples

tte correlation matrix Cnn contained all correlations and inter-

locking correlation of the parameters However, since the original

data in Dnm is not in general, orthogonal and uncorrelated, the

inter-locking correlations can be deceptive. An analysis of the

oipnvectors is re promising. Also, the following operations can be

performed which amounts to a mapping of the Yqm and Xpm back to

the "real world" space of normalized data. It is:

A I EqI I 17
Dnm lnp Apq Gqr Frm

where B denotes a regression-based estimate of D. The transfor function

T *' a n A G'En 18
"Tr Anpq Gqr

is identified which is a set of n row vectors

E- 19

n~r rt
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Al
Dnm T* r ~m

rais function can then be used with validity for trans foroitu additional.

""rmalisod data F; to , constituting a prediction estimate, if

careful attention is paid toward maintaining the original test conditions

present in the urivaton of Tar .The form then is

A So R ý21•"~ ~ ~ ~ D x1,r T•'"';,_•

no1e emowat of variance in the nth equipment variable explained by

all r climate variables is estimable by the method outlined by equation

14 md the confidence of the analysis given by equation IS.

Clearly, this technique of analysis could be applied to a general

testing condition of a complex system just as easily! as to a piece of

equipment. The set Xpm could be egressed on both climate and on

some other vaurable "effectiveness" parameter. Thus giving a two-fold

set of perfoancoe explanations.

On the regional scale, the application appears as follows: The

mean-subtracted data array Dom consists ofi o : equipment parmsteor,

n variable locations and m measurements. This then leads to Enp

and XPM in the saw manner as before. Similarly the climate data is

colposod in the som way Fnm ; V: meteorological parameter, e.g.,

precipitation, teaperature, or pressure, n locations of measurement

which should be at or near the same location as the equipment and m

measurements. The some analysis is followed as before except that in
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•th @an Dnm and Fnm are of only one parimeter and as such the

oomlration matrix of the micov-climato odel my be replaced by the ca-

variance matrix. This has the possible advantage in transforming backCv
to the real world through T n wher

A. Ov v Avn22* Tn, Fim

OV a v BE 23
T NE*L Ap ' 0

Fnm 'nm~' n k
and r, fm f.) duDn " d, •

instead of being expressed in standard deviation units,

As before, a estifate, or predltion, of Dns from From
by To Con te made with the associated precision und confidence

omputed as befioe.

The•o Is an advantage in using the regional analysis in that the

Climate construction is on a regional scale and as such is more easily

related to current teohnololy in meteorological science since the

yV varies only in time for the entire region and G0V only in
4Ma nq

location for all time Similarly, the X vm ary only in tim and the

E vary Inly in location. Thus, plotting equation 9 for each uth
np

location cmn reveal soe very Interesting results concerning the

sensitivity of locations from the vantage point of the equipment to

ngional climte conditions.
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ONE SHOT SENSITIVITY TEST FOR I
EXTREME PERCENTAGE POINTS

Seymour K. Einbinder
Concepts and Effectiveness Division

Ammunition Development and Engineering Directorate
Picatinny Arsenal
Dover, New Jersey

ABSTRACT. Sensitivity testing deals with continuous
variables which cannot be measured directly. Several well
known statistical techniques are available for the treat-
ment of experimental responses which are quantal, i.e., all-
or nothing. In this paper, a sequential sensitivity test
strategy and estimation methodology is proposed. This pro-
cedure appears to be more efficient than the methods that are
in common use for sensitivity testing to determine extreme
percentage points of a response function. No loss of effigienoy
or accuracy results in the estimation of central percentage
points such as L.60 or LD. 5 0. The method is robust to many
forms of the underlying response distribution, doesn't re-
quire a possibly limiting assumption of normality and stimulus
step size, and is insensitive to the choice of initial stimulus
level. The test procedure is discussed in three parts: (1)
the test strategy, (2) the response model and (3) test data
analysis and estimation.

1. INTRODUCTION. The basic ingredients of a sensitivity
test are: a stimulus, a test specimen and a quaintal response.
Associated with each object is a critical stimulus or strength
such that if the stimulus exceeds the strength, the object
responds, and vice versa. The distribution of strengths in
a population of objects is called the response distribution or
the response function. Some typical responses may be failure,
survival, functions properly, explodes, etc. The response
must be chosen such that an increase in the stress level results
in an increase in the response function or the probability
of the occurrence of the response.

The basic problem in sensitivity testing is to estimate
the response function either completely or locally over some
region. Also required are estimates of percentage points
of the response distribution and probabilities of response at
specified levels of stress.
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Some simple, basic rules for the design and analysis of
a sensitivity experiment underlie the test procedure that was
developed. In the first place extrapolation of results be-
yond the region of the Lest data should be minimized. Tests
should be conducted as close to the region of interest aspossible. The use of continuously variable stress levels applied
sequentially is preferable to discrete ones. Finally, the
response model should be robust to the form of the usually
unknown underlying response distribution and be a good approxi-
mation in the local region of primary interest.

2. REVIEW OF SEQUENTIAL SENSITIVITY TESTS. A brief re-
view of some well known seuential sensitivity test methods will
be given next to facilitate the presentation of the new test
procedure.

2.1 Up and Down Test. Probably the most well known
sequential sensitivity test procedure is the Dixon and Mood Up
and Down Teat (1) which is illustrated in Figure 1. One item
is tested at a time starting at the best initial estimate of
the 50% response point. The test level is moved up one step
after each negative response and down after a positive one.
The step size is fixed and must be determined in advance of the
test. The recommended step size is equal to the standard de-
viation of the response distribution. This method of testing
toendg to concentrate the observations near the mean. As a
result, the procedure is quite good in estimating the mean or
50% point of a symmetric distribution but does not do too well
with extreme percentage points. The method of analysis
assumes a normal distribution for the response curve.

2.2 Lanalie One Shot Test. Langlie (2) developed a
sequential test strategy that overcame certain difficulties

* with the Up and Down Test. This strategy makes use of con-
tinuovsly variable stress levels and is insensitive to the
starting level and the apriori choice of a stop size. The
analysis is based upon a normal response distribution and has
been shown to be more efficient than the Up and Down method in
estimating the mean or 50% point as well as the standard
deviation.

The Langlie Method is best illustrated by means of an
example from his report (See Figure 2). The objective was to
determine the high temperature performance of thermal batteries.
The procedure consists of first choosing upper and lower limits
such that all items function satifactorily at the lower limit
and all fail at the upper limit. Failure is defined as a
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FIGURE 1. A TYPICAL UP AND DOWN EXPERIMENT
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positive response and is denoted by 1 and successful battery

performance as denoted by 0. The first stress level is selected
at the midpoint of the interval. Since a failure resulted,
the second trial is at the average of the first stress level
and the lower limit. The general rule for the next stress
level is to average the last stress level with an earlier stress
level such that the number of l's equals the number of 0's in
going from one to the other. If no previous level exists that
satisfies that condition then the last stress is averaged with
either the upper or lower limit depending upon whether an increase
or decrease in stress is required.

The accuracy and efficiency of the Langlie strategy are
not sensitive to starting level, and no apriori knowledge of
the standard deviation is required. Analysis of data is by
the method of maximum likelihood and is based upon the assump-
tion of a normal distribution of strengths.

2.3 Sensitivity Testins for Extreme Percentase Points.
The test methods described thus rar tend to concentrate the
obscrvations near the central part of the response distribution
and are efficient for estimating its properties there. Ofteno
however, the experimenter is interested in the nature of the
extreme parts of the distribution. This requires appropriate
test data from the region of interest. Wetherill (3) published
the results of an investigation of sequential test methods for
the estimation of general percentage points of a quantal res-
pones function. He found that most of the available procedures
such as the Up and Down and the Robbins - Monro were not suit-
able for estimation of extreme percentage points. A rule for
transforming the response in an Up and Down test was proposed
by Wetheril2 which tends to concentrate the observations in the
tail areas of the response curve. The question of stopping
rules was also addressed by Wetherill. roe sore detail refer
to Reference 3.

3. ONE SHOT TRANSFORMED RESPONSE TEST. In thts test
procedure, the Wetherill response ransFormation is applied to
the Langlie One-Shot test algorithm. In thip way, advantage
is taken of the best features of both techniques which results
in an efficient and effective new method of sensitivity testing.
This test procedure is called the One-Shot Transformed Response
(OSTR) Rule,
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3.1 One-Shot Transformed Response Test Strategy. The OSTR
strategy is bei illustrated by an example which is protrayed
graphically in Figure 3. The objective in the example is to
estimate the upper tail performance of the response distribution.
An OSTR test strategy with Noz3 was used. The transformation
is defined by the value of No which determines the response
quantile around which the test levels tend to concentrate. This
quantile is called the transformed median percentage (TMP)
point for reasons which will be apparent later. For Nou3, the
TMP a 79%. The response transformation is designed to make an
increase in stress easier than a decrease. The greater the
difficulty in decreasing the stress level, the greater will be
the •transformed median percentage. A positive response is
denoted by an X or 1 and a negative respon6 by 0. A type D
response, which requires a reduction in stress level, is allowed
to occur after No confirmations of a positive response. In
this case a type D response consists of a (111) outcome and a
type U response of the act of outcomes (0), (10) or (110). After
choosine lower and upper stress limits, as in the Langlie
procedure, the first test level is chosen ar the percentage point
of the test interval corresponding to the approximate TMP of
the transformation. The sequence of tests at the first stress
level resulted in three positive responses or a type D. The
process proceeds by applying the Langlie strategy to the U's
and D's. Thus, the second stress level is at the average of
the lower limit and the first stress.

3.2 Stopping Rules and the ;i Estimator. The same test
sequence and results are shown in tabular'Fm in Table 1. A
change of response type is said to occur when an alternation
of response is obtained. In this experiment the fourth change
of response occurred at the 16th trial. Wetherill proposed a
stopping rule based upon a specified number of changes of
response type rather than a fixed number of trials. Occasionally,
peculiar sequences of outcomes occur which provide little or
no information about the response distribution. This condition
is minimized by using the change of response stopping rule
rather than a fixed sample size.

The number of observations required in an experiment is a
random variable with this stopping rule. The expected sample
size with a particular number of changes or response increases
with No or the farther out in the tails of the response curve
in which the testing takes place. For each sequence of trials
on the transformed scale that represents a change of response,
a reasonable estimate of the S0 percentile is the midpoint of
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TABLE 1
ONE SHIOT TR TEST FOR no - 3, TMP'- .7937

A 0, B a 70, x(1) -,.8(70) - 56

Trial Stress Response Response Change
I X(I) Y(I) Type* Number w

1 56. 1
2 56. 1
3 56. 1 D
4 28. 1
s 28. 0 U 1 42.
6 42. 0 U
7 56. 1
8 56. 1
9 S6, 1 D 2 49.

10 49. 1
11 49. 0 U 3 52.5

12 52.5 1
13 52.5 0 U
14 61•25 1
15 61'.25 1
16 61.25 1 D 4 56.875

200.375

1- ( 2 00. 3 7 5) - 50.09
4

D: 111
U: 0, 10, 110
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the stress interval where the chanae took place. These
estimates are denoted by w after Wetherill who proposed this
estimator for the Up and Down routine which uses equally spaced
stress levels. The Wetherill approach was also found to apply
to the Langlie strategy and appears to be efficient and accurate.
Each change of response results in a separate estimate of the
transformed 50% point and the overall point estimate w is the
average of all of the individual estimates.

In this example, 9 is an estimate of L,79. An iterative
method of calculating maximum likelihood gst mates of the
response curve parameters is used which requires initial estimates
of the parameters. These are obtained by a method of matching
percentage points. The i estimator is useful for estimating
percentage points to be used for maximum likelihood estimation.

3.3 Transformed Response Strategies. Transformed
response strategles for several values of No are illustrated in
Table 2. Also shown are the upper and lower tail percentage
poiýts that are estimated and around which the one shot test
levels tend to concentrate. This table can be easily extended
for additional values of No. For P..5, X denotes a positive
response, and 0 designates a negative one. For lower tail
strategies, the responses are redefined. Zero represents a
positive responses and the U and D designations are interchanged.
The TMP for a given No is found in the following manner. Call
P(x) the probability of a positive response at a test level x.
Then the probability that the outcome at this level will result
in a downward change of level is CP(x)JNO. The transformed
response curve, in which the responses are classified as U or D,
is then

F(x) x PE(x)3NO

The OSTR strategy is actually the Langlie routine applied
to a transformed response curve. The standard Langlie pro-
cedure, which is obtained when Noul, may be used to estimate
the 50% point of the transformed response curve N(x). By
solving for the value of PNx) corresponding to F(x) a .5, we
obtain the probability value of the original response function
corresponding to the 50% point of the transformed response.
This is the transformed median percentage. As noted before,
for NoN3 this value is .7937 in the upper tail and .2063 in the
lower tail.
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TABLE 2f

CHARACTERISTICS OF SOME TRANSFORMED RESPONSE STRATEGIES

Response___ TYRO Percentage

Resons~X ~Trans Point
D if p.Ss U if p>..5, form- Estimated

no U if C p. S D i~f 2<S >5

2 XX X0, 0p 2  .2929 .7071

3 XXX XXOt XO, x p3  .2063 .7937

3 XX, XO XXOXO,0 3(2-p) .2664 .7336

4 XXXX XxX0, Xx0, XO, 0 p4  .1591 .8409

4 XXXX, XXXOX XXXOO, XXOO XO, 0 p4(2-p) .1959 .8041

S XXXXX XXXXO, XXXO, XXO ps .12945 .87055
XO, 0

S XXXXX, XXXXOX XXXXOO, XXXXO PS(2-p) .1540 .8460
XXO, XO, 0

6 XXXXXX XXXXXO, etc. p6  .1092 .8908

7 XXXXXXX XXXXXXOI etc. p 7  .0944 .9056

8 XXXXXXXX XXXXXXXO, etc. p8 .0829 .9171

9 XXXXXXXXX XXXXXXXXO, etc. p9  .0740 .9260

10 XXXXXXXXXX XXXXXXXXXOp, etc. p 10  .0670 .9330

14 XXXXXXXXXXXXXX xxxxxxxxxxxxxo, p 14  .0484 .9516
etc.

*For p).S, X4rosporlsc and n+ non-rc'sponso.
For p<. 5, X~non-rcsponse aind 0+- i'csponsc.
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4. THE 9ESPONSE FUNCTION. Next we consider the sensitivity
model or the, form of the response function. The well known
Weibull distribution was selected as a general response model.
for several reasons.

The Weibull distribution is general and very useful as
a response function because it exhibits many different shapes.
Consequently, it is robust to the form of the true response
distribution. Since skew shapes may also be approximatei, the
need for normalizing transformations that are required by most
conventional methods is minimized or eliminated.

The main difficulty with the Weibull is the fact that it
is a 3 parameter distribution and the location parameter is
difficult to estimate. Fortunately however, the estimation
of responses and percentage points In the stress regions of
interest appear to be insensitive to variations in the location
parameter.

Figure 4 illustrates the variety of shapes of the Weibull
density for a number of values of the shape parameter y. An
exponential distribution results for yal. The distributions are
skewed to the right for y<3.6 and to the left for y>3.6. Normal
densities are approximated by y a 3.6.

To provide additional flexibility and capability in fitting
the best response functions to experimental outcomes in some
local stress region, a reflected version of the Weibull distribu-
tion was also introduced. This allows the tail of the Weibull
that best fits the data to be used for estimation purposes and
minimizes the dependence of the estimates on the location
parameter y.

5. ESTIMATION. Given the results of a sensitivity
experiment, maximum likelihood theory was applied to estimate
the best Weibull response distribution. Let tho stresses be
xl,...,xn and the outcomes Y(x2),...,Y(xn) for a series of
n trials. An outcome y(x)ul denotes a positive response, and
y(x)0o indicates no response. To find the maximum likelihood
estimate of 9 ) l1..,6p)', for the response distribution
function F(xz?), we require 'the likelihood equation:

n
L(ZjQ) * n Piyi Qi 1-Yi
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where Pi a P~xi] " PEY(xi)ulJ a dr(x•j).

Differentiating log L(yQ) with respect to each parameter
and equating each derivafive to zero results in a set of p
equations whose solution set gives the maximum likelihood
estimate for 0.

Solution of these equation. is accomplished by linearizing
them by means of a Taylor eeries expansion about go. Thus,

P Bg'(G)
A + 0

The linearized equations are then solved using a Newton-
Raphson iterative procedure. The problem of an initial estimate
0_ for the first iteration of the solution was solved by
matching percentage points of the response curve with particular
stimulus levels.

The covariance matrix for the estimators is the inverse of
the Fisher information matrix B which is defined as

B(jk) a [-E(d 9los )]pxP

It then follows that the covariance matrix for G is
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5.1 M.L. Estimates of Weibuil Parameters. The form of
the Weibull distribution function found to be most practicaland useful for fitting to sensitivity data is

F(x) a l-exp-((x-y)/Q) xly

a 0 x<Y

Maximum likelihood estimates of the Weibull parameters
a * (9,a,y)' are obtained as described in the previous section.
9tarting values for the iterative solution are found by
matching two percentage points for a fixed value of the location
parameter y. The w estimator is useful for finding these
percentage points. The M.L.E. of y is found by searching over
the domain of y. Convergence problems were encountered in
solving the non-linear equations. A transformation of the data
into an exponential form based upon the critical estimates of
the Weibull parameters was found to stabilize and speed con-
vergence to a solution.

5.2 Confidence Region for Weibull Parameters. A joint
confidence region for the Weibull parameter Vector a is
obtained by making use of the asymptotic normality of the maximum
likelihood estimator B for 0.

0 O NEG, E^

The quadratic form in the parameters, v :(9_-)' EA (0-4),
is approximately chi square with 3 degrees of freedom. Thus,
a (1-s) confidence region for G is given by

-- Q Xl-.~q.
X2

.2_•q is the value of X2 for q degrees of freedom that

satisfies

P[V < X 2_ ]J l-a
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where q is the number of parameters estimated.

5.3 Estimation of Reliability and Percentae Points.
The reliability at a given stress level-Wc is defined as the
probability that the strength exceeds this stress level. For
the Weibull response function or strength distribution the
reliability is

R~xc•j) = -exp-[(x-y)/QO'a, 3tty

An M.L. estimate of R is obtaine& by substituting 0 for

R(x 0 ) UR~xcQ).

By the thnor'hm on the a~ymptotic distribution of functions of
consistent statistics, R~xo) is asymptotically N[R(x0c;), V.(R)]

where

aR aR^^V (R) -ov (S )

i 3i 49j

Thus, a lower (l-a) confidence limit for R(xc;i) is

•,(xc) a, ZL vv.(i,)

where z. is the 100C% point of the N(O,1) distribution such
that

PEZ > z38) -
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Percentage points Lp are estimated by solving the Weibull
distribution function for Lp. Thus, we have

P .- Oxp-[O.p-Y)/Qlo

which gives us

LP a a(-log Q)/4. + Y

where •1-P.

Using the asymptotic distribution theorem as before,

we got

where

- (! -log Q)1/01

aLp
S- • (-log Q)l/Olog(-log Q)

aL2

Thus, L.p N(Lp, V.(p)). This permits the simple computation
of asymptotic confidence intervals for percentage points of
the response function.
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5.4 Reflected Weibull Estimation. The reflected Weibull
density and d'stribution functions Tare

f(x;QQ,•,R) -. Q[(TR-X)/O] '*exp-C(YR-x)/9 3] xITR

a 0 X-Y R

F(x;9,s,YR) G exp-r(YR-x)/03' x£yR

Fitting of a reflected Weibull distribution to a set of
experimental data (xi, y(xi)), ixl,...,n was accomplished by
reflecting the stress levels and outcomes about an arbitrary
point A. Th6 data transformed to the standard Weibull form is

x 2A- xi

Ys "-y(xi)

where xs, y. are the transformed stress and response which are
used to obtain M.L. estimates for the parameters of a standard
Weibull distribution, 0- a (Qs,cs,ys)'. Since the scale and
shape parameters (0,a) are invariant u der this transformation,
the M.L. estimates of the reflected Weibull parameters are

A A

yR 2A - y

where Qs, as, ye are the M.L. estimates for the standard Weibull

distribution based upon reflection of the original data about A.
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The reflection transformation allows all of the statistics
and estimators developed for the standard Weibull to be applied
to the reflected Weibull,

6. SUMMARY AND CONCLUSIONS. In summary a new OSTR
strategy has been developed that is relatively easy to apply.
It has been found to be more efficient than existing methods
for estimating extreme percentage points on a quantal response
curve,

A general response model has been incorporated based
upon the Weibull distribution which is robust and minimizes the
need for normalizing transformations. In addition, the ability
to fic response curves has been expanded by reflecting the
Weibull distribution.

Maximum likelihood theory has been applied to derive,
for both the standard and reflected forms of the Weibull
distribution, point and confidence estimates of the parameters,
the Fisher information matrix, the asymptotic covariancea matrix
and point and interval estimates of the reliability and per-
centage points.

The Wetherill w estimator was successfully applied to the
Langlie routine and provides a simple and efficient estimate of
certain percentage points.

Finally, a Fortran IV computer program was written that
analyzes quantal data and calculates all of these statistics
and estimates.
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ANALYSIS OF TECHNIQUES FOR FINDING

A FORWARD OBSERVER

Charles McElwee

Frankford Arsenal, Philadelphia, Pennsylvania

* ABSTRAC

This paper is the result of work done in conjunction with

projects designed to produce a point target first round hit capability.
The initial portion of this task was to consider a new technique of
forward observer location possible oily since the development of
precise Laser Rangefinders and optimize it. In the process of
optimization and statistical comparison with existing techniques, the
feasibility of a still newer idea came to light.

DEVELOPMENT OF NTO-HIT-RANGE-ONLY

METHOD OF LOCATING A FORWARD OBSERVER
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!
PROBLEM: Locate a Forward Observer by Firing Two Rounds from a

Mortar and lHaving the FO Supply Range Information to the
Hit Points

By using vector equations a computer sub-routine which is easily
utilized was developed.

Input data required to use the sub-routine is range and direc-
tional information between the firing point and each of the hit
points. The solution set contains two sets of range and direc-
tion calculations. The correct set may be ascertained by having
the FO note whether the angle (as he observed) subtended by
the first and second hits was clockwise or counterclockwise. The
output ranges from the sub-routine will show one positive and one
negotive. The sign establishes the !lockwise-eounterclockfise
sensing and should be ignored when plotting the PO's position
once the proper solution is determined.

To test reliability of the technique, fifty-five (55) selected
cases were tested and four (4) probability outlines including
100 percent were plotted accounting for the following error
sources:

k • 1. Elevation error in mortar (firing table)
2. Defliction error In mortar (firing table)
3. RanSefinder error.

Depending on the choice of data, the 100% error radius ranged
from 65 to over 900 meters at extreme mortar ranges - reasonable
through unreasonable. Investigation revealed that the error
could be minimized by proper selection of the hit points with
respect to the FO. There is, however, the requirement of some
prior knowledge about the FO's position.

ASSUMPTIONS FOR INVESTIGATION

1. Round dispersion (Gaussian, according to firing tables)
2. Flat, level ground
3. k 10 meter Rangefinder (accuracy plus precision, unj orm)
4. * 8 degrees compass error (gaussian, due to local magnetic

di sturbances8).

The Mortar is used throughout this discussion but the results should
in no way be construed as useful only in Mortar Systems. All aimed
hit locations, FO actual locations, and "errors" incorporated in
calculation were generated randomly internal to the program. Sample
sizes in each sample set were also generated randomly, restricted to
the region 30 to 170. Uniform or Gaussian random numbers were used
in the program as appropriate.
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COMPUTER PLOTS

The following computer plots represent outlines resulting from
the use of 25, 50, 75 and 100 percent boundaries of each error
source. The asterisk near the center of the outline to the
location of the observer if no errors were encountered. Th.
scale Is In meters/inch, with the maximum error appearing 4.166
nches from the center. The scale was established differently

on each plot to obtain maximum resolution. Other infornation
on the plot was used for researching purposes only. The non-
continuous nature of the outlines is due to discrete point
selection on the error outlines ("walking the boundary").

The plots for the FO- are in the minimum error configuration
which has been found to exist. This configuration is discussed
in the conclusion for this part.

ERROR OUTLINES

The error outlines below are indicative of those used for this
discussion. Note that two hits and two ranges were used for
each calculation.

s / 0

iab K nMI I /-
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A typical "walkaround" Is depicted below. There are nine (9) points
per reference round and throe (3) points per ranging for a total of
729 points.

ROUND 1SI'•RS'IOq

U..

+

DoflecLion

Rangefindcr

N ominal Rarngo

SLIDE 8
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Test Problem - Zero Lrror

P O 0..)

(6822 M/20.20)

H2 (4500 M/265.40)

x
HI. (4500M/1350)

FO ()(10600 N1/200. 20)
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CONCLUSION

The plots attached for 70- are an example of the minimum error
radius configuration discovered during the research for the
project. Please note that this plot represents extreme mortar
ranges (4500 meters) and near extreme rangefinder ranges (9620
meters). The resulting 1002 probability outline for FO- is
contained within a circumscribed circle of radius 100 meters.
The same outline for FO+ (not in minima configuration) requires
a 240 aster radius, The error is larger even though the 10 is
closer to the firing point.

The following diagram illustrates the minima ctiterion:

*Fe

A r

The minima criterion is that *2 and 01 both be identically 900.
To perform this feat requires actual knowledge of the FO's
position. It wes found, however, that error sensitivity to
the actual valve. of 01 and 02 is low, therefore, it is necessary
to know only an approx mate location for the FO and establish
R1 and H2 to produce a minimal error condition.
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QUAITATIVE C'VARlSON

Seven techniques of FO location were employed in the statistical
analysis included in this portion of the report

Technique Description (on basis of required information)

A Range and Bearing to Hit One
a Range and Bearing to Hit Two
C Ranges only to Hits One and Two
D Bearings only to silts Or,3 ared Two
E Average Locations Found in AB
F Average Locations Found in C,D
o Average Locations Found in A,B,C

Number of times (out of 36) technique showed least value of error
statistic.

Standard Standard Error
Technique Mean Deviation of Mean SD + SEN

A 0 0 0 0
B 0 0 1
C 2 0 0 2
0 0 0 0 0
o t1 34 33 is
F 0 0 0 0
0 24 2 2 13

Additionally, Technique S and G turn out to be statistically
similar. This-result is logical as no different information is
incorporated when utilizing G. Techniques ABC have sinll&r values
also, as should be expected. Ranking of these techniques according
to statistical accuracy would be:

best S,G
Fair AB.C
Worst D,F

The added criterion of simplicity causes E to be chosen as the
best over-all technique.

STATISTICAL COMPARISON OF LOCATING TECHNIUES

The following pages contain Computer Outputs comparing the seven
techniques tested as listed under "Qualitative Analysis". The
first set of 36 samples assumes the + 8 degree compass error.
The second set assumes + 2 degrees. Column headings ares

MEAN (Expected Value)
SD (Standard Deviation)
SEM (Standard Error of the MEAN)
SKEW (Skewness)
KURT (Kurtosis)
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COIMtTIZR STATISTICAL OUTPUT:

&S DBGRESS COMPASS EZRROR
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217.(A 193.9 .- lh.ci . 203.1 70s.7

I-o?316-2 27.2 747.6 S226.4
1273:3 -. 36d :. 4 310:0 1014.9 9014.7

121.3 114.-3 90d 307-2 2223.1
SAMPLE QET WUH- -e- SAMPLE 3 6

210..9 Z1TG.o . 3214.7 Y0. I. S 7.
1466 o._0* 1036.7d

11a. 21i.? l~2.114.1

131.-- 438 -L IZI4 ,jI .v3171ks 7s



1& MN 3D 8K mW KURT

I9.*7*f ?~~A-.- 03.5

13.. 25572S.0 -. s. -- 92279.0

ha.2 Iles Ile. 9 4112.68
1623.2 - .Ilj..j 1. ?41$. _ S------5a4.9

Sl4PLE 'SE N'jP'KE .Jo SAMPULE ShIZE IS 8 .

2.?ft .. *. 1201 Z.5

* 1232.2 . *601.3 S, i?*? .....8..469 312?.6
1338. 1ld.? 19.0 41do.?7 304?.9

SAM4PLE 'ET NUlPICA Of* 5'141LE SUE IS 14.3

217.1 118*41.'. * o 152.LO6

971.3 bai t. 606.3 3602.b

2440.3 19S14.6

1?*S0l.o 3294 27.a 133'.9

flj~ ~Zb .. __ 11. 78..2.

?5. 12,302 22.9 dM16 199

SAMPLE SET NUP8E4 29 iU.AMILE SI~ZE IS o5

-. 202:7. .10463:.. 246...: 3____ 191
Me6?. .. a20a.73 ___*1$ .30.7 .# 2314.1

Oi.14 .0. 138.60 L1.

IS76 205 80 280.5 1620.0

iiiiPLY'-sO ~ ~ 409fliE iTE-i



SD 514SKEW ICATT

233.'. 32c-3-- 7.102 - b6143.b

2540_ __ _ _ 9Uiel841 #

0 - 2 .2129S.4 90400 842969

_ 030 139S Idi392.7S4

16.0 5 IN 6b. 0 123S2.2
____ ? 631J92 OP'.0. 130ol. 13055.1

"1i. .i~dea 10S.6- - - 171.4 66701
13890.6l 12734*0

17 i.,-- 1.. 4 a10.6, 890.7
272200.1 1..sA 17110063 1

7~ou ~ ?~.i i~aa123114.b

%AMPICE Qrc.LToPbi-? .14s-%AiLE Vl*;PL 15 -is

4 60. 3- *~jj.Ae- 'so......1*3

()a. 16.1 23.04 bV3 2
9. -9...3 . 2374.1 3- 3. . 3*3 . 3. W.Z" 30.6j

a*? Od 386. 2JJ*7 1431.9

*SAMPLE SET NUIOpE4 ISO SWý-L. IZ s I s, Y ~b1

............... 2085 139*3

2904. - 10 1'9i........ .3 601.6.......5827

__I0-____4s~ 67dod 51se:6

SAMPLE SET kuM8EA 38. SAMPLE- S-1 U-s-6

ID1. 12-. 423.1

150* WO130 13. d563.0
100".2:b 914.5b :06 0 64b 20: .0 a 6

R Fi "4064 604.3 5113Po?
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COMPUTER STATISTICAL OUTPUT:

*2 DEGREES COMPASS ERROR
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* REM .SEA ~ VOW,

SIMPLE 1-1 WOWBC' 7. SAM4PLE SIZE -IS 4?

60.9 143.7 6.* 05' - 186.9
5.4o3 3. 39 @# ..-..- .5.7S 52.0 .30.0

103.5 210.6 30o? 236.6 1434.4
.- .040 ...... 570 26. 134 3.&9

.1632.4.7 61.9 326.?
gla.5 31.0 . ~.1*5.6 942.5

50.3 6d.4 104.0 17 1195.2

SAMP'LE SET NOWBE 69 SAMPLE SIZE 15 146

. '..2 .4.0 -.. .30.9*9 1626.7
1'.).3 317s6 R603 135.1s 4329.?

.133.6e 1269V.) 1011.0 17*2.6s 206514.
30.1 2. 167.7 ... 610.7

703.6 .641b*6 .. 512 . 171*1. W 062705
696105.1 s.? 671.2 3819.6

SAMPLE SET NOW~E 9s SAMPLE SIZE 15 68

62143.9 5.3 6v.4 239.0
67.1 -0 -. 6. ... 6......122.00...

200.9 3. 64.7 271.6 11'.39S
3611 - S. 1236.4. 1,4.9.' * - 1.1 .. 3163.8
.99.5 31.2 3.8 6a.3 263.1
23.0.631.9 .76.6 396.2 . 28009.

- 6V.. 6V. 2. -271.0 1260.3

SAMPLE SOT NVVNEQ 10. SAMPLE SIZE IS 56

65a3 141.9 5.6. 18312.?
6s' . .. aob5.8 .. . . .74.0 .. 2.

23.).7 62*63 84.0 254&5S 1320.2

:40.2 .3*.9 4.9 70.9 a4e

a,*I20s. 1 27.3 243.1 3228.9

Am'PL S*E T N'UIMdE 4" .11 SAMPLE SIZE IS 62

______ -. 36.' . - - 497.......6*1 156.0
2-10.6 660.8 83'9 269.7 13at0.7

.1 ...399-09 1 .507.3 _...435s6 3211A ,.3
..1 . 27.0 3.4 35.6 110.0

97... 215.? 27.4 273.0 1364.3

SAMPLE SET NUI'BER 129 SAMPLE SIZE IS 150

- 226.6 779.06 63.? 03709 52?77.1
'.10.'. ... 262.? . 06.5 133'..* 13767.1
'.6.4 3J.6 2.7 177.76A.

364.6 .. .1278.2 104.6L .12,* .Ipb'..
96.-. Z39.1 21.2 831.9
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SAMPLE S11 N4UP1ER 13. SA04PLE SIZE 1!' 155

66348.2 3.9 244.0 960.9
.7 .4 Sk.i .. 4.2 20-444 709.5

165.1 77. 231226.a4 10311.6

855.2 ~ 2l3342.3 .1490*6 16163.5
4#.3 31.0 2..' 166.1 ?3300

?V97 256.1 20.6 . 121709 10196.6

..SAMPL SiT"NUMBER 14's SAMPLE ShEC IS 134

li.9 57-'3 . . 260.9 f 1010.6
6- e0.16 4.1 Well9 616.s

alb.? 561.6i . 13.6 955.3 7368.1

* ................... .2.1.19je5 .189.4 *.- 1865.5 13O187.
*oe , 0.s3. 2.6 1 660 .: 96.5

312v1 ..... 13'.1 #9 .115.9 __ 2613466.7
92.3 276.7 24.1 %b40 7365.'.

SAMPLEi' SE UME iSSAMPLE SIZE 15IS16'

6614'%. 3 1744.7 698.5
.. 77........3.7 . .221.6. . 832s6

306.9 95*a.S '4.5804 49a
- 52562 1. 1 101.1 . 132.'. 13d5.1 *14035.l

'.031.7 205 2.10.6 952.3
1020.6 79.5 . 10wi.8 96)02 O~

12111 313so Z'..' e*t7.9 4936,.1

$APPLE SET NUt'OER 16t SAMPLE SIZE 1S58 -

-?l 41o.60 62.0 256.1

178.1 507.6 66.7 31b.3 2000.3
- 469 -58SRO .- 194.2 0. 000b

%.3.2 29.*3 3.8 b'.47 190.3
* -11662 . .. 316ad . '1.6 . 17.1 732.2

1772 26IS.S 22.1 307.S 193S.6

* APESET RUMER SIZE ISML 17 106 8.

66.9 63.2 130.289
.67.0,570 5.6 211.6
285.2......665.0 86.0 sobs? 27390!

A -... ~17. Woo 10..0 501.7 . 4134.2
-0. 563.5. 206.8 d42.V

- .-..--...307e9 b,463.9 62.5......3Y6.0. 2066.2
11.8266.5 2800 504.1? 2735.7

SAMPL E SET.IJUVOER 1i. SAMPILE SIZE IS 37

?V17 6-i.9 11.5 d3.5 32S,6
~4101 .. 6. .27s.2 89.9-

216.6 877.9 144.3 139.3 ?V
274. 1 .. ~. .~667.9 157.1
31.1 '.1.0 b.7 72&3

.. 207.7 .. 3111.' 64.4 1.15025616
- . jO29190 441.9 1.16.9 Sb
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* SmplE SET NURSER. 199 SAVOLC SIZE IS 61

* ._.5*7 ._ - - 6.1 13. 767 o3
222.'. 642.3 71.' 41,002 2S9767

13.1 37.0 4.1 118461 374.0

97.0210* 83.4014 2433.1

SAMPLE SET NUPBER 20s SAMPL.E SIZE 15 67

- 60*0 .5 - 467.297

~- 30?*8 . -43705 53@s . 17: *'E.9:

*97.5 21.4.9 26.3 32ite? 1773.9

SAMPLE SET NURSER4 219 SAMPLE. S1ISE S74................--

61.6 36.8 4s3* 378.
'.. .. -5.0 . .. 0. .. .217. 7

* 4b.39~80)1160 2b4,.3 1177.4
655. 5.9 l .. 166. 364.5 236969
%42.0 2507 3,0 67.6 200.3

ql.S . .901.1l 104.9 261.5 .. 1524.9V

* *4 U*V. s ~7 37.9 64.

S ANPLE SET N.URSBER 22o SAMPLE SIZE IS 129...... ... -- ---

610a3t3.8 107.4 4.02.8
4:3.7 TV43 326.1

M53. ?0..9 6.569 .bbvh.o0 o9k90V
..37: 106003 93.4 .. 10589910.3

41 da2.5 13i.0 5~5.0
23~1 .54M.2. 0..9 Woo1. 33210.

105.3 24.3a6 21.4 56705 3007.11

S-AMPLE SET NUMDBi 2.3t SAiPI.. SIZE IS 134 - 1.

6341 44049 3.9 21900 894,3
- ~ ~ t o6.......'83 4. '.2 170.8 . 7.

146.?, 313.2 272 737o6 1226.94
..------..312.9 . .62o,3 S4.1 57019 3154.24

a4. 17.1 2.3 162.0 702.5

.. 10*. - -59d31.s1 570.6 320 a
69.%. 99S.66 7L24.6 123860

SAMLE 'TNU~iER 21;7 SAMPLE SIZE IS* 30 .--- - - -

65.7 6'..1 lie 11.7 30.....91.9
* ~ ~ -. o 3.------6.9 30o.7.....0.

131.S 261o7 47.3 114.1l 547.0
261.5..... U0b7 .. 6340.3 5;

-05.8 31.d S07 2296 83.6
.. 4,6.31.2o.6........l.118.6. 587.1

639di.. 1693 11Y.01 543.0

-414-



; FILM so SEM KAUW

DAMOCLF SET' NUPOUR' -299-SAPLE SIZE1 IS 105

*45.?64-e- 4.6 - 153.6 S~ 44.2
4.3 _ 0 a__ '.9 - . 'I 99*2 ___319.3

13..?l 25:i7 0?-25.0 4J.41' 22719. 0
3.9%4. - 1v.3 ...6.1 691 o3 5137.1

46931.7 3.) 126.3 6'."
*7.'.6*604 66.,0 660.6 06
$.. del 8.6 3177.1 16601

SAMPLE SET NUPSER 261 SAMPLE SUL IS 63 -

4..8- '7.3 .21713d9o?
16C..553. 566.9 487

-.17OD*S 197.1 *. ad. 3409.6
a..., 30.1 3.3 67829301

03*d990a 91011.7.... __ .0002 322. *

iiiLESE NqJpeCP 279 $AMPLE SIZE IS" 14.3 .. .-. . .

6690'Ss 4..) 24,005 1108.2
SJ69......'S -- 46 2b0ol.......

271.3 $got 60 60.7 60693 360?.b
)O5.O... 191IJ06 159841~ 1673.6 .*198 12 0

ala. 30.2 26s 226 01I009.1
00.'95u..*7 7599. ;67090 19e4iS.1
1)1.126,1.d p. 610&2 367642

SA14OLE SET 140804 id. SAMPLE SIZE IS 30 .. . .

63.3 50.8 9.3 ?1.9 -. 320.2
* .'~) , .1 s* 3. 166.6

1140 1 3UZ o 59.0 107.41 48.65
'.87.6 .. 1030.1 .. .1BO2 ,V9.1 3001-11
*41.6 2.O3 4.. . '2.6? 160.4.

-21.? .d9 94v.? 1. 38.'.
63* Mio 19.2 113.0 5334~

SAL .E NUBE .29SAMPLE SIZEIS 58

S70.5 560? 6.7 b7.6 338.')

2498700.6 92:18 - 257:1 1349:1

'.3.6 27*2 3.6 37.0 1/0.9
2-.s3691.S.......80.5 13d. 1 476.2

l00.s 22d.9 30.1 255.8 1340*5

SAMPLE SET' liUM9( 309 SAM4PLE SlIZE IS- 60""'

(,Zoo 4.3.2 5.6 71.9 2901b

#4v. 61.9 - 34395232o



* 5A40iLE SQT NUI'BER. 31o S.A4W'LL SIZE IS 10'.

- -.. 4a.2 .... . -- 12392 -J26e8 ---.-.- 6V76.- 2 -- 6j
41049 34.3 3.4 133.7 514.5

60.9 100.7 10.5 73240 4010.1

SAMPLE SET NOPI4UR 329 SAMP3LE SIZE~ IS 166

4303 44.6. 3.5 2906.469
S4.. -.... '3.0 3.3o .. .164.0 .0.* 553.9

1,7' S". 94.01 4.6.0 1318,#S 11352.2
--- 61. ---...4-. W.. .. #? .957.3 734.4.'

'.7.0 294? 2.2 152o4 0903
34.S . .@629.0 . .... 1512

75.9 1416-0 15.3 . 1349.8 12483.5

'S'A MPtE- SE-T* NPR-33-9 "SAMPLE SIZ IS11

4v.0 4.7.8 4.5's. 768.2
49.*2. 4,4 . 161.4 500.?

- ....-'2g.'. . 1)2o 1 12,4.7 974.1 9411.'.
51.2 36.9i 3.'4 141.2 50qod

a .?~d 90d.0 895'19.0.
*101.0 269*7 a4*.' 5d1.'. 33i0.7

S SMIVLE SEt NuI'SEw 34# SAMP'LE SIZE 1S 46

77.0 50.2 7.2 37.,. 132.6
? .. 9&6 67.' 9.7 ?2o& 270.'.

23oo2 $06.' 114.4 24Y.3 1703.9)
711.7........67.102.? . 1686.9 * 0

57.0 440.5 568 13.3 302.4

l0l.s 2:59.a3 37.4 265.9 1675.9

SAMPLE SET NURBER'35 %APL SIZe. 15106 . -..--.- .

46.0 '?.7. 46.4 10111 371.1
---?1.S. .. -59.2. Sol 5....2. .121 .. 433.9

7-2. 0102 46.1 517.7 29?9..-
-- .--52309.......iodo1 . ... 12.....- 507.5 3314.2

S3.1 3692 3.' 122.7 560.6

103o% 230.2 22.4 51d*6 3017.2

56... 4.3.5 '..9 104.5.......

443..S 12~. 44.1 27109 1123.?
- .4500.08 ... -373.,i-9 .- *2ZO63 6 62.3.....5774..7

6.031.7 3.6 1174 lk?6
187ý1b.o 2127.0......bbl. 3. -* - *j
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Generallyp certain two-bit locating systems offer a reduction of
order 1/3 In the mean error magnituCs of locating the T0 over the omne-
hit locatin system* There is also a significant reduction In standard
deviation and Increase In kurtoois. All curves have skewed charac-
teristic.

The extremely high skewness of the data Indicates that simply,
most of the time the error In location will be less than the mean (or
expected error) but that occasionally outliers will occur* An Increase
In skewness coupled with a decrease In standard deviation Indicates
that the outliers will occur loes frequently. The choice of the 70'
coordinate "eto Indicated appears from Investigation to be the best
compromise between time, accuracy and simplicity avellable at the
state of technology assumed.

ASSUM4PTIONS FOR INVESTIGATION

1. Flat, level ground for all points with no obstructions.
2. Round dispersions used for calculations were Gaussian according

to firing tables (8lmn Mortar was basis).
3.Arangefinder is available to the forward observer which has a

+ 10 meter accuracy plus precision uniform error.
4. The compass techniques employed by the forward observer have

as a dominant error + 8 degrees Gaussian (3.5 standard deviation)
resulting from local magnetic disturbances.
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The Mortar is used throughout this discussion but the results should
in no way be construed as useful only in Mortar Systems. All aimed
hit locations, FO actual locations, and "errors" incorporated in cal-
culation were generated randomly internal to the program. Sample sizes
in each sample set were also generated randomly, restricted to the
region 30 to 170. Uniform or Gaussian random numbers were used in the
proqram as aporoDriate.

CONCLUSION

The use of the average of locations predicted by using two ranges with
bearings between the Forward Observer and two hits has shown to be
the best overall technique examined when consideration is given to time,
accuracy and simplicity. Errors Imposed include aiming, terrain, ranging,
compass and round-to-round variations due to physical properties of
ammunition and movement of the weapon.

ERRORS REDUCTION

Round-to-Round Variations: Ammunition properties are state-of-the-art
and only highly improved technology can reduce this error.

Terrain: Terrain factors are uncontrollable.

Ranging: The Rangefinders implied are also near state-of-the-art with
little improvement imminent.

Aiming and Movement: Aiming errors are individual and subject to
training and experience. Weapon movement is minimized by re-aiming.

Compass: This source of error offers the most promise for improvement.
+ 8 degree errors can be expected when using a magnetic devich due to
Tocal disturbance. If a non-magnetic for determining bearing was
produced which could hold within + 2 degrees of the grid established by
the fire direction center, the error in locating a -orward Observer can
be reduced by a factor of three. Statistical comparison is shown on the
two sets of computer listings.

- 418 -
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2. DEILOPNNT OF THE MObL. Jonas and Rhhmann2 modified an
equation devloped by Wheeler and Robell 3 and applied the result to
studies an the service lives of fixed beds of charcoal exposed to a
variety of gases mad vapors. The modified equation is the form

t we1)o

where t is the service life (or breakthrough time) of the bed as
definel by a concentratien C of the toxic material being attained
in the effluent sir stresmlN is the dynamio saturation capacity of
the bed In toms of weight oltonic picked up per unit weight of
charco l in the bed, W is the weight of charcoal in the bed, g is
the influent concentriation of the tonic,, Qis the volmestric flow
rate, g. is the bulk density of charosal In the bed and k is a quasi
first order rate onstant for removal of the toxic ole-Cles. by sites
on the charcoal. Similar equations have been reportod4 ob in the
literature, their forms differing slightly depending upon which process
in the bed is rate determining. A more complete discussionG of this
will be published separately.

Equation (1) is applicable to systems in which the Instantaneous
effluent concentration C ca be determined. "perimentally, cyanogen
chloride service lives are determined by the collection of a specified
cumulative onount passing through the bed. Callins this mount a,
we can write the relation

St

where t is the service life defined by the cunulative anount a of
cyanoen chloride passed through the bed and C is the instantaneous
effluent concentration given by solution of ouation (1). Performing
the integration at constant 9 and collecting teims, we have the relation
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= erranaldat on aged and mame p on s, the various
qM Iissas oundto avevalus 7ndtequation (3) to

be well approxmte ythefor

5 we Co w

Details on the derivation of (4) fw%, (3) ter given in the Affindix.

Tequantity It is a direct mesr*f the wme fatv ie
for removal of eyaaoen chloride "eM unit weight o~hrol sqie'
ezpewiunstal evidence as to the precise chemical nature of toesites
is difficult to obtain, so so clewr-cut machmnim for their disappearance
Is available. Aging date indicate that there wre a number of different
types Of sites. There a"e physical adsorptive sites which do not deteriorate
with aging (these awe the only sites an unimpregnated charcoal) and a
number of type of chomisoypt iv. sites, o ath type deteriorating with its
own charct"iti pseudo-first order -rate constant. Thus, !can be
written In the fora

where VW i a measure of teCo-soinig hs-opiests

W isea& Mure of the jth type of chemi-sorptive cites at gsor aging
timeis -the quasi-first order rate constext fow deteriorations t&
is thell of aging and N is the total number of types of chouisorn1tvo
sites.

Became of the numerical values of the quantities in equation (4),
the first tewn in parenthesis is very small compared to the second.
In additions, for our purposes the mild logarithmic fwactionality of

011 On is negligible compared to the strong linear dependence. by
Voss two observations, we can rewrite equation (4) after Insertion
of (5) to give

where N is given by definition as
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As mentioned, for all practical purposes M is virtually Independent of
aging time and is treated as such in the remainder of this paper.

Analysis of aginM data with equation (6) under conditions of
several moisture loadings and tomperatures yields the following relation
for !j!

where A is an apparent Arrhenius pro-exponential constant, E[ue0] is
the werght percentage of water on the charcoal, V is an apparent
Arrhoni's activation energy for the dogradation,'_ is the gas constant
and T is the absolute tmperature of storage. In this, the wordapparent is used because !L is most likely the product of an equilibrium
and rate constant.

Combinig equations (S), (6) and (5) and rearranging we have the
form

where r is the ratio ts Cat ta) / ts (at ta a 0)A ro is the ratio
W /ts (at ta u 0), and each ! is the ratio WMej/ts (at ta - 0).

Itos this equation we use to predict residual service lives of items
stored under specified conditions.

DISCUSSION

Figures (1) and (2) and (3) compare the predictions of equation
(9) with actual data on an experimental gas-aerosol filter material
containing ispregnated charcoals. In the time range of the storage
experiment the following values were foumd for the quantities in
equations (9):

NW2- r,0o..85  3:o•oo r=O,7=.L5

A 2.5 Y LOS W t E* t0 LG ",) B cI 89ote9 •ae1 "

Thus, a predictive equation with fairly good reliability was derived
without knowledge of the species involved or the protoss of degradation.
A main use of a predictive equation like this is in accelerated storage
studies providing that the more severe conditJons do not alter the process
of degradation. Comparison of actual storage data with predictions using
parmeters from accelerated testing confirms that in this case the pro-
cesses do not change.
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APPENDIX

Equation (3) has the form

tX Am.4Yex?(Aw) C)

For large V (large beds) ts is found to be linear in W. The
slope of !L Is curves is si"n by

my

Empirically Ye* Is such larger than unity for large W so that
equation (A2) becomes

Therefore, from (A3) and (Al) using YeO * 1 ,v Yeo we have

z x LyY-*XW (k4)
which is a rearrangement of equation (4).
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A GAVSIhJ 1LUNCZ LOIX IQUr M03
KULTILAYER OPTICAL COATINGS

J. J. Walls, Jr., 1. A. Nelyton, and A. Kawalec
Fire Control Development & Engineering Directorate, Optical Branch

Prankford Arsenal, Philadelphia, Penma.

ABSTRACT. Discussed is a computer program that mathematically
simulates production manufacturing tolerances for multilayer optical
coatings. This technique operates on an ideal theoretical mlti-
layer design by assigning random Gaussian film thickness errors for
each layer within the film stack. "N" iterations of this process are
performed to obtain a realistic effect of the file thickness variations
on the spectral reflection and transmission characteristics of the
coating. Thus this progs ,.in enables the Identification of those optical
coating designs that have sensitive thickness tequirements and also
allows for the generation of practical thickness tolerances for the
many optical coatings used in fire control instrumentation.

L. INTIO•UCTION. Frankford Arsenal is engaged in the research,
development, and manufacture of fire control systems. Items, such as
optical sights, rangefinders, telescopes, and other optical instruments
form the fire control support for tanks, helicopters, mortars, and
many other weapons. This paper will describe a technique for predicting
realistic tolerances for the numerous types of multilayer optical coatings
used in fire control system.

Through use of large scale computers both analysis and synthesis
design techniques can be used to generate specific ideal coating designs
for any given spectral input requirement; that is, given a spectral
reflection or transmission specification - theoretical design paraeeters,
such as the number of layers, their order, film thicknesses, and assoc-
iated film refractive indices can be computed for the multilayer coating
to ideally fit the spectral input specification. The problem that
arises is that this ideal computed design is errorless - that is, it does
not include the effects of the fabricational tolerances that are required
to produce the design. Hence, before any realistic spectral performance
of this design can be obtained it is necessary to include the effects of
these fabricational errors in order to predict the practical spectral
performance of the coating.
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In order to form a basis for the understanding of the specifics of
this problem it vould be appropriate at this time to briefly describe
what a multilayer optical coating is and how it is fabricated. A
multLlayer optical coating can be described as a combination of thin
films that are deposited in a given order to predetermined thicknesses
(tk) and refractive indices (nk) - see figure 1. The thicknesses of
these films are thin enough to cause interference effects, and thus
change the spectral propurLies of the coated component. The spectral
performance of this coating is completely specified once the order of
the films is specified and the individual thicknesses and refractive
indices of each film within the stack are given. Changing any of
these design parameters can change the spectral performance of the
coating, The absorption of the film's within the multilayer stack is
assumed zero. This is a valid assumption for most of the films used
within a given spectral range. These multilayer coatings are fabri-
cated by a number of techniques - most employ the vacuum vaporization
technique. That is, the items to be coated will be placed within a
chamber under vacuum. The materials to be deposited will be heated to
their corresponding vaporization temperatures and the vapors then con-
densed onto the substrates under vacuum. Since each film within the
multilayer stack must be deposited to a given thickness (~10-6 in) -

an optical thickness monitoring technique shown in figure 2 is the
conventional method used to accomplish this task. Basically, the
reflectance or transmittance of each film is monitored during film
deposition and this optical parameter is related to the optical thick-
ness of each film. In addition to thickness monitoring errors, other
major factors such as evaporant distribution and substrate temperature
contribute to the total error of the system.

With that discussion as a background - let us now return to the
basic question: How do we simulate these system thickness errors in
order to predict the realistic spectral performance of a multilayer
coating? The answer to this question is the use of a computer program
that statistically simulates system thickness errors and computes
their complicated effects on the spectral performance of the multilayer
optical coating.

2. PROGRAM LOGIC. INPUT. OUTPUT. The basis for the simulation of
manufacturing tolerances is the generation of expected thickness errors
and the analysis of their effects on the spectral properties of an ideal
multilayer design. In order to determine the distribution of thickness
errors which would be valid for the coating process a statistical
analysis was performed on a set of 80 individual film thicknesses (40
points for ZnS films and 40 for MBF2 films.) Analysis of the data showed
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a slightly skewed distribution for both materials. However, due to
the relatively small sample size from only one coating facility and
because of the need to have the simulation of thickness errors as
general as possible, it was decided to employ the Gaussian distribu-
tion an a first effort.

In performing the spectral computations for the coatings each
film of the multilayer is assigned a matrix (Nk) based on its optical
and physical properties.

rCO 8k J iUn $in Sk

:J nk sin Sk - k] Sk

where Sk - phase retardation of the kth layer.

nk E refractive index of the kth layer.

A resultant product matrix (M) defined

FA JA i
M . H M l* M 2 * . . . . . . ... *H D I"(2 )

is computed at each wavelength of interest. This final matrix is
then used to define the reflection or transmission of the initial design.

R- (1-T) -X - U)2 + (y- 2 (3)
(X + U)2 + (y + V)2 (3

where

X " NoA U - NOD (4)
Y = NoNsB V- C

Figure 3 shows thu basic computational operation performed for simulating
the effects of film thickness tolerance on the spectral performs • of
a coating. The first operation is performed by taking the inpu esign
parameters (order, film thicknesses and film refractive indices) of the
ideal design and computing the spectral reflection or transmission of this
coating (M4 - 1 operation). When H - 2 or more the program creates new
designs with induced errors by the following procedure: A three-digit
integer or seed is inputed into a CDC library function, RANF, which creates
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random values (XC) from a uniform distribution in the interval (0,1).
By virtue of the Central limit theorem, sunming over every seven
values returned from RAW results in a distribution of sums (A)
which approaches a normal distribution as the number of samples
Increases. These values are used to generate a thickness error which
is Gaussian such that 95% of these generated errors will be within the
maximum tolerance or ERROR which the designer inputs. The new film
thickness is created from the following equation:

tk tk + (A- 3.5) (EWtk) (5)
1.96

where

A • Xi (generates normal distribition)

1; - now film thickness (induced error)

tk - original film thickness

3 a Error (Thickness Tolerance)

Each layer of the initial design is successively modified by this
induced error In thickness. The now multilayer design is then analysed
by the matrix technique and its spectral properties are computed. This
error iteration process is performed as many times as necessary to
determine the maximns changes in R or T as a function of a given thick-
ness tolerance or ERROR.

initial design input required for the tolerance program is shown in
figure number 4. It includes angle of incidence, index of substrate and
medium, spectral range of interest, a seed for RAMF function and the index
and physical thickness of each layer of the ideal film design. Also
required as an input is the maximum allowed thickness change or ERROR.

The program has numerous output options also shown in Figure (4)
which the designer can call upon to assist in the best presentation of
data. The program permits any number of error designs to be generated.
Each design's film indeA, thickness, percent thickness error may be out-
puted. However, when performing many iterations on an ideal design such
information becomes excessive. The program allows for the deletion of this
data unless iwperative for determining which design created the largest
change in R or T. For critical film systems the exact values of R & T
vs X for each design can be listed but for most investigations a plot
of R or T versus wavelength is sufficiently informative to determine
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mauimum allowable tolerances, The plot routine of this program is
limited to plotting eleven individual R or T curves, since it would
be Impossible to resolve anymore due to printing constraints. Since
most film system require more than ten iterations to determine the
greatest changes in spectral performance the program can present
maximum and minimum valued R or T envelopes from any specified number
of iterations. In addition, the output always includes a table giving
the thickness error distribution within the specified tolerance range.

In order to establish that the spectral computation part of this
program includes those critical parameters that completely define the
spectral performance of any coating in the real world it was necessary
to experimentally verify this point. To substantiate this, an eight
layer design usitng quarter-wave films of zinc sulfide and magnesium
fluoride designed for 45 degree incidence was chosen as a test design.
The vacuum vaporization technique was used to deposit this multilayer
stack. In addition to the multilayer coating deposit a set of the
individual films making up the multilayer coating was obtained during
the same coating run. The thicknesses of each film within the stack were
measured and this along with the corresponding refractive indices was
inputed into the thin film computer analysis program. The multilayer
coating was measured with a Cary 14 spectrophotometer. A comparison
of both the computational and experimental results obtained is shown
in figure 5. As indicated, good agreement was obtained. The slight
difference in the blue spectral region is attributed to film absorption.

3. ANALYSIS OF M--16 REFLEX SIGHT BEAMSPLITTER COATING. To determine
the validity and usefulness of the tolerance program an eight-layer
dichroic type beamsplitter coating that is presently being used in
the prototype reflex eight for the *-16 rifle was analyzed. The design
and spectral characteristics of this multilayar coating are shown in
fig~i•re 6. The coating is designed to reflect the red spectral region
ari, transmit the blue-green spectrum for a 450 degree incident angle.

To establish the practical validity of the tolerance program it
is necessary to compare the spectral data from several controlled
experimental evaporation runs with the spectral tolerance data predicted
by the tolerance program for this specific coating design. With this end
in mind ten separate evaporation runs were performed to obtain ten
multilayer coatings and 10 sets of individual films for the multilayer
coatings. Shown in figure 7 are a few spectral transmission curves
obtained and also the maximum and minimum valued spectral envelopes
formed from these ten coatings. The thicknesses of all the individual

-431-



films for these 10 multilayer coatings were determined by a spectral
technique. The errors were then determined with respect to the ideal
film thickness value. It was determined that 95X of film thickness
errors fell within lOZ. This error of 101 and the Ideal design
parameters were inputed into the tolerance program. Iterations of
100, 600, and 1200 were performed in order to determine the maximum
change in transmission for this thickness error. After 600 iterations
the transmission envelope did not expand any further for the 101
thickness error. This Indicated that the maximum expected spectral
transmission toleratce envelope has been achieved for this given
tolerance. Shown in figure 8 are the spectral tolerance envelopes
generated for 100 error designs and 600 error designs for the 101
tolerance. Figure 9 shows that the envelope generated by the tolerance
program encompasses all of the experimentally generated envelope
values for the 101 tolerance.

If the film thickness tolerances were made tighter one would
expect that the spectral tolerance band would become tighter. To
demonstrate this effect, the input tolerance was changed to 51 and
Iterated until the maximum specteal tolerance band was obtained. Shown
in figure 10 is a comparison of a 101 and 51 band. Not only is the
51 band significantly tighter, but its shape approaches that of the
spectral transmission curve of the Ideal design. This demonstrates
that for this specific design a 51 tolerance would be preferred
because color and brightness characteristics of this filter would be
assured.

4. CONCLUSIONS. Based on the theoretical and experimental results
presented, the following conclusions can be drawn:

a. If a spectral computational program is defined such that it
generates realistic spectral output for a given set of design para-
meters and if an error distribution that describes the system fabri-
cational Grrors Is interacted with the spectral program for the
essential number of iterations then tha generated tolerance envelope
will be a real and practical representation of the spectral tolerance
for the multilayer coating.

b. As indicated from the experimental result. the Gaussian error
distribution is a good approximation for system fabricational errors.

c. One would expect as the film thickness tolerance is made
tighter, the spectral tolerance envelope would become tighter and Its
shape would approach that of the ideal design - this In exactly what
the tolerance program indicated.
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5. ' 8nA. Some of the advantages and use of this program
Includes

a. The prediction of critical multilayer components. That is,
for small film thickness errors, large spectral changes are observed.

b. It affords the optical designed a practical tool for assigning
realistic spectral tolerances for optical components.

a. The government will have its own means of determining pro-
duction toleronces independent of industwy.

d. Several design attempts can be made for a given spectral
requirement and a determination made on which design is least sensi-
tive to error. This would definitely have cost Implications.

In summary, whereas before it has been impossible fur the thin
film coating designer to predict the complicated error interaction
effects on the spectral performance of an optical coating, the
statistical approach presented provides the designer with a method
that will give him a high degree of confidence in predicting production
tolerance effects.
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A TABLE OF CUMULATIVE DISTRIBUTION FUNCTION
VALUES OF EXPECTED VALUES OF NOP14AL ORDER STATISTICS

Gary L. Aasheim
Product Assurance Directorate

US Army Armament Command
Rock Island, Illinois

ABSTRACT

This article presents a table of cumulative distribution function
values of expected values of normsl order statistics. An example ik
given in which the table is used to test a population for normality
and a brief discussion is made of the method used to construct the
table. The latter part of the paper deals with origins of commonly
used expressions for approximating values given in the table.

1.0 INTRODUCTION

In this paper we present a table (Table 2) of cumulative distri-
bution function values of expected values of normal order statistics,
an extension of H. L. Hlarter's table of expected values of normal
order statistics (6.2). The project was undertaken at the suggestion
of Mr. Richard Bruqger and as a result of the US Army's participation
in the Quadripartito Standardization Program and the Army Amiunition
Procurement and Supply Agency's role at that time as Lhe Army's
representative in a project which deals with sampling plans for inspec-
tion by variables. As Army representatives on the project, we reviewed
a proposed British Defence Standard that deals with that same type of
sampling plan. The British publication presents an abridged version
of Harter's table as an aid in probability plotting. The table pre-
sented here complements the abridged British version of Harter's work
rather than Harter's full table and is intended as a further aid to
probability plotting.

2.0 AN APPLICATION

The problem of determining whether it is reasonable to assume
that a particular population follows a normal distribution can ba. dealt
with by any one of several nmethods. Probability plotting is one of the
most easily used of these methods and can be applied in either one of
two equivalent forms.

One form requires the use of ordinary graph paper on which are
plotted the ranked data points, xi, versus the expected value of the
corresponding normal order statistics, E(xji). Harter's table of
expected values of normal order statistics can be used in this form
of the test.
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Table 2 can be used to implement the second form which requires
the use of normal probability paper. Tho ranked data points, xi, of
a sample of size n are plotted against *[E(xj)), where * is the
standardized normal cumulative distribution function, or against some
approximation to *[E(xi)] such as (i - 1/2)/n. The method of this
second form is now detailed followed by an example in which the method
is illustrated with the use of Table 2.

2.1 PROBABILITY PLOTTING

The method of probability plotting using probability paper is as
followse

1. Rank the data in order of magnitude from smallest to largest.
A set of size n of ordered observations is thus obtained:
XlIX2!5x 3 . • • x

2. From Table 2, obtain #[E(xi)].

3. Plot the ranked data, xi, vs. *[E(xi)3.

4. Draw the straight line which seems to best fit the data points.

5. If the points appear to cluster around the straight line,
proceed on the assumption that the population is normally distributed.

2.2 AN EXAMPLE

Consider the following simulated sample of size n - 6 from some
population: 0.36, 12.81, 4.58, 6.66, 11.14, 8.19. If we rank this
data in Table 1 and immediately below it place values of *[E(xi)]
obtained from Table 2 for a sample size 6, we gets

TABLE 1

i 1 2 3 4 5 6

X 4.58 6.66 8.19 8.36 11.14 12.81

#[E(xi)] .10254 .26051 .42013 .57987 .73049 .89746

The probability plot of this data, Figure 1, shows the data points
clustered closely enough around the fitted straight line that the user
can reasonably conclude that he is dealing with a normally distributed
population.
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3.0 CONSTRUCTION OF THE TABLE.

The data for Table 2 was taken from (6.3) and (6.4). Interpola-
tion was required to obtain Table 2 from tables in (6.4). The inter-
polation formula (6.3) is based upon the first 2 terms of the Taylor
series expansion of the normal cumulative distribution function. This
interpolation gives results which are accurate to at least 7 decimal
places, more than adequate for the 5 decimal place accuracy of Table 2.

The interpolation formulas - I
91E(xi)] -[(E(xi)-3xO] 0) + PO] / 2 + .5 ,

i -1,2, ... n/2 (n even)

1 - 1; 2. . . . (n+l)/2 (n odd)

*[E(XQJ - 1 #(E(Xn±i+l)3

i , [n/2)+l, [n/21+2, . . .n (n even)

I , [(n+l)/2]+l, . . . n (n odd)

whores

H(x1 ) is the expected value of the ith normal order statistic,

is the tabulated nbrmal deviate nearest to E(xi),

QO Q(XiO) " (1//rw) exp (-x 0 /2)

P0 . P(xio) " 0dt

00 and PO are tabulated in (6.3).

4.0 BACKGROUND

Blom (6.1) qives the development of (i - 1/2)/n and i/(n + 1)
as estimates of O[E(xj)]. We will make a short review here of certain
of his results. Consider n random points of the form Uin where
0 < Uln f U2fn < . . < Unn ' 1. uln is the ith order statistic of
a s-ample of siz-e n from a unrform distribution. Let x - G(u) be a
Borel-measurable function defined over the range of u with
G-l(x) - F(x). The random variable Uin follows a Seta distribution,
and, hence, the xin " G(uin) are known as transformed beta variables.
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The problem considered in Blom's text which is of concern here
is that of determining the expected value of transformed beta (TRB)
variables. For the case in Which the TRD-variable, xin, follows a
symmetric distribution, such as the normal, the expression for the
expected value is:

(1) E(xin) - GE(i - aj)/(n - 2ai + 1)] + Ri

where Gin is a correction factor which improves an earlier expression
derived for E(xi) and which has a unique value for each pair (in).
For the remainder term, Ri, we have Lim nRi finitely bounded. A good

n~a
approximation of E(xj) can then be had by replacing ain with a single
properly selected a for all (in) and by dropping the remainder term.
We then have

(2) E(xi) A G[(i - s)/(n - 2a + 1))

Consider the case of special interest in which - . Assigning
values to a gives the following expressions for G-lCE(xi)] OJE(xi)]
from (2):

a, [F (xi)]

0 i/(n + 1)
1/2 (i - 1/2)/n
3/8 (i - 3/8)/(n + 1/4)

The first two expressions give good approximations to #[E(xi) and are
the ones most commonly used in probability plotting. Blom suggests
that using the third expression above with a - 3/8 gives a still better
approximation to O[E(xi)] and is a good compromise of all a values for
approximating *tE(xi)]. However, this third expression is relatively
untidy and only slightly better approximates O[E(xi)] than do the
first two expressions. Probably for these reasons it is little used
in probability plotting.

Figure 2 illustrates the deviations of i/(n + 1) and (i - 1/2)/n
from O[E(xj)] for a sample of size 6. The comparison is made by first
constructing a set of data that will fall on a straight line when
plotted against O[E(xj)]. The same data set is then plotted against
(i - 1/2)/n and then i/(n + 1). In the figure, the points circled
to the lower left and upper right are for (i - 1/2)/nj those enclosed
by squares to the upper loft and lower riqht are for i/(n + 1). The
deviation of the two approximation lines from the 4 line is greatest
at the end points and decreases toward the middle of the plot where
the approximation curves cross the 0 curve. Whore the abscissa
values are so close toward the middle, the approximation points; have
not been indiiatod separately.
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Numerically, the deviations grow smaller with increased sample
size. Due to the nature of the changing scale of the abscissa on the
probability paper, however, the decreasing deviations are not apparen•t
on a plot. For a given n, points on the i/(n + 1) curve deviate more
from the corresponding points on the f curve than do points on the
(i - 1/2)/n line. A straight edge lying on the end points will show
that the points for each of the two approximations lie nearly on a
straight line, but are actually bent very slightly into an "S" shape,
the bend being more pronounced for the i/(n + 1) points..than for
(i - 1/2)/n points. -Since a test for normality using a prbability
plot is generally a strictly visual test, it appears'dbubtfV1 that
the relatively small errors introduced'using either of the approxima-

" tions given hese would influence a, test conclusion.

5.0 CONCLUSZON

"We undertook the project in order to provide a convenient method
for plotting on normal probability paper which would be equivalent
to met1hods for plotting on, standard graph paper uning Harter's table
of expected values of normal order statistics. The table doed not,
as we originally thought it might, provide for sign4 0tCantly improved
probability plotting with respect to improved absc ia values for the
plot.
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TABLE 2

Cumulative Distribution Function Values of Expected Values
of 'ormal Order Statistics

a 2 3 4 5 6 7 8
k

1 .28631 .19870 .15165 .12242 .10254 .08816 .07728
2 .71369 .50000 .38323 .31029 .26051 .22441 .19705
3 .80130 .61677 .50000 .42013 .36215 .31817
4 .84835 .68971 .57987 .50000 .43939
5 .87758 .73949 .63785 .56061

6. .89746 .77559 .68183
7 .91184 .80295
8 .92272

n 9 10 11 12 13 14 15
k

1 .06877 .06193 .05632 .05163 .04766 .04425 .04129
2 .17559 .15833 .14414 .13227 .12220 .11354 .10603
3 .28367 .25589 .23305 .21394 .19771 .18376 .!.!;64
4 .39568 .35355 .32205 .29569 .27330 .25406 ,23734
5 .50000 .45118 .41103 .37743 .34889 .32435 .30303

6 .60432 .54882 .50000 .45914 .42445 .39462 .36870
7 .71633 .64645 .58897 .54086 .50000 .46487 .43435
8 .82441 .74411 .67795 .62257 .57555 .53513 .50000
9 .93123 .84167 .76695 .70431 .65111 .60538 .56565
10 .93807 .85586 .78606 .72670 .67565 .63130

11 .94368 .86773 .80229 .74594 .69697
12 .94837 .87780 .81624 .76266
13 .95234 .886646 .82836
14 .95575 .89397
15 .95871
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TA5R.L 2 Continucd

16 17 is 19 20 21 22k

1 .03878 .03641 .03438 .03256 .03092 .02943 .02809
2 .09962 .09362 .08844 .08380 .07962 .07584 .07240
3 .16102 .15163 .14327 .13579 .12904 .12293 .11737
4 .22268 .20972 .19819 .18785 .17853 .17009 .16241
5 .28434 .26781 .25309 .23990 .22802 .21725 .20746

6 .34597 .32588 .30798 .29195 .27749 .26441 .25249
7 .40759 .38392 .36285 .34397 .32696 .31154 .29751
8 .46920 .44196 .41772 .39599 o37641 .35866 .34252
9 .53080 .50000 .47257 .44800 .42585 .40578 .38752
10 .59241 .55804 ;52743 .50000 .47528 .45289 .43252

11 .65403 .61608 .58228 " .55200 .52472 .50000 .47750
12 .71566 .67412 .63715 .60401 .57415 .54711 .52250
13 .77732 .73219 .69202 .65603 .62359 .59422 .56748
14 .83898 .79028 .74691 .70805 .67304 .64134 .61248
15 .90038 .84837 .80181 .76010 .72251 .68846 .65748

16 .96122 .90638 .85673 .81215 .77198 .73S59 .70249
17 .96359 .91156 .86421 .82147 .78275 .74751
18 .96562 .91620 .87096 .82991 .79254
19 .96744 .92038 .87707 .83759
20 .96908 .92426 ,88263

21 .97057 .92760
22 .97191
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TABLE 2 Continued

k 23 24 25 26 27 28 29
k

1 .02686 .02573 .02469 .02373 .02284 .02202 .02125
2 .06925 .06624 .06372 .06127 .05900 .05689 .05492
3 11229 .10763 .10334 .09938 .09571 .09230 .08912
4 .15540 .14896 .14303 .13756 .13249 .12778 .12339
5 .19851 .19029 .18273 .17574 .16927 .16326 .15766

6 .24160 .23161 .22242 .21392 .20605 .19873 .19192
7. 28469 .27279 .26210 .25209 .24282 .23420 .22618
a .32777 .31422 .30176 .29024 .27957 .26966 .26042
9 .37083 .35553 .34142 .32839 .31632 .30511 .29466
10 .41389 .39680 .38107 .36653 .35306 .34055 .32889

11 .45695 .43808 .42072 .40467 .38980 .37599 .36312
12 .50600 .47936 .46036 .44280 .42654 .41142 .39734
13 .54305 .52064 .50000 .48093 .46327 .44686 .43156
14 .58611 .56192 .53964 .51907 .50000 .48228 .46578
15 .62917 .60320 .57928 .55720 .53673 .51772 ,50000

16 .67223 .64448 .61893 .59533 .57346 .55314 .53422
17 .71531 .68578 .65858 .63347 .61020 .58858 .56844
18 .75840 .72721 .69824 .67161 .64694 .62401 .60266
19 .8014r .76839 .73791 .70976 .68368 .65945 .63688
20 .8446L .80971 o77758 .74791 .72043 .69489 .67111

21 .88771 .85104 .81727 .78608 .75718 .73034 .70514
22 .93075 .89237 .85697 .82426 ,79395 .76580 .73958
23 .97314 .93376 .89666 .86244 .83073 .80127 .77382
24 .97427 .93628 .90062 .86751 .83674 .80808
25 .97531 .93873 .90429 .87222 .84234

26 .97627 .94100 .90770 .87661
27 .97716 .94311 .91088
28 .97798 .14508
29 .97875
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IA5LS 2 Contired

a 30 31 32 33 34 35 36
k
1 .02054 .01987 .01924 .01865 .01810 .01758 .01708
2 .05309 .05138 .04977 .04826 .04683 .04549 .04423
3 .08616 .08338 .00078 .07833 .07603 .07386 .07181
4 .11929 .11545 .11186 .10847 .10529 .10229 .09946
5 .15242 .14753 .14294 .13862 .13456 .13073 A12711

6 .18556 .17960 .17402 .16877 .16382 .15916 .15476.
7 ,21868 .21166 ,20509 .19890 .19308 .18759 .18240
8 ,25i80 .24372 .23615 .22903 .22233 .21601 .21004
9 .28490 .27577 .26720 .25915 .25158 .24442 .23767
10 .31800 .30781 .29825 .28927 .28081 .27283 .26530

11 .35110 .33985 .32930 .31938 .31005 .30124 .29292
12 .38419 .37189 .36034 .34949 .33928 .32964 .32054
13 ,41728 .40392 ;39138 .37960 .36850 .35804 .34815
14 .45037 .43594 .42241 .40970 .39773 .38643 .37576
15 .48346 .46797 .45345 .43980 .42695 .41483 .40337

16 .51654 .50000 .48449 .46990 .45617 .44323 .43098
17 .54963 .53203 .51551 .50000 .48539 .47161 .45879
18 .58272 .56406 .54655 .53010 .51461 .50000 .48620
19 .61581 .59608 .57759 .56020 .54383 .52839 .51380
20 .64890 .62811 .60862 .59030 .57305 .55678 .54121

21 .68200 .66015 .63966 .62040 .60227 .58517 .56902
22 .71510 .69219 .67070 .65051 .63150 .61357 .59663
23 .74820 .72423 .70175 .68062 .66072 .64196 .62424
24 .78132 .75628 .73280 .71073 .68995 .67036 .65185
25 .81444 .78834 .76385 .74085 .71919 .69876 .61946

26 .84758 .82040 .79491 .77097 .74842 .72717 .70708
27 .88071 .85247 .82598 .80110 .77767 .75558 .73470

.28 .91384 .88455 .85706 .83123 .80692 .78399 .76233
29 .94691 .91662 .88814 .86138 .83618 .81241 .78996
30 .97946 .94862 .91922 .89153 .86544 .84084 .81760

31 .98013 .95023 .92167 .89471 .86927 .84524
32 .J8076 .95174 .92397 .89771 .87289
33 .98135 .95317 .92614 .90054
34 .98190 .95451 .92819
35 .98242 .95577

36 .98291
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TABLS 2 Continued

a 37 38 39 40 41 42 43

1 .01662 .01617 .01575 .01536 .01498 .01462 .01427
a .04303 .04189 .04081 .03979 .03882 .03789 .03717
3 .06987 .06803 .06629 .06463 .06305 .06155 .06012
4 .09677 .09423 .09182 .08953 .08735 .08527 .08329
5 .12368 .12044 .11736 .11443 .11165 .10899 .10646

6 .15059 .14664 .14289 .13933 .13595 .13272 .12964
7 .17749 .17251 .16842 .16423 .16024 .15643 .15281
8 .20439 .19903 .19395 .18912 .18453 .18015 .17597
9 .23128 .22522 .21947 .21401 .20881 .20386 .19844
10 .25816 .25140 .24499 .23889 .23309 .22756 .22229

11 .28504 .27758 .27050 .26377 .25737 .25126 .24545
12 .31192 .30376 .29601 .28864 .28164 .27496 .26859
13 .33879 .32993 .32151 .31352 .30591 .29866 .29174
14 .36566 .35609 .34701 .33838 .33017 .32235 .31489
is .39253 .38226 .37251 .36325 .35444 .34604 .33803
16 .41940 .40843 .39801 .38812 .37870 .36973 .36117

17' .44627 .43459 .42351 .41298 .40296 .39341 .38431
is .47314 .46076 .44901 .43784 .42722 .41710 .40745

19 .50000 .48692 .47451 ,46271 .45148 .44079 .43059
20 .52686 .51308 .50000 .48757 .47574 .46447 .45373

S 21 .55373 .53924 .52549 .51243 .50000 .48816 .47686
22 .58060 .56541 .55099 .53729 .52426 .51184 .50000
23 .60747 .59157 .57649 .56216 .54852 .53553 .52314
24 .63434 .61774 .60199 .58702 .57278 .55921 .54627
25 .66121 .64391 .62749 .61188 .59704 .58290 .56941

26 .68808 .67007 .65299 .63675 .62130 .60659 .59255
27 .71496 .69624 .67849 .66162 .64556 .63027 .61569
28 .74184 .72242 .70399 .68648 '66983 .65396 .63883
29 .76872 .74860 .72950 .71136 .69409 .67765 .66197
30 .79561 .77478 .75501 .73623 .71836 .70134 .68511

31 .82251 .80097 .78053 .76111 .74263 .72504 .70826
32 .84941 .82749 .80605 .78599 .76691 .74874 .73141
33 .87632 .85336 .83158 .81088 .79119 .77244 .75455
34 .90323 .87956 .85711 .83577 .81547 .79614 .77771
35 .93013 .90577 .88264 .86067 .63976 .81985 .80156

36 .95697 .93197 .90818 .88557 .86405 .84357 .82403
37 .98338 .95811 .93371 .91047 .88835 ,86728 .84719
38 .98383 .95919 .93537 .91265 .89101 .87036
39 .98425 .96021 .93695 .91473 .89354
40 .98464 .96118 .93845 .91671

41 .98502 .96211 .93988
42 .98538 .96283
43 .98573
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TAIL& 2 Continued

n 44 45 46 47 48 49 50

1 .01395 .01363 .01333 .01305 .01277 .01251 .01225
2 .03616 .03536 .03458 .03385 .03314 .03246 .03181
3 .05875 .05745 .05620 .05500 .05385 .05275 .05170
4 .08140 .07959 .07786 .07620 .07462 .07310 .07163
3 .10405 .10174 .09933 .09742 .09539 .09345 .09158

6 .12670 .12389 .12120 .11863 .11616 .11380 .11152
7 .14935 .14604 .14287 .13984 .13693 .13414 .13147
8 .17199 .16818 .16453 .16104 .15770 .15449 .15141
9 .19463 .19032 .18619 .18225 .17846 .17483 417134
10 .21726 .21245 .20785 .20344 .19922 .19516 .19127

11 .23989 .23458 .22950 .22464 .21997 .21550 .21120
12 .26252 .25671 .25115 .24583 .24073 .23583 .23113
13 .28514 .27883 .27280 .26702 .26147 .25616 .25106
14 .30776 .30095 .29444 .28820 •28222 .27649 .27098
15 .33039 .32307 .31608 .30939 .30297 .29598 .29090

16 .35300 .34519 .33773 .33057 .32371 .31713 .31082
17 .37562 .36731 .35936 .35175 .34445 .33745 .33073
18 .39823 .38943 .38100 .37293 .36520 .35778 .35065
19 .42085 .41154 .40264 .39411 .38594 .37809 .37056
20 .44346 .43366 .42427 .41529 .40668 .39841 .39048

21 .46608 .45577 .44591 .43647 .42741 .41873 .41039
22 .48869 .47789 .46755 .45764 .44815 .43905 .43031
23 .51131 .50000 .48918 .47882 .46889 .45937 .45022
24 .53392 .52211 .51082 .50000 .48963 .47969 .47013
25 .55654 .54423 .53245 .52118 .51037 .50000 .49004

26 .57915 .56634 .55409 .54236 .53111 .52032 .50996
27 .60177 .58846 .57573 .56353 .55185 .54063 .52987
28 .62438 .61057 .59736 .58471 .57259 .56095 .54978
29 .64700 .63269 .61900 .60589 .59332 .58127 .56969
30 .66961 .65481 .64064 .62707 .61406 .60159 .58961

.31 .69224 .67693 .66228 .64825 .63480 .62191 .60952
32 .71486 .69905 .68392 .66943 .65555 .64222 .62944
33 .73748 .72117 .70556 .69-61 .67629 .66255 ..64935
34 .76011 .74329 .72720 .71180 .69703 .68287 .66927
35 .73274 .76542 .74885 .73298 .71778 .70402 .68918

36 .80537 .78755 .77050 .75417 .73853 .72351 .70910
37 .82801 .80968 .79215 .77536 .75927 .74384 .72902
38 .85065 .83182 .81381 .79656 .78003 .76417 .74894
39 .87330 .85396 .83547 .81775 .80078 .78450 .76887
40 .89595 .87611 .85713 .83896 .82154 ,80484 .78880
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TABLE 2 Cotinued

n 44 45 46 47 48 49 50

41 .91860 .89826 .87880 .86016 .84230 .82517 .80873
42 .94125 .92041 .90047 .88137 .86307 .84551 .82866
43 .96384 .94255 .92214 .90258 .88384 .86586 .84859
44 .98605 .96464 .94380 .92380 .90461 .88620 .86853
45 .98637 .96542 .94500 .92538 .90655 .88848

46 .98667 .96615 .94615 .92690 .90842
41 .98695 .96686 .94725 .92837
48 .9S723 .96754 .94830
49 .98749 .96819
50 .98775
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TABU 2 Contitmnd
u51 52 3 3 54 55 56 57

1 .01201 .01178 .01155 .01134 .01113 .01093 .01073
2 .03118 .03058 .03000 .02944 .02890 .02839 .027893 .05068 .04970 .04876 .04786 .04699 .04615 .04534
4 .07023 .06888 o06758 o06633 .06512 .06396 .06284
5 .08979 .08806 .08640 .08480 .08326 .08178 .08034

6 .10934 o10724 .10522 ,10328 .10140 .09939 .09783
7 .12890 .12641 .12404 .12175 .11954 .11741 .11535

* .14845 .14560 .14286 .14022 .13767 .13522 .13285
9 .16799 .16477 .16167 .15868 .13580 .15303 .15035
10 .18754 .18394 .18048 .17715 .17393 .17084 .16785

11 .20708 .20311 .19929 .19561 .19206 .18864 .1853412 .22662 .22227 .21809 .21406 621018 .20644 920283
13 .24615 .24143 .23689 .23252 .22831 .22424 .22032
14. .26568 .26059 .25369 .25097 .24 643 .24204 .2378115 .28521 .27975 .27449 .26943 .26454 .29600 .25529

16 .30473 .29891 .29330 .28788 .28266 .277'63 .27278
17 .32427- .31806 .31208 .30633 .30078 .29542 .2902618 .34380 .33722 .33088 .32477 .31889 .31322 .30774
19 .36333 .35637 .34967 .34322 .33701 .33101 .32522
20 .38286 .37552 .36847 .36167 .35512 934880 .34270
21 .40238 .39.467 .38726 .38011 .37323 .36659 .3601822 .42191 .41382 .40605 .39856 .39134 .38438 .3776f
23 .44127 .43298 .42484 .41700 .40945 .40217 .3951424 .46095 .45213 .44363 .43545 .42756 .41995 .4126225 .48048 .47128 .46242 .45389 .44567 .43774 .4300S

26 .50000 .49043 .48121 .47234 .46378 .45553 .4475727 .51952 .50957 .50000 .49078 .48189 .47332 .4650328 .53905 .52872 .51879 .50922 .50000 .49111 .4825229 .55873 .54787 .53758 .52766 .51811 .50889 .50000
30 .57809 .56702 .55637 .54611 .53622 .52668 .51748

31 .59762 .58618 .57516 .56455 .55433 .54447 .'5349532 .61714 .60533 .39395 .58300 .57244 .56226' .5524333 .63667 .62448 .61274 .60144 .59055 .58005 .5699334 .65620 .64363 .63153 .61989 .60866 .59783 .58731
35 .67573 .66278 .65033 .63833 .62677 .61562 .60481

36 .69525 .68194 .66912 .65678 .64488 .63341 .62234
37 .71479 .70109 .68792 .67523 .66299 .65120 .6398238 .73432 .72025 .70671 .69367 .68111 .66899 .65739
39 .75385 .73941 .72551 .71212 .69922 .68678 .67478
401 .77338 .75857 .74431 .73057 .71734 .70458 .69226
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TAILI 2 Continued

'a 52 52 53 54 55 56 57

41 .79292 .77773 .76311 .749Q3 .73546 .72237 .70974
42 .81246 .79689 .78191 .76740 .75357 .70400 .72722

* 43 .83201 .81606 •80071 .78594 .77169 .75796 .74471
44 .85155 .83523 .81952 .80439 .78982 .77576 .7621.9

.4 .87110 .85440 .83833 .82285 .80794 .79356 .77968

46 .89066 .87358 .85714 .84132 .82607 .81136 .79717
47 .91021 .89276 .87596 .85978 .84420 .82916 .81466
48 .92977 .91194 .89478 .87825 .86233 .84697 .83215-
49 .94932 .93112 .91360 .89672 .88046 .86478 .84965
50 .96882 .95030 .93242 .91520 .89860 .88259 .86715

51 .98799 .96942 .95124 .93367 .91674 .90041 .88465
52 .98822 .97000 .95214 .93488 .91822 .90215
53 .98845 .97056 .95301 .93604 .91966
54 .98866 .97110 .95385 .93716
55 .98887 .97161 .95466

56 .98907 .97211
57 .98927
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TABLE 2 Contimwd
k 58 59 60 65 70 75 80

1 .01055 .01036 .01019 .00940 .00872 .00813 .007622 .02740 .02694 .02649 .02444 .02269 .02117 .019843 .04455 .04380 .04307 .03975 .03690 .03444 .032284 06175 .06070 .05969 .05510 .05116 .04774 .044765 .07896 .07762 .07633 .07046 .06542 .06106 .05724
6 .09658 .09453 .09296 .08582 .07969 .07438 .069737 .11337 .11145 .10959 .10117 .09395 .08769 .082223 .13057 .12836 .12622 .11653 .10821 .10101 .094709 14776 .14527 .14285 .13188 .12248 .11432 .1071810 .16496 .16217 .15947 .14723 .13673 .12763 .11967
11 .18215 .17907 .17610 .16258 .15099 .14094 .1321412 .19934 .19597 .19272 .17793 .16524 .15425 .1446213 .21653 .21287 .20934 .19327 .17950 .16756 .1571014 .23372 .22977 .22595 .20862 .19375 .18086 .1695815 .25091 .24667 .24257 .22396 .20800 .19416 .18205
16 .26809 .26356 .25918 .23930 .22225 .20747 .1945317 .28527 .28045 .27579 .25464 .23650 .22077 .20700.8 .30245 .29735 .29241 .26998 .25075 .23407 .2194719 .31963 .31424 .30902 .28532 .26499 .24737 .2319420 .33682 .33112 .32563 .30065 .27924 .26067 .24442
21 .35399 .34802 .34224 .31599 .29399 .27397 .2568922 .37117 .36490 .35884 .33133 .30773 .28727 .2693623 .38835 .38179 .37545 .34666 .32197 .30057 .2818324 .40553 .39868 .39206 .36200 .33622 .31386 .2943025 .42270 .41557 .40867 .37733 .35046 .32716 .30677
26 .43988 .43245 .42527 .39267 .36471 .34046 .3192327 .45706 .44934 .44188 .40800 .37895 .35375 .3317028 .47423 .46623 .45849 .42333 .39319 .36705 .3441729 .49141 .48311 .47509 .43867 .40743 .38035 .3566330 .50859 .50000 .49170 .45400 .42167 .39364 .36910
31 .52577 .51689 .50830 .46934 .43591 .40694 .3815732 .54294 .53377 .52491 .48467 .45015 .42023 .3940433 .56012 .55066 .54151 .50000 .46440 .43353 .4065034 .57730 .56755 .55812 .51533 .47864 .44682 .4189735 .59447 .58443 .57473 .53066 .49288 .46012 .431j4
36 .61165 .60132 .59133 .54600 .50712 .47341 .4439037 .62883 .61821 .60794 .56133 .52136 .48671 .4563738 .64601 .63510 .62455 .57667 .53560 .50000 .4688339 .66318 .65198 .64116 .59200 .54985 .51329 .4813040 .68037 .66888 .65776 .60733 .56409 .52659 .49377
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?AILI 2 Continued

a so 59 60 65 70 75 so,

41 .69755 .68576 .67437 .62267 .57833 .53988 .50623
42 .71473 .70265 .69098 .63800 .59257 .55318 .51870
43 .73191 .71955 .70759 .65334 .60681 .56647 .53117
44 .74909 .73644 .72421 .6b§67 .62105 .57977 .54363.
45 .76628 .75333 .74082 .68401 .63529 .59306 .55610

46 .76347 .77023 .75743 .69935 .64954 .60636 .56856
47 .80066 .78713 .77405 .71468 .66378 .61965 .58103
48 .81785 .80403 .79066 .73002 .67803 .63295 .59350
49 .83504 .82093 .80728 .74536 .69227 .64625 .60596
so .85224 .83783 .82390 .76070 .70601 .65954 .61843

51 .86943 .85473 .84053 .77604 .72076 .67284 .63090
52 .88663 .87164 .85715 .791,38 .73501 .68614 .64337
53 .90342 .88855 .87378 .80673 .74925 .69943 .65583
54 .92104 .90547 .89041 .82207 .76350 .71273 .66830
55 .93825 .92238 .90704 .83742 .77775 .72603 .68077

.56 .95545 .93930 .92367 .85277 .79200 .73933 .69323
57 .97260 .95620 .94031 .86812 .80625 .75263 .70570
58 .98945 .97306 .95693 .88347 .82050 .76593 .71817
59 .98964 .97351 T89883 .83476 .77923 .73064
60 .98981 .91418 .84901 .79253 .74311

61 .92954 .86327 .80584 .75558
62 .94490 .87752 .81914 .76806
63 .96025 .89179 .83244. .78053
64 .97536 .90605 .84575 .79300

45.99060 .92031 .85906 .80547

66 .93458 .87237 .81795
67 .94884 .88568 .83042
68 .96310 .89899 .84290
69 .97731 .91231 .85538
70 .99128 .92562 .86786

71 .93894 .88033
72 .95226 .89282
73 .96556 .90530
74 .97883 .91778
75 .99187 .93027

76 .94276
77 .95524
78 .96772
79 .98016
80 .99238
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TABLE 2 Continued
85 90 95 100 125 150 175

1 .007,16 .00676 .00640 .00608 .00485 .00403 .00345
2 .01866 .01762 .01669 .01585 .01267 .01054 .00903
3 .03037 .02868 .02717 .02581 .02063 .01718 .01472
4 .04212 .03978 .03768 .03579 .02862 .02384 .02043
5 .05387 .05088 .04820 .04578 .03662 .03051 .02614

6 .06563 .06198 .05872 .05578 .04462 .03717 .03186
7 .07738 .07308 .06924 .06577 .05261 .04384 .03757
a .05913 08418 .07975 .07577 .06061 .05051 .04329"9 .10088 09528 .09027 .08576 .06861 .05717 .0491010 .11263 .10638 .10079 .09575 .07661 .06384' .05472

11 .12438 .11748 .11130 .10574 .08460 .07050 .06043
12 .13613 .12857 .12182 .11573 ,09260 ,07717 .06614
13 ,14787 .13967 .13233 .12572 :10059 .08383 .0718614 ,15962 .15076 .14284 .13571 .10858 .09050 .0775715 .17136 .16186 415335 .14569 .11658 .09716 @08328

16 ,18310- ,17295 .16386 .15568 .12457 .10382 .0889917 .19485 .18404 .17437 .16566 .13256 .11048 .09471
18 .20659 .19513 .18488 .17565 .14055 .11715 .1004219 .21833 .20622 .19539 .18563 .14855 .12381 .1061320 .23007 ,21731 .20589 19561 .15654 .13047 .11184

21 .24181 .22840 .21640 .20560 .16453 .13713 .11755
22 .25355 .23949 .22691 .21558 .17252 .14379 .12326
23 .26528 .25058 .23742 .22557 .18051 .15045 .12897
24 .27702 .26167 .24792 .23555 .18850 .15711 .13468
25 .28876 .27275 .25842 .24553 .19649 .16377 .14039

26 .30050 .28384 .26893 .25551 .20448 *17043 .14610
27 .31224 ,29493 .27944 .26549 .21247 .17709 .15182
28 .32397 .3060. .28994 .27547 .22046 .18375 .1575229 .33571 .31710 .30045 .28545 .22844 .19041 .1632330 .34744 .32819 .31095 .29543 .23643 .19707 .16894

31 .35918 .3j927 .32145 .30541 .24442 ,20373 .17465
*32 .37092 .35036 .33196 .31539 .25241 .21039 .18036

33 .38265 .36144 .34246 .32537 .26040 .23.705 .1860734 .39439 .37253 .35296 .33535 .26839 .22371 .19178
35 .40613 .38361 .36347 .34533 .27637 .23037 .19749

36 .41786 .39470 .37397 .35531 .28436 .23703 .20320
37 .42959 .40578 .38447 .36529 .29235 .24368 .20891
38 .44133 .41687 .39498 .37527 .30034 .25034 .21462
39 .45306 .42795 .40548 .38525 .30832 .25700 .2203240 .46476 .43904 .41598 .39523 .31631 .26366 .22603
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TABLE 2 Continued

n 85 90 95 100 125 150 175k

41 .47653 .45012 .42649 .40520 .32430 .27032 .23174
42 .48826 .46120 .43699 .41518 .33229 .27698 .23745
43 .50000 .47229 .44749 .42516 .34027 .28363 .24316
44 .51174 .46337 .45799 .43514 .34826 .29029 .24887
45 .52347 .49446 .46849 .44512 .35625 .29695 .25458

46 .53524 .50554 .47900 .45510 .36423 .30361 .26028
47 .54694 .51663 .48950 .46508 .37222 .31027 .26599
48 .55867 .52771 .50000 .47505 .38021 .31692 .27170
49 .57041 .53880 051050 .48503 .38819 .32358 .27741
50 .58214 .54988 .52100 .49501 .39618 .33024 .28312

51 .59387 .56096 .53151 .50499 .40417 .33690 .28883
52 .60561 .57205 .54201 .51497 .41215 .34356 .29453
53 .61735 .58313 .55251 .52495 .42014 .35021 .30024
54 .62908 .59422 .56301 .53492 .42812 .35687 .30595
55 .64082 .60530 .57351 .54490 .43611 .36353 .31166

56 .65256 .61639 .58402 .55488 .44410 .37019 .31737
57 .66429 .62747 .59452 .56486 .45208 .37684 .32307
58 .67603 .63856 .60502 .57484 .46007 .38350 .32878
59 .68776 .64964 .61553 .58482 .46806 .39016 .33449
60 .69950 .66073 .62603 .59480 .47604 .39681 .34020

61 .71124 .67181 .63653 .60477 .48403 .40347 .34590
62 .72298 .68290 .64704 .61475 .49201 .41013 .3516163 .73472 .69399 .65754 .62473 .50000 .41679 .35732

64 .74645 .70507 .66804 .63471 .50799 .42344 .36302
65 .75819 .71616 .67855 .64469 .51597 .43010 .36873

66 .76993 .72725 .68905 .65467 .52396 .43676 .37444
67 .78167 .73833 .69955 .66465 .53195 .44341 .38015
68 .79341 .74942 .71006 .67463 .53993 .45007 .38585
69 .80515 .76051 .72056 .68461 .54792 .45673 .39156
70 .81690 .77160 .73107 .69459 .55590 .46338 .39727

71 .82864 .78269 .74158 .70457 .56389 .47004 .40298
72 .84038 .79378 .75208 .71455 .57188 .47670 .40868
73 .85213 .80487 .76258 .72453 .57986 .48336 .41439
74 .86387 .81596 .77309 .73451 .58785 .49002 .42010
75 .87562 .82705 .78360 .74449 .59583 .49667 .42581

76 .88737 .83814 .79411 .75447 .60382 .50333 .43151
77 .89912 .84924 .80461 .76445 .61181 .50998 .43722
78 .91087 .86033 .81512 .77443 .61979 .51664 .44293
79 .92262 .87143 .82563 .78442 .62778 .52330 .44864
80 .93437 .88252 .83614 .79440 .63577 .52996 .45434
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TASLE 2 Contmesd

a 85 90 95 100 125 150 175

81 .94613 .89362 .84665 .80439 .64375 .53662 .46005
82 .95788 .90472 .85716 .81437 .65174 .54327 .46576
"83 .96963 .91582 .86767 .82435 .65973 o.4993 .47146
84 .98134 .92692 .87818 .83434 .66771 •.I659 .47717

.5 .99284 .93802 .88870 .84432 .67570 .56324 .48288

86 .94912 .89921 .85431 .68369 .56990 .48858 W
87 .96022 .90973 .86429 .69168 .57656 .49429
88 .97132 .92025 87428 .69966 .58321 .30000
89 .98238 .93076 .88427 .70765 .58987 .505.71
90 .99324 .94128 .89426 .71564 .59653 .51142

91 .95180 .90425 .72363 .60319 .51712
92 .96232 .91424 .73161 .60984 .52283
93 .97283 .92423 .73960 .61650 .52854
94 .98331 .93423 .74759 462316 .53424 2
95 .99360 .94422 .75558 .62981 .53995

96 .95422 .76357 .63647 .54566
97 .96421 .77156 .64313 .55136
98 .97419 .77934 .64979 .55707
99 .98415 .78753 .65644 .56278

Ij100 .99392 .79552 .66310 .56849

101 .80351 .66976 .57419
102 .81150 .67642 .57990
103 .81949 .68308 .58561
104 .82748 .68973 .39132
105 .83547 .69639 .59702

106 .84346 .70305 .60273
107 .85145 .70971 .60844
108 .85945 .71637 .61415
109 .86744 .72302 .61986
110 .87543 .72968 .62556
111' .88342 .73634 .63127
112 .89142 .74300 .63698
113 .89941 .74966 .64268
114 .90740 .75632 .64839
115 .91540 .76297 .65410

116 .92339 .76963 .65980
117 .93139 .77629 .66551
118 .93939 .78295 .67122
119 .94739 .78961 .67693
120 .95538 .79627 .68264
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TABLE 2 Continued

n 125 150 175 n 125 150 175, k k,!

121 .96338 .80293 .68834 161 .91672
122 .97138 .80959 .69405 162 .92243
123 .97937 .81625 .69976 163 .92814
124 .98733 .82291 .70547 164 .93386
125 .99515 .82957 .71117 165 .93957

126 .83623 .71688 166 .94528
127 .84289 .72259 167 .95090
128 .84955 .72830 168 .95671
129 .85621 .73401 169 .96243
130 .86287 .73972 170 .96814

131 .86953 .74542 171 .97386
132 .87619 .75113 172 .97957
133 .88285 .75684 173 .98528
134 .88952 .76255 174 .99097
135 .89618 .76826 175 .99655

1.36 .90284 .77397
137 .90950 .77968
138 .91617 .78539
139 .92283 .79109
140 .92950 .79680

141 .93616 .80251
142 .94283 .81822
143 .94949 .81393
144 .95616 .81964
145 .96283 .82535

146 .96949 .83106
147 .97616 .83677
148 .98282 .84248
149 .98946 .84819
150 .99597 .85390

151 .85961
152 .86532
153 .87103
154 .87674
155 .88245

156 88816
157 .89387
158 .89958
159 .90529
160 .91101
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TABLE 2 Continued

a 200 225 250 , 200 225 250
k. .... . k
1 .00302 .00268 .00241 41 .20280 .18028 .16226
2 .00790 .00702 .00631 42 .20779 .18472 .16626
3 .01287 .01144 .01029 43 .21279 .18916 .17026
4 .01787 .01588 .01429 44 .21779 .19360 .17426
5 .02287 .02M32 .01829 45 .22278 .19805 .17825

6 .02787 .02477 .02229 46 .22778 .20249 .18225
7 .03287 .02921 .02629 47 .23277 .20693 .18625
8 .03787 .03366 .03029 48 .23777 .2)137 .19025
9 •04287 .03811 .03429 49 .24276 .21581 .19424
10 .04787 .04255 .03829 50 .24776 .22025 .19824

11 .0S287 .04700 .04229 51 .25275 .22469 .20224
12 .05787 .05144 .04630 52 .25775 .22923 .20624
13 .06287 .05589 .05030 53 .26275 .23358 .21023
14 .06787 .06033 .05430 54 .26774 .23802 .21423
15 .07287 .06477 .05830 55 .27274 .24246 .21823

16 ".07787 .06922 .d6230 56 .27773 .24690 .22223
17 .08287 .07366 .06630 57 .28273 .25134 .22622
18 .08787 .07811 .07030 58 .28772 .25578 .23022
19 .09287 .08255 .07430 59 .29272 .26022 .23422
20 .09787 .08699 .07830 60 .29771 .26466 .23821

21 .10286 .09144 .08230 61 .30271 .27240 .24221
22 .10786 .09588 .08629 62 .30770 .27354 .24621
23 .11286 .10032 .09029 63 .31270 .27798 .25021
24 .11786 .10477 .09429 64 .31769 .28242 .25420
25 .12285 .10921 .09829 65 .32269 .28686 - .25820

26 .12785 .11365 .10229 66 .32758 .29130 .26220
27 .13285 .11809 .10629 67 .33268 .29574 .26619
28 .13785 .12254 .11029 68 .33767 .30019 .27019
29 .14284 .12698 .11429 69 .34267 .30463 .27419
30 .14784 .13142 .11828 70 .34766 .30907 .27819

31 .15284 .13586 .12228 71 .35266 .31351 .28218
32 .15783 .14031 .12628 72 .35765 .31795 .28618
33 .16283 .14475 .13028 73 .36265 .32239 .29018
34 .16783 .14919 .13428 74 .36764 .32683 .29417
35 .17282 .15363 .13828 75 .37264 .33127 .29817

36 .17782 .15807 .14227 76 .37763 .33571 .30217
37 .18281 .16251 .14627 77 .38263 .34015 .30616
38 .18781 .16696 .15027 78 .38762 .34459 .31016
39 .19281 .17140 .15427 79 .39262 .34903 .31416
40 .19780 .17584 .15827 80 .39761 .35347 .31815
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TABLE 2 Continued

a 200 225 250 f 200 225 250
k

81 .40261 .35791 .32215 121 .60239 .53552 .48201
82 .40760 .36235 .32615 122 .60739 .53996 .48601
83 .41259 .36679 .33014 123 .61238 .54440 .49001
64 .41759 .37123 .33414 124 .61737 .54884 .49400
85 .42258 .37567 .33814 125 .62237 .55328 .49800

86 .42758 .38011 .34213 126 .62736 .55772 .50200
87 .53257 .38455 .34613 127 .63236 .56216 .50600
a88 43757 .38899 .35013 128 .63735 .56660 .50999

89 .44256 .39343 .35412 129 .64235 .57104 .51399
90 .44756 .39788 .35812 130 .64734 .57548 .51799

91 .45255 .40231 .36212 131 .65234 .57992 .52198
92 .45755 .40676 .36612 132 .65733 .58436 .52598
93 .46254 .41120 .37011 133 .66233 .58880 .52997
94 .46753 .41564 .37411 134 .66732 .59324 .53397
95 .47249 .42008 .37811 135 .67232 .59769 .53797

96 .47752 .42452 .38210 136 .67731 .60212 .54196
97" .48252 .42896 .38610 137 .68231 .60657 054596
98 .48752 .43340 .39010 138 .68730 .61101 .54996
99 .49251 .43784 .39409 139 .69230 .61545 .55396
100 .49750 .44228 .39809 140 .69729 .61989 .55795

101 .50250 .44672 .40208 141 .70229 .62433 .56195
102 .50749 .45116 .40608 142 .70728 .62877 .56595

* 103 .51248 .45560 .41008 143 .71228 .63321 .56994
104 .51748 .46004 .41407 144 ,71727 .63765 .57394
105 .52248 .46448 .41807 145 .72227 .64209 .57793

106 .52751 .46892 .42207 146 .72726 .64653 .58193
107 .53247 .47336 .42606 147 .,73226 .65097 .58593
108 .53746 .47780 .43006 148 .73725 .65541 .58992
109 .54245 .48224 .43405 149 .74225 .65985 .59392
110 .54745 .48668 .43805 150 .74725 .66429 .59792

111 .55244 .49112 .44205 151 .75224 .66873 .60191
112 .55744 .4g556 .44605 152 .75724 .67317 .60591
113 .56243 .50000 .45004 153 .76223 .67761 .60990
114 .56743 .50444 .45404 154 .76723 .68205 .61390
115 .57242 .50888 .45804 155 .77222 .68649 .61790

116 .57742 .51332 .46203 156 .77722 .69093 .62189
117 .58241 .51776 .46603 157 .78221 .69537 .62589
118 .58741 .52220 .47003 158 .78721 .69981 .62989
119 .59240 .52664 .47402 159 .79221 .70426 .63388
120 .59740 .53108 .47802 160 .79720 .70870 .63788
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TAZLR 2 Continued

n 200 225 230 u 200 225 250
k k

161 .80220 .71314 .64188 201 .89079 .80176
162 .80719 .71758 .64588 202 .89523 .80576
163 .81219 .72202 .64987 203 .89968 .80975
164 .81719 .72646 .65387 204 .90412 .81375
165 .82218 .72760 .65787 205 .90856 .81775

166 .82718 .73534 .66186 206 .91301 .82175
167 .83217 .73978 .66586, 207 .91745 .82574
168 .83717 .74422 .66986 208 .92189 .82974
169 s84217 .74866 .67385 209 .92634 .83374
170 .84716 .75310 .67785 210 .93078 .83774

171 .85216 .75754 .68185 211 .93523 .84173
172 .85716 .76198 .68584 212 .93967 .84573
173 .86215 .76642 .68984 213 .94411 .84973
174 .86715 .77077 .69384 214 .94856 .85373
175 .87215 .77531 .69783 215 .95300 .85773

176 .87715- .77975 -. 70183 216 .95745 .86172
177 .88214 .78419 .70583 217 .96189 .86572
178 .88714 .78863 .70982 218 .96634 .86972
179 .89214 .79307 .71382 219 .97079 .87372
180 .89714 .79751 .71782 220 .97523 .87772

181 .90213 .80195 .72181 221 .97968 .88172
182 .90713 .80640 .72581 222 .98412 .88571
183 .91213 .81084 .72981 223 .98856 .88971
184 .91713 .81528 .73381 224 .99298 .89371
185 .92213 .81972 .73780 225 .99732 .89771

186 .92713 .82416 .74180 226 .90171
187 .93213 .82860 .74580 227 .90571
188 .93713 .83304 .74979 228 .90971
189 .94213 .83749 .75379 229 .91371
190 .94713 .84193 .75779 230 .91771

191 .95213 .84637 .76179 231 .92170
192 .95713 .85081 .76578 232 -. 92570
193 .96213 .85525 .76978 233 .92970
194 .96713 .85970 .77378 234 .93370
195 .97213 .86414 .77777 235 .93770

196 .97713 .86858 .78177 236 .94170
197 .98213 .87302 .78577 237 .94570
198 .98713 .87746 .78977 238 .94970
199 .99210 .88191 .79376 239 .95370
k00 .99698 .88635 .79776 240 .95771
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TARSE 2 Continued

a 200 225 250

24 .96171___

241 .96571
243 .96971

244 .97371
243 .97771

246 .98171
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A 81AWN JUIMTIICAM~N POR THE USE OF BABE TWM TN THE CARN
C? MON-NO94ALM

J, Sethuraman and D. H. Jones
The Flored.. Btate University and rtutgers university

This paper Is to give a nw and strong justification for rank

tests in the case of non-normality.

To keep the talk simple we will consider only two problems. It

Is expected tbhat the same situation will hold in other problem.

Problem I. To test that the median of a symetric distribution

is a specified number, 0, say, versus that the median is not 0.

Problem II. To test that two distributiono are identical versus

that they are not the same.

1 Problem 1. Description (,f the problem and the basic tests.

Let us consider Probl"i. I in detail. A raruda variable X L-s

a distribution function F. Independent observations X 1 , X2 ,..., Xa

are available on X. We w,.sh to test the hypothesis

H : F(x) - i(x) w-"'e 0 is an unknown syametric

contiraous distribution function versus the altear-

native

A t F(x) .G(x- 0) vherethe'unknova 0 and
C is an unknown symetric continuous distzib-.

tion function

In the presence of normality, we can restrict the null-hypothesis
am follow.:

Hs F(:x) O(z) where a is unknown and #()stands

for L norma: distribuWion function with mean 0

and variance o
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The preferred parametric test for this hypothesis is the one-

Sample t-test which is to reject for large values of It n where

•n 4E 11x Wn

A Jaug aumpla appioxiuation states that, with a ' 0,

P(Itni > a) * 2(1 - #(a))

where #(x) is the standard normal distribution function.

The rank tests one usuafly uses to test H are called one-saaple

signed rank tests. They may be briefly descrUbed as follows. Arrange

Ix, 1. x21X... in increasing order of ,agnitude and let the rank of
lxii be R,. Define yix if Xi 20, -o if xi < 0. Let

•n'*'" En be some numbers to be called scores. Define

nT n a I S DR ii

tO be the eemsumple signe4 trk statistie based ve the secret En,

Inn* One rejects H if

n
IT n - ni E/21 is large.

1

Two such rank tests are commonly used. When E 1 t, the scores
ni

are called the Wilcoxon scores, and in this case T , to be called

T n(W), is known as the one-Rample Wilcoxon statistic. When Eni - E(W(W))

where W(1 ),... W(n) are the order statistics of ý, sample of size n

from a half-normal distribution (also called the square root 4 dis-

tribution), T n, to be called T (0), is known as the one-sample half-

normal scores statistic or the Fraser statistic. These tv, rank tests

have special local optimal properties and we will not detail them here,
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The folnoving large sample approximations are known* Let

Tn, (W) -(T n(W) n +1/ ýE 2

and

Then, under H and vith a ' 0,

P(IT(W)I a) o -2(1

and

P(ITn*(t)l > a) .* 2(1 9(a)).

2. . ý •.atrative example.

Here is an example taken from the recent book 'Non-parametric

Statistical Methods' by Hollander and Wolfe (John Wiley and Sons, 1973,

p. 53 Problem 20.) It is expected that the percentage of chromium

in the samples of steel used in a certain process will be 18%. In 12

samples, the percentage of chromium differed from 18% by the following

figures

-0.6, -0.1, -0.*, 0.1, -O*4, 0.9, -1.1, -0.5, -0.2, -0.6D

6.6, and 8.0.

By direct calculation we find

t n 1.1229n

. (w) =-o.4315
n

T (4) - -0.0628
n

By using the large sample approximations we should accdpt the

null hypot.hesis at the 5% level.
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.A heuristic reasoning and a discussion of efficiencies.

Here is the heuristic argument that rank tests should be more

efficient than the t-test for testing the hypothesis H. I'he t-te.t

is designed for the problem of testing the more limited hypothesis

H # and so should fall flat on ita face when trying to test H.

The pioneering work of Hodges atAd Lehmann, and Chernoff and Savage

show that if the alternatives are normal and local then the t-test can

hold its fort against rank statistics. However, if the alternatives

are non-normal and local, the t-test can become less efficient. It is

interesting that these conclusions are the same whether the hypothesis

H or. H is being tested.

When the alternatives are not local, say the alternative states

that F(x) - #(x - e) where 8 * 0 is known, i.e. even if the alter-

native is normal, the t-test is inferior to the rank tests when testing

the hypothesis H. (Of course, when testing for H., the t-test is

ouperior.) We present a graph below to show this. The criterion of

efficiency we use is .Bhadur efficiency, which measures the rate of

convergence to zero of the type I error when the type II error is fixed.

To sumarize, if the null-hypothesis to be tested includes non-

normal distributions, then the rank tests fare better than the t-teLt

even when the alternative hypothesis is normal (of course, also when

the alternative hypothepis is non-normal). The older work which studied

local alternatives said that the rank tests fare no worse than the t-

test. We have shown that they actually fare better.

4. Problem II. Description of the problem and basic tests.

Let Xl, X2 '... Xmi Y .".Yn be two independent samples from

two continuous distribution functions F, G, respectively. We vrite

N a m + n. We -. h to test the hypothesis

H : Fa-

versus the alternative

A : FaG.
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In the cue of Mu,.lily, the mil hypothesis to w'estried to

I FP(x) - G(X) - 0( )

sr, c"m•'ammum 1 and of

In.•ths ease, aem uses the two-aample t-statistie, -t defined by

#%/ms.

"amd veJeets tor lare m"leu of ItS1. One eam use the large sample
sgWoimation that holds under the nVu bypoftsli Vem a P 01

P(tj :0) * 2(l - #a)

To define the rank statistics in this problem arrange the ocmbined

5a0p9e, 6,... V1, say, in increasing order and put 1E .3. it the
l rpet• oaftii4 obwvstion Is 0 1 amd a 0 if It In a T.

Let ý1 Bow, to be called scores$ be soae .wbers. A simple
linear rank statistic, Tas, is defined a follow

S tl the ul hypothesis it a I %,/NJ in large.

SWhen S, the scores are called Wilcomoon $sOre and T

to be called TN(V), is knon as the tvo-eaople Wilooson rank

statistic. When 'A 3l (1 ) when "(w)... L (N)aethorr
statistics from a sample of alsi N from the standard notua, oTV
to be oalled T1(0), is known as the nO•mal sores rn statistic.

Zn large sample we can us* the tollowing apepJroastions, wlieh

hold under the nul hypothesis. Lot
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(W) T3 1(w))+

Under the- ull hbpothesiso, with a 1,0,

P(!IoTS ) (V a) . 2(l - #(4))

an'

PlTx' MI a) 2(l - 0()).

5. Zllustrative naoteol ezmrule.

The ftlloving maerical ezample Is taken from 'enparametoe

Statistioael 14efteos' b Hollander MnA Wolte (John VleWr and 0ons,

1973, Pape 74, Probem 1.)

"The 4ata In Table 2 are a subset of the date obtaened by Thmas
a=M Bion= (1969), who investipted, the relation of IVA= histamine

levels to inhaled Irritants or allergens. The hsetamine content was

repot ed In mlrorams per Cram dry weight of sput. The subjects

Oui this portion of the studyr onusiuted of 3 m=eWW; mine ot them

were allergics and the remaining 13 were asymoptnatio (nfoallersio)

individuals. Care was taken to avoid people who earried out part of

their daily work In an atmosphere of noxious gses or other respiratory
to•icants. Table 2 gives the ordered sputum histamine levels for the

92 indivuals In the study."
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Table 2.
Wautu aisia, e level$ ("id & arvea.t awpUa)

Allewgies N~oe~mllsie

16i1.O i.8.l
1112.0 48.0

100.0

30:6 29.1
31.0 27.3

18.9
6.6

$a, sme. .3 . ,, and 3. oSimms (U969).

r=m the bosa ve an eauily omWA* that

4,e. . !4.
T (w)• 3..'17

t 1+ () 3-M* 3.0207

Using the large sample approxrmatioms vw conolude that 11 thnree
tests reject the null h tpotheeis at the 5 levetl.

•', 6. DiuOtualiOn of etfioienuie.

Isalier stu•ile, like those in the one-smaple ome. have sihows
that even though the t-statisti lI desisgned to test the h3lpothesis
So, It In am efficient as the norml scores test for normal local

alternatives. We have shown thatm even for a fimxed alternative of the
fai n (z) N (M), O(X) - O(z- 0). * 0 00 the t-tet io less

efficient than the Wiloozon end noml scors teest. The ms tWale

an In the one-mplde case qpllee. As before, our masure of ettieenul
Is Dehbafr effelemop.
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To suaiprise; the t-teLt to well Wsedi to t•st nMQI-hypotheis
th-t mL.t It hMruity, It I•_-,-n_-•nw•iitr i D ueent in the .m3l

iRMoshelse. tAhe w11 be loam on eof-foenle if the t-test Im used
evn hea. the' ,lterna'tive bauh~e_-,s is ac=ual. .

ktnemsions tone-sided mAlternaives and alti-mangle Vrobl,

along the same lines as above are obvious.

Details regarding the Dahadur efficiency of the t-test are
waailablo In a technical report currently under preparation. 'This.

naw wrk' rectifies an error in earlier work by Woodworth (Annals of
Ib•thmatical Statistics, 1970) and others who reported that the t-t*O

had Sahader efficiency acre than unity relative to rank tdoets
One needs the special cores mentimo•e in mNOtioN I and • to

omoxte T.04e) and T's(.). Those soores my be found tn

OovLadseJulu and Sloenstat (Rep. Stat. AppI. Reot.amt, 39650 MIg
1616) %A Barte, Order AOatistice and their wae In testing and
estlamtiaom Vol. as 109, U.. 00vt. Printing Offieo.

I
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STATISTICAL ANALYSIS AND MODELING OF PATH IOSS DISTANCE DEPENDENCY IVOWATION

R. D'Accardi and D. Dence, U. S. Army Electronics Command, Fort Monmouth,
New Jersey. C. Tookos, University of South Florida, Tamps, Florida.

ABSTRACT

In recent years extensive investigations have been made in Southeast Asia
and the United States to improve communications-electronics performance in
heavily forested environmente. The investigation involved making extensive
propagation measurements at various locaticns in Thailand. Experimental
design included collection of path loss measurements for a frequency range
of 100 K!H to 10 GOz encoipeasing a wide range of antenna heights, distances,
polarizations, and seasonal variations.

The initial analysis of the path loss information was basically a descriptive
presentation with little statistical analysis and interpretation of the physical
characteristics of the experiment. One of the most basic and important aspects
of the analysis is the manner by which propagation data should be normalized
to a common distance. Further, a careful inspection of the information, the
physical aspects of the design of the experiment, and the topological charac-
teristics of the environment reveals that one should not view the path loss
data from a deterministic point of view, but rather as a stochnastic realization.

This presentation deals with one aspect of these measurements, namely the
statistical analysis and modeling of selected propagation information in the
2-400 MHz range. Several statistical models are proposed for normalizing
path loss information which treat the data as stochastic variables. A
somplete analysis is presented which includes the best estimates of the true

path loss distance dependency, C , the formulation of the standard errors
involved, and the confidence intervals for the true states of nature.

1. INTRODUCTION:

Historical

In recent years extensive investigations and measurements have been made
in Southeast Asia to determine the communication conditions that exist in
heavily forested environments. Such studies were initiated in 1962, sponsored
by the Advanced Research Projects Agency and performed under the direction
of the U.S. Army Electronics Command as part of the Southeast Asia Cummunica-
tions Research (SEACORE) Program. The overall aim was to help overcome severe
radio communications problems occurring in Southeast Asia. Similar investi-
gations were conducted in the United States over various terrain which
included mountains, hills, and forests.

The path los- data in Thailand was obtained by Jansky and Baily, a
Division of Atlantic Research Corporation, one of the prime contractors
engaged in the SEACORE project. Experiments were designed to collect path
loss measurements at various locations in Thailand.for a frequency range of
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100 IOz to 10 GHz. They encompassed a wide range of antenna heights
(transmitting and receiving), locations, polarizations, and seasonal
rainfall variations. For the complete chronological progress see references
(3), (5) and (aI.

Initial Analysis of Path Loss Measurements

A descriptive presentation of the path loss data vas presented in
references (3) and (4) with minimal statistical analysis and interpretation
of the physical characteristics of the experiments. One of the most basic
and important apoets of the path loss data during the initial stage of the
analysis, is the manner by which the propagation loss measurements should be
normalized vith reference to a commn distance.

Jansky and Daily, (3) and (4), utilized a deterministic model given by
teanalytical expression.,

Y 1 .wX4  - 40 log d (1)

di is the path length in miles', i lp* o.nwhere:

X is the measured path loss over distance di, and

Yi represents the normalized path loss data.

This expression gives a deterministic description of the path loss data
as a function of distance. That is, when one theoretically views the Jungle
as a deterministic environment.

guides the energy from the transmitter to the receiver in a jungle environment

is a lateral wave, which exhibits a distance power loss of 40 log d in tne
frequency range of 2 MHz to 100 34Hz. In obtaining this analytical relationship
one characterizes the electrical characteristics of the jungle environment
as a deterministic phenomenon. However, after a careful inspection of the
path loss data, the physical aspects of the design of the experiment, and
the topological charcteristics of the environment, one should not view the
path loss information from a deterministic point of view. Preliminary
findings show strong evidence that one should normalize the path loss data
stochastically.

In the subsequent section we shall mention soae relevant findings. A
more detailed discussion of the problem frcm a statistical setting along
with other preliminasI findings is given in 'Statistical Modeling Of
Propagation Loss Data , by M. Acker, R. D'Accardi, D. Dence and C. Tsokos, (1).

Statistical Characterization of the Path Loss Data

It was previously mentioned that one of the initial and most important
factors which must be considered prior to performing a rigorous statistical

- 482 -



analysis of the SZACOM data is the manner by which one should normalime the
datea to a common distance. Preliminary findings indicate that the theortical
distance behavior of 40 log d, which generally applies when one considers the
electromagnetic environment to be deterministic in nature, is not a realistic
relationship, especially above 100 Ms.

A statistical model was proposedp (1), for normalizing the path lose
data to a common distance and is given by

Z, - X - 4 log d + e

where

C is the random error involved in the experiment which is assumed to

be standard normal,

di Is the path length in miles,

is the parameter to be estimated which describes the path length
and propagation loss dependence,

X, is the path loss over distance di,

and

Zi represents the normalized path loss.

The best statistical estimate in terms of possessing minimum variance
of the parameter aC in the above model, was found to be

N
E X, log(d,)

Sloge (d,)
tel

Selected data were used (4), to obtain estimates of M, for the following

frequencies:

2, 6, 12, 25.5, 50, 100, 250, 4oo0, mHz,

and for specific combinations of transmitter and receiver antenna heights
at distances from 0.2 to 2.0 miles. It was observed that the estimate of

cL fluctuated from 13.3 to 52.5 dB for the configurations analyzed, (1).
This fluctuation In the estimate of M% gives a clear indication that the
parameter v should not be treated as a constant, but rather as a stochastic
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variable for a sore realistic description of the propagation loss distance
reatonship.

In the preliminauy'investigation of the UAC0!M data (1) an attempt
was made to determine vhether or nwt the propagation loss varied from a vet
season to a dry season. The information vas classified as vet or dry by
tvo criteria:

(i) rainfall greater or less than 3 inches per month,

(i) rainfall greater or less than 6 inches per mouth.

For the dry climate a man estimate of a. was found to be 35.7 d, with a
standard error of 6 dB; and for the wet classification a sample mean of
34.8 dD was obtained for Ct with a standard error of 9.0 4B. Final, par-
metric and non.parametric confidence intervals for the mean propagation
loss were obtained for the specific configurations investigated. The analysis
we performed for the vet and dry classifications as well as for some eumula-
tive seasonal SEACORE uata. For additional details of the analysis refer to (I).

Aims of the present study.

The initial information obtained in the experiment is given in dB form.
That is, the propagation loss measurements vero loarithbmicallyý transformed
prior to being normalized to a common distance, (3), (4). In the preliminary
modeling the petth loss data was in dB form and the effects of the logrithmic
transformation on the statistics of the information were not investigated.
Therefore, it io.the partial aim of this stud to investigate the fundamental .
question: •

To vhat extent did the logarithmic transformation alter the sttstiftos
of the data?

An approach to ansvering this question is to determine vhether or not
the parameter Ct varied significantly with a corresponding antilogarithmic
model. Such a model is given by the following analytical expression:

10

where

d Is path length refer- nced at 0.2 miles, i *u,2,,..,n

Xi is the measured path loss over distance di, and
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U is te ipasameter which relates the propagation lose an distance
dependence.

Thus, the aim is to obtain the best estivate of the true state of nature,
An exact estimate of % is not possible,, because in attemipting to

obtain a least square estimate for the perameter, a transcendental equation
relulte, which is not mnnlytically tracticable ad therefore, one must relp
onv4pproximation techniques for a solution. This expression will be discussed
in a subsequent section.

In addition to investigating the fundamental question concerning the
analysis of the path loss data using logarithmic Vs. anti-logaritbuio infor.
matiao, *the following vili be pursued:

A caqaison of two statistical models will be given to determine which
one of them will best exhibit the path loss distance dependency ft
normalizing purpies

A camplete analysis of the data to include all configurations of the
SEACOM experiments;

Determination of the mathematical relationship that exists between the
propegation loss and distancej

Standard errors involved for the logarithmic model will be formilatedj

Upper and lower confidence bounds for. th trUe..st&t of nature will be
calculated for 95% confidence.

2. FORMUATION OF MME PROPOSED HO1ZU

As we mentioned above, one of the primary concerns of the pineent study
is to investigate the behavior of the loparithmic and auti-logarithmic path
lose with respect to modeling, analysis, and interpretation of the propagation
loss data. To clarify this objective we shall begin the presentation by
reviewing the basic linear modal that vas previously developed (l) eand
attempt to relate the analytic results to those of the newly proposed model.

A Statistical Model for V4

In the previous analysis of SEACOM information, (1), consideration
was given to a linear model of vhe form

where

X a observed path loss data in dB;
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path loss distance dependency paametter

di a distance over which path loss was msSuredi,

C s normally distributed random error due to measurment.

A maximum likelihood estimate for di is given by;

Nd

-.21l tlg( 41
- . t3d1

with the 4ata being referenced to a distance of 0.2 miles. This estimate
of ck is unbiased with variance and standard error given by:

and

Standard error at) -

respectively, where

and the other variables aen as previously defined.

Furthermore# the correlation coefficient between the distance, dip nd
the estimate of the propaation path loss behavior, win be etfrod by

"U'
n- A d , n A n d

The purpose of' obtaining this estmamte of the true correla~tion, p/ is to
provide an indieation as to the type or relationship that exists between

n 4 l -

dl di
n E (I Xj I inr. 109 ) 1:log-ýj
Jul =I



the distance nd pripSation losa. In addition, interval estiiates were
obtained for g to answer the question: "Nw accurate is the 3hZ esti•ate
of the true state af nature, V" If one ha 95% confidence Intervls
thOn this question is adeqatelr ansvered. The upper and lover caidenee
intervals for Ck arm gven by

g/2; (n-2)(A=• + ,,,, , [71

n

respectively, where

(X, 19
110

0ad ta/2 ; (n-2) is the appropriate t statistic for either C L .0%,
or CLw .01, with n - 2 degrees of freedom, and the other
variables are as previously defined.

It ilo' be noted that If these confidence Intervals are smll, our
estlote of Og i which gives a measure of the distance and propagation
lees dependene, will be fairly close to the true stAte of nature. Of
course, if Var (6) is smal, one should expect the confidence intervals
to be small.

The main reason for Inlding this model, which vas previously
stmdied for a smal nuer of configurations, is to obtain a muh more
ecalete alysis of the behavior of 04 by considering a auh lage dta
base. Secondly, exact estlites of th, standard errors ivolved in.
estimting are possible; and, thirily, the question of the prImry
differences between this stochastic model and the deterministic version
(I. e., conidering an estiate of ek being identically equal to 40)
should be answered.
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Th pvious findings utilizig SUACO data (1) have indicated that for
fre•uencies up to 100 Ws the deterministic and statistical manner of normal-
1s5±1 the data do not seem to bear significant differences. However, beyond
100 NEs there seems to be a si•nificant difference between the two approaches.
Thus, by considering a larger class of configurations one should be able to
reach a specific decision with regard to this stochastic model versus the
deterministic model. It should be mentioned that "not significamtly different"
with respect to the two models simply means that the dB difference between at
and 40 seems to be within * 5-6 dB.

A Statistical Model For Me

The most Important model in terms of providing the most realistic approach
to the question posed, namely, "is there a significant difference between
modeling propagation loss informstion using logarithmic or anti-logarithmic
data%", is given by the expression

10 -)t.

The X1 again respresent propagation path loss data and the di are the
corresponding distances involved which are normalized to 0.2 mile. Our aim
is to obtain an estimate of the parameter as which represents a nonlinear
dependence of X1 and di. In attempting ot obtain an estimate of this true
state of nature, the least squares approach was utilized which guarantees a
mininu variance of the parameter estimated. The Implementation of this
method yields a transcendental equation which is of the form

21 ,Xt (d. 0s /d, n ,di 26* d

Clearly, there is no exact solution to this equation. Thus one must rely
primarily on computer teciniques to obtain a workable estimate of
This equation was programed and preliminary results (see section 3ý have
yielded some significant findings with respect to the model which was
discussed in section 2(a), neaely, the model for aI which utilizes
logarithmic data.

Since an exact expression for V. cannot be obtainedj, it is Impossible
to obtain exact estimates of the variance and standard error of
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Thus, one must rely on appoximate estiates of these statistics, although
they may be extremely difficult to obtain. Hovever, in the final analysis,
(which will be published at liter date) acceptable formulations for
approximating variance and standard error of awill be derived. In
addition, it is anticipated that estimates for the confidence bounds on the
true state of nature, s ,vill be obtained,

In Section 1, we gave a brief historical discussion of the SWAORE path
lose experiments; and the fact that previous analysis considered the path-loss
distance dependency, g, o0, from a purely deterministic point of view,(3),(4).
Utilizing the models of Section 2, which treat Path loss as a stochastic
realization, it was found that for most of the configurations of the experi-
ment, the deterministic approach previously used to normalize the data to a
common distance (see equation 1) is not suitable in relating the path loss to
a comon distance. Tables I& and lb show, for three representative frequencies,
the minimum variance estimates using the logarithmic data (see equation 3)
and the anti-loparithmic data (see equation 12). From these estimates, one
can obtain the following information:

a. At lover frequencies (6.O Mhz) for a transmitter antenna neight of
40 feet and. vertical polarization awas approximately 2dB less than the
deterministic factor (40 U), while the non-linear descriptor, e, was
generally about 11 dB greater. For the same transmitter antenna height,
"however, the horizontal polarization exhibited a fairly close agreement for

with respect to its deterministic counterpart. The estimates of ats
were generally 5 dB greater than the 40 dB factor.

b. An increase in the transmitter antenna height to 80 feet at 6.0 MHz
shows a fairly close agreement between and d for smaller. receiver antenna
heights, however, as the receiver antenna heights increase above 53 feet, both
& and 8. vary significantly from 40 dB. # deviates quite rapidly to
1dB above the deterministic value for a receiver antenna height of 79 feet.
The behavior of both 5 and L is approximately the same as the frequency
is increased to 100 MHz, with Ceviations for horizontal polarization being
more pronounced.

c. At 100 MHz for a transmitter antenna height of 40 feet, the q
estimates were approximately 3 to 5 dB less than the deterministic case for
vertical polauization, while the i'5averaged approximately 6 dB above the
" 4 0 " factor. For the horizontal polarizationp the '& were fairly consis-
tent with the vertical behavior, however, the ls deviated more rapidly at
lower receiver antenna heights (up to 22 dB for a receive height of 31 feet).

d. For a transmit antenna height of 80 feet at 100 MHz, the CCL estimates
were fairly close (within 3 dB) to the deterministic case for vertical polar-
Itation. However, the ij at receiver antenna heights up to 53 feet, were
greater than the deterministic case by as much at 14 dB. For receive heights
above 53 feet, the estimates were less by 3 to 8 dB. The 94 deviated from
nominal "40" by as much as 4 d3 for horizontal polarization, while for higher
receiver antenna heights, the 4 estimates were as much as 16 dB less than
the 40 dB factor.
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e. As the transmitting frequency is increased to 400 Mtz, for all
trunu:rl~tter arLtt,_nna huiGhts and vertical polarizat ion, k and % deviated

A' "canitl.y frorm the deterministic factor. Tnis devirtYor was as large
Ls 26 dB for arid 3ý r1b for

f. Thu behavior of the a, and 0 esti;iates for horizontal polari-
zation at 400 WiJfz wur gunerally the same, however, the j's deviated from
3 dfl to 38 ( f'rom t2 "4)0" factor. Not enough data was available at
lower rcceiicr heights to be conclusive at this frequency.

g. Table II shows the overall means and standard errorr of the path
loss parameter estimates. In all cases, small standard erro. s were exhibited
Wa), ki gnulas the frequency increased, the means of ths Ok and
estimates decreased significantly. It was observed that at a lower rans-
mitting frequency (6.0 Mlz) and transmitting antenna heights of 4O feet
and 80 feet (and also for a mid-frequency of 100 MHz and trusmitting
height of 80 feet) the mean values of • , for both horizontal and vertical
polarizationwere clooe to the deterministic case. However, the mean
values of a were generally 5 to 10 dB above the deterministic factor.
When the frequency is increased to 100 MHz, more significant variations
were observed for horizontal polarization. For higher frequencies (400 MHz)'
there were very significant deviations for the parameter estimates.
Therefore, for higher frequencies, normalizing propagation data with the
deterministic factor, 40 dB, can result in a misleading description of the
path loss behavior.

h. Table III gives a direct comparison between the means of q and
the means of • by polarization. In both cases, the deviation from 40 dB
is significant.

i. Tables. IVa, IVb, IVc TVd and IVe show the selected parameter
estimates# correlation, and confidence bou.ids for the a& estimates. The
confidence bounds are generally small indicating that the & model
yields good estimates. No confidence bounds were obtained for 8 because
of the limited mathematical tracticability of the model. However, approxi-
mate estimates can be obtained.

4. coNcLusIoN s:

In Section 3,a representative data analysis was presented covering a
typical low, medium, and high transmit frequency. The conclusions reached
for this selected presentation were consistent with those obtained for other
frequencies as stated in Section 1. (Other frequencies were not presented
because of the magnitude of the results.)

From the techniques proposed in Section 2 and from the results of
Section 3, utilizing atochastic models, the following questions were
answered:

(a) Is there a significant difference between the results ( % and
S) obtained in analysing the path loss when one used either the data

or the anti-log data?

(b) If a significant variation exists, is it uniform at all frequencies
or uniform for different ranges of frequencies?
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Tables IA, IB, 1X and III show that was generally within 13 4B
of the corresponding . Table II shows the decisions resulting froa the
hypothesis that p%, with regard to the overall means. In one-half
the configurations test%, this hypothesis was rejected. These decisions
were consistent using both parametric and nor-parametric (distribution free)
approaches. The differences between ! , and are not uniform for the
different frequencies involved, and vary considerably for each receiver
antenna height measured.

The results show conclusively, that the deterministic view of the
jungle environment is not reasonable, especially at higher frequencies.
The wide variation of I-, and e over all configurations tested shms
that one should view path lose as a stochastic realizatibn.

Both models depicted ;iald reasonable results# but there are indica-
tions that for larger distances and higher frequencies, the a model
(anti-log) is a better approach. A logical conclusion, howeverp is that
the model for c * is reasonable for lover frequencies and shorter dis-
tances considering the small confidence intervals over all receiver antenna
heights at the lower frequencies. Intuitively, g., since it does not
rely on logarithmic transformation, should be more effective especially
at higher frequencies and longer distances. A decision as to which model,
. ,or 4 ,is best will rely on future work in the subject area.
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AN APPROACH TO OCCUPANT EVALUATION
OF ARMY FAMILY HOUSING INTERIORS

Roger Brauer and Robert Neathammer
U. S. Army Construction Engineering Research Laboratory

Champaign, Illinois 61820

INTRODUCTIO.N. In architectural research it Is very difficult to achieve
an experimntal arrangement where the behavioral responses of building
users can be related toWarchitectural variables. The difficulty lies
with both the control of architectural variables and the measurement
of behavioral responses by means of observation methods or attitude
assessment.

Architectural variables are difficult to control for, simply because
people find It difficult to Justify the expense of constructing buildings
for experimental reasons. As a result, differences in building features
must be identified in buildings which already exist. The limitation
here is that differences may not extend over the range desired. New
features may simply not yet exist in available buildings. Furthermore,
features of interest may be confounded by the presence or absence of
other features or by varying rules'in management of the spaces.

Behavioral responses to architectural variables could be obtained
through simulation or models. This would work reasonably well for

A appearance and visual characteristics. However, responses to functional
considerations gain validity through "live-in" experience.

In general architectual psychology research is interested in relating
attitudes and behaviors to building design characteristics. The attitudes
and behaviors are not simply functions of design features, but are also
influenced by other factors. A schematic representation of this concept
is presented in Figure 1. The degree of satisfaction an individual
expresses about the characteristics of his dwelling or a part of the
dwelling, such as a bedroom, are directiy influenced by many factors
as well as mediated by Intervening factors.

Therefore, experiments relating responses of people to built
environments must be designed to control for some of the extraneous
variables as well as those of specific Interest.
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FAMILY HOU$D\G

PHYSICAL CONDITIONS
BEDROOMS NUMBER

SIZE
STORAGE

LIGHTING
TEMPERATURE OTHER CONDITIONS
STATE OF REPAIR 3
COLOR COST
"FINISHED GEOGRAPHICAL
FLOORING G R C
WINDOWS MANAGEMENT RULES

INTERVENING FACTORS

PREVIOUS EXPERIENCE

FAMILY COMPOSITION AND DEMOGRAPHICS
ATTITUDES TOWARD PHYSICAL CONDITIONS

ARMY ORGANIZATIONAL CLIMATE
NEIGHBORS

NEIGHBORHOOD AND COMMUNITY
BEHAVIOR TIME IN USE, ETC.

END RESULTS
QUALITY OF SPACE
USER SATISFACTION
PERFORMANCE

BEHAVIOR

Figure 1. Factors influencing quality and occupant satisfaction.
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The Exlperintal Problem

It is a well known fact that the quality of military family housing
is an Irritant to the soldier. Recently, Senator Stennis, who is
Chairman of the Senate Armed Services Committee, reported in a news
release that his interviews with military personnel revealed housing to
be the greatest deterrent to reenlistment. The task which CERL was
given was to evaluate Army housing from the occupant's point of view,
with major emphasis on interiors. The main goal was to relate the
attitudes and preferences of occupants to architectural variables. The
study was to focus on housing that had been occupied for the first time
In the last three years, but older housing was to be considered as well.

How the Experiment was Destined

As noted earlier, it was known that the attitudes and opinions
would be influenced by many things. Since the new homes were to be
found at twelve different Installations, it was apparent that
installations could be a source of variation (from differences in
geographical location and from other factors).. Furthermore, the
quality of construction workmanship was known to be a source o~f
variation, even-when homes were identical or very similar in plans
and specifications. Another obvious source of variation was differences
in floor plans and finish materials. In addition, variation could also
result from diffevences in family composition, rank, age, possessions,
motivation for providing the information requested, and countless other
things. Because of time and funding constraints, responses of occupants
had to be obtained through the use of survey methods. However, a rather
precise questionnaire was developed for documenting four groups of
information: demographic Information, number of major possessions,
preferences about design features, and attitudes toward present quarters.

In order to isolate some of the variation ir the architectural
characteristics, a nested design was selected for the experiment and
for establishing a sampling procedure. As seen in Figure 2, the
first level in the design was installation. Installation was selected
as the first level to isolate much of the variation due to geographic
and level differences.

The second level selected was construction project, identified by
a year of appropriation. Thirty-five construction projects were
included at this level. The number of homes in each housing project,
appropriated from 1955 through 1971, ranged widely from 40 units to
1,000 units. At this level, it was anticipated that much of the
variation due to the age of the quarters as well as the quality of
construction could be isolated.
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FAMILY HOUSING -I

A MAJOR IRRITANT

I 12 INSTAL-
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2

II 16I IILOOR

2200

HOMES[ INDIVIDUAL

HOUSE

Figure 2. Schematic of nested design for house study.
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The third and last level in the nested design was the floor plan.
About 170 different floor plans were included in the study in an attempt
to isolate much of the variation resulting from bedroom count, total
living space, spatial characteristics and other features.

Being limited by the amount of funds available for the project, sample
sizes were established at the second level, that of construction project.
Sample sizes were determined so that 95% confidence bands on a sample
percentage of 50% would be 0 10% in width. The sample was distributed
at the floor plan level according to the percent of housing units of
each floor plan type within the construction project. As a result, a
total of about 2,300 homes were included in the study, representing a
population of about 9,000 homes.

From previous studies, it was known that many housing occupants would
not be motivated to participate in the study. The introduction of a
high degree of personal contact was used to ensure cooperation.
Questionnaires were delivered in person and picked up in person. When
questionnaires were picked up, time was spent with respondents who
wished to discuss good and bad features of their housing. With
voluntary cooperation of respondents, field workers made precise
photographic records of general conditions, as well as records of good
and bad design features. Through the use of personal contact, a 95%
participation rate was achieved and over 3,000 photographs in support
of statistical evidence were collected.

In addition to occupant response, a detailed record was made of
the size, materials of construction, and other characteristics of each
floor plan, so that relationships between occupant responses and
architectural variables could be made effectively. f

Additional analyses can be achieved from the nested design for the
study. Since demographics are not independent of housing size, bedroom
count and possibly other characteristics of floor plans, the data can
be rearranged according to rank, family composition, housing dOnsity and
similar factors to achieve other results about responses. "Furthermore,
the nested design will permit us to relate housing characteristics to
other dependent variables of a sociological nature in future analysis,
such as theft rate, mental illness, divorce, and reenlistment.

Major project issues which this project was designed to address
and the analyses planned to assist in resolving these issues are
presented in Table 1.

There have been several previous surveys conducted to obtain attitudes,
opinions, and preferences of occupants of Army family housing. This study
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was designed not only to collect such responses but. more importantly,
to relate them Lo housing characteristics, family characteristics and
possessions, the things to which people are responding. This step
forward in the planning of such studies should provide more useful
information for housing designers and planners.

Table 1

MaJor Project Issues and Corresponding Analyses

PROJECT ISSUE ANALYSES PLANNED

What are the main opinions, 1 way tabulations, 2 and 3
preferences, demographics and way cross tabulations
possessions of housing occupants?

How do family and housing Cross tabulations, correlations,
characteristics contribute to and multivariate methods.
preferences?

How can housing requirements Cross tabulations, regression
(bedroom count) be predicted
from demographics?

How are space requirements Cross tabulations, regression
In family housing related to
family characteristics and
attitudes?

Can overall satisfaction with Multiple regression and AID
housing be predicted from (Automatic interaction Detection)
satisfaction with housing elements
and housing characteristics?
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GINRALIZD JACIKKIFE T3NIQ

H. L. Gray
Southern Methodist University

Dallas, Texas

ABSTRACT. In this paper the jackknife method is reviewed and some
of its applications are considered. In particular its use as a point
and interval estimator for data from a random sample or a stochastic pro-
cess with continuous index set is discussed. Finally some results, implied
by the generalized jackknife statistic, concerning unique minimum unbiased
estimators are demonstrated.

I. INTRODUCTION. The ,ackknife statistic, J(e), was first intro-
duced by Quenouille (1956) in 161. It is obtained as follows. Let

Xx, be a random sample of size n and let %be an estimator for 0. p

Now partition the sample into N subsets of size M and define 8 as the

estimator 0 restricted to a subsample obtained by deleting the i-th subset

from the data (we of course assume 9 is definable on such a subsample).
Then letting

Ai(e) - N A - (N-l) e, N, (I)

the jackknife estimator is defined by

-N, -e (N-1) . (2)

Although it is not necessary to let K - 1, when possible it is usually
desirable to do so. Thus we will henceforth make that assumption, i.e.

Ji(0) - n 0- (n-l) 0 , i - l,...,n (3)

and
J(0) = n 0 - (n-1) 0. (4)

The statistic J(0) was introduced by Quenouille because of its bias
reduction property. Namely, if

CY(0) C2 (()
E[9rEl ++ - -+ .(5)n n2

then d2 ) d ( 0)
2 3 .. (6

n n
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However, in 1958 J3. Tukey 191 suggested the statistics in (3), which I
were later called pseudo values, could be treated as a random sample and
hence furnish a .general method for obtaining an approximate confidence
interval for 0. This suggestion has evoked much research and the method
has been found to be a useful tool in such problems.

In 1971 Schucany, Gray and Owen (81 significantly expanded the jack-
knife method by introducing the generalized jackknife and higher order
generalised jackknife. Their definition was as follows.

Definition 1.

Let *1,02,.. "ek+l be k + 1 estimators for 9 defined on the random

sample XIX 2 '...%,X. Further let ei, i 1, ... ,kj 1 1, ... ,k + 1 be

real numbers and

3. 2 k+1
S2"";l

iaij) 11 a 12"' a lk+l (7)

akl ak2 " "akkc+l

Then the generalized jackknife, G(61 182 ,.., , is defined by

wlh2r ...itk+l) i,5(1aij) (8

where it is assumed D(1;aij) ' 0.

In general there is no restriction on the manner in which el e2,... P
+ in (7) can be selected, however they are usually chosen in the same i

manner as indicated in (2). That is for a given estimator e and a random
sample of size n

0, 9(i .. ex''' Xn)

2 " " l 'xi-'xi+l " n (9)

;a " •) [ J • ,j(x I ..... Xi lXi+ 1V .... Ix~ ~ • l . . ^n.ijj
0 14 ~: 9~(). 1 1-1 X _,Xj~,., M

etc.
The following theorem holds regardless of the method of selecting the ei.
This result was first shown in 18).
Theorem 1. If

k
E[t I - 0 + • fij(n) biC(), J - 1,2,..., k + 1

i=1
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and if a f (n) then

3JG(,61 0 2 ' ... ,ek+l)l - e. (10)

If the generalized jackknife is to be utilized as an estimator,
the random variable G(6 .... ,O+l) must not depend on 0. When

w

EYe1 1 - 0 + ! fi(n) b1(e) (11)
i-i

and 02' "" "k+l are selected by the procedure described in (9), letting

ajl = fi(n-j+l) satisfies that requirement am wall as Theorem 1 when the

series in (11) is finite. For this reason the aij and the in

Definition 1 are usually chosen accordingly. When this is the case we

write G(k" (0) in place of (8), i.e.

Gk) (0) - G. (lA) 2 ... ,ek+l)' (12)

where the 0 are defined in (9) and aij fi(n-J+). One should note that

a(111• ;a;) 1h 2 .-0 Rn) ;
G E (-R(n) - (13)

a()G0) L..llal2L n)=ina 1  (-

a A

where Rln)= all/a12 and hence J(;) - G(O) when a n a (n-1)

The form (13) suggests an appropriate definition for the pseudo values,

G (e), associated with G(S). That is,
AA

Gile -e - R(n)ei1 1 - R(n) "(4

The following theorem which was fivet shown in (31 (1972) is the basis
for the jackknife method as a technique for approximate confidence
intervals.

Theorem 2. Let X1 ,X2,... ,Xn be a random sample from a distribution with

mean U and finite variance a2. Let
o0= f(ii)

S=I •xi (15)
n n

. f(Rn)

where f Is a real-valued function, defined on the real line, which
posses.3es a bounded second derivative in a neighborhood of U. Further
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suppose

R(n) (6a n 1±3 (1-R(n)) (n-1) j ± m' 0" (16)
n.em

Then the random variable

as n -. *.That is# the random variable in (17) is asymptotically distri-
buted as a normal random variable with zero mean and unit variance. As

was pointed out in (3) this theorem can be extended to the case where

8 is a function of a U-statistic.

A final modification of the jackknife should be mentioned before
proceeding to the application, namely its extension to stochastic pro-
ceases. By considering an appropriate limiting case of (12), Gray,
Watkins and Adams in (5) (1972) extended the notions above for k - 1,2
to stochastic processes. We mention briefly the nature of those results.
The following definition is the counterpart of (4) in that development.

Definition 2.
Let {W(t)t C S) be a stochastic procesa defined over an index set

containing the interval [a,b]. Let {Zx(t)0 t e[a,b]} be a piecewise

continuous stochastic process which is completely determined by the process
{x(t) It c[a,b]}. Lot N be the random variable defined by the number of

discontinuities of I of size y, observed on the interval [ab], and let

A - b - (b) - Ix(a)
S0(ab) T T-b-a.

Then for any r, al valued function f, differentiable over the range of 0,
we define the Om estimator by the following equation:

A.[f() 0 4 ( f 6-1- t ; +IfI a
ycr

where r is the set of all possible values of y

- dO
0-0

and by the notation I we mean that for any realization x, the sum is to
ye r

be taken over all y for which N has an observed value different from zero

on [ab].
By making use of flefinition 2 it is possible to ciet an extension

corresponding to (13). Moreover theorems corresponding to Theorums 1 and
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2 can also be obtained so that a normal r.v.like (17) can be used to obtain
approximate confidence intervals for f(e). The details of this procedure
and further results can be found in (3] (1972). We state the following
theorem for later use. It isethe result for stochastic processes which
corresponds to Theorem 2.

Theorem 3. Let (I x(t) I t c[a,m)} be a stochastic processes with station-

ary independent increments such that 31[(a,t)] - 0 for each t c[a,-) and
suppose that f has bounded socond derivative in a neighborhood of S. Then
under mild regularity conditions

O,[f()] - ()
-0-f W(0,l) (16)

Nyr f()

as T - u i.e., the random variable in (18) is asymptotically normal with
zero mean and unit variance.

II. APPLICATIONS. In this section we consider some of the standard
applications of the jackknife which are suggested by the above theorems.
The first of these was initially considered by Mosteller and Tukey in
[7] (1968) and in more detail by Gray and Schucany in (3) (1972).

Example 1. Suppose the following is a random sample of size eleven from
an unknown distribution, x1 a 0.1, x2 a 1.0, x3 - 1.3, x4 - 1.9, x 5 - 0.4,

-x 0.1, x7 = 4.7, x 8 a 0.5, x9 - 1.9, x1 o= 1.1, x11 -0.1, and we desire

a confidence interval for a. Moreover let us assume that the statistic
we decide to use is

(X3 n 2 (19)
i-i

Since S2 is an unbiased U-statistics we can use the extension of Theorem 2
to U-statistics which was mentioned earlier. Since we assume no specific
knowledge of the bias we make the mild assumption that the bias in S is

an analytic function of n- . This leads us to define R(n) - (n-l)n"I so

that G(0) - J(C) - JCf(S2)] - J(S) and a - 1. We then obtain from (17)
(essentially) the approximate confidence interval (a,b), where

a - 3(S) - t (n-l) -

$3

b - J(W) + t (n-l) -- , (20)

1 P2
SJ 4 n-l ( (Ji(S) - 3(8)

5=1
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and t (n-i) is I(he 100(1-") percentile point from the Student t-distri-

butico with n-i degrees of freedom. Thus for these data
1 I (a 1 -( 1 1 11(S) 1.1400

J2 () .632S
33(8) .6219

34 * 39(9) .8355i4(S) 9)

1s (8) .8894

? (5) 7.7040

i a (8) .8243

10 (8) .6204

and

11 Y S)-1.4894 (21)

Sj1 - 0.6244. (22)
From (21) and (22),'we obtain

TA

Confidence Level" 1-n Interval

2/3 (0.85, 2.13)
0.95 (0.10, 2.88)

The extrapolation from Theorem 2 to the modification suggested by (20) is
employed for the following reason. Experience has indicated that in moot
cases the lack of normality of (17) for finite samples usually leads to
confidence intervals which undercover. Since the Student-t is also asym-
ptotically normal, Theorem 2 is also a justification for assuming the random
variable in (17) is approximately t for large n. When this asumption is
made the net effect in simply to slightly enlarge the confidence interval
which in most instances will improve the approximation.

The question naturally arises as to how good are such approximate confi-
dence intervals as those of Table 1 and what additional modifications
might improve them. This question was considered in scm detail for this
and other examples in (31. Several modifications are suggested there. We
will consider two of them. The first is to jackknife log S rather than
S and obtain a confidence interval for log a which is then converted to
a confidence interval for a.

The basis for this approach is the assumption that log 8 posbesses
a mora symetrical distribution than S and hence the convergence to
normality of J(log S) should be more rapid than that of 3(8). A second
modification is to use G(6) with
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R(n) 1 (23)

The reasoning behind such an alteration as this would of course be the

belief that the bias was closer to order n"1 / 2 than n" . Table 2 below
shows the results of a Monte Carlo study when the nknown sample is exponen-
tial with a - 1. The purpose is to compare these three methods &nd the
normal method, i.e., the method of obtaining a confidence interval by assur-

ing (n-i) 82/a2 to x 2 (n-l). The results are accurate to within 30 of the
tru confidenc level associated with each of the statistics.

TAIL8 2
Jpproximate 901 Confidence Intervals n - 11

Source of Interval Estimated True
Confidence Level

(n-)82 /a2 67.6
J(S) 72.0
a(S) 73.6
109og 8) 80.6

In this case it is clear that the lack of normality of any of our statistics
wys certai, ly a major source of error in our approximation and that Jack-
knifing log 8 seemed to improve that situation. This of course will not
always be the case but another example of where it was beneficial is the
following which was first given by Arvensen and Schmits in (2) (1970).

Example 2. Consider now the following elementary variance components
model i

- U + Si + eD i - 1,... 4,1 = 1, ... N,
where P is constant (a } are independent zero mean, a2 random variables,

i A
and the ({ ) are independent, mean sero, variance 02 random variables.

The test of hypothesis to be considered is
2 2

vs.
H1: 0 o (24)

The usual procedure here is to asseso normality and utilize the F-statistic
to construct the required test, However it is well known that the F-test
is quite sensitive to departures from normality and therefore other tests
have been proposed. To employ the jackknife here we need a bit more
theory than we have thus far suggested. That is, theorems, similar to
those we have stated, for the jackknife of a function of several U-statistics
are needed. Such results have been obtained and can be found in E1] (1969).
Thus we may assume both J(&) and J(loV 6) are approximately normal, where

M.A (25)
MB!

and NSA and MSZ denote the between and within group mean squares respect-
ively. The jackknife in then obtained by grouping the no IN observations
(Y•) into natural groups of size N, i.e. by successively deleting the I
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groups of observations ((? 1 1 ,Y 1 2 ,.... 1 ), I - 1,2,....}) in the computa-

tion of J (0) and J (log 6). the approximate t-statistic (underi~ i

JIG)- no J(loOq ) - logn 0
i /n0  or A -( --- r * (26)S3l8) 8Jllog 8) . a

depending on whether or not we have decided to use 0 or log 8 as our
statistic to be jackknifod, is then used to test the appropriate hypothesis.
"This test vwa compared to the ?-test by Arvensen in (21 (1970). In that
study• - 0, n• It, I w 15 and N - 3. The results are shown in Table 3
below for signqficance level a - .10.

It is interesting to note in this table how well the method employ-
ing J(log 6) agrees with the V-test on normal data where the 7 is of course
exact. Also the nonrobust nature of the V with respect to the signifi-
canoe level is well demonstrated in the case of the double exponential.

TADLE 3
Probability of Relectina n < 1
2 2

I1UQA/0O 1 1.5 2.5 4 6

Distribution

P test
(theoretical) 0.10 0.20 0.65 0.90 0.98

F test
(empirical) 0.098 0.269 0.655 0.900 0.979

Normal Jackknife
J(log 4) 0.090 0.257 0.609 0.881 0.972

J.ckknife
J(0) 0.022 0.080 0.263 0.469 0.700

Double F test 0.183 0.334 0.567 0.764 0.887
Exponential Jackknife

J(log 0) 0.096 0.218 0.420 0.616 0.767

F test 0.085 0.253 0.690 0.951 0.994
Uniform Jackknife

J(log 8) 0.093 0.308 0.733 0.947 0.993

axam•le 3. Use Theorem 3 to construct an approximate confidence interval,
based on a fixed time test, for the reliability function

r(ex) - e- (27)
associated with the Poisson process {N(t) It (o,-) }. In this case let

8-- (26)
and T

f(e) o"�ex- r(e,x),
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where N is the numl-ur of failures occurring in time T. In this event
r - {() and we hav.,, ,,.If;)) - fle;) - f 111(O 1 ,l-)- fl;^))

-ex T 1

Sa • 1-N(.T -1+ ( (29)

it can easily be shown (see [3]) that in this case J=(f(;)) has a lower
order bias, as a function of T, tha f(;). Moreover Theorem 3 can be

applie here with

r " f e-- T - , . 2ex(e -1) ,(30)N1);f~ 1 N e TYer Y
Thus from the same reasoning as our previous examples an approximate
confidence interval for r(G,x) is

LJ.(r(eox)) - sT t/ 2 , Jar(ex) ST t/ (31)

where ta/2 is the 100(l-a/2)% point from normal distribution.

In order to exemplify this result the following Monte Carlo studies
were made. Random Poisson numbers with known parameters were generated
and the corresponding statistics substituted into (31). In Table 4, thf
columns labeled P ,P 2 and P 3 give the percent of 1000 samples generated

for which r(Ox) was contained in the confidence interval obtained from
(31) for e&ch of the three a-levels shown.

TABLE 4

a x T P1  P2 P3

1 a- 0.50 -. a 0.70 1--a 0.95

2 0.05 0.5 35.9 54.5 61.0
2 0.05 2.5 44.6 59.1 86.3
2 0.05 5.0 49.0 65.0 92.0

5 0.02 0.2 36.1 55.6 63.4
5 0.02 1.0 44.2 63.8 86.8
5 0.02 2.0 47.8 63.8 91.4

10 0.01 0.1 37.9 54.4 62.1
10 0.01 0.5 50.8 62.7 86.5
10 0.01 1.0 46.3 64.7 91.5

Inspection of the above table suggests that use of the percentile
points from the Student-t distribution as in our previous example ould
improve the approximation even though, when T is sufficiently large for
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the expected number of failures, ST, to be near 10, the approximation is
quite good.

in the above ex-ales we have found no great value in G(i) over 3(i).
We therefore live one final example which clearly demonstrates the wider
utility of G(G). Since this example is rather lengthy and has only appeared
this month in the literature we sat it apart as a separate section.

III. UM•NJ 3,'1'ITMR0S, FOR f(uso 2 ) IN THE NORMAL CASE. Before we pro-
ceed to the primary result of this final section let us consider the follow-
ing examples.

Example 4. Consider the differential equation
y" + k Y 0.

Then
y - C1 Sin kt + C2 Cos kt (32)

Now in many physical problems k is not precisely known and in fact it
might be better to refer to it as K, where K is a random variable. In this
sense k is an approximation to . - E(K] and y - C1 Sin kt + C2 Cos kt is

an approximation to y. W C1 Sin P t + C2 Cos • t. If this latter solution

is the solution of interest and a sample klik 2 ,2 ... kn of values of K are

obtained which can reasonably be assumed to be from a normal population
with unknown mean and variance, then the problem is one of estimating a
function of j(i.e. yM) from normal samples.

EXamPle 5. Let X " N(u,a 2 ). Estimate

1 a - 1/t2t2

P[X < k - e dt - # (33)

from a random sample of size n. The problem is again one of estimating
a function of V and 02 from normal data.

Example 6. Suppose x is a random variable such that ln x ', N(jo2) ,

i.e. x Au lognormal. .2
Then P+

9[x] - a (34)

Var x - e21+o2(a 2-1).

Then estimating the mean and variance of a lognormal distribution can be
formulated as a problem of estimating a function of p and 02 from a normal
population.

Example 7. Suppose x N B(n,p) (Binomial). Then for large n the variance

of arc sin Vx1n is essentially independent of p. A transformation, T ,
defined on a random variable x such that the variance of T(x) is indepen-
dent of the parameters in the x distribution is called a variance stabili-
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zing transformation. In many cases even when x is not binomial such
transformed data "a approximately normal, and it is often assumed that

T(x) 'u N(,o21 •). In the final analysis one in however interested in
estimating 3(x) and Var x as in Bxample 6 but in this case the distribu-

tion of x is 4nknown. suppose Y N KN(p,c 2 ) and Y - arc Sin Vx. Then

3(x) = 21-(1-Con 2p1A -2a2 (35)

a n d V a t x - 2 (l ) C o r 4 1 1 - j . _ 4 c2 _) C o s 2  2 p.

2aence again the problem is one of estimating a function of V and a with
normal data.

Bach of the above examples lead to a problem of estimating a function
of the parameters of a normal distribution. Each of these problem have
been solved in various places in the literature. However in a recent
article (1973) t41 Gray, Watkins, and lohucany have made use of the general-
iLed jackknife to obtain a general solution to this class of problems.
We will now state their main result and show how it can be utilized in the
above examples. To see how the jackknife plays a fundamental role in
obtaining this result see the above mentioned article.

Theorem 4. Under suitable regularity conditions the unique minimum vari-
ance unbiased estimator fort

CiM f(u), f analytic over the reals, is f(C), where

(-)rC(Z-)f (X) R)
f 14- f (i)+ I 2 (36)M-1 r U• + m) a!2
where ois assumed unknown (a known replace [r 92-1i/1 +0(1.

by•(•2 , see (41 1.

2 '~ 2(ii) f(Ma), f analytic on C-•.0) X C0,-), is f Upa ), where

S( 2 )• 2 i+j rj ( f l2 " )ll ,O), (37 )

i-c J-a i: J! 2 2i+J r( 2 i+ 2 1+n') 1

where

fC(2i~) a~2i 31 f(,Jao2 )

In Mi) and (ii) above, S2 - n 1  I (Xi-X) 2

i-I
We can of course now write down the solutions to examples 4,5,6 and

7 at once. That is, ift
(C) f(U) - C1 Sin U t + C2 Cos U t, then
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, - gin R t + c2 Coo t

a r(2( S Sin t+C2 cos Kt] 42
mi1 r(n- +m) m!

n-3
- n-l tS 2

-~~ fKr(j)-.) I..(ts), (38)2 n-32

where I is the mod.fied Deecel function of index (n-3)/2.n-32

1 -2
(b) M)• a dt, then

I- 1 k-•12 (-l) i R 2  (k-X)

wi 1 1i-i i!(2n)i

Y\(rn (k-i))

which is the well known UMVU±
4 + "!1~

(c) f(fi,)) 0 , = Eliognormal random variable].
Therefworer

Also as stated in Example 6, the variance of a lognormal is given byVar ¥ - •2ta2 (+2))

Simple differentiation yields
m a O n(i- 

1mo M ! :e
m

22 1 -2i

(d) f( ,oC) - - -Cos 2u] e

In this case
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f( 2 1,j) = (--2(-Cos 2i), i - 0
2 2 i - 0, 1, ...

,. - (- 1~+i+1 2 Con 2;, 1 - 1,...

m- O, 1, ...

and hence -

1W I ( (2w) I w 2 1 0(2w 2 ) Cs2

2 1z ,N-•7 1 w2  _I'

where is the Sessel function of index a.
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in tWea paper, we discuss, interpret, sad I lustrste the Irnbum a"-

sm of the Importance of each cow§onent in a chseWent sstem. (Se S2. W.

Mrabam, On the Importame of ditterent components in a •A•Leampeent We-

tam, In *Altiva-iate Analysis - U, ed. by P. R. Krisboaish, Academic Press,

1969.) We show how this measure of co•ponet importance can be used to

deterine system reliability gpoth from coMponent reliabilitY gpouth. 7I1

maly', we present wan Illustrate en algorltmb to ealculate the optima a-

ount of effort to expend on improving individual eopnent reliabllities

so a to achiev a desired system reliability grow h at minimam total cost

for reliability growth.
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Reliability Orowth

1. Introduction. In the development of a complex system, it is very

useful to (a) determine the immortance of each component in contributing to

system reliability, and (b) determine the optinu effort to allocate to each

component to achieve a desired system reliability growth, taking into so-

count each component importance and each component cost.

In this paper, ve discuss, interpret, and illustrate the BS mia (1969)

MOesOUe of component importance. We show how this measure of component In-

portae can be used to determine system reliability growth from component

el•.abllity growth. Finally, ve present an algorithm to calculate the op-

tim amount of effort to expend on Improving individual component re-

liabilities so a" to achieve a desired system reliability p0woth.

2. Preliminaries. We shall consider the large, natural class of sys-

tems known s coherent systems. To define a coherent system, first we in-

dicate the state of the system by #, where

I 1 if the system is functioning,

0 if the system is failed.

Next ve indicate the state of the Ith component in the system by xi, Wbere

1 It the Ith component is functioning,Xiu

0 if the ith component is failed,
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S* 1, .... a. Ve "MAm that svtm statou *i isa et ietle finettom

o the Q4p•ment states, 9 X, .:

AM jig= (.is, ... , z}). Wi 6011 * the .nmatu n at the spst;

for wevIty, we reter to t"striture*.

2-,3. hfrngti A stmuettre fuatio* Is Daohu~et It

a, *au "o,

(b) *(4)'*(j) Aw 3SL , ... ,
(a) *(1) = 1. -p4

(4) ,(1, - 1) ,~�,Iz, 1 .0) for tfxed I-...., a,

Where ' (o... 0) am jt Ci, ... ,O)f

(a) states that the sy•tm is in the failed ststIf it mob nom mt

Is In the fa1ild atste. (b) stats that repairln fioled components oas

only Improve system perfornm=. (a) states that the "sUtem As In the

funotioning state it each aomponemt is functionuin. (a) states that oesh

coponent is rely t in definn system state as a funotion of omponat

states.

Birubmw, Rssay, and Saundera (1961), varlav and Prosohan (1965). and

2l& w aand Prosohn (197h) aimcuss' the properidtes qt coherent structures5

wan their sp1ioatiLous IN: re1'Iabl1ltY therY.*

Mtnrwshu-t t•he amr v con-ider nnir .o termt mawnstrsue_, @ine these
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awe the strutures semeraW eneouatered in oppli~atioes.

In ma practical applications, the *"to xj of ent I Is a

Bsrnouilli rtadom variable; i.e.,

I{ vith probability Pi

i with probability ;1 dgf 1 - pi.

P, reprebents the reliabilit, of co.ummeat C. e @hl ellas tbrhroumt

the pawe that 2ROcMMnn !!to$e X1.. Sna

Corresponding to these random componeut states X1, ... , 23 W0 ahe s7-

te random state #%) it aleo a Dernouil random variable with PE*(j) a

13 dVh(j), whefe p. ( jp ... , p3). h(p) yields systin reliability as

a function of the individual component reliabilities.

In the model treating opt•onm allocation of effort tor component re-

lisblity growth (Sections 4 and 5), ve shall need the following eomepts:

2.2. Definition. A component with reliability p is said to hbae

hogur r.-log p.

2.., Dat•lvnta. Let h(p) be the reliability function of a cohe•e•t

system. Let

U -log1 -r6 , .*., -rn) (2.1)

•ield mmtn hacard as a function of coMseWnt hazards. The funotiom vt(._)

is celled the gUd transfor of the system. See Isary, mrahull , and hPro-

ohms (1970) for a discussion of properties and applications of the hauerd

transform.

3I. NAIaIM-0m000000%t ,oArtWe. ,,rubusm (190) has pimpoeed the
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t*owl3ui resbomable iseue of the Inortamo. of esob IPmingDO 14 G 00e-

'Sl lbLAlm Fr *tmbtum * with oorwempowLmg u.11*iaity

ftimtioG hMR), the MOCi. 1,(1 ) atcM" ogju iven b

Soe Imprtambe Ift) of aamammat I am thae be Intergpeted as

Uplalet frmof (3.1) awe often usefld am~ provide adaticaea in-

* sialt cmeoeralm oomament Iyeattie. 26 deve]ap, theem* we start with the

"ourl Twinied identity:

h~)aplh(1Jp1  1) 4 ab~1  a Q) (3.2))

for I a 1., ... , a. Differentiating, we Imeuiato2y obtmain em daValeat

definition of compmest iqaortsmo.:

1() (j~jpL 0 1) - h(1jP1  0) for I It 1, 0 I.,a. (3.1.)

31q. (3.2..) also provides a strong Intuitive mqtIvati@5 for %he Geftaltlan of

GOOmmest iuportamc. It states that the importamos of oampoeat I eaT be

amsrilrd br the growth In system reliability upon repali of failed ooqiomeat

Frcm (3.).a) we msy obtain a third formula for ocqicast tqortame.
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rm the deftaltion of h(MILL es the rant that a sermouL raman ver-

IOU* X vith parmete p teatite 2 a p, we obtaint

U •) xE4(axIx - 1) - (LJXi - 0)] (3MU)

or It l ... ,06 .8 W. (3.1b) tells U %t the • mportamne orego met

I my7 be mesawed t$ heaesre Inwovmemt in tw state of tthe qstim ae

compet I Improves from the failed seae to the rftioman stte.

.(1) PM OAS)It Ieo bvous that.o In mSMu't

O ZUI) Sl for iLo, ... , a. (3.3)

the amalysis easily showe that It 0 I 1 3., 1 3. a.*, a,

then

0o4 (t) 4I 1 fo -1 , ... ,9n.(.)

(R) From (3..) it Is clear that the Ispatance of omponent I

GoesJ. depend. on pi, bu at cousme., Gee depend o* the rem.ainig v, .

bit". Belilltw oifth a DB1mim of Oomm 3Lat.u

The mesem of compent Importane derined b (3.1) (or esaleiti

1w (3-U) or (3.Zb)) ha e med to evuluat. sysetm reliability growth re-

Smslting fram the reliability groth or indlviel compaqommts. B the ohin

Sraule for difereattation, we obtain
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&It~
dt lotso, A

Ohn.e t Is a cammon pr ter, say the time elsp.ed since .'em development

be,,ma.c the mcon, uxpmndd on owte. 4eelomt. Using ,tamlilum (3 .i)

for *@q nt Importance, we bea

lot

•, - ------- •,, o s- -- • - .... o---- im mls, (3.5) giv !es~ y tmem do-

sger he quatit at ivme afewam .loabsi ito te p f accung fom ef t e-

,eodhe on achieving Individumul compuonent r.li•bility prtb.

A closely related femjla with similasr rmatioal appllcatLons to ob-

talned tics (3.))

n
Lb m C z(I)Lpi z (3.6)

lto

"w s Ab sop seamts the 4ovth In rn8stas reliability corresponding to

grath. Lpt In compoamt reliabIlities. As In (3.5), the compoaent me-

ues of lmpoi•tme enter as weights* Thus small rowth@ pi in coupeo-

nest relisbilitleo lead to a corresponding growth Lh In m*tmm reliability
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Is Gesorme. Vith (3.6).
km. MUbeabrd M *• tr n inoo m . ve law oe.mpamts so that

S,...1. .3

Jel Pj*

3.e .s eries h. a series "quo, opt so tht,

a- 1P JaLb• ittiw bt"alu mprseo,

1(i) a ... at Z(A). (3.7)

Zaequulltp (3.7) states, that f serie n5e, the -- lia the om---e_

"uJ1amil.th -ter th06 aet msee In portiftlar, the com-

Ponsut with the louinst relisbility In the most Important to the' systmas

We eis fleots the well i psimipl. that "a haeln is an strong as Its

weakest lif".

3.1.Pawile e~tm.Pbi a Parallel umrAtem, h(p) 2.-I

so tat 4(i)" 'A.L l . 1 h(a) . !b omponent imteMee

1l1) 5 ... S Rln). (3.8)

010000104101 IMP e Ie. Xn PaatlIMalw, the eCOMMent with hihet rlibilitY

Is the met Important to the system. Weiu, too, is intuitively reatsceble,

mines it Just owc eciomeiet foteioms , the systma functions.
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3.5. 2-ovtt-f systm. A 2-out-of-3 system ftnctions if and only

If at least 2 out of the 3 components in the orsto. function. Soe rela-

bility f•n•cton h(R) =PP2q3 P 1l%03 'q1p2p3  V1P2P3 . Thu compone"t

Importance is given by

'(a) a P 243 +1",31

1(3) -pS 4 '.3"

It f.ol.,o that 1(2)- 1(1)- (p2 Vp)(p3 " 13) O o 13 k 1/2.

8imilarly (3) - 1(2) k 0 for pl 1k/2. Thus tor a 2-owt-of-3 sa-

tm with 1/2 S P tp 2  P3 !(1) I(2) !C3);i.e. afom

F Iout Isoe is in the seas der - semeste we"labIlity. If bhoevue

PI 2 1 P3 6 1/2, then component Importance is In the reverse order.

Notse that in this case, component importance ranks depend on com-

ponent reliability values.

4. Otilam Cemonent Reliebility Growth.

4-1, ofl, Assiume a series system of n stochastically indepen-

dent components. The present reliability of component I Is p i

d a -r , where r1O is the corresponding hazard. To increase the

compovent reliability to p1 dof i costs ci(ri0 - ri) (cost my be

measured In dollars, man-hours, time, eto., or some veighted combiastion

of factors). We suppress the dependence of a on r 0 , showin4 o004

0Sits dependence on r L - ri the decrease in component hasard. cI atisfiest
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(a) 1s(O) 0 0 (no Iaprovsisnt costs nothing).

(b) a (.) H isa strictly convex Increasing function (the cost of achieing

suoccessive fixed-sise reductions in bha•ad increases), with continuous

first 4eriative.

Ve wish to hiene a .rowth ia srsAt reliblity to the level
o P. it 0  the present level, vith ,niam tinal ezndtut on n--

Vb

_AiM" an otvne rAUliu31 tty m1 h. Specifically, ve vish to deMar-

mine ooapooent reliability level pV a p1  (or equivalently co•ponent

hazard r*I £11 i 0) 1. 1$ . a,* satisfying

D

C~.l,

nn

at M .inim ° total cost O oi(xin - r)o

11

luo, Taking logarithms In (4.), our problem is equivalent to

finding r*o 9• I Isi, o..na sucht tat

with Ees ( (r r) a minS•mu. Note that we are miniiziung a sun of
I I

convex functions, each depending on a separate decision variable, subject

to a linear constraint on the decision variables.

The problea In a standard problem of optimization subject to con-

straints. the Intuitive Idea underlying the solution is simple.* We spend

continuously towards the growth of various components until we just attain

the desired system reliability p*. At every staep, the rate of expenditl

6b30-



per wit derease In syste (o•v•iValeayesoemposamt) hasard is the

least possible at that stae.s or equivalentt,: she rate of deoresae In

systea basard is the most possible per unit of expenditure. The expaed-

ituwe continues until the desired system relisbility Is attained. It is

ntuitivr clear that When tho desir ed M reliabilyI n attajmad.

the rte ot expenditue er unit doorea" in system haasad is the smo

(Wo ) for all component types, Insofar as this is •o•s61o. (Por "me

cmpmsmt types, eh esaing the rate A ma be Impossible beosuse the rate

of expenditue io alvas gester than %, v*wie for other component types,

salheving the rate I wW be Impossible because the rate of ezpemditure

is alvap nmLU• than A.) When the solution Is sableved, the rate of

exleaditure Is the- same tfr all component type 5s far as possible,* since

It It verse ot we could always Improve the oetcoae by shifting espuad-e

iturs fr= one component to another. *he solution may be sumirlsed as

follows.

(l) or hAO, I 1 1, ... , a, doefin

r f t a1'(O) * (Ai.2a)
{.~x o if ci'(r10 ) A•(••

r (h)0 I r0) a. (4.9b)

x such that aI'(r1 , - x) 1 A, otherwise. (h 20

X may be tbought of as the final rate of expenditure upon attaiment

of some, as yet unspecified, system reliability. Thus (14.2) defines the

oewrespondi• component hazard required. (4.2b) states that if the mmxi-
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r ate Of Oxpewditwe possible for the I component ts below X,

then OpeWd 0~oug~ to reduce component I hbaard to 0. (4 .2a) states

that if the linaum rate of expenaiture for the Ith component Is ) A,

then retain the present haad r 0 (1.e., spend nothing for reliability

p'owtb of component I ).

Note that rz(X) Is uniquely determined, mince a Is continuosm

* and striotay Increasing.

(2) !. oi'(0) A a o(r ), *1, *.., n, r(1) isa continuous

decreans funotion of %. This follove from the fat that Oil is an

Increasing continuous function.

(3) For X s0, define,

n
rCA) - Z r1 (A) ().3)I="

r(A) represents the system hazard resulting from the ohoice of A. r(h)

Is a continuous decreasing function of A for A a 0, since r(A) Is the

mm of cotintou decreaslng functions. r(A) deoreaae from V to 0

as A increases from 0 to a.

(11) wdereezsts at leat one value of X k 0 such that r(A) a r

tf 0 - r -z?. This fool in sdiately from (3).

Using theme facts, we may nov state the solution to the problem posed

in model 4.1 in

4 L2r.J.eo . Lot A* be the minimum vs of A such that r(A) re-

M -r! a• ... , 1, minimSOB total coet eI ( - rV
subject to 0 9 r 0 9 r I a 1, 4 no ad Er I

i1

Px . Consider any other choice (r,, ... , r.) satisfying the aom-
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a

strain" 01r it r°i 0 lo.. s and tri ar. o Let 1 i -r tor I
I1In 11, end r, 30 for I In n R, t anI ZI areJoiteub-

sets of (2, ... , a), one of vwhioasy be emty, but not both. For I

in 12 a1 c'(01 - rdi) a ai.(r," - r*). tor 1 11 12. ci'(ri6 - -t a 1 0 u(rI°.*).

ahams Zei(r 0 - rd. zo Z oW(1hr) u ' [a (rl( so r~ a ~ r )3
11 ha.

2.
Z CEo(r 1 ~ !- iro - *V zr1 -rY r )dx

z (%1,° 1[ -0 1 Z (,° - r,)- Z! a, ( r - rj) 3
"I In I2 in I In

112ff.

* Xe - r a xO(re • w*) o 0.

I s

Thus (ru, .... ) sp 1 -V uimie E aor I r I subjet to st-r . II

A.m.lmrk. e correspoding optimu expenditwue tor the reliability

gawath of component I aI (ilr1 - r!), I 19 ., a; the correspon•i•g

Sexpenditure on component reliabilty grovth of to' (r 0 - r?) Is

the ainaimm expenditure that vill achieve a system reliability pov h to

the desired level of p3 .

5, QlWutrgtloU of Optima Relia-bi2ity Growth. We illustrate the

e~oulstions required by working out an example. The example Is base4 on

the Carbut-lerd (195T) model in which the cost of developing component re-

liability Is asumed to be proportional to a positive pOwer of the me

life achieved. The model assame further that component lifelength Is oSw-

emied by ea exponential distribution. Frost these two " ~u Latos, It Is
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"easy to see that aj(.) Is of the form:

aI(r - r. b -r 0± ) for 0o rr:,°. (5.2)

Ah" bet . 0 and aL > 0 for 1 * ., ... , n. It follows, of course,

tat a *(r - r b "ar1  . T j(o ) is an incre•sing,, triotly

oonvex function tfo 0 'r1 s r.

T, Illustrat* the solution of Section t in the simlest

ftahlon, we consider a two component series system. resently, component

I ha reliability p1
0 w .75 or hasad r3 o a -log .75, while component

2 as vlibilityp 2 ° a .60 or basar4 r 6 w -lg .A0t thus the Moeent
2~P 2 eibliy i~

systa reliability In pO a plOP2 .5.

To decrease the hasard of component 1 from r -0og M to r

S -log .75 require an expenditu of

cY(-los .75 - rY) - 10or" - (-log .75)-13

Similarly, to decresse the harad of component 2 from rom - -log .60 to

r s - log .60 requires an expendituroe of

a (-log .60 - 2) - x 2 o10Er -2 (_lo .6o)-2.2 -lo 2
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rc I106r. " " c 3." '("22 0 r2) 2 .I6 2
a (r - r1) c 2 C(r2  - r2

i6

200 x 106 200 x 106

100 106 100 z 106

50 x 106 50 x 106

.268 .90 .10 0 .50 .40 .30 .20 .10 0

r 1, Fimla Hazard. r2 Final Hasard.
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The Pwhlem is to deteUlm the reVOiA momnt of reliability prowth

tw omAN emt 1 tos na m value P . .k5, and for amehawt 2 to a Uav

valu p.0 I .60, so as to achieve system reliability •-owth to the desired

value e a P1oP2* ) .45, at m en tom cost-

Ditfeatiatins• we obtain

ao 4-a .75 - %1 ) - xo6r]2

sold

c2,(-lo .60 - r2) x 10 o~23.

r o second ditftroetiation ,w veriy that al(,) amd 2() a we

striotly •one. The functions al"(.) d a Gr(.) we plotted in Figur,

5.1.

Let um obtain solutions co•zospoading to euh of a trally of values

Of pa. V, OW accmplish this met readily bw specifying various values

of I M otdaining the OO1 oo edrmeo eels r1 r2* (or equivalently,

±, p In a sense, ve will be solving a series of different probleo s

but until ve have solved the po•em we will not know vwich problem ve

have solved (i.e., if we opacifty X, ve will not knowv vht value po

will be until vs have obtained the individual values plj, p'?

Supose then • e pick A* - 3 z 106, 5 x 106. 6 -106, etc,. as listed

In colo (1) of Table5 .1. Consider frst P 3 x 106. since the

CWve of a "(') (Fig. 5.1) lies entirely above A* a 3 x 106 v ohw -

Sfrom 4.2(a), r 1 a 'r 1 (3 x ILA -a In .T5. Next, from the curve of

*(.) (i. 5.1). ve read off * a r2(3 x 106) w .5o, the abscissa

Crresponding to an ordinate of 3 x 106 (in accordance with (4.20)).

Thkoc atilogs, ve obtain ple a .75 (Colm (is) of Table 5.1) and p20 . .61
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(colum (5) Of Ta~ble 5.1). In column (6). we list po a plOP20 16

Since w~' .75, the origlual reliability or subsystem 1, the corresponding

expenditure io u (column (7)); to attain p 2 a .61, the required expen-

diture Is .03 x 10 6(column (8)). Finally, in columin (9) is shown the total

expenditure of .03 x 10 6 obtained by summing the corresponding entries In

Mo~ ( M)An (0).-

In a similokr fashion, we compute the rays in table 5.1 corresponding
10,6 x16,

to X0 X5 el 0,tc. The resulting veletionshipbetween the mis-

1mm total cost required as a. function of system reliability attained Is

shown In Figure 5.2. We can ncnr state that to attain a system reliability

of V* a .70 say, we should aim to improve the reliability of subsystem,

I to .86 and of subsystem 2 to .81. The resulting total expenditwef of
67.0 x 10 Is minimum among allocations of funds which would yield a system

reliability of .70. A similar statement mnay be =#-' about each of the

points plotted in Figi. 5.2.

If we wish to compute the optimsl set P::: p2* corresponding to a

point not exp~licitly plotted in Fig. 5.2, such as corresponding to P* *.65*

say, we proceed as follows W e plot a c~irve showing X* an functiaon of

pO (Fig. 5.3). From the curve, wo read off the value of NO w 26 x 106

corresponding to po a .65. We thou compute p 10 a81,p 2
5 w .78 cor-

responding to X*'a 26 x 106 . The reoaulting system reliability p4

ap 1*p2* a .65 and the expenditure required Is 2.14 x 106. Note that the

resulting p* I p P1 p2  might not have been the desired value .65;a suppose

it had been -c .6.5. In this case, If the discrepancy had been large en-

ough, a new comptation would be ma~de using a slightly larger value of A*
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t Cost

I Ij
to x 10

.45 .50.0.0.0 Reliability

InIitial System Reliability

Fig** .k Cost Vs. Reliability Undei Optimal Allocation.

539-



the. Ps'witoem1 By swaossolve trials, ve am ro~me the eror to an sf12.

a vhu. o " w pleas..

An Interesting point Is brmught out by this paphcasl e~aupolo In got-

Umiapllos~tioms of this model, It asy be that the rolatiouhipes a I(-) will

be available in the tow. or W"Mhool owve based on oboe-red data, rathe

them In the fto or smateiot mathematical relationships. 1fu' oveale,

In the cawis of deveoping a bsystem, a recoind of su~bsystem zellabilit7

attained Cromwaspndig to various expenuitwes of fum"ds m. have bee" as.-

simAlated. Ncto that the graphiou pmoede for eoamWIa the coltml

plov .... a 5 sq m be us" Yam) 31057, without mW need fo m aneuqislfe

INSthmioalC& foanla, for the a,(-).
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SOME CRITICAL REMARKS ON ACCELERATED LIFE TESTING

Sam C. Saunders
Department of Pure and Applied Mathematics

Washington State University
Pullman, Washington

SUMMARY. The history of the development of mathematical statistics

has been that of successive efforts by'its practitioners at increas-

ing the generality and applicability of statistical inference. This
has often resulted in the gradual weakening of the dependence of eta-
tistical models upon specific physical, chemical or engineering con-
"cepts which make the model appropriate to a particular problem. One
of the current needs in reliability theory is for methods which allow
the prediction of life from a few tests in which the process of wear

has been accelerated. This paper is an effort to point out the neces-
sity of a thorough understanding of each appropriate cumulative damage
process in terms of its chemical or physical behavior before a suffi-
ciently useful analysis can le made. Some remarks are also made on
the futility of only a mathematical approach to the problem of accel-
erated life testing. The reinforcement possible between statistical
theory and engineering reality is illustrated through the discussion
of the application of certain aspects of renewal theory, reliability

4 theory, fracture mechanics, strength of materials and physics of solids
in the mathematical calculation of metallic fatigue in airframe design.
This problem represents an extreme in accelerated life testing because
of the paucity of data from which long term predictions are made.
Some of the difficulties of such an interdisciplinary approach are
discussed and the advisability of a cooperative attitude of statisti-
cians toward the contribution from other disciplines is mentioned.
Some consequences of utilizing the assumption of constant failure rate,
when it is unjustified, are given. The attitudes toward the causes of
failure resulting from this constant failure rate syndrome may prove to
be equally destructive to the design of a valid accelerated life test.
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One such attitude is that certain *isolated failures" may be ignored
in the calculation of life expectancy from accelerated life tests.

The contrasting reaction is to determine the cause of each failure
and *fix" all units presently in service and/or all units to be sub-
sequently manufactured. It is maintained that the statisticians

proper role in the analysis of such failure data from accelerated
life tests must be more than providing universally applicable sta-
tistical techniques which 'crunch numbers". instead his role must

involve a synthesis of scientific knowledge from relevant areas for
the proper interpretation of the failure and its cause and cure.

INTRODUCTION. The idea of shortening the period of testing which
is necessary to determine the life distribution of a system is cer-
tainly an appealing one. It offers the hope of decreasing the lead
time between design concept and prototype introduction with the con-

sequent advantages of both cost reduction and possible performance

superiority. Moreover, it fits in with the aspirations of mankind,
"expressed throughout history, in the beneficient result of scientific
endeavor and it also reflects that ubiquitous hope of getting something
for nothing. An instance of close parallel in an earlier age was the
research program seeking the tranv, mutation of lead into gold.

After expressing this mild skepticism about the universal appli-
cability of accelerated life testing, let me begin by presenting an
archetypical situation in which our fondest hopes for such a program
may be realized.

If T>O is a random variable, interpreted as life length, and

(1) U(t) - P[T>tj for t>O

is the probability at birth of a life exceeding t, then

(2) P(T>s+tIT>•s ,=

is the probability that given an age s the residual life length
exceeds t. Now this residual lifetime after s coincides with the
life distribution at birth iff

(3) U(t+s) - U(s)U(t).
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.. . . . . . . . . . . ...... .. . ........... ,,t r -o .

This equation has a unique solution; namely,

(4) U(t) At for some X>0.

If T has a distribution given by U, it is said to be exponentially

distributed. A component with an exponential life does not wear

out! Such a component may fail, but if it has not failed at a given

time, it is as good as new.

In what situations can one expect the exponential life to be a

suitable description of reality? I now consider twos

(i) the life length of a jeweled bearing in a watch,

(ii) tensile strength of a steel rod.

In (i) the bearing receives such little wear during the watch's

operation that it fails only as a result of severe shook, such as

being dropped, which can occur at any time for reasons not related

to the usual utilization. Of course, the analogy of the jeweled

bearing in a watch with the electrical properties of transistors

and integrated circuits is so seductive that widespread adoption
of such a model for electronic components has been observed.

Suppose that a component 'as an exponential distribution,

given by equation (4), and from a group of n such components which

are on life test we wait until the first rkl failures occur, say

7x(l)< X(2)' .... < X(r)

are the times of failure. We have the famous result of Epstein-Sobel:

Theorems If the failure note A is unknown, the best unbiased

estimatator of X-1 is, in this situation, the total life statistic
divided by the number t)f failures namely,

r
T Z- ~X i+ (n-r)X r

in which case var(Tr) A and 2 rXTr has a X - distribution with

2r degrees of freedom.
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As a consequence of this result, it is believed that estimators

of, and confidence bounds for the mean life (or the reliability at
any given time) can be calculated from counts made only of the total
number of hours of observed life and the number of observed failures.
This result I call "Pandora's Box" because of its similarity with the
mythological account of an instance whereby great mischief was inad-
vertantly done. (the mischief was accomplished by the release of

naive hope which usually proves vain.) "Pandora's Box" has resulted

in some dire-practical consequences; namely, the wholesail,'but hid-
den, assumption of exponential life.

Further, there has been a relaxation of the felt obligation to
determine the cause of failure instead of just noting the service
times at which they occurred. The prospect of great monetary gain
resulting from the possible utiliiation of one-hour tests on each of
one-hundred new components to demonstrate a reliability of one-hundred
houts of life for each one has great attraction for persons who have
but a little knowledge of statistics. (Las Vegas provides the same
attraction for the probabilistically ingenuous and with, I believe,
the same results.)

Any doubt about the universal applicability of the exponential

assumption was met with the rejoinder: "For any continuous life length
random variable there exists a transformation which will make the dis-
tribution exponential; therefore, one needs merely find that transfor-
mation and then use the results for the exponential law."

Of course, blaiming mathematics for one's financial losses at
chance has a long history going back at least as far as Cheval Do Mere
and one cannot justifiably blame the exponential distribution for the
idiocies which have been committed in its name. However, one does
decry the attitude that accelerated life testing is only a subset of
statistical theory and as such should be pursued by mathematical sta-
tisticians using just pencil and paper.

Let us make a definition: Accelerated life testing is the design
of tests on a component's (or system's) reliability which are to take
place under increased stress (or a more stringent environment, or both)
in order to predict, as soon as possible, the reliability under the pro-
posed service conditions.
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We now state one such problem formulated mathematically:

Given test conditions e and life lengths X (O),*...Xn(0)0
estimate the reliability under service conditions *, i.e. estimate

F(tlo) - P[X(0)>t] for t>O,

and then place bounds on this estimate.

Almost any person with scientifio training will immediately say
that this problem is ill-defined and virtually insoluble because there
are no stated assumptions relating the parametric values 0 and 0 with

the distribution. And that is exactly the point. Any useful model

for the solution of this problem must supply information about the

parameter space and the ostensibly definable relationships between
parameter values and environmental conditions and, we maintain, this
problem is more than a problem in mathematical statistics.

As an illustration of a mathematical formulation of a class of
problems, we present the following: J4

Assume that under two different, but fixed, sets of conditions,
we have

X V F and Y G,

where

G(x) - hIF(x)] (or G(x) - Fia(x)])

We can further assume the function h, or a, known (or a(x)ax) and then
estimate G, P or h. We might also wish to find confidence bounds. One
also might simplify the problem by assuming tha%: G or F is the exponen-
tial distribution. See [I] and the references qiven there.

All of these variations are very interesting mathematical problems
which doubtless have some utility. My contention is that any statistical
theory which applies equally well to the width of stripes on the back
of a zebra and to the life of transistors, ignoring the physical, chemi-
cal and biological differences, can't be specific enough for either
situation to make any but the grossest of predictions. What is needed
in accelerated life testing is less generality and more specificity.
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Further, it is contended that it is necessary to understand the physi-
cal process governing the influence of increased stress and/or more
stringent environment on the distribution of life in each specific

instance.
To make this difference of opinion clear, let us consider the

simple problem of p'redicting the wearout of government-issued socks

under severe service conditions, given data on the wearout-of socks

under normal conditions. We can estimate the mean and variance,
then guess the percentage of increased wear under the severe condi-
tions and take that percentage reduction of the mean service life
and then calculate wearout using an appropriate distribution. Al-
ternatively, we could perform impact and abrasion tests on the socks
with appropriate amounts of chemical additives simulating both sweat
and dirt until the parameters of the life distribution are known func-
tions of the impact, abrasion and chemical influences on the cnsti-
tuent material in the socks. Then the distributi . of life is calcu-
lated under the altered properties of resistance under the severe
service regime. In many instances accelerated life testing is at
least as much an engineering, physics or chemistry problem is it is
a statistical one and in fact I sometimes believe the number of para-
meters fitted statistically may be proportional to the amount of ig-
norance of the underlying mechanisms of failure.

A constant failure rate is said to generate "randcm failures"
which is interpreted to mean failures for which the cause will never
be duplicated and so such "isolated failures" need not be analyzed.
It has been the experience of many system managers that there is no
such thing as a "random" or "isolated" failure. In fact, I heard one
say "An isolated failure is just the first failure in what will become
a flood of failures unless system modifications are made as soon as
possible."

The failure times of integrated circuits are often regarded as
random variables with decreasing failure rates (indeed, sound arguments
can be made for this contention.) However, accelerated testing depends
upon whether the electrical malfunctions are, for example, caused by

such divergent means as:
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(1) the unfortunate redeposition of dust particles due to the
introduction of a sero-gravity state,

(2) the fatigue and rupture of electrical circuit welds due to
sonic or ultrasonic vibration, or

(3) the degradation of electrical response due to continual
exposure to high levels of gamma radiation.

All of these are known to occur and it is certainly important to know
which.

We believe that it is not possible to accelerate the life testing
of a system unless you know in general

() the distribution of wear or damage which a specified service
will impose,

(ii) the mechanisms (or modes) )f failure which are important to
a specified service and need to be studied.

(iii) the alteration of stress behavior caused by accelerated
testing.

There is not likely to be a theory based on statistical considerations

alone which will be of much utility, just as a deterministic theory
alone based only upon physical considerations may not be worth much in
determining an accelerated testing procedure.

To illustrate the type of cooperation ba ;een phkmical theory and
statistical analysis which I feel must be accomplished. to obtain realis-
tic accel Ited life teab,, I want to discuss the current state of af-
fairs, vis"a vis accelerated life testing, in the determination of air-
plane reliability.
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st•atios, to onn tlerih

First of all, there are several desiderata in airframe designs
strength, lightness and fatigue resistance. (Actually, designers
have known for some time how to construct an airplane which would

not fatigues the reason they have not done so is that all such de-
signs will not fly, but only taxi.) This parenthetical comment is
intended.to indicate the mutually, oppositional nature of these re-
quirements. Consequently, any design must be a compromise affected
by some balance between these competitive factors. To construct an
optimal design requires an acceptable definition of optimality. For
commercial design# one such definition might be profitability.

The potential profitability of a particular airframe design nec-

essitates a determination of both the strength requirements (for in-
creased payload) and the maintainability requirements (for increased

longevity.). Bach of these is, of course, subject to stochastic vari-
ation. The design motto "get the weight out," which is intended to
increase the payload of the plane, usually results in "putting the

fatigue in" and as a consequence, the service life of the model is
stochastically shortened, which in turn reduces the expected lifetime
profitability. There is an added complexity. The weight of a structure
made of aluminum can be reluced by half by substituting titanium but at
an increase of approximately ten times the cost. Thus, not only may
certain designs be much more expensive, but they may have a shorter
life. I need not mention any examples of current models. A successful
design is one that steers between the Scylla and Charibdis of these

alternatives. Moreover, since the designed life is 60,000 hours (30
years) it is clear that all testing of its durability must be of an
accelerated nature.

Our first task is to delineate the mechanisms of failure which
will be of importance under the specified service regime. Clearly,
we must have adequate theories to calculate both the yield strength of

materials and the time until the occurrence of metallic fatigue. The

former is available in textbooks,(see [2]), it is the latter theory
about which there is yet some disagreement especially as regards the
interaction with environmental effects. (see [3] and [41).
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The strength requirements and the environmental stress usually

dictate the choice of material as wall as its fabrication. For ex-
ample, the brittleness or ductility of the metal and whether it shoull
be extended, cast or forged should be determined. Whether it will peri-

odically be subjected to a corrosive environment and/or elevated to
400F* during each ground-air-ground cycle of the flight must be taken
into account for each component. It is beyond the scope of this talk
to do any more than sketch the outlines of the general procedure.

Of course, the concept of a fixed service regime is a simplifica-
tion since, in fact, one of the major sources of variability of the
service life is the stochastic nature of the loading spectrum. The
identification of this distribution is of futidamental importance since
the design must sustain the extreme loads encountered as a consequence

of both maneuver and random gust loading but during most of its service

life it will encounter stress at a somewhat lower level.
The loads encountered in service are a result of the gross weight

and the gusts encountered in the atmosphere. It is necessary that a
summary of the statistical characteristics of the atmosphere be avail-
able. We presume that F(w:h), the distributions of gusts of magnitude
w at a given altitude h, is available# at least in tabular form. The
time between the occurrence of gusts is assumed to be exponential with
the parameter a function of the airspeed. The airframe is a filter
which transforms these gust and maneuver loads as a function of the
gross weight and the location of the station on the fuselage or the
wing.

For example, if we select a typical lower wing station and graph
the ground-air-ground work cycle, we might have:

stress

time of fliqht
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in the modeling of this G-A-G cycle, we consider two random

variables. The time of flight and the gross take-off weight. The

distribution of these quantities must be determined from the intended

usage of the plane and the route structure of the carrier. This in-

formation provides us at each station (of which there are several

hundred on each wing) with a distributlon of %'S,N) which are respec-

tively the loading spectrum and the length of the cycle. Since the

stress as a function of time at each station will be transmitted

throughout the structure and be born proportionally by each metallic

component, it is necessary that something be known about the fatigue

behavior of that metal.

Many constant amplitude fatigue life tests are made with notched

metallic coupons of a particular alloy in order to obtain an equation

between stress and life. This relation is what is called the Wohler
equation and is identical to what statisticians would call a regres-

sion equation between log-stress and log-life:

log-stress

_ _ _ _ _ _ _ _ .. _ _ log-life

From this information, which will be different for each type of
metal and its method of fabrication, is calculated the distribution
of time until a given loading spectrum will initiate a crack. A for-
mula which is used for this purpose is an adaptation of an ompirical
result called "Miner's Rule." After both empirical corroboration and
some belated theoretical justification (see [51 and (6)), it is now
used to predict the median time until crack initiation. The actual
time itself is regarded as a random variable.
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The distribution of gust loads during a time interval of given
Lingth determines the distribution of the random loading spectrum.

The time until crack initiation of a given material for a given dis-
tribution of the loading spectrum is assumed to have an extreme value

distribution with two parameters c,O say where a is determined as a
material constant and B is the median life calculated using Miner's

rule and the Wohler diagrams.

SAfter the crack has been initiated, i.e. is of the length of
roughly .01 in# it enters a phase of stable growth. During this time,

it will propagate as a function, not only of the maximum and minimum
stress of each oscillation but of the order of the loads within the
spectrum as well. To assume you that this is a significant influence,
let me re-mark that there are known instances where simply the reversal

of the lead order of a spectrum, therefore with exactly the same maxi-
mum and minimum stress and oscillation frequencies, results in an al-
teration of the average rate of crack propagation by a factor of 3
(see (71).

Moreover, there have been observed certain other non-intuitive

effects of load order. These effects, called crack arrest and crack
jump, are also significant. A quantified theoretical explanation of
such a complex phenomenon, which has universal acceptance has not been
attained. However, several partial attempts have been recently made

i ((31).
As an additional complication, two identical loading spectra im-

posed on what are nominally identical specimens can result in lines
differing by as much as a factor of ten because of environmental vari-
ation c-ausing stress corrosion. This is because fatigue is a chemical,
as well as physical, phenomena of the surface and the interaction be-
tween fatigue and corrosion plays an important role. In fact, anything
that affects the chemistry of the surface such as the polish of the
metal, the finish, or intermittant exposure to such agents as salt air
or Jet fuel vapors, must be taken into account.

Thus, any accelerated life testing at elevated stress levels in
dry laboratory air must consider the ambient conditions of the metallic
surface during its service life in order to make valid predictions.

An alternative theory for calculating the crack length curing the
stable phase of crack growth following crack initiation is to use a
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differential equation with two random parameters governing it be-
havior. These parameters are determined for each specimen by meta-

lurgical measurement for one and the other from stress intensity fac-

tore calculated by Fracture Mechanics, geometry of the specimen and

the type of metal. (see [ ]).
From the solution of this equation, we obtain the stochastic

process, say S(t-T0 ) for t>O, which is the crack length at a time t
with the initiation occurring at a time T.

The residual strength of a component which contains a crack of

length soO in calculated theoretically from its design and gross area

stresses. In a monolithic structure, the crack can attain a length

for which the structural strength is zero. In a fail-safe strubtural
design there are "crack stoppers" which arrest the crack at some size
before the strength is reduced too far. We illustrate with two sche-

matic plots of strength versus crack length:

strength strength

crack
S length

crack length _ _ _ l
monolithic structure Fail-Safe structure

Of course, as a check on the predictions of the quality of design
concerning both the ultimate and fatigue strength of structural members,
many critical components are fabricated and tested until failure occurs
in one or the other mode.

I have mentionod all of these ancillary subjects, which are cur-
rently important in the accelerated life testing of an airframe, to
illustrate my contention that in many instances in modern technology

where accelerated life testing can be applied for the prediction of
reliability that the statistical techniques for accelerated testing
when they are properly integrated with the appropriate scientific know-
ledge from physics, chemistry and engineering provides a most powerful
tool.
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Conclusion

Statisticians working-on reliability in industry during the past
few years have been used like "hired guns" or "counselors". On retain-
er they were ,expected to collect data ad advance statistical argument

supporting the position that their patron advocated. The attempts to
"prove" the reliability of certain products using statistical arguments

has resulted in many statements such as "With lO0(1-c)% confidence this

component moets or exceeds its reliability goal of 1-8" where c and 8

are both small.
Unfortunately in many cases the first n trials (at hundreds of

thousands of dollars per trial) resulted in total failure. (Here n is
large). In many instances the cause was subsequently determined to be
an oversight in the design caused by disregarding or misinterpreting
the results of testing. Of course, statisticians as a group were not
more culpable than persons from other fields of knowledge but I think
they were blaimed more frequently.

Clearly, not all of the difficulties of designing and constructing
reliable systems can be cured by statisticians learning more engineer-
ing and engineers learning more statistics, but I believe nothing will
be lost by such efforts. Furthermore, it is my personal, perhaps chauv-
inistic, belief that statisticians will finish this assignment first and

that the profitable development of accalerated life testing procedures
based on sound engineering knowledge with a thorough understanding of
the physics of materials will be accomplished largely by their efforts.
In any case, it is virtually certain that the development of such pro-
cedures constitutes a major need for statistical applications and pre-
sents a challenging task to scientific endeavor in the years ahead.
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RELIABILITY OF MULTIPLE

COMPONENT SYSTEMS

Larry Lee and W. A. Thompson, Jr.

University of Missouri - Columbia

Abstract. Brindley and Thompson (1973) have introduced a

multivariate concept of monotone failure rate.

Here we treat a mathematical model which has arisen in bio-

logical and engineering applications. In a biological context one

refers to the theory of competing risks; in the engineering appli-

cations the model represents a non repairable series system. The

system fails when the first of its components fails so that not

all component lifetimes are observable.

Initially, we assume the components of the system to be

independent. Then we introduce dependence in terms of sets of

minima of independent random variables. The resulting multivariate

distribution of component lifetimes generalizes Marshall & Olkin's

multivariate exponential distribution but allows for the possibility

of monotone failure rates.

The above dependence distribution is then derived through a

"fatal shock" model where the shocks arrive according to a time

dependent Poisson process. The failure rates of the component life

times are determined by the intensity functions of the processes.

This research was supported in part by Office of Naval Research

Contract N00014-57-A-0287-004.
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1. INTODUCTZON

Let X1, ... , Xk be theoretical failure times of k components

of a series systeml that in, if the system were to continue, the

ith component would fail at time X i. The system fails when the

first component fails so that failure times of the other components

become unobservable. Only the system failure time, U - min(X, ... , e

and the component or components which caused the failure are observable.

The configuration of components causing the failure is called the

failure pattern, we describe it in more detail later.

Problems of this type have arisen in two diverse applications.

First, in the context of actuarial science, Cornfield (1957), Kimball

(1958), Chiang (1968), and Berkeon and Elveback (1960) use the

"competing risk model" in the preparation of life tables for bio-

"logical populations; Moeschborger and David (1971) discuss applications

of the competing risk model and consider the problem of estimating

parameters of the underlying life distributions..

Second, problems having the same mathematical structure occur

in connection with the reliability and safety of engineering systems.

Marshall and Olkin (1967), Arnold (1968), and Be•si, Higgins and

Bain (1972) are papers which appear to be motivated by engineering

applications.
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1.1 Survival Times and Functions

Let X denote survival time, i.e., the length of time until a

particular functioning object fails to function properly. Once the

object fails it stays in that state, we are not considering it to

be repairable. Except for the intuitive background, in this article
one may think of survival time as meaning simply a non-negative

random variable (r.v.). The survival function of X,

P(x) - P(X > x1 x > 0,

is the probability that the object survives at least x units of time.

As a consequence of the frequency intepretation of probability,

F(x) is also the proportion of a large population which will survive

till age x. Thus, as Grubbs and Shuford (1973) have done in constructing

a probabilistic theory of combat, if interactions between the strengths

of the two armies are igniored, then the proportions of combatants ¶

on each side surviving at time x can be estimated by F(x).

tiuZThis article treats two or more survival times jointly, par-

ticularly when they are dependent. If X and Y are survival times,

S~then

P(x,y) - P[X > x, Y y> ; X2y > 0,

is their Joint survival function. Joint survival functions for

more than two objects are defined in an analogous manner.

Possible applications of joint survival functions are suggested

by the following examples. First, denoting the life times of

husband and wife by X and Y, respectively, an insurance company

selling an annuity will be interested in the bivariate survival

* function. Second, the two engines of a twin-engine airplane can

fail separately or simultaneously; the joint survival function is
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important in safety considerations. Third, for traffic congestion

studies, one is interested in the time gaps between cars on a two

lane or multilane highway.

The exponential distribution

F(x) - 0, x < 0, F(x) - 1 - x , x • 0(1.

has proved useful as a model for life testing, see Epstein and Sobel

(1953), but it has a "no aging property" which is peculiar in this

context. If the r.v. X is exponential then

P[X ) x + Aj X , x) - P[X > A]

for all x > 0, A > 0. That is, in a probability sense, residual life

is independent of age.

Obviously many objects age, i.e., become more prone to failure,

as they become older. Some actually strengthen as they get older,

e.g., some electronic circuits and many new mechanical devices.

The concept of failure ratei plays a role at this point. Let

X be a non-negative random variable with density f(x), distribution

function (d.f.) F(x), and survival function P(x) I 1 - F(x). The

failure rate is
r(x) - f(x) d (log (x) (1.2)

- (o I(x)

Alternatively we may write
x

F(x) - exp ,- / r(t)dt]. (1.3)
0

The failure rate is useful and has a meaningful interpretation, for

r(x)Ax represents approximately the probability that an object of

age x will fail in the interval Ix, x + Ax].
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K rlow and Proschan 1965) introduce monoiono failure rates as

follows.

Definition. A nondiscrete univariate digtribution F(x) is Ill (PFR)

if

P(X>x+AI x+x) lX X 1(x) ,:

is decreasing (increasing) in x for every fixed A > 0, x > 0 such

that P(x) > 0.

If 1(x) has a densityandl(O-) " 0, then F(x) being ZnR (DR1) is

equivalent to the failure rate r(x) of (1.2) being increasing

(decreasing).

Some distributions which have been important in life stud•ls

are i) the exponential with constant failure rate ii) the Weibull,

with r(x) - pox"' and iii) the Gomperts with r(x) - B exp(cx);

BC > 0. Makeham0i formula, r(x) - A + B oxp(Cx)i BC > O, has

been important in the theory of life insurance.

1.2 Nultivariate Exponential Distributions

Since the exponential distribution plays a crucial role in many

univariate lifetime problems, we are concerned with multivariate

extensions of it.

The simplest multivariate distribution with exponential marginals

is composed of independent exponential distributions. With the multi-

variate hazard rate defined as r(x1, ... , xk)

Sf(xl, ... , Xk)/Plxl ... , xk), the hazard rate of independent

exponentials is obviously constant. Basu (1971) ihows that the

only absolutely continuous bivariate distribution with exponential

marginals and constant bivariate hazard rate is that of two in&e-

pendent exponentials.
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Gumbel (1960) presents a bivariate distribution with exponential

marginal@ and joint survival function

a(x,y) * a-x-Y-8xy1 0_• 6 I t: x,y • 0.

The coefficient of correlation for this bivariate distribution is

either negative or zero.

Freund (1961) studies the following model. Suppose that two

exponential lifetimes, with parameters a and 0 , function inde-

pendently until the first failure. At failure the remaining

lifetime becomes exponential with a new parameter, either a'

replacing a or 0' replacing B. This may realistically represent

a situation where two components perform the same function, and
the failure of one component puts additional responsibility on the

remaining one.

Freund's distribution has the "no aging property"

P(x + A,y + A) - P(x,y).i(A,A), A,x,y 1 0.

But 11 (x), the marginal distribution of X, is ZFR (DR) if and

only if a 4 a'(a * a') and similarly F2 (y) is hFR (DFR) if and ohly

if B <0'(0 > B'). Since the hazard rate r(x) of an exponential

distribution is equal to its parameter, this result is intuitive.

Note that the failure rates of the marginal* can be increasing,

decreasing, or even monotone in opposite directions.

Marshall and Olkmn (1967) derive from three different models

a bivariate distribution which has exponential marginals and joint

survival function

P(x,y) - exp{- AIX - A2y - A12 max(xy))u
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x,y 1 Os 11,12,112 • 0. We call this class of distributions the

bivariate exponential distribution, BVE, and its extension to n

variables the multivariate exponential distribution, MVE.

Marshall and 01kin derive the BVE through a "fatal shock"

model, a "non-fatal shock" model, and a "no aging" model. In

the "fatal shock" model three independent Poisson processes, with

parameters Xtl,12, and X12, govern the rospective occurrences of

failures of component one, component two, or both components in

a two component system. Their "no aging" model shows that,

analogous to the univariate exponential distribution,

F(K + A,y + A) - A(x,y)i(A,A)g A > 0 x,y !01

i.e., PCX > x + A,Y > y + AIX > xy > y] - P(X > Ay > 6],

with exponential marginals, if and only if F(x,y) is DVE. Allowing

the A's to differ, they show that P(x + AIy + A2) - P(x,y)'(AI, A2 )

for all positive A1 and A2 if and only if X and Y are independent

exponential r.v. s.

Marshall and Olkin find the d.f. (which has a line of singu-

larity along the main diagonal of the first quadrant), the moment

generating function, moments, and several characteristics of the

BVE. For example they show that (X, Y) is BVE if and only if

there exist independent exponential r.v.'s U, V and W such that

X - min(U, W) and Y - min(V, W). Also if (X, Y) is BVE, then

min(X, Y) is exponential.

Marshall and 01kmn also have a complete discussion of the

MVE, with iurvival function given by

- 563 -



F(xl, ... , xk) -exp(- i-lXi xi - ii(jxj max(xi#Xj)

- 1i<j<k~ijkmaX(xixjxl) -

1 ... nmax(x, ... , xk))

where the X's are non-negative and not all zero.

2. DZPENDENCE AND AGING ASPECTS OF MULTIVARIATE SVMVIVAL

The theory of monotone failure rate has proved useful as a

probabilistic model of univariate survival time, particularly in

reliability theory. The exponential distribution is important in

this theory as the boundary between IFR and DFR distributions.

In searching for multivariate extensions of the monotone failure

rate idea, the "no aging* property makes it appealing to require
that the boundary between multivariate IFR and DFR should be the

class of MVE distributions. Brindley and Thompson (1973) obtain

this result for the following generalization of the monotone

failure rate concept. A multivariate d.f. F(x 1, ... , xk) defined

on the positive orthant is IFR (DFR) if

P(X1 > xI + A,# , Xk > xk + A) F(x 1 + A, ... , xk + A)
P(X > x,..., • xX " xl, ... ,

is decreasing (increasing) in x1 , ... , xk for each A >0, and all

xI, ... , xk > 0 such that P(xI, ... , xk) > 0. The failure times

(non-nagative r.v.'m) X1 , ... , Xk are jointly IFR (DFR) if the

d.f. of each subset of them is IFR (DFR).

The point Mere is that it is possible for P(x1, ."., xk) to

be increasing in each variable and yet some subset of X1, ... ,
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may have a marginal distribution which is not increasing in each

variable. For example, Fzound's bivariate exponential distribution

has the no aging property and hence in IFR but, if a > a',

F1 (x) will be DFR.

In the definition of jointly IFR, the requirement that each

subset of the variables have a property is reminiscent of the

definition of independent events

Harris (1970) defines a d.f. P(x 1 , ... , xN) to be multi-

variate IhR if i. F(xi, ... , xN) is IFR in the sense of the

previous paragraph and ii. the variables X1, ... , Xk possess a

positive dependence property called right corner set increasing (RCSI).

In the bivariate case, ACSI is the requirement that

P(X >', Y > y'JX > x, Y > y)

be increasing in x and y. The RCSI property implies the series

bound

Harris obtains several results for IHR variables including the

property that subsets of IHR r.v.s are IHR. This shows that

multivariate IHR r.v.s are multivariate IFR. Gumbel's distribution

is an example of IFR r.v.m which are not IHR, the series bound

need not hold.

Positive dependence properties, like RCSI, will be reasonable

for studying the life times of components all subjected to the same

environment. But we may wish to study life times subject to

different environments and there are several other types of positive

dependence which imply the series bound and are as intuitively

appealing as RCSI. For example, positive likelihood ratio
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dependence and positive regression dependence, see Lehmann (1966),

and Dykstra, Hewett, and Thompson (1973) also imply the saeries

bound. Further the parallel definition of DHR is disappointing

in that the boundary between IHR and DHR consists of independent

exponential distributions

Finally, there is no reason why aging and positive dependence

need go together. If X and Y are r.v.s uniformly distributed on

the trianqle with vertices (0,0), (0,1), and (1,0), then X and Y

are jointly IFR but they exhibit a negative dependence property

which we may call right corner set decreasing. Dependence and

aging are in fact orthogonal properties.

Since dependence logically need not accompany monotone failure,

such concepts need not be included in multivariate extensions of

univariate monotone failure rate. Multivariate IFR and DFR as

defined by Brindley and Thompson (1973) are strictly aging

concepts which lead to a symmetric theory, and the MVE distributions

form the boundary between them. Sets of minimums of IFR lifetimes

are IFR, and Harris' IHR distributions form a substantial subclass

of the IFR distributions.

3. INDEPENDENT COMPONENTS

3.1 Independence Model

The initial systems to be considered are those consisting

of independent components. The model is as indicated An Figure 1.
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Figure 1

Ther cetical Failure Times for Independent Components

component 2 1

component 2 " 72 ' 1

componentk k__

system ___ 0 ~time .

Denoting the survival functions of U and Xi by • and i(ileo ... ,k)

we have U V min(X1 , ... , Xk) and

k
G(x) H V FW(x). (3.1)i-'

It is well known that, for independent components, system

failure rate is the sum of component failure rates. In fact, from

(1.2) and (3.1),

ruWx) (log axd) I (log Fi(x)).

iml

k
! l ri(x). (3.2)

The probability of tied values is zero so that the failure

pattern is simply which one of the components causes the system

to fail.

The joint probabilities of failure time and failure pattern

are, for i-l, ... , k:

P(U > U, X i U) - P(u < Xi < min(Xj)) 1 "u P(x)ri(x)dx.
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The probability that the ith component causes the system to

fail is P(XI - U) * wi, say.

ri- / (x)ril(x)dx.
0

An example of the utility of these ideas appears in Vesely,

Waite, and Keller (1971). They are concerned with the design of

a safety systop which will shut down an atomic reactor should it

begin to go out of control. They consider a manual as well as an

automatic system and for each* they estimate reliabilities from

theoretical considerations. Estimated component reliabilities

for the manual system appear in Table 1. From this Table they

conclude thot, effort to improve reliability of the manual system

should center on relays and console switchess improvement of

reliability of terminals and connectors, and wires does not pay

off in improved system z~qiability.

Table 1 - kanual Control System

Component II's

Relays (8) .6477
Console Switches (2) .3076
Terminals and Connectors (27) .0262
Wires (76) .0185

The conditional survival function of system life given that

the ith component caused failure is

-l to I
l(uIXi M U) M I i fu 5(x)ri(x)dx,

and the conditional density is

g(ujX - U) - - (u)ri(u). (3.3)

- 568 -



This is equation (2.5) of Noesohberger and David.11971). from

equations (1.3) and (3.3) we obtain

i(x) - exp [i f 0 du, 1.1, ... , k. (3.4)

Thus, as Berman (1963) has observed, the distribution of failure

time and failure pattern uniquely determines that of the omaponent

lifetime..,lieie. 3.2 Proportional Failure mates

For two series systems of independent and identical ooup6nents,• ~k
consisting of k 1 and k 2 components respectively, then rI(x) - 2rgW).

In general we may that X and Y have proportional failure rates if

there exists a constant 8 > 0 such tat

rx(x) - ory(x) (3.5)

for all x > 0.

The assumption of proportional failure rates for the component

lifetimes of a series system has occurred several places in the

literature. See Allen (1963), David (1970), Sethuraman (1965)

and Nidas (1970). We may summaries the results concerning pro-

portional failure rates as follows.

Theorem 1. For continuous and independent X1 , ... , Xk, the

following are equivalents

i) X1 , ... , Xk have p oportional failure rates

ii) ri(x) = Ri.ru(x)i i-l, ... , k (3.6)
<•iii) F i(x) " [(Yx)]iv 1-1, ... , k (3.7)

iv) failure time is independent of failure pattern and
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v) there is a common transformation h so that h(Xl), ... ,h(XK)

are independent exporniential r.v.s.

Proof. Clearly ii) implies i), but also i) implies ii).

For if ri(X) - eijrj(x) with Gi, > 0 for i 0 j then ru(x) - rj(xhO.j

where G. S e and

•J - a(xlr (x)dx0

The equivalence of ii) and iii) is a result of (1.2) and (1.3).

The equivalence of ii) and iv) follows from (3.3). We have

g(uIXi - U)

ri(u) - .(u)

Hence ri(u) - f£.r (u) if and only, for i-l, ... , k, g(ulXi - U) -(u),

the density function of U.

Now iii) implies v) where the transformation h is given by

x
h(x) - I(ru~t)dt.

0

Note that h is continuous and non-decreasing.

From (1.3),
F (x) - MW) nI- exp[-•I h(x)].

Let Yi " h(Xi) and h' 1 (z) - inf{xth(x)>z).
x

Fi (y) - P(Y >Y) - PE h(X)>y]
Yi

"- P[Xi>h' (Y)] Fi [h 1 (y)'

1 '
- exp{-.iih~h- (y)3} - exp(-I1iy),

which in the survival function of an exponential r.v.
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Finally v) implies i), since

Fj(x) * P(Xi>x) - P(h(Xi)>h(x)J

"II.I (h (x)) - exp{-eOh (x)).

where h is the assumed transformation* Thus

ri(x) - - log Pi(x) -I

in the case of proportional failure rates we have1

S= 'i i *I, k.

HI some wi is small, then these equations make it appealing to

assume that the distribution of U can be well approximated by a
limitigextreme value distribution. For, if then nlimitingexrmvauditiuin Foiw ontn *

is the survival function of the minimum of n independent r.v.s.

all having d.f. Fi.

The possibilities appear in Table 10.2 of Thompson (1969).

The Cauchy type limit assigns no probability to positive values

and hence is unacceptable as a distribution of failure time. The

exponential type would imply that lifetimes could be negative as

well as positive. Clearly the limited type with lower limit zero

is the most appropriate choice of distribution. The limited type

with that limit is the Weibull which has density.
w(u) * p a u • Pia > 0.

4. DEPENDENT COMPONENTS

4.1 Dependent Component Model

Marshall and Olkmn characterize their MVE in termn of sets of

minima of exponential r.v.s. We may use this idea an one way to

introduce dependence among component lifetimes. The components
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causing the system to fall can be indicated by a random vector

V W (V1 , ... , Vk) where V1 equals 1 or 0 according as the ith

component is or in not failed. The sample space 8 of values which

V can assume contains 2 k-I elements since the zero vector in

excluded. If V-s where s c S then we say that the system has

exhibited fa.lu•ze pattern a. We assume a collection of independent

and continuous r.v.s {S t a c 8) where Si is the theoretical time

of occurence of failure pattern a.

Now# the theoretical f•ilure time of the ith component is

X- min (Ielu -1, o.., k (4.1)

and system failure time is

U - min(Xi, ... , Xk) - mn(Z 5 ). (4.2)

We wish to observe that David (1973) has also suggested the model

(4.1).

For the bivariate case, the model is indicated in Figure 2.

Figure 2

Theoretical Failure Times for Sivariate Dependent Coponents

1,0) zlO

S (011) - Ol

{(lgl - 2______________

component 1 -

component 2 2

system . time

0
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Let a and F denote the survival functions of U and S

respectively, and lot ff be the probability of failure pattern sl
a(z)- H (.) (4.()

and

"T - P(V - a) - U(5 - U) (4.4)

Let rut Zit and re be the failure rate functions of Up

X,, and Z. respectively. We have

ri(x) - E re(x) and rU(x) E .r.(x)
{s si-*} S

but there will be no general expression of rU in terms of (ri).

A special came of an observation of Harris is that

(X1X > x 1 , ... , Xk > xk)}-' S > ye}

where ye n max(xlel' "'', xksk)' seS. Hence

(xl .. , x) - U 1s(ys). (4.5)

xkB

Note that X1, ... , Xk have multivariate d.f.(4.5) if and only

if there exists a collection of independent r.v.s {Z 1 s C 8) such

that X min(Z*). Henac, equation (4.5) is an alternative way of
"(uin Ml)

representing the dependent component model of this section.

The marginal distributions of (4.5) have the same form as the

parent distribution. In fact

P(xl, ... , xm, 0, ... , 0) - n FS (max(xIs1, ... , xmam, 0, ... , 0)]
• mom

- (m5 x (x-19 , Xmem)"si *.Of ,, , m avI y,,, a m
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F J
where P IT (x)

Sm+l " Sk

However, consider generating a bivariate Weibull distribution

by taking

F (t) =expl-p t a]

for s a (0,1), (1,0), (1,1). We obtain

{- 10Xl 001X01-01al

tF(x hx2t( exp differ fom P1 1 (max(xlxI2)] . (4.6)

Note that (4.6) differs from the bivariate Weibull mentioned in

Marshall and Olkin (1967) and discussed in Moeschberger (1974);

the marginal* are not Weibull.

For the conditional density of system failure time given

failure pattern s, using (3.3), we obtain the expression

g(uv-X) -sllu)- r lu).4.

Using (4.7) and (1.3) we may write (4.5) in the alternative form

ys
P(x1, .. Of xk) n exp[- a 0 5du)

where y. - max(xIsa1  "'*'. xksk). Again, the distribution of failure

time and failure pattern uniquely determines that of the component

survival times.

Brindley and Thompson observe that sets of minimums of multi-

variate IFR(DFR) failure times are multivariate IFR(DFR). Hence if

({Z s s c S) are univariate IFR(DFR) then XI, ... , X. are multi-

variate IFR(DFR). For example, component failure times having the

bivariate Weibull of (4.6) will be multivariate IhR if a, a0l,

and al are all greater than 1.
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4.2 Proportional Failure Rates

The assumption of proportional failure rates in the model

(4.5) amounts to

"r 8 (x)m7ru(x), s C S. (4.8)

That is, the constants of proportionality are the probabilities of

the failure patterns. Now from (3.2) and (4.1),

ri(x) - 7i " rU(x) (4.9)

where

E " w " P(Xi U).

By sumwing (4.9) we obtain, as a generalization of (3.2),

k k
rU(x) = E ri(x)/ E Z .i-li i-i

With the additional assumption of (4.8), the dependent component

model (4.5) becomes

(x ... , xk) - H If(ye) (4.10)
ses

where y. W max(xIsol "."# x ks)" This is a joint survival distri-

bution, for the k components of the system, which is similar to

that of Marshall and Olkin's MVE. In fact, if we take a(t) - exp(-Xt)

we obtain their MVE survival function:

(x, 1 0..., xk) - exp[-XE U 5 max(x sIle seat N50)]
seS kkJ

The marginal distributions of (4.10) again satisfy (4.10)

only in fewer variables. The wis have the same significance and

even the d.f.G is the same. For example
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0(x, ... , 0) F 00 (a[max(xle1 , ... , X )ml]}

-: n {([max(xls1 , ..*. xmsre)]l

where * * the marginal•i ~~1 whr1# .. "*mem+l" .. .ski

probability of failure pattern (ai. ... , ml among the first

m components.

Theorem 1 carries over directly to the dependent component,

model.

Theorem 2. For continuous and independent (Z suES), the

following are equivalents

i1 {z11 scS) have proportional failure rates

,4i1 re(x) eru(W, seS (4.8)

ii) �* (x) - [(a(x)Hs , Sg ,

iv) failure time is independent of failure pattern

and

v) there is a common transformation h so that h(28), e8,s

are independent exponential r.v.s.

Since U - min(Z*), and the events (V-s) and {U-Z } are
5gB

equivalent, the proof is exactly as in Theorem 1 except that

(4.7) is used instead of (3.3).

As an example of Theorem 2, consider the bivariat6 Weibull,

(4.6). By calculating the failure rates, we see that failure time

and pattern will be independent if and only if al10,101,111. Then

from (4.8),

-r 1010/(010 l+001+ ), 7r ol=Po1 / (001+010+011) , and -1- /1001+010+Pll).
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As in the case of independence, since one of the w's will be

small, the equations

a seS
make it appealing to assume that the distribution of failure time

is well approzimated by a limiting extrým value distribution.

The Weibull seems to be the most satisfactory of these.

In a sample of sise N from (4.10)t let Uj and VM denote the

time of failure and the failure pattern for the Jth observation,

j-l, ... , N. Thse are the only observable quantities, and from

them we might wish to make inferences about the distribution of

component lifetimes. In such a sample, let N* be the nwmber of

occurences of pattern s and let n* be an observed value of N5 .

Z NaON.

Because of the independence between failure tins and failure

pattern, the joint density of the observations Uj and VM)

jml, ... , N is

N n.
U (u ) • A IiJ-i scS '

incorporating the Weibull choice of G into this equation, the

joint density of the observations becomes

N

N N a n s(PO) U seS V (4.11)
JulJ t

where p,m>O are the parameters of the Weibull.
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Thus, with proportional failure rates, we may assume that

smy-stem failure time has a Wel.bull distribution"independent of

failure pattern; and we :ay take observed failuro patterns to

have the multinominal distribution and he independent of the

observed failure times.

If a-l, then (4.5) yields the WYE distribution studied by

Arnold (1968), and Deemis; Higgins and Rain (1972). Then

N N
U, and (N.} are complete sufficient statistics and Z U,Siul i-i

has a gamma distribution.

5. TIME DEPENDENT FATAL SHOCK SIODgLS

Marshall and Olkin derive their MVE distribution from three

points of view, including the *fatal shock" model. In the

univariate case this model would hypothesize that shocks arrive

according to a Poisson process and that the first shock destroys

the object. Survival time would have the exponential distribution

(1.1). But the exponential has the *no aging" property which is

non-intuitive for many applications. How might we alter the fatal

shock model to allow age dependent reliability behavior? For

exemple, to model an TFR lifetime? One way is to allow the process

controlling the arrival of the shocks to be a non-homogeneous or

time dependent Poisson process.

A description of the time dependent Poisson process can be

found, for example, in Parson (1962). Let N(t) be the random

number of shocks to the object in time t. The times at which the

shocks occur are TV' T 2 # "" where 0 < TI < ... . The inter
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arrival times between shocks are

T 1 " 1 I T2 " T2 - Tit ... , T n a Fn " n-l' ....

Axioms of the Poisson process are:

Axiom 0. N(0) - 0.

Axiom 1. Independent incrementss for all choice of indices

to < t 1  <.. < tn the random variables

Nit1- Nlt., Nit1- Nltl) .. N.(tn- Nltn1

"are independent.

Axiom 2. For any t > 0, 0 < P{N(t) > 0) < 1.

Axiom 3. For any t<O0

l P(Njt+hý NIQ>1M 04
h+0 P{ M(t+h) -N(t)=

Axiom 4. For some function v(t), called the intensity function,

lur 1 - P{N(t+h) - Nt) - 0} V(t).
h+0

These axioms LJply that N(t) has generating function

Y(z,t) = *xpA(t) A(z-i)]

where
X •(t) =] (x)dx.

• 0

Since

P(T 1 > t) - P(N (t) 0)

we see that there is a one-one correspondence between the process

and the distribution of T1 .
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The function M(t) has the interpretation X(t) - 3[N(t) ]. If

v(t) is constant we obtain the ordinary or homogeneous Poisson

process where AMt) a v - t.

The time dependent Poisson process can be transformed into

a homogeneous Poisson process. In fact, the process {M(u), u > 0)

defined by

M(u) - N 1-(d) u > 0

is an ordinary Poisson process with

3(1(u)] - 3CN(W' (u))M - W M)- u.

if shocks to an object are fatal then the survival time of

the object is the arrival time of the first shock, X T1 . If

shocks arrive according to a time dependent Poisson process then

the survival function for the object is

F(x) - P(T 1 > X) - exp(-A (x))

The failure rate of X is the intensity function of the process:

dr(x) - - (log Flx)) - vx).

Hence by specializing the intensity function, the fatal shock

model yields all of the usual univariate life distributions and

failure properties as special cases.*

The neatness of this result was not inevitablei it is a

consequence of the particular model assumed. Renewal theory is

another common way of modeling reliability problem. But as

• Conversations with Larry Crow and Lee Bain led to this observation.
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anedenkoo Belyayev, and Solovyev (1969t p. 105) point out one

must be careful to distinguish the failure rate of X from the

renewal density of the process.
Proceeding now to the multivariate case, we see that the

distribution (4.5) can be derived from a fatal shock model. We

" * consider that Zk-i independent random shock processes are operating

and that a shock occurring in the process labeled (sal **of sk)

destroys those components it for which ei1-. The r.v. 2 of

Section 4.1 is the time of ocouronce of the first shock in the

process labeled s. As before, with Xi defined by (4.1), the

joint survival function (4.5) results.
If shocks arrive according to time dependent Poisson processes

then (4.5) becomes

s(Xl o xGo ) "l% xpW.W E f v(t)dt] (.1)
ago 0

where yo max (x s1 , ... , Xksk)o s c So and vs(t) is the intensity

function of the process labeled s. Also v (t) = r (t), the failure
rate of Z.

We have already seen that the time dependent Poisson process

can be made homogeneous by transformation. In the fatal shock

model, when can we perform a single time transformation so that

all shock processes are homogeneous? Answer: in the case of

proportional failure rates.

To see this, first suppose that r (x) -W 5 rU(x), a C S.

Let o (t) - rl(x)dx and II*(u) -N 5 (A'(u)), - s S. We have
0 U 9-l 0

3(0 (u1 A (C ~ u)six (u)] - EI•[N (u)] " f' Va(x)dx - Us A ( 1 M(u)) n u"0

and the M (u), s e 8 are all homogeneous Poisson processes.
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Conversely, suppose N (U) - N5 (h(u)), a e S are independent

homogeneous Poisson processes.

P~h-(Z8) >u] -, PIZO > h(u))

- PN a(h(u)) - 0] - P(M (u) " 0)

= exp (-e 6 u).

Theorem 2 then states that (Zs a e S) have proportional failure

rates.
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